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Chapter 1 

 

Introduction 

 
Several solutions have been proposed to enhance the thermal performance of the heat 

transfer devices. The most common technique consists in maximizing the heat transfer area 

in heat exchangers, and, at the moment, it seems no further improvement could be achieved. 

Another possibility could be given by increasing the heat transfer coefficient that, for an 

imposed flux, depends on the thermal properties of the fluid. Aiming to improve the 

characteristics of the traditional working fluids (as water, glycol, oil and refrigerants), a new 

generation of thermal vectors, called nanofluids, has been proposed. Nanofluids are 

suspensions of nano-sized solid particles (1-200 nm) in liquids. These new suspensions may 

be utilized in several applications, i.e. engine cooling, engine transmission oil, cooling 

electronics, refrigeration, drilling, lubrications, thermal storage, solar water heating etc. [1]. 

1.1 Thesis objectives and outline 

The objective of this work is the analysis of the nanofluids behaviour, with the purpose to 

apply these new fluids in energy, mechanical and tribological fields. 

Different nanoparticles can be prepared with different methods and also different 

nanofluids derive from different preparation techniques. A description of the most common 

methods is provided in the next chapter. The stability of the suspension will be evaluated 

considering the mean size distribution of nanoparticles in suspension, the  potential end the 

pH of the nanofluids. 

The following chapter is dedicated to the description of the experimental apparatus for the 

measurements of thermal conductivity and dynamic viscosity of nanofluids. In that chapter, 

instruments and procedures are explained in detail. 

The convective heat transfer will be considered in chapter 4. Here the description of a 

specifically built experimental apparatus is provided. 
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Chapters from 5 to 12 relate to nanofluids characterization. Nine nanofluids have been 

studied at different mass fractions and different temperatures, in order to evaluate whether it 

is convenient to replace the base fluids. For almost all the nanofluids, firstly, the stability 

was evaluated, and then their properties were measured, considering the variation on thermal 

conductivity and dynamic viscosity when adding nanoparticles and when changing 

temperature. For the most promising nanofluids heat transfer measurements were performed. 

In the last chapter a final comment on the potentiality of studied nanofluids will be made, 

relating to the properties here investigated. 

1.2 Background and literature review 

Nanofluids have been introduced by Steve Choi of Argonne’s Energy Technology 

Division and Jeff Eastman of the Materials Science Division on Argonne National 

Laboratory in 1995 [2]. 

It is well known thermal conductivity of solids is order of magnitude higher than that of 

common liquids. The idea of increasing the conductivity of fluids by mixing solid particles 

dates back to 1873 [3]. The first attempt to insert particles of micrometric size showed 

several problems, including abrasion, obstruction of channels and settling of the particles. 

Modern nanotechnology provides the opportunity to produce nanoparticles, which remain in 

suspension almost indefinitely, under certain conditions. 

Nanoparticles move under Brownian motion, which is the random motion of particles 

suspended in a fluid resulting from their collision with the quick atoms or molecules in the 

gas or liquid. The direction of the force of atomic bombardment is constantly changing, and 

at different times, the particle is hit more on one side than another, leading to the seemingly 

random nature of the motion. 

Brownian motion is a stochastic (or probabilistic) processes and it is a limit of both 

simpler and more complicated stochastic processes. It is closely linked to the normal 

distribution. 

In the last years, an exponential increase of publications on nanofluid is occurred. As 

analyzed in Buschmann 2013 [4], the number of publications layer has been considered to 

compare its trend, from 2000 to 2012, in the field of nanofluids, heat transfer, turbulence and 

turbulent boundary, as shown in Figure 1.1. Normalization is carried out taking 2011 values 

as reference, which are 485 publications for nanofluids, 8950 for heat transfer, 5918 for 

turbulence and 1036 for turbulent boundary layer. The exponential increase of publications 

for nanofluid is clearly visible. 

http://en.wikipedia.org/wiki/Particle
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Limit_(mathematics)
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Figure 1.1: Normalized number of publications, from 2000 and 2012, in the fields of ■ 

nanofluids, ■ heat transfer, ■ turbulence and ■ turbulent boundary layer. Normalization is 

carried out taking 2011 values as reference. Data taken at 25-09-2013 from ISI WEB of 

KNOWLEDGE. 

 

Two main methods are used to prepare stable nanofluids, i.e. the single-step method and 

the two-steps method. The single-step method implies the synthesis of nanoparticles directly 

into the fluid. Tuning the synthesis parameters and adding some chelating agents, a good 

control of the particles nucleation and growth can be obtained. The two-step method consists 

in the dispersion of previously obtained nanopowders in a fluid. Physical treatments 

(ultrasonication, mechanical mixing, etc.) are used to disperse the nanoparticles and 

chemical additives (surfactants or tensioactives) and to avoid particles aggregation, which is 

a common problem of nanopowders, due to their high surface reactivity. Generally, single-

step method permits to avoid the dispersion and the mixing steps, ensuring a better control 

over particles size and dispersion than the two-steps route. 

Dispersion methods and chemical synthesis can still be done in different ways. Therefore, 

it is very difficult to obtain the same nanofluid in two different laboratories if the procedure 

is not planned exactly in the same mode. For this reason, a comparison between nanofluids is 

very difficult to execute. 
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Thermal conductivity is the most studied property for nanofluids. In literature, many 

works have been published on the influence of temperature, concentration, shape and size of 

nanoparticles or use of surfactants on the thermal conductivity of nanofluids. In general, the 

conductivity of nanofluids is higher than that of the base fluid [5-10], but in some papers 

different results have been published [11,12]. It should be noted that small nanoparticles 

have large surface to volume ratio, providing higher thermal conductivity to nanofluid than 

that of conventional heat transfer fluids. However, the heat transfer mechanism in nanofluids 

is not completely understood, since some contradictions have been found in literature, as in 

[13], where large particles seam to improve thermal conductivity respect to smaller ones. 

Many parameters are affecting the thermal conductivity of nanofluids and for this reason 

models must be supported by experimental data. 

However, the addition of nanoparticles in the conventional fluids affects the dynamic 

viscosity of the nanofluid and could penalize the pressure drop in a pumping flow system. 

Literature models can not accurately predict this property and nanofluids behaviour is not 

always Newtonian, since, over a certain concentration of nanoparticles and dispersant, the 

nanofluid behaviour could become non-Newtonian. For these reasons, it is fundamental to 

measure the nanofluids dynamic viscosity. 

On the contrary, density and heat capacity of nanofluids can be generally calculated as 

weighted averages, knowing the properties of base fluid and nanoparticle material. 

In order to obtain higher energy efficiency, better devices performance and lower 

operating costs, the study of the heat transfer coefficient of nanofluids is very promising. 

Many works relate to heat transfer enhancement using nanofluids. Numerous studies have 

shown that heat transfer of nanofluids is higher than that of base fluids [14-16]. However, 

contradictory results on nanofluids behaviour have been also reported. For example, Pak and 

Cho [17] results showed that the Nusselt number of alumina–water and titania–water 

nanofluids increased with increasing Reynolds number in turbulent flow and increasing the 

volume concentration. However, they found that the convective heat transfer coefficient of 

the nanofluids with 3 vol% nanoparticles was 12% smaller than that of pure water at a given 

condition. 

Nanofluids are complex fluids, they can be obtained using different methods of 

preparation, different amount of nanoparticles of different material and morphology. 

Experiments should be carried out in order to investigate properties of each interesting new 

nanofluid. 

http://www.sciencedirect.com/science/article/pii/S0735193312001510#bb0035


Introduction 

5 

1.2.1 Why nanofluids are studied 

Nanofluids attract scientific community and industries for their potentiality in improving 

properties of the base fluid, such as heat transfer capability. The general expectation is that 

the higher thermal conductivity of the solid particles leads to an effectively increased thermal 

conductivity which in turn should enhances heat transfer. Several papers have been 

published showing a considerable increase of the heat transfer coefficient relative to the base 

fluids. Enhancements of up to 60% in the thermal conductivity of water-based nanofluids 

were found in the literature [18, 19]. However, many publications indicate controversial 

results. 

Moreover, new and innovative strategies to save, transfer and store thermal energy 

involve nanofluids. 

1.2.2 Uses of nanofluids 

Nanotechnology offers an extremely broad range of potential applications from 

electronics to new materials. Many possible applications have been explored and many 

devices and systems have been studied. In particular, many are the potential uses for 

nanofluids in heat transfer applications. Nanofluids are considered as potential working 

fluids to be used in high heat flux systems such as electronic cooling systems, solar 

applications [20], heat pipes, and nuclear reactors. As secondary fluids, they can be applied 

in commercial refrigeration, chiller, solar panels in absorption systems. 

The use of nanofluids as working fluids in the refrigeration systems is truly considered in 

the recent years. Many investigations have been proposed on nanoparticles used in both the 

refrigerant and in the lubricant oil of a vapour compression system [21-24]. Nanofluids could 

also be employed in chillers exploiting their enhanced cooling capacity with respect to the 

base fluids [25]. 

As nanolubricants, they can improve thermal dissipation, anti-wear and extreme pressure 

properties of compressors lubricants. The dispersion of nanoparticles directly in the 

refrigerant can improve the thermodynamic performance of refrigerating machines. 

Moreover, adding nanoparticles to lubricants can significantly improve, beyond their 

thermal properties, also their tribological properties, with benefits to the life cycle of 

machines with moving parts (i.e. refrigeration compressors). 

Nanofluids can be used for a wide variety of industries, ranging from transportation to 

energy production and in electronics systems like microprocessors, Micro-Electro-

Mechanical Systems (MEMS) and in the field of biotechnology. Other applications are in the 
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fields of drilling, cooling of welding, defence, space, high-power lasers, biomedical 

applications, drag reductions and so forth. 

Several studies have been done to search suitable nanofluids to be used in high heat flux 

systems such as electronic cooling systems, solar collectors, heat pipes, and nuclear reactors 

to reduce the peak temperatures on the cooled wall, generate uniform temperature 

distributions, and assure better compactness of heat transfer systems without or with less 

pumping power increases penalty, as described in [26]. 

1.2.3 Challenges of nanofluids 

It is interesting to note that the applications of nanotechnology in different fields have 

distinctly different demands, and thus face very different challenges. For the fabrication and 

processing of nanomaterials, some challenges must to be met: overcome the huge surface 

energy, a result of enormous surface area or large surface to volume ratio; ensure all 

nanomaterial with desired size, uniform size distribution, morphology, chemical composition 

and microstructure, that altogether result in desired physical properties. 

Challenges also arise in the lack of agreement of results obtained by different researchers 

and in the lack of theoretical understanding of the mechanisms responsible for changes in 

properties. The characterization of suspensions is still poor and the stability of nanoparticles 

dispersion must to be better analysed. 

Other challenges include high cost of nanofluids and difficulties in production process. 

1.2.4 Open questions on nanofluids 

Much remains unknown about nanoparticles. Materials made from nanoparticles differ 

from their larger counterparts. Different branches of science must collaborate to the study of 

nanofluids, because it requires skills in different fields. 

Despite an exponential increase in experimental and theoretical investigations on 

nanofluids, a lot of research is still needed to fully understand their behaviour. A big issue 

concerns the production of stable and reliable fluids, by developing more suitable methods of 

production and nanoparticles dispersion. Experimental data are still scarce for some 

properties (e.g. viscosity and heat transfer coefficient) and frequently incongruent among the 

various laboratory. Much higher repeatability must be achieved. The influence of size, shape, 

concentration and material of nanoparticles from both the experimental and theoretical point 

of view must be deeply explored. Moreover, the application of nanofluids to industrial 

systems require experimental tests on real plants to evaluate long term behaviour of 
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nanofluids in terms of stability, wearing, material compatibility, energy efficiency, fouling 

etc. 
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Chapter 2 

 

Preparation and characterization of nanofluids 
 

Nanoparticles are extremely interesting because the physical behaviour of the materials is 

different at nanometer scale compared to larger scales, and then the thermal, optical, 

mechanical, electrical and magnetic properties are often superior to those of bulk materials. 

The main parameter that determines these special properties is the high surface to volume 

ratio of nanoparticles. In the follow chapter, an investigation on the common method of 

preparation of nanoparticles and nanofluids is provided. In addition, nanofluids stability 

characterization is presented. 

2.1 How to prepare nanoparticles 

One nanometer is approximately the length equivalent to 10 hydrogen or 5 silicon atoms 

aligned in a line. Small features permit more functionality in a given space, but 

nanotechnology is not only a simple continuation of miniaturization from micronmeter scale 

to nanometer scale. Materials in the micrometer scale mostly exhibit physical properties the 

same as that of bulk form, while materials in the nanometer scale may exhibit physical 

properties distinctively different from that bulk. In general, nanotechnology can be 

considered as a technology for the design, fabrication and applications of nanostructures and 

nanomaterials. Many technologies have been explored to fabricate nanoparticles. The 

following are some of the most frequently used methods. 

High-energy ball milling is one nanofabrication process of mayor industrial importance. 

It is a physical method also known as mechanical attrition or mechanical alloying. Coarse-

grained materials in the form of powders are crushed mechanically in rotating drums by hard 

steel or tungsten carbide balls, usually under controlled atmospheric conditions to prevent 

unwanted reactions such as oxidation. This technique can be operated at a large scale and 

therefore it can be employed in industrial fields. 
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Chemical synthesis may be carried out in either the solid, liquid or gaseous state. In 

solid-state synthesis, solid reaction precursors are brought into intimate contact by mixing 

and grinding. Then heat treatment at high temperatures promotes atomic diffusion processes 

to form a reaction product. Liquid-state and gas-state synthesis can be implemented in much 

lower temperatures, thus unwanted grain growth can be inhibited and the result is a true 

nanoscale system. In fact, diffusion in the liquid and gas phases is typically many orders of 

magnitude greater than in the solid phase. 

Vapour phase deposition can be used to fabricate thin films, multilayers, nanotubes, 

nanofilaments or nanometer-sized particles. 

The general techniques can be classified in physical vapour deposition (PVD) or 

chemical vapour deposition (CVD). 

In PVD, solid materials are converted into a gaseous phase by physical processes. Then, 

solid materials are cooled and re-deposited on a substrate. Examples of PVD conversion 

processes include thermal evaporation (such as resistive or electron beam heating or even 

flame synthesis), laser ablation or pulsed laser deposition (where a short nanosecond pulse 

from a laser is focused on the surface of a bulk target), spark erosion and sputtering (the 

removal of a target material by bombardment with atoms or ions). 

CVD involves the reaction or thermal decomposition of gas phase species at elevated 

temperatures (typically 500−1000°C) and subsequent deposition on a substrate. Several 

CVD processes employ catalysts to enhance the rates of certain chemical reactions. 

The use of plasmas (i.e., ionized gases) during vapour deposition allow access to 

substantially different chemical and physical processes and also higher-purity final materials 

relative to the conventional PVD and CVD processes described above. There are several 

different types of plasma deposition reactor for plasma-assisted PVD (DC glow discharge, 

magnetron sputtering, vacuum arc deposition). 

A variant of many of the PVD processes described above are thermal spraying 

techniques, in which a spray of molten or semi-molten solid particles generated by either an 

electrical thermal source (e.g., plasma spraying) or by chemical combustion (e.g., flame 

spraying or high-velocity oxygen fuel spraying) are deposited on a substrate and undergo 

rapid solidification. This is extensively used to produce nanocrystalline powder, wire or rod 

feedstocks, previously fabricated by the mechanical milling or precipitation routes. 

Sol-gel methods involve a set of chemical reactions which irreversibly convert a 

homogeneous solution of molecular reactant precursor (a sol) into an infinite molecular 

weight three-dimensional polymer (a gel) forming an elastic solid filling the same volume as 
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the solution. Typically, this involves a hydrolysis reaction followed by condensation 

polymerization. 

Electrochemical deposition, also known as electrodeposition, is a special electrolysis 

resulting in the deposition of solid material on an electrode. Electrochemical deposition is 

widely used in making metallic coatings, then the process is also known as electroplating. 

When deposition is confined inside the pores of template membranes, nanocomposites are 

produced. If the template is removed, nanorods or nanowires are prepared. 

2.1.1 Carbon structures 

Carbon is a particular material that can be a good metallic conductor in the form of 

graphite, a wide band gap semiconductor in form of diamond, or a polymer when bonded 

with hydrogen. Carbon provides examples of materials covering the entire range of 

nanometer scaled structures from fullerenes, which are zero-dimensional nanoparticles, to 

carbon nanotubes, one-dimensional nanowires to graphite, a two-dimensional layered 

anisotropic material, to solid fullerene, a three-dimensional bulk materials with the fullerene 

molecules as the fundamental building block of the crystalline phase. 

Carbon fullerene commonly refers to a molecule with 60 carbon atoms, C60, as shown in 

Figure 2.1, and with an icosahedral symmetry, but also includes larger molecular fullerenes 

Cn (n>60). 

 

Figure 2.1: Fullerene C60. 
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A nanotube is a variation of fullerene that has become elongated in its structural 

patterning due to its molecular arrangements. Nanotubes are extremely strong and cannot be 

broken. The only way to destroy them is to break a bond at the molecular scale. 

They can be considered as the result of folding graphite layers into carbon cylinders and 

may be composed of a single shell–single wall nanotubes (SWNTs), or of several shells—

multi-wall nanotubes (MWNTs). Depending on the folding angle and the diameter, 

nanotubes can be metallic or semiconducting. 

Carbon nanotubes can be prepared by arc evaporation [1], laser ablation [2], pyrolysis [3] 

and electrochemical methods [4,5]. Carbon nanotubes were firstly synthetized by Iijima in 

1991 in the carbon cathode by arc discharge [6]. However, the experimental discovery of 

single-wall carbon nanotubes came in 1993 [7,8], whereas the discovery in 1996 of a much 

more efficient synthesis route, involving laser vaporization of graphite to prepare arrays of 

ordered single-wall nanotubes [9], offered major new opportunities for quantitative 

experimental studies of carbon nanotubes. 

In chapter 6 nanofluid formed by single-wall carbon nanohorns (SWCNHs) in water will 

be characterized. SWCNHs are roughly spherical aggregates of carbon nanostructures. More 

exhaustive explanation and figures can be found in chapter 6. 

2.1.2 Core-shell structures 

Another particular type of nanostructure is the core-shell nanoparticle. In that 

nanostructure, the chemical compositions of the core and the shell are different. Core and 

shell can often have totally different crystal structure and physical properties. For example, 

one can be metallic and another dielectric. Metal-oxide, metal-polymer and oxide-polymer 

structures can be synthetized. Core-shell nanoparticles could have potential applications in 

medical field, e.g. in catalysis and as precursors for making property-tunable nanoparticles. 

2.2 How to prepare nanofluids 

It is fundamental to obtain a stable and homogenous colloidal solution for successful 

reproduction of properties and interpretation of experimental data. The techniques applied to 

this purpose are the two-step method and the single-step method. 

Two-step method 

Nanoparticles powder is put into the base fluids and physically dispersed by strong 

mechanical stirring, low or high energy ultrasounds, ball milling, high pressure 

homogenisation [10], thus obtaining nanofluids with different particle/fluid combinations. In 
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Figure 2.2 and Figure 2.3, the VCX130 Sonicator, Sonics Materials and the NS1001L 

PANDA Homogenizer, GEA Niro Soavi, supplied in the IENI-CNR laboratories, are shown, 

respectively. 

The two-step technique is suitable for the dispersion of oxide nanoparticles, while it is 

less effective for metal nanoparticles, because of their greater tendency to create 

agglomerates with negative effects on the physical properties and because of their tendency 

to form oxides in water. 

 

 

Figure 2.2: VCX130 Sonicator, Sonics Materials, supplied in the IENI-CNR laboratories. 

 

 

Figure 2.3: NS1001L PANDA Homogenizer, GEA Niro Soavi, supplied in the IENI-CNR 

laboratories. 
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Single-step methods 

In this case, synthesis and dispersion of nanoparticles into the fluid take place 

simultaneously. Various techniques are available for such purpose: direct dispersion of 

nanoscale vapour from metallic source material into fluids [11]; physical process set up by 

wet grinding technology with bead mills [12]; chemical reduction method for producing 

metallic nanofluids [13]; optical laser ablation in liquid [14]. 

Both for the two-step method and for the single-step method, dispersants (with steric or 

ionic effects) and optimization of parameters, such as pH and Zeta potential, could be 

necessary to ensure stable solutions [15]. 

 2.3 Parameters affecting nanofluids properties 

Nanosized particles have high-energy surface. For example, in 4 nm diameter particle 

roughly 50% of the atoms are on the surface. Therefore, surface properties and chemistry 

control the nanoparticle behaviour [16]. In aqueous environments, there is a tendency for 

nanoparticles to aggregate, i.e. they mix creating clusters, reducing the particle surface 

energy. It depends on a number of factors, including surface functionalization, pH, and ionic 

strength. 

Forces of different nature, which interact amongst particles, lead to the aggregation and to 

the settling of aggregates. These two phenomena may occur independently or can be 

interlinked. Anyway, they involve a reduction of stability of the nanofluids and, 

consequently, a poor reproducibility of fluid properties. 

The suspension stability can be controlled through the pH control and optimization [17], 

the size and shape nanoparticles control, the selection of the proper dispersant and surfactant 

that can be added to the nanofluids [18]. Moreover, different methods of nanoparticles 

dispersion into the base fluid (ball milling, ultrasonication, homogenization) can lead to a 

different stability [10, 19]. 

2.4 Mean dimension of nanoparticles 

As explained in the previous paragraph, nanoparticles size is one of the most important 

parameter to determine the possible aggregation of the nanoparticles when they are dispersed 

in the fluid. There are various techniques for the measurement of the average size of the solid 

nanoparticles and some for the measurement in the fluid of interest. 
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For the measurement of solid nanoparticles the scanning or transmission electron 

microscopy are typically used. The electron microscope is a type of microscope that does not 

use light as the radiation source but an electron beam. The resolving power of a microscope 

is inversely proportional to the wavelength of the using radiation, therefore using electrons 

the resolution typically reaches up to a few tens of nm or a few nm for scanning microscopy 

and less than 1 nm or 10 nm for microscopy in transmission, depending on the equipment. In 

the Scanning Electron Microscopy, SEM, an electron beam hits the sample that you want 

to observe. Numerous particles are emitted from the sample between which the secondary 

electrons. These electrons are detected by a special detector and converted into electrical 

impulses. In a Transmission Electron Microscopy, TEM, the electrons forming the beam 

pass through a section where a minimum quantity of sample is deposited. The thickness of 

the sample must be sufficiently thin to allow some of the incident electrons are able to cross 

it; during this crossing many electrons are absorbed and others, in correspondence to non-

uniformity of the atomic arrangement of the crystal, are irregularly deflected. After the beam 

has passed through the sample, it is focused by a lens, and then expanded and analysed. 

To determine the average size of the nanoparticles in solution, the Dynamic Light 

Scattering, DLS, technique is the proper method [20]. The size of a particle is related to its 

speed due to Brownian motion, as shown by the Stokes-Einstein equation (2.1) 

r

Tk
D

6
  (2.1)

 

in which D is the diffusion coefficient, k is the Boltzmann constant, T is the absolute 

temperature, r is the radius of a particle in a continuum medium of dynamic viscosity. 

When a light source (laser), with a known frequency, is directed against the particles, 

undergoes a scattering whose fluctuation in time depends on the moving speed (smaller 

particles will be faster), this variation is then put in relation with the size of the particle. On 

the base of this physical behaviour, the Zetasizer Nano ZS measures the Brownian motion of 

the particles in the sample and relates this to a size based on established theories [21, 22]. A 

complete description of this technique is provided in chapter 2.5.  

Another technique, useful to determine qualitatively the presence and the size of the 

nanoparticles, is based on the optical absorption in the UV-Visible. The metallic 

nanoparticles are, in fact, characterized by very intense absorptions in the region of UV-Vis-

NIR. This often results in intense coloration. This phenomenon is due to the interaction 

between the incident electromagnetic radiation and the electrons of the conduction band that, 

at certain wavelengths of electromagnetic radiation are in resonance each other, resulting in 
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absorption of the radiation. In the case of spherical particles, there is a linear relationship 

between the position of the peak, the absorption band, and size of the nanoparticles, from 

which the average size can be estimated. 

2.5 Nanofluids stability characterization 

The nanofluids are suspensions of nanoparticles in liquid, but often the particles, once 

dispersed, tend to form aggregates, which can settle and penalize the fluid properties. For 

this reason, the study of the stability of nanofluids is crucial in their characterization. 

2.5.1 DLS measurements 

In order to evaluate the tendency of nanoparticles to aggregate and eventually settle, the 

nanoparticle size distribution in the fluid over time was selected as control parameter. A 

Zetasizer Nano ZS (Malvern) was used for measuring the average dimension of the 

nanoparticles in solution. This instrument can detect the size from 0.6 nm to 6 m using a 

DLS process. The declared accuracy is better than +/-2%. The main components of this 

instrument are a laser, which illuminates the sample particles within the sample cell, and a 

detector to acquire the intensity of the scattered light. In Figure 2.4 the Zetasizer Nano ZS is 

shown. 

 

 

Figure 2.4: Zetasizer Nano ZS (Malvern). 

 

Due to the Brownian motion, a nanoparticle moves randomly in a space. It receives a 

random displacement, caused for example by other particles hitting it or by an external force 

and the displacements are assumed to be independent. 
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An important feature of the Brownian motion is that, at equal temperature and viscosity, 

the small particles move quickly, creating rapid changes in the intensity of scattering, while 

the big particles move more slowly, by creating variations of intensity lens. Thanks to an 

auto-correlator, the speed of changes in intensity is measured, and the diffusion coefficient of 

the particles is calculated from a correlation function, which depends on several factors, 

including temperature, viscosity of the fluid, refractive index of the base fluid and radius of 

the particles considered as spheres (equation 2.1). On the basis of these results, the program 

returns a graph representing the intensity of the signal as a function of the particles diameter, 

from which we can estimate an average diameter. 

The particle size measured in a DLS instrument is the diameter of the ideal sphere that 

diffuses at the same rate of the particle being measured. All the size measurements were 

performed at 25C with a scattering angle of 173. The DLS measurements provide the size 

distribution using a correlation which can separate three different populations existing in the 

sample, showing one peak for each population. If, by a measurement, only one peak is 

found, it means that a large majority of the particles have a diameter around the common 

average value. 

For each nanofluid studied in this work, the DLS technique was used with the aim to 

verify the dependency of the nanoparticle diameter size from the concentration of the 

solution. 

The following analysis was made to determine the tendency of the particles in suspension 

to settle down along time. Two samples of the fluid were put in two different measurement 

cuvettes. The first sample was measured almost every day for thirty-five days, without 

shaking the fluid, to evaluate the changes in size distribution due to natural sedimentation. 

The second sample was measured almost every day for thirty-five days after sonication of 

the fluid to evaluate the changes in size distribution after mechanically removing the 

sedimentation. 

2.5.2  potential measurements 

Another important parameter to consider for the stability evaluation is the  potential. 

Most of the particles or nanoparticles dispersed in water have a surface charge, originated by 

ionization phenomena or absorption of charged species. The charged particles in solution are 

surrounded by several ionic layers. In solution, the particles move along with a double layer 

ion. The Zeta potential is the potential at the level of this double layer, also called sliding 

plane. A high potential gives greater stability to colloidal systems, rising the electrostatic 

repulsions, which prevent the aggregation of dispersed particles. Instead, if Zeta potential is 
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low, the attractive forces prevail over repulsion and, therefore, aggregation and precipitation 

phenomena are more probably. 

The Zeta potential of nanoparticles was also measured using the Zetasizer Nano 

(Malvern). This instrument uses a combination of two-measurement techniques, i.e. 

electrophoresis and laser Doppler velocimetry. This combination method measures the 

velocity of a particle in a liquid when an electrical field is applied. Then, Henry equation 

(2.2) can be applied, knowing the viscosity and the dielectric constant  of the sample. 

 




3

2 Kaf
U E   (2.2)

 

The velocity of a particle in an electric field is commonly referred to as its 

Eloctrophoretic mobility UE,  is the Zeta potential and f(Ka) is the Henry’s function (two 

values are generally used as approximations for the f(Ka) determination: either 1.5 or 1.0). 

The Smoluchowski equation (2.3) is used to obtain the  potential from the measured 

mobility of the particles in aqueous media (for high ionic strengths). 

Smoluchowski equation: 

 rkU rE  1
6

4 0



  (2.3)

 

where 0 and r are the relative dielectric constant and the electrical permittivity of a vacuum 

respectively, µ is the solution viscosity, r is the particle radius and κ is the Debye–Hückel 

parameter, which considers the bulk ionic concentration, the valence of the ion, the charge of 

an electron, the Boltzmann constant and the absolute temperature. 

The Zeta potential value of 30 mV is considered as the limit above which the stability of 

the suspension is to be considered satisfactory. 

Obviously, Zeta potential can be measured only for electrically conductive liquids. 

The declared accuracy in the Zeta potential measurements is around ±10%.  

2.5.3 pH measurements 

The pH of a colloidal solution is one of the main parameters influencing the particle 

aggregation and the stability of the suspension, therefore the pH of each nanofluid here 

considered has been measured using a pocket-sized pH meter with replaceable electrode 

(HANNA Instruments) (Italy). The declared uncertainty is lower than 0.1. 

The particular condition at which the negative and positive charges are electrically 

equivalent is called isoelectric point (IEP). 
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The pH at which the surface of nanoparticles is electrically neutral identifies the zero 

point of charge. When the solution is more basic than the IEP, negative ions prevail at the 

interface and the surface is negatively charged. Similarly, when the solution pH is more 

acidic than the IEP, positive species predominate and the surface is positively charged.  

The nanofluid is much more stable as its pH is far from that of IEP. 
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Chapter 3 

 

Experimental apparatus and procedures 

 
The study of the thermophysical properties of nanofluids is necessary to understand their 

energy behaviour. Main properties are dynamic viscosity, thermal conductivity, density and 

heat capacity. An increase in thermal conductivity can lead to an increase in the convective 

heat transfer. However, nanofluids can be actually applied in technological systems only if 

the addition of nanoparticles does not determine a significant viscosity enhancement, 

because the increase of the required energy to pump the nanofluid could nullify the 

advantages obtained in terms of thermal properties. With the aim to evaluate the nanofluids 

potentialities, in this work dynamic viscosity and thermal conductivity will be determined 

experimentally, while density and heat capacity are calculated from weighted averaging. 

3.1 Experimental dynamic viscosity measurements 

Viscosity is a significant property and must be taken into consideration for heat transfer 

performances studies. In fact, the pumping power is related to the viscosity of a fluid. When 

a fluid flows through a pipe, both in laminar and turbulent flow, the pressure drop is related 

to the stress at the wall and therefore to the viscosity. In particular, in laminar flow, the 

pressure drop is directly proportional to the viscosity. The heat transfer coefficient is also 

influenced by viscosity, in fact it is related to Reynolds number, which strongly depends on 

the dynamic viscosity. 

The measurement methods of the rheological properties, such as viscosity, depend on the 

type of fluid. For a Newtonian fluid the viscosity is not dependent on the flow conditions, i.e. 

the shear stress or the shear rate, but, in the case of non-Newtonian fluids, the measurements 

are more complex for the dependence of viscosity on the type and intensity of the imposed 

flow. For this reason, when studying non-Newtonian fluids, a rheometer is the instrument 

required, because it consents to impose the shear rate or the shear stress during the viscosity 

measurement. 
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In this thesis, dynamic viscosity was measured using a rotational rheometer, AR-G2 (TA 

Instruments), shown in Figure 3.1. The viscosity measurement is made by means of the 

equation related to the specific rheometer, which describes its functioning. The equation is 

obtained by a balance of torques in the case of rotational rheometer. 

AR-G2 rheometer, using magnetic bearings, allows to obtain ultra-low nano-torque 

control which is fundamental for measuring low viscosity fluids such as water-based fluids. 

Among the different geometries, plate-cone geometry was chosen because suitable for 

low viscosity fluids. The relative viscosity equation is:  






32
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M


  (3.1) 

Where is the cone angle, R is the cone radius,  is the angular velocity and M is the 

torque defined as:  
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 is the shear stress, r is the radial coordinate and  is the shear rate. 

In order to stabilize the measurement temperature, an Upper Heated Plate (UHP), shown 

in Figure 3.2, was used, combined to a geometry with 1° cone and 40 mm diameter. The 

plate is thermostated by the Peltier effect, the temperature can vary in the range between -

20°C and 200°C. A second sensor reads and controls the temperature within the cone. Figure 

3.3 represents a schematic of the plate-cone geometry, while in Figure 3.4 a Peltier cover, 

installed to homogenize the sample temperature, is shown. 

A critical point in this measurement is the sample loading. After some trials with water, a 

constant quantity of about 0.34 ml was considered optimal for the analysis. The sample was 

deposited using a pipette, taking care no air bubbles were inside. 

Before the measurements, the rheometer was carefully calibrated at each temperature, i.e. 

the non-zero moment of inertia of the rheometer spindle, the non–zero moment of inertia of 

the measurement geometry and the instrument friction were calibrated. Then, due to thermal 

expansion, zero reference point at the experimental temperature had to be found. Finally, the 

rotational mapping of the instrument allowed finding the small variations in behaviour 

around one revolution of the shaft, monitoring the torque required to maintain this speed 

through a full 360° rotation. 

The viscosity measurement is performed by reading the corresponding shear stress to 

shear rate imposed. All the measurements were performed at atmospheric pressure, at a 

constant temperature. 

The declared instrument uncertainty is 5%. 
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Figure 3.1: Rotational rheometer, AR G2, TA Instruments. 

 

 

Figure 3.2: UHP system. 
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Figure 3.3: Cone-plate geometry. 

 

 

Figura 3.4: Peltier cover installed to homogenize the sample temperature. 

 

3.1.1 Viscosity of suspensions 

In the case of nanofluids, nanoparticles dispersed into the fluid often cause the viscosity 

to be different than that of the base fluid. Hydrodynamic interactions and particles-particles 

interaction lead to increased viscous dissipation even at low concentration. 

In literature, several theoretical models have been proposed to correlate viscosity data of 

nanofluids. In general, they derived from the Einstein model [1], 

  5.21 fnf  (3.3) 

based on the assumption of a viscous fluid containing spherical particles. Here,  is the 

particle volume fraction (vol%) and μnf and μf are the dynamic viscosity of the nanofluid and 
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the base fluid, respectively. In general, this formula is applicable when  is lower than 0.02 

and there are not nanoparticle interactions. 

Starting from the Einstein’s formula, Brinkman suggested an equation applicable to 

moderate particle volume concentration, roughly 4% [2], in the form 

  5.2
1

1





 fnf  (3.4) 

In [3], Batchelor considered the nanoparticle Brownian motion and their interaction, 

proposing the formula 

 25.65.21   fnf  (3.5) 

These entire equations base on the assumptions that the viscosity of the nanofluid is only 

a function of the base fluid viscosity and the particle concentration and that the nanoparticles 

can be modelled as rigid spherical particles. 

Other equations have been proposed with second and third order corrections, as for 

example 

...1/ 3

3

2

21   kkkfnf  (3.6) 

where k1, k2 are coefficients always different, depending on fitting parameters. 

However, when the fluids exhibit strongly non-Newtonian behavior, more complex 

equations should be used to describe their rheological behavior. 

Additional correlations are temperature dependent or consider aspect ratio of 

nanoparticles or particle-particle and particle-fluid interactions. If nanoparticles are rod-like 

shape, as carbon nanotubes, the value of k coefficients is different. 

Actually, none model is able to predict the viscosity of nanofluids precisely in a broad 

range of nanoparticle volume fraction. Moreover, most nanofluids have particles of varying 

shapes, sizes, size distributions, with different particle-particle and particle-fluid interactions. 

For this reason, dynamic viscosity of nanofluids studied in this work will be determined 

experimentally. 

3.1.2 Measurements of water dynamic viscosity 

All the measurements were performed at constant temperature and variable shear rate, 

generally starting from 80 1/s to 1200 1/s, at constant step of about 124 1/s (except for 

temperatures higher than 60°C, at which faster measurements must be performed due to the 

water evaporation). A conditioning step of 10 seconds and at pre-shear rate at 80 1/s was 
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applied before the measurements. Each experimental point is the average of three values of 

viscosity, sampled under constant shear rate. The experimental temperature uncertainty 

during the viscosity measurements is about 0.1°C, the torque resolution is 0.1 nNm and the 

displacement resolution is 25 nrad. 

In order to evaluate the rheometer uncertainty, a well-known fluid, such as water, was 

analysed at each experimental temperature and the viscosity data were compared with 

Refprop 9.0 database [4]. 

As shown by Figure 3.5 (and in Table 3.1), all the measured data are quite close to the 

literature data in the shear rate range between 200 1/s and 1200 1/s, being the percentage 

absolute average deviation (AAD%) within 1.5%. As shown in figure 3.6, the deviations at 

low shear rates should be due to difficulties in the torque control by the rheometer, while at 

high shear rate to changes in the fluid laminar flow. 

 

 

Figure 3.5: Experimental dynamic viscosity of water at 827 1/s, (), and Refprop 9.0 trend 

[4] (─). 
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Figure 3.6: Deviations between experimental viscosity data and literature [4] data as a 

function of shear rate at 50°C. 

 

Table 3.1: Experimental dynamic viscosity for water at 827 1/s. 
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10.0 0.001309 0.001306 0.23 

20.0 0.001007 0.001002 0.50 

30.0 0.000802 0.000797 0.63 

40.0 0.000655 0.000653 0.31 

50.0 0.000539 0.000547 -1.46 

60.0 0.000461 0.000466 -1.07 

70.0 0.000408 0.000404 0.99 

 

3.2 Thermal conductivity measurements 
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(transient plane source), the 3 method, that is based on fluctuations of the temperature and 

the laser flash thermal diffusivity, as well as stationary techniques such as parallel plates 

technique. In this work the thermal conductivity measurements were performed using a TPS 

2500 S (Hot Disk), shown in Figure 3.7, an instrument based on the hot disk technique which 

can measure thermal conductivity and thermal diffusivity of several materials. The main 

parts of the instrument are the sensor, shown in Figure 3.8, made of a double spiral of thin 

nickel wire that works as a continuous plane heat source and also serves as a temperature 

sensor, a proper box containing the sensor and the fluid and a thermostatic bath to reach the 

test temperature.  

The continuous double spiral of a nickel metal sensor is immersed in the fluid and small 

constant current is supplied to the sensor. During the measurements, the power input 

provided by the sensor creates an increase in temperature. The sensor records the 

temperature versus time response, accurately determined through resistance measurement, 

operating both as a heat source and a thermometer. This temperature increase is highly 

dependent on the thermal transport properties of the material surrounding the sensor, 

therefore the instrument can calculate the thermal transport characteristics, as follow. 

The differential equation of heat conduction in an isotropic material whose thermal 

conductivity is dependent from temperature is given by [5]: 
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 (3.7) 

where T(x, y, z, t) is the temperature at point (x, y, z) and time t, and 

pc

k
a


  (3.8) 

a is the thermal diffusivity, k the thermal conductivity,  the density, and cp is the specific 

heat of the conducting material at temperature T. cp is sometimes called the volumetric 

specific heat of the material. Both  and cp are assumed temperature independent for a small 

change in temperature. 

When a heat source of strength Q is switched on at t=0 in the studied material, equation 

(3.7) can be modified to include the effect of the heat source [5], as follows 

t

T

c

Q
Ta

p 






2
 (3.9) 

Usually Q = Q(r, t) is a function of position and time. Q is the amount of heat released at 

(x, y, z, t) per unit time, per unit volume, or power dissipation per unit volume. 
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The fundamental solution (for Q=0) of equation (3.7) is given by 
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where T0 is the initial temperature. In the case a source of strength Q exists in the material, 

the general solution to equation (3.9) is given by the convolution of the function Q/cp with 

the fundamental solution expressed in equation (3.10), as described in [6], and the 

instantaneous point source solution is obtained as 
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A hot disk sensor composed of a double spiral nickel wire can be treated as a disk 

consisting of a certain number (m) of concentric rings, which are equally spaced, since the 

sensor is designed to have uniform power density throughout the disk. Assume that b is the 

radius of the largest ring, then the smallest ring has a radius of b/m. 

Again, Q0 is the heat released per unit length per unit time of the sensor coil, and 

b(m+1)Q0 = P0 is the power output of the hot disk sensor. 

Considering a dimensionless parameter called the characteristic time ratio 

b

at
  (3.12) 

The average temperature increase in the sensor surface can be expressed as 
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 D
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2/3

0  (3.13) 

where D() is a dimensionless time which expression is given in [6]. 

Knowing the relationship between t and , T can be plotted as a function of D(), and a 

straight line should be obtained. From the slope of this line, thermal conductivity k can be 

calculated. 

However, the proper value of  is generally unknown, since the thermal diffusivity is 

unknown. The correct value of a will yield a straight line for the T versus D() plot. An 

optimization process can be done by the software, plotting T versus D() for a range of a 

values. This optimization process can be done by the software until an optimized value of a 

is found. Density () and the specific heat (Cp) of the material are known separately and 

between k and a there is only one independent parameter, being a = k/Cp. Therefore, both 
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thermal conductivity and thermal diffusivity of the sample can be obtained from the above 

procedure based on the transient measurement using a hot disk sensor. 

With the hot disk technique, a wide range of materials can be measured, after suitable 

sample preparation and choosing the proper sensor diameter. The range of thermal 

conductivity which can be detected is from 0.005 W/(m K) to 500 W/(m K) over a wide 

temperature range. 

The declared instrument uncertainty is 5%. 

 

 

Figure 3.7: TPS 2500 S, Hot Disk. 

 

 

Figure 3.8: TPS 2500 S sensor. 

 

3.2.1 Thermal conductivity of suspensions 

Thermal conductivity is the most studied property in the literature. Many works have 

been published on the influence of temperature, concentration, shape and size of 

nanoparticles or use of surfactants on the thermal conductivity of nanofluids. In general, the 

conductivity of nanofluids is higher than that of the base fluid [7-12], but some papers do not 
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find this enhancement [13, 14]. It should be noted that small nanoparticles have large surface 

to volume ratio, providing higher thermal conductivity to nanofluid than that of conventional 

heat transfer fluids. However, the heat transfer mechanism in nanofluids is not completely 

understood, since some contradictions have been found in literature, as in [15], where large 

particles seam to improve thermal conductivity respect to smaller ones. Many parameters are 

affecting the thermal conductivity of nanofluids and for this reason models must be 

supported by experimental data.  

Theoretical modelling of the effective conductivity of a composite material dates back to 

Maxwell [16], who derived the expression for the electrical conductivity of a two component 

mixture. Nevertheless, all the considerations could be easily applied to the thermal 

conductivity as well, since the governing equations are similar. The Maxwell equation for 

thermal conductivity of composite materials k is: 
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Here, kb is the thermal conductivities of base fluid,  is the volume concentration of 

nanoparticles,  is defined as ratio of thermal conductivities of particle and base medium 

kp/kb. The above equation is derived under the following assumptions: the suspended 

particles are spherical, particles are non-interacting and the interfacial resistance between the 

liquid and solid phases is negligible. 

The Maxwell model for thermal conductivity of composites has some limitations. Above 

all, the volume fraction of nanoparticles suspended in liquid must be small enough to assume 

none interaction between them. At high volume fractions, the particles can not be considered 

isolated from each other, or they even can form a percolated network. However, there is a 

considerable experimental evidence of the validity of the Maxwell model for thermal 

conductivities of non-nanoscale particulate suspensions. 

Moreover, thermal conductivity of suspensions also depends on size and shape of 

particles. Therefore the Hamilton and Crosser model [17] was considered for comparison: 
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kp represents the thermal conductivity of the added solid particles, kw is the thermal 

conductivity of water (the bulk liquid), φ is the particle volume fraction of the suspension, n 

is the empirical shape factor given by n=3/ψ and ψ is the sphericity. For a spherical shape 

particle, the sphericity (ψ) is 1. 
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In this work a comparison with the predictions of the Hamilton and Crosser (H-C) model 

will be given for the measured nanofluids. Other models chosen for comparison are 

presented below. 

Bruggeman model [18] is based on the differential effective medium theory in order to 

estimate the effective thermal conductivity of composites at high particle concentrations 
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Lu and Lin model [19] is used for spherical and non-spherical particles. The effective 

conductivity of composites containing aligned spheroids of finite conductivity was modelled 

with the pair interaction. 
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In the case of spherical particles, the values of the coefficients a and b are 2.25 and 2.27, 

respectively. 

Xuan et al. model [20] is based on the Maxwell model and includes the effects of random 

motion, particle size, concentration and temperature. 
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22 ,
 (3.18) 

where T is the temperature, p is the density of particles, cp,p represents the specific heat 

capacity of particles, kB is the Boltzmann constant, rc is the radius of the clusters and  is the 

viscosity. 

 

3.2.2 Measurements of water thermal conductivity 

All the measurements of thermal conductivity were performed using the TPS 2500 S (Hot 

Disk). The power supplied by the sensor for each measurement was 40 mW and the time of 

the power input was 4 s. The experimental temperature uncertainty during the measurements 

is about 0.1°C. 

Before measuring nanofluids, pure water thermal conductivity was measured at ambient 

pressure in the temperature range between 10.7°C and 68.5°C to test the sensor of the 

instrument and to evaluate the instrument accuracy. The data obtained were compared with 
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Refprop 9.0 database [4], as reported in Table 3.2 and shown in Figure 3.9. The absolute 

average deviation is less than 1%, well within the 5% accuracy declared by the constructor. 

 

 

Figure 3.9: Experimental thermal conductivity of water, (), and Refprop 9.0 [4] (─). 

 

Table 3.2: Experimental thermal conductivity data. 
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3.3 Conclusions 

Many parameters are affecting thermophysical properties of nanofluids. For this reason 

models must be supported by experimental data. 

Thermal conductivity was measured by means of the hot disk technique, while dynamic 

viscosity was measured using a rotational rheometer, both at different temperatures and 

ambient pressure, since there are no models able to correctly predict these properties for 

nanofluids. 

On the contrary, density and heat capacity of nanofluids can be generally calculated as 

weighted averages, knowing the properties of base fluid and nanoparticle material. 

Density of nanofluid (nf) was calculated knowing density of nanoparticles (np) and 

density of base fluid (f) at each temperature and volume fraction (): 

npfnf   )1(  (3.19) 

Heat capacity of nanofluid (Cpnf) was calculated knowing heat capacity of nanoparticles 

(Cpnp) and heat capacity of base fluid (Cpf) at each temperature and mass fraction (): 

npfnf CpCpCp   )1(  (3.20) 
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Chapter 4 

 

Convective heat transfer 

 
The final objective of this work is to investigate the convective heat transfer capabilities 

of nanofluids. For this purpose, a convective heat transfer experimental loop has been 

designed and constructed. In this chapter, the design, calibration of instrumentation, the 

water testing and the uncertainty analysis are described. 

4.1 State of the art 

The number of publications dealing with heat transfer properties of nanofluids is 

exponentially growing from ten years ago to today. However, many publications indicate 

controversial results. Many authors prove an enhancement of heat transfer coefficient of 

nanofluids on respect to the base fluid heat transfer coefficient. For example, Hwang et al. 

[1] reported improvement in convective heat transfer coefficient in the thermally fully 

developed regime, through experimental investigation of flow and convective heat transfer 

characteristics of Al2O3/water nanofluid in laminar flow. In addition, Wen and Ding [2] 

found that heat transfer enhancement for Al2O3 in water increases with increasing particle 

volume concentration up to 40%, while the thermal conductivity enhancement is below 15%. 

Heat transfer coefficient of CNT nanofluids can enhance up to a 150% and increases with the 

non-dimensional axial distance x/D, while decreases with concentration in the range from 1.1 

vol% to 4.4 vol% [3]. In turbulent flow, in general, metal and CNT nanoparticles are much 

more promising in terms of heat transfer with respect to oxides. E.g., Pak and Cho [4] 

investigated some oxide nanofluids, for which turbulent heat transfer coefficient actually 

decreased by 3–12%, even though the Nusselt number increased. Vice-versa, Xuan and Li 

[5] obtained for Cu-water nanofluids at 2 vol % an increase of ~40% in turbulent heat 

transfer coefficient, while Faulkner et al. [3] reported max heat transfer enhancement by 

350% for aqueous solution with 0.5 wt% MCNT. Nguyen et al. [6] showed size-dependent 

heat transfer coefficients in turbulent forced convection. 



Convective heat transfer 

38 

Other studies describe a quantitatively not specified enhancement and further authors are 

hostile to an enhancement of heat transfer [7]. Interesting reviews on nanofluids heat transfer 

investigations in the past decade may be found in [8-11]. 

4.2 Apparatus design and construction 

A hydraulic circuit was specifically designed and built to measure the heat transfer 

coefficient of nanofluids. The design of the experimental section was carried out with 

particular attention to each detail. 

The measurement section is composed of two parts: an initial developing section and a 

developed region. It is a straight copper pipe with 8 mm inner diameter (D) and 2 mm 

thickness. 

The developing section, 0.5 m long, is important to permit the formation of fully 

developed flow. In this first region (the entrance section), distinct boundary layers coexist 

with core fluid that is not yet disturbed by the walls. In the second region, the core has 

disappeared and the boundary layers are no longer distinct. The velocity profile is constant in 

axial direction. Entrance length for laminar flow can be calculated as 

 DX  Re06.0  (4.1)
 

whereas in turbulent flow it is calculated as 

 DX  6/1Re4.4  (4.2)
 

Reynolds number is 

 


 vD 
Re  (4.3) 

in which  is the density, v is the velocity and  is the dynamic viscosity. 

In turbulent flow, the developing section ensures the fully developed region, whereas in 

laminar flow it is ensured for Re lower than 1000. For Re between 1000 and 2300, the fully 

development of the flow starts within the subsequent part of the tube. 

The following region, 2 m long, is divided in 8 subsections. Every 0.25 m, 4 

thermocouples are placed in circumferential way as shown in Figure 4.1. They are inserted 

into 1.5 mm deep cavities, which are dug in the tube to enable the sensors to be as close as 

possible to the internal pipe surface. Figure 4.2 represents the inlet part of the measurement 

section. 
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Figure 4.1: Thermocouples inserted into 1.5 mm deep cavities. 

 

Preliminary tests were performed in order to choose the appropriate method to fix the 

sensors in the cavity base, trying welding and glues. The best solution seemed to be bonding 

and the cavity was then filled with aluminium to ensure the continuity of the pipe thickness. 

The influence of the conductive heat transfer through the copper thickness will be discussed 

in chapter 4.2.1.32 thermocouples measure the wall temperature (Tw) along the heated pipe. 

For each subsection, the wall temperature is the mean value of the 4 acquisitions. 

However, the possibility of measuring the temperature at the highest and the lowest point, 

in the same axial position, is useful to verify if the temperature varies transversely. 

Through the developed region, a specific heat flux (q) is generated by heating electrical 

resistance wires winded continuously around the pipe, as shown in Figures 4.3 and 4.4. 

Therefore, a constant heat flux condition is imposed through the wall of the pipe in which the 

measured fluid flows. The 8 heating electrical resistance wires have been tested to verify the 

declared values of specific electrical resistance (er). Measured values are listed in Table 4.1. 

Then they are winded around the pipe, each one carefully paced with the central part of the 

winding above the point of acquisition of the wall temperature. Each wire covers the pipe 

0.125 m before and after the acquisition point. 

The initial and final parts of the wire, that are not in contact with the pipe, were measured 

in order to calculate the real electrical power transferred to the pipe. The 8 heating electrical 

resistance wires are switched in parallel and linked to a System DC Power Supply N5700, 

Agilent Thecnologies. Imposing the voltage and the current intensity uniquely, the power 

supplied to the heating elements is known. Therefore, the power is adjustable and its 

maximum value is 900 W. 

Figure 4.5 represents the model of the measurement section. 
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Figure 4.2: Schematic of inlet part of the measurement section. 

3
0

1
,2

1,5

5
0
0

2
5
0

2
5
0

Ø
8

Ø
12

2
0
0
0



Convective heat transfer 

41 

 

Figure 4.3: Heating electrical resistance wires winded continuously around the pipe. 

 

 

Figure 4.4: Heating electrical resistance wires. Thermocouples wires are shown. 

 

 

Fig. 4.5: Model of the measurement section. 
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At the inlet and outlet of the measurement section 2, platinum resistance thermometers 

(Pt100) measure fluid bulk temperatures (Tin and Tout). They are placed after a mixer device 

in order to measure the adiabatic mixing temperature. 

With the aim of interrupting the axial thermal flow, two pipes having very low 

conductivity were added to the extremities of the experimental section, as shown in Figure 

4.6. They are 50 mm long and their inner diameter is 8 mm. 

Aluminium foils cover the electrical resistance wires to avoid the radiant flux to the 

outside as shown in Figure 4.7. Pipe and electrical resistances are insulated to minimize the 

power loss and to obtain a constant heat flux condition along the test section. For this 

purpose, 25 mm thickness polyurethane material was used, having low thermal conductivity, 

0.029 W/(m∙K). 

 

Table 4.1: Heating electrical resistance wires characteristics. 

name 
electrical 

resistance (Ω) 

wire lenght 

(m) 
er (Ω/m) 

A 346.9 3.462 100.2 

B 347.0 3.463 100.2 

C 347.2 3.462 100.3 

D 346.7 3.462 100.1 

E 347.6 3.464 100.3 

F 346.6 3.462 100.1 

G 347.0 3.461 100.3 

H 347.7 3.462 100.4 

 

 

 

Figure 4.6: Pipe added to avoid the axial thermal flow. 
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Figure 4.7: Aluminium foils covering the electrical resistance wires. 

 

A magnetic gear pump (Ismatec MCP-Z, Figure 4.8) allows adjusting the mass flow rate 

from 0.261 ml/min to 6318 ml/min, which is equivalent to the range0.005 kg/s - 0.105 kg/s 

for water. Corresponding speeds for water are 0.05 m/s - 2.10 m/s and the Reynolds number 

can vary from 400 to 16000. After and before the magnetic drive gear pump, flexible pipes 

for vacuum use are inserted to minimize the mechanical vibrations. 

A Coriolis mass flow meter (Emerson Process, Micromotion Elite model; 1/4-inch; 316L 

SS, Figure 4.9) measures the flow rate with a very low declared instrument uncertainty of 

0.05%. 

 

 

Figure 4.8: Magnetic gear pump. 
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Figure 4.9: Coriolis mass flow meter.  

 

A cooling machine with turbine pump (Polyscience 5106T model, Figure 4.10) is 

connected to a plate heat exchanger, inside of which the fluid flows. The plate heat 

exchanger is placed downline of the measurement section and work upstream in order to 

cool down the fluid and keep always the same temperature at the inlet of the measuring 

section. In fact, the coefficient heat transfer measurements were performed at constant heat 

flux, mass flow rate and inlet temperature. In order to accurately control the inlet 

temperature, a proportional-integral-derivative controller (PID controller) was positioned 

upline of the measurement section, as shown in Figure 4.11. The controller minimize the 

difference between the measured process variable, inlet temperature, and the set point value, 

by adjusting the process control input. It actuates an additional heating electrical resistance 

wire. The proportional, integral and derivative terms were determined and adjusted as a 

function of the flow rate. 
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Figure 4.10: Cooling machine with turbine pump (Polyscience 5106T model). 

 

 

Figure 4.11: Schematic of the circuit. 

 

The digital multimeter, Agilent Thecnologies, was used in this experiment as shown in 

Figure 4.12. It acquires several data: thermocouple signals, voltage and Pt100 resistance. 

Acquired data were implemented into a LabVIEW user interface, as shown in Figure 4.13. In 

the figure, parts “A” and “F” indicate the power control, parts “B” and “C” indicate the 
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temperature acquisition, part “D” indicates the flow rate acquisition and part “E” shows the 

wall temperature as a function of the axial position. 

Before filling the circuit with liquid, it is put under vacuum using a vacuum pump, as 

shown in Figure 4.14. 

 

Figure 4.12: Digital Multimeter. 

 

 

Figure 4.13: LabVIEW user interface. 
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Figure 4.14: Vacuum pump. 

4.2.1 Radial conduction through the pipe 

Between the inner pipe surface and the thermocouple sensors, which measure the wall 

temperature, there is 0.5 mm of cylindrical copper layer. The follow analysis is done to 

verify if the radial conduction along the copper layer causes a variation in temperature 

between the reading value and the wall value. 

The solution of the general equation of heat transfer conduction in cylindrical coordinate 

is 

 21 ln crct   (4.4)
 

Determining the constants c1 and c2, due to the boundary conditions, the temperature 

radial distribution (t) is 

 
1

1

2

21
1 ln

ln
r

r

r

r

tt
tt


  (4.5)

 

The temperature varies logarithmically in the thickness of the layer. The temperature 

gradient is inversely proportional to the radius r. In Figure 4.15, symbols are displayed. 
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Figure 4.15: Cylindrical copper layer. 

 

Heat flux is obtained from the Fourier low 

 
dr

dt
rl

dr

dt
AQ  2  (4.6)

 

Considering r1 = 0.004 m, r2 = 0.06m, r = 0.0045 m and, for example, Q = 75 W, t = 

44.47°C, l = 0.25 m and Cu = 386 W/(mK), the difference between the temperature 

measured by the thermocouple t and the calculated wall temperature t1 is 0.01°C. Therefore, 

the radial conduction through the pipe was neglected. 

4.3 Calibration 

The power supplied to the heating electrical resistances was verified using a wattmeter 

connected in parallel to each resistance wire at a time. The results were the same for each 

wire and the power supplied value has been confirmed. 

In order to verify the electrical resistance of the wires as a function of the temperature, 

one wire was immersed in a thermostatic bath and the electrical resistance has been 

measured from 22°C and 80°C. As shown in Figure 4.16, the maximum difference in the 

electrical resistance values is 1.3 . Therefore, the electrical resistance was considered 

independent from the temperature. 

 

r1

r2

t2

t1
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Figure 4.16: Electrical resistance of the wires as a function of the temperature. 

  

4.3.1 Thermocouples calibration 

40 thermocouples were created in order to measure the wall temperature. They are made 

by two different wires joined at one end, called thermoelements or legs of the thermocouple. 

Type T (copper – constantan) thermocouples, suited for measurements in the −200°C - 

350°C range are chosen. All the sensors were calibrated in a temperature range from 10°C to 

70°C. The calibration consists on measuring the thermocouple electromotive force at a series 

of approximately uniformly spaced temperatures. The temperature versus electromotive 

force points were interpolated and the coefficients of a polynomial equation were 

determined, for each sensor. The temperature values derived from Pt100 measurements, 

which was immersed in a thermostatic bath together with the thermocouples. The two Pt100 

used in this work are platinum resistance thermometers with a resistance of 100 ohm at 0°C. 

They were produced by Fasinternational and the declared uncertainty is 0.05°C, which 

comprises the entire measurement chain uncertainty. 

A third order polynomial equation has been determined for each thermocouple and the 

following Table 4.2 and Figure 4.17 is an example. 
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Table 4.2: Temperature and electromotive force for one sensor. 

Pt100 temperature (°C) Thermocouple V (V) 

8.33 0.000329 

17.64 0.000698 

27.62 0.001108 

37.53 0.001519 

47.18 0.001930 

57.49 0.002376 

67.75 0.002825 

 

 

Figure. 4.17: Temperature versus electromotive force. Third order polynomial curve. 

 

Resulting equation is: 

T = 93061070.2321777000000000∙(V)3
  980376.2076685500000000∙(V)2

 + 

26048.7942541273000000∙V  0.1205620187126560 

As a zero-point reference, a 50 channels ice-point was used, as shown in Figure 4.18, 

which is comprised in the calibration system. 
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Figure 4.18: Ice-point. 

4.4 Water convection testing 

The circuit was tested with water in order to verify the operation using a fluid of known 

properties. Moreover, most of the nanofluids measured in this work are water-based fluids, 

therefore measurements on water were used for comparison between nanofluid and base-

fluid. 

Along the experimental section, the bulk temperature of each subsection i (Tf,i) was 

calculated in consecutive steps, knowing the supplied power and using the energy balance. 

For i=1: 

 vAC

qSx
TT

p

inf


1
1,   (4.7) 

For i=2 to i=8: 

 
vAC

xxqS
TT

p

ii
ifif


1

1,,





  (4.8) 

where Tin is the inlet bulk temperature (°C), q the specific heat flux (W/m
2
), S the perimeter 

of the internal pipe section (m), x the axial distance (m),  the fluid density (kg/m
3
), Cp the 

specific heat capacity of the fluid (J/kgK), v the fluid velocity (m/s) and A is the transversal 

area (m
2
). 
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Nusselt number (Nu) and heat transfer coefficient () of fluids were calculated with the 

equations: 

f

if

if

D



 ,

,Nu   (4.9) 

 
ifiw

if
TT

q

,,

,


  (4.10) 

where the subscripts f,i and w,i stand for fluid at subsection i and wall at subsection i, 

respectively. 

Measurements on water were performed both in laminar and in turbulent flow, with Re 

up to 16000. Inlet temperature have been set to about 20°C, 30°C and 40°C. Heat flux varied 

from 1991 W/m
2 

to 15915 W/m
2
. Figures 4.19 and 4.20 show an example of temperature 

profiles and Nu for water in laminar flow. Figures 4.21 and 4.22 show an example of 

temperature profiles and Nu for water in turbulent flow. 

 

 

Figure 4.19: Water in laminar flow, Re=1334, Tin=20.3°C, q=1991 W/m
2
. ○ wall 

temperature, ▲ bulk temperature. 
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Figure 4.20: Water in laminar flow, Re=1334, Tin=20.3°C, q=1991 W/m
2
. Nusselt number. 

 

 

Figure 4.21: Water in turbulent flow, Re=4730, Tin=19.4°C, q=11947 W/m
2
. ○ wall 

temperature, ▲ bulk temperature. 
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Figure 4.22: Water in turbulent flow, Re=4730, Tin=19.4°C, q=11947 W/m
2
. Nusselt number. 

 

The thermal balance is within 4% for all the measurements. 

The experimental values from the measurements with water were compared with the 

following equations.  

Gnielinski equation [12] valid for liquids (1.5<Pr<500) and Re>2300: 

  4.087.0 Pr280Re012.0Nu   (4.11) 

Petukhov equation [13] valid for 4000<Re<50000 and 0.7<Pr<60: 

)1(Pr8/7.1207.1

PrRe)8/(
Nu

3/2 





 (4.12) 

with the pressure loss coefficient according to [14]: 

   2

10 64.1Relog82.1


  (4.13) 

Gnielinski equation [15] valid for 10
4
<Re<10

6
 and 0.1<Pr<1000: 
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 (4.14) 

with the pressure loss coefficient [16]: 

   2

10 5.1Relog8.1


  (4.15) 

Churchill equation [17] valid for 2100<Re<10
4
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where Nut indicates the Nusselt number for turbulent flow and Nutr for transition region [17]: 
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with the pressure loss coefficient given by 
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






 


730

2200Re
exp364.4Nu tr  (4.19) 

The maximum, the mean and the minimum deviations of the experimental values from 

the equations are as follows: 

 Gnielinski equation [12] : -14%, -5%, -0.1%, 

 Petukhov equation [13]: -23%, -21%, -16%, 

 Gnielinski equation [15]: -26%, -24%, -21%, 

 Churchill equation [17]: -25%, -22%, -18%. 

Deviations are calculated as Nu%=100∙(Nuexperimental-Nucalculated)/Nucalculated. 

Cited correlations are based on experimental values and high deviations, around 20%, are 

frequently observed, e.g. in Huber and Walter [18]. 

In Figure 4.23 an example of experimental and calculated Nu is shown. 
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Figure 4.23: Water in turbulent flow, Re=6960, Tin=40.6°C, q=7964 W/m
2
. Nusselt number 

as a function of the ratio distance from the tube inlet / inner diameter.  experimental, ▲ 

Gnielinski equation (4.11), ◊ Petukhov equation (4.12), ♦ Gnielinski equation (4.14), □ 

Churchill equation (4.16). 

4.5 Uncertainty analysis 

The experimental uncertainty was analysed for each parameter. 

In the case of water, the uncertainties on the calculated properties as cp and  are 

0.1%, 0.0001%, 0.01% and 1% respectively, as declared in Refprop 9.0, relatively to the 

model employed for the estimation [19]. 

The measurements uncertainty for the wall temperature was calculated considering the 

uncertainty of the thermocouples calibration, the uncertainty of the Pt100 sensor and the 

uncertainty of the acquisition system. Resulting value is 0.1°C. 

The uncertainty of the bulk inlet temperature is the uncertainty of the Pt100 sensor, 

0.05°C. The other bulk temperatures have an uncertainty value calculated by propagating the 

uncertainties on the individual input parameters in equations 4.7 and 4.8, where Tin is Pt100 

temperature, the mass flow rate m=vA and the power supplied Q=qSx1. 
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For uncertainties propagation, the standard methodology applicable to normal 

distributions was used. For any generic function y =f (x1, x2,…,xn), the composed uncertainty 

for xi non correlated was calculated as follows: 
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
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 (4.20) 

In turn, the uncertainty of mass flow rate m is 0.05%, as declared by the Coriolis mass 

flowmeter constructor, considering negligible the uncertainty of the acquisition (0.00000176 

kg/s). 

The uncertainty of the heat flux is calculated knowing the accuracy of voltage and current 

supplied by the System DC Power Supply N5771A, which are 0.1% of reading value + 300 

mV and 0.1% of reading value + 15 mA. They are acquired directly by a LabVIEW data 

acquisition, using a GPIB controller. The power experimental uncertainty is 0.56%. 

The uncertainty on the value of the predicted heat transfer coefficient was calculated by 

propagating the uncertainties on the individual input parameters in equation 4.10, assuming 

negligible the uncertainty of the area. 

In the case of nanofluids, the uncertainty analysis is more complex, due to other variables, 

which must be taken into account. If the nanofluid is commercial and the mass fraction 

constant, the uncertainty on the mass or volume fraction is declared by the manufacturer. If 

the mass fraction varies, because of adding of water, the mass fraction contains an additional 

uncertainty caused by the error done in the weighing. The uncertainty on the volume fraction 

considers the uncertainty on the density of water and nanoparticles. The uncertainties on 

cpandconsiders the uncertainty on cpand of water and nanoparticles. The uncertainties 

on  and  are 1% and 1.5% respectively. 

The uncertainty on the heat transfer coefficient is particularly affected by the temperature 

difference in equation 4.10. Increasing the difference between wall temperature and bulk 

temperature, the uncertainty diminishes. 

4.6 Conclusions 

An experimental apparatus was built in order to measure the convective, single phase heat 

transfer coefficient of nanofluids, at constant wall heat flux. The circuit was tested with 

water in order to verify the operation using a fluid of known properties. Results confirm that 

the circuit is suitable for heat transfer coefficient measurements. 
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Chapter 5 

 

Water based TiO2 nanofluid characterization 

 
Titanium oxide (TiO2) nanoparticles are commonly used in applications ranging from 

cosmetics to paints. These nanoparticles production is consolidated and therefore a large 

scale production of TiO2 water-based nanofluid is possible. In literature, TiO2 water-based 

nanofluids are some of the most studied nanofluids. 

In this chapter, the characterization of TiO2 water-based nanofluids in concentrations 

ranging between 1 and 35 % in mass is presented. 

5.1 Nanofluid preparation 

Water-based nanofluid with TiO2 at 35 wt% was purchased by Sigma-Aldrich. Acetic 

acid was present as dispersant at 1-5 wt%. 

Bidistilled water (CARLO ERBA, Bidistilled water, CAS Nr 7732-18-5) was used to 

dilute the 35% wt nanofluid and obtain the other desired nanofluid compositions (1 wt%, 10 

wt% and 20 wt%). In fact, starting from the fluid at 35 wt%, the other mass fractions were 

prepared taking the nanofluid after one hour sonication and adding bidistilled water in a 

weighed amount, measured by an analytical balance (Gibertini E42S 240 g FS), with an 

uncertainty of 0.0002 g. The four nanofluids were further sonicated in order to improve the 

dispersion of nanoparticles in the water. 

5.2 Nanofluids stability characterization 

The DLS was used to analyse the average dimension of the nanoparticles in solution. All 

size measurements were made at 25°C with a scattering angle of 173°. One set of 

measurements was made to verify the dependency of the nanoparticles size from the 

concentration of the solution. After sonication, the TiO2 mean particle diameter, measured 3 

times for each sample, was 76 nm at 1 wt%, 72 nm at 10 wt% and 73 nm at 20 wt%. Figure 
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5.1 shows the particle size distribution, according to the intensity detected by the Zetasizer, 

for the water-TiO2 nanofluids at these compositions. The absence of particle micrometer-

sized aggregates confirmed the good stability of the obtained dispersions. The forth solution 

(35 wt%) could not be measured since this concentration is too high, giving a not transparent 

fluid to the light and problem of multiple scattering. However, considering the measured 

values for the other concentrations, nanoparticle size is assumed to be independent from 

concentration. 

  

 

 

Figure 5.1: Nanoparticles size distribution for water containing TiO2 at 1 wt% (—), 10 

wt% (---), 20 wt% (− ∙ −). 

 

The analysis, already described in chapter 2.5.2, was made to determine the tendency of 

the particles in suspension to settle down along time. Since the mean diameter was found to 

be the same for all the compositions, only the solution at 1 wt% was investigated with this 

method. The variation along time of TiO2 nanoparticle mean diameters, with TiO2 at 1 wt%, 

is shown in Figure 5.2. 

In the case of static solutions the mean size slightly decreased to around 51 nm after 35 

days, indicating a partial precipitation. However, after sonication for one hour, a mean 

particle size centred on 76 nm was always recovered, suggesting the absence of further 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0.1 1 10 100 1000 10000

In
te

n
si

ty
(%

)

Mean diameter (nm)

1 %

20 %

10 %



Water based TiO2 nanofluid characterization 

63 

aggregation phenomena. This result is interesting because it suggests a possible application 

of these fluids in devices where they are frequently or continuously stirred, e.g. in plants 

with forced circulation. 

 

 

Figure 5.2: Nanoparticles mean diameter in relation to the time elapsed from the day of 

preparation in water-based nanofluids containing TiO2 at 1 wt%. (○) static and () stirred 

samples at the DLS. 

 

 potential and pH of each nanofluid of TiO2-water nanofluids has been measured as 

described in paragraphs 2.5.2 and 2.5.3.  potential was around 55 mV, higher than the 

empirical limit of 30 mV over which a colloidal solution should be stable. The pH increases 

with dilution and the values were 3.1 for the 1 wt% solution, 2.4 for 10 wt%, 2.2 for 20 wt% 

and 1.9 for 35 wt%. 

5.3 Thermal conductivity 

Thermal conductivity of TiO2-water nanofluids was measured, in order to evaluate its 

possible enhancement as a function of temperature and nanoparticle concentration. 

Table 5.1 presents the thermal conductivity of the nanofluids and the thermal 

conductivity ratio in relation to pure water. 
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Thermal conductivity increases with temperature and with increasing nanoparticles 

concentration. For the 1 wt% nanofluid, the measured enhancement is, within the 

experimental uncertainty, negligible at temperatures lower than 50°C, while at higher 

temperatures a significant increase in thermal conductivity is observed. For all the 

nanofluids, the enhancement on thermal conductivity raises with temperature. 

 

Table 5.1: Thermal conductivity and thermal conductivity ratio, related to pure water 

from Refprop 9.0 database [1] for 1 wt%, 10 wt%, 20 wt% and 35 wt% TiO2 water-based 

nanofluids at different temperatures. 

Mass fraction 1 wt%  10 wt% 

Vol. fraction 0.24 vol%  2.54 vol% 

T (°C) (W/mK) exp/water T (°C) (W/mK) exp/water 

20.7 0.6063 1.012 21.2 0.6191 1.031 

30.7 0.6220 1.039 30.6 0.6368 1.034 

40.5 0.6456 1.023 40.5 0.6586 1.044 

50.2 0.6891 1.071 50.3 0.6937 1.078 

59.5 0.7097 1.086 57.4 0.7132 1.095 

69.5 0.7308 1.103 68.8 0.7738 1.169 

79.4 0.7880 1.177 79.4 0.8351 1.247 

    
Mass fraction 20 wt%  35 wt% 

Vol. fraction 5.54 vol%  11.22 vol% 

T (°C) (W/mK) exp/water T (°C) (W/mK) exp/water 

21.8 0.6514 1.083 21.2 0.7279 1.213 

30.7 0.6773 1.099 30.6 0.7554 1.226 

40.4 0.7162 1.135 40.7 0.7790 1.234 

50.0 0.7249 1.127 50.2 0.8028 1.247 

60.0 0.7548 1.154 59.7 0.8577 1.312 

68.2 0.7938 1.200 68.9 0.8811 1.331 

79.3 0.8675 1.296 79.8 0.8921 1.332 

 

In Figure 5.3 the thermal conductivity ratio is reported in relation to the mass fraction of 

the nanoparticles at different temperatures. Linear interpolation lines are introduced to 

highlight the trends. The graph is divided in two parts by a diagonal which represent the 

proportional increase of the conductivity ratio with the mass fraction. 
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Thermal conductivity increases less than proportionally at any temperature with 

increasing nanoparticles concentration. At a given mass fraction, in the very dilute region 

(TiO2 = 1%) the enhancement is more than proportional to the mass fraction at any 

temperature, e.g., at 80°C almost 20% enhancement is achieved. At intermediate mass 

fractions, the enhancement is more than proportional to the mass fraction only at high 

temperatures. At 35 % mass fraction, the enhancement is less than proportional to the mass 

fraction at any temperature (from 20% to 33%). In any case, the enhancement increases at 

increasing temperatures, the maximum value being 38.1% for 35 wt% nanofluid at 70°C. At 

a given temperature, the enhancement is less than proportional to TiO2 mass fraction for the 

low temperatures, while it is more than proportional at temperatures over 70°C. 

 

 

Figure 5.3: Thermal conductivity ratio, related to pure water from Refprop 9.0 database 

[1], for 1 wt%, 10 wt%, 20 wt% and 35 wt% TiO2 water-based nanofluids at different 

temperatures. (♦) 23.6, (□) 30.7, (▲) 40.7, (○) 50.2, (x) 59.2, () 341.7, and (◊) 80.3°C. 

 

It is worth noting some troubles have been encountered on measurements at temperatures 

above 50°C. At high temperature the fluid tends to evaporate, but bubbles start to appear at 

different temperature depending on the nanoparticles concentration. The higher the particles 

mass fraction, the lower the temperature at which the bubbles become visible. 
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5.4 Dynamic Viscosity 

Table 5.2 shows the experimental viscosity values (μexp) for all the nanofluids at constant 

shear rate (about 755 1/s) and the enhancement on viscosity (μexp/μwater) related to pure water 

from Refprop 9.0 database [1] (μwater). 

 

Table 5.2: Viscosity and viscosity ratio, related to pure water from Refprop 9.0 database [1] 

for 1 wt%, 10 wt%, 20 wt% and 35 wt% TiO2 water-based nanofluids at different 

temperatures, at a shear rate of about 755 1/s. 

Mass fraction 1 wt% 10 wt% 

Vol. fraction 0.24 vol% 2.54 vol% 

T (°C) exp (Pa s) exp/water exp (Pa s) exp/ water

10 0.00132 1.0108 0.001577 1.2076 

20 0.001023 1.0214 0.001235 1.233 

30 0.000793 0.9947 0.000921 1.1546 

40 0.000645 0.9881 0.000792 1.2134 

50 0.000533 0.9758 0.000666 1.2172 

60 0.000491 1.0519 0.00056 1.2013 

70 0.000412 1.0201 0.000481 1.1909 

          

Mass fraction 20 wt% 35 wt% 

Vol. fraction 5.54 vol% 11.22 vol% 

T (°C) exp (Pa s) exp/ water exp (Pa s) exp/ water

10 0.002165 1.6579 0.004058 3.1074 

20 0.001625 1.6224 0.003091 3.0861 

30 0.001323 1.6592 0.002516 3.1555 

40 0.001046 1.6019 0.00212 3.2467 

50 0.000857 1.5668 0.001765 3.2276 

60 0.000759 1.6276 0.001521 3.2611 

70 0.000669 1.6564 0.001382 3.4217 

 

The deviations between nanofluid and water viscosity are about 20%, 60% and 215% at 

10 wt%, 20 wt% and 35 wt% TiO2 concentration, respectively. It can be noted that the 

viscosity enhancement is almost independent from temperature for all the concentrations 
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here analyzed. The nanofluid at 1 wt% shows a water-like behaviour and a variation, with 

respect to water, within the experimental error, but at the higher concentrations the viscosity 

enhancement becomes unproportional and quite elevated. 

Nanofluid behaviour is always Newtonian, as can be deduced by Figure 5.4, where shear 

stress is represented as a function of shear rate for the 35 wt% nanofluid. All isotherms are 

linear and converge to the origin of the diagram. 

 

 

Figure 5.4: Shear stress as a function of shear rate for water-TiO2 nanofluid at 35 wt% at (●) 

10, (○) 20, (▲) 30, (∆) 40, (■) 50, (□) 60 and (♦) 70°C. 

5.5 Comparison with published literature 

In Figure 5.5, a comparison with some experimental data is also proposed. 

Murshed et al. [2] measured thermal conductivity of TiO2-water nanofluids with 

cetyltrimethtlammoniumbromide (CTAB) surfactant at ambient temperature and revealed 

very higher conductivity values, if compared with our results at the same temperature and on 

respect to the Hamilton and Crosser model. 

Zhang et al. [3] performed conductivity measurement on TiO2-water nanofluids at 10°C, 

30°C and 40°C at low concentrations and their results are in good agreement with data here 

reported. 
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Duangthongsuk and Wongwises [4, 5] studied thermal conductivity of TiO2-water 

nanofluids at temperatures ranging between 15°C and 35°C. Their values are higher than 

data here described for the same compositions and temperatures. 

However a comparison with literature data is not easy because many parameters affecting 

nanofluid behavior are not available in the papers, as the employed preparation method or 

pH value. For this reason, fluids containing the same particles can exhibit different 

behaviours. 

In literature, only two papers on viscosity measurements for TiO2-water nanofluid at the 

same shear rates here considered have been found, but no numerical values are available. 

Chen et al. [6] found a Newtonian behaviour at room temperature for particle volume 

concentration less than 1.5%. Only one volume concentration is comparable with our 

concentrations and no discordance has been found. Tseng and Lin [7] observed a 

pseudoplastic flow behaviour in the compositions range between 5% and 12% by volume. 

They found viscosity values higher than those observed for our nanofluids, for all the volume 

concentrations. 

5.5.1 Thermal conductivity 

The Maxwell model, equation 3.14, was used to predict the thermal conductivity of the 

suspensions, assuming they contain spherical particles and considering only the dependency 

on the particle volume fraction. However, thermal conductivity of suspensions also depends 

on size and shape of particles. Therefore, the Hamilton and Crosser model, equation 3.15, 

was also considered for comparison. 

Figure 5.5 shows the experimental thermal conductivity ratio in relation to the mass 

fraction of the nanoparticles, at different temperatures, for the present measurements and 

some literature data sets (chapter 5.5) in comparison with the predictions of the Hamilton 

and Crosser (H-C) model. 
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Figure 5.5: Comparison between literature data on TiO2-water- nanofluids of exp/water at (●) 

23.6, (◊) 30.7, (■) 40.7, (▲) 50.2, (∆) 59.2, (-) 68.7, and (+) 80.3 °C (this work); (□) 10, (♦) 

30, and (○) 40°C (Zang et al. [3]); (x) 15, (♦) 25, (▲) 35 K (Duangthongsuk et al. [4]), and 

(■) ambient temperature (Duangthongsuk et al. [5]); (●) ambient temperature (Murshed et al. 

[2]).  

The lines represent the Hamilton and Crosser model at different temperatures. 

 

The Hamilton and Crosser model, equation 3.15, always overestimates the thermal 

conductivity enhancement with respect to experimental data at temperatures between 23°C 

and 50°C, while overestimates the enhancement at temperatures between 59°C to 80°C. 

5.5.2 Dynamic viscosity 

A comparison between the Batchelor predictive model, equation 3.5, and the 

experimental data was made. 

Figure 5.6 shows the experimental and the calculated viscosities with respect to 

temperature, for the different particle concentrations. The model is in agreement with the 

experimental values for the fluid at 1 wt%, while at higher nanoparticles mass fractions the 

model underestimates the viscosity behaviour. 

 

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

0.00 0.04 0.08 0.12


ex

p
/

w
a

te
r

Volume fraction



Water based TiO2 nanofluid characterization 

70 

 

Figure 5.6. Experimental viscosity (○) of nanofluids as a function of temperature. 

Comparison with Batchelor model (—). 

5.6 Conclusions 

Water-based nanofluids containing TiO2 nanoparticles has been studied at four different 

nanoparticle concentrations (1 wt%, 10 wt%, 20 wt% and 35 wt%), at experimental 

temperatures ranging between 10°C and 70°C and between 20°C and 80°C for viscosity and 

conductivity measurements, respectively, with steps of 10°C. All the fluids resulted quite 

stable in a static situation and completely stable after sonication for one hour. The average 

particle diameter was 76 nm and no aggregations were found. 

The measured thermal conductivity of TiO2-water nanofluids increases with mass 

concentration and with temperature. The effect of increasing conductivity is more evident at 

higher temperatures. 

All the nanofluids exhibited a Newtonian rheological behaviour. The viscosity 

enhancement, related to pure water, was independent from temperature for all the 

concentrations here analysed. The nanofluid at 1 wt% shows a water like behaviour and a 

variation, with respect to water, within the experimental error, but at the higher 

concentrations the viscosity enhancement is not proportional and surprisingly excessive 

(+243% for 35 wt% at 70°C). 
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Chapter 6 

 

Water based SWCNH nanofluid characterization 

 
Carbon nanostructures (single or multi-wall carbon nanotubes (SWCNT, MWCNT), 

carbon nanohorns (CNH), fullerene, graphene), amorphous carbon (Carbon-black, labeled as 

CB and Thermax Cancarb N99) are very promising materials in terms of heat transfer, 

because of their high thermal conductivity. However, they are expensive and difficult to 

produce on a large scale and their effects on environment and health are not well known till 

now. In order to understand the SWCNH-water nanofluid properties, the viscosity was 

measured at ambient pressure and in the temperature range between 10°C and 80°C. Using 

the rheometer, the Newtonian behaviour should be evaluated and the data were regressed by 

viscosity correlations. Thermal conductivity was measured for the nanofluid at 0.1 wt%. 

6.1 Nanofluid preparation 

Deionised water (Millipore, Billerica MA, USA, 18.2 ) was used as base fluid. The 

SWCNHs used in this work were produced and provided by Carbonium Srl.  The 

SWCNHs are roughly spherical aggregates of nanohorns consisting in a single layer of a 

graphene sheet wrapped into an irregular tubule with a variable diameter of generally 2-5 nm 

and a length of 30-50 nm, with their tips cone-shaped. The SWCNHs are mainly of three 

types: dahlias, buds and seeds [1, 2]. The critical point that differentiates SWCNHs from 

carbon nanotubes (CNTs), that showed important thermal conductivity increase [2], is their 

much lower toxicity [3], due to both the lack of fibril-like structure and the absence of any 

metal nanoparticles used to catalyse nanotube growth during their production. Moreover, 

their heterogeneous surface structure favours their dispersion in water. 

The morphological characterization of nanoparticles was performed by field emission 

scanning electron microscopy (FE-SEM) with a SIGMA Zeiss instrument (Carl Zeiss 

SMT Ltd, UK). A SEM picture of SWCNHs is shown in Figure 6.1, where the  actual 

dimensions of nanoparticles can be deduced to be 60 nm. 
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Figure 6.1: SEM (Scanning Electron Microscope) images of SWCNH nanoparticles. 

 

The use of dispersants was necessary to stabilize the nanoparticle dispersions. After 

careful analysis of the average size distribution of the nanoparticles in solution along time by 

means of a DLS apparatus, sodium n-dodecyl sulphate (SDS, 99%, Alfa Aesar) was used as 

dispersant for the nanofluid. 

The nanofluids were prepared by dispersing the nanoparticles in water by a two-step 

method. Different preparation methods (ultrasonic agitation, ball milling and 

homogenization), described in chapter 2, and different dispersants were proven. The high 

pressure homogenization method turned out to be the best process to improve the suspension 

stability and then it was used to prepare SWCNH-water nanofluid. The nanoparticles were 

mechanically dispersed in water at different concentrations, i.e. 0.01%, 0.1%, 1% by 

mass. Then, a high pressure homogenizer (up to 1000 bar) was employed to optimize the 

dispersion. For the nanofluids at concentrations of 0.1% and 1% by mass, the ratio 

between nanoparticles and dispersant mass was 1:1. For the lowest concentration (0.01% 

by mass), the ratio was 1:3. 
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6.2 Nanofluids stability characterization 

As described in chapter 2, the DLS technique was used to determine the tendency of the 

particles in suspension to settle down along time. Figure 6.2 shows the particle size 

distribution, according to the intensity detected by the Zetasizer, for the water-SWCNH 

nanofluids, just after preparation and after 18 days. The nanofluids formed by water, SDS 

and SWCNH are very stable even after several days. The measured nanoparticle average 

diameter was around 140 nm, 188 nm and 120 nm for the 0.01%, 0.1% and 1% mass 

concentrations, respectively. The  potential of nanofluids was also measured by Zetasizer 

Nano and in Table 6.1 the values are shown. All the measured nanofluids show a  potential 

higher than |30| mV. 

 

  

Figure 6.2: Particle diameter size distribution, according to the intensity, for the water-

SWCNH nanofluids (with dispersants), (─) just after preparation and (- - -) after 18 days. 
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Table 6.1:  potential for SWCNH nanofluids with dispersants. 

nanofluid  potential (|mV|) 

SWCNH 1 wt%, SDS 1 wt% 56 

SWCNH 0.1 wt%, SDS 0.1 wt% 57 

SWCNH 0.01 wt%, SDS 0.03 wt% 50 

 

6.3 Dynamic Viscosity 

The dynamic viscosity data were measured at ambient pressure and in a temperature 

range between 10°C and 80°C. All the measurements were performed at constant 

temperature and variable shear rate, starting from 200 1/s to 1600 1/s and vice versa, at 

constant step of about 150 1/s (except for temperatures higher than 60°C, at which faster 

measurements had to be performed, due to water evaporation). A conditioning step of 10 

seconds was carried out and a pre-shear rate at 200 1/s was applied before the measurements 

to remove any possible fluid “memory”, due to the sample preparation, storage and loading. 

Each experimental point is the average of three values of viscosity, sampled under constant 

shear rate. 

The investigated fluids, apart from bidistilled water, were: 

 water + SDS at 0.03%, 0.1% and 1% by mass; 

 water + SWCNH at 0.01%, 0.1%, 1% by mass + SDS at 0.03%, 0.1% and 1% by 

mass, respectively. 

In Figure 6.3, viscosity data of the measured fluids at 10°C are represented. 

As shown in the figure, base fluids formed by water and SDS, both at the 0.03% and 

0.1% by mass, have viscosities very similar to water. SDS shows its influence at 

concentration of 1% by mass, with a viscosity enhancement of about 7%. Even viscosities of 

nanofluids with SWCNH at 0.01% and 0.1% are similar or lower than those of water. On the 

contrary, the viscosity of water-SDS-SWCNH at 1% nanofluid increases of about 13%. 

Table 6.2 summarizes the viscosity measurements for all the SWCNH-nanofluids at the 

different compositions at constant shear rate (about 800 1/s). It should be noted that 

measurements at 80°C are difficult to perform, since water begins to vaporize and 

nanoparticles begin to aggregate. 

In Figure 6.4, the trend of the shear stress as a function of the shear rate is shown, at each 

composition, at 10°C, evidencing a Newtonian behaviour of the nanofluids. 



Water based SWCNH nanofluid characterization 

77 

 

Figure 6.3: Dynamic viscosity at 10°C of (●) water, water and SDS at (∆) 0.03%, (◊) 

0.1% and (□) 1% in mass, (▲) water-0.03% SDS and 0.01% SWCNH, (♦) water-0.1% SDS 

and 0.1% SWCNH and (■) water-1% SDS and 1% SWCNH; (─) water calculated by 

Refprop 9.0 [4]. 

 

Table 6.2: Experimental viscosity data for water-based nanofluids with at constant shear 

rate (about 800 1/s). 

T (°C) 
SWCNH 0.01 wt% 

(mPas) 

SWCNH 0.1 wt% 

(mPas) 

SWCNH 1 wt% 

(mPas) 

10 1.29 1.31 1.48 

20 1.04 1.00 1.19 

30 0.80 0.76 0.92 

40 0.65 0.64 0.76 

50 0.55 0.55 0.65 

60 0.47 0.49 0.53 

70 0.41 0.40 0.46 

80 0.36 0.32 0.43 
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Figure 6.4: Shear stress as a function of shear rate for water-SWCNH-SDS nanofluid at 

10°C. (▲) 0.01% SWCNH, (♦) 0.1% SWCNH and (■) 1% SWCNH. 

6.4 Comparison with published literature 

Up today, no literature data are available for the same nanofluids here considered, i.e. 

fluids formed by the same nanoparticles, base fluids, dispersants, at the same compositions 

and with the same preparation methods. 

In literature, several theoretical models have been proposed to correlate viscosity data of 

nanofluids and few of them were applied to these experimental data. Considered models are 

Einstein model (equation 3.3), Brinkman model (equation 3.4) and Batchelor model 

(equation 3.5), described in paragraph 3.1.1. 

As shown in Figure 6.5, equations 3.3, 3.4 and 3.5 of paragraph 3.1.1 are able to estimate 

nanofluids viscosity for the lowest compositions, but overestimate the suspensions at 1% wt. 

These results are in contrast with literature, e.g. [5], where these equations underestimated 

nanofluids viscosity for concentrations higher than 1% vol. It could be due to different 

employed preparation methods, dispersants and nanoparticle dimensions. 

Recent studies suggested correlations between the nanofluids high viscosity and the 

nanoparticles aggregation [6, 7-9]. Different models have been proposed taking into account 

this phenomenon, as the Krieger–Dougherty equation [5] 
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where m is the maximum concentration at which nanofluid can flow, a the effective 

aggregates volume fraction (and here it is considered as ) and [] is the intrinsic viscosity 

(for non-interacting, rigid spherical particles, 2.5). 

Afterwards, Chen et al. [6] assumed that the aggregates density change with the radial 

position and then it is not uniform in the nanofluid, by means of the equation 
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where, aa and a are the aggregates and prime nanoparticles radii, respectively. D is the fractal 

index, that is 1.8 for nanoparticles [7-9]. So, equation 6.1 becomes 
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Then, a simplified equation was proposed [10] as 
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In order to apply equations 6.1 to 6.4, m should be calculated. Although the present 

experimental data are only at three different concentrations, restricting the validity range of 

the models, m was calculated, basing on [11], on all the experimental data, being 6.85% for 

SWCNH nanofluids. 

The correlation results are added in Figure 6.5. It is evident that also equations 6.1, 6.3 

and 6.4 can estimate nanofluids viscosity only for the lowest compositions, overestimating 

the suspensions at 1% wt. 

Nevertheless, the applicability of theoretical models to nanofluids is a still unsolved 

problem. Here, a simple equation, with similar form to equaton 3.5, is proposed to correlate 

these experimental data 

 21  bafnf   (6.5) 

For the same base fluid and nanoparticle, this equation was regressed on the viscosity 

data at different temperatures (taken into account by means of the base fluid viscosity at that 
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temperature) and nanofluid concentrations. The regressed parameters are summarized in 

Table 6.3. As shown in Figures 9 and 10, this equation well represents the experimental data. 

 

 

Figure 6.5: Viscosity as a function of temperature for water-SWCNH-SDS nanofluid. () 

experimental data; (▬) Einstein equation (3.3); ( ) Brinkman (3.4); () Batchelor 

equation (3.5); (▬) equation (6.1), (▬) equation (6.3), (▬) equation (6.4), (▬) equation 

(6.5). 

 

Table 6.3: Regressed parameters of equation 6.5. 

nanofluid a b 

water - SWCNH -0.50437 1.74486 

 

6.5 Thermal conductivity 

The increasing in dynamic viscosity for water-SWCNH nanofluid at 1 wt%, makes it 

unsuitable for heat transfer applications. Therefore, the thermal conductivity was measured 

only for the nanofluid at 0.1 wt%. The results, shown in Figure 6.6 and in Table 6.4, indicate 

that the thermal conductivity is very similar to that of water. The reason is probably the 
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presence of SDS, which nullifies the increasing of thermal conductivity due to SWCNH. On 

the other hand, SDS is necessary to ensure the stability of the nanofluid. Other dispersants 

were tested, but neither of these turned out to be suitable to avoid the nanoparticles 

aggregation. 

 

 

Figure 6.6: Thermal conductivity of water (○) and SWCNH in water, 0.1 wt% (♦). 

 

Table 6.4: 2: Experimental conductivity data for SWCNH in water at 0.1 wt% and 

deviation % on respect to measured water (). = (nf-water)/water100. 

T (°C) (W/mK) (%) 

22.6 0.601 -0.39 

30.5 0.615 -0.23 

40.2 0.638 1.09 

40.2 0.647 2.50 

49.7 0.658 2.25 

59.2 0.653 -0.17 

68.4 0.692 4.58 
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6.6 Conclusions 

The knowledge of viscosity is important for its influence on both the heat transfer and the 

energy required to pump the nanofluid in the circuits where they are used as secondary 

fluids. 

Nanofluids based on water and SWCNH, with the addition of SDS as dispersant, showed 

a Newtonian behaviour at each composition. Negligible variations on the viscosity of the 

nanofluids in relation to water are observed at nanoparticles concentrations up to 0.1% in 

mass fraction. On the contrary, a significant increase is measured for nanoparticles 

concentration of 1 wt%. Part of this increment is due to the addition of the dispersants. 

Few theoretical models were applied to regress the experimental data, but they were 

found able to represent only nanofluids with nanoparticle concentrations lower than 1% wt. 

Then, a new correlation was proposed to represent the experimental data for the 

SWCNH/water nanofluids. 

Thermal conductivity was measured for the nanofluid at 0.1 wt% and the nanofluid 

behaviour was very similar to that of water, probably due to the presence of SDS. 
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Chapter 7 

 

Water based SiO2 nanofluid characterization 

 
In literature, measurements of thermal properties for water-based nanofluids are 

frequently not coherent, probably due to different methods of nanofluids preparation and 

insufficient information on the nanoparticles characteristics. To evaluate the reasons for 

these discrepancies, within an International Nanofluid Property Benchmark Exercise 

(INPBE), thermal conductivity of identical samples of stable colloidal dispersions of 

nanoparticles was studied at ambient temperature by over 30 organizations worldwide, using 

a variety of experimental approaches [1]. The authors concluded that thermal conductivity 

data obtained by using different experimental techniques could be different. They provide 

information about the experimental approaches and observed that thermal conductivity 

differences tend to disappear when the data are normalized to the measured thermal 

conductivity of the base-fluid. Moreover, classic effective medium theory for well-dispersed 

particles by Maxwell (equation 3.14) and recently generalized theory by Nan et al. [2] were 

found to be in good agreement with the experimental data, suggesting that no anomalous 

enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise. 

Nevertheless, it is worth noting the measurements were performed only at ambient 

temperature, not taking into account the influence of temperature on the possible thermal 

conductivity enhancement. 

Considering oxide nanoparticles can be of particular interest for industrial application 

because of their low cost, high stability and easy production, here the same nanofluid 

belonging to set 3 in [1] was considered for a series of measurements with the following 

aims: 

 to check the accuracy of the thermal conductivity apparatus used in this work by 

comparing our results with those of INPBE; 

 to extend the temperature range of the measurements and to consider various 

nanoparticles concentrations, to check the validity of classical theory also at 

temperatures different from ambient; 
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 to measure viscosity as a function of temperature to evaluate the viscosity 

enhancement. 

7.1 Nanofluid preparation 

The nanofluid is formed by silica nanoparticles of spherical shape monodispersed in de-

ionized water. It was supplied by Grace & Co. (Ludox TM-50) at a nanoparticles nominal 

concentration of 50% by mass (49.0-51.0%). The real concentration was evaluated by 

measuring the density of the nanofluid at 20°C by means of a glass vibrating tube densimeter 

(Anton Paar DMA 602), assuming a linear dependence of density from the volumetric 

fraction of nanoparticles and a density of 2200 kg/m
3
 for SiO2. The actual SiO2 mass fraction 

resulted to be 54%. 

Bidistilled water (CARLO ERBA, Bidistilled water, CAS Nr 7732-18-5) was added to 

the commercial nanofluid to obtain the other three nanofluid compositions: 1 wt%, 5 wt% 

and 27 wt%. Each fluid obtained in this way was further sonicated in order to completely 

disperse the nanoparticles in the water. 

7.2 Nanofluids stability characterization 

The nanoparticles size declared by the supplier was 22 nm. Using the DLS technique, the 

mean particle diameter, measured 3 times for each sample, was around 30 nm for the 1 wt% 

solution, 25 nm for 5 wt% and 20 nm for 27 wt%, showing a slight dependence of size on 

nanoparticles concentration. The forth fluid (54 wt%) was not measured since this 

concentration is too high, giving problems of multiple scattering. The measured diameters 

were basically constant for more than 20 days after preparation at all the concentrations, 

demonstrating the strong stability of the various nanofluids. The mean particle diameters are 

represented in Figure 7.1. 

Water-SiO2 nanofluids  potential was in the range between -35 mV and -45 mV for all 

the nanoparticles concentrations, corresponding to strong repulsive interactions and reduced 

tendency to form aggregates, then confirming the stability of the nanofluids. 

The pH of each nanofluid was almost independent from nanoparticles concentration, 

ranging from 9.1 at 54 wt% to 9.9 at 1 wt%. 
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Figure 7.1: Nanoparticles mean diameter in relation to the time elapsed from the day of 

preparation in water-based nanofluids containing SiO2 at 1 wt% (∆) static and (▲) stirred 

samples, 5 wt% (◊) static and (♦) stirred samples, 27 wt% (○) static and () stirred samples. 

7.3 Thermal conductivity 

Thermal conductivity of all selected water-SiO2 nanofluids was measured at ambient 

pressure as a function of temperature in the range between 10°C and 70°C, with steps of 

10°C, for all the selected nanoparticles concentrations, in order to evaluate the enhancement 

with respect to pure water. 

Figure 7.2 shows nanofluids thermal conductivity as a function of temperature, while 

Figure 7.3 presents the ratio between the thermal conductivity of nanofluids and that of water 

(enhancement). First, it should be noted that the thermal conductivity, measured at 20°C and 

54 wt% (0.728 W/mK), is in good agreement (the deviation is 0.1%) with that measured at 

the same conditions by [1] (0.729 W/mK). Thermal conductivity increases almost linearly 

with temperature at concentrations higher than 1% wt. During the measurements, some 

instability is observed at temperatures higher than 50°C, probably due to the evaporation of 

the sample.  
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Figure 7.2: Thermal conductivity of water-SiO2 nanofluids as a function of temperature. 

Nanofluid at 1 wt% (◊), 5 wt% (▲), 27 wt% (□), 54 wt% (●),Buongiorno at al. [1] (●), 

experimental water (+). 

 

For this reason, in Figure 7.3 the enhancement is represented only up to 50°C. The 

enhancement is strongly dependent on concentrations, even if it is less than proportional to 

concentration (e.g.: enhancement below 27% for 54 wt% nanofluid at any temperature). 

Moreover, it is less sensitive to temperature than thermal conductivity, with an increase of 

only few percent between 10°C and 50°C at all concentrations. 
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Figure 7.3: Thermal conductivity ratio between water-SiO2 nanofluids and water as a 

function of temperature. Nanofluid at 1 wt% (◊), 5 wt% (▲), 27 wt% (□), 54 wt%(●). 

7.4 Dynamic Viscosity 

Dynamic viscosity data of pure water and water-based nanofluids were measured from 

10°C to 70°C by increments of 20°C per step. At concentrations between 1 wt% to 27 wt%, 

the ratio between shear stress and shear rate was constant in the measurements shear rate 

range at all the temperatures, highlighting a Newtonian behaviour of the nanofluids. Figure 

7.4 shows that viscosity values, taken at a constant shear rate of 550 (1/s), decrease with 

lower declination at increasing temperatures. 
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Figure 7.4: Viscosity of water-SiO2 nanofluids as a function of temperature. Nanofluid at 

1 wt% (◊), 5 wt% (▲), 27 wt% (□), water (----). 

 

Viscosity at concentrations below 5 wt% is practically the same as that of water. This can 

be seen even better in Figure 7.5, were the ratio between nanofluids viscosity and water 

viscosity is reported. At given concentration, the viscosity ratio is practically constant with 

temperature, except at 70°C, at which the ratio is increased, probably due to some 

aggregation phenomena. Viscosity for the 27 wt% nanofluid is more than twice the viscosity 

of water. 

Nanofluid with 54 wt% SiO2 nanoparticles showed a non-Newtonian behaviour and a 

viscosity one order of magnitude higher than that at other concentrations. Moreover, the 

viscosity increased with temperature at temperatures higher than 50°C. This behaviour is 

probably due to strong aggregation of nanoparticles. The viscosity behaviour at this 

concentration was not included in the figures for to the particular high values. 

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0 20 40 60 80




(P
a∙

s)

Temperature (°C)



Water based SiO2 nanofluid characterization 

91 

 

Figure 7.5: Viscosity ratio between water-SiO2 nanofluids and water as a function of 

temperature. Nanofluid at 1 wt% (◊), 5 wt% (▲), 27 wt% (□). 

 

 

Figure 7.6: Shear stress as a function of shear rate for water-SiO2 nanofluids. Nanofluid at 

1 wt% (◊), 5 wt% (▲), 27 wt% (□). 
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7.5 Comparison with published literature 

As discussed in the paragraph 7.3, the thermal conductivity measured at 20°C and 54 

wt% is compatible, within the experimental accuracy, with that measured at the same 

conditions by [1]. Other literature papers, which consider the nanofluid SiO2 in water, 

examine the possible technical applications and do not measure the thermophysical 

properties. For example, in [3] water-based SiO2 nanofluid was used in a loop thermosyphon 

and in [4] SiO2 nanoparticles suspension in water was used in a car radiator. 

To make a comparison with literature models, density of SiO2 is assumed 2200 kg/m
3
 as 

reported in [1] and the volume fraction here considered are 0.0046, 0.0234, 0.1439 and 

0.3479. 

Thermal conductivity data were compared with equation 3.15. Hamilton and Crosser 

model overestimates the thermal conductivity results at the highest volume fractions. In fact, 

the deviations of the equation 3.15 from experimental data are -1.5% at 1 wt%, 2.3% at 5 

wt%, 29.8% at 27 wt% and 97.2 at 54 wt%. 

Dynamic viscosity data were compared with equation 3.5. Batchelor model is in good 

agreement with the experimental data for the nanofluids at 1 wt%, and 5 wt% and for 

temperature from 10°C to 50°C. The model overestimates experimental data of 22.3% at 1 

wt% and 16.5% at 5 wt%, at 70°C. For nanofluid at 27 wt%, the model overestimates 

experimental data from 44.1% to 92.0%. 

In [6] heat transfer of SiO2 in water nanofluid was studied in horizontal tubes founding an 

increasing from 10% to 60% compared to pure water coefficient. 

7.6 Conclusions 

Viscosity and thermal conductivity for nanofluids formed by water and SiO2 

nanoparticles with concentration from 1% to 54% by mass were measured in the range of 

temperatures between 10°C and 70°C. The thermal conductivity, at ambient temperature for 

the nanofluid at 54 wt%, was compared with the benchmark study [1] result, finding a good 

agreement. Thermal conductivity clearly enhances with reference to water, but only at the 

higher concentrations with a weak dependence on temperature. At the same time, viscosity 

increases even more significantly and, for this reason, water-based nanofluids with silica 

nanoparticles should not be suitable for thermal applications. 
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Chapter 8 

 

Water based Fe2O3 nanofluid characterization 

 
The purpose of this chapter is to investigate thermal conductivity and dynamic viscosity 

of water-based nanofluids containing iron oxide (Fe2O3) in concentrations ranging between 5 

and 20% in mass. Oxide nanoparticles are easier to obtain and less expensive than other 

nanoparticles, as metals and carbon nanotubes. Amongst them, Fe2O3 is already used to 

produce stable and commercially available water nanofluids. In this investigation, the effect 

of temperature and nanoparticles concentration on thermal conductivity and dynamic 

viscosity of Fe2O3 water-based nanofluids is studied. 

Experimental results will be compared with some literature models and an experimental 

correlation for nanofluids viscosity will be proposed. 

8.1 Nanofluid preparation 

The studied nanofluid is formed by hematite (Fe2O3) nanoparticles, monodispersed in de-

ionized water. It was supplied by Sigma Aldrich at a nanoparticles nominal concentration of 

20% by mass. 

Bidistilled water (Carlo Erba, CAS Nr 7732-18-5) was added to the commercial 

nanofluid to obtain the other two nanofluid compositions: 5 wt% and 10 wt%. 

These two compositions were prepared starting from the original nanofluid, sonicated for 

one hour by means of an ultrasonic bath (Bransonic, Ultrasonic cleaner Branson 2210, output 

power 90 W) and adding bidistilled water in a weighed amount, measured by an analytical 

balance (Gibertini E42S 240 g FS), with an uncertainty of 0.002 g. Each fluid obtained in 

this way was further sonicated for one hour, in order to improve the dispersion of 

nanoparticles in the water. 

No dispersant was added to the fluid. 
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8.2 Nanofluids stability characterization 

As described in chapter 2.5, DLS technique was used to check the actual average 

dimension of the nanoparticles in solution and the  potential was measured to analyse the 

stability of the nanofluids. The mean particle diameter was around 67 nm and it did not 

change with the particle concentration. In Figure 8.1, the particle size distribution detected 

by the Zetasizer is represented. A further particle size measurement was performed after 

almost three months and the same average diameter was found. This indicates that no 

aggregation occurs in few months. 

Fe2O3-water nanofluid  potential was around +56 mV for the 5 wt% solution, +57 mV 

for the 10 wt% solution, +49 mV for the 20 wt% solution. Since a value of  potential out of 

the range between 30 mV and -30 mV indicates high charged surface and hence a strong 

electrical repulsion among the particles, all the nanofluids seem to be very stable. 

 

 

Figure 8.1: Nanoparticles size distribution for water containing 5 wt% (− ∙ −), 10 wt% (---), 

20 wt% (—) Fe2O3. 

 

The pH of each nanofluid was measured with a pH meter as described in chapter 2.5. The 

measured values were 3.45 for the 5 wt% solution, 3.33 for 10 wt% and 3.34 for 20 wt% at 

26°C. As described in [1], the isoelectric point for water-hematite nanofluid is observed at 
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pH 6.1. Then the measured pH values of these solutions are far from this point, as further 

confirmation, together to the  potential (always positive and higher than 30 mV), of the 

nanofluids stability. 

8.3 Thermal conductivity 

Thermal conductivity measurements were performed in the temperature range between 

10°C and 70°C, with steps of 20°C, at ambient pressure. Figure 8.2 presents nanofluids 

thermal conductivity as a function of mass fraction and temperature. Figure 8.3 shows an 

almost linear enhancement with temperature at all the concentrations examined up to 50°C. 

In the figure, error bars relating to the declared instrument uncertainty (5%) are added. Some 

instability is observed at temperature of 70°C, probably due to the introduction of convective 

motions in the liquid or aggregation of the nanoparticles, but these phenomena cannot be 

evaluated during the conductivity tests. Table 8.1 presents the experimental data and the ratio 

between the thermal conductivity of the nanofluids and water at the same temperature. 

 

 

Figure 8.2: Experimental thermal conductivity of water-Fe2O3 nanofluid, (●) 10°C, (▲) 

30°C, (○) 50°C, (∆) 70°C, as a function of mass fraction. 
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Figure 8.3: Experimental thermal conductivity of water-Fe2O3 nanofluid, (●) 5 wt%, (▲) 10 

wt%, (■)  20 wt%, as a function of temperature. Comparison with Maxwell model (3.15) (─ 

─), Bruggeman model (3.16) (─), Lu and Lin model (3.17) (–  –), Xuan model (3.18)  (---). 

Error bars correspond to 5% uncertainty. 

 

Table 8.1: Experimental thermal conductivity data and thermal conductivity ratio for Fe2O3 

water-based nanofluids 

Mass fraction 5 wt% 10 wt% 20 wt% 

Vol. fraction 0.99 vol% 2.08 vol% 4.55 vol% 

T (°C) 
exp

exp/ water
exp

exp/ water
exp

exp/ water
(W/m∙K) (W/m∙K) (W/m∙K) 

10.4 0.5791 1.00 0.5989 1.03 0.6223 1.07 

30.4 0.6208 1.01 0.6418 1.04 0.6784 1.10 

50.0 0.6728 1.05 0.6835 1.06 0.7161 1.11 

70.0 0.6862 1.03 0.6974 1.05 0.7625 1.15 
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8.4 Dynamic viscosity 

Dynamic viscosity measurements were performed at 5 wt%, 10 wt% and 20 wt% in the 

temperature range between 10°C and 70°C, with steps of 20°C. 

Figure 8.4 shows the flow curves at 10°C for water and all nanofluids. The same trend 

was found at all the measured temperatures. In Table 8.2, the experimental data are reported 

at shear rate around 800 1/s. Under the imposed conditions, the nanofluids appeared to have 

a Newtonian behaviour, as it can be deduced by Figure 8.5, where shear stress is represented 

as a function of shear rate for the measurements at 30°C. All isotherms are linear and 

converge to the origin of the diagram. 

Figure 8.6 shows the trend of viscosity as a function of nanoparticles concentration at all 

temperatures. Viscosity improves in an exponential way at each temperature, reaching a 

maximum value of 0.00309 Pa∙s at 20 wt% and 10°C. The enhancement on respect to pure 

water was 21%, 47% and 136% at 5 wt%, 10 wt% and 20 wt%, respectively. Viscosity 

decreases if temperature increases, with the same trend for all the concentrations. 

 

 

Figure 8.4: Dynamic viscosity of Fe2O3 at 10°C. (○) water, (●) 5 wt%, (▲) 10 wt%, (■) 20 

wt% compared to (─) Refprop 9.0 [2]. 
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Table 8.2: Experimental viscosity data at constant shear rate (about 800 1/s) and viscosity 

ratio for Fe2O3 water-based nanofluids. 

Mass fraction 5 wt% 10 wt% 20 wt% 

Vol. fraction 0.99 vol% 2.08 vol% 4.55 vol% 

T (°C) 
exp 

(Pa s)
exp/ water

exp 

(Pa s)
exp/ water

exp 

(Pa s)
exp/ water

10 0.00158 1.21 0.00192 1.47 0.00309 2.36 

30 0.00099 1.24 0.0012 1.51 0.00199 2.49 

50 0.00066 1.21 0.00081 1.49 0.00129 2.36 

70 0.00053 1.32 0.00067 1.65 0.0011 2.72 

 

 

 

Figure 8.5:Shear stress as a function of shear rate for water-Fe2O3 nanofluid at 30°C. (●) 5 

wt%, (▲) 10 wt%, (■) 20 wt%. 
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Figure 8.6: Dynamic viscosity on mass fraction of water-Fe2O3 nanofluid at (●) 10°C, (▲) 

30°C, (○) 50°C, (∆) 70°C. 

8.5 Comparison with literature 

In literature, a study on dynamic viscosity of hematite dispersed in water is [3], in which 

Phuoc and Massoudi observed the rheological properties of Fe2O3 water-based nanofluids in 

concentrations between 1 and 4 % in mass. They found a non-Newtonian behaviour, but 

their results cannot be compared with results here presented, because their concentrations are 

lower and they always used polymer dispersants, which strongly affect rheological 

behaviour. Another study on the rheological properties of Fe2O3 nanofluids is [4], in which 

the base-fluid is ethylene glycol. Other studies consider the applications of ferro-nanofluids 

on a micro-transformer [5], or the electrical and magnetic properties of ferro-nanofluid on 

transformers [6] or magnetic nanofluids [7] based on Fe3O4 nanoparticle, but no other studies 

on thermal conductivity or dynamic viscosity of Fe2O3 water-based nanofluids have been 

found. Hence, only a comparison with literature model was done. 

8.5.1 Thermal conductivity 

In Figure 8.3 measured thermal conductivity results are compared with classical effective 

thermal conductivity model (equation 3.15). Thermal conductivity of the added solid 
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particles is 15.42 W/mK [8]. At the lower temperature, the model overestimates the 

experimental results, but, starting from temperatures around 50°C, theoretical and 

experimental results are in quite good agreement. 

In literature, several models have been proposed. Amongst these, few models have been 

chosen for comparison, Bruggeman model (3.16), Lu and Lin model (3.17) and Xuan et al. 

model (3.18), described in chapter 3.2.1.

 All these models were added to Figure 8.3, together with the experimental uncertainties. 

Their behaviour is very similar. They overestimate thermal conductivity values at 

temperature lower than 50°C, while they underestimate at higher temperature for all the 

nanofluids, although the data are always within the experimental uncertainties. 

8.5.2 Dynamic viscosity 

In literature, several theoretical models have been proposed to predict the viscosity of a 

particle suspension. They are discussed in chapter 3.1.1. In particular Einstein model (3.3), 

Brinkman model (3.4), and Batchelor model (3.5). 

Moreover, Krieger-Dougherty equation (6.1) and equation 6.4 were considered. In order 

to apply equations 6.1 and 6.4, m should be calculated. Basing on [9], the maximum solid 

concentration can be estimated by 









1
m

 (8.1)

 

where  and  are calculated by the following equation [10] 

  2
1


  fnf  (8.2) 

Basing on the experimental data = 0.07298 and  = 0.03402 , then m becomes 13.24. 

A comparison between experimental data and equations is shown in Figure 8.7. Equations 

3.4 and 3.5 overlap equation 6.1. 

All these equations underestimated nanofluids viscosity, confirming their incapability to 

model this property for nanofluids. 

Here, a simple equation, with similar form to equation 3.5, is proposed to correlate the 

experimental data 

 21  bafnf   (8.3) 

This equation was regressed basing on all experimental data for nanofluids and water 

viscosity calculated by [2] at the same temperatures. The regressed parameters are a=18.64 

and b=248.30. As shown in Figure 8.7 this equation well represents the experimental data. 
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Figure 8.7: Experimental dynamic viscosity of water-Fe2O3 nanofluid at (●) 10°C, (▲) 

30°C, (○) 50°C, (∆) 70°C on respect to mass fraction. Comparison with theoretical models: 

(──) equation 6.1, (–  –) equation 6.4, (----) equation 8.3. Equations 3.4 and 3.5 overlap 

equation 6.1. 

8.6 Conclusions 

Fe2O3 water-based nanofluids have long time stability also at high concentration as 20 

wt%. Thermal conductivity increases with mass fraction and with temperature. Thermal 

conductivity ratio is greater at the highest concentrations. The rheological behaviour of the 

nanofluids is Newtonian and the dynamic viscosity increases considerably in respect of 

water, mainly at mass fraction of 20%. Therefore, the increment in thermal conductivity is 

combined with a rising in dynamic viscosity. For this reason, Fe2O3 water-based nanofluid, 

studied in this work, is not energetically convenient for technical applications. 

In order to complete the analysis on Fe2O3 water-based nanofluids and with the aim to 

obtain a useful nanofluid for heat transfer applications, other fluids (Figure 8.8), prepared 

with the single step method, are currently under studying. Different chemical agents have 

been tested as dispersants, to improve the nanoparticles stability. DLS measurements have 
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been done for each nanofluid, but several fluids reveal low stability, as shown in Figure 8.9. 

The characterization of stable fluids will be done in the next future. 

 

 

Figure 8.8: Fe2O3 water-based nanofluids prepared using single step method and different 

chemical agent to improve the stability. 

 

 

Figure 8.9: Sample for DLS measurements. Settling of nanoparticles is evident. 
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Chapter 9 

 

Water based ZnO nanofluid characterization 

 
In this chapter the stability of zinc oxide (ZnO)-water nanofluid is discussed. The thermal 

conductivity and the dynamic viscosity of the nanofluid at 1, 5, 10 wt% have been measured. 

The local heat transfer coefficient for the 5 wt% and 10 wt% nanofluids has been measured. 

9.1 Nanofluid preparation 

The studied nanofluid is formed by ZnO nanoparticles dispersed in water. It was supplied 

by Sigma-Aldrich at nanoparticles concentration of 50% by mass. In the suspension, 3-

aminopropyltriethoxysilane was present as dispersant at 2 wt%. 

Bidistilled water (Carlo Erba, CAS Nr 7732-18-5) was added to the commercial 

nanofluid to obtain other three compositions: 1 wt%, 5 wt%, 10 wt%, i.e. 0.18 vol%, 0.93 

vol% and 1.95 vol%. Each nanofluid was obtained starting from the fluid at 50 wt% after 

one hour sonication and adding bidistilled water in a weighted amount, measured by an 

analytical balance (Gibertini E42S 240 g FS), with an uncertainty of 0.0002 g. Each 

composition was further sonicated in order to completely disperse the nanoparticles in the 

water. 

9.2 Nanofluids stability characterization 

The stability characterization was carried on using the DLS technique. Mean dimension 

was measured at 25 °C with a scattering angle of 173°. 

In order to verify the dependency of the diameter size from the concentration of the 

solution, each nanofluid was sonicated and the nanoparticle size was measured three times. 

The mean values of the diameters were 63 nm at 1 wt%, 59 nm at 5 wt% and 59 nm at 10 

wt%. 
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Figure 9.1 shows the particle size distribution, according to the intensity detected by the 

Zetasizer, for the water-ZnO nanofluids at these compositions. The absence of particle 

micrometer-sized aggregates and the mean particle dimension constancy confirm the good 

stability of the obtained dispersions. 

 

 

Figure 9.1: Particle diameter size distribution, according to the intensity, for the water-

ZnO nanofluids at () 1%, () 5%, ( ) 10%. 

 

As described in chapter 2, the stability of suspension was verified along time. The 

variations along time of the ZnO nanoparticle mean diameters are shown in Figure 9.2. The 

behaviour is very similar for each composition. In the case of static solutions the mean size 

slightly decreased to around 40 nm after 32 days, indicating a partial precipitation. However, 

after sonication for one hour, a mean particle size centred around 60 nm was always 

recovered, suggesting the absence of further aggregation phenomena. 

This result is interesting because it indicates the fluid at the concentrations here analysed 

can be used in devices where they are frequently or continuously stirred, e.g. in plants with 

forced circulation. 
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Figure 9.2: The variation along time of the ZnO nanoparticle mean diameters. () 1 wt%, 

(▲) 5 wt%, () 10 wt%. Empty symbols stay for stirred samples, full symbols for static 

samples. 

 

ZnO-water nanofluid Zeta potential was around +48 mV for the 1 wt% solution, +44 mV 

for the 5 wt% solution and +47 mV for the 10 wt% solution, therefore all the nanofluids 

proved to be stable. 

The pH were 7.5 for 1 wt% solution, 7.3 for 5 wt% and 7.3 for 10 wt% at 23°C. 

9.3 Thermal conductivity 

The thermal conductivity data of ZnO-water nanofluids, measured from 10 to 70°C, are 

summarized in Table 9.1. Figure 9.3 shows the ratio (nf/water) between the thermal 

conductivities of the nanofluid and water, Refprop 9.0 [1]. The thermal conductivity ratio 

increases with temperature and with the mass concentration. Nanofluids at 5 wt% and 10 

wt% show the higher enhancements of 12% and 15% at 70°C, while the suspension at 1 wt% 

shows a water-like behaviour.  
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Table 9.1: Thermal conductivity data for water and ZnO-water nanofluids.

  

water

waternf







 100%  

T  (°C) nf (WmK) water(WmK) 

water 

10.7 0.5803 0.5814 -0.19 

23.4 0.5997 0.6044 -0.78 

30.5 0.6186 0.6163 0.37 

40.5 0.6374 0.6313 0.97 

50.0 0.6486 0.6436 0.78 

49.8 0.6482 0.6434 0.75 

59.0 0.6516 0.6534 -0.28 

68.5 0.6671 0.6619 0.79 

1 wt% ZnO-water 

10.8 0.5468 0.5816 -6.37 

20.5 0.5670 0.6156 -2.50 

30.1 0.6006 0.5994 -5.72 

39.6 0.6219 0.6300 -1.30 

49.4 0.6428 0.6428 -0.01 

60.4 0.6801 0.6548 3.72 

70.2 0.6942 0.6632 4.46 

5 wt% ZnO-water 

10.4 0.5813 0.5807 0.10 

20.4 0.6087 0.5992 1.56 

30.4 0.6357 0.6161 3.08 

40.2 0.6607 0.6309 4.51 

50.1 0.6854 0.6437 6.09 

60.3 0.7203 0.6547 9.10 

70.3 0.7538 0.6634 12.00 

10 wt% ZnO-water 

10.4 0.5865 0.5808 0.96 

20.4 0.6219 0.5992 3.65 

30.5 0.6467 0.6163 4.70 

40.5 0.6842 0.6313 7.73 

50.5 0.7142 0.6442 9.80 

60.5 0.7455 0.6549 12.16 

70.5 0.7768 0.6635 14.58 
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Figure 9.3: Thermal conductivity ratio (nf/water) between nanofluid and water. () 1 wt%, 

(▲) 5 wt%, () 10 wt%. 

9.4 Dynamic Viscosity 

The dynamic viscosity for the ZnO-water nanofluid was measured at temperatures 

ranging between 10 and 70°C and variable shear rates between 80 and 1200 1/s, as shown in 

Figure 9.4 for the measurements at 10°C. In Figure 9.5 and Table 9.2, the experimental data 

are summarized at a constant shear rate of 827 1/s, together with the deviations compared to 

the base fluid, i.e. water, Refprop 9.0 [1]. As shown, the viscosity of the nanofluid at 1% was 

very similar to that of water, while a viscosity increase of about 5% was found for the 

nanofluid at 5 wt% and around 12% for the suspension at 10 wt%. This behaviour was 

almost independent with temperature. 

Nanofluids have Newtonian behaviour at each studied composition. As example, Figure 

9.6 represented shear stress as a function of shear rate at 10°C. For all the isotherms, the 

measurements are linear and converge to the origin of the diagram. 
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Figure 9.4: Dynamic viscosity data for water and ZnO-water nanofluids at 10°C.  

(o) water, () 1 wt%, (▲) 5 wt%, () 10 wt%, () Refprop 9.0 [1]. 

 

 

Figure 9.5: Dynamic viscosity as a function of temperature.  

(o) water, () 1 wt%, (▲) 5 wt%, () 10 wt%, () Refprop 9.0 [1]. 
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Table 9.2: Dynamic viscosity data for water and ZnO-water nanofluids.

  

water

waternf







 100%  

T  (°C) nf (Pas) water [1] (Pas) 

Water 

10.0 0.001309 0.001306 0.23 

20.0 0.001007 0.001002 0.50 

30.0 0.000802 0.000797 0.63 

40.0 0.000655 0.000653 0.31 

50.0 0.000539 0.000547 -1.46 

60.0 0.000461 0.000466 -1.07 

70.0 0.000408 0.000404 0.99 

1 wt% ZnO-water 

10.0 0.001302 0.001306 -0.31 

20.0 0.001001 0.001002 -0.10 

30.0 0.000804 0.000797 0.88 

40.0 0.000644 0.000653 -1.38 

50.0 0.000551 0.000547 0.73 

60.0 0.000460 0.000466 -1.24 

70.0 0.000398 0.000404 -1.49 

5 wt% ZnO-water 

10.0 0.001403 0.001306 7.43 

20.0 0.001056 0.001002 5.39 

30.0 0.000846 0.000797 6.15 

40.0 0.000687 0.000653 5.21 

50.0 0.000588 0.000547 7.50 

60.0 0.000483 0.000466 3.65 

70.0 0.000425 0.000404 5.20 

10 wt% ZnO-water 

10.0 0.001507 0.001306 15.39 

20.0 0.001127 0.001002 12.48 

30.0 0.000900 0.000797 12.92 

40.0 0.000732 0.000653 12.10 

50.0 0.000611 0.000547 11.70 

60.0 0.000508 0.000466 9.01 

70.0 0.000445 0.000404 10.15 
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Figure 9.6: Newtonian behaviour for the ZnO-water nanofluid at 10°C. () 1 wt%, (▲) 5 

wt%, () 10 wt%. 

9.5 Heat transfer coefficient 

A study of the heat transfer coefficient for the nanofluids at 5 wt% and 10 wt% was 

performed at temperatures ranging between 19 and 40°C, in order to understand the actual 

thermal capability of nanofluids formed by water and ZnO. 

As described in chapter 4, preliminary tests using pure water as reference fluid were 

made. All the measurements were performed in a heat power range from 200 to 400 W, with 

a thermal balance within 5%. 

Starting from this analysis on water, then the nanofluids were taken under consideration. 

The bulk temperature profile, derived from the measurement of water-ZnO nanofluid, is 

shown in Figures 9.7 - 9.12 as a function of the adimensional length (distance from the 

inlet/inner pipe diameter). Figures 9.7 – 9.9 show temperature profiles for the nanofluid at 5 

wt% and different Reynolds numbers, while Figures 9.10 – 9.12 show temperature profiles 

for the nanofluid at 10 wt% and different Reynolds numbers. 
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Figure 9.7: ▲ bulk and ● wall temperature profile of nanofluid at 5 wt%, as a function of 

the adimensional length. Re 6960, heat flux 5308 W/m
2
 and mass flow rate 0.0512 kg/s. 

 

 

Figure 9.8: ▲ bulk and ● wall temperature profile of nanofluid at 5 wt%, as a function of 

the adimensional length. Re 11933, heat flux 5308 W/m
2
 and mass flow rate 0.0512 kg/s. 
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Figure 9.9: ▲ bulk and ● wall temperature profile of nanofluid at 5 wt%, as a function of 

the adimensional length. Re 16842, heat flux 7958 W/m
2
 and mass flow rate 0.0715 kg/s. 

 

 

Figure 9.10: ▲ bulk and ● wall temperature profile of nanofluid at 10 wt%, as a function 

of the adimensional length. Re 7324, heat flux 2654 W/m
2
 and mass flow rate 0.0525 kg/s. 
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Figure 9.11: ▲ bulk and ● wall temperature profile of nanofluid at 10 wt%, as a function 

of the adimensional length. Re 9665, heat flux 5308 W/m
2
 and mass flow rate 0.0533 kg/s. 

 

 

Figure 9.12: ▲ bulk and ● wall temperature profile of nanofluid at 10 wt%, as a function 

of the adimensional length. Re 12960, heat flux 2654 W/m
2
 and mass flow rate 0.0724 kg/s. 
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Experimental water heat transfer coefficients were compared with nanofluid heat transfer 

coefficient data, obtained in the same test configuration. Figures 9.13-9.15 show the heat 

transfer coefficient, , as a function of specific mass flow rate, G, for water and nanofluids at 

three different inlet temperatures, i.e. 19°C, 30°C, 40°C. Experimental data indicate that 

there is not an increase in heat transfer coefficient for this nanofluid at temperatures of 19°C, 

30°C and 40°C, on respect to water, with even lower heat transfer coefficients, e.g. -7% at 

30°C. 

 

 

Figure 9.13: Heat transfer coefficient () in turbulent flow for (, ▬) water and ZnO-

water nanofluid at (▲, ─ ∙ ─) 5 wt%, (, − −) 10 wt%. Tin = 19°C. 
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Figure 9.14: Heat transfer coefficient () in turbulent flow for (, ▬) water and ZnO-

water nanofluid at (▲, ─ ∙ ─) 5 wt%, (, − −) 10 wt%. Tin = 30°C. 

 

 

Figure 9.15: Heat transfer coefficient () in turbulent flow for (, ▬) water and ZnO-

water nanofluid at (▲, ─ ∙ ─) 5 wt%, (, − −) 10 wt%. Tin = 40°C. 
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9.6 Comparison with published literature 

In literature, several papers present studies on ZnO nanoparticles dispersed in Ethylene 

Glycol [2-4] or water-ethylene glycol [5] mixtures, but only few works consider ZnO 

nanoparticles dispersed in pure water. Amongst them, Jalal et al. [6] and Zhang et al. [7] 

studies ZnO-water nanofluids as potential antibacterial agent and Singh [8] presented the 

ZnO nanoparticles synthesis and their electrical properties and thermal conductivity. Only 

two papers investigate ZnO-water nanofluid thermal conductivity or dynamic viscosity, as 

Ferrouillat et al. [9] and Suganthi and Rajan [10]. 

9.6.1 Thermal conductivity 

Water/ZnO nanofluids with concentrations similar to those studied in this work (2.4 wt% 

and 5 wt%) have been measured by Ferrouillat et al. [9]. Unfortunately, thermal 

conductivity data are shown in figure, and not numerically indicated in a table, therefore 

only a qualitative comparison is possible. From this comparison, it can be observed that 

thermal conductivity of nanofluid is slightly higher than water conductivity, similar to case 

here studied. 

9.6.2 Dynamic viscosity 

Dynamic viscosity results, similar to those found in this work, were found in Suganthi 

and Rajan [10] and Ferrouillat et al. [9]. In the first paper, the relative viscosity of ZnO-

water nanofluids was found to be independent on temperature. A comparison is possible for 

the nanofluid at 5 wt% (0.93 vol%) studied in this work and the nanofluid at 1 vol% studied 

in [10], from 10°C and 30°C. Experimental viscosity data, shown in a figure and not 

labelled, in [10] are roughtly 20% higher than those found in this work. However, these 

authors propose a correlation for relative viscosity, regressed, they say, on their data, for 

nanoparticles concentration between 0 and 1.5 vol%, which is in agreement with the data of 

this thesis, within 6%. From the paper [10], it is not comprehensible how experimental data 

and regressed equation could deviate so much. 

Ferrouillat et al. [9] discovered a dynamic viscosity behaviour very similar to that 

observed in this work. A more accurate comparison is not possible, because the article does 

not provide the values of viscosity data. 

9.6.3 Heat transfer coefficient 

Ferrouillat et al. [9] analyse the heat transfer coefficient of two water-ZnO nanofluids 

(with polygonal and rod–like nanoparticles), for Re between 1000 and 10000, with fixed 
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wall temperature boundary conditions. Their results indicate that there is an increase in heat 

transfer coefficient of nanofluids compared to that of water: 8% with polygonal 

nanoparticles (4.4 wt%) and 3% for rod–like nanoparticles (5 wt%) at 20°C and 50°C. 

Therefore they found an enhancement at 5 wt% that is not found in this work. 

9.7 Conclusions 

ZnO-water nanofluid was found to be very stable during the analysis lasting for one 

month. 

Thermal conductivity is similar to that of water at the lower concentration, while for 

nanofluids at 5 wt% and 10 wt% there are enhancements of 12% and 15% at 70°C, 

respectively. 

The dynamic viscosity of the nanofluids at 1 wt% are very similar to water viscosity, 

while it increases of about 5% for the nanofluid at 5 wt% and 12% for the nanofluid at 10 

wt%. 

The nanofluids heat transfer coefficient at 5 wt% and 10 wt% was measured. 

Experimental results do not show an increase on the heat transfer coefficient for the 

suspensions here analysed. 

It is worth noting ZnO-water nanofluids can be prepared with different technique, and 

properties of nanofluids mainly depend on the nanofluid preparation and on the chemical 

additive used to obtain a stable solution. For this reason, in order to investigate high 

performance nanofluid, other non-commercial ZnO-water nanofluids are currently under 

investigation. In particular ZnO-water at 0.5 wt%, with polyvinylpirrolidone as dispersant, is 

under study in CNR-ITC (Padova) laboratory. 
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Chapter 10 

 

Ethylene glycol based SiC nanofluid characterization 

 
Ethylene glycol-based (EG-based) nanofluids, containing silicon carbide (SiC) in the 

concentrations 0.1, 1 and 5 wt%, were characterized, in order to understand their potentiality 

to improve the heat transfer efficiency of the base fluid. EG can be used as a heat-transfer 

fluid in heating applications with maximum operating temperatures, higher than water 

boiling temperature. 

SiC is characterized by high thermal conductivity, i.e. 490 W/mK [1], and it is supposed 

to enhance the thermal properties of EG more than other common materials, such as metal 

oxides. 

10.1 Nanofluid preparation 

EG-based nanofluids containing SiC at concentrations 0.1, 1 and 5 wt% were supplied by 

Nanograde Llc. An anionic dispersant (not specified by the manufacturer) was added to the 

suspensions at concentrations 0.008, 0.08 and 0.4 wt%, respectively. 

10.2 Nanofluids stability characterization 

Stability of three considered suspensions, at 0.1, 1 and 5 wt%, was studied. Declared 

nanoparticle size by the supplier is 10-50 nm. Actual mean particle diameter was measured 

every day for a period of 30 days to evaluate its stability. Two samples were analysed for 

each nanofluid: one static and the other one shaken before each measurement to evaluate the 

presence of deposited agglomerated. As shown in Figure 10.1, both static and shaken 

samples showed a similar and practically constant values, around 100-120 nm for all 

nanoparticle concentrations, along the 30 days period. Only the shaken sample at 5 wt% 

nanoparticle concentrations showed higher mean diameters, increasing with time, denoting 

progressive agglomeration and deposition of part of the nanoparticles. 
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Figure 10.1: Dimensional stability analysis in 30 days. () 0.1 wt%, (Δ) 1 wt%, () 5 

wt%, static samples (empty symbols) and shaken samples (full symbols). 

10.3 Thermal conductivity 

The thermal conductivity data were measured, using a TPS 2500 S (Hot Disk), between 

10°C and 70°C, at ambient pressure. All the measured data are summarised in Table 10.1, 

Figure 10.2 shows the measured thermal conductivity, whereas Figure 10.3 shows the ratio 

between the thermal conductivity of nanofluids and that of EG, indicating the enhancement 

obtained by adding nanoparticles. Pure EG thermal conductivity was calculated on the base 

of [2]. 

Thermal conductivity ratio (nf/EG) increases with temperature and concentrations. 

Suspensions at 0.1% and 1% do not show large differences in thermal conductivity, probably 

due to the presence of the dispersant, that should have thermal conductivity lower than EG. 

The ratio ranges from around 1.05 at 10°C to around 1.10 at 70°C. Higher enhancements, up 

to 21%, are shown by the nanofluid at 5%, at 70°C. 
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Table 10.1: Thermal conductivity data for EG-SiC nanofluids. 

= (exp-EG)/EG100 

 T (°C) exp (W/mK) EG (W/mK) [2] 

0.1% 

10.3 0.256 0.245 4.43 

30.3 0.267 0.250 6.74 

50.0 0.277 0.255 8.52 

69.0 0.284 0.260 9.16 

1% 

10.4 0.259 0.245 5.65 

30.3 0.271 0.250 8.32 

50.0 0.280 0.255 9.57 

69.7 0.289 0.260 11.26 

5% 

10.4 0.275 0.245 11.93 

30.3 0.288 0.250 15.09 

50.0 0.297 0.255 16.56 

69.8 0.315 0.260 21.07 

 

 

Figure 10.2: Thermal conductivity data for the EG-SiC nanofluids. (●) EG, () 0.1 wt%, (Δ) 

1 wt%, () 5 wt%. 
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Figure 10.3: Thermal conductivity ratio for the EG-SiC nanofluids. () 0.1 wt%, (Δ) 1 wt%, 

() 5 wt%. 

10.4 Dynamic viscosity 

The dynamic viscosity was measured at ambient pressure and in a temperature range 

between 10°C and 90°C by means of an AR-G2 rheometer. The experimental procedure and 

apparatus have been already described in chapter 3. All the data measured at shear rate 830 

1/s are summarized in Table 10.2, Figure 10.4 shows the measured dynamic viscosity, 

whereas Figure 10.5 shows the dynamic viscosity ratio (nf/EG), i.e. the enhancement 

obtained by adding nanoparticles. 

The dynamic viscosity of the nanofluids at 0.1 and 1 wt% is lower or similar to that of 

ethylene glycol. This may be due to the presence of the dispersant or to the interactions 

between the nanoparticles. However, the differences are of the same order of the 

experimental uncertainties. 

For the suspension at 5 wt%, the dynamic viscosity enhancement is around 30% from 

10°C to 50°C and then rapidly increases up to 70% at 90°C. This behaviour could be due to 

nanoparticles aggregation at elevated temperatures. 
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Table 10.2: Dynamic viscosity data for EG-SiC nanofluids. 

= (exp-EG)/EG100 

 T (°C) exp (Pa s) EG (Pa s) [2] 

0.1% 

10.0 0.0330 0.0349 -5.35 

20.0 0.0209 0.0214 -2.50 

30.0 0.0136 0.0140 -3.38 

40.0 0.0093 0.0097 -4.77 

50.0 0.0066 0.0070 -5.96 

60.0 0.0051 0.0053 -3.64 

70.0 0.0038 0.0041 -5.49 

80.0 0.0031 0.0032 -2.48 

90.0 0.0024 0.0026 -6.65 

1% 

10.0 0.0343 0.0349 -1.86 

20.0 0.0218 0.0214 1.51 

30.0 0.0140 0.0140 -0.67 

40.0 0.0096 0.0097 -1.59 

50.0 0.0069 0.0070 -2.11 

60.0 0.0053 0.0053 0.18 

70.0 0.0039 0.0041 -3.17 

80.0 0.0033 0.0032 1.35 

90.0 0.0025 0.0026 -4.12 

5% 

10.0 0.0452 0.0349 29.51 

20.0 0.0289 0.0214 35.02 

30.0 0.0185 0.0140 31.66 

40.0 0.0129 0.0097 32.66 

50.0 0.0093 0.0070 32.90 

60.0 0.0074 0.0053 41.36 

70.0 0.0058 0.0041 43.14 

80.0 0.0053 0.0032 63.90 

90.0 0.0044 0.0026 69.63 
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Figure 10.4: Dynamic viscosity data for the EG-SiC nanofluids. ● EG, () 0.1 wt%, (Δ) 1 

wt%, () 5 wt%. 

 

 

Figure 10.5: Dynamic viscosity ratio for the EG-SiC nanofluids. () 0.1 wt%, (Δ) 1 wt%, 

() 5 wt%. 
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It should be noted that all the nanofluids at 0.1 wt% and 1 wt% show a Newtonian 

behaviour, as pointed out in Figure 10.6. Whereas nanofluid at 5 wt% seems to indicate 

shear-thinning behaviour. 

 

 

Figure 10.6: Shear stress as a function of shear rate for EG-SiC nanofluids at 70°C. () 0.1 

wt%, (Δ) 1 wt%, () 5 wt%. The same behaviour repeats for all the temperatures. 

10.5 Heat transfer coefficient 

The heat transfer coefficient of pure EG was previously measured in the experimental 

apparatus at the inlet fluid temperature of 32°C and 50°C. The temperature range is imposed 

by functional limits of the measuring apparatus. Laminar flow was investigated measuring 

the heat transfer coefficient at three flow rates from 0.0423 to 0.0782 kg/s for each 

temperature. Reynolds numbers ranged from 550 to 930 and from 950 to 1740, for 30°C and 

50°C, respectively. Experimental thermal conductivity and dynamic viscosity data were used 

to calculate the convective heat transfer coefficient. Nanofluid density nf and nanofluid heat 

capacity cp,nf were calculated knowing SiC density and heat capacity (SiC, cp,SiC) and base 

fluid density and heat capacity (fluid, cp,fluid) at each temperature, the suspension volume 

fraction  and mass fraction , with the correlations 3.19 and 3.20.  
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Heat transfer behaviour of EG-SiC nanofluids in mass concentration of 0.1 and 1% was 

studied at the same conditions imposed for pure EG and the results are shown in Figure 10.6 

and 10.7. Nanofluid behaviour is very similar to pure EG in the entire investigated specific 

mass flow rate, G. The deviations between the experimental heat transfer coefficients of 

nanofluids and pure EG are lower than 0.5%. This value is lower than the experimental 

uncertainty on the heat transfer coefficient, and then the fluids can be considered very similar 

in terms of heat transfer coefficient. Therefore, nanofluids at 0.1 and 1% are not indicated to 

the substitution of pure glycol in heat transfer applications, at the temperatures here 

considered. 

 

 

Figure 10.6: Heat transfer coefficient (, as a function of specific mass flow rate, G, for 

EG (● ─) and EG-SiC nanofluids in mass concentration of 0.1% (♦ − −) and 1% (▲− ∙ −), at 

32°C. 
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Figure 10.7: Heat transfer coefficient (, as a function of specific mass flow rate, G, for 

EG (● ─) and EG-SiC nanofluids in mass concentration of 0.1% (♦ − −) and 1% (▲− ∙ −), at 

50°C. 

10.6 Comparison with published literature 

Only few data are available for thermal conductivity of EG-SiC nanofluids, while no 

rheological properties were found in the literature. 

10.6.1 Thermal conductivity 

Xie et al. [1] studied the thermal conductivity of two kinds of SiC nanoparticles, with 

average size of 26 nm and 600 nm, respectively, in water and ethylene glycol. 

Considering the dimensions of the nanoparticles employed for the preparation of the 

nanofluids here studied, a comparison can be done only with the suspension containing the 

smaller particles. 

In [1] thermal conductivity of suspensions with concentrations up to 4% by volume were 

measured only at 4°C. Considering that compositions and temperatures are different from 

those studied in this paper and that in [1] no data are explicitly reported, but only graphically 

represented in the figures, a quantitative comparison is quite difficult. 
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However, the suspension at roughly 2 vol% could be compared to that at 5 wt%, i.e. 1.82 

vol%. In [1], the suspension at 2% shown an enhancement of about 7% in thermal 

conductivity at 4°C, that can be considered in reasonable agreement with the increase of 

about 12% found with the suspension at 5 wt% at 10°C. 

10.6.2 Heat transfer coefficient 

Heat transfer behaviour was studied for water-SiC nanofluids in turbulent flow [3, 4], but 

no heat transfer coefficient data were found in the literature for SiC in ethylene glycol. 

10.7 Conclusions 

Viscosity and thermal conductivity for nanofluids formed by ethylene glycol (EG) and 

SiC nanoparticles were measured at various concentrations and temperatures. The thermal 

conductivity enhancement is relatively high at all the concentrations and is increasing with 

temperature up to more than 20% for the 5 wt% nanofluid. The viscosity enhancement is 

negligible or negative at concentrations up to 1 wt%. Vice versa, it is quite significant for the 

5 wt% nanofluid, with a strong increase at temperatures higher than 50°C, suggesting 

aggregation of the nanoparticles. 

The results of heat transfer measurements indicate EG-SiC nanofluids here studied are 

not promising as heat transfer media. 
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Chapter 11 

 

Water based Au nanofluid characterization 

 
This chapter investigates the stability, thermal and transport properties, and convective 

heat transfer coefficient of water-based nanofluids containing gold (Au) nanoparticles. 

Nanofluids were prepared with a one-step “eco-friendly” method. Au nanoparticles were 

chosen because of their high thermal conductivity. Several studies have been performed on 

Au nanofluids thermal conductivity and, despite some exceptions, in many works there is the 

evidence that thermal conductivity increases as the mass concentration rises. For this reason, 

in this chapter, three Au-water nanofluids with different mass concentrations were analysed. 

Nanofluids can be used in numerous applications involving many industrial sectors and 

Au-water nanofluid seems to be an interesting promising fluid. However, in literature only 

one practical application using water-Au nanofluid has been found. Tsai et al. [1] found 

water-Au nanofluid useful to reduce thermal resistance in heat pipe. 

11.1 Nanofluid preparation 

Nanofluids studied in this chapter were prepared by ISTEC-CNR laboratories in Faenza. 

The one pot synthesis of metal nanoparticles involves preparation under conditions where 

the nanoparticles nucleate and grow, usually by the reduction of metal ions in the presence of 

a ligand or a chelating agent that can bind to the surface of the newly formed particle, 

offering stability, increased control over nanoparticle size, and modifying surface reactivity 

(Dahl et al. [2]). Particularly, the stability of nanofluids is strongly dependant by chelating 

agents, which are always needed in order to create a stable suspension. With the aim to 

ensure the best chelation effect on the high reactive surface of nanoparticles, most of the 

organic additives added as chelating agents for metal nanoparticles are usually introduced in 

a very large excess with respect to the metal. Typical ligands for metals include phosphines, 

thiol, amines, but the more useful in term of colloidal stability are amphiphilic surfactants 

and some polymers as polyvinylpyrrolidone (PVP), polyvinylacetate (PVAc), 
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polyvinylalcohol (PVA), polyethylenglycol (PEG), chitosan, dextrane, starch, cellulose etc. 

However, most of the added capping agents affect the nanofluid thermal properties toward a 

depletion of the performance. For this reason, in order to limit the negative effect of chelants, 

we chose as capping agent the sodium citrate, which, with respect to other additives, does 

not alter thermal properties excessively, guaranteeing the suspension stability. Moreover, the 

amount of citrate, added as few as possible, was exploited also as reducer, thus avoiding the 

introduction of other reagents, which could have a detrimental effect on the thermal 

properties. 

The following analytic grade reagents were used to prepare the test fluids: HAuCl4 

solution 30 wt% (Aurobit Division) and sodium citrate tribasic dihydrate (Sigma-Aldrich). 

The metallic nanoparticles were prepared using an “eco-friendly procedure”. 

In order to prepare Au colloids, 240 ml of sodium citrate solution with concentrations of 

0.3 mM, 2.4 mM, and 4.8 mM was added to a round bottom flask and the solution was 

heated (rate 30°C/min) at ambient pressure to a temperature of 90°C using a microwave 

source. At this temperature, 10 ml of HAuCl4 solution at concentrations of 7.5 mM, 19.3 

mM, and 38.8 mM was added to the flask and stirred for 5 min. A molar ratio for citrate/Au 

of three was used. After reaction, red suspensions of gold nanoparticles with a solid loading 

of 0.02 wt%, 0.05 wt%, and 0.1 wt% were obtained, as shown in Figure 11.1. 

 

 

Figure 11.1: Red suspensions of gold nanoparticles. 

 

The solutions were heated to the synthesis temperature under magnetic stirring in a 

commercial microwave oven especially designed for chemical synthesis and equipped with a 

reflux system (Microsynth Plus, Milestone). The reaction chamber of the system is equipped 

with magnetic stirring, reflux system and an optical fiber temperature controller. The 

microwave power is generated by two 800 W magnetrons with frequencies of 2.45 GHz. The 

microwave power is automatically controlled to generate the desired heating (temperature) 
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profile. A scanning electron microscope (SEM) image of the Au nanoparticles is reported in 

Figure 11.2. 

 

 

Figure 12.2: SEM image of the Au nanoparticles. 

11.2 Nanofluids stability characterization 

Stability of water based nanofluids containing Au in mass concentration of 0.02%, 0.05% 

and 0.1% was analysed. Au-water nanofluid at 0.02% has always been very stable 

throughout the 10 days of measurements. Nanofluid at 0.05% reveals lower stability, since 

nanoparticles tend to settle, although they return in suspension without forming large 

clusters, simply after shaking. On the contrary, nanofluid at 0.1% completely settles in 3 

days after preparation and micrometric clusters are visible even to naked eye. In Figure 11.3, 

the difference between the nanofluid at 0.1% when just prepared and after 3 days of 

measurements is shown. Stability of nanofluid at 0.1% could be improved by increasing the 

amount of sodium citrate in solution, but this kind of synthesis is still under optimization. 

For this reason, nanofluid at 0.1% has not been considered for next measurements. 
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Figure 11.3: Nanofluid at 0.1% just prepared (on the left) and after 3 days of 

measurements (on the right). 

11.3 Thermal conductivity 

Both the nanofluids at Au compositions 0.02 and 0.05 wt% and the relative base fluids, 

water-sodium citrate, at 0.03 and 0.07 wt%, respectively, were measured between 10°C and 

70°C, at atmospheric pressure. In Figure 12.4, all the results are summarized, while in Figure 

12.5 the thermal conductivity enhancement on respect to pure water (Refprop 9.0 [3]) is 

presented as a function of temperature. 

Thermal conductivity of base fluids water-sodium citrate is very similar to thermal 

conductivity of pure water for both fluids. A maximum increase up to about 5% was found 

rising the temperature until 70°C. Relating to nanofluids, a remarkable enhancement was 

found for the nanofluid at 0.02 wt%. As shown in Figure 12.5 the maximum enhancement 

respect to pure water is 21% at 70°C. Unexpectedly, thermal conductivity of nanofluid at 

0.05 wt% is not higher than that of the base fluid and this could be due to the low stability of 

nanoparticles in suspension, especially at high temperature. Nanoparticles probably settled 

during the measurements and therefore the actual Au concentration could be lower than 

0.05%. 
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Figure 11.4: Thermal conductivity data for (○) water, Au-water at () 0.02 wt%, (■) 0.05 

wt% and water-sodium citrate base fluids at () 0.03 wt% and (□) 0.07 wt% as a function of 

temperature. 

 

Figure 11.5: Thermal conductivity ratio for Au-water at () 0.02 wt%, (■) 0.05 wt% and 

water-sodium citrate base fluids at () 0.03 wt% and (□) 0.07 wt% as a function of 

temperature. 
 

water

waternf







 100%  

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 20 40 60 80


(W

/m
K

)

Temperature (°C)

-5

0

5

10

15

20

25

0 20 40 60 80




(%
)

Temperature (°C)



Water based Au nanofluid characterization 

138 

11.4 Dynamic viscosity 

Firstly, the dynamic viscosity of all the three nanofluids, at compositions of 0.02%, 

0.05% and 0.1% by mass, was measured at 10°C. Nanofluid at 0.1% showed micrometric 

clusters visible to the naked eye, after the rheological test, as shown in Figure 11.6. For this 

reason, this nanofluid was neglected. Results for nanofluids at 0.02% and 0.05% are 

summarized in Figure 11.7. The temperature range is between 10°C and 70°C in steps of 

10°C, at atmospheric pressure, and the shear rate varied from 80 1/s to 1200 1/s. No increase 

in viscosity, compared to pure water, was found. Considering these results, dynamic 

viscosity of water-sodium citrate base fluids was not measured, foreseeing it also should be 

similar to water. 

 

 

Figure 11.6: Visible clusters, after the rheological test. 
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Figure 11.7: Dynamic viscosity of (○) water and Au-water at () 0.02 wt%, (■) 0.05 wt% 

as a function of temperature. 

11.5 Heat transfer coefficient 

The heat transfer coefficient of the suspension at 0.02 wt% was studied at single-phase 
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mass fraction, and nanoparticles and water density. Mass fractions of 0.02%, 0.05% and 

0.1% correspond to 0.0010%, 0.0026% and 0.0052% volume fractions, respectively. 

The nanofluid at 0.02% was considered for the analysis. All the measurements were 

performed at heat power range from 200 to 600 W, always obtaining a thermal balance 

within 3.6%. Figures 12.8 and 12.9 show the heat transfer coefficient, , as a function of 

specific mass flow rate, G, for water and the nanofluid at inlet temperature Tin of 19°C and 

41°C. An enhancement of the heat transfer coefficient has been found, depending on G. It is 

5-6% at G 600 kg/m
2
s and diminishes increasing G, to 3%. 

 

 

Figure 11.8: Heat transfer coefficient () in turbulent flow for water (○, ─) and Au-water 

at 0.02 wt% (, - -). Fluid inlet temperature is 19°C. 
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Figure 11.9: Heat transfer coefficient () in turbulent flow for water (○, ─) and Au-water 

at 0.02 wt% (, - -). Fluid inlet temperature is 41°C. 

11.6 Comparison with published literature 

Only few data are available for thermal conductivity of Au-water nanofluids, while no 

rheological properties were found in the literature. 

11.6.1 Thermal conductivity 

Several studies have been performed on Au nanofluids thermal conductivity. Amongst 
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maximum of 48% increment, showing a discrepancy between the literature data. Moreover, 

in Kim et al. [6], an enhancement in terms of thermal conductivity of about 9.3±5.4% was 

found for Au composition of 0.018 vol%. 

11.6.2 Dynamic viscosity 

In literature, no viscosity data was found for a comparison with this work. However, as 

revealed by this investigation, viscosity of nanofluids is very influenced not only by the 

nanoparticles mass fraction, but also by their stability, shape and size. 
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11.6.3 Heat transfer coefficient 

In literature, no heat transfer data was found for a comparison with this work. 

11.7 Conclusions 

Stability, dynamic viscosity, thermal conductivity and heat transfer coefficients for 

nanofluids formed by water and Au nanoparticles were studied at 0.02 wt%, 0.05 wt% and 

0.1 wt% at various temperatures. 

The thermal conductivity of the nanofluid at 0.02 wt% showed significant enhancement 

(up to 20 %) compared to water. The nanofluid at 0.1 wt% was completely unstable and also 

the nanofluid at 0.05 wt% was too unstable during the measurement. 

The dynamic viscosity of the nanofluids was found to be very similar to water, thus not 

penalizing flow performance. 

The heat transfer coefficients of the nanofluid at 0.02 wt% showed an enhancement, 

compared with pure water, up to approximately 5-6% in the temperature range between 19°C 

and 41°C. This result is promising and it will be interesting, for future works, to optimize a 

chemical synthesis able to produce nanofluids with higher nanoparticles concentration. In 

fact, increasing the amount of nanoparticles, thermophysical properties could be improved 

and nanofluids could result promising for many industrial applications. 
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Chapter 12 

 

Nanofluids with Ag nanoparticles characterization 

 
This chapter investigates stability, thermal and transport properties, and convective heat 

transfer coefficient of nanofluids containing silver (Ag) nanoparticles. The base-fluids are 

water and a mixture water-ethylene glycol (water-EG) at a mass fraction (70:30). Mixtures 

of water and ethylene glycol, despite they have very poor thermal properties, are commonly 

used heat transfer fluids in applications of air conditioning, refrigeration and heating. This 

nanofluid was studied with the idea of enhance water-EG heat transfer properties in order to 

improve the efficiency of heat transferred or reduce the size of the heat exchangers. 

12.1 Nanofluid preparation 

Nanofluids studied in this chapter were prepared by IENI-CNR laboratories in Padova, 

developing a particular procedure, involving a one-step synthesis of nanoparticles, followed 

by the precipitation of nanoparticles and by their re-dispersion in the base-fluid. The one-

step technique was used in order to obtain re-dispersible silver nanopowders containing a 

controlled amount of Polyvinylpyrrolidone (PVP) as capping polymer. Besides providing a 

pure nanofluid, this technique also provides the possibility of producing fluids containing 

different amounts of nanoparticles, although keeping almost constant the morphological 

properties of the particles and controlling the aggregation states. Deionized water (Millipore, 

Billerica MA, USA, 18.2MΩ) was used as solvent and base fluid, AgNO3 (purity >99 %, 

provided by Sigma-Aldrich), as a metal precursor, PVP provided by Sigma-Aldrich, as 

surfactant polymers, D-Fructose (99 % provided by Alfa-Aesar) as a reducing agent and 

NaOH (anhydrous pellets provided by Carlo Erba), as a catalyst of the metal salt reducing 

reaction, were used in the synthesis of water soluble silver nanoparticles. The one-step 

technique used for the reduction of AgNO3, using fructose as reducing agent and PVP as 

surfactant polymer, allowed easily producing primary nanofluids at concentrations as high as 

0.1 vol% (1.1 wt%) Ag in water. The nanopowder was obtained by controlled precipitation. 
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This purpose was achieved by diluting the suspensions with acetone that, acting as anti-

solvent, destabilizes the colloid causing the precipitation of particles. At the same time, 

being the PVP poorly soluble in acetone, it is possible to tailor the amount of polymer that 

precipitates along with the particles by changing the volume ratio between acetone and the 

suspensions. Suitable amounts of each nanopowder were used for the production of re-

dispersions in deionized water and in the mixture water-ethylene glycol. 

Two different nanofluids were analysed. The first one is formed by 2.6 wt% of Ag 

nanoparticles in water and the second one by 2.5 wt% Ag nanoparticles in a mixture water-

ethylene glycol at a mass fraction (70:30). 

Only for thermal conductivity measurements, a commercial nanofluid Ag-water 0.0027 

wt% (Sigma Aldrich), was tested. 

12.2 Nanofluids stability characterization 

Several methods of preparation and synthesis conditions were tested in order to obtain a 

stable Ag nanofluid, as indicated in Table 12.1. The most stable solution, not included in the 

table, was the one at 2.6 wt% Ag and 6 wt% PVP. The mean nanoparticles diameter was 

measured for 30 days and in Figure 12.1 the results of the dimensional analysis are 

presented. It is evident that the size of nanoparticles in suspension does not change 

significantly from the day of preparation to one month after preparation. However, there are 

two main peaks at about 8 and 80 nm. 

As evidence of the stability of the nanofluid, the  potential was measured. The resulting 

value is -28 mV. The pH was found to be 6.9. 

Also the stability of nanofluid composed by Ag nanoparticles (2.5 wt%) in water-

ethylene glycol (70:30) was analysed for 30 days. In Figure 12.2, the size of the 

nanoparticles of the same fluid newly prepared and after 30 days of preparation is presented. 

The three peaks indicate the size of about 6, 50, and 5000 nm that are time constant.  

potential measurement (-41 mV) confirms the stability of the nanofluid. 
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Table 12.1: Synthesis informations and parameters. 

Genaral Informations Synthesis parameters 

ID Synthesis 
Base-

fluid 

Wt% 

Ag 
Precursor 

Synthesis 

temperature 

(°C) 

Wt % 

reducing 

agent 

Wt% 

surfactant 

1 One-step Water 0.1 AgNO3 25 
0.09 

(NaBH4) 
0.2 

2 One-step Water 0.1 AgNO3 25 
0.045 

(NaBH4) 
0.2 

3 One-step EG 0.1 AgNO3 170 EG 1 (PVP) 

4 One-step EG 0.1 AgNO3 180 EG 1 (PVP) 

5 One-step EG 0.1 AgNO3 190 EG 1 (PVP) 

6 One-step Water 1 AgNO3 75 
3.3 

(Fructose) 
6 

7 
Two-step 

(sonication) 
EG 0.1 

Ag from 

sample 6 
25 - ~0.013 

8 
Two-step 

(sonication) 
EG 1 

Ag from 

sample 6 
25 - ~0.13 

9 
Two-step 

(sonication) 
EG 2.5 

Ag from 

sample 6 
25 - ~0.325 

10 
Two-step 

(sonication) 
EG 2.5 

Ag from 

sample 6 
25 - ~0.275 

11 
Two-step 

(sonication) 
EG 2.5 

Ag from 

sample 6 
25 - ~0.3 

12 
Two-step 

(sonication) 
EG 2.5 

Ag from 

sample 6 
25 - ~0.25 

13 
Two-step 

(sonication) 
EG 4 

Ag from 

sample 6 
25 - ~0.4 

14 
Two-step 

(sonication) 
EG 0.8 

Ag from 

sample 6 
25 - ~0.09 

15 
Two-step 

(sonication) 
Water 3.5 

Ag from 

sample 6 
25 - ~0.63 

16 

Two-step 

(stirring at 55 

°C) 

Water 5 
Ag from 

sample 6 
55 - ~0.5 

17 
Two-step (ID 

15 diluition) 
Water 1 

Ag from 

sample 6 
25 - ~0.1 

18 
Two-step (ID 

15 diluition) 
Water 0.5 

Ag from 

sample 6 
25 - ~0.05 

19 

Two-step 

(stirring at 55 

°C) 

Water 10 
Ag from 

sample 6 
55 - ~1 
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Figure 12.1: Size distribution of Ag nanoparticles in water (2.6 wt%). Continuous line 

shows the data to the day of the preparation, dashed line shows the data after 30 days.  

 

Figure 12.2: Size of Ag nanoparticles (2.5 wt%) in water-ethylene glycol (70:30). 

Continuous line shows the data to the day of the preparation, dashed line shows the data after 

30 days. 
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12.3 Thermal conductivity 

Thermal conductivity of water-Ag, water-EG and water-EG-Ag nanofluids was measured 

from 10°C to 70°C with the hot disk technique. Moreover, a commercial fluid (Ag in water 

at 0.0027 wt%) was tested, for comparison. 

12.3.1 Water-Ag nanofluid 

In Figure 12.3 the results for water-Ag nanofluid at 2.6 wt% and 0.0027 wt% are shown. 

It is important to note that nanofluid with order of magnitude different nanoparticles 

concentration reveal the same conductivity behaviour. The conductivity increases with 

temperature, being lower than that of water at 10°C, growing up, at 70°C, to 6.5% for 

nanofluid at 2.6 wt% and 12.8% for nanofluid at 0.0027 wt%. This is an interesting result 

highlighting the strong influence of a dispersant or of a method of preparation on the 

nanofluid properties. In particular, it is worth noting how the presence of PVP, fundamental 

for the stability, deeply penalizes the thermal properties of the nanofluid. On the contrary, in 

the commercial fluid, sodium citrate was used as stabilizer. It did not influence thermal 

properties of fluid, but only low concentrations were reachable. 

 

Figure 12.3: Thermal conductivity of water-based nanofluid with 2.6 wt% Ag (●) and 

0.0027 wt% Ag (◊). Continuous line indicates thermal conductivity of water [1], dashed line 

indicates equation 3.15. 
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12.3.2 Water-EG nanofluid with Ag nanoparticles 

In the literature, few data are available relating the thermophysical properties of ethylene 

glycol and its mixtures with water. For this reason, base-fluid composed of water and 

ethylene glycol at 70 wt% and 30 wt%, respectively, was analysed. The results are 

summarized in Figure 12.4 and compared with literature data [2]. The deviations between the 

experimental data and literature data are always lower than 5%. Then the nanofluid water-

EG (70:30) nanofluid with Ag nanoparticles in mass concentration 2.5% was measured and 

in Figure 12.4 thermal conductivity data are shown. The enhancement of the nanofluid 

thermal conductivity and the measured base-fluid water-EG is always approximately 1%, 

therefore noticeable improvements of the thermal conductivity were not seen on respect to 

the base-fluid. 

 

Figure 12.4: Thermal conductivity of water-EG (70:30) (∆, - - -) and water-EG (70:30) 

with Ag at 2.5 wt% (▲, − ∙ −).Continuous line indicates literature data [2] for water-EG 

(70:30), (▬) indicates equation 3.15. 

12.4 Dynamic viscosity 

Dynamic viscosity was measured with a rotational rheometer in a temperature range from 
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12.4.1 Water-Ag nanofluid 

Figure 12.5 illustrates the results of the measurement on water-Ag anofluid at 2.6 wt%. It 

is evident that the viscosity of the nanofluid is very similar to that of water, the base-fluid. 

The fluid has Newtonian behavior, as shown in Figure 12.6. 

 

Figure 12.5: Dynamic viscosity of water-based nanofluid with 2.6 wt% Ag (●). Continuous 

line indicates dynamic viscosity of water [1]. 
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between experimental data and literature data [2] are always lower than 2.5%. Then water-
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very similar and the nanofluid shows a Newtonian behaviour, as shown in Figure 12.8. 
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Figure 12.6: Newtonian behaviour of water-based nanofluid with 2.6 wt% Ag (●) at 20°C. 

 

 

Figure 12.7: Dynamic viscosity of water-EG (70:30) (∆) and water-EG (70:30) with Ag at 

2.5 wt% (▲). Continuous line indicates literature data [2] for water-EG (70:30). 
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Figure 12.8: Newtonian behaviour of water-EG (70:30) nanofluid with 2.5 wt% Ag (▲), at 

20°C. 

12.5 Heat transfer coefficient 

Heat exchange coefficient measurements were performed imposing powers from 200 W 

to 600 W and temperatures of the inlet fluid from 19°C to 40°C. For each condition of power 

and inlet temperature, the measurements were performed at variable flow rates (and thus 

Reynolds numbers). 

12.5.1 Water-Ag nanofluid 

Results on water-based nanofluid with Ag 2.6 wt% are shown in Figures 12.9, 12.10 and 

12.11. Heat transfer coefficient () is represented as a function of specific mass flow rate, G. 

Experimental data indicate that there is not an increase in heat transfer coefficient for this 

nanofluid at temperatures of 19°C, 31°C and 41°C, on respect to water, with even lower heat 

transfer coefficients, e.g. -6% at 19°C. 

This result is probably due to the presence of PVP, the polymer used as chemical additive 

to obtain a stable nanofluid, which thermal properties are worse than those of pure water, as 

indicated in [3]. 
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Figure 12.9: Heat transfer coefficient () as a function of specific mass flow rate. Water (○, 

─) and water-based nanofluid with 2.6 wt% Ag (●, - -), at 19°C. 

 

 

Figure 12.10: Heat transfer coefficient () as a function of specific mass flow rate. Water (○, 

─) and water-based nanofluid with 2.6 wt% Ag (●, - -), at 31°C. 
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Figure 12.11: Heat transfer coefficient () as a function of specific mass flow rate. Water (○, 

─) and water-based nanofluid with 2.6 wt% Ag (●, - -), at 41°C. 
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Figure 12.12: Heat transfer coefficient () as a function of specific mass flow rate. Water-

EG (70:30) (∆, ─) and water-EG (70:30) nanofluid with 2.5 wt% Ag (▲, - -), at 19°C. 

 

 

Figures 12.13: Heat transfer coefficient () as a function of specific mass flow rate. Water-

EG (70:30) ((∆, ─) and water-EG (70:30) nanofluid with 2.5 wt% Ag (▲, - -), at 31°C. 
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Figures 12.14: Heat transfer coefficient () as a function of specific mass flow rate. Water-

EG (70:30) (∆, ─) and water-EG (70:30) nanofluid with 2.5 wt% Ag (▲, - -), at 41°C. 

12.6 Comparison with published literature 

In literature, few papers deal with silver nanoparticles. Amongst them, in [4], authors 
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Other literature papers studied silver nanoparticles as bactericidal agent [6], as real-time 

optical sensors [7] and as heat transfer media in heat pipes [8], always finding good 

improvements in performances. 

12.7 Conclusions 

In this chapter, nanofluids with Ag nanoparticles were studied. Both water-based and 

water and glycol-based nanofluids result very stable nanofluids. For all nanofluids, 

conductivity increases with temperature. An interesting result was obtained from the 

measurement on water-based nanofluid at 0.0027 wt%, which conductivity grows up to 

12.8% at 70°C, more than the enhancement of the nanofluid at 2.6 wt%, produced 

differently. This indicates that the presence of a dispersant or the different method of 

preparation leads to different nanofluids with different properties. For all nanofluids, 

dynamic viscosity was very similar to that of the base-fluid. Results of heat transfer 

coefficient measurements reveal that there is not an increase in heat transfer coefficient for 

these nanofluids at temperatures of 19°C, 31°C and 41°C. This is probably due to the 

presence of PVP, the polymer used as chemical additive to obtain a stable nanofluid, 

characterized by very low thermal conductivity. However, at higher temperatures, thermal 

conductivity enhancement is more evident and, therefore, it could be interesting to measure 

heat transfer coefficient at 60°C and 70°C. Some modifications to the experimental 

apparatus are under study to expand the temperature range. 
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Concluding remarks 

 
Nanofluids were investigated as heat transfer media, considering the high thermal 

conductivity of solid nanoparticles compared to the inherently poor thermal properties of 

conventional heat transfer fluids. 

An intensive research on the nanofluids behaviour and thermophysical properties was 

carried out at the Institute of Construction Technologies of the Italian National Research 

Council. Stability of nanofluids was investigated, and thermal conductivity, dynamic 

viscosity and convective heat transfer coefficient for promising nanofluids were measured. 

 Nanofluid preparation and stability characterization 

The considered base fluids were water, ethylene glycol (EG) and a mixture water-EG (70 

wt% - 30 wt%). The tested nanoparticles are different and can be divided in four classes: 

- Oxides (TiO2, ZnO, Fe2O3, SiO2): they have the lowest thermal conductivity between 

the considered materials, but they are not very expensive, generally safe in terms of 

environment and health, and can be dispersed even with the two-step method. 

- Metals (Au, Ag): their thermal conductivity is much lower than that of carbon 

structures, but much higher than that of oxides. However, they are chemically 

unstable, as they tend to form oxides in contact with air. They are often produced with 

the single-step method. 

- Single-wall carbon nanohorns (SWCNH): they have the highest thermal conductivity 

and, therefore, they are more promising in terms of heat transfer. However, they are 

expensive and difficult to produce on a large scale. 

- Ceramic material: silicon carbide (SiC) is characterized by high thermal conductivity, 

but it is expensive and has very high hardness. 

Some of the studied nanofluids are commercial fluids and others are non-commercial 

(prepared by IENI-CNR Padova and ISTEC-CNR Faenza Laboratories). 

The stability of nanofluids is a characteristic very difficult to obtain. Because of their high 

surface energy, the nanoparticles tend to aggregate and to settle, making the nanofluid 

unstable. To test the average size of the nanoparticles in suspension and  potential of the 

nanofluid, an instrument based on the Dynamic Light Scattering technique was used. Most of 
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the studied nanofluids reveal the absence of aggregation phenomena and a partial settling of 

nanoparticles, which return in suspension when simply stirred. 

It is important to note that only stable nanofluids should be considered for the 

measurement of thermophysical properties. 

Moreover, in order to avoid particle aggregation, chemical additives (surfactants, 

tensioactives) are used and often they are crucial. These substances, distributing around the 

nanoparticle, neutralize the surface reactivity, but also change the thermophysical properties. 

For this reason, the choice of the proper stabilizer is essential and the amount of additive 

must be controlled. 

 Thermal conductivity 

A TPS 2500 S was used for thermal conductivity measurements. The instrument is based 

on the hot disk technique and can measure thermal conductivity and thermal diffusivity of 

several materials. To test the instrument and to evaluate its accuracy, preliminary tests were 

executed on a well-known fluid, i.e. water. 

Thermal conductivity of nanofluids is generally higher than that of the base fluid, 

although it is very influenced by the presence of surfactants, which are often polymers. If the 

additive concentration is high, it could penalize the thermal conductivity enhancement. For 

example, thermal conductivity of the commercial nanofluid made by ZnO nanoparticles in 

water, at a mass fraction of 1%, was found to be lower or almost similar to that of water, 

probably due to the presence of dispersant in the solution. At 5 wt% and 10 wt%, however, 

thermal conductivity value rises as a function of temperature. For the nanofluid at 10 wt%, it 

increases up to 13.6% at 70°C. 

Additionally, the thermal conductivity of water-Ag nanofluid at 2.6 wt% was measured 

from 10°C to 70°C. The conductivity increases with temperature, being lower than that of 

water at 10°C and growing up to 6.5% at 70°C. 

It is worth noting a good result has been found with Au-water nanofluid. Au is a very 

expensive material, but this nanofluid could also be considered for industrial application if 

the nanofluid is stable and very little quantity of gold are sufficient to have energy efficiency 

improvements. Thermal conductivity of this nanofluid at 0.02 wt% reaches the maximum 

value at 70°C, increasing of 21% respect to water. This is a surprising result considering the 

low nanoparticles concentration. 

In general, thermal conductivity enhances with nanoparticle concentration, mostly if there 

is no surfactants or if their concentrations is very limited. For water-based nanofluids, the 

enhancement is often more than proportional to the particle concentration. Thermal 
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conductivity increases also with temperature, reaching the maximum value at 70°C, the 

maximum measurement temperature at these experimental conditions. 

 Dynamic viscosity 

Dynamic viscosity measurements were performed to verify the influence of nanoparticles 

on the physical properties of the base fluid. The dynamic viscosity was measured using a 

rotational rheometer (AR-G2, TA Instruments). Tests were executed on water, a well-known 

fluid, to evaluate the accuracy of these measurements. It results lower than 1.5% in a 

temperature range between 10°C and 70°C. 

Nanofluids with enhanced thermal properties can be applied in flow devices only if their 

dynamic viscosity is not excessively high. In fact, high viscosity penalizes the flow and the 

pressure drop. 

In general, for all measured nanofluids, it was observed that: 

- with nanoparticles concentrations less than 1 wt%, the variation of viscosity with 

respect to the base fluid is negligible; 

- viscosity decreases with increasing temperature, with the same trend for all the 

concentrations for a nanofluid and its base fluid; 

- as concentration increases, the viscosity increases, but independently from 

temperature. 

Several suspensions were studied and significant enhancements on dynamic viscosity 

were found for SWCNT-water, SiC-EG, TiO2-water, SiO2-water, Fe2O3-water, ZnO-water 

nanofluids respect to the base fluid, at the higher weight concentrations here studied. 

Metal-water nanofluids were measured at low concentrations and their viscosity resulted 

very close to that of water at temperatures between 10°C and 70°C. 

For the nanofluids here considered, rheological behaviour was always Newtonian except 

for SiC-GE nanofluids at 5 wt%, which seems to present a shear-thinning behaviour. 

 Heat transfer coefficient 

With the aim to understand the heat transfer capability of nanofluid, an apparatus for 

convective heat transfer measurements was built. Before measuring nanofluids, preliminary 

tests using pure water as reference fluid were made in order to verify the accuracy of the 

measurements and to achieve the value of heat transfer coefficient of water for the 

subsequent comparison between water-based nanofluid and the base fluid. All the 

measurements were performed in a heat flow rate range from 200 to 600 W and the thermal 

balance was always within 4%. 
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Experimental thermal conductivity and dynamic viscosity data were used to calculate the 

convective heat transfer coefficient. Nanofluid density nf and nanofluid heat capacity cp,nf 

were calculated as weighted averages. 

The heat transfer coefficient of the nanofluid composed of ZnO in water, in concentration 

of 5 wt% and 10 wt%, did not reveal an increase of the coefficient in a temperature range 

between 19°C and 40°C. Also for nanofluids with SiC nanoparticles dispersed in ethylene 

glycol at concentration of 0.1 wt% and 1 wt% there was not an increase of the heat transfer 

coefficient at temperatures of 32°C and 50°C. The same result was obtained for the 

nanofluid with Ag nanoparticles dispersed in water at a concentration of 2.6 wt% and for the 

nanofluid with Ag nanoparticles dispersed in water and ethylene glycol at a concentration of 

2.5 wt% and temperatures of 19°C, 31°C and 41°C. 

On the contrary, heat transfer coefficient measurements on Au-water nanofluid at 0.02 

wt% at Re ranging from 4000 to 17000, revealed different behaviour. The fluid showed an 

enhancement, compared with pure water, up to approximately 5-6% in the temperature range 

between 19°C and 41°C. Considering the strong dependence of thermal conductivity 

enhancements on temperature, obtaining small heat transfer enhancements within this range 

of temperatures promises much higher improvements at higher temperatures. In the future, 

heat transfer measurements at higher temperatures will be performed. Moreover, the 

production of stable nanofluids at higher metal nanoparticles concentration is ongoing. 

 In conclusions 

Despite an exponential increase in recent years of theoretical and experimental analyses 

on nanofluids, further studies are needed to fully understand their behaviour. Literature data 

are often controversial and nanofluids with a good stability are very difficult to obtain. In 

fact, an important issue is the production of stable and safe nanofluids, through the 

development of the most suitable methods of production, possibly on large-scale. Thermal 

conductivity, dynamic viscosity and heat transfer coefficient experimental data, obtained in 

various laboratories, are still scarce and often inconsistent. The study of the influence of size, 

shape, concentration and nanoparticles material, both from the experimental and theoretical 

point of view, must be deepened. Nanofluids are so complex that it seems to be necessary 

that they have to be tailor-made to be successful. However, they are also very promising for 

several technical applications. Nanofluids can be used as heat transfer fluids in high heat flux 

systems such as electronic cooling systems, chillers, solar applications and heat pipes. 

Therefore, each contribute on properties measurement, heat transfer applications 

characterization, or theoretical analysis is very important, especially at this stage of research, 

in which many questions must to be solved.  
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Summary 

 
Nanofluids are formed by solid particles with nano-sized dimension (1-200 nm) dispersed 

into common fluids. From the beginning, they have been proposed as heat transfer media, 

considering the high thermal conductivity of solid nanoparticles compared to the inherently 

poor thermal properties of conventional heat transfer fluids. In the last years, an exponential 

increase of publications on nanofluids is occurred. However, nanofluids are complex fluids, 

literature experimental works are often controversial and theoretical investigations must to 

be deepened. A big issue concerns the production of stable and reliable fluids, since different 

nanoparticles can be prepared with different methods and, also, different nanofluids derive 

from different preparation techniques. 

In this work, several nanofluids were analysed. The stability of the suspension was 

evaluated considering the mean size distribution of nanoparticles in suspension using the 

DLS technique. In addition, the  potential and the pH of the nanofluids were measured for 

the stability analysis. For stable nanofluids, the study of the thermophysical properties is 

necessary to understand their energy behaviour. Therefore, thermal conductivity was 

measured by means of the hot disk technique in a temperature range generally between 10°C 

and 70°C. However, nanofluids can be actually applied in technological systems only if the 

addition of nanoparticles does not determine a significant viscosity enhancement. For this 

reason, dynamic viscosity was determined experimentally, using a rotational rheometer. All 

the measurements were performed at constant temperature and variable shear rate, generally 

starting from 80 1/s to 1200 1/s, at constant step of about 124 1/s, in a temperature range 

generally between 10°C and 70°C. Other nanofluids properties, density and heat capacity, 

are calculated from weighted averages. 

The final objective of this work is to investigate the convective heat transfer capabilities 

of nanofluids. For this purpose, an experimental apparatus was built in order to measure the 

convective, single phase heat transfer coefficient of nanofluids, at constant wall heat flux. A 

constant heat flux condition was imposed through the wall of a straight copper tube in which 

the measured fluid flows. Heated test section is 2 meter long, inner diameter measures 8 mm 

and the heat flux is generated by heating electrical resistance wires winded continuously 

around the pipe. At the inlet and outlet of the measurement section 2 Platinum resistance 
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thermometers (Pt100) measure fluid bulk temperatures. 32 thermocouples measure the wall 

temperature along the heated pipe. They are inserted into cavities, which are dug in the tube 

wall thickness to enable the sensors to be as close as possible to the internal pipe surface. 

Other components are a gear pump, a Coriolis mass flow meter and a chiller. The circuit was 

tested with water in order to verify the operation using a fluid of known properties. Results 

confirm that the circuit is suitable for heat transfer coefficient measurements. 

In this thesis, nine nanofluids have been considered. 

Water-based nanofluid containing TiO2 nanoparticles was studied at four different 

nanoparticle concentrations (1 wt%, 10 wt%, 20 wt% and 35 wt%). All the fluids resulted 

quite stable, even after 30 days, in a static situation and completely stable after sonication for 

one hour. The average particle diameter was 76 nm and no aggregations were found. The 

measured thermal conductivity increases with mass concentration and with temperature. The 

effect of increasing conductivity is more evident at higher temperatures. All the nanofluids 

exhibited a Newtonian rheological behaviour. The viscosity enhancement, related to pure 

water, was independent from temperature for all the concentrations here analysed. The 

nanofluid at 1 wt% shows a water like behaviour and a variation, with respect to water, 

within the experimental error, but at the higher concentrations the viscosity enhancement is 

not proportional and surprisingly excessive (+243% for 35 wt% at 70°C). 

Nanofluids based on water and SWCNH, with the addition of SDS as dispersant, were 

studied at different concentrations, i.e. 0.01%, 0.1%, 1% by mass. Nanofluids showed a 

good stability and a Newtonian behaviour at each composition. Negligible variations on the 

viscosity of the nanofluids in relation to water are observed at nanoparticles concentrations 

up to 0.1 wt%. On the contrary, a significant increase is measured for nanoparticles 

concentration of 1 wt%. Part of this increment is due to the addition of the dispersants. Few 

theoretical models were applied to predict the experimental data, but they were found able to 

represent only nanofluids with nanoparticle concentrations lower than 1% wt. Then, a new 

correlation was proposed to represent the experimental data for the SWCNH/water 

nanofluids. Moreover, thermal conductivity was measured for the nanofluid at 0.1 wt% and 

the nanofluid behaviour was very similar to that of water, probably due to the presence of 

SDS. 

Stability, viscosity and thermal conductivity for nanofluids formed by water and SiO2 

nanoparticles with concentration from 1% to 54% by mass were measured. Nanofluids were 

stable and the thermal conductivity, at ambient temperature for the nanofluid at 54 wt%, was 

compared with a benchmark study result, finding a good agreement. Thermal conductivity 

clearly enhances with reference to water, but only at the higher concentrations with a weak 
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dependence on temperature. At the same time, viscosity increases even more significantly 

and, for this reason, water-based nanofluids with silica nanoparticles should not be suitable 

for thermal applications. 

Another interesting water-based nanofluid, with Fe2O3 nanoparticles, was investigated, at 

a mass concentration ranging between 5 and 20%. It has long time stability, also at high 

concentration as 20 wt%. Thermal conductivity increases with mass fraction and with 

temperature. Thermal conductivity ratio is greater at the highest concentrations. The 

rheological behaviour of the nanofluids is Newtonian and the dynamic viscosity increases 

considerably in respect of water, mainly at mass fraction of 20%. Therefore, the increment in 

thermal conductivity is combined with a rising in dynamic viscosity. For this reason, Fe2O3 

water-based nanofluid, studied in this work, is not energetically convenient for technical 

applications. 

ZnO-water nanofluid was studied at 1, 5, 10 wt%, resulting very stable during the 

analysis lasting for one month. Thermal conductivity is similar to that of water at the lower 

concentration, while for nanofluids at 5 wt% and 10 wt% there are enhancements of 12% 

and 15% at 70°C, respectively. The dynamic viscosity of the nanofluids at 1 wt% is very 

similar to water viscosity, while it increases of about 5% for the nanofluid at 5 wt% and 12% 

for the nanofluid at 10 wt%. The nanofluids heat transfer coefficient at 5 wt% and 10 wt% 

was measured. Results do not show an increase on the heat transfer coefficient for these 

suspensions. 

Ethylene glycol-based nanofluids, containing silicon carbide in the concentrations 0.1, 1 

and 5 wt%, were characterized. Ethylene glycol can be used as a heat-transfer fluid in heat 

transfer applications with maximum operating temperatures higher than water boiling 

temperature or minimum operating temperatures lower than water freezing temperature. 

Silicon carbide is characterized by high thermal conductivity, i.e. 490 W/mK, and it is 

supposed to enhance the thermal properties of ethylene glycol more than other common 

materials, such as metal oxides. Experimental results indicate that thermal conductivity 

enhancement is relatively high at all the concentrations and is increasing with temperature up 

to more than 20% for the 5 wt% nanofluid. The viscosity enhancement is negligible at 

concentrations up to 1 wt%. Vice versa, it is quite significant for the 5 wt% nanofluid, with a 

strong increase at temperatures higher than 50°C, suggesting aggregation of the 

nanoparticles. The results of heat transfer measurements indicate EG-SiC nanofluids here 

studied are not promising as heat transfer media. 

Stability, dynamic viscosity, thermal conductivity and heat transfer coefficient for 

nanofluids formed by water and Au nanoparticles were studied at 0.02 wt%, 0.05 wt% and 
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0.1 wt%. Fluids were prepared with a one-step “eco-friendly” method. The thermal 

conductivity of the nanofluid at 0.02 wt% showed significant enhancement (up to 21%) 

compared to water. The nanofluid at 0.1 wt% was completely unstable and also the nanofluid 

at 0.05 wt% was too unstable during the measurement. The dynamic viscosity of the 

nanofluids was found to be very similar to water, thus not penalizing flow performance. The 

heat transfer coefficient of the nanofluid at 0.02 wt% shows an enhancement, compared with 

pure water, up to approximately 5-6% in the temperature range between 19°C and 41°C. 

This is a promising result and it will be interesting, for future works, to optimize a chemical 

synthesis able to produce nanofluids with higher nanoparticles concentration. In fact, 

increasing the amount of nanoparticles, thermophysical properties could be improved and 

nanofluids could result promising for many industrial applications. 

Finally, two different nanofluids containing silver nanoparticles were analysed. The first 

one is water-based, composed of 2.6 wt% and 0.0027 wt% of Ag nanoparticles and the 

second one is 2.5 wt% Ag nanoparticles in a mixture water-ethylene glycol at a mass fraction 

(70:30). All nanofluids were very stable and, for all nanofluids, conductivity increases with 

temperature. An interesting result was obtained from the measurement on water-based 

nanofluid at 0.0027 wt%, which conductivity grows up to 12.8% at 70°C, more than the 

enhancement of the nanofluid at 2.6 wt%, produced differently. This indicates that the 

presence of a dispersant or the different method of preparation leads to different nanofluids 

with different properties. For all nanofluids, dynamic viscosity was very similar to that of the 

base-fluid. Results of heat transfer coefficient measurements reveal that there is not an 

increase in heat transfer coefficient for these nanofluids at temperatures of 19°C, 31°C and 

41°C. This is probably due to the presence of PVP, the polymer used as chemical additive to 

obtain a stable nanofluid, characterized by very low thermal conductivity. However, at 

higher temperatures, thermal conductivity enhancement is more evident and it could be 

interesting to measure heat transfer coefficient at 60°C and 70°C, therefore, some 

modifications to the experimental apparatus are under study. 

In conclusion, after an intense work of experimental measurement on several nanofluids, 

a nanofluid with extraordinary thermophysical properties was not found, in spite of some 

results published in the literature. However, nanofluids are really complex and it seems they 

should be tailor-made to be successful. It is worth noting that, at this stage, literature on 

nanofluids is really inconsistent, giving different and opposite results and many questions on 

nanofluids must be solved. For this reason, each contribute on properties measurement or 

theoretical analysis is very important. 
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Starting from the present results, future works will be done on the experimental apparatus 

for the heat transfer coefficient measurement to increase the temperature range, to study 

nanofluids for high temperature applications. 

Moreover, amongst all the studied suspensions, it seems metal nanoparticles are the most 

promising. More concentrated nanofluids, with the proper surfactants, are under study. 
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Riassunto 

 
I nanofluidi sono costituiti da particelle solide di dimensione nanometrica (1-200 nm) 

disperse all’interno di fluidi comuni. Considerata l’elevata conduttività termica delle 

nanoparticelle solide rispetto alle proprietà termiche intrinsecamente scarse dei fluidi 

convenzionalmente usati per lo scambio termico, i nanofluidi sono stati inizialmente proposti 

come fluidi termovettori caratterizzati da interessanti proprietà termiche. Negli ultimi anni, il 

numero di pubblicazioni sui nanofluidi ha avuto una crescita esponenziale. Tuttavia, i 

nanofluidi sono fluidi complessi e i lavori sperimentali che si trovano in letteratura 

presentano spesso risultati tra loro discordanti e imprecisi, non supportati da valutazioni 

teoriche che devono essere approfondite. Uno dei principali problemi riguarda la produzione 

di sospensioni stabili, affidabili e riproducibili. Infatti, pur partendo da fluidi base e 

nanoparticelle dello stesso tipo, differenti metodi di preparazione possono portare a 

nanofluidi diversi e, quindi, con caratteristiche differenti. 

In questo lavoro, sono stati presi in considerazione diversi nanofluidi, in acqua o glicole e 

con nanoparticelle di ossidi, metalli o carbonio, per valutare le possibili differenze tra i fluidi 

risultanti. Ogni fluido è stato attentamente caratterizzato. 

Per ogni nanofluido, la stabilità della sospensione è stata valutata considerando la 

distribuzione della dimensione media delle nanoparticelle in sospensione, utilizzando la 

tecnica DLS (Dynamic Light Scattering). Inoltre, per l'analisi di stabilità, sono stati misurati 

anche il potenziale  ed il pH dei nanofluidi. 

Per i nanofluidi che sono risultati stabili, si è proceduti con lo studio delle proprietà 

termofisiche, necessario per comprendere il loro potenziale impiego energeticamente 

favorevole in applicazioni specifiche. Per questo motivo, prima è stata misurata la 

conduttività termica, utilizzando la tecnica hot disk in un intervallo di temperatura in genere 

compresa tra 10°C e 70°C. Tuttavia, è importante considerare che i nanofluidi possono 

essere effettivamente utilizzati negli impianti solo se l'aggiunta di nanoparticelle non 

determina un significativo aumento della viscosità. Pertanto, la viscosità dinamica dei 

nanofluidi considerati è stata determinata sperimentalmente, utilizzando un reometro 

rotazionale. Tutte le misure sono state eseguite a temperatura costante e shear rate variabile, 

generalmente tra 80 1/s e 1200 1/s, a passo costante di circa 124 1/s, in un intervallo di 
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temperatura in genere compresa tra 10°C e 70°C. Altre proprietà dei nanofluidi, come 

densità e calore specifico, sono state calcolate come medie pesate considerando la 

composizione di nanoparticelle. 

L'obiettivo finale di questo lavoro è stato quello di indagare le capacità di scambio 

termico convettivo dei nanofluidi. A questo scopo, è stato costruito un apparato sperimentale 

per misurare il coefficiente di scambio termico monofase convettivo, in condizione di flusso 

termico di parete costante. La parte principale dell’apparato è costituito da un tubo di rame, 

in cui viene fatto scorrere il fluido considerato, a cui viene imposto un flusso termico 

costante. La sezione di misura riscaldata ha una lunghezza di 2 m e diametro interno di 8 

mm. Il flusso termico è generato da resistenze elettriche avvolte con continuità attorno al 

tubo. 2 termoresistenze al platino (Pt100) misurano la temperatura del fluido all'ingresso e 

all'uscita della sezione di misura, mentre 32 termocoppie misurano la temperatura di parete 

lungo il tubo riscaldato. Le termocoppie sono inserite all’interno di cavità, scavate nello 

spessore del tubo, per consentire ai sensori di essere il più vicino possibile alla superficie 

interna del tubo. Gli altri componenti sono una pompa ad ingranaggi, un misuratore di 

portata ad effetto Coriolis ed un chiller. Il circuito è stato testato con acqua, al fine di 

verificarne il funzionamento utilizzando un fluido di proprietà note e i risultati confermano 

che il circuito è idoneo a misure di coefficiente di scambio termico. 

In questa tesi, sono stati considerati nove nanofluidi. 

Il nanofluido a base d'acqua, contenente nanoparticelle di TiO2, è stato studiato a quattro 

diverse concentrazioni di nanoparticelle (1%, 10%, 20% e 35% in massa). Tutti i fluidi sono 

risultati abbastanza stabili, anche dopo 30 giorni, quando non agitati, e completamente stabili 

dopo un’ora di sonicazione. Il diametro medio delle particelle è 76 nm e non si sono formati 

aggregati. La conduttività termica misurata aumenta all’aumentare della frazione di 

nanoparticelle e della temperatura. Tale aumento è più evidente alle temperature più elevate. 

Tutti i nanofluidi mostrato un comportamento reologico Newtoniano. L’aumento di 

viscosità, rispetto all’acqua pura, è indipendente dalla temperatura per tutte le concentrazioni 

qui analizzate. Il nanofluido all’1% in massa ha una viscosità molto simile a quella 

dell’acqua, essendo la variazione all’interno dell'errore sperimentale. Tuttavia, a 

concentrazioni più alte l’aumento di viscosità non risulta proporzionale, ma 

sorprendentemente eccessivo (+243% al 35% in massa a 70°C). 

Il nanofluido a base di acqua e SWCNH, con l'aggiunta di SDS come disperdente, è stato 

studiato a diverse concentrazioni, 0.01%, 0.1%, 1% in massa. Tali nanofluidi mostrato una 

buona stabilità ed un comportamento Newtoniano ad ogni composizione. Sono state 

osservate variazioni trascurabili della viscosità dei nanofluidi rispetto all'acqua per 
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concentrazioni di nanoparticelle fino allo 0.1% in massa. Al contrario, è stato misurato un 

aumento significativo di viscosità per la concentrazione di nanoparticelle 1% in massa. Parte 

di questo incremento è dovuto all'aggiunta del disperdente. Inoltre, sono stati applicati alcuni 

modelli teorici per prevedere i valori sperimentali, risultando rappresentativi solo per i 

nanofluidi con concentrazioni di nanoparticelle inferiori all'1% in massa. Quindi, è stata 

proposta una nuova correlazione, adatta a rappresentare i dati sperimentali per i nanofluidi 

formati da SWCNH e acqua. In seguito, è stata misurata la conduttività termica del il 

nanofluido allo 0.1% in massa ed il comportamento è risultato molto simile a quello del 

fluido base, probabilmente a causa della presenza di SDS. 

Per nanofluidi formati da acqua e nanoparticelle SiO2 in concentrazione da 1% a 54% in 

massa, sono state misurate la stabilità, la viscosità dinamica e la conduttività termica. Queste 

sospensioni sono risultate stabili fino a concentrazioni del 27% in massa (purtroppo, non è 

stato possibile analizzare al DLS il nanofluido al 54%). La conduttività termica del 

nanofluido al 54% in massa, a temperatura ambiente, è stata confrontata con il risultato 

fornito da uno studio di riferimento, ottenendo un ottimo accordo, entro lo 0.1%. Per tutte le 

concentrazioni, la conduttività termica è stata misurata a diverse temperature, osservando, 

alle concentrazioni più elevate, un chiaro incremento rispetto all'acqua, con una debole 

dipendenza dalla temperatura. Allo stesso tempo, però, la viscosità aumenta molto più 

significativamente con la concentrazione, rendendo i nanofluidi SiO2-acqua poco adatti per 

le applicazioni termiche. 

Un altro interessante nanofluido a base d’acqua, con nanoparticelle di Fe2O3, è stato 

studiato ad una concentrazione in massa compresa tra 5 e 20%. La stabilità è risultata buona 

per lungo tempo, anche alla concentrazione più elevata. La conduttività termica aumenta con 

la frazione di massa e con la temperatura ed il rapporto della conduttività rispetto a quella 

dell’acqua è maggiore alle concentrazioni più elevate. Il comportamento reologico dei 

nanofluidi è Newtoniano e gli aumenti di viscosità dinamica rispetto al fluido base, sono 

notevoli, soprattutto a frazioni di massa del 20%. È evidente, quindi, che l’incremento della 

conduttività termica è associato ad un aumento della viscosità dinamica. Per questo motivo, 

l'applicazione energeticamente favorevole del fluido deve essere attentamente valutata con 

riferimento alla particolare applicazione. 

Il nanofluido ZnO-acqua è stato studiato a concentrazioni di 1, 5, 10% in massa, 

risultando molto stabile durante l’analisi al DLS, per la durata di un mese. La conduttività 

termica del nanofluido alla concentrazione più bassa è simile a quella dell’acqua, mentre per 

nanofluidi al 5% e 10% in massa, sono stati misurati incrementi del 12% e del 15% a 70°C, 

rispettivamente. La viscosità dinamica del nanofluido all’1% in massa è molto simile alla 
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viscosità del fluido base, mentre aumenta di circa il 5% per la nanofluido al 5% in massa e 

del 12% per il nanofluido al 10% in massa. Inoltre, per i nanofluidi al 5% e 10% in massa, è 

stato misurato il coefficiente di scambio termico, senza averne osservato alcun incremento. 

Sono stati, inoltre, caratterizzati nanofluidi a base di glicole etilenico, contenenti carburo 

di silicio alle concentrazioni di 0.1, 1 e 5% in massa. Il glicole etilenico può essere utilizzato 

come fluido termovettore in applicazioni di scambio termico, con temperature massime 

superiori alla temperatura di ebollizione dell’acqua o minime inferiori alla temperatura di 

solidificazione dell’acqua. Il carburo di silicio è caratterizzato da elevata conduttività 

termica, 490 W/mK, e si suppone che consenta di migliorare le proprietà termiche del glicole 

etilenico più di altri materiali comuni, come gli ossidi metallici. I risultati sperimentali 

indicano che l’incremento di conduttività termica è relativamente elevato a tutte le 

concentrazioni e che aumenta con la temperatura, fino a oltre il 20% per il nanofluido al 5% 

in massa. L’aumento di viscosità è risultato trascurabile o negativo per concentrazioni fino a 

1% in massa. Viceversa, è risultato abbastanza significativo per la nanofluido al 5% in 

massa, con un forte incremento a temperature superiori a 50°C, suggerendo che possa essersi 

verificata un’aggregazione delle nanoparticelle. I risultati delle misure di coefficiente di 

scambio termico indicano che i nanofluidi EG-SiC, qui studiati, non sono promettenti come 

sostitutivi termovettori. 

Sono state studiate la stabilità, la viscosità dinamica, la conduttività termica ed il 

coefficiente di scambio termico dei nanofluidi composti da acqua e nanoparticelle di oro alle 

concentrazioni 0.02, 0.05 e 0.1% in massa. I fluidi sono stati preparati con un metodo eco-

friendly a single-step. La conduttività termica del nanofluido allo 0.02% ha mostrato un 

incremento significativo (fino al 21%), rispetto all'acqua. Il nanofluido allo 0.1% è risultato 

completamente instabile ed anche il nanofluido allo 0.05% è risultato visivamente instabile 

durante la misura. La viscosità dinamica dei nanofluidi è risultata essere molto simile a 

quella del fluido base, quindi non penalizzante le prestazioni di flusso. Il coefficiente di 

scambio termico del nanofluido allo 0.02% ha mostrato un incremento rispetto all’acqua 

pura, fino a circa 5-6% nell'intervallo di temperatura tra 19°C e 41°C. Questo risultato 

sembra promettente e sarà interessante, per lavori futuri, ottimizzare una sintesi chimica in 

grado di produrre nanofluidi con concentrazione di nanoparticelle di oro superiore. Infatti, 

aumentando la quantità di nanoparticelle, le proprietà termofisiche potrebbero migliorare ed i 

nanofluidi potrebbero risultare adatti per molte applicazioni industriali. 

Infine, sono stati analizzati due diversi nanofluidi contenenti nanoparticelle di argento 

(Ag). Il primo è a base di acqua, composto da 2.6% e 0.0027% in massa di nanoparticelle di 

Ag, mentre il secondo è formato da 2.5% in massa di nanoparticelle di Ag in una miscela di 



Riassunto 

175 

acqua e glicole etilenico ad una frazione di massa (70:30). Tutti i nanofluidi sono risultati 

molto stabili e, per tutti nanofluidi, la conduttività aumenta con la temperatura. Un risultato 

interessante è stato ottenuto dalla misura di un nanofluido a base di acqua, allo 0.0027% in 

massa, la cui conduttività cresce fino al 12.8% a 70°C, aumento più elevato di quello 

ottenuto dal nanofluido al 2.6% in massa, prodotto in modo diverso. Questo indica che la 

presenza di un disperdente o il diverso metodo di preparazione porta a nanofluidi differenti, 

con proprietà differenti. Per tutti i nanofluidi, la viscosità dinamica è risultata molto simile a 

quella del fluido base. I risultati delle misure del coefficiente di scambio termico indicano 

che non vi è un aumento nel coefficiente per questi nanofluidi alle temperature di 19°C, 

31°C e 41°C. La causa principale è probabilmente la presenza del PVP, il polimero usato 

come additivo chimico per ottenere un nanofluido stabile, il quale è caratterizzato da bassa 

conduttività termica. Tuttavia, potrebbe essere interessante misurare il coefficiente di 

scambio termico a 60°C e 70°C, temperature alle quali l’aumento di conduttività termica è 

più evidente. Alcune modifiche dell’apparato sperimentale sono in fase di studio, per 

ampliare l’intervallo di temperatura misurabile che attualmente si ferma a 50°C. 

In conclusione, dopo un intenso lavoro di misura sperimentale su più nanofluidi, non è 

stato trovato alcun nanofluido con straordinarie proprietà termofisiche, nonostante alcuni 

risultati pubblicati in letteratura che avevano posto le basi iniziali per questa tesi. Tuttavia, i 

nanofluidi sono fluidi molto complessi e, dai risultati ottenuti, è evidente che si debba 

portare molta attenzione alla loro preparazione affinché risultino stabili e con proprietà 

interessanti. È necessario notare, inoltre, che in questa fase la letteratura sui nanofluidi è 

particolarmente discordante e incompleta, poiché fornisce risultati diversi e opposti, e che 

molte questioni teoriche alla base del comportamento termofisico dei nanofluidi devono 

essere ancora risolte. Per questo motivo, ogni contributo scientifico alle misure di proprietà o 

alle analisi teoriche è molto importante. 

Partendo dai risultati attuali, in futuro saranno apportate modifiche all'apparato 

sperimentale per la misura coefficiente di scambio termico, allo scopo di aumentare 

l’intervallo di temperatura misurabile, per studiare nanofluidi adatti ad applicazioni ad alta 

temperatura. 

Inoltre, tra tutte le sospensioni studiate, quelle con nanoparticelle metalliche sembrano le 

più promettenti. Per questo motivo, nanofluidi più concentrati, con surfattanti adatti, sono in 

fase di studio. 
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