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Summary 
 

Thanks to their lightness and versatility combined with excellent mechanical properties, 

composite materials underwent an increasing relevance in the last twenty years in many 

industrial fields, also for structural applications.  

This class of materials offer a wide range of advantages but it is still characterized by a quite 

high cost with respect to more traditional structural materials. One of the reasons is the lack of 

reliable design procedures, as well as of extensive experimental investigations in the literature 

providing clear and general information.  

This is particularly evident with reference to the behaviour of composite laminates and bonded 

joints under multiaxial fatigue loading, which often characterise in-service conditions. 

With the aim to acquire information on the multiaxial fatigue behaviour of unidirectional 

composites, a specimen configuration was first defined, suitable to characterise the matrix-

dominated multiaxial fatigue behaviour of a composite lamina, which is of great importance 

for the damage evolution in laminates (chapter 2). Tubular specimens subjected to combined 

tension/torsion loading were identified as the best compromise between reliability of results, 

easiness of testing and possibility to obtain multiaxial stress states of interest. 

In the third chapter the results of an extensive experimental investigation on tubular specimens 

is presented. Tubes were fatigue tested with several values of the biaxiality (shear to 

transverse) ratio and load ratio (ratio between the minimum and the maximum fatigue loads). 

A strong influence of both parameters was found on the off-axis crack initiation and 

propagation phenomena, as well as on the damage mechanisms at the micro-scale. 

Uniaxial fatigue tests were then carried out on multidirectional flat laminates, designed to 

achieve local multiaxial stress states similar to those applied to the tubes by means of 

tension/torsion external loads. This activity, presented in the fourth chapter, revealed the 

equivalence between external (obtained by applying external loads in different directions) and 

internal (due to material anisotropy) multiaxial stress states. This represents a fundamental 

step for the extension of experimental results and predictive models to general loading 

conditions. 

The experimental activity on tubes provided information on the damage mechanisms at the 

micro-scale, responsible for fatigue failure of a unidirectional lamina. On the basis of these 

mechanisms a criterion for predicting crack initiation in a unidirectional lamina under 

multiaxial fatigue was developed by means of a multiscale approach (chapter 5). This criterion 

resulted in sound agreement with the new data on tubes, with data on flat unidirectional 
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laminates from the literature and with crack initiation data on the off-axis layers of the 

laminates reported in chapter 4. 

A basic topic related to the analysis of multidirectional laminates is the stiffness degradation 

due to off-axis cracks in their plies. Dealing with such a topic, an analytical model was 

developed for predicting the stiffness of a laminate as a function of the crack density in its 

layers accounting for the interaction between cracks in different layers (chapter 6). In addition 

the model is capable of calculating the stress re-distribution due to the presence of cracks. This 

is fundamental for the development of a new procedure for predicting the fatigue crack density 

evolution in multidirectional laminates, presented in chapter 7. 

To this aim the experimental observations, the analytical models and criteria previously 

presented, combined with a statistical approach, have been used to predict the initiation and 

propagation of multiple cracks in a laminate. As a consequence, when this procedure is 

combined with the model presented in chapter 6, both the stiffness degradation and the stress 

re-distribution, useful for the estimation of the total fatigue life, can be predicted. 

When composite laminates are used as adherends in bonded joints the bonding surface 

represents a critical position for the onset of fatigue cracks. As a consequence an experimental 

investigation on the propagation of a bondline crack in composite bonded joints subjected to 

mixed mode I + II (opening + sliding) fatigue loading was carried out and presented in chapter 

8. A criterion to predict the crack propagation rate under mixed mode loading was also 

developed, based on the damage mechanisms observed during the experimental campaign. 

Eventually, in Appendix A an analytical model for predicting the initiation of a fibre-matrix 

debond crack under biaxial static loads is presented. The model provides useful information on 

the influence of the main geometrical and interface parameters of the fibre-matrix interface 

strength.    
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Sommario 

 

Grazie alla loro leggerezza e versatilità combinate ad eccellenti proprietà meccaniche, i 

materiali compositi hanno acquisito un'importanza sempre maggiore negli ultimi 

vent'anni in molti settori industriali, anche per applicazioni strutturali.  

A fronte dei numerosi vantaggi offerti da questa classe di materiali vi è un costo che 

rimane ancora piuttosto elevato rispetto ai più tradizionali materiali da costruzione. Una 

delle ragioni è la mancanza di procedure di progettazione affidabili e riconosciute, 

nonché l'assenza, in letteratura, di estese caratterizzazioni sperimentali da cui acquisire 

informazioni di carattere generale. Ciò è particolarmente evidente in riferimento al 

comportamento a fatica multiassiale di lamine, laminati e giunzioni incollate in 

composito. 

Al fine di sopperire alla mancanza di informazioni sul comportamento a fatica 

multiassiale di lamine unidirezionali, nonché all'assenza di una procedura adeguata di 

test, è stata inizialmente definita una configurazione di provini adatta a caratterizzare la 

risposta matrix-dominated (particolarmente significativa per il danneggiamento a fatica 

di laminati) di materiali compositi unidirezionali (capitolo 2). Provini tubolari soggetti a 

carichi ciclici di trazione e torsione combinati sono stati identificati come il miglior 

compromesso tra affidabilità dei risultati, semplicità di testing e possibilità di ottenere 

condizioni multiassiali di interesse.   

Nel terzo capitolo sono riportati i risultati di un'estesa campagna sperimentale su tali 

provini tubolari in presenza di diversi rapporti di biassialità (tensione di taglio su 

tensione trasversale) e rapporti di ciclo (rapporto tra il minimo e il massimo carico di 

fatica). É stata riscontrata una notevole influenza di tali parametri sull'innesco e 

propagazione di cricche off-axis, nonché sui meccanismi di danneggiamento su scala 

microscopica. Sono poi stati testati a fatica uni-assiale dei laminai piani multi-direzionali 

progettati per avere condizioni di multiassialità locali simili a quelle ottenute sui provini 

tubolari tramite carichi esterni in diverse direzioni. L'attività, presentata al quarto 

capitolo, ha permesso di verificare l'equivalenza tra condizioni multiassiali ti tipo 

esterno (carichi in più direzioni) e interno (dovute all'anisotropia di lamine e laminati in 

composito). Ciò rappresenta uno step fondamentale per l'estensione di risultati 

sperimentali e modelli previsionali a condizioni di carico generiche.    
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L'attività sperimentale sviluppata sui tubi ha fornito informazioni sui meccanismi di 

danneggiamento a livello microscopico che sono responsabili del cedimento a fatica 

della lamina unidirezionale. Sulla base di tali meccanismi è stato proposto un criterio per 

l'innesco di cricche a fatica multiassiale in lamine in composito basato su un approccio 

multiscala (capitolo 5). Il criterio è risultato in ottimo accordo con i nuovi dati 

sperimentali sui campioni tubolari, con dati disponibili in letteratura riguardanti lamine 

unidirezionali piane e con i dati ad innesco sugli strati off-axis dei laminati testati al 

capitolo 4. 

Parlando quindi di laminati multi-direzionali, un aspetto fondamentale è la diminuzione 

di rigidezza di questi ultimi dovuto all'innesco e propagazione di cricche multiple negli 

strati off-axis. A tal proposito è stato proposto un modello analitico in grado di legare la 

densità di cricche in ciascuno strato di un laminato alla diminuzione di rigidezza globale 

considerando anche l'interazione tra cricche presenti su strati diversi (capitolo 6). Tale 

modello fornisce anche le distribuzioni di tensione dovute alla presenza delle cricche 

stesse. Questo è un aspetto di fondamentale importanza per lo sviluppo di una procedura 

per prevedere l'evoluzione della densità di cricche in laminati multi-direzionali sollecitati 

a fatica, presentata al capitolo 7. A tale scopo le osservazioni sperimentali, i modelli 

analitici e i criteri sviluppati in precedenza, combinati ad un approccio di tipo statistico, 

vengono utilizzati per prevedere l'innesco e propagazione di cricche multiple in un 

laminato. Di conseguenza, combinata con il modello precedentemente illustrato, la 

procedura consente di prevedere sia la diminuzione di rigidezza di laminati sia la 

ridistribuzione delle tensioni per effetto del danneggiamento rappresentando quindi uno 

strumento utile anche alla stima della vita a fatica totale di un laminato. 

Quando i laminati in composito sono utilizzati come aderendi in giunzioni incollate, 

l'interfaccia di incollaggio rappresenta una zona particolarmente critica per l'innesco di 

cricche a fatica. Di conseguenza è stata analizzata sperimentalmente la propagazione di 

cricche in giunzioni incollate soggette a carichi ciclici di modo misto I + II (apertura + 

scorrimento). Ancora una volta i meccanismi osservati su scala microscopica sono stati 

utilizzati per la formulazione di un criterio damage-based per la previsione della velocità 

di propagazione di cricche in giunzioni incollate sollecitate in modo misto (capitolo 8). 

In fine, in Appendice A è presentato un modello analitico sviluppato per la previsione 

dell'innesco di una cricca di debonding tra fibra e matrice in condizioni di carico statico 

biassiale. Il modello è utile per trarre informazioni sull'influenza dei principali parametri 

geometrici e interfacciali sulla resistenza dell'interfaccia fibra-matrice. 
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1 
Introduction: motivations, problems and methodology 

 

1.1. Introduction 

Composite materials are obtained by at least two distinct phases (matrix and reinforcements) 

which, combined at a microscopic level, give rise to a material with mechanical and functional 

properties different from those of the constituents. Typically the reinforcement represents the 

most mechanically performing material, and it can be in the form of particulates, spheres, short 

and long fibres. Reinforcements are held together by the matrix which is usually less 

performing but it has the basic role to distribute loads between the different phases. 

We can find various composite materials in nature such as woody plants, where fibres are 

aligned to provide the maximum specific strength along the direction in which external loads 

act. This is also the idea at the basis of the modern concept of advanced composite materials, 

mainly those made by long fibre reinforcements, developed since the beginning of the last 

century. Typically glass, carbon or aramid fibres are used, together with thermosetting or 

thermoplastic polymer matrices. The main advantages of this class of materials are the high 

specific values of strength and stiffness which make them particularly suitable for light-weight 

structural applications.  

In the last two decades the development of new and more efficient manufacturing processes 

and the increasing need of light structures aimed to minimise energy consumption acted as 

important driving forces for the increasing use of composites in many industrial fields such as 

automotive, naval, aerospace, sport facilities and wind energy. 

As a proof of this, a very interesting market investigation was presented in 2013 by AVK and 

CCeV [1]. Figure 1, readapted from Ref. [1], highlights the increasing trend in the demand of 

carbon reinforced polymers (CRP) in the last years as well as estimations for the next seven 

years. 
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Figure 1: Global demand of CRP from 2008, readapted from [1], *estimated 

 

Figures 2 a)-d) show how the CRP demand and its estimations are shared among the main 

industrial fields. 

 

 

 

Figure 2: Global CRP demand from a) wind energy, b) aerospace, c) sports and d) automotive 

industries; readapted from [1], *estimated 

 

Both at present and in the next years, according to the estimations, the major sources of 

demand of CRP are represented by the aerospace and wind energy industries, where the use of 
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composites is strictly related to the possibility of decreasing energy consumption and 

optimising energy production, respectively. 

Concerning the aerospace industry, it was estimated by Bhatta [2] that a 1 kg reduction in the 

weight of a plane leads to save $3000 of fuel annually with commensurate reductions in CO2 

emissions. Within this scenario it is clear the reason why the most important companies started 

using composites also for structural parts in commercial aircrafts since the middle eighties. 

The rapid increase in the last twenty years is evident in figure 3 [3], which shows the 

percentage in total weight of commercial airplanes from the main manufacturers. It is also 

worth mentioning that prior to the late eighties composites were used only for secondary parts, 

the A320 (1988) being the first plane with a tail section totally made of composite materials. 

 

 

Figure 3: Weight percentage of composites in commercial aircrafts over time [3] 

 

Differently, the recent Boeing 787 is made of composites for 50% of its weight (excluding 

engines), and it is the first plane with a carbon/epoxy fuselage (see figure 4). 

The other major driver for composites demand is the wind energy industry. Indeed, the 

increasing requirements of alternative sources of energy led, in the recent years, to rapid 

developments in the wind energy field. This turns out in the need of a higher specific power 

and a larger rotor's diameter, as shown in figure 5 [4], thus requiring a wide use of composite 
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materials for the blades, thanks to their lightness combined with excellent mechanical 

properties, allowing high specific energy production. 

 

 

Figure 4: Materials used for Boeing 787 [3] 

 

 

Figure 5: Growth in turbines size and power since 1985 [4] 

 

In this field, composite materials became of even higher interest for the application of passive 

load mitigation techniques to turbine blades. For this purpose in Ref. [5] Bottasso and co-

authors studied the possibility to design coupled bend-twist blades by exploiting the 

anisotropy of composite laminates, properly oriented with respect to the blade's axis. 

It is clear that composite materials, thanks to their high specific mechanical properties, 

corrosion resistance and possibility to "design" the material on the basis of design needs, have 

a very strong potential in the development of innovative solutions in the frame of energy 
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saving and renewable energy production, as well as in other industrial fields. One of the main 

limitations of this class of materials is represented by the cost, which is still quite high with 

respect to more traditional structural materials. 

High costs are due to quite expensive raw materials (mainly for carbon fibres), labour 

intensive manufacturing processes and lack of general and suitable predictive models and 

design procedures, which forces companies to expensive and time consuming prototyping and 

testing activities. As a consequence, investing in research is fundamental for understanding the 

behaviour of these relatively "young" materials and developing reliable models and procedures 

to make the design process simpler and cheaper.  

 

1.2. Parameters influencing the fatigue behaviour of composites 

In structural components, such as turbine blades or airplane wings, composite laminates and 

composite bonded connections are unavoidably subjected to cyclic multiaxial loads. In spite of 

the increasing trend in the application of composite materials for structural components, as 

discussed before, the multiaxial fatigue behaviour of this materials has not received a 

sufficient attention by the scientific community [6]. In particular, Quaresimin et al. [6] 

highlighted the lack of reliable predictive models as well as of knowledge of the damage 

mechanisms leading a composite laminate to fatigue degradation and failure, in relationship 

with the multiaxial stress state.  

In the same work, [6], more than one thousand data from the literature were collected with the 

aim to obtain information on the influence of some design parameters on the fatigue behaviour 

of composite laminates. The most important ones were found to be: 

i) the presence of shear stress (i.e. the multiaxial stress state); 

ii) the load ratio R (ratio between the minimum and the maximum fatigue loads); 

iii) the phase angle between stress components; 

iv) the geometry (presence of geometrical variations such as notches). 

The reader should refer to Ref. [6] for a detailed discussion on all these points. 

However, the authors found that the presence of an in-plane shear stress component (i) 

strongly and detrimentally influenced the fatigue life of composite laminates. This can be seen 

in more general terms as the influence of the multiaxial stress state on the fatigue behaviour of 

composites. This effects have not been clarified enough in the literature, and the analysis 

carried out by Quaresimin et al. [6] highlighted the inaccuracy of empirical criteria and the 
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need of damage-based models of general validity for a proper and reliable estimation of 

fatigue strength or life. 

The load ratio R (ii) was also shown to influence significantly the fatigue behaviour, and the 

combination of shear and compressive normal stresses was found to be particularly 

detrimental. Also the effect of R, mainly in relationship with the multiaxial stress state, is a 

problem to be investigated more deeply for formulating a predictive model which includes all 

these factors. 

Contradictory results were instead found on the possible influence of the phase angle (iii), 

while the few data available on the influence of notches (iv) made it difficult to drawn general 

and significant conclusions [6]. 

Always in Ref. [6] the authors distinguished two kinds of multiaxial loading conditions, 

namely external  and  internal multiaxiality. 

The first condition is achieved when external loads are applied in different directions whereas 

the second one is due to the anisotropy of composite laminae, which leads to multiaxial stress 

states even if uniaxial external loads are applied. The equivalence or the possible differences 

between these two conditions were not clear from the data analysed and reported in Ref. [6].    

In this frame, it is clear that improving the knowledge on the fatigue behaviour of composite 

materials is essential. In particular it would be important to observe and deeply understand the 

damage mechanisms leading to fatigue failure and then to use them as a basis for the 

development of physically-based predictive models and criteria. This approach is particularly 

important when dealing with composites because of their multiscale nature, as they are non-

homogeneous materials, as it will be discussed in the next section. 

 

1.3. Multiscale nature of composite materials 

The multiscale concept applied to long-fibres composites is schematically shown in figure 6. 

The constituents at each scale and the related damage mechanisms are shown, particularly 

with reference to the matrix-dominated behaviour which is the main interest of the present 

thesis, as it controls the degradation of the mechanical properties of a composite part. 

Since composites are made of fibres and matrix, the smallest structural element that can be 

defined is a fibre-matrix unit cell, which is a micro-scale entity, the fibre diameter and the 

inter-fibres distance being measured in μm. At this scale the damage mechanisms occurring 

both under static and cyclic loads are represented by the initiation and propagation of a debond 

crack at the interface and matrix micro-cracking. 
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Thousands of fibres form a unidirectional (UD) lamina or a unidirectional laminate which is, 

instead, a macro-scale entity, its thickness being of the order of magnitude of millimetres. The 

coalescence of debonds and matrix micro-cracks at the micro-scale gives rise to the initiation 

of a macro-crack in a lamina which spans the whole thickness and propagates through its 

width in a direction parallel to the fibres.  

Multidirectional laminates are made of several UD laminae stacked with different fibres 

orientations. In this case, when a macro-crack initiates in one or more layers, the stress 

redistribution between adjacent plies is such that the cracked plies keep carrying load far 

enough from the cracks, thus causing a progressive damage evolution by means of multiple 

off-axis cracks initiation and propagation. 

 

 

Figure 6: The multiscale nature of composite materials: length scales and related constituents 

and damage mechanisms 

 

These cracks cause the degradation of the global laminate stiffness and act as initiation sites 

for delaminations and as stress concentrators for the main load bearing plies, leading to the 

final failure of the laminate. 
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Laminates are often used as adherends for bonded joints, the failure of which can be due to the 

failure of the laminates, by means of the above mentioned mechanisms, or by the failure of the 

bondline. The latter is caused, once again, by damage accumulation at the microscopic scale in 

the form of interface failures or adhesive micro-cracking. 

Finally, structures are made by unidirectional or multidirectional laminates, often bonded 

together by means of adhesive joints, and their failure or degradation is due to the hierarchical 

failure of the constituents relevant to all the smaller length scales. 

As a consequence, if we want to predict the static or fatigue failure at any of the mentioned 

levels (structure, sub-structures, laminates) we must first predict the damage initiation and 

evolution at all the smaller length scales by means of a multiscale approach as schematically 

shown in figure 7. 

 

 

Figure 7: Multiscale approach adopted in the present thesis 

 

This approach, adopted in the present thesis, consists, first, in the observation of the damage 

mechanisms peculiar for each scale, from the micro-scale to the various levels of the macro-

scale, and then in modelling them by means of analytical and numerical tools. The modelling 

phase often consists in the definition of the driving force for damage evolution at a given 

scale, expressed in terms of stress or energy parameters relevant to that scale. Eventually, in 

order to make predictions at the final scale of interest, they have to be linked to parameters at a 

larger scale by means of micromechanical concepts and tools. 
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Keeping in mind this fundamental approach, in the next section the objectives of the present 

thesis will be presented and the main activities briefly discussed.  

 

1.4. Objectives and contents 

With the aim to fill the gaps emerged from the literature and move some further steps towards 

the definition of reliable design procedures of industrial appeal, the objectives of the present 

thesis can be summarised as follows: 

1) Characterisation and modelling of the multiaxial fatigue behaviour of composite laminae 

and laminates; 

2) Characterisation and modelling of the fatigue propagation of bondline cracks in bonded 

joints under mixed mode I + II (opening + sliding) loading. 

In both these fields, the multiscale approach discussed in the previous section has been 

adopted and models have been developed to describe the damage mechanisms observed at the 

various length scales and to link them for the eventual formulation of predictive procedures for 

fatigue damage in multidirectional laminates and bonded joints.  

The experimental and modelling activities relevant to these two research fields are briefly 

described in the following sub-sections. 

 

1.4.1. Multiaxial fatigue of composite laminae and laminates 

As already mentioned in section 1.3 the fatigue behaviour of a multidirectional laminate is 

characterised by a progressive damage evolution during the entire fatigue life, from the first 

cycles to the final separation. The main macroscopic evidence of damage evolution is the 

degradation of the stiffness of the laminate, the entity of which can be significant even much 

before the final failure. This phenomenon is due to the initiation and propagation of cracks in 

the layers oriented off-axis with respect to the external loads. This represents the first 

observable damage mechanism at the macro-scale, occurring since the early stages of fatigue 

life. The accumulation of such cracks, describable as increment of off-axis crack density, is 

responsible for the degradation of the global elastic properties of the laminate. When the crack 

density evolution reaches a saturation condition, theses cracks can trigger the initiation of 

delaminations which produce a further stiffness degradation.  

In addition off-axis cracks act as stress concentrators for the main load bearing plies 

promoting the failure of the fibres and leading to the final failure of the laminate. 

This process is described in figure 8, re-adapted from Ref. [7].  
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Figure 8: Schematic of fatigue damage evolution in multidirectional laminates 

 

It is clear that the first stages of damage evolution, which strongly affect the laminate 

performance in terms of stiffness but also influence the final failure, are controlled by the 

matrix-dominated behaviour of the unidirectional lamina. 

As shown in figure 9, in order predict the stiffness degradation of a multidirectional laminate 

under fatigue loading, the relationship between crack density and global elastic properties has 

to be known and the crack density evolution must be predicted. As mentioned before, the latter 

is a phenomenon controlled by the matrix-dominated fatigue behaviour of a lamina which, as 

highlighted in section 1.2, strongly depends on the multiaxial stress state and on the load ratio.  

On the other hand, the prediction of the final failure of a laminate (stress-life curve of a 

laminate), which is a fibre-dominated phenomenon, cannot be done regardless of the stress 

concentrations induced by the presence of off-axis cracks. For this sake, and also for the 

prediction of crack density evolution and stiffness degradation, a stress re-distribution model is 

needed.   

Keeping in mind the damage path mentioned above, the importance of predicting the fatigue 

damage evolution and the multiscale approach presented in figure 7, the main activities carried 

out in the present work are briefly summarised in the following. 

Experimental activities: 

1.1) Definition of a specimen configuration and test procedure for multiaxial testing of 

composites (chapter 2).  

After a literature analysis and a dedicated experimental campaign, glass/epoxy tubular 

specimens subjected to combined tension/torsion loading were found to be the best solution 

for testing the matrix-dominated fatigue behaviour of a UD lamina. In this way an external 
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multiaxial loading condition leads to combined transverse and in-plane shear stresses, the ratio 

of which can be modulated in the whole range of interest.  

1.2) Characterisation of the matrix-dominated multiaxial fatigue behaviour of UD laminae 

(chapter 3).  

Tubular specimens were fatigue tested under several multiaxial conditions (shear on transverse 

stress ratio) and load ratios. The attention was focused on the influence of the multiaxial stress 

state and load ratio on crack initiation and propagation phenomena and on the damage 

mechanisms at the micro-scale. 

 

 

Figure 9: Prediction of stiffness degradation and fatigue life of composite laminates 

  

1.3) Characterisation of the fatigue behaviour of multidirectional laminates (chapter 4). 

Multidirectional flat laminates were subjected to uniaxial cyclic load leading to an internal 

multiaxial stress state in the off-axis plies. The laminate lay-ups were chosen to obtain 
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multiaxial conditions similar to those adopted for the tubes. The comparisons between flat and 

tubular specimens in terms of crack initiation and propagation highlighted the equivalence in 

the fatigue behaviour under external and  internal multiaxial loading.  

Modelling activities at the micro-scale: 

1.4) Development of an analytical model to predict debond initiation under biaxial static 

loading (Appendix A). 

As mentioned before, fibre-matrix debonding is one of the mechanisms of damage initiation at 

the micro-scale, both under static and fatigue loading. For this reason, an analytical model was 

proposed for the prediction of debond initiation under static multiaxial loads, highlighting the 

effect of the fibre radius and the main interface parameter on the fibre-matrix interface 

strength.   

1.5) Development of a criterion for crack initiation in UD laminae under multiaxial fatigue 

loading (chapter 5). 

On the basis of the damage mechanisms observed at the micro-scale during the experimental 

program on tubular specimens, a criterion to predict the fatigue life to crack initiation in a UD 

lamina was proposed. The criterion accounts for the effect of multiaxial stress states and, in 

view of the equivalence between internal and external multiaxiality, it can be applied 

successfully to tubular as well as flat geometries. 

Modelling activities at the macro-scale: 

1.6) Development of an analytical model for the computation of stress distributions and 

stiffness degradation for multidirectional laminates in the presence of off-axis cracks (chapter 

6).  

An analytical model was developed which predicts the stress re-distribution and the stiffness 

degradation of a laminate as function of the density of off-axis cracks in one or more layers. 

The most innovative issue is that the model accounts analytically for the mutual interaction 

between cracks in different layers.  

1.7) Definition of an analytical procedure for the prediction of the crack density evolution in 

multidirectional laminates under fatigue loading (chapter 7). 

A procedure was developed for the prediction of the fatigue crack density evolution in the off-

axis layers of a multidirectional laminate. It includes the experimental observations on crack 

propagation reported in chapter 3, the crack initiation criterion and the stress distribution 

models presented in chapters 5 and 6, respectively, and the statistical distribution of fatigue 

strength in a UD lamina. 
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1.4.2. Crack propagation in composite bonded joints 

The fatigue life of composite bonded joints is characterised by a crack initiation and a crack 

propagation phase. The first one consists in the onset of a crack in critical positions such as bi-

material corners at the beginning of the bondline. A model was proposed by Quaresimin and 

Ricotta [8] for the prediction of the cycles spent for crack initiation, on the basis of generalised 

stress intensity factors at the corners. 

It was also shown by Quaresimin and Ricotta that the crack propagation phase occurs 

generally in mixed mode (I+II) conditions, which can be due either to multiaxial or uniaxial 

external loads. As highlighted also in Ref. [8], the fatigue crack propagation in bonded joints 

strongly depends on the mixed mode conditions, and a general and reliable criterion 

accounting for this is not available in the literature yet. 

The experimental and modelling activities carried out with the aim of understanding and 

describing the mixed mode crack propagation in bonded joints are briefly reported in the 

following.    

Experimental activities: 

2.1) Characterisation of the static and fatigue crack propagation phenomena in bonded joints 

under mixed mode I + II loading (chapter 8). 

Mode I, II and mixed mode I + II tests were carried out on composite bonded joints in order to 

understand the influence of the mixed mode condition on the interface toughness and crack 

growth rate. Observations of the damage mechanisms at the micro-scale revealed their strong 

dependence on the loading mode. 

Modelling activities at the micro-scale: 

2.2) Definition of a criterion to predict the crack growth rate in bonded joints under mixed 

mode loading (chapter 8). 

On the basis of the propagation mechanisms observed in the experimental campaign, a 

criterion to predict the interface toughness and the crack growth rate under mixed mode 

loading was proposed. 
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2 
Development of a specimen configuration and a test 

procedure for multiaxial fatigue testing of UD 

composites 
 

 

2.1. Introduction 

Structural components under in-service loading are subjected in general to fatigue and, very 

frequently, loading conditions are also multiaxial. This situation occurs for several composite 

parts with primary load-bearing function like, for instance, wind turbines blades, airplane 

wings and landing gears but also bicycle frames and cranks or car suspensions just to mention 

a few. The most obvious design goal is to avoid the fatigue failure, on the other hand, in most 

of the cases, the control and the prediction of the stiffness loss of the part is also crucial. It is 

clear, therefore, the need of reliable design procedures, suitable to predict fatigue failure as 

well as the damage accumulation under real, in-service load conditions, in order to reduce the 

time and the cost for design, prototyping and testing of structural parts made of composites. 

A recent review [1] pointed out clearly that a reliable and comprehensive design criterion 

against multiaxial cyclic loading is still missing in the literature. In the authors' opinion, a 

criterion of general validity cannot be of phenomenological nature, but it should be based, 

instead, on the damage mechanisms which are indeed dependent on the local multiaxial stress 

state.  

Biaxiality ratios have been identified as parameters suitable to quantify the degree of 

multiaxiality of the local stress state [1] and they have therefore to be expressed in terms of 

stresses referred to the local material coordinates system. According to the reference system 

and stress components shown in figure 1, biaxiality ratios can be defined as: 
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The extensive analysis on the influence of several design parameters reported in [1] indicated 

a strong detrimental effect of the shear stress component on the fatigue life. In particular, the 

effect of ratio λ2 has been presented, discussing different results taken from the literature and 

showing that, as the contribution of the shear stress increases, there is a significant reduction in 

the longitudinal fatigue resistance. It is therefore crucial to define a criterion to properly 

describe the mutual interaction between stress components, whose effect is detrimental for the 

fatigue resistance of composite laminates. It is also important to observe that when looking for 

data illustrating the influence of the shear stress ζ6 over the transverse fatigue strength, no 

results at all are available in the technical literature.  

 

 

Figure 1: Global and local coordinate systems, stresses in the local coordinates system 

 

Another important finding discussed in reference [1] is that the knowledge about the damage 

mechanisms and, most of all, the quantitative descriptions of the damage evolution along the 

fatigue life and its dependence on the local multiaxial stress conditions are extremely limited if 

not at all missing. The assessment of the driving force for the damage evolution, leading a 

laminate to fatigue degradation and final failure, requires instead the comprehensive 

understanding of the damage mechanisms occurring at the microscopic scale and their 

quantitative correlation with stress state and fatigue life. 

In general, the final failure, i.e. separation, of a multidirectional laminate is controlled by fibre 

failures. Accordingly, fibre failure and related phenomena can be defined as critical damage 

mechanisms. However, during the fatigue life other damage mechanisms related to the matrix 

or the fibre-matrix interface (i.e. transverse cracks and delaminations) can take place, and they 

can be classified as sub-critical damage mechanisms. Their clear understanding and 

description is very important for two reasons. The first is that sub-critical mechanisms can 

enhance the effect of the critical ones, for example causing stress redistribution and promoting 
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fibre failure in the 0°-oriented plies in regions of high stress concentrations due to the presence 

of off-axis cracks or delaminations. The second reason is that they cause the progressive 

degradation of the laminate properties, such as stiffness and residual strength, which are 

critical parameters in the design of composite structures [2-6].  

It has been observed several times in the literature that the damage onset is characterised by 

the nucleation, propagation and multiplication of transverse cracks, either under static [7-9] or 

fatigue loadings [10-13]. Since these events are basically controlled by the matrix or fibre-

matrix interface properties, it is first necessary to describe the non-fibre-dominated fatigue 

behaviour of a unidirectional (UD) lamina, in order to predict the nucleation and propagation 

of off-axis cracks under a general multiaxial stress condition, once this lamina is included in a 

laminate. This is of course a challenging purpose and it requires an extensive experimental 

activity on UD laminates, oriented to make available a sound database of experimental results, 

to observe the damage mechanisms occurring at the microscopic level and to identify the 

dependence of these mechanisms on the local stress state.  

Unfortunately, the majority of the experimental works in the literature concerning the 

multiaxial fatigue of composites deal with multidirectional laminates for practical application 

and therefore they are not useful to characterise the multiaxial fatigue behaviour of a single 

lamina [1]. Some fatigue results on off-axis UD coupons are presented in [14-18], however 

these specimens are always characterised by a stress state where all the in-plane stress 

components, ζ1, ζ2 and ζ6, are acting together simultaneously. For a proper understanding of 

the damage evolution, its correlation with the local stress state and the production of "clean" 

data, it would be instead important to investigate first the mutual influence of two stress 

components only. 

In particular, a biaxial stress state with non zero transverse stress ζ2 and in-plane shear stress 

ζ6 only, is very useful to investigate the matrix or fibre-matrix interface dominated behaviour, 

which controls the evolution of the sub-critical damage mechanisms. In the best of authors' 

knowledge, experimental fatigue results involving only these two stress components are 

completely missing in the literature. 

In order to fill the gaps identified above and to provide a first contribution in this area, the 

aims of the activity presented in this chapter are: 

1) To define an experimental procedure for multiaxial fatigue testing of composite laminates, 

paying attention to the following aspects: 

− manufacturing of the specimens; 

− assessment of optimal surface finishing and tabbing system; 
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− assessment of the best specimen geometry, combining easiness of testing and 

reliability of the test results.  

2) To carry out some preliminary tests in order to clarify the possible influence of different 

specimen geometry. 

These aims are meant as the first steps towards an extensive experimental characterization, 

presented in chapter 3, oriented to understand the influence of the multiaxial loading condition 

on the fatigue behaviour of composite laminates, paying particular attention to the dependence 

of the damage mechanisms and their evolution on the stress state, as a basis for the definition 

of a damage based predictive multiaxial fatigue criterion. 

 

2.2. Configurations for multiaxial testing of composites  

Because of the abisotropy of composite materials, a local multiaxial stress state can be 

achieved even with very simple loading conditions. In the case of a tension-loaded off-axis 

lamina, all the stress components ζ1, ζ2 and ζ6 are, in general, non zero, and therefore the 

stress state is multiaxial. This kind of multiaxiality, originated from the anisotropic behaviour 

of the lamina, has been defined internal multiaxiality, [1]. Conversely, if external loads are 

applied along different directions, an external multiaxiality condition takes place.  

It is clear that in real structures, both external loads in different directions and off-axis oriented 

plies can be found, and therefore the final local stress state is a combination of internal and 

external multiaxiality. Anyway, in the authors' opinion, there should be no differences 

between these two conditions in terms of the material response, since the local stresses can be 

regarded as responsible for the damage evolution and, eventually, for the fatigue failure, 

independently of the way they are originated. However this will be proved in chapter 4. 

Different test procedures and specimen geometries can be adopted for multiaxial static and 

fatigue testing of composites. Comprehensive reviews on this subject can be found in 

references [19-21]. The most popular sample geometries are presented in figure 2: 

1) off-axis loaded flat coupons; 

2) cruciform flat specimens under biaxial loads; 

3) thin-walled tubes subjected to combined tension/torsion (or bending/torsion) even in the 

presence of internal pressure. 

The first test procedure takes advantage of the fact that an internal multiaxial condition is 

obtained even when an uniaxial load is applied to an off-axis loaded coupon. This test is rather 

easy, specimens are produced without difficulties, and a uniaxial testing machine is sufficient. 
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On the other hand, the presence of two stress components only, ζ2 and ζ6, cannot be obtained 

with this geometry, since all the three in-plane stresses are in general different from zero. In 

addition, care has to be taken in the design of the tabs to obtain a uniform stress distribution in 

the sample and to avoid stress concentrations [3]. Fatigue tests on off-axis loaded UD 

laminates can be found, among several others, in references [14-18]. As a common finding, 

the authors reported a decreasing trend in the position of the S-N curves, expressed in nominal 

stress to the fatigue life, as the off-axis angle (i.e. the shear stress component) increased. 

 

 

Figure 2: Schematic of possible specimen configurations for multiaxial testing of composites 

 

By testing flat cruciform specimens, a multiaxial stress state can be obtained by applying 

external forces to the orthogonal arms of the specimen. If the material coordinate system is 

aligned to the global one, an external multiaxiality is achieved, with the presence of normal 

stresses ζ1 and ζ2. Conversely, if plies are laid up with an off-axis angle with respect to the 

global coordinate system, the stress state results in a combination of external and internal 

multiaxiality, with the presence of all the three in-plane stress components. It is clear that this 

test procedure is not suitable to obtain a biaxial stress state with the transverse and in-plane 

shear stresses only, and to vary their ratio (λ12), which is a condition of interest for the analysis 
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of the non-fibre-dominated fatigue behaviour. In addition, the design of the specimen's 

geometry requires a lot of care, to avoid arms failure and high stress concentrations at the 

corners, as well as to obtain a uniform stress distribution in the central part of the specimen, 

which is indeed the region of interest. In ref. [22] an optimization procedure has been 

proposed to identify the best geometrical parameters for two configurations of cruciform 

specimens, matching the requirements mentioned above. As a further problem, the 

manufacturing of cruciform specimens is far more complicated than that for off-axis coupons, 

since the optimised geometry requires rounded corners and a different number of layers in the 

central region with respect to the arms. Finally, a four-actuator testing machine, suitable to 

apply loads in two normal directions is needed. In our view, all these conditions together make 

testing of cruciform specimens not very attractive. However, to confirm that other researchers 

may have also different views on this problem, some results are available in the literature, in 

particular for static loadings [23-26]. Only few papers report fatigue test results obtained from 

cruciform specimens in the case of multidirectional UD laminates [23, 27] and fabric 

reinforced laminates [28]. No fatigue data have been found for cruciform specimens made 

from unidirectional laminates. Some interesting guidelines for biaxial testing with cruciform 

specimens have been recently presented [29], where it appears that fatigue testing with these 

specimens is indeed not an easy task. 

Considering the amount of publications and data available, the most popular sample geometry 

for multiaxial fatigue loading of composites seems to be that of thin walled tubes, subjected to 

a biaxial/triaxial external loading obtained by applying combined tension (or bending), 

internal pressure and torsion loading. Even in this case, an external multiaxiality is achieved, 

and two main combinations of local stresses can be obtained. If the tubes are manufactured 

with the fibres oriented only at 0° (parallel to the tube's axis), a tension/torsion external 

loading condition leads to a combination of longitudinal and in-plane shear stresses (ζ1 and 

ζ6). On the other hand, if the fibres are oriented at 90° (normal to the tube's axis), the presence 

of the stress components ζ2 and ζ6 is achieved. The required values of the biaxiality ratios λ1 

and λ12 can be easily obtained by properly combining the external tension and torsion loading. 

In any case, the external multiaxial condition can be combined also with an internal 

multiaxiality if the winding angle of the fibres is different from 0° or 90° with respect to the 

tube's axis.  

Fatigue tests results on tubes subjected to internal pressure and tensile loading have been 

presented in Refs. [30-32]. The introduction of internal pressure in not easy indeed because it 

requires a dedicated equipment to pump the oil inside the specimen and originate the hoop 
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stress, testing is therefore rather complicated. In addition, it is not possible to generate a stress 

state with ζ2 and ζ6 only, and modulate the ratio between them. 

Several papers in the literature report fatigue results obtained by applying a combined tension-

torsion loading on tubes, see [33-46] among the others. However, investigations on the mutual 

influence of only two stress components on an unidirectional lamina have not been carried out 

so far and few papers only include analysis of the damage evolution [34, 42, 44-46]. Testing 

tubular samples is rather attractive because of the relative easiness of the specimens' 

preparation and test execution, a biaxial (tension/torsion) testing machine being sufficient. 

Another advantage is that free edge effects, which can influence the results on flat coupons, 

are avoided. In addition, this is the only test procedure that allows to investigate the mutual 

influence of two stress components (ζ2 and ζ6) only.  

 

2.3. Tubular specimens: possible configurations and stress analysis 

In order to obtain information about the influence of the in-plane shear stress on the transverse 

fatigue behaviour, only tubular specimens can be used. In the present work tubes made of 

glass/epoxy UD plies, with the fibres oriented at 90° with respect to the tube's axis, were tested 

under combined tension-torsion loading (figure 3). 

 

 

Figure 3: a) Loading conditions and b) tube's geometry 

 

The tensile load F produces a transverse stress ζ2 on the 90° layers, while the torque MT is 

responsible for the presence of the in-plane shear stress ζ6.  

t 

Di De 

F 

M T 

M T 

F 



Chapter 2. Development of a specimen configuration and a test  

procedure for multiaxial fatigue testing  of UD composites 

 

20 
 

By properly combining the tension and torsion loadings it is possible to obtain the required 

value of the biaxiality ratio λ12.  

The transverse stress ζ2 is constant along the thickness  and it can be easily calculated as  
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2 2 2

4
σ

π e i

F

D D



          (2) 

 

Conversely the shear stress ζ6 varies linearly from the internal to the external diameter. For the 

evaluation of the biaxiality ratio, the maximum shear stress value is considered, i.e. the value 

corresponding to the external diameter calculated as  
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The biaxiality ratio is therefore defined as: 
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To avoid the influence of the curvature and to introduce a stress state as much as possible 

equivalent to a plane stress, the ratio between the maximum and the minimum shear stresses 

(occurring at the external and internal radius respectively) has to be as close as possible to 1. 

That ratio can be calculated as:   
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σ
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σ
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D t

D D
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The variation of the shear stress also implies the variability of the biaxiality ratio across the 

thickness, and the ratio between the maximum and the minimum value is given always by 

equation (5). To investigate the possible effect of the thickness to diameter ratio, specimens 

with two different diameters (Type A and B) and lay-up [90n] were tested. Their geometrical 

properties are listed in table 1. 
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Table 1: Geometrical characteristics of the type A and B tubes  

Type Di (mm) De (mm) t (mm) t/Di σ6,max/σ6,min Number of layers 

A 34 37,8 1.9 0.055 1.11 5 

B 19 22 1.5 0.079 1.16 4 

 

Type A tubes experience a lower variation of the shear stress in the radial direction, providing 

a stress state closer to a plane stress condition with respect to the type B tubes. 

Even if the tubes are subjected to external tension loading only, which generates the transverse 

stress ζ2, additional stress components arise in the hoop and radial direction because of the 

material orthotropy, as shown in Appendix 2.A. The radial stress changes along the thickness 

of the tube, but its value remains always very low, with a maximum of about 0.3% of the 

transverse stress resulting from the axial tension loading. The hoop stress decreases from a 

positive value at the internal diameter to a negative value at the external diameter. The entity 

of the peak values in tension and compression are once again dependent on the internal tube 

diameter and the thickness of the tube, in particular they increase in modulus as the ratio t/Di 

increases. For the two specimen configurations chosen in this work, the hoop stress peak 

values in tension and compression, expressed in percentage of the transverse stress ζ2, are 

equal to +8.77% and -7.95% for the smaller diameter tubes (type B), and +6.27% and -5.84% 

for the large ones (type A).  

In the material coordinates system, the hoop stress is a stress in direction 1, i.e. ζ1, and 

therefore, to obtain a stress state which is as close as possible to a pure biaxial condition (ζ2 

and ζ6), the ratio t/Di  has to be very low. In the case of the present tests the maximum 

transverse stress ζ2 is equal to 35 MPa, and this means that the maximum value of the hoop 

stress, obtained for the type B tubes, is of -2.8 MPa in compression and 3 MPa in tension. 

These values are indeed very low, when considering that they are in the fibres direction, and 

therefore they are neglected in the remaining of the work, where the stress state is considered 

as purely biaxial (ζ2 and ζ6 only). 

 

2.4. Materials, tube manufacturing and test equipment 

All the tubes were obtained by mandrel wrapping of the UD glass/epoxy pre-preg tape UE400-

REM produced by SAATI S. p. A (Italy). A heat-shrinking tape was wrapped around the pre-

pregs on the mandrel and then the tubes were cured in autoclave with a cycle of one hour at 

140°C and 6 bars. Despite the absence of the vacuum bag, the shrinkage of the external tape 
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provided a good compaction effect of the UD layers, and no voids were observed in several 

transverse sections of the tubes analysed under the optical microscope. After curing and 

demoulding, the heat shrinking tape was removed. The laminate properties were measured by 

means of tensile tests on flat coupons produced by hand lay-up of the same pre-preg system. 

UD flat specimens with off axis angles equal to 0°, 45°, and 90° were prepared and tested, 

with the aid of a biaxial extensometer. The resulting in-plane elastic and strength properties 

are listed in table 2. 

 

Table 2: Lamina properties for UE 400 - REM tape 

  σ1,U (MPa) σ2,U (MPa) σ6,U (MPa) E1 (MPa) E2 (MPa) G12 (MPa) ν12 

average 973 50 98 34860 9419 3193 0.326 

st. dev. 59 6.6 - 2365 692 - 0.015 

 

At the beginning of the program an attempt was made to co-cure the tube and the end tabs. 

Some layers of a glass/epoxy fabric pre-preg were wrapped before curing at the two ends of 

each specimen, to obtain directly the end tabs to be gripped by the testing machine (see figure 

4). 

 

 

Figure 4: Type A specimen with co-cured end tabs  

 

However, the majority of the specimens produced were characterised by deep defects at the 

beginning of the tabs, as shown in figure 5. In addition, an irregular surface with small defects, 

due to the manufacturing process, was found in some specimens. To overcome these problems 

and to obtain a uniform value for the external diameter, the specimens were machined on a 

lathe using different speed (750 and 1400 rpm), feed rate (0.04, 0.05, 0.25 mm/cycle) and 

depth (0.25 and 0.3 mm). SEM analyses of the tubes' surfaces revealed several broken fibres 

and matrix cracks due to the machining for every combination of the machining parameters 
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used, as illustrated in figure 6. It is clear that a severe damage is introduced by the machining 

on the tubes surface, and therefore this idea was abandoned and the samples were not tested. 

 

 

Figure 5: Defects near the end tabs 

 

 

Figure 6: Evidence of damage on the specimen's surface due to the machining 

 

The external diameter of the Type A tubes was larger than the clamping diameter of the grips 

(24 mm), therefore, to mount the specimens (without tabs) on the testing machine, a dedicated 

clamping system was developed (see figure 7). It is composed by a support with a 24 mm 

diameter shaft, suitable to house a locking assembly. The two floating conical parts of the 

locking assembly, closed together by screws, force the locking assembly to the support, at the 

external diameter, and to the specimen, at inner diameter. A steel tube with a longitudinal cut 
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is used to better distribute the clamping force to the specimen, and a steel cylinder is inserted 

into the specimen to support the clamp force and avoid local failure. 

 

 

Figure 7: a) Schematic of the clamping system for type A tubes and b) tube installed on the 

testing machine 

 

Small diameter tubes (type B) were manufactured with a uniform external diameter of 22 mm. 

In this case tabs were obtained by wrapping a glass/epoxy pre-preg fabric after the tubes' 

manufacturing. The tabs of 24 mm diameter and 40 mm length were cured in an oven at 80°C 

for 8 hours and the final calibrated length of the tube was equal to 70 mm. As the external 

diameter of the tabs of the type B tubes is equal to 24 mm, they could be mounted  directly on 

the testing machine. To prevent damage or failure of the specimens in the tabs' region while 

closing the grips of the testing machine, a low clamping pressure was used and two 40 mm 

long, hollow steel cylinders were inserted into the specimen ends to carry the clamping load.  

Preliminary tests revealed that under tension-compression fatigue loading, the failure occurred 

always in correspondence of the beginning of the tabs. A 45° fillet between tube and tabs, 

realised by using a two-part epoxy structural adhesive 9323 B/A by 3M and cured at room 

temperature, was enough to overcome the problem and to induce failure in the central part of 

the specimen. 

Taking advantage of the transparency of the glass/epoxy tubes, an internal lighting system was 

also developed to help monitoring of the damage evolution. Two LED lights were inserted into 

the hollow steel cylinders and a translucent rubber tube provided a support function for the 

a) 
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upper cylinder. The lightening system and the final geometry of the type B specimens are 

shown in figure 8.  

 

 

Figure 8: Schematic of lightening system and final geometry for type B tubes (measures in 

millimeters) 

 

The frequency of the observations was adapted to the expected value of the fatigue life to have 

a reliable measure of the cycles spent for the nucleation of cracks. 

The damage evolution during high cycle fatigue tests was monitored also by means of infrared 

analysis carried out with a FLIR SC7600 infrared camera and a lock-in TheSA-Altair 

software. This technique allows the onset of cracks during fatigue testing to be detected and 

from previous experiences, the minimum crack length detectable is about 0.5 mm. 

 

2.5. Results of fatigue tests 

Fatigue tests on the final configurations of the specimens were carried out with an axial-

torsional MTS 809 testing system. In-phase proportional load controlled cycles were applied 

in tension and torsion, with a load ratio R = ζ2,min/ζ2,max = ζ6,min/ζ6,max of 0.05. A frequancy of 

10 Hz has been adopted and no significant temperature increments (always < 3°C) have been 

noticed during fatigue life, for all testing configurations and loading conditions. Three values 

of λ12 were considered (0, 1 and 2). In figures 9-11 the fatigue data are presented in terms of 

the maximum cyclic value of the transverse stress ζ2,max versus the number of cycles Nf to the 

complete separation of the tube. This number of cycles corresponds, as explained better later, 

to the life for the initiation of the first transverse crack. 
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Figure 9: Fatigue data, S-N curve and 10-90% PS scatter band for type A and B tubes, λ12 = 0 

(pure tension) 

 

Figure 10: Fatigue data, S-N curve and 10-90% PS scatter band for type A and B tubes, λ12 = 1 

(tension-torsion) 

  

Figure 11: Fatigue data, S-N curve and 10-90% PS scatter band for type A and B tubes, λ12 = 2 

(tension-torsion) 
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The results for the type A and B tubes are both fitted with a straight line in the double 

logaritmic scales by means of the typical power law 

 

2,max

k

fN σ const             (6) 

 

A log-normal distribution was assumed for the statistical analysis of data. The scatter bands 

related to the 90-10 % of probability of survival are also presented together with the relevant 

scatter index, Tζ, calculated, at 10
6
 cycles, as ζ2,10%PS /ζ2,90% PS . Data for Type A and B tubes 

have been plotted with different symbols but they have been analysed as a single series. The 

analysis of fatigue data and the reasonably reduced values of the scatter index Tζ suggest that 

there are no significant differences between the fatigue behaviour of type A and B tubes, and 

therefore that the influence of the thickness to diameter ratio t/Di can be neglected at least for 

the geometries under investigation. As the type B tubes are much easier to be tested, they can 

be considered as the final suggested geometry for future multiaxial testing of composite 

laminates. The results of the statistical analysis are listed in table 3. 

 

Table 3: Results of the statistical analysis on fatigue data 

  
 

 
Nf = 10

6
 

lay-up λ12 
N° of 

data 
k 

σ2,max50% 

[MPa] 

σ2,max90% 

[MPa] 
Tσ 

[90U,n] 

0 18 11.00 19.62 16.47 1.42 

1 12 9.38 13.62 10.66 1.63 

2 12 11.65 10.55 8.09 1.70 

 

The new data available make it possible to analyse the influence of the biaxiality ratio on the 

fatigue response of unidirectional laminates. Data are then compared in figure 12 

independently of the sample geometry and by keeping as a parameter the biaxiality ratio only. 

It is clearly evident the dramatic effect of an increasing biaxiality ratio which can be also 

translated as a detrimental effect of an increasing shear stress component. This situation 

confirms also in the case of matrix-dominated material response the negative effect of the 

presence of shear stress reported in [1] after the analysis of fibre-dominated fatigue data from 

literature. 
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Figure 12: Influence of the biaxiality ratio λ12  

 

With the aim to collect information on the damage evolution at the macroscopic scale, the 

specimens were analysed during fatigue life by means of eye-observations and lock-in analysis 

with an infrared camera. Both these techniques did not reveal a visible damage accumulation. 

In particular no evidences of a stable (macro) crack propagation were observed during the 

entire fatigue life. In fact, immediately after the nucleation, each crack propagated unstably 

along the entire circumference of the tube, causing the complete failure in very few cycles. In 

this condition, it is clear that the number of cycles to failure presented in figures 9-12 

corresponds to the number of cycles for the nucleation of the first transverse crack. These new 

data are therefore useful to assess and quantify the influence of the local multiaxial stress state 

on the life to crack initiation in unidirectional composites when the material behaviour is 

controlled by the matrix or fibre-matrix interface properties. 

In addition, the axial and torsional stiffness of the tubes were measured during all the fatigue 

tests and no significant stiffness changes were recorded until the last few cycles, when a 

sudden stiffness drop occurred due to the unstable propagation of the nucleated macro-crack. 

This is a typical behaviour for unidirectional laminates in the case of a matrix-dominated 

material response, as confirmed by the results presented in [14, 15]. 

It can be concluded that, as one may have expected, this kind of test is not characterised by a 

progressive macroscopic damage evolution, meant as the nucleation and propagation of 

multiple transverse cracks, as instead happens to a UD lamina constrained between other 

layers in a multidirectional laminate. At this point it is important to remember one of the main 

objectives of the new line of research open with this thesis: the analysis of the dependence of 

the damage mechanisms on the local multiaxial stress state and their evolution during the life 
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of the sample. The information obtained from this analysis represent the necessary basis for 

the development of a damage-based multiaxial fatigue criterion for crack nucleation. For the 

characterisation and analysis of the damage growth after the nucleation phase and its possible 

dependence on the stress state, it seems therefore reasonable to slightly modify the tubes' lay-

up, including some thin constraining layers suitable to modulate and control the crack growth 

and the associated damage evolution. This has to be done, however, paying always attention to 

maintain as much as possible a "clean" biaxial loading condition which is crucial for the aim 

of the present analysis. Proper modifications of specimens' lay-up in this direction are 

proposed in the next section.  

 

2.6. Modifications of specimens' lay-up 

In order to observe the transverse crack propagation phenomenon it has to be made stable by 

adding some constraining tougher layers in addition to the 90° plies. A stable propagation 

phase is obtained testing tubular specimens manufactured first with stacking sequence 

[0F/90U,3] and then [0F/90U,3/0F], where the subscript F means fabric. The constraining effect 

provided by the 0° fabric layers prevents the unstable growth of the nucleated cracks, allowing 

the analysis of the propagation phase. The type and amount of 0° fabric layers in the new 

specimen configurations were chosen to provide a stable crack propagation without altering 

significantly the stress state in the 90° layers. In particular, care was taken not to introduce a 

significant ζ1 component, because we were interested in the influence of shear stress on 

transverse fatigue behaviour.  

 

Table 4: Elastic and strength properties of the fabric tapes 

  

VV345T-DT107A EE106 – ET443 

average st. dev. average st. dev. 

σ1,U (MPa) 431 15 257 7 

σ2,U (MPa) 447 21 239 2.5 

σ6,U (MPa) 85 - 80 - 

E1 (MPa) 21700 82 17033 491 

E2 (MPa) 20880 431 16538 206 

G12 (MPa) 3351 - 3032 - 

ν12 0.159 0.005 0.159 - 
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The following fabric pre-pregs have been used: 

- VV345T-DT107A produced by Deltatech (Italy), glass/epoxy fabric, thickness = 

0.31mm, for the 0° fabric plies of the [0F/90U,3] tubes. 

- EE106-ET443 produced by Saati S.p.A. (Italy), glass/epoxy fabric, thickness = 

0.13mm, for the 0° fabric plies of the [0F/90U,3/0F] tubes. 

The elastic and static strength properties are listed in Table 4. 

2.6.1 [0F/90U,3] tubes 

As a first attempt to stabilise damage evolution, an internal 0° fabric layer was introduced in 

the lay-up of the 19 mm diameter tubes. This solution was sufficient to avoid sudden crack 

propagation, without altering  the stress state significantly. In fact, a peak value of ζ1, equal to 

-9.5% of ζ2, arises in the external surface of the transverse layers under the application of 

tensile load, as calculated from Finite Element (FE) analyses. According to the biaxiality ratios 

previously defined, the value of λ1 = ζ2/ζ1 is always equal to -10.5. Though an infinite value of 

λ1 would be desired for the purpose of the present work, its actual value can be considered 

high enough in modulus to neglect its influence.  

Fatigue tests on [0F/90U,3] tubes were carried out with different values of λ12, namely 0, 0.63, 

1,25 and 2.5. During all the tests, a nucleation and subsequent propagation of the cracks in the 

circumferential direction were observed. In addition, multiple cracking occurred (see Figure 

13), causing a progressive decrease in global stiffness, as shown in Figure 14. Stiffness drops 

are due to the nucleation of a new crack, whereas crack propagation around the tube produces 

a continuous decrease in stiffness.  

 

 

Figure 13: Multiple cracking in a [0F/90U,3] tube 
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Figure 14: Effect of crack onset and propagation on stiffness degradation for a [0F/90U,3] tube 

 

The S-N curves related to the first crack nucleation on [0F/90U,3]  tubes are shown in figure 15 

in terms of the maximum cyclic transverse stress in the 90° plies.  

 

 

Figure 15: S-N curves for nucleation of the first crack on [0F/90U,3] tubes, for λ12 = ζ6/ζ2 = 0, 

0.63, 1.25 and 2.5 (stress calculated in 90° plies) 

 

It is evident that in this case the decreasing trend due to the shear stress component is less 

pronounced than that exhibited by UD specimens, for low biaxiality ratios. This might be due 
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to the presence of defects, observed in some cases on the external surface of some tubes, 

which can act as preferential sites for crack nucleation (see figure 16).  

 

 

Figure 16: Crack initiations at surface defects for [0F/90U,3] tubes 

 

Table 5: Results of the statistical analysis on fatigue data for [0F/90U,3] tubes 

  
 

 
Nf = 10

6
 

lay-up λ12 
N° of 

data 
k 

σ2,max50% 

[MPa] 

σ2,max90% 

[MPa] 
Tσ 

[0F/90U,3] 

0 6 7.99 12.66 8.37 2.30 

0.63 9 9.49 15.17 12.21 1.54 

1.25 11 10.70 13.15 9.97 1.74 

2.5 4 10.02 8.50 7.29 1.31 

 

However, S-N curves according to equation (6) have been calculated as for the UD tubes, and 

the results of the statistical analysis are shown in Table 5. 

2.6.2 [0F/90U,3/0F] tubes 

With the aim of avoiding surface defects which could influence fatigue results in terms of 

crack initiation, a third lay-up has been proposed for 19 mm diameter tubes, using both an 

internal and an external fabric ply. A thinner fabric tape (EE106-ET443) was used to limit the 

introduction of the ζ1 stress component in the transverse layers. In this case, from FE analyses 

the peak value of ζ1 resulted equal to -9.8% of the applied ζ2, giving rise to a biaxiality ratio λ1 

= -10.2, again considered high enough in modulus to be neglected.  

This represents the definitive specimens configuration, since it allows to analyse the fatigue 

behaviour both in terms of crack initiation (avoiding the influence of the surface finishing) and 

crack propagation. 

In the next chapter the fatigue results on this specimen type are reported for several biaxiality 

ratios and load ratios.  
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2.7. Conclusions 

In the present chapter, the possible test configurations for multiaxial fatigue testing of 

unidirectional composites have been analysed. Glass/epoxy tubes with fibres oriented at 90° 

with respect to the axis of the tube and subjected to tension/torsion loading have been found to 

be the best way to obtain a biaxial stress state characterised by the presence of transverse and 

in-plane shear stresses. It has been observed that the lower the thickness to diameter ratio 

(obtained by means of large tubes) is, the lower the variability of the shear stress along the 

thickness and the closer the stress state to a plane stress condition are. Conversely testing of 

large diameter tubes is more complicated due to the difficult in clamping, and it is not worth 

the effort since the fatigue response for large and small tubes, easier to be tested, is found to be 

comparable. On these bases, [90]4 tubes with an external diameter of 22 mm and thickness of 

1.5 mm, and end tabs bonded after the curing process, are suggested as the best specimen 

configuration. Machining of the specimens for the enhancement of surface finishing turned out 

to be a source of more additional defects and it is not recommended. 

The analysis of the damage evolution during fatigue testing indicated clearly the absence of a 

stable, measurable damage growth. Once a transverse crack is nucleated, it propagates 

unstably all along the tube circumference leading to a complete separation of the sample in 

very few cycles. Due to this behaviour, axial and torsional stiffness exhibited only a sudden 

drop in correspondence of the final failure. The new multiaxial fatigue data presented above 

are therefore to be considered as data related to the nucleation of the first transverse crack.  

Under this light, the comparative analysis of the series of multiaxial fatigue data indicates a 

clear and detrimental effect of the shear stress component (and biaxiality ratio λ12) on the 

transverse fatigue strength and life to crack initiation of unidirectional composites.  

For the accurate investigation of the damage growth after the nucleation phase, new specimen 

lay-ups have been proposed, with the inclusion of thin 0° layers suitable to simulate the 

constraining effect of surrounding layers and control the damage evolution, as in the case of a 

UD lamina part of a multidirectional laminate, however without excessively altering the local 

biaxial stress state.  Eventually, tubes with internal diameter of 19 mm and lay-up [0F/90U,3/0F] 

have been defined as the best solution for analysing the influence of the multiaxial stress state 

on crack initiation and propagation in the 90° UD plies. The results of an extensive 

experimental investigation on these specimens is presented in the next chapter. 
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Appendix 2.A 

A closed form solution for the stress distributions in an orthotropic unidirectional composite 

tube subjected to a uniform longitudinal tension is presented. The case of interest for the 

present work is that of a tube with the fibres wrapped at 90° with respect to the tube's axis, 

which, accordingly, corresponds to the transverse direction (2) of the UD lamina.  The uniform 

longitudinal stress is therefore a transverse stress ζ2, as already highlighted in the chapter. 

However, to provide a general treatise of the problem, the homogenised lamina orthotropic 

properties are considered, and a cylindrical reference system r,θ,ℓ is used, bearing in mind that 

directions θ, ℓ and r correspond to the directions 1, 2 and 3 respectively for a 90° wrapped 

tube. Accordingly, the stress components ζθ, ζℓ and ζr correspond to the lamina stresses ζ1, ζ2 

and ζ3 in the material coordinates system. 

In the following, the radial and tangential stresses, ζr and ζθ, are written as functions of the 

radial coordinate r, for a given applied longitudinal stress ζℓ. The geometry of the problem and 

the stress components are defined in figure A1. 

 

 

Figure A1: Loading condition and stress components in the cylindrical coordinate system 
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The polar symmetry of the problem under investigation makes it possible to simplify 

equilibrium equations and relationships between strains and radial displacement u: 
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0rr

r r
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The relations between stresses and strains read as 
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 Ei is the elastic modulus in the i-direction, and  νij are the Poisson's ratii. 

By substituting (A2) and (A3) into (A1), one obtains 
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Eq. (A5) is a non-homogeneous Eulero's equation, whose solution is in the form 
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where θ rm E E , whereas C1 and C2 are constants to be determined equating to zero the 

radial stress, ζr, on the internal (r = Ri ) and external (r = Ri + t ) surfaces of the tube.  

Finally, the radial and tangential stresses are 

 



Chapter 2. Development of a specimen configuration and a test  

procedure for multiaxial fatigue testing  of UD composites 

 

36 
 

 
 

1 1

'

θ

2 2
σ σ 1

m m

r

r r i i

A r r
r G F

E E E D D

      
      

      
      (A7) 

 
 

  
 

1 1
2

θ

θ θ

θ

1 ν 2 2
σ σ ν 1

m m

r r

r

r i i

E K HA m G r F r
r K m

E E A B D C D

                      
          



            

(A8) 

 

where 
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Equations (A7) and (A8) are plotted in figure A2 for the Type B tubes and glass/epoxy 

material properties listed in table 2. For the out of plane properties, a transversely isotropic 

behaviour is supposed, with E3 = E2, ν13 = ν12 and ν23 = ν32 = 0.4. It is worth remind that, in 

this case, the stress components ζθ, ζℓ and ζr correspond to the lamina stresses ζ1, ζ2 and ζ3, 

according to the material coordinate system defined in figure 1.  

 

 

Figure A2: Radial and hoop stresses as a function of the normalised radial coordinate. Type B 

tubes 
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It is evident that the radial stress is very small (0,3% ζℓ), whereas the tensile and compressive 

peak values of the tangential stress (at the internal and external diameters, respectively) 

depends on material properties and thickness to diameter ratio, t/Di. In particular the peak 

tangential stresses are plotted in figure A3 as a function of t/Di for glass/epoxy and 

carbon/epoxy tubes with the fibres wrapped at 90° with respect to the longitudinal axis. It is 

evident that the higher the ratio t/Di is, the higher the peak stresses are. This effect is 

particularly emphasised in the case of a carbon /epoxy system (E1 = 147000 MPa, E2 = 10300 

MPa, G12 = 7000 MPa, ν12 = 0.27).  

 

 

Figure A3: Peak values of the tangential stress for glass/epoxy (G/E) and carbon/epoxy (C/E) 

systems vs t/Di 
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3 

Damage initiation and evolution in glass/epoxy tubes 

subjected to combined tension-torsion fatigue loading 
   

3.1. Introduction 

The fatigue life of a composite part subjected to multiaxial loading is characterised by a 

progressive degradation of its mechanical properties (stiffness and strength) due to damage 

evolution occurring from the very beginning of life to the final failure. 

From the early stages of fatigue life, matrix cracks initiate in the off-axis layers and then 

propagate throughout the laminate width. Examples of this behaviour, responsible for the 

global stiffness degradation of the laminate, can be found in Refs. [1-4] for biaxially loaded 

tubes and in [5-13] for uniaxially loaded flat coupons. The cracks initiated in the off-axis 

layers are preferential sites for the onset of delaminations, usually occurring when the density 

of matrix cracks is close to a saturation condition [8]. The presence of similar damage patterns 

and the importance to account for the damage evolution in the development of fatigue design 

tools, is emphasised also in Refs. [14-15]. These phenomena, however, are not directly 

responsible for the final failure of the laminate. Accordingly, they have been defined as "sub-

critical damage mechanisms" [16]. The overall failure of the laminate is controlled, instead, by 

fibre-related mechanisms, the so called "critical damage mechanisms",  the evolution of which 

might be enhanced by the sub-critical ones [16]. 

As stiffness is a crucial parameter in the design of structural components with composite 

materials, it is essential to predict not only the final failure of laminates but also the 

progressive damage evolution during the entire fatigue life, since it leads to the degradation of 

elastic properties. In  literature it is acknowledged that the loss of stiffness is a function of the 

density of matrix cracks in each off-axis layer, as far as the cracks are completely spanning 

through the width of the laminate (see [17-20] among others). If this condition is not verified, 

the length of those cracks becomes a variable of fundamental importance for a good estimation 

of  stiffness degradation, as reported in [12,19,21]. Accordingly, predicting the evolution of 

crack density during fatigue life, which is controlled by the initiation of off-axis cracks, and 
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the length of the initiated cracks controlled by their propagation in the width direction, is 

essential. 

In a composite structure under external multiaxial loading as well as in a multidirectional 

laminate subjected to uniaxial load, each layer is, in general, subjected to a multiaxial stress 

state, due either to the external loads applied in different directions or to the material 

orthotropy. It is therefore essential to define suitable predictive multiaxial criteria for the 

initiation and propagation of cracks in unidirectional layers, under loading conditions leading 

to a matrix-dominated response. 

In the authors' opinion, reliable criteria should be based on the damage mechanisms occurring 

at the microscopic scale, leading to the initiation and propagation of off-axis cracks. Some 

phenomenological criteria available in  literature  was applied to a large database of 

experimental data in [22], and have been proved to lead, sometimes, to inaccurate and non-

conservative life estimations. Concerning the initiation of matrix cracks in UD laminae, other 

phenomenological criteria can be found in Refs.[23-25]. The development of a damage-based 

multiaxial criterion for crack initiation requires an extensive experimental investigation on UD 

laminae with the aim of understanding the influence of the multiaxial stress state on the 

damage mechanisms leading to a matrix dominated fatigue failure. Several contributions in the 

literature report results on multidirectional laminates under uniaxial [5-13,26, 27] or multiaxial 

external loads applied on tubular [1-4, 28-30] or cruciform [31, 32] specimens. Unfortunately, 

from these works it is far from easy to obtain clear information about the influence of the 

multiaxial condition on the response of the single UD lamina. Results from off-axis fatigue 

tests on unidirectional composites reported in [23-25, 33] reveal that different S-N curves 

(nominal stress versus number of cycle to failure) are related to different off-axis angles. 

These results confirm the influence of the multiaxial condition on the fatigue life of UD 

laminae, but they are related to a stress state where all the three in-plane stress components, ζ1, 

ζ2, and ζ6, are non zero. Differently it would be important, for a deeper understanding of the 

matrix-dominated behaviour, to focus on the mutual influence of the transverse and in-plane 

shear stresses only. 

Concerning the fatigue propagation of off-axis matrix cracks, which usually occurs under 

mixed I+II mode, multiaxial criteria and a comprehensive experimental investigation are not 

yet available in the literature. The pure mode I propagation of transverse cracks in 

multidirectional laminates was studied in [10, 13, 34]. The propagation of cracks in the 90° 

layers of cross-ply laminates was studied by Ogin and co-workers [34] and crack growth data 

were successfully summarized in terms of a Paris curve relating the Crack Growth Rate (CGR) 
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to the maximum cyclic value of the mode I stress intensity factor at the crack tip. Similar 

analyses can be found in Refs. [10, 13], where the mode I propagation of cracks in the 90° 

plies of multidirectional laminates is described by means of a Paris-like curve in terms of the 

range of the mode I Strain Energy Release Rate (SERR or G).  

The analysis of crack propagation in off-axis layers can only be found in Ref. [5], where 

cracks in the 45° and 90° layers of a quasi-isotropic laminate were analysed and Paris-like 

curves were drawn in terms of the range of the total SERR (computed deriving the laminate 

compliance from Finite Elements analyses). The authors reported that all the experimental data 

were reasonably well described by the same Paris-like curve, independently of the off-axis 

angle. However, the available experimental data were not enough to draw significant 

conclusions about the influence of  multiaxiality on the propagation of intralaminar matrix 

cracks. 

Another parameter which has been shown to significantly influence the fatigue behaviour of 

composites is the load ratio R, defined as the ratio between the minimum and the maximum 

fatigue loads. Qi and Cheng [30] tested tubular specimens with lay-up [±θ] (with θ = 35°, 55° 

and 70°) using load ratios of 0 and -1. They found a strong influence of R on the S-N curves 

plotted in terms of the maximum cyclic applied stress. In particular, a dramatic detrimental 

effect was found for θ = 35° and R = -1, with respect to the fatigue curve for R = 0. A lower, 

but still evident effect was also found for θ = 55° and 70°. However, as the reported fatigue 

curves were related to the final failure of the tubes, these results are not useful to understand 

the behavior of a single lamina.  

In this direction, more useful data can be found in the works by El Kadi and Ellyin [24] and by 

Kawai and Suda [25], where tests were conducted on unidirectional glass/epoxy and 

carbon/epoxy laminae respectively, subjected to cyclic uniaxial load with different off-axis 

angles θ. In [24] three values of the stress ratio were considered (R = -1, 0 and 0.5) for off axis 

angles θ = 0°, 19°, 45°, 71° and 90°. Strong differences between the fatigue curves, expressed 

in terms of the maximum cyclic global stress, for R = 0 and 0.5 were observed for each value 

of θ, the slope being lower for higher value of R. Similar conclusions can be drawn for R = 0 

and -1 and θ = 0° and 19°, while very small differences were found between the curves for R = 

0 and -1 related to off-axis angles of 45, 71 and 90 degrees.   

In [25] tests were conducted for R = -1, 0.1 and 0.5 and θ = 0°, 15°, 30°, 45° and 90°. In this 

case a clear influence of R was always found, in particular on the slope of the S-N curves, 

becoming steeper as R decreased. From the data presented in Refs. [24, 25] it is not possible to 

drawn a unique conclusion about the influence of the load ratio on the matrix-dominated 
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multiaxial fatigue behaviour of UD laminae. However, the discordance between the results of 

these two works could be due to the fact that anti-buckling guides were used for 

tension/compression tests by El-Kadi and Ellyin [24].  It is clear that further investigations are 

needed to understand the influence of the load ratio under several multiaxial conditions 

concerning fatigue crack initiation. Moreover no results are available in the literature on the 

effect of R on the crack propagation rate in transverse and off-axis cracks. 

With the aim of carrying out a comprehensive experimental investigation on the initiation and 

propagation of matrix cracks under multiaxial loading conditions, still missing in literature, a 

specific specimen configuration and testing procedure were developed as discussed in chapter 

2 and reported in Ref. [16]. Thin-walled tubular specimens with the fibres aligned at 90° with 

respect to the tube axis and subjected to combined tension/torsion loading were found to be the 

best and most feasible way of obtaining a stress state characterised by the transverse and in-

plane shear stresses only (see figure 1). Tubes with lay-up [90U,n] (where the subscript U 

means unidirectional, and n = 4,5) have been tested with different values of the biaxiality ratio 

λ12 = ζ6/ζ2, revealing a strong detrimental effect of the shear stress on the transverse fatigue 

strength [16, chapter 2]. 

 

 

Figure 1: Tube with 90° aligned fibres subjected to tension-torsion 

 

As the [90U,n] tubes used in [16] and chapter 2 were made of unidirectional 90° layers, 

initiation of the first macro (visible) crack immediately led to its unstable propagation in the 

circumferential direction, preventing the analysis of the propagation phase. To overcome this 

drawback two further lay-ups were proposed in chapter 2, using internal and internal/external 

thin fabric plies in order to stabilise the propagation phase. [0F/90U,3/0F] tubes, where the 

subscript F means fabric, were found to be the definitive specimen configuration. The 
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constraining effect provided by the 0° fabric layers prevented the unstable growth of the 

nucleated cracks, allowing the analysis of the propagation phase. Another advantage is that the 

damage nucleation in the 90° layers of the [0F/90U,3/0F] tubes is almost insensitive to the 

surface finishing and surface defects, differently from [0F/90U,3] and [90U,n] specimens, where 

surface defects could be preferential sites for the initiation of transverse cracks. 

In this chapter the results of an extensive experimental investigation on [0F/90U,3/0F] tubes are 

presented. The attention is focused on the influence of shear stress (λ12 ratio) and load ratio R 

on the initiation and propagation of matrix cracks in the 90° layers of the tubes under 

combined tension/torsion fatigue loadings, which produce the stress components ζ2 and ζ6 in 

the transverse layers. 

Another purpose of  this experimental campaign is to understand the effect of multiaxiality, 

and in particular the amount of shear stress, on the damage mechanisms at a microscopic scale. 

Dedicated SEM investigations of the fracture surfaces were also carried out for this purpose. 

Eventually, in Appendix 3.A results of quasi-static tests on [0F/90U,3/0F] tubes are presented. 

 

3.2. Materials, geometry and test equipment 

As in chapter 2, all the tubes tested in the present work were produced by mandrel wrapping 

and cured in an autoclave with a one-hour cycle at 140°C and 6 bars. 1 meter long tubes (with 

19 mm internal diameter) were produced. From them, 150 mm long specimens were cut, and a 

calibrated length of 70 mm was finally obtained by wrapping glass/epoxy pre-preg tabs (figure 

2). The tabs were cured at 80°C for 8 hours, obtaining an external diameter of the tabbed 

portions of 24 mm (figure 2).  

 

 

Figure 2: Final geometry of the tubular specimens (units in millimetres) 
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As already mentioned in chapter 2 the following pre-pregs were used: 

- UE400-REM produced by Saati S.p.A. (Italy), glass/epoxy UD tape, thickness = 

0.38mm, for the 90° UD plies; 

- EE106-ET443 produced by Saati S.p.A. (Italy), glass/epoxy fabric, thickness = 

0.13mm, for the 0° fabric plies; 

Material properties are listed in chapter 2. 

 

 

Figure 3: Testing set-up (a,b) and lock-in image (c) 

 

The tubes were fatigue tested on an axial-torsional MTS 809 testing system. Proportional 

tension/torsion cycles were applied in load control, with a load ratio R = ζ2,min/ζ2,max = 

ζ6,min/ζ6,max of 0.05, 0.5 and -1 and a frequency of 10 Hz. Three values of the biaxiality ratio 

have been adopted for all the load ratios (λ12 = 0, 1, 2), and also λ12 = 0.5 has been considered 

only for R = 0.05. Temperature increments lower than 5°C were measured for all the testing 

conditions and load levels. In order to limit the temperature increase, a compressed air system 

has been adopted for the specimens tested at high load with R = -1 and λ12 = 2. 

Damage onset and evolution, represented by the nucleation and propagation of transverse 

cracks in the 90° layers, were monitored during the tests by a FLIR SC7600 MW infrared 

camera  (temperature accuracy 20 mK) and lock-in analysis, as well as by eye observations 

with the aid of an internal lighting system. The testing and acquisition systems are shown in 

c) 

b) a) 
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figure 3a) and b). Figure 3c) shows a lock-in image with the clear evidence of transverse 

cracks in the 90° layers of a [0F/90U,3/0F] tube. 

 

3.3. Fatigue tests results: initiation phase 

The results of fatigue tests are presented in this section in terms of stress-life curves, relating 

the maximum cyclic transverse stress in the 90° plies to the cycles spent for  initiation of the 

first crack. Data are shown in double logarithmic scales and fitted by power laws in the  form 

2,maxσk

fN const  , defined on the basis of the assumption of  log-normal distribution of the 

number of cycles to initiation. The results of the statistical analysis on the S-N curves are 

listed in table 1. The inverse slope k of the curves and the reference values (at 10
6
 cycles) of 

the strength at 50% and 90% probability of survival are reported together with the scatter 

index Tζ= ζ2,max10%/ ζ2,max90%. In spite of the relatively limited  amount of data for each series, 

the reduced values of Tζ indicate, in most of the cases, a limited scatter, therefore a statistical 

relevance of the results. 

 

Table 1: Results of the statistical analysis for the S-N curves; reference values for 10
6
 cycles 

R λ12 k 
σ2,max50% 

[MPa] 

σ2,max90% 

[MPa] 
Tσ 

N° of 

data 

0.05 

0 11.48 23.55 20.63 1.30 9 

0.5 12.66 22.33 20.31 1.21 5 

1 12.82 19.39 17.58 1.21 6 

2 12.70 11.79 9.85 1.43 7 

0.5 

0 22.4 33.16 32.15 1.22 4 

1 21.56 26.42 24.71 1.14 4 

2 18.56 16.94 14.93 1.29 4 

-1 

0 9.31 15.44 12.80 1.45 7 

1 8.3 11.39 9.60 1.41 6 

2 11.74 7.3 6.42 1.29 6 

 

3.3.1 Influence of the biaxiality ratio on crack initiation 

In order to highlight the influence of the multiaxial condition on the life to crack initiation, the 

results of fatigue tests are presented in figures 4-6 keeping constant the load level R in each of 

them and changing the biaxiality ratio. A detrimental effect of the increasing shear stress 

component can be seen whenever the results are plotted in terms of the maximum cyclic 

transverse stress in the 90° plies, for all the load ratios considered. 
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Figure 4: S-N curves for nucleation of the first crack on [0F/90U,3/0F] tubes, for λ12 = ζ6/ζ2 = 0, 

0.5, 1 and 2 and R = 0.05 

 

Figure 5: S-N curves for nucleation of the first crack on [0F/90U,3/0F] tubes, for λ12 = ζ6/ζ2 = 0, 

1 and 2 and R = 0.5 

 

Figure 6: S-N curves for nucleation of the first crack on [0F/90U,3/0F] tubes, for λ12 = ζ6/ζ2 = 0, 

1 and 2 and R = -1 
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To highlight a possible influence of the 0° fabric layers on the life to crack initiation, a 

comparison between [90U,4] and [0F/90U,3/0F] tubes is shown in Figure 7, for the same λ12 

values.  

 

 

Figure 7: Comparison between S-N curves for [0F/90U,3/0F] and [90U,4] tubes, for λ12 = ζ6/ζ2 = 

0, 1 and 2 and R = 0.05  

 

It is worth noting that the curves for the UD tubes slightly underestimate the fatigue resistance 

of the 90° layers in the [0F/90U,3/0F] specimens. This can be due to the absence of surface 

defects in the [0F/90U,3/0F] tubes as well as to the constraining effect of the stiffer fabric layers, 

increasing the in-situ strength of the 90° plies. The last phenomenon is more or less 

pronounced depending both on the thickness of the 90° plies and the stiffness of the 

constraining fabric layers. It is, in fact,  proven that the static strength of transverse plies in 

multidirectional laminates is higher than that of the single UD lamina, and it increases when 

the ply thickness is decreased or the stiffness of the surrounding layers is increased [36, 37]. 

The transverse static strength has also been proved to change whether the 90° layer is internal 

or external in a cross-ply lay-up [38]. In Ref. [12] it is also shown that the cycles spent for the 

initiation of cracks in the 90° plies of cross-ply laminates increase as the transverse ply 

thickness decreases.  In this case however, the S-N curves for the two specimen configurations 

appear to be simply shifted by a limited amount, but the influence of the shear stress is 

comparable in the two cases. 

3.3.2 Influence of the load ratio 

The influence of the load ratio on the life to crack initiation is highlighted in figures 8-10 for 

each of the biaxiality ratios. 
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Figure 8: S-N curves for nucleation of the first crack on [0F/90U,3/0F] tubes, for R = 0.5, 0.05 

and -1 and λ12 = 0 

 

Figure 9: S-N curves for nucleation of the first crack on [0F/90U,3/0F] tubes, for R = 0.5, 0.05 

and -1 and λ12 = 1 

 

Figure 10: S-N curves for nucleation of the first crack on [0F/90U,3/0F] tubes, for R = 0.5, 0.05 

and -1 and λ12 = 2 
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At a qualitative level, it can be seen that a higher value of R leads to a higher number of cycles 

to first crack initiation for the same amount of maximum transverse stress, and a tension-

compression loading condition is strongly detrimental for the fatigue strength in terms of the 

maximum cyclic stress. This is highlighted by the change of slope of the S-N curves which 

increases as the value of R decreases. This means that the effect of R is larger at lower stresses 

(bigger difference in terms of number of cycles spent for the initiation of the first crack), and 

the explanation may be that the larger is the load the closer we are to a static failure condition 

which does not depend on the stress ratio R (or stress amplitude) but only on ζmax. 

 

3.4. Fatigue tests results: propagation phase 

With the aim of understanding the influence of the shear stress on damage evolution, crack 

propagation was analyzed on [0F/90U,3/0F] tubes. The crack length measurements, the 

frequency of which depended on the load level, were conducted directly on the specimens 

during fatigue tests. The length of the segment connecting the two crack tips was measured 

with a calliper. Knowing the tube diameter, this length was then converted into a crack angle.  

As shown in Figure11, after the initiation of a small crack in the 90° layers,  propagation 

occurs in the circumferential direction under mixed I+II mode, where the mode I and II 

contributions are related to the tension and torsion loadings, respectively. An examples of 

typical crack propagation are schematically shown in figure 12. A transverse crack initiated 

with an initial angle 2αi of 22.5° respectively. The symbol Np represents the number of cycles 

spent in the propagation phase, whereas Δαr and Δαl are the crack increments at the right and 

left tip, respectively. Finally 2α is the total crack angle, which is then plotted versus the cycles 

of propagation. 

 

Figure 11: Crack initiation and propagation for a [0F/90U,3/0F] tube 
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Figure 12: Example of crack propagation for a [0F/90U,3/0F] tube with λ12 = 2 and ζ2,max = 14 
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The crack propagation curves for some of the conditions investigated are compared in figure 

13 for [0F/90U,3/0F] tubes subjected to a maximum cyclic transverse stress equal to 30 MPa and 

with biaxiality ratios ranging from 0 to 1.5. 

 

 

Figure 13: Crack propagation curves for [0F/90U,3/0F] tubes 

 

The Crack Growth Rate (CGR) for each crack and λ12 value can be calculated as the slope of 

the straight line fitting each propagation curve. Higher shear stress components, i.e. λ12, result 

in higher CGR. The propagation curves can be reasonably described by a linear relationship 

because, as it will be better explained later, the crack tips are subjected to a loading condition 

which does not vary with the crack length, when expressed in terms of the Strain Energy 

Release Rate. In fact, when a cracked ply is constrained between other layers in a flat coupon 

under mode I, the crack growth process was shown to occur in steady state conditions for 

sufficiently high values of the crack length (about twice the ply thickness) [39]. Later in the 

chapter, something very similar is shown to occur in tubular specimens under mixed I+II mode 

loading. Accordingly, a possible increase or decrease of the propagation rate has to be 

attributed only to variations of the local toughness along the crack path. This remains valid as 

long as the crack density is low enough to ensure that all the cracks in the same specimen 

propagate in a non-interactive regime. Conversely, as the crack density increases, crack 

interaction gives rise to a shielding effect, resulting in a lower SERR and, in turn,  a lower 

CGR [39]. Accordingly, the propagation data were fitted with a straight line only until the 

crack density remained low enough to ensure a non-interactive regime between transverse 

cracks and, therefore, a steady state propagation.  
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For a better understanding of the steady state propagation phenomenon and a more suitable 

treatise of the problem with fracture mechanics tools, results need to be analyzed in terms of 

the Strain Energy Release Rate. 

Mode I and II components of SERR are calculated for [0F/90U,3/0F] specimens from Finite 

Element (FE) models developed with ANSYS 11 code. A cracked tube subjected to pure 

tension and torsion loadings was modelled with parabolic orthotropic solid elements, 

SOLID186, and 360 divisions in the circumferential direction. The 0° and 90° plies were 

divided, instead, into one and six elements respectively in the radial direction. Only one half of 

the tube was modelled with different crack extensions and with a semi-length of 10 mm, in 

order to avoid any influence of the presence of the crack on the remote stress field, as well as 

to guarantee a non-interactive regime between cracks. An example of the FE model is shown 

in figure 14. 

 

 

 

Figure 14: Finite Element model of a cracked [0F/90U,3/0F] tube 
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Figure 15: Boundary conditions for the FE model of a cracked tube

 

 

A schematic of the boundary conditions is shown in figure 15. Axial and tangential 

displacements (u and v, respectively) are constrained on the non-cracked portion of the front 

surface, so that the crack is simulated as a non constrained area on 90° oriented plies only. 

Tension and torsion loading conditions are imposed by applying uniform axial forces Fz and 

uniform tangential forces Fθ respectively on the nodes of the external circumference of the 

back surface. Local effects due to the applications of nodal forces vanish after one element 

division from the loaded surface. Mode I and II SERRs are calculated by means of the 

procedure described hereafter. 

According to the definition of the SERR: 
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where the subscripts ζ and η refer to the tension and torsion loading conditions respectively, 

and 2A is the total area of the crack of angle 2α. U is, instead, the energy released during crack 

propagation: 
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In equation (2), ζ2 and ζ6 are the transverse and the in-plane shear stresses acting on the 90° 

plies in the uncracked condition. Δu and Δv are the relative displacements between the two 

faces of the crack in the transverse and tangential directions respectively. Since stresses before 

crack nucleation vary only slightly through the thickness of the 90° plies, they can be 

considered, within reason, constant and equal to their average value, so they can be taken out 

from the integrals of equation (2). Therefore, the integrals of the relative displacements over 

the crack area can be written as the product between their average value and the crack area 

itself.  Equation (2) can therefore be rewritten as 
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     

       (3) 

 

Once average stresses are determined from FE models of an uncracked tube, only the average 

values of the relative displacements, Δuav and Δvav, have to be calculated by changing the 

crack extension. Cracked tubes with a crack extension 2α ranging from 2 to 160 degrees were 

analysed, and the corresponding released energies were calculated according to equation (3). 

The derivatives in equation (1) are eventually evaluated with a numerical approach, allowing 

the mode I and II SERR components to be calculated. Figures 16 and 17 show the computed 

values for GI and GII, with maximum applied tension and shear stresses equal to 1 MPa.  As 

the system is supposed to behave in a linear elastic manner, the results in figures 16 and 17 can 

be easily used for the SERR calculation for every value of the nominal transverse and shear 

stresses, by simply multiplying the results by the square of the applied stresses. 

In both cases the SERR reaches a maximum value, followed by a plateau, at about 2α = 50 - 

60°. Accordingly, a Steady State (SS) condition can be assumed for 2α > 30° . The initial 

crack angle 2αi, measured at the initiation, was usually between 20° and 30°, or even higher. 

Accordingly, the larger part of the propagation phase is spent in the SS condition, and a single 

value of the mode I and II SERRs (calculated as an average value for 2α > 30°) can be 

attributed to each loading condition. As a consequence, a constant value of the CGR can be 
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assumed for each propagating crack, for 2α ≥ 30°, when the crack density is low enough. The 

crack angle against cycles curves can therefore be fitted with straight lines, the slopes of which 

represent the CGR. 

 

 

Figure 16: Mode I SERR as a function of the crack angle for [0F/90U,3/0F] tubes 

 

 

Figure 17: Mode II SERR as a function of the crack angle for [0F/90U,3/0F] tubes 

 

As the analysis of crack propagation will be presented from now on in terms of the SERR, a 

better parameter for quantifying the multiaxial condition is the Mode Mixity, MM = GII/Gtot, 

where Gtot = GI + GII. 

The cracks initiated in all the tested specimens have been measured against the number of 

cycles, the CGR has been calculated for each of them fitting the propagation curve by means 

of a straight line and its value has been associated to the SERR as explained above. By doing 
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so the crack propagation data could be presented in a Paris-like chart relating the CGR to the 

mode I SERR and MM. All the results are shown in the following sub-sections. 

3.4.1 Influence of the Mode Mixity on crack propagation 

To highlight the influence of the MM on the CGR, Paris-like curves are presented in terms of 

the maximum cyclic value of GI, GI,max, for each value of the load ratio R in figures 18-20. It 

should be mentioned that as R is the ratio between the minimum and the maximum cyclic 

stresses, the ratio between GI,min and GI,max is the square of R. 

It is important to note that the steady state condition implies that only one value of GI (and 

CGR) can be associated  with each propagation curve (for 2α ≥ 30°). Accordingly, each point 

in figures 18-20 corresponds to the complete propagation of one single crack with a constant 

propagation rate.  In principle therefore, crack propagation data cannot be fitted by a Paris-like 

curve. However, for design purposes, they can be used to draw a Paris-like diagram to 

correlate the maximum cyclic value of GI to the CGR. The typical equation in the CGR = 

C·(GI,max)
d
 form is used and the coefficients C and d are reported in table 2 for all the loading 

conditions.  

 

Table 2: Coefficients of the Paris-like curves (GI in J/m
2
 and CGR in °/cycle) 

R λ12 (MM) C d 

0.05 

0 (0) 3.78·10
-14

 5.08 

0.5 (0.24) 2.07·10
-10

 3.32 

1 (0.56) 1.27·10
-15

 6.29 

2 (0.84) 3.05·10
-12

 5.77 

0.5 

0 (0) 2.64·10
-26

 9.95 

1 (0.56) 5.19·10
-25

 10.00 

2 (0.84) 1.44·10
-17

 7.95 

-1 

0 (0) 2.18·10
-11

 4.04 

1 (0.56) 3.02·10
-08

 3.07 

2 (0.84) 7.92·10
-08

 4.09 

 

It is worth mentioning again that most specimens underwent multiple cracking, so that more 

than one data point could be obtained from one single specimen, as long as the cracks analysed 

were non-interacting. In spite of the scatter of data, figures 18-20 makes it evident that the 

higher the mode II contribution (higher λ12 or MM value), the lower the value of GI necessary 

to reach a certain CGR. This proves the detrimental effect of shear stress on the mixed mode 

propagation rate, which is particularly evident for λ12 ≥ 1. Instead, data points for λ12 = 0 and 
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0.5 (MM = 0 and 0.24) and R = 0.05 seem to be reasonably described by the same scatter 

band. This allows us to state that with low mode mixity values, propagation is essentially 

controlled by the mode I component only. On the other hand, it is also clear that with higher 

biaxiality ratio values, the mode I SERR  does not represent the driving force for crack 

propagation, since the CGR depends also on the mode mixity. This suggests that a change in 

the propagation mechanism may occur in the presence of a high enough mode II contribution. 

 

 

Figure 18: Paris-like curves for [0F/90U,3/0F] tubes in terms of the mode I SERR for R = 0.05 

 

Figure 19: Paris-like curves for [0F/90U,3/0F] tubes in terms of the mode I SERR for R = 0.5 
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Figure 20: Paris-like curves for [0F/90U,3/0F] tubes in terms of the mode I SERR for R = -1 

3.4.2 Influence of the load ratio on crack propagation 

To highlight the influence of the load ratio the crack growth data in the form of Paris-like 

charts are plotted in figures 21-23 for the same value of Mode Mixity and all the considered 

values of R. 

For all the values of the biaxiality ratio λ12 a larger value of R brings to lower crack growth 

rate for the same values of GI,max, whereas the presence of compressive loading leads to higher 

CGR. Also the slope of the curves is influenced by the stress ratio, as it is lower for R = -1 and 

higher for R = 0.5, indicating that the effect of R is more pronounced at lower SERR levels. 

This is consistent with the larger influence of R shown at lower stress levels for the initiation 

of the first crack in the 90° layers.  

 

 

Figure 21: Paris-like curves for [0F/90U,3/0F] tubes in terms of the mode I SERR for MM = 0 
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Figure 22: Paris-like curves for [0F/90U,3/0F] tubes in terms of the mode I SERR for MM = 

0.56 

 

 

Figure 23: Paris-like curves for [0F/90U,3/0F] tubes in terms of the mode I SERR for MM = 

0.84 

 

The effect of a compressive stress appears to be larger at higher λ12: with the increase of λ12 

curves for R = -1 get farther with respect to that for R = 0.05, implying that adding shear stress 

to compression represents a particularly detrimental loading condition. 

 

3.5. Fracture surfaces analysis 

Fracture surface morphology was extensively investigated to understand the influence of the 

local stress field on the damage mechanisms at the microscopic scale. 

SEM analyses of the fracture surfaces on [90U,4] and [0F/90U,3/0F] tubes revealed a similar 

response for the two specimen configurations. 
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Figure 24 shows details of the fracture surfaces of [0F/90U,3/0F] tubes for different biaxiality 

ratios and R = 0.05. The analysis is focused on the 90° plies. 

For low λ12 values (0 and 0.5) the fracture surfaces were rather smooth and typical of a pure 

tensile failure (figure 24 a and b). For λ12 = 1, instead, shear cusps, typical of shear failure, 

start to appear (figure 24c); this feature is particularly evident for λ12 = 2 (figure 24d). These 

findings are in agreement with the observations discussed in [33] and with the experimental 

evidence reported in [40], where a progressive fatigue damage evolution, by means of inclined 

micro-cracks, was documented in UD laminae in the presence of a high shear stress 

contribution. The presence of some clean fibre surfaces is also evident in the samples shown in 

figure 24. This indicates that fibre-matrix debonding might play a non-negligible role in the 

fracture process. Finally, some broken fibres can be observed in the 90° plies, but the fibre 

failure is thought to occur mainly in correspondence with the final separation of the specimens 

and not to be part of the progressive damage evolution during fatigue life, since the crack 

propagation paths are always parallel to the fibres.  

In conclusion, on a microscopic scale the damage mechanisms are found to depend on the 

local multiaxial stress condition, and a clear change in the damage mechanisms can be 

observed when the shear stress is high enough (λ12 values greater than 0.5), for R = 0.05. 

 

     

a) b) 
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Figure 24: SEM images of fracture surfaces of [0F/90U,3/0F] tubes for λ12 = 0 (a), 0.5 (b), 1 (c), 

and 2 (d), with R = 0.05. Details for the 90° plies. 

 

In figure 25 the fracture surfaces for R = 0.5 are shown. The same conclusions of the previous 

case can be drawn concerning the damage mechanisms and their dependence on the local 

multiaxial condition. In fact a reasonably smooth surface can be observed for λ12 = 0 whereas 

the clear presence of shear cusps is evident for higher biaxiality ratios. 

 

 

Figure 25: SEM images of fracture surfaces of [0F/90U,3/0F] tubes for λ12 = 0 (a), 1 (b) and 2 

(c) with R = 0.5. Details for the 90° plies. 

 

Eventually, the same conclusions are not valid when R = -1. In fact shear cusps cannot be 

clearly observed from figures 26 b) and c). This is probably due to the damage on the crack 

faces induced by the compressive part of the cycle combined with the continuous change in 

direction of the shear stress component. 

 

c) d) 

a) c) b) 
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Figure 26: SEM images of fracture surfaces of [0F/90U,3/0F] tubes for λ12 = 0 (a), 1 (b) and 2 

(c) with R = -1. Details for the 90° plies. 

 

3.6. Conclusions 

Biaxial fatigue tests were conducted on Glass/Epoxy tubes with lay-up [0F/90U,3/0F].  Attention  

was focused on the initiation and propagation of cracks in the 90° unidirectional plies 

subjected to transverse and in-plane shear stresses, combined according to different values of 

the ratio λ12 = ζ6/ζ2. The aim of the experimental campaign was to investigate the influence of 

in-plane shear stress on the initiation, propagation of transverse cracks and on the damage 

modes on a microscopic scale, as well as the effect of the load ratio R on these phenomena. 

The main conclusions can be summarised in the following points. 

i) The presence of shear stress significantly reduces the life spent for initiation of the first 

transverse crack, for a given value of the transverse stress. Different S-N curves, in terms of 

the transverse stress, were found to be associated to different values of the biaxiality ratio, 

highlighting the need for a proper multiaxial criterion for crack initiation. 

ii) The crack nucleation resistance of the [0F/90U,3/0F] tubes is slightly higher than that of the 

[90U,4] ones, due to the constraining effect of the internal and external fabric layers. 

iii) Different Paris-like curves, in terms of the mode I SERR, were found for different 

biaxiality ratio values. In particular, for a given value of the mode I SERR, the Crack Growth 

Rate was found to increase significantly with the biaxiality ratio, mainly when  λ12 ≥ 1. 

iv) A strong influence of the load ratio R has been found on the S-N curves for crack initiation 

and on the Paris-like curves. In particular the slope of the curves depends on R and its 

influence is more pronounced at lower load levels. A particularly detrimental condition is 

represented by the addition of shear stress to tension/compression fatigue cycles. 

v) SEM images of the fracture surfaces for different biaxiality ratios showed different damage 

modes occurring at the microscopic scale and leading to the nucleation and propagation of 

a) c) b) 
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cracks. A wide presence of matrix shear cusps was observed for biaxiality ratios higher than or 

equal to unity for positive load ratios. This experimental evidence will be used later in the 

thesis as a basis for formulating a multiaxial criterion for the matrix-dominated fatigue 

behaviour of unidirectional laminae. 
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Appendix 3.A 

Quasi-static tests were also conducted and the results in terms of strength are reported in figure 

A1 on the ζ2- ζ6 plane. The values of stresses reported are those calculated on the 90° plies at 

the moment of failure. 

 

Figure A1: Quasi-static tests results on the ζ2-ζ6 plane. 

 

In the presence of tensile load the damage initiation was proven to occur in the 90° plies, since 

a transverse crack onset was clearly detectable before the final failure by means of the infrared 
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camera (figure A2). Then, the quasi-static propagation of the nucleated cracks was always 

unstable, bringing the specimen to sudden failure. A different behavior was instead observed 

for the compressive tests. Under pure transverse compression the first damage detected by the 

infrared camera was characterized by sparkles, probably related to the breakage of the fibers of 

the woven layers. The presence of a shear stress component lead instead to a progressive 

damage that involved a large area of the specimens (figure A3), and to a final failure that 

occurred without an evident transverse crack initiation. The interpretation of the data obtained 

under compression was therefore not simple, since it was hard to state if the damage initiated 

in the woven layers or in the 90° layers, that are the only ones the behavior of which is of 

interest for the present analysis. 

 

 

Figure A2: Infrared pictures of a) damage initiation and b) final separation in presence of 

tensile stress. 

 

Figure A3:Infrared pictures of a) damage initiation and b) final separation in presence of 

combined transverse compressive and shear stresses. 

a) b) 

b) a) 
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4 

Damage evolution under internal and external 

multiaxial cyclic stress state: a comparative analysis 
 

4.1. Introduction 

The multiaxial fatigue behaviour of composite materials represents a topic of extreme 

importance and interest for many industrial fields. In fact, composite laminates are 

increasingly used for structural components subjected to cyclic loads, as wind turbine blades, 

airplane wings and car frames just to name a few. In addition, the stress state is, in general, 

multiaxial, it being due to external loads in several directions ("external" multiaxiality) or to 

the material orthotropy ("internal" multiaxiality [1]). 

A recent review [1] points out the lack of reliable and general design tools for multidirectional 

laminates subjected to multiaxial fatigue loading. In addition, information on damage 

mechanisms and their evolution under multiaxial loading, particularly in correlation with the 

multiaxial condition, are missing as well.  

However, the problem is not trivial at all, since the fatigue life of multidirectional laminates is 

characterised by several sources of damage, the progressive evolution of which causes the 

degradation of the global stiffness and residual strength of the laminate. Some macroscopic 

evidences of this behaviour can be found in Refs. [2-6] among the others. Typically, the first 

damage mechanism occurring since the earlier stages of fatigue life is the initiation and 

propagation of off-axis cracks, until a saturation condition is reached. Another, and usually 

subsequent, source of damage is represented by the onset and propagation of delaminations. 

This behaviour has been experimentally documented by several works in the literature (see 

Refs. [7-12] for instance). In particular, the onset and propagation of multiple off-axis cracks 

is of extreme importance to be predicted since it can be responsible of a pronounced stiffness 

reduction much before the final failure of the laminate. In addition, off-axis cracks act as stress 

concentrators for the 0° oriented plies, promoting fibre breaks  in the vicinity of their tips. The 

initiation and propagation of off-axis cracks are matrix or fibre-matrix interface controlled 

phenomena, the prediction of which has to be based on models and criteria suitable to account 

for multiaxial stress states. In the writer's opinion, reliable multiaxial criteria must be defined 
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on the basis of the damage mechanisms at the microscopic scale, leading to the initiation and 

propagation of off-axis cracks. The lack of knowledge on such mechanisms and their 

dependence on the multiaxial condition is also highlighted in Refs. [1] and [13,14]. 

Accordingly, the need to improve the knowledge on this subject by means of dedicated and 

extensive experimental characterisations is clear.  

Several procedures and specimens configurations for multiaxial testing of composites are 

reviewed in Refs. [15-17]. "Internal" multiaxial loading conditions can be achieved by means 

of off-axis flat specimens, while external loads in different directions (leading to an "external" 

multiaxiality) can be applied by means of cruciform or tubular specimens. 

With the aim to improve the understanding of the matrix-dominated fatigue behaviour of UD 

laminae, an extensive experimental activity was carried out on Glass/Epoxy tubes subjected to 

an "external" multiaxial condition, obtained by combined tension and torsion cyclic loads 

[13,14]. Results are reported in chapter 3 of this thesis. 

Quaresimin et al. [1] suggested to used the biaxiality ratios to describe the local multiaxial 

stress state acting on a lamina 

 

6 62
1 2 12

1 1 2

σ σσ
λ , λ , λ

σ σ σ
           (1) 

 

where ζ1, ζ2 and ζ6 are the longitudinal, transverse and in-plane shear stresses in the material 

coordinates system. 

In order to improve the understanding of the matrix-dominated fatigue behaviour of UD 

laminae, a specimen configuration was designed suitable to understand the synergic effect of 

ζ2 and ζ6 on the cycles spent for the initiation of a transverse crack, as discussed in chapter 2. 

To this aim, tubular samples were produced, with the fibres oriented at 90° with respect to the 

axis of the tube. Combining tension and torsion cyclic loads by mean of a biaxial tensile 

machine, different values of λ12 were obtained (0, 1 and 2). The presence of an increasing 

shear stress component was proved to have a detrimental effect on the S-N curves relating the 

maximum cyclic transverse stress ζ2,max to the number of cycles spent for the initiation of a 

transverse crack [13]. As these specimens were unidirectional, this event corresponded to the 

final failure of the tubes, preventing us to analyse the propagation phase. Thus, as shown in 

chapter 3, tubular specimens with lay-up [0F/90U,3/0F], where the subscripts F and U mean 

fabric and unidirectional, respectively, were produced and tested, focusing the attention on the 

initiation and propagation of cracks in the 90° UD layers. Four values of λ12 were obtained (0, 
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0.5, 1 and 2) by means of combined tension/torsion loadings. The detrimental effect of the 

shear stress component was confirmed both for the crack initiation process, treated in terms of 

S-N curves for the onset of the first transverse crack, and the propagation phase, described by 

means of Paris-like curves relating the Crack Growth Rate (CGR) to the mode I Strain Energy 

Release Rate (SERR), GI. In addition, SEM images of the fracture surfaces presented in 

chapter 3 revealed the dependence of the damage modes at the microscopic scale on the shear 

stress contribution. The experimental results and the evidences presented in [13,14] and 

chapters 2 and 3 are useful for the definition and validation of a damage based multiaxial 

criterion for crack initiation which is being presented in chapter 5 and an incoming paper [18]. 

It is important to remind that the activity presented in chapters 2 and 3 is related to an 

"external" multiaxial condition, obtained by means of a biaxial testing machine. However, it 

would be definitely far easier and cheaper to test the multiaxial fatigue behaviour of 

composites by means of off-axis loaded flat coupons, taking advantage of the "internal" 

multiaxiality due to material anisotropy. UD off-axis specimens could be used for this 

purpose, and several works in the literature report S-N curves for different off-axis angles [19-

21]. The main limit of this specimen configuration is that it does not allow to analyse the crack 

propagation phase, which can be studied, instead, by adding 0° layers constraining the off-axis 

plies. The propagation of matrix cracks in laminates has been studied in Refs. [22-25], but 

only in [23] an off-axis angle different from 90° has been considered, which leads to a mixed I 

+ II mode propagation. 

Though there are not specific reasons to believe that the material behaviour should be different 

weather an "external" or an "internal" multiaxiality is applied, it is useful to verify their 

equivalence with a dedicated experimental campaign. Accordingly, the aims of the work 

presented in this chapter are: 

1) To design a specimen configuration for multidirectional flat laminates with off-axis layers 

oriented at an angle suitable to obtain "controlled" multiaxial conditions (λ12 values), for 

instance similar to those adopted in chapter 3 and Ref. [14]; 

2) To analyse the possible effect of the layer thickness on fatigue crack initiation and 

propagation, by including, in the same laminate, a thick and a thin layer with the same 

orientation; 

3) To characterise the fatigue behaviour of the laminates in terms of first cracks initiation, 

crack density evolution, stiffness degradation and crack propagation; 

4) To compare the S-N curves for crack initiation and the Paris-like curves for crack 

propagation with those obtained for tubular samples [14] under similar multiaxial conditions. 
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To these aims, the same Glass/Epoxy pre-preg material of chapter 3 and Ref. [14] was used for 

[0/θ2/0/-θ2]s flat specimens with off-axis angles θ of 50° and 60°, in order to achieve biaxiality 

ratios λ12 = 0.57 and 1.15, as will be better clarified later on. The results of the fatigue tests are 

compared to those for tubes for λ12 = 0.5 and 1.  

 

4.2. Materials, specimen preparation and test equipment 

E-glass/epoxy pre-preg “UE400-REM” by SAATI S.p.A. (Italy) was used in a [0/θ2/0/-θ2]s 

specimen lay-up studying two different configurations using θ=50°or θ=60°, respectively. In 

the following, the two-plies and the central four-plies layers will be referred to as the thin and 

the thick layers, respectively. The laminates were manufactured using hand lay-up of the pre-

preg followed by autoclave curing at 140 °C and pressure of 6 bars, resulting in laminates with 

an approximately total thickness of 
50 4.5mmlayupt 



and
60 4.3mmlayupt 



, respectively. The cured 

ply elastic properties for the UE400-REM have been reported in Ref. [13,14] and chapters 2 

and 3. Their values are listed again in table 1.  

 

Table 1: Properties of UE400-REM cured ply, taken from Ref. [13,14], adopted for [0/602/0/-

602]s specimens 

E1 

[MPa] 

E2 

[MPa] 
ν12 

G12 

[MPa] 

avg. ply thickness 

[mm] 

34860±2365 9419±692 0.326±0.015 3193 0.35 

 

The tensile apparent modulus in the x-direction, Ex, was measured for the produced laminates. 

A value of 17660 ± 500MPa was found for the [0/602/0/-602]s specimens, which is in close 

agreement with the prediction based on the classical lamination theory (17332 MPa), starting 

from the ply properties listed in table 1. The Ex value for the [0/502/0/-502]s laminates was 

found to be of 16720 ± 570 MPa, lower than the expected value of 17823 MPa estimated with 

the classical lamination theory. The reason for this disagreement has been identified in a 

different fibre volume fraction for the two panels, though they were manufactured nominally 

with the same materials and process. By means of a thermo-gravimetric test, volume fractions 

of 0.45 and 0.38 were measured for the [0/602/0/-602]s and [0/502/0/-502]s specimens, 

respectively. Therefore, for the [0/502/0/-502]s laminate the micromechanical formulation 

proposed in Ref. [26] was adopted for the estimation of the ply elastic properties, based on the 

measured fibre volume fraction of 0.38 and typical glass and epoxy elastic properties (Efibre = 

72000 MPa, νfibre = 0.2, Ematrix = 4200 MPa, νmatrix = 0.34). The results are show in table 2.  
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Table 2: Estimated properties, adopted for [0/502/0/-502]s specimens 

EL 

[MPa] 

ET 

[MPa] 
νLT 

GLT 

[MPa] 

avg. ply thickness 

[mm] 

30620 8620 0.2985 3250 0.375 

 

Using these values as input for the classical lamination theory, the predicted Ex for the 

[0/502/0/-502]s specimens is equal to 16300 MPa, in good agreement with the experimental 

measurements.  

It is also worth mentioning that the average ply thickness is equal to 0.35 and 0.375 for the 

[0/602/0/-602]s and [0/502/0/-502]s specimens, respectively. 

Finally, micrographic analyses revealed that in the [0/502/0/-502]s samples the thickness of the 

thick 50° layer is 1.88 (instead of 2) times that of the thin one. This has to be accounted for in 

the following sections of the paper, mainly for the calculation of the SERR for the crack 

propagation analysis in section 5.  

The cured laminates were cut into uniaxial tensile test specimens with the geometry 

2300 24mmL W   (including 75 mm tabs at each end). Uniaxial fatigue tests were performed 

using a hydraulic test machine with hydraulic grips, see figure 1. The deformation was 

measured using two back to back mounted 25 mm/±2.5 mm  extensometers and a load cell of 

100 kN. 

 

 

Figure 1: Fatigue test set-up and acquisition system 

 

Cyclic loads were applied under load control with a frequency in the range of 3-5 Hz 

following a sine variation of the load with a R-value of min max/ 0.1R P P  . Based on the 
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initial specimen stiffness of the individual test samples, the maximum load level, maxP , was set 

aiming for different initial maximum strain values in the range of 0.4% to 1.1%. As the 

average stiffness of the specimens degraded throughout the fatigue test due to damage 

evolution (see later in section 4.3) the average strain value increased during the test while the 

prescribed load amplitude was kept constant. The glass fibre reinforced epoxy is 

semitransparent and by using a uniform distributed light source it was possible to observe and 

follow crack initiation and growth throughout the fatigue tests. In order to avoid the 

extensometers to influence the crack length measurements, the extensometers were mounted at 

the bottom end of the test samples as seen in figure 1. Damage evolution was monitored by 

means of a digital reflex camera used in an automatic images acquisition system. Thereby, it 

was possible to extract the crack density and crack growth of the individual cracks as a 

function of number of fatigue cycles. 

The biaxiality ratios λ12 and λ1 (equation 1) can be used to quantify of the degree of 

multiaxiality of the stress state in the off-axis layers, being ζ1, ζ2 and ζ6 defined according to 

the reference system in figure 2. Since the matrix-dominated fatigue behaviour is of interest 

for the present work, as mentioned in the introduction, particular attention is focused on the 

biaxiality ratio λ12. The dependence of λ12 on the orientation θ of the off-axis layers is shown 

in figure 2.  

 

 

Figure 2: Biaxiality ratio, 12l , as a function of the angle θ calculated from a full 3-D finite 

element model 

 

The curve is based on a full 3-dimentional finite element calculations, but could also be based 

on a 2-D laminate calculation as well. The commercial code Abaqus has been adopted for FE 
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modelling. 8 nodes C3D8RH elements have been used, with 4 divisions for each ply. Figure 2 

has been obtained with the elastic properties listed in table 2, whereas a transversely isotropic 

behaviour has been assumed for the out-of-plane properties (E3=E2, G13=G12, ν13=ν12, ν23=0.4, 

G23=2900 MPa).  

The transverse stress ζ2 is positive (tensile) and has an increasing value for increasing angles 

above 30  while it has a small negative (compressive) value for angles below 30 with a 

vanishing stress for 0   . The shear stress ζ6 vanishes for the off-axis angle 0 and 90 , 

while it has a maximum around 45 50  . In the present study, the two angles 50   and 

60    were chosen such that the biaxiality ratio 12l  only slightly depends on the precise 

value of the angle thus being rather insensitive to small errors in the fibres orientation in the 

hand lay-up process. The biaxiality ratios for the two lay-ups were found to be 50

12 1.15l  


 

and 60

12 0.57l  


, which are also useful for comparisons with the initiation and propagation 

results on tubular samples tested at λ12 = 0.5 and 1 under tension/torsion loading. The ζ1 

component in these cases is such that biaxiality ratios 50

1 0.67 
l  and 60

1 2.14 
l  are 

achieved. In both cases the longitudinal stress ζ1 is of the same order of magnitude of the 

transverse stress and therefore a matrix-dominated behaviour, mainly driven by the transverse 

and shear stresses, is expected.  

 

4.3. Crack initiation, multiplication, growth and stiffness degradation 

The first damage mode occurring during fatigue life was the onset of intralaminar cracks in the 

off-axis layers.  

 

  

Figure 3: S-N curves for the initiation of the off-axis cracks for a) [0/502/0/-502]s and b) 

[0/602/0/-602]s specimens 
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As expected, the first crack initiation was followed by multiple onsets in the whole specimen 

length. As far as these initiation sites were far enough from each other, the cycles spent for 

each crack onset could be considered as independent fatigue results, accounting for the 

statistical distribution of fatigue strength along the specimen length.  Figures 3a) and b) show 

the S-N data for the initiation of the first cracks for each load level, for θ = 50° and 60°, 

respectively. The curves are presented in terms of the maximum cyclic transverse stress ζ2 in 

the off-axis layers. It can be noticed that the initiation data for the thick and the thin layers are 

reasonably well described by the same scatter band. 

Increasing the number of cycles the number of cracks progressively increased, and the 

initiated cracks propagated along the longitudinal direction of the layer. Often in the literature 

the crack multiplication phenomenon is described in terms of evolution of the crack density, 

meant as the number of cracks divided by the length of the observation zone, measured 

perpendicularly to the propagation direction. Referring to the geometry shown in Fig. 4, the 

above mentioned crack density ρ can be calculated as follows. 

 

ρ
total N of cracks

AC


          (2) 

 

For a better estimation of the state of damage the crack length should be incorporated in the 

definition of the crack density, as already highlighted in [14, 27-29] and chapter 3. 

 

 

 Figure 4: A representative crack density image showing both crack in the thin and thick off-

axis layer. 
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Accordingly the weighted crack density has been defined as a weighted number of cracks per 

unit length in the direction orthogonal to the crack path, see figure 4. Defining the crack 

density, the cracks were weighted with their length. In practical this was done by classifying 

the cracks falling into the following 8 groups of crack lengths (12.5%, 25%, 37.5%, …, 100%) 

where 100% is a crack running throughout the full width of the test sample. The weighted 

crack density, ρw, is then calculated as  

 

12.5% 25% 100%0.125 0.25 ... 1.00crack crack crack

w

N N N

AC

  





     

  (3) 

 

Using equation (3) together with the output from the automatic images acquisition system it 

was then possible to plot the evolution of the crack density in the thin and thick layer for the 

two cases, as shown in figure 5. As one may expect, crack density increases as the applied 

initial strain increases. At high number of cycles, the entity of which depends on the load 

level, a saturation condition is reached. The ratio between the saturation values of the crack 

density in the thin and the thick layers is found to be approximately inversely proportional to 

the ratio between the layers' thickness. 
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Figure 5: Weighted crack density for [0/502/0/-502]s specimen in the thin (a) and thick (b) layer 

and [0/602/0/-602]s specimen for the thin (c) and thick (d) layer 
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dependence of the stiffness reduction on the load level and that the stiffness reduction occurs 

rather early in the fatigue life. The lower bound for the stiffness degradation can be estimated 

with the ply discount method and it corresponds to the case where the 0° layer carries all the 

load. For 50   and 60    this corresponds to a stiffness reduction of 0/ 0.63x xE E  and 

0/ 0.65x xE E  , respectively. The stiffness is seen to saturate on a higher level indicating that 

the off-axis layers still carry some load even in the saturation condition. 

 

 

 

Figure 6: Stiffness degradation during fatigue tests for a) [0/502/0/-502]s and b) [0/602/0/-602]s 

specimens 
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isolated cracks initiated in the first stages of each test have been selected for the analysis of the 

propagation phase.  

Based on the finite element simulation described in the next section, a crack can be considered 

as isolated as long as the ratio between the orthogonal distances to the neighbouring cracks ,L , 

is larger than 4 times the thickness, h, of the layer.  

In addition, as it will be shown later the Energy Release Rate for tunnelling cracks is 

independent on the crack length if the tip is far enough from the edges of the specimen. 

Indeed, figure 7 shows a typical measurement giving a rather linear relation between the crack 

length a and the number of cycles of propagation Np, the Crack Growth Rate (CGR) being 

equal to the curve's slope.  

The measured CGRs of the thin and thick layers are plotted in figure 8 as a function of the 

initial strain level.  

Each point corresponds to a single crack propagating with a constant rate. It is seen that, for a 

fixed applied strain level, the crack growth rate in the thin plies is significantly lower than in 

the thick ones. 

 

 

 

Figure 7: Example of crack propagation curve in the thin layer for the [0/502/0/-502]s lay-up, 

and ε = 0.7% 

 

a = 2.74E-04·Np + 2.55

0

5

10

15

20

25

30

35

0 50000 100000 150000

cr
ac

k
 l
en

g
th

, 
a 

[m
m

]

propagation cycles Np

(a)

(b)

(c)

(a) 

load direction 

a 
(b) 

a 
(c) 

a 



Chapter 4. Damage evolution under internal and external  

multiaxial cyclic stress state: a comparative analysis 

85 
 

 

Figure 8: Crack Growth Rate  versus the initial strain level tests for a) [0/502/0/-502]s and b) 

[0/602/0/-602]s specimens 

 

4.5. Finite Element calculation of SERR 

With the aim to analyse in detail the crack propagation phase and provide useful design tools, 

the Strain Energy Release Rate (SERR) has been calculated for the cracks propagating in the 

±θ layers of the lay-ups under investigation. Finite Element (FE) analyses have been carried 

out with the code Abaqus. 

First, an entire specimen with one crack only was modelled, in order to compute the SERR 

associated to an isolated crack. The Abaqus' J-integral calculation feature was adopted for the 

SERR calculation. 8-nodes C3D8RH elements were used with an element size of 0.0125 mm 

at the crack front. The J-integral was calculated through circular paths at 61 locations along 

the thickness of the cracked layer which was divided in 30 elements along the thickness 

direction. Convergence has been found to occur at the 5th circular contour. 

The value of the J-integral associated to a certain crack was averaged over the 61 calculation 

points through the thickness direction z, according to equation (4). 

 

 0

1 h
J J z dz

h
            (4) 

 

In most of the simulations, a straight crack front was used even though this does not represent 

the correct crack front shape. In reality, the shape should be determined such that J(z) = Gc, 

being Gc the critical SERR. For a fixed mode mixity, this corresponds to a constant value of 

J(z). Nevertheless, for a general case the mode mixity may vary in the thickness direction 

resulting in a critical energy release rate which may vary too. For the pure mode I case, 

Nakamura and Kamath [30] showed that the average J-integral value (calculated with the 
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stress intensity factor) is rather independent on the actual shape of the steady state crack front 

indicating that a straight crack front can be used. A similar observation was made here 

comparing the average value of J for the straight front with the corresponding value obtained 

for a non-straight crack front. 

Different crack length values were considered in order to evaluate the possible influence on 

the SERR. The results of this analysis for the [0/502/0/-502]s specimens is shown in figure 9 

where the crack length is normalised to the layer thickness.  

The SERR was computed for both the thick and thin layers. It can be noticed that the SERR 

has an increasing trend for short cracks but after a length approximately twice the layer 

thickness it reaches a plateau.  

 

 

Figure 9: Total SERR vs normalised crack length, lay-up: [0/502/0/-502]s, ε = 1.1% 
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constant during the propagation phase there is no reason for a crack to increase its growth rate, 

other than variations of the local toughness due to the presence of defects or to the local 

microstructure, as already mentioned in chapter 3 for tubes. 
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(defined as MM = GII/Gtot) and this makes it important to know the mode decomposition, 

besides the total value of the SERR. It is worth highlighting that, being the mode mixity based 

on the SERR components, it is a better parameter to quantify the multiaxial condition when 

talking about the propagation phenomenon, with respect to the λ12 ratio.  

To address the problem of the determination of the mode I and II contributions, another way to 

determine the energy release rate, proposed by Ho and Suo [31] was adopted. It consists in 

computing the steady state energy release rate by determining the work necessary to close the 

crack.  Ho and Suo [31] used this method to compute the steady state energy release rate for a 

mode I tunnel crack but this can be generalized to the mixed mode case using the generalized 

relation 

 

, , , 2 6
0 0

1 1
( ) ( )

2 2

h h

tot ss I ss II ss n tG G G z dz z dz
h h

       
                                                    

 (5)
  

 

  

where z is the through the thickness direction and varies from 0 to the ply thickness h. In 

equation (5), the stress components ζ2 and ζ6 are those acting in the considered layer before 

the initiation of a crack.
 
The symbols δn and δt are the relative crack faces opening and sliding 

displacements, respectively (see figure 10), in the presence of a crack in the considered layer. 

For the application of equation (5), FE models have been realised with a single crack in the + 

or - θ layers. A crack length equal to 50% of the maximum crack length was modelled.  

 

 

Figure 10: Schematic of the crack opening and sliding displacements for the calculation of the 

steady state SERR components  
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δn δt 

cutting plane 



Chapter 4. Damage evolution under internal and external  

multiaxial cyclic stress state: a comparative analysis 

88 
 

The cracked layers were meshed with 30 elements in their thickness, the confining layers with 

10 elements and eventually 4 divisions were adopted for the remaining layer. The stress 

components (ζ2 and ζ6), which are constant in the thickness direction in the corresponding off-

axis layer, can be easily computed by means of the classical lamination theory. The crack 

opening and sliding profile were extracted from the nodal displacements at the crack surface 

away from the crack front and far enough from the edges of the plate. An advance of using this 

procedure instead of the J-integral approach is that the values needed for equation (5) are more 

straight forward to extract from the finite element model and that these values do not depend 

at all on the actual shape of the crack front. 

In addition the total SERR can be decoupled into its mode I and II contributions by 

independent calculation of the two integrals in equation (5). 

The results for the steady state values of GI, GII and Gtot (GI,ss, GII,ss, Gtot,ss) are reported in 

table 3 for the thick and thin layers of both the specimens configurations. It is also shown that 

the total steady state SERR computed with equation (5) is consistent with the steady state 

value of the J-integral, their difference being lower than 3%. 

 

Table 3: SERR components, J-integral and f for ε = 1.1% 

 thick thin 

Lay-up 
GI,ss 

[kJ/m
2
] 

GII,ss 

[kJ/m
2
] 

Gtot,ss 

[kJ/m
2
] 

J 

[kJ/m
2
] 

f 
GI,ss 

[kJ/m
2
] 

GII,ss 

[kJ/m
2
] 

G tot,ss 

[kJ/m
2
] 

J 

[kJ/m
2
] 

f 

[0/502/0/-502]s 0.207 0.382 0.589 0.607 1.94 0.112 0.206 0.318 0.326 1.96 

[0/602/0/-602]s 0.527 0.246 0.773 0.797 1.03 0.263 0.123 0.386 0.399 1.03 

 

With the aim to define a generalised parameter independent of the layer thickness and load 

level, Hutchinson and Suo [32] proposed to adopt a normalised driving force f defined as 

 

,

2

2

'

σ

tot ssG E
f

h





           (6) 

 

where E' = E2/(1-ν21
2
). 

The normalised parameter f does not depend on the stress level, identified by the transverse 

stress ζ2, and on the layer thickness h.  On the other hand it depends on the stiffness and 

orientation of the constraining layers, but it is reasonable to assume that the constraining effect 

provided by the surrounding plies is similar for the thin and the thick layers. In fact, as can be 
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observed from table 3, the value of f is the same for the thin and thick plies for each lay-up (a 

1% difference can be considered negligible).  

As shown in section 4.3, multiple cracking occurred during fatigue life. This produces a 

shielding effect the consequence of which is a lower value of the steady state SERR as the 

crack density increases. This phenomenon was already shown in Refs. [31,32]. In the present 

work the normalised driving force f was computed with the J-integral approach considering 

several values of the crack density. Regularly spaced cracks with the same length, high enough 

to provide a steady state growth condition, were modelled along the entire specimen and the J-

integral was computed and then normalised according to equation (6). The results for the 

[0/502/0/-502]s specimens are plotted in figure 11 versus the normalised crack density h/L, 

where L is the crack spacing equal to the inverse of the crack density. 

 

 

Figure 11: Normalised driving force f versus the normalised crack density h/L, 

lay-up: [0/502/0/-502]s 

 

It can be observed that when h/L is lower than 0.25 the f value is constant and equal to that 

computed for an isolated crack. This allowed us to consider, for the analysis of the steady state 

propagation phase, the first few cracks initiated in each specimen, until the crack density was 

low enough, and therefore the cracks could be considered independent.     

 

4.6. Paris-like curves  

After calculating the steady state value of the SERR, the crack propagation data reported in 

figure 8 can be presented in terms of Paris-like curves relating the crack growth rate to the 

total SERR, Gss. In figure 12 a) and b) the results are reported for θ = 50° and 60°, 
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respectively. It can be seen that in both cases the series of data for the thick and thin plies are 

reasonably well collapsed in a single scatter band. This allows us to conclude that the steady 

state SERR can be regarded as the driving force for the propagation of tunnelling cracks, as it 

is suitable to capture correctly the influence of the layer thickness on the CGR.  

In Fig. 12 a) and b) all data for the thick and thin plies were analysed together and fitted with 

the typical power law CGR = C·Gtot,ss
d
 represented by a solid line. The 90-10% scatter bands 

are also calculated. The coefficients of the Paris-like curves are eventually reported in table 4.  

 

 

Figure 12: Paris-like curves for a) [0/502/0/-502]s and b) [0/602/0/-602]s specimens 

 in terms of Gtot,ss and associate 10-90% scatter bands 

 

Table 4: Coefficients of the Paris-like curves (when G tot,ss in kJ/m
2
 and CGR in mm/cycles) 

Lay-up d C50% C90% 

[0/502/0/-502]s 4.41 0.671 1.646 

[0/602/0/-602]s 3.79 0.816 4.124 
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4.7. Comparison with external multiaxial fatigue results 

In this section the fatigue test results presented in this chapter are compared to those obtained 

on tubular specimens, made of the same pre-preg material, presented in chapter 3 and Ref. 

[14]. Glass/Epoxy tubes with lay-up [0F/90U,3/0F] were tested with R = 0.05. The attention was 

focused on the initiation and propagation of cracks in the 90° UD plies, made of the UD-

400/REM tape. In figures 13 a) and b) the S-N data for the initiation of the first crack in the 

90° layers of the tubes, taken from chapter 3, are shown and compared to those for the first 

cracks initiation in the [0/θ2/0/-θ2]s laminates presented in section 4.3.  

 

 

Figure 13: Comparison between the S-N data for the first cracks initiation for tubes [14] and 

present results for a) [0/502/0/-502]s and b) [0/602/0/-602]s specimens 

 

The tubes' results for λ12 = 1 are compared to those for the flat laminates with θ = 50°, 

corresponding to a biaxiality ratio of 1.15, whereas the data for the tubes with λ12 = 0.5 are 

compared to those of the flat specimens for θ = 60°, with biaxiality ratio equal to 0.57. In both 
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cases it can be seen that the results are reasonably consistent. In particular the position of the 

S-N data for the tubes are only slightly lower than those for the flat laminates, and this can be 

due to small differences in the cured ply properties (fibre volume fraction for instance), the 

constraining effect provided by the surrounding layers which are different for the two kinds of 

samples and the presence of a certain amount of longitudinal stress ζ1 in the flat coupons. It 

can also be noted that the slope of the curves is consistent, and this is a very important issue 

since it represents the rate of the damage evolution during fatigue life, which is found to 

depend on the local multiaxial stress state, no matter if the it is originated by external 

multiaxial loads (tubes) or by the material anisotropy (flat specimens). 

The crack growth data for the flat specimens presented in section 4.6 in terms of the total 

SERR are also compared, in figure 14, to those obtained for the tubes with a similar multiaxial 

condition, i.e. λ12 = 1 and 0.5 (MM = 0.56 and 0.25). 

 

 

Figure 14: Comparison between the crack growth data for tubes [14] and present results for a) 

[0/502/0/-502]s and b) [0/602/0/-602]s specimens 

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0.01 0.1 1

C
G

R
 [

m
m

/c
yc

le
]

Gss = GI,ss+GII,ss [kJ/m2]

thin (+50°, MM =0.65)

thick (-50°, MM = 0.65)

tubes (MM = 0.56)

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0.01 0.1 1

C
G

R
 [

m
m

/c
yc

le
]

Gss = GI,ss+GII,ss [kJ/m2]

thin (+60°, MM=0.32)

thick (-60°, MM=0.32)

tubes (MM=0.25)



Chapter 4. Damage evolution under internal and external  

multiaxial cyclic stress state: a comparative analysis 

93 
 

Also in this case it can be seen that the results for similar values of the MM are reasonably 

consistent, confirming that the SERR is the driving force for the crack propagation, for a given 

mode mixity. 

It can be concluded that the damage initiation and evolution under fatigue loading depends on 

the local multiaxial conditions only, expressed in terms of the ratios between the ply stresses 

in the material reference system, or in terms of the mixity ratio between the mode I and II 

components of the SERR. As a consequence, the characterisation of the multiaxial fatigue 

behaviour of composite laminae and laminates could be carried out with flat specimens, taking 

advantage of the local multiaxial stress state originated by the material anisotropy. This is far 

easier than adopting more complicated test configurations in which external loads are applied 

in multiple directions (tubes under tension/torsion for instance).   

 

4.8. Conclusions 

The results of an extensive experimental campaign in multidirectional glass/epoxy laminates 

have been presented and discussed. The aim of the work was to compare the evolution fatigue 

damage in these laminates with that measured on tubes tested under tension-torsion loading 

conditions. The lay-up of the laminates was designed in such a way to introduce a local 

multiaxial stress state comparable to that present in the tubes subjected to external multiaxial 

loading.   

The comparison of S-N data for the initiation of fatigue cracks and Paris-like curves indicates 

that the evolution of fatigue damage in multidirectional laminates tested under uniaxial cyclic 

loading and tubes tested under multiaxial external loading is basically the same, provided that 

the local multiaxial stress states described in terms of biaxiality ratios are similar. This result is 

very important in view of an extensive characterisation of the influence of multiaxial stress 

state on the fatigue response of composite laminates.  
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5 

A damage based model for crack initiation in 

unidirectional composites under multiaxial cyclic 

loading 

 

5.1. Introduction  

Most of the static and fatigue failure criteria for unidirectional (UD) composites are based on 

macromechanical quantities such as the nominal stresses in the material coordinate system, 

which are often used in a polynomial expression describing the failure condition. Tsai-Hill and 

Tsai-Wu criteria are some classical examples for the static behaviour. An improvement to 

them is achieved by Puck’s polynomial criterion [1], since it involves the macroscopic stresses 

lying on the fracture plane. However, the last mentioned approach is still a macroscopic and 

phenomenological criterion, thus not completely accounting, by definition, for the actual 

damage mechanisms at the microscopic scale. With regards to the fatigue behaviour, some 

empirical criteria are also available in the literature, providing sometimes inaccurate 

predictions, as discussed in [2]. In addition, Kawai [3] extended the Tsai-Hill polynomial 

criterion to fatigue, combining it with a continuum damage model to obtain a power law for 

the S-N curves, but without taking into account the different damage mechanisms occurring 

for different multiaxial conditions. Moreover, the description of the fatigue behaviour for both 

fibre and matrix-dominated response with one equation only seems not consistent from a 

physical point of view.  

El-Kadi and Ellyin [4] proposed to use a polynomial expression involving the strain energy 

density components instead of the stresses, each contribution being normalized with respect to 

the static limit value. They obtained reasonable agreement with their own experimental data, 

but the limitations of this criterion are the same already reported for that of Kawai.  

Before those attempts, Hashin and Rotem [5] proposed a polynomial criterion, separating the 

fibre and the matrix dominated behaviours, which have to be described with different 

expressions, to be used depending on which is the critical component in the composite lamina 

(fibre or matrix). In particular, for the matrix dominated behaviour they proposed to involve in 
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a polynomial expression only the transverse and in plane shear stresses, weighted by means of 

fatigue functions to be experimentally calibrated.  

The fibre and inter-fibre-related failure are treated separately also by the Puck's criterion based 

on the fracture plane concept. This criterion, initially conceived for the static behaviour, was 

extended to the case of cyclic loading by Sun and co-authors [6]. In spite of the merit of 

treating separately the fibre and matrix dominated behaviours, the criteria proposed in Refs. 

[5,6] still consider the macroscopic nominal stresses, involved in phenomenological 

expressions, without accounting for the damage mechanisms occurring at the microscopic 

scale, responsible for the lamina fatigue failure.  

Concerning the non-fibre dominated behaviour, some efforts in the direction of considering 

the local stresses (or micro-stresses) acting in the matrix have been published by Reifsneider 

and Gao in 1991 [7]. They used the Mori-Tanaka theory in order to evaluate the average 

transverse stress and in-plane shear stress in the matrix, involving them in a criterion similar to 

that of Hashin, using  fatigue functions of empirical derivation. In spite of the use of the local 

average stresses, this is still a phenomenological criterion, and it requires a large experimental 

effort for the model calibration.  

In 1999 Plumtree and Cheng [8] developed a model based on the local stresses acting on the 

fracture plane, defined as the plane normal to the transverse direction. According to this 

definition of the fracture plane, the relevant stresses turned out to be the local transverse and in 

plane shear stresses only, calculated by means of Finite Element (FE) analyses of a fibre-

matrix unit cell. In addition, reminiscent of Smith-Watson-Topper (SWT) criterion for metals 

[9], they accounted for the presence of a non zero mean stress. 

The aim of the present work is to define a damage based criterion, suitable to describe the non-

fibre-dominated fatigue behaviour, in terms of crack initiation, of UD laminae subjected to 

multiaxial loading, characterized by the presence of the lamina stress components ζ1, ζ2 and ζ6 

(see figure 1 for the definition of stresses). 

It is very important to focus on the non-fibre-dominated behaviour because the fatigue life of a 

multidirectional laminate is characterized, since the early stages, by the nucleation of multiple 

matrix cracks in the off-axis plies (see Refs [10,11] among the others). This phenomenon is 

responsible for the stiffness degradation of the laminate, and it is controlled by the matrix and 

fibre-matrix interface dominated behaviour of a single unidirectional lamina.  

It is also known that the multiaxiality of the stress state strongly influences the fatigue 

behaviour of a UD lamina. Indeed, many works reporting off-axis fatigue test results show that 
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different S-N curves, in terms of the global stress in the loading direction, are related to 

different off-axis angles [3,4,6,12,13]. 

 

Figure 1: Global and local coordinate system, and stresses in the local coordinates system 

  

In addition, an extensive experimental program has been carried out by the present authors on 

Glass/Epoxy tubes subjected to combined tension/torsion, resulting in a stress state 

characterized by the presence of ζ2 and ζ6. Different S-N curves have been found for different 

biaxiality ratios λ12 = ζ6/ζ2 [14,15]. In [15] the damage mechanisms occurring at the 

microscopic scale have also been found to depend on the multiaxial condition, and this has to 

be accounted for in the definition of a reliable criterion for the description of the multiaxial 

fatigue behaviour of a UD lamina. 

In fact, the proposed model is based on the damage modes experimentally observed and 

reported by the writer in chapter 3 and Ref. [15] and from the literature. Its application to a 

large bulk of experimental data shows a good accuracy. All results reported in section 5.4 are 

expressed in terms of the maximum cyclic stresses, and thus they are not representative of 

different load ratios R = ζmin/ζmax. With the aim to provide a simple engineering tool to 

account for the influence of R, which has been previously shown to be significant (chapter 3), 

new normalised parameters are defined in section 5.6.  

 

5.2. Mechanisms of fatigue failure 

First of all, some preliminary considerations about the peculiarities of fatigue failure are 

needed. If a UD lamina is subjected to a cyclic loading condition leading to a matrix-

dominated response, it fails without a visible, progressive damage [4,12,14]. This means that a 

stable crack propagation is never observed and, conversely, when a macro-crack (visible 

crack) nucleates, it propagates unstably leading the lamina to the complete fracture in just few 
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cycles. Therefore, from several experimental evidences, it can be concluded that the matrix-

dominated fatigue failure is controlled by the initiation phase, if the word “initiation” is 

referred to a macro-crack parallel to the fibres. However, at a microscopic level, a progressive 

and irreversible degradation process has to take place during fatigue life, otherwise the 

decreasing trend of the fatigue S-N curves cannot be explained [16]. Thus, the cycles spent for 

the initiation of a macro-crack are controlled by the damage evolution occurring at the 

microscopic level. As a consequence, the definition of a multiaxial criterion consists in the 

identification of the damage mechanisms at the microscopic scale and of the driving force for 

their evolution. In order to do that, the concept of the local nucleation plane is introduced in 

the following. As already mentioned, Puck’s criterion is based on the hypothesis that the 

effective stresses to be considered as the cause of the static failure are the stresses lying on the 

fracture plane. 

According to Puck, in the case of positive values of ζ2 and ζ6, the fracture plane is always the 

plane whose normal is the transverse direction (2-axis), and therefore the effective stresses are 

the global stress components ζ2 and ζ6. The importance of the fracture plane is emphasized 

also by Plumtree and Cheng [8], and also for them, in the case of an off-axis lamina, the stress 

components to be accounted for are ζ2 and ζ6 only, because they act on the plane normal to the 

2-direction. The main merit of their criterion is that it considers the local stresses in the matrix, 

resulting from the concentrations due the presence of the fibres, instead of the global stresses. 

It is important to point out that the fracture plane considered by Puck and by Plumtree-Cheng 

is actually the plane where final separation occurs and it can be therefore defined as 

macroscopic fracture plane. The actual fracture plane, in which the matrix micro-cracking and 

the damage process occur is instead not parallel to the fibres, and this is confirmed by the 

analysis of the fracture surfaces reported in [12,15] and by the experimental in-situ 

observations reported in [17], clearly showing a damage evolution generating inclined micro-

cracks. In figure 2 the concept of the local nucleation plane is introduced, as the plane in 

which the micro-damage occurs, the latter being identified in the matrix micro-cracks whose 

accumulation and coalescence leads to the formation of a macro-crack.  

According to these observations the driving force for this kind of damage evolution should be 

searched in the stress components normal to the local nucleation plane. In the present thesis it 

is assumed that the local nucleation plane is perpendicular to the local maximum principal 

stress in the matrix. As a consequence, the effective stress to be considered is the Local 

Maximum Principal Stress (LMPS) in the matrix, which has to be calculated by considering 

the local stress fields, i.e. the micro-stresses. It can also be observed that the orientation of the 
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local nucleation plane, normal to the LMPS, is representative of the degree of multiaxiality of 

the stress state at the microscopic scale.  

 

 

Figure 2: Concept of the local nucleation plane  

 

However, Asp et al.[18, 19] in 1996 proved that in the case of pure transverse tension the local 

stress state at or close to the fibre-matrix interface is nearly hydrostatical. As a consequence 

the failure occurs in the form of matrix cavitation and consequent brittle cracking at the fibre-

matrix interface. Therefore a suitable criterion for predicting the composite failure in the case 

of pure transverse stress is based on reaching a critical value for the dilatational energy density 

expressed in equation (1): 
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where I1 is the first stress tensor invariant, which has to be calculated once again considering 

the local stress fields. In [19] good agreement was found between predictions based on this 

criterion and experimental results for the transverse static strength of a UD lamina.  

Extending this finding also to the case of cyclic loading, it is reasonable to expect a change in 

the leading damage mode moving from a loading condition near the pure transverse stress to 

another one, characterized by the presence of an enough high shear stress component. 

According to this idea the following criterion for multiaxial fatigue is proposed: two different 
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parameters, representative of two different driving forces, have to be used for the 

representation of the S-N curves for an UD lamina, according to the multiaxial condition: 

- the peak of the Local Hydrostatic Stress (LHS = I1/3), for nearly pure transverse tension case; 

- the peak of Local Maximum Principal Stress (LMPS) for enough high shear stress 

component.  

 

5.3. Calculation of the local stresses 

As stated above, the driving forces for the microscopic damage evolution have to be expressed 

in terms of local stresses (or micro-stresses) acting in the matrix and at the fibre-matrix 

interface. In the present work a RVE with a regular square fibres array as in figure 3 is used 

for the micro-stresses calculation. In spite of not being representative of a real composite 

system, because of the non uniform fibres distribution of a real case, this RVE provides 

reliable results for the application of the proposed multiaxial criterion. This conclusion can be 

drawn after the detailed analysis of the possible effects of local fibre volume fraction and local 

orientation of the fibre array presented in appendix 4.A. Because of the geometrical symmetry 

only one quarter of a unit cell can be considered for the sake of stresses calculation, as shown 

in figure 3. 

            

Figure 3: Definition of the fibre-matrix unit cell for micromechanical analysis 

 

The micro-stresses have been calculated by means of FE analyses of a fibre-matrix unit cell 

subjected to the average (or macroscopic) stresses ζ1, ζ2 and ζ6. Periodic boundary conditions 

shown in appendix 4.B have been applied to the surfaces of the quarter of the unit cell, 
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according to [20]. In addition, the residual stresses due to the cooling process after curing have 

been accounted for. Thermal loads have been applied as a uniform temperature gap ΔT = Tc - 

Tr, where Tc is the curing temperature and Tr is the room temperature. Being the fatigue loads 

rather low when compared to the static failure loads, the matrix behaviour is assumed to be 

linear, and therefore linear elastic FE analyses have been carried out with the software ANSYS 

11
®
 using 20 nodes solid elements.  

At each point P of the unit cell the mechanical micro-stresses in polar coordinates (r, θ, z) can 

be defined in terms of stress concentration factors ki,jl relating the macro-stress ζi with the 

local stress ζjl, as in equation (2). Finally the thermal stresses are related to the temperature 

gap ΔT by means of thermal concentration factors hjl, as in equation (2). 
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      (2) 

 

The stress and thermal concentration factors are functions of the fibre volume fraction Vf and 

of the elastic properties of the fibre/matrix system. The analyses reported later on the chapter 

are for a typical glass/epoxy system. This is in view of the application of the criterion to the 

fatigue data reported in chapters 2 and 3 (Refs [14,15]). Typical values for the tensile modulus 

E, Poisson's ratio ν and Coefficients of Thermal Expansion (CTE) for the constituents have 

been used in the analyses, and they are listed in table 1. In figures 4 and 5 the non vanishing 

stress and thermal concentration factors are reported for the points A and B of the unit cell, 

which are usually the most critical points as will be shown later on. It is worth mentioning 

that, being the glass fibre much stiffer than epoxy, the value of the stress concentration factors 

has a very low sensitivity to the tensile modulus of the matrix. In fact, if it is varied from 2000 

to 4000 MPa, the maximum variation of the stress concentration factors is around 3%, which 

can be considered negligible.  
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Table 1: Typical glass/epoxy material properties used in the FE analyses 

  E (MPa) ν CTE (°C
-1

) 

Glass 70000 0.22 7∙10
-6

 

Epoxy 3200 0.37 67.5∙10
-6

 

 

The peak values of the LMPS and LHS have been found to be always at the points A or B 

(mostly at point A) of figure 3 where, due to symmetry, some stress components vanish 

leading to the following simple expressions for LMPS and LHS (valid in the segment AB): 

 

2 2 21
4 2

2
rr zz rr rz rr zz zzLMPS σ σ σ σ σ σ σ      

 
       (3) 

 

3

rr υυ zzσ σ σ
LHS

 


         (4) 

 

where the stresses defined by equation (2) have to be substituted. According to the criterion 

proposed at the end of section 5.2, the LMPS defined in equation (3) has to be used as fatigue 

parameter in order to present fatigue S-N data for different multiaxial conditions, not nearly in 

pure transverse tension. Conversely, in such a condition the parameter LHS defined in 

equation (4) has to be used as representative of the driving force for damage evolution. In the 

following section the fatigue results from different works from the literature will be reanalyzed 

in terms of LMPS and LHS. 
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Figure 4: Stress concentration factors for the points A and B of the unit cell 

 

 

Figure 5: Thermal concentration factors for the points A and B of the unit cell 

 

5.4. Application to experimental data 

5.4.1 Fatigue results on [90]4 tubular specimens  

In chapter 2 experimental results were presented on glass/epoxy tubes with the fibres oriented 

at 90° with respect to the tube axis, and subjected to combined tension-torsion cyclic loading, 

resulting in the stress components ζ2 and ζ6. A parameter λ12 = ζ6/ζ2 was defined [2] in order 

to describe the biaxiality of the stress state. Fatigue data were presented for  λ12 = 0, 1 and 2, 

and in the present chapter some additional data are presented, for λ12 = 3 and ∞ (pure torsion). 

In figure 6a) the S-N curves are shown in terms of the maximum cyclic value of the transverse 

stress ζ2,max, showing a very strong influence of the biaxiality ratio on the fatigue resistance. 

Obviously the data for the pure torsion case cannot be plotted in figure 6a), but they will be 

shown in the subsequent analysis. It is important to remind that for this specimen 

configuration with 4 UD layers oriented normally to the tube axis, the life to crack initiation 

coincides with the total fatigue life. This is because of the unstable propagation of a macro-

crack immediately after its onset. 
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In figure 6b) the fatigue data are plotted in terms of the maximum cyclic value of LMPS, 

calculated by means of the micromechanical analysis described in section 5.3. It can be seen 

that the curves for λ12 ≥ 1 are well collapsed into a narrow scatter band, indicating that, in 

these conditions, the LMPS is representative of the driving force for the damage evolution 

bringing the lamina to the fatigue failure. Fatigue data are fitted with a typical law in the form 

Nf·LMPS
k
 = C, and a statistical analysis is carried out assuming a log-normal distribution of 

the number of cycles to failure. The scatter band in terms of LMPS for 90-10% probability of 

survival is also shown, and the value of TLMPS, defined as LMPS10%/LMPS90% is reported for a 

fatigue life of 10
6
 cycles. The results of the statistical analysis for all the series of data 

analysed are reported in table 2.  

Lower values of LMPS are found for the curve corresponding to λ12 = 0 (pure transverse 

stress). This is not surprising, since the hydrostatic component of the local stress tensor 

becomes dominant in such a condition, becoming the leading driving force for the damage 

progression, as reported in section 5.2. In fact, if all the curves are plotted in terms of the local 

hydrostatic stress as in figure 5c), the pure tension curve exhibits higher values of LHS, which 

can be considered in this case the driving force for the micro-damage evolution. Unfortunately 

in this case the collapsing effect of this parameter cannot be shown because there are no other 

fatigue curves characterized by a damage evolution driven by the hydrostatic stress 

component.  

 

Table 2: Results of the statistical analysis 

Ref. specimen driving force k C 50% C 90% TLMPS or TLHS (10
6
) 

[15] [904] tubes LMPS 15.13 131.03 121.09 1.17 

[15] [904] tubes LHS 16.67 67.2 61.03 1.21 

[15] [0F/903/0F] tubes LMPS 13.22 166.84 148.29 1.27 

[15] [0F/903/0F] tubes LHS 13.34 91.1 81.5 1.25 

Ch.3 [0F/903/0F] tubes LMPS 21.14 155.3 145.3 1.14 

Ch.3 [0F/903/0F] tubes LHS 25.89 77.3 71.9 1.13 

[6] off-axis laminae LMPS 13.32 85.38 73.35 1.36 

[4] off-axis laminae LMPS 11.13 158.4 131.17 1.46 

[4] off-axis laminae LHS 14.47 67.94 52.91 1.65 

[21] Constrained 

off-axis laminae 
LMPS 9.82 267.02 244.84 1.19 
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Figure 6: Fatigue results for [90]4 tubes: maximum a)cyclic transverse stress [15], b)LMPS 

and c)LHS against the number of cycles to failure Nf 
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5.4.2 Fatigue results on [0F/903/0F] tubes 

In [15] and chapter 3 of the present thesis fatigue tests have been carried out also on 

[0F/903/0F] glass/epoxy tubes, where three layers of 90° UD plies have been constrained by an 

external and internal thin fabric ply. For this kind of specimens, subjected to combined 

tension-torsion as those of the previous section, the nucleation of the first crack on the 90° 

layers was followed by its stable propagation in the circumferential direction, and eventually 

by multiple cracking. However, in figure 7a) the S-N curves for the case R = 0.05 are reported 

for the first transverse crack nucleation, in terms of the maximum cyclic transverse stress in 

the 90° plies. Different curves are obtained for different values of the biaxiality ratio λ12, if 

expressed in terms of the transverse stress, but a single and narrow scatter band in terms of 

LMPS can be shown to describe fatigue data for λ12 = 1 and 2 (figure 7b). The curves related 

to λ12 = 0.5 and most of all λ12 = 0 are instead characterized by lower values of LMPS, but 

they can be reasonably described by a single scatter band in terms of LHS as shown in figure 

7c), indicating that this is a good parameter to represent the damage driving force in this 

loading conditions. Finally it is important to remark that, even if the material of the transverse 

plies used in the [904] and [0F/903/0F] tubes is the same, the scatter bands defined for the first 

kind of specimens cannot be directly used for the prediction of the first crack nucleation in the 

[0F/903/0F] tubes. In fact the constraining effect due to the fabric 0° plies has to be considered, 

as already highlighted in chapter 3. 
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Figure 7: Fatigue results for [0F/903/0F] tubes with R = 0.05 [15]: maximum a)cyclic 

transverse stress, b)LMPS and c)LHS against the number of cycles for first crack initiation Nf 

 

Fatigue tests results for R = 0.5 and -1 were also reported in chapter 3.  

The proposed criterion is applied also for the case R = 0.5, keeping in mind that the damage 

mechanisms at the microscopic scale on the basis of which the criterion has been developed 

have been observed only for positive load ratios.  

The suitability of LMPS to collapse data for λ12 = 1 and 2 is shown in figure 8b), while figure 

8c) shows that the curve for pure tension exhibits higher values of LHS, it being the only 

condition in which the fatigue damage process is controlled by the local hydrostatic stress. 

 

20

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

L
M

P
S

m
ax

[M
P

a]

Life to first crack initiation, Nf

L0

L 05

L1

L2

λ12 = 0

λ12 = 0.5

λ12 = 1

λ12 = 2

200
TLMPS(106)=1.27

b)

10

100

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

L
H

S
m

ax
[M

P
a]

Life to first crack initiation, Nf

L0

L 05

L1

L2

λ12 = 0

λ12 = 0.5

λ12 = 1

λ12 = 2

TLHS(106)=1.25

c)



Chapter 5. A damage based model for crack initiation in  

unidirectional composites under multiaxial cyclic loading 

 

110 
 

 

 

 

Figure 8: Fatigue results for [0F/903/0F] tubes with R = 0.5 [chapter 3]: maximum a)cyclic 

transverse stress, b)LMPS and c)LHS against the number of cycles for first crack initiation Nf 
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5.4.3 Fatigue results on flat specimens from Hashin and Rotem 

In view of the equivalence of damage initiation for specimens under external and internal 

multiaxial conditions, the criterion is now applied to results on flat laminae and laminates from 

the literature and chapter 4.  

Hashin and Rotem [6] presented the results of fatigue tests on flat UD laminae subjected to 

off-axis loading, resulting in a multiaxial state with the presence of all the three in-plane stress 

components. In figure 9a) the results are shown in terms of the maximum cyclic value of the 

global applied stress in the loading direction ζx,max. Different fatigue curves are related to 

different off-axis angles, if plotted in terms of the global stress, but they are well collapsed 

into a single scatter band if LMPS is used to represent fatigue data, as can clearly shown by 

figure 9b). 

 

 

 

Figure 9: Fatigue results on flat specimens [6]: maximum a) cyclic global stress and b) LMPS 

against the number of cycles to failure Nf 
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In this case all the data, for off-axis angles from 5 to 60 degrees, are well described by the 

LMPS, which turns out to be once again a suitable parameter to represent the driving force for 

fatigue damage in loading conditions not nearly in pure transverse stress. 

5.4.4 Fatigue results on flat specimens from El-Kadi and Ellyin 

El-Kadi and Ellyin [4] tested flat unidirectional specimens subjected to cyclic off-axis loading 

with three values of the load ratio R (-1, 0, 0.5). It is important to remember, once again, that 

for the time being the criterion presented here is based on damage mechanisms observed in the 

case of positive load ratios (i.e. with positive values of the transverse stress). In the case of 

compressive stress components damage mechanisms could be different and therefore the 

application of the criterion requires further investigation. In the following only the results for 

R = 0 are shown, but the case of R = 0.5 leads to very similar conclusions. Figure 10a) shows 

that different fatigue curves are obtained if the results are expressed in terms of the maximum 

applied stress in the loading direction. 

In figure 10b) the fatigue data are reanalyzed in terms of LMPS, and it can be noticed that the 

data for off-axis angles of 19 and 45 degrees can be reasonably thought to be collapsed into a 

single scatter band, while the other data clearly exhibit lower values of LMPS. In fact these 

data for  71° and 90° are related to loading conditions characterized by a highly hydrostatical 

local stress state and in fact they exhibit higher values of the LHS, as shown in figure 10c). 

Data for 45° seem to be included in both the scatter bands, in terms of LMPS and LHS, and 

this is probably because they are characterised by a stress state close to the point of transition 

from one leading damage mode to the other. This transition point, or transition zone, is 

believed to be a property of the composite system and it will be discussed in the next section. 
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Figure 10: Fatigue results on flat specimens [10]: maximum a) cyclic global stress, b) LMPS 

and c) LHS against the number of cycles to failure Nf 

 

5.4.5 Fatigue results on constrained laminae from Quaresimin et al. [21] 

In chapter 4 and Ref. [21] experimental data were presented on glass/epoxy laminates 

manufactured with the same material used for the UD plies in Ref. [15] and chapter 3 of this 

thesis. The stacking sequence was [0/θ2/0/-θ2]s, with θ = 50° and 60°. S-N curves for the 

initiation of the first fatigue cracks in the off-axis layers were reported in terms of the 

maximum cyclic transverse stress in those plies. An example is reported in figure 11a) for the 

crack initiated in the θ2 layers. In figure 11b) the data are presented in terms of the LMPS, 

showing again a good compaction effect. 
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Figure 11: Fatigue results on flat specimens [21]: maximum a) cyclic transverse stress, b) 

LMPS against the number of cycles to failure Nf 
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value λ12* can be identified as the transition between a hydrostatic stress and a maximum 

principal stress driven fatigue failure. In reality there will not be a transition point, but instead 

a transition zone which is however expected to occur around the point corresponding to λ12*, 

which is a property of the composite system. 

In the case of off-axis fatigue testing on the same material, constant-life diagrams can be 

predicted in terms of the stress in the loading direction ζx as a function of the off-axis angle θ, 

by means of the same procedure already exposed. An example is shown in figure 13. 

 

 

Figure 12: Constant-life diagram for unidirectional tubes subjected to tension/torsion 

 

Figure 13: Constant-life diagram for off-axis loaded unidirectional laminae 
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load ratio R = ζmin/ζmax [23]. This empirical criterion consists in the definition of a normalised 

parameter, called here in general Ψ, calculated as follows. 

 

σ
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σ σ
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S m
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

           (5) 

 

The parameters ζa, ζm and ζS represent the cyclic stress amplitude, its mean value and the 

static strength, respectively. Conceptually, this corresponds to normalise the stress amplitude 

to the critical amplitude for static failure given by ζS-ζm, as shown in figure 14. In order to 

account contemporary for the load ratio and the multiaxial condition, the general stress ζ in 

equation (5) has to be substituted with the LMPS and LHS parameters, thus defining two new 

parameters for the representation of the scatter bands and master curves for the matrix-

dominated fatigue behaviour (equations 6 and 7). 
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Figure 14: Stress cycle and critical amplitude 

 

The values LMPSS and LHSS are the limit values for the local maximum principal stress and 

local hydrostatic stress for static failure. Therefore, for the successful application of the new 

parameters it is necessary that the crack initiation criterion proposed in section 5.2 holds also 

for the static behaviour. In Table 3 the static strength data for the [0F/90U,3/0F] tubes and λ12 = 

0, 1 and 2 presented in chapter 3 are re-analysed in terms of LHS and LMPS. It can be 
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observed that tubes loaded with λ12 = 1 and 2 exhibit compatible values of LMPS at failure, 

thus defining a unique value for the static limit LMPSS equal to 149.8 MPa. Conversely, a 

lower value of LMPS is relevant to the tubes loaded in pure transverse tension (λ12 = 0). 

However, this condition allows to determine the value of LHSS = 68.4 MPa. From these data it 

seems that the criterion provides satisfactory performances also for the static loading, even if 

the matrix behaviour is always considered as linear elastic, which could be a too strong 

simplification under static loading, mainly when the shear stress contribution is relevant. 

 

Table 3: Static tests results in terms of LMPS and LHS 

λ12 LMPS at failure [MPa] St. Dev. [MPa] LHS at failure [MPa] St. Dev. [MPa] 

0 76.5 9.5 68.4 11.8 

1 148.5 7.1 65 2.9 

2 151.2 4.7 43.4 1.2 

 

Using the so obtained values for LMPSS and LHSS the fatigue data for [0F/90U,3/0F] tubes and 

R = -1, 0.05 and 0.5 (chapter 3) are plotted in figure 15a) and b) in terms of ΨLMPS (for λ12 = 1 

and 2) and ΨLHS (for λ12 = 0 and 0.5) respectively. Data for R = -1 are included too in the 

analysis even if the damage mechanisms driving the fatigue crack initiation in this condition 

are not clear yet, as highlighted in chapter 3. In spite of the empirical nature of the criterion to 

account for the effect of R, reasonably narrow scatter bands are obtained. 
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Figure 15: Fatigue results on [0F/90U,3/0F] tubes in terms of a) ΨLMPS and b) ΨLHS 

 

5.7. Discussion 

As shown in paragraph 5, the proposed parameters LMPS and LHS provide a good 

representation of fatigue curves in two well defined scatter bands which include fatigue data 

for multiaxial conditions characterized by a high and small amount of shear stress 

respectively. This means that the complete characterization of the non-fibre-dominated fatigue 

behaviour of a UD lamina ideally requires only two experimental S-N curves. The first one is 

for example related to a pure transverse stress condition, and once expressed in terms of LHS 

it will be representative of the hydrostatic stress driven fatigue failure. The second testing 

condition has to be characterized by an enough high shear stress contribution, achieved for 

example by means of a low off-axis angle (15÷30°) or a high biaxiality ratio (λ12≥1), and the 

related S-N curves, expressed in terms of LMPS, will be representative of the local maximum 

principal stress driven fatigue failure. The so obtained master curves and scatter bands can be 

used to predict the fatigue life of a unidirectional lamina in multiaxial conditions different 

from those of the conducted tests. In most of practical applications, multidirectional laminates 

made of UD laminae are used, and their fatigue life is characterized, as already mentioned, by 

the nucleation of multiple cracks in the off-axis plies [10,11]. This kind of damage is usually 

described in terms of crack density evolution during fatigue life, whose effect is the 

degradation of the global elastic properties of the laminate. The crack multiplication process is 

controlled by the stress redistribution within each layer in the presence of cracks and by the 

matrix-dominated fatigue behaviour of each off-axis ply, which has been proved to be well 

described by the proposed criterion. In this view, the present criterion can be included in a 
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model for the prediction of the crack density evolution in multidirectional laminates, which is 

presented in chapter 6. 

 

5.8. Conclusions 

A criterion for the description of the matrix-dominated fatigue behaviour of UD laminae has 

been proposed, suitable to deal with multiaxial conditions. This has been done by identifying 

the parameters representative of the driving force for damage evolution at the microscopic 

scale, responsible for a macro-crack initiation. According to experimental observations, the 

concept of the local nucleation plane has been introduced and it has been identified as the 

plane normal to the Local Maximum Principal Stress (LMPS) calculated by means of 

micromechanical tools. The LMPS parameter has been found to collapse in one single scatter 

band the fatigue curves related to multiaxial loading conditions, not in nearly pure transverse 

stress. In fact it is proved that in such conditions the local stress state in the matrix is highly 

hydrostatical, and it is reasonable to assume that this produces a change in the leading damage 

mode and therefore in the parameter to be used as representative of the driving force. In this 

work the local value of the hydrostatic stress (LHS) has been shown to be a good parameter to 

collect fatigue data in the case of loading conditions with a low shear stress, compared to the 

transverse stress. Therefore only two scatter bands, and related master curves, can be used for 

multiaxial fatigue design of composite laminae, depending on the multiaxial stress state. The 

condition corresponding to the transition between the two leading damage modes is a property 

of the composite system and it can be easily calculated. Finally, it is remarked that the present 

criterion is based on damage mechanisms observed for positive load ratios and therefore its 

validity is theoretically restricted to this range. Further research is needed to understand the 

mechanisms at the basis of fatigue failure when R < 0. Eventually a simple criterion has been 

proposed to account for the influence of the load ratio which is shown, however, to collapse 

fatigue data for different R in a single scatter band. 
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Appendix 5.A 

In the following appendix, a comparison between the regular square unit cell and a more 

realistic fibres distribution is presented, mainly focusing on the computation of the LMPS and 

the estimation of the local nucleation plane orientation. In a regular square unit cell the 

segment connecting the centres of two adjacent fibres, passing through the poles of the fibres 

(point A of figure 3), is assumed to have a length depending on the average volume fraction 

and to be parallel to the transverse direction (2-axis). 

Figure A1: Comparison between regular and random fibre distributions (global Vf = 0.6) 

 

As shown in figure A1, two important differences between the regular square distribution and 

a random distribution can be found. The distance between two fibres is not constant, and it can 

be referred to as a non-uniform local volume fraction. In addition, the line connecting the 

centres of two adjacent fibres has an orientation which is non-uniform as well and, in general, 

different from 0° with respect to the 2-axis. Accordingly, square unit cells with different 

volume fractions, Vf, and orientations, θr, have been analysed in order to understand the 

influence of these parameters on the LMPS and, in particular, on the orientation of the local 

nucleation plane βc = βp+π/2, where βp is the direction of the maximum principal stress given 

by 

 

2σ1
η

2 σ σ

rz
p

rr zz

ArcTan
 

  
 

        (A1) 

 

1 

3 

2 

different local Vf 

θr 

2 

different local orientations θr 

regular random 



Chapter 5. A damage based model for crack initiation in  

unidirectional composites under multiaxial cyclic loading 

 

121 
 

A schematic is shown in figure A2. 

 

Figure A2: Definition of the LMPS and microscopic fracture plane angles 

 

Let us consider, as an example, a loading condition characterised by the transverse and in-

plane shear stresses ζ2 and ζ6, with a biaxiality ratio λ12 = 2. 

By using equations (2), (3), (A1) and the stress concentration factors plotted in figure 4, the 

LMPS and the angle βc can be readily computed for the most critical point, corresponding to 

the fibre pole (point A in figure 3). The so obtained values of βc and LMPS, normalised to ζ2, 

are plotted in figure A3. 

 

 

Figure A3: Effect of the local volume fraction on βc and LMPS 

 

It can be seen that the direction of the local nucleation plane has a very weak dependence on 

the volume fraction, allowing to state that the local multiaxial condition, represented by 

0

1

2

3

4

5

6

7

110

120

130

140

150

0.3 0.4 0.5 0.6 0.7 0.8

L
M

P
S

/ζ
2

β
c

[°
]

Vf

Serie1

Serie2

βc

LMPS/ζ2

point A
λ12 = 2

 
2 1 

3 

A 

βc LMPS 

micro-crack 

initiation 

1 

2 

3 

βp 



Chapter 5. A damage based model for crack initiation in  

unidirectional composites under multiaxial cyclic loading 

 

122 
 

orientation of the local nucleation plane itself, does not change with the local volume fraction. 

Conversely, appreciable variations of the LMPS can be observed, but this does not affect the 

validity of the LMPS as a multiaxial fatigue parameter, since its critical value, for a given 

number of cycles, is a property of the composite system considered, which must be calibrated 

on at least one series of experimental data, thus accounting for the actual distribution of fibres. 

In other words, we can say that the way that the global stresses ζ1, ζ2, ζ6 are combined for the 

calculation of the LMPS depends only on the angle βc. As it is invariant with the local volume 

fraction, the capability of the LMPS to synthesise data for different multiaxial conditions is 

preserved. When considering the effect of the unit cell orientation, the local system 1',2',3' is 

rotated of an angle θr with respect to the material system 1,2,3, as shown in figure A4. From 

the computational point of view, similarly to the method proposed in [22], the unit cell has not 

been rotated in the FE code, and the average stress components, given by the vector {ζ'}, have 

been applied to the boundary of the unit cell, always respecting the periodicity conditions. The 

vector {ζ'} can be easily calculated by rotating the in plane stresses as follows. 
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Figure A4: Rotated local coordinates system and rotation of stress components 
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The general form of equation (2), concerning the mechanical stresses at a point P of the unit 

cell, considering all the six possible macro-stress components is given by equation A3. 
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Further stress concentration factors are present with respect to those involved in equation (2). 

All the stress concentration factors can be computed by means of FE analyses with periodic 

boundary conditions as shown in Ref. [20] and appendix 4.B. 

In figure A5 the effect of the rotation angle on the normalised LMPS and on βc is shown for 

the complete range of θr (symmetric results would be obtained for θr > 45°). The local 

nucleation plane orientation for the 45° unit cell is only 1.34° higher than that for the 0° unit 

cell, allowing to draw the same conclusions already exposed for the influence of the local 

volume fraction. 

 

 

Figure A5: Effect of the unit cell rotation angle on βc and LMPS 

 

Finally an hexagonal periodic array has been analysed with Vf = 0.5 and λ12 = 2 and compared 

with a square unit cell under the same conditions. The angle βc resulted equal to 131.96° and 

131.60° for the hexagonal and square unit cells, respectively. This proves once again that the 

0

1

2

3

4

5

6

100

110

120

130

140

150

0 5 10 15 20 25 30 35 40 45

L
M

P
S

/ζ
2

β
c

[°
]

θr

Serie1

Serie2

point A
λ12 = 2

Vf = 0.5

βc

LMPS/ζ2

 

 

y 

x 

z 

3' 

2' 

1≡1' 

θr 

2 

3 

A 
θr



Chapter 5. A damage based model for crack initiation in  

unidirectional composites under multiaxial cyclic loading 

 

124 
 

orientation of the local nucleation plane does not change significantly when changing the 

regular array type. 

It is worth mentioning that in all the conducted analyses, periodic unit cells have always been 

used, and this aspect is still not representative of a real composite system. In spite of this, it 

can be concluded, with a reasonable confidence, that, within a random fibre distribution, the 

local multiaxial condition at the most critical points of each fibre-matrix interface, represented 

by the local nucleation plane orientation, has only a weak dependence on the distance between 

adjacent fibres and on their respective position. This allows one to use the regular square unit 

cell to compute the stress concentration factors for the calculation of the LMPS, which has 

been shown to be a suitable multiaxial fatigue parameter when the shear stress is high enough 

(i.e. in most the applications regarding off-axis laminae). In fact, the interest of the present 

work is to prove the capability of the LMPS to collect data for different multiaxial conditions, 

independently of its absolute critical value, which is, instead, calibrated on a series of 

experimental data for a single multiaxial condition, and which already accounts for the actual 

fibres distribution. 

 

Appendix 5.B 

In the following, the details of the periodic boundary conditions to be applied on the faces of 

the unit cell for the calculation of the stress concentration factors involved in equations (2) and 

(A3) are given. The geometry of the problem and the local reference system x1, x2, x3 are 

shown in figure B1. The symbol ui represents the displacement component in direction xi. 

 

Figure B1: Geometry of the unit cell and local reference system 

 

For the in-plane ply stresses ζ1, ζ2, ζ6 (i.e. ζ12 in equation (A3)): 

Longitudinal stress σ1 (longitudinal strain ε1) for calculation of k1,rr, k1,φφ, k1,zz, k1,rφ 
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- u2 = 0 on x2 = 0; 

- u3 = 0 on x3 = 0; 

- u1 = b·ε1 on x1 = 0; 

- u1 = 0 on x1 = -b; 

- u2 = const on x2 = a; 

- u3 = const on x3 = a; 

 

Transverse stress σ2 (transverse strain ε2) for calculation of k2,rr, k2, φφ, k2,zz, k2,rφ 

- u2 = 0 on x2 = 0; 

- u3 = 0 on x3 = 0; 

- u2 = a·ε2 on x2 = a; 

- u1 = 0 on x1 = -b; 

- u1 = const on x1 = 0; 

- u3 = const on x3 = a; 

 

Shear stress σ6, i.e. σ12 in equation (A3) (shear strain γ12) for calculation of k6, φz, k6,rz,(k12, φz, 

k12,rz in equation (A3)) 

- u2 = u3 = 0 on x2 = 0; 

- u3 = 0 on x3 = 0; 

- u1 = a·γ12 on x2 = a; 

- u1 = 0 on x1 = -b; 

- u2 = 0 on x2 = a; 

- u3 = 0 on x3 = a; 

- u1(0, x2, x3) = u1(-b, x2, x3); 

- u2(0, x2, x3) = u2(-b, x2, x3); 

- u3(0, x2, x3) = u3(-b, x2, x3); 

 

For the out-of-plane ply stresses ζ3, ζ13, ζ23 

Normal stress σ3 (strain ε3) for calculation of k3,rr, k3, φφ, k3,zz, k3,rφ 

- Stress fields are those for the transverse stress ζ2 rotated of an angle φ = π/2; 

 

Shear stress σ31, (shear strain γ31) for calculation of k31, φz, k31,rz 

- Stress fields are those for the shear stress ζ6 rotated of an angle θ = π/2; 
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Shear stress σ23 (shear strain ε23) for calculation of k23,rr, k23, φφ, k23,zz, k23,rφ 

- u3 = 0 on x2 = 0; 

- u2 = 0 on x3 = 0; 

- u3 = a·γ23 on x2 = a; 

- u2 = a·γ23 on x3 = a; 

- u1(0, x2, x3) = u1(-b, x2, x3); 

- u2(0, x2, x3) = u2(-b, x2, x3); 

- u3(0, x2, x3) = u3(-b, x2, x3); 
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6 

A stiffness degradation model for cracked 

multidirectional laminates 
 

6.1. Introduction 

The increasing use of composite materials in the aerospace, naval and wind energy industries 

is due to their high specific mechanical properties, and of course the stiffness is one of great 

interest. During their service life, composite laminates undergo several damage mechanisms, 

which, though not being critical for catastrophic failure, cause the degradation of the laminate 

elastic properties. For a multidirectional laminate made of unidirectional (UD) plies, the first 

damage mode responsible for this behaviour, occurring both under static and fatigue loading, 

is the onset and propagation of matrix cracks in the off-axis layers. This phenomenon is 

documented in several works in the literature for static [1-3] and fatigue [1,4-7] loading. In 

particular the density of off-axis cracks, meant as the number of cracks per unit length normal 

to the crack faces, increases with the static applied load and with the number of fatigue cycles. 

In the literature, many efforts have been devoted to the correlation of the laminate elastic 

properties and the density of off-axis cracks. Several approaches have been adopted and the 

most common of them can be classified as follows: 

1) Finite Element (FE) analysis of cracked laminates; 

2) Crack-Faces-Displacement (CFD) models; 

3) Sinergistic Damage Mechanics (SDM); 

4) Variational analysis; 

5) McCartney's models; 

6) Shear Lag (SL) analysis. 

The main features of these approaches are briefly described in the following. A complete and 

extensive review of the literature on this topic is not in the aims of the present work, whose 

introduction is, instead, focused on the basic ideas of the most widely used and acknowledged 

models in the literature. 

1) Li and co-authors [8] presented a technique for modelling multidirectional laminates in the 

presence of regular crack arrays in multiple layers with no more than two different fibres 
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orientations. A unit cell, representative of the entire laminate, is subjected to periodic 

displacement boundary conditions, the application of which is quite onerous and time 

consuming. However, the main disadvantage of this method is that it allows to model no more 

than two crack directions. FE analyses on laminates with cracks in three directions have been 

carried out in [9] with a simplified method which, in turns, does not reproduce the periodicity 

of the modelled laminate segment. 

2) CFD models are based on the micromechanical theorem which states that the global 

laminate strains can be computed by averaging the strains over the volume of each layer. By 

means of the divergence theorem it turns out that this process is equivalent to averaging the 

displacement components over the surfaces of each layer. Accordingly the stiffness of a 

cracked laminate can be computed once the average crack faces displacements are known. An 

attempt in this directions was provided by Gudmunson and co-workers [10], who used the 

analytic solution of the Crack Opening Displacement (COD) for a periodic system of cracks in 

a homogeneous transversely isotropic medium to calculate the stiffness of cracked cross-ply 

laminates. By doing so they neglected the influence of the confining stiffer layers in the 

calculation of the COD. A more accurate model was presented by Lundmark and Varna [11]. 

They computed the COD by means of FE analyses of cracked cross-ply laminates, and found 

that a simple power law was very efficient to describe variability of the COD with the stiffness 

of the 0° plies and the thickness of the cracked 90° layers. The model gave satisfactory results 

for the Young modulus, Poisson's ratio and thermal expansion coefficients of cross-ply 

laminates, and also of other kinds of laminates with cracks in 90° layers subjected to uniaxial 

tension. Lundmark and Varna [12] refined their model accounting also for the influence of the 

Crack Sliding Displacement (CSD) and verified its suitability for the calculation of the shear 

modulus of cross-ply laminates with cracks in the 90° layers. Both in [11] and in [12] the 

influence of the interaction between cracks in the same layer is not accounted for in the 

calculation of the COD and CSD, leading to perfectible predictions when the crack density is 

high. Later, the same authors improved their predictions by defining an "interaction function" 

computed with FE analyses [13]. The problem of a cross-ply laminate with two systems of 

cracks, namely in the 0° and 90° layers, was also treated in Ref. [12], focusing on the 

computation of the shear modulus of the damaged laminate. The average crack displacements 

were calculated without accounting for the mutual interaction between cracks in different 

layers, and the shear modulus of such multiply damaged laminates were computed with an 

iterative procedure. Convergence has been proved to occur after a very small number of 

iterations, but the final result was not in close agreement with FE models. 
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3) The SDM approach was proposed by Talreja [14] as a tool for the determination of material 

parameters involved in the constitutive relations for damaged laminates expressed in terms of 

internal state variables in the frame of Continuum Damage Mechanics. According to SDM, 

these parameters, dependent on the laminate configuration, can be computed by means of a 

micromechanical analysis. In particular, constrain parameters, dependent on the thickness of 

the cracked layer as well as on the configuration of the surrounding plies, are expressed in 

terms of the COD which can be either measured experimentally or computed with FE 

analyses. Finally, a proportionality parameter, relating the state of damage to the elastic 

properties, can be calibrated by means of experimental data for a reference laminate 

configuration (typically a cross-ply). Varna and co-authors adopted the SDM approach for the 

estimation of stiffness properties of [±θ/904]s laminates with cracks in the 90° plies [15], 

varying the orientation θ of the constraining layers. An experimental technique was used for 

the evaluation of the COD relevant to the configurations investigated. The same procedure 

was applied by Varna and co-authors for [0/±θ4/01/2]s laminates with cracks in the ±θ layers 

[16]. Satisfactory agreement with experimental results was obtained both in Refs. [15] and 

[16]. In [17] and [18] FE models were instead adopted for the calculation of the COD to be 

used in the SDM approach for [±θ/904]s and [0/±θ4/01/2]s laminates, respectively. Finally, 

Singh and Talreja [9] extended the SDM for [0/±θ/90]s and [0/90/±θ]s laminates with FE based 

calculations of the COD for cracks in all three off-axis layers. A drawback of the SDM 

approach is that the stiffness of a damaged laminate is described as linearly dependent on the 

crack density, and therefore the limiting trend to the value computed with the ply-discount 

technique is not correctly predicted for high crack densities. In addition, the effect of the CSD 

is neglected, and this can be source of errors in case of the presence of cracked plies with 

orientations not close to 0° and 90°, as proved by Varna [19]. Finally, the interaction between 

cracks in different layers is accounted for by means of FE calculations of the COD in the 

presence of more than one cracked ply. This method, in turns, does not consider the influence 

of the crack density on the entity of such interaction.  

4) The variational approach was adopted by Hashin [20] for the determination of the stress 

fields in cross-ply laminates under tension and shear loading, in the presence of cracks in the 

transverse layer. The in-plane ply stresses were considered constant through the thickness of 

each lamina and functions of the transverse coordinate only. They were evaluated by the 

minimisation of the strain energy, turning out in the solution of a fourth order ordinary 

differential equation. Only the expressions for the transverse and in-plane shear stresses, 

satisfying all the equilibrium and compatibility conditions, were given, neglecting the 
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influence of the presence of cracks on the longitudinal stress. The problem of the derivation of 

elastic properties, based on the variational approach, was more explicitly treated  in [21]. It is 

worth mentioning that, according to this method, a lower limit of the stiffness of a damaged 

cross-ply laminate is obtained. The variational approach has been recently extended by 

Vinogradov and Hashin [22] to the case of an angle-ply laminate with cracks in one layer. In 

this case the perturbation on the longitudinal stress field was also considered, and the 

minimisation of the complementary energy led to the solution of a system of two coupled 

fourth order differential equations. A 3D variational analysis for cross-ply laminates was also 

carried out by Hashin [23], where the in-plane ply stresses were considered functions of both 

the transverse and longitudinal coordinates. This allowed to treat the problem of a cross-ply 

laminate with cracks in both the 0° and 90° layers. The variational approach is proven to be an 

accurate tool for stress analysis and elastic properties predictions, but, up to now, it is 

restricted to simple laminate configurations such as cross-ply and angle-ply laminates with one 

system of cracks, or cross-plies with two orthogonal systems of cracks. 

5) In [24] and [25] McCartney proposed a generalised plane strain model for the evaluation of 

the stress fields in [0/90]s laminates loaded in tension with a regular crack array in the 90° ply. 

The in-plane stresses were considered constant through the thickness of each layer and they 

were written as the sum of their nominal value, computed with the Classical Lamination 

Theory (CLT), and a stress perturbation, function of the transverse coordinate of the 90°ply. 

Solving the 2D equilibrium equations averaged over the ply thickness, and making use of the 

averaged relation between the transverse strain and displacement, a fourth order differential 

equation was obtained for the stress perturbation function. The result was coincident to that of 

Hashin [20] a part from the fact that a generalised plane strain assumption was done by 

McCartney. In fact, it is observed in [25] that the equilibrium equations averaging process, 

performed by McCartney, is equivalent to the minimisation of the complementary energy 

carried out by Hashin [20]. The so obtained stress and displacement fields were used in [24] 

and [25] for the estimation of the thermo-elastic properties of damaged cross-plies, resulting in 

good agreement with experimental data from the literature. In Ref. [25] a 3D model was also 

proposed, starting from the same basic assumptions, a part from the fact that the in-plane stress 

perturbation function depended on both the transverse and longitudinal coordinates. This 

model can be used for the evaluation of free edge effects or in the case of a cross-ply laminate 

with cracks in both the 90° and 0° layers. However, in the presence of cracks in the only 

transverse ply, very similar predictions for the thermo-elastic properties are achieved by the 

two models. Later McCartney extended the generalised plane strain model to general 
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symmetric laminates with cracks in one layer and used a ply refinement technique for a better 

estimation of the elastic properties of a damaged laminate [26]. Finally, he modified the model 

in order to account also for the presence of a global stress applied in the thickness direction 

[27]. The models presented in [26] and [27] are, probably, the most accurate tools for stress 

analysis of cracked laminates (with one cracked layer), but the solution of the governing 

system of coupled fourth order differential equations is carried out with numerical methods, 

without providing analytical expressions for the stress perturbation functions.  

6) According to its basic ideas, the SL method describes the stress transfer between uncracked 

and cracked layers by means of interface interlaminar shear stresses, which are proportional to 

the in-plane displacements of each layer through the so called Shear Lag Parameter (SLP). The 

application of the SL method to cross-ply laminates was widely investigated by Nairn and 

Mendels [28], who identified all the simplifying assumptions made when using this kind of 

analysis, and defined the Optimal Shear Lag Analysis as the one which uses the fewest 

assumptions possible. The three basic simplifying hypotheses are better discussed in section 

6.2. It is worth mentioning that the analyses conducted in [28] deal with cross-plies loaded in 

tension, where the attention is focused on the transverse stress only, and a simplified Hooke's 

law, in the form ζT = ET ·εT, is used (the subscript T refers to the transverse direction of the 

90°plies). It is also emphasised that the SLP is determined only by assuming the trend of the 

in-plane ply displacements along the thickness, when an Optimal Shear Lag Analysis is 

conducted.  

Many works in the literature deal with the SL analysis of cracked cross-ply laminates, but 

most of them make use of a Non-Optimal Shear Lag Analysis [29-31] or of the Parametric-

Interlayer Shear Lag Analysis, as defined by Nairn and Mendels [28]. The last method 

assumes that the shear deformation is carried by interlayers, the properties and thickness of 

which have to be calibrated with experiments. Some examples of this models can be found in 

Refs [32-34].  

An optimal analysis was instead presented by Lee and Daniel for cross-plies loaded in tension 

[35], with the only drawback that the simplified Hooke's law has been used and therefore the 

effect of the presence of cracks on the longitudinal stress in the 90° ply was not considered. A 

similar analysis was conducted by McCartney [24], making use of the complete Hooke's law. 

The SLP was calculated, both in [35] and [24], by assuming that the displacement in the 

loading direction in both 0° and 90° plies is a parabolic function of the through the thickness 

coordinate. As a consequence the interlaminar shear stress results linearly dependent on the 

through the thickness coordinate, which is the same assumption made in the more refined 
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McCartney's models [25]. Differently from the method proposed in Ref. [25], where a fourth 

order differential equation was solved, with the SL approach the in-plane ply stresses, 

averaged over the ply thickness, are calculated solving a second order differential equation 

representing the averaged equilibrium equations in the transverse direction of the 90° ply. This 

allows to satisfy a lower number of boundary conditions. Namely the transverse interlaminar 

shear stress is not zero on the cracks surfaces. However, all the other equilibrium and 

compatibility equations and conditions are satisfied either exactly or in an averaged sense [28].   

In the references cited so far, the SL method was used to describe the transverse load transfer 

by means of interlaminar shear stress, which is enough to deal with cross-ply laminates loaded 

in tension. In general laminates under uniaxial and multiaxial loads, as well as in cross-plies 

under global shear loading, also the in-plane shear transfer problem has to be treated. For this 

sake, also the longitudinal interlaminar shear stress has to be introduced and the averaged 

equilibrium equations in the two in-plane directions must be solved. This kind of analysis on 

multidirectional laminates with a cracked off-axis layer was presented by Flaggs [36], even if 

the problem of the degraded elastic properties was not treated explicitly. In addition he 

adopted the same assumptions used in [29] for the determination of the SLPs, thus resulting in 

a non-optimal shear lag analysis. An optimal shear lag analysis was instead presented  by 

Kashtalian and Soutis [37] for [0/θ]s laminates loaded in tension with cracks in the off-axis 

layer. They assumed a parabolic dependence of the in-plane displacements on the through the 

thickness coordinate and obtained the trend of all three in-plane stress component. Finally, 

close form solution for the degraded stiffness properties were given as function of the crack 

density, resulting in reasonable agreement with the results from McCartney's model [26]. 

The problem of a laminate with cracks in two or more directions was also treated with the SL 

approach, though less frequently, because of its higher complexity. Henaff-Gardin [38] and 

co-authors proposed a 3D SL analysis to treat the problem of a cross-ply with cracks in both 

the 0° and 90° layers. As in [23] and [25], the 3D analysis is carried out assuming the in-plane 

stresses in each ply to vary with both the in-plane coordinates.  

Yokozeki and Aoki [39] presented a 3D SL model for the estimation of elastic properties of 

[θ/θ] laminates with cracks in both plies and later Cortes and Barbero [40] extended this 

approach to general laminates, with whatever number of layers, but always with two systems 

of obliquely crossed off-axis cracks. 

Though it is a reasonably accurate stress analysis tool, the 3D SL analysis has the important 

limit that only two systems of cracks can be considered. For this reason, other approaches in 

the literature treat the problem of multiply damaged laminates with more simplified but 
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extendible approaches, based on the SL analysis of a laminate with cracks in one single layer 

at a time. Tsai and Daniel [41] presented a model for the shear modulus of cross-ply laminates 

damaged by transverse cracks and splits. They proposed a simple formula based on the 

superposition of solutions obtained with the SL analysis of the cross-ply with cracks in the 

only 90° and 0° layers. This approach has the advantage of being very simple, but it neglects 

the influence of the mutual interaction between cracks on different layers. This aspect was 

instead accounted for by Zhang and Herrmann [42], who proposed a SL analysis of a 9-layers 

symmetric laminate, which can be representative of whatever configuration for symmetric 

laminates, by treating groups of layers as sub-laminates. The SL analysis was conducted for a 

laminate with cracks in one single ply and then an iterative procedure was used for the 

estimation of the elastic properties in the presence of cracks in two or more plies. Good 

agreement with experimental results was found. Finally a similar approach was adopted in 

[43], together with a parametric-interlayer shear lag analysis for doubly periodically cracked 

cross-plies. 

The literature analysis is summarised in table 1, where the most comprehensive and refined 

models are reported together with their advantages and limitations. On this basis it can be said 

that the following aspects are still missing: 

- an optimal shear lag analysis of a general symmetric laminate with whatever number of 

layers, with cracks in one ply only; 

- an analytical model for the estimation of the degraded elastic properties of general symmetric 

laminates with cracks in two or more layers accounting for the mutual interaction between 

cracks in different plies, without the need of iterative procedures. 

Accordingly, the aim of the present work is to fill the gaps mentioned above, providing a 

model for the computation of the elastic properties of general symmetric laminates with cracks 

in whatever number of plies, accounting for their mutual interaction with an analytical 

approach. A bi-dimensional optimal shear lag analysis of a multidirectional laminate with one 

cracked ply is first performed for this purpose. Then, the final result for the case of multiply 

damaged laminates is expressed in terms of parameters calculated with the single-cracked-ply 

SL analysis. The model requires no other input data than the elastic and geometric properties 

of the laminae and it is in good agreement with experimental and FE results from the 

literature.  

Finally it is worth spending some words on the shear lag method and its suitability for the 

present purpose. In fact, it is an approximate method, as it is based on simplifying 

assumptions, as highlighted in [28]. However, in virtue of these simplifications, "the shear lag 
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equations are usually amenable to simple solutions which makes it possible to get results" 

[28]. It is also highlighted in [28] that the optimal shear lag analysis leads to accurate 

predictions for the elastic properties and also for in-plane stresses and displacements, averaged 

over the ply thickness. It is not accurate for the description of the interlaminar shear stresses 

and local stress fields at the crack tips, but these are not of interest for the determination of the 

laminate elastic properties. 

 

Table 1: Summary of the literature review (+ → advantages, - → limits) 

Papers Method Lay-up 

Max N° of 

cracked 

layers 

Interaction

* 

Additional 

parameters 

** 

Other notes 

[8] FE + every - 2 + yes + no - Time consuming 

[11-13] CFD + every + ∞ + yes 
- yes (COD 

and CSD) 

+ exact expressions 

for elastic properties 

- iterations needed 

[9] SDM + every + ∞ + yes - yes 

- crack interaction 

independent on the 

crack density 

[22] variational - [0/θ]s - 1 - + no 
+ accurate stress 

analysis 

[23] variational - [0/90]s - 2 + yes + no - tensile loading only 

[26-27] McCartney's + every - 1 - + no 
+ accurate stress 

analysis 

[36]  2D SL + every - 1 - + no 
- non optimal SL 

analysis 

[40] 3D SL + every - 2 + yes + no  

[41] 2D SL - [0/90]s - 2 - no + no  

[42] 2D SL + every + ∞ + yes + no 

- use of equivalent 

sub-laminates 

- iterations needed 

* interaction between cracks on different layers 

** other than elastic and geometric properties of the laminae 

 

6.2. Optimal shear lag analysis of a symmetric laminate with cracks in one ply  

In this paragraph a bi-dimensional shear lag analysis is carried out for a symmetric laminate 

made of 2n-1 layers, with generally different thickness hi and orientations θi with respect to the 

global x-axis. The analysis is restricted to the n plies of the superior half, and suitable 

symmetry conditions are applied in the middle of the n-th layer. Only the k-th ply is damaged 

by means of off-axis cracks, which are considered to be equally spaced of a distance lk. This is 

a simplifying hypothesis that allows one to analyse only a representative segment of laminate, 

periodically repeating along the direction x2
(k)

, x1
(k)

,x2
(k)

 being the material coordinate system 
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of the cracked lamina, oriented of an angle θk with respect to the global reference system x,y. 

A schematic of the geometry of the problem is shown in figure 1. Every ply is made of the 

same unidirectional material characterised by the in plane and out of plane stiffness matrices 

[Q] and [Qo], relating the i-th ply stresses and strains in the material coordinates system 

x1
(i)

,x2
(i)

according to equation (1). 
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 (1) 

 

The stresses and strains in the material reference system of each lamina are referred to with the 

symbols ζ and ε respectively, and a single subscript, as in equation (1). The stress and strain 

components in the coordinates system x1
(k)

,x2
(k)

 of the cracked layer k are instead identified 

with the symbols ζ and ε (or γ for shear strain) respectively, and a double subscript lm, with 

l,m = 1,2,3. Obviously they correspond to the ply stresses in the material coordinates system 

only in the k-th layer and  in any other layer with the same orientation θk.  

 

Figure 1: Geometry of the problem 

 

Let us define a coordinate zi for each layer, having its origin at the bottom of the i-th layer.  

x2
(k)

 
x1

(k)
 

z = x3
(k)

  

h1 

h2 

hk 

hn 

z1 

z2 

zk 

zn 

x 
θk 

crack spacing, lk 

crack  

crack  

symmetry 

plane 

y 

u2 

u1 

u3 

3 



Chapter 6. A stiffness degradation model for cracked multidirectional laminates 

 

138 
 

As pointed out by Nairn and Mendels [28], the so called optimal shear lag analysis  is based 

on three fundamental assumptions, which are here adapted for a nominal multiaxial in-plane 

stress state: 

i) the out of plane shear stresses are proportional to the in-plane displacements derivatives 

according to 

 

( ) ( )

13 1

( ) ( )

23 2

σ

σ

i i

i i

i

u

z u

   
   
   

,          (2) 

 

which implies 
( )

3

( )

2

0
i

k

u

x





and 

( )

3

( )

1

0
i

k

u

x





; 

ii) the dependence of the out of plane shear stresses on the coordinate zi has to be assumed, 

which means that the form of the in plane displacements along the ply thickness is also 

assumed, according to (2); 

iii) the derivatives of the stress in direction x3
(k)

 ≡ z with respect to x1
(k)

 and x2
(k)

 are null, 

allowing to neglect the influence of the out of plane stress ζ33 in the calculation of the in-plane 

strains. 

The reader is referred to [28] for a more detailed description of the shear lag assumptions and 

their motivations. 

6.2.1 Relationship between average displacements and interlaminar shear stresses 

According to the assumption ii), the displacements u1
(i)

 and u2
(i)

 in the i-th ply are taken to be 

parabolic functions of the coordinate zi, as in equations (3) and (4), the coefficients α(x2
(k)

) and 

β(x2
(k)

) being functions of the coordinate x2
(k)

. 
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The superscript (i) is referred to the i-th ply. 

According to assumption i), the relationship between the longitudinal and transverse shear 

stresses (ζ13 and ζ23 respectively) and the in-plane displacements in each lamina reads as 

follows: 
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[To] is the rotation matrix for the out of plane quantities defined as 
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According to equation (5) the out of plane shear stresses have a linear dependence on the 

coordinate zi, which is in agreement with the assumptions made in Refs [20-27,35,37,39-43], 

and they can be written as follows. 
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They have to satisfy the following equilibrium conditions at the plies interfaces: 
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   
           

           

           

1 ( )

13 1 2

1 2 1,2( ) ( ) ( )

13 2 13 2 2 13 2

1 , 1( ) ( ) ( )

13 2 13 1 2 13 2

1 1,( ) ( ) ( )

13 2 13 2 13 2

, 0

0, ,

0, ,

0, ,

k

k k k

i i i ik k k

i

n n n nk k k

n

σ h x

σ x σ h x σ x

σ x σ h x σ x

σ x σ h x σ x

 



 

 

  




 




 






   
           

           

           

1 ( )

23 1 2

1 2 1,2( ) ( ) ( )

23 2 23 2 2 23 2

1 , 1( ) ( ) ( )

23 2 23 1 2 23 2

1 1,( ) ( ) ( )

23 2 23 2 23 2

, 0

0, ,

0, ,

0, ,

k

k k k

i i i ik k k

i

n n n nk k k

n

σ h x

σ x σ h x σ x

σ x σ h x σ x

τ x τ h x τ x

 



 

 

  




 




 






(9) 

 

as well as the symmetry conditions 

 

   ( ) ( ) ( ) ( )

13 2 23 2σ 0, 0, σ 0, 0n k n kx x  .        (10) 

   

In equation (9) the terms ζ
(i,j)

13(x2
(k)

) and ζ
(i,j)

23(x2
(k)

) are the interlaminar shear stresses at the 

interface between confining plies i and j, and they are functions of x2
(k)

. 

The displacements have instead to satisfy the following compatibility conditions at the 

interfaces: 

 

       

       

       

1 2( ) ( )

2 2 2 2 2

1( ) ( )

2 2 2 1 2

1 ( ) ( )

2 2 2 2

0, ,

0, ,

0, ,

k k

i ik k

i

n nk k

n

u x u h x

u x u h x

u x u h x







 







 





    

       

       

       

1 2( ) ( )

1 2 1 2 2

1( ) ( )

1 2 1 1 2

1 ( ) ( )

1 2 1 2

0, ,

0, ,

0, ,

k k

i ik k

i

n nk k

n

u x u h x

u x u h x

u x u h x







 







 





.    (11) 

 

The shear lag analysis deals with quantities (displacements, stresses and strains) averaged over 

the thickness of each lamina [28]. Accordingly, the average displacements in direction x1
(k)

 and 

x2
(k)

 for each layer are calculated integrating equation (3), resulting in: 

 

               

               

( ) ( ) 2 ( ) ( )

1 2 1 2 2 2 3 2

( ) ( ) 2 ( ) ( )

2 2 1 2 2 2 3 2

1 1

3 2

1 1

3 2

i i i ik k k k

i i

i i i ik k k k

i i

u x β x h β x h β x

u x α x h α x h α x

    

    





     (12) 
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The coefficients α and β can be eliminated imposing the boundary conditions (8) - (10), so that 

the following relationships can be written between the average displacements and the 

interlaminar shear stresses at the interfaces: 

 

            ( ) ( ) ( )

1 2 13 2 23 2Δ σ σk k ku x H x F x   
     (13)

 

            ( ) ( ) ( )

2 2 23 2 13 2Δ σ σk k ku x K x F x        (14) 

 

where 

 

  
   

   
  

   

   

(1) ( ) (2) ( ) (1) ( ) (2) ( )

1 2 1 2 2 2 2 2

( ) ( )

1 2 2 2

( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )

1 2 1 2 2 2 2 2

Δ , Δ

k k k k

k k

n k n k n k n k

u x u x u x u x

u x u x

u x u x u x u x 

    
      

    
   

       

   

  

   

  (15) 

 

and 

 

  
 

 
  

 

 

1,2 ( ) 1,2 ( )

13 2 23 2

( ) ( )

13 2 23 2

1, ( ) 1, ( )

13 2 23 2

σ σ

σ , σ

σ σ

k k

k k

n n k n n k

x x

x x

x x 

   
      

    
   
      

  .     (16) 

 

The coefficients of the (n-1)x(n-1) matrices [H], [K] and [F] are given in the following. 

 

   
  

 

2 2

2 2

2

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( 1)

45 44 55 44 1 45 44 55 44

( 1) ( 1) ( 1) ( ) ( ) ( )

45 44 55 45 44 55

( )

44

( ) ( ) ( )

45 44 55

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

,
ˆ ˆ ˆ ˆ ˆ ˆ3

ˆ
, 1,

ˆ ˆ ˆ6

0,

i i i i i i i i

i i

ii
i i i i i i

j

j

ij ji
j j j

ij ji

h Q Q Q Q h Q Q Q Q
H

Q Q Q Q Q Q

h Q
H H for j i

Q Q Q

H H for j

   



  

  
 

 

    


  1i 

    (17) 
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   
  

 

2 2

2 2

2

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( 1)

45 44 55 55 1 45 44 55 55

( 1) ( 1) ( 1) ( ) ( ) ( )

45 44 55 45 44 55

( )

55

( ) ( ) ( )

45 44 55

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

,
ˆ ˆ ˆ ˆ ˆ ˆ3

ˆ
, 1,

ˆ ˆ ˆ6

0,

i i i i i i i i

i i

ii
i i i i i i

j

j

ij ji
j j j

ij ji

h Q Q Q Q h Q Q Q Q
K

Q Q Q Q Q Q

h Q
K K for j i

Q Q Q

K K for j

   



  

  
 

 

    


  1i 

    (18) 

 

   
  

 

2 2

2 2

2

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( 1)

45 44 55 45 1 45 44 55 45

( 1) ( 1) ( 1) ( ) ( ) ( )

45 44 55 45 44 55

( )

45

( ) ( ) ( )

45 44 55

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

,
ˆ ˆ ˆ ˆ ˆ ˆ3

ˆ
, 1,

ˆ ˆ ˆ6

0,

i i i i i i i i

i i

ii
i i i i i i

j

j

ij ji
j j j

ij ji

h Q Q Q Q h Q Q Q Q
F

Q Q Q Q Q Q

h Q
F F for j i

Q Q Q

F F for j i

   



  

  


 

   


   1

    (19) 

 

Inverting equations (13) and (14) the vectors containing the interlaminar shear stresses at the 

interfaces can be written as: 

 

                   
1

1 1( ) ( ) ( )

13 2 1 2 2 2σ Δ Δk k kx H F K F u x F K u x


    
 

    (20) 

                   
1

1 1( ) ( ) ( )

23 2 2 2 1 2σ Δ Δk k kx K F H F u x F H u x


    
 

  .  (21) 

6.2.2 Equilibrium equations and solution 

In order to compute the in-plane stresses and displacements as functions of the coordinate x2
(k)

, 

the equilibrium equations for each lamina are written in equations (22) and (23), in direction 

x2
(k)

 and x1
(k)

 respectively. It is a fundament of the shear lag method that they are written in 

terms of the average transverse and in-plane shear stresses ζ22(x2
(k)

) and ζ12(x2
(k)

), functions of 

x2
(k)

 only. 
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   

 
    

   

1,21 ( )( )

23 222 2

( )

2 1

( )
1, , 1( ) ( )22 2

23 2 23 2( )

2

1, ( )( )

23 222 2

( )

2

( )( )
0

( ) 1
( ) ( ) 0

( )( )
0

kk

k

i k
i i i ik k

k

i

n nn kk

k

n

σ xdσ x

dx h

dσ x
σ x σ x

dx h

σ xdσ x

dx h

 




 






  





 






        (22) 

   

 
    

   

1,21 ( )( )

13 212 2

( )

2 1

( )
1, , 1( ) ( )12 2

13 2 13 2( )

2

1, ( )( )

13 212 2

( )

2

( )( )
0

( ) 1
( ) ( ) 0

( )( )
0

kk

k

i k
i i i ik k

k

i

n nn kk

k

n

σ xdσ x

dx h

dσ x
σ x σ x

dx h

σ xdσ x

dx h

 




 






  





 






      (23) 

 

Deriving the equilibrium equations (22) and (23) with respect to x2
(k)

 one obtains 

 

   

     

   

2

2

2

1,21 ( )2 ( )

23 222 2

( )( )
1 22

1, , 1( ) ( )2

23 2 23 222 2

( ) ( )( )
2 22

1, ( )2 ( )

23 222 2

( )( )
1 22

( )( ) 1
0

( ) ( )( ) 1
0

( )( ) 1
0

kk

kk

i i i ii k k

k kk
i

n nn kk

kk

dσ xd σ x

h dxdx

dσ x dσ xd σ x

h dx dxdx

dσ xd σ x

h dxdx

 




 




  

     
  




 






       (24) 
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   

     

   

2

2

2

1,21 ( )2 ( )

13 212 2

( )( )
1 22

1, , 1( ) ( )2 ( )

13 2 13 212 2

( ) ( )( )
2 22

1, ( )2 ( )

13 212 2

( )( )
1 22

( )( ) 1
0

( ) ( )( ) 1
0

( )( ) 1
0

kk

kk

i i i ii k kk

k kk
i

n nn kk

kk

dσ xd σ x

h dxdx

dσ x dσ xd σ x

h dx dxdx

dσ xd σ x

h dxdx

 




 




  

     
  




 






.     (25) 

 

In addition, the in-plane strains, averaged through the i-th ply thickness, can be written by 

means of the following scalar products 

 

     

     

     

111

222

312

i ii

i ii

i ii

ε S σ

ε S σ

γ S σ







 


 


 


          (26) 

where 
 

 ( ) ( ) ( ) ( ) ( ) ( )

11 2 22 2 12 2( ), ( ), ( )
Ti

i k i k i kσ σ x σ x σ x


 and 
 

ˆ
i

jS


 is the j-th row of the matrix 
( )

ˆ
i

S 
 

defined 

as  

 

     
1( ) ( ) ( ) 1ˆ ˆ ˆ, θ θ θ θ

i i i T

i k i kS Q with Q T Q T


 
                    

    (27) 

 

[T] being the 3x3 rotation matrix for in-plane quantities. 

Deriving equations (20) and (21) with respect to x2
(k)

, the derivatives of the interfacial shear 

stresses can be expressed as functions of the strains, averaged through the thickness of each 

layer ε22
(i)

(x2
(k)

) and γ12
(i)

(x2
(k)

): 

 

 

 
         

(1,2) ( )
(1) ( ) (2) ( ) (1) ( ) (2) ( )

13 2
12 2 12 2 22 2 22 21

1 1

2 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )( 1, ) ( )
12 2 12 2 22 2 22 213 2

σ γ ( ) γ ( ) ε ( ) ε ( )

γ ( ) γ ( ) ε ( ) ε ( )σ

k
k k k k

n k n k n k n kn n k

x x x x x
d

H F K F F K
dx

x x x xx


 

 

                       
    

     

  

 
  
 
 
  

            (28) 
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 

 
         

(1,2) ( )
(1) ( ) (2) ( ) (1) ( ) (2) ( )

23 2
22 2 22 2 12 2 12 21

1 1

2 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )( 1, ) ( )
22 2 22 2 12 2 12 223 2

σ ε ( ) ε ( ) γ ( ) γ ( )

ε ( ) ε ( ) γ ( ) γ ( )σ

k
k k k k

n k n k n k n kn n k

x x x x x
d

K F H F F H
dx

x x x xx


 

 

                       
    

     

  

 
  
 
 
  

            (29) 

 

Substituting equation (26) in (28) and (29), and then (28), (29) in (24) and (25), a 

homogeneous system of 2n coupled second order differential equations is obtained, with 3n 

unknown functions represented by the in plane stresses ζ11
(i)

(x2
(k)

), ζ22
(i)

(x2
(k)

), ζ12
(i)

(x2
(k)

), for i 

= 1...n.  

The stresses in one layer, for example in the first one, can be easily eliminated by using the 

global equilibrium equation of the laminate, obtaining 

 

 
 

 
 1

2
1 1

1 n i

gc i
i

h
σ T θ σ h σ

h h 

     

  
        (30) 

 

where the vector gσ


 contains the global stresses in the global coordinate system {ζx, ζy, ζxy}
T 

applied to the laminate. 

The stress components ζ11
(i)

(x2
(k)

) can also be eliminated by considering the generalized plane 

strain conditions: 

 

   
       1 11
1 111 11

ˆ ˆ
i ii ii i

ε ε S σ S σ
 

  
  

  , for i = 1...n-1      (31) 

 

If the equilibrium equations for the first layer are eliminated from systems (24) and (25) and 

equations (30) and (31) are considered, a non homogeneous system of 2n-2 differential 

equations is obtained, with 2n-2 unknown functions ζ22
(i)

(x2
(k)

), ζ12
(i)

(x2
(k)

), for i = 2...n. 

 

 

 

 

 

 

 

 

 

 

2

2 2( ) ( )

22 2 22 2

( ) ( )2
22 2 22 2

( ) 2 2( ) ( )
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       (32) 
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[m] is a (2n-2)x(2n-2) matrix containing the coefficients of the non derived terms in (24) and 

(25), whereas b


 is a (2n-2)x1 vector containing the known terms of (24) and (25), related to 

the global applied laminate stresses. The solution of the homogeneous system is in the form 

 

 

 

 

 

( )
2

2 ( )

22 2

( )

22 2

2 ( )

12 2

( )

12 2

( )

( )

( )

( )

k

k

n k

μ x

k

n k

σ x

σ x
e M

σ x

σ x

 

 
 
 
 
 

 
 
 
 
 
 







         (33) 

 

where μ and M


are respectively the eigenvalues and eigenvectors of the matrix [m]. It is 

worth noting that the (2n-2) eigenvalues will always be negative for the physical problem of 

interest. Finally the functions representing the (2n-2) stress components can be considered as 

the linear combination of the solution (33) and the particular solution expressed by the vector 

L


. 
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( )

k k
j j

k

n k
n μ x μ x

j j j j
k j

n k

σ x

σ x
P e M N e M L

σ x
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 
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 
 
            
 
 
 
 



  



     (34) 

 

It is worth noting that the terms of vector L


 represent the stress components for the 

undamaged laminate, which can be calculated also by means of the lamination theory, 

expressed in the material coordinates system of the cracked layer. Now that the general 

expressions for the (2n-2) stress components are known from (34), it is possible to calculate 

the stresses ζ11
(i)

(x2
(k)

) by means of (31) and the stresses in the first layer through equation 

(30).   

Pj and Nj are unknown coefficients to be computed by means of suitable boundary conditions. 

Before imposing the boundary conditions, the displacements (averaged over the thickness) 
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have to be calculated. First, the displacements in one layer (the first one in this case) can be 

calculated integrating the strains as in equations (35) and (36). 

 

       1 11 1( ) ( ) ( ) ( )
31 2 12 2 2 1 2 1( ) ( )k k k ku x γ x dx R S σ dx R      

 
       (35) 

 

       1 11 1( ) ( ) ( ) ( )
22 2 22 2 2 2 2 2( ) ( )k k k ku x ε x dx R S σ dx R      

 
       (36) 

 

R1 and R2 are unknown terms to be calculated once again with boundary conditions. The 

displacements in the remaining layers can be calculated by means of equations (13) and (14), 

where the interlaminar stresses are calculated inverting equilibrium equations (22) and (23). 

Now, all the in-plane stresses, the interlaminar shear stresses and the displacements are known 

functions of the coordinate x2
(k)

, depending on (4n-2) unknown parameters (Pj, Nj, R1, R2), to 

be calculated imposing the following boundary conditions, where the k-th layer is assumed to 

be the cracked one. 

 

               22 12 22 120 0 0
k k k k

k kσ σ σ l σ l           (37) 

   1 0 0,
i

u for i k            (38) 

   1

2 0 0,u for i k            (39) 

   , 1

13 / 2 0, 1... 2
i i

kσ l for i n


           (40)

 

   , 1

23 / 2 0, 1... 2
i i

kσ l for i n


           (41) 

 

Equation (37) represents the condition of stress-free crack surfaces, equations (38) and (39) 

are required to ensure the periodicity of the laminate segment, and finally equations (40) and 

(41) are conditions of symmetry with respect to the plane x2
(k)

 = lk/2. When the 4n-2 constants 

are known, the in-plane stresses, strains and displacements, averaged through the thickness of 

each ply, can be written as functions of the coordinate x2
(k)

, for a given combination of 

globally applied stresses represented by the vector gσ


. It is reminded that all these quantities 

are expressed in the material coordinate system of the cracked layer x1
(k)

,x2
(k)

. It is clear that 

the stress distribution in each ply is dependent, through the boundary conditions (37) and 

(40,41), on the crack density ρk = 1/lk in the k-th layer. It is worth mentioning that, though 

analytical solutions could be written for all the stress, strain and displacement components, the 
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expressions of the involved parameters are too long to be reported. However, a code has been 

realised by the authors with Matlab 9
®
, suitable to compute the stress and displacements 

distributions in each layer of whatever symmetric cracked laminate, as well as its stiffness 

properties, which will be obtained in the following sections.  

6.2.3 Calculation of the laminate elastic properties 

Since the final aim is to calculate the elastic properties of the damaged laminate in the global 

reference system x,y, it is interesting to consider three particular loading conditions, where 

only one applied stress, ζx, ζy, ζxy, is non zero, and equal to 1 (i.e. gσ


= {1,0,0}
T
, {0,1,0}

T
 and 

{0,0,1}
T
). For each of these loading conditions, the ply stresses in the coordinate system of the 

cracked lamina k can be averaged over the entire volume of the i-th layer and expressed by 

means of the following parameters, which are function of the crack density ρk. 

 

     

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, 11 2 2 , 11 2 2 , 11 2 20 0 0

σ 1,0,0 σ 0,1,0 σ 0,0,1

1 1 1
γ (ρ ) σ ( ) , γ (ρ ) σ ( ) , γ (ρ ) σ ( )

k k k

T T T
g g g

l l li i k k i i k k i i k k
k x k k y k k xy k

k k k

x dx x dx x dx
l l l  

    

            
(42) 

 

     

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, 22 2 2 , 22 2 2 , 22 2 20 0 0

σ 1,0,0 σ 0,1,0 σ 0,0,1

1 1 1
λ (ρ ) σ ( ) , λ (ρ ) σ ( ) , λ (ρ ) σ ( )

k k k

T T T
g g g

l l li i k k i i k k i i k k
k x k k y k k xy k

k k k

x dx x dx x dx
l l l  

    

            (43) 

 

     

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, 12 2 2 , 12 2 2 , 12 2 20 0 0

σ 1,0,0 σ 0,1,0 σ 0,0,1

1 1 1
β (ρ ) σ ( ) , β (ρ ) σ ( ) , β (ρ ) σ ( )

k k k

T T T
g g g

l l li i k k i i k k i i k k
k x k k y k k xy k

k k k

x dx x dx x dx
l l l  

    

            (44) 

 

The global laminate strains in the reference system x,y for each loading condition can now be 

calculated multiplying a vector containing the average stresses, computed with equations (42)-

(44) for a non-cracked layer, by the compliance matrix of that layer 
( )

ˆ
i

S 
 

, and then rotating 

the result of the angle -θk. Finally the compliance matrix [S(ρk)] of the damaged laminate, with 

crack density ρk in the k-th ply, is composed by three column vectors representing the global 

strains associated to the three loading conditions gσ


= {1,0,0}
T
, {0,1,0}

T
 and {0,0,1}

T
. The 

final expression is written in equation (45), 

 

         
( )1 ( )1 ˆρ θ Ω ρ
i k i k

k k kS R T R S
 

            
      (45) 
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where 

 

   

( ) ( ) ( )

, , ,
( ) ( ) ( ) ( )

, , ,

( ) ( ) ( )

, , ,

1 0 0 γ (ρ ) γ (ρ ) γ (ρ )

0 1 0 , Ω ρ λ (ρ ) λ (ρ ) λ (ρ )

0 0 2 β (ρ ) β (ρ ) β (ρ )

i i i

k x k k y k k xy k
i i i i

k k x k k y k k xy k

i i i

k x k k y k k xy k

R

  
         
     

.    (46) 

 

Once the compliance matrix [S(ρk)] is known, it is easy to calculate the in-plane Young and 

shear moduli Ex, Ey, Gxy, the Poisson's ratii νxy and νyx, and the traction-shear coupling 

coefficients. The only input data required by the model are the lamina elastic properties and 

the ply thickness, and no calibration with numerical or experimental results is needed. 

6.2.4 Validation 

The proposed model is validated against experimental data from the literature for 

multidirectional or cross-ply symmetric laminates with cracks in one layer. In figure 2a) and b) 

the model predictions are compared to experimental results by Varna et al. [16]. The Young 

modulus in x-direction Ex and the Poisson's ratio νxy for the damaged laminate are normalised 

with respect to their initial values Ex,0 and νxy,0 and plotted versus the crack density in the 

transverse layer. A satisfactory agreement is achieved in both cases. The same conclusion can 

be drawn for the comparison with results from [44] and [1] shown in figure 3a) and b). In 

figure 3b) the agreement is good for crack densities lower than 0.7. In fact, the authors [1] 

observed that, after that point, cracks started to initiate in the -45° ply, causing a further 

stiffness degradation which is not accounted for with the present model, as it is suitable for 

laminates damaged in one layer only. This highlights the need to provide a suitable model to 

account for the presence of off-axis cracks in two or more plies. 
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Figure 2: Comparison with experimental results from [16]: a) Young modulus and b) Poisson's 

ratio 

 

 

 

Figure 3: Comparison with experimental results from a) [44] and b) [1] 
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6.3. Laminate with cracks in two or more layers 

6.3.1 Analysis without crack interaction 

When a multidirectional laminate is damaged  by means of off-axis cracks in two or more 

layers, the easier way to treat the problem is to neglect any interaction between cracks in 

different layers. The presence of cracks in the k-th ply results in a compliance matrix defined 

in equation (45)  which can be rewritten as follows. 

 

     0ρ Δ ρk kS S S                 (47) 

 

[S0] is the compliance matrix in the undamaged state, whereas [ΔS(ρk)] is the increment due to 

the presence of cracks in the k-th layer. If crack interaction is neglected, the compliance matrix 

[Sd] of the damaged laminate with cracks in nc layers can be thought as the sum of the initial 

matrix [S0] and the contributions [ΔS(ρk)] for each cracked ply. 

 

     0
1

Δ ρ
n

d k
k

S S S


      , if ρk ≠ 0        (48) 

 

Thus the coefficient of [Sd] in position lm, normalised to its value for the undamaged laminate 

Slm,0 can be written as 

 

1
,0 ,0

(ρ )
1 1

n
lm lm k

k
lm lm

S S

S S

 
     

 
, if ρk ≠ 0.        (49) 

 

This assumption is implicitly at the basis of the semi-empirical "superposition of solutions 

method" proposed by Tsai and Daniel for the shear modulus of cross-ply laminates [41] with 

transverse cracks and splits. This method is very simple since it only requires to carry out the 

shear lag analysis for the laminate damaged in one single layer, and then to sum the so 

obtained results as in equation (49). It will be shown later that this can lead to non 

conservative errors in the estimation of the degraded stiffness properties.  

6.3.2 Analysis with crack interaction 

Kachanov in 1987 proposed a simple method to describe interaction between cracks in an 

isotropic plate based on the principle of superposition of effects [45]. Getting inspiration from 
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that work, the problem of off-axis cracks interaction is treated here for the sake of stiffness 

degradation of a laminate with cracks in multiple plies with different orientations. For easiness 

of treatise, an example with cracks in two layers ,k and h, is first shown, but general formulae 

are given at the end. 

Let us consider the upper part of a general symmetric laminate, with cracks in layers k and h, 

with crack densities ρk and ρh, as shown in the left part of figure 4. Similarly to the procedure 

shown in paragraph 6.2.3, let us consider separately three loading conditions, characterised by 

the global stresses vector 0σ


= {ζx0, ζy0, ζxy0}
T
 equal to {1, 0, 0}

T
, {0, 1, 0}

T
 and {0, 0, 1}

T
. In 

view of the principle of superposition of effects, the general configuration, Ω, of a cracked 

laminate under global load 0σ


, in the left side of figure 4, can be considered as the sum of two 

loading conditions I and II: 

I)  The uncracked laminate is subjected to the global load given by the vector ζ0; 

II) The cracked laminate is subjected to transverse and in-plane shear stresses only in 

correspondence of the faces of the cracks. These stress components have to equilibrate the 

stresses arising in those locations (we can refer to them as virtual crack faces) in the loading 

condition I, in order to fit the requirement of stress-free crack surfaces in the general 

configuration. Accordingly they must be equal to the stresses calculated applying the Classical 

Lamination Theory (CLT) to the loading condition I (equation (50)). 

 

0( ) ( ) ( )( )

,2 ,2 ,22,0

0( ) ( ) ( )( )

,6 ,6 ,66,0

0
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σ

σ
σ

σ

xi i ii

x y xy

yi i ii

x y xy

xy

c c c

c c c

 
     

     
      

 

        (50) 

  

The coefficients cx,j
(i)

, cy,j
(i)

, cxy,j
(i)

 represent the links between the global stress ζx0, ζy0 and ζxy0 

respectively, and the stress component ζj in the i-layer, expressed in its material coordinate 

system. They can be easily computed with the CLT. 
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Figure 4: Application of superposition of effects to a general cracked laminate 

 

In analogy with Kachanov's work [45], the loading condition II can be further decomposed in 

the sum of two loading conditions IIh and IIk as shown in figure 5. 

IIh) The laminate is cracked in the h-th layer only, and the stress components ζ2
(h)

(x1
(h)

)
 
and 

ζ6
(h)

 (x1
(h)

) are applied in correspondence of the faces of the cracks. These stresses are 

functions of the longitudinal coordinate of the h-th ply x1
(h)

, but they can be expressed as the 

sum of their average value <ζj
(h)

> and a variable contribution ζj
(h)

(x1
(h)

) the average of which is 

zero.
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        (51) 

 

Under this condition, the stress perturbations ζ1,h
(k)

 (x1
(k)

), ζ2,h
(k)

 (x1
(k)

), and ζ6,h
(k)

 (x1
(k)

), 

functions of x1
(k)

, arise in the virtual crack faces of the k-th layer, as a consequence of the 

application of the stresses ζ2
(h)

(x1
(h)

) and ζ6
(h)

 (x1
(h)

) on the surfaces of the cracks in the h-th 

ply. 

IIk) In analogy with the previous case, the stress components applied to the faces of the cracks 

in the k-th layer can be written as 

 

   
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.        (52) 

 

They are responsible for the generation of the stress perturbations ζ1,k
(h)

 (x1
(h)

), ζ2,k
(h)

 (x1
(h)

), 

and ζ6,k
(h)

 (x1
(h)

), on the virtual crack faces in the h-th layer. 
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Figure 5: Application of the superposition of effects to the configuration II 

 

According to the decomposition shown in figure 5, all the stress components on the physical 

and virtual crack faces must be linked by the following system of equations. 
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         (52) 

 

The same set of equations must hold also for the average values of the stresses, leading to the 

following governing system of equations. 
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         (53) 

 

Kachanov [45] made the simplifying assumption that the stress perturbations on the virtual 

crack faces can be computed applying only the average stress on the surfaces of the other 

(physical) crack. According to this simplification, if the configuration IIh is considered as the 
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sum of <IIh>, where only the average stresses <ζ2
(h)

> and <ζ6
(h)

> are applied, and IIh, where 

only the variable contributions ζ2
(h)

(x1
(h)

) and ζ6
(h)

(x1
(h)

) are applied, the perturbations in the k-

th layer ζ1,h
(k)

 (x1
(k)

), ζ2,h
(k)

 (x1
(k)

), and ζ6,h
(k)

 (x1
(k)

) can be estimated from the configuration 

<IIh> only. This implies assuming that the loading condition IIh provides only a negligible 

contribution for the stress perturbations in the k-th layer, or at least for their average values, 

which are used in the governing system (53). The same can be said for the configuration IIk, 

which can be seen as the sum of <IIk> and IIk, the latter being neglected for the calculation of 

the stress perturbations ζ1,k
(h)

 (x1
(h)

), ζ2,k
(h)

 (x1
(h)

), and ζ6,k
(h)

 (x1
(h)

) on the virtual crack faces  in 

the h-th layer. 

In analogy with the superposition shown in figure 4, the loading conditions <IIh> and <IIk> 

can be decomposed in the loading conditions <IIh,c> , <IIh,u> and <IIk,c> , <IIk,u> as shown in 

figure 6 a) and b) respectively. The subscripts c and u refer to the fact that the laminate is 

cracked and uncracked respectively. 

 

  

 

Figure 6: Application of the superposition of effect to the configurations a) <IIh> and b) <IIk> 

 

ζx,h and ζxy,h are unknown global stresses needed to make the stress components <ζ2
(h)

> and 

<ζ6
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> arise in the h-th layer in the configuration <IIh,u>, in order to satisfy equilibrium in the 
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decomposition shown in figure 6a). The same role is played by the global stresses ζx,k, and 

ζxy,k in the decomposition of figure 6b). Accordingly, the following equations can be written. 

 

( ) ( ) ( )

2 ,2 , ,2 ,
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6 ,6 , ,6 ,
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σ c σ c σ

σ c σ c σ
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    

    

    
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    

        (54)

  

It is important to mention that the final results does not depend on the choice of the directions 

of the couples of unknown global stresses. Normal stress in x-direction and shear stress in the 

xy plane are chosen in this case, but a different combination of in-plane stresses, for example 

ζx and ζy, could be used, without influencing the final result. According to figure 6a), the 

average value of the stress perturbations on the virtual crack faces of layer k can be calculated 

as the sum of two contributions, related to configurations <IIh,c> and <IIh,u>. In the condition 

<IIh,u> they can be simply calculated by means of the coefficients cx,j
(k)

, cy,j
(k)

, cxy,j
(k)

  resulting 

from the CLT, whereas in <IIh,c> they can be considered as the average stresses in the k-th 

layer computed by means of the shear lag analysis of the laminate with cracks in the h-th ply, 

represented by the coefficients defined in equations (42)-(44). Accordingly they can be written 

as follows. 
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 (55) 

 

Similarly, the perturbations in the h-th layer due to the applications of stresses on the crack 

surfaces on layer k (figure 6b) can be written as 
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. (56) 
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Now, substituting equations (50) and (54)-(56) in the governing system (53), a non-

homogeneous linear system of four equations in the four unknown global loads ζx,h,  ζxy,h, ζx,k, 

and ζxy,k is obtained and can be easily solved. 

In the general case of a symmetric laminate with nc cracked layers in its upper part, the 

governing system (53) can be rewritten as 

 

( ) ( ) ( )

2 2,0 2,
1
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


      (57) 

 

resulting in a system of 2nc equations. Similarly to equations (50), (54)-(56), the stress 

components involved in (57) can be written as in equations (58)-(60) for every h-th cracked 

layer. 
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  (60) 

 

Recalling all the decompositions, the general condition Ω can be written as the following sum: 

 

 , ,
1

Ω , ρ 0
n

k k c k u k
k

I II II II if

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      (61) 

 

Accordingly, the average global laminate strains in the x,y reference system, for a given 

loading condition 0σ


, can be seen as the sum of the contributions coming from each 
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configuration in which the general condition has been decomposed. Considering the average 

strains in the configurations IIk negligible, the global strain vector can be written as follows. 
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    (62) 

 

As in paragraph 6.2.3, the complete compliance matrix [Smd] of the laminate with cracks in 

multiple layers (the subscript md is for multiple damage) can be written as a matrix containing 

the three column strain vectors related to the global loads 0σ


= {1, 0, 0}
T
, {0, 1, 0}

T
 and {0, 0, 

1}
T
 , resulting in the following final equation. 
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(63) 

 

It is worth noting that equation (63) differs from equation (48), which does not consider crack 

interaction, by means of the coefficients ζx,k and ζxy,k. Through equation (63) the elastic 

properties can be computed analytically on the basis of the compliance matrix of a laminate 

cracked in one single layer (equation (45)) and solving the system (57) for the global unknown 

loads. It is worth mentioning that this procedure can be applied to any analytical or numerical 

method which is suitable to calculate the elastic properties in the presence of cracks in one 

layer only, as well as the average stresses in the other layers, as they are needed to write 

equation (60) and to solve the system (57). From this point of view, the shear lag model 

presented in paragraph 6.2 is only one possibility, but the procedure for modeling the 

interaction can be coupled also with other stress transfer models [22,26,27].  

 

6.4. Parametric analysis of crack interaction 

In the following paragraph a parametric analysis is shown in order to understand the 

importance of considering crack interaction for a reliable estimation of elastic properties. The 

entire procedure described in paragraphs 6.2 and 6.3 is applied to laminates with lay-up 
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[0m/θm/-θm/90m]s, with the elastic and geometric properties adopted by Singh and Talreja [9] 

and listed in table 2, changing the number of layers m and the orientation of the off-axis plies 

θ. The ratio between the elastic properties Ex, νxy and Gxy of the damaged laminate and those 

of the pristine laminate Ex,0, νxy,0 and Gxy,0 is computed  as a function of the crack density 

which is considered the same for all the off-axis and transverse plies (ρ2 = ρ3 = ρ4), whereas ρ1 

is set equal to zero. In particular, the percentage difference between the results obtained 

without and with crack interaction is calculated as 
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
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       (64) 

 

where the subscripts I and NI mean "Interaction" and "No Interaction" respectively. 

 

Table 2: Material properties for the parametric analysis 

Material 
E1 

[MPa] 

E2 

[MPa] 

ν12 

  

G12 = G13 

[MPa] 

G23 

[MPa] 

ply thickness 

[mm] 

Glass/Epoxy [9] 44700 12700 0.297 5800 4885 0.125 

 

In figures 7 a), b) and c), the quantities defined in equation (64) are plotted versus the crack 

density when m = 4 and for three different values of the off-axis angle θ. In can be seen from 

figures 7a) and c) that the prediction for Ex and Gxy without crack interaction is always non 

conservative, the error being positive and increasing with the crack density. It is also clear 

that, when crack interaction is neglected, the error committed is higher as the off-axis angle is 

increased. This is in agreement with findings in [9] for the same kind of laminate lay-up. 
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Figure 7: Influence of the crack density and of the off-axis angle on a) ΔEx, b) Δνxy and c) ΔGxy 

 

Concerning the laminate's Poisson's ratio νxy (figure 7b)), the prediction provided by the model 

without considering crack interaction is again non conservative for off-axis angles of 70° and 

55°, allowing one to draw the same conclusions valid for the Young and shear moduli. 

Conversely, for θ = 40° a conservative prediction is achieved if crack interaction is neglected, 

as the error is negative, though very small for the analysed range of crack density.  

In order to clarify the effect of ply thickness on crack interaction, the quantities defined in 

equation (64) are plotted in figure 8a), b) and c) for θ = 70° and m = 1, 2 and 4. 
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Figure 8: Influence of the crack density and of the ply thickness on a) ΔEx, b) Δνxy and c) ΔGxy 

 

Non conservative predictions are always achieved if crack interaction is not considered, and 

the error is strongly dependent on the ply thickness, as it is an increasing function of the 

number of plies m. 

It can be concluded that in most cases neglecting crack interaction leads to non conservative 

predictions of modulus reduction. This effect is more and more pronounced as the difference 

between the orientation of the confining cracked plies is smaller and the ply thickness is 

higher. Finally, crack interaction has a negligible influence when the crack density is very 

small, whereas it becomes important when ρ increases.  

Laminates with lay-up [0/θ4/0m/-θ4]s are also analysed, where the cracked off-axis plies are 

separated by m undamaged 0° layers, in order to understand the entity of crack interaction 

when two damaged plies are not contiguous. The same material properties of the previous 

analysis are adopted, and the errors defined in equation (64) are plotted in figures 9a)-c) for θ 

= 70°. As expected, the higher m, the lower the difference between the prediction without and 

with interaction is. 

Finally it can be concluded that crack interaction can be neglected only if the crack density is 

very low, if cracked plies are very thin or if they are separated by thick undamaged layers. 

Apart from these restrictive conditions, crack interaction has to be included in the analysis by 

means of the analytical procedure defined in paragraph 6.3.2 to avoid wrong and non 

conservative predictions for the degradation of elastic properties. 
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Figure 9: Influence of the crack density and of the undamaged 0° ply thickness on a) ΔEx, b) 

Δνxy and c) ΔGxy 

 

6.5. Validation of the interaction model 

The entire model described in sections 6.2 and 6.3 for multiply damaged laminates is now 

validated by means of experimental results from the literature. 

Fatigue tests were carried out by Messenger and Smith [46] on [0/90/45/-45]s glass/epoxy 

laminates with standard and urethane modified resins. They provided accurate data on the 

crack density evolution in the 90°, 45° and -45° plies as well as on the Young modulus 

reduction during fatigue life. These results have been used as input for the present model and 

the comparison between experimental data and predictions is shown in figures 10 a) and b). As 

the ply thickness is very small (0.185 mm [46]), the difference between the predictions with 

and without interaction is not dramatic. However it is worth noting that the model which 

accounts for crack interaction gives a better and more conservative prediction for both resin 

systems. 
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Figure 10: Comparison between experimental data from [46] and model predictions for 

glass/epoxy laminates with a) standard and b) modified resin 

 

Varna et al.[16] carried out static tests on [0/θ4/-θ4/01/2]s glass/epoxy laminates with θ = 70, 55, 

40 and 25 degrees. Results for θ = 70° are shown in figure 11 together with the present model 

prediction and finite element results from [8]. It is evident that the agreement between 

predictions and experimental data is not satisfactory. However, also Cortes-Barbero [40] and 

Li and coauthors [8] found a bad correlation with these results, suggesting that probably some 

additional phenomena could have been responsible for a further stiffness degradation in the 

experimental tests. This is even more evident for the results concerning θ = 55° (see [16]). 

Varna and coauthors concluded that, under static loading, if the off-axis angle is high enough, 

the material non-linear shear response is responsible for a further Young modulus reduction, 

which occurred even in the absence of off-axis cracks. This phenomenon could be responsible 

also for the disagreement between model predictions and experimental data for θ = 70°. 
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However it can be seen that a satisfactory agreement is found if the present model accounting 

for crack interaction is compared to the finite element results from [8].    

 

 

Figure 11: comparison between the present model predictions, FEM predictions [8] and 

experimental data from [16] 

 

6.6. Conclusions 

An analytical model has been proposed for the estimation of elastic properties of a 

multidirectional symmetric laminate with off-axis cracks in multiple layers with different 

orientations.  

First, a bi-dimensional shear lag analysis of a symmetric laminate with cracks in one single ply 

was developed, the results of which are the in-plane stresses, strains and displacements 

averaged over the thickness of each ply, functions of the transverse coordinate of the cracked 

layer. Averaging stresses and strains over the entire volume of each ply it is possible to obtain 

the entire compliance matrix of the damaged laminate, which is a function of the crack 

density. The model requires as input data the lamina elastic and geometric properties only.  

Then the problem of a laminate cracked in multiple plies was treated by means of an analytical 

model accounting for the mutual interaction between cracks in different plies. The result is the 

compliance matrix of a laminate with cracks in multiple layers, which can be analytically 

calculated, without the need of an iterative procedure, simply starting from the results 

computed through the single cracked layer model.  

It is important to underline that the procedure proposed to account for crack interaction does 

not have necessary to be coupled with the shear lag analysis carried out in the present chapter, 
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but also with any other available model (included finite element models) suitable to calculate 

the elastic properties and the average ply stresses in the presence of cracks in a single layer. 

The proposed model was found to be in good agreement with experimental and finite element 

data from the literature.   
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7 

Prediction of crack density evolution for 

multidirectional laminates under fatigue loading 
 

7.1. Introduction 

As already pointed out in this thesis, the fatigue behaviour of composite laminates is 

characterised by a progressive damage evolution from the beginning of fatigue life to the final 

failure. The main macroscopic evidence of the damage evolution is the degradation of the 

global elastic properties of laminates. In several applications the stiffness is a crucial 

parameters in the design process and this makes it essential to be able to predict its loss during 

the in-service cyclic loads. It is proved that the degradation of the elastic properties is due to 

damage mechanisms that are not directly responsible for the laminate failure and therefore 

they have been defined secondary damage mechanisms [1,2]. Such mechanisms are the 

initiation and through-the-width propagation of multiple matrix cracks in the off-axis layers, 

followed by the onset and propagation of delaminations [2-6]. In particular the accumulation 

of matrix cracks can lead to a considerable stiffness loss much before the laminate failure. In 

addition they act as stress concentrators of the 0° plies promoting the failure of the fibres, the 

latter being a primary damage mechanism [1,2] which brings to the complete failure (i.e. 

separation) of a laminate. 

Because of the importance to predict the fatigue damage evolution besides the final failure, 

this topic has been treated by several researchers in the last two decades. After a literature 

review, the main predictive models can be grouped in two kinds of approach, namely: 

1) Models which do not directly correlate the damage evolution (stiffness and residual strength 

degradation) to the damage mechanisms (i.e. off-axis cracks initiation and propagation): 

 1.1. Analytical models based on a Continuum Damage Mechanics-like approach; 

 1.2. Finite Element (FE) methods where the element behaviour is characterised by 

         progressive and/or sudden degradation rules;  

2) Models based on the prediction of the off-axis crack density evolution: 

 2.1. Models based on empirical laws for the crack density evolution; 

 2.2. Models based on stress distributions and statistical fatigue strength distribution. 
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In the following, some models relevant to the above mentioned approaches are briefly 

presented and discussed. The references are not reported in chronological order, with the aim 

to favour a logic flow of the ideas at the basis of the models.   

1.1. Based on the damage evolution pattern highlighted by Reifsneider and co-authors [7], Wu 

and Yao in 2010 [8] proposed a new versatile empirical rule for the degradation of a laminate's 

stiffness in the loading direction. Two parameters must be calibrated on the experimental data, 

but they are function of the stacking sequence and hence this model is not suitable to make 

predictions for different lay-ups without a dedicated experimental characterisation. However 

the proposed law was shown to describe very well the stiffness trend once the parameters were 

suitably calibrated. 

Much before, in 1997, Shokrieh and Lessard [9,10] proposed to model the fatigue damage 

evolution of an unidirectional (UD) lamina by means of empirical laws describing the gradual 

stiffness and residual strength degradation under fatigue loading. An extensive experimental 

campaign is needed for the calibration of such laws under several loading conditions leading 

to different damage mechanisms. The final failure of a ply is then predicted by means of 

polynomial criteria where the stress components are normalised with respect to the residual 

strength expressed by means of the above mentioned degradation rules. 

1.2. Later, Shokrieh and Lessard [11,12] applied their model to multidirectional laminates by 

means of FE 3D analyses of laminates in which the elements of each ply behaved according to 

the gradual degradation rules defined in [9]. After the failure of a ply was detected by means 

of the polynomial criteria proposed in Ref. [9] its properties were suddenly degraded to zero. 

The application of the model in Ref. [12] showed a very good capability in the prediction of 

the S-N curve for the complete failure of a laminate, but no considerations were done on the 

global stiffness trend.  

In 2012 Naderi and Maligno [13] applied the same method proposed by Shokrieh and Lessard 

[11] with two important differences: they carried out 2D FE analyses and, most of all, they 

assigned to every element a strength based on a Gaussian distribution, thus simulating the 

presence of defects due to the manufacturing process. They obtained sound predictions for the 

S-N curves related to the laminates' complete failure, but, again, no comparisons were shown 

for the stiffness degradation. 

In 2013 Kennedy et al. [14] proposed a method conceptually similar to that of Shokrieh and 

Lessard [11], based on the 3D analysis of a laminate, whose element properties were gradually 

degraded according to empirical laws. The element failure, followed by the sudden 

degradation of the ply properties, is predicted by means of a Puck-like criterion, suitably 
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extended to fatigue loading. They obtained a good correspondence between the simulation 

results and experimental data on multidirectional laminates concerning the stiffness trend. 

Lian and Yao in 2010 [15] proposed a procedure based on 3D FE analyses of a laminate where 

the strength properties were assigned to each element based on a statistical distribution. The 

elastic properties of each element were gradually degraded, always by means of empirical 

laws, until its failure was predicted by means of a polynomial criterion similar to those of 

Hashin [16] coupled with normalised S-N curves for a single lamina under different loading 

conditions. After the element failure its properties were suddenly degraded. Lian and Yao 

obtained sound predictions of both the stiffness trends and S-N curves for multidirectional 

laminates. The main disadvantage of this method, and in general of the models described 

above, is that they based on empirical laws both for the prediction of the properties 

degradation and element failure. In addition, none of them considers properly the crack 

propagation phase which can be important for a reliable prediction of the global stiffness 

degradation, as will be discussed in the following sections.  

2) The second kind of approach consists in predicting the evolution of the crack density in the 

off-axis layers as an input for models capable to link the crack density to the global elastic 

properties of a multidirectional laminate. This is based on the fact that the accumulation and 

propagation of off-axis cracks is the main source of damage, mainly in the earlier stages of 

fatigue life. In addition several models can be found in the literature which are able to predict 

the laminate stiffness as a function of the density of cracks in its layers (see Refs. [17-24] 

among the others). Recently, a model based on the shear lag method has been proposed by 

Carraro and Quaresimin, accounting also for the interaction between different cracked layers 

[25,26 and chapter 5 of the present thesis]. While several and reliable models can be found to 

link the crack density to the stiffness properties, a lower number of contributions have been 

published concerning the prediction of the crack density evolution, mainly under fatigue 

loading. In addition a general and well defined procedure is not still recognised by the 

scientific community. Some very interesting contributions can be found for the static loading 

case, and they can be grouped in energy-based [18,27,28] and stress-based [29-31] 

approaches. Only Vigronadov and Hashin [27] and Huang et al. [30,31] considered the 

statistical distribution of strength which is essential for an accurate prediction of the crack 

density evolution. 

Concerning fatigue loading, as mentioned before, two approaches have been identified for the 

prediction of the crack density evolution (empirical and stress-based models). 



Chapter 7. Prediction of crack density evolution for multidirectional laminates under fatigue loading 

 

174 
 

2.1. Liu and Lessard [32] used a simple empirical rule for a damage variable which is 

representative of the entity of the crack density and also delaminations. Then they related the 

damage variable to the global stiffness by means of relationships provided by Talreja [33] and 

O' Brien [34]. 

Subramanian and co-authors [35] proposed a cumulative damage model for cross-ply 

laminates, capable of predicting the stiffness degradation as well as the final failure by means 

of a critical element concept. For the sake of the stiffness loss, the crack density evolution was 

predicted by means of empirical laws, and used as input for a simple shear lag analysis. 

In 2002 Henaff-Gardin and Lafarie-Frenot [36] developed a method for cross-ply laminates 

based on an energetic approach for the prediction of the cycles spent for the initiation of the 

first transverse crack, followed by an empirical law to predict the fatigue evolution of a 

characteristic damage variable proportional to the crack density.  

Another interesting contribution for cross-plies was provided by Hoang and co-authors in 

2010 [37]. They proposed to use an approach based on iso-crack density curves Vs number of 

cycles which could be obtained, after some assumptions on their shape, by quasi-static tests. 

All the models discussed above provided more or less reliable results when compared to 

experimental data series presented in the relevant papers. They have the advantage of being 

simple in their application, but they lack in generality since they are based on empirical laws. 

2.2. According to the author's best knowledge, the only stress-based model for the prediction 

of the crack density evolution under cyclic loading in that proposed by Sun and co-authors in 

2003, which is valid for a cross-ply laminate [38]. They carried out a Monte Carlo simulation 

where the 90° layer of a cross-ply laminate was divided in small elements whose strength was 

assigned according to the Weibull distribution. The failure of an element was predicted on the 

basis of the S-N curve for the 90° UD lamina, whose input were the ply stresses. The latter 

were calculated considering the stress re-distribution after cracking by means of a shear lag 

analysis. The results of the simulations were in very good agreement with experimental results 

concerning the crack density evolution. They did not consider the transverse cracks 

propagation phase, but they did not need to do that since the model was verified against 

experimental results for lay-ups in which the thickness of the 90° plies was high enough to 

promoting the sudden propagation of the nucleated cracks. This is also proved by some images 

of the damaged specimens shown in Ref. [38]. 

In the writer's opinion this is the most reliable and refined model in the literature in this field.  

Within this frame, the aim of the present work is to move one step further and develop a tool 

for the prediction of the fatigue crack density evolution for symmetric laminates with a general 
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lay-up, considering both the initiation and the propagation phases, which are, in general, 

distinct and describable by means of different tools.    

The presence of off-axis plies with any orientation complicates the problem because of the 

multiaxial stress state, which changes during fatigue life because of stress re-distributions after 

cracking. For this purpose, a crack initiation criterion has been proposed by the authors [39 

and chapter 4]. According to this criterion the S-N curves should be expressed by means of an 

equivalent stress ζeq, accounting for the multiaxial stress state. The equivalent stress has been 

defined on the basis of the damage mechanisms at the microscopic scale leading to the 

initiation of a macro-crack. The Local Maximum Principal Stress (LMPS) and the Local 

Hydrostatic Stress (LHS) should be used as ζeq, depending on the amount of in-plane shear 

stress ζ6 (see Ref. [39] or chapter 4 of the present thesis for the details).  

The multiaxial criterion proposed in chapter 4 is included in the procedure proposed for the 

crack density prediction, allowing to deal with cracks initiation in off-axis plies. 

 

7.2. Definition of crack density 

According to its most trivial and common definition, the crack density is meant as the total 

number of initiated cracks divided by the observation length perpendicularly to the crack 

faces: 
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Where n is the total number of initiated cracks, L and θ are defined in figure 1. 

It is proven that this definition of the crack density, which can be defined as the total crack 

density ρ, is not a good parameter to correlate with the stiffness degradation. In fact, if the 

cracks are not completely spanning through the width of a laminate their length becomes a 

variable of extreme importance to be accounted for a sound estimation of the stiffness 

degradation [2,19,40]. Accordingly, the weighted crack density, ρw, can be defined as the total 

number of cracks, each of them being weighted by its length c, divided by the observation 

length, as in equation (2): 
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where ci is the length of the i-th crack, n is the number of initiated cracks and w is defined in 

figure 1. 

 

Figure 1: Geometry of a cracked layer and global reference system 

 

According to these observations, it is fundamental to be able to predict the weighted crack 

density, which depends on both the fatigue crack initiation and propagation. In section 7.4 and 

6.5 the initiation and propagation phenomena will be treated, respectively. 

 

7.3. Multiscale strategy 

In this section the procedure for the prediction of the weighted crack density is briefly 

described. Because of the inhomogeneous nature of composite materials the nature of damage 

evolution is always multiscale, as highlighted by Talreja [41]. In addition, "length scales of 

damage and their hierarchy are not fixed but are subject to evolution"[41]. In fact the fatigue 

behaviour of a UD lamina is characterised by a progressive damage evolution by means of 

irreversible mechanisms at the microscopic scale, such as fibre-matrix debonding or matrix 

micro-cracking, as pointed out also in this thesis and Refs. [2,39]. The evolution of these 

damage mechanisms, consisting for instance in the coalescence of debonds and micro-cracks, 

leads to the formation of a macroscopic crack, spanning through the thickness of a lamina and 

propagating along its width. Therefore the length scale changes from the micro-scale (the 

length scale of the fibre diameter and the inter-fibre spacing) to the macro-scale, related to the 

crack spacing and the laminate width. Accordingly, the initiation of a macro-crack is 

controlled by the evolution of damage at the microscopic scale. It has been shown in chapter 4 

that two local parameters, LHS and LMPS, are a sound representation of the driving forces for 

the micro-damage evolution in the presence of a negligible or high enough in-plane shear 
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stress, respectively. The bridge between the macro-stresses in the material coordinates system 

(ζ1, ζ2, and ζ6) and the micro-stresses is represented by stress concentration factors computed 

by means of a micromechanical analysis, as reported in chapter 4. LHS and LMPS can be used 

as equivalent stress, ζeq, for a successful representation of the lamina S-N curves in two single 

scatter bands, accounting for the influence of multiaxial stress states. The initiation of off-axis 

cracks in a ply within a multidirectional laminate is therefore a micro-damage driven 

phenomenon, and therefore it can be predicted by means of S-N curves expressed in terms of 

ζeq = LHS or LMPS, which are local parameters. The latter are calculated on the basis of the 

macro-stresses which can be uniform along the transverse direction, if the ply is undamaged, 

or non uniforms because of stress redistribution due to cracking. The stress redistribution can 

be treated as a macro-scale phenomenon, how it is commonly done in the literature, and it can 

be computed by means of several analytical [17,23-25] and semi-analytical [18] methods or by 

means of Finite Element (FE) analyses of cracked laminates. Once the initiation of cracks has 

been predicted, it is fundamental to describe their through-the-width propagation, which is 

treated as a macroscopic phenomenon. It has been shown in the literature [3,42-44] and and in 

chapter 3 that the crack propagation can be successfully described by means of a Paris-like law 

relating the Crack Growth Rate (CGR) to the Strain Energy Release Rate (SERR) or to the 

Stress Intensity Factor (SIF). 

A schematic of the multiscale procedure for the prediction of the weighted crack density 

evolution is shown in figure 2, and it consists in the simulation of fatigue life by progressively 

increasing the number of cycles by steps ΔN. 

For a given step of fatigue cycles ΔN, and for every off-axis layer, the analysis is divided in 

the following points: 

1) Calculation of ply stresses in each layer, with the possible presence of off-axis cracks, and 

therefore considering the stress redistribution. 

2) Calculation of micro-stresses (or local stresses) by means of a fibre matrix unit cell 

subjected to periodic boundary conditions (see the stress concentration factors defined in 

chapter 4 and Ref. [39]). 

3) Calculation of the fatigue parameters LHS and LMPS. 

4) According to the multiaxial condition, calculation of the total density of nucleated cracks, 

by using the LHS of LMPS master curves for the material considered. The statistical 

distribution of fatigue strength and the sequence effect, due to the stress redistribution, must be 

accounted for. 
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5) Analysis of the crack propagation phase to compute the length of all the nucleated cracks 

and calculation of the weighted crack density. 

6) Updating the crack spacing, increasing the number of cycles of a further step ΔN and 

repeating steps 1-6. 

Steps 4 and 5 will be described in detail in the next sections.    

 

Figure 2: schematic of the procedure for the prediction of the weighted crack density 

 

7.4. Prediction of multiple crack initiation 

In this section the procedure for the prediction of off-axis crack initiation is described in detail. 

As already mentioned, the basic idea is that the initiation of cracks is controlled by the fatigue 

resistance of the material considered, represented by the S-N curves expressed in terms of an 

equivalent stress ζeq (LHS or LMPS). The S-N curves are expressed by means of the typical 

power law relating the equivalent stress to the number of cycles to failure Nf: 
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The exponent a is an input of the model and it can be obtained by a series of experimental data 

on an off-axis lamina with whatever orientation. More precisely, two values of a should be 

introduced, aLHS and aLMPS, to be used whether the fatigue behaviour is LHS- or LMPS-

controlled, respectively. As already explained in chapter 4, aLHS can be obtained by testing 

under fatigue a UD lamina under pure transverse stress condition (θ = 90° for instance), while 

aLMPS can be calculated from experimental tests on a UD lamina under shear-dominated stress 

states (θ = 10-45° for instance). A fundamental hypothesis of the model is that the scatter band 

describing the fatigue behaviour is characterised by a Weibull distribution of the coefficient K, 

the cumulative probability P(K) being expressed by equation (4). 

  

0

( ) 1 exp

m

K
P K

K

  
    
   

         (4) 

 

m and K0 are respectively the shape and scale parameters of the Weibull distribution. They are 

input variables that can be computed as explained later in section 7.4.1. Expressing K from 

equation (3) and substituting in equation (4) the probability to form cracks at a number of 

cycles equal to N, P(N) yields 

 

0

σ
( ) 1 exp

m

eq

a
P N

K N

  
    

   

        (5) 

 

Equation (5) holds if the local cyclic stress remains constant during the entire fatigue life. This 

condition is verified only at the beginning of fatigue life, when the laminate is undamaged or 

when the initiated cracks are far enough and thus non interacting. This condition is defined as 

"Non-Interactive regime" and it holds until the crack density is lower than a limit value, ρNI, 

after which the initiated cracks start interacting causing stress redistributions. This is defined 

as "Interactive regime", and it is characterised by the variability of ζeq with the number of 

cycles and the x2 coordinate. A schematic is shown in figure 3. As a consequence, the 

prediction of crack initiation in the Non-Interactive and Interactive regimes will be treated 

separately in sections 7.4.1 and 7.4.2, respectively. 
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Figure 3: Non-Interactive and Interactive regimes 

 

7.4.1 Non-Interactive regime 

For the sake of the simulation, each off-axis layer is divided in elements with length l0 along 

its transverse direction x2, as shown in figure 4a). In the Non-Interactive regime the in-plane 

stresses ζ1, ζ2, ζ6, and therefore the equivalent stress ζeq, are uniform in the entire layer, and 

their cyclic values do not change from one cycle to the next one. Accordingly, P(N) in 

equation (5) represents the cumulative probability of failure of each element after N cycles. 

Thus the total crack density ρ can be computed as 
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Since the simulation is carried out by progressively increasing the number of cycles by steps 

ΔN, the increase of the total crack density, Δρ, in the i-th step ΔNi can be calculated as 
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It is important to mention that, different from the real behaviour, the initiation of cracks in the 

simulation is not a discrete phenomenon, but it is continuous. Thus, at every step ΔNi there is a 

new set of initiated cracks. 
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To address, later, the crack propagation phenomenon, the position of the initiation sites has to 

be defined. For this sake, each layer can be divided in q elements along the longitudinal 

direction of the ply, x1, each of them representing an initiation site (see figure 4b)). 

Accordingly, the increase of total crack density Δρ, which considers all the initiated cracks in 

the layer, should be shared between q+1 arrays of cracks. This can be done on the basis of a 

function Aj representing the probability density function to form cracks at the j-th array. As a 

consequence, the increase of the density of cracks initiated in the j-th array, Δρarr,j can be 

calculated as  

 

   ,Δρ Δ Δρ Δarr j i i jN N A           (8) 

 

For example, if at every array there is the same probability for cracks to initiate, the function 

Aj is uniform and equal to 1/(q+1). If instead the probability of crack initiation at the edges is 

much higher than the rest of the specimen, A1 = Aq+1 = 0.5, while Aj = 0 for j ≠ 1, q+1. The 

second case, implying initiation to occur only at the edges, is considered in the present work. 

Thus the increase of crack density at each edge, Δρe, can be calculated as  Δρe = 0.5Δρ. 

 

 

Figure 4: Subdivision in a) elements along x2 and b) crack arrays along x1 
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The parameters of the Weibull distribution K0 and m can be calibrated on a series of 

experimental data, from the crack density evolution under a single load level. To this aim a 

laminate with a given stacking sequence can be fatigue tested under uniaxial cyclic load, 

focusing the attention on the crack density evolution in an off-axis layer. The Weibull 

parameters can be calibrated by fitting with equation (6) the experimental trend of the crack 

density evolution, for crack density lower than two times the limit value ρNI (if cracks are 

supposed to nucleate only at the edges). A schematic is qualitatively shown in figure 5. Once 

these parameters have been calibrated with a single load level, they can be used for any other 

load level and multiaxial stress state since ζeq accounts for the influence of multiaxiality on 

crack initiation. This is a very simple a rapid way to determine m and K0, since the 

experimental fatigue test can be interrupted immediately after the condition ρ = 2ρNI is 

satisfied. 

 

 

Figure 5: Qualitative example of the fitting procedure for the estimation of the Weibull 

parameters 

 

In the Non-Interactive regime the number of cycles is incremented by steps ΔN till the crack 

density at each edge, ρe, reaches the limit value ρNI. ρe depends both on the number of cracks 

initiated at the edge and on the number of cracks initiated at the opposite edge and fully 

propagated. For this reason the value of the crack density at the edges at the cycle Ni = Ni-1 + 

ΔNi, ρe(Ni), will be calculated at the end of the analysis of the propagation phase, as described 

in section 7.5. 
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7.4.2 Interactive Regime 

If the crack density at the edges of the k-th ply is higher than ρNI, the cracks in the k-th layer 

start interacting with each other causing the redistribution of the stress components ζ1, ζ2, ζ6, 

and thus of the equivalent stress ζeq, which are now functions of the transverse coordinate x2. 

Therefore each element in which the ply is divided along the x2 direction is subjected to a 

different stress state, both in terms of modulus and multiaxiality. Obviously the cyclic values 

of these stress components vary proportionally to the external applied load. At this point it is 

essential to make the simplifying assumption that the crack spacing at the edges, Se, is uniform 

and equal to 1/ρe. Of course this is not exactly representative of real phenomena, mainly in the 

earlier stages of fatigue life. It was shown in Refs. [30,45] that the crack spacing at the end of 

the Non-Interactive regime follows a Poisson's distribution, while during the Interactive 

regime its distribution should depend on the probability of failure at each element. This 

approach cannot be adopted in the present case since the edge crack spacing does not depend 

only on the cracks initiated at the edge but also on those coming from the opposite edge and 

fully propagated. 

Since at every step ΔNi of the simulation a new set of cracks initiates, each element is 

subjected to a variable amplitude fatigue loading. As a consequence a damage accumulation 

model is needed to account for the sequence effect. Neither results or models are available in 

the literature concerning the sequence effect on the matrix-dominated fatigue behaviour of UD 

composites. In the present work the simple and well known Miner's rule is used to define the 

entity of damage D under variable amplitude fatigue. Accordingly, the entity of damage after 

Ni cycles is 
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,
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j

i
j

f j
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 
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 

          (9) 

 

The suitability of such a model for the matrix dominated fatigue behaviour should be checked. 

Let el be an index scanning through the elements of length l0 (el varies from 1 to Se/l0). 

Combining equations (3), (4) and (9), and considering the volume effect (as now only half 

specimen, i.e. one edge, is analysed) the probability of having a damage di(el) higher than D, 

at the el-th element after Ni cycles, is given by  
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    (10) 

 

where ζeq,j(el) is the equivalent stress at the el-th element between the cycles j-1 and j. In order 

to simplify the expressions, a load history parameter L(el,Ni) for the el-th element after Ni 

cycles is defined as 
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     (11) 

 

The critical condition, corresponding to the initiation of a crack at the el-th element, is 

achieved when di(el) ≥ 1. Thus the cumulative probability P(el,Ni) to form a crack in 

correspondence to the el-th element after Ni cycles is given by 
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     (12) 

 

The probability of a crack to initiate at the el-th element between the cycles Ni-1 and Ni is 

defined failure rate and it is calculated as 
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Finally, assuming that the cycles intervals ΔN are small enough to allow only one crack per 

crack spacing to initiate, the increase of edge crack density due to the failure of the el-th 

element only, Δρe,el(ΔNi), is calculated as 
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The total increase of edge crack density Δρe(ΔNi) can be finally calculated by summing all the 

contributions due to the failure of each element. 
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Considering the entire specimen the increase of the total crack density Δρ(ΔNi) is equal to 2· 

Δρe(ΔNi) and thus the total crack density at the cycle Ni is 

 

     1ρ ρ Δρ Δi i iN N N           (16) 

 

At this point the total crack density is known, and the analysis of the propagation phase is now 

necessary for the computation of the weighted crack density ρw, as well as for the calculation 

of the edge crack density ρe(Ni) accounting for both the initiated and fully propagated cracks. 

 

7.5. Crack propagation 

As already mentioned, the propagation of the initiated cracks is assumed to be governed by a 

Paris-like law, relating the CGR to the SERR. Since the propagation occurs in mixed I + II 

mode conditions, an equivalent SERR, Geq, should be used, according to equation (17). 

 

d

eqCGR C G             (17) 

 

The coefficients C and d have to be calibrated with experimental results. Several 

phenomenological expressions have been proposed in the literature for the Geq to be used in 

equation (17). An experimental investigation carried out by the writer [2, chapter 3 of the 

present thesis] revealed that, when the Mode Mixity MM = GII/Gtot is low, i.e. the loading 

condition is mode I dominated, the propagation is controlled by the only mode I contribution 

GI. This is because the presence of the fibres does not allow the deviation of the crack 

propagation direction which would be the effect of the mode II contribution. Conversely, when 

the loading mode is mode II dominated, but not pure mode II, it has been found that the Paris-

like curves are well collapsed in terms of the total SERR Gtot = GI + GII, as can be observed in 

figures 6a) and b) readapted from chapter 3 in terms of total SERR. 
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Figure 6: Paris-like curves in terms of Gtot for tubes with a) R = 0.05 and b) R = 0.5 [2, chapter 

3 of the present thesis] 

 

The same conclusion can be drawn, mainly for 0.53 ≤ MM ≤ 0.82, considering the fatigue data 

for mixed mode interlaminar crack propagation presented by Kenane [46], data being reported 

in figure 7. 

 

Figure 7: Mixed mode interlaminar crack propagation from Kenane [46] 

 

According to these observations the equivalent SERR can be defined as follows: 
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where MM* is the transition point between the GI and the Gtot driven propagation. Therefore, 

the coefficients of Paris-like curves CI, dI and Ctot, dtot have to be provided to be used when the 

propagation is GI or Gtot controlled, respectively. 

It is remarked that, however, Gtot cannot be used for pure mode II loading. In addition, the use 

of Gtot for MM > MM* is only a phenomenological criterion, the general validity of which 
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should be checked. A damage-based criterion for mixed mode crack propagation in bonded 

joints has been proposed by the writer in Ref. [47] and chapter 7, which could be adapted to 

the case of interest. However, also in that case the same observations reported above can be 

drawn, concerning the use of GI and Gtot for mode I and mode II dominated  (not pure mode II) 

conditions respectively [48]. 

A tunnelling crack within an off-axis ply surrounded by tougher layers is characterised by a 

constant value of the SERR components if the crack length c is higher than two times the layer 

thickness [49]. This causes a Steady State (SS) propagation of tunnelling cracks. However, the 

SERR components are functions of the crack density, as proven in Ref. [50]. Let's consider, 

first, a condition where a set of equally long cracks propagate in the fibre direction, with a 

uniform spacing S, as in figure 8a). The SERR components relevant to this condition can be 

computed with several analytical methods, as well as with FE analyses. However, this 

condition is not of interest for studying the propagation of multiple cracks in a laminate. In 

fact, according to the method proposed to predict crack initiation, at every simulation step ΔN 

a new set of cracks initiate, and then they propagate between longer cracks nucleated in the 

previous steps. Accordingly, the condition of interest for the calculation of the SERR relevant 

to a crack propagating between longer cracks with crack spacing S is shown in figure 8b). 

According to Ref. [50], the SS value of each SERR component, named G in general, is given 

by the following relationship, valid for GI, GII and Gtot 

 

      ( ) ( )ρ 1/ 2 ρ 1/ ρ 1/ 2a aG S G S G S            (19) 

 

where G
(a)

 is relevant to the configuration shown in figure 8a). 

 

Figure 8: a) Set of equally long cracks and b) set of short cracks propagating between longer 

ones 
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In order to estimate the SERR, and therefore the CGR, associated to a given crack, the density 

of cracks surrounding its tip has to be known. To this end, the crack density versus x1 curves 

must be drawn at every step of the simulation. These curves represent the value of the average 

crack density at a given longitudinal coordinate x1 of the cracked ply, and it is referred to with 

the symbol ρ(x1). Its value, for a fixed x1 coordinate, depends on the total number of cracks 

encountered moving along the x2 direction, as qualitatively shown in figure 9. 

 

 

Figure 9: Qualitative example of the calculation of the crack density vs x1 curves 

 

At this point, further statistical considerations should be done, concerning the propagation 

phenomenon. Similarly to the approach used for the S-N curves, a Weibull distribution can be 

assumed for the coefficient C of the Paris-like law, the cumulative probability being 
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where C0 and p are the scale and the shape factors respectively. 

The probability density function f(C) is expressed by equation (21) and qualitatively plotted in 

figure 10. 
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Now, all the possible values of C, from 0 to Cmax, which is the value of C corresponding to an 

arbitrary chosen cumulative probability Pmax = 0,99 (Cmax = C0·[-ln(1-Pmax)]
(1/p)

), can be 

divided into nss finite intervals of length ΔC = Cmax/nss (see figure 10). 

 

 

Figure 10: Qualitative representation of eq. (21) and subdivision in finite intervals 

 

For every j-th interval between the values Cj and Cj+1, with j=1:nss+1, the average value of C 

can be computed as 
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where Γ(·) and Γ(*,·) are the complete and the incomplete Gamma functions, respectively.  

Let s be the index scanning through the sets of cracks initiated from the first step to the i-th 

one. In the simulation the s-th set of cracks can be divided in nss sub-sets, each of them 

associated to an average value jC and to an increase of crack density Δρss(s,j) so that 
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As already mentioned, the SERR related to a given crack depends on the local crack density, 

meant as the density of cracks surrounding its tip. Therefore the SERR for the j-th sub-set of 

the s-th set of cracks at the i-th step (between Ni-1 and Ni) depends on the local crack density at 

the coordinate x1(s,j,Ni-1) at which the crack tips of the j-th sub-set of set s are located after Ni-

1 cycles. 
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The above mentioned local crack density does not coincide with the average crack density 

ρ(x1), since it is reasonable to assume that a crack tip is not affected by longer cracks far away 

from itself. Therefore, at each i-th step, the local crack density related to the tips of the j-th 

sub-set of the s-th set can be estimated as follows. 

 

      1 1ρ , , 2 ρ , , Δρ ,loc i i sss j N x s j N s j
          (24) 

 

Thus the CGR which the sub-set of cracks propagates with during the delta cycles ΔNi can be 

calculated as 
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i j eq loc iCGR s j N C G s j N          (25) 

 

Since the propagation has been shown to occur in a Steady State  manner, the CGR remains 

constant during the step ΔNi, and therefore the length of the cracks of the j-th sub-set of the s-

th set at the cycle Ni, c(s,j,Ni), can be computed as 

 

     1, , , , , ,Δ Δi i i ic s j N c s j N CGR s j N N         (26) 

 

Obviously the maximum length of a crack within a layer of orientation θ is given by w/|sin(θ)|. 

When a sub-set of cracks in the simulation reaches this value its propagation phase is stopped. 

It is also important to mention that, at the moment of crack initiation, an initial length c0 is 

attributed to each sub-set of cracks. The value of c0 is assumed to be twice the layer thickness, 

since up to that length the SERR increases and then stabilises to its Steady State value. 

Finally the possibility of joining of cracks coming from opposite edges is not included in the 

present procedure. 

 

7.6. Crack density calculation 

After the procedure described in section 7.5, the length of all the initiated cracks can be 

calculated at the cycle Ni. Thus the weighted crack density ρw(Ni) can be computed as follows. 
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Now the edge crack density has to be calculated on the basis of both the initiated and 

propagated cracks. To this aim, the density of cracks which reached the 100% of their 

maximum length, ρ100(Ni) has to be computed as  

 

   100
1

ρ Δρ Δ
i

i s
s

N N


  , if c(s,Ni) = w/|sin(θ)|      (23) 

 

Now the crack density at each edge, ρe(Ni), can be computed by adding the density of all the 

initiated and fully propagated cracks. They are divided by two since we are referring only to 

one edge. 
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On the basis of the edge crack density the edge crack spacing can be updated according to  
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Now the stress redistributions between cracks at the edges can be calculated by means of any 

analytical or numerical method, considering the simplifying assumption that the crack spacing 

is uniform along the entire edge. The entire procedure, at the i-th step, has to be applied to all 

the layers oriented off-axis with respect to the external loads, so that the total, weighted and 

edge crack densities can be calculated for all of them. 

At this point it is fundamental to consider the interaction between cracks in different layers, 

which causes a further stress redistribution. The writer recently proposed an analytical method 

to account for such interaction for the calculation of the stiffness degradation of laminates with 

cracks in two or more layers ([26] and chapter 5). The same procedure can be applied also for 

the calculation of the stress redistribution between layers, though in an average sense, as 

explained in appendix 6.A. 

After considering the interaction between cracks in different layers the stress distributions are 

updated and they can be used to predict the initiation of cracks at the step i+1. 
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The  entire procedure described in sections 7.4-7.6 can be applied until the desired number of 

cycles is reached, providing the evolution of the weighted crack density in each layers with the 

number of cycles. These results can then be used as input for a model to predict the stiffness 

degradation of general symmetric damaged laminates, as the one proposed by the writer [25,26 

and chapter 5] as well as other authors [17-24]. A flowchart of the entire procedure, which has 

been implemented in a Matlab code, is provided in appendix 6.B, together with all the 

necessary input data. 

 

7.7. Example of application 

The proposed procedure is now applied to the laminates tested in chapter 4 (Ref. [51]) with 

lay-up [0/502/0/-502]s. The laminates were tested under cyclic uniaxial load starting with 6 

initial strain levels (0.6-1.1%). Tests were carried out in load control. In chapter 4 and Ref. 

[51] the results have been presented in terms of S-N curves for the initiation of the first cracks, 

Paris-like curves and weighted crack density evolution in both the +50° (thin) and the -50° 

(thick) layers. The S-N and Paris-like curves for the cracks in the thin layer, which is taken as 

reference for the model calibration, are reported in figure 11. 

 

 

Figure 11: a) S-N curve for first cracks initiation and b) Paris-like curve for off-axis cracks in 

the +50° layer of [0/502/0/-502]s laminates [51] 

 

According to the multiaxial condition, the LMPS parameter and the total SERR, Gtot, have 

been chosen as ζeq and Geq, respectively. In the calculation of the slope of the S-N curve of 

figure 11a) the points corresponding to the lower load level have not been included, since it 

seems that a change of slope occurs in that part of the curve. However this should be checked 

more carefully. The reader is referred to chapter 4 for the geometry and the elastic properties 

of the specimens. The parameters of the Weibull distribution are calibrated, as explained in 
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section 7.4, on a single experiment, fitting the total crack density evolution in the initial part of 

the test, i.e. in Non-Interactive regime. In this case the specimen with initial maximum cyclic 

strain εx,max = 0.8% (ζx,max = 163 MPa) is chosen, and the parameters mthin = 30 and K0,thin = 

303 have been obtained fitting the crack density up to a value of 0.2 cracks/mm. This value 

represents, according to the assumption that cracks initiate only at the edges, twice the value 

ρNI = 0.1 cracks/mm, chosen in agreement with the stress distributions from the shear lag 

analysis presented in chapter 5, as the limit value for the non-interactive regime.  

It will be shown later (figure 12) that the above mentioned parameters suitably describe the 

total crack density trend in non-interactive regime also for different load levels.  

The Weibull distribution parameters for the thick (-50°) layer can be estimated on the basis of 

the formulation proposed by Vinogradov and Hashin [27]. According to Ref. [27] the 

parameters for the thick layer can be computed solving the two following equations: 
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

            (26) 

 

By means of equation (26) the parameters mthick = 42.7 and K0,thick = 301 are calculated. 

The stress redistributions between cracks have been computed with the shear lag analysis 

presented in chapter 5 and the SERR has been computed by means of finite element analyses 

conducted in [51]. However, also the shear lag analysis could be used for this purpose.  

The model predictions for high loads (εx,max from 0.8 % to 1.1 %) are presented in figure 12 in 

terms of the total and weighted crack densities, compared to the experimental data shown in 

chapter 4. It can be seen that the predictions, mainly for the weighted crack density, which is 

the ones to be used for the stiffness estimation, are satisfactory, both for the thin and the thick 

layer.  

It is worth noting that the total and the weighted crack densities in the thicker ply are always 

very close since the SERR in the thick layer is higher than in the thin one.  
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Figure 12: Comparison between the model predictions and the experimental results from 

chapter 4 ([51]) for high loads 
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Generally the predictions are better for the thin layer, since the Weibull parameters have been 

calibrated for that layer. The effect of the layer thickness on the type of statistical distribution 

and its parameters should be investigated more deeply. 

As already mentioned, the S-N curve for the thin layer shows a change of slope for strain 

values less than 0.65%. In the final part of the curve the slope aLMPS has been calculated equal 

to -0.0328. Also the Weibull parameters are recalculated fitting the total crack density data for 

εx,max = 0.65% in the non-interactive regime. The parameters have been calibrated both for the 

thin and the thick layer since the formulation proposed in Ref. [27] and reported in equations 

(26) did not give good results in this case. This confirms the need to investigate more 

accurately the effect of thickness as well as the high cycles fatigue behaviour. The following 

parameters have been found: mthin = 40, K0,thin = 137.8, mthick = 53 and K0,thick = 133.66. The 

results and the comparisons are reported in figure 13 for εx,max = 0.6 % and 0.65 %. A 

reasonable agreement is obtained for all the data sets. 

 

  

  

Figure 13: Comparison between the model predictions and the experimental results from 

chapter 4 ([51]) for low loads 

7.8. Conclusions 

A new procedure has been proposed for the prediction of the total and weighted crack density 
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evolution in multidirectional laminates subjected to cyclic loading. The model treats the off-

axis crack initiation and propagation phases separately. The multiple cracks initiation is 

predicted by means of the S-N curve of the unidirectional lamina expressed in terms of an 

equivalent stress previously defined in chapter 4 [39], which accounts for multiaxial stress 

states. A Weibull distribution of the fatigue strength was considered, and a simple and fast 

way for the determination of the parameters was proposed. The stress redistributions between 

cracks are accounted for in the procedure, and also the interaction between different cracked 

layers is considered, as explained in appendix 6.A. The propagation phase is treated in terms 

of Paris-like curve of the lamina. The model is here presented for a finite width laminate under 

uniaxial load considering that the cracks initiate only at the two edges. However there are not 

conceptual differences if more initiation sites are considered. The model was validated with 

experimental results presented in chapter 4 (Ref. [51]), resulting in good agreement. Some 

topics have still to be deepened to improve the reliability of the predictions, i.e. the thickness 

effect, the high cycles fatigue behaviour and the description of the damage accumulation rule 

(equation(9)). Experimental campaigns are needed to clarify these points.  

However this procedure, combined with the stiffness degradation model presented in chapter 

6, represents a very useful tool for predicting the fatigue damage evolution in laminates, with 

particular reference to the stiffness loss. In addition, the stress re-distributions associated to the 

predicted crack density can be computed with the model presented in chapter 6 and used for 

estimating the total fatigue life of a laminate. 
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Appendix 7.A 

In this appendix the procedure to account for the influence of cracks in different layers on the 

stress redistribution is explained. It is based on a model proposed in chapter 5 and Ref. [26] for 

the stiffness degradation of multiply damages laminates. First, an example for a case in which 

only two layers, h and k, are cracked is shown for simplicity, and finally the general formula is 

provided in case of whatever number of cracked layers. 
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By means of the shear lag analysis proposed in chapter 5 and Ref. [25] the case of a laminate 

with one cracked ply, k, can be addressed (see figure A1). The in-plane stresses (ζ1
(k)

(x2
(k)

), 

ζ2
(k)

(x2
(k)

), ζ6
(k)

(x2
(k)

)) between the cracks in the cracked layer can be expressed as functions of 

the transverse coordinate of the k-th layer x2
(k)

, for a general global loading condition  gσ


 = 

{ζx, ζy, ζxy}
T
. In addition the in-plane stresses in the reference system of the cracked ply can 

be calculated, always as function of x2
(k)

, for every i-th non cracked layer (ζ11
(i)

(x2
(k)

), 

ζ22
(i)

(x2
(k)

), ζ12
(i)

(x2
(k)

)). 

 

Figure A1: Laminate with one cracked ply 

 

Considering three particular loading conditions ( gσ


= {1,0,0}
T
, {0,1,0}

T
 and {0,0,1}

T
), the 

stresses in every layer can be averaged over the entire volume of the ply, and the following 

parameters, function of the crack density on the k-th ply ρk, can be defined for the i-th layer 

(see Ref. [25] or chapter 5 for a more detailed treatise). 
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Let us consider now a laminate with two cracked plies, h and k, and subjected to a general 

external loading condition given by the vector 0σ


= {ζx0, ζy0, ζxy0}
T
. In view of the principle 

of the superposition of effects, this condition can be decomposed as schematically shown in 

figure A2. The reader is referred to chapter 5 or Ref. [26] for the detailed explanation. 

 

 

Figure A2: decomposition of a laminate with two cracked plies under global load 0σ


 

 

The global stresses ζx,k, ζxy,k, ζx,h, ζxy,h are unknowns to be calculated as explained in chapter 

5. The influence of the presence of cracks in the h-th layer on the stress distributions in the k-

th ply is treated in terms of the increase of the average stress due to the cracks in the h-th layer, 

and vice versa. If only the k-th ply was cracked, the average stresses ζ1av
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 (ρk) and 
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 (ρk) could be calculated as  
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If, instead, there are cracks also in the h-th layer, with density ρh, the average stresses in the k-

th ply can be calculated by summing all the contributions coming from the decomposition 

shown in figure A2: 
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The coefficients cx,i
(k)

, cy,i
(k)

, cxy,i
(k)

 link the global stresses ζx, ζy and ζxy, respectively, to the 

stress ζi (i = 1, 2, 6) in the k-th layer for an undamaged laminate. Therefore they can be easily 

computed with the classical lamination theory. In the general case of a symmetric laminate 

with 2n-1 layers, with cracks in a whatever number plies, the average stresses in the k-th 

lamina can be calculated with the following general formula.  
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In the present work it is assumed that the stress distributions ζ1
(k)

(x2
(k)

), ζ2
(k)

(x2
(k)

), ζ6
(k)

(x2
(k)

) 

in the k-th layer should be updated by multiplying them for the ratio between the average 

stresses calculated accounting for the interaction with other cracked layers (ζ1av
(k)

, ζ2av
(k)

 and 

ζ6av
(k)

) and those with the only cracked layer k (ζ1av
(k)

 (ρk), ζ2av
(k)

 (ρk) and ζ6av
(k)

 (ρk)). 

Accordingly, the updated stress distributions read 
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It is worth mentioning that the proposed procedure for crack interaction does not have to be 

coupled necessary with the shear lag model proposed by the writer in chapter 5 and Ref. [25] 

but also with other stress transfer models available in the literature. 

According to this procedure the effect of crack interaction on the stress fields is treated in an 

average sense, but it is the best that can be done analytically, in the author's opinion. Finally it 

is important to mention that, as the cracks are in general not fully propagated, the crack 

densities ρh and ρk in equations A8 and A9 are actually the edge crack densities in the h-th and 

k-th layer. 

 

Appendix 7.B 

Input data: 

- Ply elastic properties (E1, E2, G12, ν12, G23, G13); 

- Ply thickness; 

- Lay-up, width w and external loads; 

- Slope of the S-N curve (aLHS, aLMPS); 

- Stress concentration factors for calculation of LHS and LMPS (see Ref. [39] and chapter 4); 

- Weibull distribution parameters m and K0; 

- Coefficients of the Paris-like curve (CI, dI and Ctot, dtot); 
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Ni =Ni-1 + ΔN 

Interactive Regime Non-Interactive Regime 

for el=1 to Se/l0 

   updating L(el,Ni), eq.(11) 

   calculation of P(el,Ni), eq.(12) 

   calculation of fr(el,ΔNi), eq.(13) 

end 

   

calculation of ρ(Ni), eq.(6) 

calculation of Δρ(ΔNi), eq.(7) 

   

Drawing the local crack 

density curves 

ρloc (x1,Ni) 

 

for s=1 to i-1 

 for j = 1 to nss 

   calculation of CGR(s,j,ΔNi), eq(20) 

   calculation of c(s,j,Ni), eq.(21) 

   if c(s,j,Ni) > w/|sin(θ) | then c(s,j,Ni) = w/|sin(θ) |   

end 

c(s=i,j=1 to nss,Ni) = c0 

   

calculation of ρw(Ni), eq.(22) 

calculation of ρ100(Ni), eq.(23) 

calculation of ρe(Ni), eq.(24) 

calculation of Se, eq.(25) 

 

stress redistribution 

updating stress redistribution in each 

layer considering the other cracked 

plies (appendix 6.A) 

ρ > ρNI 

yes 

no 

last ply? 

yes 

no 

next ply 

initiation 

propagation 

calculation of Δρe,el(ΔNi), eq.(14) 

calculation of Δρe, eq.(15) 

Δρ = 2·Δρe 

calculation of ρ(Ni), eq.(16) 
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8 

Mixed mode crack propagation in composite bonded 

joints under static and fatigue loading: 

characterisation and damage-based modelling 
 

8.1. Introduction 

One of the main issues concerning the design of structural components of complex shape in 

composite materials is the joining of different parts by means of epoxy adhesives. Therefore 

reliable criteria for static and fatigue behaviour of bonded joints have to be developed, in order 

to be used in the design of such structures. Of particular interest is the fatigue behaviour, 

which has been found to be divided, both for joints in composites and in metallic materials, in 

a nucleation and a propagation phase [1-4]. In the first one, one or more macro-cracks nucleate 

from critical points such as edges and corners, and then they propagate, in the second phase, 

until they reach a critical length for the unstable growth. A model has been proposed by the 

authors for the prediction of the fatigue life of bonded joints, treating separately the initiation 

and the propagation phases, on the basis on the nucleation of a small technical crack of 0.3 

mm [4,5]. The life spent for crack propagation has been described by means of a Paris-like 

power law relating the Strain Energy Release Rate (SERR or G) to the crack growth rate. It 

was also pointed out that, for the single lap geometry studied in those papers, the propagation 

occurred in mixed mode I + II conditions, and that the ratio between the mode I and the mode 

II components was not constant during the propagation itself, but it was a function of the crack 

length. This is something that can be reasonably though to be frequent even in real structures, 

and therefore it has to be taken into account in the design process, even because it is known 

that the static and fatigue resistance to the crack propagation in bonded joints strongly depends 

on the loading mode. 

Some examples for static case can be found in Refs. [6-8]. Concerning fatigue behaviour, in 

Refs. [9-11] it is shown that different Paris-like curves relating the SERR to the Crack Growth 

Rate (CGR) describe the fatigue crack propagation under different mixed mode conditions.  
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Some attempts of describing the crack propagation phenomenon, by means of different forms 

of the Paris-like law, for common bonded joint geometries, can be found in the literature, 

leading sometimes to contradictory results. 

In [12], Curely et al. tried to predict the life spent for crack propagation in bonded single lap 

aluminum joints, by using the total SERR as the driving force in the Paris equation, the 

coefficients of which were evaluated considering pure mode I DCB test. This approach 

neglects the influence of the mode mixity on the fatigue behaviour, resulting in a conservative 

prediction of the fatigue life. 

Wahab et al. [13] reanalyzed the data from [12], by using the only mode I contribution as the 

propagation driving force in the Paris equation, obtaining a much better prediction. They also 

proposed to account even for the mode II component by considering the crack growth rate as 

the sum of the mode I and mode II contributions separately, expressed by means of the Paris 

law equations obtained from pure mode I and II tests. However they did not compare this 

criterion to the experimental results because of the lack of information about the coefficients 

of the Paris-like law for pure mode II. 

Kinloch and Osiyemi [14] studied the propagation life of composite single lap joints, by 

employing the analytically derived mode I component of the SERR in the Paris-like law 

obtained from a pure mode I DCB test. Similar to Wahab et al.[13], they found a good 

correlation with experimental data, even if this approach does not account for the mode 

mixity, which varies during the crack propagation. The reason of the good agreement of this 

method for the single lap geometry will be clear once the present model will be explained in 

paragraph 8.5. 

Cheuk et al. [11] studied double lap composite/metal joints, observing that, in terms of total 

SERR, the crack growth rate predicted by using the pure mode II Paris-like curve was much 

lower than the experimental measurements for the joints, characterized by a mode I/ mode II 

ratio of 0.15, which means near the pure mode II condition. They defined an equivalent SERR 

Geq where the mode II contribution was weighted by means of the ratio between the static 

critical values of GI and GII, obtaining a much better agreement. 

Another expression for an equivalent SERR accounting for the mode mixity condition was 

made by Quaresimin and Ricotta [15], where the mode II component was multiplied by the 

ratio between GII and the total SERR. This definition accounts for the mode mixity, but it does 

not consider the dependence of the crack propagation resistance on the loading mode. 

Moroni and Pirondi [16] developed a procedure for crack growth simulation by means of a 

cohesive model implemented in a finite element code. The input information for the code were 
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the cohesive law for the interface elements, the Paris-like equation and its dependence on the 

mode mixity which was modelled by means of three criteria: the equivalent SERR proposed 

by Quaresimin-Ricotta [15], the superposition of the mode I and II equations proposed by 

Wahab [13] and an approach proposed by Kenane and Benzeggagh [17] for mixed mode 

delamination in composite laminates. The latter consists in describing the crack propagation 

by means of a Paris law expressed in terms of the total SERR, where the coefficients depend 

on the mode mixity by means of phenomenological laws. Satisfactory results were obtained 

with all the three mentioned criteria. 

It can be concluded that a well established criterion cannot be found in the literature, and even 

an extensive experimental investigation, aimed to the complete bonded joints characterization 

from mode I to mode II, is still missing. As a consequence, a strong and expensive 

experimental effort is needed in order to obtain reliable design tools for life estimation.  

The aim of the present work is to define a criterion to describe the fatigue crack propagation in 

composite bonded joints subjected to whatever mixed mode condition. In the writer’s opinion, 

the only way to asses a reliable criterion of general validity is to understand and describe 

quantitatively the propagation and damage modes, and their dependence on the mode mixity. 

An important effort in this direction can be found in [8], just for the static behaviour. In [8] 

Wang underlined the existence of two different propagation modes, respectively near the pure 

mode I and mode II condition, which were described by means of two different criteria. 

According to the observation of the damage mechanisms, Wang proposed the only the mode I 

stress intensity factor as the driving force near the pure mode I condition, and the principal 

strain evaluated at a generic point at the interface for mode II dominated loading conditions. 

For the principal strain criterion Wang obtained a simple analytical expression based on the 

interface fracture mechanics, including also a material constant describing the adhesive 

sensitivity to the hydrostatic pressure, which can be used indeed as a fitting parameter. 

In the present work, experimental static and fatigue tests were carried out on composite 

bonded joints under pure mode I, pure mode II and mixed mode conditions. The static 

experimental results are reported in terms of the total critical SERR (Gc) vs the mixed mode 

condition. The results of the fatigue propagation tests are instead presented with Paris-like 

curves relating the total SERR to the CGR. 

The propagation modes during fatigue tests were analysed by means of an optical microscope, 

and they were found to depend on the mixed mode condition. The observed mechanisms, 

reported later on, are used as a basis for a damage-based mixed mode propagation criterion for 

bonded joints. 
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8.2. Materials and test equipment 

Laminates with stacking sequence [0]12 were produced by hand lay-up of carbon/epoxy fabric 

tape CC206, T300 twill 2x2 carbon fabric/ET442 toughened epoxy matrix, from seal Texi-

preg®, and cured in autoclave, with a permanence for one hour at the temperature of 125°C 

and pressure of 7 bars. Finally the test specimens were obtained by bonding two laminates 

with a 0.15 mm layer of the two-part epoxy adhesive 9323 B/A by 3M, and cured in an oven at 

65°C for two hours. In order to keep a uniform adhesive thickness, glass spheres with a 0.15 

mm diameter were used. By inserting a Teflon sheet (50 μm thickness) between the two 

adherends the initial crack of length a0 was created. Specimens were finally cut obtaining the 

typical geometry of figure 1. The elastic properties of the materials are listed in table 1. 

 

   

150   
a0=3 0  40   

25   

 

                             

Figure 1: Specimen’s geometry 

Table 1: Elastic properties of adhesive and adherends 

Adherends EL (MPa) ET (MPa) GLT (MPa) νLT 

58080 58080 3300 0.06 

Adhesive 

  

E (MPa) ν   

2879 0.37   

 

Static and fatigue tests were carried out varying the mode mixity from pure mode I (DCB test) 

to pure mode II (ENF test), through mixed I+II mode (MMB tests). Equipment and procedures 

of reference for these tests can be found in [18-21], respectively.  

The mode mixity was expressed by the following parameter: 

 

 

150 
3040 

 6 
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Accordingly,  pure mode I (DCB) test is characterized by MM = 0, and pure mode II (ENF) 

test by MM = 1. Four intermediate MM values (MM=0.15, 0.36, 0.52, 0.75) were investigated 

with MMB tests, by varying the lever arm length c (see Figure 2) and keeping constant the 

length L. 

 

 

 

Figure 2: (a) Schematic representation, (b) picture of the MMB test equipment and (c) load 

condition for a MMB test  

 

Tests were carried out on a MTS Minibionix servo-hydraulic machine equipped with a 1.5 kN 

load cell. Crack opening was measured by means of the displacement transducer of the testing 

machine and the crack length was monitored by means of a travelling optical microscope with 

a magnification of 40x. Fatigue tests were characterized by a nominal load ratio, defined as 

R=Fmin/Fmax, equal to 0.1, and a frequency varying from 2 to 8 Hz. Typically the frequency 

was decreased in the final part of the tests because of the large crack opening displacements. 

For the DCB and MMB tests, a gripping system was developed, composed by an aluminium 

block and two screws for each arm of the cracked portion of the specimen, as in figure 3a). 
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The screws are placed in cut-outs obtained by machining the specimens, as shown in figure 

3b), and finally the aluminium blocks are linked to the test equipment by means of  hinges.  

 

 

Figure 3: a) Gripping system and b) machined specimens with cut-outs for the screws 

 

8.3. Calculation of the strain energy release rate 

As already mentioned in the introduction, the results of static and fatigue tests are presented in 

terms of the strain energy release rate, paying particular attention to the value of the mode 

mixity defined in equation 1. Therefore, not only the total SERR is needed (Gtot = GI + GII), 

but also the single mode I and II components, so that the MM can be calculated.  

In [21] an analytical formulation is proposed, but it is valid for symmetrically cracked 

specimens, as in the case of interlaminar toughness characterization of composite laminates. In 

the case of the bonded joints the crack tip is usually at the adhesive-adherend interface, as will 

be shown in paragraph 8.4, and therefore the specimen is not symmetrically cracked, both in 

terms of geometry and materials. Therefore using the formulation proposed in [21] leads to an 

erroneous calculation of the total SERR and most of all of the mode mixity (errors up to 80% 

for the MM).  

In [22], an analytical formulation is proposed for bonded joints, taking into account the 

presence of the adhesive layer. The mode I and II components are obtained by differentiating 

the global compliance with respect to the crack length. Despite the merit of considering the 

adhesive layer, the method proposed in [22] provides again wrong values for the MM.  

In the present work the SERR components have been calculated by means of linear elastic FE 

analyses with the code ANSYS 11
®
 and the Virtual Crack Closure Technique (VCCT). The 
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latter is based on local forces and displacements at the crack tip, and it is considered a reliable 

way for the evaluation of the SERR components, which has been often adopted in the 

literature [9,15, 23-25]. The VCCT technique requires that the elements immediately before 

and after the crack tip are of the same size ∆a (see figure 4). In this work, the crack was 

modelled at the adhesive-adherend interface and the whole adhesive layer was meshed with 8-

nodes plane strain (PLANE82) elements. After a convergence analysis the element size was 

fixed equal to 0.03 mm, according to [15].  

 

 

Figure 4: Deformed mesh around the crack tip 

 

In the FE analyses of the MMB specimens the loads have been applied as in figure 2c and 

considering also the influence of the lever weight, as explained in [21]. 

 

8.4. Static test results 

Load and displacement were recorded during the static tests obtaining curves, as shown  in 

figure 5 a) and b). As it can be seen in figure 5, an unstable crack growth is typical of all the 

mixed mode conditions. However, while the specimens for MM = 0 and 0.15 have a linear 

behaviour up to the critical point, increasing the MM there is a more and more marked plateau 

which precedes the unstable propagation. This phenomenon could be due to a progressive 

damage evolution in the adhesive.  
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Figure 5: Load-displacement curves for a) MM=0, 0.15, 0.36 and b) MM=0.52, 0.75, 1 

 

For the calculation of the critical values of the SERR the procedure recommended in 

ASTMD5528  [18] has been adopted. Accordingly, the critical load has to be identified as the 

maximum load before the propagation or the load corresponding to the increase of 5% of the 

compliance, if the latter occurred first. All static tests results are plotted in Figure 6, in terms 

of total SERR Gc = (GI+ GII)c versus the mode mixity, showing that mode II is far less critical 

than mode I, as usually found in literature [6-8]. 
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Figure 6: Total critical SERR versus mode mixity 

 

8.5. Fatigue test results and damage evolution 

Fatigue tests were carried out by imposing the six MM values already chosen for static tests. 

Different propagation and damage mechanisms were identified by varying the MM, and they 

are schematically summarised in Figure 7. 

 

 

Figure 7: Crack location and propagation as function of mode mixity 
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For MM = 0.15 and 0.36, the damage evolution  is more complex and it is not continuous. In 

fact independent delaminations in the upper adherend occurred beyond the main crack tip, 

which could be either at the interface or in the adherend itself, as shown in Figure 9. It was 

observed that in the final part of the fatigue life (the final 20-25%), the main crack ceased 

propagating for thousands of cycles, while independent delaminations initiated and propagated 

in the adherend. Then they often joined, thus creating a longer delamination, as shown in  

Figure 10. The further evolution of damage for the same specimen is shown in Figure 11. It 

can be seen that the delamination propagated in the adherend, while the main crack, which is 

much shorter, propagated at the interface below the delamination itself.  

Specimens with MM = 0.52 were characterized by crack propagation in the adhesive, at the 

interface and sometimes in the upper adherend, preceded by the initiation of multiple inclined 

micro-cracks in the adhesive in front of the main crack tip (Figure 12).  

In the case of loading conditions near to the pure mode II (MM = 0.75), the initial damage 

mechanism consisted of the onset of separated roughly 45° oriented cracks in the adhesive 

layer, which stopped when they reached the adhesive-adherend interface, as shown in figure 

13. Once these cracks were formed, they joined after some thousands of cycles creating a 

continuous crack in the adhesive, which sometimes propagated also in the upper adherend, as 

shown in Figure 14.  

In the case of pure mode II tests, one single damage mechanism was observed, consisting of 

45°-oriented crack initiations followed by coalescence into a macro-crack and propagation 

inside  the adhesive layer. This is a very typical behaviour for ENF bonded joints [26, 27], and 

it is reasonably due to the principal stress distribution in the adhesive. 

 

 

Figure 8: Typical crack propagation for a DCB specimen 
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Figure 9: Delaminations, mode mixity = 0.15 

 

 

Figure 10: Joined delaminations, mode mixity = 0.15 

 

 

Figure 11: Joined delaminations and main crack interface propagation, mode mixity = 0.15 

 

 

Figure 12: Typical crack propagation for mode mixity = 0.52 

 

 

Figure 13: Inclined cracks in the adhesive for mode mixity = 0.75 
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Figure 14:  Joined inclined cracks and propagation in the adherend for mode mixity = 0.75 

 

During fatigue tests the crack length a was measured, and plotted against the number of 

cycles. In case of a non-continuous crack propagation, as for instance for MM = 0.15 and 0.36, 

the crack length was considered as the distance between the load application point and the tip 

of the farthest crack or delamination, as shown in figure 15. 

 

 

Figure 15: criterion for crack length measurement in the case of separated delaminations 

 

Starting from the a-N curves and using the IPM method [28], the Crack Growth Rate (CGR) 

has been calculated and plotted versus the value of ∆Gtot (Gtot,max - Gtot,min), calculated by 

means of FE analyses, obtaining the Paris curves shown in figure 16. It can be clearly seen that 

the curves expressed in terms of the total SERR gradually shift from left to right as the MM 

increases. Even concerning the fatigue behaviour the pure mode II condition is far less critical 

than the pure mode I loading. This means that, for a fixed value of ∆Gtot, a lower CGR is 

reached as the mode II contribution increases. In addition it is clear that the total SERR is not a 

good parameter for the univocal description of the crack propagation phenomenon under 

mixed mode conditions, as it was also reported in [9-11]. 
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Figure 16: Paris curves in terms of total SERR 

 

The Paris-like curves can be described by means of a power law expressed in the form: 

 

 Δ
d

tot

da
C G

dN
            (2) 

 

The coefficients of the Paris-like curves for every mixed mode condition are listed in Table 2. 

 

Table 2: Coefficients of the Paris-like laws for the different mode mixities investigated (valid 

for CGR expressed in mm/cycle and SERR in J/m
2
). 

MM C  d 

0 3.04E-12 3.16 

0.15 5.66E-08 2.03 

0.36 4.20E-08 2.40 

0.52 2.02E-08 4.59 

0.75 2.02E-08 4.35 

1 1.34E-08 4.10 

 

Another interesting way, also consistent to that adopted for the static behaviour in figure 6, to 

present fatigue data is by means of iso-CGR curves in the MM-∆Gtot as in figures 17. The 

points in this figure are calculated by means of the Paris-like law expressed in equation (2) for 

each conducted test. 

 

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

10 100 1000 10000

C
G

R
 (

m
m

/c
y
cl

e)

∆Gtot [J/m2]

MM = 0

MM = 0.15

MM = 0.36

MM = 0.52

MM = 0.75

MM = 1



Chapter 8. Mixed mode crack propagation in composite bonded joints  

under static and fatigue loading: characterisation and damage-based modelling 

 

220 
 

 

Figure 17: Iso-CGR curves in the MM-∆Gtot plane 

 

As can be seen from figure 17, some points are characterised by unreasonably high valued of 

the total SERR, which are clearly out of the general trend. These points are related to the 

propagation mode consisting in the initiation and propagation of independent delaminations 

occurring for MM = 0.15 and 0.36, as shown in figure 15. For this reason, as this damage is 

mode not related to the bonded joint itself but to the damage in the laminate, these points are 

not considered in subsequent analyses. 

 

8.6. Development of a new criterion 

8.6.1 Damage analysis  

In order to develop a reliable criterion for static and fatigue crack propagation, the observed 

damage mechanisms have to be taken into account. In particular, two propagation modes have 

been observed: a continuous crack propagation occurring mainly at the interface near the pure 

mode I loading, and inclined micro-cracks in the adhesive near the pure mode II, which is 

reasonably due to the maximum principal stress field in the vicinity of the crack tip.  

The damage mode consisting of independent delaminations (number 2 in figure 7) is not 

considered here because it is not related to the properties of the bonded joints, and in addition 

it has never been observed in the single lap specimens tested in [3] made of the same materials 

and subjected to similar values of the mode mixity. Therefore, as will be underlined in figure 

26, 27, some fatigue data related to MM = 0.15 and 0.36 at high CGR were not considered for 
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fatigue life the propagation was continuous and mainly at the adhesive-adherend interface, as 

for mode I tests. 

Therefore, focusing only on the two damage mechanisms previously described, it is important 

first of all to understand the reason of the change in the propagation mode, which seems to 

occur at about MM = 0.5 for the fatigue behaviour.  

As described in Ref. [29], if a crack is subjected to a mixed mode I+II loading, it tends to 

propagate in a direction which is different from that of the crack itself. In the case of a 

composite bonded joint loaded in mixed mode, if a crack is at the at the adhesive-adherend 

interface, its deviation is prevented by the presence of the fibres of the adherends. In fact the 

crack propagation into the laminates requires to break or to bow between the fibres, which are 

high energy requiring processes [30]. As a consequence, if the loading condition is mode I-

dominated, the crack will keep propagating at the interface in a self-similar manner. This 

propagation mode is typical of pure mode I loading, and therefore it is reasonable to assume 

that it is driven only by the mode I SERR component GI. The same conclusion was drawn by 

Wang [8] for the static behaviour. If the loading condition is mode II-dominated, a very severe 

loading condition would be required to achieve a high enough GI value for the interface 

propagation. In this condition the adhesive will start damaging in a zone ahead of the main 

crack tip, promoting the initiation and further coalescence of multiple inclined micro-cracks, 

the shape of which reminds of typical brittle failure normal to the maximum principal stress 

direction. These concepts are summarised in figure 18. 

 

 

Figure 18: Schematic of the main observed fatigue propagation modes 
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To confirm the  relevance of the maximum principal stress field as driving force for the latter 

damage mode, the comparison between the principal directions calculated by means of FE 

analyses and the inclined micro-cracks for a specimen tested under MM = 0.75 is presented in 

figure 19. A very good correspondence is found between the principal direction and the 

normal to the micro-cracks initiation planes.  

 

 

 

Figure 19: Comparison between FE principal directions and micro-cracks in the adhesive, MM 

= 0.75 

 

It is also important to underline that the fatigue failure does not involve a single point in the 

adhesive, but a finite region which can be named process zone. A clear evidence is shown in 

Figure 20, which is representative of a MM=0.75. 

In figure 20a) the initial crack tip is at the interface between the adhesive and the upper 

laminate and it is followed by a region in which the adhesive whitening indicates where the 

fatigue damage evolution is in progress. 

In figure 20b), it can be seen that the above mentioned process zone, after 10000 cycles, is 

characterized by the presence of inclined cracks which start joining in a longer macro-crack. 

The new main crack tip can be considered the last tip at the interface, which is once again 

followed by a new process zone. 
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Figure 20: Damage evolution and process zone, MM = 0.75 

 

This evidence clarifies that a point criterion as that proposed by Wang [8] is not suitable for 

the problem under analysis, and it can be improved by considering the principal stress field in 

a finite region representative of the process zone. 

The fact that the adhesive failure in bonded joints is not a point phenomenon, but it involves a 

finite damage zone, is not new in the literature, and some criteria, based on the existence of 

such a process zone, have been defined in the literature for the static strength prediction of 

uncracked bonded joints [31-33]. 

8.6.2 Modelling 

As has been shown above, if the MM is enough high, the maximum principal stress field 

ahead of the crack tip seems to play an important role for the damage progression and crack 

propagation. In addition, it is clear that the damage involves a process zone ahead of the crack 

tip which is longer than the adhesive thickness t. Therefore the authors propose to use, as 

driving force parameter for this damage mechanism, the maximum principal stress averaged 

inside a control volume Vc which is representative of the process zone. It was assumed that this 

volume is rectangular in shape, involving the whole adhesive thickness and with a length equal 
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to 3t, as shown in figure 21. The length 3t was chosen on the basis of experimental 

observations. 

 

 

Figure 21: Schematic representation of the control volume  

 

Therefore when the propagation mode consists on the initiation and coalescence of inclined 

micro-cracks the following stress parameter, S, is proposed as representative of the driving 

force 

 



cVc

dV
V

S 1

1
            (3) 

 

where ζ1 is the maximum principal stress. 

The parameter S is calculated by means of FE models, and a convergence analysis was 

carried-out in order to check its sensitivity to the elements size. Two mesh strategy were 

adopted: the typical mesh for the SERR calculation by using the VCCT, already described in 

paragraph 8.3, by varying the element size ∆a from 0.01 to 0.075 mm, and a typical mesh for 

crack modelling, with an element size of 10
-5

 mm at the crack tip. It was found that the S 

parameter is mesh insensitive, the variation being lower than 1% in the analysed range of 

element size. This can be explained by considering that the length of the volume equal to 3t is 

longer than the singularity dominated zone, defined as the zone where the stress, plotted 

against the distance from the tip in a double logarithmic scale, can be described by a straight 

line. In fact the singularity dominated zone is extended, at the interface, for a length which is 

no longer than the adhesive thickness, as can be seen in figure 22, where the stress in y 

direction is plotted versus the distance from the tip normalized to the adhesive thickness, for 

MM = 0.52. 
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Figure 22: ζy at the interface as a function of the distance normalized to the layer thickness, 

MM = 0.52 

 

It is interesting to note that a square root dependence there exist between the total SERR Gtot 

and the stress parameter S, as in equation (4). 

 

  totS k MM G            (4) 

 

The coefficient k(MM) is a function of the mode mixity, to be calculated by means of FE 

analyses. 

 

 

Figure 23: Relationship between Gtot and S for MM = 0.52 
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As an example, figure 23 shows the relationship between Gtot and S for an MMB specimen 

with MM = 0.52. FE analyses have been carried out varying both the load P, from 200 to 800 

N, and the crack length a, from 10 to 40 mm. It can be seen that a single curve of the form 

given by equation (4) is suitable to fit all the points with a parameter k = 2.68 for the case 

under analysis. 

The k(MM) values calculated for the different test configurations adopted in the present work 

are summarized in Table 3. 

 

Table 3: Values of k(MM) for the considered MM calculated via FE simulations 

MM k 

0 2 

0.15 2.63 

0.36 2.73 

0.52 2.68 

0.75 2.55 

1 2 

 

After introducing the stress parameter S and keeping in mind the damage mechanisms 

observed during the fatigue test programme, the following criteria are proposed: 

- for MM ≤ MM* the only mode I SERR contribution, GI, is responsible for the interface 

crack propagation; 

- for MM ≥ MM* the parameter S is representative of the driving force for crack propagation 

by means of initiation and coalescence of inclined micro-cracks in the adhesive. 

MM* is the value of the mode mixity corresponding to the transition between the two damage 

modes and therefore between the two synthesis parameters to be used. According to the 

experimental evidences reported in paragraph 8.5, MM* is roughly equal to 0.5 for the fatigue 

behaviour. 

 

8.7. Application to experimental data 

8.7.1 Fatigue loading 

The above mentioned criterion is now applied to static and fatigue experimental results 

previously presented, which are here re-analyzed in terms of GI and S.  
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The constant CGR data shown in figure 17 are presented in figure 24 and 25 in terms of S and 

GI, respectively. It is worth noting that, as previously mentioned, some data for MM = 0.15 

and 0.36 have been discarded because they are related to a different damage mechanism, 

consisting of independent delaminations in one adherend.  

Figure 24 shows that, from MM ≥ 0.52, the ΔS parameter is suitable to rationalize the crack 

growth rate data, while it has a lower value for loading conditions near the mode I. 

Conversely, figure 25 shows that the ΔGI parameter correctly summarizes the experimental 

data for MM < 0.52, assuming decreasing values as MM increases outside this range. 

  

 

Figure 24: Fatigue results in terms of ΔS versus mode mixity, for different values of the CGR 

 

 

Figure 25: Fatigue results in terms of ΔGI versus mode mixity, for different values of the CGR 
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of ΔGI and ΔS, for mode-mixity values lower and higher than 0.52, respectively, two master 

curves are able to completely describe the propagation under the full mode-mixity range. This 

can be observed in Figures 26 and 27 where the relevant Paris curves are plotted along with 

the 10–90% relevant scatter bands. 

 

 

Figure 26: Paris-like curves in terms of ΔGI for MM ≤ 0.52 

 

 

Figure 27: Paris-like curves in terms of ΔS for MM ≥ 0.52 

 

The results shown in figures 26 and 27 demonstrate that only pure mode I and pure mode II 
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mixity.  
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data obtained by Quaresimin and Ricotta [4] for single lap joints is shown in figure 28. The 
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values of GI and GII were calculated in [15]. The resulting values of the mode mixity were 

always less than 0.5, apart from a very few points, and therefore the criterion to be used for 

crack growth rate prediction should be the pure mode I driven propagation. In fact, if the Paris 

curve from Ref. [3] is plotted in terms of ΔGI, it is included in the scatter band for the present 

experiments for MM ≤ 0.52 computed in the analysis shown in figure 26. 

The present criterion also explains the reason why Wahab et al. [13] and Kinloch-Osiyemi 

[14] obtained good predictions for the single lap joints using the only mode I contribution and 

the Paris-like curve obtained from a pure mode I test. 

 

 

Figure 28: Comparison between the present scatter band and the results from [15] in terms of 

ΔGI 

 

8.7.2 Static loading 

Even if the criterion has been developed on the basis of fatigue-related damage mechanisms, it 

has also been extended to the analysis of the static response of bonded joints, assuming that 

the damage mechanisms are the same of cyclic loading. 

The static test results summarized in terms of S are shown in figure 29: it can be seen that for 

MM ≥ 0.36 all the points can be reasonably described by a horizontal scatter band which 

collects the experimental data with a 10-90% probability of failure. Its amplitude is 

characterized by the TS parameter defined as S10%/S90% equal to 1.35, which is a reasonable 

value. 
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Figure 29: Static results; S versus the mode mixity 

 

This seems to confirm the idea that also concerning static behaviour the crack propagation is 

controlled by the maximum principal stress field for enough high values of the mode mixity. It 

is important to note that, for lower MM, which means for loading conditions near the pure 

mode I, the value of S is lower. Conversely, in those cases the value of the only mode I 

contribution is higher, as can be seen in figure 30. Once again a horizontal band, from MM = 0 

to 0.36, can be defined in terms of GI, with an average value of 1335 J/m
2
 and TG equal to 2.66 

(TG=GI,10%/GI,90%). In this case the scatter is larger, but it depends also on the high dispersion 

which is intrinsic in the phenomenon and which is very well evident for the pure mode I 

results. It is important to remind that GI is an energetic parameter and therefore it is more 

appropriate to compare TS with the square root of TG, which is equal to 1.63. Finally, by 

considering the actual experimental data, the transition point between the two different 

damage modes, and therefore between the two criteria to be used, can be roughly set at MM = 

0.35. This seems to be consistent with the fact that a plateau is seen to occur in the load 

displacement curves for MM ≥ 0.36. This behaviour could be due to a progressive damage 

evolution in the adhesive layer by means of inclined micro-cracks, but this should be checked 

when dealing with static loading.  
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Figure 30: Static results in terms of GI versus the mode mixity 

 

As a further validation of the present model even for the static case, the S criterion was applied 

to the experimental data taken from [34]. Ji et al. [34] conducted static tests on pre-cracked 

ENF specimens made of composite laminates bonded with an epoxy adhesive, varying the 

layer thickness t from 0.1 to 0.8 mm. They obtained an increasing trend of the critical SERR 

for increasing values of t. Pictures of the specimens during tests, documented the adhesive 

damage within a process zone, with the nucleation of inclined micro-cracks, similar to those 

observed in the present work. The S criterion was applied to the specimens described in [34], 

always keeping a length of the control volume equal to 3t.  

This means that the control volume, representative of the process zone, is larger as the 

thickness of the adhesive layer increases.  
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Figure 31 shows the comparison between the model prediction and the experimental results, 

calculated with two different criteria for the detection of the critical point in the load-

displacement curve. The predicted increase in the mode II toughness, referred to the value 

obtained for t = 0.1, is in satisfactory agreement with the experimental results. This enhances 

the hopes concerning the suitability of the present model for bonded joints loaded nearly in 

mode II. 

 

8.8. Conclusions  

The static and fatigue crack propagation was analyzed for bonded joints subjected to mixed 

mode I + II loadings. In terms of the total SERR, the loading condition is less critical as the 

mode II contribution increases, both in static and fatigue. In particular, concerning the fatigue 

behaviour, a higher value of the total SERR is required to obtain a certain value of the CGR, 

as the pure mode two condition is approached. In general, different Paris curves describe the 

crack propagation for different values of the mode mixity, and this requires a large amount of 

experiments for the material characterization, in order to obtain a tool for the assessment of the 

life spent for crack propagation. 

To overcome this difficulty, a criterion for an univocal description of the propagation 

phenomenon is needed and several attempts can be found in the literature.  

In the present work the mechanisms of crack propagation were deeply investigated, and two 

main damage modes were found: continuous crack propagation driven by the mode I 

contribution, and adhesive failure by means of inclined micro-cracks, due to the principal 

stress field ahead the crack tip. A parameter S, which is the average value of the maximum 

principal stress inside a control volume has been defined, and it was shown to be a good 

synthesis parameter to describe the crack propagation characterized by the second damage 

mode, i.e for mode mixities ≥ 0.5. Conversely the only mode I contribution was found to 

collapse the Paris curves for MM < 0.5, confirming the idea that the propagation in those cases 

is only due to the opening mode. 

It was proven that two scatter bands and master curves, expressed in terms of ΔGI and ΔS, are 

suitable to describe the mixed mode propagation under the full range of mode mixities. 

Therefore, only two tests are necessary for the material characterization, for example a pure 

mode I (DCB) test, and a pure mode II (ENF) test. The equation for the Paris curve obtained in 

the DCB test, relating the CGR to ΔGI can be used for the first propagation mode, while the 

master curve from the ENF test relating the CGR to ΔS can be used for the second one. The 
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application of the criterion to the present results and other results from the literature seems to 

support its reliability both for the fatigue and the static behaviour. 
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Appendix A 

Modelling fibre-matrix debonding under biaxial 

loading 
 

A.1. Introduction 

The static and fatigue behaviour of a multidirectional composite laminate made of 

unidirectional (UD) plies is characterised by  progressive damage accumulation in terms of 

matrix cracks initiating in the off-axis layers [1-5]. It is therefore very important to provide 

suitable criteria for the description of the off-axis behaviour of UD laminae. Reliable 

predictive models of general validity should be based on the quantitative description of the 

damage mechanisms occurring at the microscopic scale, which are responsible for the 

initiation of off-axis macro-cracks. In particular, these mechanisms are the initiation and 

propagation of matrix micro-cracks [5-7], as well as of fibre-matrix interface debonds. The 

importance of the debonding mechanism, which is significantly influenced by fibre sizing, has 

been widely documented in literature [8-10]. In [8,9] the authors found a strong dependence of 

the transverse strength of the lamina on the fibre sizing. Hoecker et al. [10] reported the results 

of static tests on UD carbon/epoxy laminae obtained with optimised, non-optimised and 

minimised interfaces, and subjected to transverse tension and pure in-plane shear. As in [8,9], 

they found a strong dependence of the transverse strength on the surface treatment, and a less 

pronounced but still appreciable effect on the shear strength. These results prove that the 

initiation and propagation of debonds, which are affected by the interface properties, are 

fundamental mechanisms in the transverse and in-plane shear static failure process. For this 

reason the debonding phenomenon has received  significant attention  from the scientific 

community in the last decades, mainly focusing on the propagation of a crack already existing 

at the fibre-matrix interface. In [11] the stress and displacement fields, as well as the Strain 

Energy Release Rate (SERR or G), have been determined in closed form for a debond crack in 

the case of a fibre embedded in an infinite plate subjected to remote tension. Chao and Huang 

[12] provided, instead, the stress fields for a crack at the interface between a fibre and an 

infinite matrix plate under a remote antiplane shear stress.  
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The expressions given in [11,12] are useful  for analysing the circumferential and longitudinal 

propagation of a debond crack at the interface. This kind of analysis  was carried out in Refs. 

[13,14] for  transverse remote stress. 

Using Toya's SERR based formulation [11] and the Stress Intensity Factor (SIF) approach 

proposed by Rice [15] and Comninou [16], Paris and co-workers studied the propagation of a 

debond crack, paying attention to the competition between interface crack propagation and 

crack kinking into the matrix [17]. The same approach was also used to study the effect of 

compressive stresses  in Refs. [18,19]. 

Less attention, particularly in terms of modelling, has been dedicated to the initiation of a 

debond crack at an undamaged fibre-matrix interface. 

In Refs. [9,20] the authors described the static transverse lamina behaviour by means of the 

Finite Element (FE) analysis of a fibre-matrix unit cell, where debonding was supposed to 

initiate when the peak value of the radial stress at the interface reached a critical value, typical 

of the bi-material system. In addition, De Kok and Peijs [9] modelled the interface by means 

of spring elements  the separation of which, simulating  circumferential crack propagation, 

occurred when an equivalent stress calculated from the radial and tangential shear stress 

components reached the same critical value used to predict initiation. In [21] the off-axis 

lamina behaviour  was simulated by means of 3D FE analyses using a critical debonding 

condition analogous to that adopted by De Kok and Peijs [9], including also the contribution 

of  longitudinal shear stress. Quadratic criteria  were also used  in Refs. [22] and [23], where 

the fibre-matrix interface strength  was measured by means of experimental tests on cruciform 

shaped single-fibre specimens made of epoxy resin and SiC and glass fibres, respectively. 

Tests  were carried out with several off-axis angles between the fibre and the loading 

directions, and  failure envelopes  were obtained  on the radial-longitudinal shear stresses 

plane. Finally, empirical quadratic expressions were obtained by fitting the experimental 

results. Because of its phenomenological nature, the last mentioned approach cannot be 

considered of general validity and, most important, a complete characterisation of the interface 

strength under biaxial loading is always required, involving  expensive experimental activity. 

However, the main drawback of using a stress based criterion as proposed in [9,20-23] is that 

the influence of the fibre radius, or equivalently the scale effect, cannot be described,  because 

the local stress field is independent  from the absolute fibre dimensions.  

Cohesive Zone Models (CZMs)  were adopted by Chandra [24] to simulate the initiation and 

propagation of debonds in a pull-out test configuration, and by Koyanagi and co-authors [25] 

for  debonding onset and propagation in the circumferential and longitudinal direction under 
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transverse remote stress. CZMs have the advantage that they consider a coupled stress and 

energy criterion for  element separation in the FE code, thus being sensitive to the fibre radius. 

Another approach which involves a coupled stress and energy criterion is  Finite Fracture 

Mechanics (FFM), initially proposed by Leguillon in 2002 [26] and later applied in different 

fields to predict the initiation of cracks in regions of stress concentrations, where classical 

strength or fracture mechanics criteria fail. This approach  was applied by Mantič and co-

authors for  predicting debond initiation in the case of a fibre embedded in an infinite plate 

subjected to remote uniaxial [27] and biaxial [28] transverse tension. 

In  this work the FFM approach is used as the basis to develop a model capable  of predicting 

debond initiation for a fibre embedded in an infinite plate subjected to combined remote 

transverse and antiplane shear stresses.  

This model can represent a useful tool for improving the understanding and quantitative 

description of  damage initiation in the off-axis laminae of a multidirectional laminate under 

static remote tensile loading.  

 

A.2. Finite Fracture Mechanics approach 

In this section, the concepts at the basis of the FFM approach are briefly recalled, and adapted 

to the case of interest. Differently from classical fracture mechanics, which considers 

infinitesimal and self-similar increments of the length of an existing crack, the FFM approach 

is based on the idea that the onset of a crack in a critical location (in correspondence to stress 

concentration regions for example) occurs with a finite crack length l0. This length is, together 

with the critical nominal stress for crack initiation ζn,c, an unknown of the problem. Leguillon 

[26] proposed to calculate these two unknowns by solving simultaneously the following 

system of equations, representing the stress and energy conditions required for the crack 

initiation to occur.  

 

   σ σ , σn Rl             (1.1) 

   Δ σ ,n cG l G           (1.2) 

 

Equation (1.1) represents the stress criterion, which states that the stress along the length of the 

nucleated crack l has to be at least equal to the critical stress ζR of the material.  

Equation (1.2) represents, instead, the energy criterion, which requires that the energy released 

in the initiation process of a crack of finite length l divided by the cracked area ΔG be at least 
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equal to the critical value of the SERR Gc. The latter is a material property which could be 

better interpreted as the specific energy necessary for the formation of new crack surfaces.  

The simultaneous solution of equations (1.1) and (1.2) allows one to determine the value of the 

critical remote stress ζn,c, and the finite length of the nucleated defect l0. 

In the next sections, this approach is applied to the case of an isotropic fibre of infinite length 

and radius Rf embedded in an infinite isotropic plate and subjected to remote combined 

transverse stress ζ2 (=ζx) and out of plane shear stress ζ6 (=ζxz). This combination of stress 

components is representative of the stress state in an off-axis unidirectional lamina under in-

plane loading; indeed the antiplane remote shear stress is named ζ6 to emphasise its 

correspondence to the in-plane shear stress for a UD lamina.  

Initially the fibre is supposed as being perfectly bonded to the surrounding plate (figure 1a), 

and an arc crack of finite angle 2α0 is assumed to nucleate at the interface in correspondence to 

the critical values of the remote stresses ζ2,c and ζ6,c (figure 1b). 

 

 

Figure 1: Fibre embedded in an infinite plate with a) pristine and b) partially debonded 

interface 

 

In order to solve the governing system, the interface stresses and the relative crack face 

displacements have to be calculated for the uncracked and cracked conditions respectively, 

both under pure transverse and antiplane shear stress. In addition, the material properties Gc 

and ζR have to be known. The latter should be ideally measured by a tensile test of the bi-

material system in a condition where the stress criterion holds, i.e. testing specimens that are 

large enough, as discussed later on in section A.7. From this point of view the test method 

proposed in Ref. [29] could be a useful tool for measuring the bi-material interface strength 

under normal and shear stress. The critical SERR Gc can instead be obtained by  analysing the 

mode I propagation of a crack at the considered bi-material interface. 
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A.3. Stress fields for the uncracked case 

In this section the interface stress fields for the pre-debonding condition are provided, because 

necessary  for solving equations (1.1) and (1.2). In the following, subscripts 1 and 2 refer to 

the fibre and the matrix respectively. 

A.3.1 Remote transverse stress 

The complete stress fields for the plane strain problem of an isotropic cylindrical inclusion 

embedded in an infinite plate under tension  were obtained by Goodier [30].  That formulation 

is used in the present work for  calculating the interface stress fields in the case of a fibre in an 

infinite resin plate. Though all the stress components in cylindrical coordinates, ζr, ζθ, ζz, and 

ηrθ, are non zero at the fibre-matrix interface, only the radial and tangential shear components 

are responsible for the onset of a debond crack. At the fibre-matrix interface, r = Rf, these 

stresses can be written as: 

 

 
 

 

 2 1 2

1 2 1 2 1 2

2υ1
σ σ μ 1 κ

4μ 2μ κ 1 2 κ μ μ
r

Cos 
    

    

     (2) 

 
 

 
1 2

θ 2

2 1 2

μ 1 κ
τ σ 2υ

2 κ μ μ
r Sin


  


        (3) 

 

where θ is the polar angle shown in figure 1a), μi is the shear modulus κi = 3 - 4νi, with νi 

being Poisson's ratio of the material. Equations (2) and (3) are plotted in figure 2, for the 

glass/epoxy material properties adopted in [23] and listed in Table 1. The angle θ0 is defined 

as the angular coordinate  where the radial stress vanishes (ζr(θ0) = 0), and it is about 66° for 

the material system under investigation. 

 

Table 1: Elastic properties for glass and epoxy [23] 

Material E [MPa] ν 

Glass 72000 0.22 

Epoxy 4280 0.42 
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Figure 2: Interface stress fields for glass/epoxy system under remote transverse stress ζ2 = 1 

MPa (elastic properties from [23]) 

 

It is evident that the interface is subjected to a biaxial stress state even if the applied remote 

load is purely uniaxial. Mantič, [27], considers only the radial component ζr in the stress 

criterion, neglecting a possible contribution of  shear stress to the interface failure. In  this 

work the shear contribution is included and the stress criterion is written in terms of an 

equivalent stress ζeq, to be compared with the bi-material interface strength ζR. A possible 

expression for ζeq is given in equation (4). 

 

2 2

1 υσ σ τeq r rc             (4) 

 

Equation (4) is mathematically similar to those proposed in Refs. [9, 21-23], but it is important 

to highlight that its physical meaning is different. In fact in [9, 21-23] the quadratic expression 

is used to describe the interface failure locus of a particular fibre-matrix interface. In the 

present work, instead, it is used to describe the strength of the bi-material system, which can 

be different from that of the fibre-matrix interface (the latter depending also on the energy 

criterion, according to the FFM approach). Conversely, it can be said that the meaning of 

equation (4), from a physical point of view, is similar to that assumed by the quadratic 

expression used in the CZMs in Refs. [24,25]. In equation (4), c1 is a constant that is equal to 

the square of the ratio between the normal and shear interface strengths. De Kok and Peijs [9] 

modelled the interface using springs to simulate the chemical links between fibre and matrix, 

and obtained a values for c1 close to 3. The analysis of SiC/Ti and glass/epoxy systems [24,25] 

proved, instead, that a value of c1 around unity provides good results if the stress criterion is 
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coupled with an energy criterion by means of a CZM. A value close to 1 has been 

experimentally found in [29] for an aluminium/epoxy system. However the value of this 

constant is still an open problem. The equivalent stress, as given by equation (4), is plotted in 

figure 3 versus θ for a typical glass/epoxy system and for different values of parameter c1. 

Values of θ from θ0 (66°) to 90° are not considered in figure 3 since the radial stress is 

compressive in that range of angles. 

 

 

Figure 3: Equivalent stress trends for different values of c1 (material properties are the same as 

those  in figure 2) 

 

A.3.2 Remote antiplane shear 

Let us consider an isotropic fibre within an infinite plate under antiplane shear ζ6. The 

complete stress fields can be easily calculated by solving the equilibrium equation written in 

terms of the displacement w in the z -direction: 
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r r r r
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and further accounting for the displacement-stresses relationships: 
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The solution of equation (5), together with the application of suitable boundary conditions 

(ηrz,1(Rf)=ηrz,2(Rf), w1(Rf)= w2(Rf), ηrz,2(r→∞)=ζ6·cos(θ), w1(r=0)=0), provides the complete 

stress field for the antiplane problem. However, the only stress component which is 

responsible for debonding is ηrz,  the interface trend of which is given in equation (7) and 

plotted in figure 4.  

 

  1 2
6

1 2

μ μ
τ σ υ 1

μ μ
rz Cos

 
    

 
        (7) 

 

 

Figure 4: Shear stress ηrz at the interface for a glass/epoxy system under remote antiplane shear 

stress ζ6 = 1 MPa (material properties are the same as those  in figure 2) 

 

A.4. Relative displacements in the presence of an interface crack 

In  this section the post-debonding condition is analysed, considering an interface arc crack of 

angle 2α, placed symmetrically with respect to the x axis (see figure 1b). The relative 

displacements between fibre and matrix are calculated, both for the plane and antiplane 

problem. These results will be used in section A.5 for  calculating the released energy.  

A.4.1 Debond crack with remote transverse stress 

The relative crack face displacements in the case of  remote transverse stress  were determined 

by Toya [11]  using the complex potential method. The final expressions for the relative 

displacements Δu and Δv in the radial and tangential direction are reported in equations (8) and 

(9). 
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where: 
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According to equations (8,9) the displacements are characterised by an oscillatory trend in a 

region close to the crack tip. This is typical for an interface crack between two dissimilar 

materials [31,32]. In [11] it is proved that this unrealistic behaviour is confined  to a very small 

region, of extension smaller than 10
-3

 times the fibre radius for a typical glass/epoxy system. 

Accordingly, it can be concluded that equations (8,9) represent a good, though approximated, 

description of the real displacement field. 

It is worth mentioning that, for high crack angles, the relative radial displacements predicted 

by equation 8 become negative in proximity to the crack tips, thus predicting an unrealistic 
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interpenetration between the two phases. As a consequence, equations (8,9) can be considered 

valid until the interpenetration zone  remains very limited. In the present work, the maximum 

allowable extension of this region is set as equal to 1°, corresponding to a length of 

approximately 10
-4

 mm for a typical glass fibre. Equations (8,9) can therefore be used for 

crack angles lower than a limit value 2αℓ which is found to be equal to about 140 degrees for a 

typical glass/epoxy system. An exact description of the displacement field should consider the 

contact between fibre and matrix, but in the present work this aspect is not treated,  because 

not restrictive for the model developed.  The limit angle αℓ (70°) is, in fact, greater than θ0 

(66°), angle at which the interface radial stress goes to zero and then becomes negative. The 

influence of a compressive radial contribution on the debond initiation is not treated in this 

work and therefore the actual limit angle for the applicability of the present model is equal to 

θ0 < αℓ.  

A.4.2 Debond crack with remote antiplane shear stress 

The antiplane problem of a crack at the fibre-matrix interface was studied by Chao and Huang 

[12],  using the complex potentials method. The interface stresses were explicitly obtained in 

[12], while the relative displacements Δw in z direction (see figure 1) are calculated here. 

The stress components can be written as 

 

 τ μ ,yz

w

y




     

τ μxz

w

x





         (18) 

 

and therefore the following expression holds valid 
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where Z = x + iy = re
iφ

, and  Φ Z  is a complex function. Equation (19) can be rewritten in 

polar coordinates: 
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Chao and Huang suggested the following expressions for Φ(Z): 
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Equations (21) and (22) have been obtained for a fibre radius Rf = 1.  As we are interested in 

the relative displacements at the interface, the complex variable Z has to be substituted with 

e
iφ

.  

According to equation (20) the shear stress ηθz at the interface can be written as: 
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      (23) 

 

therefore the derivative with respect to θ of the relative displacements can be written as 
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Integrating equation (24) with respect to θ, the relative displacement field results: 
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A.5. Calculation of the released energy 

Once the interface stresses and the relative displacements are known for the pre and post-

debonding conditions respectively, the energy released during the initiation process ΔU can be 

calculated as follows. 
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The subscripts I, II and III mean that the three contributions are related to mode I, mode II and 

mode III loading respectively. Thanks to the solutions given in sections A.3 and A.4, the 

energy contributions can be written as functions of the crack angle: 
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where Ωp and Ωa are non-dimensional parameters defined as 
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and 
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While a closed form solution has been obtained for I3, I1 and I2 have been computed 

numerically by means of a simple trapezoidal rule (integration steps of 1°). I1 I2 and I3 values 

are plotted in figure 5 for the glass/epoxy system of Ref. [23] and for ζ2 = ζ6 = 1 MPa.   

 

 

Figure 5; Integrals I1,2,3 vs the crack semi-angle α for the glass/epoxy system [23] 

 

A.6. Solution of coupled stress and energy criteria 

When transverse and antiplane stresses are applied simultaneously (see figure 1b), three 

interface stress components, ζr, ηrθ and ηrz, are responsible for debond initiation. As done 

before (eq.4) for the in-plane components, an equivalent stress, ζeq, should be defined for use 

in the stress criterion. In the case of biaxial loading the antiplane stress ηrz  also has to be 

accounted for and weighted by  the parameter c2 representing the square of the transverse to 

antiplane shear strength ratio. The  equivalent stress ζeq turns out to be 
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 As the equivalent stress has to be representative of the bi-material strength, there are no 

reasons for the parameters c1 and c2 to be different, since both of them quantify the normal to 

shear strength ratio of the interface, independently of the direction of the shear stress. 

Accordingly, in the following we set c1= c2 = c. 

Concerning the energy criterion, in a biaxial loading condition the total SERR can be 

calculated dividing the total released energy by the area of the nucleated crack, 2Ac: 
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        (37) 

 

Therefore the energy criterion, equation (1.2), can be explicitly rewritten as follows: 

 

Δ 2αtot f cU R G             (38) 

 

It is clear that the released energy is the sum of the contributions due to mode I, II and III 

loadings, so  it is worth spending some words on the value of the critical SERR, Gc.  

In the case of uniaxial transverse stress, which results in a mixed mode I + II loading 

condition, Mantič [27] proposed to calculate Gc as the following averaged value: 

 

  0α

0
0

1
Ψ α α

α
c cG G d           (39) 

 

where Ψ(α) is the square root of the ratio between the mode II and mode I contributions (

     Ψ α α αII IG G ), and an increasing function of the crack semi-angle α [17]. Cracks at 

bi-material interfaces are usually characterised by an increasing trend of the critical SERR 

while increasing the mode II contribution, (i.e. increasing Ψ). A phenomenological law for 

Gc(Ψ)  was proposed by Hutchinson and Suo [33]. This formulation has been used by Mantič 

[27] to compute the critical SERR, to be used in equation (39), corresponding to values of α 

ranging from 0 to α0.  

The typical increasing trend of the function Gc(Ψ) is usually due to a more pronounced crack 

tip plastic deformation as the mode II contribution increases [34], or to a change of the damage 

mechanism [35-37]. In the case of interest for the present work none of the above-mentioned 

phenomena are expected to occur. It is in fact, reasonable to assume that the matrix does not 

undergo any plastic deformation before debond initiation. This is confirmed by the 

experimental results obtained in Refs. [22,23,25], where the critical debond stresses have been 

found to be much lower than the typical yielding stress for epoxy resins. In addition, since the 

interface is undamaged in the pre-debonding condition, there are no singularities which could 

be responsible for localised plasticity, which instead occurs near the tips of an already existing 

crack. Concerning the change in the damage mechanism (i.e. cracks in the matrix and not at 
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the interface), this aspect is not within the scope of the present work,  which instead focuses on 

the initiation of interface debond cracks.  

According to these observations, it can be reasonably assumed here that the value of Gc to be 

used for the present analysis does not change with the mode ratio. This choice is also 

supported by the fact that, according to the FFM concept, a finite crack of angle 2α0 is 

supposed to nucleate suddenly and therefore its tips are never subjected to mixed mode 

conditions related to crack angles lower than 2α0. In the author's opinion, therefore,  the value 

of the critical SERR should be kept constant and not be averaged over the crack length, as in 

equation (39). It is once again remarked that, in the frame of the FFM approach, Gc can be 

thought of as a specific surface energy  that does not depend on the loading mode (I, II  or III), 

and is, for this reason, constant. 

After defining a biaxiality ratio λ12 as the ratio between the remote antiplane shear and 

transverse stresses (i.e. λ12=ζ6/ζ2) [37,38], the governing system of two equations, 

representing the stress and energy criteria, can be explicitly written as follows. 
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In equation (40.1) it is emphasised that the local stresses at the interface are functions of the 

angle α,  the remote stress ζ2, which are unknown variables, and the biaxiality ratio λ12.  

As α is involved in complicated expressions within the integrals I1,2,3(α), a closed form 

solution for the system is not possible, however the value of ζ2,s and ζ2,e satisfying the stress 

and energy criteria respectively can be calculated as a function of the crack angle α from 

equations (40.1) and (40.2): 
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The terms kij(α) in equation (41.1) are the interface stress concentration factors at the angle 

θ=α with respect to the x-axis, and they can be easily obtained by dividing equations (2), (3) 

and (7) by the remote stresses ζ2 and ζ6. 
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The initial angle α0 can be computed equating equations (41.1) and (41.2), resulting in 

equation (45) to be solved numerically for α0. 
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Once the initial angle has been calculated, the critical remote transverse stress can be easily 

computed by substituting α0 in equation (41.1) or (41.2).  

Thus, the solution depends on the fibre radius Rf, on the interface toughness Gc and strength 

ζR, as well as on the biaxiality ratio λ12. 

The effects of these parameters and the role of the constant c are discussed in section A.7. 

 

A.7. Parametric analysis and discussion 

It is first interesting to discuss the influence of the fibre radius Rf on the critical debonding 

stress computed with the procedure described in section A.6. 

Initially, the case of the shear strength ratio c = 0 is considered. In this condition a pure 

antiplane shear stress cannot be responsible for debond initiation.  

In figure 6 the critical remote transverse stress is plotted versus the fibre radius in double 

logarithmic scales for c = 0. The critical SERR is chosen as Gc = 2J/m
2
, in agreement with 

findings reported by Varna and co-authors [14], while the interface strength is arbitrarily 

chosen as equal to 50 MPa. It is clear that for small enough values of Rf , the critical stress for 
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debond initiation is strongly dependent on the fibre radius, because proportional to 1/Rf
0.5

. It 

can be easily observed, from equation (41.2), that this dependence is provided by the 

application of the energy criterion. In fact, for Rf tending to zero, the solution of the system of 

equations (40.1) and (40.2) tends towards that of the energy criterion only.  

Differently, if Rf is sufficiently high, the solution is almost insensitive to the fibre radius and 

ζ2,c converges to that computed by the stress criterion only (equation (41.1)). This explains 

why, as anticipated in section A.2, testing large enough specimens allows one to determine the 

strength, ζR, of the bi-material system to be used in the stress criterion. 

The detrimental effect of an increasing shear contribution, i.e. increasing λ12, can be observed 

when Rf is low enough, whereas for high values of Rf the critical stress  tends towards a 

constant value independently  from the amount of shear stress. In fact,  as c = 0, the shear 

stress has no effect on the result computed with the stress criterion, as can be derived from 

equation (41.1). 

 

 

Figure 6: Critical remote transverse stress versus fibre radius for a glass/epoxy system, c = 0 

 

Similar conclusions can be drawn when the shear strength ratio c is equal to unity, with the 

relevant critical stress trends presented in figure 7. In this case, however, the shear 

contribution is accounted for and the stress criterion, equation (41.1), provides different 

asymptotic values for the critical transverse stress, depending on the biaxiality ratio. 

 

10

100

1000

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

ζ
2

,c
[M

P
a]

Rf [mm]

λ12 = 0 Gc = 2 J/m2

ζR = 50 MPa

stress criterion 

λ12 = 2

λ12 = 1

c = 0

slope -0.5



Appendix A. Modelling fibre-matrix debonding under biaxial loading 

 

254 
 

 

Figure 7: Critical remote transverse stress versus fibre radius for a glass/epoxy system, c = 1 

 

These conclusions hold valid for the particular bi-material system the properties of which (Gc 

and ζR) are listed in figures 6 and 7. For a deeper investigation, it is helpful to define a new 

interface parameter, Γ, which accounts for the simultaneous influence of the fibre radius as 

well as of the interface properties Gc and ζR. 
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The dimension of Γ is MPa
-1

 when Rf, Gc and ζR are expressed in mm, kJ/m
2
 and MPa 

respectively. 

If, for brevity, the left-hand side of equation (45) is referred to as the function F(α0), equation 

(45) can be synthetically written as F(α0) = Γ. The initial angle α0 therefore depends only and 

directly on the interface parameter Γ. 

For a better understanding of the influence of the interface parameter on the critical transverse 

stress, it is interesting to investigate the two extreme conditions, when Γ tends towards zero or 

to high values (∞). The limit behaviour Γ→0 occurs for high values of Rf or low values of the 

Gc to ζR
2
 ratio. In critical conditions F(α0) has to tend to zero as well. To conveniently analyse 

the problem from a mathematical point of view, it is useful to treat α0 as the independent 

variable and study F(α0) as a function of the initial angle. By doing so, it is proved in 

Appendix A.A that when α0 approaches zero, F(α0) goes to zero as well. This means that when 

Γ→0, the initial debonding angle α0 tends towards zero, independently of λ12. This is 
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confirmed in figure 8, where the initial angle, computed solving the coupled stress and energy 

criteria, is plotted against the parameter Γ (for c = 0).  

 

 

Figure 8: Initial crack angle versus Γ for a glass/epoxy system and c = 0 

 

For debonding to occur in the other limit case, i.e. Γ→∞,  F(α0)  must tend towards infinity as 

well, which implies that the denominator of F(α0) tends towards zero. This happens, if c = 0, 

when α0 = θ0, resulting in a vanishing interface radial stress. This means that for very low 

values of Rf or very high values of the Gc to ζR
2
 ratio, the initial angle α0 approaches a constant 

value equal to θ0, independently of λ12. This is clearly shown in figure 8. It can also be  seen 

that  asymptotic behaviour  has already been reached for Γ > 0.1 MPa
-1

. 

 

 

Figure 9: Critical remote transverse stress versus Γ for a glass/epoxy system and c = 0 
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These observations have two important consequences in the computation of the critical remote 

transverse stress ζ2,c, plotted in figure 9 against the parameter Γ. When the initial angle tends 

towards the constant value θ0 (for Γ→∞), it is no longer a variable of the problem, which can 

therefore be solved by applying the energy criterion only, providing for ζ2,c a trend 

proportional to the square root of Γ (right-hand side of the diagram). In fact, the critical remote 

stress, plotted in double logarithmic scales versus Γ, exhibits an almost linear trend with slope 

0,5 for Γ tending towards infinity (here Γ > 0.1 MPa
-1

). This means that the asymptotic trend 

to the solution given by the energy criterion is achieved not only for fibres with very limited 

radius, as highlighted in figure 6, but also for very high values of the Gc to ζR
2
 ratio. 

Conversely, if Γ  approaches 0, and with α0 also tending towards 0, the FFM approach turns 

out in the application of a point criterion. In fact the critical stress  tends towards a constant 

value which corresponds to that calculated with the stress criterion, equation (41.1), setting α = 

0. This behaviour is therefore achieved for high values of the fibre radius as well as for very 

low values of the Gc to ζR
2
 ratio. 

 

 

Figure 10: Initial crack angle versus Γ for a glass/epoxy system and c = 1 

 

The case c = 1 is now considered. The same conclusions drawn in appendix A.A  remain valid 

for the behaviour of F(α0) with α0 tending towards 0,  therefore it is confirmed that α0 goes to 

zero as Γ approaches 0, also when c = 1 (see figure 10). As already mentioned, the condition 

Γ→∞ is encountered when the denominator of F(α0) vanishes, but this is never verified if c ≠ 

0. However, the analysis should be limited at α0 = θ0, since after that value the radial stress is 

compressive and its influence is not included in the present analysis. Thus if c ≠ 0, only 

fibre/matrix systems with a maximum value of Γ (Γ0 = F(θ0)) can be analysed with the present 
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approach. F(θ0) is a decreasing function of the biaxiality ratio, and its lowest value is achieved 

for λ12  equal to ∞ (pure shear stress condition), which can be easily obtained from equation 

(45): 
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.        (47) 

 

For the considered material properties, when c = 1 Γ0 is equal to 6.2·10
-4

 MPa
-1

.   

The influence of Γ values lower than Γ0 on the remote critical stress is eventually shown in 

figure 11. In this case the asymptotic behaviour for Γ→0 results in different values of the 

remote stress obtained by means of the stress criterion represented by equation (41.1).   

 

 

Figure 11: Critical remote transverse stress versus Γ for a glass/epoxy system and c = 1 

  

A.8. Validation 

In this section the approach proposed in the present work is validated by  the experimental 

results reported by Ogihara and Koyanagi [23], for a glass/epoxy system.  As the specimen 

width is sufficiently higher than the fibre diameter (2Rf = 0.017 mm), the interface stress field 

can be considered comparable to that  occuring in a fibre embedded in an infinite plate, as 

given in section A.3. In addition, the specimens have been cured at room temperature so that 

no thermal stresses have to be considered in the analysis. The experimental results from [23] 

are plotted as symbols in figure 12, in terms of local stresses at the interface for θ = 0. In order 

to apply the proposed model, ζR and Gc have to be known, but unfortunately their values are 

not reported in [23]. In order to estimate Gc, the radial critical stress obtained in [23] is 
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compared with the results reported in [13], where the authors tested single fibre specimens 

made of epoxy resin and a 0.017 mm diameter glass fibre, previously fragmented with a 

longitudinal tension test. Two surface treatments have been adopted, with and without an 

aminosilane and methacrylate coupling agent, identified as NOCA and CA, respectively [13], 

providing different values of the remote critical stress, equal to 33 and 72 MPa respectively. 

The corresponding local radial stresses (at θ = 0) can be calculated by multiplying these values 

by the factor kr(0), equal to 1.42 for the material system adopted in [13], resulting in critical 

radial stresses of 47 and 102 MPa. The values of GIc  were also  estimated by Varna et al. [14]  

as being equal to 2 J/m
2
 and 10 J/m

2
 for NOCA and CA surface treatments respectively. It is 

worth noting that the local critical radial stress obtained in [23] is significantly lower than that 

reported in [13,14] for NOCA treated specimens, suggesting that Gc for the bi-material system 

used in [23] could reasonably be lower than 2 J/m
2
. A value of 0.75 J/m

2
 is chosen in  this 

work on the basis of these observations. Finally, the value of ζR is calculated in order to fit the 

experimental result obtained for the pure transverse stress loading condition with the model 

prediction. 

 

 

Figure 12: Comparison between model predictions and experimental data from [23] 

 

Two values of the parameter c are used, in order to clarify its influence. First, c is chosen equal 

to 1, according to [24,25] where the stress criterion has been used within a CZM. A value 

close to 1 has also been experimentally found in [29] for an aluminium/epoxy system with an 

innovative and effective experimental device.  

 When c = 1, the value of ζR, estimated by matching the result for the pure transverse stress 

condition, is equal to 18 MPa. It is evident that the model prediction is in satisfactory 
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agreement with the average trend of the experimental results for multiaxial stress states (see 

figure 12). It is also worth noting that in this case Γ is equal to 2.7·10
-4

 MPa
-1

, lower than the 

value Γ0 = 6.2·10
-4

  MPa
-1

 calculated in section A.7, the  validity limit of our approach. 

If, instead, c is set equal to zero, ζR is equal to 7,5 MPa, and the agreement with the 

experimental results is satisfactory as well. In fact, in the investigated range of multiaxial 

conditions, the difference between the model predictions for c = 0 and 1 is not significant, if 

compared to the large scatter of data. It is therefore difficult to state which is the most suitable 

choice for parameter c. The two curves start diverging significantly for higher contributions of 

antiplane shear stress. In fact, in the case of c = 0, the local value of the critical shear stress 

tends towards infinity as ζr approaches ζR, suggesting that a pure shear loading condition can 

never induce debond initiation. 

Since the value of Gc is not measured but  is assumed on the basis of the comparison with 

results from Ref. [13,14], a sensitivity analysis is carried out. Independently of the choice of 

ζR, values of Gc higher than 0.8 J/m
2
 can never provide a solution for pure transverse stress 

loading which fits the experimental value shown in figure 12, respecting the condition α0 < θ0 

(Γ < Γ0). On the other hand, when c = 1, decreasing the value of Gc, and recalculating ζR as 

already described turns out in slightly lower predictions as the antiplane shear contribution 

increases. For instance, if Gc is decreased  by 50% with respect to the previous value of 0.75 

J/m
2
, the maximum difference is achieved for the pure antiplane shear condition, and it is 

equal to -8% for the critical ηrz. 

When c = 0 instead, and if Gc is decreased  by 50%, ζR results equal to 24 MPa, providing  

asymptotic behaviour as ζr approaches 24 MPa, which is in disagreement with the 

experimental data. 

Experimental results on cruciform single-fibre-specimens  were also conducted  by Tandon 

and co-authors [22] for uncoated SiC fibres SCS-0. In this case, by measuring the longitudinal 

debond propagation, the authors calculated a critical interface SERR, Gc, of approximately 25 

J/m
2
, which is  larger than the value assumed for the glass/epoxy system [23]. Using this value 

of Gc and calibrating ζR with the pure transverse stress condition, the present model provides 

overestimated predictions (up to +45%) of the critical debond stresses under biaxial loading.  

It is important however to mention that the interface stresses along the fibre length for the 

specimens tested in [22] undergo steep variations even across the specimen centre-line (see 

figure 25 of Ref.[22]). In addition, the specimen thickness is only 6.4 times the fibre diameter, 

which is not enough to consider this case as equivalent to that of a fibre in an infinite matrix 

plate. In view of these conditions, the proposed model, which holds valid for an infinite plate 
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and for uniform stress fields in the longitudinal direction, should not be expected to fit the 

results obtained in [22].  

The satisfactory agreement with experimental results for the glass/epoxy system of Ref.[23] 

suggests that  this approach is suitable  for describing debonding initiation under static biaxial 

loading as representative of the off-axis stress state in a composite lamina. It is finally worth 

mentioning that the present model can be easily adapted to account for the fibre to fibre 

interaction and thermal stresses arising in a real unidirectional lamina.  

 

A.9. Conclusions 

With the aim  of improving knowledge on damage initiation in unidirectional laminates under 

a local multiaxial stress state, a new model for the onset of debond cracks at the fibre-matrix 

interface has been proposed. An isotropic fibre embedded in an infinite plate and subjected to 

remote transverse and antiplane shear stresses has been considered. The model is based on the 

Finite Fracture Mechanics approach and  makes it possible to estimate the initial crack angle 

and the critical stress for debond initiation. The latter has been found to depend on the 

biaxiality ratio, i.e. the remote antiplane to transverse stress ratio, and on the fibre radius Rf. In 

particular, for a fibre radius tending towards zero, the critical transverse stress is proportional 

to the inverse of the square root of the radius, whereas for large fibre diameters the critical 

stress is almost radius-independent, tending to a constant value computed by means of the 

stress criterion only. 

The model has been validated through experimental results taken from  literature, resulting in 

a satisfactory agreement. This suggests that the present approach could be applied to predict 

the static debond initiation in real unidirectional off-axis laminae, accounting for the actual 

stress and displacement fields relevant for multiple fibre composites.  

 

Appendix A.A 

The aim of this appendix is to prove that the limit value of F(α0) for α0→0 is zero. It is worth 

noting that as α0→0, the denominator of F(α0) in equation (45) is a finite non-zero value. The 

problem is therefore converted to evaluation of the following limit:  
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It is worth noting that both numerator and denominator in equation (A1) tend to zero as α0→0, 

resulting in an indeterminate form 0/0. Moreover, the problem is even more complicated since 

integrals I1 and I2 can be computed only numerically, as a closed form expression  is not 

generally available for them. However, since the problem is restricted to α0 tending to zero, the 

integrals I1, I2 and I3 can be expanded in MacLaurin series as follows: 
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      (A2) 

 

where, according to equations (33) and (34), Ii(0) = 0. After simplifying the factor α0 and 

neglecting higher order terms, equation (A1) can be rewritten as follows: 
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According to the definition of the SERR given in the frame of linear elastic fracture 

mechanics, the mode I, II and III components of G can be calculated by deriving the released 

energy with respect to the crack area which is, in this case, proportional to the crack semi-

angle α. Accordingly, considering equations (29)-(31), the SERR components can be written 

as 
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The SERR for crack angle tending to zero has to be null (see for example Ref. [11]), thus 

implying null values for the derivatives of the integrals I1, I2 and I3 with respect to α0, if α0 = 0. 

Therefore: 
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Concluding remarks 
 

In the last two decades the needs of decreasing energy consumptions and increasing the power 

supplied by renewable sources acted as major driving forces for the use of composite materials 

for structural components. These materials offer a wide range of advantages deriving from 

their high specific strength and stiffness, resistance to environmental effects and versatility. 

On the other hand they are still characterised by a quite high cost with respect to more 

traditional materials, due to expensive raw materials, labour intensive manufacturing processes 

and lack of reliable design procedures. 

In particular the behaviour of composites under multiaxial fatigue loadings, which often 

characterise in-service conditions, has not been understood and modelled exhaustively in the 

literature.    

In order to decrease the costs and to fully exploit the advantages provided by this class of 

materials it is essential to improve the knowledge of their behaviour under multiaxial cyclic 

loading. Accordingly, extensive experimental investigations are needed, aimed not only to the 

production of large databases but also to the observation of the damage mechanisms leading 

these materials to failure, with the final aim to define predictive models and criteria.  

In the present work, after defining a proper specimen configuration for multiaxial testing 

(chapter 2), the matrix-dominated multiaxial fatigue behaviour of unidirectional composites 

was characterised under several loading conditions (chapter 3). Different values of the 

biaxiality ratio, defined as the shear to transverse stress ratio, and load ratio R have been 

adopted for multiaxial testing of glass/epoxy tubes subjected to combined tension/torsion 

loading. A strong influence of both parameters was found on the stress-life curves for crack 

initiation and on Paris-like curves for crack propagation, highlighting the need of suitable 

criteria to account for them. In particular it was found that the addition of a more and more 

pronounced shear stress contribution led to a lower number of cycles to crack initiation and to 

a higher crack growth rate, mainly when combined with alternating transverse stress.  

Also the damage mechanisms at the microscopic scale were found to depend on the multiaxial 

stress state. In particular, for positive load ratios, loading conditions characterised by a high 

enough shear stress contribution led to the formation of micro-cracks in the matrix, the 

accumulation of which is presumably the cause of a macro-crack initiation in a lamina.  
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Tubular specimens subjected to tension/torsion loading are characterised by an external 

multiaxial stress state, in which external loads are applied in different directions. Conversely, 

an internal multiaxial stress state can be originated by the material anisotropy even in the 

presence of a uniaxial load.   

In order to verify the (expected) equivalence between fatigue damage evolution under external 

and internal multiaxial stress states, a dedicated experimental campaign was carried out on 

multidirectional flat laminates (chapter 4). The comparison with results on the tubes presented 

in chapter 3 revealed that the fatigue behaviour of a unidirectional lamina under external and 

internal multiaxial conditions is consistent, in terms of crack initiation and propagation, 

provided that the local multiaxial stress state is the same, independently of the way it is 

originated. As a consequence, experimental results and observations, as well as predictive 

models, can be extended from flat to tubular geometries and vice-versa. 

On the basis of the damage mechanisms at the micro-scale observed on tubular specimens a 

criterion for crack initiation in UD laminates was proposed in chapter 5. It consists in adopting 

two stress parameters, Local Hydrostatic Stress and Local Maximum Principal Stress, 

representative of the driving forces for micro-damage evolution under loading conditions 

characterised by low and high enough shear stress, respectively. It was shown in chapter 5 that 

these parameters, computed by means of a multiscale analysis, are suitable to fully describe 

the matrix-dominated fatigue behaviour of a lamina by means two stress-life curves only.  

A simple but efficient parameter was also defined to account simultaneously for the influence 

of the multiaxial stress state and load ratio. 

In view of the equivalence between damage initiation under external and internal multiaxial 

conditions, the criterion can be successfully applied also to flat unidirectional laminates and 

layers of multidirectional laminates, the damage evolution of which is characterised by the 

initiation and propagation of multiple cracks in the off-axis layers.  

The above mentioned phenomena lead to the degradation of the global elastic properties of a 

laminate. In the literature many efforts have been devoted to the prediction of laminate's 

stiffness on the basis of the crack density in its layers. Several models were analyses and 

classified in six main groups, as discussed in chapter 6. However none of them was capable of 

accounting analytically for the interaction between cracks in different layers. To this end, in 

chapter 6 a model based on an Optimal Shear Lag analysis was developed for the stress 

distributions and stiffness degradation in multidirectional laminates with cracks in one or more 

layers. Crack interaction was accounted for by means of a procedure based on the principle of 

superposition. It was shown that neglecting such interactions can lead to wrong and non 
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conservative estimations of the stiffness degradation of cracked laminates. The proposed 

model resulted in very satisfactory agreement with the available experimental data from the 

literature and it was implemented in a Matlab code with graphical interface. 

Once the link between crack density and stiffness is known, it is important to predict the crack 

density evolution under fatigue loading. To this end an analytical procedure was developed 

and presented in chapter 7. It is based on the idea that the initiation of multiple cracks in a ply 

within a multidirectional laminate is controlled by the stress re-distributions between cracks in 

the ply (which can be computed by means of the stress distribution model presented in chapter 

6) and by the lamina stress-life curve expressed in terms of the parameters proposed in chapter 

5. It is also fundamental to account for the statistical distribution of fatigue strength along the 

length of a laminate. The Weibull distribution was adopted for this scope. 

The through the width propagation of multiple cracks was also considered in the procedure by 

means of Paris-like curves expressed in terms of the Strain Energy Release Rate (SERR), the 

value of which depends on the local crack density in each point of the laminate.  

The crack density evolution predicted by means of the developed procedure, implemented in a 

Matlab code with graphical interface, resulted in reasonable agreement with experimental data, 

even if some important points still have to be clarified, as, for instance, the way to estimate 

damage accumulation in variable amplitude fatigue and the ply thickness effect.  

This procedure, combined with the stiffness degradation model presented in chapter 6, 

represents a very useful tool for predicting the fatigue damage evolution in laminates, with 

particular reference to the stiffness loss. However, the stress re-distributions associated to the 

predicted crack density can be computed with the model presented in chapter 6 and used for 

estimating the total fatigue life of a laminate. 

The activity carried out on composite bonded joints was presented in chapter 8. An extensive 

experimental campaign was carried out to characterise the static and fatigue propagation of 

cracks at the bondline under mixed mode I + II. The Paris-like curves linking the Crack 

Growth Rate (CGR) to the total SERR were shown to depend on the mixed mode condition. 

Also the propagation modes at the micro-scale were found to change whether the loading 

condition was mode I or mode II dominated. In the former case, the propagation occurred in a 

self-similar manner at the adhesive-adherend interface and therefore it was reasonable to 

assume it to be controlled by the mode I SERR contribution only. Conversely, in the presence 

of dominant mode II, the damage mechanism consisted in the initiation, accumulation and 

coalescence of inclined micro-cracks in the adhesive layer. Accordingly, a stress parameter, S, 
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based on the maximum principal stress averaged over a process zone was proposed as the 

driving force for this propagation mode.  

It was shown that two Paris-like curves in terms of the mode I SERR and S are capable of 

fully describing the mixed mode propagation of cracks in bonded joints under fatigue loading. 

Eventually, an analytical model for predicting the initiation of a debond crack at the fibre-

matrix interface under static biaxial loading was developed on the basis of the Finite Fracture 

Mechanics approach and presented in Appendix A.  

This activity is not strictly related to the fatigue behaviour of composites but it represents a 

helpful tool for understanding the role of the main geometrical and interface parameters on the 

fibre-matrix interface strength. In particular it was found that the lower the fibre' radius, the 

higher the resistance to fibre-matrix debonding is. 
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