
 

 

 

 

 

 

 

 

Sede Amministrativa: Università degli Studi di Padova 

Dipartimento di Salute della Donna e del Bambino 

Clinica di Oncoematologia Pediatrica 

 

 

SCUOLA DI DOTTORATO DI RICERCA IN MEDICINA DELLO SVILUPPO E SCIENZE DELLA 

PROGRAMMAZIONE SANITARIA 

INDIRIZZO: EMATOONCOLOGIA, GENETICA, MALATTIE RARE E MEDICINA PREDITTIVA 

CICLO XXVII 

 

 

 

 

 

DNA METHYLATION ANALYSIS IN 

RHABDOMYOSARCOMA 

 

 

 

 

 

 

 

Direttore della Scuola: Ch.mo Prof. GIUSEPPE BASSO 

Coordinatore d’indirizzo: Ch.mo Prof. GIUSEPPE BASSO 

Supervisore: Dott.ssa ANGELICA ZIN 

 

 

       Dottorando: ELENA POLI 

         

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

INDEX 
 

SUMMARY          1 
 

RIASSUNTO          3 

 

1. INTRODUCTION         5 

1.1. Rhabdomyosarcoma        5 

1.1.2. Histo-pathological classification     5 

1.1.3. Molecular classification      6 

1.1.4. Risk-group stratification      9 

1.1.5. Prognosis        11 

1.2. Epigenetics         12 

1.2.1. DNA methylation       13 

1.2.1.1. DNA methyltransferases     14 

1.2.1.1.1. DNMT3A and DNMT3B    14 

1.2.1.1.2. DNMT1      14 

1.2.1.1.3. DNMT2 and DNMT3L    15 

1.2.2. DNA methylation and gene regulation    15 

1.2.3. DNA methylation and cancer      16 

1.2.4. DNA methylation as a marker for tumor diagnosis and prognosis 18 

1.2.5. DNA methylation as therapeutic target    19 

1.3. Methods for DNA methylation analysis      20 

1.3.1. Gene-target techniques       21 

1.3.1.1. Restriction enzyme-based methods    21 

1.3.1.2. Bisulfite deamination-based methods   21 

1.3.1.2.1 Bisulfite sequencing PCR    22 

1.3.1.2.2 Bisulfite-pyrosequencing    22 

1.3.1.2.3. Methylation-specific PCR    23 

1.3.1.2.4. Methylation-sensitive high-resolution melting 23 

1.3.2. Global DNA methylation profiling: the methylome   24 

1.3.2.1. Gel-based methylation profiling    24 

1.3.2.2. Array-based methylation profiling    24 

1.3.2.2.1. Bisulfite-based array for DNA methylation  

profiling .       24 

1.3.2.2.2. Methylation-sensitive enzymes-based array  

for DNA methylation profiling    25 

1.3.2.2.3. Enrichment-based array for DNA methylation 

profiling       25 

1.3.2 3. Sequencing-based methylation profiling   26 

 

2. OBJECTIVES          29 
 

3. MATERIALS AND METHODS       31 
3.1. Patients          31 

3.2. Cell cultures         32 

3.3. DNA and RNA extraction       33 

3.4. Genome-wide DNA methylation profile     33 

3.5. Statistical analysis of DNA methylation data     34 



 

 

3.6. Reduced-Representation Bisulfite Sequencing     35 

3.7. Trichostatin A and 5-aza-2’-deoxycytidine treatments    35 

3.8. Reverse transcription and qRT-PCR      36 

3.9. Sodium bisulfite treatment of DNA      36 

3.10. Bisulfite sequencing PCR       37 

3.11.Quantitative methylation-specific PCR      38 

3.12. Statistical analysis        38 

 

4. RESULTS          41 
4.1. DNA methylation profiling of RMS tumors biopsies by microarray analysis 41 

4.1.1. Discovery of novel methylated target genes: PAX3-FOXO1(+)  

RMS vs PAX3-FOXO1(-) RMS      41 

4.1.1.1. Microarray data analysis     41 

4.1.1.2. Evaluation of expression levels of candidate genes  43 

4.1.1.3. HOXC11: pharmacological treatment and  

bisulfite-sequencing       44 

4.1.2. Discovery of novel methylated target genes: IRS IV RMS group 

 vs IRS I, II and II RMS groups      46 

4.1.2.1. Microarray data analysis     46 

4.1.2.2. Evaluation of expression levels of candidate genes  50 

4.1.2.3. PCDHA4 expression is regulate by methylation  51 

4.1.2.4. Assessment of PCDHA4 expression and methylation  

status in a larger cohort of patients     54 

4.2. Evaluation of DNA methylation in RMS tumors biopsies using Reduced-

Representation Bisulfite Sequencing       60 

4.2.1. Reduced-Representation Bisulfite Sequencing analysis  60 

4.2.2 Functional annotation clustering of differentially methylated  

regions          64 

4.2.3. Correlation of gene expression and promoter methylation status  

in RMS         67 

4.2.4. Validation of candidate genes by qRT-PCR in RMS cell lines  

and tumor biopsies        67 

4.2.5. Restoration of expression after DAC and TSA treatment in RMS  

cell lines         70 

4.2.6. Bisulfite sequencing of NELL1 and GADD45G regulative regions  

in RMS cell lines reveals a different methylation pattern   71 

4.2.7. NELL1 and GADD45G expression in RMS tumor biopsies:  

statistical analysis and prognostic impact     73 

 

5. DISCUSSION          79 
 

BIBLIOGRAPHY         87 
 

RINGRAZIAMENTI         99 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



 

1 

 

SUMMARY 

Rhabdomyosarcoma (RMS) is a highly aggressive pediatric soft-tissue sarcoma. It is 

mainly classified into two major subtypes characterized by alveolar (ARMS) and embryonal 

(ERMS) histologies. ARMS are characterized by a more aggressive behavior with a higher 

tendency to present metastasis at diagnosis and to relapse after treatment. Approximately 80% 

of ARMS harbour the reciprocal chromosomal translocation t(2;13)(q35;q14) and, less 

commonly, the variant translocation t(1;13)(p36;q14), in which PAX3 and FOXO1, or PAX7 

and FOXO1 genes, respectively, are juxtaposed. Unfortunately, no such specific genetic 

aberrations are known in ERMS, and myogenic factors as myogenin and MyoD1 are the only 

diagnostic indicators that can be used. Despite aggressive multimodal therapies, the prognosis 

of high-risk RMS patients has not been improved, with a 5-year overall survival rate less than 

20-30%, which prompts a need for new therapeutic strategies. In the last decade many 

scientific studies have demonstrated that gene expression signature distinguishes PAX3-

FOXO1 positive RMS from PAX3-FOXO1 negative, but the reasons of the different 

expression are still unknown. Aberrant DNA methylation patterning is a hallmark of cancer 

and could be responsible for the different gene expression of RMS tumor subtypes. 

We performed genome-wide methylation profile by microarray experiments followed by 

Reduced-Representation Bisulfite Sequencing (RRBS).  

Microarray analysis demonstrated a different methylation profile between PAX3-FOXO1 

positive and negative RMS, besides among metastatic and non-metastatic RMS. We 

confirmed HOXC11 as one of the gene differentially methylated between PAX3-FOXO1 

positive and negative RMS cell lines using in vitro demethylating agents and bisulfite 

sequencing. Unfortunately, we did not validate the result in the cohort of RMS biopsies. 

Moreover, we performed another analysis on microarray data comparing metastatic vs non-

metastatic RMS. We found an elevated numbers of differentially methylated regions (DMRs) 

and many of them map to promoter regions of genes implicated in tumors development. In 

particular we found DMRs linked to clustered protocadherins, known as tumor suppressor 

genes. We confirmed a different expression pattern of PCDHA4, as well as a different 

methylation level of its promotorial region, comparing metastatic and non-metastatic RMS 

samples. Nevertheless, the methylation status and the expression level of PCDHA4 did not 

have significant correlation with clinical features and are not a predictor of poor prognosis in 

RMS. 
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Then, we performed an RRBS sequencing, in order to validate data obtained with 

microarray platforms. We observed a very low concordance between the two approaches, 

probably caused by a low quality DNA used in microarray experiments. The RRBS 

sequencing had demonstrated again that PAX3-FOXO1 positive and negative RMS have a 

different methylation pattern. Moreover, we demonstrated that GADD45G and NELL1, 

already described as tumor suppressors in other cancers and often downregulated by 

methylation processes, had also an involvement in RMS biology. Our experiments confirmed 

an epigenetic regulation by DNA methylation for GADD45G and NELL1 and that their 

expression were correlated to RMS histology, presence of fusion status and IRS group 

staging. Furthermore, GADD45G and NELL1 expression levels affect the progression free 

survival of RMS patients suggesting their association with a poor prognosis.  

In conclusion, we demonstrated that GADD45G and NELL1 could be novel potential 

biomarkers in RMS and we evidenced that the DNA methylation pattern in RMS could be 

interesting for new therapeutic strategies. 

We hope that our efforts could contribute to a better molecular classification of RMS 

tumors and to the identification of new targets for improving standard therapy. 
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RIASSUNTO 

Il rabdomiosarcoma (RMS) è una sarcoma pediatrico dei tessuti molli altamente aggressivo. 

Viene classificato principalmente in due sottotipi, caratterizzati da istologia alveolare 

(RMSA) o embrionale (RMSE). Nei RMSA si osserva un comportamento più aggressivo e 

una maggiore tendenza a presentare metastasi alla diagnosi e alla ricaduta dopo trattamento. 

Circa l'80% dei RMSA presentano la traslocazione cromosomica reciproca t(2; 13) (q35; q14) 

e, meno comunemente, la variante t(1; 13) (p36; q14), in cui i geni PAX3 e FOXO1, o PAX7 e 

FOXO1, rispettivamente, sono giustapposti. Purtroppo, non si conoscono aberrazioni 

genetiche specifiche nei RMSE e i fattori miogenici, come miogenina e MyoD1, sono gli 

unici indicatori diagnostici che possono essere utilizzati. Nonostante l’applicazione di terapie 

aggressive multimodali, la prognosi dei pazienti affetti da RMS, della categoria alto rischio, 

non è migliorata, con un tasso di sopravvivenza a 5 anni inferiore al 20-30%. Questo dato 

indica la necessità di sviluppare nuove strategie terapeutiche. Nell’ultimo decennio molti studi 

scientifici hanno dimostrato che in base al profilo di espressione genica è possibile distinguere 

RMS PAX3-FOXO1-positivi e PAX3-FOXO1-negativi, ma le ragioni di questa diversa 

espressione sono ancora sconosciute. L’anomala metilazione del DNA è un indicatore di 

neoplasia e potrebbe essere la causa responsabile della diversa espressione genica dei due 

sottotipi di tumore. 

In questo studio, per mezzo di esperimenti di microarray, abbiamo realizzato un’analisi 

dello stato di metilazione del DNA su tutto il genoma, proseguendo poi con esperimenti di 

sequenziamento sfruttando la tecnica Reduced-Representation Bisulfite Sequencing (RRBS). 

L’analisi dei risultati ottenuti con gli esperimenti di microarray ha dimostrato, non solo un 

profilo di metilazione diverso tra i RMS PAX3-FOXO1-positivi e negativi, ma anche tra i 

RMS metastatici e non metastatici. Abbiamo confermato che il gene HOXC11 risulta essere 

differenzialmente metilato tra linee cellulari di RMS PAX3-FOXO1-positive e negative, 

sfruttando trattamenti con agenti demetilanti in vitro e sequenziamento del DNA dopo 

conversione con bisolfito; purtroppo, non abbiamo confermato il risultato nella coorte di 

biopsie di RMS. Inoltre, abbiamo effettuato un'ulteriore analisi sui dati di microarray 

confrontando i RMS metastatici con i non metastatici. Abbiamo trovato un elevato numero di 

regioni differenzialmente metilate (DMR) e molte di queste sono risultate coincidere con le 

regioni promotoriali di geni implicati nello sviluppo di tumori; in particolare, abbiamo trovato 

DMR connesse alla famiglia delle clustered protocaderine, note come geni soppressori di 
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tumore. Abbiamo poi confermato un diverso profilo di espressione del gene PCDHA4, così 

come un diverso stato di metilazione a livello della sua regione promotoriale, confrontando 

campioni di RMS metastatici e non metastatici. Tuttavia, lo stato di metilazione e il livello di 

espressione di PCDHA4 non hanno dimostrato una correlazione significativa con le 

caratteristiche cliniche del RMS. Il gene PCDHA4 non risulta quindi essere un predittore 

prognostico nel RMS. 

Successivamente, abbiamo effettuato un sequenziamento RRBS, al fine di validare i dati 

ottenuti con le piattaforme dei microarray. Ne è risultata una bassa concordanza tra i due 

approcci, probabilmente a causa della bassa qualità del DNA utilizzato negli esperimenti di 

microarray. Il sequenziamento RRBS ha dimostrato ancora una volta che i RMS PAX3-

FOXO1-positivi hanno un profilo di metilazione diverso dai RMS PAX3-FOXO1-negativi. 

Inoltre, abbiamo dimostrato che GADD45G e NELL1, già descritti come soppressori tumorali 

in altri tipi di tumore e spesso regolati in maniera negativa da processi di metilazione, sono 

anche coinvolti nella biologia del RMS. Con i nostri esperimenti abbiamo confermato una 

regolazione epigenetica, mediata dalla metilazione del DNA ,per i geni GADD45G e NELL1, 

e come la loro espressione sia correlata alla istologia del RMS, alla presenza dei geni di 

fusione e alla stadiazione in gruppi IRS. Inoltre, abbiamo dimostrato che i livelli di 

espressione di GADD45G e NELL1 influenzano la sopravvivenza libera da progressione di 

malattia nei pazienti affetti da RMS, suggerendo la loro associazione con una prognosi 

sfavorevole. 

In conclusione, il nostro lavoro ha dimostrato che GADD45G e NELL1 potrebbero essere 

nuovi potenziali biomarcatori nel RMS, evidenziando come il profilo di metilazione del DNA 

nel RMS potrebbe favorire lo sviluppo di nuove strategie terapeutiche. 

Ci auguriamo che i nostri sforzi possano contribuire ad una migliore classificazione 

molecolare dei tumori nei pazienti affetti da RMS e alla identificazione di nuovi bersagli 

farmacologici per una terapia più mirata. 
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1. INTRODUCTION 

1.1. Rhabdomyosarcoma 

Rhabdomyosarcoma (RMS) is a soft tissue malignant tumor of mesenchymal origin accounting 

for 4-8% of all pediatric malignancies (Egas-Bejar and Huh, 2014; Yang et al.2014). It is the most 

prevalent soft tissue tumor in children and adolescents, with an incidence of approximately 350 

new cases per million children per year in the USA (Parham and Ellison, 2006; Paulino and Okcu, 

2008). In contrast, RMS is extremely rare in adults. There is a slight male predominance 

(male:female ratio of 1.4:1), but there are no significant differences in the incidence rates among 

races or different ethnic groups (Breneman et al., 2003). 

Since RMS is derived from primitive mesenchymal stem cells directed towards myogenesis, it 

can arise virtually everywhere in the body, including anatomic sites that lack skeletal muscle, such 

as biliary and genitourinary tract (Dagher and Helman, 1999). Indeed, the most common primary 

sites are the genitourinary tract (24%), followed by parameningeal region (16%), limbs (>19%), 

orbit (9%), other head and neck areas (10%) and assorted sites (22%) (Meyer and Spunt, 2004). 

RMS can occur either as a primary malignancy or as a component of a heterogeneous 

malignancy, such as a malignant teratomatous tumor (Glass et al.,2014). Additionally, a small 

percentage of cases are associated with known genetic disorders, such as neurofibromatosis type 1 

and the Li-Fraumeni familial cancer syndrome (Ji et al., 2007; Li and Fraumeni, 1969). Most 

cases of RMS occur sporadically, with no recognized predisposing factors or risk factors. Genetic 

conditions associated with RMS include also pleuropulmonary blastoma (with DICER1 

mutations),(Dehner et al., 2012; Doros et al., 2012) Costello syndrome (with germline HRAS 

mutations), (Gripp et al., 2006; Kratz et al., 2011) Beckwith-Wiedemann syndrome (with which 

Wilms tumor and hepatoblastoma are more commonly associated), (Samuel et al., 1999; DeBaun 

and Tucker, 1998) and Noonan syndrome. (Kratz et al., 2011; Moschovi et al., 2007; Hasle, 

2009). 

 

1.1.2. Histo-pathological classification 

RMS is a small, round blue cell neoplasm that must be differentiated from neuroblastoma, the 

Ewing family of tumors and lymphoma (Gallego Melcòn and Sànchez de Toledo Codina, 2007). 

The key to the diagnosis of RMS is the presence of markers of skeletal differentiation. 

Immunohistochemical staining with myogenin, MyoD, muscle-specific actin, myoglobin and/or 

desmin is commonly required for accurate diagnosis.  
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The World Health Organization (WHO) recently revised the classification of RMS subtypes as 

alveolar rhabdomyosarcoma (ARMS), embryonal rhabdomyosarcoma (ERMS), pleomorphic 

rhabdomyosarcoma (PRMS), and sclerosing/spindle cell rhabdomyosarcoma (SRMS) (Fletcher et 

al., 2013). 

ARMS is a high-grade malignancy occurring mostly in adolescents and young adults (costant 

incidence from ages 0 to 19 years). The most common site for ARMS is in the deep tissue of 

extremities. It was described for the first time in 1956 by Riopelle and Theriault that revealed a 

key defining pattern composed by alveolar structure formed by fibrous septa (Riopelle and 

Theriault, 1956). These fibrous septa are composed of collagenous fibrovascular tissue that forms 

a scaffolding suspending attached rhabdomyoblasts and circumscribing central clusters of tumour 

cells that appear to float in alveolar spaces (Parham, 2001). 

ERMS represents approximately 70% of all childhood RMS, usually afflicting infants or 

children under 10 years of age. ERMS often affects the head and neck regions, especially the 

orbit, and genitourinary tract. The tumor cells composing embryonal RMS variably exhibit all 

cellular phases of myogenesis, from stellate unidifferentiated mesenchymal cells to elongated 

myoblasts, multinucleated myotubes and fully differentiated myofibers (Parham, 2001). 

Pleomorphic subtype, was first described in 1946 as a variant of RMS (Stout, 1946). It usually 

occurs in adult males in the deep tissue of extremities, but may occur at any site. In adult patients, 

the pleomorphic variant is associated with the worst prognosis (Sultan et al., 2009). PRMSs form 

spindle cell lesions with a whorled pattern and containing cells with enlarged, hyperchromatic 

nuclei (Pharm, 2001). 

 

1.1.3. Molecular classification 

Chromosomal analysis have demonstrated two translocations associated with ARMS: 

t(2;13)(q35;q14) and t(1;13)(p36;q14) (Lizard-Nacol et al., 1987). Initial studies detected these 

two gene fusions in 80% of ARMS. Translocation t(2;13)(q35;q14), which occurs in 

approximately 60-70% of ARMS, and translocation t(1;13)(p36;q14), which occurs less 

frequently in approximately 10% of ARMS, result in the expression of chimeric transcription 

factors PAX3-FOXO1 or PAX7-FOXO1 (Marshall and Grosveld, 2012) (Figure 1). These 

characteristic chromosomal translocations are adjacent to the 5′ DNA-binding domains of PAX, a 

member of the paired box transcription factor family, and the transactivation domain at the 3′ end 

of FOXO1, a member of the forkhead/HNF-3 transcription factor family. PAX-FOXO1 fusion 

proteins are tumor specific transcription factors and are expressed at higher levels than their 

corresponding wild type proteins. PAX-FOXO1 fusion proteins are transcription factors more 

potent (10 to 100 fold) than PAX3 and PAX7 wild type proteins (Bennicelli et al., 1996). 
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Overexpression of PAX-FOXO1 induces oncogenic transformation of chicken embryo fibroblasts 

(Scheidler et al., 1996) and murine NIH3T3 cells (Lam et al., 1999) as assessed by growth in soft 

agar, but PAX-FOXO1 alone is generally not sufficient for full oncogenic transformation leading 

to in vivo formation of RMS, thus indicating the need for additional genetic lesions. In 

cooperation with other events, such as decreased expression of p16INK4/p14ARF, telomeres 

stabilization, MYCN amplification, mutated p53 or mutated HRAS, PAX-FOXO1 transforms 

human myoblasts into cells able to give rise to ARMS (Naini et al., 2008). PAX3-FOXO1 activity 

is necessary for maintenance of the transformed phenotype. Gene silencing with antisense 

oligonucleotides or siRNA induced apoptosis (Bernasconi et al., 1996) and repression of the 

malignant phenotype in vitro (Kikuchi et al., 2007). Oncogenic activity of PAX3-FOXO1 seems 

to be due both to an altered regulation of targets of wild type PAX3 and to the recruitment of new 

targets (Linardic, 2008; Begum et al., 2005). Target genes of PAX3-FOXO1, such as MYCN, 

MYOD1, FOXF1, KCNN3, IGFBP3 and GADD45A are involved in the development of nervous 

and muscular system, besides in regulation of transcription (Mercado et al., 2008; Robson et al., 

2006). Moreover, PAX-FOXO1 is involved in cell proliferation, cell survival/anti-apoptosis and 

in inhibition of terminal myogenic differentiation (Ahn et al., 2013). 

Another novel translocation, t(2;2)(q35;p23), was identified in ARMS biopsy samples by gene 

expression signatures (Wachtel et al., 2004). The chromosomal translocation generates a fusion 

protein composed of PAX3 and the nuclear receptor coactivator NCOA1, which has similar 

transactivation properties as PAX3-FOXO1 (Wachtel et al., 2004). These biologic effects 

contribute to tumorigenesis by modulating myogenic differentiation, altering growth and 

apoptotic pathways, and stimulating motility and other metastatic pathways (Figure 1). 

The remaining 20% of ARMS is PAX gene fusion-negative and forms a more heterogeneous 

group, which remains a challenge to detect due to the lack of consistent chromosomal 

rearrangements. Whatever, PAX-FOXO1 negative ARMS has a similar clinical course to ERMS, 

besides similar biology and expression profile (Davicioni et al., 2006; De Pittà et al., 2006). 
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Figure 1. Chromosomal rearrangements in ARMS. 

 

Almost all (94%) RMS show at least one 15-mb region with loss of heterozygosity (LOH), but 

the overall degree of LOH differed greatly between histological groups (Davicioni et al., 2009), 

with ERMS showing complex karyotypes, which are characteristics of severe genomic instability 

(Helman and Meltzer, 2003). Fusion-negative ARMS have allelic imbalance and LOH patterns 

indistinguishable from conventional ERMS cases (Davicioni et al., 2009). The most frequent 

LOH regions are found in chromosome 11, both in the long and in the short arm (nearly 70% of 

all RMS and 80% of ERMS). LOH in 11p15.5 has long been considered a hallmark of ERMS 

(Visser et al., 1997), and, in a recent study on a wide series of RMS, showed a frequency of 77% 

in fusion-negative RMS, as compared with only 24% of fusion-positive cases (Davicioni et al., 

2009). This LOH region includes the genes IGF2, H19 and CDKN1C, all subject to parental 

imprinting. In normal muscle, imprinting leads to the expression of the paternal allele of IGF2 and 

the maternal allele of H19 and CDKN1C (p57KIP2), instead LOH in ERMS results in loss of the 

maternal (silenced) IGF2 allele and duplication of the active paternal allele, resulting in 

overexpression of IGF2 (Visser et al., 1997; Smith et al., 2007). 

Other LOH regions were found in considerable proportions of PAX-FOXO1 negative RMS 

(chromosomal region 8q) and PAX3/7-FOXO1 positive RMS (chromosomal region 4q), increased 

in RMS with PAX3-FOXO1 compared with PAX7-FOXO1 (Davicioni et al., 2009). 
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Approximately 30% of ERMS show genomic loss at the 9q22 region, which includes the PTCH1 

gene (Bridge et al., 2000). 

 

1.1.4. Risk-group stratification 

Three Cooperative Groups have been working in Europe on paediatric soft tissue sarcoma for the 

last thirty years: the Malignant Mesenchymal Tumor Committee of the International Society of 

Pediatric Oncology (SIOP MMT), the Cooperative Weichteilsarkomen Studie (CWS) and the 

Associazione Italiana di Ematologia e Oncologia Pediatrica-Soft Tissue Sarcoma Committee 

(AIEOP-STSC). Intensification of cooperations had led to the foundation of the European 

paediatric Soft tissue Sarcoma Study Group (EpSSG) and the development of a protocol for the 

treatment of children and young people presenting with non-metastatic RMS: protocol EpSSG 

RMS2005. This protocol is still the one used and contains a randomised trial for “high risk 

patients” and observational studies for patients categorized in other risk groups. Patients with 

metastatic RMS are treated according to the “Very High Risk EpSSG RMS2005” protocol or the 

RMS4.99 protocol, for patients with RMS or other soft tissue sarcomas with evidence of 

metastases at the onset of the disease. 

Patients are subdivided in risk-groups taking into account histology (alveolar vs non alveolar 

RMS), post surgical stage (according to IRS grouping, Table 2), tumour site and size, node 

involvement (according to TNM classification, Table 3) and patient age. Based on their risk 

profile four Groups have been identified: Low Risk, Standard Risk, High Risk and Very High 

Risk (Table 1). 

This system is a good predictor of patients outcome and allows correlation between intensity of 

therapy and outcome. For example, overall survival is low and has not improved for patients with 

high-risk RMS, whereas patients with low-risk RMS have an excellent prognosis. In low-risk 

patients, investigators are attempting to decrease the intensity of overall therapy by decreasing the 

duration of therapy and doses of chemotherapeutic agents, without compromising survival, 

whereas high-risk patients are receiving more intensive therapy with additional drugs at greater 

doses. 
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Table 1. Risk stratification for EpSSG non metastatic RMS study (Protocol EpSSG RMS2005). 

 

Pathology: 

• Favourable = all embryonal and spindle cells RMS 

• Unfavourable = all alveolar RMS (including the solid-alveolar variant) 

 

Post surgical stage: 

The postsurgical staging system (IRS grouping) defines the extent of residual disease after 

resection, that is one of the most important prognostic factors in RMS. Patients are assigned to a 

clinical group based on the completeness of tumor excision and the evidence of tumor metastasis 

to the lymph nodes or distant organs after pathologic examination of surgical specimens (Table 

2). 

 

IRS Group Definition 

I  Tumour macroscopically and microscopically removed 

 I A Tumour confined to organ or tissue of origin 

 I B Tumour not confined to organ or tissue of origin 

II  Macroscopic complete resection but microscopic residuals 

 II A Lymph nodes not affected 

 II B Lymph nodes affected but removed 

III 

 

Macroscopic complete resection but microscopic residuals 

and lymph nodes affected and not removed 

 
Macroscopic residuals after resection or biopsy with 

malignant effusion 

IV  Metastasis present or non-regional lymph nodes involved 

 

Table 2. IRS clinical grouping classification (Protocol EpSSG RMS2005). 
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Site: 

• Favourable = orbit, genitourinary non bladder prostate (such as paratesticular and 

vagina/uterus) and non parameningeal head and neck 

• Unfavourable = all other sites (parameningeal, extremities, genitourinary bladder-prostate and 

“other site”) 

 

Node stage:  

Νοde stage is defined according to the tumor, nodes, metastases (TNM) classification system 

(Table 3). This staging is based on the preoperative workup of imaging and physical examination 

and as the name suggests is defined by the degree of tumor invasion, the nodal status and the 

presence or absence of metastases. 

 

Tumour Lymph nodes Metastasis 

T0 No evidence of tumour N0 
No evidence of lymph node 

involvement 
M0 

No evidence of metastases or non-

regional lymph nodes 

T1 
Tumour confined to organ or tissue  

of origin 
N1 

Evidence of regional lymph node 

involvement 
M1 

Evidence of distant metastasis or 

involvement of non-regional lymph 

nodes 

T1a Tumour = 5 cm in greatest dimension NX 
No information on lymph node 

involvement 
MX No information on metastasis 

T1b Tumour > 5 cm in greatest dimension     

T2 
Tumour not confined to organ or 

tissue of origin 
    

T2a Tumour = 5 cm in greatest dimension     

T2b Tumour > 5 cm in greatest dimension     

TX 
No information on size and tumour 

invasiveness 
    

 

Table 1. Pretreatment TNM staging classification (Protocol EpSSG RMS2005). 

 

Size and Age: 

• Favourable = Tumour size (maximum dimension) <5cm and Age <10 years 

• Unfavourable = all others (such as Size >5 cm or Age =10 years) 

 

1.1.5. Prognosis 

The prognosis of patients with RMS depends on many factors. The main prognostic parameters 

for RMS are histologic subtype, site of onset, tumor size (widest diameter), age of patient, 

presence of PAX3/7-FOXO1 fusion status, presence of metastases, number of metastatic sites or 

tissues involved, presence or absence of regional lymph node involvement (Parham and Ellison, 

2006; Meza et al., 2006; Sultan et al., 2009). 
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Favourable sites are head and neck (non-parameningeal), genitourinary (excluding bladder or 

prostate) and bile duct regions. All other sites are classified as unfavourable. ARMS histology is 

an unfavourable prognostic factors. The 5-year overall survival is approximately 73% for ERMS 

and 48% for ARMS, ranging from 10-30% for metastatic ARMS to over 95% for localized forms 

of ERMS. ARMS show a more aggressive behaviour, they are often metastatic at the diagnosis, 

have a poor response to therapy and a worse prognosis than ERMS. Tumor size is an integral 

prognostic variable for RMS and plays a major role in clinical grouping. Clinical grouping has 

also been identified as one of the most important predictors of failed treatment and tumor relapse. 

These factors become important in the designation of treatment groups for risk-based therapy. 

 

1.2. Epigenetics 

The character of a cell is defined by its constituent proteins, which are the result of specific 

patterns of gene expression. Crucial determinants of gene expression patterns are DNA-binding 

transcription factors that choose genes for transcriptional activation or repression by recognizing 

the sequence of DNA bases in their promotorial regions. Interaction of these factors with their 

cognate sequences triggers a chain of events, often involving changes in the structure of 

chromatin, that leads to the assembly of an active transcription complex (Cosma et al., 1999). 

Then, the types of transcription factors present in a cell are not alone sufficient to define its 

spectrum of gene activity, but different mechanisms contribute to modulate and define the 

trascriptome of the cells. Epigenetics can be described as all heritable alterations in gene 

expression potential and chromatin structure, that take place during development and cell 

proliferation, due to chemical modifications that do not involve changes in the primary gene 

nucleotide sequence (Wu and Morris, 2001). Epigenetic events explain how two identical 

genotypes can give rise to different phenotypes in response to the same environmental stimulus. 

There are four types of mechanistic layers in the field of epigenetics: DNA methylation, post-

translational modifications of histone proteins and noncoding RNAs. Disruption of any of these 

distinct and mutually reinforcing epigenetic mechanisms leads to inappropriate gene expression, 

resulting in cancer development and other epigenetic diseases (Egger et al., 2004). 

For many years cancer research has focused on genetic defects, but during the last decade 

epigenetic deregulation has been increasingly recognized as a hallmark of cancer. The advent of 

genome-scale analysis techniques, including the next-generation sequencing, has enabled an 

invaluable advance in the molecular mechanisms underlying tumor initiation, progression, and 

expansion, besides advances in the field of cancer epigenomics concerning DNA methylation and 

its role in oncogenesis. 
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1.2.1 DNA methylation 

DNA methylation is one of the most commonly occurring epigenetic events taking place in the 

mammalian genome and the first epigenetic mark to be associated with cancer, because 

modification of DNA methylation causes a different gene regulation (Feinberg and Vogelstain, 

1983). 

DNA methylation is the covalent chemical addition of methyl (CH3) group at the carbon 5 

position of the cytosine ring, resulting in the 5-methylcytosine (5mC). The presence of 5mC was 

first demonstrated in tubercle bacillus DNA in 1925 (Johnson and Coghill, 1925). Although 

biological functions of this cytosine modification remained uncharacterised for decades, in 1975, 

two studies demonstrated important roles of 5mC as an epigenetic modification that influences 

gene expression (Riggs, 1975; Holliday and Pugh, 1975) and highlighted the significance of the 

“fifth nucleotide” in eukaryotic biology (Doerfler, 2006). 

In prokaryotes, methylation at both adenine (A) and cytosine (C) residues contributes to host 

restriction systems and protects the cell from foreign genetic materials such as bacterial and viral 

genomes (Bickle and Kruger, 1993). In contrast, DNA methylation in multicellular eukaryotes 

occurs predominantly, but not exclusively, at cytosine residues within the strict sequence context 

composed by 5’CG3’, also called CpG dinucleotide (Bestor, 2000). In vertebrates DNA 

methylation is involved in a variety of biological processes, including modulation of gene 

expression, embryonic development, inactivation of transposable elements, chromatin structure, 

X-chromosome inactivation, genomic imprinting, chromosome stability and maintenance of 

epigenetic memory (Bird, 2002). 

CpG dinucleotide is under-represented in the mammalian genome; it occurs at only about 1/5 of 

the roughly 4% frequency that would be expected in human DNA, because approximately 70% of 

CpG dinucleotides are methylated on the cytosine base, and spontaneous hydrolytic deamination 

of 5mC residues gives rise to T residues (Lander et al., 2001). In contrast, short stretches of CpG 

rich regions, known as CpG islands (CGIs), which are found in the promoters of approximately 

60% of the coding genes in the mammalian genome, are generally unmethylated in normal cells 

(Cooper, 1983; Bird et al., 1985; Gardiner-Garden et al., 1987). CpG islands, ranging from 0.5 to 

5 kb and occurring on average every 100 kb, have distinctive properties. These regions are GC 

rich (60% to 70%), have a ratio of CpG to GpC of at least 0.6, and thus do not show any 

suppression of the frequency of the CpG dinucleotide differently from the rest of the genome 

(Antequera and Bird, 1993; Cross and Bird, 1995). However, the hypermethylation of these 

promoter regions is found in virtually every type of human cancer and is associated with the 

inappropriate transcriptional silencing of genes (Jones and Laird 1999; Jones and Baylin 2002; 

Herman and Baylin 2003).  
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1.2.1.1 DNA methyltransferases  

The establishment and the maintenance of DNA methylation patterns in mammals is performed 

by a group of enzymes known as DNA methyltransferase (DNMTs). They catalyze the transfer of 

the methyl group from S-adenosyl-methionine (SAM), the methyl donor, to the cytosine at CpGs 

sites (Okano et al., 1998). 

In mammals, three catalytically active DNA methyltransferases are present: DNMT1, DNMT3a 

and DNMT3b. They share some common features, such as a N-terminal regulating part and a C-

terminal catalytic one. The N-terminal portion is characterized of more than one domain and it can 

have variable size. It has regulatory functions, indeed it guides nuclear localization and mediates 

interaction with DNA, chromatin or other proteins. The C-terminal part has catalytic functions 

and is particularly conserved among different species (Lauster et al., 1989; Robertson, 2001). It 

includes ten sequence motifs (I to X) which form the binding site for the cofactor S-Adenosyl-L-

Methionine (SAM) and three motifs (IV, VI and VII) which play catalytic functions.  

 

1.2.1.1.1 DNMT3A and DNMT3B 

DNMT3A and DNMT3B are de novo methyltransferases that target cytosine within CpG 

dinucleotides. These enzymes act on hemimethylated or unmethylated DNA, which are essential 

for their roles in de novo methylation of the genome during development (Okano et al., 1999). 

Following the wave of genome-wide demethylation during the preimplantation embryo, 

DNMT3A and DNMT3B are highly expressed at implantation and re-establish a bimodal 

methylation pattern that effects more than 80% of the genome (Okano et al., 1999), whereas most 

CGIs are protected by unknown mechanisms and therefore remain unmodified. Genetic and 

functional analyses indicate that DNMT3A and DNMT3B have different functions during 

development with different phenotypes and lethality stages (Okano et al., 1999). This suggests 

that each enzyme has regional specificity that reflects their respective N-terminal domains. 

Accordingly, DNMT3A is necessary for maternal imprinting at differentially methylated regions, 

and DNMT3B is required for methylation of pericentromeric repeats and CGIs on inactive X-

chromosomes (Kim et al., 2009). 

 

1.2.1.1.2 DNMT1 

DNMT1 was the first mammalian DNA methyltransferase cloned (Bestor, 1988) and 

biochemically characterised. It works for the preservation of the methylation patterns during cell 

divisions. Indeed, it is known as a maintenance enzyme that shows a preference for 
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hemimethylated DNA over unmethylated DNA (Fatemi et al., 2001; Goyal et al., 2006) and a 

cellular localisation close to DNA replication foci during the S phase. DNMT1 operates with its 

co-factor UHRF1 (Np95), constituting an enzymatic platform that provides a maintenance 

methyltransferase function for CpG methylation (Bostick et al., 2007).  

 

1.2.1.1.3 DNMT2 and DNMT3L 

In addition to the canonical DNA methyltransferase there are other minor, such as DNMT2 and 

DNMT3L. DNMT2 has weak methyltransferase activity in vitro, and its depletion has little 

impact on global CpG methylation levels and no discernible effects on developmental phenotypes 

(Hermann et al., 2003). DNMT3L (DNMT3-like) does not have methyltransferase activity 

because it is catalytically inactive. It is highly expressed in germ and ES cells and acts as an 

obligatory cofactor for de novo methyltransferase in ES cells. DNMT3L stimulates the 

methyltransferase activity of DNMT3a or DNMT3b through physical interaction (Kareta et al., 

2006). Crystallographic analyses of DNMT3a and DNMT3L indicate that these interactions may 

be mediated by a heterotetrameric complex formation, which may prevent DNMT3a 

oligomerisation and heterochromatic localisation. A recent study showed that DNMT3L is a 

positive regulator of DNA methylation at gene bodies of housekeeping genes and a negative 

regulator of DNA methylation at promoters of bivalent genes in mouse ES cells, suggesting a dual 

role in ES cell differentiation (Neri et al., 2013). 

 

In addition to the DNMTs, the others machinery involved in the process of DNA methylation 

include demethylases, methylation centers triggering DNA methylation, and methylation 

protection centers (Costello and Plass, 2001; Szyf, 2003).  

 

1.2.2 DNA methylation and gene regulation 

The regulation of eukaryotic gene expression is a complex process. Transcription initiation is a 

highly controlled and integrated event that involves cis-acting and trans-acting factors. The cis-

acting elements are DNA sequences that act as the substrate for the trans-acting factors, and the 

DNA in the vicinity is prepared for transcription. Generally, increased methylation in the 

promoter region of a gene leads to reduced expression, whereas methylation in the transcribed 

region has a variable effect on gene expression (Jones, 1999; Singal et al., 2002). 

Several mechanisms have been proposed to account for transcriptional repression by DNA 

methylation. The first mechanism involves direct interference with the binding of specific 

transcription factors to their recognition sites in their respective promoters (Figure 2). Several 
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transcription factors, such as AP-2, c-Myc/Myn, the cyclic AMP-dependent activator CREB, E2F, 

and NFkB, recognize sequences that contain CpG residues, and the binding of each has been 

shown to be inhibited by methylation (Singal and Ginder, 1999; Tate and Bird, 1993). 

The second mode of repression involves a direct binding of specific transcriptional repressors 

to methylated DNA (Figure 2). The DNA methylation signals are recognized by a family of 

proteins know as methyl-CpG–binding proteins (MBPs), that target the 5′ methylated CpG 

sequence (Prokhortchouk and Hendrich, 2002). MBPs elicit the repressive potential of methylated 

DNA. MBPs fall into two families: first, the methyl-CpG binding domain (MBD) proteins, 

MeCP2, MBDl, MBD2, MBD3, and MBD4, which share an approximately 80 amino acid MBD 

and repress transcription through a transcriptional repression domain (TRD) (Hendrich and Bird, 

1998), and second, the Kaiso-like proteins, Kaiso, ZBTB4 (zinc finger and BTB domain 

containing 4), and ZBTB38, which lack the MBD, but recognize DNA sequences containing 

methyl-CpG sequences through a zinc-finger domain and repress transcription through a 

POZ/BTB domain (Prokhortchouk et al., 2001; Filion et al., 2006).  

DNA methylation can also affect histone modifications and chromatin structure, which, in turn, 

can alter gene expression. The underlying patterns of methylated cytosine are important in guiding 

histone deacetylation to certain residues (Bender, 2004).  

 

 

Figure 2. Mechanisms of transcriptional repression by DNA methylation. 

 

 

1.2.3 DNA methylation and cancer 

Earlier it was thought that normal cells become progressively transformed to malignant cells as 

a consequence of damage to the genome, which could be a gain, loss, or mutation of the genetic 
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information. These events cause critical loss of gene activity and thereby predispose to cancer. 

DNA methylation can modify the gene activity without changing the gene sequence and has been 

proposed as one of the two hits in Knudson's two hits hypothesis for oncogenic transformation 

(Jones and Laird, 1999). 

Aberrant DNA methylation was the first epigenetic mark to be associated with cancer as a 

consequence of the alteration it causes in normal gene regulation (Feinberg and Vogelstain, 1983). 

As compared with normal cells, the malignant cells show major disruptions in their DNA 

methylation patterns (Baylin and Herman, 2000). These alterations are of two types: 

hypermethylation and hypomethylation. Hypomethylation usually involves repeated DNA 

sequences, such as long interspersed nuclear elements, whereas hypermethylation involves CpG 

islands (Ehrlich, 2002).  

DNA hypermethylation refers principally to the gain of methylation at specific sites that are 

unmethylated under normal conditions. This aberrant methylation occurs mainly in promoter CpG 

islands (CGIs). This phenomenon of aberrant promoter CGI hypermethylation has been associated 

with the stabilization of transcriptional repression and loss of gene function, and occurs 

fundamentally in tumor suppressor genes (Bird, 1992; Esteller, 2008) (Figure 3). It is believed 

that epigenetic gene inactivation is at least as common as, if not more frequent than, mutational 

events in the development of cancer (Jones and Baylin, 2002). There are several protective 

mechanisms that prevent the hypermethylation of the CpG islands. These include active 

transcription, active demethylation, replication timing, and local chromatin structure preventing 

access to the DNA methyltransferase (Clark and Melki, 2002). To date, numerous genes have 

been found to undergo hypermethylation in cancer. The genes that are susceptible are the genes 

involved in cell cycle regulation (p16INK4a, p15INK4a, Rb, p14ARF), genes associated with DNA repair 

(BRCA1, MGMT), apoptosis (DAPK, TMS1), drug resistance, detoxification, differentiation, 

angiogenesis, and metastasis (Sugimura and Ushijima, 2000).  

 

 

Figure 3: DNA methylation in normal and cancer cells. Stricks represent CpG sites and the red circles 

represent mehtylated CpGs. 
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DNA hypermethylated genes frequently targets genes involved in normal development. For 

example, these genes include cyclin-dependent kinase inhibitor 2A (CDKN2A), which regulates 

stem cells number and cell cycle functions (Park and Lee, 2003), GATA binding protein 4 and 5 

(GATA-4and -5), which are crucial for proper epithelial differentiation (Akiyama et al., 2003), E-

cadherin (CDH1),which controls cell-cell adhesion (Hirohashi, 1998), and death-associated 

protein kinase (DAPK), which functions as anti-apoptotic gene (Michie et al., 2010). These 

observations support the idea of a stem or precursor cell of origin for cancer and explain the 

targeting of at least some genes for DNA methylation and gene silencing during tumor initiation 

and progression. Thus, genes that undergo to abnormal gene silencing are called epigenetic 

gatekeepers because they may help push the early aberrant clonal expansion of cells, providing a 

substrate for risk of subsequent genetic and epigenetic alterations that further foster tumor 

progression (Baylin and Ohm, 2006; Feinberg et al., 2006).  

Furthermore, like the majority of gene mutations, the roles of the hundreds of DNA 

hypermethylated genes other than genes functioning as tumor suppressors may be their 

aggregation in the same signaling pathway, thus helping derive the cancer phenotype. 

DNA hypomethylation is associated mainly with the losses of DNA methylation in genome-

wide regions, although it can also occur locally. A number of studies have described DNA 

hypomethylation in several tumor types, such as colorectal and gastric cancers, melanomas, 

among others (Kulis and Esteller, 2010). DNA hypomethylation occurs in many gene-poor 

genomic areas, including repetitive elements, retrotransposons and introns, where it leads to 

genomic instability (Esteller, 2008). In repeat sequences, this is achieved by a higher rate of 

chromosomal rearrangements and, in retrotransposons, by a higher probability of translocation to 

other genomic regions (Eden et al., 2003; Rodriguez et al., 2006). During tumor progression, the 

degree of hypomethylation of genomic DNA increases as the lesion derives from a benign 

proliferation of cells to an invasive cancer (Fraga et al., 2004). 

 

1.2.4 DNA methylation as a marker for tumor diagnosis and prognosis 

Several knowledge about altered methylation patterns in human cancers has been gained. 

Tumor-specific methylation changes in different genes have been identified and documented. The 

potential clinical application of this information is in cancer diagnosis, prognosis and therapeutics. 

An early diagnosis is critical for the successful treatment of many types of cancer. The 

discovery of new molecular markers can improve the classification of tumours and then could 

help addressing of the standard therapy. The clinical utilization of methylated biomarkers for 

the early diagnosis of tumors, such as for colorectal cancer and lung carcinoma, is already 

underway for several years. Hypermethylation of SHOX2 in bronchial aspirates is a clinically 
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tumor biomarker used in routine diagnostics for identifying subjects with lung carcinoma, 

especially when histological and cytological findings after bronchoscopy are ambiguous 

(Schmidt et al., 2010). SEPT9 gene methylation has been used as a biomarker for colorectal 

cancer (CRC) for more than 10 years and has been used clinically for more than 6 years (Song 

and Li, 2015). It permits the screening of CRC with a blood-based approach, allowing early 

diagnosis in a noninvasively way. 

Because DNA methylation is closely related to the development of cancer, it would be 

interesting to know whether its presence or absence affects the prognosis as well. Many studies 

have shown several methylated genes to be closely related to the prognosis. For example, 

methylation of the promoter region of four genes, p16, H-cadherin, Ras association domain family 

1A and APC, in primary tumor of non-small-cell lung cancer (NSCLC) and mediastinal lymph 

node biopsy samples strongly correlates with early recurrence and short survival (Brock et al., 

2008). The current method for risk assessment of recurrence in patients with stage I NSCLC is 

imprecise. The validation of these findings may allow re-staging of NSCLC at the molecular level 

and may thus identify high risk patients who require special adjuvant therapies. 

Methylation profile may also help in predicting response to a chemotherapeutic agent. 

Methylation of the promoter region of the DNA repair gene O6-methylguanine-DNA 

methyltransferase (MGMT) is associated with the sensitivity of gliomas to alkylating agents, 

determining a better response to the treatment (Esteller et al., 2000; Hegi et al., 2005). 

 

1.2.5 DNA methylation as therapeutic target 

Given the critical role of DNMTs, intense interest has focused on developing drugs able to 

interfere with aberrant DNMT activities, and using them to correct epigenetic defects such as 

tumor suppression gene (TSG) silencing. DNMTs modulators represent a useful tool in epigenetic 

therapies. Several epi-drugs, interfering with DNMT activity, are currently in pre-clinical and 

clinical trials (Foulks et al., 2012). Most of these trials have involved various types of cancer, 

such as solid and hematological tumors (Chaib et al., 2011; Fandy, 2009; Song et al., 2011). 

Currently, however, the main challenge in using epigenetic modulators for therapy, especially for 

interfering with DNMT enzymes is their specificity (Veeck and Esteller, 2010). 

The reversibility of epigenetic changes, unlike genetic modifications, make them powerful 

therapeutic targets. Moreover, since methylation of CpG islands occurs infrequently in normal 

cells, methylation provides a selective tumor-specific therapeutic target. Pharmacologic inhibition 

of methylation-mediated suppression could therefore derepress inappropriately silenced genes and 

restore normal gene function. Several clinical trials are presently underway using azacytidine, 
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histone deacetylase inhibitors, and phenylbutyrates to reactivate the silenced genes in hematologic 

(Lubbert, 2000) and solid tumors (Brown and Strathdee, 2002). 

The commonly used drugs targeting methylation are azacytidine (5-azacytidine), decitabine (5-

aza-2′-deoxycytidine), fazarabine (1-β-D-arabinofurasonyl-5-azacytosine), and dihydro-5-

azacytidine (Goffin and Eisenhauer, 2002). These are all derivatives of deoxycytidine with some 

modification at the fifth position in the pyrimidine ring. Other drugs include zebularine (Cheng et 

al., 2003) and antisense oligodeoxynucleotides. Histone deacetylase (HDAC) inhibitors are also 

being tried as potential chemotherapeutic agents (Thiagalingam et al., 2003). 

To date, only azacitidine and decitabine are the hypomethylating agents approve by FDA (Food 

and Drug Administration) and EMA (European Medicines Agency) for the treatment of 

myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and chronic myelomonocytic 

leukemia (CMML). Azacitidine is incorporated into RNA, where it suppresses RNA synthesis and 

has cytotoxic effects, while 5-aza-2'-deoxycytidine (the deoxy derivative of azacitidine) is 

incorporated into DNA in place of the natural base cytosine. Because of the substitution of the 5' 

nitrogen atom in place of the carbon, the DNMTs are trapped on the substituted DNA strand and 

methylation is inhibited.  

Clinical studies clearly demonstrate that such agents, used alone or in combination, have 

clinical benefit in many patients with hematologic malignancies (Daskalakis et al., 2002; Ruter et 

al., 2004). While these exciting results strongly suggest that the clinical activity of agents, such as 

azacitidine and decitabine, is mediated by targeting reversal of gene silencing, formal proof of this 

causal relationship and identification of the critical gene targets are still lacking. Future research 

will undoubtedly provide this evidence and suggest additional therapeutic targets regulating 

methylation and histone acetylation pathways in cancer. 

 

1.3. Methods for DNA methylation analysis  

Over the past decade, several techniques have been developed to assess the level of methylation 

in genomic DNA, isolated from different sources, on a genome-wide or gene-specific basis (Tost 

and Herman, 2009). Essentially, these can be divided into two categories, typing and profiling 

technologies, which are both suitable for high-throughput applications. Typing technologies are 

used when few loci need to be assayed in many samples and exploit bisulfite conversion 

techniques, restriction enzymes and specific PCR assays. Profiling technologies arise with the 

advent of high throughput methodologies such as microarray, but particularly next generation 

sequencing. They allowed mapping DNA methylation on a genome-wide scale, at a high 

resolution and in a large number of samples (Laird, 2010). 



 

21 

 

1.3.1. Gene-target techniques 

1.3.1.1. Restriction enzyme-based methods 

The use of restriction enzymes was the first technology used for the investigation of DNA 

methylation. Restriction endonucleases are such powerful tools in molecular biology that, their 

biological role in modification systems in bacteria and archaea, is sometimes overlooked. Each 

sequence-specific restriction enzyme has an accompanying DNA methyltransferase that protects 

the endogenous DNA from the restriction defence system by methylating bases in the recognition 

site. The 5mC-methylation-sensitive restriction enzymes (MSRE) are inhibited by 5mC in the 

sequence context containing CpG motifs in their recognition sequence and can only cut 

unmethylated sites. Thus, methylated DNA is protected from cleavage (Hashimoto et al., 2007). 

As a consequence the patterns of cutting by such enzymes can provide a read-out of DNA 

methylation.  

The most widely used MSRE for DNA methylation studies are HpaII and SmaI, in part because 

they each have an isoschizomer (MspI for HpaII) or neoschizomer (XmaI for SmaI) that is not 

inhibited by CpG methylation. Moreover, a handful of restriction enzymes are available to cut 

methylated but not unmethylated DNA, such as GlaI, McrBC and SgeI (Tarasova et al., 2008). 

Methylation-sensitive restriction digestion followed by PCR across the restriction site is a very 

sensitive technique that is still used in some applications today. However, it is extremely prone to 

false-positive results caused by incomplete digestion for reasons other than DNA methylation. A 

multiple restriction enzymes combined with quantitative PCR analysis might overcome the false-

positive results. An assays covering at least three restriction enzyme sites per target region have 

been developed and successfully applied using the MSRE technology to elucidate aberrantly 

methylated genes in syndromal disease (Weinhaeusel et al., 2008) and different cancers, such as 

breast, lung and colon (Agrawal et al., 2007). The results have been successfully validated by 

bisulfite-based approaches confirming the restriction enzyme-based findings. 

 

1.3.1.2. Bisulfite deamination-based methods 

Sodium bisulfite (NaHSO3) treatment of genomic DNA revolutionized DNA methylation studies 

(Frommer et al., 1992). Indeed, bisulfite-based approaches are the most commonly used for 

qualitative and quantitative DNA methylation measures enabling the assessment of absolute 

methylation levels at single-base resolution. Incubation of genomic DNA with sodium bisulfite 

leads to deamination of unmethylated cytosine to uracil, whereas methylated cytosine are not 

affected (Frommer et al., 1992). This chemical treatment of DNA effectively turns an epigenetic 

difference into a genetic difference. Thus by the subsequent PCR of interested region are 
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generated amplicons containing a C (derived from a 5mC ) or a T (derived only from 

unmethylated cytosine) depending on the original methylation status of the sample. 

 

1.3.1.2.1 Bisulfite sequencing PCR  

The gold standard for assessing the DNA methylation status on a single-allele basis of every 

given CpG, within a region of interest, is bisulfite genomic sequencing (BSP). In this method, the 

interested region is amplified from bisulfite-modified DNA, using PCR primers not overlapping 

CpG sites, in order to amplify both methylated and unmethylated alleles (Clark et al., 1994; 

Frommer et al., 1992 ). PCR products are ligated to a cloning vector and transfected to competent 

cells. The plasmidic DNA is isolated and subjected to sequencing to generate detailed methylation 

patterns at single CpG resolution. This technique is labour-intensive and quite expensive for large 

sets of samples. These inconveniences were be overcome with the advent of bisulfite sequencing 

pyrosequencing, whom principles are the same of BSP and permits quantitative analyses of single 

methylation sites. 

 

1.3.1.2.2 Bisulfite-pyrosequencing  

Using bisulfite-specific primers and bisulfite sequencing PCR amplification, quantitative 

methylation analyses on a single CpG can be determined using BSP, when single colonies of 

cloned PCR amplicons are sequenced and 5mC per CpG are deduced (Grigg and Clark, 1994). 

This principle, that relies on bisulfite conversion and PCR amplification (Colella et al., 2003) is 

also used in the pyrosequencing approach, but omitting the cloning step. To facilitate the 

conversion of PCR products to single-stranded DNA for later pyrosequencing, the PCR reaction is 

performed with either one primer biotinylated or using a tailed primer in combination with a 

biotin-labeled universal primer in the same reaction (this avoids biotin-labeling for each primer 

for each assay). The sequencing primer is then annealed to single-stranded DNA and the samples 

are ready for pyrosequencing analysis. Pyrosequencing is a primer extension method for the 

analysis of short to medium length DNA sequences. Incorporation of a nucleotide into the 

template strand leads to the release of pyrophosphate, which is quantified with a luciferase 

reaction. The signal produced is proportional to the amount of pyrophosphate released, therefore 

the percentage of unconverted C and converted T nucleotides at each CpG site can be detected 

and quantified. This method has the advantages of introducing an internal control (DNA sequence 

including a control for unconverted cytosines) and allowing accurate quantification of multiple 

CpG methylation sites in the same reaction. The only significant drawback is that few (only 25–
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30) base pairs can be sequenced in each reaction, limiting the number of CpG sites that can be 

assessed.  

 

1.3.1.2.3. Methylation-specific PCR  

Methylation specific-PCR (MS-PCR or MSP) is the most commonly used technique to analyze 

DNA methylation levels. It requires two parallel PCR reactions amplifying either methylated or 

unmethylated alleles from bisulfite-converted DNA using primers annealing to CG versus TG 

sequence, respectively (Herman et al., 1996). The detection of PCR products is originally 

performed by gel electrophoresis. MSP, combined with end point PCR, is particularly prone to 

amplification bias and methylation artifacts. This technique has been replaced by quantitative MS-

PCR (qMS-PCR), in which PCR amplification is monitored in real time by the incorporation of 

fluorescent molecules. This improvement allows precise quantification of the DNA methylation 

levels of numerous specific regions and avoids the long electrophoresis step. Since it only 

provides the methylation status of few CpG sites (contained in PCR primers), qMS-PCR requires 

perfect knowledge of the most discriminative methylated regions present for example in cancer 

cells, to design powerful primers for diagnosis. Special care has to be taken when designing the 

primers to obtain equal amplification efficiencies and to avoid a bias towards unmethylated or 

methylated DNA. As these approaches provide quantitative measurements of DNA methylation, it 

is necessary to define a cut-off DNA methylation value before declaring that a sample is positive 

(Herman et al., 1996). Nevertheless, qMS-PCR technique is simple, rapid, inexpensive, highly-

sensitive and easily standardized. It is currently one of the most commonly used techniques for 

cancer diagnosis in clinical use.  

 

1.3.1.2.4. Methylation-sensitive high-resolution melting 

Methylation-sensitive high-resolution melting (MS-HRM) is based on the fact that the 

nucleotide sequence of PCR products of bisulfite-treated DNA will differ depending on the 

methylation status of the DNA region of interest. Thus, the methylation level is determined by 

comparing the melting dissociation curves to standard PCR products of the same region 

containing known methylated CpG sites. Despite its high sensitivity, this method requires the 

acquisition of specific PCR apparatus and skilled operators. 
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1.3.2. Global DNA methylation profiling: the methylome 

1.3.2.1. Gel-based methylation profiling 

Restriction landmark genomic scanning (RLGS), developed in 1991, was the first genome-wide 

profiling method that allowed some genomic positional information about where changes in 

methylation have occurred (Hatada et al., 1991). This was achieved using either methylation-

sensitive endonucleases, which cut preferentially in certain genomic regions such as CpG islands, 

or computational prediction of the respective restriction fragments where genome sequences were 

available (Rouillard et al., 2001). A key feature of RLGS entails the use of two-dimensional 

electrophoresis, which significantly increases the resolution of potential target sites and enable to 

interrogate more than 1000 CpG islands in a single experiment. In 2000, RLGS was used to 

survey aberrant CpG island methylation in 98 primary human tumours (Costello et al., 2000), 

providing the first genome-wide insight into the global changes of DNA methylation affecting 

CpG islands in cancer.  

 

1.3.2.2. Array-based methylation profiling 

The development of microarrays in the mid-1990s opened the door for methylome profiling, 

permitting to researchers to assess locus-specific DNA methylation on a genome-wide scale. 

Three important DNA methylation analysing techniques were adapted for array-based DNA 

methylation profiling: bisulphite conversion, methylation-sensitive restriction, and 

immunoprecipiation. 

 

1.3.2.2.1. Bisulfite-based array for DNA methylation profiling  

The first array-based DNA methylation profiling was described in 2002 (Gitan et al., 2002) 

and involved conventional sodium bisulphite treatment of genomic DNA, followed by PCR 

amplification of regions of interest (about 300–400 bp in size). The bisulfite converted PCR 

products were hybridized to custom microarrays that contained probes to discriminate 

converted versus unconverted cytosine at the CpG site of interest, thereby providing a readout 

of the original methylation state at that CpG site. Although this approach potentially offers 

single-CpG resolution, the major drawback is that, after bisulphite conversion, most cytosine 

are converted to thymine, mostly the ones restricted to CpG sites and this results in a 

reduction of sequence complexity and consequently an increasing difficult to design enough 

unique probes to extend this approach to a genome-wide scale. Therefore, it remains to be 

determined whether whole mammalian genomes can be assayed using this technique. 
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Bisulphite conversion-based DNA methylation profiling on arrays seems not well suited for 

de novo delineation of DNA methylation profiles, but it could be useful for high-throughput 

validation or follow-up studies of a limited number of CpG sites in hundreds to thousands of 

samples. Nowadays, the most commonly platforms used with these features is the Infinium 

HumanMethylation450 BeadChip (Illumina), which is based on whole genome amplification 

of bisulfite-converted DNA, followed by fragmentation and hybridization to chip. On the 

chip, there are only two bead types for each CpG site per locus. One of the bead types will 

correspond to the methylated cytosine locus and the other will correspond to the unmethylated 

cytosine locus, which has been converted into uracil during bisulfite treatment and later 

amplified as thymine during whole genome amplification. Hybridization is followed by 

single-base extension and after staining, the chip is scanned to show the intensities of the 

unmethylated and methylated bead types.  

 

1.3.2.2.2. Methylation-sensitive enzymes-based array for DNA methylation profiling 

Tompa et al. in 2002 (Tompa et al., 2002) developed a new method consisted in fragmentation 

of DNA by the methylsensitive restriction endonuclease (MSRE) followed by size fractionation 

and hybridization to custom microarrays. Recently, such approaches have been improved with 

respect to sensitivity and genomic coverage than bisulphite-based methods coupled to single-

nucleotide resolution (because in theory it is known where the enzyme has restricted the DNA) 

(Khulan et al., 2006; Schumacher et al., 2006). The drawback is that only those regions that 

contain the restriction site of interest can be analysed and hence can never really be used for truly 

whole genome profiling. 

 

1.3.2.2.3. Enrichment-based array for DNA methylation profiling 

Two distinct approaches were developed to enrich the fraction of DNA methylated with respect 

to all genomic DNA. The first is based on the high affinity of some proteins to methylated DNA, 

such as the complex of methyl-binding domain protein 2 (MBD2) and methyl-binding domain 

protein 3L1 (MBD3L1). The methyl-CpG binding domain of human MBD2 or MBD3L1 proteins 

are coupled to beads and the methylated fragments are captured, obtaining a single enriched 

population or distinct subpopulations based on the degree of methylation, varying NaCl 

concentration in the elution buffer. The second method, called methylated DNA 

immunoprecipitation (MeDIP) (Wilson et al., 2006; Keshet et al., 2006), consists in 

immunoprecipitate the methylated fraction of the genomic DNA sample with a monoclonal 

antibody against methylated cytosine. 
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Afterwards, in both cases the enriched fraction from sheared genomic DNA is amplified and 

hybridizes against the total fraction of genomic DNA on a microarray. Although the resolution of 

enrichment-based methods is a few hundred base pairs at best, there is less sequence bias 

compared with the other two methods, based on bisulphite conversion and methylation sensitive 

restriction. In this context, it is worth noting that methylation of neighbouring CpG sites has been 

shown to be frequently correlated up to 1000 bp (Eckhardt et al., 2006) suggesting that, although 

desirable, it is not always necessary to obtain methylation values at single base pair resolution. 

 

Overall, the application of microarray technology has provided an important platform to profile 

DNA methylation. However, the use of microarrays as the platform of choice for methylome 

analysis is decrease with the advancement of sequencing-based approaches, that have developed 

in recent years. 

 

1.3.2 3. Sequencing-based methylation profiling 

Throughout the 1990s, DNA sequencing underwent a major transformation because of 

numerous genome projects, including the Human Genome Project. This resulted in much 

improved sequencing technology, aiding the development of sequencing-based approaches for 

genome-wide methylation profiling. To date high-throughput DNA sequencing combined to 

sodium bisulfite conversion could be applied for determining DNA methylation states at 

individual cytosine in all the genome. These methods, generally referred to as whole-genome 

bisulfite sequencing (WGBS) are cost prohibitive for sequencing of large numbers of individual 

samples. As a result, Reduced Representation Bisulfite Sequencing (RRBS) was developed 

(Meissner et al., 2005; Gu et al., 2010), making possible to investigate large numbers of 

individuals. 

RRBS is a DNA wide methylation analysis technique that specifically enriches genomic 

regions with a high density of potential methylation sites and enables investigation of DNA 

methylation at single-nucleotide resolution. RRBS encompasses random DNA fragmentation over 

3′-CCGG-5′ sequences by MspI. This step is biased in areas with low CpG content, although it 

grants single-base resolution. After end repair, A-tailing, and ligation with methylated adapters, 

the DNA fragments from 50 to 250 bp are purified by gel electrophoresis. These are 

representative of most promoter length and CpG islands. Next, the modified DNA is amplified 

and sequenced. This reduced representation implies a lower number of reads necessary to yield an 

accurate sequencing, involving less cost and time compared with WGBS. Various companies have 

launched platforms based on RRBS methodology with improved versions (Methyl-

MiniSeq/Methyl-MidiSeq) able to detect 3-4 to 8-9 millions of unique CpG sites, capturing more 



 

27 

 

than 85% of all CpG islands and more than 80% of gene promoters. Several factors must be 

considered with this approach. First, the choice of a restriction enzyme to fractionate the DNA 

will bias the portion of the genome that is represented. A second consideration is the process of 

mapping reads of bisulfite converted DNA to the genome. Compared to other sequencing 

methods, RRBS provides an efficient way to generate absolute quantification of methylation of 

more than 1 million CpG sites at single base pair resolution.  
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2. OBJECTIVES 

PAX3-FOXO1 positive and negative RMS show a different and characteristic gene 

expression signature, but the mechanisms involved in such a differential regulation are poorly 

understood. We performed genome-wide methylation analysis of PAX3-FOXO1 positive and 

PAX3-FOXO1 negative RMS tumors to determine whether epigenetic phenomena may 

explain the differences between these RMS subgroups and to investigate how epigenetic 

mechanisms contribute to their different biological behavior. Furthermore, we explored the 

different methylation profiling between metastatic and non-metastatic RMS tumors, in order 

to understand whether epigenetic changes affect the expression of genes associated to the 

severity of tumor. The results of this study will help to identify genes and signaling pathways 

relevant for RMS tumors classification, patients’ risk stratification and targeted therapy. 
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3. MATERIALS AND METHODS 

3.1. Patients 

A total of 73 tumor biopsies from RMS patients enrolled in the pediatric sarcoma protocols 

RMS96, RMS4-99 and RMS2005 of the Italian Association of Pediatric Haematology and 

Oncology (AIEOP) were included after obtaining institutional review board approval. 

Diagnosis was reviewed by the AIEOP central panel of pathologists in all of the cases and 

confirmed by RT-PCR using primers for PAX3/7-FOXO1 fusion gene and MyoD1 transcript. 

Overall, the cohort of patients can be subdivided into 23 PAX3-FOXO1 positive ARMS, 7 

PAX7-FOXO1 positive ARMS, 9 PAX3/7-FOXO1 negative ARMS and 37 ERMS. The 

clinicopathological characteristics of RMS cases are reported in (Table 4). 

 

Sample 

Name 

Gene fusion 

status 
Hystology Gender Size 

IRS  

groups 

DNA 

methylation 

 array 

RRBS 

seq 
qRT-PCR 

ERMS 1 PFN Embryonal  M <=5 cm I     X 
ARMS 1 PFN Alveolar  F >5 cm III a X   X 
ARMS 2 P3F Alveolar  F <=5 cm IV   X X 
ERMS 2 PFN Embryonal  F <=5 cm III a      

ERMS 3 PFN Embryonal  F >5 cm III a   X X 
ARMS 3 P3F Alveolar  F >5 cm IV X   X 
ARMS 4 P3F Alveolar  M >5 cm IV X   X 
ARMS 5 P3F Alveolar  F n.e. IV     X 
ARMS 6 P3F Alveolar  F >5 cm III a   X X 
ERMS 4 PFN Embryonal  M >5 cm II a     X 
ERMS 5 PFN Embryonal  F >5 cm III a     X 
ARMS 7 P7F Alveolar  F >5 cm IV     X 
ERMS 6 PFN Embryonal  M >5 cm III a     X 
ERMS 7 PFN Embryonal  F <=5 cm III a   X X 
ERMS 8 PFN Embryonal  M >5 cm III b X X X 
ARMS 8 P3F Alveolar  F n.e. III a     X 
ARMS 9 P3F Alveolar  M >5 cm III a     X 

ARMS 10 PFN Alveolar  M >5 cm IV X   X 
ERMS 9 PFN Embryonal  F >5 cm III a X   X 

ARMS 11 P3F Alveolar  F n.e. IV     X 
ERMS 10 PFN Embryonal  M >5 cm IV   X X 
ERMS 11 PFN Embryonal  M <=5 cm III a     X 

ERMS 12 PFN 

Spindle 

cells/Leiomiomat

ous  

F >5 cm III a     X 

ARMS 12 PFN Alveolar  M <=5 cm III b     X 
ARMS 13 P7F Alveolar  M <=5 cm III a     X 
ARMS 14 P7F Alveolar  F >5 cm IV     X 
ARMS 15 P7F Alveolar  M >5 cm III a     X 
ERMS 13 PFN Embryonal  M >5 cm III a     X 
ARMS 16 P3F Alveolar  F <=5 cm IV X   X 
ARMS 17 P3F Alveolar  M >5 cm IV X   X 
ARMS 18 PFN Alveolar  M >5 cm III    X X 
ERMS 14 PFN Botryoid  M <=5 cm II a     X 
ARMS 19 PFN Solid Alveolar  M >5 cm III a   X X 
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Sample 

Name 

Gene fusion 

status 
Hystology Gender Size 

IRS 

groups 

DNA 

methylation 

 array 

RRBS 

seq 
qRT-PCR 

ARMS 20 PFN Alveolar  M >5 cm III b     X 
ERMS 15 PFN Botryoid  F >5 cm III a     X 
ERMS 16 PFN Embryonal  F >5 cm III a     X 
ARMS 21 P3F Alveolar  F <=5 cm IV X   X 
ERMS 17 PFN Embryonal  F >5 cm III a     X 
ERMS 18 PFN Embryonal  M <=5 cm III a     X 
ERMS 19 PFN Embryonal  M >5 cm III a     X 
ARMS 22 P7F Alveolar  F >5 cm III a     X 
ARMS 23 P3F Alveolar  F n.e. IV     X 
ARMS 24 PFN Alveolar  F >5 cm III a     X 
ERMS 20 PFN Embryonal  M <=5 cm III b X   X 
ARMS 25 P7F Alveolar  F >5 cm III a     X 
ARMS 26 P3F Alveolar  M >5 cm III a X X X 
ERMS 21 PFN Embryonal F <=5 cm III   X X 
ARMS 27 PFN Alveolar  F <=5 cm II a X   X 
ARMS 28 P3F Alveolar  M >5 cm III   X X 
ERMS 22 PFN Embryonal  M >5 cm III a   X X 
ARMS 29 P3F Alveolar  M >5 cm IV     X 
ARMS 30 P3F Alveolar  F <=5 cm IV     X 
ERMS 23 PFN Embryonal  M <=5 cm III      X 
ERMS 24 PFN Embryonal  M >5 cm IV X   X 
ERMS 25 PFN Embryonal  F <=5 cm III a   X X 
ERMS 26 PFN Embryonal  M <=5 cm III b     X 
ERMS 27 PFN Embryonal  M >5 cm III a     X 
ERMS 28 PFN Embryonal  M >5 cm IV     X 
ARMS 31 P3F Alveolar  F <=5 cm III a   X X 
ERMS 29 PFN Embryonal  M >5 cm III a     X 
ARMS 32 P3F Alveolar  M >5 cm III a     X 
ARMS 33 P3F Alveolar  M >5 cm IV     X 
ARMS 34 P3F Alveolar  F >5 cm IV     X 
ARMS 35 PFN Alveolar  F >5 cm III a     X 
ARMS 36 P3F Alveolar  F >5 cm IV X   X 
ERMS 30 PFN Embryonal  M >5 cm IV X   X 
ERMS 31 PFN Embryonal  F <=5 cm IV     X 
ARMS 37 P3F Alveolar  F unknow IV     X 
ARMS 38 P3F Alveolar  M <=5 cm IV     X 
ARMS 39 P7F Alveolar  M >5 cm III a     X 
ERMS 32 PFN Embryonal  M >5 cm III a     X 
ERMS 33 PFN Embryonal  M <=5 cm III a     X 
ARMS 40 PFN Alveolar  F <=5 cm III a X   X 

 

Table 4. Main clinical characteristics of RMS patients. Abbreviations: P3F: PAX3-FOXO1 positive RMS; P7F: 

PAX7-FOXO1 positive RMS; PFN: PAX3/7-FOXO1 negative RMS; M: male; F: female; n.e.: not evaluable. 
 

3.2. Cell cultures 

The human RMS cell lines, RH30 and RD, were purchased from ATCC (Manassas, VA), 

whereas RH4 and RH28 cells were a gift of Dr P.J. Houghton (St Jude Children’s Hospital, 

Memphis, TN). SMS-CTR, RH36 and CCA were obtained from Dr M. Tsokos (NCI, 

Bethesda, MD). HEK-293T cells were a generous gift of Dr. S. Indraccolo (Istituto 
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Oncologico Veneto, IOV, Padova, Italy). RMS and HEK-293T cells were all grown in 

Dulbecco’s Modified Eagle’s Medium supplemented with 10% heat-inactivated fetal calf 

serum (FCS) (Gibco, Life Technologies Co., Carlsbad, CA, USA), 2 mmol/l glutamine, 

100U/ml penicillin and 100 μg/ml streptomycin (SIGMA-Aldrich Co., St. Louis, MO, USA), 

under standard tissue-culture conditions. The features of cell lines are summarize in Table 5. 

 

Cell lines Karyotype/Gene fusion status Hystology Origins 

RH4 t(2;13)(p25;q14); TP53 mutation Alveolar 
Lung metastasis 7-year-old 

female 

RH30 
t(2;13)(p25;q14); TP53 mutation; amplification of 12q13-15; region 

including CDK4 
Alveolar 

Bone marrow metastasis 16-

year-old male 

RH28 t(2;13)(p25;q14); near tetraploid Alveolar 
Axillary metastasis 17-year-

old male 

RH36 Unknow Embryonal 
Paratesticular relapse 15-year-

old male 

RD 
51-hyperdiploid; MYC amplification; Q61H mutation of NRAS; 

TP53 mutation 
Embryonal 

Pelvic mass 7-years-old 

female 

CCA Multiple chromosomal rearrangements; Q61L mutation of KRAS Embryonal Vescical mass 8-year-old male 

SMS-CTR Hypertriploid Embryonal Pelvic mass 1-years-old male 

 

Table 5. Human RMS cell lines. 

 

3.3. DNA and RNA extraction  

High-molecular-weight DNA and total RNA were extracted from tumor biopsies or cell 

lines using QIAamp DNA Mini Kit (Qiagen Co., Hilden Germany) and TRIzol reagent 

(Invitrogen, Life Technologies Co., Carlsbad, CA, USA), respectively, according to the 

manufacturer's protocols. 

 

3.4. Genome-wide DNA methylation profile 

Four μg of genomic DNA were fragmented by sonication, purified using Mini-Elute 

coloumns (Qiagen Co., Hilden Germany) and the amount of double-strand DNA (dsDNA) 

was measured using Qubit instrument (Invitrogen, Life Technologies Co., Carlsbad, CA, 

USA). The success of fragmentation was evaluated using the Agilent Bioanalyzer 2100 

(Agilent Technologies, Santa Clara, CA, USA). The MethylMiner Methylated DNA 

enrichment kit (Invitrogen, Life Technologies Co., Carlsbad, CA, USA) was used to enrich 

the fraction of methylated dsDNA, starting from 2 μg of fragmented whole genomic DNA. 

Ten ng of methylated dsDNA for each sample was amplified using Whole Genome 

Amplification (WGA, Sigma-Aldrich Co., St. Louis, MO, USA). Genomic DNA for each 
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samples was used as control. DNA methylation profiling was carried out in RMS tumour 

samples using the Human DNA Methylation Microarray (Agilent Technologies, Santa Clara, 

CA, USA), consisting of about 244,000 (60-mer) probes designed to interrogate about 27,000 

known CpG islands. The control genomic DNA and methylated dsDNA were labeled with 

Cy3 and Cy5 dye using Agilent Genomic DNA labeling kit PLUS (Agilent Technologies, 

Santa Clara, CA, USA) and competitively hybridized to Human DNA Methylation 

microarrays platforms (GEO ID: GPL10878). The hybridization was carried out at 67°C for 

40 hours in a hybridization oven rotator (Agilent Technologies, Santa Clara, CA, USA). The 

arrays were washed with Agilent ChiP-on-chip wash buffers as suggest by the supplier. Slides 

were scanned on an Agilent microarray scanner (model G2565CA), and Agilent Feature 

Extraction software version 10.7.3.1 was used for image analysis. Raw data are available on 

the GEO website using accession number GSE67201. 

 

3.5. Statistical analysis of DNA methylation data 

Intra-array normalization of methylation levels was performed with linear and loess 

normalization. While inter-array normalization was performed with quantile normalization 

(Bolstad et al., 2003; Risso et al., 2009) in order to correct possible experimental distortions. 

The normalization function was applied to the methylation data of all the experiments. With 

regard to methylation expression data, Feature Extraction Software (Agilent Technologies, 

Santa Clara, CA, USA) provided spot quality measures in order to evaluate the quality and the 

reliability of the hybridization data. In particular, flag "glsFound" and “rlsFound”(set to 1 if 

the spot had an intensity value that was significantly different from the local background or to 

0 in any other cases) was used to filter out unreliable probes: flag equal to 0 was to be noted 

as "not available (NA)." In order to make more robust and unbiased statistical analyses, 

probes with a high proportion of NA values were removed from the dataset. Twenty-five 

percent of NA was used as the threshold in the filtering process, obtaining a total of 90’591 

available probes. To identify the differentially methylated regions (DMRs) we used iChip R 

Bioconductor Package (http://www.bioconductor.org/packages/release/bioc/html/iChip.html). 

Specifically we directly compared two group of samples (class 1 versus class 2). The iChipZ 

function was run with β=l, following the iChip reference manual instruction for low-

resolution arrays. Enriched regions were called with a FDR ≤ 0.2. 
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3.6. Reduced-Representation Bisulfite Sequencing 

Reduced-Representation Bisulfite Sequencing (RRBS) library generation and sequencing 

were performed at the BGI technology centre (BGI HongKong, Shenzhen, China; www.bgi-

international.com). The reduced representation library is enriched for CpG islands and is 

predicted to include 84% of the CpG islands in the human genome and about 3.4 million of 

unique CpG sites (Meissner et al., 2008; Smith et al., 2009). Briefly, genomic DNA from 

tumour biopsies, which passed the quality tests, was digested by methylation–insensitive 

restriction enzyme, MspI (New England Biolabs, Ipswich, MA). End repair was necessary to 

fill the 3’ terminal of the ends of the strands. The next step was adding of an extra adenosine 

to both strands (A-tailing step). In the subsequent step methylated sequence adapters, with 3′-

T overhang, were ligated to the DNA fragments. The methylated adapter oligonucleotides had 

all cytosine replaced with 5mC, in order to prevent the deamination of these cytosine in the 

bisulfite conversion reaction. For reduce representation, DNA fragments of 40-220 bp were 

then selected to be purified. The different sizes of the fragments were separated using gel 

electrophoresis and purified using gel excising. The DNA from the excised gel pieces was 

recovered with the QIAGEN Gel Extraction Purification Kit (Qiagen Co., Hilden Germany), 

followed by bisulfite treatment using ZYMO EZ DNA Methylation-Gold kit (Zymo Research, 

Orange, CA, USA). The bisulfite-converted library was then amplified using PCR with 

primers that were complementary to the sequence adapters. Before sequencing, the PCR 

product must be free of unused reaction reagents such as unincorporated dNTPs or salts. 

Thus, a step for PCR purification was required. The fragments were then sequenced on 

Illumina sequencer, 50 base single-end reads are most commonly performed. FASTQ 

sequence files were obtained containing sequenced reads for each sample. Finally, sequencing 

data were mapped to reference genome and only uniquely mapped reads were used for 

bioinformatics analysis. 

 

3.7. Trichostatin A and 5-aza-2’-deoxycytidine treatments 

Cell lines were seeded in Petri dishes at a concentration of 0.25*106 cells/mL and the 

following day treated with different concentrations (100 nM ÷ 2 μM) of 5-aza-2'-

deoxycytidine (Selleck Chemicals, Houston; TX, USA). The same treatment was repeated 

after 48 hours from the seeding, while the collection of the cells was performed at a distance 

of 72 hours. Treatment with 200 ng/ml of trichostatin A (Selleck Chemicals, Houston; TX, 
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USA) was performed after 48 hours from the seeding and cells were collected the following 

day after 16 hours. Cells were differently processed for RNA or DNA extraction. 

 

3.8. Reverse transcription and qRT-PCR 

One µg of total RNA was reverse transcribed using SuperScript II reverse transcriptase 

(Invitrogen, Life Technologies Co., Carlsbad, CA, USA) and random hexamers. Briefly, 

samples were denatured at 75°C for 3 min and cooled at 4°C for 5 min. Subsequently, 10 µl 

of reaction mixture were added, containing 1X of buffer, 2 mM of each dNTP (GE Healthcare 

Life Sciences, Uppsala, Sweden), 250 nM random hexamers and 40 U of RNAse inhibitor 

(Roche Applied Science, Penzberg, Germany). After 10 min at 20°C, 10 mM DDT and 200 U 

of SuperScript II reverse transcriptase were added. Retrotranscription was performed as 

follows: 60 min at 37°C, 5 min at 99°C, 5 min at 4°C. Quantitative reverse polymerase chain 

reaction (qRT-PCR) was performed in the VIIa 7 thermal cycler (Applied Biosystems, Life 

Technologies, Foster City, CA) using standard amplification conditions. Amplification 

reaction was set up in triplicate in a final volume of 10 µl containing 8 ng of cDNA, 1X of 

SYBR Green PCR mastermix (Applied Biosystems, Life Technologies, Foster City, CA) and 

variables concentrations (100 nM ÷ 500 nM) of forward and reverse primers (Invitrogen, Life 

Technologies Co., Carlsbad, CA, USA). Gene-specific primers were designed using Primer 

Express Software v3.0 (Applied Biosystems, Life Technologies, Foster City, CA). To 

evaluate differences in gene expression, we chose a relative quantification method in which 

the expression of target gene is standardized by the housekeeping glyceraldehyde 3-phosphate 

dehydrogenase (GADPH), as reference gene. The mathematical method presented by Pfaffl 

(Pfaffl, 2001), which calculates the efficiency of each PCR using a standard curve, was 

applied. To calculate the relative expression ratio we used REST software tool (Pfaffl et al., 

2002), which permits the comparison of more than one target genes with a reference gene in 

two experimental groups, exploiting pair wise fixed reallocation randomization test. For 

GADD45G and NELL1 relative gene expression we used the ΔΔCT method implemented in 

the software of VIIa 7 thermal cycler (Applied Biosystems, Life Technologies, Foster City, 

CA), using fetal human skeletal muscle (Stratagene, La Jolla, CA, USA) as calibrator. 

 

3.9. Sodium bisulfite treatment of DNA 

One μg of genomic DNA, isolated from RMS biopsies or cell lines, was subjected to 

conversion with sodium bisulfite using EZ DNA Methylation-Gold ™ kit (Zymo Research, 
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Orange, CA, USA), following the manufacturer's instructions. This treatment allows the 

conversion of unmethylated cytosine residues to uracil, whereas methylated cytosine remain 

unchanged.  

 

3.10. Bisulfite sequencing PCR 

One hundred ng of bisulfite-coverted DNA of RMS tumors or cell lines was used as 

template for the amplification of promotorial regions of HOXC11, PCDHA4, NELL1 and 

GADD45G genes. First, polymerase chain reaction (PCR) was performed in a total volume of 

50 μl containing with 1.25 U of AmpliTaq Gold DNA polymerase (Applied Biosystems, Life 

Technologies Co., Carlsbad, CA, USA), 0.8 mM of deoxynucleoside triphosphate (GE 

Healthcare Life Sciences, Uppsala, Sweden), 1X of GeneAmp PCR Buffer II (Applied 

Biosystems, Life Technologies Co., Carlsbad, CA, USA), 3mM MgCl2 (Applied Biosystems, 

Life Technologies Co., Carlsbad, CA, USA) and 200 nM of forward and reverse primer 

(Invitrogen, Life Technologies Co., Carlsbad, CA, USA). Methylation-independent primers 

were designed with the free online tool MethPrimer (http: 

/itasa.ucsf..edu/~urolab/methprimer; Li and Dahiya, 2002). Amplification consisted in an 

initial denaturation of 7 min at 95°C, followed by 45 cycles of 30 sec at 94°C, 30 sec at 60, 1 

min at 72°C and 10 sec at 72°C. The PCR products were purified using QIAquick PCR 

purification kit (Qiagen Co., Hilden Germany) and subcloned into pSC-A-amp/kan vector, 

supplied with the StrataClone PCR Cloning Kit (Agilent Technologies, Santa Clara, CA, 

USA). Competent cells were transformed with ligation reaction product and grown in LB 

(Luria-Bertani) agar plates supplemented with 40 μg/ml of X-Gal (Promega Co., Madison, 

WI, USA) and 50 μg/ml of ampicillin for 16 hours at 37 °C. Blue-white screening permitted 

identification of recombinant bacteria. Selected clones were evaluated by colony PCR 

performed with 0.5 U of TaqDNA Polymerase (Roche, Basel, Switzerland), 1X PCR Reaction 

Buffer 10X (Roche, Basel, Switzerland), 40 nM of deoxynucleoside triphosphate (GE 

Healthcare Life Sciences, Uppsala, Sweden) and 100 nM of the universal primers M13R and 

T7 (Invitrogen, Life Technologies Co., Carlsbad, CA, USA). Then, by agarose electrophoresis 

PCR products were checked for insert cloning presence. PCR products corresponding to 

positive clones were purified by QIAquick PCR purification kit (Qiagen Co., Hilden 

Germany) and then sequenced by 3500 Dx Genetic Analyzer sequencer (Applied Biosystems, 

Life Technologies Co., Carlsbad, CA, USA) using BigDye® Terminator v3.1 Cycle 
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Sequencing Kit (Applied Biosystems, Life Technologies Co., Carlsbad, CA, USA) according 

to manufacturer’s protocols. 

 

3.11.Quantitative methylation-specific PCR 

Quantitative methylation-specific polymerase chain reaction (qMS-PCR) was performed to 

assess the methylation status of PCDHA4 promotorial region. This method allows the analysis 

of the methylation status of target genes by real-time PCR making use of primer pairs able to 

discriminate between methylated and unmethylated sequences. Primers were designed using 

the free software MethPrimer (http: /itasa.ucsf..edu/~urolab/methprimer; Li and Dahiya, 

2002). The amplification reaction was set up in triplicate in a final volume of 10 μl containing 

8 ng of bisulfite-converted DNA, 1X SYBR green PCR mastermix (Applied Biosystems, 

Foster City, CA) and variable concentrations of forward and reverse primer (Invitrogen, Life 

Technologies Co., Carlsbad, CA, USA). Amplifications were carried out in VIIa7 thermal 

cycler (Applied Biosystems, Life Technologies, Foster City, CA), using standard 

amplification conditions. Primers were designed also to amplified the internal reference gene 

glyceraldehyde 3-phosphate dehydrogenase (GADPH). These were located in areas without 

CpG dinucleotides, thus amplifying the modified GAPDH gene independently of the 

methylation status. Four μg of genomic DNA of 293T cell line were treated with 20 U of SssI 

methyltransferase (New England Biolabs Inc., Beverly, Mass, USA) to generate completely 

methylated DNA, whereas 10 ng were subjected to the whole-genome amplification using 

REPLI-g Mini Kit (QIAGEN, Hilden, D) to obtain totally demethylated DNA. Serial dilutions 

(8 ng to 0.125 ng) of bisulfite-converted SssI-treated DNA were used to construct a 

calibration curve for each plate. To determine the relative levels of methylated promoter DNA 

in each sample, the values of the gene of interest were compared with the values of the 

internal reference gene to obtain the ratio GENE/GAPDH. The amount of methylated DNA 

was then calculated by dividing the GENE/GAPDH ratio of each sample by the 

GENE/GAPDH ratio of SssI-treated 293T DNA and multiplying by 100 (Kloten et al., 2013). 

 

3.12. Statistical analysis 

Correlation analysis of PCDHA4 expression and methylation levels with histology, 

PAX3/FOXO1 fusion gene status, sex, size of tumors and IRS group, were performed by 

Welch Two t-test and Wilcoxon rank sum test, using R statistical software. The mRNA 

expression levels of GADD45G and NELL1 were correlated with histology, PAX3/7-FOXO1 
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fusion gene status and IRS group, either by Student’s t-test or Wilcox-Mann Whitney test. 

Receiver-operator characteristic curves (ROCs) were also calculated to understand if 

GADD45G and NELL1 expression levels were good predictors of PAX3/7-FOXO1 fusion 

gene status. Survival analysis was performed according to Kaplan–Meier method and 

differences were calculated by applying log-rank test. Overall survival (OS) was calculated 

from the date of diagnosis to the date of death for any cause or the last follow-up, whereas 

progression-free survival (PFS) was calculated from the date of diagnosis to the date of the 

first event (tumor progression or relapse) or the last follow-up. All these analysis were 

performed using PRISM 6 software (GraphPad Software, La Jolla, CA, USA) 
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4. RESULTS 

4.1. DNA methylation profiling of RMS tumors biopsies by microarray analysis 

To study the global methylation status of RMS DNA samples we used Agilent Human 

DNA Methylation platform that is a collection of 244 k probes design to interrogate about 

27,000 known CpG islands. Methylome analysis were carried out on the genomic DNA of 

RMS biopsies chosen to represent the major subtypes of RMS. We analyzed 16 RMS samples 

including 7 PAX3-FOXO1 positive ARMS, 4 PAX3-FOXO1 negative ARMS and 5 ERMS 

(Table 4).  

 

4.1.1. Discovery of novel methylated target genes: PAX3-FOXO1(+) RMS vs PAX3-

FOXO1(-) RMS 

4.1.1.1. Microarray data analysis 

Initially, we compared the methylation profile obtained by microarray experiments among 

PAX3-FOXO1 positive and negative RMS biopsies using the iChip R Bioconductor Package. 

The analysis (false discovery rate (FDR) <0.2) revealed 216 differentially methylated regions 

(DMRs) able to discriminate between the two groups of samples. Therefore, we mapped 

DMRs to genome using UCSC Genome browser. We observed that only a small number of 

DMRs aligned with gene promoters while the others were localized on CpG islands distal to 

known genes or inside the genes body. While the relationship between DNA methylation 

occurring in the promoter region and gene expression is largely established, the link between 

methylation in the gene body and the expression of the gene is still a controversial issue. 

Then, we initially focused our attention on DMRs associated with the putative promoters. We 

established as promoter a region in proximity of the 5’ of the gene that range from -2000 bp to 

+1000 bp, where the position +1 corresponds to the transcriptional start site (TSS). In this 

way we found that the DMRs associated with regulatory regions matched to 40 genes (Table 

6).  
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Gene Symbol Official full name qRT-PCR 

RNF223 ring finger protein 223  

FOXD3 forkhead box D3 X 

LHX4 LIM homeobox 4  

MYT1L myelin transcription factor 1 like  

TSSC1 tumor suppressing subtransferable candidate 1  

PDCD1 programmed cell death 1  

ANKRD18DP ankyrin repeat domain 18D, pseudogene  

FAM157A family with sequence similarity 157 member A  

MAD1L1 MAD1 mitotic arrest deficient-like 1 X 

PTPRN2 protein tyrosine phosphatase, receptor type N2  

DIP2C disco interacting protein 2 homolog C  

ADARB2 adenosine deaminase, RNA-specific, B2  

HMX2 H6 family homeobox 2  

HMX3 H6 homeobox 3  

GPR123 G protein-coupled receptor 123  

DCDC1 doublecortin domain containing 1  

DNAJC24 DnaJ heat shock protein family (Hsp40) member C24  

IMMP1L inner mitochondrial membrane peptidase subunit 1  

PAX6 paired box 6  

SHANK2 SH3 and multiple ankyrin repeat domains 2  

DHCR7 7-dehydrocholesterol reductase  

FBXL14 F-box and leucine-rich repeat protein 14  

WNT5B wingless-type MMTV integration site family, member 5B X 

HOXC11 homeobox C11 X 

HOXC10 homeobox C10 X 

MCF2L MCF.2 cell line derived transforming sequence like  

LMF1 lipase maturation factor 1  

CPNE7 copine VII  

RPH3AL rabphilin 3A-like (without C2 domains) X 

FAM101B family with sequence similarity 101, member B  

NFATC1 nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1  

AP2A1  adaptor related protein complex 2 alpha 1 subunit 
 

 

FUZ fuzzy planar cell polarity protein  

BLCAP bladder cancer associated protein X 

NNAT neuronatin  

CDH4 cadherin 4  

WNT5A wingless-type MMTV integration site family member 5A X 

PARVB parvin beta  
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Gene Symbol Official full name qRT-PCR 

BCOR BCL6 corepressor X 

 

Table 6. Genes associated to DMRs obtained by microarray data comparing PAX3-FOXO1 positive and PAX3-

FOXO1 negative RMS samples. Last column reports genes used for subsequent validation analysis by qRT-

PCR. 

 

4.1.1.2. Evaluation of expression levels of candidate genes  

Among the 40 genes associated to DMRs identified comparing PAX3-FOXO1 positive and 

negative RMS we focused on genes involved in oncogenetic processes or that are established 

be tumor suppressor. We selected 9 candidate genes hypermethylated in RMS PAX3-FOXO1 

positive vs PAX3/FOXO1 negative (Table 6). To determine whether the hypermethylation of 

the selected genes correlates with reduction of expression, we evaluated the transcription level 

of these genes by qRT-PCR in a total of 25 biopsies (Table 4; Figure 4 A), of which 16 out 

of these were used for microarray hybridization experiments We assessed the expression 

levels of the 9 genes also in 7 RMS cells lines (Table 5; Figure 4 B). Unfortunately, the 

methylation status of 8 of the selected genes did not match with a decrease in the expression 

level, but it showed an extremely varied trend. We observed only for HOXC11 a statistically 

significant anti-correlation between methylation status and gene expression level in biopsy 

specimens (P<0,001) and a moderate inverse correlation (P=0.489) in cell lines (Figure 4).  
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Figure 4. Microarray data validation by qRT-PCR analysis. (A) Relative expression levels of 9 selected 

genes in 10 PAX3-FOXO1 positive tumor samples compared to 15 PAX3-FOXO1 negative ones. (B) 

Relative expression levels of the 9 selected genes in 3 PAX3-FOXO1 positive cell lines compared to 4 

PAX3-FOXO1 negative ones. Distribution of data is represented by box plot analysis. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as housekeeping gene for normalization. Expression ratio 

>1: high expression in PAX3-FOXO1 positive RMS samples than PAX3-FOXO1 negative ones; 

expression ratio <1: low expression in PAX3-FOXO1 positive RMS samples than PAX3-FOXO1 negative 

ones; expression ratio =1: equal expression in PAX3-FOXO1 positive RMS samples and PAX3-FOXO1 

negative ones. *P<0.05; **P<0.01; ***P<0.001.The analysis was performed with REST software. 

 

 

4.1.1.3. HOXC11: pharmacological treatment and bisulfite-sequencing 

To understand if the gene expression level of HOXC11 can be modulated by methylation in 

the promoter region we performed a set of experiments with demethylating agents. We used 

5-aza-2'-deoxycytidine that is a well known pyrimidine analogue that inhibits DNA 

methyltransferase, impairing DNA methylation. We treated RH4 and RD cell lines, that 

represented PAX3-FOXO1 positive and PAX3-FOXO1 negative cell lines respectively, with 

increasing doses of 5-aza-2'-deoxycytidine and assessed the expression level of HOXC11 after 

72 hours from the treatment. We observed a strong restoration of HOXC11 expression in RH4 

cells, greater than 100 folds, already with 100 nM of 5-aza-2'-deoxycytidine, than untreated 

control, while we did not detect any changes in RD cells (Figure 5). This result suggested a 

regulative role of methylation in HOXC11 expression. To confirm and validate these data we 

performed a bisulfite Sanger sequencing of the promotorial region of HOXC11, ranging from 

position -161 to +711 and overlapping a CpG island identified with microarray experiments. 

We bisulfite-converted genomic DNA of RH4 and RD genomic cells and performed a PCR to 
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amplified the candidate region. Then, we subcloned the PCR product in pSC-A-amp/kan 

vector and plated on LB agar. Clones were picked out and then sequenced. The results 

showed that in RH4 cells the 82.87% of the cytosine inside a CpG context were methylated, 

while were totally unmethylated in RD cells (Figure 6). Then, we performed the same 

experiments of bisulfite sequencing in three RMS patients (ARMS 3, ARMS 26 and ERMS 

30; Table 4). We did not observe any difference in the average percentage of methylated CpG 

dinucleotides between PAX3-FOXO1 positive and PAX3-FOXO1 negative tumor specimens 

(Figure 6). Putting together these results and the very low number of DMRs found by the 

comparison of microarray data between the PAX3-FOXO1 positive and negative RMS group, 

we decided to analyzed the microarray data comparing other subgroups of patients. 

 

 

 

Figure 5. Relative expression of HOXC11 at 72 hours from treatment with increasing doses of 5-aza-2’-

deoxycytidine (100 nM, 250 nM, 500 nM and 1uM) in 4 RMS cell lines. Expression levels were assessed 

by qRT-PCR. Housekeeping GAPDH gene was used as internal control for normalization and DMSO-

treated cells as calibrator. RH30, RH4: PAX3-FOXO1 positive RMS cell lines; RD, RH36: PAX3-FOXO1 

negative RMS cell lines; 5-aza-dC: 5-aza-2’-deoxycytidine, RQ=relative expression ratio. 
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4,10 % 5’-mCpG

82,87 % 5’-mCpG

 

 

Figure 6. Sanger bisulfite sequencing of HOXC11 promotorial region in 2 RMS cell lines and 3 

biopsies. Sequencing was performed for at least 2 clones obtained by subcloning bisulfite-converted 

promotorial region. Sequenced region spanning from position -161 to +711, where position +1 

corresponds to the trascriptional start site (TSS). The % mean value of methylation levels of the 

sequenced clones is reported next to the sample name. Circles: cytosine within CpG dinucleotides; 

black circles: methylated cytosine; white circles: unmethylated cytosine; RD: PAX3-FOXO1 negative 

RMS cell line; RH4: PAX3-FOXO1 positive RMS cell line. 

 

 

4.1.2. Discovery of novel methylated target genes: IRS IV RMS group vs IRS I, II and II 

RMS groups 

4.1.2.1. Microarray data analysis 

The IRS group system is highly predictive of outcome of RMS (Crist et al., 1995), in 

particular patients belong to group IRS IV, characterized by metastatic disease, have long 

term failure-free survival FFS rates of <30% (Breneman et al., 2003; Oberlin et al., 2008). It 

is not known if the methylation status is different in these subgroups of patients. Then, we 

used iChip R Bioconductor Package to comparing metastatic (IRS IV) RMS patients versus 

non-metastatic (IRS I, II and III) RMS patients. From this analysis we identified 1394 DMRs 

(FDR<0.2). Therefore, we mapped DMRs to genome using UCSC Genome browser and we 

found that only 357 DMRs localize in promoter regions. All the others DMRs mapped in CpG 

regions within the gene body or distal to known coding sequences (intergenic regions). 

Interestingly, these results demonstrated that RMS with advanced stage tumors (metastatic) 



 

47 

 

show an epigenetic pattern peculiar and different with respect to patients with low grade of 

severity (non–metastatic).  

To discovery genes directly or indirectly modulated by DNA methylation, we analyzed the 

genes associated to DMRs with the functional annotation web tool DAVID that perform a 

GO-term analysis and identify which functional categories are over-represented. Terms 

analyzed had an adjusted P<0.05. We found a consistent number of genes involved in cell 

adhesion (48 genes, P=3.1*10-27) and in regulation of transcription (65 genes, P=4.8*10-4) 

that are the major significantly enriched functional categories (Figure 7). Interestingly, in cell 

adhesion categories we found many members of protocadherin (PCDHs) cluster belonging to 

the major groups α, β and γ of clustered protocadherins (Table 7). Moreover, we observed 

that all DMRs linked to protocadherins mapped in promoter regions (Figure 8). This raised us 

great interesting since several members of this family are known to be tumor suppressor genes 

in some cancers and are frequently downregulated by methylation of DNA promoter. 

 

 

 

Figure 7. Enriched GO classes. GO-term analysis was performed by DAVID on genes associate to DMRs 

obtained by microarray data comparison between metastatic and non-metastatic RMS biopsies.  
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Figure 8. Representation of protocadherins cluster by UCSC genome browser. Microarray probes are 

represented by red bars. Green bars rapresent the DMRs. Red arrows indicate DMRs, obtained by comparing 

microarray data of metastatic vs non metastatic RMS samples, mapped precisely against regulatory regions of 

protocadherin genes. 

 

 

 

Gene Symbol Official full name qRT-PCR 

CD9 CD9 molecule  

CNTNAP3B contactin associated protein-like 3B  

CNTNAP3 contactin associated protein-like 3  

GP1BB glycoprotein Ib (platelet), beta polypeptide  

GP5 glycoprotein V (platelet)  

PCDHA11 protocadherin alpha 11 X 

PCDHA12 protocadherin alpha 12 X 

PCDHA13 protocadherin alpha 13  

PCDHA10 protocadherin alpha 10;  

PCDHAC1 protocadherin alpha subfamily C, 1  

PCDHAC2 protocadherin alpha subfamily C, 2  

PCDHA4 protocadherin alpha 4 X 

PCDHA1 protocadherin alpha 1 X 

PCDHA2 protocadherin alpha 2  

PCDHA3 protocadherin alpha 3  

PCDHA5 protocadherin alpha 5  
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Gene Symbol Official full name qRT-PCR 

PCDHA7 protocadherin alpha 7  

PCDHA8 protocadherin alpha 8 X 

PCDHA6 protocadherin alpha 6  

PCDHA9 protocadherin alpha 9  

PCDHB9 protocadherin beta 9  

PCDHB10 protocadherin beta 10  

PCDHB11 protocadherin beta 11  

PCDHB12 protocadherin beta 12 X 

PCDHB13 protocadherin beta 13  

PCDHB14 protocadherin beta 14  

PCDHB15 protocadherin beta 15  

PCDHB16 protocadherin beta 16  

PCDHB17 protocadherin beta 17 pseudogene  

PCDHB18 protocadherin beta 18 pseudogene  

PCDHB3 protocadherin beta 3  

PCDHB4 protocadherin beta 4  

PCDHB5 protocadherin beta 5 X 

PCDHB6 protocadherin beta 6 X 

PCDHB7 protocadherin beta 7 X 

PCDHB8 protocadherin beta 8  

PCDHGA1 protocadherin gamma subfamily A, 1 X 

PCDHGA10 protocadherin gamma subfamily A, 10  

PCDHGA11 protocadherin gamma subfamily A, 11  

PCDHGA2 protocadherin gamma subfamily A, 2 X 

PCDHGA3 protocadherin gamma subfamily A, 3 X 

PCDHGA4 protocadherin gamma subfamily A, 4  

PCDHGA5 protocadherin gamma subfamily A, 5  

PCDHGA6 protocadherin gamma subfamily A, 6  

PCDHGA7 protocadherin gamma subfamily A, 7  

PCDHGA8 protocadherin gamma subfamily A, 8  

PCDHGB1 protocadherin gamma subfamily B, 1  

PCDHGB3 protocadherin gamma subfamily B, 3  

PCDHGB4 protocadherin gamma subfamily B, 4  

PCDHGB5 protocadherin gamma subfamily B, 5 X 
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Gene Symbol Official full name qRT-PCR 

PCDHGB6 protocadherin gamma subfamily B, 6  

PCDHGB7 protocadherin gamma subfamily B, 7  

PCDHGC5 protocadherin gamma subfamily C, 5  

PCDHGA12 protocadherin gamma subfamily A, 12  

PCDHGC3 protocadherin gamma subfamily C, 3  

PCDHGC4 protocadherin gamma subfamily C, 4  

SCARF2 scavenger receptor class F, member 2  

VWF von Willebrand factor  

 

 

Table 7. Lists of genes associated with the GO-term of cell-cell adhesion. Last column reports genes used for 

subsequent validation analysis by qRT-PCR. 

 

 

4.1.2.2. Evaluation of expression levels of candidate genes  

To evaluate the correlation among methylation status and expression levels of the 

protocadherins we selected 15 of them, belonging to the three different subgroups α, β and γ 

(Table 7). We analysed their expression levels by qRT-PCR. We performed this assessment 

in 7 RMS cell lines and (Table 5) in 22 biopsies (Table 4). We demonstrated an inverse 

correlation between methylation and expression for PCDHA12 (P=0.021) and PCDHA4 

(P<0.001) in the cell lines (Figure 9 A) and PCDHA4 (P=0.030) and PCDHB7 (P=0.004) in 

the tumor samples (Figure 9 B). Despite, chosen protocadherins shown an hypermethylation 

in metastatic RMS, a reduced gene expression was not always observed. Indeed, only 

PCDHA4 was found to be downregulated at mRNA level, making it a valuable candidate for 

subsequent in vitro studies. 
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Figure 9. PCDHs genes expression level by qRT-PCR analysis. (A) Relative expression levels of 15 

PCDHs genes in 3 metastatic cell lines compared to 4 non-metastatic ones. (B) Relative expression levels 

of 15 PCDHs genes in 12 metastatic RMS tumor samples compared to 10 non-metastatic ones. 

Distribution of data is represented by box plot analysis. Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was used as housekeeping gene for normalization. Expression ratio >1: high expression in 

metastatic RMS samples than non-metastatic ones; expression ratio <1: low expression in metastatic 

RMS samples than non-metastatic ones; expression ratio =1: equal expression in metastatic RMS samples 

and non-metastatic ones. * P<0.05; **P<0.01; ***P<0.001. The analysis was performed with REST 

software. 

 

 

4.1.2.3. PCDHA4 expression is regulate by methylation 

To confirm the methylation status of the PCDHA4 promoter in metastatic RMS samples we 

performed in vitro pharmacological studies with 5-aza-2'-deoxycytidine, trichostatin A (an 

inhibitor of histone deacetylases) and with the combination of both. We used two PAX3-
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FOXO1 positive cell lines (RH4 and RH30) and two PAX3-FOXO1 negative ones (RD and 

RH36). We assessed PCDHA4 expression level by qRT-PCR at 72 hours from the treatment 

with increasing doses of 5-aza-2'-deoxycytidine and as expected we did not observe any 

change in not metastatic cell lines, whereas we observed a dose dependent restoration of 

PCDHA4 expression in RH30 (Figure 10). Since there are many literature data that suggest 

an epigenetic cross-talk between DNA methylation and histone acetylation in the process of 

gene transcription and aberrant gene silencing in tumours (Vaissierre et al., 2008), we tried to 

explore if even in our case acetylation mechanisms were involved in PCDHA4 transcription 

levels regulation. We treated RMS cell lines for 72 hours with 1uM of 5-aza-2'-deoxycytidine 

(DAC), for 16 hours with 200 ng/ml of trichostatin A (TSA) and with the combination of 

both. When we treated with only TSA we could not observe any change whereas when we 

combined it with DAC we observed a double effect than just treatment with DAC (Figure 

11). These results confirmed an involvement not just of methylation in PCDHA4 regulation, 

but also of histone acetylation as well. 

To get further proofs of PCDHA4 promoter methylation we performed a bisulfite Sanger 

sequencing in four RMS cell lines. As above we used two PAX3-FOXO1 positive cell lines 

(RH4 and RH30) and two PAX3-FOXO1 negative ones (RD and RH36). We extracted 

genomic DNA and  performed a bisulfite conversion. For primers design, we considered the 

region overlapping the CpG island proximal to the PCDHA4’s TSS, ranging from the position 

+ 94 and +828 and containing the DMR identified comparing metastatic RMS and non-

metastatic RMS. We amplified the putative promoter region from bisulfite converted DNA 

and then subcloned the PCR products in pSC-A-amp/kan vector and plated on LB agar. We 

performed a Sanger sequencing of at least eight clones obtained by subcloning the amplified 

PCDHA4 putative region. The results showed that methylation level was higher in the 

metastatic RMS cell lines (72.94% of 5’m-CpG in RH4 and 91.42% of 5’m-CpG in RH30; 

Figure 12 A, B) than in non-metastatic ones (41.75% of 5’m-CpG in RH36 and 44.53% of 

5’m-CpG in RD; Figure 12 C, D). Thus, we confirmed the different methylation levels 

between metastatic and non-metastatic RMS cell lines. 
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Figure 10. Relative expression of PCDHA4 at 72 hours from treatment with increasing doses of 5-aza-2’-

deoxycytidine (100 nM, 250 nM, 500 nM, 1 uM and 2 uM) in 4 RMS cell lines. Expression levels were 

assessed by qRT-PCR. Housekeeping GAPDH gene was used as internal control for normalization and 

DMSO-treated cells as calibrator. RH30, RH4: metastatic RMS cell lines; RD, RH36: non-metastatic 

RMS cell lines; 5-aza-dC: 5-aza-2’-deoxycytidine.RQ=relative expression ratio. 
 

 

 

Figure 11. Relative expression of PCDHA4 after treatment with 1uM of 5-aza-2’-deoxycytidine (72 h), 

200ng/mL of trichostatin A (16 h) or the combination of both. Expression levels were assessed by qRT-

PCR. Housekeeping GAPDH gene was used as internal control for normalization and DMSO-treated cells 

as calibrator . RH30, RH4: metastatic RMS cell lines; RD, RH36: non-metastatic RMS cell lines; DAC: 

decitabine or 5-aza-2’-deoxycytidine; TSA: trichostatin A. RQ=relative expression ratio. 
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Figure 12. Sanger bisulfite sequencing of PCDHA4 promotorial region in 4 RMS cell lines. Sequencing 

was performed for at least 8 clones obtained by subcloning bisulfite-converted promotorial region. 

Sequenced region spanning from position +94 to +828, where position +1 corresponds to the 

trascriptional start site (TSS). (A, B) Sequencing results of metastatic RMS cell lines (RH4 and RH30). 

(C, D) Sequencing results of non-metastatic RMS cell lines (RH36 and RD). The % mean value of 

methylation levels of the sequenced clones is shown on the right. Circles: cytosine within CpG 

dinucleotides; black circles: methylated cytosine; white circles: unmethylated cytosine. 
 

 

4.1.2.4. Assessment of PCDHA4 expression and methylation status in a larger cohort of 

patients 

To determine the biological impact of PCDHA4 in RMS tumors we correlated its 

methylation status and expression levels with clinicophatological variables and we addressed 

the likely prognostic value in RMS outcome. First of all we expanded the cohort of analyzed 

patients to 29 RMS biopsies (Table 4) and we proceeded with PCDHA4 expression 

quantification by qRT-PCR. PCDHA4 expression analysis confirmed the statistically 

significance difference between metastatic and non-metastatic RMS samples (P=0.034) 

(Figure 13). The bisulfite Sanger sequencing of promotorial regions is a useful approach to 
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identify the methylation profile of a region, but is not a method suitable to scale up to many 

samples. Therefore, we decided to used a quantitative methylation–specific PCR (qMS-PCR) 

technique that allow to discriminate methylated from unmethylated sequences using specific 

pairs of primers. The control assay was performed using in vitro fully methylated DNA as 

template. We used the region that we sequenced in cell lines after bisulfite conversion to 

construct two qMS-PCR assays (Figure 14). One assay, amplified the region spanning from 

position +465 to +574 (site 1) and was selected because already used by Wang et al. (Wang et 

al., 2014) for PCDHA4 methylation level assessment in cervical cancer. We adapted their 

assay to a quantitative technique. Then we designed a second assay in a region closest to the 

TSS (from position +274 to +393, site 2), since our CpG Sanger sequencing data revealed that 

also this region is able to discriminate between metastatic and non-metastatic samples. The 

results obtained are highly variable and we did not observe any difference of methylation 

status between metastatic and non-metastatic samples. Therefore, we performed a Pearson’ 

correlation analysis between PCDHA4 expression and methylation values of site 1 and site 2 

and we detected a statistically moderate significance for the second site (r=-0.32; P= 0.08) 

(Figure 15 A), that mapped in the closest region to TSS. Conversely, none correlation was 

observed for the first site analyzed (r=0.01138; P=0.9524) (Figure 15 B). For these reasons 

we decided to continue our analysis using only the methylation data obtained for the second 

site. Therefore, we performed parametric (Welch Two t-test) and non parametric (Wilcoxon 

rank sum test) tests to correlate the methylation and expression levels with clinical prognostic 

features of RMS: histology, presence of t(2;13) (q35;q14) translocation, sex, size of tumor 

and IRS group. In these analysis we found that PCDHA4 expression levels did not show any 

correlation with clinical variables (Figure 16 A-E). Conversely, we observed that PCDHA4 

methylation status correlates with the tumor size (<5cm or >5cm, Wilcoxon rank sum test: P= 

0.059) (Figure 17 A-E). 

To investigate a prognostic value of PCDHA4 expression and promoter methylation level, 

we performed survival curve analysis. We selected two groups of patients based on median 

value of PCDHA4 expression and methylation levels (high levels and low levels) and built 

Kaplan-Meier curves for overall survival (OS) and progression free survival (PFS). For both, 

gene expression and methylation variables, the survival curves were not statistically 

significant (Figure 18 A, B). 
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Figure 13. Relative expression analysis of PCDH4 assessed in 12 metastatic RMS tumor samples 

compared to17 non-metastatic ones. Distribution of data is represented by box plot analysis. GAPDH was 

used as housekeeping gene for normalization. Expression ratio >1: high PCDHA4 expression in 

metastatic RMS samples than non-metastatic ones; expression ratio <1: low PCDHA4 expression in 

metastatic RMS samples than non-metastatic ones; expression ratio =1: equal expression of PCDHA4 in 

metastatic RMS samples and non-metastatic ones. * P<0.05. The analysis was performed with REST 

software. 

 

 

 

 

Figure 14. Schematic representation of the sequenced PCDHA4 promotorial region spanning from 

position +94 to +828, where position +1 corresponds to the trascriptional start site (TSS). Red squares 

represent the site where we designed qMS-PCR assays. Site1: from +456 to +574; site2: from +274 to + 

393; Circles: cytosine within CpG dinucleotides. 
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Figure 15. Pearson’s correlation between PCDHA4 expression level and methylation values of site 1 and 

site 2.  
 

 

Figure 16. Correlation between PCDHA4 expression levels and clinicopathological parameters in RMS 

tumours. Distribution of data is represented by box plot analysis comparing RMS samples based on (A) 

gene fusion status, (B) sex, (C) histology, (D) IRS group and (E) tumour size. PCDHA4 expression 

levels were assessed by qRT-PCR in 29 RMS biopsies and normalized to GAPDH. P-values shown 

were calculated using Wilcoxon rank sum test. P3N: PAX3-FOXO1 negative RMS biopsies, P3F: 

PAX3-FOXO1 positive RMS biopsies, F: female, M: male, n.e.: not evaluable. * P<0.05. 
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Figure 17. Correlation between PCDHA4 methylation levels of site 2 and clinicopathological parameters 

in RMS tumours. Distribution of data is represented by box plot analysis comparing RMS samples based 

on (A) gene fusion status, (B) sex, (C) histology, (D) IRS group and (E) tumour size. PCDHA4 

methylation levels were assessed by qMS-PCR in 29 RMS biopsies and normalized to GAPDH. As 

calibrator we used an in vitro fully methylated DNA. P-values shown were calculated using Wilcoxon 

rank sum test. P3N: PAX3-FOXO1 negative RMS biopsies, P3F: PAX3-FOXO1 positive RMS biopsies, 

F: female, M: male, n.e.: not evaluable. * P<0.05 
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Figure 18. Kaplan-Meier curves considering (A) PCDHA4 expression and (B) PCDHA4 methylation 

level. The two groups indicate high or low levels of PCDHA4 expression or methylation. Group 1: 

low PCDHA4 expression or methylation levels (≤ median values); group 2: high PCDHA4 expression 

or methylation levels (>median values). PFS=progression-free survival; OS= overall survival.  
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4.2. Evaluation of DNA methylation in RMS tumors biopsies using Reduced-

Representation Bisulfite Sequencing 

4.2.1. Reduced-Representation Bisulfite Sequencing analysis 

We performed an Illumina sequencing to detect DNA methylation pattern of 15 RMS 

tumor biopsies including 7 ERMS and 8 PAX3-FOXO1 positive ARMS (Table 4). The 

sequencing was performed using Reduced-representation bisulfite sequencing (RRBS) 

method at the BGI technology centre (BGI HongKong, Shenzhen, China; www.bgi-

international.com). 

RRBS is a bisulfite-based method that enriches CG-rich parts of the genome, thereby 

reducing the amount of sequencing required while capturing the majority of promoters and 

other relevant genomic regions. The approach provides single-nucleotide resolution and 

quantitative DNA methylation measurements as well. 

The quality of DNA samples was evaluated using Qubit fluorimeter to assess the 

concentration of nucleic acids and gel agarose electrophoresis was used to test the integrity of 

DNA. All the 15 DNA analyzed passed the quality control (Figure 19). 

 

 

Figure 19. Agarose gel electrophoresis of some genomic DNA biopsies to determine samples integrity. 

Presence of a single band of high molecular weight confirmed the integrity of the analyzed samples. 

M1, M2: molecular weight marker; Lane 1: ARMS 2 genomic DNA; Lane 2: ARMS 6 genomic DNA; 

Lane 3: ERMS 8 genomic DNA; Lane 4: ERMS 7 genomic DNA; Lane 5: ARMS 19 genomic DNA; 

Lane 6: ARMS 26 genomic DNA; Lane 7: ARMS 28 genomic DNA; Lane 8: ERMS 22 genomic DNA. 

 

 

Standard bioinformatic analysis was performed at BGI Biotechnology centre and are 

summarized below. The raw reads were filtered, including removing adaptor sequencing, 

contamination and low-quality reads (Table 8). Then, the sequenced reads were aligned to the 

reference by SOAP aligner (Table 9). Every hit with a single placement with minimum 

numbers of mismatches and a clear strand assignment was defined as unambiguous alignment 
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(uniquely mapped reads). Uniquely mapped reads which have restriction enzyme cutting site 

were used for the following analysis. 

 

Sample Name Insert size (bp) Read lenght (bp) Clean reads Clean base (Gb) 

ARMS 2 40-220 49 65’306’124 3.20 

ARMS 3 40-220 49 65’306’124 3.20 

ARMS 6 40-220 49 65’306’124 3.20 

ERMS 7 40-220 49 65’306’124 3.20 

ERMS 8 40-220 49 65’306’124 3.20 

ERMS 10 40-220 49 68'496’770 3.36 

ARMS 18 40-220 49 65’306’124 3.20 

ARMS 19 40-220 49 64'050’928 3.14 

ARMS 26 40-220 49 65’306’124 3.20 

ERMS 21 40-220 49 65’306’124 3.20 

ARMS 28 40-220 49 65’306’124 3.20 

ERMS 22 40-220 49 65’306’124 3.20 

ERMS 25 40-220 49 65’306’124 3.20 

ARMS 31 40-220 49 65’306’124 3.20 

 

 

Table 8. Data production by RRBS experiments. Gb: giga base pairs; bp: base pairs. 
 

 

 

Sample 

Name 

Clean 

reads 

(Mb) 

Mapped reads 

(Mb) 
Map rate 

Uniquely 

mapped 

reads (Mb) 

Uniquely 

mapped rate 

(%) 

Enzyme 

cutting reads 

(Mb) 

Enzyme 

cutting rate 

(%) 

Bisulfite 

conversion 

rate (%) 

ARMS 2 65.31 60.34 92.40 45.56 69.77 44.09 96.77 99.78 

ARMS 3 65.31 58.92 90.23 44.55 68.22 43.13 96.80 99.77 

ARMS 6 65.31 59.40 90.96 44.03 67.42 43.20 98.12 99.82 

ERMS 7 65.31 59.35 90.87 45.38 69.48 43 .81 96.53 99.79 

ERMS 8 65.31 59.97 91.83 45.29 69.35 44.15 97.48 99.80 

ERMS 10 68.50 60.65 88.54 45.57 66.53 44.20 97.00 99.77 

ARMS 18 65.31 59.97 91.83 45.82 70.16 44.89 97.98 99.78 

ARMS 19 64.05 59.79 93.34 45.73 71.40 44.84 98.05 99.41 

ARMS 26 65.31 57.27 87.69 41.98 64.29 41.10 97.90 99.33 

ERMS 21 65.31 59.98 91.84 46.25 70.82 45.29 97.92 99.49 

ARMS 28 65.31 51.64 79.07 37.98 58.16 36.20 95.32 99.18 

ERMS 22 65.31 59.72 91.45 45.53 69.71 44.42 97.57 99.45 
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Sample 

Name 

Clean 

reads 

(Mb) 

Mapped reads 

(Mb) 
Map rate 

Uniquely 

mapped 

reads (Mb) 

Uniquely 

mapped rate 

(%) 

Enzyme 

cutting reads 

(Mb) 

Enzyme 

cutting rate 

(%) 

Bisulfite 

conversion 

rate (%) 

ERMS 25 65.31 59.20 90.65 44.78 68.56 43.75 97.71 99.76 

ARMS 31 65.31 58.61 89.75 43.25 66.22 42.19 97.55 99.80 

 

Table 9. Results of reads alignment. Enzyme rate is the percentage of unique reads which have 

enzyme cutting site. Mb: mega base pairs. 

 

 

Sequencing coverage describes the average number of reads that align to, or "cover," 

known reference bases. The next-generation sequencing coverage level often determines 

whether variant discovery can be made with a certain degree of confidence at particular base 

positions. Sequencing coverage requirements vary by application. However, at higher levels 

of coverage, each base was covered by a greater number of aligned sequence reads, so base 

calls can be made with a higher degree of confidence. The RRBS approach can covered most 

amount of promoters, although not all of genome's. The average coverage rate of CpG islands 

(CGIs) and promoters was calculated as the % ratio between practical value (number of CGIs 

or promoter regions covered by sequencing reads) and theoretical value (number of 

theoretical CGIs or promoter regions in enzyme cutting fragments than whole genome). 

Considering all the RMS samples the average coverage rate for promoter regions and CGIs 

were respectively 89.49 % (+/-1.43) and 93.06 % (+/-1.5) (Table 10). 

 

Sample Name Promoter CGI 

Genome 31’420 27’718 

Enzyme fragment region 25’969 24’653 

ARMS 2 23’335 23’000 

ARMS 3 23’474 23’114 

ARMS 6 23’238 22’926 

ERMS 7 23’340 22’994 

ERMS 8 23’441 23’184 

ERMS 10 23’460 23’177 

ARMS 18 23’366 23’064 

ARMS 19 23’338 23’037 

ARMS 26 22’798 22’592 

ERMS 21 23’526 23’202 

ARMS 28 22’041 21’698 
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Sample Name Promoter CGI 

ERMS 22 23’435 23’131 

ERMS 25 23’246 22’990 

ARMS 31 23’235 22’979 

 

Table 10. Number of covered promoter regions and CGIs. 

 

The coverage rate of CpG dinucleotides at promoter regions and CGIs in each different 

depth was shown in Figure 20. Theoretical coverage rate was the percentage of CpG 

dinucleotides which located in enzyme cutting fragments. 

 

 

 

Figure 20. Theoretical CpG coverage and practical coverage in different depth at CGIs and promoter 

regions. Bar graph compares the different depth with the theoretical value, each region has four bars with 

different colors representing different depth (1X, 4X and 10X), and the vertical axis represents the 

coverage rate. 

 

Moreover, it was calculated the average methylation level of cytosine in CpG dinucleotides 

for each sample dividing the number of the reads covering each 5mC by the total reads 

covering that cytosine. The average methylation level in CGIs and promoter context ranged 

from 40 to 60%, showing the same distribution in all analyzed samples (Table 11). 

 

Sample Name 
Promoter 

(%) 
CGI (%) 

ARMS 2 51.94 49.22 

ARMS 3 52.16 51.44 
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Sample Name 
Promoter 

(%) 
CGI (%) 

ARMS 6 48.48 50.62 

ERMS 7 57.82 58.33 

ERMS 8 48.40 51.65 

ERMS 10 51.57 50.10 

ARMS 18 48.57 47.68 

ARMS 19 58.70 51.82 

ARMS 26 42.76 42.37 

ERMS 21 52.55 47.98 

ARMS 28 46.16 42.20 

ERMS 22 50.85 50.42 

ERMS 25 55.46 56.05 

ARMS 31 48.10 47.39 

 

Table 11. Average methylation level of cytosine in CpG dinucleotides at CGIs and promoter 

regions. 
 

Finally, were identified the differently methylated regions (DMRs) comparing ERMS and 

PAX3-FOXO1 positive ARMS samples using Bsmooth, an opensource software (Kasper et 

al., 2012). Each DMR was associated to a P-value: at a smaller P-value matched a greater 

difference in methylation value. Therefore, a methylation value >0 means a hypermethylation 

in ERMS than PAX3-FOXO1 positive ARMS, on the contrary if methylation value is <0 a 

hypomethylation in ERMS was observed with respect to PAX3-FOXO1 positive ARMS. 

 

 

4.2.2 Functional annotation clustering of differentially methylated regions  

To analyze the DMRs identified by Illumina sequencing we mapped all obtained DMRs 

against the genome. First of all, we identified the DMRs associated to the putative promoters 

(promoter-DMRs), that we defined as regions ranging from position -2000 to +1000, where 

+1 corresponding to transcription start site (TSS). Then, we identified the DMRs that 

overlapped the gene bodies (genebody-DMRs) and finally, the DMRs “distal” to genes (+/- 50 

Kb to known genes) (distal-DMRs). The results are summarized in Table 12. 
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 Number of DMRs 

promoter-DMRs 2733 

genebody-DMRs 1959 

distal-DMRs 1307 

not-annotated-DMRs 818 

Total 6817 

 

Table 12. Distribution of DMRs found by RRBS analysis on the genome. DMRs associated to 

promoter, gene body and distal regions. It is also reported the number of DMRs associated with not 

annotated sequences. 
 

We focused our attention first on promoter-DMRs. Then, a filter for methylation value (+/- 

0.4) was applied obtaining a list of 1252 promoter-DMRs associated to transcripts. Therefore, 

we performed a functional annotation clustering using DAVID web tool 

(https://david.ncifcrf.gov) distinguishing a set of enriched classes and enriched pathways, 

with P-value<0.05. This analysis allowed us to discovery genes directly or indirectly 

modulated by DNA methylation. We found a consistent number of genes involved in 

transcription, insulin receptor signaling, chromatin modification, DNA repair, cell migration 

and actin cytoskeleton organization (Table 13). Interestingly, we found also an enrichment of 

pathways that are linked to altered processes in cancer (Table 14). 

 

 

Annotation Cluster * 

Enrichement 

score P-value Number of genes 

Transcription 8,52 1,20E-006 339 

Insulin receptor signaling pathway 3,18 2,30E-005 16 

Chromatin modification 3,02 3,60E-003 52 

DNA repair 2,4 1,20E-002 51 

Positive regulation of cell migration 1,67 8,00E-003 21 

 

Table 13. List of enriched classes found by functional annotation clustering of promoter-DMRs. 

*Biological process.  
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ID KEGG 

pathway 
KEGG pathways Number of genes P-Value 

hsa05200 Pathways in cancer 71 1.94E-6 

hsa04722 Neurotrophin signaling pathway 35 4.25E-6 

hsa04010 MAPK signaling pathway 56 7.44E-5 

hsa04916 Melanogenesis 27 1.26E-4 

hsa05215 Prostate cancer 25 1.46E-4 

hsa04512 ECM-receptor interaction 23 4.31E-4 

hsa04810 Regulation of actin cytoskeleton 45 4.57E-4 

hsa04310 Wnt signaling pathway 34 7.13E-4 

hsa04910 Insulin signaling pathway 31 9.24E-4 

hsa04510 Focal adhesion 41 0.001 

hsa04914 Progesterone-mediated oocyte maturation 22 0.001 

hsa05210 Colorectal cancer 21 0.002 

hsa04540 Gap junction 21 0.005 

hsa05217 Basal cell carcinoma 15 0.006 

hsa05222 Small cell lung cancer 20 0.006 

hsa04340 Hedgehog signaling pathway 15 0.007 

hsa04912 GnRH signaling pathway 22 0.008 

hsa04270 Vascular smooth muscle contraction 24 0.009 

hsa04110 Cell cycle 26 0.010 

hsa05211 Renal cell carcinoma 17 0.010 

hsa04114 Oocyte meiosis 23 0.015 

hsa04720 Long-term potentiation 16 0.017 

hsa04662 B cell receptor signaling pathway 17 0.020 

hsa05214 Glioma 15 0.020 

hsa05213 Endometrial cancer 13 0.023 

hsa05218 Melanoma 16 0.026 

hsa05223 Non-small cell lung cancer 13 0.030 

hsa00534 Heparan sulfate biosynthesis 8 0.035 

hsa04012 ErbB signaling pathway 18 0.037 

 

Table 14. List of enriched KEGG pathways found by functional annotation clustering of 

promoter-DMRs. 
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4.2.3. Correlation of gene expression and promoter methylation status in RMS 

The gene ontology analysis allowed us to give functional information of genes and pathway 

associated with DMRs identified comparing ERMS and PAX3-FOXO1 positive ARMS. To 

verify if methylation status of the promoters reflected a different expression of downstream 

genes we performed bioinformatics analysis using gene expression datasets obtained by 

microarray experiments on RMS tumor biopsies or RMS cell lines available in literature. We 

analyzed gene expression profiling of 4 different studies (Davicioni et al.,2006, Whachtel et 

al., 2004, De Pittà et al., 2006, Rapa et al., 2012). We focused our attention in genes 

differentially expressed comparing PAX3-FOXO1 positive ARMS and ERMS samples that 

had matched with our methylation dataset. We found a set of 111 genes for which were 

available both gene expression and methylation data. We observed an anti-correlation 

between gene expression and promoter methylation status in only 50-60% of analyzed genes. 

We used the functional annotation web tool DAVID to performed a GO-term analysis and to 

identify which functional categories are over-represented. The terms analyzed had an adjusted 

P-value <0.05 and are shown in Table 15.  

 

GO-term Enrichement score P-value 

Angiogenesis 2.17 3.0*10-4 

Cell proliferation 2.14 3.2*10-2 

MAPKKcascade 2.12 2.9*10-4 

Cell adhesion 1.60 5,.4*10-2 

WNT signalling 1.36 8.4*10-3 

Pathway in cancer 1.36 5.6*10-2 

 

Table 15. List of enriched GO-term found by functional annotation clustering of genes which had 

an inverse correlation between gene expression and methylation status. 

 

 

4.2.4. Validation of candidate genes by qRT-PCR in RMS cell lines and tumor biopsies 

Based on anti-correlation gene expression/methylation and on literature data we selected 

some target genes for validation studies (Table 16).  
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Gene Symbol  Official full name 

SNAI1 snail family zinc finger 1 
 

ADAM9 ADAM metallopeptidase domain 9 
 

ADAM22 ADAM metallopeptidase domain 22 
 

CDC14B cell division cycle 14B 
 

NELL1 neural EGFL like 1 
 

HDAC11 histone deacetylase 11 
 

GAB2 growth factor receptor bound protein 2-associated protein 2 
 

FAM3C family with sequence similarity 3 member C 
 

IRS2 insulin receptor substrate 2 
 

TNFAIP3 tumor necrosis factor, alpha-induced protein 3 
 

CYR61 cysteine rich angiogenic inducer 61 
 

NRP2 neuropilin 2 
 

GADD45G growth arrest and DNA-damage-inducible 45 gamma 
 

CSNK1E casein kinase 1, epsilon  
 

PIAS1 protein inhibitor of activated STAT 1 
 

CCND1 cyclin D1 
 

CFL1 cofilin 1 
 

POU4F1 POU class 4 homeobox 1  

 
Table 16. Genes selected for validation studies based on assessment of inverse correlation 

between expression and methylation, besides literature data. 

 

 

We assessed the expression levels of the 18 genes in 7 RMS cell lines by qRT-PCR assay 

(Table 5, Figure 21 A). We found only for 9 genes an inverse correlation between expression 

and methylation comparing the two subgroups PAX3-FOXO1 positive vs PAX3-FOXO1 

negative. The expression levels is significant for SNAI1 (P<0.001), CDC14B (P=0.034), 

NELL1 (P=0.023), HDAC11 (P<0.001), TNFAIP3 (P=0.003), CYR61 (P=0.021), NRP2 

(P=0.003), GADD45G (P<0.001) and POU4F1 (P<0.001) (Figure 21 A). 

Subsequently, we analyzed in 25 RMS tumor biopsies (Table 4) the genes that shown a 

good anti-correlation in RMS cells. We found that SNAI1 (P<0.001), CDC14B (P=0.006), 

NELL1 (P=0.015), GADD45G (P=0.017), TNFAIP3 (P=0.017) and POU4F1 (P=0.002) were 

statistically different in PAX3-FOXO1 positive RMS samples than in PAX3-FOXO1 negative 

ones (Figure 21 B). 
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Figure 21. RRBS data validation by qRT-PCR analysis. (A) Relative expression levels of 18 selected 

genes in 3 PAX3-FOXO1 positive RMS cell lines compared to 4 PAX3-FOXO1 negative ones. (B) 

Relative expression levels of the 9 selected genes in 10 PAX3-FOXO1 positive RMS tumor samples 

compared to 15 PAX3-FOXO1 negative ones. Distribution of data is represented by box plot analysis. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as housekeeping gene for 

normalization. Expression ratio >1: high expression in PAX3-FOXO1 positive RMS samples than 

PAX3-FOXO1 negative ones; expression ratio <1: low expression in PAX3-FOXO1 positive RMS 

samples than PAX3-FOXO1 negative ones; expression ratio =1: equal expression in PAX3-FOXO1 

positive RMS samples and PAX3-FOXO1 negative ones. * P<0.05; **P<0.01; ***P<0.001. 
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4.2.5. Restoration of expression after DAC and TSA treatment in RMS cell lines. 

To study the possible role of promoter methylation in the regulation of gene expression we 

performed in vitro treatment with 5-aza-2'-deoxycytidine, trichostatin A and a combination of 

both drugs. For these experiments, we used RH30 and RH4 as PAX3-FOXO1 positive RMS 

cell lines and RH36 and RD as PAX3/7-FOXO1 negative RMS cell lines. We assessed the 

expression levels by qRT-PCR after 72 hours of treatment with DAC and after 16 hours of 

treatment with TSA. We observed a moderate restoration of GADD45G expression in RD 

cells after DAC treatment, while no change in RH36 cell lines either with DAC treatment 

neither with its combination with TSA (Figure 22 A). Conversely, the restoration of NELL1 

expression was evident after treatment with DAC+TSA in RD cell lines ,and with only DAC 

and DAC+TSA (more than 100 folds) in RH36 cells (Figure 22 C). TNFAIP3, POU4F1, 

SNAI1 and CDC14B did not show significant changes in their expression levels by treatment 

with DAC, TSA or DAC+TSA (Figure 22 B, D, E, F). These data confirmed the involvement 

of DNA methylation processes in NELL1 gene expression regulation besides the synergistic 

action of histone acetylation. Even for GADD45G we verified a regulation under methylation 

control, although more moderate than that observed for NELL1. 
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Figure 22. Relative expression of (A) GADD45G, (B) TNFAIP3, (C) NELL1, (D) POU4F1, (E) SNAI1 

and (F) CDC14B, assessed after treatment with 1uM of 5-aza-2’-deoxycytidine (72 h), 200 ng/mL of 

trichostatin A (16 h) or the combination of both. Expression levels were assessed by qRT-PCR. 

Housekeeping GAPDH gene was used as internal control for normalization and DMSO-treated cells as 

calibrator. RH30, RH4: PAX3-FOXO1 positive RMS cell lines; RD, RH36: PAX3-FOXO1 negative RMS 

cell lines; DAC: 5-aza-2’-deoxycytidine; TSA: trichostatin A. RQ= relative expression ratio. 
 

 

4.2.6. Bisulfite sequencing of NELL1 and GADD45G regulative regions in RMS cell lines 

reveals a different methylation pattern 

Based on in vitro treatments we decided to focus our attention on GADD45G and NELL1 

genes. To validate previous results we performed a bisulfite Sanger sequencing in PAX3-

FOXO1 positive cell lines (RH30 and RH4) and PAX3-FOXO1 negative ones (RH36 and 

RD). To design primers for sequencing we used methPrimer, a free online tool (Li and 

Dahiya, 2002). It is a program for designing PCR primers for methylation detection at CpG 

level. Primers are picked around predicted CpG islands or around regions specified by users 

on the input sequences that is subject to an in-silico bisulfite conversion assuming all cytosine 

in CpG context were methylated. In the output table of methPrimer we selected primers that 

amplify a region downstream the TSS for NELL1, ranging from position +330 to position 

+579 and two regions for GADD45G promoter, one spanning from -1175 to -915 (region 1) 

than TSS and one from -796 to -504 (region 2). Therefore, we used those primers to amplified 

the candidate regions by PCR using genomic DNA previously converted using bisulfite 

treatment. Then we subcloned PCR products in pSC-A-amp/kan vector and sequenced at least 

eight clones for cell lines. We found an hypermethylation of NELL1 in PAX3-FOXO1 

negative cell lines (63.88% of 5’m-CpG in RH36 and 53.46% of 5’m-CpG in RD) than 

PAX3-FOXO1 positive cell lines (0% of 5’m-CpG in RH4 and 22.91% of 5’m-CpG in RH30) 

(Figure 23). This result confirmed that methylation of the promoter region of NELL1 could 

modulate the gene expression. Indeed, we found that RMS PAX-FOXO1 positive cells that 
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showed low level of NELL1 genes had a hypermethylation of the promoter regions. Also for 

GADD45G we got the same results even if the difference between the two analyzed groups 

was much less marked than in NELL1. Indeed, while PAX3-FOXO1 positive cell lines were 

almost totally unmethylated (region 1: 0% of 5’m-CpG in RH4 and RH30; region 2: 0.96% of 

5’m-CpG in RH4 and of 1.92% 5’m-CpG in RH30), PAX3-FOXO1 negative cell lines were 

slightly more methylated (region 1: 0.73% of 5’m-CpG in RD and 6.61% of 5’m-CpG RH36; 

region 2: 1.92% of 5’m-CpG in RD and 24.51% of 5’m-CpG in RH36) (Figure 24). 

 

 

 

Figure 23. Sanger bisulfite sequencing of NELL1 promotorial region in 4 RMS cell lines. Sequencing 

was performed for at least 8 clones obtained by subcloning bisulfite-converted promotorial region. 

Sequenced region spanning from position +330 to +579, where position +1 corresponds to the 

trascriptional start site (TSS). The % mean value of methylation levels of the sequenced clones is shown 

on the right. Circles: cytosine within CpG dinucleotides; black circles: methylated cytosine; white circles: 

unmethylated cytosine; RH4, RH30: PAX3-FOXO1 positive RMS cell lines. RH36, RD: PAX3-FOXO1 

negative RMS cell lines. 
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Figure 24. Sanger bisulfite sequencing of GADD45G promotorial region in 4 RMS cell lines. Sequencing 

was performed for at least 8 clones obtained by subcloning two bisulfite-converted regions. Sequenced 

region 1 (left panels) spanning from position -1175 to -915, while sequenced region 2 ranging from 

position -796 to -504 (right panels). Position +1 corresponds to the trascriptional start site (TSS). The % 

mean value of methylation levels of the sequenced clones is shown to the right of the panels. Circles: 

cytosine within CpG dinucleotides; black circles: methylated cytosine; white circles: unmethylated 

cytosine; RH4, RH30: PAX3-FOXO1 positive RMS cell lines. RH36, RD: PAX3-FOXO1 negative RMS 

cell lines. 
 

 

4.2.7. NELL1 and GADD45G expression in RMS tumor biopsies: statistical analysis and 

prognostic impact 

To determine the biological impact of NELL1 and GADD45G in RMS tumors we evaluated 

their expression levels in a large cohort of RMS samples by qRT-PCR, using fetal skeletal 

muscle as calibrator. Moreover, we correlated the expression levels of NELL1 and GADD45G 

with clinicophatological variables and we addressed the likely prognostic value in RMS 

outcome. 

Survival and correlation analysis was conducted on 73 RMS biopsies divided into 23 

PAX3-FOXO1 positive ARMS, 7 PAX7-FOXO1 positive ARMS, 9 PAX3/7-FOXO1 negative 
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ARMS, 37 ERMS (Table 4). We divided the samples considering the most prognostic clinical 

variables such as the presence or absence of translocations t(2;13)(q35;q14) or 

t(1;13)(p36;q14), histology (alveolar or embryonal) and the IRS group (metastatic or non-

metastatic) and we performed Student's t-tests and Wilcoxon-Mann-Whitney tests. First, we 

confirmed that in the expanding cohort of RMS patients NELL1 and GADD45G expression 

levels were statistically significant different comparing RMS samples with or without 

translocations, independently from histology (NELL1 Student's t-test and Wilcoxon-Mann-

Whitney test: P<0.0001; GADD45G Student's t-test and Wilcoxon-Mann-Whitney test: 

P<0.0001) (Figure 25 A, B). Moreover, we found that the expression level of both NELL1 

and GADD45G were statistically significant different also between alveolar and embryonal 

RMS (NELL1: student's t-test: P= 0.0004, Wilcoxon-Mann-Whitney test: P<0.0001; 

GADD45G: student's t-test: P=0.0001, Wilcoxon-Mann-Whitney test: P<0.0001) (Figure 26 

A, B). We also performed a statistical analysis dividing the samples based on IRS group (IRS 

IV vs IRS I-II-III). The presence of distal metastasis at the diagnosis of diseases (patients 

included in IRS group IV) is known as an important indicator of poor prognosis. The analysis 

showed statistically significative difference between IRS IV and IRS I-II-III samples for 

NELL1 (P=0.0182) and even more pronounced for GADD45G (P=0.0006) (Figure 27 A, B). 

To establish if NELL1 and GADD45G gene expression levels can contribute to discriminate 

PAX3/7-FOXO1 positive RMS from PAX3/7-FOXO1 negative one, we constructed receiver 

operating curves (ROC). The area under the curve (AUC) for NELL1 was 0.9302 (P<0.0001) 

and for GADD45G was 0.9073 (P<0.0001) (Figure 28 A, B). We concluded that gene 

expression for both genes selected could be a good predictor to distinguish PAX3/7-FOXO1 

positive RMS and PAX3/7-FOXO1 negative one. 

Finally, we performed survival analysis dividing patients into groups on basis of the median 

value of NELL1 expression levels for NELL1 analysis (high NELL1 > 12.33; low NELL1 ≤ 

12.33) and the median value of GADD45G expression levels for GADD45G ones (high 

GAGG45G > 2.41; low GAGG45G ≤ 2.41). Kaplan-Meier analysis revealed that high levels 

of NELL1 and GADD45G gene expression had a significantly poorer prognosis than low 

levels of NELL1 and GADD45G transcripts, when we consider progression free survival 

(PFS) (NELL1: P=0.0245; GADD45G: P=0.0247) (Figure 29 A, B). While, we did not find 

any statistical difference when we consider the overall survival (OS) for both NELL1 and 

GADD45G genes (NELL1: P=0.0801; GADD45G: P=0.3514) (Figure 30 A, B). 
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Figure 25. Correlation between (A) NELL1 and (B) GADD45G expression levels with PAX3/7-

FOXO1 gene fusion status. NELL1 and GADD45G expression levels were assessed by qRT-PCR in 

73 RMS biopsies. Housekeeping GAPDH gene was used as internal control for normalization and 

fetal skeletal muscle as calibrator. P-values shown were calculated using Wilcoxon-Mann-Whitney 

test. P3/7N: PAX3/7-FOXO1 negative RMS biopsies, P3/7F: PAX3/7-FOXO1 positive RMS biopsies. 

* P<0.05; **P<0.01; ***P<0.001;****P<0.0001.RQ= relative expression ratio. 

 

 

 

 
 

 

 

Figure 26. Correlation between (A) NELL1 and (B) GADD45G expression levels with alveolar or 

embryonal histology. NELL1 and GADD45G expression levels were assessed by qRT-PCR in 73 

RMS biopsies. Housekeeping GAPDH gene was used as internal control for normalization and fetal 

skeletal muscle as calibrator. P-values shown were calculated using Wilcoxon-Mann-Whitney test. * 

P<0.05; **P<0.01; ***P<0.001;****P<0.0001. RQ= relative expression ratio. 
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Figure 27. Correlation between (A) NELL1 and (B) GADD45G expression levels with IRS group 

(IRS IV vs IRS I-II-III). NELL1 and GADD45G expression levels were assessed by qRT-PCR in 73 

RMS biopsies. Housekeeping GAPDH gene was used as internal control for normalization and fetal 

skeletal muscle as calibrator. P-values shown were calculated using Wilcoxon-Mann-Whitney test. 

IRS I-II-III: non-metastatic RMS tumors; IRS-IV: metastatic RMS tumors.* P<0.05; **P<0.01; 

***P<0.001. RQ= relative expression ratio. 
 

 

 

 

 

  

 

Figure 28. Receiver operating curve (ROC) analysis. ROCs show the sensitivity and specificity of (A) 

NELL1 and (B) GADD45G as a parameter to classify RMS patients (n=73) on the basis of PAX3/7-

FOXO1 fusion gene status. P-value and the area under the curve (AUC) are reported in the panels. 
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Figure 29. Kaplan-Meier curves for (A) NELL1 and (B) GADD45G expression level. We performed 

progression-free survival (PFS) curves dividing samples based on high or low levels of NELL1 and 

GADD45G expression. Group 1: low NELL1 and GADD45G expression levels (≤ median values); 

group 2: high NELL1 and GADD45G expression levels (> median values). 
 

 

 

 

 

 

 

Figure 30. Kaplan-Meier curves for(A) NELL1 and (B) GADD45G expression level. We performed 

overall survival (OS) curves dividing the samples based on high or low levels of NELL1 and 

GADD45G expression. Group 1: low NELL1 and GADD45G expression levels (≤ median values); 

group 2: high NELL1 and GADD45G expression levels (> median values). 
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5. DISCUSSION 

Several studies have investigated the different behavior and molecular features of PAX3-

FOXO1 positive and negative RMS. In the last decade many scientific studies confirmed that 

the gene expression profiles distinguish PAX3-FOXO1 positive RMS from PAX3-FOXO1 

negative RMS (Davicioni et al., 2006; De Pittà et al., 2006; Missiaglia et al., 2012; Hingorani 

et al., 2015). Moreover, miRNA expression profiles in human RMS cell lines discriminate 

fusion-positive RMS from fusion-negative (Tombolan et al., 2015). MicroRNAs are a class of 

small non-coding RNAs that negatively regulate protein-coding gene expression post-

transcriptionally by targeting mRNAs. Like microRNAs, other epigenetic modifications such 

as DNA methylation, can modulate the expression of genes and represents an interesting field 

to explore in RMS. Definition of genomic methylation patterns will offer the possibility to 

delineate how these epigenetic changes may be specific to different subgroups of tumors and 

furthermore, could be a useful approach to development new therapeutic strategies. 

We performed a genome-wide DNA methylation study on PAX3-FOXO1 positive and 

negative RMS tumors, using microarray platform, to determine the epigenetic pattern of RMS 

subgroups and to investigate how it contribute to their different biological behaviour. From 

this comparison we found a small set of differentially expressed regions (DMRs) that are 

associated to promoter region of genes or linked to intergenic regions. The DNA methylation 

field is continuously evolving, but nowadays the inverse correlation between promoter 

methylation status and expression level is widely accepted and well documented (Watt and 

Molloy, 1988; Bird and Wolffe, 1999). 

We selected a handful of target genes on which focus the validation studies. These genes 

are tumour suppressor and transcription factors that showed aberrantly methylation in several 

cancers or genes implicated in development, differentiation and apoptosis processes. 

Unfortunately, we observed a poor anti-correlation between methylation status and gene 

expression level in selected genes in both RMS cell lines and RMS tumours. Only HOXC11 

was found statistically hypermethylated and down-regulated in PAX3-FOXO1 positive 

samples than in PAX3-FOXO1 negative ones. HOXC11 belongs to the family of homeotic 

genes, characterized by the presence of highly conserved homeobox domain. It is a 

transcription factor, whose altered expression has been demonstrated to have a role in tumor 

progression of cutaneous melanoma (deBlacam et al., 2011) and, more recently, in cellular 

proliferation in renal cell carcinoma (Liu et al., 2015). To demonstrate the involvement of 
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methylation in HOXC11 gene expression regulation we performed in vitro pharmacological 

treatments and sequencing of its promoter after bisulfite treatment. We demonstrated that the 

treatment with 5-aza-2’-deoxycytidine restored HOXC11 expression in PAX3-FOXO1 

positive cell lines of 100 folds compared with untreated cells. Moreover, the sequencing of 

HOXC11 promoter region, after bisulfite conversion, confirmed that all cytosine in this region 

were methylated, contrary to what happened in PAX3-FOXO1 negative cell lines in which all 

cytosine were unmethylated. Unfortunately, we did not observe the same results in biopsies 

samples analyzed. Despite cell lines are an excellent model for in vitro studies about tumor 

biology and the response to pharmacological treatment, they have some limitations such as 

culture and growing conditions leading to the onset of genomic alteration and cellular 

dynamic differences from the real tumor micro-environment. 

Therefore, we explored the different methylation profiling between metastatic and non-

metastatic RMS tumor to understand whether the presence of distal metastasis at the onset of 

the disease could be associated to epigenetic alterations. The treatment of patients with RMS 

is multidisciplinary and is based on risk factors like histology, tumor site and size, nodal 

involvement and distal metastasis. In particular, the presence of metastasis is the most 

powerful independent prognostic factor, as the 5 year survival drops from approximately 70% 

in localized tumors to less than 30% in metastatic RMS. Children with localized disease that 

present a metastatic relapse after treatment have an even worse prognosis, with a probability 

to be long term survivors lower than 5%. Then, define the molecular characteristics of 

patients with advance stage of tumor respect to that have a localized tumor could contribute to 

a better molecular classification of RMS and to the identification of new targets for therapy. 

The IRS group system is highly predictive of outcome of RMS (Crist et al., 1995), in 

particular patients belong to group IRS IV, characterized by metastatic disease, have long 

term failure-free survival (FFS) rates of <30% (Breneman et al., 2003; Oberlin et al., 2008).  

We performed a new analysis on DNA methylation data dividing the samples based on IRS 

group: IRS IV group is defined as metastatic group, while IRS I, II and III samples represent 

the non-metastatic group. The comparison between metastatic and non-metastatic RMS has 

revealed a high number of DMRs. The gene ontology (GO) analysis of genes linked to DMRs 

showed that cell adhesion class is enriched in members of the protocadherin family. 

Protocadherins (PCDHs) are a group of transmembrane proteins and constitute the largest 

subfamily of the cadherin cell-adhesion molecules. In mammals, two types of PCDH classes 

have been defined based on their genomic structure: the non-clustered PCDHs, which are 

scattered throughout the genome (Kim et al., 2011) and the clustered PCDHs, which are 
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organized in three closely linked gene clusters designated as α, β and γ (Wu and Maniatis, 

1999). These gene clusters are generally organized into a variable region containing a tandem 

array of variable exons and a constant region containing one set of constant exons (Takeshi, 

2008). Microarray analysis revealed an enrichment of the clustered prothocadherins and a 

homogeneous representation of the three major classes. Protocadherins are predominantly 

expressed in the nervous system of developing vertebrates. It is demonstrated that clustered 

protocadherins regulate neuronal survival, as well as dendrite self-avoidance. Moreover, there 

are many studies which show an involvement of protocadherin in tumor processes. It is 

demonstrated that protocadherins behave as tumor suppressor genes and their involvement in 

cancer is due to aberrant DNA methylation that determine an altered pattern of expression. 

PCDH10 promoter methylation is associated with poor prognosis in non-small-cell lung 

cancer (Harada et al., 2015), in gastric cancer (Deng et al., 2014) and in prostate cancer 

(Wang et al., 2014), while PCDHA8 methylation may be associated with tumor progression 

and poor prognosis in non-muscle invasive bladder cancer (Lin et al., 2014; Lin et al., 2013). 

PCDH10 is also required for the proliferation and tumorigenicity of glioblastoma cells 

(Echizen et al., 2014), while silencing of PCDH17 protein expression through 

hypermethylation of the promoter leads to loss of its tumor-suppressive activity, which may 

be an event in the carcinogenesis of a subgroup of esophageal squamous cell carcinoma 

(Haruki et al., 2010). 

Our results, obtained with the microarray experiments, suggest that the aberrant 

methylation of protocadherins could be important in the biology of RMS and in particular in 

the metastatization processes. Unfortunately, when we assessed expression levels of some 

members of protocadherins cluster, in biopsies and in cells lines, we demonstrated an inverse 

correlation with methylation level only for one of them: PCDHA4. We demonstrated the role 

of DNA promoter methylation status in PCDHA4 expression with 5-aza-2’-deoxycytine 

treatment and bisulfite sequencing. Indeed, when we treated metastatic cell lines with 5-aza-

2’-deoxycytine, we restored the expression of PCDHA4. The bisulfite sequencing of its 

promotorial region confirmed once again the different methylation status of the PCDHA4 

promoter in metastatic RMS samples and non-metastatic ones. Coupling to 5-aza-2’-

deoxycytine treatment the trichostatin A one, we demonstrated also a synergic involvement of 

histones acetylation mechanisms in PCDHA4 regulation. Although, we demonstrated a 

different expression pattern of PCDHA4 between metastatic and non-metastatic RMS 

samples, we did not find an involvement in the RMS outcome. Indeed, we did not observe 

any correlation between expression and methylation level of PCDHA4 (assessed in a wider 
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cohort of patients) and clinical prognostic features of RMS, such as histology, presence of 

t(2;13)(q35;q14) translocation, sex and IRS group. Furthermore, the survival curve analysis 

did not reveal any correlation between PCDHA4 expression or methylation levels and 

outcome of patients. 

During the first part of the project, which involved the use of microarray-based technology 

for the study of DNA methylation, we encountered several experimental problems. The 

method to enrichment of methylated-DNA was not efficient, probably due to the low quality 

of started DNA samples. Indeed, we had at our disposal only TRIzol preparations of the 

selected biopsies for the analysis and we observed that DNA extracted with this method is 

highly degradated and showed a high concentration of salts which interfered with followed 

analysis. Moreover, we observed an high signal of background noise after hybridization on 

microarray platform. Furthermore, signals resulted from each array were variable and it was 

difficult performing inter-array normalization.  

The second part of the project is consisted of the validation of data obtained with 

microarray experiments with a different technology. We decided to use the Reduced-

Representation Bisulfite Sequencing (RRBS) approach carried out with an Illumina sequencer. 

We observed a low correlation and concordance between bisulfite sequencing and 

hybridization on DNA microarray platform. It is known that methylated DNA enrichments 

methods, used in our microarray experiments, provided the best coverage of the whole 

genome and gene body regions, while RRBS was superior for recognize CpGs in CpG islands 

and promoters. Moreover, the differences of our results could be caused by experimental 

difficulties occurred in microarray experiments as previously described. Of note, next-

generation sequencing (NGS), as RRBS approach, offers remedies to such microarray 

problems: (i) knowledge of genome annotation is helpful, but not required, while microarray 

design requires a priori knowledge of the genome or genomic features. This directly affects 

array effectiveness in cases of incomplete, incorrect, or outdated genome annotations; (ii) 

material is directly sequenced and not interrogated by hybridization to user defined sequences. 

This remove experimental bias and cross-hybridization issues from the analysis, that represent 

the major obstacle in microarray analysis. Since NGS offers single-nucleotide resolution one 

can monitor differences in as little as one nucleotide of the sequence; (iii) quantification of 

signal from sequence-based approaches is based on counting sequence tags rather than 

relative measures between samples: the result is unlimited fully-quantitative dynamic range of 

signal; (iv) because all next-generation platforms have the same data output it is hoped that 

the reproducibility of experimentation, and simplicity of bioinformatics analysis, will be 
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much improved over a variety of microarray platforms with unique oligonucleotide probes 

and hybridization conditions. 

The analysis of sequencing data have revealed a set of DMRs between PAX3-FOXO1 

positive and PAX3-FOXO1 negative RMS, many of them are associated to promotorial 

regions. The comparison with available datasets of gene expression on RMS biopsies and cell 

lines (Davicioni et al., 2006; Whachtel et al., 2004; De Pittà et al., 2006; Rapa et al., 2012) 

demonstrated an inverse correlation between gene expression and promoter methylation status 

in 50-60% of analyzed genes. A subsequent gene ontology analysis allowed us to detect the 

enriched classes, thus, based on literature data, we selected some target genes for validation 

studies. 

For GADD45G and NELL1 genes we confirmed an epigenetic regulation by DNA 

methylation. Treatment with 5-aza-2’-deoxycytine determined a restoration of GADD45G and 

NELL1 expression in PAX3-FOXO1 positive cell lines. Moreover, a strong synergic effect 

was observed for NELL1 using a combination of 5-aza-2’-deoxycytine and trichostatin A, 

suggesting a positive cross-talk between promoter methylation and histones acetylation in 

NELL1 regulation. All these data was supported by a bisulfite sequencing of promotorial 

regions of GADD45G and NELL1, that demonstrated a hypermethylation in PAX3-FOXO1 

positive RMS cell lines versus PAX3-FOXO1 negative ones. Moreover, we evaluated the gene 

expression level of GADD45G and NELL1 in a new cohort of RMS samples and we 

demonstrated a statistically different expression of GADD45G and NELL1 between PAX3-

FOXO1 positive RMS samples and PAX3-FOXO1 negative ones, in both tumor biopsies and 

cell lines. 

Growth arrest and DNA damage 45G (GADD45G) encodes a stress-responsive protein that 

is involved in DNA damage response and cell growth arrest through modulating a number of 

cellular proteins, including the proliferating cell nuclear antigen (PCNA), p21, Cdk1, 

cdc2/cyclin B1, p38 and c-Jun N-terminal kinase (JNK) (Ying et al., 2005; Liebermann et al., 

2011; Cretu et al., 2009; Vairapandi et al., 2002). Moreover, GADD45G levels are 

remarkably downregulated in different types of solid tumors compared to their corresponding 

normal tissues (Zhang et al., 2014). An aberrant inactivation, through proximal promoter 

methylation, plays an important role in esophageal squamous cell carcinoma (ESCC) 

carcinogenesis and this suggests a possible role as tumor suppressor (Guo et al., 2013). 

GADD45G is thought to act as functional tumor suppressor also in gastric cardia 

adenocarcinoma (GCA). It is frequently inactivated, together with GADD45A, in a 

epigenetically way, in patients with GCA. Silencing of GADD45A and GADD45G is most 
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likely responsible for conferring a selective growth advantage during GCA evolution and 

outgrowth (Guo et al., 2013). 

The NELL1 (Neural epidermal growth factor-like 1) gene encodes a protein kinase C-

binding protein that contains six EGF-like domains and belongs to a new class of cell-

signaling molecules controlling cell growth and differentiation (Matsuhashi et al., 1995; 

Watanabe et al., 1996; Kuroda and Tanizawa, 1999; Desai et al., 2006). The precise role of 

NELL1 in physiology and pathophysiology is not fully understood. Overexpression of NELL1 

increases osteoblast differentiation and reduces cell proliferation in transgenic mice, while 

downregulation of NELL1 using in vitro approaches inhibits osteoblast differentiation and 

suggests that reduced levels of NELL1 protein leads to promote cell proliferation at the suture 

line (Zang et al., 2002). It has also been reported that overexpression of NELL1 promotes 

apoptosis in osteoblasts both in vitro and in vivo (Zhang et al., 2003), and that this apoptotic 

activity may be associated with the Fas signaling pathway (Zhang et al., 2006). In NELL1 

mutant mice, loss of NELL1 expression was associated with reduced expression of genes 

encoding tumor necrosis factor receptor superfamily member 11b and extracellular matrix 

proteins (Desai et al., 2006), which have also been implicated in human carcinogenesis 

(Ingber, 2002; Rowinsky, 2005). Furthermore, the high frequency (44%) of NELL1 promoter 

hypermethylation in colon cancer suggests a potential role for NELL1 inactivation in colon 

tumorigenesis (Mori et al., 2006). NELL1 has been found inactivated via promoter 

hypermethylation also in human esophageal adenocarcinoma (EAC) and is associated with a 

poor prognosis in early-stage EAC patients. Hypermethylation of NELL1 could occur early in 

the genesis of EAC constituting a potentially useful early detection biomarker in this disease. 

(Jin et al., 2007). Recently, it has been demonstrated that NELL1 protein expression is 

downregulated in human renal cell carcinoma (RCC), presumably by promoter 

hypermethylation, and that lack of NELL1 expression may contribute to RCC progression by 

altered regulation of cancer cell behaviour (Nakamura et al., 2015). Moreover, up-regulation 

of NELL1 in PAX3-FOXO1 positive RMS cell lines was demonstrated also by previous 

microarray analysis performed on RMS cell lines, but a correlation with methylation was not 

investigated (Rapa et al., 2012). Taken together, these findings suggest that GADD45G and 

NELL1 function as a tumor suppressor gene in certain human cancers and that its expression 

is impaired by aberrant DNA methylation. 

Herein, we provided the first evidence that GADD45G and NELL1 may be involved also in 

RMS biology. Correlation analysis demonstrated as GADD45G and NELL1 expression levels 

are able to discriminate in a strong statistically way not only PAX3-FOXO1 positive and 
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negative RMS, but also metastatic and non-metastatic RMS. This is robustly supported by 

ROC analysis that showed as both these genes could be good predictors to distinguish PAX3-

FOXO1 positive and negative RMS. Furthermore, GADD45G and NELL1 expression levels 

affected the progression free survival suggesting their association with a poor prognosis in 

RMS patients. 

In conclusion, we observed a different methylation profile between PAX3-FOXO1 positive 

and PAX3-FOXO1 negative RMS, as well as among metastatic and non-metastatic RMS, 

using microarray platform. The RRBS sequencing has also demonstrated that PAX3-FOXO1 

positive and negative RMS have a different methylation pattern. With RRBS approach we 

found that GADD45G and NELL1, already described in the literature as tumor suppressors in 

a variety of cancers, are implicated in RMS biology. Moreover, high expression levels of 

GADD45G and NELL1 are indicators of unfavorable prognosis. Our efforts are now focusing 

in the establish the biological role of GADD45G and NELL1 in RMS, expanding the patients 

cohort and performing in vitro functional studies. 

Thus, we demonstrated that GADD45G and NELL1 could be novel potential biomarkers for 

diagnosis and prognosis of RMS patients. Futhermore, the DNA methylation changes in RMS 

could be interesting to apply new therapeutic strategies, probably in combination with histone 

deacetylase inhibitors drugs. Finally, a combined approach of standard chemotherapy with 

epigenetic drugs could be investigated to improve the RMS outcome. 
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