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Riassunto 
 

La leucemia linfoblastica acuta a cellule T (LLA-T) è un tumore ematologico 

derivante dalla trasformazione neoplastica dei progenitori dei linfociti T. Grazie ai 

numerosi progressi effettuati nelle tecniche di biologia molecolare, numerose 

alterazioni genetiche sono state identificate nei pazienti affetti da LLA-T, 

generando nuove opportunità per la messa a punto di una terapia più mirata. 

Delezioni e mutazioni a carico del gene WT1 sono state identificate nel 10-12% 

dei pazienti affetti da LLA-T, ma tuttora gli effetti derivanti da tali alterazioni non 

sono stati ancora ben chiariti. Il gene WT1 codifica per un fattore di trascrizione 

caratterizzato da diverse isoforme derivante da splicing alternativo. Le isoforme 

sono conservate in tutti i vertebrati ma differiscono tra loro per la presenza o 

assenza dell’esone 5 e di un tripeptide composto dagli amminoacidi lisina-

trenonina-serina (KTS), a cavallo tra il terzo e quarto dominio zinc finger. Le 

isoforme prive del KTS (KTS–) possiedono una forte affinità nel legare il DNA e 

quindi sono in grado di regolare la trascrizione dei geni bersaglio. La nostra 

ipotesi è che WT1 agisca come oncosopressore in condizioni di aplo-insufficienza 

nella LLA-T e che la sua assenza comporti un’alterata regolazione del suo assetto 

trascrizionale. In questo studio sono stati analizzati gli effetti della sovra-

espressione di WT1, sia delle isoforme normali che di un caratteristico mutante 

trovato nella LLA-T, sulla sopravvivenza e proliferazione delle cellule 

leucemiche. Abbiamo osservato che esclusivamente le isoforme (KTS–) erano in 

grado di influenzare negativamente la crescita delle cellule leucemiche e di 

diminuire la loro capacità di formare colonie in soft-agar. La sovra-epressione 

delle isoforme derivate da una caratteristica mutazione frameshift (E384Stop) 

nell’esone 7 del gene WT1, invece, non produceva alcun effetto sulla crescita delle 

cellule di LLA-T. Per mimare la deplezione di WT1 abbiamo indotto il 

silenziamento del gene nella linea cellulare di leucemia MOLT4 e abbiamo 

valutato l’effetto sulla crescita delle cellule mediante saggio clonogenico. 

Abbiamo riscontrato che le cellule leucemiche con bassi livelli di espressione di 

WT1 presentavano un significativo incremento di colonie rispetto alle cellule di 

controllo. Questi risultati suggeriscono che le mutazioni di WT1 possano 

determinare l’aplo-insufficenza del gene nelle cellule di LLA-T, favorendo la 
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crescita e lo sviluppo tumorale. Allo scopo di valutare se le mutazioni a carico di 

WT1 potessero indurre un’alterazione del suo assetto trascrizionale in cellule di 

LLA-T, ci siamo focalizzati nell’analisi dei suoi bersagli dopo deplezione di WT1 

in una linea cellulare di LLA-T. Mediante l’analisi di immunoprecipitazione della 

cromatina su tecnologia microarray (Chromatin Immunoprecipitation on chip; 

ChIP-chip), effettuata nella linea cellulare MOLT4, abbiamo ottenuto circa 800 

geni regolati direttamente da WT1 nella LLA-T. Analisi bioinformatiche hanno 

dimostrato un arricchimento di questi geni in alcune vie di segnale implicate nella 

risposta allo stress cellulare: la via di attivazione di p53, le vie coinvolte nella 

riparazione del DNA dopo danno cellulare e la via di segnalazione della Mitogen-

Activated Protein (MAP) chinasi. Integrando l’analisi ChIP-chip con l’analisi del 

profilo di espressione genica, ottenuta dopo silenziamento di WT1 nelle cellule 

MOLT4, abbiamo ulteriormente definito i bersagli diretti di WT1 che risultano 

anche de-regolati nella LLA-T. Questi risultano arricchiti nella via di segnalazione 

delle MAP chinasi. Prendendo spunto da questi risultati, abbiamo infine verificato 

se la ridotta espressione di WT1 nelle cellule di LLA-T, sia in linee cellulari che in 

campioni primari derivanti da pazienti affetti da LLA-T, ne favorisca la 

sopravvivenza in seguito a danno al DNA, per esempio dopo trattamento con 

radiazioni ionizzanti o farmaci chemioterapici. Le analisi della vitalità cellulare e 

dell’apoptosi di queste cellule hanno chiaramente mostrato come le alterazioni di 

WT1 inducano una maggior resistenza a condizioni di stress, in quanto vanno ad 

interferire con la trascrizione di importanti geni apoptotici, soprattutto quelli a 

valle di p53. In particolare l’induzione del gene BBC3/PUMA, un fattore chiave 

nella risposta apoptotica, è significativamente più elevata nelle cellule in cui WT1 

e p53 risultano funzionali. In conclusione, analizzando l’effetto della perdita 

dell’espressione di WT1 nella LLA-T, abbiamo riscontrato un’alterata regolazione 

di numerosi geni coinvolti nella patogenesi della LLA-T, in particolare quelli 

responsabili della risposta cellulare in seguito al danno al DNA, suggerendo 

ulteriormente un ruolo di WT1 come gene oncosopressore in questa neoplasia.  
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Summary 
 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic tumor, 

resulting from the transformation of T-cell progenitors. Thanks to advances in 

molecular techniques, many alterations have been identified in T-ALL cells 

opening new opportunities for targeted therapy. WT1 gene deletions and 

mutations have been reported in 10-12% of T-ALL patients, but the mechanisms 

downstream of WT1 alterations in T-ALL have not been elucidated. The WT1 

gene encodes a zinc-finger transcription factor which is characterized by multiple 

alternative isoforms. The isoforms that lack the three amino acids lysine-

threonine-serine (KTS–) between zinc finger 3 and 4, are conserved throughout 

vertebrate evolution and have high DNA-binding affinity and transcriptional 

activity. Most of WT1 mutations found in T-ALL are heterozygous frameshifts in 

exon 7 predicted to produce a truncated protein which lacks the DNA binding 

domain. Our main hypothesis is that WT1 acts as a haplo-insufficient tumor 

suppressor gene in T-ALL and that WT1 loss in T-ALL leads to de-regulation of 

pathway in T-ALL. In this study, we first analyzed the effects of full-length and 

mutant WT1 isoform over-expression on the survival and proliferation of T-ALL 

cells. We observed that only the (KTS–) isoforms negatively affected growth of 

T-ALL and impaired colony formation in soft-agar. Importantly, the truncated 

WT1 proteins, derived from a characteristic frameshift mutation in exon 7 

(E384Stop), had no effects. In parallel, we also analyzed the effects of WT1 loss 

in T-ALL cells. We found that WT1 knockdown in MOLT4 cells significantly 

increased the number of colonies in clonogenic assays in comparison with control 

cells. Overall these results indicated that WT1 most probably works as an haplo-

insufficient tumor suppressor gene in T-ALL. In order to evaluate if mutations in 

WT1 locus are most likely responsible for an impaired transcriptional program we 

mainly focused on the analysis of WT1 deregulated targets following WT1 loss in 

T-ALL cells. To define the structure of the transcriptional network activated by 

loss of function of WT1, we performed ChIP-chip and gene expression analysis in 

MOLT4 T-ALL cells. ChIP-chip analysis showed that WT1 direct targets were 

enriched in pathways responsible for cellular response to stress, such as p53, 

nucleotide excision repair and Mitogen-Activated Protein Kinases (MAPK) 
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signalling pathways. Integration of ChIP-chip data with gene expression analysis 

performed under WT1 loss of function conditions in MOLT4 cells provided an 

enrichment in the MAPK pathway. Stemming from these results, we finally 

evaluated if the loss of WT1 conferred increased survival after DNA damage, such 

as ionizing radiation or chemotherapeutic drugs, in MOLT4 T-ALL cells and 

primary T-ALL xenografts. Analysis of cell viability and apoptosis showed that 

WT1 alterations induced increased survival following DNA-damaging conditions, 

mainly affecting directly the transcription of important mediators of p53 apoptotic 

response. A master regulator of these effects was BBC3/PUMA, whose induction 

was augmented in the presence of both WT1 and p53 proteins. In conclusion, 

analyzing WT1 loss in T-ALL cells we determined a deregulation of several genes 

involved in the pathogenesis of T-ALL, in particular genes responsible for cellular 

response to stress, strongly suggesting WT1 acts as tumor suppressor gene in T-

ALL cells. 
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1.1 T-cell Acute Lymphoblastic Leukemia 

 

1.1.1 Molecular pathogenesis of T-cell Acute Lymphoblastic 

Leukemia  

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic 

tumors resulting from the uncontrolled clonal proliferation of an immature 

lymphoid cell committed to the T-cell lineage. Acquisition by the precursor of a 

series of genetic abnormalities leads to differentiation arrest and high proliferation 

of the transformed cell resulting in infiltration of a neoplastic clone in the bone 

marrow and in the suppression of normal hematopoiesis in various extramedullary 

sites
1,2

. The malignant transformation is a multistep process that includes several 

oncogenes and tumor suppressor genes which collaborate to disorganize the 

normal gene network that controls T-cell development leading to differentiation 

arrest, uncontrolled cell cycle progression, abnormal cellular metabolism and 

excessive cell proliferation. The most prominent genetic alteration is the deletion 

of the CDKN2A locus in chromosome band 9p21 affecting the p16/INK4A and 

p14/ARF suppressor genes which regulate cell cycle progression and p53 

mediated apoptosis, respectively
3
. In addition, activation of NOTCH1 signaling is 

the most prominent oncogenic pathway in T-cell transformation and is aberrantly 

activated in over 60% of cases
4
. The members of NOTCH protein family are 

essential regulators of the commitment of haematopoietic progenitors to the T-cell 

lineage. NOTCH1 activating mutations result in a ligand-independent release of 

the intracellular domain of NOTCH1 (ICN), which subsequently translocates to 

the nucleus where it acts as a transcription factor. Alternatively, NOTCH1 

mutations in the proline, glutamic acid, serine, threonine-rich (PEST) domain or 

inactivating mutations in the E3-ubiquitin ligase gene FBXW7 mutations preserve 

ICN from ubiquitin-mediated degradation by the proteasome
5
. The activation of 

many other oncogenes and oncogenic fusions also occur at defined stages in T-

cell development, again providing a close link between T-cell ontogeny and 

leukemogenesis. In fact, approximately 50% of T-ALL cases are characterized by 

chromosomal translocations which frequently involve the juxtaposition of 
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promoter and enhancer elements from T-cell receptor (TCR) genes with several 

transcription factor genes
1
. Hence, translocations between TCR and HOX genes 

(TLX1/HOX11, TLX3/HOX11L2, NKX2.1, NKX2.2, NKX2.5, and HOXA)
6-13

, basic 

helix-loop-helix (bHLH) family members TAL1, TAL2, LYL1
14-19

, BHLHB1
20

, 

LIM-only domain (LMO) genes (LMO1, LMO2)
21-23

, MYC
24-28

, MYB
29

 or TAN1
30

 

are recurrently found in T-ALL. In some cases, these factors can also be activated 

in the context of other non-TCR-associated chromosomal abnormalities. This is 

the case for small deletions activating TAL1
31

 and LMO2
32

; duplications of the 

MYB oncogene
33,34

 and the t(5;14)(q32; q11) translocation which activates the 

TLX3 oncogene in chromosome 5 by relocating it to the vicinity of the BCL11B 

locus in chromosome 14
35

. Additional molecular alterations present in T-ALL 

include transcription factor fusion oncogenes such as PICALM/MLLT10/CALM-

AF10
36-38

, MLL-MLLT1/MLL-ENL
39,40

, SET/NUP214
41

, NUP98-RAP1GDS1
42,43

; 

activation of signaling factors driving proliferation such as LCK
44

, CCND2
45,46

; 

JAK1
47

, NUP214-ABL1
48

, EML1-ABL1
49

 and NRAS
50

. Another important step in 

T-cell transformation is the loss of tumor suppressor genes in some signaling 

pathways, such as the RAS
51

 and PI3K signaling pathways
52

: in particular, cryptic 

deletions and/or mutations are present in the neurofibromatosis type 1 (NF1) gene, 

which encodes a negative regulator of the RAS pathway, occur in 3% of T-ALL
53

, 

and PTEN loss, a critical negative regulator of the PI3K-AKT signaling pathway, 

through nonsense, missense mutations or deletions occurs in 10-20% of human T-

ALL cases
54,55

. Finally loss-of-function mutations have also been identified in 

other tumor suppressor genes in T-ALL. Deletions and mutations in the WT1 gene 

are present in about 10% of T-ALLs and are frequently associated with oncogenic 

expression of the TLX1, TLX3, or HOXA oncogenes
55,56

. Monoallelic or biallelic 

deletions involving the LEF1 locus and mutations in the LEF1 gene are present in 

about 15% of T-ALL cases
57

. ETV6 mutations, a transcriptional repressor strictly 

required for the development of hematopoietic stem cells, produce truncated 

proteins with dominant-negative activity
58,59

. Loss-of-function mutations and 

heterozygous deletions of the BCL11B are recurrently found in T-ALL, 

suggesting that BCL11B haplo-insufficiency may be an important pathogenetic 

event in T cell leukemogenesis
60-62

. Moreover, loss-of-function mutations in 
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RUNX1 can be found in immature T-ALL samples, suggesting a tumor suppressor 

role for RUNX1 in T-cell transformation
62,63

. Recurrent somatic GATA3 missense 

mutations, an important regulator of T cell differentiation, cluster in the zinc 

finger DNA-binding protein domain, and may be responsible for the early block 

in T-cell development of leukemia
64

.  

 

 

 

Table 1. Classification of recurrent genetic alterations in T-ALL 
65

. 

 

More recently, alterations in some epigenetic modifiers, such as the polycomb 

repressive complex 2 (PRC2) have been found. Loss-of-function mutations and 

deletions have been reported up to 25% of T-ALLs in two critical components of 

the PRC2 complex, EZH2 and SUZ12 genes
66

. In addition, NOTCH1 activation 

was shown to specifically induce loss of the repressive H3K27me3 mark by 

antagonizing PRC2 complex activity during T cell transformation, suggesting a 
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dynamic interplay between oncogenic NOTCH1 activation and loss of PRC2 

function in the pathogensis of T-ALL
66

. In addition, mutations and deletions in 

PHF6 gene, a factor with a proposed role in epigenetic regulation, are present in 

about 16% of pediatric and 38% of adult T-ALL cases
67

.  

Currently, much emphasis has been put on the role of non-coding RNAs, such as 

miRNAs, lncRNAs, and circular RNAs, in normal development and disease, 

including cancer. With respect to T-ALL, Mavrakis and colleagues
68

 identified a 

set of five microRNAs (miR-19b, miR-20a, miR-26a, miR-92, and miR-223), 

small noncoding RNAs with regulatory functions, that cooperatively suppress a 

network of tumor suppressor genes, including PHF6, PTEN, BIM, and FBXW7 in 

a NOTCH1-induced murine bone marrow transplant model of T-ALL. Another 

work identified the miR-17-92 cluster as one of the most prominent oncogenic 

miRNA clusters able to induce T-cell leukemia in concert with activated 

NOTCH1
69,70

. Finally, other studies identified the roles of miR-223
71

 and miR-

128-3p
72

 as novel oncogenic miRNAs in T-ALL that cooperate with activated 

NOTCH1 signaling to accelerate T-ALL formation in vivo. 

Besides the emerging importance of microRNAs in many malignant diseases, 

long non-coding RNA (lncRNA) have been reported to play important roles in the 

pathogenesis of some tumors, although their role in the pathogenesis of ALL or 

other hematological system cancers remains poorly characterized
73

. Long 

noncoding RNAs are transcripts with a length of at least 200 nucleotides that lack 

protein-coding potential 
74

. They act mainly in concert with chromatin modifier 

enzymes and serve as scaffolds bridging between multiple proteins, guides to 

target chromatin remodelers to their target sites, or control devices that can induce 

protein conformational changes and thereby activate/inactivate the interacting 

protein complex
75

. In the context of T-ALL, Trimarchi and colleagues published 

the first landmark study on the identification of a set of lncRNAs under control of 

aberrant NOTCH1 signaling in T-ALL
76

. They identified LUNAR1 as an 

oncogenic lncRNA, localized in the nucleus, that is over-expressed in primary T-

ALLs, with higher expression in T-ALL cases that harbor activating NOTCH1 

mutations. LUNAR1 is located in cis to the insulin-like growth factor 1 receptor 

(IGF1R) locus and promotes its expression through a direct interaction between 
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an intronic IGF1R enhancer. Moreover, in vitro knockdown of LUNAR1 

significantly affected leukemic cell growth owing to decreased IGF1R signaling. 

These studies collectively show that lncRNAs act as an additional layer of 

complexity in T-ALL disease biology, suggesting that NOTCH signaling is able 

to shape also the lncRNA landscape in this disease
77

. These findings open the 

possibility that such previously uncharacterized transcripts are key modulators of 

cellular transformation, through their interaction with oncogenic and tumor 

suppressor programs in leukemia. 
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1.1.2 Genetic subgroups in T-ALL: molecular characteristics 

and prognostic relevance  

In the last years gene expression profiling studies identified molecular sub-types 

of T-ALL, which share unique immuno-phenotypic markers and gene expression 

signatures reflecting distinct stages of arrest during T cell development caused by 

deregulation in specific cellular processes, including cell cycle signaling, cell 

growth and proliferation, chromatin remodeling, and self-renewal
78

. There are at 

least four distinct genetic T-ALL subgroups: the TAL/LMO, the 

TLX3/HOX11L2, the TLX1/HOX11 and the HOXA subgroups. The TLX3 and 

TLX1 subgroups are exclusively characterized by rearrangements of the TLX3 and 

TLX1 oncogenes, respectively
10,79-83

. In contrast, the TAL/LMO and HOXA 

subgroups seem to be characterized by the presence of various rearrangements 

affecting several, but functionally equivalent oncogenes. For instance, the 

TAL/LMO subgroup is predominantly characterized by ectopic expression of 

TAL1 or LMO2 as a consequence of chromosomal rearrangements driven by T-

cell receptor (TCR) recombinatory events
14,21,22,32,84-89

. TAL1 and LMO2 

normally participate in the same transcriptional complex that regulates the activity 

of the important E2A/HEB transcription factors
90-92

. This may explain why TAL1- 

or LMO2-rearranged T-ALL cases have highly similar if not identical gene 

expression profiles
41

. The HOXA T-ALL subgroup is characterized by various 

chromosomal aberrations that all drive ectopic HOXA expression
41,93-95

. These 

include CALM-AF10 translocations, MLL-rearrangements or an inversion on 

chromosome 7 between the HOXA gene cluster and the TCRβ locus, and the SET-

NUP214 gene fusion due to the del(9) (q34.11q34.13) 
41

. SET-NUP214 recruits 

histone modifying enzymes boosting the activation of the entire HOXA locus.  

In parallel to the genetic classification, T-ALL cases can be further characterized 

on the basis of immuno-phenotypic features. These immuno-phenotypic 

categories include two classification systems: the European Group for the 

Immunological Characterization of Leukemias (EGIL) classification system and 

the more recent T-cell receptor (TCR) based classification system. The EGIL 

classification system distinguishes pro-/pre-T-cell subgroup (CD7
+
, CD2

+
 and/or 

CD5
+
 and/or CD8

+
, but CD1

–
 and sCD3

–
), the cortical T (CD1

+
) or the mature T 
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(sCD3
+
/CD1

–
) subgroup based on the cluster of differentiation (CD) markers 

indicated
96

. The TCR system distinguishes the immature (IM) stage (Cytoplasmic-

beta (Cytß )
–
, sCD3

–
, TCRαß

– or TCRγδ
–
), the pre-aß stage (Cytß

+
, sCD3

–
, 

TCRαß
– or TCRγδ

–
) and the TCRαß (sCD3

+
, TCRαß

+
) or TCRγδ (sCD3

+
, 

TCRαß
+
) stages

79
. 

Recognition of specific immuno-phenotypic and genetic characteristics may have 

prognostic relevance in T-ALL. The TAL- or LMO2-rearranged cases are 

exclusively arrested at the αß-lineage and share a similar gene expression profile; 

the TAL-rearranged cases are predominantly associated with mature TCRαß 

expressing blasts, while the LMO2-rearranged cases seemed to have a less mature 

phenotype
89

. Importantly, TAL1-rearranged T-ALLs demonstrate a trend to better 

outcome in various studies compared to the LMO2-rearranged leukamias, even if 

these findings need to be confirmed in larger T-ALL cohorts 
82,84,97

.  

TLX1 and TLX3 are related homeobox genes but they constitute different genetic 

subgroups. Notably, TLX1- and TLX3-rearranged cases are arrested at different 

developmental stages: about 40% of cases have an immature immuno-phenotype, 

40% of cases are committed to the αß-lineage
89

 and finally, 20% of cases have a 

mature immuno-phenotype committed to the TCRγδ-lineage. In general, the 

TLX3-rearranged cases are arrested at early stages of differentiation and have an 

adverse outcome respect to the TLX1-rearranged cases at least in some studies 

98,99
. The HOXA subgroup consists of T-ALL cases that have different types of 

rearrangements resulting in CALM-AF10, SET-NUP214 or MLL-fusion products 

or rearrangements that directly activate HOXA genes
100,101

. However, the number 

of T-ALL subtypes defined by gene expression profiling data is quite limited, and 

the possible explanation is that various molecular aberrations can lead to over-

expression of the same oncogenes. Recently a novel immature subtype of 

pediatric T-ALL has been identified. This subtype is named early T-cell precursor 

(ETP-ALL) and it is characterized by unique immuno-phenotypic properties, 

including lack of CD1a and CD8 expression, weak CD5 positivity, and expression 

of one of the stem-cell/myeloid markers CD13, CD117, CD33
102

. The ETP-ALL 

cells arise from early T-cell progenitors arrested at the double-negative stage of 

thymocyte development, show higher levels of LYL1 and LMO2 expression and 
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mutations targeting genes implicated in epigenetic regulation and cell signaling 

such as FLT3, NRAS, DNMT3A, IDH1 and IDH2. This subtype of T-ALL 

typically presents a myeloid expression pattern together with inactivation of 

important transcription factors such as RUNX1, GATA3, and ETV6
103

. The initial 

study that defined ETP- ALL reported an extremely poor clinical course for these 

patients, with 10-year overall survival rates of 19% for ETP-ALL patients, as 

compared with 84% for other T-ALL subtypes
104

. 

 

 

 

Table 2. Genetic lesions that define molecular-genetic subtypes in T-ALL 
65

. 
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1.1.3 Opportunities for targeted therapy in T-ALL  

High dose multi-agent chemotherapy is the current standard therapy for T-ALL 

and is highly effective in the majority of childhood leukemias, reaching almost 

85% of survival rates at ten years. Unfortunately, the aggressive regiments are 

very often associated with acute toxicities and long-term side-effects. Moreover, 

at least 40% of adult patients still fail the current induction therapy.  

In the last couple of years numerous studies have elucidated numerous genetic 

defects that drive T-ALL, opening numerous opportunities for multiple target 

therapies. The identification of activating NOTCH1 mutations in a large 

percentage of T-ALL patients created enormous interest in developing new 

therapies for T-ALL and prompted the initiation of clinical trials to test the 

effectiveness of agents blocking NOTCH1 signaling. The combination of γ-

secretase inhibitors (GSIs) and glucocorticoids was shown in preclinical models to 

increase efficacy and decrease toxicity in the treatment of T-ALL
105

. Alternative 

strategies to target the NOTCH1 pathway are still being developed and include 

specific NOTCH1- inhibitory antibodies, stapled peptides that target the NOTCH1 

transcriptional complex
106,107

 or pharmacologic inhibition or genetic ablation of 

IGF1R, a direct NOTCH1 target gene, inhibiting growth and viability of T-ALL 

cells
108

. Finally, Schnell and colleagues
109

 confirmed the critical role of Hes 

family BHLH transcription factor 1 (HES1) as downstream component of 

NOTCH1 signaling in T-ALL and revealed that perhexiline could evoke a strong 

in vitro and in vivo antileukemic response by reverting the HES1-driven gene 

expression signature, providing a new lead for targeted T-ALL treatment linked to 

hyperactive NOTCH1. Another possibility for a target therapy relies on the BCR-

ABL translocations that characterizes approximately 6% of adults and children 

with T-ALL
48

. BCR-ABL fusion exhibits aberrant sub-cellular localization and 

constitutive kinase activity. Therapy with tyrosine kinase inhibitors designed to 

target BCR-ABL, including imatinib, dasatinib and nilotinib, inhibit proliferation 

and induce apoptosis in T-ALL cell lines
110

 leading to a new therapeutic option in 

a subset of cases of T-ALL. Moreover, 10% of all T-ALL show gain-of- function 

mutations in IL7R that causes cytokine-independent receptor activation
111

, while 

JAK1 or JAK3 gain-of-function mutations induce a constitutive activation of 
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JAK/STAT signaling
47

. A number of inhibitors of JAK/STAT signaling are 

currently under clinical development, and the determination of their clinical 

activity against JAK1 mutated T-ALL will be of great interest. Pharmacologic 

inhibition of BCL-2 has been suggested as a promising new therapeutic strategy in 

immature subtypes of human T-ALL, in particular in ETP-ALL
112

: recent 

studies
113,114

 showed an increased sensitivity toward the highly specific BCL-2 

inhibitor ABT-199, and synergistic effects were reported between ABT-199 and 

conventional chemotherapeutics that are currently used in T-ALL. Finally, 

constitutive activation of the PI3K/AKT/ mTOR signal transduction pathway is 

achieved by deletions or mutations targeting PTEN (15% of T-ALL cases)
115,116

 

or PTEN post-transcriptional inactivation
117

. Given the aberrant activation of the 

PI3K/AKT/mTOR pathway, this signaling cascade has been evaluated as a novel 

therapeutic target in T-ALL. The mTOR inhibitor rapamycin showed promising 

results in preclinical models
118

 and might modulate glucocorticoid resistance in T-

ALL
119

. However, inhibition of mTOR can hyperactivate AKT by a feedback loop 

between mTOR, PI3K, and AKT
120

. Therefore, dual PI3K/mTOR small-molecule 

inhibitors have been evaluated and demonstrated to have cytotoxic activity against 

T-ALL cell lines and lymphoblasts obtained from primary human leukemia 

patients
121

. In addition, direct AKT inhibition leads to rapid cell death in some T-

ALL cell lines and primary patient samples
122

.  

In conclusion, the identification and molecular characterization of new oncogenes 

and tumor suppressors has uncovered much of the mechanisms involved in the 

pathogenesis of T-ALL. The development of representative and well-

characterized xenografts and genetic animal models of T-ALL for preclinical 

testing, the identification of solid biomarkers of treatment response to standard 

therapies, and the development of a dynamic framework of clinical trials that 

facilitates testing of new and emerging drugs and drug combinations in the clinic 

have been essential in ensuring an effective translation of molecular to the clinic 

for the treatment of T-ALL. 

  



1. Introduction 

 

19 
 

1.1.4 Mechanisms of resistance in T-ALL  

T-ALL is an aggressive hematologic cancer for which limited therapeutic options 

are available for patients with primary resistant or relapsed disease. Unfortunately, 

the specific mechanisms mediating escape from therapy, disease progression and 

leukemia relapse are still largely unknown.  

Glucocorticoids play a fundamental role in the treatment of all lymphoid tumors 

because of their capacity to induce apoptosis in lymphoid progenitor cells. 

Glucocortcoids are included in the 4-6 weeks of remission-induction therapy that 

is crucial to eradicate the initial leukemic cell burden and restores normal 

hematopoiesis. Unfortunately, primary glucocorticoid resistance is particularly 

frequent in T-ALL and is significantly associated with a poor clinical outcome 
123, 

124
. Recent studies explored the possibility that the activation of one or more 

oncogenic signaling pathways implicated in T cell transformation could be driving 

primary glucocorticoid resistance in T-ALL directly by interfering with 

glucocorticoid receptor function or indirectly via inhibition of glucocorticoid- 

induced apoptosis. In this context, AKT1 emerged as a plausible candidate as 

PI3K-AKT activation plays a major role in the pathogenesis of T-ALL, 

particularly in leukemias harboring mutations and deletions in the PTEN tumor 

suppressor gene
115

. In fact, AKT1 can induce glucocorticoid resistance by 

phosphorylation of the glucocorticoid receptor impairing its nuclear relocalization 

and blocks transcriptional regulation of glucocorticoid target genes. In addition to 

direct inactivation of the glucocorticoid receptor, AKT1 favors resistance to 

glucocorticoid therapy by promoting cell growth, metabolism, and survival in T-

ALL: mTOR phosphorylation by AKT impairs glucocorticoid-induced apoptosis 

by increasing the expression of MCL1; AKT-mediated phosphorylation of XIAP 

prevents degradation of this anti-apoptotic factor, and increased metabolism 

induced by AKT activation can antagonize metabolic inhibition induced by 

glucocorticoids. The convergent effects of direct and indirect mechanisms 

downstream of AKT1 antagonizing the anti-leukemic effects of glucocorticoids 

further support the role of the PI3K-AKT pathway as therapeutic target for the 

reversal of primary glucocorticoid resistance in T-ALL
125

. 

Mutations of the tumor suppressor gene p53 have been associated with resistance 

to treatment and poor prognosis of patients in several tumor entities. p53 is 
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considered the “guardian of the genome”: it regulates a range of physiologic 

functions including ageing, development, cell metabolism, differentiation, and 

tissue homeostasis. Depending on the cellular context, p53 activation and 

stabilization leads to the transcription of numerous genes controlling cell cycle 

arrest or apoptotic cell death
126

. In the hematopoietic system, p53 is primarily 

expressed in hematopoietic stem cells (HSCs) and regulates their quiescence and 

self-renewal. Genetically engineered mice that lack p53 have a 2- to 3-fold 

increase in their HSCs pool. This is probably the result of the higher rate of 

cellular proliferation of p53-deficient HSCs. Un-regulated proliferation of HSCs 

in the absence of p53 can make them prone to accumulate mutations leading to 

leukemogenesis
127

. Given its pleiotropic activity, it comes as no surprise that 

disruption of the p53 pathway is a common denominator in many malignancies. 

More than 50% of solid tumors have loss of wild type p53 expression due to 

deletions or point mutations
128,129

. Surprisingly, in contrast to solid tumors, 

hematologic malignancies present a rather low incidence of genetic alterations in 

p53 (10%-20%)
130,131

. p53 mutations/deletions have been reported in chronic 

lymphocytic leukemia (CLL), marginal zone lymphoma, follicular lymphoma, 

and diffuse large B-cell lymphoma
132

. Nonetheless, aberrations in p53 correlate 

with an inferior clinical outcome in hematologic cancers in particular in patients 

with CLL and AML
133-136

. In contrast, in ALL patients, mutations or deletions of 

the p53 gene are rare at presentation of the disease (2% to 3%) and are restricted 

to a small subset of cases
137

. Nevertheless, presence of p53 mutation correlated 

with poor clinical outcome
138,139

 and an increased incidence of p53 mutations 

occurs more often in relapsed childhood ALL cases (20-30%) and are strongly 

predictive for non-response to treatment and poor outcome, suggesting the 

importance of this alteration in progressive disease
51,140

. Moreover, mutations of 

the p53 gene may induce drug resistance by interfering with normal apoptotic 

pathway in leukemic cells
141

. Finally, although the p53 tumor suppressor gene can 

be inactivated by p53 gene mutations, also defects in pathways that regulate p53 

levels or inhibit p53 function can induce cell transformation. Thus, at least in a 

subset of T-cell lymphomas, increased levels of MDM2, the physiological p53 

regulator, can inhibit p53 transcriptional activity and targets p53 for degradation 
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through the ubiquitin–proteasome system, resulting in cell cycle deregulation
142

.  

More recently, using whole-exome sequencing Tzoneva and colleagues identified 

mutations in the 5’-nucleotidase cytosolic II gene (NT5C2) which encodes for a 

5’-nucleotidase enzyme that is responsible for the inactivation of nucleoside-

analog chemotherapy drugs in about 19% of relapsed T-ALLs
143

. NT5C2 mutant 

proteins showed increased nucleotidase activity in vitro and conferred resistance 

to chemotherapy with 6-mercaptopurine and 6-thioguanine, two nucleoside 

analogs commonly used to maintain durable remissions in the treatment of ALL. 

This data is an example of a relapse-associated gain-of-function mutation that 

plays an important role in the progression and chemoresistance in T-ALL.  
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1.2 The Wilms’ Tumor suppressor (WT1) gene  

 

1.2.1 WT1 gene structure  

The WT1 gene is located on the short arm of chromosome 11 (position 11p13) and 

spans about 50kb of genomic DNA. It consists of 10 exons encoding an mRNA of 

approximately 3.2kb. The first six exons encode for a proline-glutamine(Pro-Gln)-

rich region, activation and repression domains, nuclear localization signals, and at 

least two self-association domains, while exons seven to ten code for four Cys2-

His2 zinc finger domains at the C-terminus. These motifs are employed by several 

transcription factors that play an important role in cellular signal transduction and 

in particular, they have a high degree of structural homology to the early growth 

response (EGR) transcription factors family, where the (Pro-Gln)-rich region form 

the transactivation domain and zinc fingers bind to DNA in a sequence-specific 

manner
144,145

. 

WT1 is expressed as a 52 kDa protein in a multitude of isoforms that are produced 

by a combination of alternative splicing, RNA editing and alternative translation 

start sites, leading to at least 24 different variants
146

. Of particular interest are two 

alternative splice sites in WT1 gene:  

 exon 5, which is a cassette exon mammal specific that encodes 17 amino acids 

that are included or omitted in the middle of the Pro/Glu-rich domain. These 

residues are required for the interaction of WT1 with Par-4 (Prostate apoptosis 

response factor 4), a coactivator of transcription. The degree of exon 5 

inclusion was shown to be altered in Wilms’ tumours and acute myeloid 

leukemia. However, mouse knock-out of exon 5 does not appear to affect 

development or fertility
147

.  

 exon 9, conserved from zebrafish to man, presents an alternative splice donor 

site that results in omission or inclusion of a lysine-threonine-serine tripeptide 

(KTS) in the canonical TGEKP linker sequence between zinc fingers 3 and 

4
145

. The presence of these three amino acids alter the conformation of the 

zinc finger domain, changing the DNA-binding affinity of the isoforms
148

. 
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Figure 1. Scheme of WT1 gene and its protein products.
149

 

A) WT1 gene structure: alternative splice sites are crosshatched, balck arrows indicate alternative transcription initiation 

sites. B) The four major WT1 isoforms are generated by alternative splicing and vary in the presence or absence of 17 

aminoacids encoded by exon 5 (Ex5) and KTS insert: WT1 variants A[Ex5−/KTS−], B [Ex5+/KTS−], C [Ex5−/KTS+] and 

D [Ex5+/KTS+]. 

 

 

1.2.2 WT1 gene expression and function 

The WT1 gene encodes a zinc finger tissue specific transcription factor that was 

originally identified through its involvement in the development of Wilms’ tumor, 

a pediatric kidney tumor. The ratio of exon 5 splice variants differs between cell 

types, species and developmental stage whereas the ratio between (KTS+) and 

(KTS–) proteins is 2:1 and is nearly constant in all cell types
147

. The balance 

between (KTS+/−) isoforms is regulated by an unknown mechanism. Disruption 

of this mechanism results in severe urogenital abnormalities characteristic of 

Frasier Syndrome, as was confirmed in transgenic mice that carry mutations that 

affect KTS splicing
150

: in fact, mice that express either only the (KTS+) or only 

the (KTS–) isoforms were found to die soon after birth because of kidney 

defects
146

.  

The WT1 proteins are found only in the nucleus in all of the cell types which 

express the gene. However, the sub-nuclear localization is different for the four 

alternatively spliced isoforms: the (KTS–) isoforms, which have high DNA 



1. Introduction 

 

24 
 

affinity, co-localize preferentially with ubiquitous trascription factors whereas the 

majority of the (KTS+) isoforms are found in a speckled pattern and co-localize 

with nucleoriboproteins in splicing complexes, suggesting a role in RNA 

processing
144,151

. The biology of WT1 is complex, and, in addition to its function 

as a tumor suppressor, this gene has multiple roles during development and tissue 

homeostasis. WT1 is expressed in a tissue-specific pattern and also depends on 

the growth stage of the organism: during mammalian embryonic development, 

WT1 is needed in the urogenital system to induce the mesenchymal-epithelial 

transition during nephon formation
152,153

; in the developing heart it is required for 

proliferation of vascular progenitors, mantaining then in an undifferentiated 

state
146

; it was also found expressed in spleen, certain areas of the brain, spinal 

cord, mesothelial organs, diaphragm, limb, and other developing tissues and 

organs
154-156

.  

Mice deleted for WT1 lack kidneys, gonads and spleen and die in utero at mid-

gestation mainly due to defective coronary vasculature 
157

. Due to the premature 

death of WT1-deleted embryos, this model is not informative regarding the role of 

WT1 in hematopoiesis. The role of WT1 in hematopoiesis has been investigated 

by Hosen N. and colleagues. They generated a knock-in green fluorescent protein 

(GFP)-reporter mouse (WT1GFP/+), in which GFP was expressed under the 

endogenous transcriptional regulatory elements of the WT1 gene. Using these 

WT1GFP/+ mice, they examined WT1 expression in normal hematopoietic 

precursors and leukemic cells from mouse leukemia models. In normal 

hematopoietic cells, WT1 was expressed in none of the long-term (LT) 

hematopoietic stem cells (HSC) and very few (<1%) of the multipotent progenitor 

cells. In contrast, in murine leukemias induced by acute myeloid leukemia 1 

(AML1)/ETO+TEL/PDGFβR or BCR/ABL, WT1 was expressed in c-kit
+
lin

-
Sca-1

+
 

(KLS) cells, which contained a subset, but not all, of transplantable leukemic stem 

cells (LSCs). More recently, using a tamoxifen-inducible WT1 knockout mouse 

model Chou Y.(2011) and colleagues deleted WT1 gene in young and adult mice. 

Within 7-9 days they observed rapid kidney failure, spleen and pancreas atrophy, 

loss of bone and body fat and importantly dramatic reduction of red blood cells 

due to lack of megakaryocyte and megakaryocyte-eritrocyte progenitors. Other 

hematopoietic compartments were not affected indicating either that WT1 is not 
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important for hematopoietic compartments other that the eritrocytes or that the 

observation window of this mouse model was not sufficient to detect other 

defects.  

 

1.2.3 WT1 as a transcription factor: its role in regulating gene 

expression  

WT1 has been shown to act as a transcriptional repressor or activator of several 

target genes depending on cellular and promoter context. Among the targets are 

genes important for cellular growth and metabolism, including extracellular 

matrix component, growth factors and other transcription factors
158

: for example 

the PDGF-A, CSF-1, PAX-3, IGF-IR and WT1 itself
159

. By its zinc finger 

domains, (KTS–) isoforms were shown to bind the consensus sequence, identical 

for EGR-1, GCGG-GGGCG and several in vitro experiments using target 

promoters linked to a reporter gene have been used to identify putative WT1 

targets, many of them involved in cell growth (Wnt signaling pathway
160

or c-

myc
161

), cell cycle control and apoptosis (CDKN1A/p21
162

, GADD45A
163

, Bcl-

2
164

 and some components of the MAPK pathway
165

). 

WT1 transcriptional activity is also influenced by several interacting protein 

partner, such as Par-4, Hsp70 and p53
151

. The functional importance of these 

interaction is in many cases unclear, but it is interesting that WT1 lacking the 

entire DNA-binding domain at the C-terminus still retains some cellular effects, 

indicating functions mediated through the N-teminal domain
166

. Particular 

intriguing is the interaction between WT1 and p53. p53 is a tumor suppressor 

gene expressed ubiquitously and is considered the guardian of genomic integrity. 

Ionizing irradiation and other insults causing genetic damage determine an 

increase of p53 levels, which induce cell cycle arrest or apoptosis after 

transcription of its target genes. The physical interaction between WT1 and p53 

proteins in rat kidney cells and primary Wilms’ tumor induces p53 stabilization 

after association with the first-second zinc finger domains of WT1
167,168

. On the 

other hand, p53 can also influence WT1’s ability to regulate IGF1R gene 

expression: (KTS–) isoforms significantly repressed IGF1R transcription only in 

presence of a wild type p53
169

. However, a functional interaction between WT1 
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and p53 was observed only with the wild-type proteins. In some experiments, co-

transfection of p53 with wild type WT1 enhanced p53 target induction but this 

mechanism was abolished in the presence of mutant-WT1. These experiments 

suggest that WT1 mutants, with a disrupted DNA-binding domain cannot mediate 

their effect because of a non-productive interaction with p53. On the other hand, 

WT1 repressor activity on EGR1 promoter is 10-fold higher in cells with a 

functional p53 compare to cells with mutated p53. In conclusion, WT1 exerts a 

cooperative effect on p53, enhancing the ability to transactivate their respective 

targets. 

 

1.2.4 Molecular genetics of WT1  

WT1 was initially discovered mutated in pediatric patients with Wilms’ tumor. 

Mutations of WT1 associated with Wilms’ tumor are found in a subset of patients, 

estimated at 10–15%. Mutations include nonsense as well as missense changes, 

and they are distributed throughout the coding region, without particular hotspots. 

Another 10% of sporadic Wilms’ tumors express elevated levels of an in-frame 

deletion of exon2, that may alter the transactivational function of the encoded 

protein. In the remaining cases, WT1 appears to be wild-type and is expressed at 

high levels. Presumably, these tumors have alterations in downstream targets of 

WT1 or result from genetic alterations in other cellular pathways
158,170

. In 

contrast, other Wilms’ tumor congenital syndromes, the WAGR (Wilms’ tumor, 

aniridia, genitourinary abnormalities, mental retardation), the Denys-Drash 

syndrome (DDS), and Frasier Syndrome (reviewed by 
171

) present an increased 

risk of Wilms’ tumors caused by inherited germline deletions in the WT1 locus. In 

these cases WT1 mutations are point mutations in the zinc finger domains, which 

results in inactive or truncated protein, or at the second splice donor site in intron 

9, resulting in the loss of the (KTS–) isoforms in the mutated allele and offsetting 

of the isoform ratio
172

. 
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1.2.5 WT1 in leukemia 

In recent years, the study of WT1’s role in malignancy evidenced a biological and 

clinical importance of WT1 in cell survival, differentiation and proliferation and 

opened a discussion on its behavior as tumor suppressor or oncogene.  

In addition to its prominent role as tumor suppressor in the pathogenesis of 

Wilms’ tumors, aberrantly high expression of WT1 is detected in several forms of 

cancer, including breast cancer and lymphoid and myeloid leukemias, 

paradoxically suggesting an oncogenic role for WT1, although the mechanism 

underlying this effect remains unexplained
173

. In particular it was showed that 73-

93% of AML patients had elevated WT1 expression at diagnosis
174

, and WT1 

over-expression was used as a marker of prognosis or minimal residual disease to 

predict relapse. Despite these reports, controversy still exists with other ones 

showing no predictive value
158,174,175

. Importantly, also mutations in the WT1 gene 

are found in leukemias. The first report of WT1 mutations associated with 

development of AML was published in 1994 by King-Underwood and 

colleagues
176

 , who identified WT1 mutations in 15% of AML patients and 1 case 

of bi-phenotypic leukemia, noting that the patients were refractory to 

chemotherapy and showed worse overall survival rate. Since then, WT1 alterations 

have been reported in 10% of cases of AML and ALL and 20% of bi-phenotypic 

leukemias. Notably, previous reports have shown the absence of WT1 mutations 

in pre-B-ALL, suggesting that mutational loss of WT1 may contribute to 

transformation of T-cell and myeloid but not B-cell progenitor cells. In T-ALL as 

in AML, WT1 alterations mainly consist on mono-allelic deletions or 

heterozygous frame-shift insertions that cluster in exon 7, predicted to produce a 

truncated protein which lacks the DNA binding domain. In addition, some 

patients showed mono-allelic deletions associated with heterozygous mutations or 

compound heterozygous mutations. Additional frameshift mutations predicted to 

encode N-terminal truncations in WT1 were detected in exons 1 and 2 and few 

cases presented missense mutations in exon 9, which encodes the third zinc finger 

of WT1 protein. The functional relevance of these mutations is highlighted by the 

fact that they have been described as the most frequent genetic abnormality in 

patients with DDS and in a sporadic Wilms’ tumor sample
55,56

. Consistent with 
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these results, allelic expression analysis in WT1-mutated T-ALL samples 

demonstrated the presence of both wild-type and mutant WT1 transcripts in 

leukemic lymphoblasts. The presence of WT1 mutations predicted to encode 

truncated WT1 proteins devoid of DNA-binding activity led us to hypothesize that 

WT1 loss could lead to haplo-insufficiency or have a dominant negative effects 

towards the wild type WT1 proteins, implying that wild-type WT1 acts as a tumor 

suppressor in leukemia. Interestingly, WT1 mutations were particularly prevalent 

in T-ALL cases harboring chromosomal rearrangements associated with the 

expression of TLX1/HOX11, TLX2/HOX11L2, and HOXA9 transcription factor 

oncogenes, suggesting that WT1 loss and aberrant expression of oncogenic 

homeobox factors may be mechanistically linked in the pathogenesis of T-ALL
56, 

177
.  

 

 

 

Figure 2. Somatic mutations in WT1 in T-ALL.  

Schematic representation of WT1 mutations identified in primary T-ALL samples
56

. 

 

 

The importance of WT1 mutations in the context of leukemia patients is 

highlighted by the fact that these alterations may have an impact on the prognosis 

of both T-ALL and AML cases, even if many groups reported conflicting results. 

In fact WT1 mutations have been shown to be a poor prognostic factor in specific 

genetic subgroups or either they have been shown to have no impact on clinical 

outcome. More specifically, in T-ALL, even if no significant difference were 
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found in the relapse-free survival (RFS) and overall survival (OS) between the 

mutated WT1 and wild type WT1 patients in the overall cohort, within the standard 

risk group of thymic T-ALL, the mutated WT1 subgroup showed an inferior RFS 

as compared to wild type WT1 thymic patients
175

. In the case of AML, the 

outcome of patients is highly heterogeneous and depends, among others, on the 

cytogenetic and molecular profiles. In this disease context, mutated WT1 samples 

had an inferior OS and RFS in the total cohort of AML patients or at least in a 

genetic subgroup of CN-AML (cytogenetically normal acute myeloid leukemia) 

patients
178,179

. More recently, an important role of WT1 as epigenetic modulator 

was demonstrated in AML 
180

. It was reported that WT1 mutations are inversely 

correlated with TET2 gene mutations in AML, and that WT1 mutant AML 

samples are characterized by significantly marked reductions in global and site-

specific DNA hydroxymethylation and disordered DNA hydroxymethylation 

potentially representing a convergent mechanism of leukemic transformation. 

These mutations induce TET2 loss of function and reduce genomic 5-

hydroxymethylcytosine (5hmC) with a reciprocal increase in 5-methylcytosine 

(5mC), featuring extensive promoter hypermethylation. WT1 loss also led to 

marked reductions in 5hmC levels and a defect in hematopoietic differentiation, a 

phenotype similar to that observed with loss of TET2. Taken together, these 

results suggest that the hydroxymethylation pathway may be affected by these 

mutations and, in addition to its role as a sequence-specific transcription factor, 

WT1 may act as a cofactor for TET enzymes recruiting or stimulating their 

activity at specific sites in the genome. 
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WT1 has been described to act as both a tumor suppressor and an oncogene in 

leukemia. The presence of mutations in about 10% of patients with AML and 

ALL resulting in the truncation of the C-terminus WT1 domain lacking the major 

DNA binding portion supported a role as tumor suppressor in leukemia. Apart 

from WT1 mutations, over-expression of WT1 has also been observed in leukemia 

supporting a role as an oncogene even if the mechanisms of this over-expression 

have not been elucidated yet. Moreover, WT1 mutated samples generally over-

express WT1 transcript suggesting that the truncated protein could have a 

dominant negative effect or that mutations lead to gain-of function.  

Very recently, the role of WT1 mutations were defined in AML. WT1 was 

described as a tumor suppressor in AML cooperating with TET2 in epigenetic 

regulation. In T-ALL the role of WT1 is still unclear and many questions are still 

open.  

This study focused on the role of WT1 alterations in T-ALL. Our main hypothesis 

was that WT1 works a tumor suppressor in T-ALL and that WT1 alterations 

impair its transcriptional program leading to tumor progression.  

The following principal aims were pursued: 

 What are the effects of WT1 over-expression and loss in T-ALL cells?  

In order to answer this question we over-expressed the four most 

abundant WT1 isoforms in T-ALL cells and we asked whether this over-

expression affects cell growth and survival. We then analyzed the effects 

of WT1 loss in T-ALL cells. We used the short hairpin RNA technology 

to significantly lower WT1 expression in T-ALL cells and we studied the 

effects on cell growth and survival. Finally, the effects of over-expression 

of a common WT1 mutant was analyzed in wild-type T-ALL cells.  

 What are the de-regulated genes and pathways following WT1 loss in T-

ALL cells?  

To this end, we performed Chromatin-immuno-precipitation combined 

with microarrays technology (ChIP-chip) to identified the direct WT1 

targets in T-ALL cells. This analysis was also combined with gene 

expression analysis performed in a loss of function system to identify 

WT1-regulated targets and to allowed the identification of specific 

pathways controlled by WT1 in T-ALL cells. 
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 What are the effects of WT1 alterations in T-ALL primary samples?  

An important part of this study included the characterization of primary 

human T-ALL xenografts for WT1 mutations. We characterized wild-type 

and mutant WT1 T-ALL xenografts for WT1 expression both at the 

transcript and protein level. We explored if WT1 mutated T-ALL 

xenografts showed common features with T-ALL cell lines engineered to 

lose WT1 expression. Considering the huge heterogeneity of primary T-

ALL samples, this is a an ambitious aim to pursuit but also a first 

important attempt to understand WT1’s role in T-ALL.  
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3.1 Cell lines and primary T-ALL xenograft samples  

CCRF-CEM, JUKAT, MOLT4 T-ALL cells were obtained from the ATCC. The 

PF382 and P12-Ichikawa T-ALL cells were from the DSMZ repository. T-ALL 

cell lines were cultured in RPMI 1640 (Euroclone) medium supplemented with 

10% fetal bovine serum, 1% Ultraglutamine, 1% Na-Piruvate, 1% Hepes, 

100U/ml penicillin G and 100 μg/ml streptomycin (Lonza) at 37°C in a 

humidified atmosphere under 5% CO2. HeLa, U2OS and Human Embryonic 

Kidney 293T (HEK293T) cells were grown in Dulbecco's modified Eagle's 

(DMEM, Euroclone) medium supplemented with 10% fetal bovine serum, 1% 

Ultraglutamine, 1% Na-Piruvate, 1% Hepes, 100U/ml penicillin G, and 100 μg/ml 

streptomycin at 37°C in a humidified atmosphere under 5% CO2. Primary 

xenografts T-ALL (PDTALL) cells were obtained from the bone marrow of 

newly diagnosed ALL pediatric patients, with informed consent according to the 

guidelines of the local ethics committee. For xenograft establishment, 6- to 8-

weeks-old mice NOD Rag1
null

 IL2R
null

 immune-deficient mice (Charles River, 

Wilmington, MA, USA) were retro-orbitally injected with 10x10
6
 T-ALL cells in 

200 µl. For short-term in vitro experiments, primary T-ALL xenograft derived 

cells were maintained in RPMI-1640 media supplemented with 20% FBS.  

 

3.2 Ionizing irradiation and chemotherapeutic drugs 

Cells were irradiated using γ-radiation derived from an 
137

Cs source. For drug 

treatments, cells were subjected to different doses of etoposide, cytarabine, 

vincristine and methotrexate (Sigma). 

 

3.3 Plamids and constructs  

pGipz and pTripz shRNA constructs targeting different regions of human WT1 

transcript (V2LHS_270428 and V2THS_202981) and pGipz shRNA construct 

targeting different regions of human p53 transcript (V3LHS_333917, 

V3LHS_333919 and V3LHS_333920) were used for knockdown experiments 

(Open Biosystem). pGipz and pTripz non-silencing shRNA (sh-Scramble) were 
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used as negative controls (RHS4348 and RHS4743, Open Biosystem). Migr1 

vectors (gently provided by Prof. Warren Pear, University of Pennsylvania, 

Philadelphia PA) were used to clone full length and mutant E384Stop WT1 

constructs using BglII and BglII/EcoRI restriction sites, respectively. Full length 

and mutant E384Stop WT1 sequences were cloned in pcDNA3.1 vector (Life 

Technologies) for transient WT1 over-expression in Hela and U2OS cells. LEF1, 

LST1, RB1, MBNL1 and BBC3/PUMA reporter constructs were generated cloning 

a short nucleotide sequence, that resulted significantly bound by WT1 from the 

Agilent probes in our ChIP-on Chip analysis, into the pGL4.23[luc2/minP] vector 

(Promega) using the NheI/HindIII restriction sites. For luciferase experiments, 

plasmid which expresses Renilla luciferase was also used (pGL4.74 [hRluc/TK]; 

Promega).  

 

3.4 Retrovirus and lentivirus production.  

MigR1 retroviral vectors and pGipz and pTripz (non-silencing shRNA control or 

WT1-shRNA) lentiviral vectors (3 µg) were transfected in HEK293T using 

JetPEI
®
 (Polyplus Transfection) transfection agent and the correspondent 

packaging plasmids, pCMV-Δ8.9 (Addgene) plasmid (2.7 µg), containing gag, 

pol and rev genes, and VSV-G (Addgene) plasmid (300 ng), expressing envelope 

genes. The viral surnatants were collected 48 hours after transfection, filtered and 

used to infect target cells. Infection of T-ALL cell lines were performed by 

spinoculation of viral supernatants produced in HEK293T cells: target cells were 

resuspended in medium containing virus and distributed 1-2x10
6
 cells per well in 

24 well plates. Hexadimethrine bromide (Polibrene
®
, Sigma) was added at 0.8 

µg/ml final concentration. Plates were centrifuged at 2200 rpm for 90 minutes at 

room temperature. After infection cells were placed at 37°C over night and then 

positive selected by adding puromycin 1 µg/ml (Sigma) in the medium for a 

period of about 3-5 days.  
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3.5 ChIP-chip analysis 

ChIP-chip analysis of the WT1 target genes was performed in MOLT4 T-ALL 

cells. Briefly, immune-precipitation was performed using a combination of a 

rabbit polyclonal antibody (ab15429, Abcam), and a mouse monoclonal antibody 

(6F-H2, Millipore) specific respectively for the C-terminus and the N-terminus of 

WT1 protein. ChIP-chip was performed following the standard protocols provided 

by Agilent Technologies using Agilent Human Proximal Promoter Microarrays 

(244.000 features per array), as previously described
181

. This platform analyzes 

~17,000 of the best-defined human genes sourced from UCSC hg18 (NCBI Build 

36.1, March 2006) and covers regions ranging from −5.5 kb upstream to +2.5 kb 

downstream of their transcriptional start sites. We scanned the arrays with an 

Agilent scanner and extracted the data using Feature Extraction 8 software. Genes 

that were direct targets of WT1 were identified using a ChIP-chip significance 

analysis, as previously described
181

. 

 

3.6 Gene expression analysis 

RNA was isolated from triplicate cultures of MOLT4 infected with either sh-

scramble or sh-WT1 pGipz vectors using Trizol reagent (Life Technologies). 

Following purification with RNAasy kit (Life Technologies), 1µg of RNA was 

amplified and labeled using 3’ IVT Express Kit and hybridized on GeneChip 

Human U133 Plus 2.0 (Affymetrix). Inter-array normalization was performed 

with the GC-RMA algorithm using open-source Bioconductor software. Group 

differences were evaluated using t-test and fold change. For the Pathway 

Enrichment analyses, gene sets of interest, were tested for functional annotations 

enrichment using the web-based DAVID bioinformatics tools available at 

http://david.abcc.ncifcrf.gov. GSEA analysis was performed in MATLAB to test 

for enrichment of gene sets from the WT1 direct targets and the ranked list of 

genes sorted by t-score comparing sh-WT1 versus sh-Scramble.  

 

 

http://david.abcc.ncifcrf.gov/
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3.7 Statistical analysis  

Student’s t test (two tailed, unpaired) was used for statistical comparison in 

functional experiments *p<0.05, **p<0.01, ***p<0.001.  

 

3.8 Cell viability assays and flow cytometric analysis  

T-ALL cell lines (3x10
5
 cells per well) and primary T-ALL xenografts (1x10

6
 

cells per well) were seeded in 24 well plates and treated either with γ-radiation or 

chemotherapeutic drugs for 24 hours. Cell viability analysis was performed using 

the bioluminescent method Vialight plus (Lonza). Apoptosis analysis was 

performed by flow cytometry (FACS) after cell staining with Annexin-V-FLUOS 

Staining Kit (Roche) and Propidium Iodide (Sigma) according to manufacturer's 

instructions. Analysis of proliferation after 12 hours of γ-radiation (combined with 

cell cycle profile and DNA synthesis was performed using the Click-iT
™

 EdU 

Flow Cytometry Assay Kit (Life Technologies). All the analysis were performed 

in triplicate. The samples were collected on a FACSCalibur (BD Biosciences) 

using Cell Quest software (BD Biosciences), and analyzed with FlowJo software 

(Tree Star). 

 

3.9 Clonogenic assay 

Colony assays were performed by resuspending CCRF-CEM T-ALL cells over-

expressing WT1 full length and E384Stop mutant isoforms, and MOLT4 T-ALL 

cells expressing sh-Scramble and sh-WT1, in RPMI 1640 medium supplemented 

with 10% fetal bovine serum and Methocult H4100 (Stemcell Technologies) 

composed of 2.6% methylcellulose in Iscove's MDM. The cell suspensions were 

seeded in 35x10mm dishes, in triplicate, at a concentration of 1000 cells per dish 

and incubated at 37°C in a humidified atmosphere under 5% CO2, for 7 to 14 

days. At the end of the incubation period colonies were counted. using an inverted 

microscope (Leica) and a scoring grid. Two biological independent experiments 

were performed.  
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3.10 Human Apoptosis and MAPK pathway Arrays.  

We analyzed the modulation and the expression profiles of 35 apoptosis-related 

proteins and phosphorylation of 24 MAP kinases simultaneously hybridizing 

approximately 200 µg of MOLT4 cell lysates into the Human Apoptosis Array 

and the Human MAPK Array kits (R&D Systems). Whole cell extracts were 

incubated overnight with the arrays, according with the kit instructions. Following 

the incubation, the arrays were washed, hybridized with a cocktail of biotinilated 

detection antibodies before applying the Streptavidin-HRP and chemiluminescent 

detection reagents. The BioRad ChemiDoc XRS Imager was used to capture the 

signals from the arrays. The density of each spot was quantified by Quantity One 

software (BioRad) and processed data was normalized to negative control probe 

(PBS) to be comparable between arrays.  

 

3.11 Western blotting.  

Total cell lysates were prepared using lysis buffer (NaCl 150mM, TrisHCl 50 

mM, EDTA 2mM, 1% NP40) supplemented with phosphatase inhibitors (NaF 

50mM, Na3OV4 1mM) and protease inhibitors cocktail tablets (Roche) and 

normalized for protein concentration using the Micro BCA
™

 Protein Assay Kit 

(Thermo Scientific). For Western blotting, protein samples were separated on 4-

12% gradient NuPAGE
®
 Bis-Tris poly-acrylamide or 3-8% gradient NuPAGE

®
 

Tris-Acetate SDS-PAGE gels (Life Technologies) and transferred to 

nitrocellulose membranes (Protran). Membranes were then blocked in PBS-

Tween-20 0.1% containing 5% nonfat milk, incubated over night with primary 

antibodies according to the antibody manufacturer’s instructions, and finally 

incubated with HRP-conjugated goat anti-rabbit or goat anti-mouse IgG (Perkin 

Elmer). The BioRad ChemiDoc XRS Imager was used to capture membrane 

images following incubation with Western Lightning
®
 Plus-ECL substrate (Perkin 

Elmer). Antibodies against total p53 (DO-1) were from Santa Cruz 

Biotechnology; antibodies recognizing β-actin, PARP, Cleaved Caspase3, 

phospho-p53 (S15), acetylated-p53 (K382), phospho-Histone H2AX (S139), 

phospho-ATM (S1981), total ATM, phospho-Chk2 (Thr68), total Chk2, XIAP, 
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PUMA, p21, BAX and Survivin were from Cell Signaling Technologies; antibody 

against WT1 (6F-H2) was from Millipore; antibody against HO-2/HMOX2 was 

from Novus.  

 

3.12 Low Density Arrays and Real Time quantitative PCR 

(RT-qPCR) 

Total RNA was isolated using Trizol reagent, c-DNA was obtained from 1µg of 

RNA using the SuperScript
®
 First-Strand Synthesis System (Life Technologies). 

Analysis of 94 genes related to DNA repair, apoptosis and cell cycle following 

DNA damaging conditions, was performed using Custom TaqMan
®
 Array Cards 

(Life Technologies) with the TaqMan
®
 Universal PCR Master Mix (Life 

Technologies) and ABI Prism 7900 Sequence Detection System. Arrays were 

performed in duplicate. Relative quantification was done using the ∆∆Ct 

method
182

, normalizing to β2M and GAPDH genes. The list of genes contained in 

the array is presented in the following table: 

 

MAPK APOPTOSIS DNA REPAIR CELL CYCLE OTHERS 
 

 CCNE1 ATM APEX1 POLE4 14-3-3 σ B2M 

MAPK10 ATR BARD1 POLG CCND2 GAPDH 

MAPK11 BAX BRCA1 POLH CCND3 WT1 

MAPK12 BBC3 BRCA2 POLK CCNE1 
 

MAPK14 CASP9 DCLRE1A POLQ CDC25A 
 

MAPK8 CD82 DDB1 PRKDC CDC25C 
 

MAPK9 CHEK1 ERCC5 SIRT1 CDK6 
 

PPM1D CHEK2 GTF2H1 XPA CDKN1A 
 

 
EI24 H2AFX XPC FANCA 

 

 
FAS LIG1 XPC FANCC 

 

 
HSPB1 LIG3 XRCC1 GADD45A 

 

 
MDM2 LIG4 XRCC1 GADD45B 

 

 
MDM2 MBD4 XRCC4 GADD45G 

 

 
MDM4 MGMT XRCC4 MDC1 

 

 
NOXA MLH1 XRCC5 PCNA 

 

 
PARP1 MSH2 XRCC5 RAD1 

 

 
PARP1 MSH3 XRCC6 RAD17 

 

 
PERP MSH6  RAD23B 

 

 
PRKCD NBN  RAD50 

 

 
PSMB10 NTHL1  RAD51 

 

 
PSMB5 OGG1  RAD52 

 

 
TP53 PNKP  RAD9A 

 

 
TP53I3 POLA1  RPA3 

 

 
TP73 POLD4  RRM2 

 

  
POLE3  TP63 
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Regular RT-qPCR experiments were performed using SensiMix
™

 SYBR® No-

ROX Kit (Bioline) and then the ABI Prism 7900 Sequence Detection System 

(Applied Biosystems). Relative expression levels were obtained using the ∆∆Ct 

method
182

 and normalizing to β2M gene. Primer sequences used in the RT-qPCR 

are reported below: 

 

 

Gene Sequence 

BAX  Forward 5’-CATGTTTTCTGACGGCAACTTC-3’ 

BAX  Reverse 5’-AGGGCCTTGAGCACCAGTTT-3’ 

BBC3/PUMA  Forward 5’-TTGTGCTGGTGCCCGTTCCA-3’ 

BBC3/PUMA  Reverse 5’-AGGCTAGTGGTCACGTTTGGCT-3’ 

DUSP10  Forward 5’-CCCTCTACCACTATGAGAAAG-3’ 

DUSP10  Reverse 5’-TCAATGAACTCAAAAGCCTC-3’ 

DUSP6  Forward 5’-TTCTACCTGGAAGATGAAGC-3’ 

DUSP6  Reverse 5’-CAATGTCATAGGCATCGTTC-3’ 

FAS  Forward 5’-TGCAGAAGATGTAGATTGTGTGATGA-3’ 

FAS  Reverse 5’-GGGTCCGGGTGCAGTTTATT-3’ 

GADD45A  Forward 5’-GCCTGTGAGTGAGTGCAGAA-3’ 

GADD45A  Reverse 5’-CCCCACCTTATCCATCCTTT-3’ 

LIG1  Forward 5’-CCTGCGAATACAAATATGACGGGC-3’ 

LIG1  Reverse 5’-CTTGGAATGGCTGGATCTGCTTCT-3’ 

CDKN2A/p21  Forward 5’-AGACTCTCAGGGTCGAAAAC-3’ 

CDKN2A/p21  Reverse 5’-TTCCAGGACTGCAGGCTTC-3’ 

POLH  Forward 5’-GGGAGCAGTGATTGTGGAGGAAAT-3’ 

POLH  Reverse 5’-CCTCCAAGACTACGGATTTTGCGA-3’ 

PPM1D  Forward 5’-AGAGAATGTCCAAGGTGTAGTC-3’ 

PPM1D  Reverse 5’-TCGTCTATGCTTCTTCATCAGG-3’ 

PTPN7  Forward 5’-AGGAGAAATGTGTCCACTAC-3’ 

PTPN7  Reverse 5’-AAAGAGGATGTGCTTTACTG-3’ 

WT1  Forward 5’-GTTCCCCAACCACTCATTCAAG-3’ 

WT1  Reverse 5’-GGCTCCTAAGTTCATCTGATTCCA-3’ 

XPC  Forward 5’-CATGAGGACACACACAAGGT-3’ 

XPC  Reverse 5’-CAGGTTTGAGAGGTAGTAGG-3’ 
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3.13 Luciferase assay 

HeLa and U2OS cells were seeded 5x104 cells per well in 24 well plates and 

transfected with increasing concentrations of pcDNA3.1 plasmids (100, 250, 500 

ng) over-expressing the four wild type full length WT1 isoforms, that differ for 

the presence or absence of exon 5 (defined as 5+ or 5– respectively) or for the 

presence or absence of the KTS insert (KTS+ and KTS– respectively), and two 

WT1 mutants isoforms (WT1 E384Stop with exon 5+ or 5–) together with 

pGL4.23 [luc2/minP] vector (150 ng) carrying the insertion of a specific response 

element upstream of a minimal promoter and a luc2 gene (Promega). For internal 

normalization of transfection efficiency, cells were also co-transfected with 

pGL4.74 [hRluc/TK] plasmid (100 ng), which allowed Renilla luciferase 

expression. Experiments were performed in triplicates. We measured luciferase 

activity 48 hours after transfection with the Dual-Luciferase Reporter® assay kit 

(Promega). Transfected cells were gently rinsed with PBS from culture medium, 

homogeneously lysated for 20 minutes in 150 µl of passive lysis buffer and finally 

harvested. Cell lysates (5 µl per well) were added in 96 well plate and luciferase 

assay reagent (50 µl) was added to each well, measuring firefly luciferase activity 

with VICTOR™ X5 Multilabel Plate Reader (Perkin Elmer). Renilla luciferase 

activity was then measured adding Stop & Glo® reagent (50 µl) to each well.  
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4.1 WT1 acts as a tumor suppressor gene in T-ALL cells.  

WT1 protein has been reported to have opposing roles depending upon the cell 

type in which it is expressed. It was seen to act both as a tumor suppressor or as 

an oncogene. To elucidate the role of WT1 in T-ALL we first tested the effects of 

over-expression of different WT1 isoforms in CCRF-CEM and Jurkat T-ALL cell 

lines. CCRF-CEM, which lack WT1 protein expression due to heterozygous 

nonsense point mutations in exon 1 of WT1 gene56, and Jurkat, which show very 

low WT1 expression
183

, were infected with Migr1-IRES GFP retroviral vectors 

expressing the four full length WT1 isoforms that differ for the presence (Ex5+) 

or absence (Ex5−) of exon 5 or for the presence (KTS+) or absence (KTS−) of the 

KTS tripeptide. Moreover, in order to study a possible role of truncated WT1 

protein, cells were also infected with Migr1 encoding two mutated isoforms 

containing or lacking exon 5. GFP was expressed through an internal ribosomal 

entry site (IRES) and allowed infected cells to be tracked by flow cytometry. As 

shown in one of the two replicates represented in Figure 3.A), we observed that 

only over-expression of the (KTS−) isoforms negatively affected growth of T-

ALL cells, as indicated by progressive loss of GFP positive cells, while other 

WT1 isoforms and the mutants had no effect. Over-expression of full length and 

mutant WT1 isoforms in CCRF-CEM was confirmed by western blot analysis 

(Figure 3.B).  

Clonogenic assays have been widely used as an in vitro marker for transformation 

and as a method to monitor tumor cells growth and proliferation. We thus 

analyzed the effects of WT1 over-expression in T-ALL cells, performing 

clonogenic assays in soft-agar medium. We found that CCRF-CEM cells over-

expressing the (KTS−) full length isoforms showed significant reduction in colony 

formation in methylcellulose compared with cells expressing the empty vector and 

other WT1 isoforms (mutants included).  

Subsequently, we set out to determine the functional consequence of WT1 loss in 

T-ALL. To this end we thus used pTRIPZ lentiviral vectors to silence WT1 in 

MOLT4 T-ALL cells, that express moderate levels of WT1 protein, upon 

treatment with doxycycline. After 6 days of doxycycline treatment, expression of 

the shRNAs, both in sh-Scramble (Ctrl) and sh-WT1 cells (KD), was confirmed by 
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detection of red-fluorescent protein (RFP) co-expressed with the short hairpin by 

flow cytometry analysis. WT1 knockdown was verified by RT-qPCR and western 

blot analysis (Figure 3.C-D). Cell growth and cell cycle regulation was then 

analyzed and compared between Ctrl and KD cells, but no differences were found. 

Cells were then tested in colony formation assays, and, as expected, WT1 loss in 

MOLT4 cells favored the growth of a significant higher number of colonies 

compared to MOLT4 cells expressing an irrelevant hairpin (Figure 3.E).  
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Figure 3. WT1 over-expression induces cell growth arrest, while its knockdown increases colony formation in T-

ALL cells.  

A) Proliferation of JURKAT and CCRF-CEM cells carrying the MigRI GFP retrovirus with different WT1 isoforms; 

percentage of GFP positive cells was monitored every three days by flow cytometry for 20 days. Percentages of GFP 

positive cells were normalized to the level on day 3 (t=0) post-transduction. B) Immunoblot of the over-expression of full 

length and mutant WT1 isoforms in CCRF-CEM. Wild type CCRF-CEM were used as negative control for WT1 

expression. βActin is shown as loading control. C) Flow cytometry analysis of red fluorescent protein (RFP) in MOLT4 

cells infected with pTripz lentivirus vector co-expressing both RFP and a specific sh-WT1 hairpin (KD). An irrelevant 

hairpin was used as control (Ctrl). Analysis was performed after 6 days treatment with doxycycline at 0.5 µM. D) 

Immunoblot analysis of WT1 protein expression in Ctrl and KD MOLT4 cells treated for 6 days with doxycycline or with 

the vehicle control (DMSO). E) Optical microscope images of methylcellulose colonies from CCRF-CEM over-expressing 

WT1 isoforms and MOLT4 cells infected with sh-Scramble and sh-WT1. The histogram plots on the left represent mean 

and SD of colony number per 1000 cells seeded, for MOLT4 cells in triplicate plates. 
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4.2 Analysis of ChIP-chip and gene expression data identify 

WT1 direct targets to be enriched in genes involved in 

cellular response to stress conditions. 

WT1 is a transcription factor that acts as activator or repressor depending on 

cellular context. However, little is known about the targets and the transcriptional 

program regulated by WT1 in T-ALL. To define the structure of its transcriptional 

network, ChIP-Chip analysis was performed in MOLT4 T-ALL cells (which 

express moderate level of WT1 protein). ChIP-Chip analysis in MOLT4 cells 

identified 806 regulatory elements bound in three independent experiments (three 

arrays with FDR 5%). Among the 806 WT1 targets, we found enrichment in 

pathways involved in cellular response to stress such as nucleotide excision repair, 

MAPK, and p53 signaling pathways (Figure 4.A). To identify genes differentially 

regulated by WT1, we performed gene expression profile in MOLT4 cells under 

loss of function conditions using shRNA technology to knockdown WT1 gene 

(KD). Microarray analysis showed 758 genes significantly regulated in the three 

replicates (p<0.05; Fold change ≥ 1.4). Comparing genes differentially regulated 

by WT1 in the KD system with genes identified in at least two of three ChIP-chip 

experiments we identified a total of 124 genes both bound and regulated by WT1 

in the context of T-ALL. Functional annotation of these genes showed that they 

were enriched in the MAPK signaling pathway (Figure 4.B). This pathway has 

been previously found to be regulated by WT1 in different cellular systems by 

other groups. Finally, Gene Set Enrichment Analysis (GSEA) was performed with 

the ChIP-chip and gene expression profile data sets and this analysis showed a 

significant enrichment of genes whose promoters were bound by WT1 in the 

expression signature associated with KD in MOLT4 cells. Most notably, we found 

several genes involved in the pathogenesis of T-ALL (such as LEF1, LMO2 and 

RB1) to be bound and regulated by WT1. These were found to be 

characteristically down-regulated.  
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Figure 4. Identification of WT1-bound promoter regions and functional classification of genes bound and 

differentially regulated by WT1.  

A) ChIP-chip experiments scheme performed in MOLT4 cells: cells were lysed and using anti-WT1 antibodies, protein-

DNA complexes were immune-precipitated, DNA isolated, labeled and hybridized to genomic microarrays. Genes 

identified by the analysis are shown in Venn diagrams (FDR 5%). Gene ontology was performed using Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov). B) Venn diagram 

representation showing the overlap between the WT1 deregulated targets, obtained from  the gene expression profile after 

WT1 knockdown in MOLT4 cells, and the ChIP-chip data set. Gene ontology of genes both bound and regulated by WT1 

showed enrichment in MAPK signaling pathway.  
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4.3 Functional validation of WT1 targets. 

Bioinformatic analysis provided us a ranking of genes both bound and regulated 

after WT1 loss in our cellular model. Next we set out to functionally validate some 

of these targets by luciferase assays in Hela cells. The targets we chose belonged 

both to the top genes of our lists, with the best P-value score (for example LST1), 

and genes that are known to be involved in the pathogenesis of T-ALL (LEF1 and 

RB1), even if they presented a lower P-value. We cloned their regulatory elements 

upstream of the luciferase reporter gene and over-expressed all the four full length 

isoforms of WT1, with or without exon 5 and with or without KTS, in Hela cells 

(which do not express WT1). The luciferase activity is directly correlated with the 

binding of WT1 isoforms to the target sequences. We observed that the (KTS−) 

isoforms induced significant luciferase activity in all the gene targets analyzed, 

because of higher affinity for the promotorial regions. On the other hand, the 

(KTS+) isoforms were less effective in luciferase induction, given their low 

affinity for DNA. Furthermore, luciferase induction was dose-responsive: 

increasing the amount of DNA, determined a higher induction of luciferase 

activity. We verified WT1 isoform protein expression by western blot analysis 

(Figure 5.A). Interestingly, the more effective (KTS–) isoforms were less 

expressed compared with the (KTS+) isoforms. 

We hypothesized that WT1 mutant isoforms may have an impaired transcriptional 

activity due to the lack of a DNA binding domain. Mutants (E384Stop) were 

expressed both alone and in combination with the (KTS–) isoforms, using LEF1 

promoter region, which showed the highest reporter activity. (KTS–) isoforms had 

a high transcriptional activity, while mutant alone induced very low levels of 

luciferase, in accordance with our hypothesis, and in combination did not modify 

the transcriptional activity of the (KTS−) isoforms. However at the protein level, 

mutant isoforms, notwithstanding a comparable quantity of transfected DNA with 

full length isoforms, had a very low expression, probably due to a high protein 

instability (Figure 5.B). Thus, at least in our system, it seems that WT1 mutants 

do not exert neither a transcriptional activity or a dominant negative effect on 

wild-type isoforms. 
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Figure 5. Validation of putative WT1 binding regions by luciferase reporter assays in Hela cells.  

A) Luciferase induction by WT1 isoforms using the WT1 binding regions of LST1, RB1 and LEF1 promoters. The red bars 

represent the WT1 isoforms with exon 5, the blue bars the isoforms without exon 5. The stripped bars indicate the (KTS–) 

isoforms. Error bars represent standard deviation for triplicate experiments (**P<0.01; *** P<0.001). The panel under the 

graphs shows a representative immunoblot. B) Luciferase induction by WT1(E384Stop/Ex5+) mutant alone (blue) and in 

combination with WT1(Ex5+/KTS–) isoform (stripped blue) using the WT1 binding region in LEF1 promoter. Error bars 

represent SD for triplicate experiments (*** P<0.001). The panel under the bars shows a representative immunoblot for 

WT1 and  βActin.  



4. Results 

 

54 
 

4.4 WT1 loss confers resistance to DNA damage-induced 

apoptosis in T-ALL cells with a functional p53 pathway. 

Stemming from bioinformatical analysis of ChIP-on-chip data and gene 

expression profile data, we hypothesized that WT1 may be involved in DNA 

damage response. We used p53 proficient MOLT4 cells as a model for study the 

effects of WT1 loss in T-ALL cells. After doxycycline induction, MOLT4 cells 

were subjected to increasing doses of -radiation for 24 hours. Analysis of cell 

viability and apoptosis (Figure 6.A) showed that KD cells had significantly higher 

cell viability compared to control cells after γ-irradiation. Cell cycle analysis, 

revealed that after 12 hours of -radiation treatment (2 Gy), both control and WT1 

knockdown cells showed a comparable G2/M cell cycle arrest while the S phase 

resulted strongly decreased in control cells but not in KD cells. This observation 

was further strengthened by combining DNA content analysis with 5-ethynyl-2'-

deoxyuridine (EDU) labeling (Figure 6.B).  

 

                                                                          
 

Figure 6. WT1 knockdown protects from γ-radiation induced apoptosis in MOLT4 T-ALL cells.  

A) Cell viability and apoptosis analysis in MOLT4 cells infected either with sh-scramble (Ctrl) or sh-WT1 (KD) after 24h 

treatment with increasing doses of γ-radiation. Error bars represent SD for triplicate experiments (* P<0.05; **P<0.005; 

*** P<0.001). B) Analysis of cell cycle and proliferation in sh-Scramble (Ctrl) and sh-WT1 (KD) MOLT4 cells through 

direct measurement of DNA synthesis. The Click-iT® EdU Flow Cytometry Assay kit was used in combination with cell 

cycle analysis. Analysis was performed after 12h of γ-radiation (2 Gy). On the right, plots of a representative experiment 

are shown. Square regions identify cells in active proliferation (S-phase).  
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Since our Chip-Chip data also indicated that WT1 target genes were enriched in 

pathways involved in DNA repair and cellular stress response, we focused on the 

analysis of the apoptotic response at the molecular level performing protein arrays 

in MOLT4 cells (Ctrl and KD) treated for 6 and 24 hours with 6 Gray (Gy) of 

irradiation. At 6 hours we observed minimal differences between WT1 

knockdown and control cells except for cleaved Caspase3 expression that was 

considerably higher in the sh-Scramble cells compared to sh-WT1. After 24 hours, 

differences in apoptotic protein expression became more evident: in fact KD cells, 

both under basal conditions and after irradiation, showed significantly lower 

levels of cleaved Caspase3 compared to control cells, but higher levels of anti-

apoptotic proteins such as Survivin, XIAP and HO-2, that resulted strongly down-

regulated in sh-Scramble cells. Surprisingly, KD cells had higher levels of 

phosphorylated p53 at serine 15, serine 46 and serine 392, compared to sh-

scramble control cells, suggesting future further analysis to evaluate p53 

activation and post translational modification early after DNA damage. Changes 

in protein expression (Cleaved Caspase3, XIAP, Survivin, HO-2) identified by 

protein arrays were validated by western blot (Figure 7). 
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Figure 7. Apoptosis protein arrays in MOLT4 cells after 24 hours from 6 Gy of γ-radiation.   

A) Whole cell extracts from sh-Scramble (Ctrl) and sh-WT1 (KD) MOLT4 cells after 24h from γ-radiation (6 Gy) were 

hybridized to human apoptosis protein arrays. Expression of apoptotic proteins was evaluated in separate immunoblots 

(panel on the right). B) Apoptotic proteins that were consistently modulated (Cleaved Caspase3, Survivin, HO-2, XIAP, 

phospho-p53) were labeled and their relative quantification, calculated respect to untreated Ctrl cells, is shown in the 

histogram plots.  
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Similarly, we evaluated if WT1 loss also protects from DNA damage induced by 

chemotherapeutic drugs used in the treatment of leukemia. Analysis of cell 

viability and apoptosis of MOLT4 cells treated with increasing doses of etoposide 

(from 0.1 to 5 µM) for 24 hours showed that KD cells were significantly less 

sensitive to lower doses of etoposide than control cells. In fact, western blot 

analysis of pro- and anti-apoptotic factors (PARP, cleaved Caspase3, XIAP, 

Survivin, HO-2) following etoposide treatment showed a similar trend to that 

observed after -radiation. A similar trend was also observed in cell viability 

assays after treatment with increasing doses of other anti-neoplastic drugs, such as 

cytarabine (ARA-C), vincristine and methotrexate, currently used in the therapy 

of T-ALL.  

 

 

 

 

 

 

 

Figure 8. WT1 knockdown protects from chemotherapic drug-induced apoptosis in MOLT4 T-ALL cells.  

(A) Cell viability assays and apoptosis analysis using AnnexinV staining in MOLT4 cells infected either with sh-scramble 

(Ctrl) or sh-WT1 (KD) after 24 hours treatment with increasing doses of etoposide. Error bars represent SD for triplicate 

experiments (* P<0.05; **P<0.01; *** P<0.001). (B) Western blot analysis of PARP, Cleaved Caspase-3, Survivin, Xiap 

and HO-2 in MOLT4 cells infected either with sh-scramble (Ctrl) or sh-WT1 (KD); analysis was performed after 24 hours 

treatment with 0.5 µM etoposide. βactin is shown as loading control. (C) Cell viability assays in MOLT4 cells infected 

either with sh-scramble (Ctrl) or sh-WT1 (KD) after 24 hours treatment with increasing doses of cytarabine (ARA-C), 

vincristrine and methotrexate. Error bars represent SD for triplicate experiments (*P<0.05; **P<0.01; *** P<0.001).  
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4.5 WT1 loss does not confer resistance to DNA damage in T-

ALL cells with a defective p53 pathway.  

To evaluate if WT1 loss may confer resistance to DNA damaging agents 

interfering with p53 pathway, we further extended our analysis to T-ALL cell 

lines that have an impaired p53 function due to mutations in the DNA binding 

motif, such as PF382 (p53 mutation: R273C; Cosmic database) and P12 Ichikawa 

(p53 mutation: R248Q/P; Cosmic database). As for MOLT4 cells, WT1 

knockdown was successfully induced following treatment with doxycycline 

(Figure 9.A-B). Treatment of PF382 and P12-Ichikawa infected cells with 

increasing doses of -radiation and etoposide showed that after 24 hours both Ctrl 

and KD cells had a high viability, indicating that these cells were more resistant 

than MOLT4 cells to these treatments. Further extending cell viability analysis to 

48 hours disclosed that WT1 knockdown does not confer protection from 

apoptosis compared to control cells. In addition, cleaved PARP, cleaved Caspase-

3, XIAP, and Survivin were not differentially regulated between Ctrl and KD cells 

upon DNA damage (Figure 9.C-F). Western blot analysis of p53 stabilization and 

activation showed high level of basal p53 protein as expected for cells carrying 

mutations in the p53 locus. Notably, the ratio between PARP and cleaved PARP 

was identical between sh-Scramble and sh-WT1 cells further supporting the fact 

that WT1 loss does not affect the apoptotic response in p53 mutated T-ALL cells.  
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Figure 9. WT1 knockdown does not protect from γ-radiation and etoposide induced-apoptosis in PF382 and P12 

Ichikawa cells.  

A-B) Relative expression of WT1 gene transcript in Ctrl and KD PF382 and P12 Ichikawa cells treated 6 days with 

doxycycline as assessed by RT-qPCR. Upper right, immunoblot analysis of WT1 protein. C-F) Cell viability assay analysis 

in PF382 (C and D) and P12 Ichikawa (E and F) T-ALL cells infected either with sh-scramble (Ctrl) or sh-WT1 (KD) after 

24 hours from γ-radiation and etoposide treatment. Right panels: immunoblot analysis of PARP, XIAP, Survivin. βActin is 

shown as loading control. G) Immune-blot of PARP, phosphorylated-p53 (S15), acetylated-p53 (K382), and total p53 at 

different time points after 6 Gy of γ-irradiation in PF382 cells. βActin is shown as loading control.  
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4.6 WT1 loss promotes survival dampening the p53 apoptotic 

response  

Given the dependence of WT1 function with a functional p53 response we 

evaluated if WT1 loss affected p53 activation and stabilization following DNA 

damage. p53 activation is a complex process and requires recognition of DNA 

damage. After ionizing radiation, the serine/threonine kinase ATM acts at an early 

stage in damage sensing phosphorylating p53 protein, in a serine residue (S15), 

and the serine/threonine kinase Chk2. Chk2 triggers stabilization of p53 by 

phosphorylating another serine residue (S20). MOLT4 cells, infected either with 

sh-Scramble or sh-WT1, were treated with 6 Gy of γ-radiation. Western blot 

analysis of phosphorylated p53 (p-P53, S15), acetylated p53 (Ac-P53, K382) and 

of total p53 at different time points (0,3,6,12 hours) demonstrated that sh-

Scramble MOLT4 cells had similar levels of p53 induction and activation 

compared to sh-WT1 MOLT4 cells. Moreover, phosphorylation of ATM, Chek2 

and γH2AX, involved in the initial phases of DNA damage recognition, was not 

severely affected by WT1 loss (Figure 10.C).  
 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

A) 



4. Results 

 

61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. WT1 loss does not impair DNA damage recognition in MOLT4 T-ALL cells.   

A) Left panel: cell viability analysis in MOLT4 cells infected either with sh-scramble (Ctrl) or sh-WT1 (KD) after 1, 3, 6 

and 12 hours from γ-radiation (6 Gy). Right panel: analysis of Cleaved Caspase3, phosphorylated p53 (S15), acetylated p53 

(K382), and total p53 expression levels by western blot. βactin is shown as loading control. B) Flow cytometry analysis of 

histone H2AX phosphorylation (S139), in combination with Propidium Iodide (PI) incorporation. sh-Scramble (Ctrl) and 

sh-WT1 cells (KD) cells were treated with 6 Gy of γ-radiation for 10 and 30 minutes. One representative experiment is 

shown. C) Immunoblot analysis of phosphorylated and total ATM (S1981) and Chk2 (T68) in sh-Scramble (Ctrl) and sh-

WT1 (KD) MOLT4 cells following 1,3 and 6 hours from 6 Gy of γ-radiation. βactin is shown as loading control.  

 

 

Given these results, we hypothesized that WT1 may affect the apoptotic response 

downstream of p53 activation. Using low-density arrays and RT-qPCR we 

analyzed the expression of genes involved in DNA repair, apoptosis and cell cycle 

progression under basal conditions and after 3, 6 and 12 hours following -

radiation treatment, both for KD and Ctrl MOLT4 cells. We found that WT1 

knockdown markedly lowered the transcript levels of genes involved in DNA 

damage response both basally and after irradiation (Figure 11.A): interestingly 

B) 
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most of them were involved in p53 response such as CDKN1A/p21, BBC3/PUMA, 

GADD45A, BAX and FAS. Surprisingly, these genes resulted significantly bound 

by WT1 in at least one of our ChIP-chip replicates (CDKN1A/p21, P=1.53x10
-7

; 

BBC3/PUMA P=1.06x10
-7

; GADD45A, P=7.38x10
-5

; BAX, P=1.4x10
-4

; FAS, 

P=2.13x10
-2

). For the pro-apoptotic factors BAX and BBC3/PUMA and the cell 

cycle regulator CDKN1A/p21, a potent cyclin-dependent kinase inhibitor, 

differences in their induction were particularly clear at 12 hours from γ-radiation, 

resulting more expressed in sh-Scramble compared to sh-WT1 MOLT4 cells. 

Their regulation at protein level was also confirmed by western blot analysis. In 

addition, WT1 knockdown cells failed to up-regulate genes involved in DNA 

repair, such as LIG1, POLH, PPM1D and XPC, that were instead significantly 

induced in sh-Scramble cells at 6 and 12 hours after 6 Gy of γ-radiation. 

Interestingly, LIG1 gene was significantly bound in our ChIP-chip data set in 3 

out of 3 replicates with a P value of 2.37x10
-9

. Similar results were also found 

after treatment of MOLT4 cells with 0.5 µM of etoposide (Figure 11.B).  

Among the WT1 regulated targets identified by the integration of ChIP-chip data 

and gene expression analysis, the MAPK pathway resulted particularly enriched. 

We thus verified by RT-qPCR gene expression of some important regulators of 

the MAPK pathway, obtained from bioinformatic analysis, such as DUSP6, 

DUSP10, PPM1A and PTPN7. However, no significant differences in gene 

expression were found upon γ-radiation treatment between sh-Scramble and sh-

WT1 cells (data not shown). Considering that MAPK pathway regulation mainly 

occurs at the post-transcriptional level we analyzed MAPK components in 

response to DNA damage using MAPK pathway peptide arrays. Analysis was 

performed at 3 and 6 hours from 6 Gy of γ-radiation and it showed that critical 

regulators of cellular stress such as p38 and JNK proteins were not induced upon 

DNA damage, indicating that, at least in our context, the MAPK pathway is not 

crucial for DNA damage response (data not shown).  
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Finally we verified gene expression changes of genes involved in DNA damage 

response following -radiation treatment in cells with an impaired p53 response. 

Thus, sh-Scramble and sh-WT1 PF382 cells were subjected to 6 Gy of γ-radiation 

and we evaluated gene expression changes by RT-qPCR. We found no significant 

differences in the gene expression profile of most genes involved in DNA damage 

response, both in control and KD cells (Figure 11.C), except for GADD45A and 

PPM1D, that had a higher expression in control cells, especially at early time 

points after damage.  
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Figure 11. WT1 knockdown impairs p53 DNA damage response in MOLT4 cells but not in PF382 cells.  

Relative expression of specific genes involved in the DNA damage response in MOLT4 cells after different times (3, 6 and 

12 hours) from 6 Gy of γ-radiation (A) and 0.5 µM etoposide (B) treatments. C) Relative expression of specific genes 

involved in the DNA damage response after different times (3, 6 and 12 hours) from 6 Gy of γ -radiation in PF382 cells. 

Analysis was performed in both sh-Scramble (Ctrl) and sh-WT1 cells (KD). Expression is calculated relative to untreated 

sh-Scramble cells (Ctrl 0h) fixed as 1. 

 

 

4.7 WT1 alterations are associated with increased resistance 

to DNA damage in human primary T-ALL xenografts  

Since deficiency in WT1 protein resulted in increased resistance to DNA damage 

in MOLT4 T-ALL cell line, we wondered if this phenotype could also be present 

in human primary T-ALL samples carrying alterations in WT1 locus. Amongst 

forty T-ALL xenograft samples generated in our laboratory, three xenografts 

resulted mutated in exon 7 (PDTALL13, PDTALL40R, PDTALL51R,) with 

frameshift or nonsense mutations: PDTALL13 was obtained from a newly 

diagnosed T-ALL patient, whereas PDTALL40R and PDTALL51R were obtained 

from relapsed (R) patients.  
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PDTALL Phenotype WT1 status p53 status 

8 Thymic wild type wild type 

9 Early-T wild type wild type 

10 Early-T wild type wild type 

11 Thymic wild type wild type 

12 Early-T wild type wild type 

13D Thymic 
ins GGGCCGG at position 1110; 

predicted to produce truncated protein 
wild type 

15 T-mature wild type wild type 

16 Thymic wild type wild type 

19R Early-T wild type R248Q 

40R Early-T 
C1142A; 

predicted to produce truncated protein 

R213Q; 

236_237insC 

51R Early-T 

insCGGCCACTCCCCGGGGGTCC/delGTG 

at position 1102; 

predicted to produce truncated protein 

wild type 

 

Table 3. Human primary T-ALL xenograft characteristics. 

 

WT1 expression was analyzed by RT-qPCR and resulted quite similar among 

PDTALL xenograft samples even if one of the WT1 mutated samples, 

PDTALL13, showed higher levels of WT1 expression respect to all the other 

samples (Figure 12.A). On the other hand, mutant WT1 samples showed a trend 

towards lower levels of WT1 protein expression respect to the wild-type WT1 

xenograft samples, as shown by western blot analysis in Figure 12.B. 

Surprisingly, the mutant WT1 protein was only clearly detectable in CCRF-CEM 

infected with a plasmid carrying the mutant WT1 (E384Stop) but not as native 

protein in mutant WT1 PDTALL xenografts.  
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Figure 12. WT1 mRNA and protein expression in primary T-ALL xenograft samples  

A) Relative expression of WT1 mRNA in primary T-ALL xenografts (WT1 expression of PDTALL8 is fixed at 1).  

B) Immunoblot analysis of WT1 protein levels in primary T-ALL xenograft samples. βActin is shown as loading control. 

WT1 mutated samples are indicated in red.  

 

 

We compared the effects of increasing doses of -radiation (0.5 to 6 Gy) between 

mutant WT1 xenografts and wild type WT1 xenografts (PDTALL8, 9, 10, 11, 12, 

15, 16 and 19R) that were in use in our laboratory. Cell viability and apoptosis 

assays showed that PDTALL xenografts could be divided into two subgroup: 

sensitive (IC50 < 1.5 Gy) and resistant (IC50 > 1.5 Gy) and, among these last 

ones, all the WT1 mutated xenografts were included. Interestingly, two 

xenografts, PDTALL19R and 40R were particularly resistant due to mutations in 

p53 locus. 
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Figure 13. Primary T-ALL xenograft samples with WT1 alterations are resistant to γ-radiation-induced apoptosis  

Cell viability analysis of primary T-ALL xenograft samples after 24h of treatment with increasing doses of γ-radiation (0.5 

to 6 Gy).  

 

 

In order to determine if xenograft response to -radiation was possibly related to 

an altered expression of genes involved in DNA damage response, we performed 

RT-qPCR analysis for numerous genes involved in the DNA damage response. 

For this analysis wild-type WT1 and the mutant WT1 samples were exposed to 2 

Gy -radiation for 3 hours. Among the genes analyzed, the most differentially 

regulated ones after damage were the pro-apoptotic factor BBC3/PUMA and cell 

cycle regulator CDKN1A/p21. Both RT-qPCR and western blot analysis 

confirmed that these genes were nicely induced in the wild type WT1 xenografts 

PDTALL8, 9, 10 ,11 and 12 after -radiation, most probably due to efficient 

activation and stabilization of p53. Differently from the other WT1 wild type 

samples PDTALL16 showed high basal level of BBC3/PUMA that resulted 

further up-regulated following DNA damage. Surprisingly, this sample showed 

minimal induction in BBC3/PUMA expression at the transcript level. 

PDTALL13D xenograft, which resulted mutated for WT1 gene, showed p53 

stabilization similar to wild type WT1 xenografts but both RT-qPCR and western 

blot analysis showed an impaired expression of p53 targets BBC3/PUMA and 

CDKN1A/p21. On the other hand, in PDTALL51R, both pro-apoptotic genes 

were highly induced after DNA damage, although it showed resistance to -

radiation in cell viability assays (Figure 13). Finally, no BBC3/PUMA or 

CDKN1A/p21 induction was found in PDTALL19R and 40R samples, where 
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mutations in p53 locus impaired the canonical p53 activation after DNA damage 

(Figure 14). Considering the molecular and genetic heterogeneity of PDTALL 

xenograft samples, this study is a first attempt to associate WT1 mutations with 

resistance to therapy. Interestingly, PDTALL13D showed an impaired 

BBC3/PUMA induction similar to that observed in MOLT4 KD cells following 

p53 activation. 

 

 

 

 

 

 

 

 
 

Figure 14. BBC3/PUMA and CDKN1A/p21 genes are the most differentially regulated genes between WT1 wild type 

and mutated xenograft samples following DNA damage.   

A) Relative expression of BBC3/PUMA and CDKN1A/p21 genes in primary xenografts samples. The WT1 mutated 

xenografts are highlighted in red. Analysis was performed after 3h from 2 Gy of γ-radiation. Expression of specific genes 

for each sample is relative to the corresponding untreated samples. B) Western blot analysis of p53, BBC3/PUMA and 

CDKN1A/p21 protein expression after 3h hours from 2 Gy γ-radiation. βActin is shown as loading control. The mutated 

WT1 xenografts are highlighted in red.  
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4.8 WT1 directly induces the pro-apoptotic factor 

BBC3/PUMA 

We focused on BBC3/PUMA, a crucial pro-apoptotic factor downstream of p53 in 

DNA regulatory damage signaling, given that it has not been previously described 

to be a WT1 target, and some of its regulatory elements were found enriched in 

our ChIP-chip analysis. We thus determined the effects of WT1 expression on the 

activity of a regulatory element obtained from our ChIP-on-chip analysis, located 

in the BBC3/PUMA intron 1-2, using luciferase reporter assays in U2OS cells. To 

this end, we over-expressed the four full length WT1 isoforms (both KTS+/– and 

exon 5+/–) and the mutant WT1(E384Stop, exon 5+/–) in U2OS cells (which do 

not express WT1 protein). These experiments showed that the (KTS−) isoforms 

were more efficient in inducing BBC3/PUMA reporter activity compared to 

(KTS+) and the mutant isoforms (Figure 15.B). Western blot analysis of WT1 

protein expression showed that the full length WT1 isoforms were efficiently 

expressed following transfection while mutant WT1 proteins were expressed to 

much lower levels and were clearly detectable only after high exposure (Figure 

15.B).  
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Figure 15. BBC3/PUMA is a WT1 target.  

A) Schematic representation of WT1 binding sites in the promoter region and intron 1-2 of BBC3 gene. BS1 and BS2 are 

previously identified p53 binding sites. P1, P2, P3 and P4 are Agilent probes that resulted significantly bound by WT1 in 

ChIP-chip analysis. The P4 binding site had the best score and it was cloned into the pGL4.23[luc2/minP] vector 

expressing the Luciferase gene under a minimal promoter region. B) Luciferase reporter activity of the BBC3/PUMA 

reporter construct in U2OS cells in response to increasing doses (250 and 500 ng) of full length or mutant WT1 isoforms. 

Western blot analysis of full length WT1 or mutant WT1 isoform expression is shown. βActin is shown as loading control. 

  

 

Since BBC3/PUMA is a known p53 target, and we found that WT1 is able to 

directly influence BBC3/PUMA reporter activity, we evaluated if WT1 

transcriptional activity could be influenced by a functional p53 pathway. We 

identified that U2OS cells to be p53 proficient following γ-radiation and to lack 

WT1 expression (Figure 16.A). We initially screened three p53 shRNAs to 

determine which one induced the most efficient sh-p53. Silencing was evaluated 

under basal conditions and after γ-radiation. As shown in Figure 16.A, we found 

sh-P53(19) and sh-P53(20) to be the most efficient in knocking down p53 

expression. Subsequently, we performed luciferase assays in U2OS cells stably 

expressing an irrelevant hairpin (sh-Scramble) or a specific p53 shRNA (sh-P53 

A) 

B) 
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(20)) to silence p53 expression and transfected then with BBC3/PUMA reporter 

construct and WT1(Ex5+/KTS–) construct. We found that the full length WT1 

(Ex5+/KTS–) isoform nicely induced BBC3/PUMA regulatory element and this 

induction was significantly augmented after 24h of γ-radiation at 10 Gy (Figure 

16.B). On the contrary, the same regulatory element activity was not significantly 

affected by γ-radiation in U2OS cells transfected with the empty vector. Notably, 

the activation of the BBC3/PUMA regulatory element induced by the full length 

WT1 isoform (Ex5+/KTS–) in the presence of γ-radiation was significantly 

reduced in U2OS cells carrying the sh-P53(20) hairpin (Figure 16.B). Western 

blot analysis of U2OS cells transfected either with the empty vector or the vector 

expressing full length WT1 (Ex5+/KTS–) isoform in the presence or absence of γ-

radiation demonstrated stabilization of p53 protein following γ-radiation which 

was remarkably decreased in cells expressing sh-P53(20) (Figure 16.B). Similar 

results were obtained using U2OS cells expressing sh-P53(19). Overall these 

results suggest that p53 directly or indirectly augments transcriptional activity of 

WT1 with respect to the pro-apoptotic factor BBC3/PUMA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. p53 cooperates with WT1 to induce high levels of BBC3/PUMA reporter activity.  

A) Immuno-blot analysis of p53 induction in U2OS cells wild-type, infected with sh-scramble or three different sh-P53 

((17),(19),(20)) in the presence or absence of 10 Gy of γ-radiation. As positive control for p53 expression, MCF7 cells were 

used, since they present a mutant p53 protein. B) Luciferase reporter activity of the BBC3/PUMA reporter construct in 

response to over-expression of the full length WT1(Ex5+/KTS-) isoform in the presence or absence of 10 Gy of γ-radiation 

in U2OS cells infected with the sh-Scramble and the sh-P53(20) vector. Immuno-blot analysis of p53 and WT1 protein 

expression in infected cells is showed under the graph. 

B) A) 
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T-lineage acute lymphoblastic leukemia (T-ALL) accounts for 10% to 15% of 

pediatric and 25% of adult ALL cases. The introduction of intensive combination 

chemotherapy protocols has led to remarkable improvements in survival of this 

disease; however, chemotherapy is non-specific and highly toxic and patients 

suffer strong side effects from these treatments. WT1 transcription factor is 

described to behave both as a tumor suppressor or an oncogene in tumor 

formation depending on the tumor type. This is supported by the fact that WT1 

may act both as an activator and a repressor of the same targets under different 

cellular conditions. In particular, in leukemia cells WT1 is described both an 

oncogene and as tumor suppressor. Higher WT1 mRNA levels in leukemia cells 

respect to normal bone marrow and progenitor cells support its role as an 

oncogene and aberrant WT1 levels in acute leukemia (both under and over-

expressed) are reported to be associated with a poor prognosis
175

,
184-186

. Moreover, 

WT1 expression levels are used as a marker to detect minimal residual disease
187

 

in AML. WT1 is also a suitable candidate for targeted therapy, and has been 

developed as a target for immunotherapy because of presentation of WT1 peptides 

on the cell surface
188

. On the contrary, the role of WT1 as tumor suppressor is 

supported by mutations and deletions in WT1 locus. In both AML and T-ALL 

mutations account for 8-12% of patients and are mainly frameshifts located in 

exon 7 predicted to result in truncated proteins lacking the four zinc fingers that 

not only carry the major DNA binding portion of the WT1 protein, but also 

contain the nuclear localization signal and binding domains for interacting 

proteins predicted to regulate WT1 function, such as p53, and homologous p63 

and p73
158

. 

Studies evaluating the impact of WT1 mutations in all T-ALL cohorts in both 

pediatric and adult cohorts failed to detect any significant differences in response 

to therapy and survival between WT1 mutated and WT1 wild type patients even if 

patients with mutations in WT1 were doing worse in term of survival than wild 

type patients
56

. Moreover in AML, WT1 mutated samples were found to have a 

poor outcome at least in cytogenetically normal AML patients
178,179

. These 

clinical findings have suggested that WT1 mutations may confer a selective 

advantage in tumor progression or relapse.  
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Our data support that WT1 acts as a tumor suppressor gene in T-ALL. Over-

expression of full length and mutated WT1 isoforms (exon 5+/– and KTS+/–; 

E384Stop exon 5+/–) in CCRF-CEM and Jurkat T-ALL cells showed that only the 

(KTS−) isoforms, which are presumed to be transcriptionally more active, 

negatively affected growth of T-ALL cells most probably inducing cell cycle 

arrest. Very low levels of WT1 mutant expression, as demonstrated by western 

blot analysis, suggested that truncated WT1 mutant may be unstable and easily 

targeted for degradation further supporting that WT1 mainly acts as an haplo-

insufficient tumor suppressor. Interestingly, using clonogenic assays in soft-agar 

we demonstrated that CCRF-CEM cells over-expressing the (KTS−) isoforms had 

an impaired capacity of colony formation compared to the other full length and 

mutant isoforms. Consistently with our previous results, WT1 loss determined a 

significant increase in colony formation compared to MOLT4 cells expressing an 

irrelevant hairpin. The fact that (KTS−) isoforms, which are considered the most 

efficient in transcriptional regulation, negatively impacted on T-cell growth, 

supported the hypothesis that loss of WT1 can significantly affect its 

transcriptional program leading to tumor progression.  

We thus performed gene expression profiling in a loss of function system in 

MOLT4 cells which express moderate levels of WT1 protein. Data set of genes 

regulated following WT1 loss were combined with ChIP-chip experiment results 

performed in MOLT4 cells. This analysis allowed the identification of WT1-

regulated targets in T-ALL cells. We obtained more than a hundred WT1 targets 

that were both directly bound and deregulated by WT1 in our leukemia model. 

From this analysis we found that there was an enrichment in genes involved in 

response to cellular stress and in particular in the Mitogen-Activated Protein 

Kinase (MAPK) pathway, as previously found also by other groups
165,189

. 

Moreover, genes bound by WT1 were found characteristically down-regulated, 

strongly suggesting that WT1 primarily functions as a transcriptional activator in 

T-ALL cells. Interestingly, among these WT1 direct targets, we found LEF1 

(P=4,96x10
-18

), LMO2 (P=2,30x10
-06

) and RB1 (4,53x10
-5

) that have been 

previously involved in the pathogenesis of T-ALL. Importantly, the (KTS−) 

isoforms were the most efficient in transcriptional regulation as demonstrated for 

the regulatory regions of specific selected targets (LST1, LEF1 and RB1). As 



 5. Discussion 

 

77 
 

expected, over-expression of a typical WT1 mutant (E384Stop) failed to induce 

luciferase activity. Notably, WT1 mutant was not effective in altering the 

transcriptional activity of the (KTS−) isoform when both were co-expressed in the 

same cellular context.  

ChIP-chip analysis identified about 800 WT1 direct targets that were enriched in 

in pathways responsible for cellular response to stress, such as p53, nucleotide 

excision repair and MAPK signalling pathways. This analysis suggested that WT1 

may be involved in resistance to DNA damage.  

We used MOLT4 cells as a model of p53 proficient T-ALL cell line. Sequencing 

analysis of p53 locus showed that MOLT4 cells carry an heterozygous p53 

nonsense mutation (p.R306X). This mutation was not detectable at the cDNA 

level probably due to nonsense-mediated decay
190

. We demonstrated that specific 

ablation of WT1 in MOLT4 cells, induced resistance to DNA damage following -

radiation and chemotherapy. WT1 deficiency in MOLT-4 cells significantly 

increased survival, affecting the expression, as confirmed both at mRNA and 

protein levels, of crucial members of the Bcl2 family, such as BBC3/PUMA and 

BAX. Moreover, the induction of other important genes involved in cell cycle 

regulation, such as CDKN1A and genes involved in DNA repair were affected in 

MOLT4 that had lower levels of WT1 protein. Importantly, BBC3/PUMA, 

CDKN1A, GADD45, CD82 and LIG1 presented significant WT1 binding sites in 

their regulatory regions at least in 2 out of three ChIP-chip replicates (p<0.05). 

This suggests that loss of WT1 may directly affect expression of p53 targets 

and/or genes involved in DNA damage response and consequently induce 

resistance to DNA damage. Importantly, increased resistance to DNA damage 

following WT1 loss depended on p53 status. Indeed, p53 mutated T-ALL cell 

lines such as PF382 and P12 Ichikawa, were not affected by WT1 loss. This 

supports the idea that WT1 may directly affect transcription of genes involved in 

DNA damage response interacting with a functional p53 protein. The possibility 

that WT1 and p53 can interact and that this interaction may modulate transcription 

of their reciprocal targets has been already described elsewhere 
167,169,191

. In 

particular, it was previously shown that the GADD45A promoter contains binding 

sites for WT1 transcription factor and that GADD45A promoter activity is 

augmented by co-expression of p53 and WT1, but not by p53 alone
191

. Here we 
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found that WT1 may regulate crucial pro-apoptotic Bcl2-like members through a 

mechanism previously described for GADD45A. Notably, our experiments 

demonstrated for the first time that DNA damage response and p53 stabilization 

could augment the transcriptional activity of WT1 on BBC3/PUMA regulatory 

element influencing BBC3/PUMA expression.  

Considering that T-ALL cell lines are generally mutated for p53 most probably 

due to in vitro culture selection, we extended our analysis to primary human T-

ALL xenograft samples that are characterized by a significantly lower incidence 

of p53 mutations. We characterized our primary T-ALL xenograft samples for 

WT1 and p53 status. Among the 10 xenografts used in our study, 7 were wild-

type (PDTALL8, 9, 10, 11, 12, 15, 16, 19R) and 3 were mutated for WT1 

(PDTALL13D, 40R, 51R); samples PDTALL 19R and 16R also presented 

mutations in p53 locus (Table 3).  

In coherence with previous data in literature
175

, we showed that primary T-ALL 

xenografts carrying mutations in WT1 locus, express comparable or higher levels 

of WT1 transcript respect to wild type WT1 samples. However, mutant WT1 

samples showed a trend towards lower levels of WT1 protein expression respect 

to the wild type WT1 xenograft samples, as shown by western blot analysis in 

Figure 12.B, and the presumed truncated WT1 proteins were not detectable in 

freshly isolated primary T-ALL xenografts. These findings enforce the hypothesis 

that WT1 mutations in T-ALL most probably lead to a haplo-insufficiency rather 

than to gain of function effects. Cell viability and apoptosis assays showed that 

PDTALL xenografts could be divided into two subgroup: sensitive (IC50 < 1.5 

Gy) and resistant (IC50 > 1.5 Gy) and, among these last ones, all the WT1 

mutated xenografts were included. Interestingly, two xenografts, PDTALL19R 

and 40R were particularly resistant due to mutations in p53 locus. PDTALL9 and 

16 were instead wild type for p53 gene and showed a regular p53 protein 

induction after DNA damage, suggesting that their resistance was probably due to 

other mechanisms. Importantly, the WT1 mutated sample PDTALL13D was the 

only T-ALL xenograft that showed, both at the transcript and protein levels, 

impaired BBC3/PUMA and CDKN2A/P21 induction even in the presence of 

canonical p53 activation, recapitulating the phenotype described for MOLT4 

cells. Interestingly, PDTALL13D belongs to the thymic subgroup according to the 
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phenotype classification
96

. Notably it was reported that in the standard risk group 

of thymic T-ALL cases, WT1 mutated patients had an inferior RFS respect to the 

WT1 wild-type patients
175

, suggesting that in thymic samples WT1 mutations may 

significantly impact on tumor progression. Differently, PDTALL51R is a relapse 

sample with an early-T/ETP-like phenotype, characteristics that may explain its 

complexity at both molecular and functional level. 

Primary xenograft samples are very interesting models to study the impact of 

molecular alterations in tumor pathogenesis. However, the functional and 

molecular interpretation of data generated in primary tumor xenograft models is 

generally particularly challenging. In our experimental setting, the major problem 

was represented by the low number of WT1 mutated T-ALL xenografts mainly 

due to the moderate incidence of WT1 mutations in T-ALL. This issue negatively 

impacted on data management. Another obstacle was represented by the high 

heterogeneity of primary T-ALL samples, as showed by the immune-phenotypic 

characterization, leading to difficulties in data interpretation. Finally, T-ALL 

xenografts derived from primary samples are generally difficult to manipulate in 

vitro with the classical tools used to knockdown or to over-express specific genes, 

thus impairing data confirmation through rescue experiments. Our study is a first 

attempt to approach the analysis of WT1 function in T-ALL primary xenografts. 

Increasing the number of xenografts collected will help to move from hypothesis 

or speculation to the generation of a cleared picture of WT1 function in T-ALL. 

In conclusion, we found that WT1 loss in T-ALL cells conferred increased 

resistance to DNA damage, affecting the expression of crucial pro-apoptotic 

proteins and other important genes involved in cell cycle regulation and DNA 

repair. These data were in agreement with our ChIP-chip analysis performed on 

MOLT4 cells, which demonstrated that WT1 loss altered its transcriptional 

network, through the modulation of targets enriched in pathways involved in 

cellular stress response. In particular, the p53 pathway was significantly affected, 

suggesting a functional WT1-p53 interaction in the transcription of important cell 

cycle and apoptosis regulators after DNA damage, such as BBC3/PUMA gene. 

Thus, understanding the cellular mechanisms of resistance will be critical to the 

successful treatment for T-ALL, opening numerous possibilities of future 
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therapeutic intervention, especially in patients who relapse or become refractory 

to traditional chemotherapeutic treatment regimens. 
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