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RIASSUNTO 

Le tecnologie per il sequenziamento massivo del DNA sono spesso usate per studiare il 

trascrittoma e  ottenre profili d’espressione genica su scala genomica (RNA-seq). Rispetto 

ad altre tecnologie come i microarray, l’RNA-seq ha una maggiore sensibilità nel 

campionare e quantificare le molecole espresse e permette inoltre l’identificazione di 

trascritti sconosciuti o non caratterizzati. Il processamento di dati RNA-seq prevede 

molteplici passaggi di analisi (preprocessamento degli input per la valutazione della 

qualità e pulizia, allineamento delle read al genoma di riferimento, identificazione, 

quantificazione e annotazione dei trascritti, stima di espressione differenziale) che devono 

essere eseguiti in ordine sequenziale, mediante pipeline computazionali. Ogni singolo 

esperimento di RNA-seq può produrre grandi quantit{ di dati che richiedono l’impiego di 

metodi efficienti per ottenere la caratterizzazione qualitativa e quantitativa del 

trascrittoma. Esistono diversi metodi che implementano ogni passaggio concettuale di 

analisi e nuovi ne vengono continuamente proposti. Questo e’ anche dovuto alla variet{ dei 

quesiti biologici e disegni sperimentali a cui gli esperimenti di RNA-seq possono essere 

applicati. Di converso, non esiste un’implementazione comunemente adottata dello 

schema di processamento. 

In questa tesi, abbiamo sviluppato una pipeline computazionale per l’analisi di dati RNA-

seq focalizzata sul trascrittoma lineare; abbiamo esteso una pipeline esistente che analizza 

dati di RNA-seq di microRNA (miRNA) e piccoli RNA simili ai miRNA ed abbiamo iniziato a 

sviluppare una pipeline computazionale per l’identificazione e la quantificazione di RNA 

circolari. Gli obiettivi principali delle prime due pipeline sono il profiling dell’insieme dei 

trascritti (trascrittoma) e piccoli RNA (miRNoma) espressi, con l’identificazione di RNA 

noti e nuovi. Inoltre, è stato possibile studiare le variazioni di sequenza degli RNA (come 

gli isomiR dei miRNA), dei livelli di espressione di trascritti e piccoli RNA, e confrontare i 

profili di espressione tra diversi gruppi di campioni biologici. 

Il maiale (Sus scrofa) è un organismo modello per numerose malattie o condizioni umane, 

ma anche molto importante di per sé per l’industria di carne e derivati di alto pregio 

economicamente importanti. Il tessuto adiposo e il lardo dorsale sono oggetto di attiva 

ricerca, poichè alcune caratteristiche qualitative e quantitative del grasso e i meccanismi e 

tassi di deposito e accumulazione del grasso sono in stretta connessione con aspetti 

tecnologici e risultati qualitativi dei prodotti finali, come il prosciutto crudo. Tuttavia, il 

quadro complessivo dei processi biologici e molecolari che regolano il deposito del lardo 

dorsale nei maiali è ancora incompleto.  
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In questa tesi, abbiamo applicato i metodi di analisi sviluppati a dati RNA-seq di RNA 

poliadenilati e piccoli RNA da campioni di tessuto adiposo sottocutaneo di 20 soggetti di 

razza Italian Large White (ILW). Gli animali selezionati sono stati allevati in condizioni 

molto standardizzate, ma presentano, riguardo i tratti del grasso, fenotipi e corrispondenti 

meriti genetici estremi e divergenti (maiali FAT e LEAN). L’analisi del profilo 

trascrizionale del lardo dorsale ha identificato l’espressione di 23.483 geni, dei quali solo il 

54,1% rappresentato da geni noti. Dei 63.418 trascritti espressi, circa l’80% erano 

isoforme non precedentemente annotate. Confrontando i livelli di espressione dei maiali 

FAT contro i maiali LEAN, abbiamo poi identificato, con criteri molto stringenti, 86 

trascritti differenzialmente espressi: 72 espressi a livelli più alti nei maiali obesi (tra cui 

ACP5, BCL2A1, CCR1, CD163, CD1A, EGR2, ENPP1, GPNMB, INHBB, LYZ, MSR1, OLR1, 

PIK3AP1, PLIN2, SPP1, SLC11A1, STC1) e 14 meno espressi (inclusi ADSSL1, CDO1, 

DNAJB1, HSPA1A, HSPA1B, HSPA2, HSPB8, IGFBP5, OLFML3). I geni sovraespressi sono 

implicati in processi del sistema immunitario, di risposta allo stimolo, attivazione cellulare 

e sviluppo dell’apparato scheletrico. I geni sottoespressi includono cinque proteine heat 

shock e sono associati a categorie funzionali quali il legame di proteine mal ripiegate, e la 

risposta allo stress. Nel tessuto adiposo un’eccessiva adiposit{ combinata a carenze nei 

meccanismi di risposta allo stress sono collegate ad uno stato infiammatorio del tessuto  e, 

di conseguenza,  ad alterazioni dell’attivit{ secretoria del tessuto adiposo, similmente a 

quanto è stato osservato nell’obesit{ umana. 

I miRNA sono importanti regolatori dell’espressione genica nel differenziamento, nell 

sviluppo e nella fisiologia cellulare dei diversi tessuti. Essi agiscono come regolatori post-

trascrizionali dell’espressione genica, silenziando i trascritti bersaglio. Lo studio del 

miRNoma del lardo dorsale di maiale ha identificato l’espressione di centinaia di piccoli 

RNA, includendo potenziali nuovi miRNA, nuove isoforme di miRNA (isomiR) e nuovi 

microRNA-offeset RNA (moRNA), probabilmente prodotti dalle regioni terminali di 

precursori a forcina processate in modo non canonico. Da uno studio preliminare condotto 

su due campioni abbiamo rilevato 222 miRNA noti, 68 nuovi miRNA e 17 moRNA espressi 

da forcine note, e 312 nuovi miRNA espressi da 253 nuove forcine. L’espressione di cinque 

piccoli RNA, inclusi il moRNA ssc-moR-21-5p e un miRNA prodotto da un precursore da 

noi predetto, è stata validata mediante qRT-PCR, confermando l’affidabilit{ dei nostri 

risultati. In accodo con questi dati, un secondo studio condotto su 18 campioni ha 

identificato un miRNoma molto simile in termini di elementi espressi e varianti. Questo ha 

inoltre permesso di identificare miRNA e moRNA differenzialmente espressi tra soggetti 

FAT e LEAN, potenziali regolatori di trascritti la cui modulazione dell’espressione 

potrebbe essere implicata nelle variazioni fenotipiche dei soggetti considerati. Abbiamo 
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predetto i potenziali bersagli dei miRNA  e dei moRNA (nell ipotesi che i moRNA possano 

funzionare come miRNA) modulati prendendo in considerazione, per analisi ad hoc le 

sequenze dei trascritti ricostruite in precedenza e gli isomiR dei miRNA risultati 

maggiormente espressi e quindi rilevanti. Abbiamo integrato i risultati di queste 

predizioni con l’analisi combinata dei profili d’espressione di miRNA e trascritti, per 

selezionare le relazioni miRNA-trascritto maggiormente supportate dai dati d’espressione. 

La rete di interazioni miRNA-trascritti ottenuta in questo modo è stata arricchita 

dall’informazione su espressione differenziale, annotazione funzionale e predizioni del 

potenziale codificante e sovrapposizione dei trascritti con regioni genomiche di QTL di 

maiale. In questo modo siamo stati in grado di identificare un numero ristretto di 

interazioni potenzialmente molto significative che necessitano di essere investigate 

sperimentalmente. Ulteriori considerazioni stanno emergendo dallo studio del potenziale 

impatto di specifici miRNA differenzialmente espressi su geni appartenenti a pathway 

molto attinenti alla biologia del tessuto adiposo. 

I risultati applicativi di questi studi hanno allargato la conoscenza dei trascritti e dei 

piccoli RNA espressi nel tessuto adiposo di maiale, e anche delle interazioni regolative tra 

piccoli RNA e trascritti, fornendo utili informazioni per una miglior comprensione del 

lardo dorsale di maiali ILW e nuove ipotesi per studi futuri sulla regolazione 

dell’espressione genica in questo tessuto. In aggiunta, stiamo attualmente sviluppando ed 

estendendo ulteriormente i metodi qui presentati, con applicazioni e obiettivi ulteriori 

rispetto a quelli descritti in questa tesi. 
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ABSTRACT 

High throughput technologies for DNA sequencing are used more and more frequently for 

gene expression profiling studies (RNA-seq). With respect to other techniques such as 

microarrays, RNA-seq has higher sensitivity in retrieving the expressed molecules and 

presents the advantageous feature of allowing the detection of unknown or 

uncharacterized transcripts. RNA-seq data processing involves several computational 

steps (input preprocessing for quality evaluation and cleaning; read alignment to 

reference genome; transcript identification, quantification, and annotation; differential 

expression assessment) that have to be performed in sequential order, thus resulting in a 

computational pipeline. Each single RNA-seq experiment can produce large amounts of 

data that require the use of efficient computational methods to obtain transcriptome 

qualitative and quantitative characterization. There are different methods that implement 

each conceptual pipeline step, and new ones are continuously proposed. However, 

because of the variety of biological questions and study designs to which RNA-seq 

experiments can be applied to, there is not a commonly adopted implementation of the 

processing workflow.  

In this thesis, we developed a computational pipeline for the analysis of RNA-seq data 

focused on the linear transcriptome, extended an existing pipeline that analyzes RNA-seq 

data of microRNAs (miRNAs) and miRNA-like small RNAs, and started to develop a 

computational pipeline for the detection and quantification of circular RNAs. The main 

objectives of the first two pipelines were the profiling of the set of the transcripts 

(transcriptome) and small RNAs (miRNome) expressed in the considered samples, by the 

identification of known and new RNAs. They allowed as well to investigate RNA sequence 

variations (such as miRNA isomiRs), transcripts and small RNAs expression levels, and to 

compare expression profiles between different sample groups.  

The pig (Sus scrofa) is a model organism for human diseases, and very important per se for 

the meat industry. Fat and backfat tissues are subject of very active research since fat 

attributes and deposition traits are in strong connection with technological aspects and 

quality of pig products. However, the global framework of the biological and molecular 

processes regulating backfat deposition in pig is still incomplete. We applied our pipelines 

to RNA-seq data of polyadenylated and of small RNAs from pig subcutaneous adipose 

tissue samples from 20 Italian Large White (ILW) individuals. Selected animals were 

reared under very standard conditions but presented, for fat traits, extreme and divergent 

phenotypes (FAT and LEAN pigs) and genetic merits.  
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The backfat transcription profile was characterized by the expression of 23,483 genes, of 

which only 54.1% were represented by known genes. Of 63,418 expressed transcripts, 

about 80% were non-previously annotated isoforms. By comparing the expression level of 

FAT vs. LEAN pigs, we detected 86 robust differentially expressed transcripts, 72 more 

expressed in fat pigs (including ACP5, BCL2A1, CCR1, CD163, CD1A, EGR2, ENPP1, GPNMB, 

INHBB, LYZ, MSR1, OLR1, PIK3AP1, PLIN2, SPP1, SLC11A1, STC1) and 14 less expressed 

(including ADSSL1, CDO1, DNAJB1, HSPA1A, HSPA1B, HSPA2, HSPB8, IGFBP5, OLFML3). 

Overexpressed genes were implied particularly in immune system processes, response to 

stimulus, cell activation and skeletal system development. Underexpressed genes included 

five heat shock proteins and were involved in unfolded protein binding and stress 

response functional categories. Adipose tissue alterations and impaired stress response 

are linked to inflammation and, in turn, to adipose tissue secretory activity, similar to what 

is observed in human obesity. 

MiRNAs play important roles in cell differentiation and physiology acting as post-

transcriptional regulators of gene expression by silencing targeted transcripts. The pig 

backfat miRNome showed the expression of hundreds of small RNAs, including putative 

new miRNAs, new miRNA isoforms (isomiRs), and new moRNAs, likely produced from the 

terminal regions of non-canonically processed hairpin precursors. From a first study on 

two samples, we detected 222 known miRNAs, 68 new miRNAs and 17 moRNAs expressed 

from known hairpins, and 312 new miRNAs expressed from 253 new hairpins. The 

expression of five small RNAs, including moRNA ssc-moR-21-5p and a miRNA from a new 

hairpin, was validated by a qRT-PCR assay, thus confirming the robustness of our results. 

A second study on 18 samples identified a largely overlapping miRNome in terms of 

expressed elements and variations, and was important to identify differentially expressed 

miRNAs and moRNAs in FAT and LEAN subjects. We predicted putative regulatory 

interactions between small RNAs and transcripts by sequence analysis, using custom 

target predictions on reconstructed transcript sequences and miRNA isomiRs. We then 

integrated target prediction results with combined analysis of miRNA and transcript 

expression data, to eventually select miRNA-transcript relations most supported by 

negative correlation of expression profiles. Further, the predicted network of miRNA-

transcript interactions was enriched by information on transcript differential expression, 

functional annotations and coding potential predictions, and transcript overlap with pig 

QTL genomic regions. In this way we were able to focus on a restricted and possibly most 

significant number of interactions that need to be experimentally investigated. Additional 

considerations are coming from the study of the possible impact of specific differentially 
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expressed miRNAs to genes belonging to the pathways most germane to adipose tissue 

features. 

The applicative results of these studies enlarged the knowledge of transcripts and small 

RNAs expressed in the pig adipose tissue, as well as small RNA-transcripts regulatory 

interactions, providing information helpful for a better understanding of ILW pig backfat 

and future studies on gene expression regulation in this tissue.  Moreover, the methods 

presented here are currently undergoing further development and extension, and have 

applications well over and above those presented in this thesis. 



 

10 

 

  



 

11 

 

1 BACKGROUND 

1.1 GENE EXPRESSION 

In living cells, genetic information flows from the genes contained in deoxyribonucleic acid 

(DNA) linear sequences, to ribonucleic acid (RNA) transcripts, to amino acid chains 

(proteins), consisting of two basic steps, transcription and translation. This description, 

referred to as the “central dogma of molecular biology”, oversimplifies the numerous and 

complex biological mechanisms coming into play in the process of gene expression. The 

variety of cellular organisms is determined by the differences in their DNA sequences and 

thus their genetic makeup. Besides, in multicellular organism different cell types share the 

same DNA sequence and their diversity is defined, in a first instance, by the set of activated 

genes and the genome-wide expressed RNAs, namely their transcriptome, which in turn 

determines the protein products. Moreover, cells with the same set of activated genes can 

finely modulate their expression patterns by regulating gene expression at different levels, 

including transcriptional control, RNA processing, RNA transport and localization, 

translational control, RNA degradation, and protein activity organization.  

The number of gene products found in a cell is much larger than the number of expressed 

genes, both in terms of transcripts and protein products. Various mechanisms determine 

transcriptome complexity. A single gene can generate several transcripts; for instance by 

the use of alternative promoters, or by post-transcriptionally modifications to the 

transcribed RNA, such as alternative polyadenylation sites and alternative splicing. In 

eukaryotes, transcription occurs in the nucleus from the activity of RNA polymerases, 

forming single stranded RNAs (primary transcripts). Primary transcripts bearing 

information for proteins (pre-mRNA) are organized in sequence modules, exons and 

introns, which are defined in the frame of the RNA splicing process. Splicing is a two-step 

biochemical process co-transcriptionally regulated accomplished by two complex 

macromolecular machineries (spliceosomes) that process pre-mRNA by removing the 

introns and ligating the exons to form the mRNA transcript. Exons can be chained in the 

same order of their transcription, or  can present multiple and developmentally regulated 

alternative patterns of splicing producing multiple mRNA variants (transcript isoforms), in 

which the exon chain excludes some exons and/or is rearranged with a different exon 

order (Figure 1). Alternative splicing occurs for many genes, as much as in > 90% of 

human multi-exon protein-coding genes (Pan et al., 2008; Wang et al., 2008a).  

In addition to the role of intermediate products toward the production of proteins, the 

importance of cells’ transcripts is underlined by the fact that the largest part of eukaryotic 
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DNA does not encode proteins (Fox, 

2014): almost 98% of the human 

genome is non-coding, the majority of 

which is anyway transcribed into RNA 

as functional products (Djebali et al., 

2012). The definition of “gene”, rather 

than being “a DNA locus encoding a 

protein”, has become more and more 

as the concept of a transcriptional unit 

generating a set of sequences that 

after transcription produce one or more functional transcripts and might encode one or 

more protein isoforms (Djebali et al., 2012; Sharp, 2009; Wang et al., 2008a). Several types of 

non-coding RNAs (ncRNAs) have been identified, whose function is not always known. 

Noncoding RNAs (ncRNAs) are usually categorized in three main groups according to their 

size: long non coding RNAs (lncRNAs; > 200 nt), medium size ncRNAs (30 to 200 nt), and 

small RNAs (< 30 nt). ncRNAs play a number of different roles. Housekeeping ncRNAs, 

such as ribosomal RNA (rRNA) and transfer RNA (tRNA), are abundant in cells and are 

directly involved in protein synthesis. Others (small nuclear RNAs, snRNAs) are involved 

in pre-mRNA processing, or in guiding chemical modifications of RNAs, in the biosynthesis 

of rRNA and tRNAs (small nucleolar RNAs, snoRNAs; small cajal body-specific RNAs, 

scaRNAs). Small ncRNAs, like microRNAs (miRNA), small interfering RNA (siRNA) and 

Piwi-interacting RNAs (piRNAs), play critical roles in gene expression regulation at 

epigenetic and/or post-transcriptional levels. The family of long ncRNAs (lncRNAs) is 

highly diversified; recent studies accumulated a large body of evidence regarding lncRNAs 

abundance and functions. By most estimates, the number of human lncRNAs outstrips the 

number of protein-coding genes (Djebali et al., 2012). Function of lncRNAs is known only 

for few cases, such as X inactive specific transcript (XIST; in X chromosome inactivation), 

HOX transcript antisense RNA (HOTAIR; in positional identity) and telomerase RNA 

component (TERC; in telomere elongation). Nevertheless, the list of characterized lncRNAs 

Figure 1. Alternative splicing patterns. 
Alternative splicing patterns including, 
from top left to right, the inclusion of 
alternative first and last exons (AFE and 
ALE, respectively), cassette exon, mutually 
exclusive cassettes, alternative 5’ and 3’ 
splice sites, and retained intron. Cassette 
exon skipping is the most common 
alternative splicing event in humans. From 
(Scotti and Swanson, 2016) . 
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is growing.  LncRNAs may act as scaffolds, decoys or signals and can act through genomic 

targeting, regulation in cis or trans, and antisense interference. LncRNAs can be 

categorized according to their role: non-functional lncRNAs that are probably 

transcriptional noise; lncRNAs that function indirectly through their transcription; and 

functional lncRNAs acting in cis and/or in trans (Quinn and Chang, 2016). The majority of 

ncRNAs present a linear structure, but recent evidence reported abundance of circular 

RNA (circRNAs) forms (see Box “circular RNAs”), whose regulatory functions are still 

under investigation. 

1.1.1 MICRORNAS AND MIRNA-OFFSET RNAS 

MicroRNAs (miRNAs) are small endogenous non-coding RNAs of about 22 nucleotides 

discovered about 20 years ago (Lee et al., 1993), which act as post-transcriptional 

regulators of gene expression. MiRNAs are highly conserved and present in nearly all 

eukaryotes, supporting the idea that they play critical roles for the cell physiology. Mature 

miRNAs (miRs) expression patterns can differ by tissue type and conditions and, since 

they are involved in cell development, cell differentiation, and regulation of cell cycle, 

many research investigated their role in disease and cancer (Kong et al., 2012), as well as 

their use as biomarkers and diagnostics (Wang et al., 2016). In the canonical pathway of 

miRNA genesis (Figure 2) miRNA genes are transcribed by RNA polymerase II or RNA 

polymerase III into primary-miRNA transcripts (pri-miRNA).  Almost half of miRNA genes 

are organized in polycistronic clusters and are therefore coexpressed (Kim et al., 2009).  In 

the nucleus, pri-miRNAs fold in a hairpin-like structure with a double-stranded stem of 33 

base-pairs, a terminal loop, and two single stranded regions flanking the hairpin. The pri-

miRNAs undergo Drosha-mediated cleavage of the single stranded flanking sequences at 

the base of the hairpin stem, to form the precursor-miRNAs (pre-miRNAs). Non-canonical 

pathways of miRNA genesis have been identified in recent studies (Winter et al., 2009), 

including miRNAs derived from introns released by spliced transcripts (mirtrons) 

(Okamura et al., 2007; Ruby et al., 2007) (Figure 2),  and from other transcripts such as 

snoRNAs (Ender et al., 2008), tRNAs (Maute et al., 2013) and lncRNAs (Keniry et al., 2012). 

Then, pre-miRNAs are exported in the cytoplasm by Exportin-5 in complex with Ran-GTP, 

which also protect pre-miRNAs from degradation in the nucleus. In the cytoplasm, pre-

miRNAs is processed by the RNase III endonuclease Dicer, which cleaves off the loop of the 

pre-miRNA and generates a roughly 22-nucleotide miRNA duplex with two nucleotides 

protruding as overhangs at each 3p end. One strand of the miRNA duplex, the guide strand, 

is subsequently incorporated into the RNA-induced silencing complex (RISC), a 

multiprotein assembly including Argonaute-2 (Ago2) proteins, which mediates target gene 

expression. The other strand (passenger strand) is degraded. Although both the strands 
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could give rise to mature 

miRNAs, usually only the 

strand with less 

thermodynamically stable 

base pair at its 5p is loaded 

into RISC. Thus, the activated 

RISC is guided to the target 

mRNA by sequence 

complementarity of the 

incorporated miRNA. 

Targeting of mRNA takes place 

primarily by base pairing at 

the 5p end of the miRNA 

within a region of as few as 6 

nucleotides called seed. 

Binding to mRNAs’ 3’-UTR can 

occur either with perfect 

complementarity, causing the 

mRNA degradation, or with 

imperfect complementarity, 

causing reversible inhibition 

of the mRNA 

translation(Saxena et al., 2003), 

but recent evidence suggest 

that miRNAs can target also 

coding regions (Hausser et al., 

2013) and mRNAs’ 5’-UTR 

(Ørom et al., 2008). Recent 

studies revealed that miRNA 

Figure 2. Canonical miRNA biogenesis. Primary precursor (pri -miRNA) processing occurs in two 
steps, catalyzed by two RNase III enzymes, Drosha and Dicer, operating in complexes with dsRNA -
binding proteins (dsRBPs), for example DGCR8 and transactivation -responsive (TAR) RNA-binding 
protein (TRBP) in mammals. In the first nuclear step, the Drosha –DGCR8 complex processes pri-
miRNA into an ~70-nucleotide precursor hairpin (pre-miRNA), which is exported to the 
cytoplasm. Some pre-miRNAs are produced from very short introns (mirtrons) as a result of 
splicing and debranching, thereby bypassing the Drosha –DGCR8 step. Cleavage by Dicer, assisted 
by TRBP, in the cytoplasm yields an ~20-bp duplex. In mammals, Argonaute 2 (AGO2) can support 
Dicer processing. Following processing, the guide strand of the miRNA/miRNA* duplex is 
incorporated into a miRNA-induced silencing complex (miRISC), whereas the other strand 
(passenger or miRNA*) is released and degraded. Adapted from (Krol et al., 2010). 
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may also function as direct positive or negative regulators of gene transcription by 

targeting gene promoters in the nucleus (Salmanidis et al., 2014). Individual miRNAs only 

moderately repress their targets. Besides, under normal physiological conditions, multiple 

miRNAs seem to act synergistically (Gennarino et al., 2012; Tsang et al., 2010) and through 

feedback and feed-forward loops that can amplify or reduce their effects (Tsang et al., 

2007). Given that, expression of families and/or clusters of miRNAs might have increased 

effects on a single pathway containing multiple targets of the miRNAs.  

Deep sequencing studies has revealed isomiRs (Morin et al., 2008), which are variant 

miRNA sequences that all appear to derive from the same gene but vary in sequence due 

to post-transcriptional processing. 

Because isomiRs contain different 

sequences, they may have 

different targets and thus 

different cell functions. Despite 

this source of sequence variation 

may impact cell biology, isomiRs 

are so far under-studied 

(Desvignes et al., 2015). 

High sequencing depth and careful data mining also revealed miRNA-offset RNAs 

(moRNAs). First reported in Ciona intestinalis (Shi et al., 2009), moRNAs are ~20 nt miRNA-

like non-coding RNAs that are believed to be generated by the Drosha processing of 

miRNA precursors. In pre-miRNAs, moRNAs are located adjacent or overlapping to the 5’ 

and 3’ miRNA sequences (Figure 3). MoRNAs were recently reported in few RNA-seq 

studies carried out in different human cell conditions (Asikainen et al., 2015; Bortoluzzi et 

al., 2012; Langenberger et al., 2009), including solid tumors (Meiri et al., 2010), and other 

organisms (Babiarz et al., 2008; Gaffo et al., 2014; Shi et al., 2009; Zhou et al., 2012). They are 

hypothesized to act as regulatory elements like miRNAs, guiding RISC to complementary 

target mRNAs (Asikainen et al., 2015), but their function remains unknown. Although 

moRNAs’ abundance is lower than most miRNAs, they are developmentally expressed and 

their expression seems not to correlate with the corresponding miRNA expression, which 

in some cases can also be lower (Umbach et al., 2010). MoRNAs prevalently arise from the 

5’ arm (Gaffo et al., 2014; Shi et al., 2009), even thou Asikainen et al. (2015) (Asikainen et al., 

2015) reported a predominance of 3’ moRNAs in human embryonic stem cells; but many 

precursors generate moRNAs also from the minor miRNA arm (Gaffo et al., 2014). This 

evidence suggests that moRNAs may represent a distinct class of functional miRNA co-

product, instead of miRNA by-products.  

Figure 3. MoRNAs in miRNA hairpin. Each single 
microRNA precursor hairpin can be processed by Drosha 
and Dicer to generate up to four small RNAs, namely two 
miRNA and two miRNA-offset RNAs. The latter derive 
from the terminal parts of the hairpin. Figure from 
(Bortoluzzi et al., 2011) . 
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Box: circular RNAs 

Circular RNAs (circRNAs) are a class of non-coding RNAs that present a circular, non-

linear structure. CircRNAs are highly stable RNA with important regulatory roles that are 

abundantly and cell differentiation-dependently expressed in both normal physiology and 

disease. CircRNAs form covalently closed continuous loop (Li et al., 2015a) generated from 

immature RNA joined in a non-co-linear way by a process called back-splicing (Figure 4). 

RNA binding proteins (RBPs) such as Muscleblind (Ashwal-Fluss et al., 2014) and Quaking 

(Conn et al., 2015) were shown to bridge two flanking introns to induce backsplicing, 

resulting in circRNA formation. CircRNAs were identified decades ago (Capel et al., 1993), 

but only recently RNA-seq projects and bioinformatics analysis reported circRNAs to be 

present in animals (Li et al., 2015a) with developmental stage- and tissue-specific 

expression (Salzman et al., 2013). Also evolutionary preservation of circRNAs supports 

important functions. Both paralogous and orthologous gene pairs were reported (Jeck et 

al., 2013) to express circular transcripts beyond apparent sequence conservation. Several 

lines of evidences indicate that the majority of circRNAs have limited coding potential (You 

et al., 2015). Besides, circRNAs can be 

competitors during pre-mRNA 

splicing (Ashwal-Fluss et al., 2014). In 

addition, circRNAs with multiple 

microRNA (miRNA) binding sites 

might function as miRNA sponges 

thus regulating specific pathways 

(Hansen et al., 2013; Li et al., 2015b), 

also in cancer (Tay et al., 2015). 

Furthermore, circRNAs can be 

competitors during pre-mRNA 

splicing (Ashwal-Fluss et al., 2014). 

CircRNAs show independent expression with respect to linear transcripts from the same 

gene, implying regulated expression(Chen and Yang, 2015). They are characterized by high 

stability and appear to accumulate in particular in cells with a low proliferation rate. 

Groundwork of circRNA biology still needs to be done as fundamental research. Several 

features of circRNAs as richness of functions, regulatory potential, pervasiveness, stability 

and detectability in body fluids clearly make circRNAs extremely interesting for 

fundamental research and push scientists to investigate their physiological functions, their 

impact in disease and their usefulness as biomarkers. 

Figure 4. CircRNA structure. Circular RNAs are 
generated by backsplice events in which exons, 
instead of being processed in the canonical linear way 
(AB-EF), undergoes a circularization by the joining of 
the 5’ and 3’ ends (B-EF-A). 
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1.2 HIGH THROUGHPUT TRANSCRIPTOME SEQUENCING: RNA-SEQ 

DNA sequencing technology to discover the order of nucleic acids in polynucleotide chains 

has dramatically improved since the early implementation of the Sanger sequencing 

method (Sanger et al., 1977). Despite this first-generation Sanger sequencing was improved 

by automating the process (Hunkapiller et al., 1991), and with which the first assembly of 

the human genome was accomplished (Consortium, 2004), the real revolution took place 

with the development of the next-generation sequencing (NGS) technologies. NGS, or 

second-generation sequencing, methods are based on a shotgun massively parallel high-

throughput approach that results in millions, or even billions, of short (from 35 nt to 500 

nt, depending on the platform) DNA sequences (reads). NGS can be applied to a wide 

variety of experiment types (Buermans and den Dunnen, 2014), including transcriptomic, in 

which case it is referred to as RNA-sequencing (RNA-seq) (Wang et al., 2009). 

NGS includes several phases as template (library) preparation, sequencing, imaging or 

signal processing, and data analysis. The unique combination of specific protocols and 

underlying biochemistry distinguish one technology from another, which have been 

realized in commercial products by companies like Illumina, Roche, and Life Technologies.  

In particular, the Solexa/Illumina approach is currently the most used (Greenleaf and 

Sidow, 2014). Illumina technology is based on the sequencing by synthesis (SBS) of 

complementary DNA (cDNA) fragments attached to a glass slide. Regarding RNA-seq 

experiments, RNA sequences are reverse transcribed into cDNA fragments in the sample 

preparation step. Alternative protocols can be used for different type of experiments, such 

as sequencing of small RNAs, sequencing of multiple samples, and other ones (see Box 

“Sample and library preparation for RNA-seq studies”).The library preparation is 

accomplished by random fragmentation of cDNA, followed by in vitro ligation of specific 

nucleotide sequences (adaptors) to the ends of each library fragment (Figure 5a). Library 

fragments are then hybridized to the flow cell, a planar optically transparent surface 

similar to a microscope slide, which contains a lawn of oligonucleotide anchors tethered to 

its surface (Figure 5b). Here, the fragments undergo solid-phase PCR amplification to 

generate clusters of ~1,000 cloned templates (amplicons) for about 200 million 

distinguishable spots in each of the eight flow cell channels (lanes). This step is named 

“bridge amplification”, because the DNA strands have to arch over to prime the next round 

of polymerization off neighboring surface-bound oligonucleotides (Figure 5b). This 

amplification step is required to provide enough signals to be detected by the image 

sensor during the sequencing phase. Sequencing itself is achieved by synthesis using 

fluorescent “reversible-terminators” dNTPs (Figure 5c) having four different colors for the 
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different bases. The amplicons are single-stranded and after a primer is hybridized to the 

adapter, the template is extended by a modified DNA polymerase and a mixture of the 

reversible terminator dNTPs. In each cycle of sequencing a single base is incorporated 

thanks to a cleavable moiety at the 3’ hydroxyl position. The presence of the blocking 

group allows a synchronized process. The remaining bases are washed away and two 

lasers interrogate the fluorescent labels of the attached base to get an image in which each 

cluster will have a different color representing the inserted nucleotide (Figure 5c). These 

raw image files represent terabytes of data and require substantial storage resources. The 

images are then processed in order to extract numerical signals for every base at every 

synthesis event from all the parallel reactions. These signals are used for base calling. 

Then, the terminating group and the florescent dye are cleaved, and after an additional 

washing, the machine is ready for the next sequencing cycle. The number of cycles, 

corresponding to the read lengths, is limited by multiple factors that cause signal decay 

and dephasing. After image and signal processing, data consist of a list of short sequences 

together with their base call qualities. The output to the user can be encoded with the 

Figure 5. Illumina sequencing procedure. (a) Illumina library -construction process. (b) Illumina 
cluster generation by bridge amplification. (c) Sequencing by synthesis with reversible dye 
terminators. Figure from (Mardis, 2013) . 
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FASTQ format, given by the Illumina CASAVA or BaseSpace (basespace.illumina.com) 

software. It is a plain text file containing four rows per read. The first row, beginning with 

the ‘@’ character, is an header uniquely identifying the read (usually the cluster position in 

the flow-cell is used as ID number) and an optional description; the second row reports 

the read sequence with ‘A’, ‘G’, ‘T’, ‘C’ characters representing the bases, or ‘N’s when the 

base calling failed; the third row begins with the ‘+’ character, optionally followed by the 

sequence identifier and description; the fourth row reports the sequencing quality for 

each base, encoded in a way such that each single character corresponds to the quality of 

the base in that position. An example of a FASTQ read is given below: 

@HWI-ST1296:58:D1T0GACXX:1:1101:1243:2227 1:N:0:AGTCAA 

CGGCAGTGTCGTAAAATATTCAGTATCACATGAAACCTCTTGTCAACTTTCAAAGCN 

+ 

BCCFFFDFHHHFHJJJJIIJJJJHIJJJJJJIJJJJJJJJJJIIJJJIJJJJIJJII 

A quality value Q is an integer mapping of the probability p that the corresponding base 

call is incorrect. The equation used for the standard Sanger encoding, known as Phred 

quality score is: 

             

For example, if Phred assigns a quality score of 30 to a base, the chances that this base is 

called incorrectly are 1 in 1000 (99.9% accuracy). Sanger format can encode a Phred 

quality score from 0 to 93 using ASCII 33 (‘!’) to 126 (‘~’). For this reason the encoding is 

sometimes called Phred+33, to distinguish from other offsets, like the old Illumina/Solexa 

formats like CASAVA version 1.3 to 1.8 that set ASCII offset to 64 instead of 33, expecting 

Phred scores not greater than 40.    

In addition, the Illumina sequencing technology can produce paired-end data, namely each 

DNA cluster can be sequenced at both ends. After the first round of sequencing, the single 

stranded flow-cell bound DNA undergo again bridge amplification, but this time the 

forward strand is washed away, leaving clusters of the reverse strand, which can be 

sequenced as before. Paired-end reads improve the accuracy of alignments because it 

reduces aspecific mapping of reads and is informative for transcript reconstruction.  

The number of studies using RNA-seq technology has increased significantly over the past 

few years as evidenced by the number of RNA-seq data set stored in Short Read Archive 

(SRA) (Figure 6). RNA-seq presents key advantages over traditional methods like Sanger 

sequencing and microarrays. In particular, the sequencing cost per base is dramatically 

lower compared to the Sanger sequencing. Having very low background signal, the range 

of expression levels is greater than in microarrays, potentially spanning six orders of 

magnitude depending on the sequencing depth. The detection is not limited to known 
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sequences and novel 

splicing junction, 

isoforms, or unknown 

variations can be 

identified with single 

base precision, which 

is a great improvement for studies on non-model organisms. However, RNA-seq suffers of 

lower raw accuracy compared to the traditional Sanger sequencing. In the Illumina 

approach, the average raw error is in the order of 1-1.5% and the dominant error is 

substitution, occurring more frequently when the previous incorporated nucleotide is a ‘G’ 

base. Moreover, the reads are short and far from the ~1Kb reads of Sanger sequencing and 

NGS techniques need additional amplification steps that may bias the results.  

Box: Sample and library preparation for RNA-seq studies 

In RNA-seq studies the first step, sample preparation, is fundamental and should be 

planned according to the nature of the experiment.  The RNA extraction method and the 

library selection schemes can influence the data (Raz et al., 2011; Sultan et al., 2014). In NGS 

protocols, the total RNA extracted from cells undergoes a further selection phase, since 

high proportion of cellular RNA arises from ribosomal and mitochondrial sources. 

Transcriptome analysis studies focusing on mature coding transcripts assume that the 

most known mature mRNAs are polyadenylated. Thus, total RNA is processed with oligo-

d(T) tagged beads to isolate the poly(A)+ fraction, with optional modifications if transcript 

strand orientation information has to be maintained (Sultan et al., 2012). Poly(A) 

enrichment can capture also non-coding RNAs that can be polyadenylated, including 

microRNAs, snoRNAs, lncRNAs and pseudogenes. However, the recent introduction of 

ribosomal RNA (rRNA) depletion protocols, which can remove the 80% rRNA constituting 

the total RNA pool, extended the view of the transcriptome to the poly(A)- fraction of the 

RNA, facilitating the simultaneous characterization of polyadenylated and non-

polyadenylated (e.g. rRNA and other transcripts generated by RNA polymerase I and III, 

many lncRNAs, and also circRNAs) RNAs. Then, RNA is size selected, usually 

discriminating between long (>200 nt) and small (<200 nt) RNAs. Large RNA molecules 

must be fragmented into smaller pieces (200-500 bp) prior to library preparation. Small 

Figure 6. Distribution of 
the number of RNA-seq 
archived data sets and 
publications. SRA, 
Sequenced Read Archive. 
Figure from (Han et al., 

2015). 
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RNAs instead do not need fragmentation and adapters specific for small RNA libraries can 

be ligated directly. Another variation of library preparation protocol derives from the 

“multiplexing” technique. A single flow cell is partitioned into eight channels, or “lanes” 

that are independent from each other. Through the use of different indexes in the adapters 

(multiplexing), a single flow cell could run more than one different sample per lane. The 

sample source is then distinguished post-sequencing by checking the index nucleotide 

sequence in each read. This strategy is useful to lower the sequencing cost per experiment 

when high coverage is not required. 

1.3 GENOME ANNOTATION RESOURCES 

Nowadays, genome nucleotide sequences and genomic annotation are freely available 

from online web services, which allow exploring and downloading of different organisms’ 

data. There are some major resources that are continuously updated and curated, 

supported by research institutes and organizations. Ensembl (http://www.ensembl.org), 

NCBI (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov), and 

the UCSC Genome Browser (University of California, Santa Cruz; http://genome.ucsc.edu) 

are some central resources for genomic data.  

Table 1. Ensembl genome assembly statistics  

 In particular, Ensembl (Cunningham et al., 2015) is a joint scientific project, launched in 

1999, between the European Bioinformatics Institute (EMBL-EBI) and the Wellcome Trust 

Sanger Institute. Ensembl is a centralized resource providing the most up-to-date genomic 

annotations, querying tools and access methods for chordates and key model organisms. 

Its annotations describe gene and transcript locations, gene sequence evolution, genome 

evolution, sequence and structural variants and regulatory elements. Ensembl includes full 

Species Homo sapiens (Human) Sus scrofa (Pig) 

Assembly 

GRCh38.p5 (Genome Reference 
Consortium Human Build 38), 
INSDC Assembly 
GCA_000001405.20, Dec 2013 

Sscrofa10.2, INSDC Assembly 
GCA_000003025.4, Aug 2011 

Database version 83.38 83.102 
Base Pairs 3,547,121,844 3,024,658,544 
Golden Path Length 3,096,649,726 2,808,525,991 
Coding genes 20,313 (incl 512 readthrough) 21,630 (incl 10 readthrough) 
Non coding genes 25,180 3,124 
         Small non coding genes 7,703 2,804 
         Long non coding genes 14,896 (incl 197 readthrough) 135 (incl 1 readthrough) 
         Misc non coding genes 2,307 185 
Pseudogenes 14,453 (incl 4 readthrough) 568 
Gene transcripts 199,184 30,585 
Genscan gene predictions 50,766 52,372 
Short Variants 149,490,457 60,359,717 
Structural variants 4,149,389 85 
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support for 69 species on the main website, plus partial support for 10 additional species 

on the Ensembl Pre! website (http://pre.ensembl.org). Some species have different level 

of annotation, reflecting the knowledge of the research community. For instance, 

comparing the statistics of the genome assembly of human and pig (Error! Reference 

ource not found.) we can infer that the pig genome annotation is probably lacking 

information about pig non-coding genes, transcripts, and variants.  

Other databases are more specific for certain class of biological entities. One important 

example for small noncoding RNAs is the miRBase database (www.mirbase.org) (Kozomara 

and Griffiths-Jones, 2013). New miRNAs of many species are continuously discovered 

thanks to RNA-seq experiments (Friedländer et al., 2014; Londin et al., 2015). Their 

sequences can be deposited in miRBase, which is the major database resource for 

microRNA information. The current miRBase release (v.21) accounts 28,645 pre-miRNAs 

expressing 35,828 mature miRNA products, in 223 species.  MiRNA names present a three 

letter prefix to designate the species followed by a numeric name in sequential order by 

date of discovery and classification. Orthologous or identical miR sequences are assigned 

the same numeric value (e.g. ssc-mir-21 is the pig orthologous of the human hsa-mir-21). 

Paralogues are assigned with the same numeric value followed by a single letter suffix (e.g. 

ssc-mir-199a has one paralogue ssc-mir-199b) (Griffiths-Jones et al., 2006). 

The growth of sequence and expression data derived from high-throughput technologies 

set the challenge of storing and sharing these data for scientific records, together with 

metadata about the specific experiments. Moreover, these repositories provide treasure 

resources for the experiment reproducibility and re-analysis, comparison with custom 

data, assessment and development of computational methods. Regarding high-throughput 

technologies, such as RNA-seq, of particular interest are the GEO (Barrett et al., 2013) and 

SRA (Leinonen et al., 2011) repositories. 

The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an 

international public repository for high-throughput microarray and next-generation 

sequence functional genomic data sets submitted by the research community. The 

resource supports archiving of raw data, processed data and metadata which are indexed, 

cross-linked and searchable. All data are freely available for download in a variety of 

formats. GEO also provides several web-based tools and strategies to assist users to query, 

analyze and visualize data. GEO accepts studies concerning quantitative gene expression, 

gene regulation, epigenetics, or other functional genomic studies. 

http://pre.ensembl.org/
http://www.mirbase.org/
http://www.ncbi.nlm.nih.gov/geo/


 

23 

 

The Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra/) is a public 

repository for the preservation of experimental data, in particular next-generation 

sequencing (NGS) data. The SRA is operated by the International Nucleotide Sequence 

Database Collaboration (INSDC). INSDC partners include the National Center for 

Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the 

DNA Data Bank of Japan (DDBJ). The SRA is accessible at 

http://www.ncbi.nlm.nih.gov/Traces/sra from NCBI, at http://www.ebi.ac.uk/ena from 

EBI and at http://trace.ddbj.nig.ac.jp from DDBJ.  

GEO and SRA are tightly linked since GEO uploads to SRA the original raw data files 

containing sequence reads and quality scores. However, neither GEO nor SRA process 

transcriptome or transcript assemblies, which are reported in the Transcriptome Shotgun 

Assembly Database (http://www.ncbi.nlm.nih.gov/genbank/tsa) (Benson et al., 2013). 

Genome annotations, like exon genome positions, transcript and gene exon structure, can 

be represented with the Genomic Feature Format (GFF) 

(http://www.ensembl.org/info/website/upload/gff.html). GFF files are plain text files in 

which each row represent a genomic feature and is composed by nine tab-separated fields. 

Also, all but the final field in each feature line must contain a value; "empty" columns 

should be denoted with a '.' character. The fields are:  

1. seqname - name of the chromosome or scaffold; chromosome names can be given with 

or without the 'chr' prefix. Important note: the seqname must be one used within 

Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold 

ID, without any additional content such as species or assembly. See the example GFF 

output below. 

2. source - name of the program that generated this feature, or the data source (database 

or project name) 

3. feature - feature type name, e.g. Gene, Variation, Similarity 

4. start - Start position of the feature, with sequence numbering starting at 1. 

5. end - End position of the feature, with sequence numbering starting at 1. 

6. score - A floating point value. 

7. strand - defined as + (forward) or - (reverse). 

8. frame - One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base 

of a codon, '1' that the second base is the first base of a codon, and so on. 

9. attribute - A semicolon-separated list of tag-value pairs, providing additional 

information about each feature. 

http://www.ncbi.nlm.nih.gov/genbank/tsa
http://www.ensembl.org/info/website/upload/gff.html
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The following is an example line from the Ensembl pig genome annotation file that report 

annotation of the PLIN2 gene, located in the genomic scaffold GL892718.2 (N.B. the 

attribute field is split in two lines for layout reasons):  

GL892718.2 ensembl gene 6383 13103 . + . gene_id 

"ENSSSCG00000026749"; gene_version "1"; gene_name "PLIN2"; gene_source "ensembl"; 

gene_biotype "protein_coding"; 

1.4 THE ADIPOSE TISSUE AND PIG BACKFAT 

1.4.1 ADIPOSE TISSUE FEATURES 

Adipose tissue is a remarkably complex organ with important physiological role and 

pathophysiological relevance. Adipose tissue plays a major role in nutrient homeostasis, 

serving as the site of calorie storage after feeding and as the source of circulating free fatty 

acids during fasting. In addition, nowadays it is also regarded as an endocrine organ at the 

center of energy homeostasis maintenance processes. All eukaryotes from yeast to man 

are able to store calories in the form of lipid droplets, but only vertebrates have 

specialized cells that are recognizable as adipocytes (Ottaviani et al., 2011). 

Two general types of adipose tissue exist in humans, white (WAT) and brown (BAT). 

White adipocytes store triglycerides and cholesterol in a single large lipid droplet 

(unilocular appearance), while brown adipocytes, which are present mainly in infants, 

contain several smaller lipid droplets (multilocular appearance). Recently a third type of 

adipocyte has been characterized and termed ‘brite’, for its ‘brown-in-white’ phenotype 

(Petrovic et al., 2010). Brite cells (also referred to as beige) are interspersed in white 

adipose tissue. These adipose tissue types share numerous attributes but also differ in 

critical ways that include aspects of their gene expression profile and secretome, their 

developmental origin, and their therapeutic potential. 

WAT is a highly dynamic tissue capable of rapidly changing its mass according to the 

body's energy status; no other nonneoplastic tissue can change its dimensions to the same 

degree. This feature can be accomplished by increasing the size of individual cells 

(hypertrophy) or by recruiting new adipocytes from the resident pool of progenitors 

(hyperplasia). Adipocyte number in WAT in man is remarkably stable in adulthood. In the 

face of overnutrition, adipose depots expand first by hypertrophy until a critical threshold 

is reached (∼0.7–0.8 ug/cell), upon which signals are released that induce the 

proliferation and/or differentiation of preadipocytes (Krotkiewski et al., 1983). Besides, 

∼10% of human subcutaneous adipocytes turn over each year, with birth and death rates 

matched to result in little change in total cell number (Spalding et al., 2008).  
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The major function of WAT is to store and release energy-rich lipids, forming a single 

droplet within a fat cell that constitutes >90% of its volume. The lipid droplet itself is a 

highly dynamic organelle with more than 200 droplet-associated proteins, most of which 

are also found associated with droplets in other mammalian tissues as well as in lower 

organisms (Konige et al., 2014). Fatty acids are metabolized to triglycerides within 

adipocytes in response to caloric intake. Depending on energy demands, the triglycerides 

are hydrolyzed to fatty acids (lipolysis), which are released to the blood stream to be used 

for oxidation in muscle and other body tissues.  

WAT is not the same in all body depots. Distinct WAT depots differ substantially in their 

gene expression profiles, cell size and response to physiological factors such as hormones 

(Gil et al., 2011). Differences between visceral adipose tissue and subcutaneous adipose 

tissue are known and research is ongoing in this field since increased visceral adiposity 

and insulin resistance are strictly related. With respect to subcutaneous adipocytes, 

visceral adipocytes secrete more inflammatory factors such as tumor necrosis factor α 

(TNF-α) and leptin (Wronska and Kmiec, 2012). It appears that depot-specific differences in 

preadipocyte phenotype are established early during development and that each depot 

has its own unique gene expression signature. In fact, preadipocytes express gene 

signatures that are specific for their depot of origin even after isolation and prolonged 

passage under identical conditions(Macotela et al., 2012; Tchkonia et al., 2013). 

1.4.1 ADIPOGENESIS 

Adipocytes develop from preadipocytes, which themselves derive from precursor cells 

(Cawthorn et al., 2012). Adipocytes develop from mesenchyme, which is primarily of 

mesodermal origin. It has also been proposed that some adipocytes derive from 

hematopoietic precursors (McCullough, 1944), but it appears that this is not a major 

pathway (Berry and Rodeheffer, 2013; Koh et al., 2007). 

Adipogenesis progresses through two main phases: determination and terminal 

differentiation. During determination, possible alternate fates of an adipose precursor cell 

become progressively restricted such that it becomes “committed” to the adipose lineage 

and becomes a preadipocyte. During terminal differentiation the preadipocyte acquires 

the characteristics of the mature adipocyte. We know much more about terminal 

differentiation and adipogenesis in vitro because of the use in studies of cellular models 

already committed to the adipose lineage. 

Several signaling pathways are involved in the terminal differentiation phase. The Wnt 

and hedgehog pathways, studied in the frame of  “bone-fat switch”, inhibit adipogenesis in 
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favor of osteogenesis by inhibiting proadipogenic transcription factors like PPARγ 

(peroxisome proliferator-activated receptor gamma) and C/EBPα (CCAAT-enhancer-

binding protein alpha) (Okamura et al., 2007; Xu et al., 2008). Non-canonical signaling via 

Wnt5b tends to promote adipogenesis, at least in part by blocking β-catenin-mediated 

signals from classic Wnt signals (Kanazawa et al., 2005). The IGF/insulin signaling is 

strongly proadipogenic (Garten et al., 2012). For many other pathways, for instance the 

TGFβ/BMP (transforming growth factor beta / bone morphogenetic protein) superfamily, 

it has been difficult to draw general conclusions because results depend on the specific 

ligand, cell type, stage of differentiation, or other experimental conditions. TGFβ and its 

downstream effector Smad3 have been shown to exert both pro- and anti-adipogenic 

actions in different in vitro and ex vivo models (Choy et al., 2000; Yadav et al., 2011). Among 

the BMPs, BMP2 and BMP4 have been shown to increase both osteogenesis and 

adipogenesis, depending upon other components of the differentiation cocktail, whereas 

BMP7 promotes brown adipogenesis specifically (Zamani and Brown, 2010).  

Both hypertrophy and hyperplasia are tightly controlled, negatively or positively, by a 

combination of multiple transcription factors (Gregoire et al., 1998). Transcriptional 

cascades in adipogenesis see PPARγ as the “master regulator” of fat cell formation, as it is 

both necessary and sufficient for adipogenesis; PPARγ is so potent an adipogenic factor 

that it can drive non-adipogenic cells like fibroblasts and myoblasts to become adipocytes 

(Hu et al., 1995; Tontonoz et al., 1994).  Other important inducers of adipogenesis are the 

bZIP factors C/EBPα, C/EBPβ, and C/EBPδ, with C/EBPβ and δ acting early in terminal 

differentiation. Differentiation is “locked in” by a positive feedback loop between PPARγ 

and C/EBPα (Rosen et al., 2002; Wu et al., 1999); a second positive feedback loop between 

PPARγ and C/EBPβ reinforces the decision to differentiate (Park et al., 2012). Many of these 

factors bind at common genomic “hot spots” with early factors establishing chromatin 

accessibility at the same locations that will later be bound by downstream factors 

(Siersbæk et al., 2012). Other transcription factors are known to promote or inhibit 

adipogenesis, in part by inducing or repressing expression of PPARγ (Cristancho and Lazar, 

2011; Rosen and MacDougald, 2006). PPARγ, in turn, directly binds to and regulates a huge 

number of genes that control virtually all aspects of adipocyte metabolism. Additional  

transcription factors involved in adipose determination are Zfp423 (Gupta et al., 2010), 

which induces adipose lineage commitment by amplifying the effects of BMPs via a SMAD-

interaction domain;  Zfp521, which inhibits adipogenesis interacting with Ebf1 (Festa et 

al., 2011; Kang et al., 2012) and represses Zfp423;  and Tcf7l1, which responds to 
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confluency and mediates changes in structural proteins that regulate differentiation 

(Cristancho et al., 2011). 

1.4.1 LIPOLYSIS 

Lipolysis is the process that is required for fatty acids to be liberated from triglyceride so 

that they can be oxidized locally or by other organs. Lipolysis is driven by β-adrenergic 

signaling in the adipocyte, but other inducers (such as TNF-α) exist and may have 

physiological relevance (Rydén and Arner, 2007). The lipolytic machinery consists of at least 

three major enzymes and associated cofactors. The primary cleavage of triacylglycerol to 

diacylglycerols is performed by adipose triglyceride lipase (ATGL). The second enzyme in 

the pathway is hormone-sensitive lipase (HSL) that is the major diglyceride lipase in 

adipocytes. Monoglyceride lipase (MGL) completes the process by generating glycerol and 

free fatty acids. Together, these three enzymes account for >90% of the lipolytic activity in 

the adipocyte (Young and Zechner, 2013). ATGL, in particular, is highly regulated at both the 

transcriptional and posttranscriptional levels, including multiple phosphorylation events 

and translocation to the surface of the lipid droplet. It is activated by a protein cofactor 

called CGI-58, which is normally bound in an inactive state by the lipid droplet protein 

perilipin-1 (Plin1). PKA-dependent phosphorylation of Plin1 releases CGI-58, allowing it to 

bind and activate ATGL (Granneman et al., 2009). Conversely, ATGL is inhibited by a 

protein called G0S2, though its importance in vivo is still unclear (Yang et al., 2010). 

Insulin is the major physiological suppressor of lipolysis, a process that becomes impaired 

in obesity even though insulin levels are high. Insulin blocks lipolysis in different ways. 

First, it activates phosphodiesterase 3b (PDE3b) via Akt-mediated phosphorylation; this 

has the effect of reducing intracellular cAMP levels and blocking PKA activation (Degerman 

et al., 1998; Kitamura et al., 1999). More recently, a non-canonical pathway has been 

described in which insulin blocks activation of PKA selectively on Plin1 through a PI3K-

mediated, Akt-independent pathway (Choi et al., 2010). Over a slightly longer timescale, 

insulin also represses lipolysis by transcriptionally silencing lipase genes via repression of 

the transcription factors FoxO1 and IRF4 (Chakrabarti and Kandror, 2009; Eguchi et al., 

2011). Interestingly, lipolysis is required for the generation of endogenous PPARα ligands. 

1.4.1 ADIPOSE TISSUE INTERACTION WITH IMMUNE CELLS  

Although mature adipocytes constitute >90%  of WAT mass/volume, they account for less 

than 20% of the total cells in WAT (Eto et al., 2009). The other cells, collectively referred to 

as the stromal–vascular fraction, are a heterogeneous population of endothelial cells, 

macrophages, fibroblasts, stem cells and lymphocytes. Every gram of adipose tissue 
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contains 1–2 million adipocytes and 4–6 million stromal-vascular cells, of which more 

than half are leukocytes (Kanneganti and Dixit, 2012). This composition makes WAT an 

important endocrine organ secreting adipokines, for instance leptin and adipsin, which 

regulate important physiological functions such as appetite, energy expenditure, insulin 

sensitivity, inflammation and coagulation (Hauner, 2005). Macrophages within the fat pad 

produce TNF-α and other proinflammatory cytokines(Weisberg et al., 2003; Xu et al., 

2003a), an effect magnified by overnutrition (Hotamisligil et al., 1993), that significantly 

impair the insulin sensitivity of local adipocytes and also liver and muscle.  

Hypertrophic obesity is associated with a chronic state of low-grade inflammation, 

characterized by high serum IL-6, TNF-α and C-reactive protein (CRP) levels and low 

adiponectin levels (Bahceci et al., 2007). The increased local production of inflammatory 

proteins can alter the lipolytic activity and adipokine functions of fat cells (Arner and 

Langin, 2014; Hotamisligil, 2006; Johnson and Olefsky, 2013). Adipose tissue macrophages 

not only arise from the recruitment of blood monocytes, but recently it has been shown 

that local macrophage proliferation contributes significantly to obesity-induced increases 

in macrophage number (Amano et al., 2014; Hashimoto et al., 2013; Jenkins et al., 2011; Qiu 

et al., 2014; Yona et al., 2013). Obese WAT is characterized by increased infiltration of 

macrophages and increased release of inflammatory adipokines, such as CCL2, TNF and IL-

6 (Hotamisligil, 2006). The inflammatory environment within WAT impairs insulin signaling 

and induces oxidative stress and endothelial dysfunction, which leads to systemic insulin 

resistance (Maury and Brichard, 2010). 

During the last decade, pig transcriptomic data have been obtained initially by expressed 

sequence tag sequencing (Chen et al., 2006; Gorodkin et al., 2007; Mikawa et al., 2004; 

Uenishi et al., 2004, 2007) and microarrays (Ferraz et al., 2008; Hornshøj et al., 2007; Moon et 

al., 2009; Zhou et al., 2013), which allowed the comparison of gene expression levels in 

several pig tissues. More recently, the RNA-seq approach was used to compare the 

transcription profile of different pig fat tissues or different pig breeds (Chen et al., 2011; 

Corominas et al., 2013; Jiang et al., 2013; Li et al., 2012b; Sodhi et al., 2014; Toedebusch et al., 

2014; Wang et al., 2013a; Zhou et al., 2013). The differentially expressed genes reported in 

these studies are useful for investigating the metabolic pathways activated by or 

associated with increased fat deposition in the pig. However, the large amount of data 

produced and the results reported in literature are often barely comparable because of 

differences in the studied breeds, ages of the animals and fat deposition stages. Moreover, 

these studies identified several new genes and transcripts not reported in swine or other 

species. 
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1.4.1 MICRORNAS IN ADIPOSE TISSUE 

miRNAs regulate adipogenesis and cell-specific functions of fat cells. In addition, miRNAs 

have been associated with impaired adipogenesis, insulin resistance and obesity-related 

inflammation. The role of miRNAs in lipid metabolism was first reported in Drosophila, 

where deletion of mir-14 increased the accumulation of triacylglycerol and diacylglycerol 

(Xu et al., 2003b). To date, most research evaluating the role of miRNA in adipose tissue has 

focused on human and mouse cell lines. Esau et al. (Esau et al., 2004) first identified a 

potential role for miR-143 in adipogenesis of human pre-adipocytes, and showed that 

inhibition of miR-143 decreased adipocyte differentiation. Other studies showed that miR-

103 and the miRNA cluster miR-17–92 enhanced adipogenesis (Wang et al., 2008b; Xie et 

al., 2009), while the let-7 and miR-27 family of genes impaired adipogenic differentiation 

(Karbiener et al., 2009; Kim et al., 2010; Sun et al., 2009b). More recent human studies on the 

expression of miRNAs in adipose tissue found that the expression of miRNAs was adipose 

depot-specific (Klöting et al., 2009; Ortega et al., 2010) and that some miRNAs correlated 

with the morphology of adipose tissue, adipocyte size (Klöting et al., 2009) and metabolic 

(fasting glucose and/or triglycerides) parameters (Ortega et al., 2010). Inhibition of Drosha 

and Dicer repressed the differentiation of human mesenchymal stem cells into adipocytes 

(Oskowitz et al., 2008), supporting a role for miRNAs in adipocyte development. Dicer 

ablation from mouse preadipocytes blocks adipogenesis with impaired lipogenesis and 

downregulated expression of adipocyte markers such as PPARγ, TNF receptor superfamily 

member 6 (also known as FAS), GLUT4 (solute carrier family 2 facilitated glucose 

transporter member 4) and FABP4 (fatty acid-binding protein, adipocyte) (Mudhasani et 

al., 2010). 

MiRNAs have been studied in adipose differentiation; at least 20 miRNAs have been shown 

to affect adipogenesis, though some are not specific for fat and appear to be required for 

mesenchymal cell differentiation generally (Oskowitz et al., 2008). Some miRNAs affecting 

adipogenesis target transcription factors like PPARγ and C/EBPα directly, whereas others 

regulate important signaling pathways like insulin-Akt, TGFβ, and Wnt (Chen et al., 2013). 

Moreover, miRNAs might regulate insulin sensitivity through actions on lipolysis, 

adipokines and insulin signaling pathways. miRNAs such as let-7 (Sun et al., 2009b; Yong 

and Dutta, 2007), miR-21 (Jeong Kim et al., 2009), miR-22 (Huang et al., 2012), miR-27 (Jeong 

Kim et al., 2009; Karbiener et al., 2009; Lin et al., 2009), miR-31 (Sun et al., 2009a; Tang et al., 

2009), miR-130 (Lee et al., 2011), miR-138 (Yang et al., 2011), miR-145 (Guo et al., 2012a), 

miR-155 (Liu et al., 2011), miR-221/222 (Meerson et al., 2013; Parra et al., 2010), miR-224-
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5p (Peng et al., 2013), miR-369-5p(Bork et al., 2011) and miR-448 (Kinoshita et al., 2010) 

inhibit adipogenesis in human, mouse and porcine cells. 

A large number of miRNAs are expressed in human WAT (Keller et al., 2011; Ortega et al., 

2010), but few seem to be differentially expressed (with reduced expression) in obese 

WAT compared with lean WAT. Nevertheless, there is lack of congruency between findings 

reported by different studies of miRNAs in obesity. 

Table 2. Important miRNAs with dysregulated expression in white adipose tissue (WAT) of 
humans with obesity, and miRNAs associated with inflammation in human adipose tissue. Adapted 
from (Arner and Kulyté, 2015) . 

Up in obese WAT Down in obese WAT 

miR-1229 let-7a miR-145 miR-221 

miR-125b let-7d miR-150 miR-26a 

miR-146b let-7i miR-151-5p miR-30c 

miR-199a-5p miR-125a miR-16 miR-378 

miR-21 miR-126 miR-17-5p miR-484 

miR-221 miR-130b miR-185 miR-484-5p 

miR-222 miR-132 miR-193a-3p/5p miR-520 

miR-342-3p miR-139-5p miR-193b/5p miR-652 

miR-519d miR-141 miR-197 miR-659 

miR-99a miR-143 miR-200a/b miR-92a 

Inflammation associated 

let-7a miR-150 miR-26a miR-652 

let-7d miR-155 miR-26b miR-671 

miR-125a–5p miR-17-5p miR-28-3p miR-883b-5p 

miR-126 miR-181a miR-325 miR-92a 

miR-132 miR-193a/5p miR-335 miR-95 

miR-143 miR-193b miR-433 miR-99a 

miR-145 miR-221 miR-511 
 

miR-146b-5p miR-222 miR-517a 
 

 

miRNAs, either directly or indirectly through regulatory elements such as transcription 

factors, influence the expression and secretion of inflammatory proteins involved in signal 

transduction networks that regulate the chronic low-grade inflammation in obesity 

(Klöting et al., 2009; Ortega et al., 2010; Sonkoly and Pivarcsi, 2009).Several individual 

miRNAs that control inflammation in WAT have been described (Ge et al., 2014; Hulsmans 

et al., 2011). Further, specific miRNAs regulate inflammation in human WAT through 

effects on CCL2 secretion (Ortega et al., 2010). 

miRNAs in adipose tissue development, lipid metabolism and adipogenesis have been 

studied also in farm animals (Civelek et al., 2013; Guo et al., 2012b; Liu et al., 2010; 



 

31 

 

McDaneld et al., 2009; Wang et al., 2013c). However, investigations of adipogenic miRNAs of 

porcine backfat are scarce. A few works (Chen et al., 2012; Cho et al., 2010; Li et al., 2011, 

2012b) have reported the identification and characterization of miRNAs from porcine 

subcutaneous adipose tissue in pigs of different breeds, ages and developmental stages. 

Nevertheless, there are a small number of matches among the results. 

1.4.1 PIG ADIPOSE TISSUE ECONOMIC ASPECTS 

Pigs (Sus scrofa) provide relevant biomedical models to dissect complex diseases, such as 

obesity and diabetes, due to their anatomical, genetic, and physiological similarities with 

humans (Koopmans and Schuurman, 2015; Schachtschneider et al., 2015; Walters et al., 2012). 

Besides, pigs are mostly important for the meat industry. The pig is among the best 

animals with respect to adipose accumulation and the adipose tissue is directly associated 

with the yield and the quality of meat. In particular, backfat deposition and fat traits are 

among the most important characteristics studied in pigs due to their strong relationship 

with the human nutritional value of pig products (Wood et al., 2008). The Italian pig 

breeding industry has peculiar aspects as more than 70% of the Italian pig production is 

dedicated to the processing of high quality Protected Origin Designation (POD) dry cured 

hams, together with a large number of other cured products that are recognized all around 

the world as superior products. Furthermore, they represent the basis of important 

economic districts in several Italian regions. For such high quality productions, meat (and 

cuts) with an excelled aptitude for salting and seasoning is needed (Bosi and Russo, 2010; 

Russo and Nanni Costa, 1995). The relevance of the quality of the raw material is underlined 

by the fact that Consortia of the PDO hams indicate the required characteristics for the 

fresh thigh and rules for the curing processing but also dictates rules for the genotypes 

(breeds and crosses) that are allowed, the age, the slaughtering weight of pigs and the feed 

that can be used. Among the requested meat and carcass traits, fatness (composition, 

quantity, and distribution in the carcass and hams) plays a key role, and influence all 

production chain. For example, an adequate and uniform fat coverage of the carcass is 

needed in order to allow the proper salt concentration within the muscles in typical dried 

cured hams and to reduce as much as possible the seasoning loss (Bosi and Russo, 2010; 

Čandek-Potokar and Škrlep, 2012). The strong negative correlation between backfat and 

unsaturated fatty acid content, together with the excessive decreasing of backfat thickness 

results in increasing of the unsaturated lipids and contributes to cause problems during 

ham seasoning. 

 Generally, between 10% and 30% of the variation in meat quality traits and meat 

products (ham), such as ultimate pH, color, water-holding capacity, drip loss, tenderness, 
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marbling, etc. is determined by the genetic background of the animal (Sellier, 1998). The 

traits determining meat quality are difficult to improve by traditional selection, because 

the heritability of quality traits in pigs is quite low (Sellier, 1998), the measure for the 

quality traits is expensive and only possible after slaughter, selection is devoted to 

maintain a correct fat coverage level lowering genetic progress for other performance 

traits, and in Italian Large White race the phenotypes associated with adipose 

characteristics are expressed late during production life. Moreover, in order to account for 

the processing industry needs, pigs are slaughtered at about 160 Kg live weight (heavy 

pigs) and only after 9 months of age. These limits, together with feeding rules, long 

seasoning period of POD hams (at least 12 months), the need to reduce the environmental 

impacts of pig farms and slaughtering plants, represent constrains that the Italian pig 

industry have to face. Additional limit for the complete exploitation of the opportunities of 

a selection plan is the lack of knowledge on the genes, gene effects, and gene interactions 

(including miRNAs and regulatory interactions) affecting single qualitative characteristics 

of meat.  

To date, the number of studies carried out on a homogeneous sample of individuals of the 

same breed reared on the same environmental conditions is poorly represented in the 

literature. Therefore, there is need for studies to identify gene expression profiles in 

porcine fat tissues and to gain insight into the gene regulatory relations in pig adipose 

tissue biology.   
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2 MATERIALS AND METHODS 

2.1 SOFTWARE FOR RNA-SEQ DATA ANALYSIS 

Different steps for the analysis include raw reads filtering (optional), alignment to a 

reference genome (if available, de novo aligning otherwise), expressed genes 

identification, transcript reconstruction (optional), gene/transcript expression 

quantification, differential gene expression assessment (optional). Methods for each step 

are described in the following. 

2.1.1 READ PREPROCESSING 

Reads resulting from sequencing experiments may contain sequencing errors like bases 

called incorrectly or with high uncertainty. Some sequencing technologies, such as 

Illumina, provide for each base the quality of the read signal encoding it in the FASTQ 

format. There are patterns of the qualities along the sequenced fragments typical of the 

technologies. For instance, Illumina sequencing shows decreased qualities in the last 

nucleotides sequenced (Figure 7) because of noisy signals derives from the subsequent 

washes of nucleotides at each cycle. Low quality of the reads may result in the 

impossibility of finding the corresponding region on the reference genome in the mapping 

step (see below), thus increasing the number of reads unmapped, or even been mapped in 

a wrong position if the bases are actually miscalled. A solution is to trim the reads of the 

low quality region, according to some a priori quality threshold, or up to a very low quality 

called base. With respect to just ignoring read quality under the assumption that 

incorrectly called bases will not map on the reference genome, this approach has the 

advantage of speeding up the subsequent processes reducing the time spent in trying to 

map artifacts, and increase the confidence on downstream analysis (Del Fabbro et al., 

2013). Moreover, removing poor quality bases and/or reads can improve sequence 

assembly (Cox et al., 2010). In Illumina/Solexa sequencing, also the beginning of the read 

presents lower quality with respect to the central part. Hence, trimming should be 

performed on both ends of the fragment. There are many tools implementing the trimming 

step, like DynamicTrim (Cox et al., 2010), FASTX-toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/download.html), Trimmomatic (Bolger et al., 

2014). Average quality of the trimmed read and length of the trimmed region (or 

conversely length of the untrimmed part) could be used as a summarizing measure of the 

fragment reliability.  

 

http://hannonlab.cshl.edu/fastx_toolkit/download.html
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2.1.2 ALIGNMENT TO REFERENCE GENOME 

The most important part in the pipeline is the alignment to the reference genome. We 

assume we can retrieve the nucleotide sequence for an organism’s genome. For instance 

genome databases like the UCSC Genome Browser (https://genome.ucsc.edu/) and 

Ensembl (http://www.ensembl.org/) websites provides free download in FASTA format 

of many species genome sequences, including Homo sapiens, Mus musculus, Sus scrofa, and 

other vertebrates and eukaryotes.  

The alignment of tens or hundreds millions of short reads to a whole genome reference 

sequence, usually of some billion nucleotides like in the case of human or pig (about three 

billion bases), is a task computationally different from the “classic” bioinformatics 

problem of local alignment and is not feasible to perform with methods such as BLAST 

(Altschul et al., 1990). Methods to cope with this issue have been developed concurrently 

with the advance of sequencing technologies and today there are at least 60 different tool 

for mapping short reads from NGS experiments (Fonseca et al., 2012). We can group 

aligners in two main categories, unspliced and spliced aligners, according to their ability to 

deal with transcriptomic data. Dissimilarly to DNA-seq data, RNA-seq reads may contain 

sequences that are not represented in the reference genome because transcripts from 

eukaryotic genomes do not include introns, which can span very large segments, 

Figure 7. Illumina per-base read qualities. Phred qualities (vertical axis) of each base ca ll 
(horizontal axis) are reported for a set of 100nt long reads sequenced with an Illumina 
HiSeq2000. A boxplot represent the range of quality values for each read position along the whole 
set of reads. The red curve smooths the median values along the rea d positions. The qualities are 
best between the 10 th to 50th cycle and drops in the last part of the reads.  

http://www.ensembl.org/
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transcripts can undergo post-transcriptional editing or polyadenylation, and can be the 

results of trans-splicing or back-splicing events. Most frequently, the read sequence may 

derive entirely from one single exon or from two (or more) exons, thus spanning exon-

intron junctions (Figure 8 (3)). The unspliced aligners, such as BWA (Li and Durbin, 2009) 

and Bowtie (Langmead et al., 2009), do not consider splicing events occurring in the reads 

and fail to find a genomic position for the reads spanning splicing junction. On the 

contrary, the spliced aligners, such as TopHat (Trapnell et al., 2009), HISAT (Kim et al., 2015), 

GSNAP (Wu and Nacu, 2010), and STAR (Dobin et al., 2013), are designed in a way that they 

can recognize exon spanning reads and map their fragment to the corresponding exons. 

One of the most popular methods is TopHat2 (Kim et al., 2013), the successor of TopHat. It 

is built around the Burrows-Wheeler transform (BWT)-based unspliced aligner Bowtie2 

(Langmead and Salzberg, 2012) that allows a fast and memory efficient way to map the 

reads on an entire genome, with high accuracy also across small insertions and deletions 

(indels). TopHat2 inherits from TopHat the ability to discover novel splice sites by the 

read mappings, and can also predict novel fusion transcripts (Kim and Salzberg, 2011). 

TopHat2 proceeds by aligning the reads against the known transcriptome, if an annotation 

file is provided, using Bowtie2 (Figure 8(1)).  The unmapped reads and the poorly mapped 

reads are aligned against the genome, indeed placing reads contained entirely in exons 

and leaving unmapped the reads spanning multiple exons (Figure 8 (2)). A third phase 

identifies novel splice sites according to known junction signals (GT-AG, GC-AG, and AT-

AC) from the 2nd phase unmapped reads. Unmapped reads are split into smaller non-

overlapping segments which are then aligned to the genome and re-aligned for the entire 

read sequence if left and right mapped segments are within the maximum intron size 

distance (Figure 8 (3)). The genomic flanking sequences of these potential splice sites are 

concatenated to form a novel transcriptome. Paired-end reads are processed 

independently and in the final stage the aligned reads are analyzed together to produce 

paired alignments. TopHat2 allow any read to map to multiple genomic regions and 

reports up to a user defined number (10 by default) of different alignment genome 

positions. Reads mapping in more than the threshold multiple alignments are assumed to 

have low-complexity sequence and are simply discarded. Using an approach similar to the 

3rd step, TopHat2 is able also to detect indels and fusion breakpoints. TopHat2 strategy 

results to be fast and memory efficient with respect to competitors (Kim et al., 2013).  
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Box: Burrows-Wheeler transform 

 The Burrows-Wheeler transform (BWT) is a reversible permutation of the characters in a 

text (T). It is constructed adding a special character, say “$”, that is not present in T and 

that is lexicographically less than the characters in T. The matrix of cyclic rotations of 

characters in T$ is sorted lexicographically by row. The last column of the matrix is the 

BWT of T, BWT(T) (Figure 9a). The permutation matrix has the “last to first (LF) mapping” 

property, for which the characters in the last column occur in the same order of the first 

column. For instance, in Figure 9a the “a”s of the first column occur in the same order as 

they occur in the last column. This property can be exploited for the matching through the 

exact-matching in an FM-index algorithm (Ferragina and Manzini, 2001) and for the 

Figure 8. Tophat2 workflow. (1) Reads are first mapped to the transcriptome in an unspliced 
manner. (2) Transcriptome unmapped reads are aligned to the genome in unspliced manner, 
again. (3) Genome unmapped reads probably contains exon junctions and undergo spliced 
alignment. Figure from (Kim et al., 2013) . 
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reconstruction of the original text from the transformation (Langmead et al., 2009; Li and 

Durbin, 2009). Indexing the reference genome by this approach results to be an efficient 

strategy for mapping reads that do not require large memory as for hash-based aligners.  

2.1.3 TRANSCRIPTOME RECONSTRUCTION 

Transcriptome reconstruction is the process of inferring the transcript isoforms from the 

fragmented reads. Most accurate methods rely on the mapping of reads to the reference 

genome (see Box “de novo transcriptome assembly” for non-genome-guided assemblers).                                                                                                   

Cufflinks (Trapnell et al., 2010) is one of the most widely used transcript assembler (Pertea 

et al., 2015). It relies on splice junctions identified from the mapping of the reads to the 

reference genome to infer transcript exon chains. It is able to reconstruct transcript 

sequences also without gene annotation, reaching high recall (Steijger et al., 2013). 

However, better results are achieved if reference annotation is provided, also for the 

organisms where deep annotations do not already exist (Roberts et al., 2011a). 

Cufflinks clusters the reads and build a graph model to represent all possible isoforms for 

each gene. Its approach is to generate the minimum number of transcripts that will explain 

all reads (splice events detected) in the graph (Figure 10b-e). From the read mappings 

(Figure 10a), it first identifies the ‘incompatible’ read pairs (fragments) that could be 

originated from distinct transcript isoforms (Figure 10b). Then, it builds a graph 

connecting the compatible fragments and assembles isoforms from the overlap graph 

Figure 9. Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 
'acaacg'. (b) Steps taken to identify the range of rows, and thus the set of reference suffixes, 
prefixed by 'aac'. (c) application of the last first (LF) mapping strategy to recover the original 
text (in red on the top line) from the Burrows-Wheeler transform (in black in the rightmost 
column). Figure from (Langmead et al., 2009) . 
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(Figure 10c). In addition to the transcript reconstruction, Cufflinks quantifies expression 

level for the transcript isoforms with a statistical model by estimating the probability for 

each fragment to be originated by an isoform (Figure 10d) and maximizing the likelihood 

of the possible sets of relative abundances of the isoforms (Figure 10e). Gene expression is 

defined as the sum of all the transcript abundances for the gene, and is reported in 

fragments per kilobase of transcript per million fragments mapped (FPKM) units which 

Figure 10. Cufflinks workflow. Details in main text. Figure from 
(Trapnell et al., 2010) 
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should reflect the relative abundances of transcripts in terms of the expected biological 

objects (fragments) observed from the RNA-seq experiment. 

Box: de novo transcriptome assembly 

 De novo transcriptome assembly, or “genome-independent” reconstruction, is performed 

without a reference genome guiding the assembly. It is more challenging than guided 

assembly and generally less accurate. For this, it is mostly used when the organism 

genome sequence is not available. Methods performing de novo assembly use the reads to 

build consensus transcripts. A common strategy is to model overlapping subsequences (k-

mers) by a de Bruijn graph, reducing the complexity of handling millions of reads, and 

then traverse the graph to assemble each isoform directly [Velvet (Zerbino and Birney, 

2008); Trinity (Grabherr et al., 2011); Oases (Schulz et al., 2012)], or post-processing the 

assembly merging the contigs (Trans-ABySS (Birol et al., 2009)). See Martin et al. 2011 

(Martin and Wang, 2011) for a review of transcriptome assemblers. 

2.1.4 GENE EXPRESSION QUANTIFICATION AND DIFFERENTIAL EXPRESSION 
ASSESSMENT 

Expression level estimation and differential expression assessment from RNA-seq data 

present the problem that more reads will map to longer genes/transcripts even when 

expression level is the same. Another challenge is given by the comparison of different 

sequencing depth in different samples, which require normalization of the raw counts. 

 The first method suggested to compare expression levels within the same experiment 

genes and among different experiments was the RPKM (Reads Per Kilobases per Million 

mapped reads) measure (Mortazavi et al., 2008). However, this still widely-used approach 

has proven ineffective and more beneficial procedures have been proposed (Anders and 

Huber, 2010; Bullard et al., 2010; Hansen et al., 2012; Robinson and Oshlack, 2010). Trapnell et 

al. (2010) proposed the FPKM (Fragments Per Kilobase per Million mapped reads) 

measure, which is a generalization of the RPKM and that considers as count units mapped 

transcript fragments (like paired-end reads) instead of single mapped reads. In small RNA 

sequencing the reads cover the full length of the transcripts, so the expression can be 

represented as simple read counts. Other biases in gene expression estimation can depend 

upon the technologies used. For instance, Illumina sequencing is sensible to GC content, 

which can alter read counts in comparisons  between genomic regions for a given sample 

(Risso et al., 2011). Moreover, quantification depends on the mapping ability of the aligner 

(repetitive sequences are difficult to align) and whether multiple mapped reads (derived 
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from repeat regions and paralogs genes that result to be ambiguous; usually aligners set a 

threshold for the maximum number of loci in which a read is mapped) are considered or 

not for quantification.  In differential expression analysis these biases are usually ignored 

since they are assumed to affect all samples similarly. Methods to assess differential 

expression from RNA-seq data principally represent expression data with simple count-

based probability distribution, such as Poisson (Marioni et al., 2008). The Poisson 

distribution comes naturally for count data like RNA-seq but considers the variance equal 

to the mean, an assumption that can result to be too restrictive and may predict smaller 

variations than what is seen in the data, condition that is called overdispersion. Recent 

methods, like edgeR (Robinson et al., 2010) and DESeq (Anders and Huber, 2010) to cite the 

most popular ones, tackle this issue by representing the number of reads assigned to each 

gene using a negative binomial (NB) distribution. With respect to the Poisson distribution, 

the NB allows a larger variance, specified with an additional parameter. Despite sharing 

the same distribution to model the data, these two methods differ for the way they 

estimate the dispersion for each gene. edgeR estimates dispersion by relating the variance 

to the mean proportionally with a constant, DESeq estimates the overdispersion 

parameters from the data with a local regression (GLM gamma family). In particular, 

DESeq describes the read count with a generalized linear model (GLM) of the NB family 

with a logarithmic link. For the differential expression test DESeq uses a GLM, which 

allows complex experimental designs. 

DESeq2 (Love et al., 2014) is an improvement of the DESeq method in which the authors 

included shrink dispersion estimates according to an empirical Bayes approach driven by 

the data to account for gene-specific variation, indeed reducing overestimation of the 

dispersions (Figure 11). DESeq2 also shrinks the estimates of logarithmic fold changes to 

reduce the typical bias observed in low count genes (Figure 12). Moreover, the differential 

expression is assayed using a Wald test on the shrunken estimates of logarithmic fold 

changes (LFCs), obtaining P-values and the relative Benjamini-Hochberg (BH) corrected 

values. 

Cuffdiff2 (Trapnell et al., 2013) is a methods belonging to the Tuxedo (Trapnell et al., 2012) 

software suite as part of Cufflinks2. In its most recent version (v2.1 at the time of this 

writing), it models the read counts with a beta-negative binomial distribution fitting a 

GLM, and the dispersion estimate is performed similarly to DESeq. The mixture 

distribution has the advantage of modeling the uncertainty of multiple mapped read 

fragments that are shared among different isoform transcripts. This occurs because in 

higher eukaryotes alternative isoforms of most genes share large amounts of sequence, 

and many genes have paralogs with high sequence similarity. Indeed, by calculating the 
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confidence that each fragment is correctly assigned to the transcript that generated it 

(transcripts with more shared exons and few uniquely assigned fragments will have 

greater uncertainty) Cuffdiff2 can estimate expression of transcripts and represent gene 

expression as the sum of the gene isoforms’ expression. Cuffdiff2 then uses t-tests to 

compute P-values and uses BH correction to quantify differential expression significance.  

Figure 11. Shrinkage estimation of dispersion. Plot of dispersion estimates over the average 
expression strength (A) dataset with six samples across two groups and (B) for five samples from 
another dataset, fitting only an intercept term. First, gene -wiseMLEs are obtained using only the 
respective gene’s data (black dots). Then, a curve (red) is fit to the MLEs to capture the overall 
trend of dispersion-mean dependence. This fit is used as a prior mean for a second estimation 
round, which results in the final MAP estimates of dispersion (arrow heads). This can be 
understood as a shrinkage (along the blue arrows) of the noisy gene -wise estimates toward the 
consensus represented by the red line. The black points circled in blue are detected as dispersion 
outliers and not shrunk toward the prior (shrinkage would follow the dotted line). MAP, maximum 
a posteriori; MLE, maximum-likelihood estimate. Figure from (Love et al., 2014) . 

Figure 12. Effect of shrinkage on logarithmic fold change estimates. Plots of the (A) MLE (i.e., 
no shrinkage) and (B) MAP estimate (i.e., with shrinkage) for the LFCs, over the average 
expression strength for a ten vs eleven sample comparison. Small triangles at the top and 
bottom of the plots indicate points that would fall outside of the plotting window. Two genes 
with similar mean count and MLE logarithmic fold change are highlighted with g reen and 
purple circles. Figure from (Love et al., 2014) . 
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2.2 SOFTWARE FOR SMALL RNAS’ RNA-SEQ DATA ANALYSIS 

2.2.1 SMALL RNAS DETECTION 

MiR&moRe is a pipeline for the analysis of small, miRNA-like, RNAs’ RNA-seq data 

described in (Bortoluzzi et al., 2012). MiR&moRe can detect known miRNAs and quantify 

their expression. Moreover, it allows the investigation on expressed sequence variations 

and the detection of microRNA offset RNAs (moRNAs). The pipeline’s steps (Figure 13) 

consider a preprocessing of the raw reads; their mapping to the human reference genome; 

the mapping also to human miRNA precursors including flanking bases; the identification 

of unknown sister miRNAs, moRNAs, and known-miRNA isomiRs; and the quantification of 

expression for the detected small RNAs.  

The preprocessing step removes the adapter from raw sequences, discards the reads in 

which the adapter sequence was not detected and the clipped reads that are not within 

miRNA-like sizes (longer than 30nt or shorter than 18nt as default), plus those reads 

having average quality below a user defined threshold. The reads passing the filters are 

likely to represent full miRNA/moRNA sequences and are mapped with Bowtie to the 

human genome. Reads mapping to more than five positions in the genome are further 

discarded. The remaining reads constitute the clean set of reads representing the small 

RNAs expressed. The clean reads are mapped to miRNA precursors’ sequences that are 

extended 30 nucleotides upstream and downstream the precursor boundaries, in order to 

allow the detection of potential moRNAs. The alignments allows for mismatches on the 

known mature miRNAs, restricting to one mismatch on the seed region (the conserved 

sequence ~6nt long that is the major driver of the targeting) or two mismatches on the 3’ 

end at maximum to account for post-transcriptional editing of the molecule. Other 

variations to identify isomiRs consider longer or shorter sequences of the known miRNAs.  

miRDeep2 (Friedländer et al., 2011) is popular software with functionalities similar to 

miR&moRe. It processes RNA-seq data of miRNA sequencing experiments to identify and 

quantify the expressed molecules. Contrary to miR&moRe, it was applicable also to non-

human data and it is able to predict novel miRNA precursors and mature miRNAs from the 

organism’s genome. However, miRDeep2 is limited to miRNA identification and 

quantification, isomiRs identification and quantification are reported in a format that is 

not easy to manipulate for downstream analysis and moRNAs’ analysis is not conceived.  
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2.2.2 SMALL RNA-TRANSCRIPT PUTATIVE INTERACTIONS 

A single miRNA can target potentially hundreds or even thousands of mRNAs. Since 

validating a potential target in the laboratory is time consuming and costly, the use of a 

computational approach that narrows down the selection of the miRNA-transcript target 

interactions is a critical initial step before experimental validation. Currently there are 

several miRNA target prediction methods and software tools (Peterson et al., 2014), whose 

models share common features derived by considerations on the molecular mechanisms 

characteristic of the miRNA targeting process, such as seed matching, conservation, 

binding free energy, and binding-site accessibility. Table 3 reports some of the most 

popular tools. 

 

 

Figure 13. MiR&moRe pipeline workflow. The pipeline performs a preprocessing of raw small 
RNA-seq reads before the mapping to the human reference genome and in parallel to the miRNA 
hairpin precursor sequences, extended with flanking bases. The mappings with no more than fiv e 
(default value) multi-mapped loci are then processed in two “branches”: one for the 
characterization of isomiRs (left branch), the other for identification and quantification, from 
known hairpins, of known miRNAs, new sister miRNAs, moRNAs and loops (rig ht branch). Figure 
from (Bortoluzzi et al., 2012) . 
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Table 3. Popular miRNA target prediction tools , with name, website for software download or web 
server online use, and article reference.  

Tool name Website 
Publication 
references 

miRanda http://www.microrna.org/ 
Enright et al., 2003; 

John et al., 2004 

miRanda-mirSVR http://www.microrna.org/ Betel et al., 2010 

TargetScan http://www.targetscan.org Agarwal et al., 2015 

RNA22-GUI https://cm.jefferson.edu/rna22/ Miranda et al., 2006 

PITA http://genie.weizmann.ac.il/pubs/mir07/ Kertesz et al., 2007 

RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ 
Krüger and 

Rehmsmeier, 2006 

 

One of the earlier tools for miRNA target prediction is miRanda (Enright et al., 2003; John et 

al., 2004). MiRanda is a method based on three properties, sequence complementarity with 

the target sequence, binding energy, and evolutionary conservation of the target sites. The 

sequence complementarity stage uses a Smith-Waterman-like dynamic programming 

algorithm that takes into account G-U wobble pairs, allows moderate insertions and 

deletions, and uses a weighting scheme that rewards complementarity at the 5p end of the 

miRNA. The strength of binding is calculated as the free energy of optimal strand-strand 

interaction using the Vienna secondary structure programming library (Wuchty et al., 

1999). The conservation step is not embedded in the main algorithm, but is performed as a 

post-processing filtering of the interactions predicted by the previous steps, and is species 

dependent. The miRanda model does not consider any additional protein interaction, such 

as with RISC. For practical use, the selection of a target prediction tool to use has to take 

into account additional characteristics like the tool maintenance, user-friendliness, and 

adaptability to the user needs. The miRanda software (latest update 8/2010, current 

version v3.3a) and source code can be downloaded (www.microrna.org) and used from 

the command line. As input it requires the sequences of both miRNAs and (UTR) 

transcripts, and it allows the specification of some parameters like the free energy 

threshold, alignment threshold, weight of seed region, and gap penalty. MiRanda is also 

available online as part of the miRanda-mirSVR tool (Betel et al., 2010) providing pre-

computed targets for humans, rats, mice, flies, and worms. 

2.2.2 ENRICHMENT OF TRUE MIRNA-TRANSCRIPT PREDICTED RELATIONS 

The regulatory network of a miRNA is probably dynamic. Only a proportion of the miRNA 

complementary sites that are annotated transcriptome wide will be present and relevant 

in any given cell. For this reason, pruning the search of miRNA target to the set of 

http://www.microrna.org/
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transcripts expressed in specific condition of a specific tissue will reduce the amount of 

false miRNA-mRNA interactions predicted. In addition, methods for target prediction are 

affected by high rates of false positive predictions, and combining different methods does 

not give reliable results (Ritchie et al., 2009). As suggested by (Huang et al., 2007; Lionetti et 

al., 2009), an approach to refine predicted interactions is to select on the strength of 

correlation between the miRNA’s expression and its gene/transcript targets’ expression. 

Considering the silencing effect of miRNAs on their target transcripts’ expression, a 

conservative cut off could be to restrict only to the negative correlated targets. The 

correlation computation requires the samples to be “matched” for transcript and small 

RNA sequencing experiments i.e. both the transcript and the small RNA expression levels 

were estimated in each sample.  

MiRanda is a tool suitable for this approach because it provides non-pre-computed target 

predictions. In fact, many other target prediction approaches are released only as 

repositories of miRNA target predictions pre-computed for restricted number of species, 

commonly Homo sapiens, Mus musculus and Drosophila melanogaster. Instead, the 

miRanda algorithm implementation is available and can be used with custom input 

sequences of miRNA and potential target transcripts. In addition, a conservation filter is 

not applied in the miRanda executable script, allowing for a wider application of the 

software. To reduce the false positive interaction number, the target prediction can be 

filtered a posteriori. A filtering based on evolutionary conservation was applied in several 

studies (Enright et al., 2003) but also criticized by (Betel et al., 2010), as several non-

conserved target sites are functional. 

2.3 PIG SUBJECT SELECTION AND BACKFAT SAMPLE COLLECTION 

RNA-seq data from Italian Large White (ILW) pig backfat samples were provided by Prof. 

R. Davoli and Dr. P. Zambonelli (DISTAL - University of Bologna), in the frame of a research 

project in pig genomics for the Italian heavy pig production chain. Backfat samples of 20 

ILW pigs were collected from a purebred population of 949 ILW sib-tested pigs provided 

by the Italian National Association of Pig Breeders (Associazione Nazionale Allevatori 

Suini, ANAS; http://www.anas.it). Animals were selected to compose two groups (LEAN 

and FAT) of 10 pigs showing extreme and divergent characteristics for the backfat 

thickness (BFT) estimated breeding value (EBV) (see Box “Pig rearing and sample 

collection procedure”). With respect to the larger population that presented EBVs for BFT 

ranging from -10.64 mm to 7.28 mm (mean value -1.96 mm and standard deviation (SD) 

3.01), BFT mean values of LEAN and FAT groups were outside (plus or minus) two 

standard deviations  from the population mean value (-7.98 mm to 4.06 mm range). 

Specifically, FAT and LEAN animals were associated with average BFT values of +5.22 mm 

http://www.anas.it/
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(± 1.30 SD) and -8.63 mm (± 1.40 SD), as indicated in Table 4. The 20 animals were 

slaughtered on 12 dates, with five dates common to both groups (Table 4). The animals 

were selected also according to their pedigree to avoid the presence of full sibs in the 

considered groups and with a 1:1 sex ratio within each group. The collected samples were 

immediately frozen in liquid nitrogen and stored at 80 °C until RNA extraction.  

Table 4. Genetic indexes and phenotypes for BFT and hot carcass weight of the pigs selected for 
the transcriptome analysis.  

Total RNA was extracted with Trizol (Invitrogen) according to the manufacturer’s 

instructions. Results of the extraction were quantified using a Nanodrop ND-1000 

spectrophotometer, and the quality of the extracted RNA was assayed using an Agilent 

2100 BioAnalyzer. The long RNA libraries were prepared from total RNA using the TruSeq 

RNA sample preparation kit (Illumina) and version 3 of the reagents, following the 

manufacturer’s suggested protocol. Pairs of libraries were run on a single lane of an 

Illumina HiSeq2000. Reads were 100 nucleotide (nt) paired-end, represented in FASTQ 

format. Small RNA libraries were prepared from total RNA using the TruSeq Small RNA kit 

(Illumina) and version 3 of the reagents following the manufacturer's suggested protocol. 

Group 
Sample 

ID 
Sex 

Day of 
slaughter 

Slaughter 
weight 
(kg) (*) 

BFT 
phenotype 

(mm) 

BFT EBV 

 
Mean SD 

FAT 

477 M 6 120 43 7.36 

5.22 1.3 

476 F 6 119 37 7.17 

474 M 2 113 38 6.03 

482 F 9 - 42 5.75 

478 F 7 118 33 5.05 

516 F 3 115 36 4.88 

479 M 8 - 41 4.76 

483 F 10 119 38 4.41 

489 M 18 108 35 3.54 

484 M 15 128 35 3.27 

LEAN 

490 M 19 113 24 -6.46 

-8.63 1.4 

473 F 2 132 23 -7.54 

487 M 18 110 23 -7.61 

517 M 4 117 20 -7.71 

485 F 17 126 20 -7.82 

475 M 5 119 20 -8.03 

481 M 9 - 22 -9.91 

486 F 17 123 19 -10.27 

488 F 18 128 19 -10.37 

480 F 9 - 16 -10.59 
BFT, backfat thickness; EBV, estimated breeding value. 
(*) Slaughter weight: the hot carcass slaughter weight is reported. For four animals the weight was not available 

due to a problem of the automatic recording system at the slaughterhouse. 
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Two libraries were run on a single lane of an Illumina GAII; the other 18 small RNA 

libraries were run on an Illumina HiSeq2000.  

Box: Pig rearing and sample collection procedure 

All animals were kept according to Italian and European law for pig production, and all 

procedures described were in compliance with national and European Union regulations 

for animal care and slaughtering. The animals were reared on the ANAS Sib-Test genetic 

station from about 30 kg live weight to at least 155 kg live weight. For the genetic 

evaluation of a boar, full sib triplets (two females and one castrated male) were farmed on 

the genetic station to be performance tested. The formula and amount of the ration was 

the same for all and was based mainly on cereals and soybean, given in excess calculated 

using the quasi ad libitum rule (a ration sufficiently abundant that 60% of pigs were able 

to ingest the full supplied food). At the end of the tests, animals were transported to a 

commercial abattoir located about 25 km from the test station according to Council Rule 

(EC) No 1/2005 on the protection of animals during transport and related operations and 

amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. At the 

slaughterhouse, the pigs were electrically stunned and bled in a lying position in 

agreement with Council Regulation (EC) No 1099/2009 on the protection of animals at the 

time of killing. All slaughter procedures were monitored by the veterinary team appointed 

by the Italian Ministry of Health. Estimated breeding values (EBV) can be defined as a 

genetic merit for a phenotypic trait, one half of which will be passed to the progeny; EBVs 

are expressed in unit of measurement of the specific trait and refer to difference from a 

fixed average value. Backfat thickness EBVs were calculated by ANAS for the animals as 

described by (Russo et al., 2000, 2008). EBVs were determined through a BLUP multiple-

trait animal model procedure (Henderson and Quaas, 1976) using the BFT, measured in 

mm, recorded post-mortem in correspondence with the gluteus medius muscle. The model 

included fixed effects of batch in test, sex, age at beginning of test, age of sow, weight at 

slaughter, age at slaughter and inbreeding coefficient as well as the random effects of 

litter, individual permanent environment and animal. Pigs’ genetic merit for the BFT trait 

was calculated taking into account the additive relationship matrix. EBVs were expressed 

as differences from the genetic mean value for the considered trait in the year 1993. The 

BFT genetic index may present as a negative value because the value of the trait refers to 

the fixed genetic base defined by ANAS as mean values of the pigs born in 1993 which is 

considered as ‘zero’, so the more negative values indicate lower values of BFT. After 

slaughter, backfat samples were collected from 949 ILW pigs slaughtered at an average 

hot carcass weight of 118.97 kg (0.29 SEM) and at an average age of 8 months during the 

years 2011 and 2012 on 27 different slaughtering days.   
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3 RESULTS 

The present work has both methodological and applicative results. The computational 

analysis workflow (Figure 32) could be seen as a method for the investigation of the 

transcriptome in a tissue, to characterize long and short transcripts expressed in terms of 

their sequence variation, abundance, and putative regulatory interactions. Moreover, 

given the comparative design of the experiment, this approach can highlight gene and 

transcript expression differences between two sample groups representing different 

physiological and/or disease conditions. At present there are different approaches for 

RNA-seq data analysis, leaving researchers with the burden of design and implementation 

of their computational pipeline. Even already existing pipelines might not fulfill the 

requirements for the specific experiment. This was the case for our study of small RNAs, in 

which the existing pipelines, miR&moRe and miRDeep2, were implemented only for human 

small RNAs in one case, or did not analyzed isomiRNAs and moRNAs in the other. For this 

reason, we adapted the pipeline software and improved it providing new features. The 

methods developed were applied to RNA-seq experiments on Italian Large White backfat, 

resulting in new findings about swine adipose tissue that are presented in published 

research articles (also reported here) and in the last section of this chapter (manuscript in 

preparation).  

3.1 METHODOLOGICAL RESULTS 

The method development activity regarded the implementation of an automated and 

computationally efficient pipeline for the analysis of long transcript RNA-seq data; plus, 

the improvement of the miR&moRe pipeline for the analysis of small transcript RNA-seq 

data. One further pipeline for the detection of circRNAs was developed and is described 

here. Details follow. 

3.1.1 AN AUTOMATED ANALYSIS PIPELINE FOR LONG TRANSCRIPT RNA-SEQ 
DATA 

To characterize the transcriptome from RNA-seq data in terms of sequence and expression 

level variations, and to compare gene expression from different sample, we composed a 

custom computational pipeline that can automatically execute the various steps for all the 

sample data provided. 

As introduced above, different software and tools for the analysis of long RNA RNA-seq 

data has to be used to compose an analysis pipeline. Our choice of implementation 

borrows the idea of Bortoluzzi et al. (Bortoluzzi et al., 2012), in which the pipeline steps are 
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composed using Scons (http://www.scons.org/) like for the compilation of software 

source code. Scons is a software tool written in Python designed to facilitate software 

development by managing the building and compilation of (large) software projects. 

Scons’ actions are generic and can be implemented in Python scripts that will be custom 

for the specific application. Scons has been used as the pipeline backbone that links 

various analysis tools and triggers the computations in the right order. With this choice, 

we achieved repeatability of the analyses and improved computational performance. In 

fact, Scons allows automatic and parallel execution of different tasks (for instance, when a 

set of analysis steps has to be performed sequentially for each sample), and in a 

parsimonious way in the sense that a task is not rebuilt if not necessary (i.e. when input 

parameters has not changed between repeated runs). In addition, Scons computes a 

dependency tree of the various tasks and can executes independent tasks in parallel. 

These features make Scons scalable even to large projects. 

The two pipelines have similar conceptual steps (raw data preprocessing, read mapping to 

the reference genome, characterization of RNA sequences, expression quantification). Yet, 

they are different in the tools utilized and the in the data features that are examined. The 

methods chosen to implement the long RNA pipeline steps follow. 

The read preprocessing step is performed by means of DynamicTrim, which is an 

additional program in the SolexaQA package. It trims each read to its longest contiguous 

read segment (from either or both ends) where quality scores exceed a user-defined 

threshold, and writes this information to a standard FASTQ file. In combination with a 

length filter, custom written, it was used to remove poor quality bases and/or reads from 

high throughput sequence data. We chose to filter reads according to untrimmed read 

length and untrimmed read average quality. Reads having the mate discarded were 

discarded, too. A step reporting read quality for each preprocessing step was introduced 

using the FASTQC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for the raw reads, while 

the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) package has been used to 

report results of the trimming and length filter phases, as well as custom scripts either in 

Python and R. Subsequent steps of the pipeline resemble the protocol developed by 

Trapnell et al.(Trapnell et al., 2012), which uses TopHat2 as read aligner, Cufflink2 as 

transcript sequence inference and expression estimation tool, and Cuffdiff2 as 

gene/transcript differential expression method. Additional methods were integrated for 

the gene expression level estimation and gene differential expression assessment, namely 

the htseq-count tool from the HTSeq framework (Anders et al., 2015) and DESeq2, 

respectively. 

http://www.scons.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
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The pipeline output can be used in further downstream analysis, like for instance novel 

transcript characterization by coding potential prediction and/or sequence comparative 

annotation. 

3.1.2 IMPROVEMENTS TO THE MIR&MORE PIPELINE 

The miR&moRe pipeline was originally implemented to handle specifically data from 

human cells. The critical point was the use of human reference genome and human miRNA 

annotations, including the human miRNA-hairpin reference sequences from the miRBase 

repository. We generalized the scripts’ code allowing small RNA sequencing data analysis 

for all the species genomes for which a reference genome and miRNA annotation are 

available. In addition, custom genomes and annotation could be provided as long as they 

comply with the required formats (Figure 14). Basically, the reference genome sequence 

must be in FASTA file (single file or split in chromosomes), and miRNA annotation in GFF 

formats like those provided by miRBase. An additional feature added to the processing 

pipeline was the prediction of novel miRNA precursors and mature miRNAs. In fact, the 

miR&moRe pipeline discovery power is limited to the prediction of sister miRNAs from 

already annotated precursors. Other tools such as miRDeep2 provide the possibility of 

inferring novel miRNA hairpins from the reference genome, giving the genomic 

coordinates and the putative mature miRNA positions in the predicted hairpins. The 

modification carried out to miR&moRe allowed the integration of miRNA prediction from 

miRDeep2 software and also the characterization of miRNAs from novel precursors 

(Figure 14).  These adjustments introduced powerful features to miR&moRe, improving its 

capability, breath of 

application, and increasing 

its discovery skills.  

Figure 14. New miR&moRe 
pipeline workflow. The input 
reference genome can be from 
any species and miRNA 
annotation can be retrieved 
from miRBase; miRDeep2 is 
executed with the same 
reference genome, annotation 
and sequencing reads inputs 
given to miR&moRe. miRDeep2  
predictions of new pre-miRNAs 
and the relative new miRNAs 
that are added to the miRBase 
annotation that is input to 
miR&moRe. In this way 
miR&moRe can characterize 
miRNAs from novel precursors 
and compute isomiRs also for 
novel pre-miRNA mature 
miRNAs. 
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3.1.3 A COMPUTATIONAL PIPELINE FOR THE DETECTION OF CIRCRNAS FROM 
RNA-SEQ DATA 

As introduced before, circRNAs are circularized RNA molecules in which exon boundaries, 

several exons or intron and exon sequences are joined in a non-collinear way generating 

backsplice junctions that are sequences not included in the genome. CircRNA are not 

polyadenylated. Thus, poly(A) libraries do not capture circRNAs sequences and specific 

strategies for RNA-seq library preparation are needed, such as implementing depletion of 

ribosomal RNA without poly(A) enrichment. From the computational point of view, 

specific methods are needed for NRA-seq reads mapping to detect backsplices.  

In parallel with the ascertainment of experimental protocols for circRNA sequencing, 

algorithms for circRNA detection were set, such as find_circ (Memczak et al., 2013), 

seghemel/testrealign (Hoffmann et al., 2014), and CIRI (Gao et al., 2015). These methods 

essentially detect of back-splice junctions from mapping data; yet differ for the alignment 

strategy and format that they can process, providing heterogeneous predictions. Aiming at 

comparing different circRNAs detection method results, we applied the concepts of 

automation, modularity, and parallelization that have been employed in the development 

of the pipeline for the characterization of long RNAs (see chapter “An automated analysis 

pipeline for long transcript RNA-seq data”) to set up a computational pipeline (Figure 15). 

As before, we used Scons to link and execute the various steps, which are described below. 

To remove reads belonging to linear transcripts from subsequent processing for 

backsplice detection, a preliminary alignment to the reference genome is performed with 

TopHat (Kim et al., 2013) setting its parameters in a way that backsplice reads are not 

mapped. The strategy of a preliminary filter on the linear transcript has also been adopted 

by another circRNAs detection tool, CIRCExplorer (Zhang et al., 2014). Unmapped reads are 

Figure 15. Pipeline for detection and quantification of circular RNAs.  
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then used as input for each circRNAs detection tools, find_circ, testrealign, and CIRI, that in 

turn involve a read alignment phase using, respectively, Bowtie (Langmead and Salzberg, 

2012), Segemehl (Hoffmann et al., 2014), and BWA (Li and Durbin, 2009) aligners. In addition 

to the discovery of putative circRNAs, the pipeline achieves circRNAs expression 

quantification in terms of backsplice reads. This measure will be the starting point for the 

comparison of circRNAs expression with linear transcripts expression, in order to evaluate 

circular to linear expression proportion; and unsupervised analysis based on circRNAs 

expression data and circ/linear proportion estimation. 
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3.2 APPLICATIVE RESULTS 

The implemented methods were applied to characterize the transcriptome and miRNome 

of pig adipose tissue and to compare pig backfat transcriptional profiles of different 

animal with extreme phenotypes of backfat thickness. Further, the transcriptome and 

miRNome profiles integration allowed the identification of post transcriptional regulatory 

interactions between miRNA and transcripts expressed in the tissue.  

Next sections focus on the results of the application of the methods (see section “Materials 

and methods”), with details of implementation (software versions and additional tools) for 

each specific analysis. The first section (“Transcriptional profiling of subcutaneous adipose 

tissue in Italian Large White pigs divergent for backfat thickness”) regards the pig backfat 

transcriptome profiling and is extracted from the published article Zambonelli et al. (in 

press). Next two sections regard the characterization of pig backfat miRNome. The former  

(“miRNome of Italian Large White pig subcutaneous fat tissue: new miRNAs, isomiRs and 

moRNAs”) is  extracted from the published article (Gaffo et al., 2014). The latter section, 

“Differentially expressed small RNAs in Italian Large White pig adipose tissue”, present the 

results of the comparison of miRNome profiles of two groups of ILW pigs yielding extreme 

and divergent backfat thickness phenotypes, with additional focus on the reconstruction 

of the putative small RNA-transcript interactions occurring in the tissue. Some 

supplementary tables are not reported here because of limited space and we remand to 

the relative article electronic supplementary material. 
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3.2.1 TRANSCRIPTIONAL PROFILING OF SUBCUTANEOUS ADIPOSE TISSUE IN 
ITALIAN LARGE WHITE PIGS DIVERGENT FOR BACKFAT THICKNESS 

The objective of this research was to investigate the transcription profile of Italian Large 

White (ILW) pig backfat tissue and to compare the transcriptome of animals reared in the 

same herd and farming conditions showing high (FAT) vs. low (LEAN) backfat thickness 

(BFT). Moreover, a first functional characterization of DEGs has been obtained to provide 

new insights on genes, pathways and processes influencing the divergent aptitude of 

subcutaneous adipose tissue deposition in ILW pigs. 

3.2.1 MATERIALS AND METHODS 

RNA-seq data pre-processing and mapping to the swine genome  

Exploratory analyses on the raw reads quality were carried out using FASTQC v0.10.1 

software http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which generates 

an HTML report for each sample read set. Read fragments with a quality Phred score 

lower than 30 were trimmed using the DynamicTrim script of SOLEXAQA v2.1 (Cox et al., 

2010). The FASTX-TOOLKIT v0.0.13.2 (http://hannonlab.cshl.edu/fastx_toolkit/) was used 

for trimming the result report. A custom Python script using the HTSEQ package (Anders et 

al., 2015) filtered out the trimmed reads shorter than 50 nt. To maintain a consistent 

paired-end read set, discarded read mates were also filtered out, despite their length and 

quality. Each sample paired-end clean read set was mapped to the swine genome 

(Sscrofa10.2.70) by TOPHAT v2.0.8 (Kim et al., 2013) using default parameters with 

transcriptome inference from the Ensembl annotation (TOPHAT2 used BOWTIE v2.1.0.0 

(Langmead and Salzberg, 2012)) and SAMTOOLS v0.1.19 (Li et al., 2009)). 

Gene/transcript expression evaluation and transcript reconstruction  

Gene annotation for the reference genome was retrieved from Ensembl (BioMart) using 

the BIOMART R package (Durinck et al., 2009)(Durinck et al. 2009). Read alignments were 

processed by CUFFLINKS v2.1.1 (Roberts et al., 2011a, 2011b; Trapnell et al., 2010) to 

identify and discover expressed genes and transcripts, and to quantify their expression. 

Expression data were indicated as fragments per kilobase of transcript per million 

mapped reads (FPKM). CUFFLINKS was applied to each sample alignment; then, we 

merged the transcript predictions in a non-redundant reference using the CUFFMERGE 

tool from the CUFFLINKS package. To reduce artefacts deriving from the transcript 

prediction and normalisation strategies, only predicted transcripts at least 200 nt long and 

with minimal expression of 100 (CUFFLINKS normalised) reads in at least one of the two 

groups were considered for transcriptome reconstruction and for the following analyses. 
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Gene and transcript differential expression assessment The samples were inspected by 

principal components analysis to examine their similarities. The read counts of each gene 

in the 20 considered samples were transformed with the variance stabilising 

transformation function provided by the DESEQ2 package (Anders and Huber, 2010) and 

used to compute the principal components. 

The genes identified by CUFFLINKS were assessed for differential expression (DE) 

between the LEAN and FAT groups by means of two strategies, namely CUFFDIFF2 (v2.1.1 

from the CUFFLINKS package; Trapnell et al., 2012) and DESEQ2 v1.2.1 (Anders and Huber, 

2010). Transcript DE was assayed only with CUFFDIFF2. To represent gene expression, the 

two methods use similar statistical approaches based on a generalised linear model (GLM) 

of the negative binomial family. CUFFDIFF2 extends the model using a beta negative 

binomial distribution to handle uncertainty of multimapped reads. On the contrary, 

DESEQ2 considers only uniquely mapped reads (counted by means of the htseq-count 

script of the HTSEQ package; (Anders et al., 2015)) but facilitates the specification in the 

statistical model of additional factors affecting the fit of the GLM. In this study, the 

statistical model included sex effect as a potential conditioning factor. Gene and transcript 

DE test-computed P-values were corrected according to the Benjamini–Hochberg 

procedure. DEGs and transcripts were considered statistically significant according to a 

false discovery rate  0.05. 

Transcript characterisation 

Using custom scripts, including BEDTOOLS v2.17.0 software (Quinlan and Hall, 2010), we 

retrieved the nucleotide sequences of the transcripts extracting from the Sus scrofa 

genome, the stretches of nucleotides according to the annotation generated by the RNA-

seq analysis tools. Transcripts were identified or characterised by sequence similarity 

using BLASTN and BLAST2 from the NCBI BLASTN suite 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LIN

K_LOC=blasthome) using the Megablast algorithm (Morgulis et al., 2008). To assign a gene 

name, the sequences’ IDs obtained with this comparison were used to query the NCBI 

Gene and the UniGene databases (http://www.ncbi.nlm.nih.gov/unigene/). We used two 

strategies for transcript annotation. DE transcripts (DETs) and DEGs were annotated by 

similarity using nr/nt nucleotide collection. The threshold considered for the 

identification of our transcripts was identity ~80% in at least 70% of the sequence length 

of a transcript present in the database. Transcripts from new genes were characterised 

using a comparative genomics approach. We compared the new transcripts from 

intergenic regions with known human transcripts (RefSeq Release 72) by aligning with 
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BLASTN (NCBI BLAST 2.2.29+). For each transcript, the best hit was considered, and then, 

alignments with E-value greater than 10E-6, identity <60% and length <100 nt were 

discarded. 

Prediction of coding/non-coding potential 

The transcript coding potential was predicted by CPC (Coding Potential Calculator;(Kong et 

al., 2007)). CPC is a support vector machine-based classifier of transcript protein-coding 

potential grounded on six features of sequence. Three features assess the extent and 

quality of the predicted transcript ORF (open reading frame): FRAMEFINDER software 

identifies the longest ORF in the three forward and the three reverse frames, then the 

coverage and the integrity of the predicted ORF are evaluated. Another three features 

derive from results of the BLASTX search against UniProt Reference Clusters. All the 

features together contribute to a final score and to the classification of transcripts as 

coding or non-coding. Only transcripts not including uncalled bases were considered for 

CPC analysis. 

Validation by quantitative real-time PCR 

The validation of selected transcripts was performed using a quantitative real-time PCR 

(qPCR) approach using 18 of the 20 samples used for the RNA-seq analysis. Two samples, 

one in the FAT group and one in the LEAN group, were not considered because the total 

RNA extracted was used completely for the RNA-seq analysis. qPCR validation was carried 

out using a Rotor-Gene TM 6000 (Qiagen,Corbett Research). After DNase treatment 

(TURBO DNA-freeTM, Ambion, Applied Biosystems), 1 lg of total RNA was reverse 

transcribed using the iScript cDNA Synthesis kit (Bio-Rad), according to the 

manufacturers’ instructions.  

The samples were first used to analyse four candidate normalising genes: beta-2-

microglobulin (B2M); polymerase (RNA) II (DNA directed) polypeptide A, 220 kDa 

(POLR2A); hypoxanthine phosphoribosyltransferase 1 (HPRT1); and tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ). The 

primer pairs and the PCR conditions used are reported in Table S1. The expression levels 

of these four genes were evaluated using NORMFINDER, and B2M and HPRT1, the two 

most stably expressed normalising genes, were utilised as reference genes. For each gene 

selected for validation, we designed an external primer pair to obtain the amplicon for the 

standard curve construction and an internal primer pair for the qPCR on the Rotor-Gene 

6000 (Table S1). Standard curves for each gene were generated from 10 to 12 serial 

dilutions (from 109 to 25 molecules/ll) of the PCR amplicons obtained with the external 
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primer pairs and containing the internal primers used in the qPCR analysis. Amplifications 

were performed in a total volume of 10 ll containing 5 ll of the SYBR  Premix Ex TaqTM 

(Takara Bio Inc.), 0.5 ll of each primer and about 100 ng of cDNA. The Premix Ex TaqTM 

was optimised for a two-step cycling, and the amplification conditions for the tested genes 

are reported in Table S1. The PCR efficiency was calculated as E = 10 exp(-1/slope), with a 

range between -2.7 and -4.3, indicating a good PCR efficiency result. All the PCR products 

were checked on a polyacrylamide gel, and the specificity of the amplification was checked 

by a final melting curve analysis.  

Threshold cycles obtained for the samples were converted by Rotor-Gene 6000 to mRNA 

molecules/ll using the relative standard curve for each gene (Bustin and Nolan, 2004). 

Moreover, the average mRNA molecules/ll for each sample was normalised by dividing the 

mRNA molecules of a gene/ll by the geometric average of B2M and HPRT1 mRNA 

molecules/ll in the given sample, as suggested by Bustin & Nolan (2004) and 

Vandesompele et al. (2002). Differences in the expression level calculated for FAT and 

LEAN samples were tested by a two-tailed Student’s t-test. Statistical analyses were 

performed with SAS version 9.3 (SAS Institute, Inc.), and a nominal P-value 0.05 was 

considered a significance threshold. 

Functional characterisation 

Functional annotation, classification and clustering of selected gene sets were carried out 

by DAVID TOOLS 6.7 (Huang et al., 2008) using Biological Processes and Molecular 

Function Gene Ontology categories and KEGG pathways. A threshold for significance of P < 

0.01 and P < 0.05 after Benjamini correction was considered for the selection of the 

functional categories, respectively, in the characterisation of the most expressed 

transcripts and for the selection of the functional categories of DEGs. 

3.2.1 RESULTS 

Sequencing, reads pre-processing and mapping 

Pairs of samples were run together, after barcoding, on a single lane of an Illumina HiSeq 

2000 apparatus, obtaining a total of 3 917 123 414 raw reads for the 20 considered 

samples, with an average of 195 856 171 raw reads per sample (Table S2; GEO accession 

GSE68007). After trimming and length filtering, the number of clean reads per sample was 

on average 113 934 264 (58.04%) and was used for read-to-genome mapping (Figure 

16a). On average, 91.07% of the mapped reads aligned on a single genome locus (uniquely 

mapped reads) (Table S2). On average, 72.42% of the uniquely mapped reads (n = 

72219306.45) aligned to annotated exons, 19.15% mapped to intergenic regions and 
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8.43% mapped to introns of annotated genes. The deep sequencing allowed for the 

identification of genes expressed at low levels and relatively rare alternatively spliced 

transcripts. We observed splicing events in 21.19% of the reads on average, providing 

useful information for the reconstruction of alternative transcript isoforms (Figure 16b). 

Figure 16. Read processing and alignment results. (A) The boxplots show the distribution of 
the reads considered in different steps and filters of the computational analysis pipeline, in 
the 20 considered samples. From left to right we show the number of raw reads sequenced, 
of clean reads resulted from the filtering steps, of reads successfully mapped to the 
reference genome, and of reads with unique alignment in the genome. (B) From the left, the 
bars show the average amounts, in the 20 considered samples, of reads spliced, aligned to 
an exon, to an intron, to intergenic regions (according to the Sus scrofa 10.2 genome 
annotation), or spanning exon-intron borders. Different colors indicate the proportion of 
read aligning to chromosomes (blue), genome scaffolds (red) or mitochondrial genome 
(yellow). (C) Number of expressed genes detected in different chromosomes, in 
mitochondrial genome (Mt) or in genome scaffolds (S).  
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Transcripts and genes expressed in backfat samples 

The deep sequencing analysis of backfat transcripts performed on the two groups of pigs 

divergent for fat deposition in this tissue allowed the detection of 63 418 transcripts. 

Many of them have not yet been annotated in the porcine genome, thus providing new 

consistent resources for pig genome annotation and studies of adipose tissue biology. We 

identified the expression of genes on all porcine autosomes, sex chromosomes and 

mitochondrial genome. Chromosome 1 had the largest number of expressed genes 

(8.23%), followed by chromosomes 6 (7.84%) and 2 (7.25%). Furthermore, a non-

negligible part (12.48%) of the expressed genes was located in genomic scaffolds (Figure 

16c), as about 7.5% of the genome has no assigned location yet, as described in the 

Ensembl annotation of the pig genome (at the time of the analysis, database version 78; 

http://www.ensembl.org/Sus_scrofa/Location/Genome). In terms of genes, we identified 

23 483 expressed pig genes: 12 707 known and 10 776 putative new genes. 

Transcripts were split into different classes according to how they matched with the 

genome annotations (Figure 18a, Table S3). Transcripts exactly matching the reference 

annotation were indicated as ‘known’ transcripts; annotated transcripts’ new isoforms or 

those overlapping with an annotated transcript were indicated as ‘novel’ isoforms; and all 

other transcripts, such as those expressed from extragenic regions, were referred to as 

‘new’ transcripts and might represent putative new genes. The majority of expressed 

Figure 17. Alignment of the four detected isoforms of PLIN2 gene (red box) with the porcine and 
vertebrates transcripts present in Ensembl.  
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transcripts were novel isoforms (35 030; 55.2%) or known transcripts (12 969; 20.5%) 

that are prevalently annotated as protein coding (12 883; 99.3%); 15 419 (24.3%) were 

expressed new transcripts. 

Transcript lengths ranged from 200 to 50 610 nt, with median and average values of 3224 

and 3979 respectively. The average size exceeded the 2-kb mean pig transcript size that 

can be estimated according to Ensembl pig coding transcript annotations. We observed 

that the novel isoforms reconstructed were longer than ‘known’ pig transcripts (Figure 

18b). Sequences longer than 5 kb comprised 25% of the expressed transcripts. Of note, we 

detected two transcripts overlapping the ZBTB16 gene and two new transcripts from 

chromosome 16 that were longer than 40 kb. 

Considering transcript expression, we observed that new transcripts were less expressed 

in fat tissue than were known transcripts (Figure 18c). Nevertheless, all three transcript 

categories spanned a considerably large range of expression values.  

The majority of the expressed genes (12 138; 52%) presented only one transcript isoform 

expressed in fat tissue (Figure 18d); 27.0% and 18.3% of the genes presented two and 

three expressed isoforms, respectively, whereas the remaining 12.7% of the genes were 

each associated with four to 31 different isoforms. We identified 31 isoforms for the gene 

MAP4K4, for which a complex expression pattern is reported in humans: Ensembl release 

79 lists 20 MAP4K4 transcripts, generated by at least three different promoters by 

complex alternative splicing and by polyadenylation patterns, whereas five protein 

isoforms are reported in UniProt release 2015_3. 

Regarding isoform types, as shown in Figure 18e many genes expressing only one 

transcript (first bar from the left) in fat tissue were putative new genes (green portion). 

Interestingly, some genes expressing only one transcript in fat tissue were represented 

only by a novel isoform (first bar, red shading). The proportion of novel isoforms (red 

portion) increased along with the number of expressed transcripts per gene. Moreover, 

the transcript classes showing exonic overlap compared to a reference transcript were 

found in genes with a varying number of transcripts and were particularly abundant in 

genes with up to three isoforms. The remaining transcript classes were very rare. 

Interesting new isoforms derived from the known gene perilipin 2 (PLIN2; also known as 

ADFP, adipofilin), an important gene for fat metabolism in pigs (Davoli et al. 2010; 

Gandolfi et al. 2011) whose expression in humans correlates positively with cytosolic 

triacylglycerol levels (Conte et al. 2013). Only one transcript for pig PLIN2 is currently 

annotated in Ensembl (ENSSSCT00000005701), whereas according to our results, PLIN2 
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is expressed four different isoforms. The most expressed PLIN2 transcript (expressed two 

times more in FAT than in LEAN pigs) was a non-annotated isoform (TCONS_00002441 in 

Table 5; 2441DE in Figure 17) and was characterized by the skipping of the fourth exon. 

The same transcript also has a shorter 30 sequence with respect to the canonical 

PLIN2/ADFP form, probably due to the use of an alternative polyadenylation site. 

Importantly, the skipping of the 83-nt-long exon four introduces a downstream shift in the 

reading frame and a premature stop codon. Thus, this transcript encodes a truncated 

Figure 18. Transcripts and isoforms classification. (A) Expressed transcript we re classified, 
according to current gene annotations, into 8 types, reported with different colors (see legend) 
and grouped in three categories: K (known) collects transcripts found in reference annotation 
(yellow); I (isoform) collects alternative forms of transcripts (red shades); N collects new 
transcripts from not-annotated loci (green shades). The pie chart shows the number of transcripts 
detected, for each type, and their mutual proportions. Three transcript types of the N group have 
few elements (43 intronic; 5 possible polymerase run-on fragments; 3 transcript intron overlap a 
reference intron on the opposite strand) and are barely visible in the chart. (B) Transcript length 
distributions in the three categories. (C) Transcript expression level distr ibution for the three 
categories. (D) Number of genes (vertical axis) with their number of transcript isoforms detected 
(horizontal axis). Genes with only one transcript isoforms detected are the most frequent; 
however, genes with up to 31 different isoforms were detected. (E) The proportion of each 
transcript type for the transcript isoforms grouped as in (D). Genes with only one isoform (first 
bar) are mainly intergenic genes (green part). For genes having more than one isoform expressed, 
the proportion of novel isoforms detected increases along with the number of different isoforms 
for a gene (red part). 
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protein (only 80 amino acids) corresponding to the N-terminal region and of the perilipin 

domain of the annotated PLIN2 protein isoform (463 amino acids). The other two new 

transcripts differ from the annotated isoform, one by the skipping of exon 2 and the other 

with a longer first exon, probably due to alternative transcription start site usage by 

different promoters. The four expressed isoforms are also heterogeneous in the length of 

their 30-UTR regions. 

Coding and non-coding transcripts from new genes 

We obtained a characterization of intergenic transcripts from new genes first, both by 

similarity, comparing them against human transcripts, and by predicting their coding 

potential. New pig transcripts with an assigned human best hit numbered 10 020 (65%), 

expressed by 7099 genes (66%) and corresponding to 4633 human Refseq sequences 

(3882 unique gene symbols; Table S4).  

We considered 12 702 intergenic transcripts for protein-coding potential analysis. For 

each transcript, the coding potential of both the forward and the reverse complement 

sequences was evaluated. According to CPC results, we classified 35.8% (n = 4551) of 

transcripts as coding and 64.2% (n = 8151) as non-coding. Following Zhou et al. (2014), 

we considered proper non-coding only those transcripts classified as non-coding and 

having a CPC score lower than -1 for both the forward and the reverse sequences. A 

portion of the non-coding transcripts (37.5%) resulted with a CPC score <-1 for both the 

forward and the reverse complement sequences. We referred to these transcripts as a 

‘reliable non-coding’ class, which represented 24% (n = 3,056) of the intergenic 

transcripts (Figure 19a). We observed that intergenic coding transcripts were on average 

longer than intergenic non-coding transcripts (4149 and 3083 nt respectively) and that 

the reliable non-coding fraction had an even shorter average length (2571 nt; Figure 19b 

and Table S5). Reportedly, non-coding transcripts tend to be shorter and to have fewer 

exons than do coding transcripts in mammalian genomes (Iyer et al. 2015).  

Coding transcripts had an average expression in fat tissue higher than did the non-coding 

transcripts (5.32 vs. 2.28 FPKM, respectively, and 3.23 FPKM for the reliable non-coding 

group; Figure 19c). One reliable non-coding transcript was ranked within the 100 most 

expressed transcripts detected in backfat tissue; 15 reliable non-coding transcripts were 

within the 1000 most expressed transcripts; and 98 were within the 10% most expressed 

transcripts (Table S6). In agreement with previous results showing that coding transcripts 

tend to present higher expression than do non-coding ones (Cabili et al., 2011; Iyer et al., 

2015), we observed that intergenic transcripts ranking in the 10% most expressed in 

backfat tissue were enriched in the coding category (55%) and particularly if compared 
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with the proportion of the coding category within the set of intergenic transcripts (35.8%; 

Figure 19d, green portions). 

Function of most expressed transcripts 

A global view of the transcription profile of porcine backfat tissue was obtained by 

averaging the FPKM values of all 20 analyzed samples. The 1411 most expressed 

transcripts, together accounting for 75% of expression, were chosen to extract the most 

expressed genes (Table S6). Among these genes, 59 were indicated as reliable non-coding 

(CPC score <1) and 66 showing a positive CPC score were indicated as putative coding.  

According to DAVID functional annotation and clustering, we characterized the biological 

processes (Table S7) associated with the most expressed genes. Results showed ribosomal 

activity, oxidative phosphorylation, protein metabolic processes, intracellular protein 

transport, regulation of translation initiation, fatty acid metabolism, and response to 

oxidative stress to be the biological processes more represented in subcutaneous adipose 

tissue of the analyzed samples. 

Figure 19. Coding potential of new 
intergenic transcripts. According to 
CPC scores, calculated both for the 
forward and for the reverse 
complement sequence, the 
intergenic transcripts were 
classified as “coding”, “non-coding” 
and “reliable non-coding”. (A) The 
pie chart shows numbers and 
proportions of intergenic 
transcripts falling in each category 
and provides the color code for the 
figure panels. (B) and (C) show 
respectively the distribution of 
lengths and of expression levels of 
intergenic transcripts, binned in 
the three categories. (D) 
Percentages of transcripts per 
category are compared, considering 
all the intergenic transcripts and 
the subset of the intergenic 
transcripts ranked within the 10% 
most expressed transcripts 
considering the whole 
transcriptome. 
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Gene/transcript differential expression 

Unsupervised analysis of gene expression profiles was carried out to inspect similarities 

among the samples. Principal components analysis revealed a clear separation of the 

LEAN and FAT samples according to the first two most informative components (Figure 

20a), which, notably, did not separate the samples by sex (Figure 20b).  

Average gene expression values for FAT and LEAN groups were 32.46 and 33.63 FPKM. In 

both groups, few highly expressed genes contributed to the majority of the cumulative 

expression. For instance, roughly 25% of expressed genes (5908 and 5728 in FAT and 

LEAN respectively) constituted 95% of the total detected expression (Figure 22). As 

expected, transcript expression distribution was similar to the gene expression 

distribution, being positively skewed with a mean and median of 11.84 and 0.64 FPKM 

respectively. The transcripts’ average expression values were lower than were the genes’ 

expression values because the latter was computed as the sum of transcript expression of 

each gene.  

To identify a set of robust DEGs and DETs, 

the transcription profiles of FAT and LEAN 

samples were compared with the 

integration of two methods applied at the 

gene and transcript levels. CUFFDIFF2 

identified 414 DEGs between the FAT and 

LEAN groups, corresponding to 1187 

transcripts: 266 DEGs were more highly 

expressed and 148 DEGs were expressed 

less in FAT samples. Fold changes in the 

base two logarithmic scale of DEGs ranged 

from 0.46 to 8.95 for the more highly 

expressed genes, and from -6.19 to -0.47 for 

the lower expressed ones (Table S8). 

DESEQ2 identified 586 DEGs (185 in 

common with the DEGs identified by 

CUFFDIFF2) corresponding to 1504 

transcripts: 358 genes were up-regulated 

and 228 genes were less expressed in FAT 

samples. DEGs base two logarithmic scale 

transformed fold changes (Log2 FC) ranged 

from -1.13 to -0.20 for the lower expressed 
Figure 20. Principal components analysis (PCA) 
based on gene expression profiles.  
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genes and from 0.21 to 1.18 for the more highly expressed genes (Table S9). CUFFDIFF2 

differential expression analysis at the transcript-level identified 154 DETs (corresponding 

to 153 genes): 48 had a lower expression level and 106 transcripts were more highly 

expressed in FAT samples, with the Log2 FC ranging from -3.44 to -0.54 and from 0.64 to 

3.66, respectively (Table S10). On 

the whole, 818 genes were detected 

as being DE, or associated with at 

least one DET, according to at least 

one method (Figure 21a).  

The overlapping of the different lists 

Figure 22. Cumulative gene expression in FAT and LEAN groups. 

Figure 21. Differentially expressed 
genes and transcripts identified. (a) 
Intersection of genes differentially 
expressed (DE) according to DESEQ2 
and CUFFDIFF2 analysis, and genes with 
at least one transcript DE according to 
the transcript-level CUFFDIFF2 analysis. 
We focused on the transcripts belonging 
to the 85 genes identifiers commonly 
identified by all the methods, which 
corresponded to 78 gene symbols (b) 
Proportions of the new and known DE 
transcripts resulting in higher and 
lower expression in FAT vs. LEAN 
samples. (c) Number of DE genes 
mapping to chromosomes or to genome 
scaffolds (S). 
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of DEGs and DETs evidenced a group of 86 DETs that were identified by all the 

approaches, from now on referred to as ‘common DETs’ or cDETs. These DETs belonged to 

78 DEGs, from now on referred to as ‘common DEGs’ or cDEGs, given that five genes were 

represented by more than one isoform (Table 5).  

Table 5. List of the DE genes and transcripts. 

Cufflinks transcript 
ID 

Cufflinks gene 
ID 

Gene locus 
Gene 

symbol 

Cuffdiff2 
gene 

log2(FAT/
LEAN) 

Transcript 
group 

Coding 
potential 

TCONS_00102010 XLOC_040987 
JH118612.1:113132-

140205 
DSC2 2.55 Known - 

TCONS_00061823 XLOC_023331 
4:78928264-

78930654 
- 2.46 New 

NON 
CODING 

TCONS_00033774 XLOC_013001 
15:140797584-

140847461 
NYAP2 2.38 New CODING 

TCONS_00061359 XLOC_023211 
4:35670339-

35685878 
DCSTAMP 2.23 

Novel 
isoform 

CODING 

TCONS_00095554 XLOC_036823 
GL893451.1:11131-

27485 
CRLF2 2.21 Known - 

TCONS_00093244 XLOC_035190 
9:50996895-

51001264 
- 2.17 New 

NON 
CODING 

TCONS_00087029 XLOC_032796 
8:140307937-

140315415 
SPP1 2.09 Known - 

TCONS_00003007 XLOC_000806 
1:283547172-

283552108 
- 2.07 New CODING 

TCONS_00095549 XLOC_036822 
GL893451.1:7060-

10625 
- 2.03 New 

NON 
CODING 

TCONS_00067029 XLOC_025404 
5:36179189-

36186325 
LYZ 2.03 Known - 

TCONS_00042581 XLOC_016514 18:6731368-6733669 GIMAP2 1.98 Known - 

TCONS_00061600 XLOC_023265 
4:55660234-

55715444 
ATP6V0D2 1.96 

Novel 
isoform 

CODING 

TCONS_00039556 XLOC_015432 
17:53815353-

53827092 
MMP9 1.92 Known - 

TCONS_00039900 XLOC_015518 17:4110395-4192029 MSR1 1.92 Known - 

TCONS_00061643 XLOC_023283 
4:62172539-

62226917 
STMN2 1.85 Known - 

TCONS_00034645 XLOC_013236 
15:62409564-

62414328 
- 1.84 New 

RELIABLE 
NON 

CODING 

TCONS_00091509 XLOC_034399 
9:63158999-

63198155 
ST14 1.79 

Novel 
isoform 

CODING 

TCONS_00098750 XLOC_038994 GL895411.1:0-1073 INHBB 1.65 New CODING 

TCONS_00022322 XLOC_008474 
13:32323641-

32330286 
CCR1 1.63 Known - 

TCONS_00044383 XLOC_017319 
2:11807281-

11850646 
MPEG1 1.63 Known - 

TCONS_00075056 XLOC_028007 
6:70039585-

70099223 
PADI2 1.6 Known - 

TCONS_00095875 XLOC_037025 GL893645.1:0-307 - 1.57 New 
RELIABLE 

NON 
CODING 

TCONS_00084869 XLOC_032187 
8:71288921-

71302169 
AMBN 1.56 Known - 

TCONS_00033691 XLOC_012975 
15:133452328-

133456736 
SLC11A1 1.56 Known - 

TCONS_00089513 XLOC_033895 
9:90266412-

90348498 
SCIN 1.55 Known - 

TCONS_00042660 XLOC_016535 18:8306789-8313120 - 1.52 New CODING 
TCONS_00059834 XLOC_022860 4:99905518- CD1A 1.52 Novel CODING 
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Cufflinks transcript 
ID 

Cufflinks gene 
ID 

Gene locus 
Gene 

symbol 

Cuffdiff2 
gene 

log2(FAT/
LEAN) 

Transcript 
group 

Coding 
potential 

99915176 isoform 

TCONS_00059837 XLOC_022860 
4:99905518-

99915176 
CD1A 1.52 Known - 

TCONS_00093519 XLOC_035465 
9:101443296-

101443885 
GPNMB 1.46 New 

NON 
CODING 

TCONS_00098157 XLOC_038614 GL894967.1:126-517 GPNMB 1.42 New CODING 

TCONS_00018804 XLOC_007247 
12:23439824-

23441829 
- 1.4 New CODING 

TCONS_00103084 XLOC_041497 
X:37303173-

37393818 
CYBB 1.38 Known - 

TCONS_00065337 XLOC_024931 
5:52504178-

52625145 
BCAT1 1.37 

Novel 
isoform 

CODING 

TCONS_00098113 XLOC_038589 GL894923.1:47-563 GPNMB 1.36 New CODING 

TCONS_00002441 XLOC_000664 
1:227333991-

227356844 
PLIN2 1.32 

Novel 
isoform 

CODING 

TCONS_00044392 XLOC_017322 
2:12191483-

12243400 
LPXN 1.31 Known - 

TCONS_00084565 XLOC_032101 
8:33970571-

33982450 
UCHL1 1.27 

Novel 
isoform 

CODING 

TCONS_00067389 XLOC_025495 
5:64579162-

64590512 
OLR1 1.26 Known - 

TCONS_00059747 XLOC_022835 
4:97720982-

97736619 
CD48 1.25 Known - 

TCONS_00028769 XLOC_011055 
14:143745489-

143752509 
GMFG 1.23 Known - 

TCONS_00029056 XLOC_011139 14:8804077-8816800 STC1 1.23 
Novel 

isoform 
CODING 

TCONS_00098643 XLOC_038938 
GL895339.1:13269-

61205 
COTL1 1.15 Known - 

TCONS_00100592 XLOC_040068 
GL896326.1:1999-

3913 
ACP5 1.13 Known - 

TCONS_00096837 XLOC_037668 GL894123.1:0-400 CD163 1.13 New CODING 
TCONS_00097297 XLOC_037990 GL894401.1:0-471 CD163 1.13 New CODING 

TCONS_00005002 XLOC_001331 
1:125897935-

125953413 
AQP9 1.09 Known - 

TCONS_00096863 XLOC_037686 GL894145.1:0-401 CD163 1.09 New CODING 

TCONS_00071337 XLOC_027094 
6:74616232-

74621248 
C1QC 1.08 Known - 

TCONS_00012469 XLOC_005058 
11:21534980-

21685851 
LCP1 1.07 

Novel 
isoform 

CODING 

TCONS_00079920 XLOC_030238 
7:94900207-

94906867 

AKAP5, 
LOC10015

3460 
1.06 

Novel 
isoform 

CODING 

TCONS_00041537 XLOC_016257 18:6613761-6621027 GIMAP4 1.06 Known - 

TCONS_00097908 XLOC_038444 
GL894747.1:3047-

10617 
HMOX1 1.06 

Novel 
isoform 

CODING 

TCONS_00030401 XLOC_011444 
14:71516962-

71521335 
EGR2 1.05 Known - 

TCONS_00030878 XLOC_011579 
14:117265093-

117349965 
BLNK 1.04 Known - 

TCONS_00056578 XLOC_021190 
3:77408776-

77439119 
PLEK 1.04 Known - 

TCONS_00071335 XLOC_027093 
6:74609911-

74612993 
C1QA 1.02 Known - 

TCONS_00081915 XLOC_030757 
7:54395230-

54406136 
BCL2A1 1.01 Known - 

TCONS_00041554 XLOC_016261 18:6872940-6875292 GIMAP1 1 Known - 

TCONS_00085005 XLOC_032236 
8:79743274-

79751980 
SFRP2 0.99 Known - 

TCONS_00098919 XLOC_039115 GL895590.1:0-1327 GPNMB 0.91 New NON 
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Cufflinks transcript 
ID 

Cufflinks gene 
ID 

Gene locus 
Gene 

symbol 

Cuffdiff2 
gene 

log2(FAT/
LEAN) 

Transcript 
group 

Coding 
potential 

CODING 

TCONS_00068526 XLOC_026077 
5:52625315-

52630242 
BCAT1 0.89 New 

RELIABLE 
NON 

CODING 

TCONS_00062055 XLOC_023401 
4:97099149-

97103132 
FCER1G 0.87 Known - 

TCONS_00009719 XLOC_003695 
10:48841010-

48961015 
MRC1 0.86 

Novel 
isoform 

CODING 

TCONS_00030894 XLOC_011584 
14:117670639-

117938624 
PIK3AP1 0.85 Known - 

TCONS_00017526 XLOC_006800 
12:36561025-

36604089 
CLTC 0.8 

Novel 
isoform 

CODING 

TCONS_00062959 XLOC_023614 
4:119674090-

119703427 
CD53 0.78 Known - 

TCONS_00081898 XLOC_030753 
7:53623061-

53644262 
CTSH 0.78 Known - 

TCONS_00060570 XLOC_023035 
4:119013307-

119039899 
ADORA3 0.74 Known - 

TCONS_00052401 XLOC_020144 
3:11035819-

11055510 
LAT2 0.71 Known - 

TCONS_00004118 XLOC_001095 
1:35133812-

35137388 
CTGF 0.68 Known - 

TCONS_00045043 XLOC_017499 
2:59214054-

59218018 
IFI30 0.65 Known - 

TCONS_00004124 XLOC_001096 
1:35240242-

35281384 
ENPP1 0.62 Known - 

TCONS_00062884 XLOC_023592 
4:116704501-

116707235 
OLFML3 -0.54 Known - 

TCONS_00035484 XLOC_013426 
15:131680309-

131684630 
IGFBP5 -0.65 Known - 

TCONS_00101718 XLOC_040809 
JH118426.1:306724-

312138 
- -0.77 New 

RELIABLE 
NON 

CODING 

TCONS_00063805 XLOC_024145 
4:77261119-

77264781 
- -0.77 New 

NON 
CODING 

TCONS_00050164 XLOC_018733 
2:124815021-

124828122 
CDO1 -0.9 

Novel 
isoform 

CODING 

TCONS_00101559 XLOC_040715 GL896532.1:212-2567 ADSSL1 -1.02 New 
NON 

CODING 

TCONS_00079927 XLOC_030240 
7:94987617-

94990126 
HSPA2 -1.1 Known - 

TCONS_00083805 XLOC_031620 
7:66542203-

66555641 
- -1.18 New CODING 

TCONS_00041725 XLOC_016313 
18:15292592-

15295178 
- -1.61 New CODING 

TCONS_00048853 XLOC_018425 
2:65175406-

65180520 
DNAJB1 -1.66 

Novel 
isoform 

CODING 

TCONS_00029533 XLOC_011248 
14:35688332-

35701411 
HSPB8 -1.81 Known - 

TCONS_00094194 XLOC_036009 GL892492.1:0-3540 HSPA1B -2.32 New 
NON 

CODING 

TCONS_00101505 XLOC_040677 
GL896522.1:9039-

10877 
HSPA1A -2.57 New 

RELIABLE 
NON 

CODING 

TCONS_00098059 XLOC_038555 GL894890.1:5-696 HSP70 -3.44 New 
NON 

CODING 
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The cDETs present the same fold change sign of the corresponding cDEG (Figure 21b): 72 

DETs were more highly expressed in FAT (max CUFFDIFF2 gene-level Log2 FC = 2.55 for 

the DSC2 gene) and 14 DETs had lower expression levels in FAT (minimum Log2 FC = -

3.44 for an intergenic gene located in the GL894890.1 scaffold). Among the 86 cDETs, 44 

were known transcripts, 16 were novel isoforms and 26 came from intergenic regions.  

The cDEGs were found on all chromosomes except for chromosomes 16 and Y, with up to 

11 DEGs on chromosome 4 and 19 DEGs in scaffolds (Figure 21c). The most expressed 

(average FPKM >100) known cDEGs, reported in decreasing FPKM order, were DNAJB1, 

CTSH, CTGF, C1QC, SPP1 and CDO1. 

Coding and non-coding intergenic DET 

We considered the 41 novel isoforms or new transcript cDETs for CPC analysis. In 14 of 

these transcripts, both the forward and reverse sequences were probably non-coding, 

according to integrated ORF analyses, similarity searches and CPC score thresholds used 

before. Five cDETs with CPC scores < 1 were scored as reliable non-coding. Of the 

remaining transcripts, nine presented low coding potential both in the forward and 

reverse complement sequences but with CPC scores ranging from -1 to 0 (non-coding), 

and 27 were classified as coding transcripts (Table S11). 

qPCR confirmation of DE for selected genes 

To validate the results obtained by RNA-seq, 11 cDEGs were chosen according to the 

absolute value of the Log2 FC between FAT and LEAN pigs or for their functional role and 

involvement in relevant pathways. As reported in Figure 23, the DE of all selected genes 

was validated, with high correlation between the fold changes obtained by RNA-seq and 

by qPCR data. 

Figure 23. qPCR validation of 11 genes differentially expressed according to RNA -seq data. (a) 
Log2 FC values obtained from RNA-seq, according to CUFFDIFF2 estimates (black bars), and 
from qPCR data (grey bars), for the 11 tested genes; (b) scatterplot showing the good 
correlation between the Log2 FC values calculated with the two experimental methods.  
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Differentially expressed transcript characterization 

We characterized the cDEGs in terms of their functional role in adipose tissue. Using 

DAVID Bioinformatics Resources, we first identified the functional categories enriched in 

genes differentially regulated between FAT and LEAN groups.  

The Biological Process categories enriched in more highly expressed DEGs were response 

to stimulus, immune system process and cell activation, and skeletal system development 

(Table 6). DAVID clustering of the few lower expressed genes detected (ADSSL1, CDO1, 

DNAJB1, HSPA1A, HSPA1B, HSPA2, HSPB8, IGFBP5, OLFML3) allowed for the 

identification of the functional categories unfolded protein binding and stress response 

represented by five heat shock protein genes that are involved in protein stabilization 

after cellular stress. Apart from the Gene Ontology-based functional characterization of the 

whole subsets of more highly and lower expressed genes, we considered cDEG function 

and involvement in specific pathways, according to literature and knowledge bases. 

Several more highly expressed genes in FAT animals (ACP5, BCL2A1, CD1A, EGR2, ENPP1, 

GPNMB, INHBB, LYZ, MSR1, OLR1, PIK3AP1, PLIN2, SPP1, STC1) were characterized by a 

metabolic function related mainly to adipocyte growth regulation, whereas others (CCR1, 

CD163, SLC11A1) are known to be involved in immune defense of the organism. 

Table 6. Table 3 - David functional annotation clustering obtained considering the significant 
Biological Processes GO terms (Benjamini adjusted P-values <0.05) of genes more expressed in 
FAT than in LEAN animals.  

Annotation Cluster 1 Enrichment Score: 7.0 

Term Count Genes 

GO:0006954~inflammatory 
response 

12 
C1QA, SLC11A1, CYBB, ADORA3, OLR1, HMOX1, CCR1, LYZ, C1QC, 

BLNK, CD163, SPP1 

GO:0006952~defense response 15 
ADORA3, OLR1, CCR1, LYZ, COTL1, C1QC, CD163, INHBB, CD48, C1QA, 

SLC11A1, CYBB, HMOX1, SPP1, BLNK 

GO:0009611~response to 
wounding 

14 
ADORA3, PLEK, OLR1, CCR1, LYZ, C1QC, CD163, C1QA, SLC11A1, 

CYBB, CTGF, HMOX1, SPP1, BLNK 

GO:0009605~response to external 
stimulus 

17 
ADORA3, PLEK, OLR1, CCR1, LYZ, C1QC, CD163, INHBB, C1QA, 

SLC11A1, CYBB, CTGF, SFRP2, HMOX1, STC1, SPP1, BLNK 

GO:0050896~response to stimulus 29 
ADORA3, AQP9, ENPP1, CCR1, UCHL1, ACP5, C1QC, CD48, SLC11A1, 
PLIN2, CTGF, HMOX1, FCER1G, BLNK, SPP1, EGR2, OLR1, PLEK, LYZ, 
CD1A, COTL1, CD163, INHBB, C1QA, CYBB, LAT2, SFRP2, STC1, LCP1 

GO:0006950~response to stress 19 
ADORA3, AQP9, PLEK, OLR1, CCR1, UCHL1, LYZ, COTL1, C1QC, CD163, 

INHBB, CD48, C1QA, SLC11A1, CYBB, CTGF, HMOX1, SPP1, BLNK 

Annotation Cluster 2 Enrichment Score: 2.7 

Term Count Genes 

GO:0001775~cell activation 7 CD48, SLC11A1, LAT2, PLEK, LCP1, BLNK, GIMAP1 

GO:0002274~myeloid leukocyte 
activation 

4 CD48, SLC11A1, LAT2, GIMAP1 

GO:0046649~lymphocyte 
activation 

6 CD48, SLC11A1, LAT2, LCP1, BLNK, GIMAP1 
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Annotation Cluster 1 Enrichment Score: 7.0 

Annotation Cluster 3 Enrichment Score: 2.4 

Term Count Genes 

GO:0048583~regulation of 
response to stimulus 

10 
C1QA, SLC11A1, LAT2, PLEK, ENPP1, HMOX1, FCER1G, C1QC, SPP1, 

GIMAP1 

GO:0050776~regulation of immune 
response 

7 C1QA, SLC11A1, LAT2, HMOX1, FCER1G, C1QC, GIMAP1 

GO:0050778~positive regulation of 
immune response 

6 C1QA, SLC11A1, LAT2, FCER1G, C1QC, GIMAP1 

GO:0002443~leukocyte mediated 
immunity 

5 C1QA, SLC11A1, LAT2, FCER1G, C1QC 

GO:0002682~regulation of immune 
system process 

8 C1QA, SLC11A1, LAT2, HMOX1, SCIN, FCER1G, C1QC, GIMAP1 

Annotation Cluster 4 Enrichment Score: 2.0 

Term Count Genes 

GO:0060348~bone development 6 AMBN, CTGF, ACP5, STC1, GPNMB, SPP1 

GO:0031214~biomineral formation 4 AMBN, ENPP1, GPNMB, SPP1 

GO:0001503~ossification 5 AMBN, CTGF, STC1, GPNMB, SPP1 

GO:0001501~skeletal system 
development 

7 AMBN, CTGF, MMP9, ACP5, STC1, GPNMB, SPP1 

Annotation Cluster 5 Enrichment Score: 1.6 

Term Count Genes 

GO:0001775~cell activation 7 CD48, SLC11A1, LAT2, PLEK, LCP1, BLNK, GIMAP1 

 

3.2.1 DISCUSSION 

Transcriptome data highlight the adipose tissue complexity  

The deep sequencing analysis of the pig backfat transcriptome allowed for finding 

thousands of expressed genes and transcripts. In the present study, we applied stringent 

cleaning and filtering procedures of the sequencing data and, on average, 90 million reads 

per sample were mapped, obtaining a higher sequencing depth compared to previous 

studies (Chen et al., 2011; Jiang et al., 2013; Sodhi et al., 2014; Wang et al., 2013b).  

The adipose tissue is not only metabolically and transcriptionally active but also has been 

recognised as an important endocrine organ (Kershaw and Flier, 2004; Trayhurn, 2005). 

Adipocytes are a dynamic and highly regulated population of cells (Moreno-Navarrete and 

Fernández-Real, 2012; Rosen and MacDougald, 2006). Our results agree with these data 

supporting the characterisation of the adipocytes as highly specialised endocrine cells that 

can play key roles in various physiological processes. The multifunctionality and 

complexity of the tissue is witnessed also by the high number of transcripts (more than 60 

000) found in the present study, including many new transcripts from previously non-

annotated loci in the porcine genome. The majority of the reconstructed sequences are 

novel isoforms of already known genes that express more than two different transcripts 



 

72 

 

each. Similar patterns are observed in human cells (Djebali et al., 2012), and the high 

quality of the sequenced reads used in our analysis supports the idea that this is more 

attributable to an incomplete annotation of the transcript isoforms expressed in pig 

backfat than to transcript reconstruction artefacts. In our analysis for almast half of the 

expressed genes different isoforms have been found for the same locus.  The detected 

splicing variants may contribute to improve knowledge about the porcine transcriptome 

and to refine the current swine genome annotation. The new PLIN2 isoforms reported 

above are an interesting example, especially if compared to the human genome where at 

least eight PLIN2 transcript isoforms are annotated and only four of them are coding. 

Remarkably, three human PLIN2 isoforms encode N-terminal truncated amino acid chains 

that are similar to the truncated isoform we reconstructed in our study and whose 

function has not yet been elucidated. Furthermore, Russell et al. (2008) identified in a 

PLIN2-deficient mouse cell line the expression of a PLIN2 C-terminal truncated protein 

that may partially replace the function of the full-length protein. Additional studies are 

needed to understand if and how the short transcript we found to be differentially 

expressed could change the gene functions compared to the wild-type long protein. 

Functional characterization of the adipose tissue expression profile 

The profile of the subcutaneous adipose tissue transcriptome in pigs was delineated, and 

the functional analysis of the genes expressed in backfat tissue was performed to 

understand their metabolic role and to connect them to specific competencies of the 

tissue. We did not find particular differences between the functional categories of the 

genes expressed in the backfat tissue of FAT and LEAN pigs. Furthermore, among the most 

highly expressed genes in the fat tissue, many are involved in metabolic pathways and 

biological processes related to protein metabolism, oxidoreductase activity for ATP 

production, regulation of lipid synthesis and degradation. 

Genes differentially expressed between LEAN and FAT animals converge and connect to 
specific functions 

The detection of DEGs and DETs was obtained by a stringent procedure grounded on the 

integration of different methods for expression estimation, and differential expression 

testing, as conducted in a recent study (Ropka-Molik et al., 2014) focused on muscle tissue 

gene expression in pigs of different breeds. In the present study, which compared pigs of 

the same breed and reared under standard conditions, we detected significant gene 

expression variations. The sensitivity of our approach was supported by the successful 

validation of all 11 DEGs assayed. 
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We analysed the biological functions of genes differentially expressed between FAT and 

LEAN animals (Figure 24). It is interesting to note that the main differences were found for 

functional categories of genes related to inflammation and immunity that were more 

highly expressed in FAT pigs. The genes with lower levels of expression in FAT animals 

include some heat shock protein genes. The biological functions of DEGs show a stronger 

activation in adipose tissue of FAT pigs of important processes involved in hypertrophy 

and adipogenesis, such as differentiation and maturation. Supposedly, these biological 

processes could be altered in adipose tissue of FAT pigs due to dysregulated adipose 

metabolism and endocrinology, similar to what was hypothesised in humans (Sethi, 2010). 

On the whole, there is a consistent difference concerning the biological functions 

characterising the most expressed genes on backfat tissue and those of the genes 

differentially expressed between FAT and LEAN pigs. 

Some genes more highly expressed in FAT animals could modulate backfat physiological 
processes 

Specific DEGs more highly expressed in FAT pigs participate in biochemical pathways 

related to and involved in adipocyte metabolism and adipose tissue physiology. 

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) encodes a catalytic 

enzyme involved in adipocyte maturation (Liang et al., 2007). Pan et al. (2011) showed that 

the over-expression of ENPP1 in a human cell line resulted in adipocyte insulin resistance 

and demonstrated an association with fatty liver, hyperlipidemia and dysglycaemia. 

Accordingly, the study by Chandalia et al. (2012) underlined an increased ENPP1 

expression in adipose tissue associated with defective adipocyte maturation leading to 

pathogenesis of insulin resistance and its associated complications for glucose and lipid 

metabolism in the absence of obesity. In addition, Meyre et al. (2005) reported the 

presence of three ENPP1 SNPs in human genes associated with adult obesity and 

increased risk of glucose intolerance and type 2 diabetes. Furthermore, the genes acid 

phosphatase 5, tartrate resistant (ACP5) and lysozyme (LYZ), which in this research have 

higher transcriptional levels in FAT pigs, have been reported to be involved in excessive 

backfat deposition in pigs and in the development of atherosclerosis (Padilla et al., 2013). 

In the present research, some genes overexpressed in the adipose tissue of FAT pigs, 

namely STC1, EGR2 and INHBB, are related to adipocyte differentiation and adipocyte 

maturation. STC1 (stanniocalcin 1) has been reported in literature to be up-regulated 

during adipogenesis and to modulate steroidogenesis. Serlachius and Andersson (2004) 

related STC1 up-regulation to the set of survival genes in adipocyte differentiation, which 

is also associated with overexpression of the anti-apoptotic protein BCL2 reported to be 



 

74 

 

involved in the inflammation pathway. EGR2 (early growth response 2) is a direct target of 

mir-224-5p, a negative regulator of adipocyte differentiation that is down-regulated 

during the early process of mouse adipocyte differentiation, and the expression of EGR2 is 

increased (Peng et al., 2013). The INHBB (inhibin beta B) gene encodes the activin B 

subunit, which is part of the inhibins/activins family of proteins with cytokine and 

hormone activity. In human and mice, INHBB has been associated with physiological and 

metabolic modifications during adipogenesis when it is highly expressed and is the 

predominant activin in human adipose tissue (Hoggard et al., 2009). INHBB is member of 

TGF-protein superfamily of secreted growth factors involved in many biological responses 

including regulation of apoptosis, proliferation and differentiation of human adipocytes, 

tissue remodelling and inflammatory immune response (Dani, 2013). It can be 

Figure 24. The impact of genes differentially expressed between FAT and LEAN animals on 
specific and connected biological processes. Genes differentially expressed in FAT vs. LEAN pigs 
converge on specific functions that are more activated or impaired in FAT pigs. Genes and 
functions upregulated and downregulated in FAT pigs are shown in red and green respectively. 
Several genes more highly expressed in FAT pigs are linked to fat deposition and lipid 
metabolism, to adipocyte differentiation and maturation or to signalling pathways regulating 
them; FAT pigs also show increased expression of genes involved in inflammation and immunity 
and increased expression of genes involved in the control of complex behaviour, also by 
inflammation-mediated secretory activity of adipocytes. Metabolic alterations induce chronic 
stress in the adipose tissue. FAT pigs show under-expression of several genes involved in stress 
response by unfolded protein binding and misfolded protein aggregation prevention. The 
impairment of these functions might in turn augment inflammation and the consequent secretory 
activity and possibly induce senescence.  
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hypothesised that in FAT pigs the proadipogenic INHBB gene expression increases, as it is 

involved in the differentiation of pre-adipocytes into mature adipocytes and that INHBB is 

involved in many physiological processes including the control of food intake and energy 

metabolism through the regulation of hypothalamic and pituitary hormone secretions. 

Another gene overexpressed in FAT pigs related to feeding and pituitary secretions is 

GPNMB (glycoprotein transmembrane NMB). GPNMB is one of the receptors activated by 

bombesin-like endogenous peptide ligands, such as the gastrin-releasing peptide (GRP), 

neuromedin B (NMB) and neuromedin C (GRP18-27). These receptors are involved in the 

regulation of many biological functions including thermoregulation, feeding, pituitary, 

gastric and pancreatic secretion. The NMB/NMB-R pathway is involved in the regulation of 

a wide variety of behaviours, such as spontaneous activity, feeding and anxiety-related 

behaviour (Yamada et al., 2002).  

The OLR1 [oxidised low-density lipoprotein (lectin-like) receptor 1] gene is more highly 

expressed in FAT pigs compared to LEAN animals. This gene codes for a LDL receptor that 

belongs to the C-type lectin superfamily and is one of many target genes, including 

perilipins, of the PPAR signalling pathway, which is involved specifically in lipid 

metabolism and fatty acid transport. In this way, OLR1 is a receptor that mediates the 

recognition, internalisation and degradation of oxidatively modified low-density 

lipoprotein by vascular endothelial cells. OLR1 removes oxidised low-density lipoproteins 

from the circulation as part of lipid metabolism pathways (Mehta and Li, 2002). 

Genes involved in immunity and inflammation are more highly expressed in FAT animals 

Some other genes overexpressed in FAT pigs are related to immunity. Links between 

inflammation and human obesity as well as metabolic diseases are well-known 

mechanisms based on the recruitment of immune cells into adipose tissue (Kabir et al., 

2014). The development of a pre-inflammatory condition in the presence of dysregulated 

excessive adipogenesis is associated with adipose macrophage infiltration and activation. 

From our study, we can hypothesise a similar process in backfat tissue of FAT pigs, where 

we identified the over-expression of the gene macrophage scavenger receptor 1 (MSR1), 

encoding a membrane glycoprotein that in humans is involved in the pathologic 

deposition of cholesterol in arterial walls during atherogenesis (Haasken et al., 2013). 

Additionally, the overexpression of secreted phosphoprotein 1 (SPP1) in FAT pigs can 

suggest a hypothesis that this gene encodes a protein acting as a pro-inflammatory 

cytokine that promotes monocyte chemotaxis and cell motility and might link, in pigs as in 

mice, fat accumulation to the development of insulin resistance by sustaining 

inflammation and the accumulation of macrophages in adipose tissue (Nomiyama et al., 
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2007). Interestingly, a porcine SPP1 gene polymorphism was associated with backfat 

thickness in a Landrace 9 Jeju (Korea) Black pig F2 population (Han et al., 2012). SPP1 

might play a key role in the pathway that leads to type I immunity enhancing interferon-

gamma and interleukin-12 production and suppressing interleukin-10 (Ashkar et al., 2000). 

Therefore, these data allow hypothesising SPP1 as a gene associated, in pigs as in human, 

with the link between obesity, adipose tissue inflammation and insulin resistance. In 

addition, phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), more highly expressed 

in FAT pigs, is a positive regulator of phosphatidylinositol 3-kinase (PI3K) signalling. The 

PI3K signalling pathway has a key role in the insulin-dependent regulation of adipocyte 

metabolism (glucose and lipid metabolism). In addition, PI3K participates in obesity-

associated inflammatory cell recruitment (neutrophils and macrophages), as well as in the 

CNS-dependent neurohumoral regulation of food intake/energy expenditure (Beretta et 

al., 2015; McCurdy and Klemm, 2013). 

Other genes found in the present research and related to inflammatory conditions of the 

adipose tissue in FAT pigs are particularly interesting to mention: CD163, a member of the 

scavenger receptor cysteine-rich superfamily (Guo et al., 2014; Smith et al., 2014); solute 

carrier family 11 (proton-coupled divalent metal ion transporter), member 1 (SLC11A1), a 

gene involved in resistance to Salmonella infection (Kommadath et al., 2014); chemokine 

(C-C motif) receptor 1 (CCR1), which was previously found to be overexpressed in obese 

pigs (Kogelman et al., 2014); BCL2-related protein A1 (BCL2A1), a gene found to be 

overexpressed in pigs with a high obesity index and that is related to immunity, 

inflammatory pathways and osteoclast differentiation (Kogelman et al., 2014); and CD1a 

molecule (CD1A; indicated as PCD1A in the cited paper), a surface antigen involved in 

immunity that was found to be overexpressed in obese pigs by Kogelman et al. (2014). The 

same authors highlighted a strong connection between fat deposition on the body 

(obesity), immunity and bone development. They also indicated that the CCR1 gene is a 

strong candidate for regulation of immune response as it encodes a receptor of pro-

inflammatory chemokines in adipose tissue, playing a pivotal role in obesity-associated 

diseases (Kabir et al., 2014; Lumeng and Saltiel, 2011). 

Heat shock response, protein folding and repair are impaired in FAT animals 

Considering the 14 genes with lower expression levels in FAT animals, direct relationships 

with lipid metabolism are not apparent. However, the ‘unfolded protein binding’ function 

is enriched among these genes, which include five (DNAJB1, HSPA1A, HSPA1B, HSPA2 and 

HSPB8) encoding functionally linked heat shock proteins. Heat shock proteins are 

involved in stabilisation of existing proteins against aggregation, mediating the folding of 
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newly translated proteins in the cytosol and in organelles, and also in the ubiquitin–

proteasome pathway. DNAJB1, a member of the Hsp40 family, promotes protein folding 

and prevents misfolded protein aggregation, just as HSPB8, a member of the Hsp20 family, 

does (Vicario et al., 2014). DNAJB1 also stimulates the ATPase activity of a protein of the 

Hsp70 family to which other genes with lower expression levels in FAT pigs (HSPA1A, 

HSPA1B and HSPA2) belong, indicating a possible functional link between these four 

genes. Our results suggest a general impairment of the protein folding and repair in the 

fattest animals, in accordance with previous observations of studies carried out on human 

obesity. Obesity is a pathological human condition in which a chronically positive energy 

balance induces in adipocytes, the cells in charge of storing the excess of energy in fat 

depots, a persistent stress activating in turn defence processes such as autophagy or 

apoptosis.  

As reviewed by Newsholme and de Bittencourt (2014), if the heat shock response, a key 

component of the physiological response to resolve inflammation, is hampered in adipose 

tissue, the adipocyte metabolic stress triggers fat cell senescence with reduction of the 

heat shock proteins activity. In this condition, the advance of inflammasome-mediated 

secretory activity from adipose to other tissues promotes cellular senescence in many 

other cells of the organism, aggravating obesity-dependent chronic inflammation. This 

mechanism also could have been activated in the FAT pigs of our experiment (Figure 24) 

due to a genetic aptitude of the fattest animals towards a higher fat deposition and 

adiposity similar to obesity. Indeed, a decrease in the synthesis of the mRNAs of the heat 

shock proteins and an increase in the expression of many genes related to inflammatory 

status and immune response is a characteristic of the fattest pigs. For instance, an increase 

in the expression of INHBB and SPP1 denotes the augmented production of cytokines and 

the higher expression of ENPP1 and PIK3AP1 may indicate a status of insulin resistance, 

one of the typical signals connected with obesity. 

Pig backfat deposition and impaired stress response may activate inflammation 

Our results agree with recent studies showing that several immune system and anti-

inflammatory processes are activated and play a critical role in the response to fat 

accumulation in porcine backfat tissue (Sodhi et al., 2014) and in visceral fat tissue 

(Toedebusch et al., 2014; Wang et al., 2013b). Wang et al. (2013b) and Zhou et al. (2013) used 

three female Landrace pigs to identify DEGs between subcutaneous, visceral and 

intramuscular fat, indicating that visceral and intramuscular adipose tissues are 

associated mainly with inflammatory features of the tissue and immune response. Our 
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data suggest that in backfat a predominant role of immunity processes is related to 

increased adipose tissue deposition as well. 

The results obtained seem to sustain the hypothesis that the high fat accumulation in 

adipose tissue of pigs can determine the development of an inflammatory process 

producing a cascade of defence and adaptive reactions in the tissue, such as activation of 

the immune system and mesenchymal cells differentiation in adipocytes. A deeper 

knowledge of the metabolic processes involved in fat deposition can be very important in 

developing the use of pig as a model species to study obesity and related disorders for 

humans because of their similar anatomy and physiology (Litten-Brown et al., 2010; 

Spurlock and Gabler, 2008; Varga et al., 2010) and considering the above-described 

similarities between pigs and humans.  

To fully elucidate the complex gene network regulating backfat deposition in pigs, it is 

important to extend the basic knowledge by further coding and non-coding transcriptome 

characterisation. Additional information would probably come from studying interactions 

between the differentially expressed long RNAs identified in the present paper and the 

regulatory microRNAs expressed in porcine adipose tissue identified in some of the same 

animals (Gaffo et al., 2014). The results of the present work unlock the opportunity that 

some of the identified DEGs might be used as biomarkers (Ibáñez-Escriche et al., 2014) to 

improve carcass fat traits and to look for SNPs regulating their expression to be included 

in selection schemes to make the pig production chain more sustainable. 
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3.2.2 MIRNOME OF ITALIAN LARGE WHITE PIG SUBCUTANEOUS FAT TISSUE: 
NEW MIRNAS, ISOMIRS AND MORNAS 

In this study, we used RNA-Seq to study the Italian Large White adult pig backfat 

miRNome. Sequencing data were analysed by means of several bioinformatic tools, 

including the miR&moRe computational pipeline described in Bortoluzzi et al. (2012) and 

miRDeep2 (Friedländer et al., 2011). The miRNAs, isomiRs and moRNAs that we identified 

and characterized outline the complex nature of the porcine backfat tissue miRNome. 

3.2.2 MATERIALS AND METHODS 

Sample collection and sequencing  

Small RNA sequencing data from two ILW pig backfat samples were used in this study (see 

chapter “Pig subject selection”). 

Bioinformatics analysis  

Sequencing data were processed by the mir&more software pipeline. mir&more has been 

extended and adapted for its application to swine transcriptomic data. The pipeline work 

flow involves filters on raw sequencing data, assignment of reads to genomic loci by 

mapping to reference sequences, methods for known miRNAs expression quantification 

and isomiRs characterization as well as for miRNA and moRNA discovery. The pipeline is 

structured in three main branches: one is devoted to raw data pre-processing, the other 

two perform respectively the quantification and characterization of known miRNAs and 

the discovery of mature miRNAs in known precursor sequences. Further, we applied 

mirdeep2 to the data for the identification of miRNAs belonging to precursor hairpins that 

are still unknown in pig genome. Finally, we performed a prediction of the transcripts 

targeted by the miRNAs expressed in the tissue and a functional enrichment analysis on 

the target prediction outcome. More details about each step of the bioinformatic analysis 

follow. 

Data pre-processing  

A preliminary quality check of raw data was performed to clean out low quality and 

sample contamination reads to obtain a high-quality set of reads for downstream analysis. 

Raw reads were clipped from their adapter sequences using the FASTX-Toolkit software 

package (http://hannonlab.cshl.edu/fastx_toolkit/index.html), and unclipped reads were 

discarded. Reads with an overall sequence mean Phred quality lower than 30, reads with 

more than two nt (nucleotides) with quality lower than 20 and reads with uncalled bases 
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were also discarded. Furthermore, reads with unique sequence and count <10 were 

considered as ground noise and were removed. Subsequently, reads between 15 and 30 nt 

long were selected by means of a Python script, in which we used the HTSeq package 

(http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html). Read length 

thresholds were chosen according to a survey of the length distribution of all vertebrate 

mature miRNAs reported in miRBase v.19 (Griffiths-Jones et al., 2006, 2008; Griffiths‐Jones, 

2004; Kozomara and Griffiths-Jones, 2013). miRNA lengths resulted ranging from 15 to 28 

nt, with average, median and mode equal to 22 nt. We kept reads up to 30 nt to allow 

identification of possible long isomiRs. 

Mapping  

The selected reads were mapped using Bowtie v.0.12.7 (Langmead et al., 2009). We used 

the Sscrofa9 genome as a reference to identify the reads that mapped to multiple genomic 

loci out of known miRNA precursor sequences. Reads mapping to more than five loci 

outside known miRNA genes were discarded. Moreover, we generated 271 known pig 

miRNA extended hairpin precursors (e-hairpins) as references for further mapping. E-

hairpins are built as the nucleotide sequences of genomic regions including known 

hairpins from miRBase, plus the 30 nt upstream and the 30 nt downstream surrounding 

each annotated hairpin. Reads were mapped to e-hairpins allowing at most two 

mismatches within the 3’ region or at most one mismatch in non-3’ parts of the sequence. 

This approach accounts for the existence of SNPs; alternative miRNA processing; and post-

processing modifications, such as nucleotide addition and editing and tolerates residual 

sequencing errors. 

Known miRNA identification and quantification  

To identify expressed miRNAs and to quantify their level of expression, the positions of the 

mapped reads were compared with the known mature miRNA coordinates in the e-

hairpins. Matched reads were classified as perfectly matching to known miRNA positions 

(‘exact’), perfectly matching to miRNA precursors and exceeding the known miRNA 

boundaries for at most three nt (‘short-long’), ‘1-mismatch’ and ‘2-3’-mismatch’. According 

to Bortoluzzi et al. (2012), we call ‘expressed RNAs elements’ (ERE) the blocks of 

alignments forming a group of subsequent reads, each one having a start position in the 

hairpin within four nt from the starting nucleotide of the previous read. The sum of read 

counts per ERE gives the quantification of the ERE expression level. The expression of 

known miRNAs is inferred from that of the corresponding EREs. 

 



 

81 

 

Sister miRNA discovery  

Only ‘exact’ alignments were allowed for the identification of new miRNAs. At this stage, 

the search was performed exclusively among the precursor hairpins for which at most one 

mature miRNA is annotated. The prediction of a mature miRNA expressed from the 

hairpin strand that is opposite to the annotated miRNA (sister miRNA) was carried out by 

the joint analysis of the ERE position inferred from read mapping and the hairpin folding 

probability computed by the ViennaRNA RnaFold v1.8.5 package (Bompfünewerer et al., 

2008; Hofacker and Stadler, 2006; Hofacker et al., 1994; McCaskill, 1990; Zuker and Stiegler, 

1981). These two parameters were used to predict the most probable hairpin structure 

that defines a miRNA duplex. 

MoRNA discovery 

 Reads that align with no mismatch to the e-hairpin sequence outside the reference miRNA 

positions identify expressed moRNAs, and the number of alignments quantifies the 

moRNA expression. ERE with central nucleotide localized upstream of the region covered 

by the 5’ mature miRNA, or downstream of the region covered by the 3’ mature miRNA, 

were named respectively 5’ moRNAs and 3’ moRNAs. 

Novel miRNAs from new hairpins 

 We applied the miRDeep2 program for the genome wide prediction of new hairpin 

precursors and mature miRNAs expressed in porcine fat tissue. As input to the miRDeep2 

software, we set the Sscrofa9 genome reference and miRNA annotations of Homo sapiens 

and Mus musculus, which are the two mammalian species with the largest sets of 

annotated miRNAs. To allow comparison between miR&moRe and miRDeep2 expression 

estimates, the miRDeep2 read counts were normalized using a rescaling factor computed 

as the proportion of the total amount of read mapped to known miRNAs respectively by 

miRDeep2 and miR&moRe. 

Target prediction and functional enrichment  

To our knowledge, no miRNA-target predictions specific of pig data are available. 

Therefore, we performed a custom target prediction by the application of the miRanda 

method (v3.3a) (Enright et al., 2003) to the whole set of the detected miRNA sequences and 

to the 3’-UTRs annotated for the pig genome (other parameters were set to their default 

values). We retrieved the 3’-UTR sequences from the ENSEMBL repository using the 

biomaRt R package (Durinck et al., 2009) in a custom script. Then, to investigate the 

possible biological role in backfat adipose tissue of the highest expressed miRNAs, the 
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human orthologs of the predicted miRNA targets were established using the ENSEMBL 

database and given as input to DAVID (Dennis et al., 2003). 

qRT-PCR validation  

qRT-PCR analysis was conducted on the two samples used for the RNA-Seq analysis and 

on 18 additional backfat samples from Italian Large White pig individuals farmed and 

slaughtered as indicated above. The 18 additional samples were used as biological 

validation for two new sRNAs to confirm the results obtained with the first two samples. 

The TaqMan® Micro RNA Assay kit (Applied Biosystems) was used, following the 

customer protocol. For each sRNA, analyses were performed in triplicate. As an internal 

reference, we used the U6 snRNA (Chen et al., 2012; Yu et al., 2012). 

3.2.2 RESULTS 

Sequencing and data pre-processing.  

The sequencing of the two pig backfat samples produced respectively 68 126 656 and 64 

250 776 reads. To attain a picture of the normal swine fat miRNome and to enhance our 

discovery power, we pooled together the two sequencing datasets, obtaining 132 377 432 

raw reads. The sequences of the small RNAs reported in this study have been deposited in 

the NCBI Gene Expression Omnibus (GEO) and are accessible through GEO series 

accession number GSE47748. 

The adapter-clipping step discarded 19 787 039 reads (14.9%), the quality and length 

filtering further discarded 43 310 672 reads (32.7% of the initial raw reads set). Some 1 

606 729 (1.2%) reads with sequence counted only once in the dataset were discarded, as 

were the 9 799 677 (7.4%) reads mapping to more than five loci outside known miRNAs. 

The filtering step resulted in 57 873 315 clean reads, corresponding to 43.7% of the initial 

raw reads (Figure 25a), which were used for subsequent analysis. All the clean reads had 

an average quality >30 (quantified with a Phred score), and most of them (86.4%) had 

average quality >36 (Figure 25b,c). With respect to the read length, the majority of the 

clean reads (84.6%) were between 20 and 23 nt long (Figure 25d). Reads with lengths 

between 15 and 19 nt and between 24 and 30 nt were less abundant, but still were 

present in a non-negligible amount (Figure 25d). 

Known miRNAs expressed  

From miRBase, we considered 343 known mature miRNAs annotated in 271 swine e-

hairpins (see 'Materials and methods' for the e-hairpin definition). Because the processing 

of different hairpins may produce the same mature miRNA, the actual number of known 
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mature miRNA sequences is 306. Besides, 72 hairpins are associated with two known 

sister miRNAs, whereas in 199 hairpins, only one known miRNA is reported. 

Known miRNAs identified with an expression level of at least 10 reads numbered 222 

(Table S1). miRNA expression level distribution was considerably skewed, ranging from 

10 to about 33 million reads. Few miRNAs were highly expressed (Figure 26a): only 47 

known mature miRNAs (21% of the expressed known miRNAs) totaled up to 99% of the 

overall miRNA expression, and only nine of them totaled up to 90%. The most expressed 

miRNA, ssc-miR-10b, alone amounted to about 64% of the detected known miRNA 

expression. Other highly expressed miRNAs were ssc-miR-143-3p, amounting to 8.5%, 

ssc-miR-10a-5p and ssc-miR-191 (each one about 4.3%), ssc-miR-22-3p and ssc-miR-27b-

3p, each one amounting to over 2% (Figure 26a). 

We predicted with miRanda the possible targets of the nine most abundant miRNAs, using 

as input the 15 053 pig 3’-UTR sequences available in the ENSEMBL database. The 

predictions associated with the top 20% scores of max energy were selected for successive 

analysis. We obtained 1889 pig transcripts (corresponding to 1687 porcine genes) that 

were targets of the highly expressed miRNAs (Tables S2–S10). Some 348 genes were joint 

targets among up to five different miRNAs. Only 22% of target genes were functionally 

annotated in DAVID; thus, functional enrichment analysis was carried out using human 

orthologs of the pig genes. By this strategy, almost all the orthologous genes (1525 out of 

1567) were recognized by DAVID. We focused on Gene Ontology biological process (GO 

Figure 25. Raw data processing and 
filtering results. Panel (a) shows 
results of reads processing and 
filtering steps implemented to obtain 
a clean set of reads for all the 
following analyses. The overall height 
of the bar is proportional to the 
number of raw reads obtained from 
the sequencing. The four bars stacked 
on the top indicate the number and 
the proportion of discarded reads in 
the sequentially applied filtering 
steps. The average quality filter step 
(light blue bar) discarded the largest 
amount of reads. On the bottom, the 
yellow bar represents the set of reads 
that successfully passed all the 
filtering steps. The main properties of 
the clean reads set are described by 
the boxes on the right as (b) Phred 
base quality score distribution per 
position on the read, (c) distribution 
of the reads according to their 
average quality and (d) distribution of 
reads according to their length.  
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BP) terms and KEGG pathways. The significantly (P-value < 0.01) enriched 26 GO BP and 

nine KEGG pathways are listed in Table 7 and Table 8 respectively. Prominent processes 

were regulation of transcription and gene expression, intracellular transport, membrane 

organization, protein modification, intracellular signaling cascade, nuclear import, cell 

motility, regulation of actin cytoskeleton and cellular metabolism. Interesting KEGG 

pathways targeted by the most represented miRNAs were the Wnt signaling, insulin 

signaling and axon guidance pathways. 

Table 7. GO biological process terms enriched in the group of predicted target gene s of the top 
nine most expressed miRNAs in porcine backfat tissue. The functional enrichment was performed 
by DAVID on 1525 functionally annotated human orthologs of porcine genes.  

GO biological processes n % P-value 

Vesicle-mediated transport 79 5.2 4.40E-06 

Membrane organization 56 3.7 1.90E-05 

Intracellular signalling cascade 140 9.2 7.50E-05 

Protein modification process 154 10.1 3.30E-04 

Positive regulation of biosynthetic process 83 5.4 3.40E-04 

Positive regulation of transcription 70 4.6 3.60E-04 

Positive regulation of gene expression 71 4.7 5.10E-04 

Protein kinase cascade 49 3.2 7.90E-04 

Apoptosis 72 4.7 8.30E-04 

Positive regulation of RNA metabolic process 60 3.9 8.80E-04 

Positive regulation of nitrogen compound metabolic process 75 4.9 0.001 

Positive regulation of transcription from RNA polymerase II 
promoter 

48 3.1 0.002 

Protein amino acid phosphorylation 77 5.0 0.002 

Positive regulation of cellular metabolic process 97 6.4 0.002 

Cell motility 41 2.7 0.002 

Positive regulation of metabolic process 100 6.6 0.002 

Positive regulation of macromolecule metabolic process 94 6.2 0.002 

Cell death 81 5.3 0.002 

Anatomical structure formation involved in morphogenesis 45 3.0 0.003 

Regulation of transport 52 3.4 0.005 

Cellular protein metabolic process 224 14.7 0.005 

Regulation of transcription from RNA polymerase II 
promoter 

79 5.2 0.006 

Positive regulation of molecular function 65 4.3 0.009 

Mitochondrial transport 13 0.9 0.009 

Protein transport 81 5.3 0.010 

Protein catabolic process 68 4.5 0.010 
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Table 8. KEGG pathways enriched in the group of predicted target genes of the top nine most 
expressed miRNAs. The group of 1525 functionally annotated human orthologs of porcine genes 
was considered for functional enrichment.  

Term n % P-value 

T-cell receptor signalling pathway 19 1.2 5.80E-03 

Phosphatidylinositol signalling system 14 0.9 1.20E-02 

Pathways in cancer 42 2.8 1.20E-02 

Axon guidance 20 1.3 1.70E-02 

B-cell receptor signalling pathway 13 0.9 3.00E-02 

Ubiquitin mediated proteolysis 20 1.3 3.00E-02 

Hematopoietic cell lineage 14 0.9 3.70E-02 

Wnt signalling pathway 21 1.4 4.10E-02 

Insulin signalling pathway 19 1.2 4.80E-02 

 

New sister miRNAs discovered  

We define ‘new sister miRNAs’ as the mature miRNA sequences that are derived from 

precursors in which only one mature is known and annotated and that are produced from 

the hairpin arm opposite to that giving rise to the known miRNA. We identified the 

expression of 68 new mature sister 

miRNAs (Tables S1 & S11). The new 

miRNAs have been named from 

their precursor name and their 

position in the hairpin by attaching 

the suffix -3p or -5p. On average, the 

Figure 26. Most expressed known and 
new miRNAs. (a) Nine most expressed 
known miRNAs account for 90% of the 
pig backfat tissue expression (reads 
mapped to known hairpins). The bars 
and the grey shadow below show 
respectively the read count and the 
cumulative percentage of expression 
corresponding to the nine most 
expressed miRNAs. The pie chart 
highlights the contribution of each 
miRNA to the overall expression 
(colour notation of the pie corresponds 
to the bars). (b) The boxplot shows the 
distribution of expression, in 
logarithmic scale, of known and new 
miRNAs identified in known pig miRNA 
precursors. The median level of 
expression of the new miRNAs is lower 
than the known miRNA (grey horizontal 
line). (c) The barplot shows eight new 
miRNAs with an expression level higher 
than the median expression of known 
miRNAs. 
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new sister miRNAs were less expressed than were the group of known miRNAs (Figure 

26b). As shown in Figure 26c, eight new miRNAs were expressed above the median 

expression level of the known miRNAs (1311 reads). Finally, we noticed that four new 

miRNAs, ssc-miR-2411-3p, ssc-miR-4331-5p, ssc-miR-4336-3p and ssc-miR-4333-3p, 

were the only small RNAs that were expressed by their precursor, whereas their known 

miRNA mate was not detected. 

5’- and 3’-miRNA expression 

 Considering known and new 

miRNAs together, we detected 291 

mature miRNAs expressed from 204 

different hairpins. Among the 

precursors, 111 (54%) expressed 

both sister miRNAs in the pig fat 

tissue, whereas in the remaining 

cases only one miRNA per hairpin 

was expressed. This is consistent 

with previous findings of concurrent 

sister miRNAs expression in a cell 

(Biasiolo et al., 2011). The scatterplot 

of 5’- and 3’-miRNA expression 

values (Figure 27a) shows the 

expression ratio of miRNAs that 

derived from a same hairpin 

expressing both arms (3’- over 5’-

Figure 27. Expression levels of miRNAs 
derived from the 5’ and 3’ arms of the 
same hairpin precursor. The scatterplot 
in (a) compares the expression levels of 
miRNAs derived from the 5’ and 3’ arms 
of the same hairpin precursor, showing 
that there is not significant correlation 
between the values. Moreover, many 
points lie in the axes, indicating that in 
several cases only one of the two arms 
of the precursor is expressed. Panels (b) 
and (c) show the logarithmic fold 
change of expression levels calculated 
for the 5’ and 3’ miRNAs belonging to 
the same precursor respectively 
considering all miRNAs and only 
miRNAs expressed over the median 
expression. 
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miRNA expression). We noted that 22 hairpins (20%) expressed both miRNAs at 

comparable levels (absolute log fold change being at most two), whereas in 34 and 55 

cases, the 3’ or the 5’ miRNA tended to be prevalent (Figure 27b). We hypothesized that 

sister miRNAs expressed concurrently at a moderate to high level might be biologically 

relevant. In this regard, we further assessed those 27 hairpins having both matures 

expressed over the median expression of all miRNAs: six hairpins (22%) expressed both 

matures at a comparable level, with a slight tendency towards 5’ arm prevalence (Figure 

27c).  

Variability of miRNA sequences  

As mentioned before, recent studies showed that miRNAs are represented in cells as 

mixtures of isomiRs contributing to the miRNA expression. We investigated sequence 

variability of 249 miRNAs coming from distinct e-hairpins. We considered first all isomiRs 

associated with known miRNAs; then, for each miRNA, we selected only isomiRs that each 

amounted to at least 10% of the miRNA expression (‘relevant’ isomiRs). Most of the 

known mature miRNAs (92.8%; 231 out of 249) were from mixes of two to 558 isomiRs. 

Considering only ‘relevant’ isomiRs, 81.1% of miRNAs (202 of 249) were represented by 

Figure 28. miRNA sequence variants 
(isomiRs). Most of the known mature 
miRNAs resulted in mixes of two or more 
isomiRs. Panel (a) shows the proportion 
of miRNAs grouped by the number of 
isomiRs (horizontal axis) composing the 
expression of each miRNA, considering, 
for each miRNA, only those isomiRs 
accounting individually for at least the 
10% of the total miRNA expression. 
Panel (b) details the fraction of 
expression of isomiRs grouped in 
different categories. From the left to the 
right are shown: the miRNA region (5’ or 
3’ half) affected by the variation, the 
type of sequence difference with the 
hairpin locus and the known mature 
miRNA position from miRBase (isomiR 
type), and the combinations of the 
previous categories. Results clearly 
indicate that the category of isomiRs 
differing from the annotated sequence 
only in length is prevalent (red portion 
in the left bar), that only a minority of 
variants involves the 5’ seed region 
(azure part in the right bar) and that no 
isomiRs with mismatches in the 5’ region 
are observed, ruling out a more than 
non-negligible contribution of residual 
sequencing error to observed variability. 
Panel (c) shows, as an example, the 
composition in isomiRs (accounting each 
for at least the 10% of the total miRNA 
expression) of the highly expressed ssc-
miR-143-3p. 
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two to five isomiRs (Figure 28a). Regarding the isomiR expression fraction, 31.2% of 

known miRNA expression was composed of isomiRs that are different from the canonical 

mature miRNA reported in miRBase (the ‘exact’ isomiR; Figure 28b), even in sequence or 

in length. As shown in Figure 28b, the fraction of expression belonging to the ‘short-long’ 

isomiRs was prevalent. The miRNA 5’ region, which includes the seed region, is crucial for 

target recognition in canonical miRNA-target pairs. The minority of variants involved the 

5’ region: isomiRs changing only the 5’ region and both the 5’ and 3’ regions amounted 

respectively to 8.8% and 9.2% of the non-canonical isomiR expression. No isomiR with 

mismatches in the 5’ region (Figure 28b, rightmost bar) were detected. Conversely, 

isomiRs with variation (length and/or sequence) in the 3’ region added up to 80% of non-

canonical isomiR expression. As an example, in Figure 28c, we report ‘relevant’ isomiRs 

(three out of 328) of the highly expressed ssc-miR-143-3p. 

MoRNAs discovered 

 We detected the expression of 17 moRNAs coming from 16 different precursors (Table 9).  

Table 9. Predicted moRNAs with nucleotide sequences, positions in the e -hairpin, and expression 
levels 

Name Sequence Expression 
Hairpin 

precursor 
Start End 

ssc-moR-21-5p AUGGCUGUACCACCUUGUCGGG 685 ssc-mir-21 26 47 

ssc-moR-125a-5p CCACACUGCCGGCCUCUGAG 282 ssc-mir-125a 21 40 

ssc-moR-126-3p CUGUCGGCAGCCCAGCACCGAGA 207 ssc-mir-126 98 120 

ssc-moR-16-2-5p UAGCAAUGUCAGCAGUGCCU 143 ssc-mir-16-2 19 38 

ssc-moR-874-5p CGGCCCCACGCACCAGGGUAAGA 70 ssc-mir-874 45 67 

ssc-moR-let-7e-5p CCUGCCGCGCGCCCCGGGC 54 ssc-let-7e 21 39 

ssc-moR-331-5p UGGUUUGUUUGGGUUUGUU 52 ssc-mir-331 27 45 

ssc-moR-24-2-5p UGUCGAUUGGACCCGCCCUCCG 49 ssc-mir-24-2 22 43 

ssc-moR-331-3p CCAACCUAAACUCGCGCAUCAUUCC 33 ssc-mir-331 102 126 

ssc-moR-24-1-5p CCUCCCUGGGCUCUGCCUCCC 32 ssc-mir-24-1 21 41 

ssc-moR-708-5p GUGAUGUGGUAACUGCCCUC 29 ssc-mir-708 16 35 

ssc-moR-99b-5p CGGAUUCCUGGGUCCUGGCACC 17 ssc-mir-99b 15 36 

ssc-moR-103-1-5p AAGUUUGCUUACUGCCCUC 14 ssc-mir-103-1 24 42 

ssc-moR-1343-5p UGGGGAGCGGCCCCCGGGCGGG 12 ssc-mir-1343 41 62 

ssc-moR-let-7i-5p UCCCCGACACCAUGGCCCUGGC 12 ssc-let-7i 14 35 

ssc-moR-324-5p CUGAGCUGACUAUGCCUCCC 11 ssc-mir-324 22 41 

ssc-moR-27b-5p CGACGACCUCUCUGACGAGGUGC 10 ssc-mir-27b 17 39 

The moRNA expression levels were lower than that of the known and new miRNAs. The 

most abundant moRNA, ssc-moR-21-5p, was less expressed than the known miRNA 

median expression level. Besides, four moRNAs (Table 10) yielded significant expression 

between the first and second quartile of total miRNA expression. A dominance of 5’ 

moRNAs was observed: 15 moRNAs were 5’, whereas only two belonged to a 3’ region. In 

one case, ssc-mir-331 precursor, we found both 3’ and 5’ moRNAs expressed, with a larger 

abundance of the 3’ moRNAs (Figure 29a). To understand whether expressed moRNAs can 
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be by-products of miRNAs biogenesis, we considered moRNA expressions in relation with 

mature miRNAs expressed from the same precursor (Figure 29a). The 5’ miRNA was less 

expressed than was the 3’ miRNA in seven of 15 hairpins expressing a 5’ moRNA. In 14 of 

17 cases, the moRNA is expressed together with the mature miRNA from the same arm of 

the precursor. We also noticed three cases (ssc-mir-874, ssc-mir-103-1 and ssc-miR-1343) 

in which the 5’ moRNA was expressed alone in the 5’ arm and the 3’-miRNA was 

concurrently expressed. 

Table 10. Four moRNAs expressed by extended hairpin precursors are associated with more than 
100 reads. For each moRNA, the table indicates name, sequence and expression level as well as 
the position of the moRNA relatively to the extended hairpin precursor sequence. Bold text 
indicates the moRNA chosen for validation.   

Name Sequence 
Expression 

(reads) 
Hairpin 

precursor 
Start End 

ssc-moR-21-5p AUGGCUGUACCACCUUGUCGGG 685 ssc-mir-21 26 47 

ssc-moR-125a-5p CCACACUGCCGGCCUCUGAG 282 ssc-mir-125a 21 40 

ssc-moR-126-3p CUGUCGGCAGCCCAGCACCGAGA 207 ssc-mir-126 98 120 

ssc-moR-16-2-5p UAGCAAUGUCAGCAGUGCCU 143 ssc-mir-16-2 19 38 

 
Furthermore, for the four 

most expressed moRNAs 

(ssc-moR-21-5p, ssc-moR-

125a-5p, ssc-moR-16-2-5p 

and ssc-moR-126-3p), we 

compared moRNA, miRNA 

Figure 29 . Hairpin precursors 
expressing moRNAs. Panel (a) 
shows the expression in pig 
backfat tissue of the 16 
moRNAs detected and the 
miRNAs expressed from the 
same hairpin precursors. The 
level of expression of moRNAs 
(crimson and lilac bars) is 
lower than that of known and 
newly predicted miRNAs. 
moRNAs are prevalently 
expressed by the 5’ arm of the 
precursor, independently by 
the prevalence of the 5’ or 3’ 
miRNA (green and azure bars) 
from the same hairpin. Panel 
(b) shows the location of the 
moRNA sequence in relation to 
the miRNAs expressed by the 
ssc-miR-21 locus. Notably, the 
moRNA extends over the 
canonical hairpin (c), indicating 
that the 5’ moRNA may be more 
probably produced from a non-
canonical precursor. 
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and canonical hairpin end positions. All the moRNAs started exactly after the end of the 

miRNA with no overlap or gaps, as shown for ssc-moR-21 in Figure 29b,c. The considered 

moRNAs were located in a region extending from 5 to 17 nt outside the canonical hairpin 

and Drosha cutting site, extending over the end of the canonical hairpin. This evidence 

indicates that these moRNAs might be produced by a non-canonical processing of primary 

miRNA sequences by Drosha and that moRNAs and miRNAs are not mutually exclusive 

products of miRNA precursors processing by Dicer. 

Novel miRNAs from new hairpins  

Because the set of known swine miRNAs available in miRBase (271 precursors and 306 

mature miRNAs) is considerably smaller than for human (1600 precursors and 2042 

matures), we applied the mirdeep2 algorithm to our data for the discovery of unknown 

expressed miRNAs coming from non-annotated precursors. MirDeep2 predicted 316 new 

hairpins, 253 of them with significant hairpin folding score (Table S13). As observed for 

the new miRNAs predicted from known hairpins, most of the new precursors were 

represented by few reads: 50% of the predicted hairpins had at most a read count of 155. 

In Table 11, we report six precursors having significant folding score and producing 

mature miRNAs with normalized expression estimate greater than the known miRNA 

median expression level. Only one of the predicted pig miRNA that are reported in Table 

11 (chr16_37624) has a seed sequence corresponding to a human miRNA (hsa-let-7a-5p). 

Neither mouse nor human miRNAs with equivalent seed sequence were found for other 

mature miRNAs produced by the predicted hairpins. 

Table 11. New miRNAs predicted by mirRDeep2 with an expression above the median expression 
level of known miRNAs. Bold text indicates the miRNA chosen for validation. . 

Predicted 
hairpin 

precursor ID 

Hairpin 
genome 

position and 
strand 

Predicted mature 
miRNA 

Read 
count 

Sequence 

miRBase 
miRNA with 

corresponding 
seed sequence 

chr5_14516 
chr5:4391289.

.4391351:− 

ssc-new-miR-chr5-3p 9433 augcggaaccugcggauacgg – 

ssc-new-miR-chr5-5p 1342 auguccgcggguucccuaucc – 

chr16_37624 
chr16:553990
1..5539950:− 

ssc-new-miR-chr16-3p 6735 ugagguaguaggcugugugg hsa-let-7a-5p 

ch2r_6672 
chr2:6684288.

.6684348:− 
ssc-new-miR-chr2-3p 3923 uuuguuggcuccucugaaguga – 

chr10_25960 
chr10:435024
98..43502555:

+ 
ssc-new-miR-chr10-5p 3561 gcgggcccacgggggcccc – 

chr12_29405 
chr12:408083
08..40808378:

− 
ssc-new-miR-chr12-5p 2307 ucccuggucuagugguuaggauuug – 

chr3_9002 
chr3:8737978
5..87379841:+ 

ssc-new-miR-chr3-5p 1601 uggcguauaucacagacacagc – 
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qRT-PCR validation 

A qRT-PCR validation 

was carried out for five 

small RNAs detected in 

backfat samples, 

including four miRNAs 

and ssc-moR-21-5p. 

Among miRNAs, we chose 

three known mature 

miRNAs (ssc-miR-191, 

ssc-miR-125-a and ssc-

mir-137) that are 

expressed at different 

levels (2 207 436, 117 

118 and 30 592 reads 

respectively), plus the 

most expressed (9433 

reads) mature miRNA 

predicted by mirdeep2, 

which comes from 

chromosome 5, ssc-new-miR-chr5-3p. ssc-moR-21-5p was chosen because it yielded the 

largest expression (685 reads) among the detected moRNAs. All considered elements were 

validated by sequence-specific qRT-PCR 

carried out on the original RNA samples that 

were used for library preparation and deep 

sequencing. A good agreement observed 

between RNA-Seq and qRT-PCR expression 

estimates (Pearson correlation. −0.56; Figure 

31) supports the robustness of the estimates 

we have reported for the small RNAs detected 

in this study. These results also confirm the 

expression of ssc-moR-21-5p, which to our 

knowledge, is the first validation of a moRNA 

Figure 31 . qRT-PCR validation of five sRNAs, including three 
known miRNAs expressed at different levels in pig backfat tissue, a 
new miRNA predicted by mirdeep2 on chromosome 5 and the newly 
discovered ssc-moR-21 expressed from mir-21 locus. RNA-Seq 
expression levels are in base 10 logarithmic scale. qRT-PCR 
expression estimates are reported as the inverse of the normalized 
Ct (NCt = Ct(miR)/Ct(U6)), multiplied by 10, to better display the 
RNA-Seq and qRT-PCR results on the same scale. Black and grey 
bars represent respectively the RNA-Seq and qRT-PCR expression 
measures resulting from the experiments conducted on the same 
RNA (two individuals pooled). Solid and dashed lines highlight the 
common trend of RNA-Seq and qRT-PCR expression estimates. 
Textured bars show the average of qRT-PCR measures in 18 
additional individuals.  

Figure 30. qRT-PCR expression measure variation, 
in a population of 20 normal adult individuals, 
regarding two newly discovered pig RNAs.  
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expressed in a normal tissue. Moreover, we obtained qRT-PCR data regarding two newly 

discovered small RNAs (ssc-new-miR-chr5-3p and ssc-moR-21-5p) in an independent 

group of 18 individuals providing a biological validation for these RNAs (Figure 31). 

Figure 30 shows as a boxplot the variation of the two considered RNAs in the considered 

group of 20 normal adult individuals. 

3.2.2 DISCUSSION 

Sus scrofa is an important species for comparative genomics, biomedical studies and also 

for the meat production industry. Pig adipose tissue, and backfat in particular, is one of the 

principal components determining the quality of dry cured hams. With the perspective of 

selection and genetic improvement, the understanding of molecular and genetic 

mechanisms regulating gene expression in porcine adipocytes is of great interest. The 

expression of many genes is regulated by miRNAs, which usually play a repressive role on 

gene expression. 

In this study, we explored the miRNome of Large White pig backfat by sequencing the 

small RNA fraction with the Illumina technology, reaching high depth (around 65 million 

reads per sample). We aimed to identify known sRNAs and discover new ones that are 

expressed in fat cells and to obtain a quantification of sRNAs expression to facilitate 

further studies of gene expression regulation in pigs. Sequencing reads were analyzed 

with a computational pipeline that integrates several custom-developed and publicly 

available bioinformatics tools, which we adapted for this specific task. 

As a first result, we provided the identification and quantification of 222 known pig 

mature miRNAs expressed in fat tissue, which account for 65% of the miRNAs annotated 

in miRBase. The expression level distribution is considerably skewed, with few highly 

expressed miRNAs: only 20% of expressed miRNAs comprise 99% of the reads. We 

compared our results with miRNAs reported in previous studies on porcine fat miRNome 

of diverse pig breeds (Chen et al., 2012; Cho et al., 2010; Li et al., 2011, 2012a). The overlap 

among the aforementioned studies is limited. This can be due to a specific expression 

profile that is peculiar and characteristic of each breed as well as to the adoption of 

different library preparation protocols and/or sequencing techniques. Moreover, the 

pattern of miRNA expression in fat tissue could depend on age and rearing conditions, 

including the diet supplied, as reported for pig (Cirera et al., 2010) and other mammals 

(Parra et al., 2010; Romao et al., 2012). However, most of the miRNAs that have been 

previously identified as highly expressed in adipose tissue are listed among the miRNAs 

we estimated as the most expressed. The four previous studies concordantly reported the 

high expression of let-7 family elements, and this is almost the only result they have in 
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common. According to our data, ssc-let-7a is among the nine most expressed miRNAs, and 

four elements of the family are amid the 25 most expressed miRNAs. Considering the 35 

miRNAs listed in at least two of the previous studies, we noticed that 21 miRNAs overlap 

with the 25 most expressed ones of our study and eight (ssc-miR-10b, ssc-miR-143-3p, 

ssc-miR-10a-5p, ssc-let-7a, ssc-miR-191, ssc-mir-148a-3p, ssc-miR-30a-5p, and ssc-miR-

103) are ranked among the top nine. In addition, ssc-let-7f and ssc-miR-199b (-5p and -

3p), listed by Li et al. (2011) as very abundant in swine adipose tissue and recurrently 

reported as highly expressed in previous studies, were among the 20% most expressed 

miRNAs according to our data. Similarly, ssc-miR-199a/b, ssc-miR-125a/b and ssc-miR-

126-5p and -3p, which were reported by Cho et al. (2010) as more expressed in adipose 

than in muscle tissue, are among the most expressed miRNAs in our samples. Finally, ssc-

miR-21-5p, which is the main miRNA promoting adipogenesis (Cho et al. 2010; Guo et al. 

2012), was scored as highly expressed; in addition, we demonstrated that the mir-21 

precursor is associated with two further sRNAs (ssc-miR-21-3p and ssc-moR-21-5p). 

We reasoned that the nine most expressed miRNAs, which amount to 90% of the 

sequenced reads, could be considered important regulators in the tissue. All previous 

studies on pig miRNAs reported target prediction results obtained by a cross-species 

analysis (Li et al. 2011, 2012a; Chen et al. 2012). In these studies, orthologous human 

genes and miRNAs were used to infer the associated functional information under the 

assumptions that orthologous miRNAs can target orthologous genes in different species 

and that all the functions and interactions of gene products are conserved. Computational 

target prediction is affected by a relatively low specificity (Baek et al., 2008; Bisognin et al., 

2012; Sales et al., 2010) due to the limited length of the sequences involved in the target 

recognition, to the fact that perfect complementarity between miRNA and target 

sequences is not needed for regulatory action, and to the context-specificity of miRNA-

target interactions, which can be modulated by many additional factors. In this study, we 

thought it would be more accurate to obtain the predicted target set of pig, and not human, 

mRNAs, to provide a preliminary trace on which processes, functions and pathways are 

controlled by the highly expressed miRNAs. We achieved a custom target prediction by 

applying miRanda to the whole set of the 15 053 Ensembl 3’-UTR transcripts annotated for 

the pig genome. To our knowledge, this approach has never been performed in previous 

studies on pigs. A definitive assessment of the miRNA-target matches that we report 

would require subsequent biological validation, but this was out of the scope of our study. 

The species-specific target prediction reported 1889 pig transcripts, corresponding to 

1687 porcine genes that are possibly regulated by at least one of the nine miRNAs. 

Moreover, 20% of the predicted target genes are in common between two or more of the 
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abundantly expressed miRNAs. The functional enrichment performed on functionally 

annotated human orthologs of porcine genes highlighted relevant biological processes and 

pathways. The identified biological processes, such as positive regulation of transcription, 

gene expression and protein kinase cascade, indicate that many targets of these miRNAs 

are regulatory molecules, for instance transcription factors, which may affect the 

expression of a large number of genes. These results also suggest that the highly expressed 

miRNAs may take part in the regulation of biological processes and pathways that are 

associated with intracellular transport, membrane organization, protein modification 

processes, intracellular signaling cascade, nuclear import, cell motility, regulation of actin 

cytoskeleton and cellular metabolism. One interesting KEGG pathway targeted is the Wnt 

signaling path, which is involved in adipocyte differentiation and adipogenesis (Qin et al., 

2010; Ross et al., 2000). The growth factors belonging to the family of the Wnt signaling 

pathway are known to regulate adult tissue maintenance and remodeling, mediating 

adipose cell communication. (Qin et al., 2010) proposed a role of miRNAs in suppressing or 

activating Wnt signaling during adipogenesis, and other authors (Chen et al., 2012; Li et al., 

2011, 2012a) considered the possible interactions between the fat miRNome and the Wnt 

signaling at different ages and in different porcine breeds. The insulin signaling and axon 

guidance pathways were also enriched, as previously found by Li et al. (2011) and Guo et al. 

(2012b). The insulin signaling enrichment in predicted target genes of most expressed 

miRNAs suggests that the considered miRNAs may function as regulators in porcine 

adipogenesis. The concurrent enrichment of axon guidance pathways could indicate a 

potential relation between the nervous system and adipocyte metabolism. 

The second result that arose from our analysis is the complexity of the pig backfat 

miRNome, both in terms of miRNA sequence variability and in terms of different small 

RNAs represented. We showed that most of the known miRNAs are found in fat tissue as 

mixtures of two to 558 isomiRs. However, considering only the isomiRs each accounting 

for at least the 10% of miRNA expression, we observed that over 80% of the miRNAs are 

represented by two to five major isomiRs, and only one-third of the overall miRNA 

expression is composed of the canonical sequence annotated in miRBase. As previously 

reported (Neilsen et al., 2012), sequence variation involving the 3’ region of the miRNA is 

prevalent. This is concordant also with reported observations of higher 5’ fidelity of Dicer 

cleavage sites and of non-template 3’ addition prevalence (Zhou et al., 2012). Nevertheless, 

in our study, isomiRs altered in the 5’ miRNA region, which includes the seed sequence, 

are present in non-negligible amounts, accounting for <20% of the expression. The 

biological relevance of isomiRs is supported by several observations. As indicated in the 
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'Introduction', isomiR mixtures can change in different cells and/or conditions. IsomiRs 

and canonical miRNAs are equally associated with translational machinery, and isomiRs 

can act as functionally cooperative partners of canonical miRNAs to co-ordinate pathways 

of functionally related genes (Cloonan et al., 2011). Indeed, a recent study that focused on 

miR-101 (Llorens et al., 2013) showed that specific functions for miR-101 and 5’-isomiR-

101 are suggested by a correlation analysis on the expression profiles of miR-101 variants 

and predicted mRNA targets in human brains at different ages, even if the canonical 

miRNA and its isomiRs may target sets of genes that are highly overlapping. In this view, 

we think that quantitative and also qualitative changes in isomiR mixtures may play 

specific roles in adipose tissue biology. 

Our work also reported 68 new sister miRNAs and 17 moRNAs expressed from known 

hairpins. Moreover, from a genome wide analysis, we predicted 253 new hairpins 

expressing 312 putative new miRNAs. We used miRBase as a reference in this study and 

assigned to newly identified miRNA sequences provisional names consistent with the 

public data and nomenclature. However, it is worth noting that some pig miRNAs 

discovered by other studies were not submitted to public databases. It can be noted that 

ssc-miR-4336-3p and ssc-miR-4333-3p have sequences overlapping with SNORA53 and 

SNORA18 of the H/ACA family of small nucleolar RNAs. Nevertheless, because of the strict 

filtering steps of the pipeline used, we think that is fair to include them, as well as 

potential similar cases, as actual miRNAs. These small RNAs could be classified in the 

group of miRNA-like RNAs produced by the processing of larger housekeeping RNAs, such 

as snoRNAs, rRNAs and tRNAs (Li et al., 2012c). More specifically, they might be sdRNAs 

(snoRNA-derived RNAs) that reportedly can act as canonical miRNAs, associate with 

argonaute proteins and influence translation (Ender et al., 2008; Falaleeva and Stamm, 

2013). Similarly, clear evidence of biological activity of tRNA derived fragments was also 

provided, showing that they possess the functional characteristics of micro-RNAs and are 

able to repress mRNA transcripts in a sequence-specific manner (Maute et al., 2013). 

Considering, on the whole, known and new miRNAs expressed by known hairpins, more 

than 50% of the expressed hairpins produce both mature miRNAs in the tissue and, in 

some cases, at comparable levels. About 22% of the 27 hairpins with both matures 

expressed over the median level do not exhibit prevalence of expression of one arm over 

the other. Similarly, about 25% of the newly predicted hairpins are associated with two 

miRNAs expressed. The detected moRNAs are in general less expressed than are miRNAs. 

Yet, we think they are of interest because they indicate detectable non-canonical 

processing of miRNA primary transcripts and/or hairpin precursors. The biological 
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function of moRNAs is still not entirely understood. The sister miRNA pair and moRNAs 

produced from the same precursor have different sequences, so in principle they may play 

different biological roles. There are hypotheses that moRNAs may repress target 

transcripts like miRNAs (Umbach et al., 2010). Nevertheless, nuclear moRNA enrichment 

might indicate that some moRNAs play a different role specifically related to nuclear 

processes (Taft et al., 2010), as was shown for tiny RNAs and specific miRNAs (Zardo et al., 

2012). 

Finally, to assess our results, selected known and new sRNAs expressed at different levels 

were validated with qRT-PCR. The assay confirmed the expression of all five sRNAs 

considered, including three known miRNAs (ssc-miR-191, ssc-miR-125-a and ssc-miR-

137), the new moRNA ssc-moR-21-5p and the new mature miRNA produced from a 

putative hairpin precursor in chromosome 5. The agreement observed between RNA-Seq 

and qRT-PCR expression measurements for five sRNAs and the biological validation in an 

independent group of 18 individuals support the strength of the sRNA expression 

estimates reported in this study. 

This study permitted the identification of known and new miRNAs, isomiRs and moRNAs 

in pig backfat by bioinformatics analysis of RNA-seq data. We examined sequence 

variation and relations among reported sRNAs. Unlike previous studies, miRNA-target 

prediction was performed on swine transcript sequences. By means of in silico analysis, 

we identified processes and pathways in which the miRNAs might be involved. Finally, we 

assayed some of the identified sequences with qRT-PCR, also in samples from other 

animals. We think that this work might be a valuable source of information for future 

studies on gene expression regulation of pig adipose tissue. 
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3.2.3 DIFFERENTIALLY EXPRESSED SMALL RNAS IN ITALIAN LARGE WHITE PIG 
ADIPOSE TISSUE 

3.2.3 MATERIALS AND METHODS 

Sample collection and sequencing 

Small RNA sequencing data from 18 ILW pig backfat samples were used in this study (see 

chapter “Pig subject selection”), which formed two equal size groups (LEAN and FAT) from 

pigs with extreme and divergent backfat thickness. 

Computational processing of small RNA sequencing data 

The study workflow is depicted in Figure 32. RNA-seq data have been processed with the 

miR&moRe pipeline (Bortoluzzi et al., 2012; Gaffo et al., 2014) and miRDeep2 v0.0.5 

(Friedländer et al., 2011). MiR&moRe quantifies small RNAs from RNA-seq experiments. 

Moreover, it detects and quantifies miRNA isoforms 

(isomiRs), novel miRNAs expressed in precursor 

hairpins that have only one annotated miRNA, and 

miRNA offset RNAs (moRNAs). MiRDeep2 was exploited 

Figure 32. Study workflow. The 
chart shows the main steps of the 
study. Going top to down, pig 
backfat samples were collected and 
the fraction of miRNA-like RNAs 
was sequenced with Illumina 
technology. The same set of 
samples was used for the 
sequencing of the long RNA 
fraction and transcriptome 
characterization, as described in 
chapter “Transcriptional profiling 
of subcutaneous adipose tissue in 
Italian Large White pigs divergent 
for backfat thickness” and 
Zambonelli, Gaffo et al. (in press). 
Raw sequence data was processed 
with the enhanced miR&moRe 
pipeline to retrieve small RNAs’ 
expression and nucleotide 
sequences. SRNAs differentially 
expressed between the LEAN and 
FAT groups (DEMs) were estimated 
with DESeq2 . By means of miRanda , 
DEMs were further inspected by 
predicting their target transcripts 
among ILW pig backfat long RNA 
sequences. Expression correlation 
between DEMs and their targets 
were computed and used to refine 
the target predictions. Only target 
transcripts anti-correlated with 
sRNAs and passing a correlation 
test threshold were kept and used 
to reconstruct the putative 
regulatory relations between small 
RNAs and their target transcripts 
in Italian Large White (ILW) pig 
backfat tissue. 
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to detect precursor hairpins and related miRNAs that are not annotated in pig genome 

according to miRBase v.21 (Kozomara and Griffiths-Jones, 2013). MiRDeep2 novel 

predictions combined with miRBase swine data were used as annotation for miR&moRe. 

Each sample raw sequenced reads were processed by miR&moRe. Briefly, the miR&moRe 

pipeline performs a preliminary sanitation and quality preprocessing of the input raw 

sequences. Reads passing the quality filter are aligned to the reference miRNA precursors 

and to the reference genome for expression quantification. Identification and expression 

quantification of isomiRs and moRNAs follow from the alignments and sequence folding 

predictions. Small RNAs expression levels are measured as read alignment counts in each 

sample. Read counts were normalized across all the samples according to the DESeq2 

(v1.4.5) (Love et al., 2014) approach. Small RNAs represented by less than ten normalized 

reads were excluded from further analysis. SRNA differential expression between the FAT 

and LEAN groups was assessed by DESeq2, considering FDR<0.05 (Benjamini-Hochberg 

adjusted P-values) as significant scores. 

Small RNA target transcript prediction using backfat long RNA data 

To obtain miRNA-transcript target relation predictions, we applied miRanda v3.3a (Enright 

et al., 2003). We used RNA sequences reconstructed in Zambonelli et al. (in press) as a 

custom target sequence database. For miRNAs and moRNAs we considered expressed 

isomiR sequences. 

Then, we calculated Spearman correlations among the transcript profiles estimated as 

FPKM in chapter “Transcriptional profiling of subcutaneous adipose tissue in Italian Large 

White pigs divergent for backfat thickness” and Zambonelli et al. (in press) and expression 

profiles of the differentially expressed small RNA in this study. According to miRNA 

prevalently repressive action, we focused on negative correlations giving a possible 

indication of direct regulation. Further, test for the significance pairwise Spearman 

correlation were computed. P-values were adjusted according to the Benjamini-Hochberg 

(BH) procedure. 

3.2.3 RESULTS AND DISCUSSION 

Raw data preprocessing, small RNAs identified and expression level estimates 

RNA-seq resulted in 97 million reads per sample on average. The trimming and filtering 

pipeline steps resulted in on average 37 million reads (Table 12 and Figure 33), which 

were further processed for the sRNAs characterization. 
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Table 12. Total number of reads for each main data filtering step, for each sample 

Sample ID Raw reads Trimmed reads Clean reads 

S473 78.538.121 57.537.862 32.756.840 

S474 67.076.458 48.302.409 22.902.760 

S475 93.130.433 63.482.435 34.256.027 

S476 105.628.078 74.020.736 40.358.547 

S477 148.774.413 116.264.009 37.734.714 

S478 78.686.470 67.649.827 30.064.360 

S479 88.683.293 72.143.266 34.034.251 

S480 106.585.223 82.930.354 50.618.318 

S481 138.414.161 97.359.514 56.203.477 

S482 103.315.208 87.526.775 38.340.337 

S483 90.969.362 79.591.890 45.220.470 

S484 85.181.674 63.205.498 47.681.714 

S485 114.251.255 102.793.579 55.799.228 

S486 125.087.146 97.464.630 49.205.100 

S487 88.464.121 77.525.963 19.836.034 

S488 77.927.270 64.168.164 31.575.982 

S489 79.298.639 61.850.652 20.778.522 

S490 87.328.141 67.389.681 22.256.476 

MiRDeep2 v0.0.5 (Friedländer et al., 2011) was run with default parameters, input susScr3 

genome from the UCSC database, miRBase v21 miRNA annotation, and as input sequences 

the pool of the 18 samples' read sets and the two samples from chapter “miRNome of 

Italian Large White pig subcutaneous fat tissue: new miRNAs, isomiRs and moRNAs”and 

(Gaffo et al., 2014). MiRDeep2 predicted 1,340 new miRNA precursors (NP) in pig genome, 

for a total of 2,680 novel mature miRNAs from new precursors (NPmiRNAs) that do not 

overlap to and have different sequence from pig miRNA precursors reported in miRBase. 

Minimum miRDeep2 scores were zero, first quartile 1.4, median 3.0, mean 1,569.2 and 

maximum 1,205,860.9. New precursors with alerts for rRNA/tRNA (Rfam sequences were 

Figure 33. Total number of reads for each 
main data filtering step.  
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provided in the miRDeep2 package) were only five. MiRDeep2 calculated probability of 

being a real miRNA was 85% at maximum, with mean 40% and median 5%. Novel 

precursors' genomic coordinates and relative miRNAs positions in the precursors were 

retrieved from the results providing annotation for the newly predicted precursor 

hairpins and miRNAs. To obtain homogenous data for known and new miRNAs, annotation 

of predicted new small RNAs, as long as their sequences, were combined with the miRBase 

pig annotation used for the miRDeep2 run and used as input for the miR&moRe pipeline. 

MiR&moRe received as input the same reference genome used with miRDeep2. MiR&moRe 

detected the expression of 442 NPmiRNAs (16.5%). We applied conservative filter for new 

precursors discarding hairpins with miRDeep2 score smaller than 1, with probability of 

miRNA prediction smaller than 60%, with Rfam alert and less than 50 nt long (as done by 

Friedländer et al. (2014) and Londin et al. (2015) (Friedländer et al., 2014; Londin et al., 2015). 

With these settings, 224 NPmiRNAs were discarded, resulting in 218 NPmiRNAs that we 

considered more reliable and that were taken in to account for further analysis. All the 

detected miRNAs were required to be represented by at least ten normalized reads on 

average within either the LEAN or FAT groups. Additional 121 NPmiRNAs were removed, 

resulting in 103 NPmiRNAs (3.8% of the initial NPmiRNAs) considered as expressed. After 

read count quantification and normalization, sRNAs with group mean expression lower 

than ten normalized reads were discarded. Overall, we detected 426 sRNAs expressed, 

including 231 known miRs, 69 new miRs from known precursors, 103 NPmiRNAs, and 23 

moRNAs. Ssc-miR-10b, ssc-miR-143-3p and ssc-148a-3p together account 52% of the total 

expression, with the first two composing respectively 33% and 13% of the expression. 

Only 24 known miRNAs (5.6% of the expressed sRNAs) account for the 90% of the total 

expression. Notably, only 21% of expressed sRNAs account the 99% of the total 

expression (Figure 34). These findings are consistent with our previous work carried out 

on a smaller sample size of ILW pig backfat (Gaffo et al., 2014 and chapter “miRNome of 

Italian Large White pig subcutaneous fat tissue: new miRNAs, isomiRs and moRNAs”, with 

214 known miRNAs commonly identified by the two works. 

Differentially expressed sRNAs 

Comparing the expression profiles between the LEAN and FAT samples, we found 31 

differentially expressed sRNAs (DEMs) (Table 13): 18 known miRNAs, 6 new sister 

miRNAs, 6 miRNAs from new precursors and ssc-moR-21-5p that was validated in 

previous work. DEM absolute fold changes ranged between -0.97 (ssc-miR-362-3p) and 

0.97 (ssc-miR-146b), with expression levels ranging from 52.8 (ssc-miR-362-3p) to 

243,835.8 (ssc-miR-199a-3p) mean read count.  
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Table 13. List of differentially expressed small RNAs. For each small RNA the table indicates 
expression estimate, log2 fold change in sample comparison, small RNA group and predicted 
sequence. The table is ordered according to fold change expression. 

sRNA Mean reads 
Log2 

(FAT / 
LEAN) 

Expr. 
in FAT 

FDR sRNA group sRNA mature sequence 

ssc-miR-146b 20131,80 0,97 up 0,01 Known ugagaacugaauuccauaggc 

ssc-miR-365-5p 799,48 0,89 up 0,00 Known gagggacuuucaggggcagcugu 

chr9_40038-5p 21,81 0,83 up 0,01 NPmiRNA cuccuggcuggcucgcca 

ssc-miR-221-5p 2916,44 0,77 up 0,01 Known accuggcauacaauguagauuucugu 

ssc-moR-21-5p 9,63 0,76 up 0,01 moRNA ctccatggctgtaccaccttgtcgg 

ssc-miR-222 2863,37 0,75 up 0,01 Known agcuacaucuggcuacugggucuc 

chr5_31322-3p 27,77 0,72 up 0,01 NPmiRNA ucugagaugugaccugggcau 

JH118494-
1_44794-3p 

11,40 0,72 up 0,01 NPmiRNA ucugagaugugaccugggcau 

chr7_37486-3p 24,49 0,69 up 0,02 NPmiRNA aagucccaucugggucgcc 

chr3_26283-5p 30,91 0,69 up 0,00 NPmiRNA uuggcucugcgaggucggcuca 

ssc-miR-128-1-5p 138,40 0,53 up 0,02 New sister cggggccgtagcactgtctgag 

ssc-miR-132 55877,75 0,50 up 0,03 Known uaacagucuacagccauggucg 

ssc-miR-1306-5p 70505,29 0,47 up 0,02 Known ccaccuccccugcaaacgucca 

GL896302-
1_48155-5p 

12,42 0,39 up 0,02 NPmiRNA ucucugggccugugucuuaggcu 

ssc-let-7c 2435309,05 -0,32 down 0,01 Known ugagguaguagguuguaugguu 

ssc-miR-130a 56716,38 -0,38 down 0,02 Known cagugcaauguuaaaagggcau 

ssc-miR-181c 9716,73 -0,39 down 0,01 Known aacauucaaccugucggugagu 

ssc-miR-214-5p 93,15 -0,42 down 0,00 New sister tgcctgtctacacttgctgtgc 

ssc-miR-199a-5p 5221,81 -0,44 down 0,00 Known cccaguguucagacuaccuguuc 

ssc-miR-199a-3p 5352,48 -0,45 down 0,01 Known acaguagucugcacauugguua 

ssc-miR-199b-3p 5118,61 -0,45 down 0,01 Known uacaguagucugcacauugguu 

ssc-miR-99a-3p 56,14 -0,47 down 0,00 New sister caagctcgcttctatgggtctg 

ssc-miR-195 6255,99 -0,50 down 0,02 Known uagcagcacagaaauauuggc 

ssc-miR-101-2-5p 152,31 -0,61 down 0,02 New sister tcagttatcacagtgctgatgct 

ssc-miR-193a-3p 6485,75 -0,62 down 0,02 Known aacuggccuacaaagucccagu 

ssc-miR-136-3p 133,91 -0,63 down 0,02 New sister catcatcgtctcaaatgagtct 

ssc-miR-335 1118,26 -0,75 down 0,02 Known ucaagagcaauaacgaaaaaug 

ssc-miR-133a-3p 52301,03 -0,79 down 0,03 Known uugguccccuucaaccagcug 

ssc-miR-545-3p 381,19 -0,81 down 0,04 Known aucaacaaacauuuauugugug 

ssc-miR-136 32337,35 -0,94 down 0,01 Known acuccauuuguuuugaugaugga 

ssc-miR-362-3p 76,01 -0,97 down 0,01 New sister aacacacctattcaaggattc 

Figure 34. Cumulative sRNA average expression in LEAN and FAT groups  
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Small RNAs up- and down-regulated in FAT were 14 and 17 respectively. SRNAs Up-

regulated in FAT were mainly new elements (6 from new precursor, plus ssc-moR-21-5p 

and ssc-miR-128-1-5p), while sRNAs down-regulated in FAT were all from already 

annotated precursors: 12 known miRNAs and 5 new sister miRNAs. From Figure 35 we 

see how this set of DEMs discriminates the LEAN and FAT samples using unsupervised 

clustering. For twelve DEMs among the 25 deriving from known hairpins (let-7c, miR-99a-

3p, miR-130a, miR-132, miR-146b, miR-181c, miR-193a-3p, miR-199a-5p, miR-221-5p, 

miR-222, miR-335, and moR-21-5p) have orthologs and member of the same miRNA 

family associated to adipose tissue, adipogenesis and obesity from studies in humans and 

mice (Arner and Kulyté, 2015; Chen et al., 2013; Hilton et al., 2013; McGregor and Choi, 

2011).  

We validated by qRT-PCR the 

differential expression of 9 

DEMs, including 4 known, 4 

new sisters and ssc-moR-21-

5p. As shown in Figure 36 log2 

fold changes agree between 

RNA-seq and qRT-PCR 

expression estimates (0.88 

Pearson correlation; for 

technical details on validation 

Figure 35. Heatmap of DEMs. 
Rows of the heatmap represent 
the 31 DEMs, columns 
correspond to samples. The 
heatmap cells are coloured 
according to the deviance of the 
sRNA expression in the sample 
from the average expression of 
the sRNA. Red cells represent 
sRNAs expressed more than their 
mean expression across all 
samples (white); blue cells 
represent sRNAs expressed less 
than their mean expression. 
Color intensity is proportional to 
the difference from the mean, in 
the regularized logaritmic scale. 
Notably, the clustering of 
samples, using Pearson 
correlation as distance measure 
and complete linkage, shows a 
perfect separation of the LEAN 
and FAT samples. Sex of the 
samples seems not to have 
influence on the clustering, 
instead. 
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procedure referer to Gaffo et 

al. (2014)). From we observe 

that five sRNAs have a 

significant (P-value <0.05) 

statistical test, including ssc-

miR-99a-3p and ssc-miR-214-

5p new sister miRNAs. 

According to the validation 

assay, ssc-moR-21-5p has a 

less stringent significance 

(<0.1).  

 

 

 

 

Table 14. Log2 fold changes of FAT/LEAN average expression values (in 18 backfat samples) 
measured with RNA-seq and qRT-PCR (Δ ΔCt). T-test is reported for qRT-PCR assays. 

Mature sRNA RNA-seq qRT-PCR T-test P-value 
sRNA 

category 

ssc-miR-136 -0,94 -1,27 0,00 Known 

ssc-miR-199a-5p -0,44 -0,76 0,00 Known 

ssc-miR-99a-3p -0,47 -0,66 0,02 New sister 

ssc-miR-214-5p -0,42 -0,74 0,02 New sister 

ssc-miR-146b 0,97 1,19 0,04 Known 

ssc-moR-21-5p 0,76 0,61 0,07 moRNA 

ssc-miR-222 0,75 0,34 0,21 Known 

ssc-miR-362-3p -0,97 -0,19 0,46 New sister 

ssc-miR-128-1-5p 0,53 0,29 0,80 New sister 

DEM isomiR composition 

IsomiRs were investigated for 24 miRNAs (18 known and 6 novel-precursor miRNAs). We 

considered isomiRs composing at least 10% of the corresponding miRNA expression and 

discarding very rare isoforms. We detected 59 distinct isomiRs, specifically 58 in LEAN 

and 55 in FAT (54 in common). Four isomiRs were specific for LEAN samples and one was 

specific for FAT (Table 15). Three miRNAs (chr7_37486-3p, ssc-miR-136 and ssc-miR-193a-3p) 

are represented by only one major isoform accounting for more than half of the miR 

Figure 36. Correlation of log2 fold change values between  
RNA-seq and qRT-PCR measures in nine small RNAs. Gray line 
is the diagonal, blue dashed line represent the fit line 
calculated according to the points. From the plot we can 
observe good correlation (Pearson 0.88)  between the two 
method measures. 
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expression. The number of isomiRs composing each DEM expression is at maximum four, 

detected in three cases (chr5_31322-3p, JH118494-1_44794-3p in both FAT and LEAN samples, 

chr9_40038-5p only in FAT samples), and 2.5 on average (Figure 37 and Figure 38). According 

to miR&moRe classification, we distinguished four types of sRNA isoforms: “exact”, “shorter or 

longer”, “one-mismatch”, “two-mismatches”. 

Table 15. LEAN and FAT group specific isomiRs 

sRNA Sequence Variation type 
Variation 
location 

Group 
specificity 

chr3_26283-5p TTGGCTCTGCGAGGTCGGCTC shorter_or_longer 3p LEAN 

ssc-miR-181c AACATTCAACCTGTCGGTGAG shorter_or_longer 3p LEAN 

ssc-miR-222 AGCTACATCTGGCTACTGGGTCTCT shorter_or_longer 3p LEAN 

ssc-miR-365-5p AGGGACTTTCAGGGGCAGCTGTGT shorter_or_longer both LEAN 

chr9_40038-5p TCCTGGCTGGCTCGCC shorter_or_longer both FAT 

Most isoforms are variations on the length (“shorter_or_longer” category are 32 out of 58 

in LEAN and 29 out of 55 in FAT), followed by the canonical (“exact”) variant (18 in both 

groups) and eight one-mismatch variation isomiRs. The two-mismatch variation is not 

found in DEM's isomiRs that we analyzed. Only less than half of DEMs (10 cases in LEAN 

and 11 in FAT) express the canonical isomiR as major form. Conversely, “shorter or 

longer” isoforms compose the largest part of the expression in 12 LEAN and 11 FAT cases. 

Notably, in 6 sRNAs do not express the exact isoform enough to reach 10% of the total 

miRNA expression (Figure 37 and Figure 38). These findings were consistent with 

previous results (Gaffo et al., 2014) showing that in pig backfat the canonical miRNA 

isoform is not always the most expressed for the miRNA. The variation observed could be 

either the result of genetic difference between the reference annotation and the 

population observed, or post-transcriptional editing of the miRNA sequencing. 

Nevertheless, analysis of isomiR expression composition revealed interesting patterns, 

particularly for the novel predicted precursor (Figure 38), that could be further studied. 

For instance, differential expression could be assessed at the isomiR level, investigating 

whether the contribution of non-canonical isomiRs is determinant of the observed 

expression variation.  

Putative sRNA-transcript regulatory interactions and QTL enrichment 

To predict miRNA target transcripts, we considered for each miRNA the isomiR sequences 

representing at least 10% of the expression of the 18 known miRNAs and the 6 NPmiRNAs that 

were differentially expressed. Regarding the 6 new sister miRNAs and ssc-moR-21-5p, we had 

only unique sequences because the miR&moRe pipeline does not perform isomiR analysis for 
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new sister miRNAs and moRNAs. 

We selected the isomiRs that 

accounted at least 10% of the 

respective miR expression, resulting 

in 59 isomiRs. Thus, we obtained 66 

sRNA sequences in total as input to 

target prediction. 

MiRanda was run with default 

parameters on the full set of 

63,418 transcript sequences 

expressed in the samples that are 

reported in chapter 

“Transcriptional profiling of 

subcutaneous adipose tissue in 

Italian Large White pigs divergent 

for backfat thickness” and in 

Zambonelli et al. (in press).  

The backfat transcript targets 

predicted for the 66 isomiRs were 

50,161, for a total of 2,680,017 

isomiR-mRNA target relations 

predicted by miRanda, 

corresponding to 699,493 sRNA-

transcript putative relations. 

Spearman correlations between 

miRNA and transcript expression 

profiles ranged from -0.9 to +0.9. 

However, only predicted relations 

with correlations < -0.4 and FDR < 

Figure 37. Known miRNAs’ 
expression isomiR composition. Each 
plot is associated to a specific legend, 
color code and maximum percentage 
shown. IsomiRs are ordered by 
expression proportion. Only isomiRs 
>10% are shown: the portion of the 
bars not reaching 100% represents 
mixture of weakly expressed isomiRs. 
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10% were kept, obtaining 

56,683 strongly negatively-

correlated sRNA-transcript 

putative relations (48,259 

sRNA-gene relations), which 

involved 22,362 transcripts 

(12,373 genes) and all the 

DEMs.  

The largest number of targets 

among known miRs is given by 

ssc-miR-365-5p (3,095 different transcripts could be targeted, corresponding to 2,624 

genes); while in absolute chr3_26283-5p has the largest number of target transcripts 

(3,383; 2,878 genes). ssc-miR-136-3p has the smallest number of targets (524; 465 genes), 

while among the new miRs, chr7_37486-3p has the minimum number of targets (1,011; 

862 genes).  

The group of the 86 differentially expressed transcripts (DETs) reported in Zambonelli et 

al. (in press), is represented by 40 transcripts (and genes) targeted by 30 DEMs, forming a 

total of 193 putative relations. The predicted relations are represented as a network in 

Figure 39. 

Then, we considered only the transcripts showing a “sizeable” variation in expression 

between the LEAN and FAT groups and focused on the DETs within 30% FDR from 

differential expression analysis in Zambonelli et al. (in press) (from now on, this set will be 

referred to as extended-DETs; eDETs). SRNA-transcript target relations were 830, 

involving 197 transcripts (195 genes) and all 31 DEMs. Chr3_26283-5p targets 48 

transcripts and ssc-miR-365-5p targets 39 transcripts, genes are the same number. Ssc-

miR-136-3p targets 11 transcripts (and genes), chr7_37486-3p targets 15 transcripts from 

different genes.  

Figure 38. New precursor 
miRNAs’ isomiR expression 
composition. Each plot is 
associated to a specific legend, 
color code and maximum 
percentage shown. IsomiRs are 
ordered by expression 
proportion. Only isomiRs >10% 
are shown: the portion of the 
bars not reaching 100% 
represents mixture of weakly 
expressed isomiRs.  



 

107 

 

In addition, we reasoned that DEMs and their putative target gene could be associated to 

relevant pig backfat quantitative trait loci (QTL).  We tested the enrichment in pig QTL for 

the eDETs putatively targeted by the DEMs. For each QTL, Enrichment was computed with 

an upper-tailed hypergeometric test for over-representation, with P-values corresponding 

Figure 39. Common DEG DEMs' predicted regulatory relations with transcripts 
showing expression variation between LEAN and FAT groups.  
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to P[X > x-1]. In other words, we give the probability to randomly select more than x-1 

genes falling in a QTL, when sampling 195 genes from the genome. To compute the test, 

we considered the whole pig genome as background, merging the genes annotated in 

Ensembl (v 10.2.80 in date 14 July 2015) with the new genes discovered from the RNA-seq 

experiment in Zambonelli et al. (in press). We obtained a total of 34,617 genes for the pig 

genome. We compared to the pig QTL annotation downloaded from the PigQTL database 

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_10.2, in date 

14 July 2015) to the gene annotation and counted the number of genes associated to each 

QTL, which were grouped by category. The same procedure was carried out to count the 

number of eDETs for each QTL and QT. By the same strategy, we retrieved the sRNAs and 

related target genes that come from a same QTL.  

Table 16 shows the enrichment in QTL with P-values smaller than 0.05. Many traits 

directly associated with backfat are present (10 out of 52) among them most enriched, 

including “average backfat thickness”. Other interesting traits are enriched, some 

associated to meat products quality, such as “ham fat thickness” and “linoleic acid 

content”; and to appetite regulation, such as “leptin level”. 

Table 16. DEM putative target genes enrichment in pig QTL. Only traits with P-value < 0.05 are 
shown. Rows are ordered according to decreasing fold enrichment.  

Trait 
Selected 
genes in 

QTL 

total 
genes in 

QTL 
P-value FDR 

Expected 
selected 

genes 

Fold 
enrichment 

Backfat at tenth rib (16 weeks) 2 6 0,008 0,140 0,0 59,2 

Backfat linear at last rib 2 8 0,015 0,175 0,0 44,4 

Phagocytic activity 2 8 0,015 0,175 0,0 44,4 

Subjective abnormal flavor in fat 3 15 0,007 0,140 0,1 35,5 

Backfat at last rib (13 weeks) 2 10 0,024 0,200 0,1 35,5 

Skatole, sensory panel 2 10 0,024 0,200 0,1 35,5 

Protein accretion rate 5 26 0,001 0,070 0,1 34,1 

Immunoglobulin G level 4 21 0,003 0,081 0,1 33,8 

Mycoplasmal pneumonia 
susceptibility 

4 21 0,003 0,081 0,1 33,8 

Total body fat tissue (22 weeks of 
age) 

3 16 0,009 0,140 0,1 33,3 

Half carcass weight 3 17 0,010 0,140 0,1 31,3 

Backfat at tenth rib (13 weeks) 2 12 0,034 0,219 0,1 29,6 

Leptin level 2 13 0,040 0,243 0,1 27,3 

pH 40 minutes post mortem (ham) 3 20 0,016 0,180 0,1 26,6 

Meat color-b 4 29 0,009 0,140 0,2 24,5 

Carcass temperature (45 minutes 
post-mortem) 

6 44 0,002 0,080 0,2 24,2 

Chew score 8 61 0,000 0,070 0,3 23,3 

Red cell distribution width 8 64 0,001 0,070 0,4 22,2 

Feed intake (35-55 kg) 4 32 0,012 0,161 0,2 22,2 

http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_10.2
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Trait 
Selected 
genes in 

QTL 

total 
genes in 

QTL 
P-value FDR 

Expected 
selected 

genes 

Fold 
enrichment 

Backfat linear at tenth rib 3 24 0,027 0,200 0,1 22,2 

Carcass temperature (24 hr post-
mortem) 

3 24 0,027 0,200 0,1 22,2 

Diameter of type I muscle fibers 8 70 0,001 0,070 0,4 20,3 

pH 96 hr post-mortem (loin) 4 37 0,021 0,200 0,2 19,2 

Backfat (22 weeks of age) 5 48 0,013 0,161 0,3 18,5 

Cooling loss 4 40 0,027 0,200 0,2 17,8 

Toll-like receptor 2 level 5 52 0,018 0,185 0,3 17,1 

NADP-malate dehydrogenase 
activity 

4 45 0,040 0,243 0,3 15,8 

CD4-positive leukocyte percentage 4 46 0,043 0,250 0,3 15,4 

NADPH-generating enzyme activity 5 58 0,028 0,200 0,3 15,3 

Total muscle fiber number 5 58 0,028 0,200 0,3 15,3 

Average glycolytic potential 4 47 0,046 0,258 0,3 15,1 

Left teat number 4 47 0,046 0,258 0,3 15,1 

Ham percentage 6 72 0,020 0,200 0,4 14,8 

Body weight (10 weeks) 9 120 0,010 0,140 0,7 13,3 

Ear erectness 12 161 0,003 0,081 0,9 13,2 

Ham fat thickness 12 162 0,003 0,081 0,9 13,1 

Backfat (17 weeks of age) 6 82 0,037 0,230 0,5 13,0 

Off-Flavor Score 7 96 0,026 0,200 0,5 12,9 

Backfat (40 kg live weight) 7 97 0,027 0,200 0,5 12,8 

Backfat (60 kg live weight) 7 97 0,027 0,200 0,5 12,8 

Shoulder weight 11 157 0,008 0,140 0,9 12,4 

Mean corpuscular hemoglobin 
content 

7 100 0,032 0,212 0,6 12,4 

Hemoglobin 13 196 0,006 0,135 1,1 11,8 

Trimmed wholesale product / live 
weight 

7 106 0,042 0,250 0,6 11,7 

Linoleic acid content 9 144 0,032 0,212 0,8 11,1 

Meat color-L 13 208 0,010 0,140 1,2 11,1 

Ham weight 21 366 0,001 0,070 2,1 10,2 

pH 24 hr post-mortem (loin) 17 300 0,007 0,140 1,7 10,1 

Loin muscle depth 13 237 0,029 0,200 1,3 9,7 

Loin muscle area 24 475 0,003 0,081 2,7 9,0 

Carcass length 19 382 0,018 0,185 2,2 8,8 

Average backfat thickness 22 486 0,029 0,200 2,7 8,0 

 

3.2.3 CONCLUSIONS 

In this study, we characterized the miRNome of Italian Large White pig backfat on a larger 

set of samples and with updated annotation with respect to our previous work (chapter 

“miRNome of Italian Large White pig subcutaneous fat tissue: new miRNAs, isomiRs and 

moRNAs” and (Gaffo et al., 2014)). As expected, because the samples of the two studies 
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were taken from the same population of pigs with similar criteria and in the same 

conditions, we observed large overlap between the results, in terms of detected sRNAs, 

expression level distribution and sequence variation patterns. In processing the data, we 

were conservative and used stringent filtering criteria both for input read quality and 

novel precursor selection that greatly reduced the initial amount of input reads and novel 

findings.  

Comparing the expression profiles between FAT and LEAN samples, we identified a set of 

31 significantly differentially expressed small RNAs (DEMs), which well separated the two 

groups in unsupervised cluster analysis. Overexpressed and underexpressed DEMs were 

approximately equally numerous (14 vs. 17). Overexpressed DEMs included many novel 

sequences, while underexpressed elements derived all from already annotated precursors. 

Nearly half of DEMs were reported in other studies on humans and mice to be involved in 

important pathways related to adipose tissue and to play important roles in adipogenesis, 

adipose tissue homeostasis, and obesity. In addition, by custom target predictions 

combined with transcriptome expression profile correlation, we obtained miRNA-

transcript putative regulatory interactions occurring in the tissue. We considered the 

relation network that comprised a set of 85 genes differentially expressed between the 

FAT and LEAN groups, as reported in our previous work (chapter “Transcriptional 

profiling of subcutaneous adipose tissue in Italian Large White pigs divergent for backfat 

thickness” and Zambonelli et al. (in press)), which we are currently studying in details. 

Despite a small set of selected interactions can provide a starting point for further 

investigation, we reasoned that miRNAs could impact on the expression variation also for 

transcripts with less significant difference of expression, yet inducing meaningful 

cumulative effects. For this reason, we considered a larger set of transcripts modulated 

between FAT and LEAN groups and targeted by DEMs; many of them were enriched in 

backfat- and meat quality- related pig QTL, further supporting their putative involvement 

in backfat deposition and fat traits. Additional analyses considering involvement of 

putative target transcripts in specific pathways important for adipose tissue functions will 

help us to study the impact to regulatory pathways of specific or groups of miRNAs. 
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4 CONCLUSION AND PERSPECTIVES 

Within the last decade we have seen a dramatic increase in the use of RNA-seq for 

transcriptomic experiments. RNA-seq technologies speeded up the process of sequencing 

cell transcripts and promise future improvements in accuracy, running time, and 

requirements. With respect to previous sequencing technologies, there has been an 

inversion in the timings of experiment processes. High-throughput sequencing produces 

large amount of data in a relatively short time. Currently, bioinformatics analysis is the 

new bottleneck in the process toward informative results (Funari and Canosa, 2014). 

Difficulties emerged first in the development of methods and software able to process big 

amounts of data; and single software tools were improved to perform better both in 

accuracy and computational resources requirements. The use of integrative frameworks 

that automate the execution of sequential tasks and parallelize the execution of 

independent steps can reduce computation time and human errors, but also enhance data 

analysis reproducibility (Nekrutenko and Taylor, 2012). Computational genomic research is 

evolving on these aspects, like The Galaxy Project (Goecks et al., 2010), an open web-based 

platform, which aims at supporting accessibility of complex computational resources, 

reproducibility, and communication of the results within an unified environment. 

Nevertheless, the diversity of experimental design and the wide range of experiment type 

that are possible with RNA-seq technologies hindered the formulation of a commonly 

adopted framework, and standard procedures have not yet emerged. Thus, this thesis 

produced both methodological and applicative results. 

I developed an automated, modular, and parallelized computational pipeline for the 

characterization of transcriptomes from RNA-seq data by selecting, implementing, and 

combining the various software tools that perform the pipeline steps. The application of 

the pipeline to sequencing data of 20 pig adipose tissue samples resulted in the 

characterization of the sequences and abundance estimation of the transcripts expressed 

in the samples, including more than 15,000 putative novel transcripts from non-annotated 

pig genomic regions and more than 34,000 novel isoforms of known genes, including 

important genes involved in adipose tissue functions, such as PLIN2. Novel transcripts 

were characterized by comparative sequence analysis and coding potential prediction, 

providing annotation for large part of these new findings that will be further investigated, 

especially to experimentally validate their expression and assess their structure. 

Moreover, the comparison of expression profiles between two groups of individuals that 

showed extreme and divergent phenotypes for backfat thickness allowed the 

identification of differentially expressed genes and transcripts. Functional analysis of gene 
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and transcripts differentially expressed in fattest animals showed a decreased expression 

of heat shock proteins and an increased expression of many genes modulating fat 

physiological processes or related to inflammatory status and immune response. For 

instance, an increase in the expression of INHBB and SPP1 linked to cytokine production 

and the higher expression of ENPP1 and PIK3AP1 may indicate a status of insulin 

resistance, one of the typical signals connected with obesity. Our results agree with recent 

studies showing that increased adiposity and impaired stress response may activate 

inflammation. Several immune system and anti-inflammatory processes are activated and 

play a critical role in the response to fat accumulation in porcine backfat tissue. High fat 

accumulation in adipose tissue of pigs can determine the development of an inflammatory 

process producing a cascade of defense and adaptive reactions in the tissue, such as 

activation of the immune system and mesenchymal cells differentiation in adipocytes. A 

deeper knowledge of the metabolic processes involved in fat deposition can be very 

important in developing the use of pig as a model species to study obesity and related 

disorders for humans. 

The methods presented here are currently undergoing further development and 

extensions, and have applications well over and above those presented in this thesis. 

Because of experimental design, the transcriptome described in this manuscript referred 

only to long polyadenylated transcripts and did not consider other RNA species that lack 

poly(A) tails, such as many lncRNAs and circRNAs. Differently from the traditional 

poly(A)+ enriched RNA-seq libraries, which was used in our experiment, appropriate 

library preparation strategies are required to investigate the poly(A)- fraction. The use of 

ribosomal RNA-depletion protocols in RNA-seq experiments can increase discovery power 

and provide data suitable for the expression profiling of both poly(A)+ and poly(A)- 

transcripts. The combined use of these protocols with new computational methods in 

downstream analysis, recently allowed the investigation of novel classes of RNAs, for 

instance circRNAs (Jeck and Sharpless, 2014). The pipeline for circRNAs detection 

presented in this thesis represents an initial approach to improve transcriptome 

characterization, and is currently under development with the perspective of its 

application to a study on circRNAs in hematopoiesis. In particular, we are combining the 

quantification of linear transcripts extending also to poly(A)- sequences; and focusing on 

the comparison of expression proportion between poly(A)+ and poly(A)- transcripts, and 

between the proportion of circular to linear expression estimates. This approach will 

allow us to have a more complete profiling of the transcriptome under study, and by the 

integration with miRNome profiling, could contribute to the study of gene expression 

regulation. 
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Regarding small RNAs, we improved the miR&moRe pipeline for the analysis of small RNAs 

from RNA-seq data. We provided the possibility of application of the pipeline also to non-

human data and enhanced the discovery power by allowing the identification of novel 

miRNA precursors. The small RNA fraction of the same set of pig backfat samples used for 

transcriptome reconstruction was sequenced to characterize the miRNome of pig adipose 

tissue and to investigate its underlying regulatory mechanisms. We applied our 

computational method for small RNA data using used stringent quality parameters and 

identified more than 400 expressed elements, which corroborated preliminary results 

from the analysis on two samples. Nearly half of the detected sequences were unknown 

small RNAs, including new miRNAs from known precursor, new miRNA precursors, new 

isomiRs, and many moRNAs. Experimental validation confirmed our expression estimates, 

especially for some novel small RNAs such as ssc-moR-21-5p. Comparison between sample 

groups identified 31 significantly differentially expressed small RNAs for which further 

examination about sequence variations was carried out. This highlighted non-canonical 

expression patterns regarding miRNAs’ isomiR composition, which deserve additional 

investigation. Computational prediction tools of miRNA targets are usually centered on 

few model organism, mainly human and mouse. To investigate the putative small RNA-

transcript regulatory interactions in pig adipose tissue, we set up custom methods 

exploiting the matched comparison of the profiled transcriptome and miRNome. The 

predicted relations and the corresponding network representation reported already 

provide a starting point to explore the complex regulatory mechanisms underlying pig 

adipose tissue biology. Additional investigation will consider synergistic action of miRNA 

expression impacting on post-transcriptional expression regulation of genes involved in 

pathways related to adipose tissue development and maintenance, whose coordinated 

expression modulation might have a biological significance beyond the differential 

expression at level of single gene. 

In summary, the computational pipelines developed in this thesis allowed effective 

analysis of a complex RNA-seq experiment; yet, our methods are undergoing further 

improvements, and could be used also for other studies. Finally, the applicative results of 

this thesis enlarged the knowledge of transcripts and small RNAs expressed in the pig 

adipose tissue, as well as small RNA-transcripts regulatory interactions, providing 

information helpful for a better understanding of ILW pig backfat and future studies on 

gene expression regulation in this tissue. 
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