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Summary: English 

The World Health Organization warns that, in 2000, as many as 33 million Europeans suffered from 

diabetes, approximately 15% will likely develop foot ulcers, and approximately 15% to 20% of 

these patients will face lower-extremity amputation. In 2004, an estimated 3.4 million people died 

from consequences of high blood sugar. Diabetic neuropathy is the most common chronic 

complication associated with diabetes mellitus, affecting 20–50% of diabetic patients 10 years after 

their diagnosis. Peripheral neuropathy and peripheral arterial disease are the most common and 

invalidating diabetes’s complications, involved in the pathogenesis of diabetic foot. They account 

for the leading cause of non-traumatic lower limb amputations. It results from two factors. The first 

one is a reduced blow of blood in the inferior limbs, caused from the presence of obliterating 

peripheral arteriopathy disease. The second is the progressive laceration of nervous fibers 

(neuropathy) that cause a reduction of the sensitivity (also to the pain) and of the ability of 

movement, and that helps the appearance of lesions. Together with diabetes falls in older adults are 

a big public health concern and have provided much of the motivation for research into age-related 

changes in human gait. Tripping during walking is the predominant cause of falls not only in the 

elderly but also in the neuropathic subjects. Trips can occur during walking on a level ground, but 

also during crossing visible obstacle, stair ascending and descending. The social and economic 

weight of the diabetic foot and the tragic consequences that brings with it can be reduced through a 

prompt diagnosis and treatment from the very beginning. The aim of this thesis, was to evaluate 

differences in gait parameters, in performing stair ascending and descending task and evaluation of 

muscle fatigue during treadmill protocol in diabetes subjects with and without complications, in 

order to provide a further tool for early diagnosis which allows clinicians to change, if is necessary, 

or only to control, as soon as possible, the follow-up of patients according to their specific 

characteristics. 
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Summary: Italian 

L'Organizzazione Mondiale della Sanità avverte che, nel 2000, ben 33 milioni di europei hanno 

sofferto di diabete, circa il 15% probabilmente svilupperà ulcere del piede, e circa il 15-20% di 

questi pazienti si troveranno ad affrontare l'amputazione degli arti inferiori. Nel 2004 5.2 milioni di 

persone sono morte a causa degli elevati livelli di zucchero nel sangue. La neuropatia periferica è la 

complicanza diabetica cronica più frequente e colpisce dal 20 al 50% dei pazienti diabetici a 

distanza di 10 anni dalla diagnosi. Neuropatia e vasculopatia periferica sono le complicanze del 

diabete più comuni e invalidanti, e le maggiori responsabili della patogenesi del piede diabetico. 

Insieme rappresentano la principale causa di amputazioni non traumatiche degli arti inferiori. La 

vasculopatia periferica causa un ridotto apporto di sangue agli arti inferiori, mentre la neuropatia 

periferica si manifesta attraverso la lacerazione progressiva delle fibre nervose che causa una 

riduzione della sensibilità (anche al dolore) e della capacità di movimento, che provoca di 

conseguenza la comparsa di lesioni. Insieme al diabete, le cadute nella popolazione anziana sono 

una grande preoccupazione per la sanità pubblica e sono state la spinta motivazionale per la 

maggior parte delle ricerche svolte nell’ambito delle alterazioni del cammino nell’uomo. 

Inciampare durante il cammino è la causa predominante delle cadute, non solo negli anziani, ma 

anche nei soggetti neuropatici e può accadere non solo durante il cammino su un terreno 

pianeggiante, ma anche su terreni sconnessi o durante la salita e la discesa di una scala. Il peso 

sociale ed economico del piede diabetico, assieme alla drammatiche conseguenze che porta con sè 

possono essere ridotti attraverso una diagnosi tempestiva e un trattamento immediato 

preferibilmente antecedente alla diagnosi clinica. L'obiettivo primario di questa tesi, è stato quello 

di valutare la presenza di alterazioni nelle attivazioni muscolari in soggetti diabetici con e senza 

complicanze durante l’esecuzione di diversi task motori con il fine ultimo di valutare se questo tipo 

di acquisizioni fossero in grado di fornire ai clinici un ulteriore strumento per la diagnosi precoce 

che consenta loro di modificare, se necessario, o semplicemente di valutare l’efficacia del follow-up 

dei pazienti in base alle loro caratteristiche specifiche. 
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1.Introduction 

1.1 Background 

Diabetes mellitus is a chronic disease widely used in the population and continuously increasing. 

The disease long term complications are multiple and invalidating, among these the diabetic foot, 

drifted from the contemporary presence of peripheral neuropathy and peripheral arterial disease, 

that altering the biomechanics of the foot, can carry to callosity formation and ulcerations. Diabetic 

neuropathy is the most common chronic complication associated with diabetes mellitus, affecting 

20–50% of diabetic patients 10 years after their diagnosis and leads to a progressive loss of 

somatosensory sensitivity, proprioception and distal muscle function especially in the lower limbs, 

which may cause an alteration of the motor control during gait and during static posture [1]. 

Peripheral neuropathy and peripheral arterial disease are the most common and invalidating 

diabetes’s complications, involved in the pathogenesis of diabetic foot. They account for the leading 

cause of non-traumatic lower limb amputations. It results from two factors. The first one is a 

reduced blow of blood in the inferior limbs, caused from the presence of obliterating peripheral 

arteriopathy disease (PAD). PAD is a chronic obstructive disease of the arteries of the lower limb 

caused by atherosclerosis. The decrease in blood flow can result in symptoms of pain in the lower 

limb on exercise, known as intermittent claudication. Exercise induced pain is experienced in the 

calves, thigh or buttocks restricting activities of daily living and thus reducing quality of life. The 

second is the progressive laceration of nervous fibers (neuropathy) that cause a reduction of the 

sensitivity (also to the pain) and of the ability of movement, and that helps the appearance of 

lesions.  

Together with diabetes falls in older adults are a major public health concern and have provided 

much of the motivation for research into age-related changes in human gait. Tripping during 

walking is the predominant cause of falls not only in the elderly but also in the neuropathic subjects. 

Trips can occur during walking on a level ground, but also during crossing visible obstacle, stair 

ascending and descending. The social and economic weight of the diabetic foot can be reduced 

through a prompt diagnosis and treatment from the very beginning. The World Health Organization 

warns that, in 2000, as many as 33 million Europeans suffered from diabetes, approximately 15% 

are likely to develop foot ulcers, and approximately 15% to 20% of those patients will face lower-

extremity amputation. Diabetic foot problems are related to, peripheral neuropathy, foot trauma, 

foot deformity, increased foot pressures, and callus [2]. Mortality and morbidity related to 

ulceration is still high and healed ulcers often recur [3]. Distal symmetric sensorimotor 

polyneuropathy, is primarily confined to the axons of small and large-fiber sensory afferents. The 
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result is a ”stocking feet” pattern of sensory loss that begins in the toes and progresses proximally 

[4]. Peripheral neuropathy patients exhibit decreased stability while standing [5-7] as well as during 

dynamic conditions [8]. Several authors [9,10] found gait pattern deviations in diabetic patients 

with peripheral neuropathy (DPN) and without peripheral neuropathy (NoDPN). For instance 

important deviations were revealed in hip, knee, ankle joints and trunk moment patterns over the 

entire stance phase of gait in both DPN and NoDPN subjects [10]. These findings established the 

need for investigating the role of muscles activation in diabetic gait abnormalities even when 

neuropathy is not present. A few authors [11,12] reported abnormalities in the electromyographic 

(SEMG) pattern of vastus lateralis and tibialis anterior, soleus, medial and lateral gastrocnemius 

and, medial hamstrings of DPN subjects. However to our knowledge, the SEMG patterns of  

NoDPN have not been investigated yet. The aim of this thesis, was to evaluate differences in gait 

parameters, in performing stair ascending and descending task and evaluation of muscle fatigue 

during treadmill protocol in diabetes subjects with and without complications, in order to provide a 

further tool for early diagnosis which allows clinicians to change as soon as possible the follow-up 

of patients according to their specific characteristics. 

 

1.2 Aim 

The aim of this thesis is to investigate the role of muscles activation in diabetic subjects gait in 

presence of neuropathy, vasculopathy or none of the two. The present project was carried on in 

collaboration with the Bioengineering of Movement Lab at the Department of Information 

Engineering of Padova, the Department of Clinical Medicine and Metabolic Disease of the 

University of Padova and the Department of Electronics of the Polytechnic of Torino. 

 

1.3 Thesis Outlines 

The Thesis is articulated as follows. 

Chapter 2 depicts diabetes pathology, its characteristics and its history;  

Chapter 3 presents the results about analysis of dynamic surface electromyography (SEMG) during 

gait on fifty subjects (mean ± SD age 58.9±8.7, mean ± SD BMI 25.9±5.9): 10 were healthy 

(control subjects (C)), 20 were NoDPN, 20 were DPN. Results of this study has been published in 

Sawacha and Spolaor et al 2012 [13]. 

In Chapter 4 the results about dynamic surface electromyography (SEMG) during rising up and 

down from a stair were presented. 43 patients were enrolled in the study: 17 NoDPN, 15 DPN and 

11  C (mean ± SD age 58.5±10.2, mean ± SD BMI 25.7±2.8).  
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In Chapter 5 the results about dynamic surface electromyography (SEMG) during treadmill exercise 

in diabetic patient with and without PAD were reported. 39 subjects were recruited from the 

patients attending the outpatient clinic of the Department of Metabolic Disease at the University of 

Padova (Italy) as well as from university personnel: 10 C (mean age 58,0±12,3; mean BMI 

23,1±4,8), 13 diabetic patients without PAD (NoPAD) (mean age 57±14,3; mean BMI 25,4±6,4), 

and 16 diabetic patient with PAD (DPAD)   (mean age 64,3 ±7 mean BMI 26,3±2,7). 
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2. Diabetes Mellitus 

Clinical features similar to diabetes mellitus were described 3000 years ago by the ancient 

Egyptians. The term "diabetes" was first coined by Araetus of Cappodocia (81-133AD). Later, the 

word mellitus (honey sweet) was added by Thomas Willis (Britain) in 1675 after rediscovering the 

sweetness of urine and blood of patients (first noticed by the ancient Indians). It was only in 1776 

that Dobson (Britain) firstly confirmed the presence of excess sugar in urine and blood as a cause of 

their sweetness. In modern time, the history of diabetes coincided with the emergence of 

experimental medicine. An important milestone in the history of diabetes is the establishment of the 

role of the liver in glycogenesis, and the concept that diabetes is due to excess glucose production 

Claude Bernard (France) in 1857. The role of the pancreas in pathogenesis of diabetes was 

discovered by Mering and Minkowski (Austria) 1889. Later, this discovery constituted the basis of 

insulin isolation and clinical use by Banting and Best (Canada) in 1921. Trials to prepare an orally 

administrated hypoglycemic agent ended successfully by first marketing of tolbutamide and 

carbutamide in 1955 [14] 

Diabetes is a chronic disease, which occurs when the pancreas does not produce enough insulin, or 

when the body cannot effectively use the insulin it produces. This leads to an increased 

concentration of glucose in the blood (hyperglycaemia).  Type 1 diabetes (previously known as 

insulin-dependent or childhood-onset diabetes) is characterized by a lack of insulin production. 

Type 2 diabetes (formerly called non-insulin-dependent or adult-onset diabetes) is caused by the 

body’s ineffective use of insulin. It often results from excess body weight and physical inactivity. 

Gestational diabetes is hyperglycaemia that is first recognized during pregnancy. The World Health 

Organization warns that, in 2000, as many as 33 million Europeans suffered from diabetes, 

approximately 15% are likely to develop foot ulcers, and approximately 15% to 20% of those 

patients will face lower-extremity amputation. 

Always WHO warns that at moment 346 million people worldwide have diabetes. In 2004, an 

estimated 3.4 million people died from consequences of high blood sugar. WHO projects that 

diabetes deaths will double between 2005 and 2030 (Figure 1) [15] 
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Figure 1 Prevalence of diabetes in the world (WHO) 

 

Diabetes increases the risk of heart disease and stroke, 50% of people with diabetes die of 

cardiovascular disease (primarily heart disease and stroke). Combined with reduced blood flow, 

neuropathy in the feet increases the chance of foot ulcers and eventual limb amputation. Diabetic 

retinopathy is an important cause of blindness, and occurs as a result of long-term accumulated 

damage to the small blood vessels in the retina. After 15 years of diabetes, approximately 2% of 

people become blind, and about 10% develop severe visual impairment. Diabetes is among the 

leading causes of kidney failure. 10-20% of people with diabetes die of kidney failure. Diabetic 

neuropathy is damage to the nerves as a result of diabetes, and affects up to 50% of people with 

diabetes. More than 80% of diabetes deaths occur in low- and middle - income countries (Figure 2) 
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Figure 2 Distribution of diabetic disease in Devoloped and Developing Countries 

 

Although many different problems can occur as a result of diabetic neuropathy, common symptoms 

are tingling, pain, numbness, or weakness in the feet and hands. The overall risk of dying among 

people with diabetes is at least double the risk of their peers without diabetes [15]. 

 

2.2 Diabetes Complications 
Diabetes is characterized by elevated morbility and mortality. Of the 52.8 million deaths occurred 

globally in 2010, 1.3 million were due to diabetes, twice as many as in 1990 [16]. One person with 

diabetes has a lifespan shortened of about 6 years [17], showing a risk of death of 3.03 (95% CI 

2.59-3.55) for the decades 40-59 years, compared to the non diabetic counterpart. Because of this 

elevated morbidity and mortality, diabetes represents an economic burden, with serious implications 

for the public health systems. Accordingly, the need of effective tools aimed to the prevention of its 

chronic complications is urgent and cannot be deferred [18]. Among the chronic complications of 

diabetes, diabetic foot problems are very common and can lead to much morbidity and some 

mortality: foot disease represents the leading cause of non-traumatic lower-limb amputation in the 

developed world [19]. Of all amputations in diabetic patients, 85% are preceded by a foot ulcer 
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which can subsequently deteriorate to a severe infection or gangrene [19,20]. Three main 

pathologies, which can occur singly or in combination, contribute to foot disease in individuals with 

diabetes, i.e. diabetic peripheral neuropathy, peripheral arterial disease and infections; the most 

important factors related to the development of foot ulcers are peripheral neuropathy, minor foot 

trauma, foot deformity and decreased tissue perfusion [21-23]. Diabetic neuropathy is the most 

common cause of peripheral neuropathy in the world, and affects more than half of the patients with 

diabetes [22-24]. Diabetic neuropathy is a major cause of disability and health care expense. 

Peripheral vascular disease and neuropathy are frequently present in the same patient [25]. The 

clinical consequences of peripheral neuropathy, and possibly vasculopathy, are ulceration, Charcot 

foot [26] and foot deformity, painful diabetic neuropathy, gangrene and amputation. For these 

reasons the management of diabetic foot problems is a complex clinical challenge, that needs the 

involvement of multidisciplinary teams, including several competences, from the initial assessment 

to the management of a very complex disease. Recurrence of ulcers is common [27], so good foot 

health education, adequate footwear and regular podiatry (if necessary) must be an integral part of 

the patient's review process. In this scenario, the role of prevention is mandatory, because the early 

identification of diabetic patients at risk for foot disease should significantly reduce the burden of 

this complication. 

 

2.2.1 Peripheral Neuropathy 

 Diabetic neuropathies are a family of nerve disorders caused by diabetes. People with diabetes can, 

over time, develop nerve damage throughout the body. Some people with nerve damage have no 

symptoms. Others may have symptoms such as pain, tingling, or numbness-loss of feeling-in the 

hands, arms, feet, and legs. Nerve problems can occur in every organ system, including the 

digestive tract, heart, and sex organs. 

About 60 to 70 percent of people with diabetes have some form of neuropathy. People with diabetes 

can develop nerve problems at any time, but risk rises with age and longer duration of diabetes. The 

highest rates of neuropathy are among people who have had diabetes for at least 25 years. Diabetic 

neuropathies also appear to be more common in people who have problems controlling their blood 

glucose, also called blood sugar, as well as those with high levels of blood fat and blood pressure 

and those who are overweight. 

As a result, many wounds go unnoticed and progressively worsen as the affected area is 

continuously subjected to repetitive pressure and shear forces from ambulation and weight bearing.  
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 Neuropathy is manifested in the motor, autonomic, and sensory components of the nervous system 

[21]. Damage to the innervations of the intrinsic foot muscles leads to an imbalance between flexion 

and extension of the affected foot leading to ischemia, which will promote nerve cell injury and 

death. Hyperglycemia and oxidative stress also contribute to the abnormal glycation of nerve cell 

proteins and the inappropriate activation of protein kinase C, resulting in further nerve dysfunction 

and ischemia 

 

2.2.2 Peripheral arterial disease 

PAD is a contributing factor to the development of foot ulcers in up to 50% of cases [27,28]. It 

commonly affects the tibial and peroneal arteries of the calf. Endothelial cell dysfunction and 

smooth cell abnormalities develop in peripheral arteries as a consequence of the persistent 

hyperglycemic state [23]. There is a resultant decrease in endothelium-derived vasodilators leading 

to constriction. Further, the hyperglycemia in diabetes is associated with an increase in 

thromboxane A2, a vasoconstrictor and platelet aggregation agonist, which leads to an increased 

risk for plasma hypercoagulability. There is also the potential for alterations in the vascular 

extracellular matrix leading to stenosis of the arterial lumen [28]. Cumulatively, this leads to 

occlusive arterial disease that results in ischemia in the lower extremity and an increased risk of 

ulceration in diabetic patients.  

Potential risk factors for PAD include elevated levels of C-reactive protein (CRP), fibrinogen, 

homocysteine, apolipoprotein B, lipoprotein(a), and plasma viscosity. In people with diabetes, the 

risk of PAD is increased by age, duration of diabetes, and presence of peripheral neuropathy. The 

true prevalence of PAD in people with diabetes has been difficult to determine, as most patients are 

asymptomatic, many do not report their symptoms, screening modalities have not been uniformly 

agreed upon, and pain perception may be blunted by the presence of peripheral neuropathy. For 

these reasons, a patient with diabetes and PAD may be more likely to present with an ischemic ulcer 

or gangrene than a patient without diabetes.  

Peripheral artery disease symptoms include:  

� painful cramping in hip, thigh or calf muscles after activity, such as walking or climbing 

stairs (intermittent claudication) 

� leg numbness or weakness 

� coldness in lower leg or foot, especially when compared with the other side 

� sores on toes, feet or legs that won't heal 

� change in the color of legs 

� hair loss or slower hair growth on feet and legs 
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� slower growth of toe nails 

� shiny skin on legs 

� No pulse or a weak pulse in legs or feet 

 

Intermittent claudication is the primary symptom of PAD, the condition causing reduced flow of 

blood and oxygen to tissues. Claudication comes from the Latin word "to limp." Claudication is 

crampy leg pain that occurs during exercise, especially walking. The pain is due to insufficient 

blood flow in the legs (caused by blocked arteries). Intermittent means the pain comes and goes. 

Intermittent claudication is the most prominent symptom of PAD. The arterial obstruction or 

narrowing causes a reduction in blood flow during exercise or at rest. Clinical symptoms are caused 

by the consequent ischemia. The most common symptom of peripheral arterial disease is a pain 

upon exertion – intermittent claudication. The pain usually occurs in the calf and is described as a 

cramp or tightness or severe fatigue. The pain is usually bilateral. The cause of pain is not only 

reduced oxygen delivery, but also an increase in the production of toxic metabolites and cellular 

free radicals. These free radicals accumulate and react with the lipid constituents of the cell 

membrane. Patients with PAD and diabetes thus may present later with more severe disease and 

have a greater risk of amputation. Moreover, the presence of PAD is a marker of excess 

cardiovascular risk. It is important to diagnose PAD in patients with diabetes to elicit symptoms, 

prevent disability and limb loss, and identify a patient at high risk of MI, stroke, and death. 

Diagnosis of PAD is composed by ABI index and assessment of the posterior tibial and pedal pulses 

of both leg. 
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3. Comparison Of Muscle Activity During Walking In Subjects With 
And Without Diabetes 

3.1 Background 
Neuropathy in diabetic patients is manifested in the motor, autonomic, and sensory components of 

the nervous system [21]. Damage to the innervations of the intrinsic foot muscles leads to an 

imbalance between flexion and extension of the affected foot. leading to ischemia, which will 

promote nerve cell injury and death. Hyperglycemia and oxidative stress also contribute to the 

abnormal glycation of nerve cell proteins and the inappropriate activation of protein kinase C, 

resulting in further nerve dysfunction and ischemia. As a result, many wounds go unnoticed and 

progressively worsen as the affected area is continuously subjected to repetitive pressure and shear 

forces from ambulation and weight bearing. Peripheral arterial disease (PAD) is a contributing 

factor to the development of foot ulcers in up to 50% of cases [27,28]. It commonly affects the tibial 

and peroneal arteries of the calf. Endothelial cell dysfunction and smooth cell abnormalities develop 

in peripheral arteries as a consequence of the persistent hyperglycemic state [23]. There is a 

resultant decrease in endothelium-derived vasodilators leading to constriction. Further, the 

hyperglycemia in diabetes is associated with an increase in thromboxane A2, a vasoconstrictor and 

platelet aggregation agonist, which leads to an increased risk for plasma hypercoagulability. There 

is also the potential for alterations in the vascular extracellular matrix leading to stenosis of the 

arterial lumen [28]. Cumulatively, this leads to occlusive arterial disease that results in ischemia in 

the lower extremity and an increased risk of ulceration in diabetic patients. With such a scenario, 

treatment optimization is critical for improving the prognosis and quality of life, and for minimizing 

the economic impact. Diabetic peripheral neuropathy either reduces or even abolishes the protective 

sensation; it also induces changes in foot structure and function [29]. These conditions predispose to 

high foot plantar pressure, an important predictive risk factor for the development of diabetic foot 

ulceration. A number of authors found that increased tangential stress is also an important 

determinant of tissue breakdown in diabetic neuropathic subjects [13]. However their exact role in 

the aetiology of diabetic foot has not been understood yet. Some authors demonstrated that also 

diabetic subjects’ gait is characterized by an altered kinematics [30-32] which has been recognized 

also to affect plantar pressure [33]. Plantar pressure and kinematics measurement are widely 

employed to study foot function, the mechanical pathogenesis of foot disease and as a diagnostic 

and outcome measurement tool for many treatment interventions [29]. These findings established 

the need for investigating the role of muscles activation in diabetic gait abnormalities with and 

without neuropathy.  
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The aim of this chapter is to investigate whether muscle activity patterns change along with the 

evolution of the disease and what consequences altered muscle activity has on the kinetics of 

diabetes gait function in regard to ground reaction forces. Previous studies have not distinguished 

between the degrees of neuropathy in their experimental groups; therefore, it has not been possible 

to identify differences in gait patterns between the early and advanced stages of the disease [12]. 

This established the need for investigating the role of muscles activation in diabetic gait 

abnormalities even when neuropathy is not present. 

 

3.2 The Gait Cycle  
We define walk as "a series of rhythmic movements of the lower limbs, upper trunk and pelvis, 

causing a forward displacement of the center of gravity, produce, through a series of translations 

and of rotations of the bony segments and joints involved, moving the body forward”. The walking 

can also be defined simply as the ability to move the center of pressure (CPS: projection on the 

ground of the center of gravity) from one foot to ' alternatively and more dynamically, to maintain 

the dynamic equilibrium. The conditions for the neuro mechanical bipedal locomotion in an upright 

position are: 

� support for anti-gravity of the body, where the upright posture depends on the righting reflex 

and antigravity reflexes that allow the passage from supine to sitting upright. This is due to 

the integration of pulses vestibular, proprioceptive, tactile and visual, in the spinal cord, 

stem, basal ganglia; 

� execution of steps, which is a grassroots movement, present at birth, integrated in the spinal, 

midbrain, diencephalon; 

� maintaining balance; 

� a means of propulsion. 

The normal gait is mostly with head erect, upright, arms hanging loosely at his sides and 

harmonious, rhythmically moving forward and together with the opposite leg. The feet are 

slightly apart and the steps of moderate length with internal malleoli almost touch when it 

surpasses the other foot. The medial portions of the heel provide a straight line when they touch 

the ground at every step. As the leg moves forward, there is a coordinated reduction of the hip 

and knee, a dorsi flexion of the foot and a barely perceptible elevation of the hip that allows the 

foot to touch the ground. At each step the chest moves slightly forward and the side opposite to 

that of the lower limb that progresses. The heel rests on the ground first. The way you walk 

differs from one individual to another, between men and women (cadence, heaviness and 

lightness in the step). Is called a cycle or walk "gait cycle"  the period between two successive 
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supports of the same foot to the ground. The gait cycle is divided into two main phases (Figure 

3)  

� stance or support - STANCE PHASE -: during which the foot remains in contact with the 

ground. This phase occupies approximately 60% of the gait cycle and decreases more 

gradually you increase the speed of walking (in the race is reduced to about 37%) 

� cessation or swing or flying - SWING PHASE -: during which the limb is lifted and brought 

forward to the support to prepare for the next. This phase is also called the transfer phase. 

The stance phase can be divided into four different phases: 

� Contact the heel (heel strike = initial contact + loading response) is a very brief phase in 

which the heel of the foot is thrown forward into contact with the ground; 

� Full support (mid stance) is the longest phase that begins with the detachment of the 

contralateral foot and ends when the foot is fully supported on the ground (heel, metatarsal 

and toes resting on the ground); 

� Posting heel (heel off): this phase ends when the contralateral limb touches the ground while 

we see the detachment from the soil of the heel of lead foot; 

� Posting finger (toe off): is a phase that ends with the toe of the ground, after which body 

weight is transferred forward. 

Swing phase is divided, however, in three further stages: 

� Initial phase of acceleration: the leg of interest moves forward through the work of hip 

flexor after the detachment of the toes; 

� Midswing or intermediate stage: the limb examined moves from a posterior position to a 

position anterior to the body. Simultaneously flexes the ankle through the work of the 

tibialis anterior; 

� Final phase of deceleration in this phase continues, and ends the preceding movement, the 

knee and ankle reach their maximum extension at the same time preparing the limb to 

ground contact (heel and support the resumption of the cycle path [34]. 
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Figure 3 Example of gait cycle [“Gait book” Voughau] 

 

 

Therefore the present study aimed at evaluating the role of altered muscle activity in gait alterations 

during different phases of diabetic subjects with and without neuropathy. The electrical activity of 6 

muscles was collected bilaterally on the lower limb during gait: gluteus medius (GM), rectus 

femoris (RF), tibialis anterior (TA), peroneous longus (PL), gastrocnemius lateralis (GL), and 

extensor digitorum communis (EDC). Electromyographic activity was represented through linear 

envelopes. Time and space parameters were also evaluated by means of 2 Bertec force plates and a 

6 cameras motion capture system (BTS, 60-120 Hz). 

 

3.3 Gait Analysis And Surface Emg 

Aristotle (384–322 BCE) can be attributed with the earliest recorded comments regarding the 

manner in which humans walk. It was not until the renaissance that further progress was made 

through the experiments and theorising of Giovanni Borelli (1608–1679). Although several 

scientists wrote about walking through the enlightenment period it was the brothers Willhelm 

(1804–1891) and Eduard (1806–1871) Weber, working in Leipzig who made the next major 

contribution based on very simple measurements. Both Jules Etienne Marey (1830–1904), working 

in France, and Eadweard Muybridge (1830–1904), working in America, made significant advances 

in measurement technology. These were developed further by Otto Fischer (1861–1917) in 

collaboration with Willhelm Braune (1831–1892). The major developments in the early twentieth 

century were in the development of force plates and the understanding of kinetics. The team headed 

by Verne Inman (1905–1980) and Howard Eberhart (1906–1993) made major advances in America 

shortly after the Second War. David Sutherland (1923–2006) and Jacquelin Perry [34] pioneered 
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clinical applications in America and Jurg Baumann (1926–2000) in Europe It was not until the 

advent of modern computers that clinical gait analysis became widely available [35]  

The origins of the science of gait analysis began in Europe in the 17th century and continued 

through the early 20th century. The discoveries of such notables as Borelli [36], Galvani [37], 

Newton [38], Descartes [39], Marey [40-42], Carlet [43], the Weber brothers [44,45], Scherb [46-

48], Duchenne [49] Muybridge [50], and Braune and Fischer [51-55] provided a solid scientific 

foundation for our current understanding of human walking. Braun and Fischer employed the 

principles of Newtonian classical mechanics, the coordinate geometry of Descartes, and Borelli’s 

mathematical concepts for estimating muscle action, to create an elegant representation of the gait 

of their military subjects carrying backpacks. Although the principles of investigation employed by 

Braun and Fischer are recognized as valid today, their methods of study were far too labor intensive 

to permit any practical application for subjects in a clinical setting. Vern Inman, and colleagues 

moved the science of gait analysis dramatically forward by adding kinesiological electromyography 

(KEMG), 3-D force, and energy measurements in the study of walking in normal subjects and 

amputees (1944–1947) [56,57]. The remarkable contributions of this inspired team, led by Inman, 

are contained in a report to the National Research Council [58] and are printed in a limited number 

of publications [59]. Nonetheless, their methods of study were still too labor intensive, invasive, and 

computationally demanding to permit their application in a clinical setting. Now in its second 

edition [60], this book contains a distillation of much of the original work of the team, as well as 

many new contributions by contemporary researchers. The search for improved methods of gait 

data acquisition began in the decade of the 50’s. Former orthopedic residents of Inman, and other 

investigators inspired by his research, embarked on time-consuming studies, utilizing equipment 

that had to be conceived, created, constructed and tested. We can see movements although we are 

unable to measure them by visual observation alone. Muscles are the engines that produce active 

movements. It follows that an understanding of the forces causing or contributing to movements 

must include KEMG. This reality was uppermost in the minds of those who struggled to begin 

clinical gait analysis. They persevered and utilized KEMG to gain insights into normal and 

pathological gait. For those who have recently started clinical gait analysis using commercial 

electromyography (EMG) hardware and software, it may be difficult to imagine the immense 

difficulties confronting those who first began to employ KEMG. The electromyographs available at 

that time had been developed primarily to search for abnormal action potentials, such as, fibrillation 

and fasciculation, and to test for delays in nerve conduction velocity. The disciplines of neurology, 

neurosurgery, orthopedics and physiatry often concern themselves with diagnostic electromyograpy 

while most gait laboratories usually employ only dynamic (KEMG). KEMG can be defined as a 
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technique to determine the relationship of the muscle activation signal to joint movement and to the 

gait cycle. In the early years of KSEMG most of the commercially available electromyographs had 

too few channels to monitor multiple muscles. As subjects were usually examined sitting or lying 

down, little attention had been given to eliminate, let alone reduce, extraneous noise from cables, or 

60-cycle or 50-cycle interference. Although Dr Inman had developed the use of indwelling wire 

electrodes, they were large (0.006-in.diameter), relatively inflexible, and painful during walking. 

Two insertions were required to record SEMG from one muscle. The primary reference has thus far 

eluded our best efforts, but Johanson credits Inman with the discovery that bending the tip of the 

electrode after it has been passed through a needle causes the electrode to remain in the muscle after 

the needle is withdrawn [61]. Even more daunting was the fact that no methods had been developed 

to record and synchronize SEMG with the events of the gait cycle. Telemetry had not made its 

appearance; it took the challenge of sending humans into space before practical, reliable telemetry 

was developed. Initially, computers were not available. The early investigators were forced to use 

available tools, which were usually custom-made, by engineering colleagues. The earliest clinical 

studies consisted of dynamic electromyograms coupled with gait movies. 

 

3.3.1 Gait Analysis And Surface Emg in patient with diabetes 

A few authors [1,10,12] reported abnormalities in the electromyographic (SEMG) pattern of vastus 

lateralis and tibialis anterior, soleus, medial and lateral gastrocnemius and, medial harmstrings of 

DPN subjects. To our knowledge, for the first time the SEMG patterns of NoDPN have been 

investigated. In previous literature [1,10,12] diabetic subjects with previous ulcerations or without 

diabetic complications, with the exception of PN, were considered. 

Changes in some gait parameters that appear to be specific in diabetes have been identified in the 

literature: shorter stride length, reduced walking speed, and altered lower limb and trunk mobility.  

During gait cycle most of the major muscle groups are active at or around both heel strike and toe-

off (i.e., at the beginning and end of the stance and swing phases of the cycle). These are the periods 

of deceleration and acceleration of the legs, when body weight is transferred from one foot to the 

other [56]. In normal subjects it is expected that just after heel strike, for example RF SEMG 

increases [12]. Some authors found marked reduction in hip mobility in a group of DPN and 

NoDPN subjects [10]. Kwon et al [11] reported an early activation of GL and TA, while Sacco and 

Amadio [1] registered a delay of onset instead. During midstance and midswing, most muscles 

(with the exception of MG and triceps surae during stance, and TA during swing) are relatively 

quiescent [12]. However, it is during these two periods (midstance and midswing) that the greatest 

observable movement takes place. During midstance, MG acts as a hip abductor to stabilize the 
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pelvis as the contralateral leg swings through, while the GL and the soleus prevent excessive 

dorsiflexion of the ankle and then prepares to drive the body forward [12]. Rigidity of the ankle is a 

characteristic widely recognized in diabetic subjects in different studies [2,10,62-65].  

During midswing, the TA (as well as EDC) provides active dorsiflexion and thus prevents the toes 

from dragging on the ground. One of the principal actions of these muscles is to accelerate and 

decelerate the angular joint motion [66]. Previous literature reported that DPN patients  are not able 

to develop any compensatory strategy for the lack of stability because of their sensorimotor deficit 

[5-8,67]. In his study Greenman [68] found that small muscle atrophy is present in diabetes before 

clinical peripheral neuropathy can be detected using standard clinical techniques. The RF muscle is 

characterized as a bi-articular muscle that acts at the hip and the knee [69] while VL crosses the 

knee joint only and acts as a knee extensor [69]. Previous studies have suggested that the 

hamstrings play a major role in running, especially at higher speeds [70]. Kyrolainen et al. [71] 

found that the BF had the largest increase in SEMG activity among the muscles examined in their 

study, as running speed increased. GL is characterized as a bi-articular muscle that acts at the knee 

and the ankle, while soleus only acts at the ankle [60]. Since previous studies using sophisticated 

experimental techniques have shown either subclinical nerve function abnormalities or muscle 

tissue properties [68] in most diabetic patients, it seems reasonable to suspect that such changes 

were also present in the NoDPN patients. 

 

3.4 Material and Methods 

3.4.1 Subjects 

Fifty subjects participated in the study (mean age 58.9±8.7, mean BMI 25.9±5.9): 10 were healthy, 

20 were NoDPN and 20 were DPN. Diabetic subjects were recruited among the patients attending 

the outpatient Clinic of the Department of Metabolic Disease of the University of Padova (Italy) 

(Table 1) 

Subjects belonging to the C group were recruited among hospital personnel. All subjects gave 

written informed consent. The protocol was approved by the local Ethics Committee (of the 

University Polyclinic). Inclusion criteria included: either type 1 or type 2 diabetic subjects who 

were able to walk, no history of ulcers or neurological disorders (apart from PN), and no history of 

orthopedic problems, lower limb surgery, or cardiovascular disease. 
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Group DPN NoDPN C p p1 p2 
Age (year) 61.2(±7.7) 56.53(±13.3) 61.2(±5.07) N.S. N.S. N.S. 

Height (cm) 172(±8.02) 172(±7.8) 167.5(±12.6) N.S. N.S. N.S. 
Weight (Kg) 78.7(±13.5) 78.3(±10.2) 69.5(±17.3) N.S. N.S. N.S. 

BMI 26.8 (±3.4) 26.4(±2.5) 24.4(±2.8) N.S. N.S. N.S. 
Neuropathy 100% 0 / 0 / / 
Autonomic 
Neuroapthy 

42.09% 0 / 
1.00E-

004 
/ / 

Microalbuminuria 42.10% 0 / 0.01 / / 
Peripheral 

Vasculopathy 
14.30% 0 / 0.02 / / 

TSA 33.30% 21.05% / N.S. / / 
Coronary 

vasculopathy 
19.05% 9.52% / N.S. / / 

HbA1c 8.3 (±1.3) 8.6 (±5.6) / N.S. N.S. N.S. 
Years of desease 13 (±6.5) 23.3 (±13.7) / 0.0005 / / 

 

Table 1. Demographic and clinical parameters (mean ± standard deviation). Results of One Way 

Anova (P<0.05) and Z-Test (P<0.05) performed among the three populations: diabetic neuropathic 

subjects (DPN), diabetic non neuropathic subjects (NoDPN), control subjects (C).  

p= statistical significance between DPN and NoDPN; p1= statistical significance  between DPN and 

C; p2= statistical significance between NoDPN and C; N.S.= not significant. 

 

3.4.2 The Protocol 

For each subjects the feet were checked for skin lesions, bone deformities, ulcerations, signs of 

infection and previous amputations. Height (m) and weight were recorded and the body mass index 

(BMI, kg/m2) was calculated. The neurological evaluation included the assessment of symptoms 

and signs compatible with peripheral nerve dysfunction. The peripheral nerve conduction test to 

confirm DSP was obtained in all subjects. The Michigan Neuropathy Screening Instrument 

questionnaire which evaluates motor and sensory symptoms (subjects were classified as pathologic 

if 3 positive scores out of 15 were found) was completed. The physical examination consisted of: 

(1) patellar and ankle reflexes, with the patient in the sitting position; (2) assessment of muscle 

strength by ability to walk on heels, bilateral dorsi/plantar flexion of the feet, flexion/extension of 

legs, abduction/adduction of both forearms and fingers, all against resistance; (3) sensory testing 

carried out on the index finger, and on the hallux (pin-prick with a disposable 25 mm/7 mm needle), 

touch (10 g Semmens Weinstein monofilament, pathologic if no response on 3 out of 10 sites) and 

vibration perception threshold (VPT, 128 MHz tuning fork and Biothesiometer, pathologic if 
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>25V); (4) pain sensitivity; (5) electroneurophysiological study; (6) Index of Winsor (ankle-to-

brachial index). 

The cardiovascular autonomic tests were also performed: if 2 or more tests were abnormal, the 

patient was considered to have autonomic neuropathy. HbA1c values in the preceding ten years 

were collected. Each patient had at least an ophthalmologic examination, a urinary albumin-to-

creatinine ratio, a carotid artery Doppler examination, Index of Winsor, and an electrocardiogram in 

the preceding three months. 

 

3.4.3 Clinical Evaluation 

Diagnosis of peripheral neuropathy: 

� Questionnaire MNSI (Michigan Neuropathy Screening Instrument) [72] 

�  Assessment of patellar and Achilles tendon reflexes left and right limb 

� Assessment of vibration sensitivity (VPT Vibration Perception Threshold): the 

determination of the vibration perception threshold is routinely used as one of the 

quantitative sensory tests to determine the level of neuropathy in patients with diabetic 

neuropathy [73]. An increased VPT has been reported as one of the first signs in peripheral 

nerve disorders such as polyneuropathy and nerve entrapment [74]. It 'was used 

biothesiometry consists of a piston diameter of 1.3 cm, which transmits a vibratory stimulus 

at 120 Hz with an intensity that varies from 0 to 50 V. During clinical exam the piston is 

placed on the patient's skin at the ankle and hallux, the perceived value of vibration 

represents the VPT. Values above 25 are not received are considered high risk disease and 

ulcer index (Figure 4 and 5) 

� Semmes Weinstein Monofilament Test: used for the evaluation of tactile protective, is a 

predictor of risk of ulceration. The instrument consists of a series of monofilaments of a 

nylon fiber of 10 grams of weight applied to the skin folds pressure exerting an effect. The 

test is performed on one or more different points of the foot, in our case 8 (one on the back 

foot and 7 on the plan) after the removal of any calluses that would alter the test results. The 

absence of perception in two points of eight is indicator of  pathology.
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Figure 4 and 5 VPT Vibration Perception Threshold Exam (Clinic of the Department of Metabolic 

Disease of the University of Padova (Italy) 

 

Diagnosis of autonomic neuropathy: 

Operated through the execution of cardiovascular tests, using a system of collecting and compiling 

data driven (Cardionomic), which evaluates the function through the sympathetic and 

parasympathetic Deep Breath Test or deep breathing test and the Lying to standing and standing to 

lying tests that detect changes in heart rate during forced respiration and change of posture, it also 

performs the test of orthostatic hypotension, instead, evaluates the pressure variations in the 

transition from supine to ortostatic position: decreases in systolic blood pressure below 10 mm Hg 

is considered normal, decreases between 11 and 29 mmHg is borderline, and greater reductions of 

30 mmHg are pathological. If at least two of the three tests are positive we have a diagnosis of 

autonomic neuropathy 

Diagnosis of peripheral vascular disease: 

� Assessment of the posterior tibial and pedal pulses of both leg. 

� Ankle/Brachial Index: the ankle-arm pressure index (also known as the Ankle / Brachial 

Index, ABI) compares the systolic blood pressure of the ankle to that of the arm (brachial). 

(Figure 6). These pressure measurements are useful in the assessment, follow-up and 

treatment of patients with peripheral vascular disease (PVD). ABI's provide an objective 

baseline to follow the progression of the disease process and evaluate the effectiveness of 

the treatment plan.  The ankle / brachial index (ABI) is calculated by dividing the ankle 

pressure by the higher of the two brachial pressures. [75,76].
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Figure 6 ABI exam and values of the  index 

 

3.4.4 Gait Analysis  

Subjects were asked to walk barefoot at their preferred walking speed on the 8 m gait laboratory. A 

minimum of three walking trials per subject were collected. Gait analysis was performed at the 

Bioengineering of Movement Lab at the Department of Information Engineering of Padova, with a 

BTS motion capture system (6 cameras, 60-120 Hz) synchronized with 2 Bertec force plates 

(FP4060-10). The electrical activity of 6 muscles for each lower limb were collected by means of a 

portable SEMG system (POCKETEMG, 16 channels, BTS Padova) together with the ground 

reaction forces and the kinematic data. Dynamic surface electromyography (SEMG) during gait was 

assessed on 20 NoDPN, 20 DPN and 10 control (C) subjects. SEMG of lower limb muscles were 

collected. 

Surface EMG signals of the following muscles were recorded at 1000 Hz: MG, RF, TA, PL, GL, 

and EDC. Sensors were positioned according to Blumenstein [58] after appropriately cleaning and 

preparing the skin. Sensors were 3 cm of diameter and positioned 1 cm apart. SEMG of rectus 

femoris (RF) gluteus medius (MG), tibialis anterior (TA), gastrocnemius lateralis (GL), peroneus 

longus (PL), and extensor digitorum communis (EDC) were collected. The right and left muscle 

activation patterns were analyzed and the envelope of the signal computed (the peak (POP) and the 

position of the peak both in milliseconds (POPs) and with respect to the stair ascending and 

descending cycle (POP%)). 

 

3.4.5 Sterophotogrammetric System 

In this study it has been used a sterophotogrammetric system Smart (BTS,Padova Figure 7), 

consisting of 6 optoelectronic cameras. 
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Figure 7 Smart System 

 

The details of the system were reported in the following figure 8. 

 

 

 

Figure 8 Smart technical specfications 

 

The analysis of a motor task requires the reconstruction of the instantaneous position and 

orientation (pose) of systems of axes that are, in principle, embedded in the bones under analysis 

(bone embedded technical frames), relative to a laboratory frame. To this purpose 

stereophotogrammetric systems are most commonly used. These allow for the reconstruction of the 
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3-D position of markers attached to the surface of body segments in each sampled instant of time. 

Modern clinical gait analysis traces its origins back to the early 1980s with the opening of the 

laboratory developed by the United Technologies Corporation at Newington, Connecticut and those 

provided with equipment by Oxford Dynamics (later to become Oxford Metrics) in Boston, 

Glasgow and Dundee. Retro-reflective markers were placed on the skin in relation to bony 

landmarks. These were illuminated stroboscopically and detected by modified video cameras. If two  

or more cameras detect a marker and the position and orientation of these cameras are known then it 

is possible to detect the three-dimensional position of that marker [78-91].  

 

3.4.6 Force Plates  

In this study two plantar pressure-dynamometric platforms were obtained by fixing each pressure 

platform (Imago S.n.c, Piacenza) onto two commercial force platforms (Bertec Corp., Worthington, 

OH, USA Figure 9), in order to allow the resultant GRF to be transmitted unaltered from one 

platform to the other. The use of a plantar pressure-dynamometric integrated system, obtained by 

superimposing a pressure platform over a force platform, allowed the estimation of the three 

components of GRF expressed by specific selected foot subareas as previously done by Giacomozzi 

[93]. Force Plate BERTEC are six component load transducers which measure the three orthogonal 

components of the resultant force acting on the platform, and the three components of the generated 

moment in the same orthogonal co-ordinate system. The point of application of the force and the 

couple acting on the platform can be readily calculated from the measured force and moment 

components. Each platform includes a pre-amplifier mounted inside the force plate. The pre-

amplifier improves the signal-to-noise ratio and permits the use of long connector cables. 

 

 

Figure 9: Bertec force plate and their Reference System  
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In this work two Bertec 4060H force plates have been used by mounting them hidden into the 

middle of the gait laboratory floor (at the Bioengineering of Movement Laboratory, Department of 

Information Engineering, University of Padova, Padova). Placement and orientation of the force 

platforms (FP) has been chosen such that ground reaction forces during gait can be acquired from 

each foot individually. This configuration of the FPs was found suitable for healthy young and older 

subjects. Linoleum tile sample floors matching the rest of the walkway flooring material are 

attached to the FPs. The details of the force plate can be found in the following two Tables. 

 

 

 

 

Table 2 Bertec force plates connection 

 

The force plate can measures the following variables: 

� the 3 components Fx, Fy, and Fz of a force F acting on the platform 

�  the 3 components Mx, My, and Mz of the resulting moment vector M related to the origin 

of the coordinate system 

� the 2 coordinates ax and ay of the force application point on the force plate surface 

� the free moment M'z about an axis normal to the platform surface. 
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Table 3 Bertec technical specification (Bertec Manual) 

 

3.4.7 Plantar Pressure System  

The pressure platform is made of a matrix of resistive sensors covered by a flexible plastic surface 

(40x40 cm), 1.5 mm height, deprived of the protective rigid frame generally used in the commercial 

product, in order to allow the mechanical coupling with the underneath force plate. The full number 

of strain-gauge sensors placed on the flexible frame is 2304 which allows a spatial resolution of 

1.44 sensors/ cm. (Figure 10 Left). The electronic equipment, A/D conversion and PC interface are 

placed on a rigid data acquisition system located 3cm aside to the platform and connected with it. 
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Figure 10 Winpod on left, Example of Static Acquisition on right 

 

The software WINPOD allows the acquisition of the plantar pressure data, controls the sampling 

rate frequency ( 60 Hz , 90 Hz ,120 Hz and 150Hz) and enables posture, static and dynamic type of 

acquisition (Figure 10 Right) 

 

 

The technical specification of this device can be found in the following Figure 12 

 

Figure 12  Winpod technical specification 

 

3.4.8  Emg Analysis 

The electrical activity of 6 muscles for each lower limb were collected by means of a portable 

SEMG system: Pocket Emg with 16 channels BTS Padova. (Figure 13) together with the ground 

reaction forces and the kinematic data. Surface EMG signals of the following muscles were 

recorded at 1000 Hz: sensors were positioned according to Blumenstein [77] after appropriately 

cleaning and preparing the skin. Sensors were 3 cm of diameter and positioned 1 cm apart. SEMG 

of rectus femoris (RF) gluteus medius (MG), tibialis anterior (TA), gastrocnemius lateralis (GL), 

peroneus longus (PL), and extensor digitorum communis (EDC) were collected. The recorded 
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signals were band pass filtered between 10 and 450 Hz with a 5th order Butterworth filter and full 

wave rectified. The envelope was computed by low-pass filtering the signals with a 4th order 

butterwort filter and a cut off frequency of 5 Hz [11]. The right and left muscle activation patterns 

were analyzed and the envelope of the signal computed (the peak and the position of the   heel 

marker trace together with the ground reaction force curve were used. Hence phases of normal 

activation for each signal in the gait cycle were defined (see Table 1) according to the normal 

SEMG patterns proposed by Perry [34] (Figure 14). The same analysis was performed for each 

signal in the gait cycle considering both phase of normal and non normal activation (Matlab 

R2008b). The time of peak muscle activity occurrence was evaluated as a function of the gait cycle 

in order to assess the effects of any deviations in diabetic  muscle phasic activity on gait. 

 

 

 

Figure 13 Pocket Emg 16 channels on left and Free Emg 8 channels on right (Bts Bioengineering 

Padova) 

 

 

 

Figure 14 Example of normal muscular activation of Peroneus Longus (grey band). During 

MidStance (10-50% of gait cycle) this muscle is active 
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3.4.9 Dynamic Acquisition 

Gait analysis is the systematic measurament, description and assessment ofquantities that 

characterize human locomotion: in a few words, it is the evaluation of a subject's walking pattern. 

The core of most contemporary gait analysis is the measurement of joint kinematics and kinetics. 

Other measurements regularly made are electromyography (SEMG), oxygen consumption and foot 

pressures. A systematic physical examination of the patient is usually conducted as part of a gait 

analysis. Therefore in order to obtain all the necessary parameters at least three walking patterns per 

subject should be collected by means of motion analysis system, and force plates. In this protocol 

the gait analysis section consisted in 3 walking trials with 3 right and 3 left foot contacts on both the 

force and pressure plates acquired simultaneously by means of motion analysis system, force and 

plantar pressure plates. 

 

3.4.10  Fullbody Protocol 

The following anatomical landmarks (ALs) were tracked in space by applying a 10-mm-diameter 

spherical marker (see above figure) to: the vertebra L5, the vertebra C7 and the most anterior 

borders of the acromions (right and left) , the two most anterior and the two most posterior margins 

of the iliac spines (ASIS, PSIS), the most lateral prominence of the great trochanter (GT), of the 

lateral and medial epicondyle (LE, ME), the proximal tip of the head of the fibula (HF), the most 

anterior border of the tibial tuberosity (TT), the lateral prominence of the lateral malleolus (LM), 

lower ridge of the calcaneus posterior surface (CA), and the dorsal margins of the first (FM) and  

fifth (VM) metatarsal heads (Figure 15). The centre of the femoral head (FH) were assumed to 

coincide with the centre of the acetabulum, which is reconstructed by a functional method 

according to Cappozzo et al. 1995 [76]. Each ALs were calibrated by means of a static acquisition 

without the aid of a pointer. The position of the ALs were assumed to coincide with the center of 

the marker applied onto it. Each ALs position in the dynamic trials were compared throughout an 

algorithm with the corresponding position in the static trial by means of comparing the mutual 

distance of ALs belonging to the same body segment. In case of disagreement the trial could be 

excluded from the analysis according to the entity of the difference registered between the two 

measures. The 4 markers of the two clusters applied on the thigh (right and left) were used to 

correct the measurament of the position of GT, LE and ME during the dynamic acquisition [95]. 
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Figure 15 Stick Diagram of Fullbody and Foot Protocol 

 

3.5 Statistical analysis 

Confidence interval of observed proportion was determined with the Z-Test (the staRt Package) of 

R in order to compare the clinical characteristics of study subjects. The level of significance was set 

to p≤0.05. Age, duration of the disease, HbA1c, BMI, SEMG variables were compared between 

groups by using the T-Test, after evidence of normality (Kolmogorov-Smirnov Test). We 

considered the differences as statistically significant for p≤0.05. Envelopes peaks and the timing of 

envelope peaks were compared by means of One Way ANOVA, with SPSS (v13) statistical 

software after evidence of normality (Levene's Test for Equality of Variances), or Kruskal Wallis 

Test. 

 

3.6 Results 

The results of Space Time parameters and SEMG analysis were reported respectively in Table 2 

and 3 in terms of POP of muscle activity. DPN subjects showed significantly longer stance and 

stride time (see Table 2), together with earlier activation of RF at initial contact (p< 0.0007) and 

reduced POP during pre swing phase of gait (see Table 3). In contrast with DPN subjects, NoDPN 

showed normal temporal and space parameters and altered muscle activation on RF, MG and GL 

(p<0.04). 
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  DPN NoDPN  C p p1 p2 

Stance 0.7 (±0.108)* 
0.64 

(±0.072)* 
0.63 (±0.06)* 0.0000044 0.0000 N.S. 

Swing 0.44 (±0.047) 0.43 (±0.043) 0.43 (±0.04) N.S. N.S. N.S. 

% Stance 61.07(±3.14)* 59.7 (±2.20)* 59.4 (±2.32)* 0.0001769 0.0002 N.S. 

% Swing 38.9 (±3.14)* 40.3 (±2.20)* 40.5 (±2.32)* 0.0001769 0.0002 N.S. 

 Stride 
Time  

1.14(±0.137)* 1.07(±0.104)* 1.07(±0.085)* 0.0000483 0.0003 N.S. 

 Stride 
Length 

1.24 (±0.19) 1.33 (±0.2) 1.207 (±0.11) N.S. N.S. N.S. 

Gait 
Velocity 

1.11 (±0.21) 1.23 (±0.21) 1.12 (±0.184) N.S. N.S. N.S. 

 

Table 2. Temporal and space parameters (mean ± standard deviation). Results of One Way Anova 

(p<0.05) performed among the three populations: diabetic neuropathic subjects (DPN), diabetic non 

neuropathic subjects (NoDPN), control subjects (C). 

P= statistical significance between DPN and NoDPN; p1= statistical significance between DPN and 

C; p2= statistical significance between NoDPN and C; N.S.= not significant. 

 

 Phase DPN NoDPN C p p1 p2 

Rectus Femoris IC 0-2% LR 0-10% 
5.46 

(±1.26) 
6.82 

(±1.24) 
11.8 

(±1.29) 
N.S. 0.0007 0.0062 

        

        

 
Psw 50-60% ISw 60-

73% 
59.6 

(±1.81) 
58.8 

(±1.50) 
60.6 

(±1.62) 
N.S. N.S. N.S. 

        
        

 Tsw 85-100% 
91.93 

(±2.34) 
95.89 

(±1.43) 
89.96 

(±1.81) 
N.S. N.S. 0.0230 

        

        

Tibialis Anterior IC 0-2% LR 0-10% 
11.71 

(±1.13) 
6.96 

(±1.10) 
9.27 

(±1.63) 
0.0032 N.S. N.S. 

        
        

 
PSw 50-60% ISw 60-
73% MSw 70-85% 

Tsw 85-100% 

75.04 
(±1.57) 

72.75 
(±1.45) 

73.6 
(±2.26) 

N.S. N.S. N.S. 
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Gluteus Medius 
IC 0-2% LR 0-10% 
MSt 10-30% Tst 30-

50% 

7.55 
(±2.68) 

11.7 
(±1.87) 

13.2 
(±1.89) 

N.S. N.S. N.S. 

        
        

 Tsw 85-100% 
94.0 

(±2.87) 
96.1 

(±1.57) 
91.6 

(±1.38) 
N.S. N.S. 0.0410 

        

        
Gastrocnemius 

lateralis 
MSt 10-30% Tst 30-

50% 
38.1 

(±1.66) 
35.9 

(±1.38) 
41.60 

(±2.29) 
N.S. N.S. 0.0360 

        
        

Peroneus Longus 
MSt 10-30% Tst 30-

50% 
41.81 

(±0.09) 
37.2 

(±0.11) 
33.4 

(±0.211) 
N.S. N.S. N.S. 

        

        
Extensorum 
Digitorum 

IC 0-2% LR 0-10% 
9.91 

(±1.63) 
7.72 

(±2.22) 
7.68 

(±4.63) 
N.S. N.S. N.S. 

        
        

 
ISw 60-73% MSw 
70-85% Tsw 85-

100% 

69.3 
(±2.56) 

78.0 
(±3.45) 

67.2 
(±7.25) 

0.0470 N.S. N.S. 

 

Table 3. Temporal pattern of muscle activation during gait (% of gait cycle). Mean value (±SD) of 

the time of the activation peak of the right and left Rectus Femoris, Tibialis Anterior, Gluteus 

Medius, Gastrocnemius Lateralis, Peroneus Longus and Extensorum Digitorum Communis 

muscles. Results of One Way Anova (P<0.05) performed among the three populations: diabetic 

neuropathic subjects (DPN), diabetic non neuropathic subjects (NoDPN), control subjects (C).  

p= statistical significance between DPN and NoDPN; p1= statistical significance between DPN and 

C; p2= statistical significance between NoDPN and C; N.S.= not significant. 

I.C. = Initial Contact (0-2% of gait cycle (g.c.)); L.A.= Loading Response (0-10% of g.c.); M.St.= 

Midstance (10-30% of g.c.); T.St = Terminalstance (30-50% of g.c.); P.Sw.= Preswing (50-60% of 

g.c.); I.Sw.= Initialswing (60-73% of g.c.); M.Sw.= Midswing (70-85% of g.c.); T.Sw.= 

Terminalswing (85-100% of g.c.) 
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3.7  Discussion 

The key finding of the present study can be considered the presence of statistically significant 

alterations in NoDPN subjects’ SEMG activity. To our knowledge this has not been previously 

documented in the literature. Most of the major muscle groups are active at or around both heel 

strike and toe-off (i.e., at the beginning and end of the stance and swing phases of the cycle). These 

are the periods of deceleration and acceleration of the legs, when body weight is transferred from 

one foot to the other [56]. SEMG activity differed significantly from C. Indeed at initial contact or 

loading response an early POP was revealed both in DPN (p = 0.0007) and NoDPN’s (p = 0.0063) 

RF. Meanwhile, it is expected that just after heel strike, the RF SEMG increases in normal subjects 

[34]. This because the RF is either a hip flexor or a knee extensor, and in this specific phase the 

knee is extended and the hip is flexed. In order to stabilize the joints and to permit this action rectus 

femoris has to work in eccentric conditions. It should be further considered that in this phase the 

contralateral foot is about to leave the ground. The early POP of RF may be interpreted as an 

attempt to anticipate the heel strike or to decelerate the forward motion at the hip (flexion) and the 

knee (extension). This finding is in agreement with the reduction in hip mobility previously 

reported in a group of DPN and NoDPN subjects [10]. 

Indeed the primary role of the RF in normal gait is to stabilize the hip and knee at heel strike. Future 

research may include assessment of lower limb joint motion in order to establish the role of joint 

rigidity in muscle activity deviations in diabetic subjects. However, similar studies in the literature, 

presented contradictory results, and did not report any deviation of activity  on this specific muscle 

during this phase of the gait cycle. Kwon et al. [11] reported an early activation of GL and TA, 

while Sacco and Amadio [1] registered a delay of onset instead. During midstance and midswing, 

most muscles (with the exception of MG and triceps surae during stance, and TA during swing) are 

relatively quiescent [34]. However, it is during these two periods (midstance and midswing) that the 

greatest observable movement takes place. During midstance, MG acts as a hip abductor to stabilize 

the pelvis as the contralateral leg swings through, while the GL and the soleus prevent excessive 

dorsiflexion of the ankle and then prepares to drive the body forward [34]. In our study an early 

POP was found only in NoDPN’s GL (p = 0.0365). This would suggest an attempt to cope with the 

rigidity of the ankle, which is a characteristic widely recognized in diabetic subjects [2,10,62-65]. In 

this contest it would be interesting to evaluate the displacement of the centre of pressure together 

with SEGM. This would test the hypothesis that a change in the walking strategy of NoDPN 

subjects did occur and would be in agreement with previous publications [63-66]. The absence of 

such a mechanism in DPN subjects could be due to their inability to develop compensatory 

mechanisms because of the altered proprioception typically present in PN. During midswing, the 
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TA (as well as EDC) provides active dorsiflexion and thus prevents the toes from dragging on the 

ground. One of the principal actions of these muscles is to accelerate and decelerate the angular 

joint motion [56]. However, in this specific phase no significant differences were registered in our 

study group with respect to TA and EDC. Our study revealed a delay in POP in both RF (p= 

0.0024) and GL (p= 0.0420) of NoDPN instead. These alterations, if considered together with the 

early POP registered at RF during the loading response, may explain how the NoDPN subjects 

walked without significantly altering the time and space gait parameters. They stabilized their lower 

limb joints during the loading response and the single support by recruiting these muscles. The DPN 

time and space parameters were significantly different from the C in our study, thus suggesting an 

inability to counterbalance the consequences of tissue glycation. This is in agreement with previous 

literature which reported that DPN patients are not able to develop any compensatory strategy for 

the lack of stability because of their sensorimotor deficit [5-8,67]. It should be noted that in the 

present study NoDPN subjects were characterized by a significantly higher 

disease duration than DPN. This indicates the important role of the prolonged chronic exposure to 

hyperglycaemia in diabetics’ SEMG activity alterations. Furthermore these subjects were not 

characterized by lower HbA1c, even though they did not show larger presence of diabetes 

complications. It could be speculated that these conditions may have also played a role in the 

muscle activity alterations revealed in this study. This agrees with Greenman et al. [68] who found 

that small muscle atrophy is present in diabetes before clinical peripheral neuropathy can be 

detected using standard clinical techniques. Since our study included a large proportion of DPN 

subjects affected by diabetes complications other than PN and no previous history of ulcers, the 

differences between our results and those of previous studies are justified. In previous literature 

[10–12] diabetic subjects with previous ulcerations or without diabetic complications, with the 

exception of PN, were considered. Limitations of the present study include the small sample of 

subjects and the reduced set of muscles studied. In contrast with previous literature we did not 

consider the vastus medialis, soleus and biceps femoris. The choice of reducing the number of 

muscles was based on the consideration that in normal gait monitoring the activity of RF and GL 

could lead to exhaustive information about hip, and knee motion allowing experimental set up 

reduction. This by considering that RF and GL are bi articular muscles. The RF muscle is 

characterized as a bi-articular muscle that acts at the hip and the knee [69] while VL crosses the 

knee joint only and acts as a knee extensor [70]. Previous studies have suggested that the 

hamstrings play a major role in running, especially at higher speeds [71]. Kyrolainen et al. [71] 

found that the BF had the largest increase in SEMG activity among the muscles examined in their 

study, as running speed increased. GL is characterized as a biarticular muscle that acts at the knee 
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and the ankle, while soleus only acts at the ankle [70]. Based on these considerations we did not 

considered vastus medialis, soleus and biceps femoris. Finally our study revealed the presence of 

significant muscle activity deviations in NoDPN subjects. Since previous studies using 

sophisticated experimental techniques have shown either subclinical nerve function abnormalities or 

muscle tissue properties [68] in most diabetic patients, it seems reasonable to suspect that such 

changes were also present in the NoDPN patients who participated in this study. Despite this, we 

believe that the results of our study indicate that changes in foot muscles occur before changes in 

nerve function can be detected. This lead to the conclusion that this technique might be adopted as a 

screening method for early detection of patients at risk for diabetic foot before clinical peripheral 

neuropathy can be detected using standard clinical techniques. This would allow the development of 

prevention program directed to NoDPN patients. This supports the need of planning prevention 

programs and rehabilitation activities directed at reducing the consequences of diabetes and not 

only of diabetic neuropathy. Finally we can conclude that this technique has proven to be a useful 

diagnostic tool in identifying early-stage diabetic foot problems thus allowing inclusion of these 

patients in prevention programs. 
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4. Comparison Of Muscle Activity During Step Ascent And Descent 
In Subjects With And Without Diabetes 

4.1 Background 

Stair climbing is a common activity of daily life. Kinematic and kinetic studies have shown that, in 

comparison to level walking, larger ranges of knee flexion angle and knee flexion moment are 

required during stair climbing. Andriacchi et al. (1980) [1] found the maximum external knee 

flexion moment during stair ascent to be three times greater than level walking and maximum hip 

flexion moments during stair descent to be a maximum of 1.5 times greater than level walking. 

Jevsevar et al. (1993) [2] found an average of 98.6 (st.dev 6.5) of knee flexion was required to 

ascend stairs, 90.3 (st.dev 4.9) of knee flexion to descend stairs and 64.6 (st.dev 6.7) of knee flexion 

to walk on level ground. Analysis of the biomechanical requirements involved in stair climbing can 

add to our understanding of the diverse demands of this common activity in human locomotion. 

In comparison to level walking, only a small number of studies have investigated normal human 

stair ascent and descent [3-7] Researchers have also used stair climbing to describe changes in a 

patient’s functional performance following knee arthroplasty [1], anterior cruciate ligament 

deficiency [8,9],  transtibial amputations [10] and patellofemoral pain [11,12]. Understanding the 

biomechanics and pathomechanics of the lower limb during stair climbing is important for 

therapists attempting to integrate scientific findings into clinical examination and management of 

patients with lower extremity dysfunction. 

Andriacchi et al. (1980) investigating hip, knee, ankle joint angles and moments in ten young 

healthy male subjects during stair climbing found maximum external knee flexion moments during 

stair descent to be 2.7 times greater than during ascent. They used the ground reaction method for 

the calculation of joint moments. This method involves calculation of joint moment by calculating 

the product of the ground reaction force vector and the perpendicular distance from the joint center 

to that vector. Wells (1981) [13] found that the ground reaction method is a good predictor of net 

joint moments for slow gait, but increasing the velocity of gait results in increased errors, especially 

at the hip. Therefore for healthy populations, the linked segment method is preferable to calculate 

joint moments; the linked segment method takes into consideration the mass-acceleration products 

of the foot, leg and thigh, that the ground reaction method neglects [12]. McFayden and Winter 

1988 [14] used the linked segment method for the calculation of joint moments during stair 

climbing. However, the small sample size (n = 3) in their study limits the power and usefulness of 

the results. Kowalk et al. [15] reported external abduction–adduction moments at the knee joint in 

young adults (n = 10) ranging in age from 22 to 40 years, while [3] reported only external hip, knee 
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moments (n = 35, mean age = 24.6). Further studies that include larger numbers of subjects and 

more developed analysis of joint moments are required before definitive conclusions can be made. 

Livingston, L.A et al. [5] investigated stair climbing kinematics of the hip, knee, and ankle joints on 

stairs of differing dimensions. Fifteen young healthy women were divided into short, medium, and 

tall subject groups with five subjects in each group ranging in age from 19 to 26 years. Subject 

height appeared to influence knee motion during stair climbing. Short subjects used greater 

maximum knee flexion angles than taller subjects during stair ascent and descent. Riener et al [7] 

investigating how stair inclination affects the kinematic and kinetic patterns of stair climbing (n = 

10, mean age = 28.8 years) found joint ranges and maximum flexion angles to increase with 

increasing inclination of the staircase. 

In clinical gait analysis, the determination of the timing of muscle activation (“on-off”) is of 

paramount importance [16,17]. The evaluation of the “on-off” pattern of one or more muscles, 

particularly when examined together with kinematics (joint angles) and kinetics (joint moments and 

powers), provides an insight into the performance of muscles and their role in accomplishing a 

motor task [18-20] 

Therefore providing this information also with respect to stair ascending and descending should be 

considered highly important. In 1967 J. Joseph and R.Watson, wrote the first work about the actions 

of muscles involved during walking up and down stairs [21]. The results of their study show that: 

raising the body on to the stair above is brought about by the contraction of the soleus, quadriceps 

femoris, hamstrings and gluteus maximus; the gluteus medius at the same time prevents the body 

falling on to the unsupported side; tibialis anterior dorsiflexes the foot during the swing phase and 

helps the limb to clear the stair on which the supporting limb is placed; hamstrings flex the leg at 

the knee in the early part of the swing phase and control the terminal part of extension at the knee at 

the end of this phase; both erectors spinae contract twice in each step and control the forward 

bending of the body at the vertebral column. Walking down stairs revealed that the body is lowered 

on to the stair below by the controlled lengthening of the soleus and quadriceps femoris; the gluteus 

medius at the same time prevents the body from falling on to the unsupported side; tibialis anterior 

inverts the foot at the beginning of the supporting phase as the toe is placed on the stair below and 

dorsiflexes the foot in the middle of the swinging phase; hamstrings control the extension of the leg 

at the knee during the middle of the swing phase; both erectores spinae contract twice in each step 

and prevent forward bending of the trunk at the vertebral column. 

Going up and down stairs is a common activity of daily living. From a mechanical viewpoint, it is 

quite different from level walking. The differences are reflected by changes in the ranges of motion 

of the different joints during gait, and changes in the phasic muscle activities and in the maximum 
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joint forces and moments. Observations of phasic muscle activity  have indicated that there are 

major differences in the activities of the muscles during stair-climbing as opposed to level walking. 

These differences in activity are mainly in the muscles responsible for vertical movement of the 

body [10-13]. In climbing up stairs, the differences are reflected by changes in the contractions of 

the soleus, quadriceps femoris, hamstrings, and gluteus maximus during the support phase; going 

down stairs, the differences are reflected by changes in the contractions of the soleus and quadriceps 

femoris muscles [21,22]. 

The duration of the activity of the flexor muscles of the knee has been observed to be small 

compared with the activity of the extensor muscles of the knee, both ascending and descending. 

Furthermore, the knee extensor muscles are required to generate larger forces during stair-climbing 

than during level walking. Morrison and Paul confirmed this observation using data derived by 

means of electromyography, a force-plate, and high-speed moving pictures of three subjects 

ascending and descending stairs. [23,24]. 

Recently  Benedetti  et  al 2010 [25] provided a reference data set, referred to an adult population 

(mean age 27 years), of the muscular activation timing during common activities of daily living - 

such as level walking and stair ambulation - for clinical and research use. To this purpose, raw 

surface EMG signals from trunk and lower limb muscles were recorded and processed in a sample 

population of healthy young volunteers. Eight muscles were considered for the right side of each 

subject: ipsilateral and contralateral erector spinae at lumbar site, gluteus medius, rectus femoris, 

medial hamstrings, lateral hamstrings (biceps femoris, long head), gastrocnemius (medial head), 

and tibialis anterior. Results of their study were in agreement with previous literature on healthy 

subjects [9-15].  In this contest it would be interesting to evaluate the differences in performing a 

stair ascending and descending task in diabetes subjects with and without neuropathy.  

 

4.2 Aim 

The aim of the study was to evaluate differences in performing a stair ascending and descending 

task in diabetes subjects with and without neuropathy. In this contest temporal parameters and 

lower limb muscles SEMG were evaluated together with the displacement of the centre of pressure 

during quiet standing both with eyes open and closed. This allowed to test the hypothesis that a 

change in the stair ascending and descending strategy of NoDPN and DPN subjects could be related 

to the altered proprioception which is a typical consequence of diabetes neuroptahy. 
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4.3 Material and Methods 

4.3.1 Subjects  

Forty two subjects participated in the study (mean age 58.6±10,4; mean BMI 25.6±3): 10 were 

healthy, 17 were NoDPN and 15 were DPN. Diabetic subjects were recruited among the patients 

attending the outpatient Clinic of the Department of Metabolic Disease of the University of Padova 

(Italy). Subjects belonging to the C group were recruited among hospital personnel. All subjects 

gave written informed consent. The protocol was approved by the local Ethics Committee (of the 

University Polyclinic). Inclusion criteria included: either type 1 or type 2 diabetic subjects who 

were able to walk, no history of ulcers or neurological disorders (apart from PN), and no history of 

orthopedic problems, lower limb surgery, or cardiovascular disease ( seeTable 1). 

 

Group DPN  NoDPN  C p p1 p2 
Age (year) 60(±8) 56,7(±14) 60,2(±6) N.S. N.S. N.S. 

Height (cm) 171 (±0,06) 170(±0.08) 166(±0,10) N.S. N.S. N.S. 
Weight (Kg) 76(±12,8) 78,2(±10) 67(±11) N.S. N.S. 0,02 

BMI 26(±3,2) 26,5(±2,5) 24(±2) N.S. N.S. 0,02 
Neuropathy 100% 0 / / / / 

Autonomic 
Neuroapthy 

40% 0 / / / / 

Microalbuminuria  40% 0 / / / / 

Peripheral 
Vasculopathy 

27% 0 / / / / 

TSA 27% 23,50% / / / / 

Coronary 
vasculopathy  

40% 12% / / / / 

HbA1c 8,04 (±1,2) 8,6 (±6) / / / / 
Years of desease 24,2 (±13) 12 (±6) / 0,001 / / 

 

Table 1. Demographic and clinical parameters (mean ± standard deviation). Results of One Way 

Anova (p<0.05) and Z-Test (p<0.05) performed among the three populations: diabetic neuropathic 

subjects (DPN), diabetic non neuropathic subjects (NoDPN), control subjects (C).  

p= statistical significance between DPN and NoDPN; p1= statistical significance  between DPN and 

C; p2= statistical significance between NoDPN and C; N.S.= not significant. 

 

Motion analysis and EMG acquisition protocol together with clinical examination descriptions can 

be found in paragraph 3.4.2 and 3.4.3 previous chapter. 
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4.3.2 Step Ascent and Descent Analysis  

Patients were asked to rise up and down from a stair 3 times (2 steps, total height of 32 cm, each 

step of 16 cm (see figures from Figure 2 to Figure 5) at the Bioengineering of Movement Lab at the 

Department of Information Engineering of Padova. 

 

 

 

Figure 2 Low step up  

(ascending 1 step, 16 cm) 

 

 

 

 

Figure 4 Low step down  

(descending 1 step, 16 cm) 

 

Figure 3 High step up  

(ascending 2 steps, 32 cm) 

 

 

Figure 5 High step down 

(descending 2 steps, 32 cm)
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Step analysis was performed with a BTS motion capture system (6 cameras, 60-120 Hz) 

synchronized with 1 Bertec force plate (FP4060-10). The electrical activity of 6 muscles for each 

lower limb were collected by means of a portable EMG system (POCKETEMG, 16 channels, BTS 

Padova) together with the ground reaction forces and the kinematic data. Dynamic surface 

electromyography (SEMG) during stair ascent and descent was assessed on the following muscles 

(recorded at 1000 Hz): rectus femoris (RF) gluteus medius (MG), tibialis anterior (TA), 

gastrocnemius lateralis (GL), peroneus longus (PL), and extensor digitorum communis (EDC). 

Sensors were positioned according to Blumenstein [26] after appropriately cleaning and preparing 

the skin. Sensors were 3 cm of diameter and positioned 1 cm apart. SEMG of MG, RF, TA, PL, GL, 

and EDC were collected. The SEMG recorded signals were band pass filtered between 10 and 450 

Hz with a 5th order Butterworth filter and full wave rectified. The envelope was computed by low-

pass filtering the signals with a 4th order butterwort filter and a cut off frequency of 5 Hz [27]. The 

right and left muscle activation patterns were analyzed and the envelope of the signal computed (the 

peak (POP) and the position of the peak both in milliseconds (POPs) and with respect to the stair 

ascending and descending cycle (POP%)). Stair ascending and descending cycle were defined by 

means of the kinematics data together with the ground reaction forces. The traces of the right and 

left heel markers were used. The formers were also employed in estimating the duration of the stair 

ascending and descending phases. 

 

4.3.3 Posture  

The human balance control system relies on feedback from the somatosensory, vestibular, and 

visual systems. Diminished somatosensation is associated with increased postural instability during 

quiet standing with eyesclosed, which is clinically referred to as sensory ataxia and is assessed via 

the Romberg test [28-30]. Somatosensory loss is a characteristic of patients with diabetic 

neuropathy and is also observed in approximately 50% of patients with stroke. In patients with 

diabetic neuropathy, somatosensory deficits are associated with increased sensory thresholds of 

mechanoreceptors and changes in the characteristics of the afferent fibers. Postural sway during 

quiet standing is typically increased in patients with diabetic neuropathy compared with healthy 

control subjects, and some work suggests that theloss of sensitivity in the soles of the feet in 

patients with diabetic neuropathy leads to postural instability [28-30]. Posturography is one of the 

biomechanical techniques dealing with the study of the neuromuscular control system and trying to 

provide quantitative information on the strategies underlying balance mechanisms. Posturographic 

analysis has the advantage that only a relatively simple experimental set up is required, which does 

not noticeably interfere, either physically or psychologically, with patients comfort. For this reason, 
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it is also suitable for subjects with impairments. A typical experimental set-up for posturographic 

studies consists of a force plate and a signal conditioning and acquisition chain to store transduced 

mechanical signals on a computer, which in turn is generally used for the extraction of suitable 

parameters from the Centre of Pressure (COP) trajectories [28-30]. By this technique it is possible 

to calculate the displacement of the COP (Centre of Pressure, i.e. the application point of the foot-

to-ground reaction force) during experiments with a variety of different set-ups. Several measures 

were proposed in literature for describing the COP motion. They can be either summary statistic 

scoresdirectly computed from COP time-series [28-30]. In this study the posturographic analysis 

has been carried on by collecting the data of each subject while performing a Roemberg test on a 

strain gage force plate. It was then chosen to analyze all the parameters (temporal and stochastic) 

that could be derived from the COP pattern, in order to identify the set of variables most suitable to 

describe the diabetic foot pathology: ellypsis 95%, sway area, path, path x, path z, mean velocity, 

mean velocity x, mean velocity z (where x and Z are the medio-lateral and anterior-posterior 

direction) [30].  

 

4.4 Statistical Analysis  

One-way ANOVA using SPSS (SPSS, version 13.0) and Pearson product moment correlation 

coefficients between pairs of quantitative variables were calculated across all subjects. A 

significance level of p< 0.05 was adopted for all above mentioned statistical analysis, using a 

Bonferroni correction when appropriate. Correlation analysis was performed between temporal 

parameters of stair ascending and descending and posturographic parameters of Romberg test in 

order to evaluate possible relationship between an altered performance of the former task with 

alterations in the postural control.  

 

4.5 Results 

The time parameters were reported in Table 2 in terms of mean and standard deviation (ms). The 

results of SEMG analysis were reported in Table 3 in terms of POP of muscle activity, position of 

the peak. DPN subjects are faster than NoDPN and C group, meanwhile NoDPN group is faster 

than C group. The subjects of control group are the slowest. Concerning with muscles DPN group 

show an iper and delay activation of all muscles during rising up and down all type of step (Table 2 

and 3). When considering correlation analysis this revealed interesting results in the association 

between temporal parameters of stair ascending and descending and posturographic parameters of 

Romberg test. A negative correlation was found between stair descending duration and each 

posturographic parameter in eyes open condition (R>0.5 p<0.009).  



 52

Step Groups 
Mean 

(ms) 

 ± St 

Dev  
p p* p** 

High Step 

Up 

DPN .656 .016    

NoDPN .605 .014  0.0197  

C .668 .020   0.0121 

High Step 

Down 

DPN .579 .017    

NoDPN .595 .015  0.0129  

C .646 .021   0.0434 

Low Step 

Up 

DPN .586 .015 0.0168   

NoDPN .537 .014  0.0309  

C 
.637 .018 

  

2.555E-

05 

Low Step 

Down 

DPN .551 .014    

NoDPN .532 .014  0.0169  

C .607 .018   0.0011 

 

Table 2. Temporal parameters (mean ± standard deviation).  Results of One Way Anova (p<0.05) 

performed among the three populations: diabetic neuropathic subjects (DPN), diabetic non 

neuropathic subjects (NoDPN), control subjects (C). 

p= statistical significance between DPN and NoDPN; p*= statistical significance between DPN and 

C; p**= statistical significance between NoDPN and C 
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Step Muscles  
p 

<0.05 
 

PPES  
 

PPE%  
 

PPm  
Groups 

Mean in 
PPES   

 ± St 
Dev in 
PPES  

Mean  
in 

PPE%  

  ± St 
Dev in 
PPE%  

Mean  
in PPm 

 ± St 
Dev in 
PPm  

H
ig

h 
S

te
p 

U
p 

RF 

p     0,00 DPN 2,97 0,20 24,03 1,46 153,85 29,56 

p*     0,00 NoDPN 2,90 0,13 25,82 0,97 33,03 19,63 

p**       C 2,75 0,17 24,79 1,23 38,82 24,98 

GM 

p     0,00 DPN 3,23 0,24 23,82 1,80 251,45 39,75 

p*     0,00 NoDPN 2,75 0,13 24,61 1,02 34,50 22,64 

p**       C 2,76 0,17 25,58 1,27 22,91 28,11 

TA 

p       DPN 3,09 0,14 22,64 1,03 251,18 20,00 

p* 0,00     NoDPN 2,81 0,12 23,88 0,86 219,43 16,71 

p**       C 2,44 0,15 23,47 1,12 232,84 21,91 

GL 

p       DPN 2,99 0,18 22,72 1,37 57,85 11,35 

p* 0,00     NoDPN 2,70 0,14 23,65 1,06 55,49 8,75 

p**       C 2,33 0,18 21,33 1,37 68,14 11,35 

ECD 

p 0,01     DPN 3,29 0,14 23,02 0,93 204,03 16,56 

p* 0,00     NoDPN 2,76 0,14 23,68 0,89 159,50 15,84 

p**       C 2,50 0,19 22,66 1,24 119,28 22,08 

PL 

p       DPN 3,071 ,169 23,371 1,126 69,309 8,238 

p*       NoDPN 2,773 ,134 24,203 ,895 67,356 6,547 

p**       C 2,652 ,176 24,519 1,176 59,996 8,604 

H
ig

h 
S

te
p 

D
ow

n 

RF 

p     0,00 DPN 10,16 0,48 80,61 1,57 140,33 24,00 

p*     0,00 NoDPN 9,17 0,33 81,60 1,09 44,99 16,71 

p**       C 8,96 0,43 80,43 1,40 31,63 21,46 

GM 

p 0,00   0,00 DPN 11,30 0,51 84,16 2,83 242,39 40,27 

p* 0,00   0,00 NoDPN 9,08 0,30 80,58 1,66 35,86 23,58 

p**       C 8,70 0,35 80,27 1,96 32,65 27,90 

TA 

p 0,01   0,00 DPN 10,85 0,46 80,00 1,32 215,80 15,98 

p* 0,00   0,00 NoDPN 9,43 0,36 78,58 1,04 109,07 12,57 

p** 0,04     C 8,20 0,48 77,71 1,38 101,12 16,63 

GL 

p     0,01 DPN 10,58 0,59 80,70 1,54 204,80 20,43 

p*     0,00 NoDPN 9,68 0,43 81,67 1,12 137,73 14,87 

p**     0,00 C 9,03 0,59 81,39 1,54 63,17 20,43 

ECD 

p       DPN 3,29 0,14 23,02 0,93 204,03 16,56 

p* 0,00     NoDPN 2,76 0,14 23,68 0,89 159,50 15,84 

p**       C 2,50 0,19 22,66 1,24 119,28 22,08 

PL 

p ,010     DPN 11,006 ,508 81,375 1,392 153,509 26,472 

p* ,003     NoDPN 9,407 ,423 79,427 1,160 94,153 22,060 

p**       C 8,694 ,568 81,095 1,557 81,406 29,597 

Lo
w

 S
te

p 
U

p RF 

p     0,00 DPN 2,31 0,22 17,34 1,65 150,46 27,84 

p* 0,00   0,01 NoDPN 1,94 0,15 17,40 1,10 32,68 18,64 

p**     N.S C 1,72 0,17 15,41 1,30 28,16 21,90 

GM 

p 0,02   0,00 DPN 2,58 0,21 18,72 1,54 265,38 45,11 

p* 0,00   0,00 NoDPN 1,95 0,15 17,98 1,11 29,73 32,44 

p**       C 1,70 0,18 14,82 1,34 27,87 39,06 
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TA 

p 0,00     DPN 2,57 0,14 17,58 0,94 228,73 16,37 

p* 0,00   0,01 NoDPN 1,92 0,12 16,37 0,85 222,75 14,90 

p**     0,01 C 1,60 0,15 14,82 1,01 166,09 17,72 

GL 

p 0,00   0,02 DPN 2,54 0,17 17,88 1,19 148,50 25,04 

p* 0,00     NoDPN 1,91 0,13 16,01 0,92 44,65 19,20 

p**       C 1,55 0,18 14,67 1,26 77,56 26,39 

ECD 

p 0,00   0,03 DPN 2,81 0,14 18,63 0,95 159,64 11,43 

p* 0,00 0,00 0,00 NoDPN 1,92 0,12 16,26 0,81 126,40 9,66 

p** 0,04 0,03   C 1,51 0,16 13,26 1,11 101,00 13,35 

PL 

p     ,010 DPN 2,826 ,141 19,028 ,944 124,530 17,188 

p*     ,004 NoDPN 1,976 ,133 16,972 ,892 62,032 16,232 

p**       C 1,663 ,162 15,325 1,085 47,500 19,747 

Lo
w

 S
te

p 
D

ow
n 

RF 

p     0,00 DPN 9,38 0,51 74,41 2,00 173,65 33,03 

p* 0,04   0,00 NoDPN 8,45 0,34 74,44 1,32 41,77 21,74 

p**       C 8,04 0,39 71,86 1,54 30,32 25,39 

GM 

p 0,00 0,04 0,00 DPN 10,71 0,58 74,84 1,57 108,55 12,76 

p* 0,00 0,01 0,00 NoDPN 9,04 0,46 75,53 1,24 109,92 10,09 

p**       C 7,54 0,60 72,10 1,61 53,72 13,09 

TA 

p 0,00 0,02 0,01 DPN 11,25 0,41 77,17 1,16 128,79 10,44 

p* 0,00 0,02 0,00 NoDPN 8,79 0,38 73,52 1,09 89,74 9,80 

p**       C 7,92 0,46 73,21 1,29 82,22 11,60 

GL 

p 0,02   0,00 DPN 10,71 0,58 74,84 1,57 219,63 37,53 

p* 0,00   0,00 NoDPN 9,04 0,46 75,53 1,24 33,27 24,30 

p**       C 7,54 0,60 72,10 1,61 32,23 30,25 

EDC 

p 0,00   0,00 DPN 11,75 0,33 78,21 1,09 141,70 9,25 

p* 0,00   0,00 NoDPN 8,72 0,33 74,25 1,11 79,01 9,37 

p**       C 7,99 0,42 72,85 1,42 80,87 12,00 

PL 

p ,000 ,032   DPN 11,280 ,370 77,566 1,251 87,425 9,665 

p* ,000 ,019   NoDPN 8,487 ,335 73,884 1,134 40,450 8,754 

p**       C 7,972 ,403 73,154 1,362 53,497 10,521 

 

Table 3. Temporal pattern of muscle activation during step rise up and down  (% of total step). 

Mean value (±SD) of the time of the activation peak of the right and left RF, TA, GM, GL, PL and 

EDC muscles. Results of One Way Anova (p<0.05) performed among the three populations: 

diabetic neuropathic subjects (DPN), diabetic non neuropathic subjects (NoDPN), control subjects 

(C). p= statistical significance between DPN and NoDPN; p*= statistical significance between DPN 

and C; p** statistical significance between NoDPN and C. 

 

4.6 Discussion 

The key finding of the present study can be considered the presence of statistically significant 

alterations both in NoDPN and DPN subjects’ SEMG activity and stair climbing ascending and 

descending phases duration. To our knowledge this has not been previously documented in the 
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literature. In term of stair ascending and descending phases duration NoDPN and DPN subjects 

displayed a statistically significant shorter period. This result is in disagreement with what was 

previously demonstrated with respect to gait analysis temporal parameters, where diabetic 

neuropathic subjects showed a longer stride time due to a longer stance phase [27]. However this 

could be connected to the shorter swing phase that characterizes the gait of DPN and NoDPN 

subjects as reported in [31], if we consider that either stair ascending and descending or swing 

phase of gait require a dynamic postural control in a monopodalic position.  

When considering that most of the major muscle groups are active at or around both heel strike and 

toe-off (i.e., at the beginning and end of the stance and swing phases of the stair ascending and 

descending cycle). These are the periods of deceleration and acceleration of the legs, when body 

weight is transferred from one foot to the other. These are the phases where most differences were 

reported on the SEMG activity of DPN and NODPN subjects with respect to C during gait. 

However some similarities were found with diabetic subjects SEMG activity during stair ascending 

and descending. When rising up from a stair an example of the starting position is with the left foot 

placed on top of the step and the right on the verge of pushing.  

In this phase DPN subjects displayed  a delay in the activity of RF oppositely to what was 

previously reported during gait where the same group of subjects showed an earlier activation of the 

same muscle with respect to C [27]. However this result could be interpreted as a possible reason 

for the lack of stability previously reported with respect to the alterations found in DPN temporal 

parameters. 

After the initial phase each limb performs a complete cycle of movements out of phase, so that 

while the left limb supports the weight of the body, the right is ending its movement. The right foot 

pushes a plantar flexion of the ankle due to the action of the calf muscles which produce a passive 

extension of the toes that stretch the flexors muscles. Then flexors muscles immediately flexing the 

toes and produce the final push of the right foot. At this instant the whole body is tilted forward; 

however, both the knee and the hip are in extended position while the trunk is flexed, so as to move 

the sliding body weight. It is in this phase that both DPN and NoDPN displayed a delay in the 

SEMG activity of both TA and EDC. If we considered that simultaneously the quadriceps femoris 

of the left showed a delayed activation in DPN while it was suppose to work on his maximun 

speed/intensity to extend the left knee and lift the body up to the next step.  

Now begins the phase of oscillation of the right leg, which involves the extension of the toes with 

the action of the long extensor muscle of the toes and the hallux. The dorsiflexion of the ankle  is 

also involved due to the tibialis anterior and to the extensor of the hallux, the flexion of the knee to 

the action of the hamstrings, the flexion of the hip given by psoas major and by iliac and finally the 
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anterior rotation of the pelvis on the same side for the action of the gluteus medius and small limb 

that bears weight. This movement continues until the foot goes over the left leg and rests on the 

next step. It is in this phase that we registered a delayed activation of PL in DPN together with TA 

and ECD in both DPN and NoDPN. A similar behaviour was also reported during gait with respect 

to TA during the loading response [27]. With respect to this specific muscle a delayed activity was 

shown in DPN subjects when compared to C, even though less delayed than NoDPN. This results is 

in contrast with what observed during gait where an earlier activation was registered in DPN 

subjects.  

In this phase, the foot is rested on the step thanks to the eccentric contraction of the hip flexors, and 

the weight is transferred on it, thus beginning the next stance phase. At this point the intrinsic 

muscles of the right foot are contracted to stabilize the plantar arches, while the long flexor lead 

fingers towards the bearing surfaces. The ankle, which is the in a slightly dorsally flexed position 

due to the inclination forward of the tibia, reaches a neutral position thanks to the soleus and, in 

part, thanks to the extension of the knee. The movements of both the ankle and the knee contribute 

to the force that stretches the hip, which helped turn the gluteus maximus and the hamstrings 

produces a backward tilt of the pelvis. The muscles of the trunk, use this stable base to extend the 

trunk in a standing position. The swing phase of the limb is increased by the anterior rotation of the 

pelvis at the level of the hip joint from the side of support determined by the action of the gluteus 

medius and small of the  leg that support the weight. When the hip and the knee is fully extended, 

the other foot is placed on the step and following the ankle plantar-flexed limb support, is to push 

the body forward on the left leg to complete the cycle. Making step required different transition 

from mono to bipodalic support, it is for this reason that, in this task, a correctly and effectively 

postural control proves to be very important. Indeed correlation analysis between posturographic 

measuraments and temporal duration showed a significant negative correlation which outlined the 

lack of postural control for those subjects that registered a lower phase duration (namely the DPN 

and NoDPN subjects). Thus confirming the hypothesis that DPN and NoDPN performed the stair 

ascending and descending task in a shorter time than C due to an inability to maintain a postural 

control for a time comparable to C. 
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5. Evaluation Of Muscle Fatigue During Treadmill Walking In 
Patients With Type 2 Diabetes And Peripheral Vasculopathy 

5.1 Background 

5.1.1 Muscle Fatigue 

Over a half century ago, Muscio [1] argued that the then current interpretation of the word "fatigue" 

was too general in meaning for scientific use and should be abandoned. This timely advice induced 

involved professions to subdivide the concept of fatigue into subsets. This approach was 

exemplified by Bills [2] who suggested that fatigue be divided into three major categories. The first 

was subjective fatigue, characterized by a decline of alertness, mental concentration, motivation, 

and other psychological factors. The second was objective fatigue, characterized by a decline in 

work output. The third was physiological fatigue, characterized by changes in physiological 

processes. These categories have been further subdivided into areas with identifiable origins and 

symptoms [3]. One type of physiological fatigue is induced by sustained muscular contractions. It is 

associated with such external manifestations as the inability to maintain a desired force output, 

muscular tremor and localized pain. The effects of this fatigue are localized to the muscle or group 

of synergistic muscles performing the contraction. This category of fatigue has been termed 

localized muscular fatigue by Chaffin [4]. Although this term originally had its roots in the field of  

Ergonomics, it was subsequently popularized by a research group at Chalmers Institute of 

Technology and Sahlgren Hospital in Sweden. However, according to Merton [5] and various other 

investigators, even this category of fatigue may have its source peripherally (in the muscle tissue or 

neuromuscular junction) or centrally (in the brain and spinal cord).  

In the study of localized muscular fatigue, analysis of the median frequency of the power density 

spectrum of the myoelectric (ME) signal, detected on the surface of the skin over a muscle, has 

been extensively employed. Since the historic work of Piper [6] in 1912, the frequency 

components of the surface ME signal have been known to decrease when a contraction is 

sustained. Cobb and Forbes [7] noted this shift in frequencies toward the low end with fatigue, and 

also observed a consistent increase in amplitude of the ME signal recorded with surface electrodes. 

Many other investigators have also noted an increase in ME signal amplitude [8-14]. 

The frequency shift (towards the lower frequencies) has also been observed often and in a variety 

of muscles throughout the human body [15-20]. 
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These two phenomena, which are pictorially represented in Figure 2, are in fact related. Lindstrom 

et al
 
[21] and De Luca [22] explained the interrelationship by noting that during a sustained 

contraction the low-frequency components of the ME signal increase and, hence, more ME signal 

energy will be transmitted through the low-pass filtering effect of the body tissue. Therefore, the 

magnitude of the two related phenomena is dependent on many factors, such as force level of 

contraction, time into the contraction, the type of electrode used to obtain the ME signal, the 

thickness of the subcutaneous tissue, and the particular muscle investigated. A minor digression is 

necessary at this point. It is commonly observed that the spectral shift is most dramatic near the 

beginning of a sustained contraction, whereas the amplitude of the ME signal shows a more 

pronounced increase near the end of a sustained contraction. Such divergent behavior of these two 

measurements would seem to indicate that they might have separate origins, were it not for the fact 

that the firing rates of the motor units decrease, even during constant-force contractions. This 

decrease in the firing rate is more pronounced near the beginning of the contraction. The decreasing 

firing rates will decrease the amplitude of the ME signal and thus offset the increase induced by the 

frequency shift. In a sustained contraction, muscle fatigue can be considered proportional to the 

decline in the mean frequency of the SEMG power spectral density. For more than 10 years muscle 

fatigue has been studied mainly during isometric and constant force contractions, because under 

these conditions, the SEMG can be considered as a realization of a colored and wide-sense 

stationary random process [23]. 

 
 

 
 

Figure 3 (Top) Myoelectric signal amplitude and force during an attempted constant-force 

contraction in the first dorsal interosseous muscle. (Bottom) Power density spectra of the 

myoelectric signal at the beginning and at the end of the constant-force segment of the contraction. 



 62

However, in dynamic exercises, the SEMG must be model as a non stationary random process. 

Hence, a proper quantification of muscle fatigue requires spectral analysis techniques capable of 

dealing with signal non-stationarities. The most used techniques for the spectral analysis of SEMG 

recorded during dynamic exercises are the time–frequency transforms belonging to Cohen’s class 

[24]. In the past, the analysis of the electrical manifestations of muscle fatigue was developed 

mainly for exercises during which the interested joint is kept in isometric conditions and force may 

be considered as constant, or, at most, slowly varying. In this case, the accumulation of chemical by 

products within the muscle induces a slow and progressive modification of the interstitial fluid pH, 

which causes a progressive decrement of the propagation velocity of depolarization along the 

muscle fibers. The principal effect of the progressive reduction of muscle fiber conduction velocity 

is a scaling of the power density function of the signal towards the lower frequencies. The surface 

myoelectric signal detected during isometric constant force contractions may be considered as a 

stochastic process with gaussian distribution of amplitudes. It is generally accepted [25] that it is 

wide sense stationary over time intervals ranging from 0.5 s up to 2 s, depending on the contractile 

force exerted and on the properties of the investigated muscle. In this contraction paradigm, the 

electrical manifestations of muscle fatigue are quantified by first estimating the power spectral 

density function of the signal within subsequent epochs during which it may be considered as wide 

sense stationary, and then by computing either the mean or the median frequency of each spectral 

estimate. The time series of the considered spectral variables usually show a decreasing trend over 

time. This phenomenon may be quantified in different ways and is the most typical electrical 

manifestation of muscle fatigue. Only in the last decade the study of localized muscle fatigue has 

been utilized in clinics, although mainly in pilot studies. Recently, different authors reported 

applications of surface myoelectric signal analysis that contributed to an important advancement of 

knowledge in physiology [26,27], in the clinical assessment of muscle dystrophy [28,29], and in 

rehabilitation [30-32]. Surface electromyography provides a particularly interesting application. It is 

well known that the Power Spectral Density function (PSD) of the surface myoelectric signal 

(MES) undergoes progressive compression and change of shape during sustained contractions. This 

phenomenon is reflecting a number of physiological changes taking place at the muscle fiber level 

that are associated with variations of pH [33], mean and distribution of muscle fiber conduction 

velocity [33-36] and motor unit action potential shape, and spatial width [37]. Although the analysis 

of the myoelectric signal detected under stationary conditions has not yet been thoroughly explored 

in clinics, it is evident that isometric contractions are not usual in most daily activities. In sports 

medicine, ergonomics, and rehabilitation, it would be preferable to study muscle fatigue while the 

subject is performing a functional task, in order to evaluate muscle endurance during an exercise 
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very similar to the activity in which the subject is usually involved or in which he experiences 

discomfort. When the muscle contracts in dynamic conditions, the myoelectric signal generated by 

the muscle may no longer be considered as a stationary process. This observation is crucial, since it 

follows that the spectral estimation techniques adopted when working with stationary processes 

must be substituted by techniques suitable to analyzing non stationary processes. 

More specifically, we can classify the non stationarities that affect the myoelectric signal recorded 

during dynamic contractions as slow and fast. The slow non stationarities are generally related to 

the accumulation of chemical byproducts within the muscle tissue, and hence are those reflecting 

the effects of localized muscle fatigue. Fast ones are due to numerous phenomena, some related to 

the control strategy of the central nervous system system and others associated with the 

biomechanics of the movement. When the purpose is to evaluate the progression of the electrical 

manifestations of muscle fatigue during dynamic contractions, fast non stationarities appear as 

confounding factors. Kaflitz and Bonato in 1999 porposed a successful analysis of the myoelectric 

signal requires: first, suitable spectral estimation techniques, then proper instantaneous spectral 

parameters to track the progression of muscle fatigue, and finally processing methods and 

contraction modalities that allow for discriminating the slow variations due to fatigue from the 

confounding factors that cause fast non stationarities. In this work we focused our attention on 

suface emg’s analysis during dynamic contraction, in particular during walking protocol exercise on 

treadmill. 

 

5.1.2 Muscle Fatigue, PAD and intermittent claudicatio 

The diagnosis is made with a determination of the ABI. Previous study [38] have highlighted that 

claudicating patients have altered kinematic gait patterns that can be fully characterized utilizing 

advanced biomechanical analysis. The most important alteration were greater ankle plantar flexion 

in early stance and ankle range of motion during stance, time to maximum ankle plantar flexion was 

shorter and time to maximum ankle dorsi flexion was longer in PAD patients. The link between IC 

PAD and surface emg is represented by the fact that arterial obstruction causes lower blood 

circulation than normal and this causes in turn pain in the muscle interested. In this study we 

focalized our attention on surface emg’s analysis during fatigable treadmill exercise, to understand 

if it was possible to highlight the presence of muscle fatigue as result of arterial obstruction for 

provide a further support to clinician in early PAD diagnosis. 
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5.2 Aim 

The aim of this study was, firstly, to evaluate the effects of RT on muscle fatigue assessed by means 

of surface electromyography (SEMG) [39], in dynamic conditions, in a group of type 2 diabetic 

patients with peripheral arterial disease (DPAD) and without (NoPAD). In addition a methodology 

for quantifying the localized muscle fatigue of lower limbs in patients suffering from type 2 

diabetes with and without micro and macroangiopathy complications was developed. This 

methodology is based on the analysis of surface electromyography (SEMG) signals recorded during 

treadmill walking and allows studying electrical manifestation of muscle fatigue in dynamic 

conditions [40]. The present project was carried on in collaboration with the Department of 

Information Engineering of Padova, the Department of Clinical Medicine and Metabolic Disease of 

the University of Padova and the Electronics of the Polytechnic of Torino. 

 

5.3 Material and Methods 

5.3.1 Subjects 

Thirty nine subjects were recruited from the patients attending the outpatient clinic of the 

Department of Metabolic Disease at the University of Padova (Italy) as well as from university 

personnel: 10 control subjects (C) (mean age 58,0±12,3; mean BMI 23,1±4,8), 13 diabetic patients 

without PAD (NoDPAD) (mean age 57±14,3; mean BMI 25,4±6,4), and 16 diabetic patient with 

PAD (DPAD) (mean age 64,3 ±7 mean BMI 26,3±2,7). Demographic data were reported in Table 

1. Subjects belonging to the C group were recruited among hospital personnel. All subjects gave 

written informed consent. Sixteen subjects had PAD, stage I of Leriche-Fontaine classification. 

Diagnosis of PAD included a lower limb arterial Doppler ultrasound examination, ankle-to-brachial 

systolic pressure ratio (Index of Winsor), examination of tibialis posterior and foot peripheral 

pulses. On every subjects a history of intermittent claudication was also assessed. 
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Group DPAD NoDPAD C p p1 p2 
Age (year) 64,3(±7) 57(±14,3) 58,0(±12,3) N.S. N.S. N.S. 

Height (cm) 179 (±0,09) 160 (±0,4) 160(±0.3) N.S. N.S. N.S. 
Weight (Kg) 77(±13) 70(±17) 67(±18) N.S. N.S. 0,02 

BMI 26,3(±2,7) 25,4(±6,4) 23,1(±4,8) N.S. N.S. 0,02 
Neuropathy 37,50% 23% / / / / 

Autonomic 
Neuroapthy 

25% 15,40% / / / / 

Peripheral 
Vasculopathy 

100% 0 / / / / 

 

Table 1. Demographic and clinical parameters (mean ± standard deviation). 

 

During SEMG analysis patients were instrumented bilaterally with foot-switches, knee goniometers 

and surface SEMG probes over Tibialis Anterior, Gastrocnemius Lateralis, Vastus Lateralis, Biceps 

Femoris and Lateral Hamstrings. Patients were then asked to walk on a treadmill. After a warm-up 

of 2.5 minutes at 2 km/h patients walked for 35 minutes at 4 km/h, with an inclination of 2%. Then 

a period of 2.5 minutes of cool-down followed, again at 2 km/h. The signal acquisition started after 

2-3 minutes from the beginning of the treadmill walk at 4 km/h, in order to give the patient time to 

acquire a fl uid and natural gait at this velocity. Foot-switch, knee fl exo-extension angle and SEMG 

signals were recorded synchronously for 30 minutes by means of the system STEP32 (DemItalia, 

Italy). SEMG signals were acquired with a sampling frequency of 2kHz and high-pass filtered at 20 

Hz (FIR filter, 100 taps) to attenuate motion artefacts and low-pass filtered at 350 Hz to reduce 

high-frequency noise (anticausal IIR filter, 14th order). 

For each SEMG signal we estimated the mean frequency of the Power Spectral Density function on 

each gait cycle. Then, in order to reduce the estimation variability, we averaged the mean frequency 

over 30 consecutive gait cycles. 

 

5.3.2 Clinical Evaluation (see paragraph 2.4.3 chapter 1) 

Furthermore, to classify patient, clinical evaluation includes transthoracic echo color Doppler wich 

allow us to evaluate systolic function (FE% normal if > 50-55%) and the presence of hypo-and 

akinetic areas and valvulopathy. Three groups show normal parameters. 
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5.3.3 Treadmill Protocol Exercise 

Patients were asked to walk on a treadmill at 4 km/h (inclination 2%) for 30 minutes (Figure 1). 

During walking the informations of foot-switch (Figure 2), knee flexo-extension angle (Figure 3), 

and SEMG signals (Figure4) from Tibialis Anterior (TA), Gastrocnemius Lateralis, (GL) Vastus 

Lateralis (VL), Biceps Femoris (BF) and Lateral Hamstrings (LH) were recorded bilaterally  

(R=right, L=Left) with the system STEP32 (DemItalia, Italy). 

 

 

Figure 1 Patient during excerise session with all instrument activated 

 

 

 

 

Figure 2 Foot-switch Figure 3 Electrogoniometer Figure 4 Emg’s probes
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5.3.4 Muscle Fatigue Assessment 

Evaluation of local muscle fatigue by means of SEMG signal processing requires complex analysis 

especially in dynamic tasks, therefore this specific analysis was performed by Agostini et al 

(Polytechnic of Torino). In treadmill walking, it is necessary to perform pre-processing steps for 

ensuring the quality and reliability of the results obtained. A first issue is the estimation of the 

Signal-to-Noise ratio (SNR) of SEMG signals. A second issue is the evaluation of the variations in 

the muscle activation timing due to learning or adaptation, that maybe a confounding effect with 

respect to the fatigue phenomena. For each SEMG signal the mean frequency of the Power Spectral 

Density function on each gait cycle was estimated by Agostini et al  as reported in [41]. Then, in 

order to reduce the estimation variability, the mean frequency was averaged over 30 consecutive 

gait cycles. Evaluation of local muscle fatigue by means of SEMG signal processing was performed 

as follows : 

a pre-processing steps for ensuring the quality and reliability of the results obtained through the 

estimation of the Signal-to-Noise ratio (SNR) of SEMG signals (Figure 5) 

 

 

Figure 5 Identification of gait cycle [41] 
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Figure 6 Step 32 Dem Italia  (http://www.medicaltec.it/dem/DEM_STEP32.html) 

 

5.4 Statistical analysis 

Confidence interval of observed proportion was determined with the Z-Test (the staRt Package) of 

R in order to compare the clinical characteristics of study subjects. The level of significance was set 

to p≤0.05. Clinical variables were compared between groups by using the T-Test, after evidence of 

normality (Kolmogorov-Smirnov Test). We considered the differences as statistically significant for 

p≤0.05. K-means and Hierarchical cluster analysis were also performed by mean of Orange Canvas 

software considering the data obtained from SEMG analysis together with clinical examination 

parameters (see Table n. 2). Clustering techniques are typically based on a 

minimization/maximization of a global objective function. The clustering problem, then, becomes 

an optimization problem and, as a result, a number of techniques for optimizing a global objective 

function have been developed in the past [42]. One approach to optimize a global objective function 

is to rely on algorithms, which find solutions that are often good, but not optimal. This is the case of 

K-means clustering algorithm which tries to minimize the sum of the squared distances (error) 

between objects and their cluster centers. Another approach is to forget about global objective 

functions as through Hierarchical Clustering (HC) procedures that proceed by making local 

decisions at each step of the clustering process. Whenever the function k-means was applied, it was 

performed using the standard Euclidean distance to form the clusters. K-means uses an iterative 

algorithm that minimizes the sum of distances from each object to its cluster centroid over all 

clusters and moves objects between clusters until the sum cannot be decreased further. The number 

of cluster is increased at each solution until an empty cluster is created and the solution that 

generates clusters that are better separated than previous solutions is chosen. In this data analsyis, 

the Silhouette score was applied [43] as optimum cluster criterion to manage different numbers of 

clusters: maximizing the index allows choosing the most appropriate number of clusters to use in 

data processing and statistics. HC is an agglomerative clustering technique based on a distance 

measure between clusters and on a linkage method. In the adopted implementation, the user can set 
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the linkage method (single, complete, average, centroid or ward), the distance measure (correlation, 

cross correlation or Euclidean distance), the number of clusters and the number of nodes to be 

shown in the tree-based dendrogram. In order to explore how the subjects were distributed in the 

proposed cluster, after each clustering technique was performed, descriptive statistics was used. 

Statistical differences of all variables between the obtained clusters were, then, investigated using 

one-way ANOVA using SPSS (SPSS, version 13.0). Pearson product moment correlation 

coefficients between pairs of quantitative variables were calculated across all subjects. A 

significance level of P < 0.05 was adopted for all above mentioned statistical analysis, using a 

Bonferroni correction when appropriate. 

 

 

 

Mean 
± St. 
Dev. 

Mean 
± St. 
Dev. 

Mean 
± St. 
Dev. 

Mean 
± St. 
Dev. 

Mean 
± St. 
Dev. 

Mean 
± St. 
Dev. 

BPM Pre 72,15 11,09 72,07 15,82 66,5 6,95 BPM Post 81,85 12,25 80,87 15,32 72,6 9,92
Aorta Pre 30,38 2,9 33,04 2,21 32,46 3,39 Aorta Post 31,31 3,3 33,47 2,33 32,98 3,4
D Asn Pre 38 2,98 38,17 2,63 36,01 2,93 D Asn Post 39,42 2,71 39,15 3,52 36,47 3,98

VOL Asn/SA 24,67 6,55 23,93 5,42 23,76 6,24VOL Asn/SA 26,06 10,69 28,31 8,52 26,63 7,56
DTS Pre 28,35 3,33 28,19 3,52 27,7 2,31 DTS Post 27,27 3,27 31,14 7,43 30 2,26
DTD Pre 48,12 3,66 48,75 4,49 49,74 2,65 DTD Post 48,58 3,07 48,49 5,77 48,61 7,6
FA% Pre 41,27 3,5 42,14 3,06 44,31 3 FA% Post 43,88 4,98 41 3,33 41,82 1,91
SIV Pre 10,32 1,57 11,38 1,7 10,41 1,36 SIV Post 10,42 1,42 11,49 1,55 10,62 1,21
PP Pre 9,38 1,03 10,94 1,31 9,68 1,34 PP Post 9,67 1 11,11 1,08 9,68 1,2

Efflusso Pre 26,83 3,21 27,62 2,14 26,62 2,44Efflusso Post 27,63 3,3 28,13 2,99 27,44 2,19
VTS Pre 27,35 6,63 30,22 9,25 28,32 6,5 VTS Post 30,84 7,58 34,71 11,77 28,12 6,71
VTD Pre 74,19 16,19 80,57 22,98 73,78 14,78 VTD Post 90,08 21,57 82,27 29,02 81,15 16,01
FE% Pre 62,93 4,32 62,61 4,28 61,35 2,63 FE% Post 65,59 4,62 61,52 4,39 65,05 5,27
TEI Pre 0,34 0,08 0,37 0,08 0,37 0,05 TEI Post 0,36 0,06 0,42 0,11 0,36 0,08

TRIV Pre 65,77 15,12 68,67 21,59 68 13,17 TRIV Post 74,23 16,44 83,27 26,02 68 21,11
TCIV Pre 53,85 24,25 59,33 18,21 47 18,59 TCIV Post 55,38 19,09 66,33 21,42 49 20,92

E Pre 66,88 9,57 66,87 10,99 64,07 5,37 E Post 71,23 14,64 73,07 13,45 67,95 6,34
A Pre 82,23 9,48 86,33 13,22 64,77 9,06 A Post 95,23 19,76 96,2 16,26 79,13 15,28

E/A Pre 0,81 0,12 0,78 0,14 1,01 0,2 E/A Post 0,76 0,12 0,77 0,18 0,88 0,18
T Dec Pre 259,23 39,31 267,67 43,83 243,5 28,09T Dec Post 268,85 46,42 252 54,21 209 28,85

T 302,31 31,07 304,67 37,44 309 21,45 T 308,46 29,4 302,33 37,65 320 24,38
AT Pre 61,92 12,84 60 5,98 67 4,22 AT Post 66,92 11,82 60,67 9,8 68 11,35

VEL PICCO 139,62 21,37 137,47 21,65 133,7 27,7VEL PICCO 140,77 22,49 145,4 26,19 131 39,43
IM Pre 0,46 0,66 0,36 0,5 0,6 0,52 IM Post 0,62 0,65 0,6 0,63 0,8 0,63
IT Pre 0,23 0,44 0,21 0,58 0,1 0,32 IT Post 0,23 0,44 0,2 0,56 0,3 0,48

I Ao Pre 0,31 0,48 0,07 0,27 0,2 0,42 I Ao Post 0,31 0,48 0 0 0,4 0,52
Tal 0,09 0,21 0,24 0,75 0,02 0,08 Microglobulina 2,28 0,5 2,4 0,64 2,11 0,61
Gll -0,08 0,15 -0,28 0,39 -0,07 0,1 Cistatatina_Pr 357,52 118,03 333,58 160,39 342,42 118,47
Rfl -0,17 0,29 -0,08 0,68 -0,3 0,34 PCR-Pre 47,9 86,48 31,36 29,31 22,97 27,69
Lhl -0,12 0,21 -0,09 0,16 -0,16 0,24 Microglobulina 2,34 0,47 2,67 0,65 2,27 0,61
Vll -0,33 0,43 -0,33 1,25 -0,2 0,27 Cistatina_Post 354,14 130,37 375 129,03 357 159,83
Tar 0,03 0,12 0,15 0,39 0,02 0,1 PCR_Post 51,24 96,74 31,67 31,2922,82 25,61
Glr -0,11 0,16 -0,05 0,17 -0,11 0,15 Lhr -0,12 0,26 -0,24 0,37 -0,1 0,3
Rfr -0,17 0,28 -0,2 0,41 -0,08 0,49 Vlr -0,21 0,56 -0,05 0,58 -0,1 0,17

Parameters
NoDPAD group DPAD group C group NoDPAD group DPAD group C group 

Parameters

 

Table n. 2 Mean and Standard Deviation for each clinical variable take in account. For muscles, the 

parameter take in account is the Decreas of mean frequency.



  

 70

5.5. Results 

Signs of muscular fatigue were observed with respect to the following muscles of PAD subjects: 

TA, VL, RF, GL, LH (Figure 7). One way-Anova analysis performed among the three populations 

of subjects displayed significant differences for the following parameters: SIV PP and EA pre 

exercise and SIV PP FE% and Microglobulina post exercise.  

Cluster analysis by means of K-means (Euclidean distance) generated two different clusters one 

containing only C and one containing both DPAD and NoPAD (Figure 8). Thus showing the 

capability of both clinical and SEMG parameters to distinguish pathological subjects from controls.  

 

 

Figure 7 In this figure the muscles with blu circle presents muscle fatigue, while others not. 

Agostini et al. [41] 
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Figure 8 Cluster Kmeans rappresentation 

 

5.6 Discussion 

The present methodology allowed to highlight signs of muscular fatigue on DPAD subjects thus 

showing that also a simple task as treadmill walking can be used.  

In particular the following muscle showed signs of muscular fatigue on TA, VL, RF, GL, LH as you 

can see in Figure 7.  If we considered that generally muscular fatigue has been tested by means of 

demanding protocols which employed cycle ergometers, the advantage of such a methodology is 

that even much more complicated subjects would be able to perform this type of task.  

However it should be noticed that very little significant differences were found among the three 

populations of subjects. Even though signs of muscular fatigue were highlighted also in some of the 

subjects with a low degree of PAD, this could be attributed to the fact that only a small sample of 

subject could be considered affected by severe PAD.  This lead to the conclusion that the present 

methodology can be very useful in highlighting presence of muscular fatigue on a specific subject 

even though the overall statistical analysis by mean of either One way Anova or Pearson correlation 

didn’t allowed to register a large number of statistically significant differences. 

It should be mentioned that cluster analysis based on a combination of clinical and SEMG 

parameters allowed to distinguish C from the diabetes subjects. However the latter failed in 

distinguishing DPAD from NoPAD, thus showing that differences in the parameters were much 

more related to diabetes per se than to PAD. 

Future development should include recruiting a larger number of subjects characterized by severe 

PAD. 
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Conclusion 

Diabetes mellitus is a chronic disease widely used in the population and continuously increasing. 

The disease long term complications are multiple and invalidating, among these the diabetic foot, 

drifted from the contemporary presence of peripheral neuropathy and peripheral arterial disease, 

that altering the biomechanics of the foot, can carry to callosity formation and ulcerations. Together 

with diabetes falls in older adults are a major public health concern and have provided much of the 

motivation for research into age-related changes in human gait. The World Health Organization 

warns that, in 2000, as many as 33 million Europeans suffered from diabetes, approximately 15% 

will likely develop foot ulcers, and approximately 15% to 20% of these patients will face lower-

extremity amputation. The social and economic weight of the diabetic foot and the and the tragic 

consequences that brings with it can be reduced through a prompt diagnosis and treatment from the 

very beginning. The aim of this thesis was to investigate the role of muscles activation in diabetic 

subjects gait in presence of neuropathy, vasculopathy or none of the two. The present project was 

carried on in collaboration with the Bioengineering of Movement Lab at the Department of 

Information Engineering of Padova, the Department of Clinical Medicine and Metabolic Disease of 

the University of Padova and the Electronics of the Polytechnic of Torino. 

With regard to alterations relative to the gait DPN subjects showed significantly longer stance and 

stride time, together with earlier activation of RF at initial contact (p< 0.0007) and reduced POP 

during pre swing phase of gait. In contrast with DPN subjects, NoDPN showed normal temporal 

and space parameters and altered muscle activation on RF, MG and GL (p<0.04). 

During step DPN subjects are faster than NoDPN and C group, meanwhile NoDPN group is faster 

than C group. The subjects of control group are the slowest. Concerning with muscles DPN group 

show an iper and delay activation of all muscles during rising up and down all type of step. When 

considering correlation analysis this revealed interesting results in the association between temporal 

parameters of stair ascending and descending and posturographic parameters of Romberg test. A 

negative correlation was found between stair descending duration and each posturographic 

parameter in eyes open condition (R>0.5 p<0.009). Finally in treadmill protocol our data lead to the 

conclusion that the proposed methodology can be very useful in highlighting presence of muscular 

fatigue on a specific subject even though the overall statistical analysis by mean of either One way 

Anova or Pearson correlation didn’t allowed to register a large number of statistically significant 

differences. We can conclude, therefore, that the surface electromyography is an effective tool in 

the early detection of diabetic complications, in order to identify the biomechanical alterations of 

the diabetic population when there is still no clinical evidence of complications. 
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