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Abstract 
For more than 150 years, metal forming and forging processes have been the core of the heavy industries 

manufacturing, both for yearly production as well as for a number of workers, employees, and engineers 

involved in this sector. Although forgings have been manufactured by smiths for many millennia, only in 

the last 60 years the importance of understanding the material behavior and its interaction with the process 

parameters and the manufacturing conditions have started to be deeply investigated by scholars. During the 

metal forging process, the material may be subjected to small or large deformations which affect both its 

shape as well as the mechanical properties of the final product. For this reason, in order to pursue the ever-

growing trend of enhancing the performances of both products and processes, the research focus should be 

oriented on understanding the influence of the manufacturing approach, namely in terms of process 

conditions and parameters, on the characteristic of the final product.  

This bottom-to-top approach allows a deeper understanding of the interactions between material and 

process, opening the way to a more efficient production strategy, not only based on experience but which 

also relies on mechanical and physical basis. 

To this aim, analytical models taking into account the fundamental of both mechanics and heat transfer 

during the process, conveniently linked to the process parameters, are a powerful and convenient way to 

analyze the impact of design strategies and parameters choices on important process output during the 

process, such as geometry evolution, temperature and forces.  

The research work presented in this thesis is related to the development of analytical models for the ring 

rolling, a metal forging process utilized for the manufacturing of small, medium, large and super-large 

seamless rings, utilized in various applications for, but not only, aerospace, naval and eolic industries. The 

developed analytical models deal with the following key-tasks in the design phase of the ring rolling process, 

namely: i) calculation of the feasible ranges for the most important process parameters, ii) estimation of the 

evolution of the geometry of the ring throughout the process, iii) calculation of the 3D strain tensor in the 
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ring during the process, vi) lumped steady-state temperature model for estimation of the temperature drop 

of the ring due convection, conduction and radiation heat transfer during the process, v) calculation of the 

contact geometry between tools and rings in the two deformation gaps, namely the mandrel-main roll and 

the axial rolls deformation gap and vi) estimation of the process forces, for both the deformation gaps, by 

utilizing a slip-line based force model.  

The results of the developed models have been compared, where available, with previous literature ones, 

showing the improvement in terms of accuracy of the results, especially in terms of calculation for ranges 

in which to choose the process parameters, for the estimation of the geometry evolution of the ring and for 

the calculation of the process forces.  

The results of the developed models have been also compared with laboratory experiments performed 

on a test ring rolling machine and light alloys, such as the Pb75-Sn25 soft alloy, and with numerical 

simulations, implemented in the commercial software Simufact.Forming. 

The accuracy of the developed models have been calculated, where possible, comparing the results of 

the analytical estimations with both experimental and numerical results and were not possible, such as in 

case of the strain tensor estimation, only with the results of the numerical simulations. 

The main results of the combined utilization of the developed numerical models are related to the 

estimation of the evolution of the geometry of the ring throughout the process, which can be estimated, in 

terms of the outer diameter of the ring, with an accuracy higher or equal to 97%. In addition to that, by 

utilizing together all the developed models, the flow stress of the material can be analytically estimated 

based on a chosen flow stress model, leading to an accuracy higher or equal to 93%.  

In the present thesis work, the mathematical background, required for the full understanding of the 

developed algorithm, the full mathematical derivations of the analytical models, the results of both 

laboratory experiments and numerical simulations as well as, where applicable, the comparison with 

previous literature models are presented, allowing a full understanding of both the fundamentals and the 

implementation of the developed approaches. 

The proposed collection of algorithm allows a deep understanding of the influence of process parameters, 

boundary conditions and dimensions on the main influencing manufacturing output, such as geometrical 

expansion, temperature drop, and forces. In the design phase of the ring rolling process, as well as of all the 

manufacturing processes, several different combinations of process parameters must be tested in order to 

determine, among them, the initial preform from which to start the production, the machine to utilize for 

the production as well as the process parameters to utilize. By means of the developed algorithms, several 

different combinations of process parameters can be tested in a relatively short amount of time, thanks to 

the closed-form typology of the equations of the proposed models. Afterward, on the few geometry-process 

parameters combinations those have shown to lead to a successful manufacturing of the ring, fulfilling the 
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process constraints, mainly related to the capability of the available ring rolling mill in terms of maximum 

forming force, numerical simulation can be run, allowing a full understanding of the designed process. 

The proposed approach allows sparing precious time during the design stage, allowing to concentrate 

the attention only of few design options and, for this reason, it may be of interest of both scholars and 

industrial engineers dealing with the set-up and control of the radial-axial ring rolling process of flat rings. 
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Chapter 1: Introduction 
Radial-axial ring rolling is an advanced manufacturing process that allows manufacturing small, 

medium, large and super-large rings, utilized in several different heavy industries compartments, such as 

the wind power, the aerospace, the naval, etc. (Zhou 2011). Products manufactured by means of radial-axial 

ring rolling process present a smooth surface can be forged to a near-net-shape and, if the process is carried 

out at high temperature, a favorable microstructure grain size and flow can be achieved (Guo 2011). In the 

radial-axial ring rolling process, Fig. 1, the initial ring preform is deformed both along the radial direction, 

due to the action of the mandrel towards the main roll, as well as along the vertical direction, due to the 

pressure applied by the upper axial roll towards the lower one. The continuous movement of both mandrel 

and upper axial roll makes the ring to expand in diameter and reducing in height, allowing to reach the final 

desired shape. An example of the initial ring, at the beginning of the ring rolling process, and the final ring, 

at the end of it, is shown in Fig. 2a and Fig. 2b, respectively. 

 
Fig. 1 – The radial-axial ring rolling process. 
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Fig. 2 – Ring blank at the beginning of the ring rolling process (a) and final ring at the end of it (b). 

Source: Kaltek “Full automatic KALTEK ring rolling machine” (Youtube). 
 

In this preliminary section of the thesis, an overview of the research work conducted on the ring rolling 

process, in terms of analytical models, numerical simulation and experiments are presented. Concerning 

the developed analytical models, a summary of their purpose, of their relevant input & outputs and of their 

combined utilization is hereafter presented, leaving the detailed explanation to the relevant sections along 

in the thesis. To this aim, in Fig. 3, an overlook of all the developed analytical models is shown and the 

relevant sequence in which the blocks are positioned reflects the real sequence of the calculations. 

 
Fig. 3 – Analytical models frame overlook. 

 

In the design stage of the ring rolling process, the focus must be oriented on the determination of the 

dimensions of the ring blank as well as on the process parameters to utilize to control the tools of the ring 

rolling mill, namely mandrel, main roll and axial roll. Before starting any calculation concerning the 

thermo-mechanical behavior of the ring throughout the process, both the ring blank dimensions as well as 

the ranges in which to choose the above-mentioned process parameters must be defined. These tasks are 

carried out by the two developed algorithms shown in section 1 of Fig. 3 and their main features are 
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hereafter presented. Considering the volume conservation principle, a typical characteristic of the plastic 

deformations, the dimensions of the ring blank are calculated taking into account that the distribution of the 

material in the cross-section in the ring blank and in the final ring should keep a constant proportion, as 

pointed out in Keeton (1988).  

At the beginning of the calculation, the inner diameter of the ring blank is chosen by the user according 

to the size of the mandrel, in order to avoid both mechanical interference during the rolling, as well as to 

avoid too much waste of material during the piercing operation, required to obtain the initial inner hole of 

the ring blank. The full sequence of the operations/processes related to the ring rolling process is reported 

in Fig. 4. 

 
Fig. 4 – Full operations sequence of the ring rolling process. 

 

Accordingly, the algorithm estimates the thickness of the ring blank and the remaining dimensions, 

namely the outer diameter and height, are immediately calculated. Once the ring blank sizes are determined, 

the following step in the developed combination of algorithms is the calculation of the ranges in which to 

choose the motions rules of the tools during the process. This phase is a key step for a successful production, 

since wrong tool settings may lead to excessive distortion or undesired deformations during the process, 

resulting in scrap parts or damages for the ring rolling mill. In the process parameters ranges calculation 

algorithm, all the process and machine boundary conditions are inputted, i.e. the ring rolling mill 

dimensions in terms of rolls sizes, friction and lubrication conditions, etc. Once the input is fully completed, 

the algorithm automatically calculates the ranges from which to choose the motion rules for the most 

important tools, namely the main roll rotational speed, the mandrel feeding speed and the upper axial roll 

feeding speed. Once the initial and final mandrel feeding speeds are chosen, one for the beginning and one 

for the end of the process, they are connected by a linear decreasing law and the relevant upper axial roll 

feeding speeds, an initial and a final one, are accordingly calculated. If all these four velocities are included 

in the calculated ranges, these set is considered as admissible and allows a uniform and controlled expansion 

of the ring throughout the process. In order to provide a more clear understanding of the directions of motion 
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for the above-mentioned tools, Fig. 5 shows an example of possible rotation/translation directions, even 

though they can be also reversed. 

After the initial process setting algorithms section, all the following analytical models concern with the 

control of the process in terms of important outputs calculation, with the aim of evaluating the impact of 

the initial process setting choices on the ring, throughout the process. 

 
Fig. 5 – Motion directions of the main tools in the ring rolling machine. 

 

As it will be pointed out in detail in the chapter of the thesis relevant to the detailed explanation of the 

features of the developed analytical models, the base for the calculation, in all the developed algorithms, is 

represented by the so-called ring slice. In order to improve the quality of the calculation, the initial ring 

blank is virtually subdivided into a certain amount of slices and the geometrical, strain and force data are 

calculated, during the process, for each slice in which the ring has been initially subdivided. The concept 

of virtual subdivision into slice is shown in Fig. 6. 

 

Fig. 6 – Virtual subdivision of the ring into slices. 
 

Concerning the geometry estimation algorithm, section 2 in Fig. 3, its purpose is to calculate the 

variation of the geometry of each slice of the ring throughout the process as a consequence of the radial 
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deformation, caused by the mandrel and the main roll in the relevant gap, and by the axial rolls, in the other 

deformation gap located 180° from the previously-mentioned one. By considering the geometrical 

evolution of two slides located in opposite locations in the ring, the growth of diameters, height and 

thickness can be calculated throughout the process. The calculation of the evolution of the geometrical 

parameters of the ring, for each slice and for each round of the process, is the basis for all the subsequent 

analytical models, those are all based on the results this first one. The results of the developed algorithm 

for the estimation of the geometry expansion of the ring throughout the process has been compared with 

both experimental and numerical results, observing a maximum deviation below 3%, proving the reliability 

of the developed methodology. 

Following the estimation of the geometry of the ring, the subsequent analytical model, section 3 in Fig. 

3, deals with the estimation of the 3D strain field in the ring during the process. During the process, the ring 

is deformed both along the radial and axial directions resulting in a major strain along those directions, as 

well as along the circumferential direction, this last one responsible for the expansion of the ring diameters.  

However, the ring experiences a third deformation in the non-constrained third-direction, namely the 

vertical direction in the mandrel-main roll deformation gap and the radial direction in the axial rolls 

deformation gap. For this reason, assuming a state of plane strain in the calculation of the strain tensor 

results in impreciseness, especially if the strain values are meant to be utilized for the estimation of the flow 

stress of the material. By considering the first invariant of the tensors, the third strain component is 

estimated, allowing to complete the principle strain tensor and to define the evolution of the 3D strain field 

in each slide of the ring throughout the process. Afterwards, based on the strain estimation, the geometry 

of the ring resulting from the deformation along the third direction is updated, allowing determining the so-

called “spread effect”, a undesired phenomenon occurring in the ring rolling process. 

The utilization of the strain estimation algorithm allows obtaining two important results: i) the influence 

of the process parameters on the undesired spread effect can be estimated, allowing to identify the 

combination of process parameters those allow its reduction; ii) the estimation of the strain is the first step 

for the analytical estimation of the flow stress of the material and it is required for the estimation of the 

strain rate. Neglecting the initial non-steady rolling state of the process, the strains along the three principal 

directions can be estimated with a deviation lower than 10%, in comparison with the relevant numerical 

simulation. Due to the nature of the strain, no experimental verifications could be carried out for the 

validation of this specific analytical model. 

Concerning the estimation of the temperature drop in the ring due to convective, conductive and radiant 

heat transfer, a lumped heat transfer model has been developed, section 4 in Fig. 3. Differently from all the 

other models, the temperature estimation algorithm aims to calculate one common temperature for the ring 

for each round of the process. The rationale behind the choice of calculating a common temperature for the 
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whole ring for each round of the process is given by the fact that several different issues can vary the local 

temperature during the process, especially on the surface of the ring, i.e. due to the presence of scales on its 

surface. For this reason, the utilization of a more complicated and local temperature estimation analytical 

solution would probably result in a small enhance the accuracy in comparison to the huge increase in the 

complexity of the model setting and calculation. The developed lumped temperature estimation model 

calculates an average temperature for the whole ring in the considered round, averaging the contributions 

of inner and outer surfaces in the mandrel-main roll deformation gap and of the top and bottom surfaces in 

the axial roll deformation gap.  

In the ring rolling process, the inner surface of the ring is less exposed to the working environment than 

the outer, which results in a lower temperature drop, in comparison to the outer surface. The same conditions 

are applicable for the bottom surface of the ring, which is normally in contact with the supporting plane 

hence less exposed to the working environment. However, at the end of the rolling time, the temperature 

difference between inner, or bottom, and outer, or bottom, surfaces of the ring is less than 40°C hence 

considering a common temperature does not result in an unrealistic approximation of the temperature, 

especially if the process is conducted at high temperature, which means a ring starting temperature of 

1200°C (i.e. for steel rings). In addition to that, due to the complexity of carrying out experiments at high 

temperature, no hot ring rolling experiments could be conducted for the full validation of the temperature 

estimation model thus the validation has been performed by comparing its estimations with those of 

numerical simulations. In order to enhance the reliability of the validation, the developed numerical model 

has been priory validated by comparing its results with literature experiments and the detailed results 

comparison is presented in the relevant section of the thesis. The comparison between analytical and 

numerical calculations carried out on 30 different study cases of rings with a final outer diameter ranging 

from 650mm and 2400mm allowed concluding that the developed algorithm can estimate the average ring 

temperature with a deviation lower than 5% in comparison to the relevant FEM simulation. 

Aiming to analytically estimate the flow stress of the material, for each round of the process, a 

formulation for the estimation of the strain rate has been developed. Based on the strain components 

estimated in section 2 Fig. 3, the equivalent plastic strain is estimated after each deformation gap and 

divided by the contact time between the considered slice and the tools. The contact time is estimated 

according to the slice length and the rotational speed of the considered tool, either the main roll or the axial 

rolls. In order to account for the influence of strain, strain rate and temperature on the variation of the 

material flow stress, the Hansell-Spittel (Hansel 1978, Opela 2015) flow stress formulation has been 

considered both in the analytical calculations as well as in the relevant numerical simulations.  

The analytical estimation of the flow stress of the material of the ring for each round of the process, 

section 5 in Fig. 3, opens the way to the final stage of the calculation, namely the estimation of the process 
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forces, namely section 6. To this aim, a slip line based force model has been developed assuming that the 

plastically deformed section of the ring all deforms according to the same pattern hence by constructing a 

2D slip line field. Considering two opposite tools, a condition that is true for both the mandrel-main roll 

deformation gap as well as for the axial rolls gap, and by considering the middle-cross section of both slice 

and tools, similar contact pattern can be identified, Fig. 7. In both deformation gaps, a curvilinear contact 

arc between ring and tools can be identified opening the way to the utilization of a generalized force model, 

either for the calculation of the radial forming force or for the axial one.  

 
Fig. 7 – Ring deformation pattern in the (a) mandrel-main roll and (b) axial rolls deformation gap. 

 

By seeking the pressure boundary conditions on the extreme points of both contact arcs between ring 

and tools those make the two slip line fields to join at one point in the cross-section of the considered slice, 

Fig. 8, the so-called pressure factor “γ” can be calculated and utilized for the estimation of the process 

force.  

 
Fig. 8 – Incremental variation of the pressure factor and relevant expansion of the plastic field in the 

cross-section of the ring. 
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Since the deformation pattern, the flow stress, and the geometrical data differ in the two deformation 

gaps, for each round of the process two different pressure factors, one relevant for the mandrel-main roll 

deformation gap and one for the axial rolls gap, are calculated. Accordingly, for each round of the process, 

both the radial and the axial forming force are calculated. The detailed explanation of the recursive 

algorithm for the calculation of the slip line field as well as the iterative calculation of the pressure factor 

is reported in section 3.7.3 of the thesis.  

The estimations carried out by utilizing proposed force estimation algorithm have been compared with 

both numerical and experimental data on rings made of soft Pb75-Sn25 alloy and under cold forming 

conditions. The maximum deviation observed, in comparison to the relevant experiment, is calculated in 

5.2% for the radial forming force and 8.0% for the axial forming force, allowing validating the developed 

algorithm. In addition to that, the positive results of the comparisons between experimental and analytical 

results allows proving the potentiality of the combined utilization of all the developed analytical models in 

controlling the influence of the process parameters and boundary conditions on the key-output of the 

process, making the proposed methodology to be of interest to both academy and industry. 

The detailed explanation of the developed analytical models is proposed in paragraph 3 of the thesis 

whereas, in the following paragraph, a literature survey of the models and algorithms available in the 

literature and relevant for the above-mentioned topics is presented. Where literature models were available, 

especially concerning the estimation of the ring geometry evolution throughout the process, a comparison 

with the developed ones is proposed in order to highlight the improvement in the results accuracy obtainable 

by utilizing the proposed ones. 
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Chapter 2: Literature survey 
Although the radial-axial ring rolling is a widespread and well-known manufacturing process, its set-up 

and control largely rely on process engineers’ and workshop experts’ experiences. This fact makes the 

process design, as well as the initial process test stage, to be high-time consuming and expensive phases.  

For this reason, in the literature, several authors focused on various aspects of the ring rolling process, 

carrying out experiments, developing analytical algorithms and implementing numerical models, both with 

commercial software or special packages especially developed for the radial-axial ring rolling (RARR) 

process, in order to pursue a more systematic approach to the ring rolling set-up and control. 

Aiming to present a clear summary of the huge research work conducted by investigators concerning 

the RARR process, the literature survey chapter of the present thesis work is subdivided into sections 

concerning the available analytical models, relevant for the following main topics: 

 

2.1 Process setting and control 

2.2 Estimation of the geometry of the ring 

2.3 Ring temperature estimation 

2.4 Force models 

 

In addition to that, an additional section, namely section 2.5, covers the part of the literature related to 

the numerical simulations of the ring rolling process, carried out utilizing either commercial software or 

special-developed packages. Being the topic of this thesis work related to the development of analytical 

models, literature contributions, less attention is given to researchers dealing only with numerical 

simulations of the ring rolling process. In addition to that, since most of the researchers presented results 

concerning one, or more, of the above-mentioned topics, part of the relevant references will be considered 

in one or more of the considered sub-sections of the literature survey chapter.
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2.1 Process setting and control 
Radial-axial ring rolling is a complex metal forging process that involves incremental deformations of 

a ring preform in order to obtain the final desired ring shape. The initial ring preform is deformed in both 

its thickness and its height in order to allow the expansion of both inner and outer diameter. To this aim, 

the size of the initial ring preform, as well as the process parameters for the mandrel, the main roll, and the 

axial rolls play an import role in the successful manufacturing of the ring.  

The focus of this section of the thesis is to present a review of the algorithms available in the literature 

for the calculation of the size of the ring blank as well as for the calculation of the ranges in which to choose 

the motion rules of the main tools of the ring rolling machine, namely the mandrel feeding speed, the 

rotational speed of the main roll and the feeding speed of the upper axial roll. The schematic representation 

of the movement directions of the above-mentioned tools is shown in Fig. 5. 

 

2.1.1 Calculation of the ring blank dimensions 
Concerning the ring blank, the dimensions to be determined are ring inner radius, 0r , ring outer radius, 

0R , ring thickness, 0s , and ring height, 0h . As generally accepted, the calculation of the ring blank 

dimensions is based on an empirical rule defined by Keeton (1988), Eq. (1), which defined the constancy 

of the difference between the squared height and the squared thickness of the ring or, in other words, that a 

hyperbolic relationship should be assured between height and thickness. If the relation of Eq. (1) is fulfilled, 

the ring experiences a uniform expansion thanks to a uniform plastic flow in its section.  

2 2h s const− =   (1) 
 

One of the main reference work where the Keeton’s (1988) Eq. (1) is not directly utilized for the 

calculation of the geometrical parameter for the ring blank is Qian et al. (2013) where the volume constancy 

principle, typical of plastic deformation, is utilized as a reference for the calculation of the ring blank size 

starting from the dimensions of the final ring. The final dimensions of the ring are defined as: Fr  for the 

ring final inner radius, FR for the ring final outer radius, Fs  for the ring final thickness and Fh  for the ring 

final height. Based on the above-mentioned volume conservation principle, assuming no material volume 

loss during the process, the relationship between initial and final volume of the ring is defined as in Eq. (2). 

( ) ( )2 2 2 2
0 0 0 F F FR r h R r hπ π− = −   (2) 

 

By defining the area ratio, between the initial and final cross-section of the ring, Eq. (3), and the ratio 

between height reduction and thickness reduction, Eq. (4), the equations for the estimation of the height, 

the outer radius and the inner radius of the ring blank, according to Qian et al. (2013), are defined as in Eq. 
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(5-7), obtained by substituting (3) and (4) into (2). Accordingly, the thickness of the ring preform can be 

calculated as 0 0 0s R r= − . 

0 0 0

F F F

A h s
A h s

λ = =   (3) 

0

0

F

F

h s s
s h h

η
∆ −

= =
∆ −

 (4) 

( ) ( ) 1/22 2 2

0

2 2 1

2
F F F F F Fh s h h s h

h
η η η λ

η

− + + − +
=

  
  (5) 

2 2

0
02 2

F F F F

F

R r h s
R

s h
λ

λ
−

= +   (6) 

2 2

0
02 2

F F F F

F

R r h s
r

s h
λ

λ
−

= −  (7) 

 

Even though the algorithm proposed by Qian at al. (2013) does not explicitly take into account the 

Keeton Eq. (1), the definition of the thickness and height reduction must account for the reduction of process 

defects, such as the fishtail. The fishtail defect is a forming defect that affects the top and bottom surfaces 

of the ring and characterized by a higher height of the portion of the ring in contact with the tools, in 

comparison to the area in the center of the ring, Fig. 9.  

 
Fig. 9 – Fishtail effect in ring rolling. 

 

By adopting the Keeton’s rule, Eq. (1), thanks to a uniform plastic flow in the cross-section of the ring, 

defects such as the fishtail can be avoided. For this reason, as it will be shown in section 3.1 of the thesis 

where the developed algorithm for the calculation of the ring blank size will be presented, the explicit 

inclusion of the Keeton’s equation in the calculation of the ring blank preform, allows directly calculating 

the ring blank size which avoids the arise of forming defects during the ring rolling process. 

  



Chapter 2: Literature survey 

 

12 
 

2.1.2 Main roll rotational speed range calculation 
During the ring rolling process, the main roll transfers torque to the ring, allowing it to rotate and to 

progress in its incremental expansion. Although the choice of the main roll rotational speed is an important 

parameter for the successful forging of the ring, its calculation is mainly related to dynamic limits of the 

ring rolling mill and to the dynamic instability which arises in the ring for growing rotational speeds. For 

this reason, in the literature, practical rules based on experiments have been defined in order to limit the 

instability of the ring during the process, defining lower and upper ranges for the calculation of the rotational 

speed of the main roll. The tangential speed of the ring results in the product between the radius of the main 

roll and the rotational speed of the roll under the hypothesis that no slippage occurs between ring and main 

roll and therefore the relevant rotational speed of the main roll, as defined by Zhou (2010) and Zhou (2011), 

should satisfy Eq. (8). 

0.4 1.6
S

S S

n
R R

≤ ≤  (8) 
 

In Eq. (8), the two numerical coefficients are defined according to literature experiments whereas SR  is 

the radius of the main roll and Sn  the rotational speed of the main roll, expressed in rounds per second.  

 

2.1.3 Mandrel feeding speed range calculation 
In order to achieve the circumferential expansion of the ring, its thickness is progressively reduced by 

the radial movement of the mandrel towards the main roll, Fig. 5. For this reason, the choice of the mandrel 

feeding speed is most likely to be the most important process parameter affecting the expansion of the ring 

hence several investigators developed analytical models to properly calculate the ranges in which to 

determine it, as well its influence on the geometrical expansion of the ring. 

The first contribution concerning the determination of the ranges in which to choose the mandrel feeding 

speed is due to Lin (1997), where the conditions those assure full plastic deformation throughout the whole 

thickness of the ring and avoid seizing of the ring are derived. As it will be clarified more in detail in chapter 

3, the calculation of the ranges in which to choose the process parameters is derived according to the slip 

line theory, a powerful mathematical approach that allows calculating the preferential direction of plastic 

flow of the material during a deformation. One of the most relevant contributions concerning the slip line 

theory applied to plastic deformation processes is due to Hill (1950), where the slip line solutions for the 

calculation of the material flow in the plastically deformed region of the material, for several manufacturing 

processes, are presented. In Hua (1997), the solution proposed by Hill (1950) for the case of a flat punch 

indenting on a flat surface is taken into account thanks to the similarity with the contact zone between ring 

and tools in the ring rolling process. Considering Hill’s solution for a flat indenter acting on a flat surface, 
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the relevant slip line field, which represents the directions of plastic flow of the material, can be constructed 

as shown in Fig. 10a (Hill 1950). The AB line represents the contact length between the flat punch and the 

workpiece whereas the point F is the end of the plastic field in the thickness of the workpiece, respectively. 

According to Hill’s slip line solution, the pressure in the plastically deformed region of the material can 

be calculated depending on the ratio between the contact arc length 2a and the thickness of the slab s 

resulting in the solution chart shown in Fig. 10b. The pressure necessary to initiate the indentation starts 

from 2k, yield shear stress of the material in plane strain conditions, and it reaches its maximum of 2.56·2k, 

a value of pressure over which the material is spread aside the indenting area and the plastic deformation 

does not spread throughout the thickness anymore but it is localized only on the surface of the material. 

 
Fig. 10 – (a) Slip line field of a flat indenter acting on a flat surface and (b) relationship between the 

pressure to start the indentation and s/L ratio (Hill 1950). 
 

Namely, for s/h ratios over 8.74, the punch pressure results on a local plastic deformation of only the 

surface of the material and no plastic deformation can be achieved throughout the thickness of the 

workpiece. By utilizing the general theory of the slip line applied to plastic deformation, as defined by Hill 

(1950), in Hua (1997), the minimum and maximum drafts allowed for a specific combination of mandrel 

radius, main roll radius, ring inner diameter and ring outer diameter can be calculated according to the 

following procedure, neglecting the curvature of both ring and tools. By considering the schematic 

representation of the contact between ring and tools in the mandrel-main roll deformation gap as shown in 

Fig. 11, the average thickness of the ring is defined as ( )0 /2m Fs s s= +  and, according to the above-mentioned 

boundary s/h ratio, the correlation with the projection of the contact arc L is defined in Eq. (9). 

1
8.74m

L
s
=  (9) 
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The projection of the contact arc is defined, by Hua (1997), according to Eq. (10) where s∆  represents 

the thickness draft, R  the outer radius and r  the inner radius of the ring. 

 
Fig. 11 – Ring-tools and tools in the mandrel-main roll deformation gap (Hua 1997). 

 

2
1 1 1 1

S M

sL

R R R r

∆
=

+ + −
 

(10) 

 

Substituting Eq. (10) into Eq. (9) and considering that ( )0 /2m Fs s s R r= + = −  it results in Eq. (11), which 

defines the minimum thickness draft that is necessary in order to assure plastic deformation throughout the 

whole thickness of the ring and is defined as penetration condition. 
2

3
min 6.55 10 1 S S S

S
S M M

R r R R R
s R

R R R R r
−∆ = ⋅ − + + −

   
   

  
 (11) 

 

On the other hand, in order to define the maximum allowable thickness draft, over which the ring stuck 

into the deformation gap due to too high friction forces, the force equilibrium in the deformation gap is 

considered. In order to achieve continuous rotation and thickness reduction, the ring must be drawn into the 

deformation gap hence the drawing force must be greater than the backward pushing force, along the x-

direction, Fig. 11, resulting in Eq. (12). At the same time, the force equilibrium along the y-direction must 

be satisfied as well, resulting in Eq. (13). The two angles, Sα  and Mα  are the contact angles between the 

ring and main roll and between ring and mandrel, respectively. 
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∑
 (12) 

        sin cos cos 0
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S S M
S S M

F T P P

T P Pα α α
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= − − − =

∑
 (13) 

 

Considering the friction according to the Coulomb’s law, hence S MT Pµ= , the correlation between the 

friction angle and the two contact angles between ring and tools is defined as ( ) /2M Sβ α α≥ +  and represents 

the biting-in condition. Assuming that the projection of the contact arc between ring and tools is small in 

comparison to either the inner or the outer radius of the ring, the two contact angles can be approximated 

as in following Eq. (14). 

/S SL Rα =           ;          /M ML Rα =  (14) 
 

Considering together Eq. (14) and the definition of the friction angle β  the maximum thickness draft 

equation is defined as (15). 

2

max 2
2 1

1

S S S S

MS

M

R R R Rs
R R rR

R

β  
∆ = + + − 

   
+ 

 

 
(15) 

 

The set of Eq. (11) and (15) defines the minimum and maximum thickness drafts which can be applied 

to the ring in order to accomplish plastic deformation throughout the whole thickness while avoiding seizing 

of the ring between the tools. According to these ranges, Hua (1997) also defined the relevant minimum 

and maximum ranges for the mandrel feeding speed, as follows. 

Assuming a constant mandrel feeding speed, it can be defined according to the thickness draft s∆  as 

/Mv s t= ∆ ∆  where t∆  is the time for one round of the ring. Neglecting eventual slippage between rolls 

and ring, this time can be estimated as the external length of the external circumference of the ring divided 

by peripheral speed of the ring (which is equal to the peripheral speed of the main roll, under perfect friction 

wheels hypothesis), allowing to write (16), where the thickness draft is linked to the feeding speed of the 

mandrel Mv , to the rotational speed of the main roll n , to the outer radius of the ring R and to the radius 

of the main roll SR .  

M

S

v Rs
n R

∆ =  (16) 
 

By substituting Eqs. (11) and (15) into Eq. (16), minimum and maximum mandrel feeding speed are 

calculated, as shown in Eqs. (17) and (18), respectively.  
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 

 
(18) 

 

According to the formulations defined in Hua (1997), the range in which to choose the mandrel feeding 

speed is univocally defined by a minimum and a maximum value and, once the velocity is chosen inside 

this range it is kept constant throughout the whole rolling time. However, as it will be shown in chapter 6, 

the model proposed by Hua (1997), utilized also by Zhou (2011), Gou (2011), Wang (2010) and Yan (2007), 

is too conservative and fail to converge to a solution if some specific combinations of ring and tools 

geometries arise. However, by adopting a different strategy for the set-up of the mandrel feeding speed, 

namely by setting different ranges for the calculation of the mandrel feeding speed at the beginning and at 

the end of the process, as proposed in the developed model, this limitation can be overcome. 

 
2.1.4 Upper axial roll feeding speed calculation 

Concerning the downward feeding speed of the upper axial roll, Fig. 5, two different main approaches 

are utilized in the literature. As previously stated, Eq. (1) is normally utilized in order to assure a uniform 

expansion of the ring throughout the process and, for this reason, once the feeding-per-revolution on the 

mandrel side is chosen, in terms of range or ranges, it automatically allows to calculate the ranges for the 

upper axial roll feeding speed. By utilizing this approach, mandrel feeding speed and upper axial roll 

feeding speed are linked together, the second one depending on the first one. 

If this first approach is taken into account, as proposed in the work of Zhou (2010), the amount of 

thickness and height draft per round of the process can be linked together with the relevant feeding speeds, 

resulting in Eq. (19) where Av  is the feeding speed of the upper axial roll.  

0 0

M A

s s h h
v v
− −

=  (19) 
 

The calculation of the axial roll feeding speed according to this rationale has the advantage of assuring 

a constant expansion of the ring throughout the process since the plastic flow is uniform in the cross section 

thanks to the fulfillment of Eq. (1), but also presents a limitation, as hereafter explained. In principle, 

thickness and height of the ring differ themselves and, normally the height of the ring preform is greater 

than its initial thickness. For this reason, the initial calculation of the maximum and minimum thickness 

drafts, as operated by previous Eq. (11) and (15), might be partially inconsistent for the height draft, due to 

the geometrical differences that may arise in a generic ring. Due to this inconsistency, caused by the 
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different dimensions of thickness and height of the ring, the plastic deformation along the height of the ring 

might not reach the ring center, limiting its expansion. However, in the radial-axial ring rolling process, 

most of the ring expansion is achieved by thickness reduction thus, the influence of the height reduction is 

normally negligible, in comparison to the other one.  

Differently from the approach of linking together radial and axial feeding speeds of the mandrel and the 

upper axial roll, a second approach consists in calculating the feeding speed of the axial roll by applying 

the same rationale and procedure utilized for the calculation of that of the mandrel. By following this 

approach, the upper axial roll feeding speed is calculated in order to achieve full plastic deformation 

throughout the height of the ring and, in this way, guarantees the circumferential expansion of the ring. This 

approach has been utilized by Zhou (2011) and, since the derivations are same as those presented in the 

previous paragraph concerning the mandrel feeding speed, are not repeated and only the final equations are 

hereafter reported. 

[ ]min max
,min 2

S S
A

n R h
v

Rπ
∆

=  (20) 

[ ]max min
,max 2

S S
A

n R h
v

Rπ
∆

=  (21) 

 

In Eqs. (20) and (21), the values of [ ]min max
h∆  and [ ]max min

h∆  are defined as in following Eqs. (22) and (23) 

and represents the maximum among the minimum thickness drafts along the process and the minimum 

among the maximum thickness drafts along the process, respectively, and are defined as in Eqs. (22) and 

(23). In Eqs. (22) and (23), 0S  represents the initial distance between the ring and the vertex of the axial 

roll, measures on its inner radius.  

[ ] ( )
2

0
min max

0

0.0131
tan / 2

hh
S r

⋅
∆ =  (22) 

[ ] ( )2
max 0min

4 tan / 2Ah S rβ∆ =  (23) 
 

This approach, by means of considering the narrower of the possible ranges, from the maximum of the 

minimum velocities to the minimum of the maximum ones, will be proved to have limitations if some 

specific configurations of the ring are considered. In those cases, there will be no chance of calculating an 

axial roll feeding speed which falls within the prescribed ranges. 

To overcome this limitation, an improvement of the literature models for the calculation of the axial 

feeding speed has been proposed its full derivations and boundary conditions are presented in the following 

chapter of the thesis.  
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2.1.5 Additional process controls 
In addition to the three main process controls presented in the previous three paragraphs of the thesis, 

additional information concerning the backward movement of the axial rolls, on the rotational speed of the 

axial rolls and on the influence of the centering rolls on the ring rolling process should be given. 

Concerning the backward movement of the axial rolls, it must be set in order to follow the expansion of 

the ring and it is calculated according to the growth rate of the inner, or outer, radius of the ring. In Zhou 

(2011) the growing speed of outer radius has been defined as following Eq. (24). 

( ) ( )
( ) ( )

0 0 0 0 0 1

0 1 0 12 2
R

A R

s h R r s v tR t
h v t s v t

+ − ⋅
= +

− −
 (24) 

 

By derivation of Eq. (23) with respect to the time t , the growing speed of the outer diameter is estimated 

and the backward moving speed of both axial rolls is meant to be set equal to this value. Although this 

approach neglects the eventual slippage which may occur between ring and tools, its utilization offers a 

first reasonable indication for the set-up of the backward motion of the axial rolls. 

As pointed out in the work of Zhou (2012), the backward movement of the axial rolls can set-up in two 

additional ways, additionally to that of following the expansion of the diameters of the ring. One is to avoid 

any backward movement of the axial rolls and let the ring to slide on their surfaces; this approach is 

normally utilized for small rings and can lead to instabilities, due to the rise of relative velocities between 

the ring and the axial rolls. The last one is to keep the virtual vertex of the axial rolls always in the center 

of the ring throughout the whole expansion; this approach does not have the limitation of the previous one 

but requires a precise control of the expansion of the ring during the process, which is normally hard to 

achieve. 

Following a similar rationale, also the rotational speed of the axial rolls can be set by taking into account 

the peripheral speed of the ring, which increases with the growth of the diameters of the ring. In the work 

of Zhou (2011), neglecting slippage between ring and tools, the rotational speed of the axial rolls is defined 

as in Eq. (25) where Sn  is the rotational speed of the main roll. 

( )0 sin / 2
S M

A
n Rn

S r
=  (25) 

 

Finally, concerning the centering rolls, Fig. 5, their main role is to stabilize the ring during the process, 

avoiding accessing movement towards one side or the other.  Although in most of the ring rolling processes 

the centering rolls are directly controlled by the ring rolling mill operator in case of unexpected deviations 

of the ring movements, their set-up can be analytically taken into account by means of the force they may 

be required to apply to the ring in order to stabilize it.  
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2.2 Estimation of the geometry of the ring 
Concerning the controls of the ring rolling process, in terms of interpretation and understanding of the 

effect of the choice of the process parameters on the ring during the process, one of the key aspects is related 

to the geometrical evolution of the ring throughout the process.  

The main literature contribution concerning this topic is due to Zhou (2011), where the equations for the 

analytical estimation of the geometrical expansion of inner radius, outer radius, and thickness of the ring 

are derived according to the mandrel and the upper axial roll feeding speed, for increasing time intervals. 

The three equations relevant for the estimation of radii and thickness are reported in Eqs. (26-28). 

( ) ( )
( ) ( )

0 0 0 0 0 1

0 1 0 12 2
R

A R

s h R r s v tR t
h v t s v t
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All the three parameters, ( )R t , ( )s t  and ( )r t  are named as time-dependent ones but, in fact, the 

calculation is operated considering one average value for the ring radii and thickness for the considered 

round of the process, assuming the ring to keep an average annular shape. This strong assumption 

completely ignores the incremental nature of the ring rolling process where different sections of the ring 

are subjected to different thickness reduction during the process, according to their position in the ring. 

As it will be shown in results comparison chapter of the thesis, the application of this model for the 

calculation of the evolution of the ring geometry throughout the process leads to inaccuracies and cannot 

account for the final phase of the process, namely the calibration one. However, the developed model for 

the estimation of the ring geometry, which will be presented in the following chapter of the thesis, can 

overcome these issues, as it will be proved in the results chapter of the thesis.   

 

2.3 Ring temperature estimation 
Concerning the analytical estimation of the ring temperature evolution during the process, no specific 

literature contributions seem to be available since most of the work focuses on its numerical estimation. It 

must be noticed that the only clear contribution on how the temperature drops of the ring, throughout the 

process, as a consequence of conductive, convective and radiant heat exchange is due to Al-Mohaileb, who 

collected the relevant heat transfer equations, afterward utilized in the numerical model. Since no literature 
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models were present in the literature, no comparison with previous models is carried out in the results 

section of the thesis. 

 

2.4 Force models 
Being the process forces one of the most relevant topics concerning the ring rolling process, especially 

from the industry point of view, several researchers focused their attention on studying its variation 

according to the variation of both ring geometry and process parameters. Although several force 

contributions can be identified in the ring rolling process, the two those have shown to be the most relevant 

one are the radial forming force, caused by the push of the mandrel towards the main roll, and the axial 

forming force, consequence of the downward movement of the upper axial roll towards to lower one. Due 

to the fact that normally the ring is mostly deformed on its thickness, the radial forming force estimation 

has always attracted more attention by the researchers. For this reason, the majority of the models available 

in the literature deal with the estimation of the radial forming force and only a few contributions are 

available in terms of models for the calculation of the axial forming force. 

Concerning the typologies of the models utilized for the force prediction in the ring rolling mill, authors 

initially utilized a simplified slip line theory, considering the projection of the contact arc between ring and 

tools and not its actual curvilinear profile. By doing so, Hawkyard (1973) and Mamalis (1976) proposed 

radial force models for the estimation of the pressure applied by the mandrel to the ring, during the process, 

based on the amount of thickness draft and on the projection of the contact arc between ring and tools. The 

theoretical background is based on the slip line solution proposed by Hill (1950) for a case of a flat indenter 

acting on a workpiece with a flat surface and is hereafter summarized. 

 
Fig. 12 – (a) Ring rolling process configuration with initial and final ring and (b) detail of the mandrel-

main roll deformation gap, with the contact conditions between ring and tools; Hawkyard (1973). 
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Considering the generic ring rolling process, Fig. 12a, and focusing the attention on the mandrel-main 

roll deformation gap, Fig. 12b, thanks to the huge curvature of both ring and tools, according to Hawkyard 

(1973), the contact geometry can be approximated by a straight line, whose length is calculated according 

to Eq. (29), where s∆  is the amount of thickness draft in the considered instant of the process. 

2 2 S M
C

S M

R RL s
R R

 
= ∆  + 

 (29) 

 

Eq. (29) also introduces the approximation that the contact geometry is common for both rolls, either is 

calculated on the mandrel side or on the main roll side, even though these two rolls have, in principle, 

different diameters. 

As pointed out in previous section 2.1.1, the slip line theory is a powerful methodology which allows 

calculating the stress state in the plastically deformed region of the material and can be utilized to determine 

the so-called pressure factor, one of the parameters required for the estimation of the radial forming force 

in the Hawkyard (1976) force model. Since it is not the purpose of this section to provide a detailed 

explanation of the mathematical background of the slip line theory and of the procedure by which the slip 

line field is built, only the key concept concerning the considered force model shall be given. The 

mathematical background, the procedure for the calculation of the boundary conditions and the algorithm 

for the construction of the slip line field will be provided in the force model section of the following chapter 

of the thesis, where the developed slip line-based force model will be presented. 

By considering the original Hill’s solution for flat indenters, previously shown in Fig. 10a, the pressure 

factor, names as γ , can be calculated based on the ratio between the thickness of the ring after the 

deformation and the projection of the contact arc between ring and tools, calculated according to Eq. (29). 

One of the main characteristics of the force models based on the slip line theory is given by the fact that 

they consider a perfectly plastic material model, ignoring any hardening during the deformation and, for 

this reason, the proper estimation of the material flow stress, according to strain, strain rate, and temperature, 

is of critical importance. 

In conclusion, the force model proposed by Hawkyard (1973), also utilized in Mamalis (1976) is 

reported in following Eq. (30), where the subscript “i” highlights the fact that the forming force can be 

computed for each instant of the process if the relevant geometrical and material parameters are known. In 

addition to that, ,F is  stands for the thickness of the ring at the exit of the deformation gap in the considered 

instant of the process. 

, ,2rad i i F i C iF k s Lγ=  (30) 
 

As it will be proved in the result chapter 6, the assumptions of the model in terms of considering the 

contact geometry between ring and tools as a straight line is not always fulfilled and this fact may lead to 
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an underestimation of the radial forming force. To reduce this issue, a new slip line based force model, 

which accounts for the curvilinear contact geometry between ring and tools, has been developed and will 

be presented in detail in the following chapter of the thesis. 

More recently, Parvizi (2010) and Parvizi (2014) proposed two different approached for the estimation 

of the radial forming force in the ring rolling process. In the first work, a SLAB-based model is derived 

considering the force equilibrium in the deformation gap under a constant shear friction. The contact 

between ring and tools is subdivided into two and the relevant pressure contributions are calculates. This is 

necessary due to the fact that the friction force direction acts towards the exit of the deformation gap until 

the neutral point and against this direction after it, Fig. 13. Moreover, the position of the neutral point is not 

known apriori thus the contact arc between ring and tools must be subdivided into two zones, whose lengths 

are to be calculated as a solution to the equations system.   

 
Fig. 13 – (a) Contact between ring and tools in the mandrel deformation gap and (b) detail of forces 

acting on a generic section of the portion of the ring undergoing the deformation; Parvizi (2011). 
 

Accordingly, the total roll pressure can be defined as the summation of the above-mentioned two effects, 

as shown in Eq. (31) where nx  is the position of the neutral point along the x-direction, m  is the constant 

friction factor and k  the yield shear stress of the material, considered as a constant. 

1, 1,
0

n

n

x L

rad I II
S Sx

x xF P mk dx P mk dx
R R

   
= − + +   

   
∫ ∫  (31) 

 

Neglecting the intermediate passages of the integration, the resulting force model equation is reported 

in Eq. (32) whereas the equation parameters are summarized in Eqs. (33-37).  
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In Eq. (32), the projection of the contact arc between ring and tools, as shown in Fig. (13), is calculated 

as in Eq. (38), utilizing the formulation proposed by Yang (1987). 

( )
( )

1/222 2 2
02

02
S M F S M

C S
S M F

R R s s R R
L R

R R s s

  + + − + +  = −   + + −   

 (38) 

 

Differently compared with the utilization of 0s  and Fs  performed in previous section 2.1.1, their 

meaning in equations (32-38) is the thickness of the ring before and after the deformation gap whereas 

( ) ( )2 /eq S M S MR R R R R= + . 

As the model by Hawkyard (1973) presented before, also that developed by Parvizi (2011) assumes a 

straight line for the geometrical contact between ring and tools and, in addition to that, the position of the 

neutral point must be assumed in the calculation since its position is not known apriori. For these reasons, 

its utilization is complex and affected by high inaccuracies. In addition to that, as also highlighted in the 

paper, and reported in Fig. 14, the model tends to either overestimate or underestimate the radial force, 

depending on different thickness reduction ratios, an undesirable inconvenience if the model is meant to be 

utilized on industrial cases, where the thickness reduction ratio can vary even during the process, according 

to the deformation strategy. 
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Fig. 14 – Prediction of the radial forming force operated by means of the SLAB analytical model of 

Parvizi (2011), in comparison to previous literature FEM results by Forouzan (2003). 
 

Concluding the overview of the analytical models developed for the estimation of the radial forming 

force in the ring rolling process, Parvizi (2014) developed an upper-bound method for the power and force 

required during the ring rolling process, assuming admissible velocity and strain rate fields from a 

parametric definition of the plastic flow in the deformed region of the material.  

The upper bound method is based on the virtual work principle theorem and, in case of ring rolling 

process the developed equation assumes the form of (39), where the three terms on the right of the equations 

represent the internal plastic deformation power, the frictional power at the material-rolls interface and the 

shear power at the plastic boundary, respectively, as also previously suggested by Ryoo (1986). 

* 2 1
23 f e

y jj jj s sS S
V

J dV mk V ds k V dsσ ε ε= + ∆ + ∆∫ ∫ ∫ɺ ɺ  (39) 
 

Thus, the force model is defined as in Eq. (40) and, once again, the radial force calculation is based on 

the knowledge of the neutral point location along the x-direction, which is an unknown variable.  

( )* 2 /
3
y

rad C n S MF J m L x R n v
σ 

= − − 
 

 (40) 
 

In Eq. (40), CL is calculated by means of (38) and is based only on the admissible velocity field in the 

ring section during the deformation. Due to the fact that no information of the stress field, but only on the 

velocity field, are considered for the calculation of the radial force, the results should be always greater 

than the real value, calculated by means of numerical simulation of from experiments. However, in the 

result section of Parvizi (2014), when the model is compared with experiments and numerical simulations 

carried out by the authors, it tends to overestimate the FEM results, which is reasonable but to underestimate 

the experimental results. Even though the developed model is able to follow the trend of the radial force 
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during the ring expansion, as shown in Fig. 15, there is a high variation between minimum and maximum 

accuracy, especially if a third and fourth round of the rotation are considered. 

 
Fig. 15 – Prediction of the radial forming force operated by means of the upper-bound analytical model 

of Parvizi (2014), in comparison to numerical simulation and laboratory experiment. 
 

In addition to that, as it will be shown in the result chapter 6 of the thesis, the radial force in ring rolling 

process steadily increases till it reaches the maximum value and, when the rolling time is over and the 

calibration time starts, it steadily decreases until the end of the process. However, the result present in 

Parvizi (2014), Fig. 15, shows a radial forming force which slightly increases until the end of the process, 

starting from a value around 28kN and ending with a value around 29kN, which is normally not the case in 

the ring rolling process. 

In addition to the issues related to the inconsistency of the results concerning the underestimation of the 

process force, the model is also quite complex in its utilization since it requires the calculation of the strain 

rate and of the material flow stress, for each round of the rotation, and no information about how to calculate 

these values are given in the paper. Therefore, if the calculation of these values is meant to be obtained by 

means of numerical simulations, the computational time for the whole algorithm will considerably increase 

and, especially, the value of the radial forming force, as well as of other important process variables, can 

be derived directly from the numerical results. 

As concerns analytical models for the estimation of the axial forming force, relevant for the downward 

movement of the upper axial roll towards the lower one, responsible for the height reduction in the ring, 

only a few contributions are available in the literature. 

By applying a sort of pressure integration on different positions of the contact area between ring and 

tolls, Wang (2014) developed an analytical model for the estimation of the axial force in the RARR process. 

Since the contact area between the upper, or lower, axial roll and the ring is not a simple shape, Fig. 16a, it 
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must be subdivided into three different regions and, in order to compute the relevant contribution to the 

axial force, it must be integrated with respect to the y-direction, as shown in Fig. 16b. 

 
Fig. 16 – (a) Isometric and (b) top view of the contact area between the ring and the upper axial roll; 

(Wang 2014). 
 

Considering the three different regions on the top surface of the ring, Fig. 16b, three different pressure 

contributions are identified, integrated and summed together in order to compute an initial estimation of the 

axial force, as summarized in Eq. (41), in integral form, and Eq. (42), in a finite form. 
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The parameters in Eq. (41) and (42) are defined as following Eqs. (43)-(46), where γ  is the vertex angle 

of the axial rolls, b is the distance between the virtual vertex of the axial roll and the inner radius of the ring 

and y represents the equation of the curve AB, Fig. 16b. 

( )cos sin
2cos

z x b
Q

R
γ γ

γ
− −

=  (43) 

2 1 x by RQ
RQ
−

= +  (44) 

24 2Ax RQb R RQ= + −  (45) 
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24 2Bx RQb r RQ= + −  (46) 
 

In order to calibrate the force model, an empirical correction factor named nσ  is introduced in the final 

force model equation (47), calculated according to Eq. (48). The meaning of the empirical correction factor 

is not detailed in the paper as well as no comparison with neither numerical nor experimental results is 

reported. For these reasons, the accuracy of the proposed model is not known hence the results of the axial 

force estimation made with Wang (2014) model have been compared with those obtained by utilizing the 

developed slip line based force model, presented in the following chapter of the thesis. The cross-

comparison between literature and developed models is presented in chapter 5 of the thesis. 

 '
ax ax sF F nσσ=  (47) 

21 0.72 0.59 0.078 0.458 0.099
2 avg

R r rn Q Q
s R Rσ

  = + + + + +    
 (48) 

 

In Eq. (47) sσ  represents the yield strength of the material, considered assuming a perfect plastic 

material behavior whereas avgs  the average thickness of the considered portion of the ring being deformed. 

The other literature contribution dealing with the analytical estimation of the axial forming force is due 

to Kalyani (2015) and is based on the contact geometry considerations formalized in Alexis (2004). The 

force model is mainly based on the estimation of the projection of the contact made by considering the 

model which is normally utilized for the sheet rolling process, Eq. (49), where s∆  is the thickness draft, β  

is the vertex angle of the axial roll and m  the distance between the virtual vertex of the axial roll and the 

center of the ring.  

tanCL s mβ= ∆ ⋅ ⋅  (49) 
 

The force model, Eq. (50), is then defined as the product between the projection of the contact arc (49), 

the thickness of the ring and the yield stress of the material, considered as perfect plastic. 

ax sCF L s σ= ⋅ ⋅  (50) 
 

The model has been validated by comparing the results with those of a study case in two different instants 

of the process, observing 16.9% and 11.4% deviation at 60 s and 180 s of the process, respectively. 
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2.5 Numerical models for the RARR process 
In the last 20 years, several researchers have focused on developing numerical models for the study of 

the ring rolling process, both by utilizing commercial and specific software. Aiming to summarize the huge 

work available in the literature, this section of the thesis presents a summary of the main developed models 

and programs along with the key-results of the relevant works. 

In probably one of the first complete works about numerical modelling for the ring rolling process, 

Utsunomiya (2002) utilized a two-dimensional implicit elastic-plastic finite element method to study the 

evolution of the stress in the ring throughout the process, highlighting how the sections of the ring outside 

the deformation gap are not stress-free but subjected to circumferential stress due to the continuity with the 

rest of the ring. Especially, the outer surface is subjected to compression stresses while the inner one to 

tensile. Considering hot ring rolling process, Song (2002) defined the first thermo-mechanical coupled FEM 

analysis of the ring rolling process, highlighting the repetitive thermal cycles on the mandrel and the main 

roll, which reflects those on the inner and the outer surface of the ring. In addition to that, by analyzing the 

deformation of the element in the cross-section of the ring, also the plastic flow of the material has been 

analyzed, allowing to hypothesize the influence of the shear stress components on inner and outer surfaces 

of the ring on its deformation pattern. 

Another important contribution is due to Davey (2003), who utilized the arbitrary Augmented-

Lagrangian-Eulerian (ALE) for the integration of the solution in ring rolling simulations, with the aim of 

reducing the computational time. Both accuracy and time to complete the simulation have been compared 

with standard approaches, allowing to conclude that when an ALE-based algorithm is fed to a Successive 

Preconditioned Conjugate Gradient Method (SPCGM) solver, the computational time can be largely 

reduced. 

By utilizing a self-developed program, Yea (2003) utilized the SHAPE-RR® code for the calculation of 

spread, pressure distribution and roll force in the ring rolling process. The developed program is based on 

a rigid-plastic finite element method, aiming to reduce the computational time. The comparison between 

experimental and numerical results, both for flat and T-shaped rings, shows good agreement proving the 

reliability of the developed contact calculation algorithm as well as of the choice of utilizing a rigid-plastic 

material model, instead of a more complicated elastic-plastic one. The same program, SHAPE-RR®, has 

been also utilized by Kim (2012) to identify the combination of process parameters those allow to minimize 

the load during the ring rolling process. The limitation of the load required to the actuators is of key 

importance for the industry and it is mainly related to the mandrel and to the upper axial roll, those operate 

the thickness and height reduction. The developed FEM program and the relevant numerical simulation has 

been validated by comparison with experimental results, observing a good agreement. The proposed 

methodology, implemented in the developed FEM software, allows identifying the motion rules for mandrel 
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and upper axial roll those minimize the forming force while assuring a uniform and stable expansion of the 

ring throughout the process.  

Due to its high-computational time, dynamic explicit numerical simulations have not been largely 

utilized in the beginning of the XXI century. However, in the work of Wang (2006), the commercial 

software ABAQUS/Explicit has been utilized for the estimation of geometrical and temperature evolution 

of the ring during the ring rolling process by means of elastic-plastic dynamic-explicit numerical approach. 

One of the main features of the dynamic-explicit developed model is the possibility of simulating the so-

called fishtail effect, a typical defect related to the ring rolling process (see also Fig. 9 in section 2.1.1). 

Since the spread effect in the vertical direction of the ring may also result in fishtail effect, a defect 

which should be avoided in order to reduce the post-operations after the ring rolling process, Guo (2006) 

utilized dynamic-explicit numerical simulation in the ABAQUS/Explicit environment to study the 

influence of the size of mandrel and main roll on the forming quality of rings. The effect of varying the roll 

size on the spreading effect, on the roll force and on the roll moment is studied, allowing to identify the 

combination which can reduce defects and, at the same time, limit the process force and moment. 

In a summary work, Wang defined the basic rules for the virtual ring rolling process definition, a 

methodology for an integrated design of the ring rolling process by means of numerical approaches. The 

simulations are carried out utilizing the commercial software LS-DYNA whereas the complex control of 

the tools is operated by ANSYS parametric design language algorithm. The method is applied to two 

different complex rings whose final shapes, obtained by the numerical computations, are compared with 

the CAD project files, showing the close similarity. Based on the comparison with standard FEM technics, 

virtual ring rolling offers a reduction in the computational time while keeping a good agreement with 

experimental results. 

Concerning the utilization of a different commercial software, Kim (2007) developed a numerical model 

in MSC.SuperForm to analyze the feasible forming condition for an asymmetric grooved ring, comparing 

the results with experimental data. Thanks to the progressive plot of the geometry of the cross-section of 

the ring for increasing simulation times, the increase of the geometrical defects, such as the fishtail effect, 

can be clearly highlighted and proper countermeasures can be identified. 

In addition to that, based on the results of previous analytical works, for the setting of the motion rules 

of the ring rolling mill tools, Yang (2008) studied the variation of the temperature in the ring at specific 

locations around and inside the cross-section of the ring. The numerical simulations have been carried out 

by utilizing the commercial software ABAQUS/Explicit and an explicit solver. By means of numerical 

simulations, the effect of the material distribution in the cross-section of the ring blank is studied, defining 

useful guidelines for the ring blank size definition. However, since the rules are not explicitly defined and 
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only the inference between the variable is estimated, the results can be utilized only as a reference and not 

as precise guidelines.  

In similarity with the work of Song (2002), Sun (2008) developed a coupled thermo-mechanical 

numerical simulation in ABAQUS/Explicit of the rotational speed of the main roll, of the feeding speed of 

the mandrel, of the initial temperature of the ring and of the friction factor on the strain and temperature 

evolution in the ring throughout the process. The results allow identifying the correlation between important 

input variables and process output, which should be accounted in order to achieve a successful production.  

A similar analysis in the work of Anjami (2010) who, by utilizing DEFORM-3D, studied the influence of 

the roll sizes on forming stability, stress distribution, side spread, and power. The results showed how the 

FEM approach is a useful way to predict both the strain and temperature distribution in the ring during the 

process, opening the way to the forecast of the microstructure and, accordingly, to the relevant mechanical 

properties of the ring after the production. Following a similar rationale, Gong (2012) developed a 

numerical simulation to study the variation of the equivalent plastic strain in the ring caused by different 

sizes of the rolls, namely mandrel and main roll, and of their relevant motion rules, namely, the mandrel 

feeding speed and the rotational speed of the main roll. 

In a fully-numerical work, Qian (2013) analyzed the upsetting and piercing phases those precede the 

ring rolling process in order to estimate both strain and temperature thus to account for the evolution of the 

microstructure in the ring. One of the most important considerations, which highlights the complexity of 

the RARR is that the initial billet is already in a non-uniform strain and temperature state at the beginning 

of the ring rolling process. Same considering the whole production operations, from the upsetting to the 

end of the ring rolling process, Giorleo (2013) analyzed the energy consumption and proposed a numerical 

approach to minimize it. The reduction of the energy consumption, mainly obtained by reducing the height 

of the ring blank, leads to three important positive outputs, identified in upsetting energy reduction, in more 

precise dimensions of the ring blank and less material waste. 

Concerning the utilization of processing maps for the set-up of the ring rolling process, two different 

contributions of Kil (2014, 2015) explore the possibility of linking the operational temperature and the 

strain-per-round to the dimensions of the initial ring blank, organizing the results in terms of processing 

maps. The proposed processing maps methodology is meant to be utilized as a guide for the design of the 

ring rolling process. 

In the ring rolling process numerical simulations the aspect of remeshing is of key-importance but, in 

the literature, only a few contributions explicitly disclose the information concerning the remeshing 

strategies utilized in their models. In a recent work, Kim (2013) proposed a dual mesh approach for the 

reduction of the overall computational time by applying different refinement meshes to the deformation 

zone and to the remaining zones of the ring. The proposed methodology has been validated on different 
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process/ring combinations, showing the reliability in reducing the computational time while preserving the 

quality of the calculation. 

In addition to the huge literature review presented in this section of the thesis, numerical models have 

been largely utilized for the validation of the analytical models presented in the previous sub-chapters, 

namely Zhou (2011), Guo (2011), Qian (2013), Zhou (2010), etc. The necessity of a large utilization of 

numerical simulation is given by the fact that the ring rolling is a complex and expensive manufacturing 

process thus the large utilization of either industrial or laboratory experiments is normally not possible.  

In the following chapter of the thesis, the developed analytical models are presented in detail, 

highlighting their mathematical background, their features and how their combined utilization allows a full 

understanding of the ring rolling process, both from the kinematic and from the dynamic point of view. 
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Chapter 3: Analytical models for the radial-axial 
ring rolling process 

The collection of algorithms presented in this chapter of the thesis aims to give a full analytical 

interpretation of the interaction between process parameters, boundary conditions, kinematic and dynamic 

process outputs. As stated in the introduction, the aim is to provide a useful tool which allows to quickly 

and precisely estimate the influence of design and manufacturing choices on important process outputs, 

such as the geometrical expansion of the ring, its temperature drop and the evolution of the process forces 

throughout the process. 

As anticipated in chapter 1, the developed models are organized in the logic sequence also followed in 

the literature survey chapter, starting from the setting of the ring rolling process until the estimation of the 

process forces, considered as the last step of the calculation. These models have been developed and are 

utilized following this sequence because the results of a considered model are necessary as the input of the 

following one. Fig. 17 summarizes the basic interaction, in terms of main inputs & outputs, between each 

algorithm and formalizes the sequence of their utilization. The same sequence presented in Fig. 17 will be 

utilized for the progressive presentation of the algorithm throughout this chapter of the thesis. 
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3.1 Calculation of the ring blank 
The first step for the set-up of the ring rolling process is represented by the calculation of the ring blank 

sizes, which represents the initial dimensions of the ring which will be deformed during the process in order 

to obtain the final desired shape. 

The calculation of the ring blank is based on two important aspects: the first one is represented by the 

volume conservation principle, typical of the plastic-predominant deformations, the second one by the 

Keeton’s rule, presented in previous Eq. (1), section 2.1.1. The application of the Keeton’s rule (1) to the 

initial and final dimensions of the ring, in terms of its thickness and height, results in Eq. (51). 

2 2 2 2
0 0 F Fh s h s− = −  (51) 

 

Starting from (51), the following derivations lead to the final form of Eq. (55), which should be 

numerically solved in order to calculate the initial thickness of the ring blank.   

2 2
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D d s ss
d s s h h
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 (54) 

 

Rearranging Eq. (54) in order to express everything in terms of the initial thickness of the ring, namely 

0s , the polynomial equation (55) is obtained. The equation coefficients for (55) are summarized in (56). 

6 5 4 3 2
0 0 0 0 04 0s m s n s p s q s r⋅ + ⋅ + ⋅ + ⋅ + ⋅ + =  (55) 
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r D d s h
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= ⋅ −

⋅= − +

 (56) 

 

According to (56), once the inner diameter of the ring blank is chosen, the thickness can be estimated 

and, accordingly, the remaining dimensions can be calculated as well. The inner diameter of the ring blank 

is normally chosen in order to limit the scrap material during the piercing operation, see Fig. 4 in chapter 1 

hence, in the practice, the initial diameter of the ring, 0d , is chosen according to Eq. (57) which allows 

avoiding collisions between the ring and the mandrel in the initial phases of the process as well as to limit 

the material waste during the piercing operation. 
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01.2 1.4M MD d D⋅ ≤ ≤ ⋅  (57) 
 

Eq. (56) is solved by utilizing a combination of two different methods: at first, the secant method is 

utilized to determine the initial guess for the solution and, afterward, the Newton-Rapson algorithm is 

employed for the determination of the solution in terms of the thickness of the ring blank, 0s . 

Accordingly, the remaining dimensions of the ring can be determined according to Eqs. (58) and (59), 

in terms of outer diameter and height of the ring blank.  

0 0 02D d s= + ⋅  (58) 

2 2 2
0 0F Fh h s s= − +  (59) 

 

In comparison to the algorithm by Qian et al. (2013) presents in section 2.1.1, the proposed one takes 

into account both volume conservation principle and Keeton’s equation (1) from the beginning of the 

calculation, allowing a more clear and straightforward calculation of the dimension of the ring blank. 

As it will be shown in the result section, the utilization of the proposed algorithm for the determination 

of the ring blank dimensions allows obtaining final rings with the dimensions very close to the desired ones, 

limiting the fishtail effect. The algorithm for the estimation of the ring blank dimensions is included in Berti 

and Quagliato (2015).  

 

3.2 Motion laws calculation algorithms 
In the radial-axial ring rolling process, the key process parameters those have a high-influence on the 

successful production of the ring are represented by the feeding speed of mandrel and upper axial rolls. In 

addition to those, also the rotational and backward speed of the axial rolls have shown to influence the 

quality of the ring since they both can affect the stability of the process. For these reasons, in this section, 

these four process parameters are discussed and analytical models for their set-up are proposed and 

explained in details. In addition to that, concerning the main roll rotational speed, the following 

consideration has been drawn. In the radial-axial ring rolling process, the main roll rotational speed is 

normally chosen in order to limit the inertia phenomena in the ring during the process, and it is normally 

adjusted during the process time, no additional investigations on this parameter have been carried out and, 

in the calculation, the rule proposed by Zhou (2011) has been utilized (see also Eq. (8) in section 2.1.2). 

Concerning the mandrel feeding speed, both literature contributions are based on the same fundamentals 

and, for this reason, they both share the same limitation. By utilizing the model initially proposed by Hua 

(1997) and subsequently again proposed by Zhou (2011), for some ring configurations in terms of diameters 
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and height, no solutions ranges for the mandrel feeding speed can be determined. For this reason, a new 

model has been developed and the derivations are hereafter detailed. 

According to the slip line theory and to the force equilibrium in the mandrel-main roll deformation gap, 

two different conditions related to the plastic deformation in the ring cross-section are identified. The first 

one, named as penetration condition, is related to the fact that in order to obtain full plastic deformation all 

over the thickness of the ring, a minimum thickness draft should be granted. The latter one instead states 

that there is an upper limit for the thickness draft over which the backward friction force, caused by the 

pressure of the rolls on the ring, is greater than the forward friction force which allows the ring to be drawn 

and to exit the deformation gap. If this limit value is outdone, the ring is blocked inside the deformation 

gap and the ring stops its rotation. 

The initial derivation is the same as that proposed in Hua (1997) and detailed in previous section 2.1.3, 

and is not repeated here. However, the main difference between the literature models, Hua (1997) and Zhou 

(2011), and the proposed one is related to the time-dependent law of the mandrel feeding speed. In the 

literature, authors proposed a constant mandrel feeding speed for the whole rolling time, a choice that does 

not follow the natural increase of the ring diameter. According to this choice, it may happen that the ring 

expanses too slowly in the first part of the process and too fast in the last one, resulting in possible instability 

of its growth. 

To overcome this limitation, different ranges for the mandrel feeding speed have been calculated for the 

beginning and for the end of the rolling process, linking them to the initial and to the final geometry of the 

ring as well as to the initial and to the final positions of the tools of the ring rolling. The proposed approach 

is detailed in Berti and Quagliato (2015). An example of the difference between the literature mandrel 

feeding speed approach, i.e. Hua (1997) and Zhou (2011), and the proposed one, Berti and Quagliato (2015), 

is shown in Fig. 18. The proposed approach and the relevant explanation is hereafter detailed.  

 
Fig. 18 – Comparison between literature and proposed mandrel feeding speed rule. 
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In previous Eqs. (17) and (18), generic inner and outer radii of the ring were defined in the model and, 

especially in Zhou (2011), the calculation of the feasible ranges for the mandrel feeding speed has been 

linked to the initial geometry of the ring. However, in the proposed approach, the initial mandrel feeding, 

relevant for the beginning of the rolling time, is chosen inside the range defined by Eq. (60), same linked 

to the initial geometry of the ring and to the dimensions of the tools of the ring rolling mill. In addition to 

that, in order to define the ranges in which to choose the final mandrel feeding speed, also the final geometry 

of the ring is accounted for, as shown in Eq. (61).  
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(61) 

 

Especially in case of large deformations, resulting in huge geometrical differences between the initial 

and the final geometry of the ring, the proposed approach results in a better stability of the process and 

allows always calculating feasible process parameters closer to an optimal process setup. 

According to Eqs. (60) and (61), also the axial roll feeding speed can be defined accounting for the 

mutual interactions between thickness and height draft. Same as for the case of the mandrel feeding speed, 

also for the upper axial roll feeding speed a minimum and maximum range are defined, Eq. (62). 

min
,min 2

S S
A

R hv
R

ω
π
∆=      ;     max

,max 2
S S

A
R hv

R
ω

π
∆=  (62) 

 

Considering the relationship between thickness and height defined by the Keeton’s rule (1), the ranges 

in which to choose initial and final upper axial roll feeding speed are not independent but linked to mandrel 

feeding speed ranges, as shown in Eq. (63). 

[ ] [ ] 0
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h

=  (63) 
 

Considering together Eq. (63) and previous Eqs. (60) and (61), the feasible ranges in which to choose 

initial and final feeding speed for the upper axial roll are calculated as in (64) and (65).  
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(65) 

 

In Eq. (64) and (65), 0L , FL  and θ  parameters are defined as shown in Fig. 19. 

 
Fig. 19 – Ring-axial rolls contact points definition. 

 

It is immediately clear that both the ranges for the upper axial roll feeding speed and the relevant choices 

for the speeds to use in the process are not independent of the mandrel feeding speed ranges and the relevant 

initial and final chosen speeds for the mandrel. This fact results in a step-by-step calculation, as follows. 

First of all the mandrel feeding speed ranges are calculated, one for the beginning (60) and one for the end 

(61) of the process. Accordingly, the upper axial rolls feeding speed ranges can be calculated by means of 

(64) and (65), for the beginning and the end of the process respectively.  

Afterwards, the user chooses the initial and final mandrel feeding speeds inside the previously-calculated 

ranges (60) and (61); this choice is basically free and does not influence the quality of the resulting ring, 

even if can affect the residual stresses and the hardening of the material, both out of the scope of this 

investigation, as well as the total time for rolling process.. Finally, once the mandrel feeding speeds have 

been chosen inside the relevant ranges, the upper axial rolls feeding speeds are automatically calculated, as 

a result of the choice of the mandrel ones. Since the initial and final upper axial roll feeding speeds are not 

chosen but calculated on the basis of the mandrel ones, it must be verified that they both fall inside their 

relevant prescribed ranges. If so, the process can be set up by utilizing the set of two mandrel feeding speed 

and two upper axial roll feeding speed as chosen and calculated. Otherwise, if one or both the calculated 

upper axial roll feeding speeds do not fall within the prescribed ranges, different mandrel feeding speeds 

should be chosen and the verification procedure should be repeated. 
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Once the mandrel and upper axial roll feeding speeds ranges are defined, also the backward speed and 

the rotational speeds of the axial rolls can be calculated as well. These two process parameters are both 

related to the axial rolls but accomplish different tasks in the process. The backward movement of the axial 

rolls allows promoting a circular shape of the ring, following and guiding its expansion throughout the 

process. If this parameter is not properly set, the ring will tend to evolve in an irregular shape, either in the 

x-direction or in the y-direction. On the other hand, the rotational speed of the axial rolls facilitates the 

rotation of the ring during the process and avoids the arising of velocity gradients due to the friction between 

the rolls and the top and bottom surfaces of the ring. A complete review of the approaches which can be 

adopted in order to control the backward movement of the axial rolls is presented in Zhou (2012). As also 

suggested in Berti and Quagliato (2015), a reasonable approach is to directly link the backward speed of 

the axial rolls to the growth of the ring, in terms of its diameters. The growing speed of the ring is addressed 

in the following section of the thesis and is mainly related to the choice of a linear decreasing mandrel 

feeding speed. In general, the chosen approach for the setting of the axial rolls backward movement is to 

keep constant, throughout the process, the contact points between ring and rolls, adjusting the motion in 

order to have 0 FL L= , as defined in Fig. 20. 

 
Fig. 20 – Reciprocal position of ring and axial rolls during the process. 

 

Finally, concerning the rotational speed of the axial rolls, its setting is done according to the tangential 

speed ratio with the main roll rotational speed, as shown in (66) where 1aR  is defined as the local radius of 

the section of the axial rolls in contact with the outer radius of the ring. 

1S S A aR Rω ω=  (66) 

( )1 0 sin / 2
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R R
R L
ω ωω
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Once the rotational speed of the main roll is chosen, that of the axial rolls is immediately calculated 

according to Eq. (67), where 1aR  is defined as a function of 0L . If the distance between ring and vertex of 

the axial rolls changes during the process, thus 0FL L≠ , the axial rolls rotational speed Aω  can be calculated 

in order to follow this variation. However, if 0 FL L=  it shall result in a constant rotational speed for the 

axial roll throughout the process.  

The full equations set presented in the section allows to set-up a generic ring rolling process with a full 

understanding of the fundamentals concerning the kinematics and of the mutual interactions between ring 

and tools dimensions. The proposed equations for the calculation of both ranges and process parameters 

have been utilized for the setting of both numerical simulations and laboratory experiments presented in 

chapter 4 and 5 of the thesis, respectively. 

In the following sections of chapter 3, the developed models for the control of the influence of the chosen 

process parameters on the ring and on the tools are presented. 

 

3.3 Geometry evolution of the ring 
As anticipated in the introduction chapter, all the calculations concerning the developed models are 

based on the concept of ring slice, Fig. 6. The slice is a circumferential portion of the ring utilized as an 

elementary control element and, starting from the estimation of the geometry of the ring until the calculation 

of the process forces. With the exception of the lumped temperature model, section 3.5, all the remaining 

algorithms presented in sections 3.3, 3.4, 3.6 and 3.7 are slice-based, which means that the relevant outputs 

of the algorithms can be estimated for each slice in which the ring has been subdivided and for each round 

of the process. Considering the ring at the beginning of the ring rolling process, it can be subdivided in a 

certain amount of slice, each one with the same radii, thickness, and height. However, during the rolling 

process, each slice will be deformed according to its relevant position in the ring and according to the 

motion laws of the mandrel and upper axial roll. This fact is of key importance and allows accounting for 

the intrinsic incremental nature of the ring rolling process. In addition to that, the subdivision of the ring 

into slices allows a more precise and realistic estimation of the geometry of the ring during the process, as 

it will be highlighted in the result section, where the results of the estimation of the outer diameter of the 

ring obtained by utilizing the literature model proposed by Zhou (2011) are compared with those obtained 

by the model presented in this section of the thesis. The increase in accuracy is clearly evident especially 

at the end of the rolling process, since the literature model does not account for the calibration phase, as it 

is done for the developed one, instead. 

As mentioned above, before the beginning of the process, the ring is subdivided into a certain number 

of n  slices and, accordingly, the vertex angle of each slice is estimated as ,0 2 /j nϑ π= . The subscript refers 
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to the generic j-slice in the 0-round of the process, thus before the beginning of the rolling. In addition to 

that, based on to the choice of the initial and the final mandrel feeding speeds operated according to the 

model presented in the previous section of the thesis, the linear decreasing mandrel feeding speed is defined 

as in Eq. (68) where Mt  are the mandrel feeding time and t  the time variable, respectively. 

( ) [ ] [ ] [ ]0
0

M MF
M M

M

v v
v t v t

t
 −

= +   
 

 (68) 

 

By integrating, over time, Eq. (68), the time-dependent law for the thickness of the ring in the mandrel-

main roll deformation gap can be calculated as in (69).  
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= − = − +      

∫  (69) 

 

It is important to underline that the (69) defines both the relevant distance between the mandrel and main 

roll as well as the instantaneous thickness of the generic j-slice of the ring, passing through the mandrel-

main roll deformation gap, at a specific time instant jt . Assuming no slippage between ring and tools, the 

time required to deform the ring in the first round of the process, or in order words, for the first slice to 

rotate 360°, is defined based on the gear ratio between the main roll radius of the outer radius of the ring 

blank, as shown in Eq. (70). 

,0
1

2 j

S S

R
t

R
π
ω

=  (70) 
 

In the first round of the process, all the slices start with the same initial geometry thus the time required 

for a generic slice to enter and exit the deformation gap is same for all of the n-slice and is estimated as 

1 1, /j nt t= .  

The generic slice is located at the angular position  j jα δ= ⋅ , where 1...j n= , as shown in Fig. 21a, 

and at the end of the first round, it has been deformed according to its position in the ring. If the j-slice is 

located between 0° and 180° (right half of the ring, which rotates clockwise), it has passed through both the 

mandrel and the axial rolls gap and has been reduced in both thickness and height. For this reason, the 

corresponding deformed thickness of this slice results in ( ),1 ,1j js s t=  for 0    / 2j n≤ <  whereas the 

deformed height is calculated according to Eq. (71), derived from (1). 

2 2 2
,1 0 0 ,1 ( - ) - j jh h s s=  (71) 

 

If the j-slice is located between 180° and 360° (left half of the ring, which rotates clockwise), it has 

passed only through the mandrel gap and is reduced only in thickness, therefore ( ),1j js s t=  for / 2    n j n≤ <  
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and height corresponds to the initial height of the blank, namely 0h . Considering the volume of each slice 

as a constant throughout the process, the increase in the linear length of the slice, as a consequence of the 

deformation operated in the two deformation gaps can be calculated according to Eq. (72). 

 

 

Fig. 21 – Position of the generic j-slice in the ring.  Fig. 22 – Average dimensions of the j-slice. 
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⋅
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In (72), ,0jV  represents the volume the generic j-slice whereas ,j is and , j ih  the average thickness and 

average height of the generic j-slice, respectively. The need for an average thickness and height calculation 

is given by the fact that, in principle, left and right faces of each slice shall have different dimensions since 

they pass through the relevant deformation gaps at different time instants. To average the dimensions of 

left and right face, both thickness and height are considered as calculated in the center of the slice, as shown 

in Fig. 22. In order to estimate the average radius for each slice, an average radius of the whole ring in the 

first round of the process, namely 1r , should be estimated as shown in (73).  

 
, , 1

1 2

n
f j ij

L
r

π
==

∑  (73) 
 

Since the ring rolling process pertains to the incremental forming processes, the average radius (73) is 

the average value of a maximum radius and a minimum radius. The first one can be estimated as 

1,max 1 02r r r= −  whereas the latter one is equal to the average radius of the ring blank, namely 
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( )1,min 0 0 / 2r R r= + . Based on the position of a generic j-slice in the ring, its average radius at the end of 

the first round of the process can be estimated according to (74). 

( )  
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r r
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 (74) 

 

In (74), the  
, ,1 1

 j
f jk

L
=∑  term represents the summation of the slice linear length until the designated j-

slice and allows accounting for the different deformations in the slice as a consequence if its relevant 

position in the ring and of the time-based deformation operated by the mandrel and the upper axial roll. 

Once the average radius of each slice at the end of the first round of the process is known, by adding 

and subtracting half of the thickness, the outer and inner radius can be estimated. These radii are not constant 

but, once again, dependent on the relevant position of the slice in the ring. 

So far, only the geometry of after the first round of the process has been estimated thus, in order to 

estimate that of the following rounds, a slightly different procedure should be adopted, as hereafter shown. 

Considering the generic j-slice, from the second round on, the time required for its deformation is not 

constant anymore since each slice has a different length , ,f j iL . In addition to that, the vertex angles of all 

the slices are different each other and are related to the slices length by Eq. (75), Fig. 22, where -1,j ir  

represents the average radius of the j-1 slice that precedes the j-slice. 
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f j i
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j ij i

L
r r
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(75) 

 

Considering the second round of the process, the values of the outer radii of the ring for all the slices are 

known and, considering two consecutive slices, namely the j-1 slice and the j-slice, the external length of 

the generic j-slice, estimated on the outer surface of the ring, can be estimated as in (76). 

 ,-1,
, ,, 2

j ij i
e t jj ix i

R R
L ϑ

+
=  (76) 

 

The external length of the generic j-slice can be utilized for the calculation of its deformation time, Eq. 

(77). The summation of all the .j it  contributions over all the n-slices allows calculating the total rolling 

time for each i-round of the process. 

, ,
,

 
  ext j i

j i
S S

L
t

Rω
=  (77) 

 

Once the total deformation time for the generic i-round of the process is known, previous Eq. (72) can 

be utilized for the estimation of the slice length, calculated in its middle, based on the time-dependent 

evolution of both thickness and height of the ring, calculated according to (69) and (71), respectively. 
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For the generic i-round, the average and maximum radius for the whole ring are estimated as in (78) and 

(79), respectively. In (79), i 1,max i,minr r− = . 
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 (78) 

i,max i 1,max2 ir r r −= −  (79) 
 

Accordingly, the average radius for each slice in the generic i-round of the process is estimated according 

to (80), which is the extension of (74) to the rounds following the first one. 
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In conclusion, inner and out radius of the ring for a generic round of the process are calculated as in Eqs. 

(81) and (82) and, along with Eqs. (69) and (71), allow a fully analytical prediction of the ring geometrical 

expansion throughout the process.  
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The advantages of the proposed approach, in comparison to that available in the literature, will be 

highlighted and clarified in the result section, where the results of these two models are compared. In 

addition to that, all the analytical models presented in the following sections of chapter 3 are all based on 

the geometry estimation algorithm just presented, which is considered the core of the proposed approach.  

The geometry estimation algorithm is included in Berti and Quagliato (2015). 

 

3.4 3D strain tensor estimation and geometry update 
Based on the slice-based estimation of the geometry of the ring throughout the process, the natural 

consequence is the estimation of the relevant strains in the ring during the process. The importance of the 

estimation of the strain is twofold since it allows a better understanding of the plastic flow of the material 

in slice volume during the process as well as is one of the key information for the estimation of the flow 

stress of the material, subsequently presented in section 3.6. 

The estimation of the strain presents one key-issue, represented by the interpretation of the state of strain 

in the ring, namely in one of its slices, during the process. In the literature, several researchers assimilated 

the deformation in the ring to a state of plane strain or, in other words, when a portion of the ring is deformed 

in one of the two deformation gaps one deformation, and the relevant strain, is controlled by the distance 
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between the tools and, by means of volume constancy, the second deformation, and the relevant strain, is 

oriented along the circumferential direction, causing the expansion of the ring, being the strain in the third 

direction equal to 0 (plane strain state assumption). However, the adoption of a plane strain assumption 

seems to be far from the real state of the strain the portion of the ring undergoing the deformation, either in 

the mandrel-main roll or in the axial rolls deformation gap since the so-called spreading effect, Fig. 23. 

 
Fig. 23 – Spreading effect in the mandrel-main roll deformation gap.  

 

The consequence of the spreading effect is to introduce a undesired material flow in the third direction, 

i.e. z-direction in the mandrel-main roll gap as shown in Fig. 23, partially reducing the material flow in the 

circumferential direction. This fact results in three different strain components along the three directions 

and differs from the assumption of a state of plane strain. For this reason, the developed algorithm aims to 

estimate the 3D principal strain tensor in each slice of the ring and for each round of the process, accounting 

for the radial, the axial and the circumferential strains, directly or indirectly caused by the feeding motions 

of the tools. 

In order to properly and separately estimate the strain components in each slice of the ring after each 

pass in both deformation gap, the algorithm for the estimation of the geometry should be updated in order 

to account for the spreading effect. The spreading effect influences both the estimation of the strain 

components in the considered deformation gap as well as introduces a variation of the geometry of the ring 

in the not-controlled directions, namely the vertical direction in the mandrel-main roll gap and the radial 

direction in the axial rolls one. 

To account for this geometry update, the geometrical parameters of each slice are not estimated anymore 

in its center but on both its left and right face, thus considering the incremental nature of the ring rolling 

process. According to the approach, each slice is now described by ten geometrical parameters, five for its 

left face and five for its right one. In addition to that, two slice parameters are also defined: the vertex angle 

of the slice ,j iϑ  and the average radius for the whole slice ,j ir . All parameters are shown in Fig. 24. 
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Fig. 24 – Slice parameters in the geometry update algorithm.  

 

For a better understanding, all the parameters relevant for the left face of the slice have an “LF” subscript 

whereas those relevant for the right face an “RF” subscript, instead. In addition that, since the calculation 

is differentiated between the mandrel-main roll deformation gap and the axial rolls gap, the subscript “M” 

is utilized to indicate the first one whereas “A” for the second one. For instance, , , ,j i LF Mr  represents the 

inner radius of the left face of the j-slice in the i-round after the deformation occurring in the mandrel-main 

roll deformation gap. 

Considering the evolution of both thickness and height, as defined by Eqs. (69) and (71), the variation 

of the linear length of each slice can be mapped after both deformation gaps according to (83) and (84), 

relevant for the mandrel-main roll gap and for the axial rolls gap, respectively.  
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(84) 

 

The value of the linear length of the slice after the axial rolls deformation gaps is equal to the final linear 

length of the j-slice in the i-round, as previously calculated by (72). Accordingly, also the variation of the 

slice vertex angle, after both deformation gaps, can be estimated by adopting similar formulations, but 
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taking into account the two different deformations occurring during the process, as shown in following Eqs. 

(85) and (86).  

( )
( ) ( ), , , -1,

, , -1, , , -1
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 (85) 
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Both , ,j i XLf  and , ,j i Xϑ  are slice parameters and, for this reason, are referred neither to the left nor to the 

right face of the slice. In addition to that, based on these two slice-based parameters, the average radius of 

each slice, after both deformation gaps, can be estimated as shown in (87) those are the central radii of the 

slice after mandrel-main roll deformation gap and after the axial roll deformation gap, respectively. 
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Since the real length of the slice can be reasonably approximated by a circumference arc with an 

averaged vertex angle (see Eqs. (85) and (86)) and an averaged radius for the whole slice (see Eq. (87) ), 

the same reasoning can be adopted for the estimation of the intermediate radii for the left and right faces of 

the slice considering a linear correlation between these radii and the values of the vertex angles previously 

calculated in Eqs. (85) and (86). This results in following Eqs. (88) and (89) those are the first estimation 

of the intermediate radii of a generic j-slice in the i-round after the deformation occurred in the mandrel-

main roll deformation gap.  
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Although the assumption of a circular shape for the slice allowed calculating a first estimation of the 

intermediate radii of left and right faces, it also results in a loss of volume for the slice, which can be 

corrected by redistributing the material along the slice circumference, as shown in Eqs. (90) and (91).  
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Finally, inner and outer radii for left and right face of the generic slice can be calculated, as shown in 

Eqs. (92)-(95). 

,
, , , , , , 2

j i
j i LF M j i LF M

s
r r −=  (92) 

,
, , , , , , 2

j i
j i LF M j i LF M

s
R r +=  (93) 

1,
, , , , , , 2

j i
j i RF M j i RF M

s
r r −−=  (94) 

1,
, , , , , , 2

j i
j i RF M j i RF M
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Along with previous Eqs. (69) and (71), this set of equations allows a fully analytical prediction of the 

expansion of the ring and accounts for the different dimensions of left and right face of each slice of the 

ring as a consequence of the incremental nature of the ring rolling process. The derivations detailed Eq. (88) 

to Eq. (95) can be repeated also for the axial roll deformation gap, by following the same procedure. 

According to the precise estimation of the ring geometry detailed so far, also the strain evolution in the 

ring can be estimated. The strain estimation is a procedure which is going to be partially overlapped with 

the geometry estimation due to the fact that, based on the estimation of the third strain component also the 

geometry of the ring will be updated. 

Based on the precise estimation of the circumferential growth of the ring, as it will be shown in the 

results section, the author has chosen to directly calculate the circumferential strain as homogenous in the 

slice. Hence, the circumferential strain is estimated, after each deformation gap, by adopting Eqs. (96) and 

(97), for the strain after the mandrel-main roll deformation gap and after the axial rolls gap, respectively. 

The following procedure is derived for the inner radius of a slice deformed in the mandrel-main roll 

deformation gap but can be easily extended to the outer radius and to the axial rolls deformation gap by 

substituting the relevant parameters. 
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For two consecutive rounds of the process and considering the circumferential strain, the incremental 

strains in the circumferential direction can be calculated as in (98) and (99). 
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, , , , , , , , 1,c j i M c j i M c j i Adε ε ε −= −  (98) 

, , ,, , , , , , c j i Mc j i A c j i Adε ε ε= −  (99) 

Eq. (98) accounts for the fact that the geometry of a generic slice entering the mandrel-main roll 

deformation gap in the i-round is that coming from the exit of the axial rolls gap in the previous i-1 round 

whereas that entering the axial rolls gap in the i-round is that coming from the mandrel-main roll gap in the 

same i-round. 

As first estimation, also the strains in the radial and axial directions can be estimated by utilizing a 

similar formulation of that used in (96) or (97), resulting in (100) and (101). 
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As mentioned before, the strains estimated by (100) and (101) are not consistent due to the fact that 

ignore the spreading effect but are the basis for the more precise estimation of the strain along these 

directions. In addition to that, since no strains due to the spreading effect are taken into account the strain 

along the radial direction is only caused by the motion of the mandrel in the relevant deformation gap. Eq. 

(100), as well as that along the vertical direction is only caused by the motion of the upper axial roll in the 

relevant deformation gap, Eq. (101). 

Defining, once again, the round-based incremental strains for the radial and axial directions it results in 

(102) and (103), those are based on the estimations made by utilizing (100) and (101) for two consecutive 

rounds, respectively. 

, , , , , , , , 1,ˆ ˆ ˆs j i M s j i M s j i Mdε ε ε −= −  (102) 

, , , , , , , , 1,ˆ ˆ ˆz j i A z j i A z j i Adε ε ε −= −  (103) 
 

However, comparing the incremental circumferential strain (98) with the theoretical incremental strain 

in the radial direction calculated by (102) at the mandrel–main roll gap they result in different absolute 

values, as it will be shown in the result section, and an incremental strain in the third direction (vertical 

direction) should be introduced in order to fulfill the volume constancy principle, the first invariant of strain 

tensor is equal to 0, which is a direct consequence of it, resulting in Eq. (104). 

( ), , , , , , , , ,ˆz j i M c j i M s j i Md ddε ε ε= − +  (104) 
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In the same way, comparing the incremental circumferential strain (99) with the incremental strain in 

the vertical direction calculated by (103) at the axial rolls gap, they result in different absolute values, and 

an incremental strain in the third direction (radial direction) should be introduced according to (105). 

( ), , , , , , , , ,ˆs j i A c j i A z j i Ad ddε ε ε= − +  (105) 
 

After the j-slice has passed through the mandrel–main roll gap, where the incremental strain in the third 

direction (the vertical one) , , ,z i j Mdε  is calculated by (104), the slice should pass through the axial rolls gap, 

where the initial estimation of strain in the vertical direction , , ,ˆz i j Adε  calculated by (103) should be 

corrected by adding , , ,z i j Mdε− . Therefore, the incremental strain in the vertical direction at the axial rolls 

gap is the combination of theoretical strain, calculated at the i-round in the axial rolls gap (103), and the 

third strain (vertical strain) calculated, at the i-round, in the mandrel–main roll gap (104), as shown in (106). 

, , ,, , , , , ,ˆ z j i Mz j i A z j i Ad d dε ε ε= −  (106) 
 

After the j-slice has passed through the axial rolls gap, where a third strain is introduced in the radial 

direction, the slice should pass through the mandrel–main roll gap, where the initial estimation of strain in 

the radial direction calculated by (102) should be corrected adding , 1, ,s i j Adε −− . Therefore, the incremental 

strain in the radial direction at the mandrel main roll gap is the combination of theoretical strain (102), 

calculated at the i-round in the mandrel-main roll gap, and the third strain (radial strain) calculated, at the 

i-1 round in the axial rolls gap (105), as shown in (107). 

, , ,, , , , , ,ˆ z j i Mz j i A z j i Ad d dε ε ε= −  (107) 
 

Therefore, for each round of the process and for both deformation gaps the principle strain tensor can 

be estimated. Since the considered coordinate system is oriented along the principal directions, no rotations 

are required, resulting in Eq. (108), for the strain matrix after the mandrel-main roll deformation gap, and 

in Eq. (109) for the strain matrix after the axial rolls deformation gap. 
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By summing together all the contributions along each direction, for a considered round of the process, 

the finite values for the circumferential, the radial and the vertical strains in the ring can be estimated as 
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shown in Eq. (110), (111) and (112), respectively. The summation counter for the second term, k=0.5, 

accounts for the fact that the deformation in the axial rolls gap starts half round after that in the mandrel-

main roll gap. 
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, , ,3 , , ,
0 0.5

i i

z z j i M z j i A
k k

d dε ε ε ε
= =
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In conclusion, by utilizing the von Mises yield criterion in the strain form, the incremental equivalent 

plastic strain, Eq. (113), as well as the finite equivalent plastic strain, Eq. (114), for each slice and for each 

round of the process can be calculated. 

( )2 2 22
3eq c s zd d d dε ε ε ε= + +  (113) 

i

k 0
eq eq eqd dε ε ε

=
= =∑∫  (114) 

 

As it will be shown in the result section, the good agreement between analytical and numerical results 

will allow proving that: 

i) The estimated strains are oriented along the principal directions thanks to the choice of a convenient 

coordinate system; 

ii) The state of plane strain should be refused and a 3D strain tensor is a right choice for a proper 

estimation of the strain field in the ring; 

iii)  By utilizing the proposed approach both the strain components and the equivalent plastic strain can 

be estimated almost in the real-time and with a limited error in comparison to the relevant FEM 

simulation. 

Due to the nature of the strain and the complexity of the ring rolling process, no validations with 

experimental results seemed to be feasible as well as no literature contributions seems to deal with this topic 

thus the model validation has been done only by comparing analytical results and authors’ FEM simulations 

results. The geometry update and strain estimation algorithms are included in Quagliato (2016).  
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3.5 Lumped heat transfer model 
In the radial-axial ring rolling process, as well as in every metal forming process, the temperature is a 

key influencing factor which should be carefully accounted for, due to the large impact it can have 

especially on the material flow stress. Especially in hot metal forming processes, the temperature drop in 

the workpiece results in an increase of the material flow stress, a property directly related to the forces 

necessary to deform the material itself. For this reason, in order to operate a proper estimation of the flow 

stress of the material in hot ring rolling process, a lumped heat exchange model has been developed. As 

mentioned above in the introduction, this model is the only one to be ring-based and not slice-based and 

the reasons for this choice are hereafter explained. 

In the hot radial-axial ring rolling process, due to the initial high temperature of the ring, surface 

oxidation is a normal and unavoidable issue which highly affects the surface temperature of the ring, both 

for the portion of the material which is undergoing the deformation as well as for the remaining part of the 

ring. During the process, the scales have the effect of isolating the real surface of the ring workpiece and, 

when they actually detach from it, a surface with a very high temperature, which can be close to the initial 

one of the ring, is suddenly exposed to the environment. The prevision of size, position and time a scale 

will arise is out of the feasible sight of an analytical model thus a local temperature model would be affected 

by huge error due to the fact that important issues like this one could not be properly accounted for. 

Differently, if an average temperature of the ring for each round of the rotation is estimated considering 

conductive, convective and radiant heat exchange between ring and tools, in the first case, and between the 

ring and the working environment, in the second and third case, the influence of unpredictable issues, like 

the scales, can be neglected allowing anyway a reasonable estimation of the ring temperature.  

According to this rationale, the developed temperature estimation model is subdivided into three 

different sub-models those account for i) conductive heat exchange between ring and tools in the mandrel-

main roll deformation gap, ii) conductive heat exchange between ring and tools in the axial rolls 

deformation gap and iii) mixed convective-radiant heat exchange model for the estimation of the heat 

transfer between the ring and the environment. The calculation flow is summarized in Fig. 25. 

 
Fig. 25 – Heat transfer model calculation procedure.  
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In order to properly estimate the heat flow between ring and tools, especially for the calculation of the 

heat loss due to conduction, contact area estimation algorithms have been developed and their derivation is 

presented in this section of the thesis. 

 

3.5.1 Contact geometry and heat exchange models for the mandrel-main roll gap 
The contact geometry between the mandrel and the main roll with the ring and the relevant gap has been 

studied, in the literature, from the point of view of defining equations for the estimation of the projection 

of the contact arc, with the ultimate aim of calculating the process force required to deform the ring. 

Although the estimation of the projection of the contact arc between ring and tools allows an estimation of 

the relevant process force, its sole value is not enough for the calculation of the contact area between ring 

and tools in the mandrel-main roll deformation gap. For this reason, starting from one of the most used 

formulations for the estimation of the projection of the contact arc between the ring and both mandrel and 

main roll, a fully-analytical algorithm for the calculation of the contact area is developed. The contact area 

is afterward utilized, along with the contact time, to estimate the heat flow flowing from the ring to the tools 

as a consequence of the lower temperature of the latter ones. The formulation utilized for the estimation of 

the projection of the contact arc in the mandrel-main roll gap has been proposed by Hua (1997), also utilized 

by Qian (2009) and is reported in Eq. (115). 

2
1 1 1 1C

S M

sL

R R R r

∆
=

+ + −
 

(115) 

 

The values of R, r , 0 Fs s s∆ = − , in terms ,j iR , ,j ir  and ,j is∆ , are known for each slice and for each 

round of the process, allowing to calculate the evolution of the projection of the contact arc which can be 

now written as , ,C j iL .  

For each slice of the ring, the contact angles, measured at the center of the mandrel and of the main roll, 

can be estimated on the basis of the projection of the contact arc , ,C j iL  and inner or outer radius, ,j ir  and 

,j iR , respectively, as reported in Eq. (116) and shown Fig. 26. The procedure will be derived for the mandrel 

side but it can be easily extended to the main roll side by substituting the relevant parameters.  
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, ,
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 (116) 

 

For a generic j-slice of the ring, according to its circumferential size, the time it  to rotate 360° and come 

back to its initial angular position can be estimated. The time it  is not a slice-based variable anymore but it 
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assumes the meaning of a ring-based variable, being negligible the difference between it  calculated by 

taking as references different slices. 

 
Fig. 26 – Contact geometry in the mandrel-main roll deformation gap.  

 

Considering the gear ratio between the mandrel and the main roll, also influenced by the geometry of 

the ring, the contact time between the ring and the mandrel can be estimated as in (117). 

, 2
M

M i it t α
π

=  (117) 

 

As it can be seen from Eq. (117), the “j” subscript is not considered anymore due to the fact that the 

calculation is now referred to the half round of the rotation and not to the slice anymore, as also highlighted 

in the block diagram of Fig. 25. Taking as reference the center of the mandrel, the relevant contact angle 

can be estimated, as shown in Eq. (118), referring to the radius of the mandrel and to the projection of the 

contact arc.  
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Also in the case of Eq. (118), the values of mandα  can be averaged between the slices belonging to the 

considered half of the ring or, in order words, to the considered half round of the process. 

Accordingly, the first approximation of the contact area between ring and mandrel can be estimated as 

shown in Eq. (119), where h  represents the average height of the portion of the ring being deformed.  

mand mand MA R hα= ⋅ ⋅  (119) 
 

In order to account for the deformation happening on the inner surface of the ring, a sort of gear ratio 

between the inner contact area calculated on the mandrel surface and that estimated on the ring should be 

introduced, as detailed in (120). The numerator represents the real contact area, which accounts for the 

deformed geometry of the ring, whereas the denominator is the undeformed area of the ring. 

,

mand mand M
M

mand undef M

A R h
A h r

αη
α

⋅ ⋅
= =

⋅ ⋅
 (120) 

 

As previously pointed out, similar derivations can be carried out for the main roll side, resulting in the 

calculation of the relevant parameters: Sα , mrollα  , mrollA  and Sη . 

In a complete round of the ring, the total inner surface of the not deformed ring, 2inA rhπ= , has been in 

contact with the mandrel for a time Mt  whereas the total outer surface of the not deformed ring, 2outA Rhπ= , 

has been in contact with the main roll for a time St . Considering now the weighted product between area 

and time, to be used in the heat exchange equation, the contribution of both mandrel and main roll can be 

averaged as in (121). Eq. (121) represents the product between the average contact area and the average 

contact time in the mandrel-main roll deformation gap. 

, ,2 in M M outequiv MS equiv MS S SA t A t A tη η⋅ = ⋅ ⋅ + ⋅ ⋅  (121) 
 

Inputting the result of (121) in the heat exchange equation (122) the temperature variation in the half 

ring can be estimated on the basis of the temperature estimated in the previous step of the calculation, 1kT − , 

the temperature of the tools  TT , considered as constant, the conduction heat transfer coefficient, HTC , 

the specific heat capacity of the material, C , the density of the material, ρ , and half of the volume of the 

ring, V .  

( ) , ,
, 1

2
exp equiv MS equiv MS

MS i k T

A t HTC
T T T

C Vρ−

⋅ ⋅ 
= − ⋅  

 
 (122) 

 

As shown in Fig. 25, the calculation is carried out on the portion of the ring from the mandrel-main roll 

gap to the axial rolls gap thus only half of the volume of the ring is influenced by this heat exchange, in a 

generic i-round of the process. In conclusion, Eq. (122) allows estimating the temperature drop in the ring 

as a consequence of the conductive heat exchange with the mandrel and the main roll in the generic i-round. 
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3.5.2 Contact geometry and heat exchange models for the axial rolls gap 
In principle, the contact area of a section of the ring being deformed in the axial rolls gap is not different, 

in shape, to one deformed in the mandrel-main roll gap, even if the size of the deformed section changes. 

However, in order to calculated the whole top and bottom contact area between the ring and the axial rolls, 

a completely different contact algorithm has been developed and is presented in this section. The need for 

a different algorithm, in comparison to that presented in the previous section, is given by the fact that the 

contact area is the result of the interaction between the conical shape of the axial rolls and the circular shape 

of the ring. 

Firstly, in the algorithm for the estimation of the contact area in the axial rolls gap, a symmetric 

contribution to the height reduction is considered thus, being h∆  the height reduction of a considered 

portion of the ring, each axial roll is assumed to operate a / 2h∆ , making the solution to be totally symmetric.  

In addition to that, in order to simplify the calculation, the reference system is changed from the z-

direction, oriented along the vertical direction of the ring, to a direction orthogonal to the central axis of the 

axial rolls, as shown in Fig. 27. Accordingly, Eq. (123) is derived and allows estimating the two contact 

radius, one on for the inner contact and one for the outer contact, Eqs. (124) and (125), respectively. 

 
Fig. 27 – Contact geometry in the axial rolls gap, side view.  

 

1
2 cosINCL

hh
θ

∆
∆ =  (123) 
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( )sinicR L s θ= −  (124) 

sinocR L θ=  (125) 
 

The positions of the two contact radius, icR  and ocR , allows defining the two contact point P1 and P2, 

as shown in Fig. 27, those may be constant or change during the process according to the chosen backward 

motion law of the axial rolls, as previously pointed out in section 3.2. If the axial rolls backward movement 

is set in order to follow the geometrical expansion of the ring, the initial and final distance between the 

virtual vertex of the axial rolls and the outer diameter is constant and equal to 0L L= . 

Even though the contact surface between the ring and the axial rolls is, in principle, a complex shape, 

thanks to the small values of h∆  it can be estimated on the plane orthogonal to the axis of the axial rolls and 

passing through P1, or P2. These cross-sections of rolls and ring operated by these two planes result in the 

configuration shown in Fig. 28a, relevant for the inner contact. The following procedure is derived for the 

inner contact surface but can be easily extended to the outer one by substituting the relevant parameters. 

 
Fig. 28 – Contact geometry in the axial rolls gap, (a) front view and (b) top view. 

 

Considering the front view, Fig. 28a, the contact angle between the onset and the exit of the deformation 

gap is defined as in (126). 

C,int arccos ic INCL

ic

R h
R

α
 − ∆

=  
 

 (126) 
 

Considering now the arc relevant for the contact angle C,intα , related to the inner contact point P2, and 

the outer contact angle C,outα , related to the outer contact point P1, the two contact length can be estimated 

as well, as shown in (127). 

1 ,C int icl Rα= ⋅      ;     2 ,C out ocl Rα= ⋅  (127) 
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The contact angles related to these two arcs, as shown in Fig. 28b, can be calculated considering the 

projection of  1l   and 2l  on the x-y plane, resulting in Eq. (128) where r  and R  represent the inner and the 

outer radius of the ring section being deformed. 

C,int
int

icR
r

α
β

⋅
=      ;     ,outC oc

out

R
R

α
β

⋅
=  (128) 

 

Accordingly, the summation of the products between the contact angles, namely intβ  and outβ , with the 

inner and outer radius of the portion of the ring undergoing the deformation, namely r  and R , returns the 

total contact length which can be multiplied by the average thickness of the ring, s , resulting in the first 

approximation of the contact area between ring and axial rolls, Eq. (129). 

( )int 2A out
sA r Rβ β= ⋅ + ⋅ ⋅  (129) 

 

The gear ratio between the contact area and the undeformed top, or bottom, surface of the ring allows 

estimating the contact time between tools and ring in the axial rolls deformation gap, as shown in Eq. (130), 

where it  is the time for the completion of the generic i-round of the process.  

2 2

2

C
A i

At t
R rπ

=
−

 
(130) 

 

However, in the ring rolling process, thickness and height of the ring vary according to parabolic laws, 

as defined in Berti and Quagliato (2015) thus, in order to properly calculate the contact area, the utilization 

of a linear function to describe their time-based behavior is too rough. In addition to that, since the values 

of thickness and height are utilized for the calculation of inner and outer radius, this consideration is also 

extended to these other two parameters. According to this statement, a better estimation for these 

geometrical data can be obtained by adopting a parabolic variation between the beginning and the end of 

the considered slice (a second order relationship is a reasonable approximation of a portion of a 

circumference), assuring the continuity of the first derivative at the transition between slices. The values of 

,med parR  and ,med parr  used in Eq. (131) are calculated considering the values of the outer, and the inner, radius 

of pairs of consecutive slices for the half of the ring exiting the axial rolls gap to the onset of the mandrel-

main roll gap, thus for the second half of the ring. 

( )2 2
, , ,2

2equiv A med par med parA R rπ 
  

= ⋅ −  (131) 
 

The factor “2” in Eq. (131) takes into account that both top and bottom surfaces of the ring are 

simultaneously in contact with both upper and lower axial rolls.  
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Based on the knowledge of the contact time and the contact area between the ring and the axial rolls for 

the considered i-round of the process, the heat exchange equations (132) presents a similar structure to that 

of Eq. (122) where the parameters relevant for the axial rolls gap contact are utilized instead.  

( ) ,
, 1

2
exp equiv A A

axial i k T

A t HTC
T T T

C Vρ−

⋅ ⋅ 
= − ⋅  

 
 (132) 

 

This last results, summarized in Eq. (132), allows calculating the temperature of the half ring exiting 

from the axial rolls gap as a consequence of the conductive heat exchange between ring and tools. Once 

again the subscript “k” is a counter of the half rounds of the process. In addition to that, the definition of 

the parameters TT , C , ρ , HTC  and V is the same detailed after Eq. (122). 

 

3.5.3 Mixed convective-radiant heat exchange model 
During the radial-axial ring rolling process, especially if it is carried out at high temperature, the ring 

thermodynamically interacts with the surrounding environment by releasing heat through convective and 

radiant heat exchange modalities. This should be accounted for if a precise estimation of the temperature 

drop is meant to be achieved. To this aim, Newton’s and radiation laws have been considered in the mixed 

convective-radiant heat exchange model, which combines both contributions in a single final equation, as 

it will be shown. 

The combined convective-radiant heat losses are considered to arise when a generic slice of the ring is 

rigidly rotating from the mandrel-main roll gap to the axial rolls gap or from the axial rolls gap to the 

mandrel-main roll gap, assuming a ring rotating clockwise. Accordingly, the model presented in this section 

of the thesis is applied two times for each round of the process. 

Considering the working environment to be largely greater than the ring, its temperature ambT  can be 

assumed to be constant, an assumption which is not far from the reality. Considering the average 

temperature of half ring coming from one of the above-mentioned two deformation gaps, namely 1,k iT − , the 

heat flow between the ring and the environment, due to convective and radiant heat exchange is estimated 

by equations (133) and (134), respectively. Both equations can be easily integrated over the total time for 

one round of the process, namely it . 

( )1,conv k i amb
conv

dQ A HTC T T
dt −= ⋅ −  (133) 

( )4 4
1,k i amb

rad

dQ A T T
dt

ε σ −= ⋅ ⋅ ⋅ −  (134) 
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Since both models considered to whole outside area of the ring, the heat transfer coefficients can be 

summed up, allowing to define one single equation which accounts for the convective and radiant heat loss 

for a considered half portion of the ring, as shown in Eq. (135). 

( ) ( )2 2
1, 1.equiv conv k i amb k i ambHTC HTC T T T Tεσ − −= + ⋅ + +  (135) 

 

Finally, the temperature of the ring after the heat loss due to convective and radiant heat exchange in the 

considered half of the generic i-round of the process can be estimated by means of Eq. (136). 

( ), ,i 1, exp equiv
C R k amb k i amb i

A HTC
T T T T t

C Vρ− −

⋅  
= + − −  

  
 (136) 

 

3.5.4 Combined utilization of the heat exchange models 
In order to better clarify the procedure through which the average temperature of the ring is estimated 

for each half round of the process, the following explanation is reported. 

At the beginning of the process, the ring is considered to have a uniform temperature ,k iT , where 

0k i= = , since the process has not started yet. Once the process has started, considering the generic slice 

at the right of the mandrel-main roll deformation gap, it will rotate from this first deformation gap to the 

axial rolls gap, namely for 180°. During this rigid rotation, the slice exchanges heat with the surrounding 

environment, thus the model presented in section 3.5.3 is utilized and a first temperature loss is estimated. 

Afterwards, the slice enters the axial rolls deformation gap and the conductive heat exchange model 

presented in section 3.5.2 is utilized to estimate the consequent heat loss. The input temperature for this 

second stage is not the original of the ring but that resulting from the previous stage, where the mixed 

convective-radiant heat exchange model was utilized. 

After this second stage, by considering as input temperature that calculated in the second stage, the 

mixed convective-radiant heat exchange model is applied once again, considering, this time, the 

temperature loss in the transit from the exit of the axial rolls gap to the onset of the mandrel-main roll gap. 

Finally, the conductive heat exchange model presented in section 3.5.1 is applied, allowing to estimate the 

final average temperature for the ring in the considered i-round of the process. 

Thanks to the recursive procedure, the average temperature of the ring for each half round of the rotation 

can be estimated. This fact allows estimating the average temperature of the material undergoing the 

deformation, which is one of the most important parameters for the calculation of the flow stress of the 

material, presented in the following paragraph of the thesis. 

These lumped heat exchange models offer an estimation of the average temperature of the ring at each 

half rotation of the ring and they neglect any distribution of temperature inside the ring, any heat flow from 
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the ring core to the outer surface of ring or circumferential heat flow from hot slices to cool slices, as well 

as any internal heating due to plastic deformation and friction, being these instantaneous phenomena limited 

to a very small portion of the ring. 

 

3.6 Analytical estimation of strain rate and material flow stress 
In the previous section 3.4 and 3.5, an analytical model for the estimation of the strain and of the 

temperature have been described and their reliability will be proven in the result section where their results 

will be compared with those of the relevant numerical simulations.  

Based on the information calculated by utilizing these two models the last parameter required for the 

analytical estimation of the flow stress of the material, namely the strain rate, can also be estimated. The 

values of the strain, for each j-slice and for each round of the process, are known based on the strain 

estimation algorithm, section 3.3, whereas the average temperature of the ring, for each half round of the 

rotation, can be calculated by means of the model presented in section 3.5.4 In addition to that, in section 

3.5.4, also the equations for the estimation of the contact time between ring and tools, for both deformation 

gaps, have been presented. Accordingly, the ratio between the equivalent plastic strain and the contact time, 

for both deformation gaps, allows calculating the strain rate in the material during the process, Eq. (137). 

In principle, also the strain rate could be estimated for each slice and for each round of the process but, 

since the temperature model estimates only one average temperature for the ring for each half round of the 

process, both strain rate and flow stress have been calculated according to this half round-based subdivision. 

,

,

,
,

eq M i
M i

M it
ε

ε =ɺ      ;     ,

,

,
,

eq A i
A i

A it
ε

ε =ɺ  (137) 
 

The contact times ,M it  and ,A it  are defined on the basis of the contact algorithm presented in previous 

sections 3.5.2 and 3.5.3, respectively, and are related to the mandrel-main roll gap and to the axial rolls, 

respectively. The combined utilization of the half round-based information of strain, strain rate, and 

temperature allows calculating the flow stress of the material, according to a chosen flow stress model.  

The research presented in this thesis has been almost all carried out on hot ring rolling process and, for 

the estimation of the flow stress of the material, the Hansel-Spittel model (Hansel 1978, Opela 2015), Eq. 

(138), has been utilized. 

( ) ( ) ( )
1 2

2 1 2 1 2
1

L T L
C T n T n m T m

fl C e e εσ ε ε
 
 
 

⋅ +
⋅ ⋅ + ⋅ += ɺ  (138) 

 

One of the main advantages of the flow stress model of Eq. (138) is given by the fact that it considered 

the reciprocal influence of strain and temperature thus its utilization allows a precise estimation of the flow 

stress of the material, especially in case of high temperature and highly-plastic deformations.  
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Fig. 29 – Flow stress update concept.  

 

For each half round of the process, the flow stress of the material is estimated according to Eq. (138) 

and the data are stored and utilized, as it will be shown in the following section of the thesis, for the 

calculation of the process forces in the two deformation gaps. The shape of the progressive calculation of 

the flow stress, for increasing rounds of the process, is shown in Fig. 29. 

For each round of the rotation, the material is considered to have a perfect plastic behavior, which allows 

directly utilizing the material flow stress for the calculation of the yield stress and of the yield shear stress, 

the last one according to the von Mises yield criterion, as shown in Fig. 30. 

 
Fig. 30 – Yield strength and yield  

 

The values shown in Fig. 30 are taken from one of the analyzed study cases but are reported only in 

terms of exemplification of how the results of the proposed algorithm look like. 

In the following, and last, section of chapter 3, the developed slip line based generalized force model is 

presented and the values of both geometry of the ring and flow stress will be utilized for the estimation of 

the process forces, both in the mandrel-main roll and in the axial rolls deformation gap. 
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Both the lumped heat transfer model as well as the analytical estimation of the flow stress of the material 

are contained in Quagliato (2017). 

 

3.7 Generalized slip line-based force model 
The estimation of the process forces in the ring rolling process has always been one of the most important 

topics researched by investigators, mainly due to its high importance in the industry. For this reason, as 

summarized in the literature survey section, several authors focused on the development of analytical 

models for the prediction of the process forces according to a chosen set of process parameters. However, 

as also previously highlighted, the developed models either show an intrinsic unreliability due to too strict 

or not realistic assumptions or have proven to be accurate only on specific ranges of ring dimensions. 

For these reasons, a new force model based on the slip line theory has been developed and, thanks to a 

generalized contact geometry algorithm, which can be adapted both to the mandrel-main roll gap and to the 

axial rolls gap, the proposed approach can be utilized for the estimation of both process forces only by 

changing the geometrical inputs and the relevant boundary conditions. 

In this last section of chapter 3, both the mathematical background of the slip line method and the 

recursive algorithm through which to construct the slip line field will be presented, aiming to give a full 

perspective of the developed approach. 

 

3.7.1 Introduction to the method 
In a state of plane strain, slip lines are defined as the directions of maximum shear strain rate or, in other 

words, the direction along which the material plastically flows during the deformations, Hill (1950). 

Starting from the definition of the boundary conditions on specific points where the stress field is known, 

the pressure distribution can be calculated on the overall slip line field, allowing to derive the relevant 

pressure distribution. On the basis of the pressure distribution, also the process force can be calculated. 

The theory of the slip lines is based on two main assumptions, namely the consideration of a perfect 

plastic material and of a state of plane strain, those are normally not the case of the ring rolling process. 

However, both issues can be resolved by taking into account for the following considerations. First of 

all, although the plane strain assumption has shown not to be fulfilled in the ring rolling process, ref. section 

3.4, the consideration of a plane strain condition only for the estimation of the process forces does not 

introduce a large error in the calculation. In fact, in the developed algorithm, the calculation of the flow 

stress is based on the estimation of the equivalent plastic strain, which in turn is estimated on the basis of a 

3D strain tensor. This fact allows accounting for the 3D nature of the strain, by means of the estimation of 

the flow stress, while it allows fulfilling the assumption of the slip line method. In the proposed slip line-
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based model, the slip line field will be constructed on a 2D plane, considering the main plastic deformation 

to occur along the movement direction of the tools, namely mandrel and upper axial roll, with a deformation 

field expanding along to circumferential direction of the ring. 

Concerning the second assumption of the slip line method, the consideration of a perfect plastic material 

is an assumption already introduced in the approach, as highlighted in the previous section of the thesis. In 

fact, the proposed approach considers the material to have a perfect plastic behavior, whose yield stress 

value is updated on a half round basis. 

On the basis of these considerations, the utilization of the slip line method for the estimation of the 

process forces in the ring rolling process seems to be consistent and, as it will be shown in the result section, 

the application of the proposed approach allows estimating both radial and axial forming force with a 

limited and reasonable error in comparison to both experimental and numerical results. 

 

3.7.2 Slip line method theoretical background 
Considering a generic portion of the plastically deformed material, as shown in Fig. 31a, it will be 

bounded by two pairs of slip lines, those always cross themselves with an / 2π  angle. The 

counterclockwise angle between the tangent to the α-line, in a considered point of the network, and the x-

axis is defined as ϑ . For a generic portion of material enclosed by two-pairs of slip lines, Fig. 31a, the 

relevant Mohr circle, under plane strain conditions, is defined as in Fig. 31b and, accordingly, the two stress 

and the shear stress components can be written as in Eq. (139)-(141), where σ , k  and 2ϑ  represent the 

hydrostatic pressure, the yield shear strength of the material and the angle between the stress vector and the 

pure shear direction in the Mohr plane, respectively. 

 
Fig. 31 – (a) Generic portion of material enclosed in a slip line network and (b) relevant Mohr circle. 

 

sin 2x kσ σ ϑ= − −  (139) 
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sin 2y kσ σ ϑ= − +  (140) 

cos 2xy kτ ϑ=  (141) 
 

In case of plane strain condition, the von Mises yield criterion is reduced to the form shown in Eq. (142) 

where Y  represents the yield stress of the material under uniaxial tension.  

( )2 2 21
43 x xy xy

Y kσ σ τ= − + =  (142) 
 

By neglecting the contribution of the internal forces, the differential equilibrium equation is reduced to 

, 0i jσ∇ = . Considering the two directions on the slip line plane, namely x- and y-direction, it results in 

equilibrium Eqs. (143) and (144). 

0xyx

x y
τσ ∂∂

+ =
∂ ∂

 (143) 

0y xy

y x
σ τ∂ ∂

+ =
∂ ∂

 (144) 
 

In addition to that, by neglecting the elastic contribution to the deformation, the volume constancy 

principle defined in terms of infinitesimal displacements is defined according to (145), where xu  represents 

the infinitesimal displacement along the x-direction whereas yu  that along the y-direction. 

0yx uu
x y

∂∂
+ =

∂ ∂
 (145) 

 

From the equilibrium equations (144), it can be immediately verified that in case the stress components 

along the x-direction and the y-direction are equal, their first-order partial derivate, along with their relevant 

directions, x-direction for xσ  and y-direction for yσ , are both equal to zero. Substituting the stress state 

equations (139)-(141) into / / 0x yx yσ σ∂ ∂ = ∂ ∂ =  and considering the direction where the tangent of the α-

line and the β-line coincide with x- and y-axis, namely 0ϑ = , it is possible to define a relationship between 

the variation of the hydrostatic pressure, namely σ ,  and the angle of the stress vector in the Mohr plane, 

namely ϑ , as in (146), for the α-line, and in (147), for the β-line. 

0    2 0x k
x x x
σ σ ϑ∂ ∂ ∂

= ⇒ + =
∂ ∂ ∂

 (146) 

0    2 0y k
y y y
σ σ ϑ∂ ∂ ∂

= ⇒ − =
∂ ∂ ∂

 (147) 
 

Integrating Eqs. (146) and (147) the so-called Hencky’s equations are derived, Eqs. (148) and (149), 

defining the equilibrium equations on the slip line network. The meaning of the Hencky’s equations and 
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that of previous equilibrium equation (143) and (144) are equal, but the first ones are defined for the slip 

line network whereas the second one for the whole plastically deformed material. 

2 constant on an -linekσ ϑ α− =  (148) 

2 constant on an -linekσ ϑ β+ =  (149) 
 

As previously anticipated, once the stress state is fully known at one point of the slip line field domain, 

by means of the Hencky’s equations (148) and (149), it can be calculated on the overall slip line field, 

allowing to define the state of stress in the plastically deformed region of the material. 

 

3.7.3 Slip line field construction algorithm 

As shown in previous Fig. 7, the deformation pattern of a generic cross-section of the ring when it passes 

either through the mandrel-main roll gap or through the axial rolls gap is, in principle, very similar and 

characterized by a curvilinear contact arc on both sides. Even though the sizes of the rolls are different, by 

changing the geometrical boundary conditions on the contact zone a generalized and unique algorithm for 

the construction of the slip line field can be utilized. The developed algorithm, presented in this section, is 

an improvement of the original one defined by Hill (1950) for the case of a flat punch indenting on a flat 

surface, Fig. 10, and summarized in previous section 2.1.3. 

For a more clear understanding of the steps by which the slip line field is constructed, the representation 

of a slip line field similar to the field resulting from the algorithm described in this section of the thesis is 

shown in Fig. 32. 

 
Fig. 32 – Generic representation of a slip line field with a curvilinear contact boundary (AB curve). 
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As generally recognized in the literature dealing with the construction of slip line field, among them 

Alexander (1955), Collins (1969) and Dewhurst (1973), the stress field solution inside the region of material 

ABC, the so-called dead metal zone is not known and this material rigidly rotates from the onset to the exit 

of the deformation. However, the solution can be calculated on the AC and BC lines on the basis of the 

boundary conditions on A and B. The boundary conditions on A and B should be defined in terms of 

hydrostatic pressure σ  and inclination of the stress vector with the respect the 1-direction in the Mohr 

plane, namely ϑ . 

For the creation of the dead metal zone region ABC the geometrical boundary conditions on the point 

A and B, as well as their state of stress should be accounted for. Concerning the geometrical conditions, the 

inclination of the onset contact point A, with respect to the x-direction, which is also the reference direction 

for the calculation of the angle ϑ , is affected by the reciprocal size of tool and workpiece, as shown in Fig. 

33.  

 
Fig. 33 – Initial construction of the slip line field, the dead metal zone. 

 

The angle 1β  is influenced by the size of the roll acting on the workpiece as well as by the draft, either 

thickness or height draft, operated on the material. This higher the draft or the greater the diameter of the 

roll the greater the angle 1β . According to this geometrical boundary condition, the slip line starting from 

the point A will have an inclination of 1 ,1Aβ ϑ+ , the first one based on the above-mentioned geometrical 

boundary condition whereas the second one based on the stress boundary conditions. 

For the point B, located at the exit of the deformation gap, since it is aligned with the center of the rolls, 

see Fig. 26, no β  angle is defined and the inclination of the slip line starting from this point, ,1Bϑ , only 

depends on the stress boundary conditions.  
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In order to create the triangular-like region ABC, the α-line starting from A and the β-line from B have 

to intersect themselves in the point C forming an / 2π  angle. For this reason, each one of them can be 

considered as an arc of circumference starting at point A, for the α-line, and in B for β-line. The radii of 

these arcs are orthogonal to the line inclined, in their relevant starting point, at an j, i iβ ϑ+  angle, therefore 

the line where the center of arc iO  lays is determined. The subscript “i” refers to the counter for the lines 

starting from one point of the slip line domain, namely i=1…n, whereas “j” stands for the point name 

counter, namely j=A or B. 

The radii of these arcs, R1 and R2 in Fig. 33, are unknown but they can be related to the slip lines angles 

,1Aϑ  and ,1Bϑ  by an inverse proportionally, the wider the angle the smaller the relevant radius.  

In the point C, these two arcs form a π/2 angle, which means that the triangle 1 2O O C  is rectangular in 

1 2O CO , with the two cathetouses having lengths equal to 1R  and 2R . In order to trace these two arcs, their 

relevant centers, namely 1O  and 2O , have to be determined considering that, by construction, 

22 2
1 2 1 2R R OO+ = , and that, the following correlation is considered between radii and inclination angles, 

namely ,1 1 12 ,/ /B AR R ϑ ϑ= . The coordinates of the two centers, 1O  and 2O , can be defined based on the 

coordinates of A and B and on the iβ  and j,iϑ  angles, as shown in Eqs. (150) and (151), respectively, 

where ,1  0Bϑ <  angle. 

( )
( )

1 ,1
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1
1

11 1
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: cos
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ϑ

ϑ
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 (150) 
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x B R
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ϑ

ϑ

 − =  
−  

 (151) 

 

One important consideration concerning the initial inclination of the slip line starting from A is related 

to the friction, which can be accounted for in terms of friction angle and which influences the stress 

boundary conditions on A.  

Since no forces are applied on the left of point A along x-direction, point A belongs to a free edge, it 

results in that _ ,y_ 0x A x Aσ τ= = . Substituting this result in (139) and (141), the first α-line, starting from 

A, will have an inclination angle, due to the stress boundary conditions, equal to / 4Aϑ π= , which results 

in A kσ = . Substituting this last result into (140) the initial stress boundary conditions on A are determined, 

with _ ,y_ 0x A x Aσ τ= =  and y_ 2A kσ = . In addition to that, in A, also the contribution of the 1β  angle 

should be added as well as the friction angle, calculated according to a chosen friction criterion. In 
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conclusion, the inclination of the α-line starting from A is the summation of three contributions: ,1Aϑ  

calculated according to the stress boundary conditions, 1β  resulting from the geometrical boundary 

conditions and mβ  accounting for the friction effect. This summation of contributions is clearly visible in 

Eq. (150). On the point B, only the boundary conditions related to the stress state are present and allow 

calculating similar results to those derived for the point A. 

Considering the x-y coordinates of the points A and B, defined as ( , )x yA A  and ( , )x yB B  respectively, 

and the above-mentioned boundary conditions for the points A and B, the only unknown quantities of the 

equations systems (150) and (151) are the two radii of the arc of circumference, namely 1R  and 2R . By 

making explicit these two variables, following equation system (152) is defined. Being a second-order 

polynomial equation, only the solution which satisfies 1 2 1 2+ >R R O O  should be considered since the other 

one does not have physical meaning. The parameters P, Q, M and N in (152) are defined as reported in 

(153). 

( ) ( )( ) ( )
2 2 2 2 2

2 2 2

1
,1

,
2

1

12 2 2 2 4
2
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ϑ
ϑ
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 In C, the triangular shape formed by 1R  2R  and 1 2O O  has the configuration shown in Fig. 34 thus, once 

the coordinates of the two centers 1O  and 2O  are known, also origϕ  can be calculated as in Eq. (154).  

1, 2,

1, 2,

arctan y y
orig

x x

O O
O O

ϕ
 −

=   − 
 (154) 

 

Finally, considering the geometrical relations between 1O , 2O  and C  the remaining inner angle of the 

rectangular triangle 1 2
ˆO CO  is immediately estimated (155) and, accordingly the coordinate of the point C 

are estimated as well (156). 

2
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2 1
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O O

δ
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 (155) 
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Fig. 34 – Geometrical construction of the point C, end of the dead metal zone. 
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According to the derivation presented so far, the dead metal zone can be constructed according to the 

stress, geometrical and friction boundary conditions on the onset and at the exit points of the contact curve 

between ring and tools. According to this solution, the procedure how to build the remaining portions of 

the slip line field is hereafter detailed. 

The regions of the left and on the right of the dead metal zones are defined as fans and, for the 

construction of these two portions of the slip line domain, an additional consideration regarding the 

hydrostatic pressure σ  should be given. In the case of compressive deformation of materials, the boundary 

of the slip line network is defined as the border, in the plain strain-section of the ring, where the hydrostatic 

pressure becomes zero and afterward positive. Although the mathematical solution, according to the 

governing equation, can be calculated, it does not have physical meaning, since the material is undergoing 

a compression deformation thus no tension stresses should arise. The width of the two regions on the left 

and on the right of the ABC dead metal zone depends on the pressure boundary conditions between tool 

and workpiece which are not known a priori.  

For this reason, the developed algorithm is designed in order to determine the increment of the ϑ  angle 

that makes the relevant hydrostatic pressure to become zero and, accordingly, to subdivide into equi-spaced 

sub-sectors the so-determined portion of the domain, allowing to construct the two fans with a chosen 

discretization angle. By definition, each slip line of the domain must satisfy the Hencky’s equation (148) 

(for a α-line) or equation (149) (for a β-line), namely meaning that the sum, with a sign, of hydrostatic 

pressure and the 2kϑ  factor is constant along a slip line.  
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Considering the β-line exiting from point C and reaching a generic point D where the hydrostatic 

pressure vanished ( 0Dσ = ), Fig. 35, this point represents the boundary between compression and tension 

stress solutions and only compressive solutions are considered to be physically acceptable. 

Using Eq. (149) for point C and point D, the absolute angle in point D is determined as in (157), limiting 

the extension of the left fan.  

2
C

D C k
σϑ ϑ= +  (157) 

 

The same rationale is applied to determine the extension of the right fan by considering the condition 

which makes 0Eσ = . By utilizing Eq. (148) from point C to E the absolute angular extension of the right 

fan is determined according to (158). 

2
C

E C k
σϑ ϑ= −  (158) 

 
Fig. 35 – Geometrical construction of the fan regions. 

 

In order to improve the accuracy of the calculation, a definable number of intermediate subdivisions for 

both left and right fans are operated, resulting in intermediate angles 1ϑ∆  for the left fan and 2ϑ∆  for the 

right fan. The number of subdivision is a choice made at the beginning of the calculation but, as also stated 

in Hill (1950), a 5° discretization angle allows a proper calculation of the results while it allows reducing 

the complexity of the calculation. 

1 2     ;     D C E C

nsubdiv nsubdiv
ϑ ϑ ϑ ϑϑ ϑ− −

∆ = ∆ =  (159) 
 

The slip line network, for each fan, is represented by arcs centered in fan center (point A for left fan, 

point B for right fan) whose shape is obtained by rigid rotation around the fan center of an incremental 

angle calculated as in (159), for the left fan and for the right fan, respectively, as shown in Fig. 35. 
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The coordinates of the crossing points between α-lines and β-lines, moving from C to D (or from C to 

E), are determined as the final point of the vector ˆ
AL  (or ˆ

BL ) from the center of the fan to point C, rotated 

around the center of the fan by the incremental angle calculated in (159).  

Based on the Hencky’s equations (148) and (149), also the ϑ  angle and the hydrostatic pressure σ , for 

all the points on the β-line from C to D and on the α-line from C to E, can be calculated. The set of equations 

for the left fan, related to the β-line passing through BCD, is given in (160) whereas that for the right fan, 

related to the α-line passing through ACE, are reported in (161).  

In (160) and (161), the subscript “j” stands for the point counter and starts from j=0 in the point C to j=n 

in the point D and to j=-n to the point E. Finally, CDλ  and CEλ , define the angle between the  ˆ
AL  and ˆ

BL  

vectors with respect to the horizontal axis.  
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At this point of the algorithm, the dead metal zone and the two fans on its left and right have been 

constructed. In addition to that, on the basis of the initial boundary conditions on A and B, both hydrostatic 

pressure and theta angle can be calculated all over the domain constructed so far.  

The final part of the algorithm deals with the construction of the last portion of the slip line network, 

whose last point F, see Fig. 32, represents the end of the plastically deformed region of the material. To 

build this last portion of the network, the starting points are the two curvilinear line CD and CE and their 

relevant solutions, in terms of σ  and ϑ . 

One important theorem related to the Hencky’s equations (148) and (149) concerns with the relationship 

between the ϑ  of two pairs of crossing slip lines, as shown in Fig. 36. 
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Fig. 36 – General quadrilateral element bounded by two pairs of slip lines.  

 

By applying the Hencky’s equations (148) and (149) to a generic quadrilateral element bounded by two 

pairs of slip lines, as shown in Fig. 36, it is possible to determine the relationship between the hydrostatic 

pressure on these four points, (162) and (163), as well as that between the relevant ϑ  angles, as shown in 

Eq. (164). 

( ) ( ) ( ), , ,0,0 ,0 ,0 0,0 ,0 0,02 2i j i j i ji i ikσ σ σ σ σ σ ϑ ϑ ϑ− = − + − = − −  (162) 

( ) ( ) ( ), , ,0,0 0, 0, 0,0 0,0 0,2 2i j i j i jj j jkσ σ σ σ σ σ ϑ ϑ ϑ− = − + − = + −  (163) 

, ,0 0,0 0,i j i jϑ ϑ ϑ ϑ= − +  (164) 
 

If the ϑ  angle is known for three out of four points on two pairs of slip lines enclosing a portion of 

material, for instance, point (0,0), (i,0) and (0,j), that of point (i,j) can be calculate according to (164) as 

well as the radii, to trace the relevant α-line from i,0 and the β-line from 0,j, are determined according to 

Eqs. (165). In (165), ,i jRα−  and ,i jRβ −  represents the radii of the arcs, starting from i,0 and from 0,j, whose 

intersection allows determining point i,j.  
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     ;     
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, 0,

1
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ϑ ϑ
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 (165) 

 

The coordinates of the generic point i,j of the domain are calculated starting from those of the neighbor 

ones, as shown in Eq. (166), resulting in the slip line network for the last portion of the slip line field, as 

shown in Fig. 37. 
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The last point of the slip line network is the point F where the original two lines, namely the α-line and 

the β-line, degenerate in a single point which is also the end of the plastically deformed region of the 

material. By changing the boundary conditions on A and B, as a consequence of a higher or lower draft 

along the depth of the workpiece, which is valid both in the case of thickness or height draft, the endpoint 

F as well as the angular width of the fans will change accordingly. 

The algorithm detailed in this section of the paper has been implemented in an MS Excel spreadsheet 

which allows a fast calculation of the stress boundary conditions those allow the two slip line fields, starting 

from opposite tools (rolls), to intersect each other at one point. 

 
Fig. 37 – Geometrical construction of the end-region of the slip line network. 

 

3.7.4 Calculation of the solution for the slip line field 
The developed algorithm is finalized to estimate the values of pressure boundary conditions on the point 

A and B or A’ and B’, those make the two slip line fields, starting from these two contact curves, to join in 

one point, Fig. 38. 

The ratio between the stress boundary conditions those make the two slip line fields to join at one point 

and those required to start the indentation, namely 2k , is defined as pressure factor and indicated with the 
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symbol γ . k  stands for the yield shear stress of the material under plane strain conditions and is a 

parameter analytically estimated by utilizing the model presented in previous section 3.6. 

 

 
Fig. 38 – Ring deformation pattern in the (a) mandrel-main roll and (b) axial rolls deformation gap. 

 

As shown in Fig. 39, for increasing values of the boundary conditions on A and B, set equal to those on 

A’ and B’ in force of force equilibrium along the y-direction, the two slip line fields expand both in width 

and depth to the point they intersect themselves, Fig. 39d. 

 
Fig. 39 – Incremental variation of the pressure factor and relevant expansion of the plastic field in the 

cross-section of the ring. 
 

The value of the pressure factor γ  or, in other words, of boundary conditions of A and B, which make 

the two slip line fields to intersect in one point is considered to be the statically determined solution for the 

analyzed case. The meaning of “statically determined solution” is referred to the fact that, in the proposed 

algorithm, no explicit verification of the admissible velocity field is carried out thus the calculation is based 

only on the determination of the stress field in the material in the plastically deformed region. 
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The algorithm presented in this section can be applied to each slice of the ring and for each round of the 

process, allowing a full mapping of the evolution of the process forces during the process. In addition to 

that, thanks to the generalized approach through which the boundary between tools and ring, namely AB 

and A’B’ curves, have been defined, it can be utilized for the estimation of both radial and axial forming 

forces. The generalized force model, expressed in terms of parameters for the calculation of the radial and 

the axial forming forces is reported in following Eqs. (167) and (168), respectively. 

,2rad C radF k sLγ=  (167) 

,2axi C axiF k hLγ=  (168) 
 

The values of ,C radL  and ,C axiL  are estimated by utilizing previous Eq. (115) for the first one and the 

average of the two values reported in Eq. (127) for the second one, respectively. The remaining parameters, 

namely s  and h , are the average thickness and height of a specific slice in the considered round of the 

process. 
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Chapter 4: Numerical analysis implementation 
For the verification of the developed algorithms, numerical simulations have been carried out and have 

been utilized as reference especially for the cases where the laboratory experiment were not feasible, such 

as in the case of the strain estimation model or of the temperature model. The numerical models have been 

all carried out by utilizing the commercial software Simufact.Forming, from the release 12.03 to the release 

14.0. One of the main advantages of Simufact.Forming is related to its well-implemented ring rolling 

simulation module, which allows a quick and precise setting of the ring rolling process. In addition to that, 

differently from other commercial software those implement the same kind of module, specific process 

stabilizer can be completely disabled making the numerical simulation to represent very well the reality of 

the process. A concept of the developed numerical model is shown in Fig. 40. 

All the models have been meshed with hexahedral elements having the following dimensions: 16 mm 

(axial), 14 mm (radial) and 16 mm (tangential) and the mesh details are hereafter reported. 

The mesh elements are three-dimensional arbitrarily distorted brick, a hexahedral eight-node 

isoparametric arbitrary element (Marc element type 7) associated with a 3D eight-node brick (heat transfer 

element) defined as an eight-node isoparametric arbitrary hexahedral element for 3D heat transfer 

applications (Marc element type 43). The element type 7 presents three degrees of freedom for each one of 

its nodes whereas the type 43 only one. Both elements use Gaussian integration for the computation of the 

results between their boundary points. By selecting the option “geometry” for the element type 7, it is 

possible to impose a constant dilatation strain to the element. This means that the eight points utilized for 

the Gaussian integration are used for the calculation of the deviatoric contribution of the strain whereas the 

centroid for the dilatation contribution. This option allows significantly improving the bending behavior of 

the element and helps to avoid the volumetric locking. In addition to that, element type 7 is particularly 

suitable for simulations where the contact is the predominant issue, such as in the case of ring-tools contact 
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in ring rolling. Marc element type 43 shares the same geometrical and integration features of element 

type 7, but it is dedicated to the heat transfer calculation during the process.  

 
Fig. 40 – Numerical implementation of the radial-axial ring rolling process in Simufact.Forming. 

 

All implemented numerical simulations are full thermo-mechanical explicit FE analysis, carried out 

considering rigid dies with heat exchange. The utilized solver for the simulation is the 

MUltifrontal Massively Parallel sparse direct Solver (MUMPS), especially indicated for solving systems 

of linear equations of the form A*x = b, where A is a square sparse matrix that can be either asymmetric, 

symmetric positive definite, or general symmetric. MUMPS implements a direct method based on a 

multifrontal approach, which performs a Gaussian factorization. The kinematics of deformation is 

formulated according to the updated Lagrangian algorithm where the reference configuration is set at the 

incremental motion n+1. True (or Cauchy) stress and an energetically conjugate strain measure, namely the 

true strain, are used in the constitutive relationship. The updated Lagrangian approach is particularly 

indicated in case of large deformation, so it fits the ring rolling process. 

During the contact process, a contact tolerance is associated with each surface. If a node is within the 

contact tolerance, it is considered to be in contact with the segment. The contact tolerance is determined as 

1/20 of the smallest element size of all elements in any contact body. For a continuum element, the element 

size is defined as the smallest edge of the surrounding box (3D), set up in the global coordinate system and 
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a node separates from a body when the stress exceeds 20 MPa. Contact affects the friction and in order to 

overcome the discontinuity of friction when relative velocity is zero, a nonlinear arctangent smoothing 

function, based on the relative sliding velocity between contact bodies, was defined adopting a threshold of 

0.001 mm/s for the relative velocity below which sticking is simulated. Concerning the convergence criteria, 

the control is performed on two different levels: i) the maximum allowed residual convergence ratio 

between two consecutive steps, for the nodal displacement calculation, is set to 0.25 whereas ii) it is set to 

0.35 for the nodal force. 

 

4.1 Material model 
In order to limit the influencing factors in the validation process of the developed analytical models, a 

steel normally utilized for the manufacturing of rings by means of ring rolling process has been utilized in 

most of the study cases, namely the 42CrMo4 steel alloy. The material data have been acquired from the 

material library available in Simufact.Forming, directly originated from the MATILDA® (Material 

Information Link and Database Service) archive. The material properties for the 42CrMo4 steel alloy are 

hereafter reported in terms of flow stress equation (169) and thermal properties in Fig. 41a, 41b, and 41c.  

In following Table 1, the model ranges and coefficients for the flow stress equation (169) are reported. 

( ) ( ) ( )
1 2

2 1 2 1 2
1

L T L
C T n T n m T mC e e εσ ε ε

 
 
 
 

⋅ +
⋅ ⋅ + ⋅ += ɺ  (169) 

 

  
Figure 41a - Young's modulus. Figure 41b - Thermal conductivity. 

 
Figure 41c - Specific heat capacity. 
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Table 1 – 42CrMo4 alloy material model ranges and constants 

Parameters Value 
Temperature range for the model [°C] 800–1250 
Strain range for the model [–] 0.05–2 
Strain rate range for the model [1/s] 0.01–150 
C1 5290.47 
C2 –0.0036967 
n1 –0.000334025 
n2 0.20612 
L1 –8.26584e-5 
L2 0.0289085 
m1 0.000300752 
m2 –0.156181 

 

For the numerical simulations related to the laboratory experiments carried out with the Pb75-Sn25 soft 

alloy the relevant material properties, characterized by means of a compression test, have been utilized. The 

material characterization, as well as the resulting material properties, are presented in chapter 5 of the thesis. 

 

4.2 Ring rolling mill and process boundary conditions  
Following the same rationale of limiting the influencing factors in the validation procedure of the 

developed analytical models, also the dimensions of the ring rolling mill and the process boundary 

conditions have been set same for almost all the analyzed study cases, with the only exception of those 

related to laboratory experiments. In these last cases, the dimensions of the ring rolling mill utilized for the 

experiments have been utilized also in the numerical simulations and are summarized in the following 

chapter of the thesis. The dimensions of the ring rolling mill and the process boundary conditions utilized 

for the study cases used for the validation of the analytical models are reported in Table 2. 

Table 2 – Ring rolling mill dimensions. 

Parameters Value 
Radius of the main roll [mm] 325.0 
Radius of the mandrel [mm] 125.0 
Length of the axial rolls [mm] 595.9 
Axial roll vertex angle [°] 35.0 
Radius of the centering rolls  [mm] 150 

 

Concerning the process conditions, common for all the validation simulations study cases, they are 

reported in following Table 3.  

The choice of setting the main roll rotational speed to 3 rad/s is given by the fact that this value which 

falls in the admissible velocity range, calculated according to Eq. (8), for all the validation study cases and 

is also a reasonable value in standard ring rolling processes. 
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Table 3 – Process general settings and boundary conditions. 

Parameters Value 
Main roll rotational speed [rad/s] 3.0 
Friction coefficient 0.3 
Temperature of the environment [°C] 50 
Ring initial temperature [°C] 1200 
Tool temperature [°C] 150 
Emissivity [-] 0.25 
Heat transfer coefficient (conduction) [W/m2K] 20000 
Heat transfer coefficient (convection) [W/m2K] 50 

 

In all the numerical simulation study cases the number of variables has been kept as lower as possible 

in order to verify the influence of the variation of the most important process parameters, namely the 

mandrel and the upper axial roll feeding speed, on the accuracy of the different developed models, those 

are also the main process design choices which largely influence the process forces. 

 

4.3 Validation study cases 
The numerical simulation study cases carried out for the validation of the developed analytical models 

are presented in the present thesis as they have been summarized in the published papers concerning the 

above-mentioned topics.  

Concerning the geometry estimation algorithm, presented in Berti and Quagliato (2015), the six study 

cases reported in Table 4, with rings ranging from 810 mm to 1800 mm as final outer diameter, have been 

taken into account. In Table 5, the process conditions for all the six simulation study cases are reported. 

Table 4 – Geometry evolution algorithm validation cases. 

 Ring1G Ring2G Ring3G Ring4G Ring5G Ring6G 
D0 [mm] 552.9 660.5 607.8 698.1 1345.1 1041.9 
d0 [mm] 325.0 325.0 325.0 325.0 500.0 500.0 
h0 [mm] 143.6 110.5 233.2 149.3 469.7 231.7 
Df [mm] 809.6 810.0 1100.0 1100.0 2190.0 2180 
df [mm] 645.0 500.0 950.0 800.0 1635.0 1800.0 
hf [mm] 120.0 90.0 200.0 100.0 345.0 128.0 

 

Table 5 – Geometry evolution algorithm validation cases process parameters. 

 Ring1G Ring2G Ring3G Ring4G Ring5G Ring6G 
vM,0 [mm/s] 2.50 2.00 7.50 2.50 5.00 3.00 
vM,F [mm/s] 2.00 1.50 5.00 2.00 2.00 1.50 
vA,0 [mm/s] 1.98 3.04 4.55 3.12 4.50 3.51 
vA,F [mm/s] 1.37 2.58 1.88 3.00 1.64 2.23 
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For all the study cases reported in Table 4 the material 42CrMo4 along with the material model presented 

in section 4.1, have been utilized. According to the process setting algorithm detailed in section 3.1 of the 

paper, the ring blank dimensions shown in Table 4 have been calculated according to the final dimensions 

of the ring as well as the process parameters reported in Table 5 have been calculated following the 

procedure detailed in section 3.2. The results of the developed numerical model, for the six analyzed study 

cases, both in comparison with the results of the developed numerical model presented in section 3.3 as 

well as with the previous model available in the literature, namely Guo (2011), are discussed in chapter 6 

of the thesis. 

Concerning the validation of the strain estimation algorithm, previously presented in section 3.4, the 

validation has been carried out by applying the developed model to rings having all the same final outer 

diameter equal to 1400 mm but with different ratios between final height and final thickness. The simulation 

study cases are those also shown in Quagliato (2016). The rationale behind the choice of this validation 

strategy is given by the fact that the strains in the ring are not largely influenced by the dimensions of the 

ring but by the initial and final distribution of the material in the cross-section of the ring itself. In addition 

to that, ranging between a relatively thin ring, hF/sF = 3, to a relatively thick ring, hF/sF = 0.7, the accuracy 

of the model in predicting predominant radial strain or predominant vertical strain conditions could be 

analyzed. The initial and final dimensions for the ring as well as the ratio between final height and final 

thickness are reported in Table 6, whereas the relevant process parameters in Table 7. 

Table 6 – Strain estimation algorithm validation cases. 

 Ring1S Ring2S Ring3S Ring4S 
d0 [mm] 600.00 600.00 600.00 600.00 
D0 [mm] 821.74 876.15 917.87 986.57 
s0 [mm] 110.87 138.08 158.94 193.28 
h0 [mm] 214.69 208.24 158.93 152.84 
dF [mm] 1270.00 1220.00 1130 1070.00 
DF [mm] 1400.00 1400.00 1400.00 1400.00 
sF [mm] 65.00 90.00 135.00 165.00 
hF [mm] 195.00 180.00 135.00 115.00 
hF/ sF [–] 3.00 2.00 1.00 0.70 

  

Table 7 – Strain estimation algorithm validation cases process parameters. 

 Ring1S Ring2S Ring3S Ring4S 
vM,0 [mm/s] 6.00 5.50 4.50 5.00 
vM,F [mm/s] 3.90 3.50 3.00 3.00 
vA,0 [mm/s] 3.10 3.65 4.50 6.32 
vA,F [mm/s] 1.30 1.75 3.00 4.30 
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Since no previous literature models where available, the validation of the strain estimation model has 

been carried out by comparing the analytical prediction with the results of the relevant numerical simulation, 

for the study cases reported in Table 6. 

In relation to the validation of the temperature model, being the heat transfer largely influenced by the 

size of the ring, in terms of its mass, a larger amount of simulation study cases have been carried out. The 

considered study cases range between 650 mm to 2400 mm for the final outer diameter of the ring and, for 

each of the considered final outer diameters, three different study cases with the ratio between the final 

height and the final thickness equal to 3, 2 and 1 have been considered, for a total of 30 cases. The simulation 

study cases are those summarized in Quagliato (2017). 

Table 8 – Temperature model validation cases ring geometries and process parameters. 

 Ring blank dimensions Final ring dimensions Mandrel feeding 
speed 

Ring 
Case 

 
fG

 

Outer 
diam. 
[mm] 

Inner 
diam. 
[mm] 

Height 
[mm] 

Outer 
diam. 
[mm] 

Inner 
diam. 
[mm] 

Height 
[mm] 

Initial 
speed 

[mm/s] 

Final 
speed 

[mm/s] 
Ring1T 3.0 575.25 325.00 218.75 1100.00 975.00 190.00 7.2 5.0 
Ring2T 2.0 621.60 325.00 209.00 1100.00 930.00 170.00 6.5 4.5 
Ring3T 1.0 668.70 325.00 171.80 1100.00 855.00 122.50 5.8 4.5 
Ring4T 3.0 518.85 325.00 195.43 800.00 680.00 180.00 7.7 6.6 
Ring5T 2.0 550.92 325.00 175.44 800.00 645.00 155.00 7.5 5.0 
Ring6T 1.0 574.51 325.00 124.76 800.00 600.00 100.00 6.0 4.5 
Ring7T 3.0 821.74 600.00 214.69 1400.00 1270.00 195.00 6.0 3.9 
Ring8T 2.0 876.15 600.00 208.24 1400.00 1220.00 180.00 5.5 3.5 
Ring9T 1.0 917.87 600.00 158.93 1400.00 1130.00 135.00 4.5 3.0 
Ring10T 3.0 544.04 325.00 201.98 950.00 830.00 180.00 6.7 4.6 
Ring11T 2.0 589.95 325.00 194.85 950.00 785.00 165.00 6.0 4.5 
Ring12T 1.0 650.19 325.00 162.60 950.00 700.00 125.00 6.0 4.5 
Ring13T 3.0 837.80 600.00 207.21 1700.00 1580.00 180.00 6.0 3.0 
Ring14T 2.0 897.70 600.00 209.36 1700.00 1530.00 170.00 5.5 3.0 
Ring15T 1.0 943.41 600.00 171.71 1700.00 1460.00 120.00 4.7 3.0 
Ring16T 3.0 490.53 325.00 188.81 650.00 530.00 180.00 7.0 5.0 
Ring17T 2.0 510.93 325.00 156.24 650.00 505.00 145.00 7.0 5.0 
Ring18T 1.0 549.33 325.00 112.17 650.00 450.00 100.00 6.0 4.5 
Ring19T 3.0 682.81 450.00 213.88 1250.00 1125.00 190.00 6.5 4.0 
Ring20T 2.0 730.52 450.00 203.34 1250.00 1080.00 170.00 6.5 4.0 
Ring21T 1.0 809.30 450.00 179.65 1250.00 980.00 135.00 5.7 4.0 
Ring22T 3.0 875.65 600.00 226.25 2000.00 1875.00 190.00 5.5 2.7 
Ring23T 2.0 944.45 600.00 232.41 2000.00 1820.00 180.00 5.5 2.7 
Ring24T 1.0 1049.33 600.00 224.67 2000.00 1700.00 150.00 4.7 2.7 
Ring25T 3.0 908.68 600.00 243.72 2200.00 2067.00 200.00 5.5 2.3 
Ring26T 2.0 947.15 600.00 227.61 2200.00 2030.00 170.00 5.3 2.3 
Ring27T 1.0 1070.05 600.00 235.03 2200.00 1900.00 150.00 4.5 2.3 
Ring28T 3.0 910.07 600.00 237.13 2400.00 2275.00 190.00 5.5 2.3 
Ring29T 2.0 964.80 600.00 234.40 2400.00 2230.00 170.00 5.3 2.3 
Ring30T 1.0 1089.59 600.00 244.79 2400.00 2100.00 150.00 4.4 2.3 
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In Table 8, the values in the second column represent the ratio between the final height and the final 

thickness of the ring, defined by the symbol fG . 

Additionally, in Quagliato (2017), the slip line model developed by Hill (1950) for a case of a flat punch 

acting on a flat surface has been employed for the estimation of the radial forming force and the limitations 

of this approach, also used in other literature works, Hawkyard (1973) and Mamalis (1976), has been 

highlighted. The results of the accuracy of the lumped temperature model, as well as this last-mentioned 

ones concerning the estimation of the radial forming force by means of the slip line model proposed by Hill 

(1950), are reported in chapter 6. 

Finally, for the validation of the developed slip line based force model, whose relevant paper is under 

review at the International Journal of Mechanical Science (submission August 2017), has been carried out 

by comparison with both numerical and experimental results. Nine different numerical study cases with 

ring ranging from 800 mm to 2000 mm as ring final outer diameter have been carried out and the process 

settings are reported in following Table 9. 

Table 9 – Slip line based force algorithm validation cases ring geometries and process parameters. 

Case Ring initial geometry 
[mm] 

Ring final geometry 
[mm] 

Mandrel speed 
[mm/s] 

Upper Axial roll 
speed [mm/s] 

 Outer 
diam. 

Inner 
diam. Height Outer 

diam. 
Inner 
diam. Height Initial Final Initial Final 

Ring1F 518 325 195 800 680 180 7.70 6.00 3.82 2.00 
Ring2F 551 325 175 800 645 145 7.50 5.00 4.83 2.50 
Ring3F 575 325 125 800 600 100 6.00 4.50 6.00 4.50 
Ring4F 822 600 215 1400 1270 195 6.00 3.90 3.10 1.30 
Ring5F 876 600 208 1400 1220 180 5.50 3.50 3.65 1.75 
Ring6F 918 600 159 1400 1155 123 4.50 3.00 4.50 3.00 
Ring7F 876 600 226 2000 1875 190 5.50 2.70 3.35 0.89 
Ring8F 945 600 232 2000 1820 180 5.00 2.70 3.71 1.35 
Ring9F 1049 600 225 2000 1700 150 4.70 2.70 4.70 2.70 

  

4.4 Mesh sensitivity analysis 
In order to analyze the influence of the mesh size of the accuracy of the simulation results, the case of a 

ring with initial dimension equal to R0 = 575.25 mm, r0 = 325.00 mm, h0 = 218.75 mm and final geometry 

equal to RF = 1100.00 mm, rF = 975.00 mm, hF = 190.00 mm has been taken into account (R1F in Table 8).  

The geometry of the ring rolling mill utilized in most of the study cases are reported in Table 2, the 

general process boundary conditions and settings in Table 3 whereas the material information are those 

reported in section 4.1 and relevant for the 42CrMo4 steel alloy. 

Four different mesh densities have been taken into account and the variation of the percentual maximum 

radial forming force, in comparison to the previous mesh study case, has been calculated. The relevant 

information is reported in Table 10. 
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Table 10 – Mesh influence verification study cases. 

 Mesh size [mm]  
Mesh 
case Axial Radial Tangential Number of 

elements 
Computational 

time [h-m] 
Max radial 
force [kN] 

Relative 
error 

0 34 32 34 1728 5h 38’ 1290.2 - 
1 24 22 24 4560 10h 32’ 1395.1 7.52 % 
2 20 18 20 8640 16h 25’ 1379.8 1.11 % 
3 14 12 14 20280 73h 3’ 1366.7 0.96 % 

 

As shown in Table 10, the relative difference between mesh case 0 and 1 is too much high, the mesh 

case 2 has been also run, showing an error a little greater than 1%. To confirm the trend, also mesh case 3 

was run, with a considerable increase of the computational time. For this reason, being the computation 

time of mesh case 2 lower than mesh case 3 and being the result, in terms of maximum radial forming force, 

very similar each other, the mesh settings of mesh case 2 have been utilized in all the analyzed study cases.  

For this reason, as mentioned above, all FE models were meshed utilizing a hexahedral 3D element with 

dimensions of 20 mm (axial), 18 mm (radial) and 20 mm (tangential). 
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Chapter 5: Laboratory experiments 
Even if the experimental campaigns on the ring rolling process are complex, high time-consuming and 

expensive, both concerning the utilization of the machine and for the materials, a limited number of 

experiments have been carried out by utilizing a laboratory-size ring rolling machine and a soft Pb75-Sn25 

alloy. The reason for the utilization of this soft alloy is given by the fact that its plastic behavior under 

severe plastic deformations at room temperature resembles that of steel at high temperature. 

As just mentioned, the ring rolling experiments have been carried out on a laboratory size ring rolling 

machine, Fig. 42, which has lower power on the actuators of the tools but allows to carry out experiments 

for the verification of the developed models, both from the kinematic and the dynamic point of view.  

 
Fig. 42 – Laboratory size ring rolling machine. 

 

In terms of kinematic, the geometrical expansion of the ring is recorded by a metering roll always in 

contact with the ring on the opposite side of the mandrel-main roll deformation gap. Concerning the
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dynamic measurements, both main roll and upper axial roll actuators are equipped with load cells those 

allow the record of the load data during the ring rolling process. The main specifications of the utilized ring 

rolling machine are reported in following Table 11. In addition to that, differently compared with the 

majority of the industrial ring rolling machines, the radial feeding of that utilized for the experiments is 

operated by the main roll rather than the mandrel. The choice of the difference is related to the construction 

procedure which made easier to apply the actuator on a tool with a larger diameter, such as the main roll. 

Table 11 - Ring rolling test machine data, ring dimensions, and process conditions. 

Parameters Value 
Mandrel diameter 50 mm 
Main roll diameter 200 mm 
Axial rolls working plane length  190 mm 
Axial rolls vertex angle 15.166 ° 
Guide rolls diameter 60 mm 
Main roll rolling speed (maximum) 60 rpm 
Mandrel maximal pushing force 55 kN 
Upper axial roll maximal pushing force 45 kN 

 

Concerning the utilized Pb75-Sn25 soft alloy, the material properties have been determined by means 

of compression test at room temperature and considering different strain rates, as shown in Fig. 43. The 

plastic behavior of the material has been fitted with the power law reported in Eq. (170) and the relevant 

model constants are reported in Table 12. 

 
Fig. 43 – Material properties of Pb75-Sn25 alloy and plastic behavior fitting curves. 

 

( ) ( )1 1

0 0 0
a bK a bσ ε ε= + + ɺ  (170) 
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Table 12 – Material model constants for the Pb75-Sn25 material. 

Parameters Value Parameters Value 

0K  92 0b  0.015 

0a  0.1 1b  0.17 

1a  0.03 
 

Material Eq. (170) is a strain-strain rate uncoupled flow stress model based on the concept of the Swift 

power law which allows accounting for the strain rate effect on the material flow stress. Since the 

experiments have been carried out at room temperature, no temperature term has been included in the 

material model. The utilized soft alloy has a density, Young’s modulus and Poisson ratio equal to 9947.3 

kg/dm3, 28 GPa and 0.42, respectively.   

Concerning the manufacturing of the rings for the experiments, they have been obtained by melting 

Pb75-Sn25 ingots and pouring the molten metal inside two different ring molds, with the dimensions 

reported in Table 13.  

Table 13 – Initial and final dimensions of the Pb75-Sn25 rings. 

Ring-Exp-1 Value Ring-Exp-2 Value 
D0 200 mm D0 155 mm 
d0 150 mm d0 105 mm 
s0 25 mm s0 25 mm 
h0 40 mm h0 42 mm 
DF 235 mm DF 195 mm 
dF 195 mm dF 155 mm 
sF 20 mm sF 20 mm 
hF 37 mm hF 36 mm 

 

The process settings for the two experiments are summarized in Table 14 whereas the images of the 

rings before and after the ring rolling process are shown in Fig. 44a and 44b for the Ring-Exp-1 and in Fig. 

44c and 44d for the Ring-Exp-2. 

Table 14 – Process settings for the Pb75-Sn25 ring's experiments. 

Ring-Exp-1 Value Ring-Exp-2 Value 
vM,0 [mm/s] 0.23 vM,0 [mm/s] 0.075 
vM,F [mm/s] 0.16 vM,F [mm/s] 0.025 
vA,0 [mm/s] 0.14 vA,0 [mm/s] 0.05 
vA,F [mm/s] 0.09 vA,F [mm/s] 0.03 
ωS [rad/s] 2.09 ωS [rad/s] 2.09 

Rolling time [s] 42 Rolling time [s] 60 
Calibration time [s] 13 Calibration time [s] 20 
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Fig. 44 – (a) Initial and (b) final ring for the Ring-Exp-1 and (c) initial and (d) final ring for the Ring-

Exp-2. 
 

The data coming from the metering roll and from the load cells installed on the main roll and on the 

upper axial roll have been recorded and are reported, along with the relevant results from the numerical 

simulations and the analytical models in the following chapter of the thesis. 
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Chapter 6: Results and discussion 
In this last section of the paper, the results of the analytical models presented in previous chapter 3 will 

be presented one by one, starting from those relevant for the estimation of the geometrical expansion of the 

ring to the estimation of radial and axial process forces. As previously anticipated, in case previous literature 

models where available in the literature, a cross-comparison with the developed one and with the relevant 

numerical simulation will be also proposed. In addition to that, concerning the two experimental cases 

detailed in previous chapter 5, a cross-comparison among analytical, numerical and experimental results 

concerning the evolution of the outer diameter of the ring and of both radial and axial forming force will be 

presented. 

 

6.1 Process setting and ring geometry algorithms performances 
The developed model for the estimation of the evolution of the ring geometry throughout the process 

has been validated by applying it to six different study cases, previously summarized in Table 4 in terms of 

ring initial and final geometry and in Table 5 in terms of process parameters. The results of the numerical 

simulation, in terms of stability of the expansion of the ring as well as the absence of irregular expansion at 

the end of the process, will testify the reliability of the algorithm for the choice and determination of the 

process parameters. In addition to that, the accuracy in predicting the geometrical expansion of the outer 

diameter of the ring and also to account for the calibration phase, absent in previous literature models, will 

be the proof of the improvement of the developed model in comparison to previous literature one.  

In Fig. 45 to Fig. 50, the images of initial and final conditions for the ring rolling process, in terms of 

equivalent plastic strain, are reported and, as it can be evinced from the appearance of the ring, in all the 

cases the ring shows a good circularity at the end of the process. The initial beginning of the process is 

shown in the figure “(a)” whereas the end at the figure “(b)”, respectively.  
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Fig. 45 – (a) Initial and (b) final results for the Ring1G. 

 

 

Fig. 46 – (a) Initial and (b) final results for the Ring2G. 
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Fig. 47 – (a) Initial and (b) final results for the Ring3G. 

 

 

Fig. 48 – (a) Initial and (b) final results for the Ring4G. 

 

  



Chapter 6: Results and discussion 

 

96 
 

 

Fig. 49 – (a) Initial and (b) final results for the Ring5G. 

 

 

Fig. 50 – (a) Initial and (b) final results for the Ring4G. 
 

The comparison among the numerical simulation, the developed model for the estimation of the ring 

geometry expansion and the result of the same analytical estimation carried out by utilizing the model 

proposed by Zhou (2011), in terms of outer diameter of the ring, are presented in Fig. 51 to Fig. 56, 

respectively. 
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Fig. 51 – Berti and Quagliato (2015), Zhou (2011) and FEM simulation results for the evolution of the 

outer diameter of the Ring1G. 

 

 
Fig. 52 – Berti and Quagliato (2015), Zhou (2011) and FEM simulation results for the evolution of the 

outer diameter of the Ring2G. 
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Fig. 53 – Berti and Quagliato (2015), Zhou (2011) and FEM simulation results for the evolution of the 

outer diameter of the Ring3G. 

 

 
Fig. 54 – Berti and Quagliato (2015), Zhou (2011) and FEM simulation results for the evolution of the 

outer diameter of the Ring4G. 

 



Chapter 6: Results and discussion 

 

99 
 

 
Fig. 55 – Berti and Quagliato (2015), Zhou (2011) and FEM simulation results for the evolution of the 

outer diameter of the Ring5G. 

 

 
Fig. 56 – Berti and Quagliato (2015), Zhou (2011) and FEM simulation results for the evolution of the 

outer diameter of the Ring6G. 
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For all the study cases shown in Fig. (51) to Fig. (56), the proposed model is able to follow the natural 

transition zone between expansion and calibration of the ring, whereas the previous literature model, Zhou 

(2011), tends to anticipate the time at which the ring reaches its final diameter as well as it does not account 

for the calibration phase. 

As it will be shown in the following section, the enhancement of the calculation carried out by 

considering the incremental geometry, which causes left and right faces of each slice to have different 

dimensions, even a higher accuracy of that shown so far will be achieved. 

In order to highlight the limitations of the model proposed by Hua (1997), also utilized by Zhou (2011), 

Gou (2011), Wang (2010) and Yan (2007), the case of Ring3G has been taken into account. By calculating 

the ranges for the mandrel feeding speed according to the algorithm proposed in Zhou (2011), it results in 

the extreme values shown in the first column of Table 15 whereas, by utilizing that proposed in Berti and 

Quagliato (2015), two different ranges are calculated, one for the choice of the initial mandrel feeding speed 

and one for the choice of the final one, as shown in the second column of Table 15. 

Table 15 – Mandrel and upper axial roll feeding speed interval 

Reasonable ranges for mandrel 

and upper axial roll feed speed 

proposed by Zhou (2011) 

Reasonable ranges for mandrel and 

upper axial roll feed speed proposed 

in Berti and Quagliato (2015) 

Chosen Values  

(according to Berti and 

Quagliato (2015) ranges) 

0.602 <  vM,0 < 6.733 
0.602 <  vM,0 < 9.161 vM,0 = 7.50 mm/s 

0.124 < vM,F < 6.733 vM,F = 5.00 mm/s 

4.284 <  vA,0 < 16.004 
4.284 <  vA,0 < 26.170 vA,0 = 1.88 mm/s 

1.573 <  vA,F < 16.004 vA,F = 4.55 mm/s 

 

If the range for the mandrel feeding speed is calculated according to Zhou (2011), both initial and final 

mandrel feeding speed should be chosen inside the same range, a fact which makes the resulting upper axial 

roll feeding speed not to fall inside the prescribed range, whatever choice is made for the mandrel feeding 

speed. Thus, according to Zhou (2011), there is no feasible mandrel feeding speed for the mandrel which 

makes the relevant axial roll feeding speed to fall inside the prescribed ranges or, in other words, the process 

cannot be carried out without either instabilities or irregular expansions of the ring. However, as 

demonstrated both Fig. 47 and Fig. 53, by utilizing the model proposed in Berti and Quagliato (2015) the 

process can be carried out until the end, granting a uniform expansion of the ring, without instabilities or 

irregularities in the final ring shape. The relevant simulation has been set-up with the process parameters 

reported in the last column of Table 15. 
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6.2 3D strain tensor estimation and geometry update results 
In order to map the evolution of the three strain components as well as of the equivalent plastic strain 

during the process, one process variable tracking strategy available in Simufact.Forming has been utilized. 

In Fig. 57, the blue dots represent the so-called particles, material points attached to the mesh of the ring 

which allows recording local results during the process. The choice of placing the particles in the middle 

of the cross-section of the ring is given by the fact that on the top, or at the bottom, of the ring, local 

deformations could give unprecise results. On the other hand, in the middle of the cross-section of the ring, 

along the vertical direction, the strain distribution is more uniform and allows a better comparison with the 

estimation carried out with the developed numerical model, presented in section 3.4.  

 
Fig. 57 – Strain components and equivalent plastic strain tracking strategy (particle tracking). 

 

By utilizing the proposed model, the three strain components as well as the equivalent plastic strain, 

both at the inner radius and outer radius of the ring have been estimated throughout the process. The 

considered study cases are those previously listed in Table 6, whose relevant process settings are reported 

in Table 7. For the tracking of both strain components and equivalent plastic strain, the particles located at 

the inner side and outer side of the ring have been utilized.  

As it is possible to see from the results reported in Fig. 58 to Fig. 61, the increment of the strain is caused 

by the deformation occurring in the ring in both deformation gaps, according to the amount of thickness 

and height drafts. For the plot of the results, the first slice to enter the deformation gap, after the start of the 

process, has been selected both for the numerical simulation and in the analytical computation. 

In the comparison between analytical and numerical results, some anticipation or postponements made 

by the analytical model can be seen and are related to presence of small slippage between the ring and the 

tools, which can are considered in the numerical simulation but, due to their causality, cannot be accounted 

for in the analytical model. These small differences gradually reduce from the middle to the end of the ring 

rolling process, where the process becomes more stable and less slippage occurs between ring and tools. 
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Fig. 58 – Strain components for inner (left) and outer (right) radii of the ring for Ring1S. 

 

  
Fig. 59 – Strain components for inner (left) and outer (right) radii of the ring for Ring2S. 

 

  
Fig. 60 – Strain components for inner (left) and outer (right) radii of the ring for Ring3S. 

 

Concerning the estimation of the equivalent plastic strain, in order to estimate the accuracy of its 

prediction, the results relevant for the inner and the outer radius of the ring, for each round of the rolling 

process, both from the analytical calculations and numerical simulations, are reported in Table 16. 
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Fig. 61 – Strain components for inner (left) and outer (right) radii of the ring for Ring4S. 

 

Table 16 – Effective plastic strain comparisons and errors 

Ring1S Inner radius Outer radius 
Ring round 1 2 3 4 5 1 2 3 4 5 

Eq. Pl. Strain 
Quagliato (’16) 0.174 0.391 0.658 0.905 1.035 0.211 0.368 0.682 0.795 0.986 

Eq. Pl. Strain FEM 
simulation 0.179 0.396 0.6669 0.903 1.008 0.195 0.367 0.681 0.822 1.043 

% Error 2.87% 1.28% 1.67% 0.19% 2.61% 7.58% 0.27% 0.15% 3.40% 5.78% 
Ring2S Inner radius Outer radius 

Ring round 1 2 3 4 5 1 2 3 4 5 
Eq. Pl. Strain 

Quagliato (’16) 0.141 0.410 0.560 0.674 0.827 0.105 0.400 0.575 0.697 0.893 

Eq. Pl. Strain FEM 
simulation 0.130 0.390 0.537 0.673 0.805 0.099 0.367 0.564 0.718 0.894 

% Error 8.69% 5.13% 4.28% 0.15% 2.73% 5.63% 9.26% 1.95% 2.92% 0.11% 
Ring3S Inner radius Outer radius 

Ring round 1 2 3 4 5 1 2 3 4 5 
Eq. Pl. Strain 

Quagliato (’16) 0.106 0.394 0.513 0.760 0.897 0.077 0.275 0.529 0.810 0.946 

Eq. Pl. Strain FEM 
simulation 0.104 0.386 0.500 0.773 0.916 0.089 0.275 0.508 0.814 0.916 

% Error 2.37% 2.07% 2.60% 1.68% 2.07% 13.77% 0.00% 4.24% 0.43% 3.28% 
Ring4S Inner radius Outer radius 

Ring round 1 2 3 4 5 1 2 3 4 5 
Eq. Pl. Strain 

Quagliato (’16) 0.105 0.338 0.617 0.910 - 0.213 0.476 0.724 0.938 - 

Eq. Pl. Strain FEM 
simulation 0.116 0.349 0.633 0.894 - 0.211 0.411 0.708 0.941 - 

% Error 9.32% 3.07% 2.50% 1.73% - 1.04% 7.73% 2.26% 0.31% - 

 
Considering the results reported in Table 16 concerning the estimation of the equivalent plastic strain, 

its estimation is carried out with a maximum error of 13.77% if the first round of the process is considered 

and of 9.26% is it is ignored. As previously mentioned, the issue related to the slippage in the first stages 

of the ring rolling is one of the reasons for a higher inaccuracy in the first round. In addition to that, in the 
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first round of the process, the absolute strain components are normally relatively small and this makes the 

percentage error to be more evident. 

Thanks to the geometry update based on the calculation of the strain the so-called third-directions, the 

vertical one in the mandrel-main roll deformation gap and the radial one in the axial rolls gap, also the 

accuracy of the geometry estimation is increased. As shown in Fig. 62 to Fig. 65, the utilization of the 

enhanced algorithm for the estimation of the outer diameter of the ring, Quagliato (2016), allows to reduce 

the discrepancies between analytical and numerical results, in comparison to the previously developed one 

and that previously proposed in the literature, namely Zhou (2011). 

  
Fig. 62 – Cross-comparison of Quagliato (2016), 

Berti and Quagliato (2015), Zhou (2011) and 

FEM simulation for the estimation of the outer 

diameter of Ring1S. 

Fig. 63 – Cross-comparison of Quagliato (2016), 

Berti and Quagliato (2015), Zhou (2011) and 

FEM simulation for the estimation of the outer 

diameter of Ring2S. 

 

  

Fig. 64 – Cross-comparison of Quagliato (2016), 

Berti and Quagliato (2015), Zhou (2011) and 

FEM simulation for the estimation of the outer 

diameter of Ring3S. 

Fig. 65 – Cross-comparison of Quagliato (2016), 

Berti and Quagliato (2015), Zhou (2011) and 

FEM simulation for the estimation of the outer 

diameter of Ring4S. 
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6.3 Temperature estimation model validation and accuracy  
The temperature drop in the ring during the process is an issue largely related to the mass of the ring 

itself, as well as to its thermal properties and the process time. For this reason, in order to verify the 

reliability of the developed analytical model, previously presented in section 3.5, 30 study case with rings 

ranging from 650 mm to 2400 mm, as final outer diameter, have been taken into account. The study cases 

are those summarized, along with the relevant process parameters, in previous Table 8. 

Since the developed model estimates an average temperature for the ring as a consequence of conductive, 

convective and radiant heat exchange by neglecting eventual heat flow from the core of the ring to its 

surface, in order to properly compare numerical and analytical results, the average temperature data of inner 

and outer surface of the ring, in both deformation gaps, have been collected and averaged. The resulting 

temperature, for each half round of the process, have been compared with the analytical prediction and the 

percentage error has been calculated in order to prove the accuracy of the prediction. 

The local temperature on inner and outer surfaces of the ring, for two chosen slices of the ring, have 

been recorded by utilizing the above-mentioned particles elements, attached to the inner and the outer 

surfaces of the ring. The results, in terms of average ring estimation for each round of the process, for the 

30 ring study cases, are reported in following Table 17 where the maximum errors are highlighted in red. 

Table 17 – Round based temperature prediction (analytical-numerical comparison). 

 Round of the process [-] 
Ring 
Case Value 1 2 3 4 5 6 7 

1 
FE Simulation 1182.9 1159.8 1136.0 1111.1 1084.0 1068.5  

Analytical 1179.0 1143.5 1119.5 1094.0 1075.5 1065.0  
% Error 0.33 1.43 1.48 1.56 0.79 0.33  

2 
FE Simulation 1184.3 1161.7 1138.4 1114.3 1088.3 1065.9  

Analytical 1182.0 1143.5 1110.5 1089.0 1072.0 1064.0  
% Error 0.20 1.59 2.52 2.33 1.52 0.18  

3 
FE Simulation 1186.0 1162.2 1137.5 1111.6 1087.7   

Analytical 1184.0 1152.0 1173.5 1098.0 1079.0   
% Error 0.17 0.89 -3.06 1.23 0.80   

4 
FE Simulation 1179.1 1151.2 1121.7 1107.9 1107.9   

Analytical 1186.0 1146.0 1115.5 1091.0 1074.5   
% Error -0.59 0.46 0.56 1.56 3.12   

5 
FE Simulation 1181.0 1154.2 1126.5 1113.7    

Analytical 1183.5 1148.5 1114.0 1090.5    
% Error -0.21 0.49 1.12 2.13    

6 
FE Simulation 1183.5 1154.4 1127.1 1127.1    

Analytical 1181.5 1149.0 1108.5 1086.5    
% Error 0.17 0.47 1.68 3.74    

7 
FE Simulation 1181.4 1153.1 1122.1 1096.3    

Analytical 1182.0 1141.5 1123.0 1106.0    
% Error -0.05 1.02 -0.08 -0.88    
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8 
FE Simulation 1184.4 1158.9 1131.7 1104.2    

Analytical 1183.0 1152.5 1130.0 1111.5    
% Error 0.12 0.56 0.15 -0.66    

9 
FE Simulation 1186.2 1157.9 1127.0 1115.0    

Analytical 1179.5 1146.5 1122.0 1108.0    
% Error 0.57 1.00 0.45 0.63    

10 
FE Simulation 1181.5 1156.5 1130.6 1103.2 1073.2   

Analytical 1180.5 1140.5 1098.0 1069.5 1051.5   
% Error 0.09 1.41 2.97 3.15 2.06   

11 
FE Simulation 1179.2 1156.0 1131.8 1106.5 1079.1   

Analytical 1180.0 1142.5 1110.0 1083.5 1066.5   
% Error -0.07 1.18 1.97 2.13 1.18   

12 
FE Simulation 1185.5 1160.8 1135.2 1112.9    

Analytical 1185.0 1151.5 1119.0 1097.5    
% Error 0.04 0.81 1.45 1.40    

13 
FE Simulation 1182.2 1154.3 1124.0 1090.3 1059.7   

Analytical 1182.0 1145.5 1128.0 1110.0 1096.0   
% Error 0.02 0.77 -0.36 -1.77 -3.31   

14 
FE Simulation 1185.1 1160.1 1133.4 1104.4 1071.7 1060.9  

Analytical 1179.0 1142.5 1120.5 1109.5 1099.5 1094.0  
% Error 0.52 1.54 1.15 -0.46 -2.53 -3.03  

15 
FE Simulation 1186.5 1159.4 1129.8 1097.2 1067.4   

Analytical 1182.0 1152.5 1128.5 1107.0 1094.5   
% Error 0.38 0.60 0.12 -0.89 -2.47   

16 FE Simulation 1178.1 1150.1 1129.5 1108.0    
Analytical 1157.0 1108.5 1092.5 1094.5    
% Error 1.83 3.75 3.38 1.23    

17 FE Simulation 1179.6 1151.0 1122.5     
Analytical 1134.0 1098.0 1092.5     
% Error 4.02 4.83 2.74     

18 FE Simulation 1182.9 1165.8      
Analytical 1163.5 1117.5      
% Error 1.67 4.32      

19 FE Simulation 1182.1 1156.2 1128.7 1098.8 1073.7   
Analytical 1192.0 1157.0 1135.5 1114.5 1104.0   
% Error -0.83 -0.07 -0.60 -1.41 -2.74   

20 FE Simulation 1184.0 1158.9 1132.5 1104.3 1072.1   
Analytical 1188.0 1156.5 1135.0 1114.0 1098.5   
% Error -0.34 0.21 -0.22 -0.87 -2.40   

21 FE Simulation 1185.0 1158.0 1140.0 1122.0    
Analytical 1185.5 1155.5 1131.0 1109.5    
% Error -0.04 0.22 0.80 1.13    

22 FE Simulation 1184.4 1157.9 1129.5 1098.7 1063.7 1042.9  
Analytical 1185.0 1152.5 1129.0 1110.5 1099.0 1089.5  
% Error -0.05 0.47 0.05 -1.07 -3.22 -4.28  

23 FE Simulation 1186.9 1163.0 1137.9 1111 1081.1 1063.8  
Analytical 1185.5 1149.5 1121.0 1101.0 1085.0 1078.0  
% Error 0.12 1.18 1.50 0.91 -0.36 -1.32  

24 FE Simulation 1189.0 1165.7 1141.1 1114.9 1085.4 1068.3  
Analytical 1186.0 1153.5 1126.5 1105.5 1096.5 1089.5  
% Error 0.25 1.06 1.29 0.85 -1.02 -1.95  
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25 FE Simulation 1185.5 1160.8 1134.7 1106.6 1075.3 1056.9  
Analytical 1184.0 1148.0 1122.5 1108.0 1097.5 1090.5  
% Error 0.12 1.12 1.09 -0.12 -2.02 -3.08  

26 FE Simulation 1186.6 1161.9 1135.8 1107.8 1076.4 1058.1  
Analytical 1184.5 1157.5 1134.0 1117.5 1103.5 1093.5  
% Error 0.18 0.38 0.16 -0.87 -2.46 -3.24  

27 FE Simulation 1189.5 1167.3 1144.0 1119.5 1092.2 1076.5 1028.1 
Analytical 1187.5 1164.0 1137.0 1116.5 1102.5 1090.5 1084.0 
% Error 0.17 0.28 0.62 0.27 -0.93 -1.28 -5.15 

28 FE Simulation 1185.5 1159.1 1131.1 1100.9 1066.8 1046.7  
Analytical 1179.0 1146.5 1119.0 1101.0 1088.0 1080.5  
% Error 0.55 1.10 1.08 -0.01 -1.95 -3.12  

29 FE Simulation 1187.3 1163.8 1138.9 1112.4 1082.9 1065.7 1008.8 
Analytical 1183.0 1151.0 1122.0 1101.5 1091.0 1083.5 1076.5 
% Error 0.37 1.11 1.51 0.99 -0.75 -1.65 -6.29 

30 FE Simulation 1189.8 1168.4 1146.0 1122.4 1096.2 1081.1 1027.6 
Analytical 1173.5 1155.0 1131.5 1112.5 1099.0 1092.0 1086.0 
% Error 1.39 1.16 1.28 0.89 -0.25 -0.99 -5.38 

 

Among all the analyzed study cases, the maximum error is calculated in 6.79% whereas the average one 

in 1.87%, proving the reliability of the developed model in estimating the average temperature of the ring.  

In addition to that, since a direct validation of the model was not directly possible, a validation based on 

the estimation of the process force, on the basis of the flow stress of the material calculated by utilizing the 

model presented in sections from 3.1 to 3.6, has been carried out. For this first cross-comparison among 

analytical, numerical and experimental data, the numerical and experimental results available in Kim (2012) 

have been utilized.  

In order to achieve a reliable comparison among the results, the material properties, the size of the ring 

rolling mill, the process boundary conditions as well as initial and final geometries of the ring have been 

inputted in the numerical algorithms. The material model equation is that shown in (170) whereas the model 

constant, for the considered AISI 304 material, are reported in Table 18. 

Table 18 – AISI-304 material model constants, Kim (2012). 

Temperature [°C] K0 a0 a1 n b0 b1 m 
1100 160.00 0.00 2.14 0.09 0.00 0.10 0.10 
1000 225.20 0.00 0.04 0.09 0.17 1.30 0.13 
800 330.90 0.00 0.17 0.08 4.50 3.20 0.06 

 

Additionally, the initial and final ring geometries, the dimensions of the tools of the ring rolling mill and 

the main process boundary conditions are reported in Table 19. In Table 19, the material properties followed 

by the symbol “*” are derived from Kim (2012) whereas those followed by the symbol “**” are taken from 

the MATILDA® (Material Information Link and Database Service) archive, available in Simufact.Forming, 

for the AISI-304 steel. 
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 Table 19 – Model validation case study Kim (2012) data. 

Parameters Value 
Ring blank outer diameter [mm] 454 
Ring blank inner diameter [mm] 150 
Ring blank height [mm] 200 
Final ring outer diameter [mm] 900 
Final ring inner diameter [mm] 722 
Final ring height [mm] 110 
Radius of the main roll [mm] 423 
Radius of the mandrel [mm] 65 
Length of the axial rolls [mm] 800 
Half of cone vertex angle [°] 20 
Main roll rotational speed [rad/s] 2 
Mandrel initial feeding speed [mm/s] 5 
Mandrel final feeding speed [mm/s] 1 
Friction coefficient 0.5 
Temperature of the environment [°C] 20 
Tool temperature [°C] 150 
Ring initial temperature [°C] 1100 
*Density [kg/m3] 7770 
**Specific heat capacity [J/kgK] 610 
**Emissivity [-] 0.25 
**Heat transfer coefficient (conduction) [W/m2K] 20000 
**Heat transfer coefficient (convection) [W/m2K] 50 

 

The result of the progressive temperature drop in the ring, as a consequence of conductive, convective 

and radiant heat exchange is shown in Fig. 66. As previously mentioned, the developed model allows 

estimating the average temperature of the ring after each deformation gap or, in other words, for each half 

round of the process. 

 
Fig. 66 – Temperature drop prediction for the study case Kim (2012) utilizing the lumped heat transfer 

model Quagliato (2017). 
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By utilizing together the information of strain, strain rate and temperature as estimated by utilizing the 

developed models, shown in previous section 3.3, 3.4 and 3.5, the half round based flow stress of the 

material has been analytically calculated. In addition to that, based on the von Mises yield criterion, also 

the yield shear stress is calculated, as shown in Fig. 67. The requirement for the calculation of the yield 

shear stress of the material is related to the input parameters needed for the estimation of the process force 

by means of the slip line model proposed in Hill (1950) and utilized by Hawkyard (1973) for the estimation 

of the radial forming force in cold ring radial rolling process, Eq. (30). 

 
Fig. 67 – Analytical estimation of the yield stress and yield shear stress for the study case of Kim 

(2012). 
 

The resulting estimation of the radial forming force, in comparison to the experimental and numerical 

results presented in Kim (2012) is shown in Fig. 68. 

 
Fig. 68 – Radial forming force results cross-comparison for the Kim (2012) study case. 
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Concerning the maximum forming force, one of the most important results being that which can 

influence the choice of the erring rolling machine, the combination of the proposed approach together with 

the Hawkyard (1973) force model, allows estimating a maximum forming force of 1038.7 Kn whereas the 

maximum value resulting from the numerical simulation is 1059.6 kN and 984.4 kN from the industrial 

experiment. Accordingly, the estimation carried out by means of the combination of analytical model 

proposed in sections from 3.1 to 3.5, together with the literature force model Hawkyard (1973) is equal to 

2.0% in comparison to the numerical simulation and to 5.5% in comparison to the relevant industrial 

experiment, both presented in the work of Kim (2012). 

The cross-comparison among analytical, numerical and experimental data allows a first sight of the 

potentiality of the combined utilization of the proposed approach, especially in terms of computational time. 

For the calculation of the analytical solution presented in Fig. 68, the total computational time is related 

only to the setting of the input parameters in the models (implemented in MS Excel) which requires a time 

lower than 2 hours. However, as shown in previous Table 10, the time required to run a simulation with an 

adequate mesh is around 16 hours. This time increases if the process parameters setting is done according 

to a trial-error approach. 

In the following section of the thesis, the limitations observed while utilizing the slip line based force 

model Hawkyard (1973), highlighting the main reason behind the choice of developing a more realistic slip 

line based force model which considers a better approximation of the contact geometry between tools and 

ring, as detailed in section 3.7. 

 

6.4 Limitations of the previous slip line based force model 
When utilizing the force model proposed by Hawkyard (1973), and based on the slip line field theory 

developed for a flat punch indenting on a flat surface, one of the key issue is related to the assumption of a 

flat contact surface between ring and tools. As it will be proved and quantified in this section of the thesis, 

this assumption is fulfilled if the curvature of ring and rolls are big enough. 

By applying the developed combination of analytical models to the study cases reported in previous 

Table 8, the maximum radial forming force has been calculated by utilizing the force model of Eq. (30), 

Hawkyard (1973). The accuracy of the prediction of the maximum forming force, for different final outer 

ring dimensions and for different ratios between the final height and the final thickness of the ring, as shown 

in following Fig. 69.  As previously mentioned, the so-called geometry factor fG  represents the ratio 

between the final height and the final thickness of the ring and has been utilized in order to analyze possible 

variation in the accuracy of the algorithms in case of different distributions of the material in the cross-

section of the ring. 
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The R2 correlation factors for the three interpolation curves have been calculated as 0.955 for the 1fG =  

interpolation curve, as 0.916 for the 2fG =  interpolation curve and as 0.973 for the 3fG =  interpolation 

curve, respectively. 

 
Fig. 69 – Accuracy of the prediction of the maximum radial forming force with the Hawkyard (1973) 

force model. 
 

The study cases summarized in Fig. 69 have been carried out with the same sizes of the tools of the ring 

rolling mill in order to avoid any additional influencing factor in the analysis. The ring rolling mill data are 

those reported in Table 2 with the general process conditions summarized in Table 3. According to this 

choice, the only influencing parameters are the initial/final dimensions of the ring and the feeding speed of 

mandrel and upper axial roll.  

In addition to that, the accuracy of the prediction of the radial forming force concerning the study case 

of Kim (2012), presented in the previous section of the thesis, black cross in Fig. 69, perfectly matches the 

interpolation curve, even if the relevant result has not been utilized for the calculation of the regression 

curve. This also proves that, even by changing material, process settings and ring rolling mill dimensions, 

the regression curve is able to predict the accuracy of the estimation of the radial forming force. 

Considering the high correlation between ring final geometry, expressed in terms of its final outer 

diameter, and the accuracy in the prediction of the radial forming force, as shown in Fig. 69, it has been 

concluded that the assumption of a straight line for the description of the contact between tools and ring, 

under some specific geometrical conditions, is too rough and leads to lack of precision in the estimation of 

the radial forming force. 
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Based on these considerations, the slip line based force model previously detailed in section 3.7 has been 

developed and the relevant results, in terms of quality of the estimation of the maximum radial and axial 

forming force, in comparison to both numerical and experimental results, are presented in the following 

section of the thesis. 

 

6.5 Generalized slip line based force model accuracy 
In this last section of chapter 6, two series of results are presented. In the first part, the cross-comparison 

among analytical, numerical and experimental results concerning the two study cases previously 

summarized in Table 13, in terms of the evolution of the outer diameter of the ring, radial force and axial 

force will be presented. In addition to that, the developed generalized slip line based force model (section 

3.7) has been applied to nine different study cases and the accuracy in estimating the maximum radial and 

the maximum axial forming force have been evaluated. 

Concerning the two study case where also laboratory experiments have been carried out, the comparison 

among analytical, numerical and experimental results concerning the evolution of the outer diameter of the 

ring are presented in Fig. 70 and Fig. 71, respectively. The results comparison in terms of radial and axial 

forming forces, same for the Ring-Exp-1 and the Ring-Exp-2 study cases, are reported in Fig. 72, Fig. 73, 

Fig. 74 and Fig. 75, respectively. 

  

Fig. 70 – Outer diameter evolution for Ring-Exp-1 

study case. 

Fig. 71 – Outer diameter evolution for Ring-Exp-2 

study case. 
 

In comparison to the relevant experiment, the estimation of the expansion of the outer diameter of the 

ring is predicted with an error lower than 2%, for both the considered study cases. These positive results 

prove, once again, that the developed model for the estimation of the geometry evolution of the ring is 

reliable and capable precise estimations, both in comparison to FEM and experimental results. 
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Fig. 72 – Radial force estimation for Ring-Exp-1 

study case. 

Fig. 73 – Axial force estimation for Ring-Exp-1 

study case. 
 

  
Fig. 74 – Radial force estimation for Ring-Exp-2 

study case. 

Fig. 75 – Axial force estimation for Ring-Exp-2 

study case. 
 

Concerning the estimation of the maximum radial and axial forming forces for the Ring-Exp-1, the 

deviations of the analytical estimations are estimated in 4.05% and 3.23% whereas that of the numerical 

simulation in 5.52% and 1.57%, respectively. For Ring-Exp-2, a more detailed analysis has been carried 

out in order to check the accuracy of the estimations of outer diameter, radial force, and axial force at 

different times during the rolling process, as shown in Table 20, where the experimental results have been 

taken as references. 

The relatively high deviation of the numerical simulation result, in comparison to the relevant 

experiment, shown in the beginning of the process for the Ring-Exp-2 (column “Value at 20s”) is mainly 

caused by the fact that the non-steady expansion of the ring in the first part of the process. 
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Table 20 – Comparison among analytical, numerical and experimental results at different rolling times for 
the Ring-Exp-2. 

 Value at 20s Value at 40s Value at 60s Value at 80s 
Ring outer diameter     

- Experiment 161.37 175.99 188.94 194.72 
- Analytical prediction 164.81 177.11 190.64 195.00 
- % Error -2.13 -0.64 -0.90 -0.14 
- Numerical simulation 162.17 175.18 189.99 194.52 
- % Error -0.50 0.46 -0.56 0.10 

Radial forming force     
- Experiment 28.99 37.62 37.77 33.68 
- Analytical prediction 30.51 38.20 36.12 35.37 
- % Error -5.24 -1.54 4.37 -5.02 
- Numerical simulation 33.09 37.81 39.61 36.35 
- % Error -14.14 -0.51 -4.87 -7.93 

Axial forming force     
- Experiment 27.09 33.95 35.21 31.55 
- Analytical prediction 28.75 35.15 35.39 34.08 
- % Error -6.13 -3.53 -0.51 -8.02 
- Numerical simulation 27.69 31.73 33.95 35.15 
- % Error -2.21 6.54 3.58 -11.41 

 

When the ring rolling process is started, the ring is put into rotation by the main roll and this initiation 

of the contact can cause slippage or sudden jamming and releasing of the ring. This issue is also related to 

higher or lower concentration of lubricant on the surface of the ring. All these issues can be controlled 

neither in the numerical simulation nor in the analytical model since are all related to unpredictable 

phenomena. In the same way, at the end of the rolling process, the ring enters the calibration phase, the 

final stage of the process in which there is not feeding motion of the tools and the dimensions of the ring 

are homogenized to the final ones. The prediction of the process forces during the calibration phase, as well 

during the initial phase of the process, is largely influenced by phenomena those are hard to be taken into 

account in the constitutive equation of an analytical model or even in a detailed numerical simulation. 

For all these reasons, the accuracy of the force prediction in the initial and final stages of the process is 

lower than that in the center of the process, when the ring is steadily expanding. However, although this 

limitation in the initial and final stages of the process, the developed algorithm is able to predict both radial 

and axial forming forces with an accuracy ~ 92% in comparison to the relevant experiment, a remarkable 

results considering that the calculation is carried out almost in the real time, with the exception of the time 

required for the process data input phase in the MS Excel spreadsheet where the algorithms have been 

implemented, which averagely takes 2 hours. 

In conclusion to this last section of the result chapter 6, the results of the application of the developed 

generalized slip line based force model for the estimation of the maximum radial and axial forming force 

for the nine study case summarized in Table 9 are hereafter reported. The main target of this final analysis 
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is to prove that the developed force model is able to overcome the limitations shown by that proposed by 

Hawkyard (1973) and that a relatively constant accuracy is obtainable, regardless the dimensions of the 

ring. The results, in terms of values and relevant parentage error, are reported in following Table 20 whereas 

in Fig. 76, Fig. 77 and Fig. 78 the final shape of the Ring1F, Ring4F, and Ring7F at the end of the process 

and the results of the equivalent plastic strain are reported. Once again it is proved that, by setting the 

numerical simulations by utilizing the set-up parameters as suggested by the algorithm detailed in section 

3.2, a uniform expansion and a regular final shape of the ring can be obtained, for relatively small rings 

(Ring1F, Df = 800 mm), average rings (Ring4F, Df = 1400 mm), and relatively large rings (Ring7F, Df = 

2000 mm). 

Table 20 – Ring study cases radial and axial forming force analytical vs numerical results comparison. 

Case FEM  
(radial) 

Analytical model 
(radial) 

% Error 
(radial) 

FEM  
(axial) 

Analytical model 
(axial) 

% Error 
(axial) 

Ring1F 1370 1378 0.61 364 376 3.19 
Ring 2F 1152 1120 2.78 503 486 3.22 
Ring 3F 717 705 1.62 459 461 0.30 
Ring 4F 1241 1180 4.92 472 480 1.57 
Ring 5F 1201 1183 1.50 637 658 3.35 
Ring 6F 852 881 3.40 754 738 2.08 
Ring 7F 1300 1350 3.85 643 605 5.88 
Ring 8F 1417 1472 3.88 851 863 1.52 
Ring 9F 1476 1541 4.40 127 1202 5.36 
 

 
Fig. 76 – Equivalent plastic strain at the end of the rolling time for the Ring1F. 
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Fig. 77 – Equivalent plastic strain at the end of the rolling time for the Ring1F. 

 

 
Fig. 78 – Equivalent plastic strain at the end of the rolling time for the Ring1F. 

 

The huge results summary presented in this last section of the paper aimed to give an overview on the 

potentiality of the developed algorithms and, especially, how the possible estimation are reliable, both in 

comparison to numerical simulations and experiments.  

In the developed algorithms, average accuracy of the estimation, always higher than 90%, make them 

to be reliable for an initial vast case-studies analysis, finalized to the identification of the few best 

combinations of process parameters those allow a successful ring rolling process and is not aimed to the 

complete avoiding of the numerical simulation, indeed.   
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Chapter 7: Conclusions 
The radial-axial ring rolling process has been a manufacturing technic largely used in all the industry 

for more than 150 years but, spite of its long history, a deep and clear understanding of the strong 

dependence between process setting and output variables is still not well spread, especially in the industrial 

compartment.  

The main purpose of the research work contained in the present thesis has, and still is, the development 

of algorithm which can help process planners and engineers in the early stages of the design stage, when 

the utilization of numerical simulation is not convenient, especially because of the time required for both 

their setting and for the computation of the results. For this reason, the collection of algorithms presented 

in the thesis, initially implemented in MS Excel and Matlab, is being included a Fortran-based program 

which shall have a GUI of easy utilization, making the developed research work to be utilizable by a large 

variety of researchers and employees dealing with the radial-axial ring rolling process. 

The good agreement proved by the comparison with numerical simulation and, where possible, with the 

experimental results, both from the literature and carried out on soft-alloy rings, shown the reliability of 

both the single models themselves as well as of their combined utilization. The importance of a complete 

and bottom-to-top analytical algorithms frame is of key importance, especially in terms of the different 

results which can be derived from their utilization. For instance, the simple knowledge of the process forces 

is not consistent since also the kinematic of the process, especially in terms of geometrical expansion of the 

ring, is of key importance for a successful manufacturing of the ring. 

To this aim, the developed combination of algorithms covers all the most important aspects of the ring 

rolling process, from the process set-up to the estimation of the forming forces, allowing a real-time 

evaluation of the impact of the design choices, both in terms of process parameters and ring sizes, on 

important output variables. The “real-time” calculation is, evidently, the main advantage of the proposed 

approach, in comparison to numerical simulations. Although well-set numerical simulation is able to 
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replicate quite accurately the real kinematic and dynamic of the process, the computational time is one of 

its main drawbacks. The proposed approach aims to fill the gap between the start of the design phase and 

the setting of the numerical simulation, acting as a sort of FEM pre-processor whose aim is twofold. In first 

instance, the process engineer ought to analyze the influence of the process parameters on the main output 

variables and identifies the few combination those show to be able to grant a successful manufacturing of 

the ring, fulfilling the process boundary condition, i.e. the maximum forming force of the available ring 

rolling mill. At this point, by adopting the process settings defined by utilizing the proposed algorithm, the 

numerical simulation can be set-up only on the few chosen cases those have given good results from the 

initial analysis. The second stage allows obtaining, of course, a more detailed and deep analysis but it will 

be carried out on a smaller amount of combinations of process parameters, allowing to speed-up the whole 

design phase. 

To better highlight improvement in the time required for the design of the ring rolling process by 

utilizing the proposed approach, a generic study case has been selected and two different approaches have 

been followed for its set-up. In the first case, the design of the process has been carried out only by means 

of numerical simulations, without any initial study-phase with the proposed collection of algorithms. In the 

second case, the proposed algorithms have been utilized for the definition of the best 3-combinations of 

process parameters, subsequently tested by means of numerical simulation. In the first case-scenario, in 

order to obtain a stable process with a good expansion of the ring, 16 FEM have been necessary, with a 

total setting and computational time of 112 hours. In the second case-scenario, the initial study phase carried 

out by utilizing the proposed algorithms took approximately 8 hours and, after it, only 4 FEM simulation 

have been set-up on the four combinations of process parameters identified in the first phase, for a total 

design time of 36 hours. It is immediately clear that the indication given by the utilization of a more rigorous 

design approach, based on the mechanics at the base of the process, allows sparing time and to focus the 

analysis only on the promising combinations of process parameters, avoiding to invest computational time 

on inappropriate sets of parameters. 
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Chapter 8: Future work 
In the present thesis, several analytical models concerning the radial-axial ring rolling process of flat 

rings have been presented and validated by comparison them with both numerical and experimental results 

as well proving their higher accuracy in comparison to previous literature ones, where they were available.  

As concerns future work related to this research topic, one of the most important aspect is probably the 

extension of part of the developed algorithms to the profiled ring rolling process, where the ring cross-

section is not flat anymore but it presents different shapes, from the most common L-shape, C-shape and 

U-shape to more complex ones. The work towards this research direction has been already started at the 

moment this thesis is being drafted and will proceed in the future in order to develop a similar collection of 

algorithms, able to allow a full understanding of the profiled ring rolling process. Especially, in the profiled 

ring rolling process, the evolution of the ring geometry is not straightforward as in the flat ring rolling since 

the flange expansion is not directly controlled by two opposite tools but it is normally free to expand. This 

fact makes the set-up of the profiled ring rolling process a more complex task, in comparison to that of flat 

rings, thus an algorithm able to propose a certain set of initial ring preform and process parameters necessary 

to reach the final desired shape while foreseeing the geometrical expansion of both wall and flange during 

the process, would be of very interest for the industry. 

An issue which is common for both flat and profiled rings is related to the estimation of the mechanical 

properties of the ring after the production, in terms of estimation of the ring microstructure. In the literature, 

different models correlating the strain and temperature fields to the microstructure have been already 

developed an validated but, to this aim, a more local temperature model should be developed in order to 

predict not only the average temperature of the ring but the temperature distribution throughout the 

thickness. As also previously stated in section 3.5 of the thesis, the utilization of a more complex 

formulation for the estimation of the temperature gradient in the ring cross-section is feasible but the 
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complexity of the calculation as well as the non-close-form of the relevant equations shall result in a more 

complex algorithm thus is longer computational time. 

Finally, both concerning the developed model for the flat ring rolling process as well for the on-going 

algorithms development related to profiled rings, the aim is to include them into Fortran-based programs in 

order to favorite their utilization, especially in the industrial environment. 
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