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“And we know that God causes everything to work together for the good
of those who love God and are called according to his purpose for them. ”

Romans 8:28





Abstract

The data that is being acquired by the Gaia space mission will allow us to
compile a catalog of one billion stars. In the backdrop of this huge influx of
data, it is crucial to have an efficient classification model. The aim of this
thesis is, in particular, to develop appropriate models for the classification
of variable stars based on the data that will be provided by the Gaia space
survey.

The first contribution of the thesis is the development of a two-stage
classification model, the Two Stage Dirichlet Mixture model (TSDM), based
on finite mixtures of Dirichlet distributions. We validated this model on a
well-studied subgroup of variable stars in the Hipparcos catalog analo-
gously to what done by Dubath et al. (2011). We also propose two dif-
ferent transformations of the attributes used for the classification, which
allow us to use the Dirichlet distribution whose support is a simplex. The
adequacy of these transformations was evaluated with the selected data,
highlighting an ability to correctly classify variable stars of 69.3%.

Secondly, we introduced an extension of the TSDM model, called the
fixed backdrop (FB) model, whose purpose is to identify new variable star
classes. Our proposal is based on the semi-supervised classification model
developed by Vatanen et al. (2012) for the identification of anomalies. The
FB model, in particular, combines the TSDM model, used to represent the
already known classes (the so-called background), with a finite mixture of
Dirichlet distributions which represent the new class. We have looked at
the proposed model assuming a scenario in which the β Cephei (BCEP)
class is the anomaly, achieving a sensitivity of 77%.

The third contribution of the thesis is the feasibility study for a Bayesian
supervised variable stars classification using finite mixture of Dirichlet
distributions. In particular, we propose a possible a priori conjugate dis-
tribution to the model.





Sommario

I dati che saranno acquisiti dalla missione spaziale Gaia consentiranno di
compilare un catalogo contenente circa un miliardo di stelle. Alla luce
di questo enorme afflusso di dati, è cruciale poter disporre di un modello
di classificazione efficiente. L’obiettivo di questa tesi, in particolare, è
sviluppare dei modelli adeguati per la classificazione delle stelle variabili
in base ai dati che saranno forniti dalla missione spaziale Gaia.

Il primo contributo della tesi è lo sviluppo di un modello di classifi-
cazione a due stadi, detto modello Two Stage Dirichlet Mixture (TSDM),
basato su delle misture finite di distribuzioni Dirichlet. Abbiamo validato
questo modello su un sottogruppo ben studiato di stelle variabili riportate
nel catalogo Hipparcos in analogia a quanto fatto da Dubath et al. (2011).
Proponiamo, inoltre, due diverse trasformazioni delle caratteristiche uti-
lizzate per la classificazione, che ci consentono di utilizzare per l’appunto
la distribuzione di Dirichlet il cui supporto è un simplesso. L’adeguatezza
di queste trasformazioni è stata vagliata con i dati selezionati, eviden-
ziando una capacità di corretta classificazione delle stelle variabili consid-
erate del 69.3%.

In secondo luogo, abbiamo introdotto un’estensione del modello TSDM,
detta modello a sfondo fisso (FB), il cui scopo è identificare nuove classi
di stelle variabili. La nostra proposta si basa sul modello per la clas-
sificazione semi supervisionata sviluppato da Vatanen et al. (2012) per
l’identificazione di anomalie. Il modello FB, in particolare, combina il
modello TSDM, usato per rappresentare le classi già note (il cosiddetto
sfondo), con una mistura finita di distribuzioni di Dirichlet che rappre-
senta la nuova classe. Abbiamo vagliato il modello proposto assumendo
uno scenario in cui la classe β Cephei (BCEP) rappresenta l’anomalia, con-
seguendo una sensibilità del 77%.

il terzo contributo della tesi valuta la fattiblità di una classificazione di
stelle Bayesiana supervisionata tramite l’utilizzo di misture di distribuzioni
di Dirichlet. In particolare, proponiamo una possibile distribuzione a pri-
ori coniugata per il modello.
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Preamble

Overview

Variable stars are stars whose brightness as seen from the Earth fluctu-
ates. In Chapter 2, we see that there are different astrophysical classes of
variable stars. But what are the criteria/factors that define these classes?.
Understanding this will give us an insight as to how different these classes
are, and why they need to be classified.

The fluctuations in brightness are caused by two major factors, namely
the physical properties of the star and/or factors external to the star. This
gives us an obvious criteria for class definition. However, the different
physical processes in the background are not directly observable. The
classification must be based on quantities that are straightforwardly mea-
surable. Since we are focusing on the variability of stars, the properties
of the light curve of the star, are important criteria for defining classes.
Its period, regularity, amplitude and other details about its shape can be
represented by numbers and are used in defining classes. But, though
this will help in defining some of the stars, other properties also need to
be considered to define other types of variable stars. Color and radial ve-
locity curves of the star also help us to understand about the temperature
changes or motion. These help in defining classes by providing clues and
insight into the physical nature of the variability. Also, there are other fac-
tors such as population types which are detailed in Percy (2007). Together,
the light curve, color, luminosity and population type have formed the of-
ficial classification system1 of variable stars, as defined in edition four of
the General Catalogue of Variable Stars (GCVS) (Samus et al. (2017)).

Hence, each of the official classes are different. Each of the classes
represent different physical systems and when we classify the variable
stars into different classes, we are in effect filtering out different systems
that behave differently. But it also needs to be noted that there are over-
laps in certain physical properties across classes.

Also, understanding some of the classes of the variable stars have
brought significant contributions to the Astronomy which is summarized
in Chapter 2 of this thesis. Thus, its really important to classify the vari-
able stars into different classes. There has has recently been a lot of work
done in classifying variable stars from different surveys in the past which
is mentioned in Chapter 1.

1Discussion : http://vizier.u-strasbg.fr/viz-bin/getCatFile?II/214A/./vartype.txt
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However, we look into the future. Gaia, which is a survey of the Euro-
pean Space Agency (ESA) has been targeting over 1 billion astronomical
objects and we are expecting a surge of data regarding these astronomical
objects in the near future. Not surprisingly, many of these will be variable
stars. There is a need of a statistical classification methodology that can
classify the entire variable star data-set provided by Gaia.

MODEL

MODEL

TRAINING CLASSIFICATION  
NEW CLASS DETECTION

NOW FUTURE

2018

Figure 0.1: (Left) Our model which will be discussed in this
thesis (Chapter 4) is trained by the Hipparcos data-set pre-
sented in Chapter 3. (Right) The trained model may be used
in the future with the Gaia data for classification and new

class detection.
Logo Image Credits : ESA

Also, we can never rule out the possibility of new classes in the in-
coming data. Since the classification technique is based on quantitative
properties of stars, there is scope to divide each of the classes into sub-
classes. However, such sub-classifications and new classifications in some
cases must be done cautiously. If we aim for homogeneity in the proper-
ties within each class and eventually form newer classes hoping that all
the properties of all the stars within these classes will be the same, it can
result in a lot of classes with uncertain affiliations. This will also result
in many variable stars classes with incomplete information, and misclas-
sifications will become more likely. Figure 0.1 gives an illustration of how
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our model (Chapter 4) trained using the Hipparcos data-set (Chapter 3)
acts like a "prior" for the classification of data-points in Gaia data-set.

In this thesis, we will present statistical methods which aim at pro-
viding substantive help in the classification of variable stars and also the
detection of new stars. These methods have been tailored so as to take
into account features that are relevant to this aim. It is in this regard that
we use Dirichlet distributions for our modeling.

With many surveys collecting data of different stars, there is a pos-
sibility that the data will be different across surveys. For instance, the
observations of the star Chi CYGNI will be different in Gaia and Hippar-
cos. Hence there is a need to have a common scale of reference, which
is why we use transformations (detailed in Chapter 2) to transform data
into probability scale. With the data in the probability scale, we see that
Dirichlet density is a natural choice. More about this is discussed in Chap-
ter 4. However let us look into the main contributions of this thesis.

Main Contributions of the thesis

Methodological contributions

• We propose a supervised classification model namely, Two stage Dirich-
let mixture model for the classification of variable stars by training
the model on the Hipparcos Catalogue (see Chapter 4).

• We propose the use of a semi-supervised classification model, namely
Fixed background model, for the detection of new classes of variable
stars (see Chapter 5).

• We provide an analysis of the unsupervised classification of select
classes of Hipparcos data to a mixture of Dirichlet distribution (see
Chapter 6).

• We propose a methodology to fit the data into a simplex, reasonably
maintaining the structure of the data.

Astronomical contributions

• We have built a classification model which can classify the upcoming
Gaia survey data into predefined classes (see Chapter 4).

• We have built a classification model which can detect any new class
in the Gaia data (see Chapter 5).

• Our classification models can suggest the presence of sub-classes
within each of the classes.
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Chapter 1

Introduction

1.1 Preface

In the previous chapter we discussed about the need of efficient statistical
methodologies for the classification of variable star types. The develop-
ment and implementation of efficient classification schemes is the need of
the hour. This is because large surveys are in the process of observing
and collecting huge amounts of data from millions, and soon billions, of
targets. The time taken to observe the changes in the physical properties
of the star range from minutes to even decades, making it impossible to
scrutinize them by eye. Hence, it is of prime importance to use power-
ful statistical and data mining tools. Automated supervised classification
methods give predictions on the type or class of an object based on the
values of a set of attributes that characterize the object. The dependen-
cies of the type of the object on its attribute values are modeled using a
labeled data set, which is a collection of prototype objects of known type
and attribute values. After the dependencies are modeled, the types of any
other unknown object with available attribute value, can be predicted. As
naming schemes differ across publications, we make the following defini-
tions throughout this thesis : objects (i.e. stars) are classified into types
by modeling how the types depend on the attributes.

The classification methods based on finite mixtures of probability den-
sities are simple to use and popular in many applications (see e.g. McLach-
lan and Peel (2004) for more details on mixture modeling). Mixture mod-
els provide a convenient semi-parametric framework which helps to model
unknown distributional shapes. It can provide a satisfactory model as it
can be useful to model any type of data, due to its flexibility. In this thesis,
we have taken advantage of this flexibility of mixture distributions for the
classification of variable stars. Variable stars are explained on more detail
in Chapter 2 of this thesis.

Variable star classification studies have used the data from surveys
such as (1) ASAS (Pojmanski (2002), Pojmanski (2003); Eyer and Blake
(2002), Eyer and Blake (2005)), (2) OGLE (Debosscher et al. (2009)),
(3) MACHO (Belokurov et al. (2003), Belokurov et al. (2004)) (4) CoRoT
(Deleuil et al. (2009))), (5) Kepler (Blomme et al. (2010)). A number of sur-
vey projects are also in various phases of their timeline, in particular (1)
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Pan-STARRS1, (2) LSST2, and (3) Gaia3. We are expected to receive data
of exceptional quality from these surveys and in particular Gaia, which
can be used in the study and analysis of variable stars (For abbreviations
refer to the table List of Abbreviations on page xvii).

The data set which we have used in our thesis is mainly the Hipparcos
data set. More details about the Hipparcos data can be found in Chapter
3. The Hipparcos mission provides accurate data for a lot of well studied
stars and hence can be used as a control sample for validation of the
model classifications. Also, it contains almost all types of variable stars in
the solar vicinity (Dubath et al. (2011)). With an influx of data expected
to arrive from the Gaia survey in the future, the data from the Hipparcos
mission can be particularly useful for training models for classification of
variable stars.

Some work has been done for classification of variable stars previously.
Aerts et al. (1998) used multivariate discriminant analysis to isolate cer-
tain variable classes. Willemsen and Eyer (2007) present a systematic
classification of variable stars using PCA and support vector machines.
Blomme et al. (2011) uses multivariate Bayesian statistics and multistage
approach while Debosscher et al. (2007) implemented a procedure for
fast light curve analysis and for the derivation of classification parameters
for variable star classification. Richards et al. (2011) presented machine
learning methods for classifying variable stars with noisy time series data.
The variable stars were classified using Gaussian mixture classifier (De-
bosscher et al. (2007),Debosscher et al. (2009)) and a Bayesian network
classifier in (Sarro et al. (2009)). Dubath et al. (2011) presented an eval-
uation of the performance of an automated classification of the Hipparcos
periodic variable stars into 26 types.

The remainder of the introduction is organized as follows: in Sec-
tion 1.2 we will review mixture distributions and the Dirichlet distribution
which will be used in our thesis for the formulation of our model. In Sec-
tion 1.3 we will briefly outline the summaries of the upcoming chapters.

1.2 Preliminary concepts

1.2.1 Mixture distributions

Let Y1,Y2, . . . ,Yn denote a random sample of size n, where Yi is a D -
dimensional random vector with probability density function f(yi) on RD.
Let the entire sample be represented by YT = (Y1, . . . ,Yn)T, where the
superscript T denotes vector transpose. Thus Y is an n-tuple of points in
RD and is an n×D matrix.

1http://pan-starrs.ifa.hawaii.edu/public
2http://www.lsst.org/lsst
3http://www.rssd.esa.int/Gaia
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Throughout this thesis, we will denote realizations of random vectors
by lower-case letters, unless mentioned otherwise. Thus, yT = (y1, . . . ,yn)T

denotes an observed sample where yi = (yi1, yi2, . . . , yiD) is the D -dimensional
observed value of the random vector Yi.
The K -component finite mixture density f(yi) of Yi can be written in the
form

f(yi) =
K∑
k=1

πkfk(yi) (1.1)

where fk(yi) are densities and πk are the such that,

0 ≤ πk ≤ 1 (k = 1, . . . , K)

and

K∑
k=1

πk = 1

The quantities π1, π2, . . . , πK are called the mixing proportions or weights.
The fk(yi) for each k are called the component densities of the mixture and
K, the number of components. In this thesis, we shall refer to the finite
mixture distribution as mixture distribution, unless stated otherwise. For
a comprehensive discussion, please refer McLachlan and Peel (2004).

In the next section, we will see that mixture distributions can be inter-
preted using categorical random variables.

1.2.2 Mixture model using categorical random variables

We discussed that a K-component mixture density, f(yi) can be repre-
sented by Equation (1.1). However, the same can be reformulated using
categorical random variables as follows.

There are different ways of representing mixtures through categorical
random variables, First - through a single categorical random variable. If
Si is a single categorical random variable taking on the values 1, . . . , K

with probabilities π1, . . . , πK respectively, and if the conditional density of
Yi given Si = k is fk(yi), (k = 1, . . . , K), then the marginal density of Yi is
given by f(yi) and McLachlan and Peel (2004) explains Si to be like the
component label of attribute vector Yi.

Second way is, to work with a D-dimensional component label vector
Si , which is what we have used in our thesis, where the kth element of
Si, Ski = (Si)k, is defined to be either one or zero, according to whether Yi,
originated from k or not (k = 1, . . . , K). Hence Si is distributed according
to multinomial distribution with K categories and with probabilities π =

(π1, π2, . . . , πK).
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Thus
P (Si = si) = πs1i1 πs2i2 . . . πsKi

K (1.2)

and
Si ∼ MultK(1,π)

where π = (π1, . . . , πK)

For a comprehensive discussion on mixture distributions, please refer to
McLachlan and Peel (2004). Now that we have discussed mixture distri-
butions, lets look into the other major component of our model defined in
Chapter 4 namely, Dirichlet distributions.

1.2.3 Dirichlet distribution

Before we define a Dirichlet distribution we need to define an open sim-
plex. For the ith observed value of the random vector Yi described in
Section 1.2.2, i.e. yi = (yi1, yi2, . . . , yiD), the D − 1-dimensional open sim-
plex in RD is defined by,

VD−1 =

{
(yi1, yi2, . . . , yiD)T : yid > 0, 1 ≤ d ≤ D − 1,

D∑
d=1

yid = 1

}
(1.3)

A random vector yi = (yi1, yi2, . . . , yiD)T defined on a D − 1-dimensional
open simplex in RD, is said to have a Dirichlet distribution if the probabil-
ity density of yi = (yi1, yi2, . . . , yiD) is

Dir(yi|α) =
1

B(α)

D∏
d=1

yαd−1
id yi ∈ VD−1 (1.4)

where α = (α1, α2, . . . , αD) is the parameter vector which we will refer to
as Dirichlet parameters in this thesis. When Yi follows a Dirichlet distri-
bution, we will denote as Yi ∼ Dir(α) or Dir(α1, α2, . . . , αD) on VD−1 ac-
cordingly in this thesis. Plots of Dirichlet distribution for different values
of the Dirichlet parameters are given in Figure 1.1.

It will be interesting to see some of the properties of Dirichlet distribu-
tions and lets have a look at the first two moments, namely the mean and
variance of equation (1.4). If α+ is defined as

∑D
d=1 αd, then,

E(Yid) =
αd
α+

and

Var(Yid) =
αd(α+ − αd)

α+

for d = 1, . . . , D
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Figure 1.1: Plots of densities of yi = (yi1, yi2, yi3)
T ∼

Dir(α1, α2;α3) on V2 with various parameter values : (i)
α1 = α2 = α3 = 2 (ii) α1 = 1, α2 = 5, α3 = 10 (iii)

α1 = 10, α2 = 3, α3 = 8 (iv) α1 = 2, α2 = 10, α3 = 4.
Image Credits : Ng et al. (2011)

where Yid is a column vector of length n, for the ith data-vector and the
dth attribute.

For a comprehensive discussion on the Dirichlet distribution kindly re-
fer to Ng et al. (2011) and also Appendix B.6, where it is shown that Dirich-
let distribution is an exponential family distribution (see Appendix B.2 for
discussion on exponential family distributions).

1.2.4 Random forests

In Chapter 3, we try to search for the simplest and smallest plausible
subset of variables which effectively explains the population. Later in
the chapter we use an attribute ranking algorithm, using Random forests.
However, before we look closely into random forests, let us look into the
concept of bagging.
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Decision trees and Bagging

Decision trees can be problematic because they can cause high variance in
predictions. Bagging is a procedure for reducing the variance of statistical
learning methods; in this case, decision trees.

Say we have n independent observations Y1, . . . , Yn, each with variance
σ2, then the variance of the mean Ȳ of observations is given by σ2/n. Evi-
dently, the averaging of the set of observations has reduced the variance.
Bagging takes advantage of this for classification, and first forms (say) B
different bootstrapped training data-sets by taking repeated samples from
the single training data set. Then, the method is trained on each of the B
bootstrap samples in order to get a classifications for each of the samples.
The classes predicted by each of the B trees are recorded and a majority
vote is taken. The class that was predicted the most frequently among the
B classes will be selected as the overall predicted class.

Out-of-bag error estimation

We discussed earlier that the key to bagging is that the trees are fit to
bootstrapped subsets of the observations. However, an estimate of the
error rate can be obtained from the training set. Each bagged tree uses
a certain proportion of the observations and the remaining observations
are defined as the out-of-bag (OOB) observations. Thus any training set
data-point is OOB in a certain proportion of the trees. This will give us B/3
predictions for any given data-point. As we discussed earlier, in order to
get one final prediction for this observation, we take a majority vote. Thus
an OOB prediction can be formed this way for all the observations and
consequently the OOB error, which is the classification error of the OOB
predictions. This upholds the validity of the error of the bagged model
while testing, since the response for each data-point is predicted using
only the trees that were not fit using that data-point. This is similar to the
cross validation performance estimate, but at a much lower computational
cost.

From bagging to random forests

Random forest (Breiman (2001)) is a tree based classification method. Just
like bagging, a number of decision trees are grown on bootstrapped train-
ing samples. At each node, divisions into two groups are considered each
using a randomly selected set of attributes. Among these, the best split
is selected and the process is repeated for the child nodes with a new set
of attributes at each of the nodes. The procedure stops when we have
attained a maximum tree, i.e. a tree with terminal nodes containing only
a single type of stars.

For a more detailed discussion on Random forests, refer Friedman
et al. (2001). The randomforest package (Liaw and Wiener (2002)) in
R is used in this thesis.
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1.3 Chapter summaries

In Chapter 2, we focus on the astronomy part of our thesis. We will dis-
cuss about variable stars and also briefly explain the different classes of
variable stars that we aim to classify in this thesis. We will also explain
briefly the physics that determine the variability of the stars and also why
it is important to classify variable stars. At the end of the chapter we also
give a brief introduction to the Gaia survey.

In Chapter 3, we focus on the data that is used in our thesis. As men-
tioned in Section I, our goal is to implement a statistical classifier that
can classify the upcoming Gaia data-set. Hence we train our model to the
data-set mentioned in Chapter 3 of the thesis. We reduce the dimension
of the data by limiting the number of attributes. This simplifies the model,
reduces time taken to train the model and avoids overfitting. We also dis-
cuss the problem of correlation and list out a set of attributes that are not
so correlated which we use in our analysis in Chapter 4.

In Chapter 4, we present our model, namely the Two stage Dirichlet
mixture model. We also apply two transformation techniques to transform
the data to an open simplex. First we transform the raw data to the proba-
bility scale. Secondly, we transform the data to the open simplex. For this
transformation, we administer two types of transformations. We compare
the performances of the classification based on these two transformation
techniques and discuss the results.

In Chapter 5, we focus on the second main goal of our thesis, namely a
model for the detection of new classes of variable stars. We use the fixed
background model which was proposed by Vatanen et al. (2012) and train
it for the detection of new classes of variable stars. We also perform an
analysis for the detection of new classes.

In Chapter 6, we provide an analysis of Bayesian classification and
also discussion on Bayesian classification using Bayesian conjugate priors.
Chapter 7 we contains the conclusion of the entire thesis and possible
future directions.
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Part II

The Astronomy
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Chapter 2

Variable stars

2.1 Introduction

As we survey the night skies, it is easy to imagine that the skies are un-
changing. Apart from the twinkling due to the effects of the atmosphere,
stars appear fixed and constant to the untrained eye. However, if we try
to carefully observe with the naked eye, we may see that some stars do
in fact change in brightness over time. We can see a quick brightening
and diminishing only to repeat the process again. The period may range
from the order of hours to even years. Most of the stars exhibit a change
in luminosity as they change and evolve over time. The energy emitted by
the Sun, for example varies by about 0.1% over 11 years.

Figure 2.1: Variation in brightness of the star Omicron Ceti,
plotted as a light curve. Omicron ceti is a prototype of the
Long Period Variable (LPV) stars (refer to Section 2.4.1). The
magnitude of the light decreases from Julian year 2450000
(1995 Oct 9) and after reaching a minimum and increasing
to a local maximum, it reaches another maximum at Julian
year 2450500 (1997 Feb 20) and then continues the same.

Image credit : NASA/CXC/SAO

Also, Figure 2.1 gives the variable star light curve for the star Omicron
Ceti which is a Long Period Variable star that will be discussed in Section
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2.4.1. The variation in the brightness of the star is plotted as a light
curve. The magnitude of the light curve varies from Julian year 2450000
(1995 Oct 9) to Julian year 2450500, periodically. Such stars are termed
as variable stars. Simply put, a variable star is one whose brightness as
seen from the Earth fluctuates.

Astronomical surveys are the main source for discovery and accumula-
tion of observational data of variable stars for further analysis and inter-
pretation. There are several surveys that collect observable information
of variable stars like the ASAS mission (Pojmanski (2004)), ROTSE mis-
sion1 (Akerlof et al. (2000)) etc. This observable information is then used
to deduce characteristics of the star such as mass, radius, luminosity, tem-
perature, internal and external structure, composition. These can then be
used to constrain and test our theories about stellar or galactic evolution,
star and planetary system formation, or cosmology.

Observable information about variable stars in particular can yield
valuable findings. Each of the variable star classes or types have distinct
differences in physical properties and further research and understand-
ing of each of these classes can give rise to a wide range of applications,
among which are asteroseismology (e.g. Aerts et al. (2010)), the deter-
mination of the physical parameters of the stars (e.g. radius) in eclipsing
binaries2 (Steinfadt et al. (2010)), and the measurement of distance with
standard candles like Cepheids3 (Feast and Walker (1987)) or RR Lyrae.
See Catelan et al. (2004), Sesar et al. (2010) and Castellani et al. (1993)
for comprehensive accounts on some of the applications.

The discussion in this chapter has been arranged as follows. Section
2.3 briefly explains some of the preliminary physics and definitions to un-
derstand star variability, while Section 2.4 introduces the different classes
of variable stars and also how they are different from each other. In Sec-
tion 2.5 we introduce the Gaia survey. But now let us have a quick look
into the history of variable stars and how it has progressed over the years.

2.2 History of variable stars

Ancient philosophers thought that stars were eternal and invariable. How-
ever, when in 1638 Johannes Holwards observed that the star Omicron
Ceti (Mira) in the constellation Cetus varied its brightness in a regu-
lar 11 month cycle, it was a breakthrough. In 1596, David Fabricius
(1564−1617), a Protestant minister in Osteel, Ostfriesland noticed that
a star in the constellation Cetus became fainter over time and then disap-
peared after a certain time. This mustered a lot of interest and awareness
in the field of star variability (Williams and Saladyga (2011)).

1refer table List of Abbreviations on page xvii
2refer Section 2.4.2 for details
3refer Section 2.4.1 for details
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Consequently, more variable stars were observed in the period that
followed. For instance, Algol, also called Beta Persei, was observed in
1669 by the Italian Geminiano Montanari, who became the first European
astronomer to note the light variation, while R Hydrae was observed in
1670 by Montanari and χ Cygni in 1686 by Gottfried Kirche, who noticed
that it was missing from the sky over a period of 13 months.

Variable star astronomy improved significantly with contributions from
Edward Pigott and John Goodricke in the 18th century. They confirmed the
variability of eclipsing binaries (which is explained in Section 2.4) such
as β Persei and η Aquilae (Hoskin (1982)). They contributed also to the
determination of precise periods of other known periodic stars (Furness
(1915)). However, history was made in 1786, when the first catalogue
of variable stars was published by the English amateur Edward Pigott,
consisting of 12 variable stars and 39 suspected variables (Gilman (1978)).

Today with the advance of astronomy and of scientific methods, the
detection of variable stars by means of photography has become an ev-
eryday task. The General Catalogue of Variable stars (GCVS 5.1 version)
contains data for 52011 variable stars by 2015 which are located mainly
in the Milky Way galaxy (Samus et al. (2017)). However the GCVS is not
the only catalogue which is used in studies in astronomy. There are many
more which have been detected by photometric surveys such as OGLE
(Udalski et al. (2015)), Drake et al. (2014), Kim et al. (2014) and Minniti
et al. (2010).

Now let us look into some of the underlying physics that causes the
variability in stars. This will help us to understand the different classes
of variable stars which will be briefed later in Section 2.4. However we
shall not delve into an extensive astrophysics discussion of the stars, but
restrict our discussion to the basic preliminaries, as this thesis is primarily
meant for a statistics audience.

2.3 Preliminaries

Chemical composition using spectra

Light can split up to form a spectrum using a prism. The light waves
are refracted as they enter and leave the prism. There is a connection
between the wavelength and the refraction with shorter wavelengths re-
sulting in higher refraction. As a result, red light is refracted the least and
violet light is refracted the most, causing the colored light to spread out
to form a spectrum as shown in Figure 2.2 (top).

Chemical elements produce their own emission or absorption spec-
trum. For instance, If hydrogen is put in a discharge chamber and elec-
trons are shot at it, it emits light at some characteristic wavelengths. If we
analyze this light using a spectrometer, it would look like the one shown
in Figure 2.2 (bottom). Instead of getting a rainbow of light, as we would
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normally get when white light passes through a prism, we observe emis-
sion only at these specific wavelengths..

Similarly, when light passes through an absorption chamber, a part of
the light will be absorbed and we will get a spectrum which looks like the
one shown in Figure 2.2 (middle). These are the emission and absorption
spectrum, respectively.

Figure 2.2: From top to bottom · (Top) Spectra that is formed
when light is passed and refracted through a prism. (Middle)
Absorption lines of hydrogen that are formed when the light
is shone on hydrogen in an absorption chamber. (Bottom)
Emission lines of hydrogen formed when hydrogen is put in

a discharge chamber and electrons are shot at it.
Image credit : Wikimedia Commons

It was discovered by Neil Bohr that, as the electron jumps to a higher
energy level it absorbs a photon, and as it moves to a lower energy level,
it emits a photon. These photons represents the colors of light missing
from the absorption spectrum or that of the lines present in the emission
spectrum. These photons carry exactly the necessary energy that is re-
quired for the electron to move between energy levels. However when we
irradiate it with photons of other wavelengths, nothing happens as those
do not have the right amount of energy.

Since the energy levels of each of the elements are unique, their re-
sulting spectra are unique. This helped in identifying the composition of
stars. Modern day scientists receive light from a star, pass it through a
prism and analyze the absorption and emission lines to understand the
composition of the star.

In summary, spectral lines are these lines that form due to emission
or absorption of photons in a narrow frequency range, called emission or
absorption lines, respectively. Absorption lines occur when an atom, ele-
ment or molecule absorbs a photon with an energy equal to the difference
between two energy levels, while emission lines occur when the electrons
of an excited atom, element or molecule move between energy levels.

The evolution of stars

A main-sequence star can be regarded in a zero approximation as a spheri-
cally symmetric mass of gas in a stable state. It is described by four equa-
tions: hydrostatic equilibrium, energy balance, energy transport equa-
tions and the thermodynamical equation of state. The temperature in its
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core and the usual chemical composition ( 75% H, 25% He and traces
of other elements) implies that nuclear fusion is maintained in its core,
contributing to the terms of the above four equations. Mass and chemical
composition determines the type of energy production and transport in
the star as well as the evolution of the star.

However, stars evolve and their evolution depends primarily on the
amount of hydrogen at the core. At the birth of a star, it is composed of
around 75% of hydrogen and around 25% of helium and trace amounts
of other elements. Every time hydrogen nuclei fuse into helium nuclei, a
photon is released. There are innumerable number of fusions of hydrogen
to helium happening at the core which results in the emission of photons,
and ultimately, this energy production is what makes the star to shine. The
light emitted by these stars is analyzed by scientists as spectrum (Figure
2.2), which we discussed earlier. It should be noted that the light is ab-
sorbed and re-emitted millions of times, and changes its energy, so this is
not an easy task.

If the amount of hydrogen determines how the star evolves, the mass
of a star determines the most important features in the history of a star,
including how long it will live, how long it will burn and how it will die.
Stars are categorized by how bright they are, called their luminosity, and
by and their color which indicates their temperature. These categories
are referred to as spectral classes. There are seven main spectral classes
of stars, namely O,B,A,F,G,K,M with O class stars being extremely hot and
bright, while M class stars are cool and dim. Each stellar class is subdi-
vided by a number from 0 to 9, where G0 is hotter than G3 which is hotter
than G8.

Pressure can broaden spectral lines. With increasing pressure in the
star’s outer layers more and more atoms will be disturbed during the time
when emitting or absorbing a photon. This results in a change of energy of
the levels of the atom. The pressure in the outer layers of a star can vary
in a wide range and thus require a further component of the spectral clas-
sification, the luminosity class. The Roman numerals identify what face
in the life cycle the star is in. I identifies super giant stars. II identifies
bright giant stars, III identifies giant stars. These stars are near the end
of their lives as they burnt all their hydrogen and were massive enough to
burn their helium into massive elements. IV identifies sub-giants. These
stars have burnt all their hydrogen and have started to burn all their he-
lium. They are identified by the giant stage. The main sequence stars are
identified by the numeral V. This is where most of the stars spend most
of their lives burning hydrogen into helium. Our Sun is in this stage and
stars that are in the main sequence are called dwarfs. The next group
are the sub dwarf stars identified by VI. They are stars that are burning
hydrogen but they are not as bright as they should be for their size. The
last luminosity class is the white dwarf which are the stellar corpses of
the large stars. These luminosity classes and spectral classes will be used
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in Section 2.4 when we define the various variable star types.
The Sun is a normal main sequence star and is classified as G2V; Vega, the
bright bluish white star of the constellation Lyra is classified as A0V.

Hertzsprung-Russell (H-R) diagram

In 1910, Ejnar Hertzsprung and Henry Norris Russell created a diagram
which has been a major step in the understanding of stellar evolution,
the Hertzsprung Russell (H-R) diagram. It is a graph of a measure of the
luminosity of a star (absolute magnitude), plotted against a measure of
the temperature of a star (spectral type, or colour). Figure 2.3 gives a
representation of the H-R diagram.

As we discussed in the previous section, depending on its initial mass,
every star evolves over time. Its internal structure varies as a function of
its age. These stages of evolution which are explained later, imply changes
in the temperature and luminosity of the star and hence the star moves in
the H-R diagram. Consequently, the internal structure and evolutionary
stage of the star can be determined by locating it in the H-R diagram. The
temperature decreases as we move left to right on the H-R diagram, on
the x-axis and the luminosity increases as height increases on the y-axis.
Each point on the H-R diagram represents a star with that spectral type-
luminosity combination. For example, the Sun is of spectral type G2 with a
Luminosity if 1 solar luminosity. On the H-R diagram stars that are on the
upper left are hot and luminous while stars that are on the lower right are
cool and dim. The Hertzsprung-Russell diagram also provides information
about stellar radii. Luminosity depends on surface temperature and size.
For two stars that have the same temperature, a star has higher luminosity
only if it is larger.

The Stefan-Boltzmann equation states that the luminosity of a star (L) is
proportional to the square of its radius (R) and to the fourth power of its
effective temperature (T).

L = 4πσR2T 4

where σ is the Stefan-Boltzmann constant. As a consequence to this, stars
on the Hertzsprung-Russell diagram which are cool and luminous must be
very large super giants. On the other hand, stars which are hot but not
very luminous must therefore be very small white dwarfs.
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Figure 2.3: Hertzsprung-Russell diagram depicting the dif-
ferent stages of stellar evolution. The main sequence stars
are located at the line connecting the top left to the bottom
right of the diagram. The Sun is a main sequence star and it
is located at spectral class G and luminosity 1 (solar units) in

the figure above.
Image Credits: ESA
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Star positioning in the Hertzsprung-Russell (H-R) diagram

Depending on the stage of evolution of stars, they occupy different po-
sitions in the H-R diagram. Hence, the evolution of a star on the H-R
diagram can be classified into 3, as follows,

• The area of the H-R diagram covering the upper left to the bottom
right accomodates the main sequence stars or dwarf stars (Powell
(2006)). They form the majority of the stars in the H-R diagram. The
upper left stars apparently are the hot and luminous stars and the
bottom right ones the cool and faint stars. Stars spend almost 90% of
their lifetime here, burning hydrogen in their cores (Unsöld (1969)).
Our Sun is a main sequence star.

• The region above the main sequence stars is occupied by the Lumi-
nosity classes I, II and III, which are the red giant and the super
giant stars. The high luminosity implies larger stars, by the Stefan-
Boltzmann equation.

• The bottom left of the H-R diagram is occupied by the white dwarf
stars, which are the low to intermediate mass stars. This is the final
evolutionary stage of a star of about solar or lower mass. They can
have radii as small as the Earth, having temperatures around 10,000
K.

In Figure 2.4 we have attempted to plot an approximation of the H-R dia-
gram for the data set of variable stars used in this thesis. Since we have
no attribute that records the temperature of the star, we have plotted the
absolute magnitude of the variable stars against V-I color. Although V-I
Color is an index which indicates the color of the star, inferences on the
temperature can be made from the color, which is why we have used it.
But the relationship between V-I Color and temperature is not linear, so
Figure 2.4 is somewhat distorted, and only its topology can be compared.
When we compare Figure 2.4 to Figure 2.3, we see that Figure 2.4 does
not contain the faint red end of the main sequence, that is, the lower right
part of the diagonal line. We see only the upper half of the main sequence.
However the LPVs are where we would expect them: rightward from the
visible upper part of the main sequence, at very red colors and relatively
bright magnitudes. The leftmost thick stripe in Figure 2.4 corresponds to
a small portion of the main sequence. We don’t see the yellow-red part
of it (no variables there, so it does not appear in our variability data set),
and we don’t see the hottest, biggest blue O stars either as there are no
such stars in the sample. Figure 2.4 contains ACV, BE+GCAS, BCEP, SPB
stars in its upper half and also eclipsing binaries in the lowest part, which
corresponds to the H-R diagram. According to astronomical knowledge,
the single stars and the binary stars form two different main sequences,
which are somewhat shifted with respect to each other, but this shift is
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Figure 2.4: H-R diagram for the data set used in this thesis.
The absolute magnitude, which is an attribute which gives
the absolute luminosity values of the star, is plotted against
the color indicator, namely V-I Color. As we don’t have at-
tributes that directly record temperature, colors are a good
indicator of temperature. Thus the above plot is an approx-
imation of the H-R diagram. The variable types or classes
from the data-set are plotted in different colors, according to
the legends on the right hand side of the plot. Refer to the
table List of Abbreviations on page xvii, for the definition of

the variable star type acronyms.
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small, and it is not surprising that we don’t see it. DSCTs, DSCTCs and
GDORs are also available in the lowest part and also the Cepheids are to
the right of the main sequence, that is, are redder than the visible part
of the main sequence, and are relatively bright as shown in Figure 2.3 as
well. RRAB and RRC are slightly more blue than the Cepheids and are
positioned between the main sequence and Cepehids.

Instability strip

The instability strip is a narrow band in the Hertzsprung-Russell diagram
which contains many different types of variable stars (RR Lyrae, Cepheid
variables, W Virginis)(Gautschy and Saio (1996)).

Stars more massive than the Sun enter the instability strip and become
variable at least once after leaving the main sequence. In the instability
strip the stars become unstable which cause them to pulsate in size and
vary in luminosity. We will discuss in Section 2.4 that these instabilities
are due to pulsations. They are caused by the pulsations by the doubly
ionized helium III (Gautschy and Saio (1996)). For stars in spectral classes
A,F and G, helium is neutral on the surface of the star. But near the core,
at about 25, 000 − 30, 000 K, the HeI layer ionizes to HeII and HeII ionizes
at about 35, 000− 50, 000 K.

The contraction of the star results in the increase in density and tem-
perature of the He II layer. Consequently, He II ionizes to He III, resulting
in an increase in the opacity of the star and consequently, a rise in temper-
ature of the star. The star hence begins to expand. The expansion causes
the He III to recombine to He II and the opacity of the star drops lowering
the surface temperature of the star. The outer layers contract and the
cycle repeats.

2.4 Classification of Variable stars

Broadly, there are two types of variable stars, intrinsic and extrinsic vari-
able stars. As the name suggests, intrinsic variables are stars whose vari-
ability is caused by changes in the physical properties of the stars them-
selves, whereas for extrinsic variables the variability is caused by external
properties like eclipses or rotation. The variable star types used here is
based on the variability types found in the General Catalog of Variable
stars (GCVS 5.1 version) Samus et al. (2017).

Intrinsic variable stars can be further divided into three subgroups,

1. Pulsating variables, i.e. stars that are variable due to the expansion
and contraction of the surface layers of the stars.

2. Eruptive variables, i.e. stars that experience variance in brightness
because of the violent flares, eruptions and mass ejections on their
surface.
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3. Cataclysmic or explosive variables,i.e. stars that undergo an ir-
regular and cataclysmic change in their brightness like novae and
supernovae, and then drop back down to dormant state.

Extrinsic variable stars can be divided into two main subgroups,

1. Eclipsing binaries, i.e. double stars where they, as seen from Earth’s
vantage point, occasionally eclipse one another as they orbit;

2. Rotating variables, i.e. stars whose variability is related to their ro-
tation. This can be non-uniform surface brightness or/and ellipsoidal
shape of the stars. The fluctuations in surface brightness can caused
by extreme "sunspots" which affect their apparent brightness and
the ellipsoidal shape can be due to fast rotation speeds or binarity
(that does not cause eclipses).

As we look deeper into these classes of variable stars, we’ll see that
they are different physical systems with different reasons for variability,
even though their definition originally was based on observable features
such as the light curve, color, luminosity and population type.
To sum up, each of the official classes are different physical systems and
when we classify the variable stars into different classes, we are in effect
filtering out different systems that behave differently. Table 2.1 presents
the acronyms (with slight abuse in nomenclature to ensure readability) of
the variable classes that will be used in this thesis.

2.4.1 Intrinsic variables

Pulsating variables

These types of variables periodically expand and contract their surface
layers resulting in changes in their size, effective temperature and spec-
tral properties, which induces in the apparent change in brightness. These
movements are termed pulsations.

Pulsation of stars are caused by the imbalance of two major forces
namely the gravitational force and the radiation and gas pressure from the
production of photons in the core by fusion processes. However, pulsation
is not due to increased radiation pressure from higher rates of fusion in
the core, which is constant, but instead from variations in the rate at
which the radiation can escape from the star. Pulsation as described in
Section 2.3 is the main variability mechanism in the instability strip of the
HRD. Pulsating variability can nevertheless also occur in other regions of
the HRD, such as in B-type main sequence pulsators and subclasses of
white dwarfs. In these cases,the heat engine in the background is usually
similar to the one in the instability strip, but the element acting as the
heat valve regulating the oscillation is different.
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Some of the pulsating variable classes, that have been used in our work,
has been listed below.

α Cygni stars (ACYG)

Variables of the α Cygni type or ACYG, exhibit non-radial pulsations i.e.
some part of the stellar surface moves inwards while others move out-
wards simultaneously. They are blue super giant variables of spectral
types B or A. Variations in amplitudes are of the order of 0.1 magnitudes,
and are often multiperiodic. This is caused by the superposition of many
oscillations with close periods. Periods range from days to weeks.

β Cephei stars (BCEP)

β Cephei, or BCEP, are pulsating variables with periods of 0.1 to 0.3 days.
They have spectral types B0.5−B2 and are found above the main sequence
on the H-R diagram. They exhibit small light amplitudes and lie in the
upper high temperature part of the main sequence in the H-R diagram.
The light amplitudes go from 0.01 to 0.3 magnitudes, in V. The majority of
these stars show radial pulsations, but some display nonradial pulsations.
Most of these stars are multiperiodic.

Cepheids

Cepheids are yellow super giant variables with periods of 1 to 100 days
or more. Light curves produced by Cepheids reveal a quick increase in
brightness followed by a much slower decline, generating unique curves
like sharp fins. Their amplitude range is typically 0.5 to 2 magnitudes. The
spectral class of a Cepheid actually changes as it pulsates, being about an
F at maximum luminosity and down to a G or K at minimum.

There are in fact two types of Cepheids, the original Type I or classical
Cepheids of periods ranging from days to months, and the slightly dimmer
type II with periods between 1 and 50 days. Both types are located in a
region of the H-R Diagram called the instability strip. The difference is
in the chemical composition with Type I stars containing more number of
heavier elements than hydrogen and helium than the Type 2 Cepheids.
The light curves of these two classes can also be very similar, but can be
distinguished by fourier decomposition.

1. Type I classical Cepheids

These are young stars, more massive than the Sun. This class of
Cepheids have a period between 5 and 10 days and an amplitude
range of 0.5 to 2.0 magnitudes in visible light. They are 1.5 to 2
magnitudes more luminous than Type II Cepheids.
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One of the reasons why the classical Cepheids are extremely popu-
lar, is because of their period-luminosity relationship (Leavitt (1908)
Leavitt and Pickering (1912)).

After determining the luminosity from the period observed, the in-
verse square law of brightness is used, which states that the appar-
ent brightness of a source is inversely proportional to the square of
its distance, and hence we can easily determine the distance of the
stars and place them in the cosmic map.

Some of the Type I Cepheids in our work are the δ Cepheids, DCEP
and DCEPS.

δ Cepheid stars (DCEP and DCEPS)

DCEP stars are type I Cepheids that are present in open clusters and
are relatively young objects that have left the main sequence and
evolved into the instability strip of the Hertzsprung-Russell diagram,
while the DCEPS stars have light amplitudes less than 0.5 magni-
tudes in V (less than 0.7 magnitudes in B) and almost symmetrical
light curves. Their periods never exceed 7 days.

2. Type II Cepheid stars (CW)

Type II Cepheids are older than Type I Cepheids, and they have
lower mass, typically 0.5 to 0.6 solar masses. They have an am-
plitude range of 0.3 to 1.2 magnitudes. Population II Cepheids are
usually observed further from the plane of the Milky Way Galaxy, in
orbits which are not circular and in the plane. Type II Cepheids have
periods that range from 1 to 50 days. There exist two sub-groups:
stars with periods from 1 to 7 days are called BL Herculis stars, while
longer-period stars are termed W Virginis. The General Catalogue of
Variable stars (GCVS) classifies the former as CWB, and the latter as
CWA.

As with the Type I Cepheids they also display a similar well-defined
period-luminosity relationship and can be used for distance determi-
nation.
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δ Scuti stars, (DSCT and DSCTC)

Variables of the δ Scuti type are of spectral types A0-F5 III-V displaying
small light amplitudes in V and periods from 0.01 to 0.2 days. The shapes
of the light curves, periods, and amplitudes usually vary highly. Many of
these stars are multiperiodic. Period determination is usually difficult for
these stars due to their small amplitude and multiperiodicity. They are
usually found in the downward extension of the Cepheid instability strip,
where it crosses the densely populated main sequence.

DSCTC are low-amplitude group of δ scuti variables (light amplitude
less than 0.1 magnitudes in V). The majority of DSCTCs are stars of lumi-
nosity class V.

γ Doradus stars (GDOR)

γ Doradus stars are a homogeneous group of variables with spectral types
of F0-F2. They are non-radial pulsators, dwarfs (luminosity classes IV and
V) from spectral types A7 to F7 showing one or multiple frequencies of
variability. Amplitudes do not exceed 0.1 magnitudes and periods usu-
ally range from 0.3 to 3 days. They lie at or just beyond the Delta Scuti
instability strip in the H-R diagram.

RR Lyrae stars (RRab and RRc)

These old population II giant stars are characterized by their short peri-
ods, usually about 1.5 hours to a day and have an amplitude range of 0.3
to 2 magnitudes. Their spectral classes range from A7 to F5. RR Lyrae
stars are less massive than Cepheids but they also follow their own period-
luminosity relationship. They are thus useful in determining distances to
the globular clusters within which they are commonly found to a distance
of about 200 kilo-parsecs. Sub-types are classified according to the shape
of their light curves. RR Lyraes are found on the instability strip of the
H-R diagram.

RR Lyrae can be divided into several classes namely ab and c, on the
basis of their light curves. The light curves of Type a have relatively long
periods, wider ranges and are highly asymmetrical whereas Type b have
longer periods, narrow ranges and less asymmetrical light curves. Type
c are nearly symmetrical and sinusoidal with shorter periods and narrow
ranges. Their amplitudes are not greater than 0.8 magnitudes in V. Nowa-
days, type a and b are usually grouped together, forming the class RRab.
In addition, there exist double-mode RR Lyrae-type variables (denoted by
RRd); however, we did not have this class in our data.

RV Tauri stars

The RV Tauri type stars are radially pulsating yellow super giants having
spectral types F to G at maximum and K to M at minimum light. The



2.4. Classification of Variable stars 31

light curves are distinguished by alternating deep and shallow minima.
The complete light amplitude may reach 3 to 4 magnitudes in V. Periods
between two adjacent primary minima lie in the range 30 to 150 days
(these are the periods that appear in the catalogues). The light curves are
non-sinusoidal, and usually non-repeating. The RV Tauri stars seem to be
old stars, with masses similar to that of the Sun.

Slowly pulsating B stars (SPB)

They are main sequence B2 to B9 stars with 3−9 solar masses. Their
periods may be multiple and range from 0.4 to 5 days and amplitudes are
smaller than 0.1 magnitudes.

Long-period variable stars (LPVs)

Long period variables, or LPVs as the name suggests, are variables whose
light fluctuations are fairly regular and long. It may require many months,
or years, for the completion of a cycle. They are red giant and super
giant stars. A subgroup of them is also called Mira stars after the Mira
Ceti star, in the constellation Cetus, which was the first pulsating variable
discovered. LPVs are cool red giants or super-giants and have periods of
months to years. Their luminosity can range from 10 to 10,000 times that
of the Sun.

Eruptive and cataclysmic variables

Eruptive variable classes consists of stars whose variation in brightness
can be attributed to the violent and dramatic flares that occur on the stel-
lar surface. These changes in luminosity are usually accompanied with
shell events or mass outflow in the form of stellar wind, or interaction
with outside interstellar medium.

For example, stars in the Be variable class show variability but no light
outbursts- In the General Catalogue of Variable stars, Be stars are known
in most cases as Gamma Cassiopeiae (GCAS) variables, after the proto-
type, but others are arbitrarily classified as Be. Be stars are very luminous
variable stars.

On the other hand, cataclysmic variables, or CVs, are binary systems
that consist of a normal star and a white dwarf. They are small and roughly
the size of the Earth-Moon system, with an orbital period in the range
of 1 to 10 hours. The companion star, a more or less normal star like
our Sun, loses material onto the white dwarf by accretion, which is the
accumulation of dust and gas onto larger bodies. The high density of
the white dwarf star causes strong X-ray emission during the accretion
process. There are probably a million of such cataclysmic variables in our
Galaxy4.

4refer to http://www.imagine.gsfc.nasa.gov/science/objects/cataclysmic_

variables.html

 http://www.imagine.gsfc.nasa.gov/science/objects/cataclysmic_variables.html
 http://www.imagine.gsfc.nasa.gov/science/objects/cataclysmic_variables.html
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2.4.2 Extrinsic variables

Eclipsing binaries

These are binary variables with the orbital planes so close to the ob-
server’s line of sight that the stars involved eclipse each other periodi-
cally. The changes of the apparent combined brightness of the system is
because of the geometric effect of eclipses. The period will be the same
as the period of the orbital motion of the components. The light curves
produced by eclipsing binaries show distinctive periodic minima.

There are different eclipsing binaries namely EA, EB and EW. EAs are
are widely separated binaries with spherical or slightly ellipsoidal compo-
nents. Between the eclipses, the light remains almost constant or varies
only insignificantly because of reflection effects, slight ellipsoidality of the
components, or physical variations. The periods can be extremely wide-
ranging from 0.2 to more than 10,000 days and we may not observe a
secondary minima.

EB are eclipsing binaries with ellipsoidal components and light curves
for which it is difficult to specify the exact times of onset and end of
eclipses owing to a continuous change of the apparent combined bright-
ness of the system, between eclipses. Unlike EAs, a secondary minima is
observed in all cases. Periods are longer than 0.5 days and the compo-
nents generally belong to the early spectral types (B to A). Light ampli-
tudes are usually less than 2 magnitudes in V and the components gener-
ally belong to spectral types F to G and later.. These variables have light
curves which are slightly rounded.

EWs are eclipsing systems with periods less than 1 day, consisting of
ellipsoidal components. Like EB it is extremely difficult to to specify the
exact times of onset and end of eclipses. Light amplitudes are usually less
than 0.8 mag in V. However, one of the major properties of an eclipsing
system is that, the observed values for color and absolute magnitude of
the stars can be almost any value as its a combinations of the values of
these two stars. This property of the eclipsing binaries have resulted in
some confusion in classification which is discussed in Section 4.3.

Rotating variables

Stars including the Sun sometimes have conspicuous spots on its surface.
These regions appear darker than the surrounding areas because they
are cooler. As the Sun rotates the spots appear to move across its surface.
One of the sides of the sun can have fewer sunspots than the other, which
hence result in fractionally lower light output than for the other side. This
principle can be extended to other stars, some of which are thought to
have much stronger star-spot activity. Star-spots can be either dimmer
or brighter than surrounding regions. As a star with star-spots rotates,
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its brightness changes slightly. Stars exhibiting such behavior are called
rotating variables.

Ellipsoidal variable stars are components of close binary systems and
their variability is not caused by eclipses. The shape of each star gets
distorted by the gravity of the companion, which will in turn cause its
brightness to be non-uniform. In this case, the close binarity distorts
them and causes temperature inhomogeneity on their surface, making
them brighter at one place and fainter at others.

α2 Canum Venaticorum stars (ACV)

These are the α2 Canum Venaticorum variables and are main-sequence
stars with spectral types B8p to A7p which display strong magnetic fields.
They exhibit magnetic field and brightness changes (periods of 0.5 to 160
days or more). The amplitudes of the brightness changes are usually
within 0.01 to 0.1 magnitudes in V.

BY Draconis stars (BY)

BY Draconis-type variables, which are emission-line dwarfs of dKe−dMe
spectral type showing quasi-periodic light changes with periods from a
fraction of a day to 120 days and amplitudes from several 0.01 to 0.5
magnitudes in V. Some of these stars also show flares similar to those of
eruptive variable stars, and in those cases they also belong to the latter
type and are simultaneously considered eruptive variables.

Ellipsoidal stars (ELL)

Rotating ellipsoidal variables are close binary systems with ellipsoidal
components, which change combined brightness with periods equal to
those of orbital motion because of changes in areas emitting, toward an
observer, but showing no eclipses. Light amplitudes usually do not exceed
0.1 magnitudes in V.

RS Canum Venaticorum stars (RS)

These are binary systems, whose primary component is usually giants
from late F to late K spectral type. A significant property of these systems
is the presence in their spectra of strong Calcium II, H and K emission
lines5 of variable intensity, indicating increased chromospheric activity of
the solar type. These systems are also characterized by the presence of
radio and X-ray emission. Their light curves look like sine waves outside
eclipses, with amplitudes changing slowly with time.

5H and K emission lines are absorption lines in the spectra of the star.
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Table 2.1: List of variable star types and their acronyms that
are used in this thesis (for details about the catalogue refer

to Chapter 4). There are 23 variable star types.

Type
Acronym used in
this thesis

Eclipsing binary EA
EB
EW

Ellipsoidal ELL
Long period variable LPV
RV Tauri RV
W Virginis CWA

CWB
δ Cepheid DCEP
(first overtone) DCEPS
(multi-mode) CEP(B)
RR Lyrae RRAB

RRC
γ Doradus GDOR
δ Scuti DSCT
(low amplitude) DSCTC
β Cephei BCEP
Slowly Pulsating B star SPB
B emission-line star and
γ Cassiopeiae BE+GCAS
α Cygni ACYG
α−2 Canum Venaticorum ACV
SX Arietis SXARI
RS Canum Venaticorum and
BY Draconis RS+BY
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SX Arietis stars (SXARI)

SX Arietis-type variables. These are main-sequence B0p to B9p stars with
variable Helium I and Silicon III lines and magnetic fields. They are
sometimes called helium variables. Periods of light and magnetic field
changes (about 1 day) coincide with rotational periods, while amplitudes
are approximately 0.1 magnitudes in V. These stars are high-temperature
analogs of the ACV variables.
There are various other variable star types but we have only restricted
our discussion to the ones we have considered in our thesis. For further
discussion on the above listed variable class types and other types refer
Percy (2007).

2.5 The Gaia mission

Gaia is a cornerstone mission in the science programme of the European
Space Agency (ESA) to chart a three dimensional map of our Galaxy, the
Milky Way. It is a public spectroscopic survey, targeting observations
about more than 1 billion celestial objects, and opening an unprecedented
insight into the structure and history of the Milky Way (Süveges et al.
(2017)). This amounts to about 1 per cent of the Galactic stellar popula-
tion. The time series of on average will be instrumental in the detection
and analysis of stars that are variable. Studies in Eyer and Cuypers (2000)
predict about 18 million variable stars, including about 5 million ”classic”
periodic variables. This mission aims to develop the largest and most pre-
cise 3D space catalogue ever. Each of the target stars will be scrutinized
and monitored 70 times over a 5 year period.

When combined with Gaia astrometry, the survey will quantify the for-
mation history and evolution of young, mature and ancient galactic pop-
ulations. This alone will revolutionise knowledge of galactic and stellar
evolution. When combined with precision astrometry, delivering accurate
distances, 3D spatial distributions, 3D space motions, and improved astro-
physical parameters for each star, the survey will help us to understand
the formation history and evolution of young, mature and ancient Galactic
populations.

Gaia was launched on 19 December 2013 and arrived at its operating
point a few weeks later. We are expected to receive huge amount of data
regarding the stars in the coming years. In preparation for the analysis
of the data, many studies are devoted to the classification of the observed
objects; our research makes part of this effort, aiming at the development
of flexible semi-supervised and anomaly detection methods.
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2.6 Synopsis

Variable stars are important in the field of astronomy. We briefly men-
tioned how each variable star class is a different physical system with
properties that are not entirely the same. Gaia is expected to give us lot
of data in the next few years and it is vital to astronomical research that
we classify them into different classes effectively. We were able to see
that these variable types have differences in period, amplitude and their
light curves. This will be useful in Chapter 3, where we take the first step
to the development of our classification model, the training data-set.
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Part III

Modeling and methodologies
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Chapter 3

Training data-set

3.1 Introduction

In Chapter 2, we discussed about the different types of variable stars and
why it is important to classify these types of variables. Now, we step into
statistical learning. Friedman et al. (2001) says "Statistical learning refers
to a set of tools for modeling and understanding complex datasets". They
are divided into supervised or unsupervised learning. Broadly speaking,
supervised statistical learning is about building a statistical model for pre-
dicting (or estimating) an output based on one or more inputs. These in-
puts are labeled data that train the model, and are called training data. On
the other hand, with unsupervised learning, the model learns the relation-
ships and structure from the data without any preliminary knowledge. For
a detailed discussion on statistical learning, refer Friedman et al. (2001).

The main prerequisite to an efficient statistical learning model in appli-
cation is the quality of the data used. By quality, we mean how accurately
the data represent the variable type. In supervised learning, the model is
trained with a training data-set and if the data-set doesn’t accurately rep-
resent or characterize the phenomenon that is being studied (i.e. variable
stars, in this thesis), the model predictions will be incorrect. Similarly, in
unsupervised learning, if the model is based on data that does not repre-
sent well enough the relationships and structure of interest, the estimates
won’t be useful for further study of the phenomenon. With the surge of
world wide web and technology, modern day scientists and statisticians
have access to a plethora of data. However the trustworthiness and qual-
ity of these data-sets need to be scrutinized and assessed before using
them in any study.

Variable star classification studies in the past have used the data from
surveys such as (1) ASAS (Pojmanski (2002), Pojmanski (2003); Eyer and
Blake (2002), Eyer and Blake (2005)), (2) OGLE (Debosscher et al. (2009)),
(3) MACHO (Belokurov et al. (2003), Belokurov et al. (2004)) (4) CoRoT
(Deleuil et al. (2009)), (5) Kepler (Blomme et al. (2010)). Some projects
like Pan-STARRS1 (PS1) have contributed heavily in astronomy. Other am-
bitious projects are in their advanced stages of preparation, in particular
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(1) LSST1 and (2) Gaia2 (References are given below). These projects have
different primary goals, but the observational data of unprecedented qual-
ity that they will provide will help in the study of variable stars. These data
help us to characterize different types of variable stars and also help us to
understand the types from different surveys which are like different van-
tage points. Systematic progress in this field facilitates the development
and leads to the contribution of wide range of astronomical topics.

In this chapter, we will be looking closely into the data that we will be
using in Chapter 4 of this thesis. We will discuss on why the data-set is
most reliable (Section 3.2) as a training set and discuss its composition
in detail in Section 3.3. We will list each of the attributes in Section 3.4
and devote the remainder of the hapter to find the smallest attribute set
which will give the best classification results. Finally, we will look into the
structure of our data and also explain the composition of the data that we
have used as our training data-set.

We will be referring to each of the variable star types by their acronyms
used in this thesis (Table 2.1), unless mentioned otherwise.

3.2 Data sources

In this thesis, we have selected the data which were used in Dubath et al.
(2011). These authors selected a subset of stars mainly from the Hippar-
cos catalogue (Perryman et al. (1997)), which is an outstanding training
data-set. Stars in Hipparcos catalogue have reliable types (or classes)
from literature and hence it makes them perfect for training and testing
our supervised classification model in Chapter 4, semi-supervised classifi-
cation model in Chapter 5.

Dubath et al. (2011) revised the classes of the training data originating
from Hipparcos according to more recent information, mainly from the In-
ternational Variable Star Index (Watson et al. (2009)) catalogue from the
American Association of Variable Star Observers (AAVSO catalogue here-
after). This was because the variability types provided in the Hipparcos
periodic star catalogue were mainly taken from the literature available at
the time of publication (1997). Also some types from personal communi-
cations with Lebzelter, De Cat and Romanyuk and two types from Eker
et al. (2008) were also included in the training data-set, as it was based
on experience by specialists.

Table 3.1 gives the list of variable star types, the number of instances
for each of the types and their references. Some of the types with very
few instances or types are similar from the viewpoint of the statistical
learning methods were combined together to form a single class; these
combinations are denoted by the + sign between the variable type names,

1http://www.lsst.org/lsst
2http://www.rssd.esa.int/Gaia



3.2. Data sources 41

e.g. BE+GCAS, RS+BY. Before we detail our training-data in Section 3.3,
let us have a closer look at the main catalogues that are used in our work,
namely Hipparcos and AAVSO.

3.2.1 Hipparcos Catalogue

The Hipparcos space astrometry mission was a European project of the
European Space Agency (ESA) which pinpointed the positions of more
than one hundred thousand stars with high precision and more than one
million stars with lesser precision. Launched in 1989, it was the first to be
dedicated to measuring the positions, distances, motions, brightness and
colours of stars (Perryman (2010)).

The satellite observations relied on a pre-defined list of target stars,
known as the Hipparcos-Input Catalogue. This input catalogue was com-
piled over the period 1982−89 (Turon et al. (1992), Turon et al. (1995)), fi-
nalized pre-launch, and published both digitally and in printed form. Con-
straints on total observing time, and on the uniformity of stars across the
celestial sphere for satellite operations and data analysis, led to an input
catalogue of some 118,000 stars.

Every star in this predefined star list was scanned about 100 times
over the mission’s span of 3.5 years. The data collection was completed in
March 1993 and the resulting Hipparcos catalogue of more than 118,200
stars, was published in 1997 (Perryman et al. (1997)).

The Hipparcos catalogue contains 118,204 entries with associated pho-
tometry, among which 11,597 sources are identified as variable: 2,712
and 5,542 of them were published in the periodic and unsolved catalogues
(Perryman (1997)), respectively, and 3,343 objects remained not investi-
gated. In December 2013, ESA launched a successor mission to the Hip-
parcos called the Gaia mission (Section 2.5).

Hence the Hipparcos periodic star catalogue includes some of the best
studied stars and results obtained for these stars can be validated using
many published information. Dubath et al. (2011) calls this catalogue
a "control sample" as this catalogue is particularly useful in evaluating
variable star classification methods before they are be applied in large
surveys.

3.2.2 VSX-AAVSO

VSX3 was initiated by an amateur astronomer, Christopher Watson in re-
sponse to the specific desires of a group of amateur astronomers of the
American Association of Variable Star Observers (AAVSO). It was an an-
swer to the need for a globally-accessible central repository for all up-to-
the-minute information on variable stars, both established and suspected.

3https://www.aavso.org/vsx/index.php?view=about.top
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The VSX is an online medium by which variable star data are made avail-
able, maintained and revised. The validity or the authenticity of the VSX
data is maintained by populating it with the latest findings known to be
accurate and with approved reviewers constantly revising the metadata,
citing sources for any new details and logging the justification for any
changes.

This index uses information from the General Catalogue of Variable
Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and
it is kept up-to-date with the literature with two releases per month. The
release of 13 June 2010 was adopted by Dubath et al. (2011) in their work
and we will use the same in this thesis.

3.3 Data

Hipparcos catalogue and VSX-AAVSO have been used to form our training
set. In Section 3.2.1 we mentioned that out of 11,597 sources that were
identified as variable, 2,712 were listed periodic. Dubath et al. (2011)
formed a training set, which was a subset of Hipparcos stars with most
reliable types available from literature. In this regard, 171 out of 2,712
stars were removed due to incomplete photometric data. Most of them
were eclipsing binaries (152 EAs) with too few Hipparcos measurements
during the eclipses.

Also, each of the Hipparcos data-points were assigned types accord-
ing to the type-assignment process detailed in Dubath et al. (2011):- For
eclipsing binaries and ellipsoidal variables, the Hipparcos periodic star
catalogue was taken as the reference. However, lists of Hipparcos stars of
the types GDOR, SPB and BCEP were provided by personal communica-
tions of P. De Cat and of LPVs by T. Lebzelter, as both of them maintained
up-to-date compilations of literature of these types. For ACVs and SXARIs,
only the Hipparcos stars included in the list of stars provided by I.I. Ro-
manyuk (private communication) were retained. Also, only the subset of
Hipparcos RS and BY stars listed in the third edition of the catalogue of
chromospherically active binary stars (Eker et al. (2008)) were included.

All the stars from the AAVSO catalogue with a type matching any of
the above mentioned types were excluded. For example, a star which was
listed as Mira, SR, LB or SARV in the AAVSO catalogue that was not in
the Lebzelter list of LPV was discarded from the training set. The AAVSO
catalogue was also used to assign a type to the remaining stars from the
Hipparcos periodic star catalogue.

In addition to these, 64 stars with low quality data, star types with
less than 3 representatives, 92 stars with uncertain type, 32 stars lack-
ing good-quality photometric information, 107 stars with missing color
attributes, and combined types (such as an intrinsic variable included in
an eclipsing binary) were also excluded. Hence we have a well-studied
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Table 3.1: This is an extension of Table 2.1. Variability types
included in the training set are listed together with the corre-
sponding number of instances and references. The training
set contains 1661 sources in total. These sources are based
on the type-assignment by Dubath et al. (2011) mentioned in
Section 3.4. The acronym p.c refers to personal communica-

tion. Each of the attributes are defined in Table A.1

Type Type acronym Num Main Reference

Eclipsing binary EA 228 Hipparcos
EB 255 Hipparcos
EW 107 Hipparcos

Ellipsoidal ELL 27 Hipparcos
Long period variable LPV 285 Lebzelter(p.c)
RV Tauri RV 5 AAVSO
W Virginis CWA 9 AAVSO

CWB 6 AAVSO
Delta Cepheid DCEP 189 AAVSO
(first overtone) DCEPS 31 AAVSO
(multi-mode) CEP(B) 11 AAVSO
RR Lyrae RRAB 72 AAVSO

RRC 20 AAVSO
Gamma Doradus GDOR 27 De Cat(p.c)
Delta Scuti DSCT 47 AAVSO
(low amplitude) DSCTC 81 AAVSO
Beta Cephei BCEP 30 De Cat(p.c)
Slowly Pulsating B star SPB 81 De Cat(p.c)
B emission-line star and
Gamma Cassiopeiae BE+GCAS 13 AAVSO
Alpha Cygni ACYG 18 AAVSO
Alpha-2 Canum Venaticorum ACV 77 Romanyuk(p.c)
SX Arietis SXARI 7 Romanyuk(p.c)
RS Canum Venaticorum and
BY Draconis RS+BY 35 Eker et al. (2008)

Total 1661
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Table 3.2: Summary of the data used in this thesis, attribute-
wise. We have listed all the 45 attributes from the data and

their range, quartiles, median and mean.

Attributes Minimum 1st quartile Median Mean 3rd quartile Maximum

p2pScatterOnDetrendedTS 0.0000409 0.0011554 0.0111440 0.0630335 0.0451677 1.1778933
p2pScatterOnFoldedTS 0.0000166 0.0005658 0.0022588 0.0202556 0.0099132 1.7284108
scatterOnResidualTS 0.0000074 0.0002307 0.0008654 0.0105634 0.0045914 0.9795798
Raw_WeightedStdDev 0.005472 0.031716 0.109623 0.224071 0.249317 1.677473
Raw_WeightedSkewness -5.1913 -0.1456 0.2479 0.5679 0.8847 6.3173
Raw_WeightedKurtosis -1.8208 -0.8960 -0.3571 1.1565 0.7624 42.8390
Raw_PercentileRange10 -3.6397 -0.3245 -0.0706 -0.2796 -0.0261 -0.0051
stetsonJ -0.1356 2.1569 5.1688 11.5894 12.3016 130.6171
stetsonJweighted -4.001 1.789 4.362 10.936 11.631 124.777
stetsonK 0.3695 0.7743 0.8203 0.7991 0.8527 0.9637
WstetsonJ -0.1406 2.1252 5.0878 11.3046 12.1372 119.2925
WstetsonJweighted -3.876 1.744 4.244 10.624 11.343 118.789
WstetsonK 0.3257 0.7765 0.8241 0.7981 0.8560 0.9688
logPnonQso -237.793 -55.727 -38.969 -46.362 -29.244 -9.962
logPqso -261.331 -80.385 -56.359 -63.504 -38.358 -9.954
qsoVar 0.4226 3.7046 12.9549 34.3229 40.6568 1125.1889
nonQsoVar 0.6899 1.2910 2.6115 12.5887 9.9796 311.5876
LogPeriod -1.2954 -0.3481 0.1436 0.4324 0.8983 2.7959
LogAmplitude -2.0046 -1.1107 -0.4782 -0.5522 -0.1087 0.7696
HarmNum 0.000 0.000 1.000 2.046 3.000 20.000
A11 0.004947 0.034916 0.124919 0.328561 0.324545 2.738420
A12 0.00000 0.00000 0.02677 0.06222 0.08987 0.74621
PH12 -3.1359 -1.5627 1.5708 0.3153 1.5708 3.1415
A13 0.00000 0.00000 0.00000 0.02839 0.03751 0.49180
PH13 -3.14147 -0.59898 0.00000 -0.09385 0.00000 3.14155
A14 0.00000 0.00000 0.00000 0.01305 0.00000 0.59525
PH14 -3.1314 -1.5708 -1.5708 -0.8102 -0.3786 3.1267
A15 0.000000 0.000000 0.000000 0.006067 0.000000 0.363823
PH15 -3.124 3.142 3.142 2.491 3.142 3.142
logA11minusA 0.000000 0.000000 0.002478 0.007015 0.009518 0.134241
logA12_A11 0.00000 0.00000 0.08070 0.08734 0.14636 0.48048
logA13_A12 0.0000 0.0000 0.0000 0.0834 0.1862 0.7036
absGlat 0.0144 4.5693 15.4296 22.4868 35.8289 87.4443
Glat -85.1703 -15.8684 -0.8604 0.1754 14.8707 87.4443
Glon 0.1603 95.0324 184.7437 185.1528 281.9354 359.5429
Parallax -31.670 1.020 2.840 4.248 5.920 84.580
Absolute_Mag00 -10.4671 -1.1552 0.5657 0.3464 1.9949 8.3295
BV_Color -0.3100 0.1330 0.4120 0.5992 0.9910 5.3000
VI_Color -0.2700 0.1500 0.4800 0.8712 0.9900 9.0300
JmK -1.2990 0.0830 0.2640 0.4545 0.6670 6.8890
JmH -0.4990 0.0360 0.1950 0.3051 0.4860 1.8230
HmK -1.2080 0.0300 0.0760 0.1494 0.1900 6.7670
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and reliable training data-set of 1,661 stars. Refer to Table 3.1 for the
number of instances of each of the types and the main source of reference
of these types. Also Table 3.2 gives the summary of the attributes that
we have used for our analysis. For more details on the type-assignment
process refer Dubath et al. (2011).

3.4 Class attributes

There are 45 attributes in our data-set, which are listed in Table A.1 in
Appendix A and Table 3.2, along with a short description. Some of the at-
tributes describe the stellar properties, like mean color, absolute bright-
ness, while others reflect the characteristics of the light curve such as
the period of the light curve, the amplitude etc. Further attributes de-
scribe the shape of the folded light curves. Broadly, these attributes can
be divided into five based on what they summarize, as listed in Table A.2.
Further in-depth description of attributes from the Hipparcos catalogue
are available in ESA (1997a) and ESA (1997b).

3.4.1 Attribute selection

Effective classification algorithms require the selection of a subset of at-
tributes which will provide the most accurate classification. The search is
for the simplest and smallest plausible subset of features which effectively
predicts the classes in the population. The attributes chosen must be able
capable of characterizing the stars as thoroughly as possible. Otherwise,
the predictors will distort the classification to give biased results. Also, as
the number of attributes or variables decreases, so does the CPU cost of
classification and the time taken for classification. In this section our aim
is to list the most effective attributes for classification.

In the following discussion, we use a measure for variable importance
from the random forests literature (refer to Section 1.2.4 and Breiman
(2001)) to determine the best attributes for our classification model. That
is, we use the mean decrease in accuracy measure as our variable impor-
tance measure. It is computed by permuting out-of-bag (OOB) (Section
1.2.4) data. For each tree, the prediction error on the out-of-bag sample
data is recorded. The same is done after permuting the data of each pre-
dictor variable. Now that the data in the predictor variable is permuted
or shuffled, the accuracy is affected. The difference between the two
accuracy is averaged over all the trees and normalized by the standard
deviation of the differences, to get the variable importance measure. The
attributes are sorted by the decreasing values of mean decrease in accu-
racy, to get the list of attributes ranked by importance. We will refer to
this list as attribute-rank-list in this thesis. The R package randomForest
is used to achieve this.
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Towards a minimum attribute list

The procedure we described earlier helps us to get an attribute-rank-list
of the most important attributes for classification. The importance value
decreases but the question is where should we cut the list. In other words,
what is the smallest set of attributes that will give us still reliable results?.
For this we construct a scoring system as follows.

Figure 3.1: Classification accuracy plotted against the
attribute-set count. For example the classification accuracy
rate for the attribute-set of count six, i.e. the attribute set
containing the first six attributes ranked by importance, is
around 0.77. Here we see a steep rise in classification accu-
racy rate till attribute-set count 6 and after which it plateaus.
These accuracies are plotted by the randomForest package.

We will apply a forward selection strategy for attribute set selection. We
start with the top two ranked attributes from the attribute-rank list say,
{A1, A2}, run the random forest classifier with these attributes and record
the classification accuracy, for the entire data set. We repeat these steps
again, but this time by adding the next ranked attribute to the training
set, to form the attribute-set {A1, A2, A3} of attribute-set count 3 and re-
peat the steps again, to get the classification accuracy or the classification
accuracy rates. Figure 3.1 gives the plots of the classification accuracy
rates against the attribute-set count. The classification accuracy rates are
plotted against the attribute-set-count in Figure 3.1. The rates go over
75 percent after the attribute set count crosses five, but plateaus around
80 percent from 8 onwards. This is a variant of the method which was
adopted in Dubath et al. (2011).

However, though the classification accuracy rates are almost the same
after the attribute-set count crosses 6, we have decided to select 16 as the



3.4. Class attributes 47

attribute set count. These are the 16 most important attributes according
to the attribute-rank-list we mentioned earlier since some of the attributes
between ranks 6 and 16 are known to be astrophysically meaningful, for
instance the amplitude of the light curve (ranked 9th), the relative phase
PH12 of the first two harmonic components of the light curve (ranked
14th) or the B − V color (ranked 7th). For instance amplitude of the light
curve is ranked 9 and PH12, the relative phase of the second harmonic
term is ranked 14, B-V color index is ranked 7.

Figure 3.2 display the distribution of the most important attribute, Log
(Period) for each of the variability type. The distribution of the remaining
15 of the attributes can be found in Appendix B (Figure A.2).
Let us look at some of the combinations of the 16 attributes used in our
thesis. Figure 3.3 and 3.4 gives a 2-D plot of the different combinations of
attributes. Each of the colors represent a variable class or type. It can be
seen that when Log(Period) is plotted against Log(Amplitude) it provides
much better segregation between the variable types.

If we compare the data-plots Figure 3.3 and the Log (period)-Log (ampli-
tude) plot in Figure 3.4, we see much segregation among classes. In the
former, apart from DSCT, DSCTC and LPV the other classes were relatively
close in period. However when we combine the attributes, Log (period)-
Log (amplitude) as in Figure 3.4, we see that many of the classes are
segregated. For instance, DCEP and RS+BY classes, which have closer
periods are well segregated in Figure 3.4.
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Figure 3.3: 2-D plot of different combinations of attributes.
Each of the colors represent a variable star class or type.
(Top) log (amplitude) plotted against the color index, B-V
Color. (Bottom) JmK plotted against log (period).Also the type
refers to the variable star types. Attribute descriptions are

found in Table A.1
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Figure 3.4: (Top) Raw percentile range plotted against the
decadic log of the period. (Bottom) Decadic log of the ampli-
tude plotted against the decadic log of the period. Here we
see that the log (period) plotted against log (amplitude) pro-
vide an acceptable segregation between many of the classes.
Also the type refers to the variable star types. Attribute de-

scriptions are found in Table A.1.
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Dealing with multicollinearity

Figure 3.5 gives a correlation plot of all these star attributes that we have
shortlisted so far. Some of the attributes are highly correlated like JmK,
JmH, V-I Color and B-V Color. These are all attributes that indicate the
color of the star, and their correlation is due to the fact that the spectrum
of the stars can roughly be approximated by a black-body spectrum.

Figure 3.5: Correlation plot of the first 16 attributes selected
by attribute importance.

It should be noted that correlations between some of the attributes are
expected and even though they are correlated each of these attributes
contain pieces of information that can be useful in the classification. How-
ever, It could also be useful to investigate the minimum set of attributes
that are uncorrelated, if we ignore the astronomical insight. In this re-
gard, we used the attribute-rank list and selected the first 8 uncorrelated
attributes as follows.

• Step 1 : Consider the first ranked attribute A1. It automatically
becomes a part of the final set of attributes. We check the correlation
of A1 with the other attributes.
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• Step 2 : We check the correlation for every attribute with A1, i.e.
cor(A1, Ad) where d is the attribute indicator. We delete those d for
which cor(A1, Ad) > 0.8. Hence we form the subset of the attributes.

• Step 3 : In this new list, we take the next ranked attribute and
repeat Step 2 for this attribute.

• Step 4 : Steps 1 to 3 continues till we get the final set of uncorre-
lated attributes.

Our uncorrelated list of attributes are Log Period, JmK, Percentile range
10, raw weighted skewness, log A12_A11, qsoVar, wstetsonK and PH12
(Attribute descriptions are found in Table A.1). However a word of cau-
tion. If we use the above procedure to take only the uncorrelated at-
tributes, this deletes many of the attributes that are known to be astro-
physically meaningful. For instance, B-V color have been removed and it
is an important attribute. Nevertheless, it will be interesting to see how
the model performs with just these attributes in Chapter 4.

3.4.2 Selected attributes

Hence our 16 most important attributes are defined below in the order
of importance. These are Log(Period), JmK , Raw_PercentileRange10, V_I
Color. Raw_WeightedSkewness , BV_Color, A11, Log(Amplitude), Raw_Wei-
ghtedStdDev, nonQsoVar, logA12_A11, qsoVar, WstetsonK, PH12 and p2pS-
catterOnDetrendedTS. The descriptions of these attributes are found in
Table A.1.
Dubath et al. (2011) lists 14 most important attributes and it will be worth-
while to compare their list with ours.

A quick comparison of the lists of attributes chosen by Dubath et al.
(2011) and the list chosen in our thesis is given in Table 3.3. Though
we have used only one attribute that summarize the different steps of
modeling of the light curves, we have used more attributes that describe
the physics of the stars. The attributes that summarize the distribution
of the observed magnitude of the light curve have been included more in
the list and also the attributes that explain the stochastic variability of the
light curves. The authors of Dubath et al. (2011) have added a few more
attributes and more about it can be read in Dubath et al. (2011).

3.5 Synopsis

In this chapter, we emphasized the importance of quality data for statis-
tical learning. We showed that our training data-set represents the best
available knowledge about the variable star classes that will be used in
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Table 3.3: Comparison of the attribute lists of this thesis and
of Dubath et al. (2011)

Attribute type Attributes
Used by
Dubath et al. [2011]

Used in this thesis

Attributes that summarize
the improvements after
different steps of modelling
of the light curves

p2pScatterOnDetrendedTS
p2pScatterOnFoldedTS
scatterOnResidualTS

All of them
Only
p2pScatterOnDetrendedTS

Attributes related to
astrophysics
of the star

absGlat
Glat and Glon
Parallax
Absolute_Mag00
BV_Color
VI_Color
JmK, JmH and HmK

Absolute_Mag00
V_I Color

Absolute_Mag00
VI_Color
BV_Color
JmK
JmH

Attributes that summarize
the distribution of the
observed magnitudes

Raw_WeightedStdDev
Raw_WeightedSkewness
Raw_WeightedKurtosis
Raw_PercentileRange10
StetsonJ
stetsonJweighted
stetsonK
WstetsonJ
WstetsonJweighted
WstetsonK

Raw_WeightedSkewness

Raw_WeightedSkewness
Raw_PercentileRange10
Raw_WeightedStdDev
WstetsonK

Attributes that quantify
the strength of a
stochastic variability
of the light curve

logPnonQso
logPqso
qsoVar
nonQsoVar

None
nonQsoVar
qsoVar

Attributes related to
the period search
and harmonic modeling
of the light curve

LogPeriod
LogAmplitude
HarmNum
A11, A12, A13, A14, A15
PH12, PH13, PH14, PH15
logA11minusA
logA12_A11
logA13_A12

LogPeriod
LogAmplitude
PH12
logA12_A11

LogPeriod
LogAmplitude
PH12
logA12_A11

Other attributes
Percentile90
P2P slope

All of them None
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the next chapter. We also selected the 16 best attributes for classifica-
tion by an importance measure. This set of attributes form will be used in
Chapter 4 to reduce the dimension of the data.

We listed out the set of uncorrelated attributes. We will be using these
attributes for classification and we will also compare the performances of
classification when each of these two attribute sets are considered.
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Chapter 4

TSDM model

4.1 Introduction

In Section I, we discussed why we need to classify different types of vari-
able stars. In Chapter 3, we explained the composition of our training
data-set and showed its reliability and quality. This is necessary in the
development of an effective statistical model. After these preliminaries,
in this chapter we present the first statistical contribution of our thesis,
namely the Two Stage Dirichlet Mixture Model (TSDM model hereafter).
The TSDM model is a supervised classification model. As we briefly men-
tioned in Chapter 3, a supervised classification model is a model that ana-
lyzes the training data and produces an inferred or a trained model which
can be used to classify new data-points into classes. We will discuss this
in detail below.

The discussion in this chapter is divided into sections as follows. Since
the TSDM model uses is the Dirichlet distribution (Section 1.2.3), the data-
points needs to be transformed into the open simplex (Section 1.2.3). We
present this in Section 4.2, along with the model definition. Section 4.2
discusses about the stages of the TSDM model and parameter estimation.
Section 4.3 is devoted to the data studies after classification using the
TSDM model and we address some questions as in, why we decided to use
the Dirichlet distribution and if we can find sub-classes with our model,
in the end of Section 4.3 including comparison with the random forest
classifier (Section 1.2.4) in Dubath et al. (2011).

4.2 Model

Let Y1,Y2, . . . ,Yn denote a random sample of size n, where Yi is a D -
dimensional random vector with probability density function f(yi) on RD.
Let the entire sample be represented by YT = (Y1, . . . ,Yn)T, where the
superscript T denotes vector transpose. Thus Y is an n-tuple of points
in RD and is an n ×D-dimensional matrix and yT = (y1, . . . ,yn)T denotes
an observed sample where yi = (yi1, yi2, . . . , yiD) is the D -dimensional ob-
served value of the random vector Yi.

The K -component TSDM model can be written in the form
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f(yi) =
K∑
k=1

ρk

Jk∑
j=1

πkj
B(αkj)

D∏
d=1

y
αkjd−1
id yi−D ∈ VD−1 (4.1)

where yi and the open D-dimensional simplex VD−1 are defined as in Sec-
tion 1.2.3. Also, ρk and πkj are the such that

0 ≤ ρk ≤ 1 (k = 1, . . . , K)

0 ≤ πkj ≤ 1 (j = 1, . . . , Jk),

where

K∑
k=1

ρk = 1

Jk∑
j=1

πkj = 1

and for αkj = (αkj1, αkj2, . . . , αkjD)T

B(αkj) =
Γ(αkj1) Γ(αkj2) · · ·Γ(αkjD)

Γ(αkj1 + αkj2 + · · ·+ αkjD)
.

We use a D-dimensional labeled data-set Yi as our training data-set which
has K classes or types of variable stars (according to Table 3.1). Then we
fit the training-data to our model specified in Equation (4.1) in two stages
as the name suggests, using maximum likelihood estimation.

In the first stage, each of these K types of variable stars of the train-
ing data-set is fit with a finite mixture of Dirichlet densities i.e. a Jk-
component mixture of Dirichlet densities for the kth variable star type,
k = 1, . . . , K. Unsupervised classification is used to fit the data of each of
the variable types which is detailed in Section 4.2.1 of this chapter. The
component densities of these mixtures are called inner mixture compo-
nents and their mixing proportions are called inner mixing proportions or
weights πkj for the kth variable star type and the jth inner mixture com-
ponent of the class.

In the second stage, these K Jk-component mixture of Dirichlet densities,
become mixture components of an ensemble (or mixture) of all these mix-
tures, which we call the outer mixture. The entire model is called the
two stage Dirichlet mixture model (TSDM) model, which is represented
by Equation (4.1). The mixing proportions of these mixtures are called
outer mixing proportions or weights and the components of the mixture
are called outer mixture components (ρk is the outer mixture proportion
or weight for the kth variable star class or outer mixture). An illustra-
tion of a 2-component TSDM model with J1 = 4 and J2 = 3 can be found
in Figure 4.1. It should be noted that even though in Equation (4.1) we
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Figure 4.1: Illustration of the two stages of the TSDM model
with the first stage positioned at the top and the second stage
positioned at the bottom of the figure. In the first stage, class
1 and class 2 are modeled into a mixture of 4 Dirichlet den-
sities and a mixture of 3 Dirichlet densities respectively. In
the second stage, a mixture of class 1 and class 2 is formed

to get the TSDM model.
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have used the density of Dirichlet distribution to suit the needs of vari-
able star classification, any multivariate density can be used in practice.
Later in Section 4.3.5, we will use multivariate Gaussian densities as the
components of the inner mixture and compared it with Dirichlet distribu-
tions. Also, as mentioned in Chapter I we decided to use the probability
scale so as to transform the data into a common scale of reference and
Dirichlet distributions can be considered as a natural choice for modeling
probabilities.

We present now the stages of the TSDM model.

4.2.1 First stage

We discussed earlier that each of the variable star types are fit to a mixture
distribution, in the first stage. However, since Dirichlet densities form the
components of the mixture distribution, we need to transform the data to
to take values in the open simplex (Section 1.2.3), before fitting it to the
mixture.

This transformation is done in two steps. In the first step, the training
data-set is transformed into the probability scale and in the second step
the resulting transformed data-set is once again transformed to belong to
an open-simplex, VD−1. We refer to the final transformed data-set as the
simplex-transformed data-set, in our thesis. Let us look at these steps in
detail.

Transformation to the probability scale

Consider our data-set Y, which is an n-tuple of points in RD as defined in
Section 4.2. The entire data-set can be treated as D uni-variate column
vectors of length n. These vectors will be referred to as attribute-vectors
in this thesis.
Each attribute-vectors are first fit to to an empirical distribution (Ap-
pendix B.3), which is a step function that jumps 1/n in height for every
observation. We then logit transform the empirical distribution, which is
a step function that jumps 1/n in height for every observation, and plot
the sorted attribute-vector data against the logit-transformed jumps. We
fit a cubic smoothing spline to the resulting plot and the transformed
attribute-vector is obtained by taking the inverse-logit transform on the
y-coordinate values of the predicted values of the spline fit.

More about the logit transform, the inverse logit transform are found
in Appendix B.4. An illustration of the transformation into the probability
scale for the attribute, LogAmplitude is given in Figure 4.2. The rea-
son why it is important to transform the data into the probability scale is
briefly discussed in Section 4.3.5.



4.2. Model 59

0.00

0.25

0.50

0.75

1.00

−2 −1 0
decadic log of amplitude (sorted)

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

−2 −1 0
decadic log of amplitude (sorted)

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

PLOT 1 :  
LOG AMPLITUDE DATA AS AN EMPIRICAL DISTRIBUTION 
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Figure 4.2: The empirical distribution of the sorted LogAm-
plitude (decadic log of the amplitude, refer to Table 3.1) at-
tribute data. A cubic spline is fit to the empirical distribution

indicated by the red line passing through the data plot.
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Figure 4.3: (top) The raw data projected onto 2 dimension
(decadic logs of period and amplitude) shows reasonable seg-
regation between the classes. (bottom) The data transformed
according as Section 4.2.1, into the probability scale. The
transformation of log period is not shown here but follows

the same procedure.
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Transformation to the simplex

Once we transform the attribute-vectors into the probability scale, we
have the transformedD dimensional data-set y = (yT

1 , . . . ,y
T
n )T where yi =

(yi1, yi2, . . . , yiD), for each i = 1, . . . , n.
However, as we discussed earlier, we need to transform the data into a
simplex (or simplex transform hereafter), as Dirichlet distributions form
the components of our TSDM model. In this thesis we will be using two
types of transformations to transform the data into a simplex, which is
detailed below. There are two types of transformations that will be con-
sidered, namely STT1 and STT2. STT1 is a straightforward and natural
choice for transformation while STT2 is a modification of the STT1 trans-
formation. In the below discussions we have shown that STT2 holds a
slight advantage over STT1. Let us start our discussion by looking at
STT1 first and the advantages STT2 has over STT1.

Simplex transformation type-1 (STT1)

Consider the ith data-vector, yi. We take the sum of the vector components
(yi1, yi2, . . . , yiD) as follows

yi
(sum) =

D∑
d=1

yid

Each of the vector components is then divided by yi(sum) to get the simplex
transformed data-vector. The same is done for the other n − 1 points to
get the transformed data-set. The transformed data-set will be denoted by
Y as well, in this thesis. Figure 4.4 compares the STT1 transformed data
against the probability transformed data, in a 2-D projection. In STT1,
we see that the variable star class with high values of the decadic logs of
period and amplitude namely LPV (top right of the blue-shaded region in
Figure 4.4) is well segregated in the raw data. However when the data is
simplex transformed, we notice a distortion in the data, when projected
onto the two dimension, and this is because of the following reason.
STT1 transformation ensures that the sum of the components of each of
the data-vectors is equal to one, i.e. yi1 + yi2 + · · · + yiD = 1, for the
ith STT1 transformed data-vector. The two dimensional projection of the
same would be yi1 + yi2 = 1, which is a straight line as shown in Fig-
ure 4.4 (In the figure the line is represented as x + y = 1). So all the
transformed data-vectors fall into the region yi1 + yi2 < 1, as we are con-
sidering the projection of a 16-dimensional simplex into two dimensions.
In effect, the data-vectors in a unit square gets transformed into a right-
angled isosceles triangle and hence gets distorted. In Figure 4.5, where
the STT1 transformed data is shown in the right, is an enlargement of the
STT1 transformed data in Figure 4.4. We see this point illustrated in Fig-
ure 4.4 as the data-points (x, y) such that x+ y > 1 are found in classes in
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Figure 4.4: Plot which shows the distortion due to compres-
sion of our work, with a 2D projection of the 16 dimensional
transformed data.(Top) Two-dimensional projection of the
data-set transformed to probability scale. The 2-dimensional
projection of transforming the data into the simplex using
STT1 would be to confine the data from the blue-shaded re-
gion to the unshaded area. (Bottom) This is the simplex trans-
formed STT1 data and apparently the structure of the data is
distorted due to the compression). The compression in data

is shown in Figure 4.5.
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Figure 4.5: (Top) The probability scale transformed data
needs to be transformed to the simplex and for the 2-D pro-
jection in this case, within x + y < 1. The blue and green
shaded region are variable type classes which are clearly
outside x + y < 1. For data within the region x + y < 1,
the data is transformed proportionally, while for data outside
the region, it gets compressed. Hence the classes shaded in
green in blue seem distorted. This is shown in the plot on the

(Bottom)



64 Chapter 4. TSDM model

the yellow and green shaded region. However, as they are transformed,
the structure of these classes seem distorted due to the compression.

Simplex transformation type-2 (STT2)

We observe the problem of distortion when we transform the data to the
simplex. Though this wouldn’t necessarily mean that the classes aren’t
well segregated in the 16 dimensional STT1 transformed data, it would
be worthwhile to transform the data in such a way that the structure is
preserved. This is the motivation for the simplex transformation type-2
(STT2 hereafter). The transformation steps are as follows.
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Figure 4.6: For the 2-D projection of our data-set, the struc-
ture of the data is preserved by the STT2 transformation.
Unlike STT1 the high period and high amplitude classes are

not distorted.

Consider the ith data-vector, yi and the sum of its components y(sum)
i , as

defined in the definition of STT1. First y(sum)
i is subtracted from the di-

mension D, to form a new attribute as follows, y(Dummy)
i = D − y(sum)

i . This
new attribute is appended to the data-vector to get a D + 1 dimensional
data-vector. Finally, we transform the D+1 dimensional data-vector by di-
viding it by D, yappended

i , by projecting the D + 1 dimensional data-vector

back to D as given below by excluding y(Dummy)
i /D.
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That is,yappended
i =

(
yi1/D, yi2/D, . . . , yiD/D, y

(Dummy)
i /D)

)
has been con-

structed to be on the simplex, and does contain the sum of all probabili-
ties, avoiding distortion.
Like we mentioned earlier, the advantage of STT2 over STT1 is that the
sum of the components of the data-vector is preserved and hence the seg-
regation between the classes will not be distorted as in STT1. Figure 4.6
gives the plot of the STT2 transformed data-set, projected in two dimen-
sion. In Section 4.3, we compare the results obtained from these two
transformations.

Now that the data-set has been simplex-transformed, we continue with
the TSDM model. As we will use the simplex-transformed data-set here-
after, we will refer it simply as data-set from now onwards, unless stated
otherwise. As we discussed in Section 4.2, we will use unsupervised clas-
sification methods to fit each of the K classes of variable stars with a
mixture of Dirichlet densities using the Expectation Maximization (EM)
algorithm (refer to Appendix B.1 for details).

Estimation of parameters

Let Y1,Y2, . . . ,Yn denote our labeled data-set of size n, and let nk be the
number of data-vectors or points in the kth variable type (k = 1, . . . , K)
and y = (y1, . . . ,yn)T be the observed sample where yi = (yi1, yi2, . . . , yiD)

is the D -dimensional observed value of the random vector Yi. Hence for
the kth class, our data-set has nk ×D-dimensional data-points and we use
the following steps of the EM algorithm.

• Step 1 : First we set the number of components of mixtures, say Jk
(for Jk = 1 it is not a mixture as it means only 1 component). Thus
in effect, we are using the EM algorithm to fit the data-set to an
Jk-component mixture of Dirichlet densities.

• Step 2 : We then form an initial value vector of the parameters
of Dirichlet densities. As we are trying to fit the data-set to an Jk-
component mixture of Dirichlet densities, we have Jk Dirichlet pa-
rameters and Jk mixing proportions or inner mixture probabilities.
They are as follows.

α0
k = (α0

k1,α
0
k2, . . . ,α

0
kJk

),

where

α0
kj = (α0

kj1, α
0
kj2, . . . , α

0
kjD)T

and

Π0
k = (π0

k1, π
0
k2, . . . , π

0
kJk

).
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• Step 3 : We update the mixing proportions as follows. (This is the
same as the E step of the EM algorithm (Appendix B.1).)

π1
kj =

f(yi|α0
k,Π

0
k)π0

kj∑Jk
j=1 f(yi|α0

k,Π
0
k)π0

kj

• Step 4 : In this step, the Q function, Q(θk|θ(1)k ) (defined in (Appendix
B.1)) is maximized where θk =

(
αk,Πk

)
and

α1
k = arg max

αk

Q(θk|θ(1)k )

• Step 5 : Termination step : We conclude the iterative process if
Q(θk|θ(t)k ) ≤ Q(θk|θ(t−1)k ) + ε, for epsilon below some preset threshold.
If the termination step holds, then we say that the EM algorithm has
converged. We proceed the steps 1-6 for different initial value sets
till convergence and choose the best model from these as follows.
Please note that (t) denotes the iteration number

• Step 6 : Proceed to step 2 and repeat till Termination step holds.

• Step 7 : Computation of BIC : At convergence, the optimum val-
ues, α(t)

k and Π
(t)
k are used to compute the Bayesian Information

Criterion (BIC hereafter) (refer to Appendix B.5).

Also, after convergence for Jk, we choose other values for Jk to and pro-
ceed from steps 1 to 7 till convergence, and finally compare the BIC values
of the best models (according to Step 7) for each value of Jk and select
the lowest BIC values among the different Jk values. The values of Jk
is increased till a certain maximum value which is set according to intu-
ition, but it is roughly directly proportional to the number of data-points
in class k, i.e. if n3 > n2 then max(J3) > max(J2). It has to be noted that
we haven’t imposed any restrictions on the πjk’s while the EM algorithm
searches for the maximum, and we evaluate the maximum for different
initial values (Step 2) and Jk values to avoid the algorithm to converge to
a local minima.

The same is done for each of the K classes and at the conclusion of
the first stage of the TSDM model, we have fit each of the K classes of
variable types into a finite mixture of Dirichlet densities. Let us proceed
to the second stage of the TSDM model.
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4.2.2 Second stage

In the second stage, an ensemble (or mixture) of each of the K mixtures of
the first stage is formed by taking a mixture of these mixtures to form the
TSDM model as shown in Equation (4.1) with outer mixture probabilities
ρ = {ρ1, ρ2, . . . , ρK}. In this stage we update the outer mixture probabili-
ties using a prior distribution on these proportions, explained as follows.

Consider the data-set, y = (yT
1 , . . . ,y

T
n )T yi = (yi1, yi2, . . . , yiD). Let S =

(S1, S2, . . . , Sn) be defined as Si = k ⇒ yi ∈ kth variable type. Let further-
more I : (Y, k)→ {0, 1} be the indicator function defined as follows

I(Si = k) :=

{
1 if yi ∈ kth variable class,
0 if yi /∈ kth variable class.

Finally let Θ =
(
θ1, θ2, . . . , θK

)
with θk =

(
αk,Πk

)
as defined in the previous

section. Then to specify f(y,S|Θ,ρ) we have

f(y,S|Θ,ρ) = f(y|S,Θ,ρ)p(S|Θ,ρ) =
n∏
i=1

f(yi|Si,Θ,ρ)p(Si|Θ,ρ)

Because f(yi|Si = k,Θ,ρ) = f(yi|θk) and P(Si = k|Θ,ρ) = ρk, the complete-
data likelihood function reads :

f(y,S|Θ,ρ) =
n∏
i=1

K∏
k=1

[
f(yi|θk)ρk

]I(Si=k)
=

K∏
k=1

[ ∏
i;Si=k

f(yi|θk)
] K∏
k=1

ρnk
k

=

{ K∏
k=1

[ ∏
i;Si=k

f(yi|θk)
]}
×
{ K∏
k=1

ρnk
k

}

∝
{ K∏
k=1

[ ∏
i;Si=k

f(yi|θk)
]}
× L(ρ|S) (4.2)

Due to the constraint
∑
ρk
k

= 1, the group sizes, nk, k = 1, . . . , K, are not

independent. The complete data-likelihood, when regarded as a function
of ρ = {ρ1, ρ2, . . . , ρK}, is the density of a Dirichlet distribution and thus
the conjugate prior distribution family is again the Dirichlet-distribution,
according to Frühwirth-Schnatter (2006) and Bernardo and Girón (1988).
Thus, we define the conjugate prior for the outer mixture probabilities
pprior(ρ) as follows,
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pprior(ρ) ∼ Dir(e1, e2, . . . , eK), ei ∈ VK−1

where the ei’s are set after inputs from scientific collaborators. For more
on this, the reader is referred to Chapter 7. In our model we used a non-
informative prior which is discussed in Section 4.3.1.
Then the posterior for the outer-mixture probabilities, ρ is given by,

p(posterior)(ρ|S) ∝ L(ρ|S)× pprior(ρ)

∝
K∏
k=1

ρnk
k ×Dir(e1, e2, . . . , eK)

∝
K∏
k=1

ρnk+ek−1
k

Therefore,

ρ(est) = ρ|S ∼ Dir(e′1, e
′
2, . . . , e

′
K)

where e′k = ek + nk with k = 1, . . . , K

Thus our estimated ρ is ρ(est) = (ρ
(est)
1 , ρ

(est)
2 , . . . , ρ

(est)
K )

Any new data vector y+ ∈ RD, can be classified to the variable type C+

where,

C+ = arg max
k

P(S+ = k)

where P(Si = k) is such that

P(Si = k) =
f(yi|Θk, Si = k)ρ

(est)
k∑K

k=1 f(yi|Θk, Si = k)ρ
(est)
k

Now let us look into the application of the TSDM model.

4.3 Application and Discussion

In the previous sections, we presented the TSDM model and how each
of the stages are estimated. In this section we use this model to fit the
data-set we discussed in Chapter 3 — the training-set developed from the
Hipparcos catalogue. Table 4.1 gives us a summary of how the test and
the training data-set is divided, and the number of variable types under
consideration. 70% of the data was considered as training data and 30%
of the data as test-data.
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Table 4.1: Summary of the test and training data-set

Type Notation Freq

Number of data-points in training-set n 1162
Number of variable types K 23
Number of data-points in test data-set 499

4.3.1 Application Case 1

We discussed in the previous sections on the different attribute sets that
can be considered, like correlated and uncorrelated (Section 3.4.1) and
the different types of simplex-transformations, STT1 and STT2 (Section
4.2.1). Lets see how our model works for each of these cases.

Below we list out the model conditions for the first case,

Model to which the data are fit TSDM model

Attributes chosen
Attributes correlated :
16 most important attributes of
Section 3.4

Prob scale to simplex
transformation

STT1

In the first stage of the TSDM model, the STT1 transformed data for each
class are fit to a finite mixture of Dirichlet densities using the unsuper-
vised learning methods. But how good are these fits? One way to check
the goodness of the fits, is by comparing the mean values of the esti-
mated inner Dirichlet components with the data, which we have used in
our thesis. In this thesis we refer to these mean values of estimated inner
Dirichlet components as Dirichlet signatures.
For the kth variable type and jth inner mixture component, the Dirichlet
signature vector of the fit is defined to be the D-dimensional vector(

αkj1∑D
d=1 αkjd

,
αkj2∑D
d=1 αkjd

, . . . ,
αkjD∑D
d=1 αkjd

)
.

Figure 4.7 shows the Dirichlet signatures of the fits (for each component
of the mixture) for the class LPV. The Dirichlet signature vector plots for
the remaining classes can be found in Appendix A.2. We see the data plot-
ted in grey and the Dirichlet signature vectors plotted in purple. Though
with the Dirichlet signature vector plot it is difficult to determine how
good the fit is, it can be inferred if it is not a good fit. Figure 4.7 doesn’t
give any indication that the fits are not good, as it seems to represent the
mean of the data well.
In the second stage, we use the frequency proportion of ρ defined as be-
low, as the estimate of outer mixture probabilities
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ρest =

(
n1/

K∑
k=1

nk, . . . , nK/
K∑
k=1

nk

)
where n1, n2, . . . , nK are the variable-type frequencies of the labeled

data-set for the K classes.

For updating the outer-mixture probabilities, we have used a non-informative
prior, Dir(1/16, 1/16, . . . , 1/16) (refer to Section 4.2.2) in our analysis. How-
ever, the hyper-parameters for the prior set for the outer-mixture proba-
bilities can be set based on expert scientific advice.

Before we present the classification results, we define a few terms, which
we shall be using in our thesis, while presenting the results, namely sen-
sitivity and specificity. Sensitivity and specificity are statistical measures
of the performance of a binary classification. For each variable type class
and each data-vector, the classification can be considered to be a binary
classifier, with either the data-vector classified as a member of the class
or not. If the data-vector actually belongs to the variable type class then
it is called a positive and if not it is a negative. For each class, sensitivity
measures the proportion of positive data-vectors that are correctly clas-
sified, while specificity measures the proportion of negative data-vectors
that are correctly classified as such.

Table 4.2: Classification results for the TSDM model with 16
correlated attributes and STT1 transformed attributes.

Variable type
Frequency in
the training data-set

Frequency in
the test data-set

Estimated number of
inner mixtures

Sensitivity Specificity

LPV 201 84 12 0.9047619 0.9638554
EA 162 66 6 0.8333333 0.9422633
EW 74 33 5 0.7878788 0.9763948
DCEP 138 51 5 0.8627451 0.9754464
DSCT 33 14 2 0.4285714 0.9876289
ACV 54 23 3 0.6956522 0.9852941
GDOR 22 5 3 1.0000000 0.9919028
SPB 62 19 3 0.7894737 0.9708333
RRAB 50 22 4 0.9090909 0.9958071
DSCTC 60 21 4 0.8095238 0.9769874
RRC 15 5 4 1.0000000 0.9919028
EB 163 92 9 0.4565217 0.9434889
BCEP 23 7 3 0.5714286 0.9939024
DCEPS 20 11 3 0.8181818 0.9836066
RS+BY 21 14 2 0.3571429 0.9896907
ELL 18 9 3 0.1111111 0.9918367
CWA 6 3 1 0 1
ACYG 12 6 1 0 1
SXARI 3 4 1 0 1
BE+GCAS 8 5 1 0 1
CEP(B) 7 4 1 0 1
RV 4 1 1 0 1
CWB 6 0 1 0 1

Classification accuracy 0.6934
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Table 4.2 gives us the sensitivity and the specificity of the classifica-
tions, for each class. We tried with different samples to assess the sensi-
tivity of the latter to the choice of the training set: the classification accu-
racy varied by a mere 3%. We have a classification accuracy of 69.3% for
the TSDM model with specifications given earlier. However, for smaller
classes (with class frequency of the training-set < 15), the sensitivity is 0.
This is primarily because the frequency of the training-set is too low for
these classes to be trained efficiently. Also, the number of test-points are
also low (< 6). If we exclude these classes, we can correct the classifica-
tion accuracy as follows,

[
initial overall classification accuracy × frequency of test data

]
frequency of test data− ∑nk

k;nk<15

=
0.6934× 499

499− 23
= 0.7268

Thus the TSDM has a corrected-classification accuracy of 72.68%.

Classification error analysis

Figure 4.8 gives the confusion matrix for the classification results of the
23 classes. The matrix rows indicate the reference types resulting from
the literature survey, or the original data-set, while the columns represent
the predicted types.

As we mentioned earlier, the classification accuracy rate is 69.3%.
However the model performs better than this, as the confusions or mis-
classifications within groups of similar stars are less problematic than oth-
ers. The most important confusion case is that of the eclipsing binaries
(Section 2.4.2).

The types EA, EB, EW are eclipsing binaries and there exists a sig-
nificant confusion within these stars. Dubath et al. (2011) calls them a
"difficult case". About 25% of EB data has been misclassified to EA and
about 10% to EW. Similarly around 20% of EW has been misclassified to
EB and 16% of EA classified to EB in our classification. There are several
reasons for this misclassification which are given in Dubath et al. (2011).
They note that the light curves of some of the EB and EW stars are quite
symmetrical and is similar to that of other variability types. Also the val-
ues of the color and absolute magnitude of these stars are the combination
of the properties of the two stars, and hence can take almost any value.
Hence it is a challenge to correctly classify these types solely on the basis
of photometric attributes.

In addition there seems to be misclassifications among other similar
classes like DSCT and DSCTC, where about 40% of the DSCT classes were
misclassified as DSCTC, the low-amplitude type of DSCT (Section 2.4.1).
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4.3.2 Application Case 2

We discussed in Section 4.2.1 that the STT2 transformation maintains the
structure of the data, as opposed to STT1 which distorted the data struc-
ture in the two dimensional projection of the data. Now, lets see how the
TSDM performs when the probability-scaled data is STT2 transformed.

Below we list out the model conditions for the second case.

Model to which the data is fit TSDM model

Attributes chosen
Attributes correlated :
16 most important attributes of
Section 3.4

Prob scale to simplex
transformation

STT2

The training and test data-set are the same as the STT1 transformed case
(refer to Table 4.1). Table 4.3 gives the classification results, for each
variable type.

Table 4.3: Classification results for the TSDM model with 16
correlated attributes and STT2 transformed attributes.

Variable type
Frequency in
the training data-set

Frequency in
the test data-set

Estimated number
of inner mixtures

Sensitivity Specificity

LPV 201 84 11 0.9643 0.9855
EA 162 66 4 0.8485 0.9492
EW 74 33 5 0.72727 0.96352
DCEP 138 51 5 0.92157 0.97545
DSCT 33 14 2 0.50000 0.99588
ACV 54 23 2 0.60870 0.99160
GDOR 22 5 2 0.800000 0.987854
SPB 62 19 4 0.84211 0.96042
RRAB 50 22 2 0.77273 0.99790
DSCTC 60 21 2 0.95238 0.96862
RRC 15 5 4 1.00000 0.98785
EB 163 92 5 0.45652 0.95332
BCEP 23 7 2 0.571429 0.995935
DCEPS 20 11 3 0.63636 0.98975
RS+BY 21 14 3 0.85714 0.98969
ELL 18 9 2 0 0.993878
CWA 6 3 1 0 1
ACYG 12 6 1 0 1
SXARI 3 4 1 0 1
BE+GCAS 8 5 1 0 1
CEP(B) 7 4 1 0 1
RV 4 1 1 0 1
CWB 6 0 1 0 1

Classification accuracy 0.7134

The classification accuracy has improved by 2% to 71.34% from the
STT1 case. The sensitivity of some of the classes has shown a minor in-
crease, while for some others a minor decrease, but nothing to affirm that
STT2 is better than STT1, classwise. The only significant change (rise
by 50%) is that of RS+BY, for which the classification accuracy increased
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from 36% to 86%. Also, the problem of eclipsing binaries which was no-
ticed in the STT1 transformation still exists for this transformation. Figure
4.9 gives a comparison of the confusion matrices of the STT1 transformed
and STT2 transformed data-set. The score corrected for the too small
classes like Application Case 1 is, 74.78%.
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4.3.3 Application : Case 3

In Section 3.4.1, we presented the uncorrelated list of attributes and
stated our interest to see how they would perform with the TSDM model.
The model conditions have been listed as follows.

Model to which the data is fit TSDM model

Attributes chosen
Uncorrelated attributes :
8 most important attributes of
Section 3.4.1

Prob scale to simplex
transformation

STT1

Table 4.4 gives the classification accuracy rate for all the classes with the
uncorrelated attributes.

Table 4.4: Classification results for the TSDM model with 8
uncorrelated attributes and STT1 transformed attributes.

Variable type
Frequency in the
training data-set

Frequency in the
test data-set

Estimated number
of inner mixture components

Sensitivity Specificity

LPV 201 84 10 0.8928571 0.9734940
EA 162 66 3 0.8484848 0.9422633
EW 74 33 4 0.8484848 0.9763948
DCEP 138 51 5 0.9411765 0.9687500
DSCT 33 14 2 0.4285714 0.9917526
ACV 54 23 3 0.6956522 0.9726891
GDOR 22 5 3 1.0000000 0.9919028
SPB 62 19 3 0.6315789 0.9770833
RRAB 50 22 3 0.7727273 0.9979036
DSCTC 60 21 2 0.7619048 0.9874477
RRC 15 5 3 1.0000000 0.9898785
EB 163 92 6 0.5000000 0.9459459
BCEP 23 7 4 0.7142857 0.9939024
DCEPS 20 11 2 0.6363636 0.9918033
RS+BY 21 14 2 0.6428571 0.9835052
ELL 18 9 2 0 0.9897959
CWA 6 3 1 0 1
ACYG 12 6 1 0 1
SXARI 3 4 1 0 1
BE+GCAS 8 5 1 0 1
CEP(B) 7 4 1 0 1
RV 4 1 1 0 1
CWB 6 0 1 NA 0.9979960

Classification accuracy 70.34%

The total classification accuracy rate is 70.34% which is 1% more than
the classification using correlated attributes. The classification accuracy
rates for each of the classes have shown just minor differences, but noth-
ing significant to justify the use of uncorrelated attributes in our analy-
sis. Moreover like we discussed in Section 3.4.1, it is not advisable from
a scientific point of view to remove important attributes like amplitude
and color indexes. Hence we suggest the use of the correlated list of 16
attributes which we listed in Section 3.4.1. Figure 4.10 gives the confu-
sion matrix for the the classification with these uncorrelated attributes.
The score corrected for the too small classes like Application Case 1 is,
73.74%.
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4.3.4 Comparison with Dubath et al. (2011)

Dubath et al. (2011) used random forests (Section 1.2.4) for classification
based on the 14 attributes which are listed in Table 3.3. Without getting
into the details of the attributes, the most important ones which were used
in their work were the period, amplitude, V-I color index, absolute mag-
nitude, the residual around the folded light curve model, the magnitude
distribution skewness and the amplitude of the second harmonic of the
Fourier series model relative to the fundamental frequency. Figure 4.11
gives us the comparison between the confusion matrix of the TSDM model
against the model defined in Dubath et al. (2011).

• The overall classification accuracy rate was 84.3% as opposed to
69.3% by the TSDM model.

• Dubath et al. (2011) discusses the difficulty in classifying eclipsing
binaries and ellipsoidal variables. In the TSDM model classifications,
we encountered the same problem with both STT1 and STT2.

• The DCEP and DCEPS were classified much better with the TSDM
model than by the random forest classifier by Dubath et al. (2011).

• With the TSDM model, we have a possibility to extend it to detect
new classes which will be discussed in Chapter 5.
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4.3.5 Dirichlet vs multivariate Gaussian

One might wonder why the Dirichlet distribution is used as opposed to the
much widely used and preferred multivariate Gaussian distribution. To
understand this, lets fit the data to a two stage Gaussian mixture (TSGM)
model which is our two stage model with the multivariate Gaussian as the
base distribution. Obviously, since we are dealing with the multivariate
Gaussian, we don’t have to transform the data to a simplex.
Let Y1,Y2, . . . ,Yn denote a random sample of size n, where Yi is a D -
dimensional random vector with probability density function f(yi) on RD.
Let the entire sample be represented by YT = (Y1, . . . ,Yn)T, where the
superscript T denotes vector transpose. Thus Y is an n-tuple of points
in RD and is an n ×D-dimensional matrix and yT = (y1, . . . ,yn)T denotes
an observed sample where yi = (yi1, yi2, . . . , yiD) is the D -dimensional ob-
served value of the random vector Yi.

The K -component TSGM model can be written in the form

f(yi) =
K∑
k=1

ρk

Jk∑
j=1

πkj
exp

(
−1

2
(yi − µkj)

TΣkj
−1(yi − µkj)

)√
|2πΣkj|

(4.3)

where µkj and Σkj are the D-dimensional mean vector and D × D co-
variance matrix of the kth variable type and jth component of the inner
mixture. Also π represents the mathematical constant and |Σ| ≡ det Σ is
the determinant of Σ. The parameters, ρk and πkj are the such that

0 ≤ ρk ≤ 1 (k = 1, . . . , K)

0 ≤ πkj ≤ 1 (j = 1, . . . , Jk),

where

K∑
k=1

ρk = 1

Jk∑
j=1

πkj = 1

We have used the same data-set as mentioned in Table 4.1, without any
transformation. For the first stage, we have used the R package mclust to
fit each of the variable type classes to a finite mixture of Dirichlet distri-
butions. Table 4.5 gives the comparison of the sensitivities of the TSDM
and TSGM models.

The classification accuracy of the TSGM model is 65.53% as opposed to
the 69.34% accuracy by the TSDM model with STT1 transformation and
70.34% with the STT2 transformation. Though the overall classification
accuracy rate doesn’t show a clear advantage for TSDM over TSGM, the
classification accuracy for each of the classes does suggest that the TSGM
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Table 4.5: Classification accuracy rates : TSDM vs TSGM

Variable type
Frequency in the
training data-set

Frequency in the
test data-set

TSDM
sensitivity

TSGM
Sensitivity

LPV 201 84 0.9047619 0.9880952
EA 162 66 0.8333333 0.7121212
EW 74 33 0.7878788 0.6969697
DCEP 138 51 0.8627451 0.9607843
DSCT 33 14 0.4285714 0
ACV 54 23 0.6956522 0.7391304
GDOR 22 5 1 0.6
SPB 62 19 0.7894737 0
RRAB 50 22 0.9090909 0.9090909
DSCTC 60 21 0.8095238 0.9523810
RRC 15 5 1 1
EB 163 92 0.4565217 0.5869565
BCEP 23 7 0.5714286 0
DCEPS 20 11 0.8181818 0.18
RS+BY 21 14 0.3571429 0.29
ELL 18 9 0.1111111 0
CWA 6 3 0 0
ACYG 12 6 0 0
SXARI 3 4 0 0
BE+GCAS 8 5 0 0
CEP(B) 7 4 0 0
RV 4 1 0 0
CWB 6 0 NA NA

Classification accuracy 69.34% 65.53%

model tends to classify the larger classes (with more than 50 data-points
in the training data-set) slightly better like LPV, DCEP, DSCTC, ACV, EB
with the exception of some of the eclipsing binaries like EA, EW. On the
other hand, 5 classes are not classified at all which were classified well by
the TSDM model.

The results which suggests that the TSGM model shows an inclination
to better classify larger classes is a disadvantage for our new class detec-
tion model in Chapter 5. With the TSGM model having a poor detection
history of the smaller classes, this model might fail to effectively detect
new classes in the Gaia data-set, because it is likely that the new classes
are smaller classes. Also, some of the important variable classes like SPB
and DSCT were not classified at all.

This also reaffirms the use of Dirichlet densities over multivariate Gaus-
sian densities, as the base distribution. Also, there are differences in pho-
tometric observations across surveys. For instance, the photometric ob-
servations of Chi-CYGNI taken from OGLE survey could be different from
the Gaia survey. Hence we need to transform the data to a common do-
main such as the probability scale. Dirichlet densities are a natural choice
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to model data in the probability scale and hence, the TSDM model is a vi-
able choice.

4.3.6 Are the different clusters sub-classes?

0
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Figure 4.12: This is the plot of the density of the attribute
vector JmK of the variable type class SPB. We see that the
density plot shows bimodality. Do these suggest sub-classes?.

In the first stage of the TSDM model (Section 4.2), we used unsuper-
vised classification or clustering to classify each of the classes into a mix-
ture of Dirichlet distributions. Table 4.2 lists the number of mixtures (or
inner mixtures) for each class. Are these sub-classes?

For instance, Figure 4.13 gives us a plot of the density of the color at-
tribute JmK for the variable type class SPB. The plots suggest a bimodal
distribution, possibly. But are these different classes? The SPB class was
clustered to three components in our application earlier (Case 1 applica-
tion, refer Table 4.2).

It is of prime interest for the astronomers to know whether the cluster-
ing using Dirichlet mixtures in Stage 1, effectively singles out sub-classes
as clusters. To check this, we combined two very similar classes DSCT and
DSCTC together and used our unsupervised clustering methods to single
each of the classes out. Table 4.6 and Figure 4.13 gives an illustration of
the clustering.
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Table 4.6: Clustering of DSCT and DSCTC into classes. The
following table shows how a combined data-set of Delta
Scuti’s i.e., DSCT and DSCTC combined together performed
when the unsupervised classification of Stage 1 was done
on this data-set. The algorithm detected a total of 4 classes
Class A,B,C and D. The actual class gives in which class the
data-vector originally belonged to and assigned class shows

us which the cluster assigned by the algorithm.

Actual Class Assigned Class Frequency

DSCT Class A 5
DSCTC Class A 7
DSCT Class B 3
DSCTC Class B 28
DSCT Class C 14
DSCTC Class C 46
DSCT Class D 25
DSCTC Class D 0

We see that there are less impurities in each of the clusters. By impu-
rities, we mean the proportion of the classes of lesser frequency in each
cluster. In class A, there seems to be about 50% of DSCT and DSCTC
approximately, and has high levels of impurity. However, class B detects
DSCTC with less than 10% DSCT impurity. Class C detects DSCTC with
less than 24% DSCT impurity and Class D detects DSCT with no impu-
rities. Certainly, we need more scientific input to suggest these as sub-
classes but it is a good point to start.

4.4 Synopsis

We developed a Two Stage Dirichlet Mixture (TSDM) model and used dif-
ferent data transformation techniques to transform the data into a sim-
plex. We found that STT2 performs slightly better than STT1 and also
that the uncorrelated attributes perform only 2% better than the corre-
lated attributes. We got a classification accuracy of about 69.3% and com-
pared our results with the random forests classifier in Dubath et al. (2011).
Though the classifier of Dubath et al. (2011) had better classification re-
sults in the next chapter we will discuss about the extension of our model
to detect new classes, which is why it holds an advantage over the random
forest methodology. We used the multivariate Gaussian to form a similar
TSGM model but found out that TSDM is better than the TSGM model in
terms of classifying smaller classes and will also be useful in detecting
new classes in Chapter 5.
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Now we move to the part where our model holds a clear advantage over
the random forest methodology by Dubath et al. (2011), namely new class
detection.
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Chapter 5

New class detection

5.1 Overview

In Section I, we mentioned that we are using our model as a "prior" (not
in the Bayesian sense, but rather a classification rule) for the classifica-
tion of periodic variable stars (refer to Figure 0.1) in the Gaia data-set.
The Gaia survey is expected to provide data from 1 billion objects and
will have a time series of photometric data, on average 70 points for each
object (Süveges et al. (2017)). With an influx of such a high number of
data-points expected from Gaia, it is important to consider the possibility
of new classes of variable stars. In the recent years, a lot of research has
been done on the possibility of new classes of variable stars. For instance,
in recent times more than dozen, previously unknown, short-period vari-
able stars have been discovered (blue large amplitude pulsators, refer
Pietrukowicz et al. (2017)). It is likely that there are new variable star
types out there waiting to be found. Our training set (Chapter 3) has 23
classes and 1,661 data-points. It will be interesting to extend our model
for the detection of new classes.

This leads to the second main contribution of our thesis, the extension
of the TSDM model using the semi-supervised new class detection model
of Vatanen et al. (2012) to detect outliers and anomalies. Anomaly detec-
tion (outlier detection, novelty detection) refers to the problem of detect-
ing patterns in the data that deviate from the usual behavior so much that
the arouse suspicion of having been generated by a different mechanism.
In our case we consider these anomalies that occur in clusters of reason-
able size to be a new class. Though the usual treatment of anomalies is
like an error, we treat it is a possible new class.

The discussions in this chapter is divided into different sections as fol-
lows. In Section 5.2 we introduce the model for semi-supervised new class
detection and its components. In Section 5.3 we explain the expectation-
maximization algorithm that is used to estimate the parameters of the
model. We verify the performance of the model with an application in
Section 5.4, i.e the detection of a new class from our data-set, before con-
cluding the chapter. First, lets look into our model in detail.
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5.2 FB model

The fixed background model (FB model hereafter) is a mixture distribu-
tion with two components. The first component is called the background
model, while the second component is called the new class model.

Once the data is fit to a model with say K classes, we fix the estimated
parameters of the model. This model is called the background model and
the data is called the background data. Once the model is fit, ideally any
data-point that is a representative of any of the K classes will be fit to
that model. They look at individual observations as an anomaly if it seems
unlikely to have been produced by the process corresponding to the back-
ground model (Vatanen et al. (2012)). In other words, the data-points are
classified as new class data-points should they fall in the low probability
density regions of the data space (Markou and Singh (2003)). Lets discuss
each of the components of the model in detail.

Let Y1,Y2, . . . ,Yn denote a random sample of size n, where Yi is a D -
dimensional random vector with probability density function f(yi) on RD.
Let the entire sample be represented by YT = (Y1, . . . ,Yn)T, where the
superscript T denotes vector transpose. Thus Y is an n-tuple of points
in RD and is an n ×D-dimensional matrix and yT = (y1, . . . ,yn)T denotes
an observed sample where yi = (yi1, yi2, . . . , yiD) is the D -dimensional ob-
served value of the random vector Yi. The detection of new classes among
the background can be done in two steps. First, we use parametric den-
sity estimation to learn the background model with density f(yi) using
our background data-set. Secondly, we model the unlabeled data with a
fixed background model or FB model, fFB(yi), which is a mixture of the
background model and the new class model fNC(yi).

The fixed background (FB) model can be represented as,

fFB(yi) = (1− λ)f(yi) + λfNC(yi) (5.1)

where 0 ≤ λ ≤ 1 is the new-class mixture probability.
The components of the fixed background model or FB model are the

background model f(yi) and the new class model, fNC(yi). The back-
ground model parameters are fixed after they are fit to the background
data. When a new data-set is classified, the data-vectors that belong to
the classes in the background model will be classified into the background
model while any deviation from the distribution of the background will be
captured as an anomaly. Thus the FB model is fitted to the unlabeled data
by maximizing the likelihood under the constraint that the background
model is fixed. Hence the new class model should be able to capture any
unexpected deviation from the distribution of the background.
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But how do we use it with our model for new class detection? In this
thesis, we use the TSDM model (Chapter 4) as the background model
and the Hipparcos data (Chapter 3) as the background data. For the new
class model, we can use any density or mixture densities, but we have
considered a mixture of Dirichlet densities for the same reason that was
discussed in the previous chapter (Section 4.3.5). Figure 5.1 gives an
illustration of how the FB model works.

 
TSDM MODEL

C C

 
NEW CLASS MODEL

FIXED BACKGROUND

C C

DETECTED NEW CLASSES

Figure 5.1: The FB model is illustrated as follows. The TSDM
model which we discussed in Figure 4.1 are used as the back-
ground model and the Hipparcos data is used as the back-
ground data. For any new data-set, the data that belongs to
any of the classes in the TSDM model is classified into one of
the classes in the TSDM model while the data that deviates
from the TSDM model is captured in the new class model.

They form the new classes.

Thus for detecting new classes in the Gaia data, the FB model with TSDM
model as the background model, and a mixture of Dirichlet densities as the
new class model can be represented as follows. For the kth component of
the new class model

Dir(yi|βk) =
1

B(βk)

D∏
d=1

yβkd−1id



90 Chapter 5. New class detection

Thus

fFB(yi) = (1− λ)
K∑
k=1

ρk

Jk∑
j=1

πkj
B(αkj)

D∏
d=1

y
αkjd−1
id + λ

K+Q∑
k=K+1

κkDir(yi|βk)

= λB
K∑
k=1

ρk

Jk∑
j=1

πkj
B(αkj)

D∏
d=1

y
αkjd−1
id +

K+Q∑
k=K+1

λNCk Dir(yi|βk)

= λBf(yi) +

K+Q∑
k=K+1

λNCk Dir(yi|βk) (5.2)

where yi−D and the open D dimensional simplex. In our thesis we have
used the TSDM model as the choice for f(yi). Also, ρk, πkj and κk are the
such that

0 ≤ ρk ≤ 1 (k = 1, . . . , K)

0 ≤ πkj ≤ 1 (j = 1, . . . , Jk)

λB = 1− λ, λNCk = λκk

0 ≤ κk ≤ 1 (k = K + 1, . . . , K +Q)

0 ≤ λNCk , λB ≤ 1 (k = K + 1, . . . , K +Q)

where

K∑
k=1

ρk = 1

Jk∑
j=1

πkj = 1

K+Q∑
k=K+1

κk = 1

K+Q∑
k=K+1

λNCk + λB = 1

Note that αkj = (αkj1, αkj2, . . . , αkjD)T and βk = (βk1, βk2, . . . , βkD)T are the
Dirichlet parameters of the TSDM model and the new class model respec-
tively. For more details on the model refer Vatanen et al. (2012).

5.3 Estimation

In the previous section we discussed how the FB model is fitted. In effect,
the model is fitted in two steps. In the first step, the labeled data-set is
fitted to the TSDM model like we discussed in Section 4.2. Hence the
estimated parameters of the TSDM model are kept constant in the second
step.

In the second step, we use the Expectation-Maximization (EM) algo-
rithm to estimate the parameters of the new class model, λNCk ,βk, λ

B for
k = 1, . . . , K. All the other parameters, ρk, Jk, πkj,αkj are fixed to the esti-
mated values in the first step. Lets discuss the EM algorithm steps for the
second step.
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The EM updates for the model in Equation (5.2) are easily found by straight-
forward analogy to EM algorithm steps for the standard mixture model.

• TSDM Steps : Since in this thesis we use the TSDM model as the
background model, we first fit the model to the background data,
i.e, the Hipparcos data. We estimate the inner mixture probabilities
and Dirichlet parameters, outer mixture probabilities and this ends
the preliminary step before we move onto the steps of the FB model
(refer to Sections 4.2.1 and 4.2.2)

• FB Step 1 : In all the FB steps (FB Step 1 to FB Step 9) the
parameters of the TSDM model will be fixed. First we set the number
of components of mixtures, say Q. Thus in effect, we are using the
EM algorithm to fit the data-set to a mixture of Q Dirichlet densities.

• FB Step 2 : We then form an initial value vector of the parame-
ters of Dirichlet densities. As we are trying to fit the data-set to
a Q−component mixture of Dirichlet densities, we have Q Dirichlet
parameters and Q mixing proportions or mixture probabilities and
they are as follows.

β(0) = (β
(0)
K+1,β

(0)
K+2, . . . ,β

(0)
K+Q)

and the initial values of the mixture probabilities,

λ(0) = (λB(0), λ
NC(0)
1 , λ

NC(0)
2 , . . . , λ

NC(0)
K )

• FB Step 3 : In the E-step, for the tth iteration (denoted by the suf-
fix (t)), the posterior probabilities of the background model and the
components of the new class model, mixture of Dirichlet densities,
are updated as follows. Here λ = (λB, λNC1 , λNC2 , . . . , λNCK )

P(Si = B|yi,βk
(t),λ(t)) = f(yi)λ

B(t)

/{
f(yi)λ

B(t)+

K+Q∑
k=K+1

f(yi)λ
NC(t)
k

}
≡ γ(t)iB

P(Si = k|yi,βk
(t),λ(t)) = Dir(yi|βk)λNC(t)

k

/{
f(yi)λ

(t)
B +

K+Q∑
k=K+1

f(yi)λ
NC(t)
k

}
≡ γ(t)ik

for k = K + 1, . . . , K +Q

• FB Step 4 : In the subsequent M-step, the parameters are updated
using the following update analogous to the standard EM algorithm.

λk
NC(t+1) =

1

n

n∑
i=1

γ
(t)
ik
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• FB Step 5 : We continue the same steps as Step 4 in Section 4.2
with ψ = (β(0),λ).

FB Steps 6, 7, 8 and 9 are same as Steps 5, 6, 7 and 8 of the TSDM model
discussed in Section 4.2. Refer to Vatanen et al. (2012) for more details.
Now let us use our model to detect new classes.
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5.4 Application and discussion

In this section, we test the FB model for new class detection as follows.
We remove the variable type BCEP (Beta Cephei) from the training data-
set and train our TSDM model to estimate the parameters. Then in the
test data-set, we add the BCEP class as a new class. It will be interesting
to see if BCEP is detected by our model. BCEP variable type has 30 repre-
sentatives in the test-data. We chose BCEP as the number of data-points
in BCEP is 30 and hence it is a relatively small class with Jk = 4 in the
TSDM model. This division of data is illustrated in Figure 5.2. Below, we
list out the model conditions for the new class detection.

Model to which the data is fit TSDM model
Attributes chosen 16 correlated attributes
Number of data-points in training set 1,141
Number of data-points in the test set 520
Prob scale to simplex transformation STT1

RS+BY

SXARI
ACVACYG

BE+GCAS
SPB

BCEP

DSCTC

DSCT
GDOR

RRC

RRAB

CEP(B) DCEPS

DCEP

CWB
CWA
RV LPV

ELL

EW

EB

EA

EA
EB
EW
ELL
LPV
RV
CWA
CWB
DCEP
DCEPS
CEP(B)
RRAB
RRC
GDOR
DSCT
DSCTC
BCEP
SPB
BE+GCAS
ACYG
ACV
SXARI
RS+BY

Variable types

Figure 5.2: In the FB model, we train the model after remov-
ing the variable type BCEP from the training data-set. While
testing the model, we use the test data-set which includes

BCEP variable class with 30 data-points.

The classification results for the FB model while classifying the BCEP
class as a new class are given in Table 5.1. The confusion matrix for this
classification is given in Figure 5.3. The FB model gives a classification
accuracy of 71.15% and detects our "new class" BCEP with 76.67% clas-
sification accuracy. This is a good result as BCEP is a small data-set and
amounts to 6% of the training data-set and 3% of the test data-set. The
fact that our model is able to detect such a small class is encouraging.
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Table 5.1: Classification accuracy of the FB model when de-
tecting the BCEP class. FB model classification accuracy
shows the classification accuracy of each of the classes when

BCEP was detected as the new class.

Variable type
Frequency in the
training data-set

Frequency in the
test data-set

FB model
classification accuracy

LPV 202 83 0.8675
EA 161 67 0.8209
EW 82 25 0.68000
DCEP 126 63 0.8413
DSCT 30 17 0.4285714
ACV 54 23 0.73913
GDOR 21 6 0.500000
SPB 63 18 0.61111
RRAB 45 27 0.96296
DSCTC 53 28 0.96429
RRC 12 8 0.75000
EB 183 72 0.52778
BCEP 0 30 0.76667
DCEPS 21 10 0.60000
RS+BY 23 12 0.58333
ELL 19 8 0
CWA 7 2 0
ACYG 10 8 0
SXARI 6 1 0
BE+GCAS 9 4 0
CEP(B) 6 5 0
RV 5 0 NA
CWB 3 3 0

Classification accuracy 71.15%

Figure 5.3 gives the confusion matrix of the classification of the test-data
(as shown in Figure 5.2) using the FB model for classifying the variable
type BCEP. We see that 23/30 data-points were classified correctly. How-
ever, we see that 4 BCEP data-points were misclassified as DSCTC though
there is not such a significant similarity between the classes. We can see
that such a misclassification occurred even when the TSDM model was
used in Chapter 4 which can be seen in Figure 4.8. Hence the DSCTC-
BCEP misclassification is because of the TSDM model as the background
model.

The classification accuracy rates of the other classes are similar to that
of TSDM classification which was given in Section 4.3. This is ideal as the
data-points that were classified into any of the 22 classes of the TSDM
will be classified into the background model component of the FB model
classification.

Though some of the changes in the classification accuracy is due to
the fact that the test data-set and the training data-set are not entirely



96 Chapter 5. New class detection

Index

hippa.BCEP.dir[1, ]
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

Index

hippa.BCEP.dir[1, ]

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

O
riginal BCEP data

Estim
ated first com

ponent

Estim
ated second com

ponent

O
riginal D

SCTC data

F
ig

u
re

5
.4

:
T

h
e

a
b

o
ve

fi
g

u
re

g
ive

s
th

e
sig

n
a
tu

re
s

o
f

th
e

n
e
w

cla
ss

B
C

E
P

a
g

a
in

st
th

e
B

C
E

P
a
n

d
D

S
C

T
C

d
a
ta

.
W

e
se

e
th

a
t

th
e

sig
n

a
tu

re
s

o
f

B
C

E
P

se
e
m

to
su

g
g

e
st

a
g

o
o
d

fi
t

e
xce

p
t

o
n

3
rd

a
n

d
6

th
a
ttrib

u
te

(w
h

ich
d

e
n

o
te

th
e

a
ttrib

u
te

ra
n

k
s

a
s

w
e
ll,

re
fe

r
to

S
e
ctio

n
3

.4
.1

)
w

h
e
re

it
se

e
m

s
th

a
t

th
e

d
a
ta

is
a
w

a
y

fro
m

th
e

sig
n

a
tu

re
s.

H
o
w

e
ve

r
th

e
3

rd
a
ttrib

u
te

se
e
m

s
to

su
g

g
e
st

a
D

S
C

T
C

d
a
ta

,
w

h
ich

is
w

h
y

th
e

co
n

fu
sio

n
.



5.4. Application and discussion 97

LPV

ACV

BCEP

GDOR

ACYG

0% 25% 50% 75% 100%

Two Stage Classification accuracy New Class Detection Sensitivity
New Class Detection Specificity /accuracy

Figure 5.5: These are the model classification results when
detecting 5 variable types as "new" classes (one at a time).
The variable types are sorted by decreasing number of data-
points with LPV having the highest number of data-points
and ACYG having the lowest. The blue bars give us the Chap-
ter 4 classification accuracy, while the green bars give us the
classification accuracy while that particular class is detected

as new class. The orange bars give us the specificity.
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the same as in Chapter 4, in some extremely rare cases some of the data-
points have been misclassified into similar classes because of the follow-
ing reason. In the absence of BCEP, when the data-transformation is done
on the training data, the probability scale transformation, and the subse-
quent simplex transformation gets affected as we discussed in Section 4.2.
Hence the values of these data-points in the probability scale gets slightly
altered and hence they get misclassified into some similar classes.

Now that we were able to detect the BCEP class as a new class, lets
check the classification accuracy for other classes as well. Figure 5.5
gives a chart that shows how the variable types LPV, ACV, BCEP, GDOR
and ACYG performed in the FB classification when they were considered
as new classes and were detected. The variable types have been ordered
by decreasing frequency in the training data-set and test data-set as given
in Figure 5.5. We see that LPV class gets classified with an accuracy
of around 88% while the sensitivity of LPV in the TSDM classification in
Chapter 4 was just below 75%. We see reasonable performances of over
70% for ACV and GDOR as well, but we see that the sensitivity of ACYG
is low. This is understandable given that the TSDM model classification
accuracy of ACYG in Chapter 4 was around 25% which suggests that ACYG
is difficult to be detected.

Analysis of Dirichlet signatures

Our FB model detected some data as anomalies or new classes which we
know are the BCEP class data. Lets plot the Dirichlet signatures (Section
4.3.1) of the detected new class, BCEP against the original BCEP data.
Figure 5.4 plots the Dirichlet signatures against the BCEP data, and also
against the BCEP and DSCTC combined.
The Dirichlet signatures gives us an insight into probably why 4 BCEPs
were classified as DSCTC. In the figure, though the signatures of the
estimated Dirichlet parameters represent the data well, we see that for
the 3rd and 6th attribute namely raw percentile range and raw weighted
skewness of the distribution of the curve, the Dirichlet signatures seem
to represent DSCTC data instead of BCEP data. Given that these two
attributes are highly ranked attributes according to our discussion in Sec-
tion 3.4.1, this has caused the apparent BCEP-DSCTC confusion.

5.5 Synopsis

In this chapter we were able to build a model for the detection of new
classes, namely the fixed background (FB) model. We used the TSDM
model as our background model and a mixture of Q Dirichlet densities
as our new class model, in the FB model. We found that our model was
able to detect a relatively small class of 30 data-points with 77% accuracy
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and this will be extremely useful when we use the model to detect new
variable types in the Gaia data-set in the future.
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Chapter 6

Towards Bayesian classification

6.1 Overview

In Chapter 4 we built the TSDM model for supervised classification using
a frequentist approach predominantly, though we filled it with priors in
the outer-mixtures. In this chapter we would like to expand our modeling
strategy into the Bayesian territory as well. We will take advantage of the
fact that Dirichlet densities are an exponential family distribution (refer
to Appendix B.6). Our aim is to build a Bayesian supervised classification
model to fit the data-set (Chapter 3) to a mixture of Dirichlet densities.

This chapter has been divided as follows. In Section 6.2 we discuss
our model and the particular case of Dirichlet densities, while in Section
6.2.2 we present our model as an exponential family. We also present the
conjugate prior and posterior density in Section 6.3.

6.2 Model formulation

Let Y1,Y2, . . . ,Yn denote a random variable of size n, where Yi is a
D -dimensional random vector with probability density function g(yi) on
RD. Let the entire sample be represented by Y = (YT

1 , . . . ,Y
T
n )T, where

the superscript T denotes vector transpose. Thus Y is an n-tuple of
points in RD and y = (yT

1 , . . . ,y
T
n )T denotes an observed sample where

yi = (yi1, yi2, . . . , yiD) is the D -dimensional observed value of the random
vector Yi. The entire data-set Y is n×D-dimensional. Then the mixture of
K Dirichlet densities can be given as,

f(yi) =
K∑
k=1

ρk
B(αk)

D∏
d=1

yαkd−1
id yi ∈ VD−1 (6.1)

where yi and the open D-dimensional simplex, VD−1 are defined as in
Section 1.2.3. Also, ρk is the mixture proportion or probability such that,

0 ≤ ρk ≤ 1 (k = 1, . . . , K)
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and

K∑
k=1

ρk = 1

Also for αk = (αk1, αk2, . . . , αkD)T

B(αk) =
Γ(αk1) Γ(αk2) · · ·Γ(αkD)

Γ(αk1 + αk2 + · · ·+ αkD)
.

6.2.1 Mixture of exponential families

A mixture of K exponential families can be represented as,

f(yi) =
K∑
k=1

ρkgk(yi) (6.2)

where each of the gk(yi) belongs to the exponential family and is defined
as (for exponential family definition refer to Appendix B.2)

gk(yi) =
b(yi)

a(θk)
exp

(
θTk T(yi)

)
, yi ∈ VD−1.

Further including categorical random variables or missing data random
variables as defined in Sections 1.2.2 and 4.2.2, we have S1, S2, . . . , Sn for
n data-points where Si = k means yi belongs to k. Thus Equation (6.2)
becomes,

f(yi) =
K∑
k=1

h(yi, Si = k), (6.3)

where h(yi, Si = k) = ρkfk(yi)

and thus

log h(yi, Si = k) = log ρk + log gk(yi).

In Boldi (2004) it was shown that when all components of a mixture come
from the same exponential family and are equal upto the parameter, then
the complete data log-likelihood takes also the form of an exponential fam-
ily. That is,

log gk(yi) = log b(yi) + θTk T(yi)− log a(θk), Si = 1, . . . ,K

where Θ = (θ1, θ2, . . . , θK).
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Thus the complete data log-likelihood, log h(yi, Si) can be represented as
follows

log h(yi, Si) =
K∑
k=1

I(Si = k)
{

log b(yi) + θTk T(yi)− log a(θk) + log ρk
}

= log b(yi) +
K−1∑
k=1

I(Si = k)

{
θTk T(yi)− log

a(θk)

a(θK)
+ log

πk
πK

}
+ I(Si = K)θTKT(yi)− log a(θK) + log ρK

In Boldi (2004), it was shown that the complete-data likelihood function
comes from an exponential family by setting,

φ =



log ρ1
ρK
− log a(θ1)

a(θK)

log ρ2
ρK
− log a(θ2)

a(θK)

. . .

log ρK−1

ρK
− log a(θK−1)

a(θK)

θ1
θ2
. . .

θK


and T(yi, Si) =



I(Si = 1)

I(Si = 2)

. . .

I(Si = K − 1)

I(Si = 1)T(yi)

I(Si = 2)T(yi)

. . .

I(Si = K)T(yi)


where log b(yi, Si) = log b(yi) and log a(φ) = log a(θK) − log ρK . Also φ and
T(yi, Si) are matrices with dimension (2K − 1)× 1

6.2.2 The case of Dirichlet densities

Dirichlet distribution is a member of the exponential family (refer Appen-
dices B.2 and B.6) and hence the complete data-log-likelihood of Equation
(6.1) can be written in exponential family form, as discussed in Section
6.2.1, by setting

φ =



log ρ1
ρK
− log B(α1)

B(αK)

log ρ2
ρK
− log B(α2)

B(αK)

. . .

log ρK−1

ρK
− log

B(αK−1)

B(αK)

α11

α12

. . .

αKD


and T(yi, Si) =



I(Si = 1)

I(Si = 2)

. . .

I(Si = K − 1)

I(Si = 1) log yi1
I(Si = 2) log yi2

. . .

I(Si = K) log yiD
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and log b(yi, Si) = log b(yi) = 1
/{∏D

d=1 yid
}

and log a(φ) = log B(αK)−log ρK .
Also φ and T(yi, Si) are matrices with dimension (2K − 1)× 1.

The complete data-log-likelihood of a finite mixture of K Dirichlet densi-
ties, for a single data-vector yi is a member of the exponential family and
can be represented as follows,

L(φ|yi, Si) =

[
ρK

B(αK)
∏D

d=1 yid

]
exp

[ K∑
k=1

I(Si = k)

{ D∑
d=1

log yid−log
B(αk)

B(αK)
+log

ρk
ρK

}]
For y = (y1, . . . ,yn)T and S = (S1, S2, . . . , Sn) the likelihood for these n
points can be written as

L(φ|y,S) =
n∏
i=1

L(φ|yi, Si)

=
n∏
i=1

[
ρK

B(αK)
∏D
d=1 yid

]
exp

[ K∑
k=1

I(Si = k)

{ D∑
d=1

log yid − log
B(αk)

B(αK)
+ log

ρk
ρK

}]
(6.4)

Thus Equation (6.4) represents the complete data likelihood for the finite
mixture of K Dirichlet densities for n data-points which as we discussed
earlier, is a member of the exponential family. We’ll discuss on how we can
progress further in this, but before that lets discuss about conjugate priors
and how conjugate priors have been used in McLachlan and Peel (2004)
for the estimation of the parameters, mixing proportions and Dirichlet pa-
rameters of all the components of the mixture.
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6.3 Conjugate prior

6.3.1 Previous work

For the component densities gk(yi) for k = 1, 2, . . . , K being part of the
same exponential family, McLachlan and Peel (2004) discussed the use of
conjugate priors for the estimation of the parameters as follows.

The component densities can be expressed in exponential family form.
That is for the kth component, we may write,

f(yi) = exp
(
θTk T(yi)− a(θk) + c(yi)

)
,

where c(yi) = log b(yi) relates to the definition of the exponential family
given in Section 6.2.1. There exists a conjugate prior for an exponential
family distribution, which has the form

p(prior)(θk|ωk, γk) ∝ exp
(
θTk ωk − γka(θk)

)
where ωk, γk are hyper-parameters.

These conjugate priors are distinct for each component k, the hyper-
parameters, ωk is a real valued vector of constants and γk is a scalar
constant (k = 1, 2, . . . , K). Also for the vector of mixing proportions, ρ =

(ρ1, ρ2, . . . , ρK)T , the conjugate prior is the Dirichlet distribution Dir(q1, q2, . . . , qK)

which has density of the form,

p(prior)(ρ|q1, q2, . . . , qK) = Γ(
K∑
k=1

qk −K)
K∏
k=1

ρqk−1k /Γqk

For Ψ = (Θ,ρ) where Θ = (θ1, θ2, . . . , θK) and ρ = (ρ1, ρ2, . . . , ρK)T , then the
posterior for Ψ is proportional to the product of the posteriors of Θ and ρ,
because we assume Θ and ρ to be a priori independent. That is,

p(post)(Ψ|y) =
∑
Si

p(post)(ρ|y)
K∏
k=1

p(post)(θk|y)

=
∑
Si

p(prior)(ρ|q1 + n1, . . . , qK + nK)
K∏
k=1

p(prior)(θk|ωk + nkȳk, γk + nk))

where nk =
∑n

i=1 I(Si = k) and ȳk =
∑n

i=1 I(Si = k)yi

/
nk

Even though though the posterior for Ψ has been expressed in closed
form, McLachlan and Peel (2004) states that the time taken to compute
the above is too high, since we have to sum over all the values of i, i =

1, 2, . . . , n and over all the possible configurations of S. This results in a
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very high computational cost even if it has to be applied for moderate
sample sizes.

6.3.2 Conjugate prior for the complete data-likelihood

In Section 6.2.2, we saw that the complete data likelihood L(φ|y,S) is a
member of the exponential family. Rewriting Equation 6.4, we have,

L(φ|y,S) =
n∏
i=1

[
ρK

B(αK)
∏D
d=1 yid

]
exp

[ K∑
k=1

I(Si = k)

{ D∑
d=1

log yid − log
B(αk)

B(αK)
+ log

ρk
ρK

}]

=
n∏
i=1

{[
ρK

B(αK)
∏D
d=1 yid

]
exp

[ K∑
k=1

I(Si = k)

{ D∑
d=1

log yid − log
B(αk)

B(αK)
+ log

ρk
ρK

}]}

=

∏n
i=1 b(yi, Si)

[a(φ)]n
exp

[
φT

n∑
i=1

T(yi, Si)

]
=
b′(y,S)

a′(φ)
exp

[
φTT′(y,S)

]
(6.5)

where b′(y,S) =
∏n

i=1 b(yi, Si), a′(φ) = [a(φ)]n and T′(y,S) =
∑n

i=1 T(yi, Si)

and is in the exponential family where,

φ =



log ρ1
ρK
− log B(α1)

B(αK)

log ρ2
ρK
− log B(α2)

B(αK)

. . .

log ρK−1

ρK
− log

B(αK−1)

B(αK)

α11

α12

. . .

αKD


and T(yi, Si) =



I(Si = 1)

I(Si = 2)

. . .

I(Si = K − 1)

I(Si = 1) log yi1
I(Si = 2) log yi2

. . .

I(Si = K) log yiD


and log b(yi, Si) = log b(yi) = 1

/{∏D
d=1 yid

}
and log a(φ) = log B(αK)−log ρK .

Also φ and T(yi, Si) are matrices with dimension (2K − 1)× 1.

Now for the likelihood mentioned in Equation (6.5), there exists a con-
jugate prior for φ since L(φ|y,S) belongs to an exponential family. The
conjugate prior can be expressed as follows,

pprior(φ|χ, ν) ∝ a(φ)−ν exp(φTχ)

where χ and ν are hyper-parameters with ν being a scalar constant and χ
being a real values vector of constants. Also a(φ) is such that log a(φ) =

log B(αK)− log ρK .
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The posterior for φ has the following distribution

p(post)(φ|y,S) ∝ L(φ|y,S)× pprior(φ|χ, ν)

∝ a(φ)−(ν+n) exp

[
φT
(
χ+

n∑
i=1

T(yi, Si)
)]

= a(φ)−ν̃ exp
[
φT χ̃

]
(6.6)

where

χ̃ = χ+ T(y,S)

= χ+
n∑
i=1

T(yi, Si)

and ν̃ = ν + n are the posterior updates. The parameters φ, the statistic
T(yi, Si) and function a(φ) are defined in Section 6.2.2.

6.4 Synopsis and prospectives

We discussed the Bayesian model to classify different classes of variable
stars. The advantages of the Bayesian approach as compared to the fre-
quentist framework is that it allows us to effectively integrate new evi-
dence/information as it arrives and tune the model by updating the poste-
rior class probabilities. We also discussed that the computational cost of
the posterior distribution by McLachlan and Peel (2004) is really high. In
our work, we computed the posterior distribution using the result that the
full data-likelihood is an exponential family distribution. Our methodology
has an advantage that there are no a priori independence assumptions un-
like the methodology described by McLachlan and Peel (2004) in Section
6.3.1. However there are a further steps which can be taken up as future
work. The conjugate prior is for the canonical parameters of the expo-
nential family, φ, which is a function of our parameters of interest. The
result from Diaconis et al. (1979) can be used for computing this. Also
the computational challenges can be dealt with by solving using the vari-
ational Bayesian learning algorithms proposed by Ghahramani and Beal
(2000) for conjugate-exponential families. Conjugate exponential families
are models that satisfy the following conditions. (1) the complete data like-
lihood is in the exponential family and (2) the parameter prior is conjugate
to the complete data likelihood. Our model easily qualifies the criteria and
it will be interesting to proceed further with this algorithm.
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Conclusions and future work

With an influx of large amount of data expected from the Gaia survey, an
efficient classification model is the need of the hour. Our first statistical
methodological contribution in the thesis was the formulation of a super-
vised classification model, TSDM (two stage Dirichlet mixture) model, for
classification. In connection with this we proposed two transformation
methodologies, STT1 and STT2 to transform the data to a simplex. We got
a corrected classification accuracy of 72.68% for the STT1 classification
as opposed to 74.78% by the STT2 classification. However we found out
that STT2 classification doesn’t hold a huge advantage over STT1 classifi-
cation.

Some of the attributes we used were highly correlated. We studied the
performance of the classification model with a subset of attributes that
have correlations less than 0.8 among each other. The findings reaffirmed
our use of Dirichlet distribution as not only was the classification accu-
racy lower, but also the two stage Gaussian mixture model (TSGM) model
showed tendencies to accurately classify only the larger classes, as the
smaller classes were misclassified heavily. We compared the TSDM model
with the random forest classifier studied in Dubath et al. (2011). Random
forest classifier does perform relatively better when the task is to classify
the data to known classes. However, Dubath et al. (2011) does not tackle
the problem of detecting new classes with random forests.

In Chapter 3 we broadly discussed the volume of data that will be pro-
vided by the Gaia mission. This is where our model holds an upperhand
over the random forests classifier. In this thesis, we extended our model
to a new class detection model (FB model). Our model was able to detect
small and large data-sets of new classes with promising accuracy. The de-
tection of a class as small as 30 data points with 77% accuracy is promis-
ing. This was our second methodological contribution. We also presented
a feasibility study of Bayesian supervised classification by fitting our data
to a mixture of Dirichlet densities. We proposed a conjugate prior for the
canonical parameters of the exponential family form of our model. We
also presented the closed form for the posterior distribution of our model.
Also, in the first stage of the TSDM model, we used unsupervised classi-
fication on each of the variable types and cluster them. However many
open problems await future research and we mention some of them here.
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• Subjective priors in the second stage of TSDM : In the second stage
of the TSDM model for classification (Section 4.2.2), we discussed
the priors that can be used in the second stage of our model. Though
in our applications we used a non-informative prior, we can set a
subjective prior that will represent the prior beliefs about the distri-
bution of our parameters. This will of course require a close collabo-
ration with domain experts but will improve our model and increase
the flexibility.

• Copulas vs Dirichlet distributions : We used Dirichlet densities as
a natural choice for modeling data in the probability scale. How-
ever, further investigation needs to be done to see how a two stage
Copulas mixture model performs, as opposed to the TSDM model.
Copulas hold an advantage over Dirichlet distributions that depen-
dencies among random variables can be modeled as well (Embrechts
et al. (2001)).

• Prior on the number of components in the FB model : In the new
class model component of the FB model, we fixed the number of
components in the beginning before fitting the new class to the data.
In practice, it would be worthwhile to not fix it in the beginning by
allowing more flexibility. The next step could be to add a prior on the
number of components so that the FB model will be able to choose
the number of components from the data.

• Maximizing the posterior and inference on the parameters of inter-
est : In Section 6.4, we proposed methods to maximize the poste-
rior of the complete data likelihood. The mixture of Dirichlet dis-
tributions is a member of the conjugate-exponential family since (1)
the complete data likelihood is in the exponential family and (2) the
parameter prior is conjugate to the complete data likelihood. Vari-
ational Bayesian learning algorithms can be used to maximize the
posterior of our model. Also, conjugate prior which we have pro-
posed for our model in Chapter 6 is for the canonical parameters
of the exponential family. We can use the results of Diaconis et al.
(1979) to infer on the parameters of interest.

• Sub-classes of the variable types : Also one of the outputs of our
model which we haven’t analyzed further is in the astrophysical sig-
nificance of the clusters in the first stage of the TSDM model (Section
4.2.1). The next step is to collaborate with astrophysicists to study if
these sub-classes have any significance. Our study of clustering on a
combined data-set of δ Scuti’s gave promising results that needs to
be studied further.
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Table A.1: The entire list of attributes in the training data-set.
There are 45 attributes in the raw data.

Attribute names Attribute description

hip Hipparcos identifier
cat P = periodic, well-known,X = "unsolved"", problematic light curves:

class uncertain or unknown, irregular or small-amplitude variability,
very bad time sampling

type The true class of the star
p2pScatterOnDetrendedTS point-to-point scatter of the time series of brightness after

removing a slow polynomial trend
p2pScatterOnFoldedTS point-to-point scatter of the sequence of brightnesses after finding

a period and phase-folding
scatterOnResidualTS square root of variance of the residuals after modelling
Raw_WeightedStdDev weighted standard deviation of the brightness
Raw_WeightedSkewness weighted skewness of the brightness
Raw_WeightedKurtosis weighted kurotsis of the brightness
Raw_PercentileRange10 0.1-quantile minus the median of the raw brightnesses
stetsonJ measures of correlation between closely spaced brightness values
stetsonJweighted measures of correlation between closely spaced brightness values
stetsonK measures of correlation between closely spaced brightness values
WstetsonJ measures of correlation between closely spaced brightness values
WstetsonJweighted measures of correlation between closely spaced brightness values
WstetsonK measures of correlation between closely spaced brightness values
logPnonQso measure of stochastic variability,components in the light curves
logPqso measure of stochastic variability,components in the light curves
qsoVar measure of stochastic variability,components in the light curves
nonQsoVar measure of stochastic variability,components in the light curves
LogPeriod base 10 logarithm of the period in days
LogAmplitude base 10 logarithm of the peak-to-peak amplitude (from harmonic model

fit and reconstruction of the fitted light curve)
HarmNum the highest significant order of harmonic terms in a least squares

harmonic model fit
A11 amplitude of the first harmonic term
A12 amplitude of the second harmonic term
PH12 Relative phase of the second harmonic term
A13 amplitude of the third harmonic term
PH13 Relative phase of the third harmonic term
A14 amplitude of the fourth harmonic term
PH14 Relative phase of the fourth harmonic term
A15 amplitude of the fifth harmonic term
PH15 Relative phase of the fifth harmonic term
logA11minusA log10(1 + abs(A11−

√
(
∑

(A1j2))))
logA12_A11 log10(1 + A12/A11)
logA13_A12 log10(1 + A13/A12)
absGlat absolute value of galactic latitude
Glat galactic latitude
Glon galactic longitude
Parallax the parallax of the object (in milliarcsec) equivalent to distance
Absolute_Mag00 estimate of the absolute brightness of the object
BV_Color Colors computed with visual brightness. B can be taken as "blue",

V is "visual", I is a red-near infrared filter
VI_Color Colors computed with visual brightness. B can be taken as "blue",

V is "visual"
JmK J, H, K are all infrared filters
JmH J, H, K are all infrared filters
HmK J, H, K are all infrared filters
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Table A.2: Attributes in the training data divided by function-
ality.

Type of Attributes Attribute names

Attributes that summarize the improvements
after different steps of modelling.

p2pScatterOnDetrendedTS
p2pScatterOnFoldedTS
scatterOnResidualTS

Attributes related to astrophysics.

absGlat
Glat and Glon
Parallax
Absolute_Mag00
BV_Color
VI_Color
JmK, JmH and HmK

Attributes that summarize the distribution
of the observed magnitudes.

Raw_WeightedStdDev
Raw_WeightedSkewness
Raw_WeightedKurtosis
Raw_PercentileRange10
StetsonJ
stetsonJweighted
stetsonK
WstetsonJ
WstetsonJweighted
WstetsonK

Attributes that quantify the strength of a
stochastic variability.

logPnonQso
logPqso
qsoVar
nonQsoVar.

Attributes related to the period search
and harmonic modeling.

LogPeriod
LogAmplitude
HarmNum
A11, A12, A13, A14, A15
PH12, PH13, PH14, PH15
logA11minusA
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Figure A.1: Distribution of the important variables for each
of the variable star classes or types, which we have chosen in
our thesis. By important variables, we mean the 16 attributes
selected according to the importance measure (mean de-

crease in accuracy) in Chapter 3.
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Appendix B
Useful Basics
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B.1 Expectation-Maximization (EM) algorithm

Expectation–Maximization (EM) algorithm is an iterative method to find
maximum likelihood or maximum a posteriori (MAP) estimates of parame-
ters in statistical models. The EM iteration alternates between performing
an expectation (E) step, which creates a function for the expectation of the
log-likelihood evaluated using the current estimate for the parameters,
and a maximization (M) step, which computes parameters maximizing the
expected log-likelihood found on the E step.

Consider the set of observed data Y and a set of unobserved latent data
or missing values S and a vector of unknown parameters say, Θ, along with

the likelihood function L(θ; Y) = f(y|θ) =

∫
f(y,S|θ)dS. But since this is

intractable, we use a method to iteratively find the maximum likelihood
estimates of the marginal likelihoods by applying these two steps.

• Expectation step : The expected value of the log-likelihood, with
respect to the conditional distribution of S given Y under the current
estimate of the parameters θ

Q(θ|θ(t)) = ES|Y,θ(t) [logL(θ; Y,S)]

• Maximization step : To find the values of the parameter that maxi-
mizes the Q function.

θ(t+1) = arg max
θ

Q(θ|θ(t))

B.2 Exponential family

Exponential family with parameter Θ is a set of probability distributions
of a certain form, specified below.

f(yi) =
b(yi)

a(θ)
exp

(
θTT (yi)

)
where T (y), a(θ) are vector of sufficient statistics and the cumulant

generating function and b(yi) is a function of yi.

B.3 Empirical distribution

Let yi = (yi1, yi2, . . . , yiD) be independent, identically distributed real ran-
dom variables with the common cumulative distribution function F (t).
Then the empirical distribution function is defined as
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F̂n(t) =
number of elements in the sample ≤ t

n
=

1

n

n∑
i=1

I(yi ≤ t, )

where IA is the indicator of event A. Figure B.1 gives an illustration of
the Empirical distribution.

Figure B.1: The above plot is an illustration of the empirical
distribution function. The black bars represent the samples
corresponding to the empirical distribution function and the
gray curve is the true cumulative distribution function. The

blue line represents the empirical distribution function

B.4 logit and inverse logit transformation

The logit of a number p between 0 and 1 is given by the formula:

logit(p) = log

(
p

1− p

)
= log(p)− log(1− p) = − log

(
1

p
− 1

)
.

The base of the logarithm function can be 10 or e but in our thesis we
have used base e. Figure B.2 gives an illustration of the logit function.

The inverse logit is defined by exp(y)/(1 + exp(y)) for y ∈ R. Values in y
of -Inf or Inf return logits of 0 or 1 respectively.
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Figure B.2: Plot of logit(p) in the domain of 0 to 1, where the
base of logarithm is e

B.5 Bayesian Information Criterion (BIC)

Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC)
is a criterion for model selection among a finite set of models; the model
with the highest BIC is preferred if the BIC is defined as below. It is based,
in part, on the likelihood function.

BIC = 2 ln(L̂)− ln(n)w.

where L̂ is the maximized value of the likelihood function of the model,
y is the observed data, n is the number of observations, or equivalently,
the sample size; w is the number of free parameters to be estimated.

B.6 Dirichlet distribution in exponential fam-

ily form

For deriving the exponential family form for a Dirichlet distribution of the
form,

fk(yi) =
1

B(αk)

D∏
d=1

yαkd−1
id yi ∈ VD−1

we have
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log fk(yi) =
D∑
d=1

(αkd − 1) log ykd − log B(αk)

=
D∑
d=1

αkd log ykd −
D∑
d=1

log ykd − log B(αk)

= −
D∑
d=1

log ykd +
D∑
d=1

αkd log ykd − log B(αk)

is of the form

log f(yi) = log b(yi) + θTT(yi)− log a(θ)

where

θ =


αk1
αk2
...

αkD

 T(yi) =


log yi1
log yi2

...
log yiD

 (1)

b(yi) =
1∏D

d=1 yid

and

a(θ) = B(αk)
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Glossary

absolute magnitude Absolute magnitude is defined to be the apparent
magnitude an object would have if it were located at a distance of 10
parsecs. 24

asteroseismology Science that studies the internal structure of stars by
the interpretation of their oscillation modes, determined from the
frequency spectra of their light curves. 18

categorical random variables Random variable that can take on one of
a limited, and usually fixed, number of possible values, assigning
each individual or other unit of observation to a particular group
or nominal category on the basis of some criterion. The probability
distribution associated with a categorical random variable is called
a categorical distribution. 9

energy level Discrete values of energy of electrons bound to the nucleus
of an atom. 20

luminosity the amount of electromagnetic energy emitted by a body per
time unit. Hopkins (1976). 17

photometry Photometry is the science of the measurement of light, in
terms of its perceived brightness to the human eye or to a detector.
41

photon Fundamental particle of visible light. 20

prism This is a block of glass with a triangular cross-section. 19

refracted The change in direction of a wave passing from one medium to
another caused by its change in speed. 19

spectrum the electromagnetic spectrum is the energy density of the elec-
tromagnetic radiation per unit frequency or unit wavelength. 19
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