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SUMMARY 

 

The classical theory of solid mechanics employs partial derivatives in the 

equation of motion and hence requires the differentiability of the displacement field. 

Such an assumption breaks down when simulation of problems containing 

discontinuities, such as cracks, comes into the picture. peridynamics is considered to be 

an alternative and promising nonlocal theory of solid mechanics that is formulated 

suitably for discontinuous problems. Peridynamics is well designed to cope with failure 

analysis as the theory deals with integral equations rather than partial differential 

equations. Indeed, peridynamics defines the equation of motion by substituting the 

divergence of the stress tensor, involved in the formulation of the classical theory, with 

an integral operator. One of the most common techniques to discretize and implement the 

theory is based on a meshless approach. However, the method is computationally more 

expensive than some meshless methods based on the classical theory. This originates 

from the fact that in peridynamics, similar to other nonlocal theories, each computational 

node interacts with many neighbors over a finite region. To this end, performing realistic 

numerical simulations with peridynamics entails a vast amount of computational 

resources. Moreover, the application of boundary conditions in peridynamics is nonlocal 

and hence it is more challenging than the application of boundary conditions adopted by 

methods based on the classical continuum theory. This issue is well-known to scientists 

working on peridynamics. 

Therefore, it is reasonable to couple computational methods based on classical continuum 

mechanics with others based on peridynamics to develop an approach that applies 

different computational techniques where they are most suited for. The main purpose of 
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this dissertation is to develop an effective coupled nonlocal/local meshless technique for 

the solution of two-dimensional elastodynamic problems involving brittle crack 

propagation. This method is based on a coupling between the peridynamic meshless 

method, and other meshless methods based on the classical continuum theory. In this 

study, two different meshless methods, the Meshless Local Exponential Basis Functions 

and the Finite Point Method are chosen as both are classified within the category of 

strong form meshless methods, which are simple and computationally cheap. The 

coupling has been achieved in a completely meshless scheme. The domain is divided in 

three zones: one in which only peridynamics is applied, one in which only the meshless 

method is applied and a transition zone where a transition between the two approaches 

takes place. The coupling adopts a local/nonlocal framework that benefits from the full 

advantages of both methods while overcoming their limitations. The parts of the domain 

where cracks either exist or are likely to propagate are described by peridynamics; the 

remaining part of the domain is described by the meshless method that requires less 

computational effort. We shall show that the proposed approach is suited for adaptive 

coupling of the strategies in the solution of crack propagation problems. Several static 

and dynamic examples are performed to demonstrate the capabilities of the proposed 

approach.   
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1. Introduction  

In this chapter, a brief review on the literature of different subjects, related to the 

main goals of the present dissertation, is presented. Then, the merits and difficulties of 

several major approaches, in particular those aimed at modelling brittle fracture 

phenomena, are discussed.  

1.1 Failure analysis in the framework of the classical local theory  

Accurate modeling of damage and fracture phenomena is still an open issue for 

the community of computational mechanics [1]. Failure analysis is one of the most 

challenging problems when it is modeled in the frame-work of the classical theory of 

mechanics. 

Many different concepts have so far been developed in the literature for prediction of 

crack initiation and growth in materials. However, the main difficulty is originated in the 

mathematical formulation on which the classical continuum mechanics is based. The 

theory assumes that as a body deforms it remains continuous; therefore, it becomes 

undefined whenever a discontinuity appears in the body. From a mathematical point of 

view, the classical continuum theory is formulated based on partial differential equations, 

yet spatial derivatives lose their meaning when a discontinuity (singularity), such as a 

crack, exists in a body. 

Solution of the state of stress at crack tips, in the framework of the classical theory, 

results in infinite (or singular) stresses. This conclusion was obtained in the early studies 
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of Griffith [2], and it underpinned the concept of Linear Elastic Fracture Mechanics 

(LEFM). On the basis of LEFM, the presence of a pre-existing crack is essential to 

consider crack initiation and growth in a material. Furthermore, it adds additional criteria 

to the theory, such as a critical energy release rate, to equip the theory for the solution of 

crack propagation problems. However, simulation of important phenomena such as 

nucleation of crack requires special/ad hoc criteria in LEFM.  

In LEFM, accurate calculation of the added criteria, such as stress intensity factor, are 

highly dependent on the mechanical and geometrical properties as well as the numerical 

solution method. As a consequence, failure analysis along with consideration of other 

complex issues such as, dislocations, presence of micro cracks, and anisotropy within 

LEFM is extremely difficult. 

Despite the fact that the classical theory is incapable of distinguishing among different 

length scales, due to its local nature, it can still be applied to a wide range of engineering 

problems. Simulation of a certain failure processes by applying the Finite Element 

Method (FEM) as the numerical solution is achievable by the classical theory.   

FEM is the most popular computational technique for structural computations. It is robust 

and has been thoroughly developed for static, dynamic, linear and nonlinear mechanical 

systems. However, modeling of problems with evolving discontinuities by the 

conventional FEM is a challenge, and special techniques have to be devised. This 

originates again from the continuum theory from which the governing equations of FEM 

are derived. Therefore, FEM suffers from the presence of undefined spatial derivatives at 

crack tips and along the crack surface.  
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Adoption of LEFM into the FEM requires introduction of particular elements to capture 

the singular behavior at the crack tip correctly; of course such a treatment contributes to 

imposition of mathematical artifacts in a model. In the traditional FEM, a crack is defined 

as a boundary with free traction. As a result, solving problems with crack propagation 

requires the redefinition of the body in time.  

One of the main viable options to cope with moving cracks in a simulation using FEM is 

to update the mesh during each step of analysis in such a way that the element edges 

coincide with the cracks during all steps. Even though re-meshing approaches have so far 

been developed to address these limitations, for instance in [3], they are often applicable 

only to 2D cases. Moreover, such remeshing processes are affected by numerical 

difficulties, complexity in computer programing and often lead to degradation of solution 

accuracy [4].  

With the aim of eliminating remeshing techniques, over the past decades, meshless 

methods have attracted the attention of many researchers. Unlike conventional FEM, in 

meshless methods the adaptive scheme can be easily developed as there is no mesh and 

thus no so called a priory connectivity is required between the nodes. This fact 

culminates in providing a flexible computational tool and, particularly in the case of 

crack propagation, the burdensome remeshing required by conventional FEM models is 

avoided. Fundamentally in meshless methods, only a scattered set of nodal points is 

required, not necessarily a structured mesh, to represent the domain of interest. In the 

case of stress analysis in solid mechanics, there are often areas of stress concentration. 

One may conveniently add nodes in the stress concentration area without worrying about 

their relationship with other nodes. Such an appealing feature presents significant 



23 

 

implications for modeling crack propagation. A variety of meshless methods have been 

proposed by researchers; for instance, references [5]–[8]. 

Despite the progress made in developing meshless methods, the aforementioned 

difficulties again emerge because their governing equations are derived from the classical 

theory [9]. Therefore, any numerical method (both meshless or mesh-based) based on the 

classical theory inherits this difficulty for modeling singular problems as well as crack 

propagation. They also require additional relations that govern the initiation of the crack, 

their direction and their growth velocity. These kinetic relations must be provided for the 

analysis to determine when a crack should initiate, how fast a crack should propagate, 

when it should turn, branch, oscillate, etc. To recap, by using the conventional methods it 

is very problematic to solve problems which include multiple crack interactions, and 

those which deal with crack propagation in a complex manner.  

1.1.1 Remedies and numerical methods 

Significant efforts have been made by the studies documented in the literature to 

improve the shortcomings of traditional FEM within the realm of LEFM. Ad-hoc 

modifications have been added to different classical models to equip them with necessary 

tools for handling crack propagation. 

The cohesive finite element method uses the cohesive zone model (cohesive law) applied 

to finite elements. The concept of cohesive zone was introduced by Dugadle [10] and 

Barenblatt [11], and the introduction of cohesive zone elements for application to FEM 

models was done in [12], [13]. Cohesive zone elements are usually placed between 

continuum elements. The cohesive zone elements can open whenever a damage growth 

takes place, including initiation and propagation of crack. In this approach, a prior 
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knowledge of actual crack path is necessary; since in the simulation, crack can only 

propagate in the parts where cohesive zone elements are placed. However, usually 

advanced knowledge of crack path in practice is not available, due to the complexity of 

the problem, is not available. Mesh dependency is another important issue which restricts 

the use of cohesive zone FEM models [14].  

The eXtended finite element method (XFEM) was developed in an effort to address the 

difficulties of the cohesive zone element models. XFEM was introduced as a technique to 

model crack growth without any sort of remeshing [15]. XFEM adds enrichment 

functions (i.e., additional degrees of freedom) to the approximation which are singular, 

and they contain a discontinuous displacement field. Such a treatment, allows cracks to 

pass through elements rather than along the element boundaries, and hence solves the 

problem of mesh dependency. It is remarkable that XFEM has so far been employed to 

analyze dynamic propagation of cracks as in [16]. On the other hand, for the sake of 

integration, subdivision of the cut elements contributes to complexity and an increasing 

computational cost [17]. In addition, branching and phenomenological damage criteria 

are still required in XFEM. In the case of fragmentation and when a couple of cracks start 

developing in the material XFEM might not be an option. In conclusion, XFEM cannot 

cope with problems in which multiple interaction of cracks is of concern. Moreover, its 

use in 3D problems turns out to be very cumbersome [18].  

More recently, the phase field theory [19] has received a widespread attention by the 

scientists. It has the ability of predicting spontaneous emergence and propagation of 

cracks. In this method, cracks are represented using an additional scalar field variable 

called phase field which is used to distinguish between damaged and undamaged parts of 
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the solution domain. The evolution equation of the phase field is coupled with the 

governing momentum balance equations in the classical continuum mechanics. Hence the 

solution of a coupled system of PDEs computes displacements, stresses and phase field 

parameters. However, gradients/divergence terms in the governing equation of the phase 

field could be a source of inconsistency with the onset of material discontinuity [20]. 

The difficulties which arise from computational models utilizing the classical continuum 

mechanics can be overcome by performing molecular dynamics simulations or atomistic 

lattice studies. One of the most realistic and detailed models for the investigation of 

material fracture is atomistic simulation [21]. Some important features of dynamic 

fracture based on atomistic simulations are explained in [22]. In this way, by using inter-

atomic forces crack initiation and propagation can be modeled. Molecular dynamic 

models have the capability of reproducing some phenomena observed in experiments (see 

[23], [24]). In the past decades, the large scale problems that could be modeled by 

researchers using molecular dynamics were restricted to about one billion atoms [25], 

[26]. This originated from a limitation in computational resources. More recently, due to 

advancements in computer architectures simulation of larger scale problems with 

molecular dynamic is possible. Molecular dynamic models can be performed with 19 

billion atoms [27]. However, there are two important issues about molecular dynamics 

which have not been addressed yet. Firstly, modelling the original geometry of a real 

problem is too difficult as the length scale is too small. Secondly, the time scales are very 

small too. To overcome such a difficulty, one way is to accelerate the simulation by using 

load conditions of higher rate in comparison to those seen in practice. An important 

conclusion is that atomistic studies are more suitable for fundamental understanding of 
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the physical process of fracture rather than being used for dynamic crack prediction and 

failure analysis [28].  

1.2 Peridynamics 

Recently, in order to overcome the restrictions related to the differential 

formulation of methods based on the classical theory as well as nonlocal theories 

developed in the past, the peridynamics nonlocal theory has been proposed by Silling 

[29] and Silling et al. [30]. Peridynamics is considered to be an alternative and promising 

nonlocal theory of solid mechanics that is formulated suitably for discontinuous problems 

such as crack propagation. peridynamics is well designed to cope with failure analysis as 

the theory deals with integral equations rather than spatial differentiation. peridynamics 

defines the equation of motion by substituting the divergence of the stress tensor, 

involved in the formulation of the classical theory, with an integral operator. These 

equations are valid even in the presence of discontinuities in the displacement field. Since 

damage and material failure are invoked through the material response in peridynamics, 

fracture occurs as a natural result of the equation of motion and constitutive models. The 

peridynamic governing equations are defined at crack surfaces and there is no longer a 

need to use special numerical techniques such as interface elements and singular basis 

functions to treat fracture. Another important feature of peridynamics is the introduction 

of a length parameter, the so called horizon. The horizon is a definition introduced in the 

formulation of peridynamics, and it specifies the size of the region where nonlocal 

interactions of a material point with other points take place. The horizon length can be 

linked to a characteristic length-scale of the material and the considered phenomenon 
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[31]. In this way, it is feasible to investigate the material response at different length 

scales, from macroscale to nanoscale, as the horizon size can be controlled.  

Peridynamic models can easily predict crack nucleation, multiple branching, and 

propagation. The first introduced and most commonly used peridynamic formulation, in 

the case of failure analysis, is the bond-based peridynamic formulation. The main concept 

proposed by Silling is the assumption that material points can interact with each other 

provided that they are located inside a finite region. Indeed, due to this concept, the 

Greek roots of the words near and force were proposed to call this theory 

“peridynamics”.  

 

 It is worth noting that the theory has already been applied in a meshless style for the 

modeling of impact damage [32] and for brittle dynamic crack growth [33], [34] that 

reproduces well the crack path experimentally observed in brittle materials. Thanks to 

these features, peridynamics has attracted widespread interest among researchers, and the 

number of studies on the application of the method to different challenging applications 

is growing fast; see for instance [35]–[45] and the references cited in [46].  

1.3 Outlines of the present study 

In spite of all the appealing features of peridynamic models, they are most often 

computationally much more expensive than the methods based on the classical theory of 

mechanics such as the finite element method (FEM). Moreover, capturing more realistic 

numerical solutions with peridynamics which resemble experimental observation entails 

a vast amount of computational resources [47]. In general, simulation of fully nonlocal 

models is computationally much more expensive than that based on the classical (local) 
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continuum mechanics. This originates from the fact that in nonlocal theories each 

integration point interacts with many neighbors. Consequently, the meshless methods 

based on peridynamics are computationally more expensive than the majority of meshless 

methods based on the classical theory. 

It is therefore reasonable to couple computational methods based on classical continuum 

mechanics with others based on peridynamics to develop an approach that applies 

different computational techniques where they are most suited for. The challenge is 

gluing these two different models with an efficient and simple technique without 

introducing numerical artifacts. That is the main objective of the present dissertation.  

Several studies have been conducted by many researchers to reach a suitable nonlocal-

local continuum coupling. For instance, Han and Lubineau [48] proposed an approach 

based on the Arlequin method in which the coupling conditions are enforced by the 

introduction of Lagrange multipliers, but in this way the size of the system to be solved 

largely increases. Seleson et al. [49] introduced a force conservation technique in one 

dimension, and then the work was extended to higher dimensions in [50]. Lubineau et al. 

[51] developed the morphing method based on the conservation of the strain energy 

density over the overlapping coupling region, and then the method was applied to static 

fracture problems in [52]. Agwai et al. [53] used the submodeling approach for the sake 

of coupling peridynamics with FEM. In their approach, first the global analysis is 

performed by FEM, and then peridynamics is employed for submodeling. 

In the literature one can find some studies regarding concurrent coupling of peridynamics 

with FEM. Macek and Silling [54] implemented the peridynamic model in the framework 

of conventional FEM using truss elements. In their work the FEM mesh is coupled with a 
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peridynamic truss mesh by using embedded elements. In the overlapping region, the 

elastic modulus of the host elements must be tuned to very small values to avoid 

excessive stiffness. On the other hand, close to the overlapping region the peridynamic 

part of the domain may be characterised by a softer response in comparison to that of 

other parts of the domain (this issue is related to the surface effect to be discussed in the 

next chapter). In order to address this shortcoming, there are some other studies which 

present a direct approach to couple peridynamics with FEM. Liu and Hong [55] 

comprehensively investigated a direct coupling, based on force partitioning at the 

discretized level, by introducing interface elements. However, this approach requires an 

iterative solution of a nonlinear system in the case of irregular discretization of FEM 

meshes. Furthermore, dispersion effects and spurious reflection of waves are common in 

FEM - peridynamics couplings due to severe distortion of elements and to the adoption of 

non-uniform grids in peridynamics [36], [56], [57]. It should be pointed out that the 

majority of the works in the literature are based on the coupling of a peridynamic model 

with FEM with a fixed partitioning of the domain. Also one can find the works in [58], 

[59] concerning the solution of soil fragmentation problems by the coupling of a 

peridynamic model with the smoothed particle hydrodynamic method (SPH) as a 

meshless method. 

Moreover, the way of applying boundary conditions in peridynamics is nonlocal and 

hence it is more challenging than the way adopted by methods based on the classical 

continuum theory. This issue is well-known to scientists working in peridynamics, and 

several suggestions in the literature can be found on how to apply boundary conditions in 

a more accurate way; for instance, see [46], [60]. It is worthwhile to mention as well, 
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based on the comprehensive studies conducted in [61], that the meshfree discretization in 

peridynamics leads directly to an approximation of the derivatives that can be obtained 

from the moving least squares reproducing kernel particle method (MLS/RKPM) [62], 

[63]. Therefore, based on the demonstration presented in [61], adopting some other 

compatible meshless approaches for the parts close to the boundaries can also be a way to 

apply the boundary conditions effectively. 

Coupling of peridynamics with a meshless method based on classical continuum 

mechanics may be a way to avoid the aforementioned problems. One can find a variety of 

studies in which the main focus is about coupling meshless methods with other types of 

methods like FEM for instance [64]–[66]. This brings the idea of applying peridynamics 

only to the parts where mechanisms such as damage and fracture strongly influence the 

solution, while the rest of the domain, where the solution is smooth, is simulated with a 

computational model based on the local theory that reduces computational cost and 

satisfies classical conditions.  

The main purpose of the present study is to develop an effective nonlocal/local meshless 

coupling technique for the solution of two-dimensional elastodynamic problems 

involving brittle crack propagation. This method is based on a coupling between the 

peridynamic meshless method, introduced in [32] and two other meshless methods based 

on the classical continuum theory. In the present study two different meshless methods, 

the Meshless Local Exponential Basis Functions (MLEBF) [67] and the Finite Point 

Method (FPM) [68] are chosen to develop the coupling approach. Such a selection is due 

to the fact that MLEBF and FPM are classified within the category of strong form 

meshless methods which are simple and computationally cheap. As we will show in the 
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subsequent chapters, for meshless nodes (MLEBF or FPM nodes) supporting sizes much 

smaller than that of peridynamic nodes are employed. In this way, a significant increase 

in efficiency for the coupled method in comparison to a peridynamic-only approach will 

be obtained.  

We shall show that the present coupling method offers some advantages. Its basic 

appealing features are: 

 The coupling is done in a complete meshless style without introducing any 

blending function, particular shape functions, or extra numerical artifacts.  

 It benefits from the full advantages of both theories preserving the originality of 

their discretized form.  

 It is free of ghost forces. 

  It can be used not only for a fixed partitioning but also for an adaptive 

partitioning of the solution domain to reduce the computational effort.  

An approach similar to the one proposed in the present work can be found in [69], where 

it is called a splice model. However, the present contribution has been developed 

independently and focuses in a more detailed way on the coupling of peridynamic grids 

with meshless methods and on the many practical issues related to the implementation. 

The chapters of the thesis are organized as follows: In Chapter 2 an overview of the 

bond-based peridynamic formulation and its discretization by a meshless approach is 

presented. In Chapter 3 the MLEBF will be explained and a switching approach to couple 

it with peridynamics is presented. In Chapter 4 we recall the solution strategy of the FPM 

in the solution of elasticity problems and then we extend it for the solution of 

elastodynamic problems and describe the time integration used in the present study. 
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Chapter 5 is devoted to give a comprehensive explanation of the introduced coupling 

approach in the case of dynamic problems, and the way how to apply it in an adaptive 

style. The work will be concluded in Chapter 6.  
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2. Overview of the peridynamic theory  

2.1 Equations of motion 

Suppose that a body occupies a spatial region   in a reference configuration. 

Reference configuration stands for a set including the initial positions of all material 

points of the body, i.e., the body configuration at 0t  . In peridynamics, it is assumed 

that the body is composed of material points located at generic positions X  to which 

infinitesimal volumes dV
X

 are associated. It is assumed that a material point with a 

position X  (hereinafter referred to as point X ) interacts with other surrounding points 

even if they are not in contact, provided that the distance between them is less than a 

threshold value   called the horizon. For bond-based peridynamics, the acceleration of a 

material point X , in the reference configuration, at time instant 0t   is [29]: 

( ) ( , ) [ ( , ) ( , ), ] ( , ),    
H

t t t dV t H 
       

X
X X

x u X f u X u X X X b X X       (2.1) 

Hereinafter the bold letters represent vectors, one dot and two dots over a letter represent 

first order and second order time derivatives, respectively. In Eq (2.1) H
X

 is the 

neighborhood of points of material point X  (see Figure 2.1), u  is the displacement 

vector field, b  is a body force density field which represents the external force per unit of 

reference volume,   is the mass density, and f  is the paiwise peridynamic force 

function, with the dimension of force per unit volume squared, that the material point X  

exerts on point X . In fact f  is referred to as an interactive nonlocal response function 
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force, also called bond force in the peridynamic terminology [29]. It depends on the 

initial relative position and relative displacement of two interacting points, and it includes 

all the constitutive information of the material. We shall show that no assumptions on the 

continuity of the displacement field is required in Eq (2.1).  

 

Figure 2.1. Neighborhood of a generic material point X .  

It should be remarked that the governing equation of motion in peridynamics shares some 

similarities with that of traditional molecular dynamics as a summation of interactions 

between neighboring material points/particles are involved in both. In molecular 

dynamics, a material is viewed as a collection of individual particles of finite size; 

however, from the peridynamic view-point a material is a collection of material points of 

infinitesimally small size. Therefore, peridynamics is a continuum theory.  
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Figure 2.2. Definition of relative position ξ  and relative displacement η  between two 

material points. 

To proceed with the formulation of peridynamics two frequently used terms are defined. 

Considering two generic material points, X  and X , as shown in Figure 2.2, the relative 

position or bond of these two material points with respect to the reference configuration 

is defined as: 

 ξ X X                          (2.2)  

also for the relative displacement of these two material points we have: 

( , ) ( , )t t η u X u X               (2.3) 

Therefore, based on the given definitions, ξ  is the undeformed bond length and ξ η  

is the deformed bond length; see Figure 2.2.  

As a consequence of the integration domain assumed in Eq (2.1), the equation of motion 

of peridynamics is restricted to the integration of the forces in H
X

 which is a spherical 

neighborhood (in 3D) centered at the material point X , defined by: 
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 3    H     
X

X X X            (2.4) 

for two-dimensional and one-dimensional problems H
X

 becomes a circle or a line, 

respectively.   

In view of Newton’s third law, the force function f , for conservation of linear 

momentum, should satisfy the following condition: 

( , ) ( , )   f η ξ f η ξ                                                                                                         (2.5) 

also conservation of angular momentum requires: 

( ) ( , )  η ξ f η ξ 0                          (2.6) 

in this sense, the force vector between two material points must be parallel to their 

current relative position η ξ . 

As a consequence, in view of Eqs (2.5) and (2.6), a general form of ( , )f η ξ  can be 

expressed as [29]: 

( , ) ( , )( ),    ,F  f η ξ η ξ η ξ η ξ            (2.7) 

where ( , )F η ξ  is an appropriate scalar valued function.  

2.2 Elasticity 

In bond-based peridynamics elastic behavior (elasticity) of a material is 

considered by defining the concept of microelasticity. A material is called microelastic if 

it fulfills the following condition [29]: 

( , ) 0,    closed curve ,   d


      f η ξ η ξ 0           (2.8) 

in which dη  is the differential vector path length along  . From this condition, similar to 

elasticity in the classic theory, it can be inferred that the line integral is path independent 
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so that the net work done by the response force along any closed curve is zero. On the 

basis of Stoke’s Theorem, if 
1 2 3( , , )f f ff  is continuously differentiable with respect to 

1 2 3( , , )  η , then a necessary condition for Eq (2.8) to hold is:  

3 32 1 2 1

2 3 3 1 1 2

( , ) ( ) ( ) ( ) ,    
f ff f f f


     

    
          

     
f η ξ i j k 0 ξ 0                      (2.9) 

Another consequence of Stoke’s theorem, since the force field is conservative and 

irrotational, is that the peridynamic force can be derived from a scalar-valued 

differentiable function w  called micropotential as: 

( , ) ( , ),    ,
w

 


f η ξ η ξ η ξ
η

                     (2.10) 

It can be shown that the micropotential depends only on the relative displacement vector, 

η , through the scalar distance between the deformed points [32]. Therefore, for isotropic 

microelastic peridynamic models one can define a scalar-valued function ŵ  such that: 

ˆ( , ) ( , ),    ,w w  η ξ η ξ ξ η ξ                              (2.11) 

By substitution of the above equation in Eq (2.10), and considering Eq (2.7) a general 

peridynamic force function, aligned with the relative position vector, for microelastic 

material is obtained: 

( , ) ( , )( ),    ,H   f η ξ η ξ ξ η ξ η ξ                                             (2.12) 

where H  is a scalar-valued even function: 

ˆ
( , ) ( , ),    ,    ,

w
H p p p

p


   


ξ ξ η ξ η ξ          (2.13) 

In fact the above equation is similar to that in Eq (2.7); however, here the dependence of 

the scalar part of the expression on the relative distance is concluded. 
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2.3 Linearization  

The main focus of this thesis is on the elastic response of materials. In the general 

framework of peridynamics large deformation is allowed. This theory can be applied to a 

wide range of problems considering large deformations. By making the assumption of a 

small deformation, such that ( ) 1 η ξ ξ ξ  for all ξ . A Taylor expansion on η  of 

first order to Eq (2.7) a peridynamic force function can be achieved as: 

( , ) ( ) ( , ) f η ξ C ξ η f 0 ξ                                                                                                 (2.14) 

where C  is a second-order tensor , called micromodulus, of the peridynamic force, and 

thus it can be computed as: 

( ) ( , )





f
C ξ 0 ξ

η
                   (2.15) 

the above equation can be rewritten as: 

11 1

31 2

2 2 2

1 2 3

3 3 3

1 2 3

( , )( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

ff f

f f f

f f f

 

  

  

  
 

  
   

   
    

   
 
   

0 ξ0 ξ 0 ξ

f
C ξ 0 ξ 0 ξ 0 ξ 0 ξ

η

0 ξ 0 ξ 0 ξ

       (2.16) 

Also with respect to Eq (2.7), the micromodulus tensor can be obtained as: 

( ) ( , ) ( , )
F

F


  


C ξ ξ 0 ξ 0 ξ I
η

         (2.17) 

where I  is an identity matrix and   is the dyadic or tensor product between two vectors 

which yields a tensor of second order. The condition expressed in Eq (2.9) for a 

microelastic material implies that: 
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,    for , 1, 2,3
ji

j i

ff
i j

 


 

 
              (2.18) 

Therefore, for a linear microelastic material, by introducing the above condition to Eq 

(2.15), one can conclude the micromodulus must be symmetric as: 

( ) ( ),    T C ξ C ξ ξ            (2.19) 

A necessary and sufficient condition for the satisfaction of the above expression is that 

there should be a scalar-valued even function ( ) ξ  through which [29]: 

( , ) ( )
F




  


ξ 0 ξ ξ ξ ξ
η

                      (2.20) 

where  

2
( ) ( , )

F







ξ
ξ 0 ξ

ηξ
           (2.21) 

As a result, for a symmetric micromodulus we have: 

( ) ( ) (0, )F  C ξ ξ ξ ξ ξ I           (2.22) 

Consequently, the linearized bond-based peridynamic force function can be explicitly 

reformulated in a general form as: 

 ( , ) ( ) ( , ) ( , )F   f η ξ λ ξ ξ ξ 0 ξ I η f 0 ξ         (2.23) 

For a microelastic material, using ( , ) ( , )F H pη ξ ξ  [29], presents:  

1
( ) ( , ),    

H
p

p



  


ξ ξ ξ ξ η

ξ
         (2.24) 

In a nutshell, the linearized peridynamic force function for a microelastic material is 

obtained as: 
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1
( , ) ( , ) ( , ) ( ) ( , )

H
H

p

 
    

 
f η ξ ξ ξ 0 ξ I ξ ξ η f 0 ξ

ξ
               (2.25) 

2.4 Areal force density 

There is a concept called force per unit area that establishes a link between the 

bond-based peridynamics and the classic theory of elasticity. Assume that an infinite 

body   undergoes a homogeneous deformation. One may choose a point X  in   and a 

unit vector n  passing through the point. A plane normal to the vector can be considered 

to divide the body into two parts   and   (Figure 2.3): 

   : ( ) 0 ,    : ( ) 0               X X X n X X X n       (2.26) 

Let   be a set of collinear points in   defined as follows: 

 ˆ ˆ: ,0s s       X X X n          (2.27) 

In the direction of n  the areal force density, ( , )τ X n , at X  is defined [29]: 

ˆˆˆ( , ) ( , )dV dl
 

 
     Xτ X n f u u X X                                        (2.28) 

in which ˆdl  indicates the differential path length over  .  

As the assumption of homogenous deformation is made, independent of X , one can 

propose a meaningful representation of a stress tensor as: 

( , ) ,     τ X n σn n                        (2.29) 

Due to the calculation of the force per unit area τ  with respect to the reference 

configuration, the proposed stress tensor is a Piola-Kirchhoff stress tensor.  
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Figure 2.3. Definition of areal force density. 

2.5 Unstressed configuration 

Assuming an unstressed configuration of a body leads to a restriction on the scalar-

valued function F  discussed in this section. A configuration is defined to be unstressed if 

the following condition is observed [29]:  

( , ) ,     τ X n 0 n            (2.30) 

Considering a set of orthonormal basis vectors as  1 2 3, ,e e e , setting 0X , and taking 

1n e , in Eq (2.27) gives: 

1
ˆ s X e             (2.31) 

and we have: 

1s    ξ X X X e              (2.32) 

another consequence, on the basis of Eq (2.7), is that for 0η : 
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( , ) ( , ) ( , )F f η ξ f 0 ξ 0 ξ ξ           (2.33) 

 Likewise, the areal force density, by Eq (2.28), in the direction of 
1e  can be calculated 

as: 

1 1 1
0

( , ) ( , )( ) XF s s dV ds







    τ 0 e 0 X e X e        (2.34) 

For the sake of simplicity, the integration variables can be converted into spherical 

coordinates as (see Figure 2.4): 

1 2 3cos( ),   sin( )cos( ),   sin( )sin( )r r r                (2.35) 

where r  ξ . Therefore, Eq (2.34) can be written as: 

1cos ( ) 2
2 4

1
0 0 0 0 0

2
( , ) (0, )( cos ) sin (0, )

3

r s r

F r r r d d dsdr F r r dr
 

    
 

     0 e        (2.36) 

and, on the basis of Eq (2.30), one may conclude: 

4

0

2
(0, ) 0

3
F r r dr






             (2.37) 

The above expression represents the aforementioned restriction on F . As Eq (2.36) is 

expressed in spherical coordinate system, the corresponding arguments are not vectors as 

in Eq (2.34). 

2.6 Poisson’s ratio in bond-based peridynamics  

The assumptions of the bond-based Peridynamic theory impose a fixed value of the 

Poisson’s ratio. Such a limitation lies in the nature of bonds that are characterized based 

on only pairwise interactions. This restriction has been addressed in the state-based 

version of peridynamics [30], yet that version is computationally much more expensive 

than the bond-based one. In this section, we shall show that such a fixed value for 
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Poisson’s ratio can be determined by equating the stress tensor of the areal force density 

concept with that obtained by the classical stress tensor. The two stress tensors are 

compared considering the same strain in a homogeneous linear elastic body.  

 

Figure 2.4. Change of variables. 

Let an orthonormal basis be given by  1 2 3, ,e e e , and assume an infinite linear 

microelastic body, which is unstressed in the reference configuration and undergoes a 

homogeneous deformation given by 
1 11u c X and 

2 3 0u u  . Noting that 
1 2 3{ , , }u u u  are 

the components of the displacement field u  [29]. Substitution of the displacement 

components in Eqs (2.2) and (2.3) yields 1 11 1c  , 
2 3 0   . By replacing the 

obtained relative displacements into Eq (2.23) we have: 
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2

1 1 2 1 3 1

2

2 1 2 2 3 2

2

3 1 3 2 3 3

3

11 1 1

2

11 1 2

2

11 1 3

1 0 0

( , ) ( ) ( , ) 0 1 0

0 0 1

[ ( ) ( , ) ]

( )

( )

F

c F

c

c

     

      

     

  

  

  

      
     

       
          

 
 
 
 
 

f η ξ ξ 0 ξ

ξ 0 ξ

ξ

ξ

      (2.38) 

Likewise, the nine components of the stress tensor σ  can be obtained with respect to Eq 

(2.28) as follows: 

ˆ( ) ,    for , 1,2,3ij j i jf dV dl i j 
 

 
    Xe                              (2.39) 

Derivation of the first three components, using the change of variable rule, explained for 

Eq (2.35), gives: 
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where on the basis of Eq (2.37) 0   , and   is defined by: 

6

0

2
( )

5
r r dr






              (2.43) 
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A similar calculation can be performed for the other six components of σ . To exemplify, 

for the components in the direction of 2e  the variables in Eq (2.35) should be changed to: 

1 2 3sin( )sin( ),   cos( ),   sin( )cos( )r r r                (2.44) 

then we obtain: 

11

0 0

0 0
3

0 0
3

c

 
 
 

 
 
 
 
 

σ            (2.45) 

The stress tensor on the basis of the same given assumptions can be calculated by the 

classical theory of isotropic linear elasticity as: 

112

2 0

2 0

c   

   

   

   
  

    
     

σ           (2.46) 

which can be simplified as: 
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0 0

0 0

c

 
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 

  
 
 

σ           (2.47) 

where   and   are the Lame’s first parameter and the shear modulus, respectively.  

Equating Eq (2.45) with Eq (2.47) gives the following results: 

1 5
,    ,    

4 6 3
E 

 
                 (2.48) 

where   and E  stand for the Poisson’s ratio and Young’s modulus, respectively. In the 

final analysis, the obtained results reveal that for an isotropic linear microelastic bond-

based peridynamic material undergoing a homogenous deformation, the value of the 
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Poisson’s ratio is fixed to 0.25. The unknown term  , which is not directly measurable, 

is also linked to   and E  [29].   

2.7 The prototype microelastic brittle (PMB) material model 

In peridynamics, the simplest material model that has been the subject of many 

studies is the prototype microelastic brittle (PMB) constitutive model introduced in [32]. 

The interaction in that peridynamic model is similar to mechanical springs with the 

following features:  

 The peridynamic force f  is a linear function of the bond stiffness c , and this 

relationship is established through the bond elongation, or stretch, s  defined 

as: 

s
 


ξ η ξ

ξ
          (2.49) 

 Insertion of failure in such a peridynamic model is an easy task. It suffices to 

consider that peridynamic bonds can break when their stretch exceeds a 

predefined limit value 0s , called the critical stretch [32] The details on how to 

compute it will be presented in Section 2.8.  

 Failure is an irreversible phenomenon. In this sense, once the bond fails it 

cannot be recovered. Moreover, the bond does not fail in compression. In 

principle, healing and compression can be modeled in peridynamics. 

For materials of PMB type, the scalar valued function H , defined in Eq (2.12), is a linear 

function of the bond stiffness and the bond stretch:  

( ) ( )
( , )

c s
H


 



ξ ξ
η ξ ξ

η ξ
          (2.50) 
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where   is a history dependent scalar-valued function that takes either a value of 0 or 1 

depending on the status of the bond as: 

01   if   ( , ) ,    0
( )

0   else

s t s t t


   
 


ξ
ξ          (2.51) 

In turn,   represents the status of the bonds in the solution domain. Therefore, the 

peridynamic force function for a PMB material takes the following form: 

( , ) ( ) ( )c s





η ξ
f η ξ ξ ξ

η ξ
           (2.52) 

As the assumption of “small displacement” is made, also by taking ( )c ξ  as a constant 

function, the above equations can be simplified by: 

( , ) ( )    if   cs
ξ

f η ξ ξ η ξ
ξ

         (2.53) 

The last parameter in Eq (2.52) that has to be specified is the bond stiffness c  and 

s    in the linearized form. Using the concept of force areal density, described in 

Section 2.4, can be a strategy to express c  in terms of known material properties. In this 

way, one may assume an infinite body that undergoes an isotropic deformation so that all 

the bonds have the same stretch equal to s . For the sake of simplicity, let us take   ξ  

and   η ξ . Based on the definition of stretch it can be concluded that s   and 

thus with respect to Eq (2.50) we have: 

c
H c





              (2.54) 

According to Eq (2.10) the micropotential of a single bond, or the potential energy 

density of a bond, can be computed as: 



48 

 

2 2
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w Hd d

  
 

 
             (2.55) 

Integrating the above micropotential over all the bonds within the neighborhood of a 

given point results in finding the total elastic potential energy W  at that point as: 

1
( , )

2 X
X

H
W w dV   η ξ            (2.56) 

The factor 1 2  before the integral is due to the fact that the potential energy of a bond is 

shared between its two interacting points. Then, introduction of Eq (2.55) into Eq (2.56) 

and using spherical coordinates concludes: 

2 2 4
2

0

1
( )4

2 2 4

cs cs
W d

   
            (2.57) 

It is also possible to calculate the strain energy density of a point in the framework of the 

classical theory of elasticity using the following given tensors: 

ij ijsε              (2.58) 

2ij ij ij kk   ε ε            (2.59) 

The above equations can be rewritten in a matrix form as: 
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The strain energy density in the classical theory of elasticity can be computed as follows: 

2
2 21 3 9

(2 3 ) 3 ,   1 4
2 2 2

ij ij

Ks
W s Es                (2.62) 
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where K  is the bulk modulus of the material. Recalling the restriction of 1 4   

according to the restriction explained in Section 2.6 the rest of the parameters can be 

stated as follows: 

2

2(1 ) 5

E E



 


           (2.63) 

2

(1 2 )(1 ) 5

E E


 
 

 
          (2.64) 

2

3(1 2 ) 3

E E
K


 


           (2.65) 

Equating Eq (2.57) with Eq (2.62) leads to find the bond/spring constant c as: 

4

18K
c


              (2.66) 

For a two-dimensional peridynamic model the same procedure to find the restricted 

Poisson’s ratio and to determine the bond constant can be followed. In this way, the 

elastic energy can be computed for both plane stress and plane strain conditions. Then the 

following results can be achieved [39]: 

3

plane stress   1 312
   

plane strain   1 4(1 )

E
c

t



  


 

 
         (2.67) 

where t  is the plate thickness. Moreover, for the 1D case one can obtain [57]: 

2

2




E
c

A
             (2.68) 

where A  is the cross section area.   
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2.8 Failure criterion  

This section is devoted to a brief discussion on the introduction of failure into a 

bond-based peridynamic model. As discussed earlier for a PMB material the failure 

criterion is based on a maximum stretch (or critical stretch) 0s  that a bond can withstand 

during its performance. A schematic diagram of the peridynamic force versus the bond 

stretch for a PMB material is illustrated in Figure 2.5. To determine 0s  we follow  the 

procedure introduced in [32]. The critical bond stretch 0s  can somehow be linked to 

known macroscopic quantities such as the critical energy release rate of the material 
0G .  

 

Figure 2.5. peridynamic force versus bond stretch.  

It can be interpreted as the dissipated energy per unit area of fracture surface during the 

growing of a crack. In peridynamics separation of a body into two parts can be perceived 

as the breakage of all the bonds (across a fracture surface) that initially connected the 

points on the opposite sides. The connection between 0s  and 
0G  can be established by 

assuming a complete separation of the fracture surface and neglecting the other 

dissipative mechanisms [32].  
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For a PMB material the required work to break a single bond can be calculated as 

follows: 

0 0

2

0
0

0 0
( ) ( )

2

s s cs
w H s d H s ds


              (2.69) 

For creation of a new fracture surface, it is required to break all the bonds crossing the 

mentioned surface. The energy per unit surface area, required to break all the bonds, is 

taken to be equal to the critical energy release rate 
0G  derived from Griffith’s theory [2]. 

Since the Griffith’s criterion is based on the energy balance of the whole material 

surrounding the crack, it is a nonlocal criterion. The mentioned released energies, due to 

propagation of crack, can be related as:  

2 2 5
2 arccos( )

20 0
0

0 0 0
( ) sin

2 10

z

z

cs cs
G d d dzd

  


  
               (2.70) 

where the domain of integration and the variables are illustrated in Figure 2.6.  

 

Figure 2.6. Variables involved in the computation of the critical stretch value. 

From Eq (2.70) 0s  can be evaluated for three-dimensional problems as: 
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while for two-dimensional problems it gets the following form: 

0
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


             (2.72) 

For the mode I of crack (opening), the energy release rate can be related to the fracture 

toughness IK  through the following equation [32]:  

2

0
IK

G
E




             (2.73) 

where E E   for plane stress and 2(1 )E E     for plane strain.  

The damage level   in a material point X  at time t  is defined by [32]: 

( )
( , ) 1 X

X

X
H

X
H

dV
t

dV


  





ξ
X                                            (2.74) 

and it takes a value between 0 and 1. The above equation considers the ratio of the 

number of broken bonds to the total number of bonds originally connected to point X .  

It should be noted that 0   and 1   respectively represent the undamaged state and 

the complete separation of a single material point from all surrounding points within its 

neighborhood.  

2.9 Numerical discretization in bond-based peridynamics  

Peridynamic models can be discretized using different numerical methods; a 

discussion on some types of discretization can be found in [70]. In the present study, we 

use the meshless approach introduced in [32] as it is simple and commonly used for 

problems involving failure.  
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2.9.1 Spatial integration 

The numerical approximation of the peridynamic equation begins with the 

discretization of the solution domain with a set of grid points called nodes (see Figure 

2.7).  

 

Figure 2.7. A spatial discretization for a peridynamic model.  

The majority of works in the literature deal with uniform distribution of nodes for the 

sake of simplicity and convenience related to spatial integration. Hereinafter, the distance 

between two nearest neighboring nodes     x y  is called the grid spacing. A cube 

(or a square cell in 2D) of material with a side length equal to one grid spacing is 

associated to each node called node volume. The node of interest at which the volume is 

centered is referred to as the source node. The union of all node volumes should 

appropriately cover the problem domain and represent well the border. Accordingly the 

time is discretized into instants as 1 2, , , nt t t .  

For a source node 
iX  the following discretized form of Eq (2.1) can be considered: 
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( , ) ,    
i

n n n n

i j i j i j j i j X

j

V H      u f u u X X b X        (2.75) 

where n  stands for the time step, and subscripts denote the node number (e.g., 

( , )n n

i i tu u x ). n

ju  is the displacement vector of a family node within the neighborhood 

of 
iX , 

jV  is the volume associated to 
jX . 

j  is a volume correction factor that 

determines the portion of 
jV  that falls within the horizon of 

iX . In the present study, we 

apply the factor as recommended in [71]:  

1                            for   0.5

0.5
    for   0.5 0.5

0                            otherwise
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      





ξ

ξ
ξ        (2.76) 

The above equation takes into account the fact that the volume of nodes close to the 

boundary of the neighborhood XH  falls only partially within the horizon of the source 

node.   

2.9.2 Time integration  

To proceed in time, based on the suggestion in [32], an explicit central difference formula 

for the acceleration can be adopted:  

1 1

2

2n n n
n i i i
i

t

  




u u u
u            (2.77) 

where t  is the time step size.  

For the sake of consistency with most existing publications about peridynamics, the time 

integration adopted for all the dynamic simulations in this study is an explicit algorithm 

with a Velocity-Verlet time integration scheme. It is worth noting that this scheme is 
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commonly used in molecular dynamics. On the basis of studies conducted in [72], it has 

been demonstrated that Velocity-Verlet has a good numerical stability and it is similar to 

the leapfrog method [73]. This similarity originates from the fact that velocity is 

computed not only at the full step size but also at half step size. Calculation of step size 

has been subject of different studies in the literature [74].  

Having known the displacement, velocity, and acceleration of each node at nt , 

( , , )n n n

i i iu u u , the simulation can proceed in time at 1  n nt t t  as follows:  

 calculate 
1

2
n

n n

i i i t


  u u u   

 calculate 
1

1 2
n

n n

i i i t


   u u u   

 calculate 1n

i


u  from to governing equation of the system Eq (2.75) 

  calculate 
1

1 12
1

2

n
n n

i i i t


   u u u  

A critical time step for the  PMB models was first recommended in [32]  as follows: 

2
crit

j

j

t
V c


 


            (2.78) 

where j  varies over all the family nodes of a given node. Another option commonly 

found in the literature is the maximum critical step given by Courant-Friedrichs-Lewy 

(CFL) approach [74]: 

crit

w

x
t

c


               (2.79) 

where wc  is the wave speed as: 



56 

 

w

K
c


             (2.80) 

and thus the critical time step can be found:  

critt x
K


              (2.81) 

2.10 Loading and boundary conditions 

Another important issue concerns the application of boundary conditions in 

peridynamics which is different from the classical continuum theory. Such a difference 

originates form the nonlocal nature of peridynamics. As the peridynamic equilibrium 

equations are based on integral operators, rather than partial differential operators, the 

traction boundary conditions should be applied over a volume similarly to body forces. 

 It should be remarked here that all the calculations done in the above sections are under 

the assumption that a node of interest is located inside an infinite body. That assumption 

is not valid for nodes close to the boundary of the body. This problem contributes to an 

undesirable effect called soft boundary effect [56], [75] for peridynamic models. This 

problem will be discussed further in Section 3.3. The prescribed boundary condition, 

similar to traction boundaries, should be imposed over a layer of nodes across the 

corresponding boundaries. The thickness of the layer most often is taken to be equal to 

the horizon value  . 
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3. A switching technique to couple a 2D discretized peridynamic model with 

other meshless methods  

3.1 Introduction 

As discussed in Chapter 1, many meshless methods have so far been proposed and 

gained remarkable reputation over the past decades, and one can find a variety of studies 

in the literature regarding the coupling of meshless methods with FEM [5]. In this 

chapter, we aim at proposing a simple technique to couple peridynamics with the 

Meshless Local Exponential Basis Functions (MLEBF) method studied by Shojaei et al. 

[67], [76] which is a simplified version of  the meshless method developed in [77]. Both 

of these studies originate from a method, the so called EBF (Exponential Basis Functions 

method) proposed by Boroomand et al. [78]. EBF falls within the category of boundary 

meshless methods and shares some similarities with Trefftz type methods [79]. The 

application of EBF to different engineering problems can be found in different studies as 

in [9], [80]–[87], and the generalized format of EBF for dealing with nonlinear problems 

is investigated in [88].  

MLEBF falls within the category of truly meshless methods since it is free of any type of 

mesh. As the method uses residual free basis functions, which satisfy the strong form of 

the governing partial differential equation, no integration scheme appears in the solution 

procedure. MLEBF is not sensitive to the pattern of domain discretization, and it is 

capable of yielding highly accurate results with a high convergence rate for both uniform 

and non-uniform distribution of nodes in the solution domain. MLEBF uses a small 
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number of nodes in the approximation of unknown field variables within subdomains, so 

called clouds, compared with other meshless methods [67]. In this study, we shall use 

clouds with an average number of 9 nodes. This feature generates a sparse matrix with a 

narrow band width for the stiffness matrix of the final system of equations.  

In this chapter, a simple switching technique to couple MLEBF with peridynamics is 

developed to take full advantage of both methods. The proposed technique efficiently 

introduces a transition region between the nonlocal and local discretized zones. In this 

sense, the method possesses desired characteristics such as proper satisfaction of 

Newton’s third law and hence it does not exhibit ghost forces; moreover, we shall show 

that the method is patch test consistent. These features are regarded as essential factors 

for concurrent coupling schemes [50]. We shall show, in the section of numerical 

examples, that one can apply these coupling technique to overcome the surface effect for 

the satisfaction of boundary conditions which is a controversial issue in peridynamics 

[46], [54], [75].  

In the current chapter we consider only static problems; however, this study paves the 

way to extend the strategy to wider classes of problems, such as those involving crack 

propagation, as well as to dynamic problems in the following chapters.  

3.2 Problem description  

The present chapter is about the solution of equilibrium problems in two-

dimensional linear elastic bodies. Let us consider a 2D elastic body occupying a domain 

  bounded by   (see Figure 3.1). The boundary consists of a part D  where Dirichlet 

boundary conditions are prescribed (imposed displacements *
u ), and a part N  where 
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Neumann boundary conditions are prescribed (imposed tractions *
t ); the following 

conditions apply too: 
D N     and 

D N   .  

In the classical continuum mechanics the problem is described by the well-known 

equations that, in this case for linear isotropic homogenous materials, assume the 

following form for every point X  of the domain: 

( ) ( )T  S DSu X b X 0           (3.1) 

where, similarly to Eq (2.1), u  and b  are the displacement and the body force vectors, 

respectively. S  is the well-known differential operator linking strains to displacement 

variables, and D  is the matrix of material constants: 

1 2

2 1

3

0
0

0 ,      S=
0

0 0

TD D
X Y

D D D
Y X

D

 
     

        
  

                    (3.2) 

in which:  

1 2 32 2

1 2 3

Plane stress:     ,  ,  
1 1 2(1 )

(1 )
Plane strain:     ,  ,  

(1 )(1 2 ) (1 )(1 2 ) 2(1 )

E E E
D D D

E E E
D D D



  

 

    

  
  


  

    

                 (3.3) 

Eqs (3.1)-(3.3) have been devised to deal with continuum mechanics and are difficult to 

apply whenever a discontinuity arises in the domain   since the spatial derivatives in Eq 

(3.2) are not well defined.  
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Figure 3.1. A general 2D equilibrium problem. 

As discussed earlier, the main advantage of peridynamics is that the governing integral 

equation, Eq (2.1), is defined even if discontinuities are present in the domain   and 

thus peridynamics can be easily applied to problems affected by crack propagation. The 

main idea of the present chapter is to couple a discretized form of the bond-based 

peridynamics with a meshless method to solve equilibrium equations, in a way that 

exploits the strengths of both computational approaches and avoids at the same time their 

limitations. 
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Figure 3.2. A general coupled 2D problem domain. 

In the present work the solution domain will be split in three non-overlapping regions 

1 , 2  and 3  such that 
1 2 3    (see Figure 3.2). 1  is the nonlocal region 
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where the presence of cracks are of concern and will be discretized using bond-based 

peridynamics. 3  denotes the local region where displacements are smooth and thus can 

be described within the framework of classical continuum mechanics; it will be 

discretized by means of the MLEBF. 2  is the coupling region which provides a 

transition zone between both the nonlocal and local regions; a meshless scheme is 

introduced to make the transition feasible. In ordinary applications 2  will cover a small 

portion of the domain. However, since it constitutes the most critical part of the coupling, 

in the examples of Section 3.7 the examined field will be just slightly larger than the 

transition zone.  

3.3 Surface effect  

In the subsequent section, we shall briefly recall the surface effect in peridynamics. It 

leads to some spurious unwilling effects in the numerical solution of a peridynamic 

model close to boundaries which is known as soft boundary effect or skin effect [46], 

[56]. Basically peridynamic material parameters, such as the micromodulus of the bonds 

(see Eqs (2.66)-(2.68)) are derived by assuming that the neighborhood XH  of the 

material point is fully embedded in the solution domain.  
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Figure 3.3. Surface effect in a peridynamic domain. 

However, this assumption breaks down when the material point is close to any boundary. 

In this case, a portion of the neighbourhood associated with the material point falls 

outside the body; thus the horizon takes a truncated shape, as shown in Figure 3.3, and it 

does not contribute to its deformation energy. For instance, if the domain shown in Figure 

3.3 is stretched with a constant strain, the potential energy density, see Eq (2.57), of a 

material point near an external surface is lower than in the bulk. As a consequence, a 

narrow zone close to the boundary of a body described by the peridynamic theory appears 

to be artificially softer than the rest of the body, the so called surface effect. Addressing 

of this effect has been the subject of some studies in the literature; to exemplify [54], 

[75], [89]. In the study conducted in [75] a way to apply a correction factor to the 

micromodulus of the bonds connected to points close to boundaries has been suggested. 

This correction factor, so called force normalization, is obtained considering the potential 

energy deformation of the corresponding material point under a homogenous loading 
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condition. However, it cannot cope with boundaries imposed by nonhomogeneous 

conditions, and hence a complete solution of the problem is not available yet [90], [91]. 

We shall show that the present coupling approach can also be considered as a way to 

imposed boundary conditions in a peridynamic model perfectly and to reduce many 

problems associated to the surface effect.  

3.4 The meshless local exponential basis functions method (MLEBF) 

This section presents a brief survey on MLEBF applied to the solution of 

problems based on the classical continuum theory as presented in Eqs (3.1)-(3.3). The 

reader interested in more details should refer to [67] on which the present section is 

based. The solution domain is represented by a set of randomly distributed nodes. Every 

node 
iX  is associated to a subdomain iC , the so called cloud in the terminology of 

meshless methods. Indeed, iC  contains all the neighboring nodes on which the unknown 

vector of displacement u  is to be approximated locally. Hereinafter, for the sake of 

consistency with the peridynamic terminology, we refer to neighboring nodes within the 

cloud iC  as the family nodes of node 
iX . For each cloud a local coordinate system is 

considered, and for the sake of simplicity, the axes of the local coordinate system are 

taken to be parallel to the global one (see Figure 3.4). There is no shape limitations for 

the clouds however their union should cover the whole domain.  
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Figure 3.4. Schematic definitions of cloud, cloud center, family node, local coordinate 

system. Clouds are shown as circles in the figure, but this is not a requirement of 

MLEBF. 

According to the linearity of Eq (3.1), the solution domain should be decomposed as:  

h p u u u                (3.4) 

where p  and h  denote the homogenous and particular parts of the solution, respectively. 

Neglecting the body forces at this stage and focusing on the homogenous part of the 

solution, Eq (3.1) becomes: 

( )T h S DSu X 0              (3.5) 

In the MLEBF strategy the homogenous part of the solution is approximately constructed 

by a series of base functions as follows: 

1

( ) ( ) ( ) ,    ( , )
bn

h

k k

k

c x y


   u x ψ x ψ x C x             (3.6) 
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where bn  denotes the number of basis functions, kc  represents a series of unknown 

coefficients which are to be found in terms of DOFs; moreover, x  and y  are the 

components of local coordinate system. For 2D elasticity problems the bases in Eq (3.6) 

take the following form: 

( ) ( , )exp( )k k k k k kx y    ψ x γ            (3.7) 

in which kγ  is a vector with a size equal to 2 due to the number of field variables. 
k  and 

k  are the exponents of the bases which are to be found in terms of each other. The 

relation between exponents in Eq (3.7) should be found so that the basis function can 

satisfy the strong form of the equilibrium equation in Eq (3.5). The strategy to derive the 

final format of the exponential basis functions (EBFs) has been comprehensively 

addressed in [78], and the strategy is summarized in Appendix A.  

Inspired by the strategy given in [67], choosing a value for 
k  results in finding two 

values for 
k  and this can be repeated by choosing a value for 

k  and finding two values 

for 
k . Likewise, by selecting both 

k  and 
k  from an identical set, i.e.  1 2, , μ , 

and considering all possible combinations, the series expansion of EBFs can be found for 

a plane stress case as below: 
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where 
1 (1 i)( 3 ) (1 )       , 

2 1 x y    , 3 i i ix y    , i= 1 . As a 

consequence the total number of EBFs in the expansion series of bases will be a multiple 

of eight.  

The unknown coefficients (k 1, , )kc b   in Eq (3.6) are to be determined in terms of the 

nodal values. A vector that collects the local coordinates of all the family nodes 

associated to 
iX  (see Figure 3.4) is defined as: 

,      ( ) &  ( ) &  ( )

il
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i ij j i j iim
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C j i
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x

x x X X Xx

x

        (3.9) 

Inserting the above collected local coordinates into Eq (3.6) and rewriting the equation in 

a matrix form leads to:  

( )

,      ,     ( )

( )

h

l il

hh h

mi i i i i im

h
inn

   
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uU M C U M ψ x
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        (3.10) 
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where h

iU  and 
iM  are respectively the nodal values of the family nodes and the moment 

matrix associated to ix . As a result, based on the relation given in Eq (3.10), 
i
C  can be 

found as: 

h

i i i

 C M U             (3.11) 

where the superscript “+” stands for the Moor-Penrose generalized inverse. Substitution 

of i
C  from Eq (3.11) into Eq (3.6) results in: 

( ) ( ) ,    ( ) ( ) ,    in h h

i i i i i iC u x φ x U φ x ψ x M         (3.12) 

where iφ  is a matrix containing all the shape functions associated to the family nodes. At 

this stage, one can suppose a situation in which a particular solution as p
u  is a priory 

known. This function may not be unique, and it is capable of constructing the non-

homogenous part of Eq (3.1) after being imposed to the governing PDE. According to the 

relation given in Eq (3.4), one can conclude: 

,    ,   
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ph p P
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p
n n

  
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   
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uu

uU U U U Uu

u u

                                          (3.13) 

As the relation between general nodal values is of concern, one can replace the above 

equation into Eq (3.12) and obtain:  

( ) ( )( ),    in p p

i i i i iC  u x u φ x U U          (3.14) 

The above relation defines the approximated displacement field in terms of the nodal 

values of the family nodes.  
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In the case where the particular solution is not a priory known, it can be approximated 

through a collocation approach using again exponential basis functions. This is discussed 

in detail in Appendix A.  

3.5 Bond-based peridynamic discrete form  

In this section we recall the discretized formulation developed for a PMB model 

discussed in Section 2.9. It should be remarked here that the relation in Eq (2.53) is 

taking the assumption of small displacements. In this way, such an interaction between 

iX  and 
jX  can be considered as a spring (or truss element), and for a 2D problem it is 

obtained as: 

2 2
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k k
k ξ

k kξ
    (3.15) 

Figure 2.7 illustrates a horizon and bond interactions in a linearized discrete peridynamic 

model. The above equation is valid as long as the linearized formulation is used.  

3.6 Forming the system of equations  

3.6.1 The coupling scheme (switching technique) 

Taking full advantage of both peridynamic and MLEBF computational techniques 

requires a suitable coupling scheme. As illustrated in Figure 3.2 1  is the region of the 

domain where only peridynamics is used, whereas only MLEBF is used in 3 . 1  

covers the parts of domain where damage or fracture are expected and nonlocal 

interaction is of concern; 3  involves the parts where the deformation is smooth enough 
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to use the local model. The main novelty of the present work actually arises in the 

local/nonlocal transition part 2 . The thickness of this region depends on the horizon 

length of the peridynamic discretization and on the size of the clouds of the meshless part 

of the domain. The meshless parts stand for the parts solved by the MLEBF.  

Figure 3.5 shows any possible position of the nodes in the solution domain with respect 

to the various layers of the grid. Four possible cases, A, B, C, and D can be considered 

for the position of the central node (source node) either of the peridynamic neighborhood 

or of the meshless cloud. We define four layers as shown in Figure 3.5.  

 

Ω3

Ω2

Ω1

Ω2C

Ω2B

 

Figure 3.5. Coupling scheme used in the proposed strategy in the transition region. 

Layer 1 : its nodes behave in all cases as peridynamic nodes, both as central nodes or 

family nodes of their neighbors (node A is a pure peridynamic node).  

Layer 
2B : its nodes are switching nodes, but mainly of peridynamic type. They behave 

as peridynamic nodes if they are central nodes or family nodes for the nodes of layers 1  
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and 
2B , but they behave as meshless nodes when they belong to the cloud of layers 

2C  or 3  (node B is a switching node).  

Layer 
2C : its nodes are switching nodes, but mainly of meshless type. They behave as 

meshless nodes if they are central nodes or belong to the cloud of nodes of layers 
2C  

and 3 , but they behave as peridynamic nodes when they are within the horizon of nodes 

of layers 1  or 
2B  (node C  is a switching node). The union of layers 

2B  and 
2C  is 

called 2  in Figure 3.5 and constitutes the transition region. 

Layer 3 : its nodes behave in all cases as meshless nodes, both as central nodes or when 

they belong to the cloud of their neighbors (node D is a pure meshless node). Therefore, 

the behavior of the family nodes is governed by the position of the relevant central node.  

The size of 
2B  has to be such that no meshless central node in 

2C  or 3  has any node 

belonging to 1  in their cloud. In a similar way the size of 
2C  has to be such that no 

peridynamic central node in 1  and 
2B  has any node belonging to 3  within their 

neighborhood.  

Remark I: The nodes in the transition region are split in two main sets: meshless nodes, 

in layer 
2C , and peridynamic nodes in layer 

2B . For the meshless nodes the governing 

equation and the material properties are identical to those of pure meshless nodes, those 

in layer 3 , and hence the state of stress at these nodes can be calculated based on 

classical strain-stress relationships. For the peridynamic nodes the governing equation 

and the material properties are identical to those of the pure peridynamic nodes, those in 
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layer 1 . Therefore, for these nodes, the internal forces (as well as stresses) can be 

calculated as shown at page 31 of reference [46]. ■ 

In the previous sections the formulations of bond-based peridynamics and MLEBF were 

discussed. In the peridynamic model, the relation between forces and displacements is 

obtained based on the nonlocal force interactions of any node with its family nodes 

within the neighborhood; which leads to the concept of equilibrium of the spring 

network. However, in MLEBF this relation is constructed, through the interpolation of 

the solution within clouds, by enforcing the local approximation to pass through the data 

at nodal values of the family nodes and imposing the displacement compatibility. Now let 

K , U  and F  be the coefficient matrix, the unknown nodal displacement values and the 

vector of known values for the global system of equation. The final system of equations 

can be written as follows: 

KU F             (3.16) 

Each element of the final system of equations should be determined appropriately with 

respect to the position of the nodes. Based on the connectivity between the nodes and the 

body forces exerted on the central node, the corresponding rows of the nodal values in K  

and F  can be found by an assembly procedure.  

If the central node iX  is a meshless node, the corresponding rows of the final system of 

equations can be obtained by inserting the local coordinates of node iX  defined as 0ix  in 

Eq (3.14). Then we have: 
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                   (3.17) 

Now the coefficients of the nodal values should be simply replaced into the 

corresponding rows in K . In this sense, the left hand side of Eq (3.17) indicates the 

coefficients associated to the 2 1i  -th and 2i -th rows of K ; consequently, the right 

hand side should be placed into the corresponding rows in F . It is worthwhile to mention 

that we benefit from one of the most important features of MLEBF regarding the 

elimination of the assembly process which is involved in many other conventional 

methods like peridynamics or FEM. If the central node is positioned on the borders the 

relation should be modified as discussed in more details later. 

In order to get more insight into the way the matrix K  is formed, we provide in the 

following equation the contributions to Eq (3.16) from nodes A, B, C, D, shown in Figure 

3.5: 
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         (3.19) 

where the terms k  are defined in Eq (3.15) and the terms φ  are defined in Eq (3.17) 

Remark II: The rows of the stiffness matrix in Eq (3.18) are filled out by coefficients 

derived either form the MLEBF formulation or from the peridynamic one. In the case of 

problems with large values of E , there might be an accumulation of large numbers for 

the rows related to peridynamic nodes while having smaller numbers for those of 

MLEBF nodes. This may result in an ill-conditioning for the system of equations, yet 

such a problem can be solved easily. It suffices to normalize the rows related to the 

peridynamic nodes with a simple factorization. No equation of system (3.19) contains 

terms coming from both formulations. ■ 

In this way, 
2  provides a suitable transition region for the analysis to switch the 

governing equations in different parts of the solution domain from a nonlocal to a local 

approach. This switching behavior somehow resembles the idea of the morphing strategy 

proposed in [51], [52] to couple nonlocal and local continuum mechanics. In the 

morphing strategy, a morphing function is employed to affect the constitutive parameters 

in the transition zone. This function varies from 0 to 1 and identifies the portion of the 



74 

 

constitutive parameters to be derived from the two different nonlocal and local theories. 

In this strategy, a suitable selection of the morphing function plays an important role in 

the analysis to eliminate the presence of ghost forces in the transition region. We shall 

examine the suitability of the strategy proposed in the present work against ghost forces 

in the section about numerical examples. The proposed switching strategy is simple and 

offers many advantages in terms of implementation. It contributes to a complete meshless 

approach, and preserves the advantages of the formulations of both models without 

introducing any morphing or blending functions into the formulation of the system. 

We believe that the switching technique can be used in the case of static crack 

propagation adaptively. At the beginning of the solution procedure, the domain can be 

represented by MLEBF nodes. Then where cracks are likely to nucleate, MLEBF nodes 

can be adaptively changed into peridynamic nodes. In such a framework, the peridynamic 

part is forced to follow the propagation of cracks. When a crack reaches a boundary, 

peridynamic nodes have an inevitable projection on it. In such a case a very small portion 

of the boundary can be affected by the softening effect; yet the remaining parts are free 

from it. These issues will be addressed in future studies and are mentioned in the last 

chapter. 

Eq (3.19) shows that the resulting system matrix is not symmetric. This type of coupling 

can be applied also to other meshless methods; however, here it was adopted for the 

MLEBF due to its efficiency. 
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3.6.2 Boundary condition satisfaction in MLEBF 

For the satisfaction of Dirichlet boundary conditions, one can directly constrain 

the DOFs, yet for Neumann boundary conditions the procedure is more complicated. Let 

NL  be the operator defined on the traction boundary nodes as: 

*
0
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 
L u t L nDS n                               (3.20) 

in which xn  and 
yn  are the components of the outward unit vector normal to the 

boundary. For the nodes on which traction is imposed, in view of Eqs (3.4) and (3.20), by 

the appropriate introduction of coordinates of node 
iX , one can obtain: 

0
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Coupling the relations given in Eqs (3.21), (3.10) and (3.11) leads to: 
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By calculating 
i
C  from Eq (3.22) and substituting it in Eq (3.6), one can conclude: 
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Inputting the local coordinates of the central node and again stating the nodal values, 

which correspond to the homogeneous part of the solution, in terms of general nodal 

values results in: 
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For the sake of simplicity we define L

Nχ  and R

Nχ  as two matrices whose dimensions are 

equal to (2 2 )b Rn n  and (2 2 )bn , respectively. Where Rn  stands for the number of 

family nodes in the cloud, and we have: 
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M
χ χ
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Finally the relation given in Eq (3.24) with respect to Eq (3.25) can be rewritten as: 

*

0 0 0( ) ( ) ( ) ( )
i i

L p L P R p

i i N i i N i N N    X Xu ψ x χ U u ψ x χ U ψ x χ t L u      (3.26) 

Similar to the description given for Eq (3.17), Eq (3.26) indicates the relation between the 

DOFs associated to the central node and those of the family nodes. 

 

Remark III: One can proceed with satisfaction of the traction boundary condition by 

direct imposition of the traction operator on the approximated function given in Eq (3.14) 

and find the relation between the family nodes of the cloud, as follows: 

0 0 0

*

i i i

p p

N i N N i  x x xt L φ U L u L φ U          (3.27) 

This approach is suggested by the studies presented in [67]. However, since in the fitting 

process (see Eq (3.10)) the central node is excluded, it results in emerging zero values for 

some diagonal elements, associated to the traction boundary nodes, in the stiffness matrix 

of the final system of equations. In other words, Eq (3.27) establishes an algebraic 

relation between family nodal values in the cloud, and it disregards the central nodal 

values. On the other hand, utilizing the coupled relation given in Eq (3.24) which leads to 

Eq (3.26), involves the central nodal values in the algebraic relation, as well. Our 

experience shows that this new implementation (Eq (3.26)), not only presents better 
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results in term of accuracy but also makes the condition number of the final system of 

equation lower. ■ 

3.6.3 Numerical implementation  

Generally, the discretization in peridynamics does not need to be uniform [71], 

[92]; however, in the case of a non-uniform discretization, especially when the difference 

between the volumes is large, complicated integration techniques must be used to reduce 

the integration error which may be computationally costly. In the implementation of 

peridynamics, the horizon size is commonly taken to be constant to avoid spurious wave 

reflections and ghost forces between nodes [36]. To this end, using uniform discretization 

with identical horizon sizes is more convenient from an implementation point of view 

and for the accuracy of the solution. These limitations could require additional 

computational tests in the case of problems with complex geometries. However, applying 

peridynamics only in particular sub-regions where the nonlocal interactions are of 

concern could be a remedy to address these possible drawbacks.  

In the meshless part of the solution since we use the exponential residual free basis 

functions the method is completely free of any integration. However, proper interpolation 

of the field variable within a cloud entails considering suitable number of family nodes 

and efficient selection of the exponent parameters; i.e. μ  in Eq (3.8). This matter is 

studied comprehensively and addressed in the study done by the author and co-workers 

recently in [67], and we shall use the same strategy for selecting suitable clouds in the 

section of numerical examples. In the subsequent section we use 9 nodes for the meshless 

clouds. 
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3.7 Numerical examples 

In this section, the performance of the proposed approach is examined by 

considering various 2D examples. For all the examples we choose 1E   and 1 3  ; 

moreover, for the sake of comparison with exact solutions, whenever needed, we shall 

use the following L2 relative norms: 

2 2

1 1

2 2

1 1

,     

N N
ex ex

i i i i

i i
u N N

ex ex

i i

i i

e e
 

 

 

 
 

 

u u ε ε

u ε

         (3.28) 

in which ex
u  and ex

ε  stand for the vector of exact displacement and its derivatives, 

respectively, and N  is the total number of nodes in the whole domain. It should be 

remarked here that the derivatives of the numerically computed displacement fields can 

be calculated by using a standard finite difference approach. 

3.7.1 Example I 

This example is devoted to examine in detail the effectiveness of the coupled 

model through three different parts. A plane stress condition for the problem is assumed. 

One of the main goals here is to find an optimal value for the ratio m   ; in which   

is the average nodal spacing of the discretized domain and coincides with the grid 

spacing in the peridynamic portion of the domain. This ratio plays a crucial role in the 

quality and accuracy of the numerical solution [33], [91], [93] It should be pointed out 

that one can find a comprehensive study in [57] for different types of convergence in 

peridynamics. Choosing a fixed horizon value as  , one can consider ( )m     by 
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refining the discretized domain. This convergence is called m-convergence in which the 

numerical solution converges to the exact nonlocal solution for a given  . 

  

(a) (b) 

  

(c) (d) 

Figure 3.6. Examples of domain discretization used in Example I, regular discretization 

m equal to (a) 2 , (b) 3 , and irregular discretization m equal to (c) 2  and (d) 3. 
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 Another convergence type can be defined, the  -convergence, by keeping m  fixed and 

again refining the discretized domain which leads to 0   so that the numerical 

solution converges to the local classical solution. In this example we use the  -

convergence type to find an optimal value for the m  ratio in the coupled approach based 

on the accuracy and efficiency of the solution.  

A square domain ( 0.5,0.5) ( 0.5,0.5)      is the solution domain. 1  the peridynamic 

region is taken to be the central square of ( 0.25,0.25) ( 0.25,0.25)   . The performance 

of the proposed method is examined for two different cases of regular and irregular 

distributions of nodes in the meshless zone, as shown in Figure 3.6, and different values 

of m ratio as 2 , 2 , 3 , 4  and 5  as specified in Table 3-1.  

Part I. Ghost force test 

We begin by testing the coupled approach against ghost forces. In this case we 

assume b 0 , and Dirichlet boundary conditions are imposed on the boundaries derived 

from the given rigid body translation: 

(1,1)T

ex u              (3.29) 

We use 625 nodes in total for all the cases. The obtained norms of error for the ghost 

force test [50] are reported in Table 3-1. The very small norm of the overall error ue  

means that even if the displacement conditions are only applied to the boundary of the 

square domain, all internal points correctly follow the same displacement with a 

negligible deformation of the translated grid. 
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Table 3-1. The results obtained for ue  in the ghost force test, rigid body translation, for 

regular and irregular discretization cases and different values of m ratio. 

m 2   2 3 4 5 

Irregular 

discretization 

8.54E-09 8.46E-09 8.27E-0.9 7.93E-0.9 7.41E-09 

Regular 

discretization 

1.52E-07 3.38E-08 2.20E-08 6.69E-09 6.32E-09 

 

The test can be repeated by considering a rotational rigid body motion as follows: 

 (cos 1) sin , xsin (cos 1) ,    4
T

ex d d d d dx y y          u        (3.30) 

The results obtained for the rotational rigid body motion are reported in Table 3-2. The 

proposed method passes the test properly since the obtained errors are negligible. 

Therefore, we can state that no ghost forces appear in the proposed coupling scheme. 

 

Table 3-2. The results obtained for ue  in the ghost force test, rigid body rotation, for 

regular and irregular discretization cases and different values of m ratio. 

m 2   2 3 4 5 

Irregular 

discretization 

1.72E-08 1.72E-08 1.71E-08 1.68E-08 1.64E-08 

Regular 

discretization 

1.56E-08 8.41E-09 1.57E-08 8.08E-09 2.07E-08 
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Part II. Patch test consistency 

In the second part, we test the proposed method for patch test consistency; 

inspired by the work in [50]. Again b 0  is assumed, while Dirichlet boundary 

conditions are imposed on boundaries according to Eq (3.31): 

1 1
( , y )

2 2

T

ex x   u            (3.31) 

The displacements of the inner parts are computed with the coupling approach. The 

norms of errors for ue  and e   in the patch consistency test are reported in Table 3-3.  

The results demonstrate that a linear solution is obtained in all cases and hence the model 

is patch test consistent. The coupled approach performs well to capture the field of 

derivatives for all the cases with different values of m ratio. 

 

Table 3-3. The results obtained for ue  and e  in the patch test consistency for regular 

and irregular discretization cases and different values of m ratio. 

m  2   2 3 4 5 

Irregular 

discretization 

ue   5.35E-07 5.35E-07 1.03E-08 8.68E-09 8.44E-09 

e  1.49E-06 1.49E-06 6.92E-07 1.19E-08 1.13E-08 

Regular 

discretization 

ue  8.5E-07 8.05E-09 3.55E-07 1.45E-06 1.3E-08 

e  5.2E-06 4.8E-07 9.45E-07 3.99E-06 1.88E-06 

 

The convergence behavior of the approach must be checked through a  -convergence 

study, as well; this is the case for the next part. 
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Part III. δ-convergence test 

The main purpose of this section is to get more insight into the numerical stability 

of the present approach choosing different values of m ratio. In this regard, we consider 

again a plane stress problem with Dirichlet boundary conditions derived from an exact 

solution, with higher order of polynomials, as: 

     3 2 2 4 41 1
1 [12( 1 3 ]

3 12
, )T

ex x y x y y x  


    u       (3.32) 

The monotony and stability of the solution for different values of m ratio are reported in 

Figure 3.7 and Figure 3.8.  
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Figure 3.7. δ-convergence test in Example 3.7.1 with different values of m ratio obtained 

for regular discretization. 
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Figure 3.8. δ-convergence test in Example 3.7.1 with different values of m ratio obtained 

for irregular discretization. 

The obtained results reveal that adopting m ratios equal to 3, 4 and 5 ( 3m  ) contributes 

to a stable and monotonic solution for the method and refining the discretized domain (δ-

convergence) results in more accurate numerical solution whereas adopting the other two 

m ratios, 2  and 2, does not guarantee the stability of the numerical solution even 

though the method performed well with them in the former tests.  

In the majority of the studies in peridynamics, the researchers adopt 3m   [32], [36], 

[39], [56], [94]. Furthermore, based on the investigations in [32], [36] values less than 3 

for the m ratio result in undesirable pollution of error in the dynamic fracture problems 

[95], [96], and larger values may result in larger computational time and cost. Taking into 

account the results obtained in the three parts of this example we take m=3 for the 

remaining examples. 

3.7.2 Example II 

In this example we aim at demonstrating one of the most important advantages of 

the proposed approach which corresponds to the elimination of the surface effect 
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described in Section 3.3. In this regard, we consider a 2D plane stress problem as shown 

in Figure 3.9. Both Dirichlet (clamped vertical edges) and Neumann (normal tractions 

of 1q   on the horizontal edges) boundary conditions are applied to the domain. 

 

Figure 3.9. The problem domain in Example II. 

The problem is solved with two types of discretizations named Coupled I and Coupled II 

shown in Figure 3.10. In the case of Coupled I, the transition zone is smaller than the 

optimal size proposed earlier. The horizon of some peridynamic nodes are not entirely 

contained in the transition zone. In this case the largest possible area is discretized with 

the peridynamic model and MLEBF is used only for the purpose of boundary condition 

satisfaction. In the Coupled II case, we widen the transition part so that all the horizons of 

the peridynamic nodes are completely embedded inside the transition region. In the case 

of Coupled I, as the thickness of the transition region is narrow and it consists only of two 

rows of meshless nodes, considering m=3, no pure meshless node appears in the solution. 
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(a) (b) 

Figure 3.10. Two different types of discretization for the present method using 961 nodes 

(a) Coupled I and (b) Coupled II in Example II. 

 

The problem is solved as well by using a peridynamic grid with two different 

discretizations named as Peridynamic I and Peridynamic II. In Peridynamic I we use 

again 961 nodes and in Peridynamic II we use 14641 nodes which is approximately 15 

times more than in the other case. 

All solutions are finally compared with a FEM plane stress solution using 100 equal 

linear rectangular elements which is considered the reference solution. 

In Figure 3.11 and Figure 3.12 the displacement components and their derivatives along 

the two lines 1L  and 2L , shown in Figure 3.9, are presented.  

As can be seen the surface effect is more pronounced for Peridynamic I which uses a 

much coarser grid of nodes compared to Peridynamic II. It can be concluded that the 

convergence of the solution to FEM is achieved slowly in the peridynamic case and this 

problem originates mainly from the surface effect. However, in the Coupled I case with 
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the same coarse distribution of nodes as in Peridynamic I, the surface effect is virtually 

eliminated and the solution converges to that of FEM more quickly. Moreover, the 

solution of Coupled II, still using only 961 nodes but satisfying the ‘transition region 

criterion’ is in complete agreement with that of FEM. 
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(c) 

Figure 3.11. Comparison of results obtained by different approaches along L1 in 

Example II (a) U , (b) U X   and (c) V Y   in Example II. 
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(c) 

Figure 3.12. Comparison of results obtained by different approaches along L2 in 

Example II (a) U , (b) U X   and (c) V Y   in Example II. 

 

3.7.3 Example III 

The main objective in this example is to show that the present method can be 

applied to problems with discontinuities (such as cracks), taking full advantage of 
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peridynamics. This example is a preliminary study in which a crack is present, but it does 

not propagate. However, the possibility to apply the present approach to static and 

dynamic crack propagation will be investigated later. In this example we use the 

peridynamic discretization around the discontinuous parts of the domain and where the 

existing crack could propagate. Where the solution remains smooth, classical elasticity in 

the framework of MLEBF is employed to exploit the full advantages of both models. 

A cracked plate is considered which is subjected to an opening tension as shown in 

Figure 3.13. The plate is part of a semi-infinite domain subject to a traction in the Y  

direction at infinity. In this example, we have applied the exact displacement components 

to the boundary of the truncated domain and the current method is used to evaluate the 

displacements of the inner part. The corresponding analytical solution is as follows [97]: 

2 2(1 )
cos ( 1 2sin ),sin( )( 1 2cos )

2 2 2 2 2

T

I
ex

K r

E

    
 



  
     

 
u     (3.33) 

where IK   is the stress intensity factor and   is the bulk modulus. 

Figure 3.14 shows that the problem is solved with two different approaches: the domain 

is fully discretized with a peridynamic grid or with the coupled approach proposed in the 

present work. As shown in Figure 3.14(b), representing the crack in peridynamics is 

convenient as it suffices to break the bonds that intersect the crack line. 
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Figure 3.13. Cracked square plate subjected to opening tension boundary condition in 

Example III. 

 

  

(a) (b) 

Figure 3.14. Samples of domain discretization for (a) peridynamic and (b) coupling 

method in Example III. 

Figure 3.15 shows the contour plots of the displacement field components in the vertical 

and horizontal directions obtained by the exact solution; moreover, in the same figure the 
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results obtained by the present method using 1156 nodes are included. The agreement 

between the two figures is excellent in the whole domain, even close to the crack tip. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.15. Contour plots of the solution for U  obtained by (a) the exact solution, (b) 

present method, and for V  obtained by (c) the exact solution and (d) present method in 

Example 3. 

For a comparative study we use 7056 nodes for the peridynamic model. For both the 

implemented strategies the contour plots of the difference between the numerical solution 
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and the exact solution are shown in Figure 3.16. It is apparent that the results obtained by 

the present approach outperforms those of the pure peridynamic model in terms of 

accuracy by using a much smaller number of nodes in the solution domain. The present 

approach takes advantage of the positive features of both computational techniques; the 

cracked region is conveniently simulated with peridynamics.  

For further investigation, we repeat the simulation by using the same number of 7056 

nodes for the coupled approach same as the pure peridynamic model. The counter plots 

of the absolute difference of the numerical solutions with respect to the exact solution are 

presented in Figure 3.17. 

It should be remarked here that using the same number of nodes in the present method 

produces highly accurate results with lower distribution of error in the computational 

domain compared to a peridynamic model. To elucidate more, ue  is obtained as 0.0057, 

and it is 3.2 times less than the error obtained by peridynamics which is 0.0182. 

Figure 18 shows how the numerical solution converges to the exact solution for both 

strategies. The present method yields more accurate results in comparison to the 

peridynamic model and converges to the exact solution monotonically and more quickly. 

Figure 3.18 shows how the numerical solution converges to the exact solution for both 

strategies. Finally it is right to observe as well that the application of the MLEBF only in 

the form presented here would not provide good results because its application to the 

region affected by the singularity at the crack tip would be inaccurate. 
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(a) (b) 

  

(c) (d) 

Figure 3.16. Contour plots of absolute difference between numerical results and exact 

solution (a) and (c) are obtained by peridynamic using 7056 nodes, (b) and (d) are 

obtained by the present method using 1156 nodes in Example III. 
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(a) (b) 

Figure 3.17. Contour plots of absolute difference between numerical results and exact 

solution in (a) horizontal and (b) vertical directions obtained by the present method using 

7056 in Example III. 
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Figure 3.18. Convergence of the numerical solution to the exact solution in Example III. 
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4. The meshless finite point method for transient elastodynamic problems  

4.1 Introduction 

Depending on how equations are discretized, meshless methods can be classified 

into two major categories. The first category constitutes meshless methods based on weak 

forms such as the element-free Galerkin method [98]. Most of them are only meshless in 

terms of the numerical approximation of field variables, and they are involved with 

numerical integration using a background mesh over the problem domain; which makes 

them computationally expensive and not ‘truly’ meshless. 

The second category are meshless methods based on the strong-form such as the finite 

point method (FPM) [99]. These methods often use the point collocation method to 

satisfy the governing differential equations, or they do the approximation using basis 

functions which satisfy the governing differential equation as in [76]. Since they do not 

need any background mesh, they are truly meshless, simpler to implement, and 

computationally less expensive than meshless methods based on weak forms. 

The meshless finite point method (FPM) proposed by Oñate et al.[99] is a notable method 

within the context of truly meshless methods. The application of the method to the 

solution of static elasticity problems can be found in [68]. FPM uses a weighted least 

squares (WLS) scheme for approximating the unknown field function. The 

approximation can be easily constructed to have a consistency of a desired order, and by 
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adopting the point collocation method the discrete equations can be obtained. FPM has 

received considerable attention in different studies and applications; see for example 

[100]–[106].  

However, strong form-based methods such as FPM, in comparison with weak form-based 

methods, are most often less stable and accurate for problems governed by partial 

differential equations with Neumann (derivative) boundary conditions such as solid 

mechanics problems with stress (natural) boundary conditions. These methods fall within 

a category of methods called direct meshless collocation methods [107]. In such type of 

methods, Neumann boundary conditions should be imposed directly through a series of 

independent equations, which are different from the governing equations in the problem 

domain. This contributes to a poor accuracy on Neumann boundaries, and it may be taken 

as the main source of instability for collocation methods [108], [109]. In this regard, 

several studies by different researchers have been proposed to circumvent this deficiency. 

Oñate [110] and Oñate et al. [68] proposed a stabilized version of FPM using finite 

calculus (FIC). A simple modification to stabilize FPM using FIC was proposed by 

Boroomand et al. [111]. Shu et al. [112] used several layers of orthogonal grids near and 

on the boundaries for proper satisfaction of Neumann conditions. La Rocca and Power 

[113] introduced a double-boundary collocation Hermitian technique in which at the 

boundary collocation points the governing differential equations and the boundary 

conditions are coupled and satisfied simultaneously. Liu and Gu [114] and Liu et al. 

[115] proposed a combined formulation that benefits from both the local weak form and 

strong form equations. In this sense, the strong form formulation is applied to all nodes 

whose local support domains do not intersect with Neumann boundaries, while the 
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application of weak form formulation is restricted to nodes on or near the Neumann 

boundaries. Pursuing such an idea, Sadeghirad and Mohammadi [107], [116] proposed 

the equilibrium on line method (ELM) for imposition of Neumann boundary conditions 

in FPM using straight line integration domains.  

Dynamic analysis of elastic structures is an important issue in various areas of 

engineering. The solution of such problems with meshless methods is still the subject of 

different studies in the literature as in [117]. In this chapter, the application of FPM to 

elastodynamic problems is investigated. Here the main attempt is to extend the solution 

of FPM in time for elasticity problems while keeping all its main advantages in terms of 

efficiency and simplicity of implementation. In this way, for the nodes in the body the 

time marching is performed by using an explicit velocity–Verlet time integration method. 

Moreover, for the nodes located on Neumann boundaries a simple technique is 

introduced to update the nodal displacements of the boundary nodes by the solution of a 

set of linear equations in time. This system of equations includes Neumann boundary 

nodes as well as all the adjacent nodes that fall within their support domains. The 

displacements of the nodes on Neumann boundaries are updated at each time step, 

simultaneously, by a set of equilibrated equations that correspond to body nodes that are 

consistent with the governing equation of the body itself. This strategy makes the solution 

to proceed in time appropriately. The formulation is thoroughly explained; moreover, a 

short technical description on implementation of the work in an Open Multi-Processing 

application programming interface (OpenMP) is discussed. We shall show that the 

proposed technique preserves the appealing features of FPM from the implementation 

point of view. We shall assess the accuracy of the method through some benchmark 
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examples including some 3D dynamic problems. To the best of the author knowledge, 

reference [118] (on which this chapter is based) is the first study on the application of 

FPM to the solution of 3D elastodynamic problems.     

4.2 Problem description 

Consider a linear elastic body in a three dimensional domain   bounded by a 

boundary   consisting of a Dirichlet part D  constrained by prescribed displacements 

*
u  and a Neumann part N  where prescribed tractions *

t  are imposed (see Figure 4.1). 

 

Figure 4.1. Domain representation of a general three-dimensional problem in a meshless 

style. 

 In an isotropic homogenous medium for any point of the domain   the governing 

equations of motion, at time t , can be written in the following form: 

( , ) ( , ) ( , ) ( , ),      T

dt t c t t   S DSu X b X u X u X X             (4.1) 

with prescribed boundary conditions: 

*( , ) ( , ),      Nt t  nDSu X b t X X            (4.2) 
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*( , ) ( , ),      Dt t u X u X X             (4.3) 

and initial displacement and velocity conditions: 

0( ,0) ( ),       u X u X X              (4.4) 

0( ,0) ( ),       u X v X X             (4.5) 

where dc  represents the damping coefficient. S  is the well-known elasticity operator 

defined as: 
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S          (4.6) 

and D  is the matrix of material constants defined by: 
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D           (4.7) 

the parameters in the above equation are defined as: 

1 2 3( , , ) (1 , , (1 2 ) 2)
(1 )(1 2 )

E
D D D   

 
  

 
          (4.8) 

n  is a matrix containing xn , xn , and zn  which are the components of the outward unit 

vector normal to the boundary, defined as: 

0 0 0

0 0 0

0 0 0

x y z

y x z

z y x

n n n

n n n

n n n

 
 

  
 
 

n            (4.9) 
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4.3 The solution strategy 

4.3.1 Approximation scheme 

Here, we recall the weighted least square (WLS) approximation scheme employed 

for FPM, one may consult [68] to get more insight into the details of the formulation. Let 

,  1,2,i i X  be a collection of nodes scattered within the solution domain and on 

the boundaries (see Figure 4.1). Accordingly, the time is discretized into instants as 

1 2 1, , , ,n nt t t t 
. Similar to the MLEBF method, around each of the nodes a subdomain 

iC , so called cloud, is considered. Each subdomain has a local coordinate system with 

origin on the node. iC  contains the neighboring nodes of 
iX  as 

jx , 1, 2, , ij n  over 

which a displacement variable, to exemplify u  at time step 
nt  can be approximated by 

ˆnu  locally as:  

1

ˆ ( ) ( ) ( ) ,      
bn

n n T n

j j i

j

u p C


  x x p x α x          (4.10) 

where ( , , )x y zx stands for the local coordinate system, ( )p x  indicates a vector 

consisting of bn  number of monomial bases, and α  is a vector of unknown coefficients to 

be found in terms of nodal values. 

Considering a complete set of monomials, for a 3D problem one can specify p ; for 

instance, as: 

2 2 2(1, , , , , , , , , ) ,      10T

bx y z x xy y yz zx z n p         (4.11) 

To proceed with the approximation, u  can be sampled at the in  neighboring nodes of iC  

as: 
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1 1 1

2 2 2

ˆ ( )

ˆ ( )

ˆ ( )
i i i

n n T

n n T

n n n

n n T

n n n

u u

u u

u u

     
     
        
     
     
   

      

p x

p x
u α Cα

p x

        (4.12) 

C  is regarded as the moment matrix associated to the local approximation within iC . 

Assuming i bn n , then C  is not a square matrix; in turn, the approximation cannot fit to 

all the values of n
u . Likewise, the approximation entails a WLS procedure that results in 

a minimization of a norm J as follows: 

2 2

1 1

ˆ( )( ( )) ( )( ( ) )
i in n

n n n T n

j j j j j j

j j

J w r u u x w r u
 

     p x α        (4.13) 

where j jr  x  and w  is a weight function that should be taken suitably for iC . In this 

work, we take as suggested in [111]: 

2 21 exp(64 16 )
( )

1 exp(64)

j m

j

r r
w r

 



          (4.14) 

where mr  indicates the distance of the most remote node of the cloud from the central 

node. Minimization of the norm J in Eq (4.13) with respect to n
α  yields the following 

system of equations: 

n nAα Bu             (4.15) 

where  

1

( ) ( ) ( )
in

T

j j j

j

w r


A p x p x           (4.16) 

and  

1 1 2 2( ) ( ) ( ) ( ) ( ) ( )
i in nw r w r w r   B p x p x p x        (4.17) 



102 

 

n
α  can be found from Eq (4.15) as follows : 

1n nα A Bu             (4.18) 

Finally, ˆ ( )nu x  can be obtained in terms of nodal values, by substitution of n
α  from Eq 

(4.18) into Eq (4.10) which gives:  

1

1

ˆ ( ) ( ) ( )
in

n T n n

j j

j

u N u



 x p x A Bu x          (4.19) 

where 
jN  stands for the jth shape function.  

4.4 Discretization of governing equations 

The discretized system of equations in FPM can be easily obtained by substituting 

the approximated functions of displacements ( ) ( ( ), ( ), ( ))n n n n Tu v wu x x x x , from Eq 

(4.19), in Eqs (4.1)-(4.3) which results in:  

( ) ,    
i

n n n n

R i i d i ic   T

XS DSN u b u u X        (4.20) 

where  1 1 1 2 2 2( , , , , , , , , , )
i i i

n n n n n n n n n n T

R n n nu v w u v w u v wu , is the vector of nodal displacements 

in the cloud, and N  is the matrix of shape functions as follows: 

 

1 1

1 2

1 2

0 0 0 0

0 0 0 0

0 0 0 0

N N

N N

N N

 
 


 
  

N         (4.21) 

Consequently, for the Neumann boundary nodes one can conclude: 

*( , ) ( ) ,    
i

n T n

i R i Nt  Xt X nDSN u X         (4.22) 
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4.5 Time integration and boundary condition satisfaction  

In the present work, the time integration in Eq (4.20) is carried out based on an 

explicit velocity-Verlet scheme described in Section 2.9.2. In this study, we take the 

constant time step t  less than the critical time step critt  as below:  

mincrit kt c              (4.23) 

where min  is the minimum nodal distance in the discretized domain, and kc  is the 

maximum speed of sound in the material. In turn, t  must be chosen so that: 

min

3(1 )
t

E

 
              (4.24) 

Having known the displacement and velocity vectors of each node at time step n, the 

displacement vector at the next time step can be found as: 

2
1

2

n n n nt
t 

   u u u u            (4.25) 

and hence for the DOFs inside the domain one may easily determine 1n
u  at each time 

step from Eq (4.20) and find 1n
u  . However, for nodes exposed to Neumann boundary 

conditions progression in time cannot be reached by using Eq (4.25). This is due to the 

fact that for these nodes the acceleration term does not appear directly in Eq (4.22); 

therefore, a suitable strategy to manage such a problem should be devised.  
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Figure 4.2. The boundary of a generic discretized problem domain. 

 

We explain the solution strategy for a general 2D problem as shown in Figure 4.2. “c” 

and “b” are two body nodes, “a” and “d” are two boundary nodes with Neumann and 

Dirichlet condition, respectively. For the sake of brevity, we assume that at each 

boundary node prescribed boundary conditions are of either Dirichlet or Neumann type; 

the generalization to 3D problems as well as nodes with mixed boundary condition can be 

done easily. Figure 4.2 represents a small portion of a generic discretized body close to 

its boundary. The distributed nodes, based on their position in the solution domain, are 

classified into three types as I, II and III. Type I stands for the nodes whose cloud do not 

contain any node with Neumann boundary condition (“c” and “d”). Type II (“b”) 

represents the nodes whose clouds contain at least a node with Neumann boundary 

condition, and Type III (node “a”) are the nodes located on Neumann boundaries. It can 
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be concluded that Type II nodes play the role of an interface layer of nodes between 

Neumann boundaries and the other parts of the body. 

The displacement vectors for types I and II nodes (excluding Dirichlet nodes) at time step 

1n    can be found explicitly. It suffices to obtain the vector of acceleration at time step n 

by using Eq (4.20) and advancing to the next step using Eq (4.25). To exemplify, for 

nodes “c” and “b” one can write: 

1n n n n n n

b b ba a bb b bc c b

       u u ψ u ψ u ψ u θ        (4.26) 

1n n n n n n

c c cb b cc c cd d c

       u u ψ u ψ u ψ u θ         (4.27) 

where 
2

( )
2

i

T n

ij k j

t






X

ψ S DSN u , and 
2 2

( )
2 2

n n n

i i i

c t t
t

 

 
   θ u b  supposing that 

jX  is 

the kth family node of 
iX . Updating the displacement vector of “d”, as a node with 

Dirichlet condition, can be made easily as: 

1 * 1( , )n n

d d t u u X                (4.28) 

It can be concluded that for Type I and II nodes the solution procedure deals with an 

uncoupled set of equations which can be assembled in a matrix form as: 

1

I,II I,II I,II

n n n  U K U F            (4.29) 

in which the above equation, in the view of Figure 4.2, can be derived as: 
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1

1

1 * 1( , )

n

a

n n

b ba bb bc b

n

b

n n

c cb cc cd c

n n n

d c d

n

d

t





 

 
 

      
      
      
      

       
      

      
      
      

 
 

u

u ψ I ψ ψ 0 θ

u

u 0 ψ I ψ ψ θ

u 0 0 0 u u X

u

       (4.30) 

where I  stands for an identity matrix. According to Eq (4.22), for “a” as a node with 

Neumann condition one may conclude: 

1 1 * 1( , )n n n

aa a ab b a t     ψ u ψ u t X          (4.31) 

where ( )
i

n

ij k j
X

nDSN uψ  supposing that 
jX  is the kth family node 

iX . It is clear that 

for updating the displacements of “d” the updated displacements of all its family nodes 

are required. Some of these nodes are of Type II and thus they have so far been updated 

by using Eq (4.29), yet for the remaining family nodes (Type III nodes) their updated 

displacement are not available. In a nutshell, a coupled system of equations for a narrow 

layer of nodes close to the Neumann boundaries is obtained. Therefore, at each time step 

the solution of a linear system of equations is required; which can be written as follows: 

1 1 1

II,III II,III II,III

n n  U K F              (4.32) 

It is noteworthy that as the matrix 
II,IIIK  is constant during the analysis, its factorization 

can be done once, leading to a huge saving in computational time. In the view of Figure 

4.2, the above equation can be expressed as follows: 
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1

1 * 1

1 1

( , )n n

a aa ab a

n n

b b

t



 

 

     
     
        

    
    
    
         

u t X

u 0 I u

ψ ψ

        (4.33) 

Having solved the above equation, the displacements of all the nodes with Neumann 

conditions can be found. It should be pointed out that differently from the direct 

imposition of Neumann boundary conditions, which is the case for the static solution of 

conventional FPM, here the discretized Neumann equations, associated to Type III nodes, 

are satisfied at each time step with a set of equilibrated equations, associated to Type II 

nodes, consistent with equations governing the body itself. In Section 4.7 we shall show 

the suitability of the proposed approach by means of some benchmark problems. 

4.6 Implementation 

The formulation presented in the previous section, is implemented in a C++ 

program. The program was compiled using Microsoft Visual Studio 2015. To take 

advantage of multi-core CPUs available, all possible parts of the program were 

parallelized using the open multi-processing (OpenMP) directives. OpenMP is an open 

standard for shared-memory parallelization adopted by a large number of C, C++ and 

Fortran compilers. In this parallelization scheme, the blocks of code to be parallelized 

(usually for loops) are marked by special #pragma omp directives. The compiler 

generates the appropriate parallel code for blocks. Special care must be taken to avoid 

race conditions, i.e. where the result of an operation depends on the order execution of 

different threads. OpenMP uses system threads for its parallel execution model. Each 

thread is an independent path of execution, which if possible, is scheduled on a separate 
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core in multicore CPUs by the operating system to leverage full power of such hardware 

platform.  

An important step in the solution procedure is the solution of the linear system of 

equations in Eq (4.32). To this end, we employed the “AMGCL” library1. AMGCL is a 

light, header-only, templated C++ library for solution of sparse linear systems of 

equations with several options for solver, pre-conditioner and parallelization strategy. It 

includes implementation of algebraic multi-grid (AMG) methods which enhances the 

solution performance. As the coefficient matrix in Eq (4.32) is constant during the 

solution, setting up the required data structures and factorizing the matrix is done only 

once to reduce the computational cost. 

4.7 Numerical examples 

In this section, three numerical examples are described to illustrate the 

potentialities of the presented approach. In Example I, the results are compared with the 

exact solution through an L2 relative error norm defined at node 
iX  as: 

2 2

1 1

( ( , ) ) / ( ( , ))n

ex i j i ex i j

j j

e u t u u t
 

 

  X X          (4.34) 

where exu  indicates the exact solution, and   stands for the number of time steps based 

on which the norm is calculated. 

                                                 

1 AMGCL C++ library. https://github.com/ddemidov/amgcl. Accessed: 2017-02-11 
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4.7.1 Example I 

In this example we consider a rectangular plate fixed rigidly at its base and 

subjected to an impulsive load at the free edge, as shown in Figure 4.3.  

 

Figure 4.3. The problem domain in Example I. 

The geometric, mechanical, and loading parameters are: length 8mL  , height 2mD  , 

48 10 PaE   , 0  , 
32450 kg m  , 0dc  , and traction 200PaP  . The exact 

solution of this example is given by [119]: 

1

2 2
1

8 ( 1) (2 1)
( , ) sin (1 cos )

(2 1) 2

j

j

j

PL j X
u X t t

E j L










 
 


       (4.35) 

in which 
(2 1)

/
2

j

j
E

L


 


 . The solution of this example using the present approach, 

for a time duration of 7 seconds is considered. The domain is discretized through a 

Cartesian uniform grid of nodes with equal nodal spacing x  both in the horizontal and 

vertical directions. To show the convergence of the solution obtained by the present 

approach, we solve the problem for three different grid sizes taking x  equal to 0.5m, 

0.125m, and 0.03125m. Meanwhile, in all the cases t  is taken to be 0.0005s. The 

horizontal displacements of node A and B, as shown in Figure 4.3, are presented in 
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Figure 4.4. As a consequence, the results obtained by FPM are in a good agreement with 

those of the exact solution. 

 

Figure 4.4. The variations of horizontal displacement at points A and B in Example I; 

0.125mx  .  

The errors, based on Eq (4.34), for the horizontal displacement of nodes A and B are 

reported in Table 4-1. The variation of displacement error at points A and B, for different 

nodal spacing, is shown in Figure 4.5. It can be concluded that the method performs well 

and its solution converges to the exact solution by refining the solution domain. That is 

also true for point A where Neumann boundary conditions are applied. 
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Figure 4.5. The variations of displacement error at points A and B in Example I. 
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Table 4-1. The obtained norms of error in Example I at nodes A and B. 

x   0.5m   0.125m   0.03125m  

A   0.011934   0.004388  0.003270  

B   0.015454  0.005628  0.004152  

 

4.7.2 Example II 

In this example, we consider a 3D cantilever beam with a rectangular cross 

section as shown in Figure 4.6. The beam is subjected to a periodic shear stress 

distribution ( ) sin( )fq t t    at the free end. The basic parameters are: length 48mL  , 

depth 12mD   , width 6mW  , 43 10 PaE   , 1 3  , 31kg m  , and 0dc  . The 

magnitude and frequency of the excitation are respectively 213.89 N m   and 

27rad sf    

 

Figure 4.6. The problem domain in Example II. 
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To proceed with the solution of FPM, the domain is discretized by a Cartesian uniform 

grid of nodes with a nodal spacing of 0.6mx  . To check the suitability of the results, 

the solution of a standard/explicit FEM model using 1600 linear cubic elements is taken 

into account, as well. The nodal spacing in both models is identical which results in 

18711 nodes. We consider the solution for a duration of 0.5 seconds, and in both models 

t  is taken to be 0.00002s. The variation of displacements along the Y axis at point A at 

the free end, (48,6,3)A X , and point B at the center of the beam, (24,6,3)B X , are 

shown in Figure 4.7. The results obtained by FPM are in excellent agreement with those 

of FEM. The contour plot of displacement along the Y axis (for both models), at 

0.44st    is reported in Figure 4.8. As can be seen, the solution of FPM resembles that of 

FEM using the same nodal spacing.  

 

Figure 4.7. The variations of horizontal displacement at points A and B in Example II; 

0.6mx  .  
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Figure 4.8. The contour plot of displacement (m) along the Y axis obtained by both FPM 

and FEM methods, at 0.44st  , in Example II. 

4.7.3 Example III 

This example concerns the transient behavior of a prismatic body with a rectangular 

2m 2m  cross section and with a height of 4m  as shown in Figure 4.9. The material 

properties of the body are 
2105 N mE  , 0.25  , 31kg m  , and 0dc  . The body 

is fixed at its end and subjected to two different impulsive flexural and torsional loading 

conditions (see Figure 4.9). For both cases the surface traction is imposed with an 

identical triangular time variation illustrated in the same figure, and the solution of the 

problem for a time duration of 0.3 seconds is sought. In this example, the FPM solution is 

performed taking 0.00015st   using a uniform discretization of the domain with a 

nodal spacing of 0.125mx  ; which results in 9537 nodes. 
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Figure 4.9. The problem domain in Example III; the loads are shown from the top side. 

 

 

Figure 4.10. The displacement for Point A in Example III. 
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Again for the sake of verification, the solution of FEM by using linear cubic elements, 

and the same discretization size which results in 8912 elements, is taken into account. 

The variation of displacement along X axis for point A, in the flexural loading case, and 

point B, in the torsional loading case, are shown in Figure 4.10 and 11. Comparing the 

results with those obtained by FEM, one can conclude that the agreement between the 

two numerical approaches is very good. 

 

 

Figure 4.11. The displacement for Point B in Example III. 
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5. A coupled meshless finite point/peridynamic method for 2D dynamic 

fracture analysis  

5.1 Introduction 

The main goal of this chapter is to develop a novel meshless method based on an 

efficient coupling between FPM and peridynamics for the solution of dynamic crack 

propagation problems in 2D. In fact, the formulation developed in Chapters 3 and 4 

underpins the basis of this work. In this sense, inspired by the switching technique 

introduced in Chapter 3 a discretized peridynamic model is coupled with FPM, while 

here the suitability of the approach for the case of dynamic problems is investigated. To 

perform the simulation in time two different partitioning of the solution domain are 

introduced which will be discussed in the subsequent sections.   

5.2 Adaptivity  

In order to minimize the computational resources required by the coupled models, 

we propose an adaptive method that restricts the use of peridynamics where it is really 

necessary. We divide the solution domain into three non-overlapping parts Ω1, Ω2 and Ω3 

such that Ω1 ∪ Ω2 ∪ Ω3 = Ω. Ω1 is the region governed only by peridynamics, for it may 

contain discontinuities. This region is discretized by means of the meshless bond-based 

peridynamic method. Ω3 represents the region where the solution is smooth and hence it 

can be governed by classical continuum mechanics. This region is discretized by using 



118 

 

the FPM method. Ω2 corresponds to the transition region that provides the connection 

between the nonlocal portion Ω1 and the local zone Ω3.  

In this study, the subdivision of the solution domain is studied through two different 

approaches. The first approach corresponds to a fixed partitioning in which the parts Ω1, 

Ω2 and Ω3 are defined once and for all at the beginning of the simulation (see Figure 5.1). 

In this way, the analyst should predict the path of the cracks properly and situate the 

peridynamic domain over the regions where there is the possibility of crack propagation. 

However, prediction of crack paths for practical problems with complex geometries and 

load conditions is not an easy task. This issue may force the analyst to situate the 

peridynamic zone even in unnecessary regions. 

 
 

(a) (b) 

Figure 5.1. The same subdivision of solution domain is presented: at (a) the initial, and 

(b) final time step in fixed partitioning. 
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(a) (b) 

Figure 5.2. Subdivision of solution domain: at (a) initial, (b) final time step in dynamic 

partitioning. 

 

The second approach is an adaptive partitioning which is more efficient (see Figure 5.2). 

In this way, the partitioning can vary due to the propagation of cracks and the 

peridynamic domain tracks the crack paths. Such an approach limits the peridynamic 

domain only to necessary parts and reduces the computational cost. However, the 

possibility to update the partitioning, during propagation of cracks, depends on the 

applied coupling technique. We shall show in Section 4 that the present coupling 

approach is capable of being used for such cases in an automatic and convenient way. 

5.3 Coupling and adaptive switching for failure analysis 

5.3.1 The coupling scheme 

As previously stated, the solution domain is divided in three parts Ω1, Ω2 and Ω3. 

Figure 5.3 shows a portion of a discretized domain. Circles are peridynamic nodes and 

diamonds are FPM nodes. Cracks can only propagate in the zones discretized with 

peridynamic nodes. The transition region consists of two layers of nodes; a layer made of 
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peridynamic nodes (unfilled circles) and another of FPM nodes (unfilled diamonds). The 

thickness of this layer depends on the horizon and cloud sizes. In conclusion, we consider 

four representative nodes, shown in Fig. 6, as aX  , bX , cX  and dX  so that each node 

represents one of the four available types.  

Given displacement and velocity vectors of each node at time step n, according to Eq 

(4.25), the vector of displacement at the next step can be found. 

Therefore, the value of nu  at each time step should be determined, based on the position 

of the nodes. 

Node aX  in 1 : 

aX  represents any node in zone Ω1, the pure peridynamic nodes, whose horizon contain 

only peridynamic nodes. Nodes in zone Ω1 see all the surrounding nodes as peridynamic 

nodes; therefore, the acceleration vector of aX  can be obtained according to Eqs (2.75) 

and (3.15):  

1 1 2 2 1 1 2 2

ˆ ˆ ˆ ˆ ˆn n n n n n n n n n n n

a aa aa aa aa ab ab ab ab ab ab a           u f f f f f b          (5.1) 

where ( , )n

ij j i n t   X X , and 11 21ˆ n n n

ij ij i ij j f k u k u .  
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Figure 5.3. The coupling scheme and definition of different layers of solution domain in 

the present study. 

 

Node bX  in 2 : 

bX  represents any node in the transition peridynamic layer. The horizon of bX  contains 

some nodes located in Ω1 and in Ω2. All family nodes of a source node of this type 

behave as peridynamic nodes; consequently, the acceleration of bX  can be calculated as 

follows: 
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1 1 2 2 1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆn n n n n n n n n n n n n n

b ba ba bb bb bb bb bc bc bc bc bc bc b               u f f f f f f b            (5.2) 

Even though nodes cX , 
1c

X  and 
2cX  in Figure 5.3 are mainly FPM nodes, they play the 

role of a peridynamic node if bX  is the source node. 

Node cX  in 2 : 

cX  represents any node in the transition FPM layer. The cloud of cX  contains nodes 

located in Ω2 and in Ω3. All nodes in a cloud of a source node of this type behave as FPM 

nodes; consequently, the acceleration of cX  can be calculated, according to Eq (4.20), as 

follows: 

1 2

n n

c cb cc cc cc c        u f f f f b           (5.3) 

where ( )
i

n

ij j j T

Xf S DSN u . The above equation indicates that a transition peridynamic 

node, of type bX , plays the role of a FPM node in the local approximation of nodes in 

this layer. 

Node dX  in 3 : 

dX   represents any node in zone Ω3, the pure FPM nodes whose cloud contains only 

FPM nodes in Ω3. The acceleration vector of node dX  can be expanded as:  

1 2

n n

d dd dd dd d    u f f f b            (5.4) 

Remark I: A consequence of the proposed coupling method is that all peridynamic 

source nodes have a complete horizon so that many problems related to soft surface effect 

and to the approximation of boundary conditions are solved. ■ 

Remark II: With respect to Eq (4.2), the displacement of a boundary node; for instance 

eX  shown in Figure 5.3, at time step n+1 should be determined by: 
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1 2

* * * *( , ( 1) )e ee ee een t      t X f f f            (5.5)  

where * 1( )
i

n

ij j X j

 T
f n DSN u . Similar to the discussion in Section 4.5, it is clear that to 

update the displacement of the boundary node it is necessary to have also the 

displacements of its family nodes at time step n + 1; some of the family nodes may also 

be boundary nodes. As a result, for the nodes located on the Neumann boundaries as well 

as their family nodes, it is necessary to assemble their relations in a matrix and solve a 

linear system of equations. This system of equation contains only the DOFs of a layer of 

nodes along the Neumann boundaries. The relations for the other nodes, are uncoupled 

and it is not necessary to assemble them in a system of equations. ■ 

5.3.2 Adaptive partitioning  

One of the advantages of the newly proposed coupling is the possibility to adopt with it 

an adaptive partitioning, as explained in Section 5.2. The main goal is to restrict the 

peridynamic zone to the cracked parts as well as to the parts which are likely to be 

affected by cracks within the next few time steps. A simple criterion to decide where 

cracks are going to develop has to be computationally cheap and automatic. FPM nodes 

should be changed into peridynamic nodes so that the nonlocal zone follows the crack 

paths while keeping the local zone sufficiently far away. The distance between any FPM 

node and the crack path, cd , must be greater than its cloud size; i.e. c Fd    to preserve 

the validity of local approximation. Figure 5.4 schematically shows a part of a generic 

domain represented by FPM and peridynamic nodes at a given time step. For the sake of 

simplicity, the transition nodes are shown with filled icons. The peridynamic zone covers 
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thoroughly the cracked zone and the FPM nodes are positioned so that none of their 

clouds is intersected by the crack path. 

In the present study, the adaptivity criterion is defined on the basis of a simple stretch 

control for each pair of adjacent FPM nodes. For each pair of adjacent FPM nodes, 
iX  

and 
jX , one can define the stretch of the material between them at time n as: 

n n

i jn

ij

i j

s


 


u u

X X
             (5.6) 

The status of each pair of adjacent FPM nodes can be qualified with the s′ value to 

identify critical FPM nodes whose region is more likely to be affected by crack 

propagation. 

 

Figure 5.4. Formation of critical FPM nodes before being changed to peridynamic 

nodes. 
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Figure 5.5. Changing of FPM critical nodes to peridynamic nodes and identification of 

new critical nodes near the crack tip. 

 

A critical pair of nodes, 
iX  and 

jX , should be identified by an indicator defined by: 

0 0 ,    0 1   n

ijs s s                 (5.7) 

in which   is a constant that plays the role of a safety factor and 0s  is defined in Eq 

(2.72). Critical FPM nodes, at time step n , are always identified in pairs by the value of 

the relevant s   that falls into the interval introduced in Eq (5.7). To exemplify, in Figure 

5.4 the red diamond nodes 1q , 2q , …, 7q  stand for the critical nodes.  

Now, before proceeding with the next steps, all the critical nodes as well as all the family 

nodes in their clouds should be simply changed to peridynamic nodes as shown in Figure 

5.5. In this way a new partitioning of the domain will be obtained and the peridynamic 

zone will be extended. At the new time step a new critical zone may emerge, represented 

by 8q , 9q , and 10q .  



126 

 

It should be pointed out that such an adaptive partitioning can be implemented simply, 

and it is computationally cheap. We believe that this technique can be applied to 3D 

problems as well. In this case, the critical nodes should be changed to peridynamic nodes 

within a sphere instead of a circle. Extension of the present work to 3D problems might 

be considered in future studies. 

Remark III: Taking larger values for   keeps the peridynamic zone smaller and, 

subsequently, it makes the computational cost lower. However, this value should be taken 

in a conservative range based on the speed of crack propagation; otherwise, the crack 

may reach the FPM nodes before they are changed into peridynamic nodes. In such a case 

the simulation should go back to the past and switch the missed FPM nodes to 

peridynamic nodes to proceed with the solution in time. We heuristically found that 

taking χ in the range  0.6 0.8   can be a suitable choice.■ 

5.3.3 Numerical implementation  

One may consult [33] for a comprehensive investigation into different values of m 

ratio in the case of dynamic crack propagation. Based on the studies conducted in [33], in 

the present study 4m   is adopted.  

FPM clouds can be taken of various shapes. For the sake of consistency and simplicity, in 

this study FPM clouds are taken to be circles with a radius of 2 . This choice leads to 

have 13 nodes on average in FPM clouds while there are 49 nodes in peridynamic 

neighborhood. We shall show in the section on numerical examples that using the 

adaptive partitioning, and restricting the peridynamic nodes only to necessary parts, one 
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can significantly reduce the computational cost. Such a reduction would be much more 

significant in 3D problems. 

In all the examples, for the local solution of FPM quadratic polynomial basis functions 

are used and for the nodes located at the boundaries the size of the clouds is set in such a 

way that at least 9 nodes are included for the local approximation. In the case of 

boundary nodes the FPM cloud is not a circle with the relevant node at its center.  

Remark IV: In the case of a conical micro-modulus formulation in 2D [33]:  

3

24
( ) (1 )

(1 )

E
c

  
 



ξ
ξ             (5.8) 

c is decreasing linearly along the distance from the center of Hx. This makes the 

peridynamic model more localized and thus reduces the quadrature error and the surface 

effect. This feature results in a faster convergence of peridynamic results to both the 

classical solution for linear elasticity (see [39]) and also experimental results in the case 

of dynamic fracture (see [33]). In the case of conical micro-modulus 0s  should be 

calculated as [33]:  

0
0

5

9

G
s

E




               (5.9) 

5.3.4 Ghost force test 

This section is devoted to evaluating the presence of ghost forces. Following the 

ghost force test described in Section 3.7.1. The test is done through a simple ghost force 

test again. The static solution can be obtained by setting the acceleration of each node in 

the equation of motion equal to zero, and then solving a linear system of algebraic 
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equations as in Eq (3.16). We consider a square solution domain Ω = (−0.5, 0.5) × (−0.5, 

0.5), as illustrated in Figure 5.6; Also zones Ω1, Ω2, and Ω3 are shown in the figure.  

We consider a rigid body translation by imposing Dirichlet boundary conditions to all the 

boundary nodes: 

(1,1)ex Tu                         (5.10) 

The displacements of all internal nodes are computed by solving Eqs (5.1)-(5.4). We 

compare the exact solution displacement with that computed numerically by means of the 

error norm defined in Eq (3.28). 

 

Figure 5.6. Domain discretization used in the ghost force test. The yellow area is the 

transition region, the central white square zone is Ω1, the remaining part of the model is 

Ω3.  

The error norm is computed for all sets of nodes and the relevant results are shown in 

Table 5-1. All the internal nodes perfectly follow the imposed rigid body motion, and 

they are translated without producing deformation in the grid. It can be concluded that the 

method passes the patch test successfully and thus the coupling technique is free from 

ghost forces in all the portions of the solution domain. 
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Table 5-1. Norms of error for different layers in the ghost force test. 

Layer a b c d 

eu 
167.14 10  

167.65 10  
151.10 10  

165.39 10  

 

5.3.5 Example I 

In this example, we compare the numerical solution obtained with FPM and the 

coupled method with that generated by the standard FEM. The cantilever beam shown in 

Figure 5.7 is loaded by a concentrated periodic force at the free end. The basic 

parameters are 73 10E   Pa, 0.3   and 31 kg m  .  

 

Figure 5.7. Example I: a cantilever beam subjected to a periodic loading. 

For the two models the same grid of nodes is adopted; a uniform grid with an average 

nodal spacing of 1.2   m which results in 451 nodes. In the FEM model 400 

quadrilateral plane stress elements were used. 
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In Figure 5.8 the solutions obtained by the considered models for the vertical 

displacement component of the nodes XI and XII, shown in Figure 5.7, are presented for 

an interval of 2.0 seconds. The solution obtained by FPM is in a perfect agreement with 

the FEM solution. The main purpose of this example is to evaluate the results of the 

coupled method through a fixed partitioning of the solution domain. 
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Figure 5.8. Time history of displacement v at nodes (a) XI , (b) XII obtained by both FEM 

and FPM models in Example I. 

It should be remarked here on the basis of the studies described in Section 3.7.1, in the 

linearized version of peridynamics, which is the case of the present study, with the limit 



131 

 

0   the peridynamic formulation asymptotically recovers the Navier equation of 

classical elasticity [50]. In this example, keeping the m ratio constant, by refining the 

solution domain, it is expected that the coupled method should produce a solution similar 

to that of FEM. In this regard, we consider again a uniform grid for the coupled method 

with an average nodal spacing of Δ = 0.6 m which results in 1701 nodes; as shown in 

Figure 5.9. The peridynamic part of the solution domain is considered to be a 8m × 6m 

rectangle centered at the center of the beam.  

 

Figure 5.9. Domain discretization used in Example II for the coupled method. 

 

Moreover, to get more insight and for the sake of comparison, we consider the solution of  

a peridynamic-only model using a nodal spacing of 0.08  m which results in 90751 

nodes; the nodal spacing is almost 7.5 times smaller than that of the coupled method. The 

results obtained by both models, again at nodes XI and XII, are reported in Figure 5.10. As 

can be seen, the solution obtained by the peridynamic model is in a good agreement with 

that of FEM. Such a small difference between the solutions is due to the wave dispersion 

properties of peridynamics in wave propagation which can be mitigated by refining the 

solution domain [120]. The results obtained by the coupled method is in a perfect 
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agreement with that of FEM using a coarser grid of nodes, and the results converge to the 

FEM solution quickly.  
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Figure 5.10. Time history of displacement v at nodes (a) XI , (b) XII obtained by FEM, the 

coupled method, and a peridynamic-only model in Example II 

It can be concluded, by using the present coupling method and restricting the 

peridynamic solution only to high strain areas, in the case of failure analysis, the solution 

of a peridynamic-only model can be reproduced; the coupled method uses a coarser nodal 
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spacing. This conclusion is valid if there is no significant mismatch between the nonlocal 

and local dispersion relations[121]. We shall show this feature in the next example. 

5.3.6 Example II 

This example is devoted to show the capability of the present method in the solution of 

problems involving dynamic crack propagation. We consider a problem that presents a 

crack branching in a plate with an initial crack and an applied step load as shown in 

Figure 5.11. The same case was simulated by a peridynamic-only model in [33]. 

 

Figure 5.11. Set up description of the pre-cracked plate under traction studied in 

Example II.  

The plate is made of Duran 50 glass and the mechanical properties of the material are 

65E   GPa, 2,235   kg/m3, 1 3  , and 0 204G   J/m2. In the present study, three 

different strategies are applied: Model I, Model II and Model III. In Model I, we consider 

a fixed partitioning to represent the solution domain, and for the other cases, Model II 

and Model III, we apply the adaptive partitioning. For all cases a time duration of 46 µs is 

considered and the time step of the numerical integration is 46 ns. 
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Figure 5.12. The grid used for Model I in solution of the pre-cracked plate in Example II. 

 

For Model I we consider a grid with an average nodal spacing of 1   mm as shown in 

Figure 5.12. This configuration is kept constant during the whole simulation. The grid is 

made of 1734 FPM nodes and 2508 peridynamic nodes. Peridynamic nodes are 

distributed in the region where the pre-crack is located as well as in the whole region in 

front of the crack tip where there is the possibility of crack propagation. The remaining 

part of the solution domain is represented by FPM nodes. The initial crack is 

conveniently modeled by breaking the corresponding bonds; in addition, the FPM nodes 

are positioned far enough from the initial crack so that the visibility criterion is observed. 

In Figure 5.14 six plots of the damage levels at various instants are shown. In this 

example, for all the plots of damage level we use a unique color code given in Figure 

5.13. 

   

 
 

 

Figure 5.13. The color range bar used for the plots of damage. 
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Figure 5.14. . Six snap-shots showing the evolution of damage in Model I. In the last 

snap-shot the star points illustrate the crack morphology in [33] using 65,488 nodes. 

In Figure 5.14(f) we compare the crack morphology obtained by the proposed approach 

with that of [33], where a purely peridynamic model with a very fine nodal spacing of 

0.25   mm (65,488 nodes), was used. The crack morphology obtained in the present 

study is in excellent agreement with that obtained by a fully nonlocal solution.  
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Figure 5.15. Six snap-shots showing the evolution of damage as well as the adaptive 

partitioning in Model II. 

 

We repeat the simulation with two adaptive partitionings of the solution domain, Model 

II and Model III. The difference between these two models is in the criterion triggering 

the adaptive switching. The   parameter, introduced in Eq (5.7), is taken to be 0.6 in 
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Model II and 0.8 in Model III. Model II is considered to be more conservative with 

respect to Model III as the adaptive switching is triggered at a lower level of relative 

elongation. For both cases, we use a grid with a nodal spacing of 1 mm as in Model I; 

however, the initial grid is made of only 408 peridynamic nodes, and the remaining part 

of the solution domain is represented by 3834 FPM nodes. The temporal evolutions of 

damage as well as the partitioning of the solution domain in six snap-shots are reported in 

Figure 5.15 and Figure 5.16. 

The figures indicate that the performance of the adaptive switching technique is good, the 

damage distribution in both cases is similar to that of Figure 5.14(f); the nonlocal part 

precedes the crack morphology keeping the local part far away from the cracked parts. 

The visibility criterion is satisfied at each time step so that the cracked parts of the 

solution can not violate the validity of the local approximation of FPM. The obtained 

crack morphologies in the last snap-shots are compared with the reference fully 

peridynamic solution. Both models, using a moderate number of nodes and a limited 

number of peridynamic nodes, provide results in a perfect agreement with the reference 

solution. 

It can be concluded that the conversion of FPM nodes into peridynamic nodes takes place 

at the right time and in the right zones of the domain. Moreover, all the models provide a 

result very similar to the reference solution which was obtained with a much larger 

number of nodes. The plots of Figure 5.16 confirm that choosing a larger   reduces the 

size of the zone converted from FPM into peridynamic, so Model III provides an accurate 

result at a reduced computational cost. 
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Figure 5.16. Six snap-shots showing the evolution of damage as well as the adaptive 

partitioning in Model III. 
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Table 5-2. The portion of peridynamic nodes at the initial and final time steps and the 

corresponding CPU times for the studied models. 

Model  PD nodes portion at  

at t=0 s 

PD nodes portion at 

 t=46 µs 

CPU Time 

(s) 

I 59 % 59 % 2362.78 

 II 9 % 29.4 % 1256.80 

 III 9 % 25.69 % 1207.52 

 

It should be pointed out that all the simulations are performed with a research code and 

the hardware features of the computer are: 

 Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz  

 RAM: 8.00 GB 

 OS: Windows 7 Pro 64 bit 

The CPU time of the computation for all the models are reported in Table 5-2. The results 

indicate that the computational times for Model III and Model II are almost half of that of 

Model I. 

5.3.7 Example III 

The Kalthoff-Winkler’s experiment [122] is a well-known classical benchmark 

problem for dynamic fracture analysis. The solution of this problem through different 

approaches has been the object of many researches in the literature; for instance, see [16], 

[123], [124]. The geometry of the model corresponding to the experimental setup is 

illustrated in Figure 5.17.  
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Figure 5.17. Kalthoff-Winkler’s experimental setup. 

 

In the experiment, a pre-cracked plate, made of steel 18Ni1900, is hit with an impact 

loading at the speed of 
0 32mv s , and based on the study conducted in [122] a brittle 

fracture mainly in mode I is observed. The impact is simulated by imposing on the border 

nodes between the notches a constant speed of 16.5 m/s in the horizontal direction. The 

compressive stress waves propagate in the plate and cracks start propagating at the 

notches’ tips but do not grow parallel to them. Crack propagation instead occurs at an 

angle of approximately 68° with respect to the direction of the notch. Full peridynamic 

models [36], [125] already showed to be able to reproduce this angle accurately. In the 

present study, for the sake of verification, the mechanical parameters and the loading 

condition are taken to be the same as in [36]; which are: 190E  GPa, 8000   kg/m3, 

0.25   (plane stress conditions are assumed), and 4

0 6.9 10G    J/m2. The impact 

loading is imposed by applying an initial velocity of 
0 16.5mv s . We keep this velocity 
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constant as it is very logical to assume in such a short time the projectile and the plate 

move together. The considered grid spacing is 0.0005mx  , and the total number of 

nodes is 80802 nodes. A time duration of 90 μs for the problem is considered, and hence 

by taking ∆t=20 ns the simulation is discretized in 4500 time steps. In addition, here we 

assume 0.8  .     

Figure 5.18 shows the grid nodes applied to the proposed coupling method at the 

beginning of the simulation.  

t=0 s 

 
 

 

Figure 5.18. Domain discretization at t=0 s in Example III. 

As can be seen the peridynamic nodes are initially positioned around the cracked areas as 

well as places exposed to the impact. At this stage, the domain is discretized by 70096 

FPM nodes and 10706 peridynamic nodes. In this example, the adaptive partitioning of 

the solution domain is carried out. Similar to the former example, the temporal evolutions 

of damage as well as the partitioning of the solution domain in six snap-shots are reported 

in Figure 5.19.  At the end of the simulation only 4,477 node have been changed to 

peridynamic nodes and thus a partition of solution domain as shown in Figure 5.19(f) is 

obtained; it contains 66667 FPM nodes and 14135 peridynamic nodes.  
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Figure 5.19. Six snap-shots showing the evolution of damage as well as the adaptive 

partitioning in Example III. 
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From the last step of the simulation one can conclude that only a small portion of 17.5% 

is allocated to peridynamic nodes which contributes to a significant computation cost-

reduction considering the solution of the same problem with a peridynamic-only model. 

As shown in Figure 5.19(f) the obtained crack path inclination angle is 67.5° which is in 

a good agreement with the result of experiment [122].   
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6. Conclusions  

In the present dissertation, a comprehensive study on the coupling of a discretized 

bond-based peridynamic model with a meshless method based on the classical 

continuum theory is studied. The main goal is a considerable reduction in the use of 

computational resources, with respect to using a peridynamic-only model. 

Moreover, coupling helps to circumvent some important issues in peridynamics; for 

instance, the surface effect, and the imposition of boundary conditions. The work 

has been thoroughly explained in the former chapters. In fact, Chapters 1 and 2 

have been devoted respectively to the literature review and an overview of the 

bond-based peridynamic formulation as well as its discretization. The main 

contribution of the work originates from the works presented in Chapters 3 - 5. The 

following conclusions can be made for each chapter:  

- Chapter 3: 

We have coupled a discretized form of the nonlocal bond-based peridynamics to 

the method of Meshless Local Exponential Basis Functions (MLEBF), which is 

based on classical continuum mechanics. The coupling has been achieved by using 

a simple switching technique in a completely meshless scheme. The proposed 

approach benefits from the full advantages of both methods while avoiding some of 

their disadvantages. The performance of the proposed method has been examined 

comprehensively, and we have shown that:  

 The coupling is achieved in such a way that no appreciable ghost forces are found 

in the transition zone.  
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 The coupling scheme is devised in a way that all the peridynamic nodes close to 

the transition zone have their complete neighborhood and hence the transition part 

does not suffer from the well-known softening effect.  

 The coupling is performed simply so that neither any blending function nor any 

morphing strategy is required to glue the methods and hence the method is free of 

introducing any numerical artifact as well as tuning of parameters.  

 The presented examples show that the boundary conditions can be imposed in a 

simple way, and moreover, the method exhibits accurate and stable results in the 

solution of problems involving singularities such as stationary crack tips.   

- Chapter 4: 

In this chapter, the meshless finite point method (FPM) has been extended and 

applied to elastodynamic problems. The time integration has been performed 

through an explicit velocity–Verlet approach. A simple technique has been 

introduced to satisfy Neumann type boundary conditions (tractions) in time. This 

technique preserves the originality and advantages of the FPM in terms of 

simplicity and efficiency of the approach. The system of equations has been 

formed so that the major parts of the solution domain are governed by uncoupled 

equations; only for a layer of nodes close to Neumann boundaries the equations 

become coupled. The detailed formulation for advancing in time has been 

presented, and the accuracy of the approach via several numerical examples, 

including some 3D problems, has been investigated. The method is capable of 

yielding proper results with an excellent agreement with those of reference 

solutions.  
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Chapter 5:  

The formulation developed in Chapters 3 and 4 paved the road to introduce a new 

meshless computational technique which is suitable for dynamic fracture analysis 

of brittle materials. In this chapter, we have demonstrated that the switching 

technique is also workable in the case of dynamic problems. In this way, we 

coupled the discretized peridynamic model with FPM to benefit from full 

advantages of both the numerical techniques together. In this chapter, we have 

shown that the switching technique is capable of being used in an adaptive way so 

that the application of the nonlocal model can be restricted only to necessary parts 

of the solution domain where crack is likely to nucleate or propagate. Moreover, 

to optimize the computational cost as much as possible we introduced a way to 

change the partitioning of the solution domain during the simulation. In this way, 

FPM nodes can be easily changed to peridynamic nodes, in the necessary cases, 

through which the nonlocal region follows the crack morphology. In the 

numerical examples we have shown that the coupled approach can obtain with 

good accuracy the results of a peridynamic-only model, while we use a much 

coarser grid of nodes in the coupled method.  

6.1 Future works  

It must be pointed out that several future works can be carried out following the 

outcomes of the present study. Some of them are listed as:  

 Extension of the work to 3D problems.  

 Dealing with 3D examples entails an efficient and robust software implementation 

of the code. At this aim some preliminary studies, about parallel implementation 
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of a peridynamic code on graphic accelerators [126], have been conducted by the 

authors. However, parallel implementation of the present coupled approach 

requires a comprehensive study, separately.  

 Inspired by the work of this dissertation, the authors have so far developed a new 

coupling approach to couple a discretized peridynamic model with FEM [45], 

[127], [128]. The investigations show that all the aforementioned positive features 

hold in the case of coupling with FEM, as well. However, extending the work to 

the case of adaptive partitioning of the solution domain is still an open issue.  

 In the present study, the coupling approach is developed on the basis of same grid 

spacing which can be a restriction when application of the work to multiscale 

problems is sought. To this end, at the moment, inspired by the works in [128], 

the authors are working to remove this limitation using a fine grid of nodes for the 

Peridynamic part, while using a coarse grid for the rest. 

 Finally our coupling approach can be used as well to have a completely 

peridynamic model with variable grid size, in a way similar to the one suggested 

in [69]. This could provide the possibility to develop a multiscale peridynamic 

approach which is currently being investigated by the author.  
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APPENDIX A 

 

In the case where the particular solution of Eq (3.14) is not a-priori known, it can 

be approximated locally within iC  through a series of exponential basis functions as: 

1

exp( ) exp( )

p pxb
p p p p p pk

k l l l lpy
k k

c
x y x y

c
   
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 
    
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u c         (A.1) 

where p

k
c  is a vector containing unknown constant coefficients, and pb  stands for the 

number of bases. 

 
Figure A.1. G

X  grid of sampling nodes for the local approximation of the particular 

solution 

 

The introduction of the above expression into Eq (3.1) should satisfy the non-

homogenous part of Eq (3.1), and we have: 
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The go further with the local approximation, a local grid of nodes G
x , so called sampling 

nodes as shown in Figure A.1, is needed. Equation (A.2) should be collected at G
x  which 

results in: 

p P pM c h               (A.3) 

where 1 1 2 2( , , , , , , )p p

P px py px py px py

b b
c c c c c c     c , and thus the components of p

M  and p
h  are 

in the following form: 
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and 

G
j

xp
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 
  

 
X

h             (A.5) 

where Gn  denotes the number of the sampling grid nodes. In the final analysis, P
c  can be 

found as follows: 

( )P p pc M h              (A.6) 

It should be remarked here that the particular basis functions must not satisfy the 

homogeneous governing equation expressed in Eq (3.5). Moreover, Eq (A1) is written 

locally, and one may adopt other collocation approaches to obtain the particular solution. 

The reader may consult references [77], [78] to get more insight into the details.       


