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                                                              SUMMARY 

 

 

 I 

 

 

SUMMARY 

 

 

Nowadays an increasing interest on thermo-hydro-mechanical analysis of multiphase 

porous media is observed because of a wide spectrum of application in civil and 

environmental engineering. The onset of landslides caused by rainfall or earthquake, the 

onset of catastrophic landslides, the seismic behaviour of deep radioactive waste 

disposal and concrete or earth dams are just few and challenging examples. 

As novel aspect, this work presents the development of a mathematical and numerical 

model for the analysis of the thermo-hydro-mechanical behaviour of multiphase porous 

materials in dynamics. 

The fully coupled multiphase model for non isothermal deformable porous media is 

developed within the hybrid mixture theory. 

In order to analyse the thermo-hydro-mechanical behaviour of a soil structure in the low 

frequency domain, e.g. under earthquake excitation, the u-p(-T) formulation is 

advocated for the finite element discretization, neglecting the relative fluids acceleration 

and their convective terms. As a consequence, the number of the independent variables 

is reduced to four: gas pressure, capillary pressure, temperature and solid skeleton 

displacements. Moreover, the dynamic seepage forcing terms in the mass and enthalpy 

balance equations and the compressibility of the solid grain at the microscopic level are 

neglected. 

The standard Bubnov-Galerkin method is applied to the governing equations for the 

spatial discretization, whereas the generalized Newmark scheme is used for the time 

domain discretization. The final algebraic, non linear and coupled system of equations 

is solved by the Newton method with a monolithic approach. 

The formulation and the implemented solution procedure are validated through the 

comparison with literature benchmarks, finite element solutions or analytical solutions 

when available. 
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SOMMARIO 

 

 

Al giorno d’oggi è evidente un crescente interesse nell’analisi termo-idro-meccanica dei 

mezzi porosi multifase e ciò è dovuto all’ampio spettro di applicazioni in ingegneria 

civile ed ambientale. L'innesco di frane dovuto a eventi sismici o forti eventi piovosi, 

l'innesco di frane catastrofiche, il comportamento sismico di depositi profondi di scorie 

radioattive o di dighe in terra o calcestruzzo sono solo alcuni esempi. 

Come aspetto innovativo, questo lavoro presenta lo sviluppo di un modello matematico 

e numerico per l'analisi del comportamento termo-idro-meccanico di materiali porosi 

multifase in dinamica. 

Il modello multifase per mezzi porosi deformabili in condizioni non isoterme, 

completamente accoppiato, è stato sviluppato nell’ambito della teoria ibrida delle 

miscele. 

Per analizzare il comportamento termo-idro-meccanico di una struttura in materiale 

granulare nel dominio delle basse frequenze, ad esempio in caso di sollecitazione 

sismica, viene ricavata la formulazione u-p(-T), trascurando le accelerazioni relative dei 

fluidi e i loro termini convettivi. Come conseguenza, il numero delle variabili 

indipendenti è ridotto a quattro: la pressione del gas, la pressione capillare, la 

temperatura e le componenti di spostamento dello scheletro solido. Inoltre si trascurano 

le forze di filtrazione dinamica nelle equazioni di bilancio massa e dell’entalpia e la 

comprimibilità del grano solido a livello microscopico. 

Per la discretizzazione nel dominio dello spazio viene utilizzato il metodo di Bubnov-

Galerkin, mentre per la discretizzazione nel dominio del tempo viene utilizzato lo 

schema generalizzato di Newmark. Il sistema finale di equazioni algebriche, non lineari 

ed accoppiate, viene risolto con il metodo di Newton, con un approccio monolitico. 

Il modello implementato è stato validato mediante il confronto con casi di riferimento 

presenti in letteratura, con soluzioni agli elementi finiti e con soluzioni analitiche 

quando disponibili. 
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INTRODUCTION  

 

 

The analysis of the dynamic response of multiphase porous media has many 

applications in civil engineering. Onset of landslide due to earthquake or rainfall and the 

seismic behaviour of dams are just few examples where inertial forces cannot be 

neglected because of the mass involved. Moreover, there are situations where it is 

important to consider the effect of temperature variation that causes a decrease of the 

solid skeleton strength and an increase of the pore pressures. We could observe these 

phenomena for example during the onset of catastrophic landslide, as described by 

Vardoulakis [Va02], where the mechanical energy, dissipated in heat inside the slip 

zone, may lead to the vaporization of pore water, creating a cushion of zero friction. 

Another example is the seismic behaviour of deep nuclear waste disposal, because, in 

case of failure of canisters, an increment of temperature could create localized failure 

zones, those could act as preferential escape zones for fluids containing radionuclides. 

 

Many authors have developed models for the analysis of the transient behaviour of 

multiphase porous media. A recent state of art can be found in Zienkiewicz et al. [Z99] 

and Schanz [SC09]. A fully coupled finite element code based on mixture theory is 

developed by Zerfa and Loret where a new viscous boundary is implemented to avoid 

wave reflections towards the structure (This boundary is able to absorb the two 

dilatational waves and the shear wave) [ZL03]. Nenning and Schanz [NS11] presented 

an infinite element to treat wave propagation problems in unbounded saturated porous 

media modelled by Biot’s theory. Conventional finite elements are used to model the 

near field, whereas infinite elements are used to represent the behaviour of the far field. 

The elements are constructed in such a way that the waves decay with distance and are 

not reflected at infinity. Heider et al. [He11] analyzed an accurate and stable numerical 

solution of dynamic wave propagation problems in infinite half spaces. Proceeding from 

an isothermal, biphasic, linear poroelasticity model with incompressible constituents, 

finite elements are used to discretize the near field and infinite elements to approximate 

the far field. 

A model based on the theory of porous media describing the dynamic behaviour of a 

saturated binary porous medium was presented by Diebels including both geometrical 

and material non-linearities [Die96]. Lòpez-Querol et al. [LQ07] presented the 
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constitutive Pastor–Zienkiewicz model for sands implemented in a dynamic coupled 

code formulated in terms of displacements for both solid and fluid phases (u-w 

formulation). A u-p
c
-w formulation of a fully coupled porous solid-fluid formulation is 

presented by Jeremic et al. [Je08]. They took into account water acceleration and fluid 

compressibility. Ravichandran and Muraleetharan [RM09] presented a complete 

formulation of the fully coupled equations representing the dynamics of unsaturated 

soils. Two finite element formulations of all the terms in the governing equations are 

presented and implemented within a finite element framework. 

Analytical solutions were developed for the response of saturated and nearly saturated 

porous media under plane strain condition by Ulker and Rahman (2009) [UR08]. An 

explicit 3D Laplace transform domain fundamental solution is obtained for governing 

equations and a closed-form analytical transient 3D fundamental solution is presented in 

Ashayeri et al. [As10]. Gajo and Denzer [Ga11] provided the finite element 

implementation for dynamics analyses of saturated porous media at large strains with 

compressible solid and fluid constituents for both high-frequency and low-frequency 

dynamic problems. Uzuoka and Borja [UB11] derived the governing equations for the 

dynamic response of unsaturated poroelastic solids at finite strain. They obtained 

simplified governing equations from the complete coupled formulation by neglecting 

the material time derivative of the relative velocities and the advection terms of the pore 

fluids relative to the solid skeleton, leading to a u-p
w
-p

a
 formulation. 

 

This thesis presents as a novel contribution the study and the implementation of a fully 

coupled model for the analysis of deformable multiphase geomaterials in dynamics 

including thermal effects. The fully coupled multiphase model for non isothermal 

deformable porous media is developed following Lewis and Schrefler [LS98]. The u-p(-

T) formulation is obtained by neglecting the relative fluids acceleration and their 

convective terms, this is valid for low frequency problems as in earthquake engineering, 

Zienkiewicz et al [Z99]. In the model devolvement, the dynamic seepage forcing terms 

in the mass balance equations and in the enthalpy balance equation and the 

compressibility of the grain at the microscopic level are neglected. The implemented 

model is validated through the comparison with analytical or finite element quasi-static 

and dynamics solutions from the literature. 

 

This thesis is organised as follows. 



CHAPTER 1                                                                                          INTRODUCTION 

 

 

 3 

Chapter 2 concerns the derivation of the mathematical model. The generalized form of 

the governing equations describing the thermo-hydro-mechanical behaviour of porous 

media in dynamics is presented. The simplifications introduced in the model 

development are explained and justified.  

 

Chapter 3 describes the discretization of the governing equations. The classical Galerkin 

Method is used for the space discretization, whereas the generalized Newmark method 

is used for the time discretization. The linearization of the non-linear algebraic 

equations system close this chapter. The model has been implemented in the quasi-static 

finite element code COMES-GEO [GS96], [LS98], [SPS6]. 

 

Chapter 4 presents the finite element solutions aiming to validate numerically the 

implemented model. The single phase solid model is validated by analyzing a 

monodimensional wave propagation problem in a solid bar [Sl92] and by solving a sand 

column subjected to a step load [SS98]. The isothermal water saturated model is 

validated by studying a dynamic consolidation problem of a saturated poroelastic 

column under harmonic load [Ma10]. The non-isothermal water saturated model is 

validated by solving a fully saturated non-isothermal mechanical consolidation problem 

[Ab85]. The isothermal partially saturated model is validated by simulating the 

Liakopoulos test that is a quasi-static drainage of liquid water from a soil column [L65] 

and by analyzing a sand column subjected to a step load in an initially unsaturated soil 

column [SS98]. 

 

In Chapter 5 the concluding remarks are presented. 
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GOVERNING EQUATIONS FOR DYNAMICS T-H-M BEHAVIOUR OF 

POROUS MEDIA* 

 

 

2.1 Introduction 

 

In this chapter the governing equations for the full dynamic behaviour of a partially 

saturated porous medium are developed following [LS98]. In particular, we consider 

here the voids filled with water and air. Today the description of multiphase systems 

made of interpenetrating continuous bodies, such as porous media, is based either on 

the mixture theory integrated by the concept of volume fractions, or on averaging 

theories and from a classical point of view on Biot's theory. Since the averaging 

theories offer the possibilities of a better understanding of the microscopic situation and 

its relation to the macroscopic one, which is, however, the natural domain of all 

continuum mechanical models, we use in the following the averaging theory based on 

spatial averaging operators. Within this theory we make use of macroscopic variables 

which correspond to real measurable quantities directly linked to laboratory practice, 

e.g. in soil mechanics. It has to be pointed out that, under appropriate assumptions, the 

averaging theory yields the same equations as the classical mixture theory, as shown in 

[deB91]. Care has to be taken, however, in the linear momentum balance equation. For 

the reader mainly interested in the resulting governing equations and their numerical 

solution we derive these equations again in section 2.6 using Biot's theory. This also 

permits us to establish a link between the classical, phenomenological approach and the 

description of the real microscopic composition of the multiphase system. Furthermore, 

it shows the essential correctness of Biot's findings. 

Tensorial notation is used throughout this chapter. 

 

 

2.2 Averaging principles 

 

Here a short summary of the principles necessary for the development of the governing 

equations is given. For a full account of the averaging theories the reader is referred to  

References [deB91] and [BB84]. 

 

* From Chapter 2: Mechanics of saturated and partially saturated porous media, R.W. Lewis and B.A. 

Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of 

Porous Media, Wiley, Chichester, 1998. 
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Sections 2.2 and 2.3 follow, in particular, the work by Hassanizadeh and Gray, [H79-1] 

and [H86-2], and by de Boer et al. [deB91]. 

 

We introduce the following definitions:  

Microscopic level: we consider the real non-homogeneous structure of the porous 

medium domain (Figure 2. 1). The scale of inhomogeneity is of the order of magnitude 

of the dimensions of a pore or a grain, say d. Attention is focussed on what happens at a 

mathematical point within a single phase and the field variables describing the status of 

a phase are defined only at the points occupied by that phase. For the practical 

description of the processes taking place in a porous medium, this level is not useful 

since microscopic quantities are generally not measurable. Only their average values 

are measurable. 

 

Macroscopic level: the real multiphase system that occupies the porous medium 

domain is replaced by a model in which each phase is assumed to fill up the entire 

domain. This means that at every point all phases are supposed present at the same time 

(overlapping continua). This is the level of interest of continuum mechanics, where we 

investigate the continuous distribution of the constituents through a macroscopic 

control space. At this level, we usually deal with homogeneous media, but non-

homogeneities may still be present, e.g. strata. Their scale is of an order of magnitude 

comparable with the order of magnitude of the entire domain, say L. 

 

Megascopic level: at this level the conditions are similar to those of the previously 

defined level. The difference depends on the fact that some macroscopic 

inhomogeneities are eliminated by averaging and/or on the fact that the mathematical 

model is stated in a domain which has less dimensions than the real domain, e.g. 2D 

problem with field values averaged over the thickness [BC81], [SS89]. Typical 

applications of this level are found in the simulation of land subsidence problems on 

regional scale. 
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Figure 2. 1 Typical averaging volume dv of a porous media 

consisting of three constituents 

 

 

2.2.1 Averaging process 

 

We consider here a multiphase system occupying a total volume V, and bounded by 

surface A. The constituents π, π = 1, 2,….k, have the partial volumes V
π
. Each point of 

the total volume V, is considered to be the centroid of a representative elementary 

volume (REV) or average volume element dv. The position of the centre of a REV in a 

global coordinate system is described by position vector x while r indicates the position 

of a microscopic volume element dvm (Figure 2. 1). The volume of constituent π within 

a REV, called average volume element dv
π
, is obtained by defining a phase distribution 

function γ
π
: 







≠∈

∈
=

απ

π
γ

α

π

     for    0

 for    1
),(

dv

dv
t

r

r
r  [2. 1] 

( ) m

dv

dvttdv ∫= ),(, rx πγπ

 [2. 2] 

where ξ+= xr  and the integration refers to the microscopic local coordinate system 

ξ with its origin in x  (Figure 2. 1). Similarly we write for the part da
π
 of area da of the 

REV, occupied by constituent π 

( ) ( ) m

da

dattda ,, rx ∫= ππ γ  [2. 3] 

where mda  is the microscopic area element. The knowledge of dv
π
 enables the 

introduction of the concept of volume fraction η
π
, which is of paramount importance in 

multiphase systems: 
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( ) ( )
m

dv

dvt
dvdv

dv
t ,

1
, rx ∫== π

π
π γη  [2. 4] 

with 

1
1

=∑
=

κ

π

πη  [2. 5] 

In fact, as indicated under the heading "Macroscopic level" in paragraph 2.2, substitute 

continua fill the entire domain simultaneously, instead of the real fluids and the solid 

which each fill only part of it. These substitute continua have a reduced density which 

is obtained through the volume fractions. 

In the following, averaged quantities are obtained by integrating (averaging) a 

microscopic quantity over the volume dv or the area da of a REV. A field of 

macroscopic variables results from this, where the average volume dv and the average 

area da are associated with material points. 

The size of a REV is an important choice. Average quantities have to be independent 

from the size of the average volume and continuous in space and time. Thus a REV has 

to fulfil the following requirements: 

- dv has to be small enough to be considered as infinitesimal, i.e. the partial derivatives 

appearing in the governing equations must make sense  

- dv must be large enough, with respect to the heterogeneities of the material, to give 

average quantities without fluctuations depending on the size of the REV (Figure 2. 2). 

 

dvmin dv

A
ve

ra
g

e 
va

lu
e 

o
f 

dvmax

Domain of

microscopic

inhomogeneity

Domain of

macroscopic

inhomogeneity

Range for dv

Homogeneous

medium

Inhomogeneous

medium

 

Figure 2. 2: Averaged value ζ vs size of the average volume dv 
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To obtain meaningful average values, the characteristic length l of the average volume 

must satisfy the inequality 

Lld <<<<  

where l is dependent on the specific material which constitutes the medium. Some 

typical values of l are given in [LC88]: 

Metals 0.5 mm 

Plastics 1 mm 

Wood 10 mm 

Usually there are no boundary conditions associated with a REV, except in the case of 

the megascopic level. Attention is needed when defining the averaged values for a 

megascopic level [SS89]. Another exception is the case of a medium with periodic 

structure, where asymptotic analysis is used [Au91]. 

The following average operators are now defined and applied to a function ( )t,rζ  

which is a microscopic field variable. 

 

Volume average operators: 

- phase average 

( ) ( ) ( ) m

dv

dvtt
dv

t ,,
1

, rrx π

π
γζζ ∫=  [2. 6] 

- intrinsic phase average  

( ) ( ) ( ) m

dv

dvtt
dv

t ,,
1

, rrx π

π

π

π
γζζ ∫=  [2. 7] 

where we have to take into account that 

( ) ( ) ( ) m

dv

m

dv

dvttdvt ,,, rrr πγζζ
π

∫∫ =   [2. 8] 

From the definition of volume fraction [2.4] it follows that 

( ) ( ) ( )ttt ,,, xxx
π

π

π

π
ζηζ =  [2. 9] 

 

Mass average operator, with ( )t,rρ  microscopic mass density as weighting function, 

is 

( )
( ) ( ) ( )

( ) ( )∫
∫

=

dv
m

dv
m

dvtt

dvttt
t

,,

,,,
,

rr

rrr
x

π

π
π

γρ

γζρ
ζ  [2. 10] 

With constant microscopic mass density the following equation holds 
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( )
( ) ( )tt

t
,,

,

1
xx

x

π

ππ
ζζ

η
=  [2. 11] 

 

Area average operator 

( ) ( ) ( ) m

da

datt
da

t ,  ,
1

, rnrx π
π

γζζ ⋅= ∫  [2. 12] 

with n the outward normal unit vector of an area element dam and in [2.12] ζ has a 

tensorial nature. 

In the following, averages of velocity, external body force, internal energy, external 

supply of heat, internal entropy, external supply of entropy and total production of 

entropy are obtained through the mass average operator [2.10], [H79-1]. These density 

functions are only additive in the form ρζdv. Volume averaged quantities, through [2.7], 

and mass averaged quantities, through [2.10], are the same only for constant 

microscopic mass density, [2.11]. The area average operator [2.12] will be used to 

define the average of flux terms such as the stress tensor, heat flux and entropy flux. 

For an isotropic distribution of phases, the volume and area average values differ only 

slightly from each other [H79-1]. This follows from Delesse’s law, which states that on 

each cut surface in an isotropic mixture, the surface ratio of each partial constituent 

must be equal to its volume ratio. 

 

 

2.2.2 Microscopic balance equations 

 

We now consider the classical balance equations of continuum mechanics which are 

used to describe the microscopic situation of any π phase. At the interfaces with other 

constituents, the material properties and thermodynamic quantities may present step 

discontinuities. 

For a generic conserved variable ψ, the conservation equation within the π phase may 

be written as  

( ) ( ) Gbdivdiv
t

ρρρψ
ρψ

=−−+
∂

∂
ir  &  [2. 13] 

where r&  is the local value of the velocity field of the π phase at a fixed point in space, i  

is the flux vector associated with ψ, b  is the external supply of ψ, G  is the net 

production of ψ. 

At the interface between two constituents π and α, the jump condition holds  
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( )[ ] ( )[ ] 0 .   .  =+−++− απ

α

πα
π ρψρψ nirwnirw &&  [2. 14] 

where w  is the velocity of the interface, παn  is the unit normal vector pointing out of 

the π phase and into the α phase, with 

αππα nn −=  [2. 15] 

And π  indicates that the preceding term [...] must be evaluated with respect to the π 

phase. No thermomechanical properties are attributed to these interfaces. This 

assumption does not exclude the possibility of exchange of mass, momentum or energy 

between the constituents. 

Moreover the local thermodynamic equilibrium hypothesis is assumed to hold because 

the time scale of the modelled phenomenon is substantially larger than the relaxation 

time required to reach equilibrium locally. 

 

 

2.2.3 Macroscopic balance equations 

 

Instead of deriving the macroscopic balance equation separately for each quantity to 

which the conservation law applies, we derive it for the generic quantity ψ as in 

[deB91] and [BB84] and specialise the law afterwards for specific quantities: mass, 

linear momentum, angular momentum and energy. Note that the balance equations are 

written in a material-free manner. The constitutive equations are introduced 

successively. 

A general average macroscopic balance equation is obtained from the microscopic 

balance equation [2.13] by multiplying it with the distribution function ( )t,rπγ  and by 

integrating this product over the volume element dv and over the total volume V. In this 

elaboration of the balance equations, macroscopic quantities are obtained through the 

previously defined averaging operators. 

This averaging procedure yields [deB91],[BB84] 

( ) ( )( ) ( ) dVdvt
t

tt

dv
V dv

m  ,
,,1

∫ ∫ 








∂

∂
r

rr πγ
ψρ

 

(( ) ( ) )( ) ( ) dVdvttttdiv
dv

V dv

m  ,,, ,
1

∫ ∫ 







+ rrrrr

πγψρ &  
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( ) ( )∫ ∫ 





−

V dv
m dVdvttdiv

dv
 , ,  

1
rri

πγ  [2. 16] 

 

( ) ( ) ( ) dVttbt
dvV dv

 ,,  ,
1

∫ ∫ 





− rrr

πγρ
 

( ) ( ) ( ) dVdvttGt
dv

V dv

m  ,,,
1

∫ ∫ 







= rrr

πγρ  

As suggested in References [H79-1], [H79-2], [H80-3] and [deB91], it is possible to 

obtain the following form of the general balance equation for the macroscopic 

thermodynamic property πψ  associated with the π phase: 

( ) ( )[ ] ( ) ( ) ( )[ ]∫ 







+
∂

∂
V

dVtttdivtt
t

,,,,, xxvxxx
ππ

π

π

π
ψρψρ  

( ) ( ) ( ) ( )[ ] ( )∫ ∑∫








⋅−−
≠

V

k

da
m dVdattttt

dv πα

πα
πα

ψρ ,,,,,
1

rnrrrwrr &   

( ) ( ) dVdatt
dvV

k

m
da∫ ∑∫ 








⋅−

≠πα

πα
πα

,, 
1

rnri  [2. 17] 

( ) ( ) ( )[ ] ( )∫ ∫ 







⋅−−
A da

m dAdatttt
da

πππ γξψρ ,
~

,,~,,
1

rnrxrri &

 

( ) ( ) ( ) ( )dVtGtdVtbt
VV

,,,, xxxx
π

π

π

π
ρρ ∫∫ =−  

or in more concise form 

( ) ( )

( )( ) ] dvGdVeb

divdiv
t

V

V

π

π
πππ

π

πππ

π

π

π

ρρψρ

ψρψρ

∫

∫

=++−




−+

∂

∂

 

  

I

iv

 [2. 18] 

where πi  is the flux vector associated with πψ , π
b  is the external supply of πψ , 

π
ρ  

is the volume average value of mass density. 

This last balance equation contains two further interaction terms, which describe 

chemical and physical exchanges. 

Exchange of πψ  due to mechanical interactions between the constituents is given by 

∑ ∫
≠

⋅=
πα

πα

π

π

παρ
da

mda
dv

  
1

inI  [2. 19] 

Phase change of a constituent or possible mass exchange between the constituent π and 

the other constituents α is given by 
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( ) ( ) m
da

da
dv

πα

παπ

π
πα

ρψ
ρ

ρψ nrw ⋅−= ∑∫
≠

&
1

e  [2. 20] 

The fourth term of the left-hand side of [2.17] is the macroscopic non convective flux 

of πψ  and an averaged flux density may be defined as 

( )
m

da
da

da
i

ππππ γψρ nri ⋅−= ∫
~~1~
&

 [2. 21] 

With the averaged macroscopic flux there exists a flux vector πi  such that π
i
~

 can be 

defined as a linear function of the normal unit vector n  of da in x  [H79-1]: 

ππ in
~

⋅=i  [2. 22] 

and the divergence theorem may be applied to obtain the term π
i div  in [2.18], i.e.  

dVdivdA
VA

       ∫∫ =⋅ ππ i in
 [2. 23] 

For the proof of the existence of the average flux vector πi , the tetrahedron argument is 

invoked [H79-1], as in stress analysis for Cauchy stresses. 

A condition for all internal exchange processes is obtained by integrating equation 

[2.14] over all interfaces, πα
da  and απ

da , and over the total volume V, then by 

summation over all constituents π , taking into account [2.19] and [2.20] 

( )[ ]  VdV
V

∈∀=+〉〈∫∑     0Ie x
ππ

π
π ρψρ

 [2. 24] 

The differential form of the balance equation is derived under certain smoothness 

conditions by localization at macroscopic level: 

V ∈∀x  

( ) ( ) πππ

π

π

π
ψρψρ

∂

∂
iv    divdiv

t
−+

 [2. 25] 

( )[ ] π

π

πππ

π
ρρψρ GIeb =++−  

subject to 

( )[ ]  VI ∈∀=+〉〈∑     0e xππ

π
π ρψρ

 [2. 26] 

If the body is separated by a discontinuity surface Σ  at macroscopic scale, which 

moves with velocity w , the following additional relation must be fulfilled [H79-1], 

[H79-2]: 

( )[ ] Σ∈∀⋅−−〉〈 xNi wv       0=πππ
πρ ψ

 [2. 27] 

where N  is the normal unit vector of Σ in x . 
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2.3 Macroscopic balance equations for a non isothermal partially saturated 

porous material 

 

In this section the macroscopic balance equations for mass, linear momentum, angular 

momentum and energy (enthalpy) are obtained and then specialised for a deforming 

porous material where heat transfer and flow of water (liquid and vapour) and dry air 

are taking place. The starting points are the microscopic balance equations [2.13], 

where, for each constituent, the generic thermodynamic variable ψ  is replaced by 

appropriate microscopic quantities, suitable for a microscopic non polar material. 

For the proper description of the non isothermal unsaturated porous medium, we need 

to take into account not only heat conduction and vapour diffusion, but also heat 

convection, liquid water flow due to pressure gradients or capillary effects and latent 

heat transfer due to water phase change (evaporation and condensation) inside the 

pores. Furthermore the solid is deformable, resulting in coupling of the fluid, the solid 

and the thermal fields. All fluid phases are in contact with the solid phase. 

The constituents are assumed to be immiscible except for dry air and vapour, and 

chemically non reacting. Because of the local thermodynamic equilibrium hypothesis, 

the temperatures of each constituent at a point in the multiphase medium are taken to be 

equal. This does not mean that the temperature is uniform throughout the medium but 

only that at each point one temperature is sufficient to characterize the state. 

Momentum exchanges due to mechanical interaction are independent of the 

temperature gradient. 

In the following the stress is defined as tension positive for the solid phase, while pore 

pressure is defined as compressive positive for the fluids. 

It should be noticed that in this section the formulation is still material free, i.e. no 

specific assumptions for the material behaviour have been introduced so far, except for 

the quite general ones, indicated above. For the development of the macroscopic 

balance equations in the following sections, we still need to specify the kinematics. 

 

 

2.3.1 Kinematic Equations 

 

As indicated in section 2.2, a multiphase medium can be described as the superposition 

of all π phases, whose material points πX  can be thought of as occupying 

simultaneously each spatial point x  in the actual configuration. The state of motion of 
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each phase is, however, described independently. Based on these assumptions, the 

kinematics of a multiphase medium is dealt with next. 

In a Lagrangian or material description of motion, the position of each material point 

πx  at time t is function of its placement in a chosen reference configuration, and of the 

current time t: 

( ) ( ) ( ) ( ) 321321 ,,   i,tff,t,X,XXx,t ti ===== ππππππ
XXXxx  [2. 28] 

To have this mapping continuous and bijective at all times, the Jacobian J of this 

transformation must be non-zero and strictly positive, since it is equal to the 

determinant of the deformation gradient tensor, πF : 

( ) ππππ XFxF                     
1

gradgrad ==
−

 [2. 29] 

Because of the non-singularity of the Lagrangian relationship [2.28], its inverse can be 

written and the Eulerian or spatial description of motion follows: 

( )t,πππ xXX =  [2. 30] 

It is also assumed that functions which describe the motion have continuous 

derivatives. If the path of the particle of the π phase is known, its velocity and 

acceleration are, in the material description: 

( )
t

t

∂

∂
=

, ππ
π Xx

V  [2. 31] 

( )
2

2 ,

t

t

∂

∂
=

ππ
π Xx

A  [2. 32] 

The corresponding spatial expression can be obtained by introducing equation [2.30] 

into the above two equations. But, if only the spatial description is given for the 

velocity field in the form 

),( tπππ xvv =   [2. 33] 

to evaluate its time derivative with material coordinates held constant, we introduce the 

description of motion of equation [2.30] into the last equation. By applying the chain 

rule of differentiation, it follows that 

    
 ππ

π
π

vv
v

a ⋅+
∂

∂
= grad

t
 [2. 34] 

The material time derivative of any differentiable function ( )tf ,xπ  given in its spatial 

description and referring to a moving particle of the π phase is  
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ππ
πππ

v⋅+
∂

∂
= fgrad

t

f

Dt

fD
   [2. 35] 

If superscript α is used for the operator 
Dt

D
, we obtain 

απ
ππα

v⋅+
∂

∂
=     fgrad

t

f

Dt

fD
 [2. 36] 

the time derivative is taken moving with the α phase. 

Subtraction of equation [2.35] from equation [2.36] yields the following relation 

αππ
ππππ

v    ⋅+= fgrad
Dt

fD

Dt

fD
 [2. 37] 

where 

πααπ
vvv   −=  [2. 38] 

is the velocity of the α phase with respect to the π phase. This velocity is called the 

diffusion velocity [H80-3]. 

The operator 
Dt

D
 is a scalar operator and may be applied either to a vector quantity or a 

scalar quantity. If πf  is a vector property per unit volume referring to the π phase, the 

total time derivative of its integral over a volume V is given by 

( )∫∫∫ 







⊗+

∂

∂
=








+⋅+

∂

∂
=

vvv
dVdiv

t
Vddivgrad

t
dV

dt

d
  

f
       

f ππ
π

ππππ
π

π vfvfvff [2. 39] 

For a scalar property πf , we obtain 

( ) dVfdiv
t

f
dVf

dt

d

v v

∫ ∫ 







+

∂

∂
= ππ

π
π v  [2. 40] 

In the above equations, velocities and accelerations of the π phase are considered as 

mass averaged quantities since they are the quantities usually measured in a field 

situation or in laboratory practice. In porous media theory it is customary to describe 

the motion of the fluid phases in terms of mass averaged velocities relative to the 

moving solid. Their motion is described with reference to the actual configuration 

assumed by the solid skeleton. The velocities and accelerations of each fluid particle 

can then be written with reference to the ones of corresponding solid points, once the 

relative velocities are introduced. We specify the superscripts π now as s for soil, w for 

the liquid phase and g for the gas phase (dry air plus water vapour) and write for the 

relative velocities of water and gas phase respectively: 
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swws
vvv −=  [2. 41] 

sggs
vvv −=  [2. 42] 

Water and gas acceleration are given from [2.34], [2.36], [2.41] and [2.42] as  

( )     wswss
wss

sw
grad

Dt

D
vvv

v
aa ⋅+++=  [2. 43] 

( ) gsgss
gss

sg
grad

Dt

D
vvv

v
aa    ⋅+++=  [2. 44] 

The deformation process of the solid skeleton can be described by the velocity gradient 

tensor sL , which when referred to spatial coordinates, is given by [CT92] and [Mo86]: 

ssss grad WDvL +=≡   [2. 45] 

Its symmetric part sD , is called the Eulerian strain rate tensor, being related to pure 

straining while its skew-symmetric component s
W  is the spin tensor. 

 

 

2.3.2 Mass balance equations 

 

 
Figure 2. 3: Schematic composition of soil 

 

In the following we identify the volume fractions πη  of the constituents as: 

- solid phase 

ns −= 1η  [2. 46] 

where 
dv

dvdv
n

gw +
=  is the porosity 

- water 

w

w
nS=η  [2. 47] 

where 
gw

w

w
dvdv

dv
S

+
=  is the degree water of saturation 
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- gas 

g

g
nS=η  [2. 48] 

where 
gw

g

g
dvdv

dv
S

+
=  is the degree of gas saturation. 

It follows immediately that 

1=+ gw SS  [2. 49] 

 

 

2.3.2.1 Solid phase 

 

In the microscopic situation, the variables for solid in equation [2.13] assume the 

following values 

0          0                   1 ==== Gb0iψ  [2. 50] 

and the microscopic mass balance equation results in 

( ) 0 =+
∂

∂
r&ρ

ρ
div

t
 [2. 51] 

The averaged macroscopic solid mass balance equation is 

( ) ( )ρρρ
ρ s

s

s

s
s ediv

t
=+

∂

∂
v  [2. 52] 

where sρ  stands simply for
s

ρ , the phase averaged solid density and s
v  is the mass 

averaged solid velocity. The same simplified notation will be used for the other 

constituents, once π is accordingly specified. 

From [2.35] we have 

s

s
ss

s

grad
tDt

D
v⋅+

∂

∂
= ρ

ρρ
  [2. 53] 

By introducing [2.53] in [2.52] we obtain 

0 =+ s

s
s

s

div
Dt

D
vρ

ρ
 [2. 54] 

Because the following vector identity holds: 

( ) s

s

s

s

s

s graddivdiv vvv ⋅+= ρρρ    
 [2. 55] 

By introducing intrinsic phase averaged densities through equation [2.9] we have 

finally 
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( ) ( ) 0 1
1

=−+
− ss

ss

divn
Dt

nD
vρ

ρ
 [2. 56] 

where the shorthand 
s

ss ρρ =  has been introduced for the intrinsic phase averaged 

density. 

 

 

2.3.2.2 Liquid phase: water 

 

As for the solid phase we have: 

( ) ( )ρρρ
ρ w

w

w

w
w ediv
t

  =+
∂

∂
v  [2. 57] 

( )ρρρ
ρ w

w

w

w
w

w

ediv
Dt

D
   =+ v  [2. 58] 

and finally 

( ) me
w

w
&−=ρρ   [2. 59] 

is the quantity of water lost through evaporation per unit time and volume. 

 

 

2.3.2.3 Gaseous phases: dry air and vapour 

 

The gaseous phase here is a multi-component material, composed of two different 

species: dry air and vapour. These species are miscible. We first write the mass balance 

equations for both species. 

Their microscopic mass balance equations are again given by equation [2.51] if we 

neglect net production of mass of each species, due to chemical reactions with the other 

species [H86-2]. 

The macroscopic mass balance equation for dry air is given by equation [2.52] with 

appropriate superscripts and subscripts and with exchange term equal to zero. We 

introduce intrinsic phase averaged densities and use super/subscript ga to indicate dry 

air. Because the two species, dry air and vapour, are miscible, they have the same 

volume fraction gSn , so 

( ) ( ) 0  =+
∂

∂ gaga

g

ga

g SndivSn
t

vρρ  [2. 60] 

Similarly we write for vapour, using super/subscript 
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( ) ( ) ( ) meSnSndivSn
t

gwgw

g

gwgw

g

gw

g
&==+

∂

∂
ρρρρ     v  [2. 61] 

We now derive the mass balance equation for the whole gaseous phase. This is obtained 

by summing the macroscopic balance equations of the two species and using 

appropriate definitions for bulk properties of the gaseous phase [H86-2]. 

( ) ( ) mSndivSn
t

gg

g

g

g
&=+

∂

∂
vρρ    [2. 62] 

with 

gwgag ρρρ +=  [2. 63] 

and  

( ) gwgwgagagwgwgaga

g

g cc vvvvv +=+= ρρ
ρ

1
 [2. 64] 

where 
gc ρρ ππ =  is the mass fraction of component π, subject to 

gagwc ,         1 ==∑ π
π

π

 [2. 65] 

We introduce further the macroscopic diffusive dispersive velocity gwga, , =ππu  

defined as [H86-1] 

gg
vvvu −== πππ

 [2. 66] 

and subject to  

∑ ==+
π

ππρρρ 0uuu cggwgwgaga
 [2. 67] 

Equation [2.62] for the gas phase can be transformed in a similar way to the equation 

for the solid phase, this yields to 

( )
mdivSn

Dt

SnD
gg

g

g

g

g

&=+ v    
 

ρ
ρ

 [2. 68] 

With a proceedings similar to the earlier we obtained the following form of the mass 

balance equation for vapour 

( ) ( ) mdivSnSndivSn
Dt

D ggw

g

gwgw

g

gw

g

g

&=++ vu     ρρρ  [2. 69] 

We introduce now the diffusive-dispersive mass flux of component gw as [ES64] 

gwgw

g

gw

g Sn uJ ρ =  [2. 70] 

and now we can write 

( ) mdivSndivSn
Dt

D ggw

g

gw

g

gw

g

g

&=++ vJ      ρρ  [2. 71] 
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2.3.3 Linear momentum balance equation 

 

The microscopic variables for equation [2.13] are as follows: 

0G          gb         ti          rψ ==== m
&  [2. 72] 

where  mt is the microscopic stress tensor and g is the external momentum supply 

related to gravitational effects. The microscopic linear momentum balance is therefore 

( ) ( ) 0gtrrr =−−⊗+
∂

∂
ρρρ mdivdiv

t
  &&&  [2. 73] 

Since  

( ) rrrrrrrr &&&&&&&&        divgradgraddiv ρρρρ +⋅+⋅⊗=⊗  [2. 74] 

and 

rrr
 r

&&&&
&

  =⋅+
∂

∂
grad

t
 [2. 75] 

Equation [2.73] can be transformed by using the microscopic mass balance equation 

[2.51] to yield 

( ) 0rgt =−+ &&ρmdiv  [2. 76] 

which is the usual form of the momentum balance equation for a single phase material. 

For the averaged linear momentum balance equation obtained from [2.25] we have 

,ππ vψ =  the mass averaged velocity of the constituent and  

( )
m

da
m da

da
   

~
 

~
 

1~~ πππππ γρ nrrtti ⋅⊗−== ∫ &&

 [2. 77] 

According to [2.21] there exists a stress tensor t
π

 such that  

ntt ⋅= ππ~
 [2. 78] 

In mixture theories t
π

 is called a partial stress tensor. The stress vector ˜ t 
π

 is composed 

of the sum of the averaged microscopic stress tensor in the π phase and an averaged 

stress influx, produced by the mass fluxes, 
πρ r

~
 & , which occur in the microscopic field 

relative to the macroscopic velocity of the π  phase [deB91]. 

Note that only terms acting from the π  phase on the π  phase itself appear here. Hence 

˜ t 
π

 is the surface density of an interaction force within the π  phase which is balanced 

by the body force [2.79] and inertia force [2.90], both additive and volume bounded 

functions, and by diffusive interactions [2.80] and [2.83] which are also volume 

bounded and additive. An important constitutive assumption which allows us to define 

t
π

 as a stress tensor will be discussed below. Furthermore 
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m
dv

dv
dv ∫= π

π

π γρ
ρ

  
1

gg  [2. 79] 

is the external momentum supply, which we assume to be related to gravitational 

effects. 
π

πρ g  is the density of an additive volume bounded function.  

( ) ( ) ( )πππππ ρρρ revere
~
     && +=  [2. 80] 

where 

( ) ( )[ ]
m

k

da
da

dv
  

1
 πα

πα

ππ
π πα

ρρρ nrwve ⋅−⊗= ∑∫
≠

&

 [2. 81] 

is the momentum exchange due to averaged mass supply, while  

( ) ( )[ ] m

k

da
da

dv

πα

πα

πππ
π πα

ρρρ n rwrre ⋅−⊗= ∑∫
≠

&&&
~
 

1~
 

 [2. 82] 

is the intrinsic momentum supply, with reference to the deviation 
πr

~
&  of the velocity of 

constituent π  from its mass averaged velocity 
π

v  due to a change of density. 

Note that in the sum on the right-hand side of [2.81] and [2.82] only the interactions 

exerted on the π  phase from the α  phases appear, while those from the π  phase on the 

α  phases are missing. 

m

k

da
m da

dv

πα

παπ

ππ
παρ

nttI  
1ˆ ⋅== ∑∫

≠  [2. 83] 

accounts for the exchange of momentum due to mechanical interaction with other 

phases. Again the sum on the right-hand side extends only to the interactions exerted 

from the α  phase on the π  phase. 

The sum of [2.80] and [2.83] 

( )reI & ρρρ π
π

π
π +

 [2. 84] 

represents a supply quantity based on the volume dv. This sum may be interpreted as 

volume density of a volume bounded local diffusive interaction D, between the π  

phase and the other constituents. 

Finally 

0G =
π

 [2. 85] 

With the above definitions, the averaged linear momentum balance equation may be 

written as 

( ) ( ) ( )[ ] 0ˆ    =++−−⊗+ πππ
π

πππ
π

π
π ρρρρ

∂

∂
tregtvvv &divdiv

t  [2. 86] 
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Recalling that averaged quantities are constant in dv, we make use of the relationship 

( ) ππππ
ππ

ππππ
π ρρρρ vvvvvvvv       divgradgraddiv +⋅+⊗=⊗

 [2. 87] 

of the definition of π  phase acceleration 

ππ
π

ππ

∂

∂
vv

v
va  ⋅+== grad

t
&

 [2. 88] 

as well as of the averaged macroscopic mass balance eq. [2.52]. 

It follows hence that  

( ) ( )[ ] 0treagt =++−+ ππ
π

ππ
π

π ρρρ ˆ   &div
 [2. 89] 

The quantity 

π
πρ a

 [2. 90] 

is the volume density of the inertia force, which is also a volume bounded quantity. The 

stress tensor t
π

, introduced in [2.78] needs some comments. W. O. Williams [Wi78] 

has argued that t
π

 in the form used above and in the traditional formulation of mixture 

theory should be the sum of the stress tensor in the π  phase itself and of the cross stress 

tensors [Wi78],[No93] of the type 
πα

t 
2

1
, which describe the forces exerted by the other 

constituents α ≠≠≠≠ π  on the π  phase. If da is a surface element in the porous body then 

( ) ( )dadadam
da

αππαπα FFnt  +   =⋅∫ , where παF  is the contact force exerted by the π  

phase on the α  phase across da and F
απ

 the force exerted by the α  phase on the π  

phase across da. Note that only their sum is balanced by a stress tensor because the 

interaction between the π phase interior to a diaphragm with the α  phase exterior to the 

same diaphragm is not the same as the interaction between the α  phase interior to the 

diaphragm with the π  phase exterior to the diaphragm [No93].Williams and Noll 

consider additional identities of the type 

0ddt =−− πααππα div  [2. 91] 

where d
απ

,  d
πα

 are the densities of the diffusive interactions D, i.e. of the volume 

distributed force exerted by the π  phase on the α  phase and vice versa. These 

identities come from the equations of balance of force and are regarded in [Wi78] as 

identities giving the constitutive descriptions of d
απ ++++ d

πα
. In accordance with the 

above definition [Wi78] of the tensor t
π

 the densities of the diffusive interaction D in 

[2.80] and [2.82] should be a combination of the type ( )αππα
dd −

2

1
 for the π  phase and 

each other constituent α . Neither the stress tensor defined through [2.78] nor the 
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diffusive interaction forces appear to take into account all the interaction terms from the 

π  phase on the α  phases mentioned here. Therefore we must take t
πα ==== 0  as a 

constitutive assumption which means that the only contact forces applied to a portion of 

the π  phase inside a diaphragm are those applied by the π  phase external to the 

diaphragm [H79-1]. 

With the assumption that t
πα ==== 0 , it follows that the interaction densities are equal and 

opposite, from the identities [2.91]. 

Hence ( ) πααππα
ddd  

2

1
=− , i.e. the supply terms considered [2.81], [2.82] and [2.83], 

express for t
πα ==== 0  the totality of the interactions from the α  phases on the π  phase 

and from the π  phase on the α  phases. In [SW79] examples with t
πα ≠≠≠≠ 0  can be 

found. The assumption t
πα ==== 0  is hence a limiting one. 

In the following we make a further assumption that ( ) 0   ≠re &ρρ π
π  only for the fluid 

phases. The linear momentum balance equation for the solid becomes hence 

( ) 0tagt =+−+ s

s

ss

s

s
div ˆ  ρρ

 [2. 92] 

and for the fluids it has the form of [2.89]. The average linear momentum balance 

equations are subject to the constraint [2.26]: 

( )[ ] 0ˆ =+∑ ππ

π

π ρρ tre &
 [2. 93] 

 

 

2.3.4 Angular momentum balance equation 

 

As indicated in section 2.3, all phases of the semi-saturated porous medium are 

considered microscopically non-polar. The following microscopic variables are 

necessary for the balance equation [2.13] when angular momentum balance is 

considered 

0=G

grb

tri

rrψ

  =

  =

  

×

×

×=

m

&

 [2. 94] 

Hence we obtain the microscopic angular momentum balance equation in the form  

( )[ ] ( )[ ] ( ) 0      =×−×−⊗×+× grt r rr r rr ρρρ
∂

∂
mdivdiv

t
&&&

 [2. 95] 

Using [2.51] and [2.75], as well as taking into account that 

( )[ ] ( ) 







×+








×+×=×

t
   
∂

∂
ρ

∂

∂
ρ

∂

∂ρ
ρ

∂

∂ r
rr

r
rr rr 

&
&&&

ttt
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( )[ ] ( )( ) ( )( )
rr r rr r

r r rr r rrrr 

 +                               

   

gradgrad

divgraddiv

⋅××⋅+

×+×⋅=⊗×

&&&

&&&&&&

ρρ

ρρρ

 [2. 96] 

and 

( ) mmm divgraddiv trtrtr          ×+×=×
 [2. 97] 

one obtains 

( ) ( )[ ] 0    =×−−+×−×





+ mm graddivdiv

Dt

D
tr  rbtrr r r &&&& ρρ

ρ

 [2. 98] 

After application of the mass balance equation [2.51] and of the linear momentum 

balance equation [2.76], as well as of the relation 

Ir  =grad  [2. 99] 

where I  is the identity tensor, equation [2.98] reduces to 

0 =× mtI
 [2. 100] 

which implies the symmetry of the stress tensor 

( )T

mm tt =  [2. 101] 

In a similar way, it can be shown, with an appropriate method chosen for the 

development of the average angular momentum equation [deB91], [H79-1], that for 

non-polar media, also at macroscopic level, the partial stress tensor is symmetric 

( )Tππ tt =  [2. 102] 

and that the sum of the coupling vectors of angular momentum between the phases 

vanishes. For the rather lengthy development see [deB91] and [H79-1]. 

 

 

2.3.5 Balance of energy equation 

 

For the energy balance, the following components must be taken into account in the 

generic microscopic balance equation [2.13]: 

0=

+

 =

2

1

G

hb

m

rg

qrti

rr

&

&

&&

⋅=

−

⋅+= Eψ

 [2. 103] 

where ( )tE ,r  is the specific intrinsic energy, ( )t,rq  is the heat flux vector and ( )th ,r  is 

the intrinsic heat source. 

Hence, the microscopic energy balance equation has the form 
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( ) ( ) 0+
2

1

2

1
=⋅−−−
















⋅++








⋅+ hdivdiv

t
m rgqrtrrrrr &&&&&&& ρρρρ

∂

∂
EE

 [2. 104] 

Taking into account symmetry of the stress tensor [2.101], tm ==== tm

T
, the definition of the 

velocity gradient tensor [2.45], rL & grad= , and relation [deB91]  

tm:W = 0  [2. 105] 

we obtain 

( )

hdiv

div
Dt

D
div

Dt

D

m  + D:+ =

   
2

1

2

1
+  

ρρ

ρρρρ

qtrr

rrrrrr

−⋅

⋅+







⋅+

&&&

&&&&&&EE

 [2. 106] 

Taking into account the microscopic mass balance equation [2.51] and the microscopic 

linear momentum balance equation [2.76], the final form of the conservation law of 

energy is obtained as 

hdiv
Dt

D
m ρρ +−= qDt  :

E

 [2. 107] 

The average quantities necessary for the macroscopic balance equation [2.23] are the 

following [deB91] and [H79-1] 

ππππψ vv ⋅+=
2

1
E

 [2. 108] 

where E
π

 accounts for the averaged specific energy of the volume element and for the 

averaged kinetic energy related to the deviation, 
πr

~
& , from the mean velocity in dv. 

The flux term is obtained after substitution of the generic quantities in [2.21] using 

[2.103] and [2.108]: 

m
da

m daE
da

i
ππππππ γρ  r

~

2

1

2

11~
nvvrrqrt ⋅
















⋅−−⋅+−−= ∫ &&&& E

 [2. 109] 

After further transformation by use of [2.77] and the deviation definition 

( ) ( ) ( )ttt ,,,, xrx πππ ζζξζ −=  applied for the π phase velocity 

ππππππ vrrrrv −=−== &&&&
~~

 [2. 110] 

the following form for π
i
~

 is obtained 

m
da

m da
da

i
πππππππ γρ   

~~~

2

1~1~~
nrrrqrtvt ⋅
















⋅+−−+⋅= ∫ &&&& E

 [2. 111] 

The integral expression represents the averaged internal heat flux, ˜ q 
π

. Following 

[2.21], a macroscopic heat flux vector can be defined such that 
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nq ⋅= ππ ~~q   

and eq. [2.111] can be written in simplified form 

ππππ qi ~~~
−⋅= vt   

where the negative sign takes into account the opposite direction of q
π

 and n  [deB91]. 

The term for the external energy supply is  

ππππ
vg ⋅+= hb  [2. 112] 

where π
h  results from the sum of the averaged heat sources, h and the averaged work 

done by external volume forces due to the velocity difference 
πr

~
& . The supply terms 

[2.19] and [2.20] are dealt with next.  

( ) ( ) m
da

da
dv

ee
πα

παπ

ππ
πα

ρ
ρ

ρρρψ nrwrr rr   
2

11
 

2

1
⋅−








⋅+=








⋅+= ∑∫

≠

&&&&& EE

 [2. 113] 

Upon use of the deviation term, [2.113] may be transformed as  

( ) ( ) ( ) ( )Eeee ˆ   
2

1~
 ρρρρψ ππππππππ +⋅+⋅= vvvre &

 [2. 114] 

where 

( ) ( ) m
da

daE
dv

eEe
πα

παπ

ππ
πα

ρ
ρ

ρ nrrr ⋅−







⋅+== ∑ ∫

≠

&&& w
~~

2

1
 

1ˆ

 [2. 115] 

is the exchange term of internal energy due to phase change and possible mass 

exchange. Further, according to [2.19], we have 

( ) m
da

m da
dv

I
πα

παπ

π
παρ

nqrt     
1

⋅−= ∑ ∫
≠

&

 [2. 116] 

Taking into account [2.83] and the deviation term, we may write [2.116] as  

( ) ππππα

πα

π

π

πππ
παρ

Qda
dv

I m
da

m +⋅=⋅−+⋅= ∑∫
≠

vtnqrtvt  ˆ  
~
 

1
 ˆ &

 [2. 117] 

The integral expression indicated as Q
π

 represents the exchange of energy due to 

mechanical interaction. 

Finally 

0=π
G  [2. 118] 

The macroscopic energy balance equation may now be written as 

















⋅++
















⋅+ ππππ

π
πππ

π ρρ
∂

∂
vvvvv    

2

1
    

2

1
EdivE

t
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( ) ( ) ( ) πππ
π

πππ
π

πππ ρρρ vrevgqv ⋅−⋅+−−−
~
 ~t &hdiv

 [2. 119] 

( ) ( ) 0 ˆ ˆ    
2

1
=−⋅−−⋅− π

π
ππ

π
π

π
πππ

π ρρρρρρ QEee vtvv . 

Using the mass balance equation [2.52] for the generic π  phase, the definition of 

material derivatives, the linear momentum balance equation [2.89] and [2.45], the 

energy balance equation may be written as follows 

π
π

ππ
π

ππ
ππ

π ρρρ Rdivh
Dt

ED
+−+= qDt ~ :

 [2. 120] 

where 

( ) ( )[ ]ππππ
π

π
π ρρρρ QEeEeR +−=  ˆ  

 [2. 121] 

  

represents the exchange of energy between π  phase and other phases of the medium 

due to phase change and mechanical interaction. Equation [2.120] coincides with the 

energy balance equation in the mixture theory as shown in [deB91]. 

For energy balance, [2.26] has the form: 

( ) ( ) ( ) 0vt̂ vv  
2

1
vr

~
 eˆ =





+⋅+⋅+⋅+∑ πππππππππ

π
π ρρρρ QeEe &

 [2. 122] 

and physically means that the total balance of energy exchange between all the phases 

is zero. Phase change and the corresponding supply terms will be considered in the 

following, only for the fluid phases. 

 

 

2.3.6 Entropy inequality 

 

Exploitation of entropy inequality is a tool for developing constitutive equations in a 

systematic manner, leading to a consistent thermodynamic description of the material 

behaviour at macroscale. The use of entropy inequality further assures that the second 

law of thermodynamics is not violated. The procedure was proposed by Coleman and 

W. Noll [CN63]. It is, for instance, exploited in [SW79], and recently by Gray and 

Hassanizzadeh [G91-2] for the development of constitutive equations for unsaturated 

flow in dry or partially saturated soil, including interfacial phenomena. Although we 

use, throughout this book, existing constitutive relations which are closer to current 

laboratory practice, we quote here the entropy inequalities from [deB91] both for the 

microscale and for the macroscale. 
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The variables in the microscopic balance equation [2.13] are now 

ψ ==== λ    i ==== Φ,     b ==== s,     G ==== ϕ  [2. 123] 

where λ  is the specific entropy, Φ  the entropy flux vector and s  an intrinsic entropy 

source. The net production ϕ  denotes an increase of entropy. The balance equation 

becomes then 

( ) ( ) ρϕρρλρλ
∂

∂
=−−+ sdivdiv

t
  r  Φ&

 [2. 124] 

This equation may be transformed in the usual manner, also making use of the mass 

balance equation to obtain 

ϕρ
λ

ρ =−− Φ divs
Dt

D

 [2. 125] 

By identifying the entropy flux Φ  and the entropy source s respectively with the 

energy flux vector q  and the energy source h, both divided by the absolute temperature 

θ  [deB91], [2.125] may be written as 

ρϕ
θ

ρ
θ

λ
ρ =− q 

1
 + 

1
divh

Dt

D

 [2. 126] 

According to the second law of thermodynamics, the entropy production is zero for 

reversible processes, while for irreversible processes 

ρϕ ≥≥≥≥ 0  [2. 127] 

Equations [2.126] and [2.127] yield the entropy inequality for single component media 

ρ
Dλ

Dt
−−−−

1

θ
ρ h ++++  div

1

θ
 q ≥≥≥≥ 0

 [2. 128] 

The macroscopic variables are identified as follows  

m
dv

dv
dv ∫== π

π

ππ γρλ
ρ

λψ   
1

 [2. 129] 

is the averaged specific entropy of constituent π , 

( )
m

da
da

da
i ∫ ⋅−=Φ= πππππ γλρ  

~
 

~
  

1~~
n rΦ &

 [2. 130] 

is the averaged entropy supply density, for which an entropy supply vector can be 

defined, such that 

nΦ  
~

⋅=Φ ππ
 [2. 131] 

( ) ( ) ( ) m
da

da
dv

ee
πα

παπ

ππ
πα

ρλ
ρ

ρλρψ nrw     
1

⋅−== ∑ ∫
≠

&

 [2. 132] 

is the entropy supply due to mass exchange. 
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∑∫
≠

⋅=
πα

πα

π

π
παρ

   
1

da
mda

dv
I n Φ

 [2. 133] 

denotes the entropy supply due to mechanical interactions. Further  

ππ
sb =  [2. 134] 

is the averaged entropy source and 

ππ
ϕ=G  [2. 135] 

the averaged total entropy increase. 

If the sum of both supply terms [2.132] and [2.133] is indicated as 
π

π

λ
ρ

ˆ 
1

 and the usual 

transformation is applied, we obtain 

( )
π

π
ππ

π
πππ

π

ππ

π ϕρλρλρρ
λ

ρ =−−−+ ˆ    sdive
Dt

D
Φ

 [2. 136] 

Equation [2.26] is simply 

ˆ λ π

π
∑∑∑∑ ==== 0

 [2. 137] 

We define now as for the microscopic situation 

0≥∑ π

π
πϕρ

 [2. 138] 

By assuming that the absolute temperature θ  and the external acceleration g are 

microscopically constant, the entropy supply vector may be written as  

π

π

π

θ
qΦ  

1
=

 [2. 139] 

and equation [2.134] as  

π

π

π

θ
hs  

1
=

 [2. 140] 

The entropy inequality for the mixture, which is the quantity of interest here, taking 

into account [2.137] and [2.138], finally becomes 

( ) 0  
1

 
1

  ≥













−







++∑

π

π
ππ

π

π

ππ
π

ππ

π ρ
θθ

λρρ
λ

ρ hdive
Dt

D
q

 [2. 141] 

Again, this corresponds to the form used in the mixture theory as shown in [deB91]. 

Before further transformations of the macroscopic balance equations are made, we 

introduce the constitutive equations for the constituents. 
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2.4 Constitutive equations 

 

To complete the description of the mechanical behaviour, we now need to specify the 

constitutive equations. The balance equations developed in the previous sections allows 

for the introduction of quite elaborate constitutive theories, especially if the balance 

equations presented in the previous sections for the bulk material are extended to the 

interfaces, as done by Gray and Hassanizadeh in [G91-1] and [G91-2] for the aspects 

concerning multiphase flow. For the solid phase, second-grade material theories are 

also possible, where the gradients of relevant thermodynamic properties, such as 

densities, are considered as independent variables [Ehl89]. 

The constitutive models selected are based on quantities currently measurable in 

laboratory or field experiments and which have been extensively validated both with 

reference to known exact solutions and to experiments. Many of these constitutive 

models correspond to linearization of more complex arguments. 

 

 

2.4.1 Stress tensor in the fluid phases 

 

By applying entropy inequality for the bulk material [H80-3] [G91-1], it can been 

shown that the stress tensor in the fluid phases is  

It πππ η p−=  [2. 142] 

where I  is the identity tensor and πp  is the macroscopic pressure of the π phase. 

The volume fraction πη  appears in equation [2.142] because π
t  is the force exerted on 

the fluid phase per unit area of multiphase medium. It should be noted that the stress 

vector in the fluid phase does not have any dissipating part. The macroscopic effects of 

deviatoric stress components will be accounted for in linear momentum balance 

equations through momentum exchange terms. 

 

 

2.4.2 Gaseous mixture of dry air and water vapour  

 

The moist air in the pore system is usually assumed to be a perfect mixture of two ideal 

gases, i.e. dry air and water vapour. Hence the ideal gas law, relating the partial 

pressure pgπ of species π, the mass concentration ρ
gπ

 of species π in the gas phase and 

the absolute temperature θ is used. The equations of state of a perfect gas, applied to 

dry air (ga), vapour (gw) and moist air (g) are 
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  / 

  /  
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=

 [2. 143] 
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ρ

ρρρ

 [2. 144] 

where πM  is the molar mass of constituent π and R  is the universal gas constant. 

The second equations in [2.144] expresses Dalton's law [MS93]. For the averaging 

process it is reminded that dry air, vapour and moist air occupy the same volume 

fraction, nSg. 

 

 

2.4.3 Sorption equilibrium 

 

If an oven-dry porous medium is exposed to moist air, the weight of such solid 

increases because the moisture is adsorbed on the inner surfaces of the pores starting 

with the finest ones. In the cases of interest here, the water is usually present as a 

condensed liquid that, because of the surface tension, is separated from its vapour by a 

concave meniscus (capillary water). There is then a relationship between the relative 

humidity, the water content (saturation) and the capillary pressure in the pores. 

The capillary pressure is defined as the pressure difference between the gas phase and 

the liquid phase, by the capillary pressure equation 

wgc ppp −=
 [2. 145] 

where wp  is the pressure of the liquid-phase (water). In [G91-2] it is shown that 

[2.145] is not just a definition, but a derived relationship between two independent 

quantities cp  and wg pp − , at equilibrium. 

For the relationship between the relative humidity (RH) and the capillary pressure in 

the pores, Kelvin-Laplace law is assumed to be valid: 









==

θρ R

Mp

p

p
RH

w

w

c

gws

gw

 

 
  exp

 [2. 146] 

The water vapour saturation pressure gwsp , which is a function of the temperature only, 

can be obtained from the Clausius-Clapeyron equation indicated below, or from 

empirical formulas such as the one proposed by in [AS93]. 
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Assuming zero contact angle between the liquid phase and the solid phase, as is usually 

accepted for pore water, the capillary pressure can be obtained through the Laplace 

equation from the pore radius r: 

r
p

c σ2
 =

 [2. 147] 

where σ  is the surface tension. 

These considerations are applicable if the water is present in the pores, as a condensed 

liquid (capillary region). When, instead, the water is present as one or more molecular 

layers adsorbed on the surface of a solid because of the Van der Waals and/or other 

interactions, the capillary pressure no longer has an obvious meaning, even if it can be 

retained, referring to the broader concept of water potential or moisture stress. In such a 

case a direct relationship between the water content and the relative humidity is 

assumed to hold such as the BET equation [AS93]. 

 

 

2.4.4 Clausius-Clapeyron equation 

 

As indicated above, this equation links the water vapour saturation pressure with 

temperature: 

( ) 















−

∆
−=

0

0 11 
 exp

θθ
θ

R

HM
pp

gwwgwsgws

 [2. 148] 

where 0θ  is a reference temperature, gwsp  is the water vapour saturation pressure at θ , 

0gwsp  is the water vapour saturation pressure at 0θ and gwH∆  is the specific enthalpy of 

evaporation. The equation is obtained from the second law of thermodynamics and is 

valid in the vicinity of 0θ . In the following, we denote T as the temperature difference 

above a reference value such that. 

0θθ-T =
 [2. 149] 

 

 

2.4.5 Pore size distribution 

 

As it turns out from equations [2.146] and [2.147], the problem is to know the pore size 

distribution of the considered porous medium, to relate the size of the largest pore filled 

(from which the capillary pressure depends) with the actual water content. This 
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relationship is obtained through experimental tests, usually centrifuge tests, sorption 

isotherm measurements or mercury porosimetry. 

The question is somewhat complex, because both the Laplace equation [2.147] and the 

Kelvin equation [2.146] are obtained from a force equilibrium, evaluated in a 

cylindrical capillary tube, and the porous medium is considered as a bundle of capillary 

tubes that do not intersect. The real porous media are more correctly represented as 

three-dimensional networks of sites (or bodies) interconnected by narrower bonds (or 

throats) and then intrusion, extrusion, adsorption and desorption are subjected to 

hysteresis. In this case, the actual value of capillary pressure can be only interpreted as 

a measurable quantity describing complex adsorbed water-solid matrix interaction. The 

determination of pore size distribution from sorption isotherms, results of centrifuge 

tests and mercury porosimetry should then be done following the percolation theory 

approach [BS78]. 

The Rayleigh distribution or the log-normal distributions are often a good estimation of 

the pore size and often such distribution can be bi-modal or multi-modal. 

For soils, we need the Kelvin-Laplace equation [2.146], the Clausius-Clapeyron 

equation [2.148] and the capillary pressure relationship 

( )TpSS
c  ,ππ =

 [2. 150] 

which is directly obtained in laboratory. 

 

 

2.4.6 Equation of state for water 

 

The equation of state for water has been given by Fernandez [Fer72] as 

( )[ ]00 exp ww

ww

ww
ppCT −+−= βρρ

 [2. 151] 

where the superscript 0 indicates an initial steady state at standard conditions; wβ  is the 

thermal expansion coefficient and wC  is the compressibility coefficient. By retaining 

the first-order terms of the series expansion of [2.151] we obtain 

( )[ ]00 1 ww

ww

ww
ppCT −+−= βρρ

 [2. 152] 

and 

t

TD

t

pD

K

D w

w

ww

w

ww

w D

 

D

 1

Dt

 1
0

β
ρ

ρ
−=

 [2. 153] 

where 
w

w
C

K
1

=  is the bulk modulus of water and wC  is the compressibility coefficient. 
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Equation [2.153] can also be obtained from the mass conservation in differential form: 

( )
0

  
=

Dt

VD
www ρ

 [2. 154] 

In fact, by carrying out the differentiation of a product and keeping in mind that 

( )Tp
www

, ρρ = , we can write 
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wwww

w

w

w

ww
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ww
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111

 [2. 155] 

Since 

w

w

w

wo Kp

11
=

∂

∂ρ

ρ
 [2. 156]  

w

w

wo T
β

ρ

ρ
−=

∂

∂1
 [2. 157] 

it follows that 

Dt

T D
β

Dt

 pD

KDt

 ρD

ρ

w

w

ww

w

ww

w
−=

11
0

 [2. 158] 

 

 

2.4.7 Darcy's law 
 

Darcy's law, generalized to allow for relative permeability, 

( )g
k

v    ππ

π

π
ππ ρ

µ
η +−= pgrad

k
r

s

 [2. 159] 

where k  is the permeability of the medium, µ  is the dynamic viscosity, πr
k  is the 

relative permeability, a dimensionless parameter varying from zero to one. It is 

assumed valid for the transport of both water and gas in slow phenomena. 

For each particular porous medium, the relations ( )w

r
Sk

π  are either predicted by 

models based on some more or less realistic capillary assumption or experimentally 

determined in laboratory as well as field conditions. For typical curves of relative 

permeability to water and air the reader is referred to Corey [Cor57]. 

The relative permeability goes to zero before the saturation reaches the value zero. The 

water saturation at which the relative permeability goes to zero is called the residual 

water saturation or the displacement residual water saturation. 

Relationships used in the following are e.g. those by Brooks and Corey [BC66]: 

( )
λ

λ32+

= e

rw
Sk

 [2. 160] 
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( )
( )









−−=
+

λ

λ2
2

11 ee

ra
SSk

 [2. 161] 

λ

1

e

b
c

S

p
p =

 [2. 162] 

where 

wc

wcw
e

S

SS
S

−

−
=

1
 is the effective saturation, wcS  is the irreducible saturation, λ  is the pore 

size distribution index and bp  is the bubbling pressure. 

 

 

2.4.8 Fick's law 

 

Diffusive-dispersive mass flux is governed by Fick's law 









−=

α

π
π
α

απ
α ρ

ρ
ρ    J gradD

 [2. 163] 

where π
αD  is the effective dispersion tensor, π is diffusing phase, α is the phase in 

which diffusion takes place (α = w, g). π
αD  is a function of the tortuosity factor, which 

accounts for the tortuous nature of the pathway in soil; because of mechanical 

dispersion, π
αD  is also correlated with seepage velocity. 

For dry air and water vapour (binary system) we have in particular, by the first of 

equations [2.144], that 

gw

gg

gw

g

g

wag

g

ga

g

g

wagga

g

p

p
grad

M

MM

p

p
grad

M

MM

JD

DJ

−=







=

=







−=

 

 

2

2

ρ

ρ

 [2. 164] 

It is worthwhile to emphasise that gas diffusion can take place even in the absence of a 

gas pressure gradient, i.e. when its mass weighted velocity g
v  is zero. 

 

 

2.4.9 Stress tensor in the solid phase and total stress 

 

From the entropy inequality written in [G91-1] for unsaturated flow, including 

interfacial phenomena, it can be shown that the stress vector in the solid phase is  

( )( )ss

e

s
pn Itt −−= 1  [2. 165] 

pressure in the solid phase is  
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g

g

w

ws
SpSpp   +=

 [2. 166] 

and  

( ) s

en tσ  1' −=
 [2. 167] 

is the effective stress tensor. 

Introduction of [2.166] into [2.165] yields  

( ) ( )[ ]g

g

w

w

s

e

s
pSpSn     1 +−−= Itt

 [2. 168] 

The volume fraction ( )n−1  indicates that s
t  is the stress exerted on the solid phase per 

unit area of a multiphase medium. The sum of [2.168] and of [2.142] written for gas 

and for water gives the total stress σ  acting on a unit area of a multiphase medium: 

( ) ( )[ ]
( ) ( )g

g

w

w

s

e

g

g

w

w

g

g

w

w

s

e

gws

pSpSn

pnSpnSpSpSn

+−−=

=−−+−−=

=++=

It

IIIt

tttσ

1

1  [2. 169] 

This can be put in the usual soil mechanics form as 

( )g

g

w

w pSpS +−′= Iσσ  [2. 170] 

or 

( )g

g

w

w pSpS ++=′ Iσσ  [2. 171] 

From this last equation, it follows that the relationship between effective stress and total 

stress, in partially saturated porous media, is no longer independent of the soil type 

because of the saturations, while in fully saturated soils, where 0=gS  and 1=wS , the 

effective stress principle [2.170] is unique for all soil types. 

An expression of the effective stress principle was obtained by Bishop and Blight 

[BB63] using a phenomenological approach. 

The effective stress is responsible for all major deformations in the skeleton and is 

linked to the strain rate tensor sD  by means of a constitutive relationship 

( )[ ]ss

T
Dt

D
0

'
DDD

σ
−=  [2. 172] 

where 

( )Tp
cs

TT ,,',σDDD =  [2. 173] 

is a fourth order tensor and s

0D  represents the increment of all other strains not directly 

associated with stress changes.  

Assuming a small strain, we can say that  
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dt
s
εD =  [2. 174] 

where ε  is the linear strain tensor. 

 

 

2.4.10 Solid density 

 

When considering the solid phase as compressible, a relationship for the material time 

derivative of the solid density can be obtained from the mass conservation equation in 

differential form 

( )
0=

Dt

VD
sss ρ

 [2. 175] 

By assuming that the solid density is a function of p
s
 [2.166], temperature and the first 

invariant of the effective stress 

( )
( )
Dt

trD

KnDt

TD

Dt

pD

KDt

VD

VDt

D
s

s

s

s

ss

s

ss

s

ss

s

'

13

1111 σ

−
−−=−= β

ρ

ρ
 [2. 176] 

where we have kept in mind that 

s

s

s

s
Kp

11
=

∂

∂ρ

ρ
 [2. 177] 

s

s

s
T

β
ρ

ρ
−=

∂

∂1
 [2. 178] 

( )
sI

s

s
Kn 13

11

'
−

−=
∂

∂

σ

ρ

ρ I
 [2. 179] 

where sK  is the bulk modulus of the grain material, sβ  is the thermal expansion 

coefficient for the solid and 
'σII  is the first stress invariant. 

We introduce now the constitutive relationship for the first stress invariant as 









−+=

Dt

TD

Dt

pD

K
divK

Dt

D s

s

ss

s

s

T

I

s

βσ 1
3' v

I
 

where TK  is the bulk modulus of the skeleton, different from that of the grain material 

and 
Dt

pD

K

ss

s

1
−  represents an overall volumetric strain rate caused by uniform 

compression of particles (as opposed to the skeleton) by the average pressure sp . In the 

soils this volumetric strain is relatively insignificant and can be ignored, but it is 

important in rock mechanics and in concrete, where the compressibility of the solid 

phase is comparable to that of the skeleton. 
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Defining the Biot’s constant [BW57] as 

s

T

K

K
−=1α  [2. 180] 

we obtain 

( ) ( ) ( ) 







−−−−−

−
= s

s

s

ss

s

ss

s
div

Dt

TD
n

Dt

pD

K
n

nDt

D
v 1

1

1

11
ααβα

ρ

ρ
 [2. 181] 

For incompressible grain material 0
1

=
sK

, 1=α . This does not imply that the solid 

skeleton is rigid, because of rearrangements of the voids. 

 

 

2.4.11 Fourier's Law 

 

A constitutive assumption for the heat flux is the generalized Fourier's Law 

Tgradeff  ~ χ−=q  [2. 182] 

where effχ  is the effective thermal conductivity tensor and q~  is the heat flux of the 

multiphase medium, the sum of the partial heat fluxes πq~ . 

For isotropic media the generalized Fourier’s Law becomes the well known empirical 

Fourier's Law  

Tgradq eff   χ−=
 [2. 183] 

where effχ  is the effective thermal conductivity. The effective thermal conductivity can 

be predicted theoretically as well as determined experimentally. 

For porous building materials the following linear relationship may be used, which 

represents with sufficient accuracy the data by Bomberg and Shirtliffe [BS78]  

( ) 








−
+=

s

w

dryeff
n

nS

ρ

ρ
χχ

1
 41

w

 [2. 184] 

 

 

2.5 General field equations 
 

The macroscopic balance laws are now transformed, and the constitutive equations 

introduced, to obtain the general field equations, which will be used in the subsequent 

chapters. The averaging symbol, overbar, will be omitted, because all quantities belong 

to the macroscopic situations. 
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2.5.1 Mass balance equation 

 

 

2.5.1.1 Solid phase 

 

The macroscopic mass balance equation for the solid phase [2.56], divided by sρ  is 

( ) 0 1
1

=−+−
− s

sss

s
divn

Dt

nD

Dt

Dn
v

ρ

ρ
 [2. 185] 

 

 

2.5.1.2 Liquid phase 
 

Upon introduction of the relative velocity [2.41] and the material time derivative with 

respect to the moving solid [2.37], equation [2.58] for liquid water becomes 

( ) mdivgrad
Dt

D wss

ww

wsw &−=++⋅+ vvv    
 s

ρρ
ρ

 [2. 186] 

Introduction of intrinsic phase averaged densities with the appropriate volume fractions, 

use of vector identity [2.55] written for water and division by w

wS ρ  allows us to 

transform last equation into 

( )
w

w

swsw

ww

w

w

s

w
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s

S

m
divnSndiv

SDt

SD

S

n

Dt

Dn

Dt

nD

ρ
ρ

ρ

ρ

ρ

&
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1
 [2. 187] 

Summation with [2.185], to eliminate 
Dt

nD
s

, gives 
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 [2. 188] 

Introduction of [2.158] and [2.181] for the material derivatives of the solid and water 

densities and of [2.166] gives  
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 [2. 189] 

Because 
Dt

SD

Dt

SD
w

s
g

s

−= , carrying out derivatives of πp  
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 [2. 190] 

where 

( )[ ]wswsw nnS ββαβ +−=  [2. 191] 

For incompressible grains ( 1=α  and 0
1

=
sK

) this equation may be simplified as 

follows 
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 [2. 192] 

 

 

2.5.1.3 Gaseous phase 
 

The mass balance equation for gas as a mixture of dry air and water vapour is dealt with 

next. 

In the same way of the liquid phase, starting from [2.68] we obtain 
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 [2. 193] 

For incompressible grains ( 1=α  and 0
1

=
sK

) this equation may be simplified as 

follows 
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 [2. 194] 

For heat transfer analysis, in partially saturated porous media, it is more convenient to 

consider the mass balance equation for dry air separately from that of vapour [Bag93] 

[Gaw95] and to sum the mass balance equations for both water species, liquid water 

and water vapour. In this way, the mass rate of water evaporation m&  disappears from 

the mass balance equations. But an evolution equation needed for m&  and this will be 

given by the energy balance equation. Note that, in this way, no constitutive model for 

the mass rate of water evaporation is needed. 

 

 

2.5.1.4 Gaseous phase: dry air 

 

The mass balance equation for dry air [2.60] is transformed in the following equation 

0  
)(

=++ gga

g

ga

g

g
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divnSdiv
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nSD ga

vJ ρ
ρ

 [2. 195] 

and then it is transformed as the mass balance equation for gas. The resulting equation 

is divided by g

ga
Sρ  and summed with [2.185] we obtained 
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 [2. 196] 

For incompressible grains ( 1=α  and 0
1

=
sK

) this equation may be simplified as 

follows 
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 [2. 197] 

Introducing now the constitutive equations for gaρ  and for 
ga

gJ  to obtain 
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 [2. 198] 

 

 

2.5.1.5 Gaseous phase: vapour 

 

The way to derive the mass balance equation for vapour is identical to that of dry air 

and results, for the case of incompressible solid grains, in 
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 [2. 199] 

This equation is now multiplied by gwρ  and added to the mass balance equation of 

liquid water, in turn multiplied by wρ . This sum gives the mass balance equation for 

the water species, liquid and vapour, without mass rate of water evaporation as 
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 [2. 200] 

where 

( )( ) w

w

ww

wgw

gsswg SnSSn ρβρρββ  1 ++−=  [2. 201] 

In these equations Darcy's law for the fluid velocities relative to the solid has still to be 

introduced. This law was introduced in section 2.4.7 and will be derived again in its 

generalized form in the next section from the linear momentum balance equations. 

 

 

2.5.2 Linear momentum balance equation 

 

 

2.5.2.1 Fluids 

 

A more suitable form for the linear momentum balance equation for the fluid-phases 

[2.89] is now obtained by introducing kinematic equations and constitutive 

relationships. Equations [2.43] and [2.44] allow us to write 
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ππππ vvaaa  gradsss ⋅++=  [2. 202] 

where sπ
a  is the relative acceleration. 

Introduction in [2.89] of [2. 202], [2.142] and the momentum exchange term  

πππαπππ
π ηηρ gradp+−= vRt̂  [2. 203] 

along with the intrinsic phase averaged density yields 
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 [2. 204] 

By neglecting the term dependent on the gradient of the fluid velocity, the effects of 

phase change and by applying a vector identity, for the divergence of the stress tensor 

in the fluid-phase, we obtain the relative velocity of the fluid as  

( ) ( )[ ]sss pgrad πππππππ ρηη aagRv −−+−=
−1

 [2. 205] 

By introducing the following 

( ) ( )T,,
 1 ππ

π

ππ ηρ
µ

η
k

R =
−

 [2. 206] 

at a macroscopic level we assume the resulting permeability as a product of the intrinsic 

permeability times the relative permeability πr
k , 

 kk
ππ r

k=  [2. 207] 

so the linear momentum balance for fluids becomes 

[ ])  ( 
 ss

r
s

pgrad
k πππ

π
ππ ρ

µ
η aag

k
v −−+−=

 [2. 208] 

Finally, neglecting the soil acceleration and the relative acceleration terms, it yields 

Darcy's law in the form [2.159] 

( )g
k

v    ππ

π

π
ππ ρ

µ
η +−= pgrad

k
r

s

 [2. 209] 

Due to the simplifications introduced, this law is valid as a first approximation for slow 

flow of a macroscopically inviscid fluid through a porous medium with incompressible 

grains. 

 

 

2.5.2.2 Solid-phase 

 

Taking into account equations [2. 165], [2.166], [2.167], the linear momentum balance 

equation for the solid-phase [2.92] becomes 
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2.5.2.3 Multiphase medium 
 

By summing the momentum balance equations [2.210], written for water and gas phase 

respectively, with that of the solid phase [2.210], by taking into account the definition 

of total stress [2.169], assuming continuity of stress at the fluid-solid interfaces and by 

introducing the averaged density of the multiphase medium 

( ) g
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s
SnSnn ρρρρ     1 ++−=

 [2. 211] 

we obtain the linear momentum balance equation for the whole multiphase medium 
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s

 [2. 212] 

 

 

2.5.3 Energy balance equation 

 

The energy balance equation for the single phase is 

( ) ππ
π

π
π

ππ
π

π
π

π
π ρρρρ

θ
ρ HeRdivh

Dt

D
Cp −+−= q~  [2. 213] 

where ( )ππππ θ,pHH =  is the specific enthalpy of the phase π and 
p

p

H
C 









∂

∂
=

π

π
π

θ
 is 

the specific heat at constant pressure. 

 

We assume that the phases of a partially saturated porous medium are locally in a state 

of thermodynamic equilibrium. This means that the averaged temperatures of all phases 

are assumed equal at each point in the multiphase system: 

0=== gws θθθ  [2. 214] 

Because of 0θθ −=T  with 0θ  a fixed reference value, all derivatives of θ  can be 

substituted with those of T .  

For the continuum multiphase, with the impose of thermodynamic equilibrium, the 

energy balance equation is 
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( ) ( ) ( )
vapeff

gg

pg

ww

pweffp HmTgraddivTgradCC
t

T
C ∆−=−⋅++ &χρρρ vv

∂

∂

 [2. 215] 

where 

( )  g

pg

w

pw

s

pseffp CCCC ρρρρ ++=  

gws

eff χχχχ ++=  

wgw

vap HHH −=∆  

 

 

2.6 Physical approach: extended Biot's theory 

 

The governing equations, using Biot's theory [B41-1] [B41-2] [B55] [B56-1] [B56-2] 

[B63], are again derived but extended to the case of non-isothermal two-phase flow in 

deforming porous media. This extension was made in [Sch95] [SZ93] for the case of 

slow phenomena. Also, inertia forces are taken into account, as was done in [Zie90] for 

the isothermal case with the air phase at atmospheric pressure. 

The physical approach works directly with macroscopic variables. However, the 

distinction between a macroscopic and microscopic domain is not so clear as in the 

previous sections, because macroscopic variables are sometimes directly used in the 

microscopic domain. 

For the sake of simplicity, small displacements are assumed for the solid phase. The 

governing equations in the form needed for finite strain analysis are those of the 

previous section. For all queries regarding the assumed hypotheses the interested reader 

is referred to the first part of this chapter. 

 

 

2.6.1 The physical model 

 

The voids of the skeleton are filled partly with water and partly with moist air (mixture 

of dry air and water vapour), which is referred to as gas. The degree of water saturation 

wS  is given as the ratio between the pore space occupied by the water and the total pore 

volume in a representative elementary volume element (REV), Figure 2.1. We have 

gw

w

w
dvdv

dv
S

+
=  [2. 216] 

In the following equations the super or subscript π refers to the generic phase, π = s to 

the solid phase, π = w to water and π = g to gas. The volume of the REV is dv, while the 
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partial volumes are dv
s
, dv

w
 and dv

g
. Their sum is dv while the sum of the respective 

fluid volumes is dv
f
=dv

w
+dv

g
. The definition of the degree of gas saturation gS  is  

gw

g

g
dvdv

dv
S

+
=  [2. 217] 

and both degrees of saturation sum to one, i.e. 

1=+ gw SS  [2. 218] 

The porosity n is defined as the ratio between the volume of voids and the total volume 

of the REV, 

dv

dvdv
n

gw +
=  [2. 219] 

As in the first part of this chapter, the stress is defined as tension positive for the solid 

phase, while pore pressure is defined as compressive positive for fluids. The water 

pressure wp  and the gas pressure gp  are related through the capillary pressure cp  

wgc ppp −=  [2. 220] 

The capillary pressure is a function of the water saturation and temperature: 

( )TSpp w

cc ,=
 [2. 221] 

The relation [2.221] is determined experimentally and usually shows hysteresis 

characteristics, which are ignored in this case. It can be numerically inverted to obtain 

( )TpSS
c  ,ππ =

 [2. 222] 

The constitutive law of the solid phase is introduced through the concept of effective 

stress: 

sp ' Iσσ +=  [2. 223] 

which stipulates that the main characteristics of the solid phase constitutive relation can 

be written in terms of ' σ  where σ  is the total stress tensor,  I  the second order unit 

tensor and sp  is the average pressure of both the water and air surrounding the grains. 

In the case of immiscible two-phase flow, we need a simple averaging technique for the 

calculation of sp  as described in section 2.2. Thus the modified effective stress 

principle may be obtained as stated previously. The effective stress resulting from 

equation [2.223] is also referred to as Bishop's stress. 
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+== ∫ ∫∫

s f
dv dv

mmm

dv

dvdv
dv

dv
dv

  
1

 
1

σσσσ

 [2. 224] 

where σ  is the macroscopic total stress tensor. 

For the fluid phases, the stress tensor is given by 

πππ τ p Iσ −=  [2. 225] 

where π
σ  is the intrinsic phase averaged stress tensor in the π phase and πτ  is the shear 

stress. Under the assumption that the shear stress πτ  is negligible in fluids, we obtain  

( ) [ ]w

w

g

g

s
pSpSnn +−−=   1 Iσσ

 [2. 226] 

The term in square brackets represents the intrinsically averaged (or mean) pressure sp  

of the fluid phases, i.e. 

( )w

w

g

g

s
pSpSp   +=

 [2. 227] 

This weighted pore pressure produces a stress state in the grains, but for the moment, 

we assume the grains will not undergo any deformation due to this stress, i.e. we 

introduce the hypothesis of incompressible grains. The deformation of the solid 

skeleton, which depends on the effective stress, will be a function of the grain 

rearrangement only. 

Equation [2.226] can be modified to 

( )
( ) ( ) ( )

s

ssss

ss

p

pnpnpn

pnn

       

    1   1     

   1

Iσ

IIIσ

Iσσ

−′=

−−−+−=

−−=

 [2. 228] 

where the overbar for the total stress has been omitted. 

The stress tensor is split into two components: the pore pressure effect and the part 

which deforms the solid skeleton, i.e. the effective stress. This effective stress is given 

by 

( ) ( )ss pn    1 Iσσ +−=′
 [2. 229] 

Equation [2.228] results in a splitting of the stress tensor similar to that of Terzaghi's 

principle and in presence of several fluid phases, the splitting is 

( )g

g

w

w pSpS     ++=′ Iσσ
 [2. 230] 

For greater generality, a corrective term known as Biot's constant has to be introduced 

to account for the deformability of the grains [BW57]. Therefore a more general 

expression of the effective stress is assumed as follows 
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( )g

g

w

w pSpS +=′′ α + I σσ
 [2. 231] 

where the corrective coefficient α will be determined in section 2.6.2. Note that this 

equation differs substantially from the previous one, for the determination of α we need 

the constitutive equations of the solid phase. This effective stress is indicated by σ ′′  as 

in [Zie90]. 

Another, more intuitive way of deriving equation [2.229] follows Bishop [B59] and 

Skempton [Ske61]. Here the microscopic and macroscopic aspects are somewhat 

mixed. We consider for this purpose the mean stresses, i.e. 

3
 ˆ
σ

tr=σ
 [2. 232] 

and 

3
 ˆ
σ′

=′ trσ
 [2. 233] 

If the pores (Figure 2. 4) are filled with water and air, then due to the surface tension 

effect we have  

gw pp <  [2. 234] 

If the degree of saturation is relatively low, the water is present as menisci and the 

corresponding pressure acts over an area  χ  per unit gross area, [AD56]. 

Consequently, the equivalent pore pressure is given by  

( ) gw pp  1 χχ −+  [2. 235] 

and the equivalent pore pressure may be written as 

( )wgg ppp −− χ  [2. 236] 

or 

( ) ( )wgw ppp −−+  1 χ  [2. 237] 

For the fully saturated case, Bishop suggested the following expression for the mean 

effective stress σ ′ˆ  

( )[ ]wgg ppp −−+=′ χσσ ˆˆ  [2. 238] 

For the full stress tensor, this equation assumes the form 

( )[ ]wgg ppp −−+=′ χ  Iσσ  [2. 239] 
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das

da

pore water

pressure pw

pore air

pressure pg

 

Figure 2. 4: Contact area between two grains in the partially 

saturated case 

 

The coefficient  χ  is not the same as for problems involving shear strength and 

consolidation [Ske61]. For a given degree of saturation the coefficient  χ  must be 

determined experimentally for both types of problems. 

In general the pressure is implied as being an absolute value, but in many soil 

mechanics problems relative pressures are used and gp  is often assumed to be equal to 

the atmospheric pressure. If this is the case and the atmospheric pressure is assumed as 

the reference pressure then the effective stress principle becomes 

wp   χIσσ +=′  [2. 240] 

The comparison between [2.230] and [2.239] is noteworthy. [2.230] may be written as a 

function of the degree of saturation wS  

( )[ ]wg

w

g
ppSp −−−   ' = Iσσ  [2. 241] 

and coincides with equation [2.239] if wS=χ . 

The coefficient  χ  is related to the area of contact between solid and fluids, whereas 

the degrees of saturation πS  depend on the volume occupied by the π phase. We define 

the volume fraction as 

dv

dv
π

πη =  [2. 242] 

and cross sectional area fraction as 
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da

da
π

πα =  [2. 243] 

For the case of microstructurally isotropic constituents, such that πα  is independent of 

the orientation of the surface, and assuming that  

( )πππ ηαα =  [2. 244] 

it can be shown that [Mor72] 

ππ ηα =  [2. 245] 

This conclusion coincides with the basic supposition of Delesse's law. If this 

assumption regarding the area and volume fraction is valid, then little difference exists 

between the definition of Bishop's coefficient  χ  and the degree of water saturation 

πS . Bishop's equation [2.238] has been experimentally validated by means of a triaxial 

tests carried out on soil samples [Ske61]. 

The assumption 

wS=χ  [2. 246] 

is acceptable for many materials as shown experimentally in [BB63]. 

However, other expressions may also be used, e.g. by Gudehus for clay [Gud95]  

( )SS −= 2χ  [2. 247] 

If the solid phase is completely surrounded by a single wetting fluid phase, which is the 

only one in direct contact with the porous medium, then Li and Zienkiewicz [LZ92] use 

equation [2.240] with 1=χ , as in the case of a fully saturated porous medium. This 

assumption is widely used when the two fluids are water and bitumen: only water is in 

contact with the solid grains. 

A new expression for the effective stress principle in fully saturated conditions only, 

involving four parameters, has been proposed by Lade and de Boer [LB96] and 

experimentally tested. This formulation, based on principles of mechanics is valid for 

all types of materials. A distinction is made between the compressibilities of the grain 

particles and the skeleton due to total stresses and pore pressures. 

Two distinct expressions are then obtained for effective stresses in granular material 

and in solid rock with interconnected pores respectively. For various special conditions 

these expressions become similar to the expressions found in the literature, in particular 

to the expression used here with Biot's constant α. Lade and de Boer [LB96] conclude 

that Terzaghi's proposed effective stress principle works well for stress magnitudes 
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encountered in most geotechnical applications, but significant deviations occur at very 

high stresses. 

 

 

2.6.2 Constitutive equations 

 

Only a few equations, needed for the remaining part of this section, are recalled. In 

particular an expression for Biot's constant α is derived. 

The averaged pore pressure sp  of the fluids occupying the void space induces a 

hydrostatic stress distribution in the solid phase. The ensuing deformation is a purely 

volumetric strain  

s

s
s

v
K

p
−=ε  [2. 248] 

where sK  is the averaged bulk modulus of the solid grains. 

As stated previously, the effective stress causes all relevant deformation of the solid 

skeleton. The constitutive relationship may be written as  

( )[ ]°−−−=′ εεεεDσ ddddd
s

v

c   T  [2. 249] 

where σ′d  is the stress responsible for all deformations, except for the grain 

compressibility, εd  represents the total strain of the solid, TD  is the tangent 

constitutive tensor 

( )εε,,σDD &′= TT  [2. 250] 

( )dtgd c
σε ′=  accounts for the creep strain, o

dε  represents all other strains in the solid 

skeleton not directly dependent on effective stress. 

A modified effective stress σ ′′  will now be introduced which will also account for 

grain compression. This allows the use of Biot's constant α. Omitting for brevity c
dε  

and o
dε  we obtain 

( )[ ] [ ] [ ]
s

s

TT

s

vT
K

dp
   d =ddd
3

IDεDεεDσ +−=′  [2. 251] 

Consequently, the effective stress equation written in incremental form becomes 

[ ] s

s

s

T

s
 dp

K

dp
   d dpdd IIDσIσσ −+′′=−′=

3
 [2. 252] 

where σ ′′  represents the stress responsible for all deformation of the solid. 
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For the following developments we use indicial notation and the Kronecker symbol δ 

instead of the unit tensor I . 

It can be immediately verified that equation [2.252] can be written as given by 

Zienkiewicz and Shiomi [ZS85] 

s

ij

s

klmnklmnnmmnijij dp
K

Ddd δδδδδσσ 







−−′′=

3

1

3

1
   [2. 253] 

For an isotropic, elastic material  

Tklmnklmn K
E

D 9
21

3
=

−
=

υ
δδ  [2. 254] 

where E  is the Young's modulus, υ  is the Poisson's ratio and TK  is the bulk modulus 

of the overall skeleton. 

Hence equation [2.253] can be written as 

s

ijij

s

ij

s

T
ijij dpdpd

K

K
dd    =   1  δασδσσ −′′








−−′′=  [2. 255] 

where α is Biot's constant. 

The resultant expression of the constitutive relationship is therefore 

[ ]εDσ dd T  =′′  [2. 256] 

The intrinsic pore pressure  πp  of the π fluid phase causes a purely volumetric strain of 

that phase, which is represented by 

π

π
π

K

p
v −=ε  [2. 257] 

 

 

2.6.3 Governing equations 

 

In the following a material coordinate system is employed for the solid phase and a 

spatial coordinate system for the fluid phases; convective terms, unless specified 

otherwise, are neglected. Because of this choice of reference systems, the fluid 

velocities are conveniently referred to the solid phase by means of the relative 

velocities for water and gas respectively  

swws
vvv −=  [2. 258] 

sggs
vvv −=  [2. 259] 

and the accelerations, without convective terms, are  
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wssw
aaa +=  [2. 260] 

gssg
aaa +=  [2. 261] 

where ws
a  is the acceleration of water relative to the solid phase and gs

a  the relative 

acceleration of gas. 

 

 

2.6.3.1 Linear momentum balance equation of the multiphase medium 

 

The linear momentum balance equation for the multiphase system is the sum of the 

dynamics equations for the individual constituents, but relative to the solid phase via 

equations [2.260] and [2.261] 

0=     gσaaa ρρρρ ++−−− divSnSn
gsg

g

wsw

w

s

 [2. 262] 

where 

( ) g

g

w

w

s
SnSnn ρρρρ   1 ++−=

 [2. 263] 

is the averaged density of the multiphase systems, sρ  is the intrinsic density of the 

solid phase, i.e. the density referred to the volume occupied by the solid phase only, as 

opposed to the volume occupied by the multiphase system, wρ  is the intrinsic density 

of water, gρ  the intrinsic density of gas and g  an acceleration usually related to 

gravitational effects. 

The linear momentum balance equation for each fluid phase yields the generalized form 

of Darcy's law, where the dissipative terms arising in a multiphase flow system at the 

interfaces are taken into account through the relative permeabilities  

( )[ ]wssww

w

rw
ws

w pgrad
k

nS aag
k

v −−+−= ρ
µ

 

 [2. 264] 

( )[ ]gssgg

g

rg
gs

g pgrad
k

nS aag
k

v −−+−= ρ
µ

  

 [2. 265] 

where k  is the intrinsic permeability, rw
k  and rg

k  are the relative permeabilities of 

water and gas, wµ  and gµ  are the dynamic viscosities. The relative permeabilities vary 

between 0 and 1 and are a function of the degree of saturation; the dynamic viscosities 

are temperature dependent. In the generalized form of Darcy's law for the gas phase the 

body forces are usually neglected. The left end side of equations [2.264] and [2.265] are 

multiplied by the volume fractions  πnS  because Darcy's law is expressed in terms of 
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volume averaged relative velocities. These are the velocities measured from 

experimental work. 

 

 

2.6.3.2 Mass balance equations 

 

The summation of mass balance equations for the solid and fluid phases, with 

opportune arrangements, eliminates the time derivative of the porosity and yields the 

so-called continuity equation of the fluid phase i.e. 

( )

( )
π

π

ππ
ππ

π

π

π

π

π

ρ
ρ

ρ

ρ

ρ

ρ

ρ

S

m
nS

St

S

S

n

n
div

t

n

s

s
s

s

&
+=++

+++
−

v

v

1

∂

∂

t∂

∂

  
∂

∂

 
1

 [2. 266] 

We consider first the continuity equation for water. Introduction of the constitutive 

relationships for the time derivatives of water density [2.158] and solid density [2.181], 

along with the pressure in the solid phase [2.227], multiplication by wS  and then with 

the introduction of Darcy's law [2.264] and of the definition of capillary pressure 

[2.220] yields 

( )[ ]
w

wssww

w

rw
w

w

wc

w

s

sw

s

w

g

gw

s

w

w

w
w
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k
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S
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K

n
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p
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p
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 [2. 267] 

In the same way the continuity equation for gas is obtained  

( )

( )[ ]
g

gssgg

g

rg
g

g

g

g

g

gs

ggs

s

w
g

c

s

g

g

s

w
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s

m
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k
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R
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T
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S
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S
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1

  

2

 [2. 268] 

where gM  is the molar mass of gas. 
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2.6.3.3 Energy balance equation 

 

By subtracting the kinetic energy from a global energy balance, the balance equation of 

thermal energy may be written for constituent π as [Bir60] 

( ) ( ) ππππππππππππ ρρρ RgraddivpdivEdivE
t

++−−−=
∂

∂
vτvqv  : ~  [2. 269] 

where πE  is the specific internal energy, τ  is the deviatoric part of the stress tensor 

and πp  the hydrostatic part of the stress tensor. 

The left-hand side represents the rate of accumulation of internal energy in a control 

volume. The right-hand terms express respectively the rate of internal energy change 

due to convection and to conduction, the reversible rate of internal energy increase due 

to pressure, the irreversible rate of internal energy increase by viscous dissipation and 

the contribution of heat sources. 

In small strain the energy balance equation becomes 

ππππππππππ
π

π ρτρρ RgraddivpdivEgrad
t

E
+⋅+−−=⋅+

∂

∂
vvqv   ~   [2. 270] 

The irreversible part of the internal energy increase by viscous dissipation is neglected 

in what follows. It is convenient to express this equation in terms of temperature and 

heat capacity instead of internal energy [Bir60]. This is done through the concept of 

enthalpy. Hence with sufficient accuracy for geomechanical applications the energy 

balance equation can be rewritten as 

πππππ
π

ππ ρρ RdivTgrad
t

T
C p +−=








⋅+

∂

∂
qv ~   [2. 271] 

for ws,=π , which for the purpose of the energy balance only may be considered as 

incompressible, and 

gggg
g

ggg
g

g

p Rpgrad
t

p
divTgrad

t

T
C ρρ π +⋅

∂

∂
+−=








⋅+

∂

∂
 +~  vqv  [2. 272] 

where g

pC is the specific heat at constant pressure. 

Some insignificant terms which are related to the mechanical work induced by density 

variations due to temperature changes of the water and solid phases have been 

neglected. 

Gas pressure changes are usually very slow and their gradients small in geomaterials, 

hence the time derivatives of gas pressure, as well as the convective terms, are 

negligible with respect to other terms in equation [2.272]. Also, because gas pressure 
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changes are usually small when compared to atmospheric pressure, the specific heat at 

constant pressure may be utilised instead of specific heat at constant volume. 

A local equilibrium state is assumed to hold, i.e. 

TTTT gws ===  [2. 273] 

We also introduce the constitutive equation for heat fluxes [2.182], and add together 

equations [2.271] and [2.272], and introduce the appropriate heat sources to obtain the 

following form of the energy balance equation 

( ) ( ) ( )
vapeff

gg

p

gww

p

w

effp HmTgraddivTgradCC
t

T
C ∆−=−⋅++

∂

∂
&      χρρρ vv  [2. 274] 

where vapH∆  is the latent heat of evaporation and the convective heat flux in the solid 

phase has been neglected. 

 

 

2.7 Quasi static case 

 

The relationship shown in 2.6.3 are now presented for quasi static loading conditions, 

which is the starting point of this work. The quasi static model is implemented in the 

finite element code Comes-Geo [GS96], [LS98], [SPS6]. 

The equations are hence rewritten in the quasi static case by neglecting the terms 

dependent on the accelerations .,,,,
gsgwssw

aaaaa  

This model developed by considering the air dissolved in liquid water can be found in 

Gawin and Sanavia [G10-1] and [G10-2]. 

 

 

2.7.1 Governing equations 

 

 

2.7.1.1 Linear momentum balance equation of the multiphase medium 

 

The equation [2.262] becomes 

0=  gσ ρ+div  [2. 275] 

where 

( ) g

g

w

w

s
SnSnn ρρρρ   1 ++−=

 [2. 276] 

is the averaged density of the multiphase systems 

sρ  is the intrinsic density of the solid phase 

wρ  is the intrinsic density of water 
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gρ  the intrinsic density of gas 

g  is the gravity acceleration 

 

2.7.1.2 Mass balance equations 

 

The equations [2.267] and [2.268] becomes 
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 [2. 277] 

In the same way the continuity equation for gas is obtained  
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 [2. 278] 

 

 

2.7.1.3 Energy balance equation 

 

The equation [2.274] not change for the quasi static case but, using Darcy’ law, it can 

be rewritten in a complete mode as follow 

( ) ( ) ( )[ ]

( )[ ] ( ) vapeff

gg

g

g
g

p

g

wcgw

p

w

effp

HmTgraddivTgradpgradC

TgradpgradpgradC
t

T
C

∆−=−⋅







+−

⋅







++−+

∂

∂

&   
k

 
k

 

r

w

rw

χρ
µ

ρ

ρ
µ

ρρ

g
k

g
k

 [2. 279] 

 

 

2.7.1.4 Boundary and initial conditions 

 

For the quasi static model closure the initial and boundary conditions are needed. 

The initial conditions specify the full fields of primary state variables at time 0tt = , in 

the whole analysed domain Ω  and on its boundary Γ  and the boundary conditions can 

be either imposed value on  πΓ or fluxes on  q

πΓ where 
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ug,c,T,
q =Γ∪Γ=Γ πππ      [2. 280] 

The initial conditions values for gas pressure, water pressure, temperature and 

displacements are: 

uu

TT

cc

cc

gg

gg

TT

pp

pp

Γ∪Ω=

Γ∪Ω=

Γ∪Ω=

Γ∪Ω=

on              

on              

on            

on           

0

0

0

0

uu

 [2. 281] 

The boundary conditions can be of Dirichlet’s type on  πB∂  for 0tt ≥ : 

u

T

c

cc

g

gg

TT

pp

pp

Γ=

Γ=

Γ=

Γ=

on        ˆ

on        ˆ

on    ˆ

on    ˆ

uu

 [2. 282] 

or of Cauchy’s type on  q
Bπ∂  for 0tt ≥ : 

( ) q

g

gaga

d

gsga

g     qvnS Γ=⋅+ onnJρ  [2. 283] 

( ) ( ) q

c

gwgw

c

wgwgw

d

gsgw

g

wsw

w     qqvnSvnS Γ−++=⋅++ ∞ onρρβρρ nJ  [2. 284] 

( ) ( ) ( ) q

Tc

wT

effvap

wsw

w     TTeTTqqgradTHnS Γ−+−++=⋅−∆ ∞∞ on44

0σαχρ nv  [2. 285] 

q

u    Γ=⋅ ontnσ  [2. 286] 

where 

( )t,xn  is the unit normal vector 

( )tq ga ,x  is the imposed fluxes of dry air 

( )tq gw ,x  is the imposed fluxes of vapour 

( )tqw ,x  is the imposed fluxes of liquid water 

( )tqT ,x  is the imposed heat flux 

( )t,xt  is the imposed traction vector related to the total Cauchy stress tensor  

( )tgw ,x∞ρ  is the mass concentration of water vapour 

( )tT ,x∞  is the temperature in the far field of undisturbed gas phase 

( )te ,x  is the emissivity of the interface 

( )t,0 xσ  is the Stefan-Boltzmann constant 

( )tbc ,x  is the convective heat exchange coefficients 

( )tac ,x  is the convective mass exchange coefficients 
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The boundary conditions with only imposed fluxes are called Neumann boundary 

conditions. The purely convective boundary conditions for heat and moisture exchange 

are also called Robin boundary conditions. 

 

2.8 Dynamic case 

 

In this work the dynamic formulation of the field governing equations is needed. From 

the general formulation the final system of equations is obtained by several 

simplifications. 

 

 

2.8.1 Governing equations 

 

 

2.8.1.1 Linear momentum balance equation of the multiphase medium 

 

According with Lewis and Schrefler [LS98] the linear momentum balance equation for 

the whole multiphase medium has the following generalised form: 

( ) ( )
( ) 0=⋅+−

+⋅+−−+
ggsgsg

g

wwswsw

w

s

gradSn

gradnSdiv

vva

vva

ρ

ρρ abσ

 [2. 287] 

whereσ  is the total stress, b is the body force and ρ  is the averaged density of the 

multiphase medium written as 

( ) g

g

w

w

s
SnnSn ρρρρ ++−= 1  [2. 288] 

in which sρ  is the density of the solid grain, wρ  is the density of water and gρ  is the 

density of gas. 

 

 

2.8.1.2 Water species mass balance equation  

 

There are several components that contribute to the water species mass balance 

equation: 

1.  Vapour advective flux 

( )gwsgw

gnSdiv vρ
 [2. 289] 

2.  Water advective flux 

( )wsw

wnSdiv vρ  [2. 290] 

3.  Vapour diffusional flux   
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gw

gdivJ  [2. 291] 

6. Term linked to water vapour density changes 

t
nS

gw

g
∂

∂ρ
 [2. 292] 

5. Term linked to the saturation changes 

t

S
nSp

K

n
nSp

K

n
Sp

K

n w

g

c

s

gw

w

g

s

w

w

s

w

∂

∂
















+

−
−







+

−
−

− α
ρ

αα
ρ  [2. 293] 

7. Term linked to the temperature changes 

t

T
swg

∂

∂
− β  [2. 294] 

where  

( )( )w

wgw

gsw

w

wswg SSnSn ρραβρββ +−+=
 [2. 295] 

8. Volumetric strain of solid skeleton 

[ ] s

g

gw

w

w
divSS vαρρ +  [2. 296] 

9. Term linked to the vapour pressure changes 

t

p
S

K

n
SS

K

n
gw

g

s

gw

gw

s

w

∂

∂







 −
+

− 2α
ρ

α
ρ  [2. 297] 

10. Term linked to the water pressure changes 

t

p
SS

K

n

K

nS
S

K

n
w

gw

s

gw

w

w

w

s

w

∂

∂







 −
+








+

− α
ρ

α
ρ 2  [2. 298] 

The sum of point 1,3 and 4 is the mass balance equation of vapour: 

( ) mnSdivdiv
t

nS
gwsgw

g

gw

g

gw

g
&=++

∂

∂
vJ ρ

ρ
 [2. 299] 

  

The final mass balance equation of water species becomes: 
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s
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s
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T
divSS

t

p
S

K

n
SS

K

n

t

p
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K

n

K
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S

K

n

vvJ

v

ρρ
ρ

α
ρ
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α

ρ
α

ρ

α
ρ

α
ρ

 [2. 300] 
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2.8.1.3 Dry air mass balance equation 

 

There are several components that contribute to the dry air mass balance equation: 

1. Term linked to the saturation changes 

( )
t

T
Sn gs

∂

∂
−− αβ  [2. 301] 

2. Dry air advective flux  

( )gsga

gga
nSdiv vρ

ρ

1
 [2. 302] 

3. Term linked to saturation changes 

t

S
nSp

K

n w

g

c

s ∂

∂








+

−
−

α
 [2. 303] 

4. Dry air diffusional flux 

ga

gga
divJ

ρ

1
 [2. 304] 

5. Term linked to the water vapour density changes 

t

nS ga

ga

g

∂

∂ρ

ρ
 [2. 305] 

6. Volumetric strain of solid skeleton 

s

g divS vα  [2. 306] 

7. Term linked to the dry air pressure changes 

t

p
S

K

n
ga

g

s ∂

∂− 2α
 [2. 307] 

8. Term linked to the water pressure changes 

t

p
SS

K

n
w

gw

s ∂

∂−α
 [2. 308] 

The final mass balance equation of dty air becomes: 

( )

( ) 0
1
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∂

∂
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−−+

∂
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+
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∂
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p
S
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n

t

p
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K

n

v

J

v

ρ
ρ

α

αβ
ρ

ρ

ρ

α
αα

 [2. 309] 
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2.8.1.4 Enthalpy balance equation 

 

There are several components that contribute to the enthalpy balance equation of the 

multiphase medium: 

1. Heat for temperature changes 

( )
t

T
C

effp
∂

∂
ρ  [2. 310] 

where ( )
effpCρ is the specific heat of the mixture at constant pressure written as the sum 

of the specific heat at constant pressure of the single phases 

( ) g

p

gw

p

ws

p

s

effp CCCC ρρρρ ++=  [2. 311] 

2. Convective heat flux in the fluids  

( ) TgradCC
gsg

pg

wsw

pw ⋅+ vv ρρ  [2. 312] 

and the convective heat flux in the solid phase is neglected. 

3. Fourier’s Law for the heat flux  

( )gradTdiv effχ−  [2. 313] 

where effχ  is the effective thermal conductivity of the mixture written as  

gws

eff χχχχ ++=  

4. Source terms relate to phase change of water 

vapHm∆− &  [2. 314] 

where m&  is the mass exchange term between the two phases from the water mass 

conservation equation  
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p
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s
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w
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ρβαρ

α
ρ

α
ρ

vv

2
&

 [2. 315] 

with ( )[ ]wswsw nnS ββαβ +−=  and vapH∆ is the latent heat of evaporation. 

The final enthalpy balance equation is:  
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( ) ( )

( )
vapeff

gsg

pg

wsw

pweffp

HmTgraddiv

TgradCC
t

T
C

∆−=−

⋅++

&χ

ρρ
∂

∂
ρ vv

 [2. 316] 

introducing the source term, [2.316] becomes: 
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 [2. 317] 

 

 

2.8.1.5 Summary of governing equations 

 

Linear momentum balance equation of the mixture 

( )
( ) 0gσ

a

=++⋅+−

+⋅+−−

ρρ

ρρ

divgradSn

gradnS

ggsgsg

g

wwswsw

w

s

vva

vva
 [2. 318] 

 

Water species (liquid and vapour) mass balance equation 

With compressible solid grains: 
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 [2. 319] 

With incompressible solid grains 0
1

,1 ==
sK

α : 
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 [2. 320] 

Dry air mass balance equation 

With compressible solid grains: 
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 [2. 321] 

With incompressible solid grains 0
1

,1 ==
sK

α : 
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 [2. 322] 

Enthalpy balance equation of the mixture 

With compressible solid grains: 
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 [2. 323] 

With incompressible solid grains 0
1

,1 ==
sK

α : 



CHAPTER 2                                                                                      GOVERNING EQUATIONS 

 

 

 68 
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 [2. 324] 

 

The above system of equations for the analysis of T-H-M behaviour of a porous media 

in dynamics can be solved with appropriate boundary and initial conditions, see section 

3.2.2. 

 

 

2.8.1.6 Various simplifying approximations 

 

We assumed different approximations for the general field equations: 

1) Incompressible grain at the microscopic level 







== 0

1
,1

sK
α  

Linear momentum balance equation of the mixture (no difference) 
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 [2. 325] 

Water species (liquid and vapour) mass balance equation 

[ ]

( )

( ) ( ) 0=++

+
∂

∂
+

∂

∂
−+

∂

∂
−++

∂

∂

gwsgw

g

wsw

w

gw

g

gw

g
wgww

swg

s

g

gw

w

w
w

w

ww

nSdivnSdiv

div
t

nS
t

S
n

t

T
divSS

t

p

K

nS

vv

J

v

ρρ

ρ
ρρ

βαρρρ

 [2. 326] 

Dry air mass balance equation 
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 [2. 327] 
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Enthalpy balance equation for the multiphase medium 
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 [2. 328] 

If the generalized Darcy’s Law [2.264] and [2.265] valid for the transport of both water 

and gas in slow phenomena is considered: 
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 [2. 329] 

where  

πr
k  is the relative permeability, a dimensionless parameter varying from 1 to 0  

k  is the permeability tensor of the medium 

πµ  is the dynamic viscosity 

 

With the introduction of the Darcy’s Law the final system becomes: 

 

Linear momentum balance equation of the mixture (no difference) 
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Water species (liquid and vapour) mass balance equation 
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 [2. 331] 
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Dry air mass balance equation 
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Enthalpy balance equation for the multiphase medium 
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2) Apparently small terms related to relative acceleration of the fluids and their 

convective terms are neglected to reduce the number of variables [Z99, page 21]. This 

is an approximation for dynamics of lower frequencies. Some loss of accuracy will be 

evident for problems in which high-frequency oscillations are important, these are of 

little importance for earthquake analyses [Z99, pages 25-31], [LS98]. 

 

Linear momentum balance equation of the mixture  

0=++− gσa ρρ divs
 [2. 334] 

 

Water species (liquid and vapour) mass balance equation 
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Dry air mass balance equation 
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Enthalpy balance equation for the multiphase medium 
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3) Dynamic seepage forcing terms connected with the solid acceleration are neglected 

in the mass and enthalpy balance equations because their contribution to the equation is 

very small compared with other terms [LS98], [Z99]. The effect of dynamic seepage 

can be of importance in the high frequency range where the u-p formulation is no 

longer valid [Z99]. 

Linear momentum balance equation of the mixture (no difference) 

0=++− gσa ρρ div
s

 [2. 338] 

Water species (liquid and vapour) mass balance equation  
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Dry air mass balance equation (no difference) 
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Enthalpy balance equation for the multiphase medium 
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 [2. 341] 

 

With the assumptions described we obtain the u-p
c
-p

g
(-T) formulation of the 

generalised field equations system. 

 

 

2.8.1.7 Limits of validity of the u-p(-T) approximation 

 

It is important to know the degree of approximation of the model just derived. 

As described in [Z99, pages 27-31], in Figure 2. 5 are shown zones of sufficient 

accuracy for various approximations: 

B = Biot Theory, 

Z = u-p approximation theory, 

C = Consolidation theory. 

where: 

2

2

1
L

Vc

ω

κρ
π = and 

2

22

2

cV

Lω
π = ,

g
K

ρ

κ̂
=  

κ̂  is the kinematic permeability,  
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E
D  is called the one-dimensional constrained modulus 

 

 

Figure 2. 5: Zones of sufficient accuracy for various 

approximations. 

 

In Zone I: B = Z = C, slow phenomena (the acceleration of the fluid w&&  and the 

acceleration of solid skeleton u&&  can be neglected). 

In Zone II: B = Z ≠ C, moderate speed ( w&&  can be neglected). 

In Zone III, B ≠ Z ≠ C, fast phenomena ( w&&  cannot be neglected only full Biot equation 

valid). 

We can, with reasonable confidence: 

(i) assume fully undrained behaviour when 1π  = 97k' < l0
-2

 or the permeability k' < 10
-4

 

m/s. (This is a very low value inapplicable for most materials used in dam 

construction). 

(ii) We can assume u-p approximation as being valid when k' < 10
-3

 m/s to reproduce 

the complete frequency range. However, when k' < 10
-1

 m/s periods of less then 0.5 s 

are still well modelled. 

The u-p formulation is particularly useful to implement the developed dynamics 

formulation starting from the quasi-static one (Comes-Geo),[GS96], [LS98], [SPS6] 

just introducing terms depending from the same independent variables. 
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2.8.1.8 Final system of equations to be implemented 

 

With the following simplification: 

1) Incompressible grain at the microscopic level 







== 0

1
,1

sK
α  

2) Small terms related to relative acceleration of the fluids and their convective terms 

are neglected [Z99, page 25], [LS98]. 

3) Dynamic seepage forcing terms connected with the solid acceleration are neglected 

in the mass and enthalpy balance equations [LS98], [Z99]. 

the final set of equation is: 

Linear momentum balance equation of the mixture 
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 [2. 342] 

Water species (liquid and vapour) mass balance equation  
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Dry air mass balance equation 
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Enthalpy balance equation for the multiphase medium 
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DISCRETIZATION OF GOVERNING EQUATIONS AND SOLUTION 

PROCEDURES 

 

 

3.1 Introduction 

 

In Chapter 2 the governing equations for the analysis of T-H-M behaviour of porous 

media in dynamics have been presented. The final system of equations, see section 

2.8.1.8, is composed of: 

- Linear momentum balance equation of the mixture 

- Water species (liquid and vapour) mass balance equativo 

- Dry air mass balance equation 

- Enthalpy balance equation for the multiphase medium 

and the independent variables chosen are: 

- u displacement of the solid skeleton 

- p
c
 capillary pressure 

- p
g
 gas pressure 

- T temperature 

It is a non linear, coupled system of differential equations of first and second order, 

extremely difficult to solve by analytical methods. 

In this chapter, numerical solution procedures are introduced for fluid-solid non 

isothermal interaction, in small-strain situations. The finite element method is used for 

the discretization in space and a generalized Newmark scheme is used for time 

discretization [ZT00]. 

 

 

3.2 Finite element spatial discretization 

 

 

3.2.1 Weighted Residual Method 

 

A boundary value problem of the type stated in the previous chapter can be represented 

as  

( ) ( ) Ω=+= on              0puCuA  [3. 1] 

and 
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( ) ( ) Γ=+= on              0quDuB  [3. 2] 

where C  and D  are differential operators and p  and q  are known functions, defined 

on the domain Ω  and on the boundary Γ , independent of u  which is the exact solution 

of the boundary value problems. 

For most problems the exact solution can be very difficult or even impossible to obtain. 

Sometimes some form of approximation is needed, obtained here by finite element 

method. For instance one can construct an approximation  

uNaaNu ≈==∑
r

i

ii  [3. 3] 

In which iN  are trial or shape functions in terms of the independent variables and ia are 

the parameters which can be identified with the values of the unknown at defined points 

(nodes) in the domain. 

If the approximation [3.3] is substituted into the [3.1] and [3.2] the equations are 

usually not satisfied and the residuals are 

( ) ( ) Ω+==Ω on              puCuAR  [3. 4] 

and 

( ) ( ) Γ+==Γ on              quDuBR  [3. 5] 

Those can be made zero with a numerical solution, in some weighted sense, by writing 

0=Γ+Ω ∫∫
Γ

Γ

Ω

Ω dd
TT

RWRW  [3. 6] 

or 

( )[ ] ( )[ ] 0=Γ++Ω+ ∫∫
ΓΩ

dd
TT quDWpuCW  [3. 7] 

where the weighting functions W  and W can be chosen independently. 

The Weighted Residual Method [ZT00] is applied in the following to the dynamic u-p
c
-

p
g
(-T) formulation of the generalised field equations for porous media summarized in 

section 2.8.1.7. 

 

 

3.2.2 Initial and boundary conditions 

 

There are various possible sets of primary variables to solve the problem described, in 

this work are chosen: 

p
g
 gas pressure to describe the gas flow 
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p
c 
capillary pressure to describe the water species flow 

T temperature for the heat flow equation 

u displacement vector for mechanical behaviour 

 

The initial and boundary conditions have to take into account any phase change which 

may take place. 

The initial conditions describe the full field of variables at time zero in the domain Ω 

and the boundary Γ, and for the dynamic formulation we have to initialize also the 

velocity V  of the solid skeleton: 

0

0

0

0

0

VV

uu
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=

=

=

=

TT

pp

pp

ww

gg

 [3. 8] 

 

The Dirichlet boundary conditions are: 
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 [3. 9] 

The Neumann boundary conditions are: 

q

udiv Γ=− on           0tσ  [3. 10] 

The fluxes of each phase may be required. 

For water flux on q

wΓon   : 
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 [3. 11] 

For gas flux on q

gΓ : 
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 [3. 12] 

For heat flux on q

gΓ : 
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 [3. 13] 

where wq , gwq ,  gaq , Tq are the imposed mass flux of water, vapour, dry air and heat, 

cβ  is the convective mass transfer coefficient, ∞
gwρ  is the partial density of vapour in 

the surrounding air at a great distance from the interface, cα  is the convective heat 

transfer coefficient and ∞T  is the temperature in the far field of the undisturbed gas 

phase [LS98: pages 345-346, 357]. 

 

 

3.2.3 Linear momentum balance equation of the multiphase medium 

 

Starting from the equilibrium equation [2.342] 

Ω=−+ on        0ugσL &&ρρT
 [3. 14] 

where the differential operator L  is defined as 
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 [3. 15] 

the stress tensor is written in vector form as 

{ }T

zxyzxyzyx τττσσσ ,,,,,=σ  [3. 16] 

and  
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( ) ( ) sgwww nSnnS ρρρρ −+−+= 11  [3. 17] 

is the density of the total composite 

The boundary condition are equation [3.9] and [3.10] 
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 [3. 18] 
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Applying the integral equation [3.7] to the equilibrium equation and the boundary 

condition we have: 

( )

( ) 0tlσW
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∫

∫

Γ

Ω

Ω

d

d

d
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u

T

u

&&ρρ  [3. 19] 

It is assume that the boundary condition uΓon is satisfied by the choice of the 

approximation of u and that the weighting functions are: 
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q
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Γ=
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on                  

on             
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WW
 [3. 20] 

Using Green’s Theorem [ZT00], the first term of the [3.19] can be replaced by the 

following 

( ) ∫∫∫
ΓΩΩ

Γ+Ω−=Ω ddd
T

u

T

u

T

u lσWσLWL σW  [3. 21] 

So the equation [3.19] becomes: 

( )

0tWgW
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Ω+Ω

∫∫

∫∫

ΓΩ
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dd

dd

T

u

T

u

T

u

T

u

ρ

ρ &&

 [3. 22] 

Now the domain Ω  is divided into subdomains and the primary variables are expressed 

by their nodal values and the shape functions: 
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 [3. 23] 

where e denotes the number of elements, i, j, l, k denote the nodes of the element and m, 

n ,p, q denote the number of nodes per element for the shape functions. 

So 

[ ]Tiziyix

e

i uuu ,,=u  [3. 24] 

is the displacement at node i  

[ ]Te

m

Tee
uuu ........1=  [3. 25] 

is the nodal displacement vector 

[ ]331
........ IIN

m

e

u

e

u

e

u NN=  [3. 26] 

is the shape function for the displacement and 3I  is a 3x3 identity matrix. 

We can say the same for the other variables. 

The sum of all elements can be represented in terms of global shape functions as 
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uNu
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=

=

=

 [3. 27] 

The shape functions for the displacement and for the other variables can be different, it 

is usually necessary to use higher order of interpolation for displacement then the other 

when there are incompressible or nearly incompressible undrained problems [ZQ86]. 

The standard Bubnov-Galerkin procedure [ZT00] is applied replacing the weighting 

functions by the corresponding shape functions. 
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gg
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=
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=

=

 [3. 28] 

Substituting the [3.27] and [3.28] in the [3.22] we arrive at: 
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 [3. 29] 

Now we introduce in [3.29] the effective stress [2.170] in the following form 

( )g

g

w

w pSpS +−′= αmσσ  [3. 30] 

where the vector m has the form [ ]0,0,0,1,1,1=Tm  
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 [3. 31] 

 

As regards the first term of the [3.31], for the isotropic elastic case the constitutive 

relationship can be written as: 
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 [3. 32] 

where eD  is the constitutive tensor, mLu is the mechanical strain, Tε is the thermal 

strain. 

With 

BLN =u  [3. 33] 

[3.32] becomes: 
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0
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β

 [3. 34] 

So the first term of the [3.31] can be rewrite as: 
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defining 

( )∫
Ω

Ω= de

T

e BDBK   

the Linear Elastic Stiffness matrix, [3.35] becomes: 
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For solid phase with non linear behavior only Tangential Stiffness Matrix TK  can be 

defined. So if 

( ) ∫
Ω

Ω′= dBP
T
σu  [3. 37] 

represents the internal force, TK  can be defined as 
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We can highlight the independent variables in [3.23]: 
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 [3. 39] 

and [3.39] is rewritten as: 

u

cgT d fuMpRpQσB =++−Ω′∫
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&&  [3. 40] 

where 
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So has been carried out the discretization in space of the momentum equilibrium 

equation and has been obtained an ordinary differential equation in time. We will 

operate in the same way for the other three balance equations. 
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3.2.4 Water species mass balance equation 

 

Starting from the general [2.300] equation and using Fick’s Law [2.164] 
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 [3. 42] 

The boundary conditions for water species mass balance equation are imposed value 

and fluxes: 

w

cc
pp Γ= on                  [3. 43] 
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Applying the integral equation [3.7] to [3.42] and the boundary conditions [3.43], 

[3.44], we have: 
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It is assume that the weighting functions are: 
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Using Green’s Theorem [ZT00] in the first term of the [3.45], it can be replaced by the 

following equation: 
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So the equation [3.45] becomes: 
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Now the primary variables are expressed by their nodal values and the shape functions:  
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The standard Bubnov-Galerkin procedure [ZT00] is applied replacing the weighting 

functions by the corresponding shape functions. 
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 [3. 50] 

The diffusive term is now transformed using Kelvin’s equation [2.146] 
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Substituting the [3. 49], [3.50] and [3.49] in the [3.51] we arrive at: 
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With the assumption of incompressible grain at microscopic level 







== 0

1
,1

sK
α  and 

by neglecting the variation of the vapour density, the equation [3.52] becomes: 
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We can rewrite the equation [3.53] in such a way: 
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3.2.5 Dry air mass balance equation 

 

Starting from the general equation [2.321] and using Fick’s Law [2.164] 
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we obtain 
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The boundary conditions for dry air mass balance equation are imposed value and 

fluxes: 
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Applying the integral equation [3.7] to the [3.57] and the above boundary conditions we 

have: 
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It is assume that the weighting functions are: 
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Using Green’s Theorem [ZT00], the first term of [3.60] can be replaced by the 

following equality: 
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So the equation [3.60] becomes: 
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Now the primary variables are expressed by their nodal values and the shape functions  
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The standard Bubnov-Galerkin procedure [ZT00] is applied replacing the weighting 

functions by the corresponding shape functions. 
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The diffusive term is now transformed using Kelvin’s equation [2.146] 
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Substituting the [3. 64], [3.65] and [3.66] in the [3.63], we arrives at: 
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With the assumption of incompressible grain at microscopic level 
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α  and 

by neglecting the variation of the dry air density, the equation [3.67] becomes: 
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We can rewrite the equation [3.68] as follow: 
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3.2.6 Enthalpy balance equation of the mixture 

 

Starting from the general equation [2.323]: 

( ) ( )

( )







+−∆−

−

g
k ww

w

rw
w

vap

effeffp

gradp
k

divH

Tgraddiv
t

T
C

ρ
µ

ρ

χ
∂

∂
ρ

 



CHAPTER 3                                                                                                    DISCRETIZATION 

 

 

 97 

( )

( )

0

2

=
∂

∂





























+

−
−









+

−
−

−

∆−

∂

∂
∆−

∂

∂−
∆−

∂

∂
∆+

∂

∂
















+

−
∆−

∇⋅



















+−+

++−

+

t

S

nSp
K

n

nSp
K

n
Sp

K

n

H

t
SH

t

p
SS

K

n
H

t

T
H

t

p

K

nS
S

K

n
H

T

gradp
k

CnS

gradp
k

nSC

w

g

c

s

gw

w

g

s

w

w

s

w

vap

T

w

w

vap

g

gw

s

w

vap

swvap

w

w

w
w

s

w

vap

gg

g

rg
g

pgg

ww

w

rw

w

ww

p

α
ρ

αα
ρ

αρ

α
ρ

β

α
ρ

ρ
µ

ρ

ρ
µ

ρ

u
Lm

g
k

g
k

 [3. 71] 

The boundary conditions for enthalpy balance equation are imposed value and fluxes: 

TTT Γ= on                  [3. 72] 
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Applying the integral equation [3.7] to the [3.71] and the above boundary conditions we 

have: 
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 [3. 74] 

It is assume that the weighting functions are: 
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Using Green’s Theorem [ZT00] the first two terms of [3.74] can be replaced by the 

following equality: 
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So the equation [3.74] becomes: 
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 [3. 77] 

Now the primary variables are expressed by their nodal values and the shape functions  
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The standard Bubnov-Galerkin procedure [ZT00] is applied replacing the weighting 

functions by the corresponding shape functions. 
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Substituting the [3. 78] and [3.79] in the [3.77] we arrive at: 
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With the assumption of incompressible grain at microscopic level 
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equation [3.79] becomes: 
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We can rewrite the equation [3.81] in such a way: 
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 [3. 82] 
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3.3 Time domain discretization 

 

After the spatial discretization, we obtain a system of four ordinary differential in time 

equations, resumed in the following system: 
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We can notice that: 

- the order of time differentiation for the variables is different: first and second order 

- the equations are coupled 

- the equations are non linear  

We use the implicit Generalized Newmark scheme as a direct solution procedure for 

time discretization. The Newton’s method is used to obtain iterative convergence to 

solve the non-linear set of algebric equations [ZT00]. 

 

Firstly it is assumed that the differential equation are to be satisfied at each discrete 

time station. For the equation sistem [3.84] we can write: 
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 [3. 85] 

Secondly the link between the successive values at 1+nt  and nt  can be established by 

truncated series expansions [ZT00, page 515]: 
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are the undetermined quantities and θββ ,,,, 21 ϑα  are parameters chosen in the range 

10 ÷ . 

For the unconditional stability of the direct solution procedure it is required that: 

1,,,
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121 ≤≤≤≤ θβ          β β ϑα  [3. 88] 

see [Ch88] and [ZT00]. However, stability of the time integration does not ensure 

sufficent accurancy of the solution. To obtain an accurate solution ∆t should be chosen 

corresponding to the smallest period in the loading pulse [Sl92]. The time step can be 

adjusted to the size of the finite elements. If the size of the elements is chosen 

corresponding to the wave lengths of the load a critical time step can be derived. 

With the insertion of the series expansions [3.86] in the system [3.85], we obtain four 

general non linear equations in which only 
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This can be written as: 
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in above 
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where n∆σ′  is evaluated by integrating the incremental constitutive relation. 
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3.4 Solution strategy for the nonlinear equation 

 

The coupled equation system is non-linear and it requires linearising by an iterative 

Newton-Raphson procedure. It can be written in compact way as: 
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the vector of the unknown, and 
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At each time step the equations need to be solved by an iterative process until some 

prescribed tolerance is reached. 

Assuming that the solution of i
th

 iteration ìx is known, we seek: 

iìi dxxx +=+1  [3. 95] 

which satisfies 

( ) 0xG =+1i  [3. 96] 

Expanding in Taylor series and neglecting the second order terms, it gives that: 
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that means: 
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where the Jacobian matrix at n+1 step and i
th

 iteration is represented as:  
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and the residual vector at n+1 step and i+1 iteration is: 
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In this thesis the classical Newton method [ZT00] is used so the Jacobian matrix is 

update at each step of the iterative process. 
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NUMERICAL SOLUTIONS 

 

 

4.1 Introduction 

 

In this fourth chapter the numerical validation of the model derived in the previous 

chapters and implemented in the finite element code Comes-Geo [GS96], [LS98], 

[SPS6] is presented. 

Different examples from literature are analyzed in order to consider separately the 

different phase and then their coupling. Some difficulties arise, since no exact solutions 

of simple problems are available, especially for non-isothermal problems or partially 

saturated problems in dynamics. 

As regards the validation of the solid phase model in isothermal conditions, a wave 

propagation problem in a single phase solid bar [Sl92] is investigated and the finite 

element results are compared with the analytical solution and the numerical solution of 

a commercial finite element code. Another test performed is a wave propagation 

problem in a dry soil column subjected to a step load and the finite element results are 

compared with those obtained by Schrefler and Scotta [SS98]. 

For the validation of the isothermal water saturated model, a dynamic consolidation 

problem is considered, following Markert [Ma10]. 

For the non-isothermal water saturated model, a quasi-static fully saturated non-

isothermal mechanical consolidation problem is analyzed, (Aboustit test), [Ab85]. 

The validation of the isothermal partially saturated model is performed by solving the 

Liakopoulos test [Lia65], in which a quasi-static drainage of liquid water from a 

initially water saturated soil column is analyzed. 

Another test performed in this thesis is the simulation of an isothermal wave 

propagation problem in an initially unsaturated soil column subjected to a step load 

following Schrefler and Scotta [SS98]. 
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4.2 Numerical validation of the model for isothermal single phase solids 

 

 

4.2.1 Wave propagation in a solid bar 

 

The aim of this test is to verify the model for isothermal single phase solids. The 

problem is solved with the multiphase model by setting αBiot=0, for which the equations 

result uncoupled. A one-dimensional bar is analyzed (Poisson’s coefficient ν=0), fixed 

at the left side [Sl92]. A uniform load, constant in time, is applied at the free right side 

of the bar, causing a wave load which propagates through the bar and reflects at the left 

boundary. 

This longitudinal wave propagation problem, its geometry with the boundary and 

loading conditions are illustrated in Figure 4.1. 

 

 

Figure 4. 1: Geometry, boundary and loading condition. 

 

The material parameters of the elastic analysis used for the problem are listed in the 

following Table 4.1. 

 

Parameters Value SI unit

Young's Modulus E 210 GPa

Poisson's Modulus ν 0 -

Porosiy n 0 -

Density of the solid ρ 7860 kg/m
3

 

Table 4. 1: Material parameters for the elastic analysis used for 

the example problem. 
 

The time step used in the computation is of 1E-5 seconds and the finite element 

discretization, composed of ten four-node elements, is illustrated in Figure 4.2. 

 

 

 

0,1m 

L=1m 

100 MPa 
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Figure 4. 2: Finite element discretization of the bar: ten four-

nodes isoparametric elements. 

 

This problem is described by the classical equation of plane waves (a partial differential 

equation of the second order, linear and homogeneous, hyperbolic type) in one 

dimension: 

0
1

2

2

22

2

=
∂

∂
−

∂

∂

t

u

cx

u
 [4. 1] 

where c  is the longitudinal wave velocity. The general solution is a linear combination 

of two solutions: 

( ) ( ) ( )ctxuctxutxu ++−= 21,  [4. 2] 

that are two disturbances that propagate in opposite directions. 

The solution is given by: 

( ) )
2

(, t
T

ACostxu
π

−=  [4. 3] 

where A  is the amplitude and T  is the period of the wave. 

 

The following characteristics of the problem can be computed: 

- Axial displacement (steady state solution) 

mmmE
E

E
L

E
LL x

x 47,0476,41
9210

6100
=−====∆

σ
ε  [4. 4] 

- Linear elastic longitudinal wave velocity 

 5044
7860

9210

s

mEE
c ===

ρ
 [4. 5] 

- Period of the wave 

sE
c

L
T 493,7

5044

44
−===  [4. 6] 

 

In Figure 4.3 is plotted the finite element solution of the horizontal displacement of the 

free side of the bar, where we can see that the analytical values of the deformation L∆  

[4.4] and of the period T [4.6] are captured. 

If the analysis continues for a longer time, the steady state solution is reached for the 

displacement at the free side of the bar, as plotted in Figure 4.4. 
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Figure 4. 3: Displacement of the free side of the bar obtained 

with the dynamic model. The value of time integration 

parameters are: 5,0,,,, 12 =θββ ϑα and the time step is 

sE∆t 51 −= . 
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Figure 4. 4: Displacement time history at the free side of the bar 

obtained with the dynamic model. The value of time integration 

parameters are: 605,02 =β and 6,0,,,1 =θβ ϑα  and the time 

step is sE∆t 51 −= . 

 

The finite element solution from the dynamic formulation of Comes-Geo is compared 

with the analytical solution for plane waves [4.3] and the numerical solution of the 

commercial finite element code “Straus” [Str7]. In this case the analysis βNewmark 
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coefficient was set to 0,5 and the dumping term in the equation of the motion was 

neglected. As we can see in Figure 4.5, the period T and the mean value of the 

displacement are equal in all the analysis, while the numerical dumping of the solution 

is a bit different even if the three solutions are similar. 

 

-1,0

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,0000 0,0004 0,0008 0,0012 0,0016 0,0020

Time [s]

D
is

p
la

ce
m

e
n

t 
[m

m
]

Comes-Geo

Analytical

Straus

∆t=1e-5 s

0.5-0.5

 

Figure 4. 5: Comparison between Comes-Geo solution, the 

analytical solution and the solution of the commercial code 

Straus. The value of time integration parameters 

are: 5.0,,,, 12 =θββ ϑα and the time step is sE∆t 51 −= . 

 

For the study of numerical damping, in Figure 4.6 there is the comparison between the 

displacement of the free side of the bar obtained with different time integration 

parameters. As expected, the numerical dumping is higher when time integration 

parameters are higher. 

As regards the numerical accuracy, it is higher when the time step are smaller and we 

can see this in Figure 4.7, where there is the comparison between the analysis 

performed with different time step. 
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Figure 4. 6: Displacement of the free side of the bar: comparison 

between analysis performed with different time integration 

parameters. 
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Figure 4. 7: Displacement time history of the free side of the bar: 

comparison between analysis performed with different value of 

time step.  
 

 

 

 

 

 

 

 

 



CHAPTER 4                                                                                      NUMERICAL SOLUTIONS 

 

 

 115 

4.2.2 Wave propagation problem in a dry soil column 

 

This example deals with the dynamic behaviour of a dry sand column to which a step 

load is applied, as proposed by Schrefler and Scotta [SS98]. A load of 0,1 MPa is 

applied at the top of the column and then removed after 1 s. The column is 10m high 

and 1m wide and is discretized by eight-node isoparametric elements (with nine Gauss 

points integration) see Figure 4.8. The material parameters are summarised in Table 

4.2. 

 

  

Figure 4. 8: Geometry and loading conditions of the confined 

compression of a dry soil column. 

 

Parameters Value SI unit

Porosity n 0,3 -

Solid skeleton density ρs 2000 kg/m
3

Young’s modulus E 4,5 E+06  Pa

Poisson’s coefficient ν 0,8 -

Gravitational acceleration g 9,806 m/s
2

 

Table 4. 2: Material data used for the wave propagation 

problem in a dry soil column. 

 

0,1 MPa 0<t<1 s

0,0 MPa 1<t<4 s
f(t)=

0,1 MPa 0<t<1 s

0,0 MPa 1<t<4 s
f(t)=

1 m

f(t)

10 m

1 m
1 m

f(t)

10 m

1 m
1 m 

10 m 
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For this problem only the solid skeleton is considered in the numerical model, with no 

coupling with the fluid phases. The initial and boundary conditions are summarized in 

Table 4.3 and Table 4.4. 

 

P
g

= Patm fixed

P
c

= 0,0 MPa fixed

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Vy = 0.0 on the bottom

Initial condition

 

Table 4. 3: Initial conditions for the finite element analysis. 

 

P
g

= Patm on the top

P
c

= 0,0 MPa on the top

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Boundary condition

 
Table 4. 4: Boundary conditions for the finite element analysis. 

 

In Figure 4.9 we can see the comparison of the displacement time history at the top of 

the column with the solution presented in Schrefler and Scotta [SS98]. In the first part 

of the analysis ( )st 1< , when the load of 0,1 MPa is applied, the solution oscillates on 

the equilibrium position 







====∆ mm

PaE

PaE
H

E
Hy x

x 2,010
65,4

61,0σ
ε . 

When the load is removed, the solution oscillates on the zero value ( )my 0=∆ . 

The velocity of propagation of the axial displacement waves is: 

( ) ( ) s

mE

n

E
V

s

s 7,56
3,012000

65,4

1
=

−
=

−
=

ρ
 [4. 7] 

as confirmed by the fact that the mid of the column starts to move after about 

s

s

m

m
088,0

7,56

5
=  from the application of the load, as shown in Figure 4.10. 
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Figure 4. 9: Displacement history at top of the column: 

comparison with Schrefler and Scotta [SS98]. 
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Figure 4. 10: Displacement history at mid height of the column: 

comparison with Schrefler and Scotta[SS98]. 

 

The comparison with Schrefler and Scotta [SS98] shows that the analysis give similar 

results. 
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4.3 Validation of the water saturated model in isothermal conditions 

 

 

4.3.1 Dynamic consolidation of a saturated poroelastic column under harmonic 

load 

 

In this example the response of a homogeneous and isotropic, water-saturated, 

poroelastic column (height 10m, width 2m) is analyzed under plane-strain, confined 

compression conditions, following [Ma10]. The domain is surrounded by impermeable, 

frictionless but rigid boundaries except for the loaded top side which is perfectly 

drained. The geometry and the spatial discretization (eight-node isoparametric elements 

with nine Gauss integration points) and the loading path are illustrated in Figure 4.11 

and Figure 4.12, respectively. 
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2 m

f(t)
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2 m

10 m

2 m

f(t)f(t)

 
Figure 4. 11: Geometry and spatial discretization of the dynamic 

confined compression of a saturated poroelastic column. 
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Figure 4. 12: Loading path of the dynamic confined compression 

of a saturated poroelastic column. 
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The material parameters are listed in Table 4.5 [Ma10], [deB93]. The initial and 

boundary conditions are described in Table 4.6 and Table 4.7. 

 

Parameters Value SI unit

Young's Modulus E 1,45E+07 Pa

Poisson's Modulus ν 0,3 -

Porosiy n 0,33 -

Density of the solid ρs 2000 kg/m
3

Density of the lquid water ρw 1000 kg/m
3

Gravitational acceleration g 0 m/s
2

Darcy Permeability K 10
-2

;10
-5

m/s  

Table 4. 5: Material parameters for the elastic analysis used for 

the example problems. 

 

P
g

= Patm fixed

P
c

= 0,0

T = 293.15 °K fixed

ux = 0.0 on the lateral nodes

ux = 0.0 on the lateral nodes

Vy = 0.0 on the bottom

Initial condition

 

Table 4. 6: Initial conditions for the finite element analysis. 

 

P
g

= Patm fixed

P
c

= 0.0 at the top

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Boundary condition

 

Table 4. 7: Boundary conditions for the finite element analysis. 

 

The objective of this benchmark problem is to compare the dynamic model solution 

obtained with Comes-Geo with an existing (semi-) analytical solutions for the solid 

displacement and the pore-fluid pressure of an infinite half-space under dynamic 

loading obtained via Laplace transform [deB93] as presented in [Ma10]. For this 

problem different integration scheme have been analyzed in [Ma10], as represented in 

Table 4.8, under the assumption of incompressible liquid water.  
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Abbr. Prim.vars.

uvp(1) uS, vF, p (4.39)

uvp(2) uS, vF, p monolithic implicit (4.39)

uwp uS, wFR, p (4.4)4 monolithic implicit (4.39)

uvp(α) uS, vF, p (4.37) monolithic implicit (4.39)

uvp(pc) uS, vF, p (4.67)

uvp(β) uS, vF, p (4.72) (4.67)

up uS, p (4.19) + weak forms of (4.17,4.18) monolithic implicit (4.39)

Abbr. Abbr.

IE QL uS, vS: quadratic; vF/wFR, p : linear

TR LL uS, vS: linear; vF/wFR, p : linear

TB2 QQ uS, vS: quadratic; vF/wFR, p : quadratic

(4.19, 4.20, 4.21, 4.32)

(4.19, 4.20, 4.21, 4.22)

implicit Euler

(4.19, 4.20, 4.21, 4.22) +

Solution algorithm

monolithic implicit

semi-explicit-implicit

semi-explicit-implicit

Governing equations

(4.19, 4.33, 4.21, 4.32)

(4.19, 4.33, 4.21, 4.32) +

(4.19, 4.33, 4.21, 4.32) +

Approximation of primary variablesTime integration

trapezoidal rule

TR-BDF2
 

Table 4. 8: Different integration scheme, [Ma10]. 

 

In particular, two scenarios are tested: a high permeability case, K=10
−2

 m/s, and a 

moderately low permeability case, K=10
−5

 m/s, which is the lowest permeability for 

which the (semi-)analytical solutions are achieved by using Maple code. 

Here we have to note that for the first value of the permeability the u-p approximation 

is valid just for period less then 0,5 s, whereas for the second case the u-p formulation 

can reproduce the complete frequency range, see section 2.8.1.6. 

 

The first analysis is a static one to compute the equilibrium conditions, neglecting the 

gravitational load. For the subsequent dynamic analysis, an harmonic load (Figure 4.12) 

is applied at the top surface of the column, the time step used in the analysis is of 10
-3

 s, 

the gravitational load is still neglected. 

 

We can see the displacement history at the top of the column for the two cases in 

Figures 4.13 and 4.14. Both the graphs have a period equal to 0,1 s, which is the period 

of the harmonic load. With the lowest permeability, the development of displacement 

of the top surface is slower than the case with higher permeability. 

Figures 4.15 and 4.16 is present the comparison with the analytical solution and the 

different analysis of Markert [Ma10] for the displacement history of the top surface 

with permeability of K=10
−2

 m/s and K=10
−5

 m/s. Because the value of the 

permeability and of the period belong to the range of validity of u-p formulation, the 

numerical solutions obtained with the dynamic analysis are equal to the analytical one. 
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Figure 4. 13: Top displacement history for K =10
−2

m/s, 

 t = [0, 0.5] s. 

 

 

 

Figure 4. 14: Top displacement history for K =10
−5

m/s, 

 t = [0, 0.5] s. 
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Figure 4. 15: Top displacement history for K =10
−2

m/s, 

 t = [0, 0.5] s, comparison with the analytical and numerical 

analysis of Markert [Ma10]. 

 

 

 

Figure 4. 16: Top displacement history for K =10
−5

m/s, 

 t = [0, 0.5] s, comparison with the analytical and numerical 

analysis of Markert [Ma10]. 
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In Figure 4.17 and 4.18 the nodal displacement and pressure values in the first half 

meter below the top of the column are given for a coarse discretization (10 elements per 

meter). Starting form an undeformed initial state, equilibrium requires the pore fluid to 

bear the entire load until deformation activates the resistance of the solid skeleton 

(consolidation process). At the top we have p
c
=0 which must be compensated by an 

immediate pressure increase in a small layer below the boundary. 

From this figures it can be observed that the results are similar to those performed by 

Markert [Ma10] for both the displacement and the water pressure. 

 

 

 

Figure 4. 17: Solid displacement in the first half meter under the 

loaded top of the column for K =10
−5

m/s,10 elements/meter at  

t = 0,1.5 s [Ma10]. 
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Figure 4. 18: Water pressure in the first half meter under the 

loaded top of the column for K =10
−5

m/s,10 elements/meter at  

t = 0,1.5 s [Ma10]. 
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4.4 Validation of the non-isothermal water saturated model 

 

As mentioned at the beginning of this chapter, the numerical validation of the non-

isothermal model in dynamic presents some difficulties because the exact solution of 

simple problems is not available, to the author knowledge. We present in the following 

the comparison between the solution of a quasi-static model Comes-Geo [GS96], 

[LS98], [SPS6] with that obtained with the dynamic model. 

 

 

4.4.1 Quasi-static fully saturated non-isothermal mechanical consolidation 

problem (Aboustit test) 

 

This problem deals with fully saturated thermoelastic consolidation. Following [Ab85], 

a column, 7 m high and 2 m wide, of a linear elastic material is subjected to an external 

surface load of 1000 Pa and to a surface temperature jump of 50 K above the initial 

temperature of 293.15 K (Figure 4.19). 
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Figure 4. 19: Geometry, loading conditions and finite element 

discretization of the saturated soil column. 

 

The material parameters are summarised in Table 4.9. 

The liquid water and the solid grain are assumed incompressible for the static analysis, 

whereas the compressibility of the liquid water is taken into account in the dynamic 

analysis. 
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For the numerical calculation, the problem was solved as a two-dimensional problem in 

plane stain condition. The column is discretized with eight-node isoparametric elements 

(4 elements/meter) with nine Gauss points integration. 

The spatial discretization used in the finite element simulation is shown in Figure 4.19. 

 

Parameters Value SI unit

Porosity n 0,39 -

Intrinsic permeability k 2,0 E-19 m
2

Solid skeleton density ρs 2670 kg/m
3

Tortuosity factor T 0,5 -

Irreducible saturation point Sirr 0,05 -

Solid thermal conductivity 0,42 W/(m K)

Solid matrix heat conductivity 1,9 E-16 W/(m K)

Solid specific heat 732 J/(kg K)

Cubic thermal expansion coefficient 1,3 E-5 K
-1

Biot’s constant αB 1 -
 

Table 4. 9: Material parameters. 

 

The initial and boundary conditions are described in Table 4.10 and Table 4.11. 

 

P
g

= Patm fixed

P
c

= idrostatic

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Initial condition

 

Table 4. 10: Initial conditions. 

 

P
g

= Patm fixed

P
c

= 0.0 at the top

T not fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Boundary condition

 

Table 4. 11: Boundary conditions. 

 

During computations the saturation-capillary pressure and relative permeability of 

water-capillary pressure relationships of the following form: 
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λ
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λ

λ32+

= eSk rw  [4. 9] 

)1/()( irirwe SSSS −−=  [4. 10] 

were applied, where irS  is the irreducible saturation point ( irS =0.2), bp is the bubbling 

pressure ( bp =1680 Pa), λ  is the pore size distribution index ( λ =3), eS  is the effective 

saturation. Furthermore the water saturation is fixed to unit value when bc pp <  and to 

irreducible saturation point when 81Epc > , the water relative permeability is fixed to 0 

for irw SS ≤  and to unit value for wS =1. The relative permeability of gas phase rg
k  was 

assumed according to the relationship of Brooks and Corey [BC92]: 

( ) 





 −−=

+
λ

λ )2(
2

11 ee

rg
SSk  [4. 11] 

During the computations, the value of the tolerance for the global iterative Newton-

Rapson procedure is fixed to 1.0E-04 and the maximum number of iteration inside a 

time step is fixed to 30. 

In the following graphs there is the comparison between the solution of the quasi-static 

and of the dynamic model. We plotted, for each variable, the value in the six nodes 

highlighted in Figure 4.19. 

From Figure 4.20 to Figure 2.26 there is the profile of the temperature history. 

We can see that at the beginning of the analysis the dynamic solution is faster than the 

static one, while at the end of the analysis the dynamic solution reaches the static one. 
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Figure 4. 20: Temperature time history of node 319. 
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Figure 4. 21: Zoom of the first part of the previous graph. 

Temperature history. 
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Figure 4. 22: Temperature time history of node 339. 
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Figure 4. 23: Temperature time history of node 363. 
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Figure 4. 24: Temperature time history of node 387. 

 

396

300

320

340

360

380

0 100 200 300 400 500

Time [day]

T
e

m
p

e
ra

tu
re

 [
K

]

Dynamic model

Quasi static model

 

Figure 4. 25: Temperature time history of node 396. 
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Figure 4. 26: Temperature time history of node 399. 
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From Figure 4.27 to Figure 4.33 the profile of the capillary pressure history is 

represented. At the beginning the profile of the solution obtained with the dynamic 

model is faster than the quasi static one, while, after the transitory, the solution of the 

dynamic model reach the steady static solution. 

 

319

-100000

-80000

-60000

-40000

-20000

0

20000

40000

0 20.000 40.000 60.000 80.000 100.000

Time [day]

C
a

p
il
la

ry
 P

re
s

s
u

re
 [

P
a

]

Dynamic model

Quasi static model

 

Figure 4. 27: Capillary pressure time history of node 319. 
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Figure 4. 28: Zoom of the highlighted zone of the previous 

graph. Capillary pressure history. 
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Figure 4. 29: Capillary pressure time history of node 339. 
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Figure 4. 30: Capillary pressure time history of node 363. 
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Figure 4. 31: Capillary pressure time history of node 387. 
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Figure 4. 32: Capillary pressuretime history of node 396. 
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Figure 4. 33: Capillary pressur etime history of node 399. 

 

From Figure 4.34 to Figure 4.40 is represented the profile of the displacement time 

history in the six nodes chosen for the comparison. It follows the same considerations 

as before: at the beginning of the simulation the profile of the solution obtained with the 

dynamic model is faster than the quasi static one, while, after the transitory, the solution 

of the dynamic model reaches the steady state (static) solution. 
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Figure 4. 34: Vertical displacement time history of node 319. 
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Figure 4. 35: Vertical displacement time history of node 339. 
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Figure 4. 36: Vertical displacement time history of node 363. 
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Figure 4. 37: Vertical displacement time history of node 387. 
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Figure 4. 38: Vertical displacement time history of node 396. 
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Figure 4. 39: Vertical displacement time history of node 399. 
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Figure 4. 40: Zoom of the highlighted zone of the previous 

graph. Vertical displacement time history. 
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4.4 Validation of the isothermal two phase flow model 

 

As for the non-isothermal case, no exact solutions of simple problems are available for 

partially saturated porous media in dynamics. In the following section we present the 

comparison between the solution of a quasi static model with the solution obtained with 

the dynamic model of a drainage of liquid water from a soil column [Lia65].  

 

 

4.4.1 Quasi-static drainage of liquid water from an initially water saturated soil 

column (Liakopoulos test) 

 

The proposed benchmark is based on an experiment performed by Liakopoulos [Lia65] 

on a column, 1 meter high, of Del Monte sand and instrumented to measure the 

moisture tension at several points along the column during its desaturation due to 

gravitational effects. Before the start of the experiment, water was continuosly added 

from the top and was allowed to drain freely at the bottom through a filter, until 

uniform flow conditions were established. Then the water supply was ceased and the 

tensiometer readings were recorded. 

The finite element simulation is performed with the two-phase flow model in 

isothermal conditions, with switching between saturated and unsaturated solution 

performed at p
c
= 2000 Pa (Sw= 0,998), which corresponds to bubbling pressure of the 

analyzed sand, and an additional lower limit for the gas relative permeability of 0,0001. 

0,1 m

1 m

0,1 m

1 m

0,1 m

1 m

 

Figure 4. 41: Geometry and finite element discretization of the 

sand column. 
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For the numerical calculation, the problem is solved as a two-dimensional problem in 

plane strain conditions; the spatial domain of the column is divided into 20 eight-node 

isoparametric finite elements of equal size (Figure 4.41). Furthermore, nine Gauss 

integration points was used. 

The material parameters are listed in Table 4.12. The missing data for the mechanical 

behaviour of the Del Monte sand, have been obtained numerically in previous work 

[GS96]. 

 

Parameters Value SI unit

Porosity n 0,2975 -

Intrinsic permeability k 4,5 E-13 m
2

Solid grain density ρs 2000 kg/m
3

Tortuosity factor T 1 -

Irreducible saturation point Sirr 0,2 -

Critical saturation point Scri 0,909 -

Young’s modulus E 1,3 E+06  Pa

Poisson’s coefficient ν 0,4 -

Biot’s constant αB 1 -
 

Table 4. 12: Material parameters for the elastic analysis used 

for the Liakopoulos test. 
 

During computations, the equations for the saturation-capillary pressure and the relative 

permeability of water-capillary pressure relationships of the following form: 

4279.211109722.11 cw pS
−⋅−=  [4. 12] 

( ) 9529.0
1207.21 w

rw
Sk −−=  [4. 13] 

were applied [GS96]. Furthermore the water saturation is fixed to unit value when 

201 −< Epc , the water relative permeability is fixed to 0 for irrw SS ≤  and to unit value 

for 1=wS , where irrS  is the irreducible saturation point. 

The relative permeability of gas phase, rg
k , was assumed according to the relationship 

of Brooks and Corey [BC92]: 

( ) 





 −−=

+
λ

λ )2(
2

11 ee

rg
SSk  [4. 14] 

( ) ( )irirwe SSSS −−= 1/  [4. 15] 

with the additional lower limit 0001,0≥rgk , where eS  is the effective saturation and λ  

is the pore size distribution index. 
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This problem has been solved considering single or two-phase flow, always in quasi-

static condition by many authors, for instance [Zi90], [LS98] or [GS96]. Schrefler and 

Scotta solved this problem for the first time with a dynamic model [SS98]. 

As specified by Gawin et al.[ GS97], initial conditions for this numerical test are 

slightly different from the experimental ones. The initial mechanical equilibrium state 

and fluxes have been obtained by a preliminary static solution (hydrostatic water and 

imposed air pressure). For the dynamic initial and boundary condition see Table 4.13 

and Table 4.14. 

 

P
g

= Patm fixed

P
c

= idrostatic

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Vy = 0.0 on the bottom

Initial condition

 

Table 4. 13: Initial conditions. 

 

P
g

= Patm on the top, on the bottom

P
c

= 0.0 on the bottom

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Boundary condition

 

Table 4. 14: Boundary conditions. 

 

Since in the experiment the inertial loads are negligible, the quasi-static solutions give 

almost the same results of the dynamic one. 

In the following are reported the evolution in time for water pressure, saturation and 

vertical displacement versus the height of the column and also a comparison with the 

quasi-static finite element solution. 

In Figure 4.42 is plotted the evolution of the water pressure obtained with the dynamic 

model; it can be observed that at the beginning of the analysis it increase rapidly, then 

the curves are closer. 

In Figure 4.43 the comparison with the quasi-static solution shows that the dynamic 

solution is faster at the beginning, while continuing with the analysis they are closer. 
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Figure 4. 42: Profiles of water pressure versus height (lines with 

different symbols are plotted at different time stations) 
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Figure 4. 43: Profiles of water pressure versus height: 

comparison between the quasi-static (S) and the dynamic 

solution (D) at 5, 10, 20 and 30 minutes. 

 

 

In Figure 4.44 is plotted the evolution of the vertical displacement; it can be observed 

that at the beginning of the analysis it increase rapidly, then the curves are closer. 

In Figure 4.45 the comparison with the quasi-static solution shows that fot this variable 

the dynamic solution is slower. 
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Figure 4. 44: The resulting profiles of water pressure versus 

height (lines with different symbols are plotted at different time 

stations) 
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Figure 4. 45: Profiles of vertical displacement versus height: 

comparison between the quasi-static (S) and the dynamic 

solution (D) at 5, 10, 20 and 30 minutes. 

 

In Figure 4.46 is plotted the evolution of the degree of water saturation. 

In Figure 4.47 the comparison with the quasi-static solution shows that the dynamic 

solution faster in the first five minutes of analysis, while then the curves are similar. 
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Figure 4. 46: The resulting profiles of saturation versus height 

(lines with different symbols are plotted at different time stations) 
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Figure 4. 47: Profiles of saturation versus height: comparison 

between the quasi-static (S) and the dynamic solution (D) at 5, 

10, 20 and 30 minutes. 
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4.4.2 Sand column subjected to a step load: wave propagation problem in an 

initially unsaturated soil column 

 

The dynamic behaviour of an initially partially saturated sand column subjected to a 

step load inducing a longitudinal wave is analyzed following [SS98]. 

The column is 10 m high and 1 m wide, see Figure 4.48. The material parameters are 

summarised in Table 4.15. 

 

 

Figure 4. 48: Geometry, loading conditions and spatial 

discretization of the confined compression of a initially partially 

saturated sand column. 

 

Parameters Value SI unit

Porosity n 0,3 -

Intrinsic permeability k 5,0 E-13 m
2

Solid skeleton density ρs 2000 kg/m
3

Young’s modulus E 4,5 E+06  Pa

Poisson’s coefficient ν 0,8 -

Water density ρw 1000 kg/m
3

Bulk modulus of water Kw 2,0 E+08 Pa

Gravitational acceleration g 9,806 m/s
2

Biot’s constant αB 1 -  
Table 4. 15: Material parameters 

 

1 m

f(t)

10 m

1 m

1 m

f(t)

10 m

1 m

0,1 MPa 0<t<1 s

0,0 MPa 1<t<4 s
f(t)=

0,1 MPa 0<t<1 s

0,0 MPa 1<t<4 s
f(t)=
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Initially the material and the fluids are in static equilibrium with the gravitational load 

and we assume p
c
=0,1 MPa at the top surface to obtain the initial partially saturated 

condition in the column. 

In Table 4.16 and Table 4.17 are summarized the initial and boundary conditions. 

 

P
g

= Patm on the top

P
c

= idrostatic; 0,1 MPa on the top 

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Vy = 0.0 on the bottom

Initial condition

 

Table 4. 16: Initial conditions. 

 

P
g

not fixed

P
c

= 0,1 MPa on the top

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Boundary condition

 
Table 4. 17: Boundary conditions. 

 

At time 0 a vertical compressive step surface load of 0,1 MPa is applied at the top of 

the column and is removed after 1 s. 

 

In Figure 4.49 is plotted the displacement time history: the behaviour is similar to that 

of the solid skeleton for dry material (see section 4.2.2), the oscillation frequency is 

increased and the maximum displacement is reduced because part of the applied load is 

carried out by an increase of the fluids pressure. 

 

In Figure 4.50 is plotted the comparison of the displacement time history at top of the 

column with the results of Schrefler and Scotta [Bas 98]. During the loading phase the 

graphs are similar, whereas when the load is removed they are slightly different. 

Similar consideration can be done for the displacement time history at mid height of the 

column, see Figure 4.51. 
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Figure 4. 49: Comparison of the time history displacement at top 

of the column between the single solid phase case and the 

partially saturated case. 
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Figure 4. 50: Displacement time history at top of the column: 

comparison with the results of Schrefler and Scotta [SS98]. 
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Figure 4. 51: Displacement time history at mid height of the 

column: comparison with Schrefler and Scotta[SS98]. 
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CONCLUSIONS 

 

 

In this thesis the development of a model for the analysis of the thermo-hydro-

mechanical behaviour of porous media in dynamics has been developed. 

Starting from the generalized mathematical model developed for deforming porous 

media in non-isothermal conditions in dynamics by Lewis and Schrefler [LS98], as 

original contribution of this thesis, the u-p(-T) formulation has been derived following 

[Z99]. The validity of such an approximation is limited to low frequencies problems 

[Z99], which is the case of earthquake engineering. In this formulation the relative 

accelerations of the fluids and the convective terms related to this accelerations have 

been neglected. 

Moreover the compressibility of the solid grain at microscopic level and the dynamic 

seepage forcing terms (in the mass and enthalpy balance equations) have been 

neglected. 

The numerical model has been derived within the finite element method. In particular 

for the discretization in space the standard Bubnov-Galerkin procedure [ZT00] was 

adopted, for the discretization in time the implicit and unconditionally stable Newmark 

procedure was applied [ZT00]. 

The independent variables chosen are: the displacement of the solid skeleton u, the 

capillary pressure p
c
, the gas pressure p

g
 and the temperature T. 

The model has been implemented in the finite element code Comes-Geo [GS96], 

[LS98], [SPS6]. 

The formulation and the implemented solution procedure are validated through the 

comparison with literature benchmarks, finite element solutions or analytical solutions 

when available. The numerical validation of the non-isothermal model and partially 

saturated model in dynamic presents some difficulties because the exact solution of 

simple problems is not available, to the author knowledge. The comparison between the 

solution of the quasi-static model Comes-Geo [GS96], [LS98], [SPS6] with that 

obtained with the dynamic model has been presented. 

As further step the application of the model developed in this thesis to real cases as the 

simulation of the failure of San Fernando dam, 1971, [Z99] or the analysis of the onset 

of catastrophic landslides [Va02], will be performed. 
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Other further step will be the dynamics of strain localization in multiphase geomaterials 

following [SM95], [SS96], [GS98], [ZS99], [SZ99], [ZS01], [SP05] and thermo-elasto-

plastic problems (e.g. ) [SF08]. 
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