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Abstract

The present thesis is devoted to a particular topic regarding the fluvial sub-systems,

namely the evaluation of the annual amount of sediment yield through a given cross-

section of a river. This problem has been largely investigated in literature and the

resulting models can be classify in different groups depending on the morphological

characteristics they take into account and their complexity. In any case the large

quantity of data required is always the main problem. With this work we want to

find simple relationships that require the lesser number of data as possible, so we have

made our evaluations at a basin-scale and assumed for the river the Local Uniform

Flow hypothesis (LUF). Accordingly, each river reach is defined by its length, width,

slope and bottom composition, while the watershed area is collapsed in its barycentre

which coincides with the upstream end of the LUF reach.

A basic state, called equilibrium and represented by a stationary rating curve (a

monomial relation between the solid and the liquid discharge of Engelund-Hansen type)

is first identified, with the purpose to evaluate the deviations of the real solid transport

from the equilibrium value, deviations that depend on the time-scale considered. In

particular we have developed three models, valid in three different time-scales.

For the short-term analysis we use the 1-D deterministic solution of the harmonic

river which provides the delay and attenuation of the perturbation of the solid transport

with respect to the equilibrium condition. In other words we link the actual deviations

of the solid transport recorded downstream with previous perturbations of the liquid

discharge, happened upstream.

For a pluri-annual time-scale we integrate the 1-D morphodynamic model to a zero-

dimensional model. As the water and sediments inputs to the river are concentrated
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in its upstream end, the width of the entire river is assumed to be constant, whilethe

slope and the grain-size composition are considered to be variable in time. The resulting

mathematical model is implicit and non-linear, but at this time-scale we simplify it in

order to find a simple and generic analytical solution for the pluri-annual morphological

evolution of the river.

Finally, for very long-term analysis we integrate numerically the exact 0-D morpho-

dynamic model to predict the morphological reactions of a river at geological time-scale.

In this case we schematize the river with two contiguous LUF channel, representing the

highland and the lowland parts of the real watercourse respectively. In this way, this

model can simulate the typical behaviour of natural rivers showing a grain-size segre-

gation (fining) in the downstream direction, accompanied by smaller slopes, without

the computational costs necessary for a complete one-dimensional model.

Some comparisons and numerical applications have been made.



Sommario

Questa tesi é dedicata ad un tema particolare che riguarda i sotto-sistemi fluviali,

vale a dire la valutazione dell’importo annuo di produzione di sedimenti attraverso

una determinata sezione fluviale. Questo problema é stato ampiamente studiato in

letteratura e i modelli sviluppati possono essere classificati in diversi gruppi a seconda

delle caratteristiche morfologiche di cui tengono conto e della loro complessitá. In

ogni caso, il problema principale é sempre la grande quantitá di dati richiesti. Con

questo lavoro vogliamo trovare delle semplici relazioni che richiedano il minor numero

di dati possibile, per questo abbiamo sviluppato le nostre valutazioni ad una scala

spaziale di bacino ed assunto per il fiume l’ipotesi flusso localmente uniforme (LUF).

Di conseguenza ogni tratto fluviale é definito dalla sua lunghezza, dalla larghezza, dala

pendenza e dalla composizione granulometrica del fondo, mentre l’estremitá a monte del

canale LUF coincide col baricentro del bacino in cui si assume sia concentrata l’intera

area.

Prima si identifica una condizione di base, chiamata di equilibrio e rappresentata

da una curva stazionaria (una relazione monomia tra le portate solida e liquida di tipo

Engelund-Hansen), con lo scopo di valutare le deviazioni del trasporto solido reale dal

valore di equilibrio, deviazioni che dipendono dalla scala temporale considerata. In

particolare abbiamo sviluppato tre modelli, validi per tre diverse scale temporali.

Per l’analisi a breve termine usiamo la soluzione deterministica armonica 1-D del

fiume, che fornisce il ritardo e l’attenuazione della perturbazione del trasporto solido

rispetto alla condizione di equilibrio. In altre parole, colleghiamo le deviazioni effettive

del trasporto solido registrate a valle con le precedenti perturbazioni della portata

liquida avvenute a monte.
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Per una scala pluriannuale integriamo il modello morfodinamica 1-D ad un modello

zero-dimensionale. Dato che gli ingressi di acqua e sedimenti al fiume sono concentrati

alla sua estremitá a monte, la larghezza dell’intero fiume é ipotizzata costante, mentrela

pendenza e la composizione granulometrica sono considerate essere variabili nel tempo.

Ne risulta un modello matematico implicito e non lineare, ma a questa scala temporale

lo possiamo semplificare al fine di trovare una soluzione analitica semplice e generica

per l’evoluzione morfologica pluriennale del fiume.

Infine, per un’analisi a lungo termine integriamo numericamente il modello morfo-

dinamico 0-D esatto per valutare le reazioni morfologiche di un fiume a scala temporale

geologica. In questo caso si schematizza il fiume con due canali LUF contigui, che

rappresentano rispettivamente il tratto montano e e il tratto di pianura del reale corso

d’acqua. In questo modo, questo modello puó simulare il comportamento tipico dei

fiumi naturali mostrando una differenziazione granulometrica (affinamento) verso val-

le accompagnata da pendenze minori, senza i costi computazionali necessari per un

modello unidimensionale completo.

Sono stati fatti alcuni confronti e applicazioni numeriche.
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Chapter 1

Introduction

The amount of sediment conveyed by a river through a given cross-section during a

period of time (sediment yield) is somehow connected with, but not identical to, the

amount of sediments detached from the watershed surface (sediment production)

during the same period of time. Usually, the evaluation of the sediment production lies

in the specialization of a number of disciplines, depending upon the dominant mech-

anism of the detachment (wind erosion in desert areas, surface erosion from inland,

mass erosion from inclined slopes, intermediate forms, etc. . . ); while the evaluation

of the sediment transported by a watercourse resides traditionally in the proficiency

of fluvial engineering. In this thesis the attention has been especially (although not

exclusively) given to the sediment transported by the river, with the implicit presump-

tion that the hydrological, morphological and grain-size features of the river itself are

somehow ”imprinted” by the sediment production from the watershed surface, not only

contemporary but in all the preceding time. This presumption is obviously related to

the concept of equilibrium (only in a hypothetical full equilibrium conditions there is

a coincidence between sediment production and sediment yield) and therefore on the

relate concept of space- and time-scale.

These preliminary ideas will be then briefly discussed in the following paragraphs.
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14 Chapter 1. Introduction

1.1 Concept of equilibrium

In the present text ”equilibrium” is defined as a stationary condition of the system

under consideration, related to a specific space- and time-scale of the processes involved.

As far as sedimentary systems [Allen, 1974] are concerned (like watercourses, estuaries,

littorals, etc...), we may state that the entire system, or any part of it (sub-system),

is in equilibrium if it does not change its shape (morphology) when averaged over a

convenient interval of time. To define an equilibrium condition is then necessary to

specify both the significant length of the (sub-)system (space scale) and the duration

of the relevant morphodynamic process controlled by this length (time scale). The two

scales are mutually related, depending upon the sub-system considered.

For a watercourse, the overall system is its hydrographic basin and the significant

space-scale may be represented by the river length or, as we will see later (section 5),

by a more significant ”filling volume”. The time-scale of the relevant morphodynamic

process (altimetric and planimetric evolution of the entire hydrographic network) may

be represented by the ”filling time ” of this volume by the sediment production from

the watershed surface. The filling time of a large river is extremely long (up to 104

years) and its equilibrium can only be defined as an (eventual) stationary condition

averaged over such a long period.

Beside the overall system (river watershed), however, one may also consider the

following progressively smaller sub-systems and the corresponding significant space

scale. The relevant morphodynamic process is indicated between brackets while the

corresponding response time is scaled with the ratio between the space scale and the

sediment flux (water velocity times volumetric concentration):

� length of the reach between subsequent main tributaries (evolution of the bottom

profile and composition);

� width of the reach (evolution of river mega-forms: braids and meanders);

� depth of the reach (evolution of river meso-forms: dunes);

� height of the laminar boundary layer (evolution of river micro-forms: ripples);



1.2 Fluvial (sub-)systems at different scales 15

� sediment grain-size (entrainment, transport and deposition of particles).

The evolution of the various (sub-)systems could be simulated, in principle, by

solving the appropriate partial differential equations in time and space that describe

each relevant process. As all the processes are mutually interacting, all the equations

should be in general considered coupled and solved together. This approach, in practice,

is obviously unfeasible and several simplifications, to be discussed later, are to be

introduced.

The first basic simplification (more or less implicitly presupposed in most morpho-

dynamic problems) consist in decoupling the different processes, by postulating that

the respective time- and space-scale are substantially different. In this way, if we are

interested in simulating the time-history of a certain sub-system (e.g., the evolution of

the dune pattern when the river flow changes) we shall suppose that, during the evo-

lution period, both the super-ordinate (larger) and sub-ordinate (smaller) sub-systems

are in ”equilibrium”. In particular we assume that the super-ordinate sub-systems

(braids, meander, river reach, hydrographic network) are strictly stationary, while the

sub-ordinate sub-systems (ripples, particles dynamics) maintain a statistical configura-

tion instantaneously adapted to the water flow. In other words, for simulating the dune

pattern evolution, both the larger and the smaller sub-systems do not need to be ex-

plicitly reproduced by solving partial differential equations but they can be accounted

for by simple algebraic (i.e. ”equilibrium”) equations.

1.2 Fluvial (sub-)systems at different scales

The space- and time-scales discussed above characterize the various sub-systems of

a river in relative terms, inasmuch as they refer to the specific quantity (e.g. the river

depth for dunes) that controls the respective morphodynamic process. By considering

the actual dimensions of the river, however, the absolute space-scale may range over

tens order of magnitude from the experimental devices of a laboratory, up to the fluvial

watershed of continental size. In terms of time-scale, the range may in principle be

even much wider, from fraction of seconds in laboratory experiments to eras or periods
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of the geological evolution. In the graph of Figure 1.1 [Di Silvio, 2008] the time-scale

as been conventionally limited by the last glaciations (Würm glaciation), after which

the climatic conditions can be considered reasonably stationary.

In the same graph are shown the typical domains of interest for laboratory experiments,

hydraulic structures and environmental engineering, as well as for geological sciences

involving much longer time-scales. The straight lines,corresponding to the ratio between

absolute space- and time-scale, represent the velocities of the respective morphological

process, without reference however to the specific sub-system controlled by the relative

scale.

For applications to hydraulic structures the relevant sub-system is usually the river

width, or even (for single localized elements) the river depth. Depending upon the river

size the corresponding absolute space-scale may range between meters and kilometers,

while the time-scale varies between second and days.

For hydraulic models in laboratory the space- and time- scale of the structure would

be correspondingly reduced according to, say, the Froude similitude. While for basic

experiments the absolute size is very often even smaller, as they may include smaller

(sub-ordinate) sub-systems like the laminar boundary layer or even the particles grain-

size.

For environmental engineering, by contrast, the absolute scales largely increase,

as the relevant system is usually the entire watershed or, at least, the river reach

between two subsequent main tributaries. Indeed, in order to predict the effects of

large river works (e.g. a dam) it is necessary to include in the simulation a substantial

part of the river down to the coast, where the negative effects are expected to show

up, albeit not immediately, and protection or mitigation measures should be timely

taken. The reaction time of large rivers is in fact very long and in some cases the

anthropogenic perturbations produced by the river works tend to interact with the

natural perturbations produced by climatic changes. In such a case the simulations

for environmental engineering should be extended well beyond the conventional limit

of stationary climatic conditions and more into the domain of geological sciences. On

the other hand the analysis of fluvial paleo-morphology as consequence of geological
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Figure 1.1: A graphical representation of the absolute time- and space-scales for fluvial systems
with typical zones of interest of various applications [Di Silvio, 2008].
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forcing (climate and tectonics) are nowadays well developed [Allen and Heller, 2012]

and could in principle be fruitfully combined with fluvial mathematical modeling .

1.3 Scope and structure of the thesis

The present thesis is devoted to a particular topic regarding the fluvial sub-systems,

namely the evaluation of the annual amount of sediments transported by the river

(sediment yield) through a given cross-section. Of course, an experimental evaluation

can be made by a continuous recording of solid discharge (both in suspension and as

bed load) integrated over the year, and this is in fact what it is made (more or less

accurately) in a great number of gauge stations around the world. However, a part of

from the difficulties of measuring accurately all the requested quantities, the available

records are far from being sufficient in terms of number of stations, length of records

and reliability of data.

In the practice the continuous measurements of the sediment transport, especially

bed load, are difficult and not so precise. Also for the suspended load we had in the past

only the analysis of periodic manual samples, an expensive practice that often could

not be done during a flood event. Today optical automatic instruments, that measure

continuously the turbidity of the flow, or acoustic devices, as the ADCPs (Acoustic

Doppler Current Profilers), are typically used. In order to have TSM (Total Suspended

Matter) concentration data, a transformation law is calibrated thanks to periodic sam-

ples from which the direct value of the concentration is known (as performed by Gentile

et al. [2010] and in Di Silvio et al. [2011]). In any case gauging stations of this type

are few and generally they work only for short periods, with no possibility to create

statistically valid records. Here we just mention that in Asian watershed there is a dif-

ferent situation: the large rivers flowing in China or in Vietnam are better monitored

(always measuring only the suspended material) and the long series of data are used

in literature to evaluate their sediment contribution and how it is influenced by the

human activities [Walling, 2006, Le et al., 2007, Zhang et al., 2011].

Another important source of data for the evaluation of the integrated sediment yield

over relatively log periods is represented by repeated bathymetric surveys of reservoirs
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that intercept the sediment transport.

In the present thesis an alternative procedure to evaluate the sediment yield of a

particular basin is considered. This method is based on the use of appropriate math-

ematical models that predict the detachment of sediments from the watershed slopes

(sediment production) and their subsequent movement along the hydrographic net-

work (sediment transport), from the thinnest ephemeral drainage print of the over-

land flow, down to the considered cross-section of the river.

Existing models of both sediment production and sediment transport can be clas-

sified according to the time- and space-scale they refer to. Moreover, three main cate-

gories of modelling approach are generally identified: empirical, conceptual or physically

based models. A wide description and differentiation between these three types of mod-

els is given by Merritt et al. [2003]. They sets that the distinction is not sharp but often

models are hybrids between two of these classes: often physically based rainfall-runoff

models are coupled with empirical relationship used to model erosion and sediment

transport. Depending on the type of model, we need more or less detailed information

about the territory and the climatic conditions.

A lot of works has been done to predict the sediment production of a catchment.

The processes involved are quite known, but uncertainly predictable from the quanti-

tative view point. Indeed there is no a typical detachment rate for a specific region

because large local variations occur. Moreover the soil losses at one scale are not rep-

resentative for the losses at another scale because of the extremely variable ”delivery

ratio” [De Vente and Poesen, 2005].

In literature there are several different procedures to calculate the long-term surface

erosion rate from a hill-slope, from the classical USLE formula [Wischmeier and Smith,

1978], to its subsequent numerous adaptations (RUSLE, MUSLE, etc...); all of them

depending on rainfall intensity, runoff, soil erodibility, vegetation cover and slope angle.

The most significant (and uncertain) factor for surface erosion is the vegetation cover,

which may vary over many orders of magnitude when we pass from bare soil to a

well managed forest. It should be noted, however, that surface erosion is not the only

active mechanism of sediment production; for forested watershed, for instance, mass
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movement (landslides and debris flows) plays a definitely dominant role.

Sediment production from the watershed slopes represents the boundary conditions

for the transport in the hydrographic network of the rivers, which can be simulated in

principle by the complete one-dimensional (1-D) model described in Chapter 2.

Unluckily, the available information are in general very few and uncertain also for

implementing a complete 1-D model of the river. To cope with the usual scarcity of

data a series of simplifications for the 1-D model have been introduced, which will be

described in the same Chapter 2. One of the basic simplifications is the transformation

of the 1-D approach into zero-dimensional (0-D) approach, which permits the evaluation

of the annual amount of sediments transported by the river (sediment yield) through a

given cross-section, taking into account the general lack of morphological information

we are dealing with. In fact 0-D models can simulate the behaviour of the entire

hydrographic basin, and thus predict the sediment yield at different time-scales: from

daily/monthly scale, to annual, pluri-annual, up to geological scale too. By the models

proposed here we tried to find a direct evaluation of the sediment yield, from the typical

information available for most of the natural rivers: mean river width, mean bottom

slope and, most difficult, mean bed composition, as well as long records of the liquid

discharge.

The structure of the thesis is developed as follows.

Chapter 2 - The one-dimensional morphodynamic model and its simplifi-

cations, after a brief description of the complete one-dimensional formal model,

presents an analytical solution, proposed by Fasolato et al. [2009], based on two

main hypothesis: we will take into account two representative classes of the

nonuniform sediment grain-sizes and we will consider a configuration of long-term

equilibrium. Moreover a particular rating curve to calculate the ”equilibrium”

solid transport as a function of the principal mean morphological characteristics

and the liquid discharge will be proposed. The analytical solution is then sim-

plified, assuming the Local Uniform Flow hypothesis (LUF) (see section 2.6.2),

in order to evaluate the deviations from the long-term equilibrium configuration
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of the instantaneous measured solid transport at a gauge station caused by vari-

able boundary conditions at the upstream and downstream ends of the channel.

Namely we consider the watershed area collapsed in its ”barycenter”, which is

the upstream end of the LUF channel, so considering a zero-dimensional model

of the basin.

Then three principal models for the sediment yield evaluation are investigated, in-

creasing step by step the considered time-scale. All the models proposed consider

the basin-scale as a space-scale.

Chapter 3 - Long-term equilibrium model with short-term perturbations:

this model is the application of the deterministic analytical solution described in

the Chapter 2 through specific procedures of calibration of the model against a

set of measured data. A particular attempt to evaluate the boundary conditions

represented by the sediment and water input concentrated at the upstream end

of the channel in dependence of the downstream measures is proposed.

Chapter 4 - Long-term non-equilibrium model : with this model we investi-

gate an intermediate time-scale. Renouncing to the hypothesis of the existence

of a long-term equilibrium, we admit that the rivers are pluri-annually evolving

and only a short-term (annual) equilibrium can be identify. The one-dimensional

model is integrated to a zero-dimensional model, more representative for the

basin scale and for the time-scale considered. Then numerical observations lead

to particular simplifications in order to find an original analytical solution for

the morphodynamic evolution of the river. With measured data we made some

attempts to use this analytical solution in order to evaluate the term of the sedi-

ment input at the upstream end of the river.

Chapter 5 - Morphological reactions rivers at geological scale : in this Chap-

ter the integrated 0-D model is used for very long-term simulations in order to

evaluate the morphological reactions of a schematic river to long-term perturba-
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tions of the boundary conditions. In order to represent the typical concave profile,

the model is split in two reaches standing for the highland (mountain) and the

lowland (plain) courses respectively, generally recognizable in a natural river.

Chapter 6 - Conclusive remarks and prospective : some conclusive remarks and

prospective for possible developments of this research are reported.



Chapter 2

The one-dimensional

morphodynamic model and its

simplifications

2.1 The one-dimensional morphodynamic model

The system describing the one-dimensional morphodynamic model (Figure 2.1) is

composed by the continuity equation of the water flow, the momentum balance along

the stream (De St. Venant equation simplified considering equal to 1 the Coriolis

coefficients) , the continuity equation of the sediment (Exner equation, which express

the sediment exchange between the flow and the bottom) and the sediment balance per

each size fraction i of the active layer (Hirano equation (1971)):



∂Q

∂x∗
+
∂(BY )

∂t∗
= 0

∂

∂x∗

(
Y +H +

Q2

2gA2

)
= −1

g

∂U

∂t∗
− j

∂(BY )

∂t∗
= −

N∑
k=1

∂P

∂x∗

∂(βkδB)

∂t∗
= −∂Pk

∂x∗
− β∗k

(
∂(BY )

∂t∗
− ∂(δB)

∂t∗

)
(2.1)
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where x∗ is the longitudinal axes of the river and t∗ is the time, Q is the liquid discharge,

H is the bed elevation above a reference, B, Y and A = BY are respectively the width,

the mean water depth and the area of the cross section, U is the mean velocity of the

flow, j is the slope of the energy line, P is the solid transport, δ is the thickness of the

active layer. The mass balance of the sediments consider two layer: the transport layer

and the mixing layer, in which the suspended transport and the bed load transport

take place respectively [Hirano, 1971]. The sediment is composed by N grain size, each

of which is present in the bottom with a βk percentage, in the transport with a αk

percentage and below the active layer with a β∗k percentage.

Figure 2.1: Scheme and nomenclature of the 1-D morphodynamic model of a river.

The previous system is closed by a uniform flow empirical formula and by a solid

transport formula. For the first we can use the Chézy formula (2.2) or the Gauckler-

Strickler (2.3) formula:

Q = χA(Y j)1/2 (2.2)

Q = ksAY
2/3j1/2 (2.3)

where χ and ks are respectively the Chézy and the Gauckler-Strickler roughness coef-

ficients. They empirically express the ratio between mean and friction velocity, in its

turn linked to the relative or absolute size of the roughness of the bottom. If we admit
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that the roughness of the bottom is represented by the term d90 (the diameter of the

sediment class larger than the 90% of the entire sample of sediment) we can use the

following relationships:

ks =
26

d
1/6
90

χ = 26

(
Y

d90

)1/6

The total solid transport of each component dk of the grain-size distribution can be

approximated with a transport formula of the Engelund-Hansen type [Engelund and

Hansen, 1967]:

Pk(t) = αEH
Qm(t) j(t)n

B(t)p dqk
(2.4)

where the coefficient αEH and the exponent m are site-specific dimensionless cali-

bration parameters while the values of the exponents n, p and q depend on the value

of m, calculated from a dimensional analysis considering which uniform flow equation

is used. In particular in the Table 2.1 the values for the exponents n, p, and q are re-

ported in the case we had considered the Chézy formula (2.2) or the Gauckler-Strickler

formula (2.3).

Table 2.1: Values of the exponents in the equation (2.4)

uniform flow formula n q p

Chézy m m− 1 3
2(m− 1)

Gauckler-Strickler 7
6m m− 1 3

2(m− 1)

In this case, with multiple grain-size composition, the rating curve has to be applied

to each grain-size. Then the total transport P (t) is given by the sum

P (t) =

N∑
k=1

Pk(t) = αEH
Qm(t) j(t)n

B(t)p dqeq

where deq is an equivalent diameter representing the non-uniform movable bottom of

the river. This value will not be simply the mean diameter of the grain-size composition:

we use the relation (2.4) modified like in Di Silvio and Peviani [1991], where the effect

of the mutual influence of grain of different sizes is taken into account through the
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hiding-exposure coefficient ζk [Egiazaroff, 1965], reported in the equation (2.6):

Pk(t) = αEH
I(t)n

B(t)p
βk(t)ζk(t)

dqk
Qm(t) (2.5)

ζk(t) =

(
dk∑N

1 βk(t)dk

)s
(2.6)

An explicit evaluation of the deq will be made in the section 2.5 for the particular

case of N = 2.

The monomial relation between the solid and the liquid discharge, like the (2.4), is

properly valid only for an immediate adaptation of the transport to the local conditions.

It is possible however to identify a particular length along the river after which the

concentration of the sediment in the water column is completely adapted; in analogy

with the uniform flow relationship, which are only valid when the flow is fully developed.

2.2 Boundary conditions

In order to solve the 1-D model just exposed we have to set the boundary conditions

of the system. The number of necessary prescribed boundary conditions depends on

the number N of grain-size fractions that are put into account and on the type of the

motion of the sediment that is considered, either total or suspended [Sieben, 1997].

As said in the previous section the transport is considered as total. In this case we

need to prescribe the liquid input Q(x∗ = 0, t) and the N components of the solid input

Gk(x
∗ = 0, t) upstream in addition to one boundary condition downstream that depend

on the flow regime. For super-critical flow (Fr ≥ 1) the bottom elevation downstream

H(x∗ = L, t) has to be prescribed; for sub-critical flow (Fr < 1) the water elevation

(H(x∗ = L, t) + Y (x∗ = L, t)) has to be prescribed.

A fundamental requirement for a model representing the sediment transport is the

sediment input Gk(x
∗ = 0, t), i.e. the sediment production of the basin.
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Models that simulate the sediment production and models that simulate the sedi-

ment transport could in principle be combined, provided that their simulation is rela-

tively accurate, for example in order to evaluate the effects of relevant human interven-

tions on the watershed area [Ranzi et al., 2012]. Because of the large scale considered

and the extreme variability of the conditions upon the surface of a basin, in this work

we will concentrate the attention on the process of the sediment transport, knowing

that a detailed model for the sediment production always need a more precise (2-D)

description of the real situation all over the watershed.

Indeed, if we are able to model the entire network of the watercourse in the basin,

we would be allowed to take into account only the sediment transport process by con-

sidering that the smallest upstream creeks are in equilibrium conditions: namely that

the input (sediment production) is equal to the output (sediment to the downstream

network).

2.3 Simplifications: the Local Uniform Flow (LUF) hy-

pothesis

Numerical solutions of the model described in the section 2.1, more or less simplified,

have been already proposed by numerous authors (for example Bellos and Hrissanthou

[2003] applied to experimental laboratory data or Fang et al. [2008] applied on the

Hongshui River in China measurements).

In the following we will introduce further simplifications for the waterflow (De St.

Vanant) equations. First we will assume the instantaneous propagation of the liquid

wave to simplify the continuity equation, then the quasi-steady flow conditions are

assumed to simplify the momentum balance equation. This conditions are always valid

if we have a flood wave shorter than the distance between two principle tributaries.
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The resulting water flow equations are the following:


∂Q

∂x∗
= 0

∂

∂x∗

(
Y +H +

Q2

2gA2

)
= −j

(2.7)

A last simplifying hypothesis, virtually necessary for long-term simulations at basin

scale, is considering the energy slope equal to the bottom slope, when it is averaged

over a convenient length. The so called Local Uniform Flow (LUF) assumption allows

notable simplifications of the analysis, but it is not always applicable. Validity limits

will be discussed in the section 2.6.2.

The liquid flow (LUF) equations become:


∂Q

∂x∗
= 0

∂H

∂x∗
=

∂

∂x∗

(
Y +

Q2

2gA2

) (2.8)

2.4 Solid transport equation and sediment rating curve

In laboratory the solid transport equation is calibrated in strictly equilibrium con-

ditions. For a certain configuration of the flume (prescribed slope and grain-size com-

position) in a closed circuit, there is a unique relationship between liquid and solid

discharge (sediment rating curve) of the type :

P (t) = MQm(t) (2.9)

where M is a constant coefficient and m a constant exponent depending on the flume

configuration (the bottom slope i, the channel width B and the grain-size d), as ex-

pressed by the Engelund-Hansen type relationship [Engelund and Hansen, 1967] (2.4):

M ∝ in

Bpdq
(2.10)

In nature the profile and bed composition of rivers hardly attain equilibrium con-
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ditions at basin scale, except for very small watershed (see section 1.1).

Even if we are not properly in equilibrium conditions, however, the measured sedi-

ment transport at a gauging station in a certain point of a river (usually at the closure

of a particular watershed area) can be recognize to be approximately on phase with

the behaviour of the correspondent liquid discharge recorded at the same cross section,

provided that time-averages values are considered at an appropriate time-scale. In

this regard we consider a time-scale short enough in order to neglect natural changes

(subsidence or tectonic uplift; climatic forcing) but long enough in order to consider

correspondingly enough large space-scale to neglect the variations of the micro- (e.g.

ripples and particles) and meso-forms (e.g. dunes) (see section 1.1). Although the rivers

are influenced by seasonal, annual and pluri-annual fluctuation of the boundary condi-

tions, we postulate that at reach scale the mean morphological characteristics (mean

longitudinal and planimetric profiles, mean bottom composition) remain unchanged

over the selected observation time. Indeed we improperly call this configuration as the

”equilibrium” state, and calibrate a rating curve [Asselman, 2000], also called equi-

librium curve, namely the average relation between liquid and suspended sediment

concentration for a certain location.

The most commonly used sediment rating curve find the sediment concentration C

of the flow as a power function of the liquid discharge Q, of the type:

C(t) = MQm
′
(t) (2.11)

where the quantities M and m′ are calibrated against a set of data; m′ is dimensionless,

while the dimension of M depends on the value of m′ [Syvitski et al., 2000]. As the solid

discharge is given by the multiplication of the concentration and the liquid discharge,

we find again:

P (t) = C(t)Q(t) = MQ(m′+1)(t) = MQm(t) (2.12)

This relation is reported in the Figure 2.2.

A lot of studies find site-specific calibration parameters by a linear interpolation
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(Asselman [2000] is one of the most cited work in the early years) minimizing the root

square error of the logarithmic relation: log(P (t)) = log(M) + m log(Q(t)). We will

resume this topic at the section 3.2. Only just to emphasize the fact that this formula

is strictly site-specific, i.e. strictly connected to the specific environment and period

which the data referred to.

Figure 2.2: Example of the relation between the solid and the liquid discharges: rating curve.

Physical interpretation of these rating curve have been made. For example Müller

and Förstner [1968] found that the coefficient M increase with the meteorological events

intensity or with the erodibility of the channels. Asselman [2000] sad that the exponent

m (or m′) represents the erosive power of the river, with large values being indicative for

rivers with a strong increase in erosive power and in sediment transport capacity when

discharge increases, While high values of the coefficient M occur in areas characterised

by intensively weathered materials, which can be easily eroded and transported. How-

ever m and M parameters of sediment rating curves are obviously inversely correlated.

The parameter M include information that convert liquid discharge in sediment

discharge and we call it the morphodynamic parameter. If we consider a relation of

Engelund-Hansen type [Engelund and Hansen, 1967] (2.4) we can link the morphody-

namic parameter directly to the time-averaged morphology of the river represented by

the time-averaged width B, the time-averaged slope I and the time-averaged-grain size

of the sediment d:

M = αEH
In

Bpdqeq
(2.13)
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2.5 Two representative grain-size classes

In sake of simplicity we consider only two representative diameter of the sediment,

representing respectively the fine df and the coarse dc fraction of the sediment. We

say that the composition of the bottom is β for df and (1 − β) for dc. Similarly the

composition of the transported sediments is α for df and (1−α) for dc. Knowing that

P (t) =
∑
Pk(t), we can express the equivalent diameter of the grain size of the bottom

through the relation of the hiding-exposure coefficient and defining d = df/dc, a sort

of a measure of the level of uniformity of the grain-size of the bottom:

deq(t)
q =

β(t)((1/d)q−s − 1) + 1

dqc(β(t)(d− 1) + 1)s
(2.14)

Moreover we can also express the composition of the transport α, i.e. α = Pf (t)/P (t),

in relation with the composition of the bottom β:

α(t) =
β(t)(1/d)q−s

β(t)((1/d)q−s − 1) + 1
(2.15)

We can now write the total transport of the river as:

P (t) = αEH
I(t)n

B(t)pdeq(t)q
Qm(t) = M(t)Qm(t) (2.16)

where M , the morphodynamic parameter, incorporates all the morphological char-

acteristics of the river in a simpler monomial relation. Substituting the expression

(2.14) in the (2.16) to get the complete evaluation of the morphodynamic parameter

M(t), we get to:

M(t) =
αEH
Bpdqc

I(t)n
β(t)((1/d)q−s − 1) + 1

(β(t)(d− 1) + 1)s
= Cost I(t)n c1(β(t)) (2.17)
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where we have called c1(β) the following expression:

c1(β(t)) =

(
dc

deq(β(t))

)q
=
β(t)((1/d)q−s − 1) + 1

(β(t)(d− 1) + 1)s
(2.18)

The evaluation of the values of the exponents n, q and p is made as described in

section 2.1 .

2.6 Linearization of the equations and harmonic solution

To take into account the short-term perturbations of boundary conditions with

respect to the equilibrium configuration, an analytical solution for the equations (2.1)

has been found by Fasolato et al. [2009]. They have taken into account the linearized

system and they have assumed the instantaneous propagation of the liquid flow and

the quasi-steady flow conditions as exposed in the section 2.1 (see equations (2.7)).

We suppose that the monitored river is in equilibrium conditions as explained in the

previous paragraph, actually that it has a reference geometry configuration consisting

in a finite rectangular channel of constant width B and constant energy slope J ; all

the irregularities in space and in time of the parameters, with respect to the averaged

values, are caused by short-term small perturbations at the boundary conditions. Thus,

any variable Ξ(t) of the morphodynamic 1-D system (2.1), described in the section 2.1,

can be linearized as the sum of the equilibrium value Ξ̄ and a perturbation Ξ′(t). The

dimensionless perturbation of the variable is ξ(t) = Ξ(t)−Ξ̄
Ξ̄

.

Considering the dimensionless perturbations as small perturbations (namely much

smaller than one), the one-dimensional morphodynamic model (once the boundary

conditions of the system are known) can be linearized. Below (2.19) the system (2.1) is

written in terms of dimensionless perturbations and dimensionless coordinates, namely

x = x∗/Ȳ and t = t∗ Ū/Ȳ . We have introduced the following dimensionless parameters:

αF = (1−F 2
r ), where Fr is the Froude number; ε = (3/2)EF 2

r , where E = 2g/χ2 is the

resistance coefficient; η = (1− d)/(1 + d) and η∗ = (1− d∗)/(1 + d∗), where d = df/dc

and d∗ = d1−s, is associated with the hiding-exposure coefficient ζ (see eqaution (2.6));
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S∗ = 1 − (η∗)2; ψ = P̄ /Q̄ is the sediment concentration; ∆ = δ/Ȳ is the relative

thickness of the mixing layer.:



∂q

∂x
= 0

αF
∂y

∂x
+
∂h

∂x
− (1− αF )

∂b

∂x
= ε

(
y +

2

3
b− 2

3
q

)
∂h

∂t
+ ψ

∂p

∂x
= 0

p = 6q − 6y + (η∗ + sη)β̄1 − 5b

∂β̄1

∂t
+
ψ

∆

(
S∗
∂β̄1

∂x
+ η∗

∂p

∂x

)
= 0

(2.19)

Fasolato et al. [2009] found a deterministic harmonic solution for the system (2.19)

considering the dimensionless boundary conditions as sinusoidal waves. In particular

we have five boundary conditions: the solid transport p(x = 0, t) and the bottom

composition β(x = 0, t) at the upstream end, the bottom level h(x = l, t) and the

water level (h+y)(x = l, t) at the downstream end and the liquid discharge q(t). These

sinusoidal boundary conditions are characterized by the angular frequency ω = 2π
Tw

Ȳ
Ū

,

where Tw is the period of the typical flood event wave. The particular solution, given

by the equilibrium state of the river, is:



β̄1(x) = 0

p(t) = 2q(t)

y(x, t) =
2

3
q(t)− 5

6
b(x)

h(x) =
(

1− αF
6

)
b(x)− ε

6

∫ x

0
b(x)dx

(2.20)

The homogeneous solution of each parameter ξ(x, t), can be expressed as the sum

of three basic damped harmonic waves that convey along the stream the boundary

condition. These waves are three sinusoidal expressions, two propagating downstream
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(n = 1, 2 in the following expression) and one propagating upstream (n = 3):

ξ(x, t) =
∑
n

= 13ξcn e
i kn x − i ω t (2.21)

This solution is valid for all the perturbations (p(x, t), y(x, t), h(x, t) and β(x, t)) but

q(x, t), which propagation is instantaneous and undamped.

Each amplitude ξcn of the resulting perturbation wave is effected by all the ampli-

tudes ξc of the boundary conditions, through a linear combinations of their values.

2.6.1 Dominant boundary conditions and dominant perturbations

Fasolato et al. [2009] found that one perturbation wave (n = 1) is predominant with

respect to the other two (n = 2, 3) for relatively short wave period of the boundary

conditions, similar to the period of the typical flood event. This wave is propagating

downstream and the other two become negligible.

Moreover they found that for any variations of the boundary conditions, the conse-

quent disturbance propagating along the river related to the bottom elevation h(x, t)

and to the water depth y(x, t) are negligible with respect to the disturbance related to

the solid transport p(x, t) and to the bottom composition β(x, t).

Finally, for flows with Fr > 0, 2, only the boundary conditions for the solid transport

p(x = 0, t) and for the bottom composition β(x = 0, t) have notable effects in the

propagating perturbations, meanwhile the boundary conditions for the water discharge

and the bottom elevation are negligible.

2.6.2 Validity of the LUF hypothesis

The celerity and the attenuation length of the three waves of the harmonic solution

can be evaluated only numerically. They characterize the river reaction of the river to

the perturbations introduced at the boundary with respect to the equilibrium state.

Making suitable average along quite long reaches of the river, we can simplify the

problem thinking that each reach has local uniform flow (LUF), thus we substitute the

energy slope with the bottom slope of the reach. Having sinusoidal boundary conditions
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characterized by a period Tw, Fasolato et al. [2011] advise that this assumption can be

made only if the characteristic parameter ε̄ >> 1:

ε̄ =
EF 2

r ψŪ

8π∆2Ȳ
Tw (2.22)

where E = 2 · 9.81/χ2 is the dimensionless resistance coefficient, Fr is the mean Froude

number of the current, ψ is the mean concentration of the flow, Ū is the mean velocity,

∆ is the relative thickness of the active layer and Ȳ is the mean water depth.

With the LUF hypothesis is possible to find explicit formulations for the celerity

(cfi) and the attenuation lengths (Lfi) of the three dumped waves propagating along

the reach from the boundaries. We consider only the first wave as the faster and more

persistent than the other two (see section 2.6.1): the correspondent propagation celerity

cf1 and attentuation length Lf1 are

cf1 =
ψ

∆
γ Lf1 =

εψ2

6∆3ω2

γ4

(γ − S∗)
(2.23)

where γ = 1− sηη∗.

For the particular solution in equilibrium state the geometry of the river can be

characterized by its width B(x), composed by a series of N sinusoidal curves with wave

length λk and amplitude bck . The mean bed elevation H̄ is a function of B(x). The

relative error between the exact (found numerically) and the LUF solution decrease

for increasing Froude number and dimensionless wave length λk/Ȳ of the river width

oscillation b(x), but it is not effected by the amplitude of the curves. We can decide a

lower threshold of the wave length λlim that provide acceptable relative errors. Thus,

we identify a characteristic length, called morphological box, Lbox = λlim/4 that acts

like an averaging operator filter: only variations longer than Lbox can be reproduced

with the LUF hypothesis. Lbox increases with decreasing Froude number of the flow.

Similarly is possible to find a temporal averaging operator filter from the analy-

sis of the homogeneous solution. The relative error between the exact and the LUF

solutions is always lower than 10% for both the celerity and the attenuation length if

ε̄ > 10, consistently with the assumption that ε̄ >> 1 (see equation (2.22)). With this
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result we can define a threshold temporal evolution window Twind for the period of the

perturbations imposing ε̄lim = 10:

Twind =
Twave

4
=

20π∆2Ȳ

EF 2
r ψŪ

(2.24)

Perturbations with duration larger than Twind can be reproduced by the LUF solution.

Twind depend on both hydraulic and geometric parameters, but Froude number and

wave period are most important.

The LUF hypothesis lead to have a univocal relation between the solid transport

and the bottom slope (variable only in ”morphological” time) instead the energy slope

(variable in ”hydraulic” time). Moreover with this assumption we can make long-term

simulations on long and large rivers. This condition is necessary to work at basin-scale.

2.7 Transfer of the short-term perturbations

In order to evaluate the instantaneous solid transport in a specific cross-section

we utilize the linearized 1-D model of the reach (see section 2.6) for transferring the

perturbations from the upstream end (corresponding to the hypothetical barycenter

of the watershed area of the river) to the gauge station or to the sea. Maintaining

all the simplifications and assumptions taken into account by Fasolato et al. [2011],

we will finally use the simplified 1-D LUF linearized solution to evaluate the values of

the perturbation waves of the sediment transport in correspondence of the investigated

cross-section of the river (more details in section 3.3).
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Long-term equilibrium model

with short-term perturbations

3.1 Long-term and short-term sediment transport

In the present Chapter 3 we want to use the 1-D LUF deterministic solution for

the harmonic river proposed by Fasolato et al. [2011] and discussed in the Chapter 2 to

evaluate the short-term fluctuations of the solid transport recorded at a gauge station

with respect to the basic configuration (equilibrium condition) that we postulate at

a longer time-scale. As we are dealing with a long reach, we can correctly suppose

for the long-term basic transport a monomial relationship between the solid and the

water flux at the gauge station (see sediment rating curve, equation (2.5)). To describe

the short-term perturbations with respect to the equilibrium configuration, we must

take into account the variations of the boundary conditions at the upstream end. In

accordance with Fasolato et al. [2009] the most important boundary conditions that

produce deviations of the solid transport at the gauge station are those relative to the

total solid input and to the bed composition (see in 2.6.1).

Keep in mind that the deterministic analytical solution for the 1-D morphodynamic

model was found by Fasolato et al. [2009] and Fasolato et al. [2011] under specific

hypothesis:

� instantaneous water flow propagation (quasi-steady flow);

37
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� existence of a stationary configuration of the river reach (long-term equilibrium)

and linearization of the equations about the long-term equilibrium value consid-

ering only small perturbations;

� the sediment is composed by only two grain size representative classes;

� Local Uniform Flow (LUF) conditions.

3.2 Calibration of the equilibrium sediment rating curve

In order to calibrate the parameters m and M against available data different

methods have been investigated.

As said in paragraph 2.4, the calibration is usually made by a linear interpolation,

minimizing the root square error of the logarithmic relation: log(P (t)) = log(M) +

m log(Q(t)). The problem now is that often we have not records of the solid transport

at the same temporal scale of the records of the liquid discharge; and it can be shown

that we can find a different calibration of the log-relation for each temporal scale we

consider. For example if we calibrate the log-relation for the Adige river with three

different temporal scales, daily, monthly and annual, we get to the result of the Table

3.1:

Table 3.1: Calibration of the relation log(P (t)) = log(M) +mlog(Q(t)) for the Adige river in
the period 1932-1941 with records of data at different temporal scales.

m M

daily records 2.16 1.23 x 10−7

monthly records 2.62 9.45 x 10−9

annual records 1.08 8.41 x 10−5

This is due not only to a statistical intrinsic problem (the analysis depends on

the number of data: to have same results of a statistical analysis we should analyse

an infinite number of values), but also because the records we are analysing are not

independent random data but have some interrelations, especially when we deal with

short-temporal scale.

We can define an equivalent liquid discharge as that liquid discharge powered to m

that, multiplied by M , provides the mean annual solid transport at the gauge station
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(obviously different from the mean annual liquid discharge). Knowing the daily (t = d)

averaged liquid discharge, we power to m these values and define their annual (t = y)

average as the annual equivalent liquid discharge (Qm(y)). The correct parameter M

is then given by the quotient between the mean annual solid transport and the mean

annual equivalent discharge:

M =
P (y)

Qm(y)
(3.1)

To choose the exponent m that provides the best fitting, namely to assess which is

the best fitting of the resulting annual transport, we have different methods to quantify

the accuracy of the result. We use the classical Root Mean Square Error (RMSE),

that is a dimensional value. Referring to Moriasi et al. [2012], we can test the results

with Nash-Sutcliffe efficiency (NSE), which is very commonly used and which ranges

between −∞ and 1, that indicate perfect fit, while negative values indicate that the

mean observed value is a better predictor than the simulated value. It is calculated

with the normalization of the RMSE, dividing this value by the sum of the square of

the differences between the observed data and the mean observed value. Instead, the

Relative-RMSE normalize the RMSE with the sum of the square of the observed data,

and provides values from 0 (best fit) to ∞. The results are very different from results

obtained with RMSE-observations standard deviation ratio (RSR), which standardizes

RMSE using the observations standard deviations and ranges from 0 (best fit) to ∞.

It find a best fit for values that NSE says to be unacceptable performance as shown in

the Figure 3.1.

Thus the NSE has been taken as decision parameter.

3.3 Transferring short-term perturbations to the gauge

station

With this model we correct the equilibrium prediction of the instantaneous solid

transport P (t) with the amplitude of the perturbations propagated downstream with

the first wave (the other two are negligible, as mentioned in the paragraph 2.6.1).
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Figure 3.1: Example of the behaviour of the different method to quantify the accuracy of the
model with different value of m. The dot-line represent the NSE, the solid line is the RMSE,
the dash-line is the relative RMSE and the circles represent the RSR.
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The perturbation of the solid transport travels along the LUF-reach much slowly than

the liquid wave (having an instantaneous propagation). In this way the chronological

sequence of the records P (t) in the gauge station contain the information about the

past solid transport in the upstream end.

The equilibrium prediction of the instantaneous solid transport is P (t) = MQm(t),

where M is the equilibrium morphodynamic parameter given by (2.17). In non-

equilibrium conditions we have also a perturbation P ′(t) of the morphological char-

acteristics. We can write:

P (t) = MQm(t) + P ′(t) = MQm(t)(1 + pc,1(t) +mc,1(t)) (3.2)

where pc,1(t) and mc,1(t) are the amplitudes of the non-dimensional perturbations at the

gauge station (see Figure 3.2), respectively due to the deviations from the equilibrium

conditions of solid input and morphological characteristics of the upstream boundary.

According to Fasolato et al. [2009] the only two boundary conditions that have

notable effect downstream are those related to the total transport and to the grain

size composition. For calculating the perturbations pc,1(t) and mc,1(t) we use the

formulation given in that work.

Figure 3.2: Long-term sediment rating curve in equilibrium conditions and identification of
absolute perturbations for an arbitrary measure.

The propagation along the LUF reach takes a certain time, called k, that can be
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known when we know the length of the reach and the celerity of the wave, given by

(2.23) [Fasolato et al., 2011].

When we know the boundary conditions of the total sediment input pc(t) and of

the bottom composition βc(t) in x = 0 (barycenter of the basin), all the amplitude of

the perturbations are calculated through a linear combination of all the amplitude of

the boundary conditions [Fasolato et al., 2009]:


pc,1(t− k) = A1mc(t− k) +B1pc(t− k)

mc,1(t− k) = D1mc(t− k) + E1pc(t− k)
(3.3)

In Fasolato et al. [2009] we find the values for the coefficients: A1 = 0.70, B1 = 0.30,

D1 = 0.40 and E1 = 0.60. When the perturbations wave have been formed they

propagate downstream and arrive in x = L (at the gauge station) after k time and

damped. We can calculate the damping coefficient αatt knowing the length L of the

reach and the attenuation length (given by (2.23)), defined as the distance over which

the amplitude of the wave is reduced by a factor of 1/e. So we have:


pc,1(t) = αatt pc,1(t− k)

mc,1(t) = αatt mc,1(t− k)
(3.4)

3.4 Boundary conditions

For the application of this model to a natural river we need to know the boundary

conditions pc(t − k) and mc(t − k), which represent the amplitude of the sinusoidal

dimensionless fluctuations of the sediment input and morphology characteristics due to

complex natural phenomena in the basin area. There are a lot of work trying to measure

the production of sediment by a watershed area, related to the climatic conditions in

more or less complicated model. A large discussion about the principal models of

sediment production and their problem or advantage has be done both by De Vente

and Poesen [2005] and Aksoy and Kavvas [2005]. The models can be classify in different
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groups depending on the morphological characteristics they take into account and their

complexity. In any case the large quantity of data required is always the main problem.

Moreover the analysis of a large record of data made by De Vente and Poesen [2005]

found out that the relations between the typical characteristics taken into account in

the models can be very different from a river to another one: for example the relation

between the unit sediment yield and the basin area is not always negative, but it can be

also positive. As our scope is to find simple relationship that require the lesser number

of data as possible, we tried to develop simple relationships to evaluate the short-

term variable boundary conditions at the system only dependent on the LUF liquid

discharge. Note that this relationship, together with other empirical formulations, will

be calibrated against the measurements by an ARMA procedure (see 3.5).

3.4.1 Mathematical formulations for the boundary conditions

In our model the basin is concentrated in its barycenter, and the stream is a LUF

channel without any other input after the upstream end. So we can consider the records

of the liquid discharge Q(t) downstream as an indicator of the climatic conditions

upstream, strictly bound to the sediment production.

We consider two hypothetical formulations that provides the variations in time of

boundary conditions pc(t) and mc(t) only knowing the liquid discharge at the gauge

station.

Dimensionless perturbation of the solid transport: pc(t)

This parameter describe the variations of the sediment transport directly induced by

the time-depending floods. We consider that pc(t) is proportional to the dimensionless

deviations from the equilibrium solid transport in the closure section:

pc(t) = a∗1
MQm(t)−MQm

MQm
= a∗1

Qm(t)−Qm

Qm
(3.5)

where a∗1 is a calibration parameter.
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Dimensionless perturbation of the morphological characteristics: mc(t)

Figure 3.3: Schematic representation of two main mechanisms of sediment production leading
to a fining of the bottom composition of the river: a) mass erosion; b) surface erosion with the
effect of the vegetazion cover

For Fasolato et al. [2009] a relevant factor governing this perturbation is the varia-

tion of the bed composition of the input. We think that a remarkable fining of the bed

occurs when a landslide falls from the slopes of the basin (Figure 3.3, a). We formulate

mc(t) proportional to a cumulative term of the water flux, somehow correlated, in its

turn, with long-term rainfall and thus with the accumulation of water in the slopes, the

main cause of the mass erosion. The cumulative term does not identify single events,

but it is a continuous function because the landslide can occur in any point of the basin.

Each basin is characterized by a specific filling time p of the slopes of the basin that

determines the landslides occurrence. Moreover we assume that the landslide creates

a sort of sediment storage that progressively empties with a linear evolution regulated

by a non-dimensional erodibility coefficient Eu; thus at every time step mc(t) depends

also on the value of mc at the previous time:

mc(t) = a∗2

[∑i=t
i=t−p

(
Q(i)−Q

)
Q

+
mc(t−∆t)

(1 + Eu)

]
(3.6)

where a∗2 is a calibration parameter and Eu/∆t is according to the size 10−6 1
sec

[Crosato, 2007].
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This approach is obviously related to sediment production by mass-movements.

Wherever the main mechanism of sediment production is surface erosion, bounded to

high values of kinetic energy of the rainfall, we can consider an alternative relation for

mc. In this case an important role is played by the vegetation cover, which delay the

response (Figure 3.3, b), and the cumulative formulation is maintained:

mc(t) = a∗2

[∑i=t
i=t−p

(
Rrm(i)−Rrm

)
Rrm

+
mc(t−∆t)

(1 + Eu)

]
(3.7)

where R is the erosivity factor in the USLE formula [Wischmeier and Smith, 1978].

3.5 Final deterministic solution

We can substitute the formulations of the boundary conditions (3.5) and (3.6) (or

(3.7)) in the equations (3.3). Then, using the transferring formulations (3.4), we can

finally evaluate the instantaneous solid transport at the gauge station with the equation

(3.2). The final resulting formulation is:

P (t) = MQm(t) {1 + αatt pc,1(t− k) + αatt mc,1(t− k)} =

= MQm(t) {1 + αatt [A1 mc(t− k) +B1 pc(t− k)] +

+ αatt [D1 mc(t− k) + E1 pc(t− k)]} =

= MQm(t) {1 + αatt [(B1 + E1) pc(t− k) + (A1 +D1)mc(t− k)]} =

= MQm(t)

{
1 + αatt

[
a∗1 (B1 + E1)

Qm(t− k)−Qm

Qm
+

+ a∗2 (A1 +D1)

(∑i=t−k
i=t−k−p

(
Q(i)−Q

)
Q

+
mc(t−∆t)

(1 + Eu)

)]}
(3.8)

The proportionality coefficients a∗1 and a∗2 are calibrated against a set of measured

data by means of the ARMA procedure.

To achieve the best reproduction of the deviations from the equilibrium formula, we

applied the ARMA procedure not to the absolute formula, but just to the dimensionless
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deviations from the equilibrium conditions, i.e.:

P (t)−MQm(t)

MQm(t)
= pc,1(t) +mc,1(t) (3.9)

The ARMA procedure will be explained in Appendix B.

3.6 Splitting the watershed in sub-basins

The main course of large rivers is formed by a series of portions characterized by

very different morphological characteristics, in part because of different lithological

situations occurring along hundreds of kilometers and in part because it is fed by large

tributaries coming from different watershed. So we can identify a subdivision of the

complete basin in two or more sub-basins, each one representable by LUF conditions

and that can be modeled by the same scheme just described. Each sub-basin has its

boundary conditions, both by its proper watershed area and by its tributaries. These

variable boundary conditions creates waves perturbation that travel, dumped, along

the LUF channel up to the confluence with the LUF channels of the other sub-basin.

The main channel of each sub-basin is characterized by a different wave celerity and

attenuation length (with regard to the characteristics of the sub-basin), and obviously

by a different time-delay k. At the confluences the waves are summed to create a single

wave perturbation.

Given NB sub-basins, the final equation (3.8) will be modified as follows:

P (t) = MQm(t)

{
1 +

NB∑
i=1

[αatt,i ((A1 +D1)mc,i(t− ki) +

+ (B1 + E1) pc,i(t− ki))]}

(3.10)

As mentioned before, at the section 2.2, the borderline case is modeling the entire

network of the watercourse in the basin.

This procedure is in principle applicable only if we have the direct measurements

of the liquid discharge at the closure section of each LUF channel identified. This
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condition is generally never verified.

Obviously the best alternative is the calibration of an accurate hydrological model

against the record of measured total liquid discharge at the closure cross-section of the

entire basin. As we do not have a precise description of the watershed area, as well as

measurements of the local daily rainfall and temperature, necessary to give acceptable

results, we have applied a more compact approximate model.

The watershed area has been split in macro-regions of the basin that are relatively

uniform and substantially different from each other: for example we can easily dis-

tinguish a mountain region from a plain region. In this case the two sub-basins are

characterized, inter alia, by different mean elevation and so by different mean daily

temperature. In particular they will react in a totally different way as far as the tem-

porary storage of the rainfall in the snow pack and the consequent release, phenomena

that sensibly discriminate the seasonal trend of the liquid discharge coming from the

two sub-basins identified. On the other hand, when we average over a long number

of years,the effect of the temporary storage in the snow pack is negligible; so that we

assume the watershed surface of each sub-basin SB as a relative measure of its im-

portance in the contribution of the averaged total liquid discharge Q̄ measured at the

gauge station:

QB
Q̄

=
SB
S

(3.11)

where QB is the averaged liquid flow of each sub-basin identified with the subscript

B, SB represents the surface of the sub-basin and S is the area of the entire basin. In

order to evaluate the instantaneous waterflow QB(t) as a function of QB, the follow-

ing water balance of the snow-pack has been written (3.12), exclusively based on the



48 Chapter 3. Long-term equilibrium model with short-term perturbations

temperature distribution TB(t) over the sub-basin.

If TB,i(t) < 0→ snow,B,i(t) = cBQ(t)
SB,i
S

If TB,i(t) > 0→ snow,B,i(t) = 0

Snow,B,i(t) =
Snow,B,i(t− 1) + snow,B,i(t)

1 + ρB,i(t)

Qmelt,B,i(t) = ρB,i(t) Snow,B,i(t)

QB(t) = cB

[
Q(t)

SB
S

+
N∑
i=1

Qmelt,B,i(t)

]
(3.12)

where snow(t) is the ” snow precipitation”, Snow indicates the accumulated storage

of snow, i indicates the altitude/temperature zone and cB is a calibration parameter set

such to verify that
∑NB

b=1QB(t) = Q(t). The correction parameters ρB,i are expressed

as the ratio between the mean daily temperature TB,i and the mean yearly temperature

of that area T̄B,i. This evaluation is normalized as follows:

ρB(T (t)) = ρB(t) =

N∑
i=1

ρB,i(t) =

N∑
i=1

exp
(
TB,i(t)

T̄B,i

)
max

[
exp

(
TB,i(t)

T̄B,i

)] (3.13)

The sub-basins identified could in principle be characterized by a different type of

vegetation cover. This characteristic is important because the presence of the vegetation

on the basin influences the carrying capacity of the slopes and the surface erosion, as

shown by numerous formulations (e.g. U.S.L.E. Wischmeier and Smith [1978]).

In particular we think that the temperature could be again a distinguishing parame-

ter assuming that the growth of the vegetation is proportional to the local temperature.

We define a new correction parameter VB,i(t) function of the local temperature TB,i(t)

in the altitude/temperature zone i, of the mean temperature of each sub-basin and of
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a typical limit-growth temperature TB,lim for the vegetation type considered:

VB,i(t) =
TB,i(t)− TB,lim

T̄B,i
(3.14)

The correction parameter is then normalized such that it varies between zero (no

vegetation) and 0.95 (quasi-completely vegetated slopes). The value of the liquid dis-

charge coming from the sub-basin B is reduced with respect to the presence of vegeta-

tion by the multiplication for the factor [1− VB,i(t)]
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3.7 Numerical applications to the Adige river

The Adige River (Figure 3.4) has its source at the elevation of 1586 m s.l. from an

artificial hydropower reservoir, close to Resia pass (Bolzano, Italy). It flows eastbound

to Bolzano, where the principal watercourse, Isarco River, joins. Then it flows through

the cities of Trento and Verona. The watershed area finish near Alberedo d’Adige

(Verona, Itlay), after about 290 km, and then continues along the north-eastern part

of Italy as a confined pensile river, parallel to the Po River, down to the Adriatic Sea.

With about 415 km in length, it is the second longest river in Italy, after the Po River.

With a catchment area of 12 200 km2, the Adige River is the third Italian watershed,

behind the Po River and the Tiber River. It has a great influence to the adjacent

environment which is extremely man-made.

This river has mountain characteristic in the high part of its basin, while assuming

alluvial characteristics already dowstream the city of Bolzano.

3.7.1 Geomorphological data and calibration

Historically the water level of the Adige river was constantly monitored in many

gauge stations and through the discharge rating curve it is possible to evaluate the

correspondent liquid discharge. We can also find some records of the concentration of

the suspended load but only for two stations and for two distinct limited periods. The

gauge station on the San Lorenzo bridge in Trento recorded concentrations data from

1932 to 1941 (call this period as ’30s) and from 1958 to 1973 (call this period as ′60s).

The other gauge station is on the bridge of the SP1 road, near Boara Pisani and has

worked from 1929 to 1941 (’30s) and from 1958 to 1972 (′60s). The available data

are collected in the SIMN (the old national service managing the hydro and sea gauge

stations in Italy up to 2001) publications of the Hydrological Annals as monthly mean

solid suspended concentrations (SSC [mg/l]).

We assume that the total solid transport is quasi completely composed by the

measured suspended load, as there are not measures of the bed load. This hypothesis

is reliable in a context of a gauge station placed in a quite lowland part of the river

[Asselman, 2000], as in this case (and not for a torrent type of stream).
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Figure 3.4: Map of the Adige watershed
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The mathematical model evaluate the volumetric solid discharge of the solid trans-

port referred to a certain liquid discharge (see equations(3.8)). We convert the SSC

series in volumetric solid discharge [m3/s] (equation (3.15)) by the multiplication with

the instantaneous liquid discharge and dividing for the product of the mean density

of the sediments δ (assumed that the material is essentially siliceous material we set

δ = 2600 kg/m3) and the full index (1 − n) (assumed a debris porosity (void index)

n = 0.35). These assumptions are not precise but they will be corrected by the calibra-

tion parameter, both of the equilibrium formula (αEH in (2.13)) and of the perturbation

equations (a∗1 and a∗2 in (3.8)).

P (t) =
SSC Q(t)

δ n
(3.15)

As the morphological data are refereed to current measurements (and so they are

not temporally coherent with liquid discharge and solid concentration data), they are

not properly valid in order to calculate the morphodynamic parameter M (2.13), the

celerity and the attenuation length (2.23) of the perturbation waves. Moreover the

barycenter of the basin is identify by an empirical evaluation, so we do not precisely

know the length of the LUF channel. For these reasons we must calibrate (and not

calculate) the morphodynamic parameter M and we can not trust to the analytical

evaluation of the delay k of the perturbation waves.

We consider the records coming from different stations as records coming from two

different rivers characterized by a different morphology.

However, recent works about the balance of the sediments of the Adige river (Di Sil-

vio et al., 2008, Nones et al., 2009) have shown that for the morphological boxes (see

section 2.6.2) the principal morphological quantities (equivalent grain-size diameter,

width, slope) are not substantially changed during the last century.

”Trento” LUF reach: The watershed surface closed at the cross section in Trento

has peculiar mountain characteristics. In Bolzano (about 50 km before Trento station)

the Adige River meet its principle tributary Isarco River, which has a mean slope and
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a mean water flow greater than the upstream part of the Adige itself. Then we can

say that the Adige River for the LUF ending in Trento has two main courses. We

assumed a unique LUF length of 75 km and a slope of about 3.8h, that correspond as

considering the barycenter in Ponte Gardena (or Merano, if we follow the Adige river

main course instead the Isarco).

”Boara Pisani” LUF reach: The basin closed at the cross-section in Boara Pisani

has more lowland characteristics. Similarly for Trento, the barycenter is identified

corresponding about in the city of Salorno, between Trento and Bolzano, for have a

plausible length and slope of the LUF channel but neglecting in part the fact that a lot

of sediment input comes from the rivers flowing from the Lessini mountain (Alpone,

Chiampo, etc . . . ) after Verona. The resulting LUF is about 240 km with a slope of

about 0.9 h.

The LUF reaches closing at the two gauging stations of Trento and of Boara Pisani

are shown in the Figure 3.5

Figure 3.5: The two scheme of the Adige river: a) the LUF channel closing at Trento gauge
station; b) the LUF channel closing at Boara Pisani gauge station.
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3.7.1.1 Grain-size composition

For Adige river we have some grain-size measurements made by the Autonomous

Province of Bolzano and by the Basin Autority of the Adige river. These data refer to

samples picked up from the main course in Marlengo and in Merano (near the confluence

of the Passirio river), in Cortina d’Adige and in Salorno (between Bolzano and Trento),

in Dolcè (near Garda lake in the Province of Verona), in Zevio (south of Verona) and

finally some measurements in Boara Pisani are acquired from Brunelli [1987].

Then, assuming that the grain-size curve has a normal distribution, the two rep-

resentative classes (see section 2.5) are identified by the diameter that corresponds to

the cumulative percent passing equal to 16 % for the fine class and equal to 84 % for

the coarser class. For Adige river we have df = 2.2 mm and dc = 42.4 mm.

Finally we have the actual representative grain-size composition finding the real

percent passing of this two classes in the average particle size distribution obtained

respectively for the Adige river closing in Trento and closing in Boara Pisani. The

resulting data are summarized in the Table 3.2.

Table 3.2: Representative current grain-size composition of river Adige closing in the gauging
station of Trento and the river closing in Boara Pisani.

di [mm] βi in Trento [%] βi in Boara Pisani [%]

fine 2.2 24.08 30.32

coarse 42.4 75.92 69.68

3.7.2 Results

Though a Fourier analysis we found that the principal sinusoidal wave of both the

liquid flow and the solid transport has a period equal to one year. The second and the

third waves have respectively period of six and three months. These results respect the

limit of application of the LUF hypothesis found by Fasolato et al. [2009] (see (2.22)

in section 2.6.2), having that the Tw ≥ 4 Twind, calculated such that ε̄ = 10, lead to

shorter values (see Table 3.3).
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3.7.2.1 Calibration of the equilibrium formula

As we said, the exponent m is considered as a characteristic parameter of the river.

By contrast the long-term equilibrium is considered valid only for one period at a time

(′30s and ′60s), while the two periods considered are rather separated by a period of

time characterized by a great human activity over the basin (reservoirs construction,

interventions for the erosion control, mines, etc . . . ). For this reason the calibrations

of the equilibrium formula is preliminarily made putting together the records of data

referred to the two different periods in order to identify the m exponent of the river.

Then the two temporal series are separated in order to calibrate the other parameters.

The results are shown in Table 3.3, where are reported also the NSE of the evalu-

ation of the solid transport with the calibrated equilibrium formula and the minimum

period of the periodical boundary conditions representing the threshold for the appli-

cation of the LUF hypothesis (see secion 2.6.2). Finally are reported the celerity of

the perturbation waves (both dimensionless and in the dimensional form through the

multiplication with the mean flow velocity U), the consequent delay k of the wave to

arrive at the gauge station from the barycenter of the basin along the LUF reach, the

attenuation length (both dimensionless and in the dimensional form through the multi-

plication with the mean water depth Y ) and the correspondent attenuation parameter

αatt.

3.7.2.2 ARMA calibration of the non-equilibrium perturbations

The ARMA procedure works in order to calibrate the coefficients a∗1 and a∗2 of the

formulation (3.8). But in that formulation there are also other parameter, measurable

in principle, that are unknown. In particular there are the mean characteristic filling

time of the slope of the basin p and the erodibility coefficient Eu. Moreover, as already

explained above, the available morphological data are not referred to the same period

which the solid measures are referred to. This means that the evaluated delay k would

be not so precise, also because the length of the LUF channel can not be perfectly

appreciated.

In order to evaluate the best set of parameter a recursive procedure was be devel-
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Table 3.3: Results of the calibration of the equilibrium formula for Adige river

Trento Boara Pisani

L [km] 75 240

m 2.1 1.8

’30s ’60s ’30s ’60s

M 2.025 x 10−7 1.595 x 10−7 7.530 x 10−7 8.170 x 10−7

NSE of the calibrated
58.28 % 46.37 % 74.19 % 62.50 %

equilibrium formula

P̄ [m3/s] 0.032 0.017 0.022 0.015

Qm [m3/s] 1.47 x 105 1.05 x 105 2.95 x 104 1.89 x 104

Ȳ [m] 1.244 1.152 1.667 1.442

Ū [m/s] 3.021 2.907 1.926 1.792

min[Tw] [d] 12 19 42 46

αEH 0.00089 0.00064 0.02406 0.02612

cf1 [\] 0.00176 0.00105 0.00192 0.00166

cf1Ū [km/y] 168 97 116 94

k [d] 163 284 753 937

Lf1 [\] 2.55 x 107 9.85 x 106 1.74 x 106 1.50 x 106

Lf1 Ȳ [km] 31712 11342 2899 2161

αatt 0.996 0.989 0.875 0.840
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oped, where different combinations of the values of the parameter, each one varying

in a appropriate range, was taken into consideration. For each set of k, p and Eu,

the ARMA procedure could be applied in order to find the best a∗1 and a∗2 for the

model defined. The ARMA procedure finds the couple a∗1 and a∗2 such to minimize the

root square error of the relative deviation of the measured data from the equilibrium

evaluation (see (3.9)). Then the correct set of parameter has to be chosen.

As for the decision of the best calibration of the equilibrium formula discussed in

the section 3.2, the method to judge the goodness of a model is not univocal. In general

we chose the set of parameters that gives the best NSE of the data, because we want

to give a greater importance to the peak of the solid transport than to the low values,

considered that the ARMA procedure has already adjusted the results to the relative

values.

Is important to note that sometimes good results come out with one or both of

the ARMA parameter negative. But negative parameters were excluded because of the

physical interpretation of the boundary conditions (see section 3.4.1).

A first trial application of the recursive procedure kipping the delay k equal to

the one resulting from the analytical evaluation (made with the current morphological

characteristics) (see Table 3.3) can be indicative for the characterization of the values

of p and Eu. Unluckily in this way no positive (and so acceptable) ARMA parameters

was found for the first period of the gauge station of Trento. For the other three

records the results are reported in the Table 3.4, where also the NSE and the RSR of

the equilibrium results are reported for simplicity of comparison.

This method can be better applied if we would have the right morphology parameter

in order to calculate the correct k. For the Adige river here we use the recursive

procedure also for the delay k, finding the results reported in the Table 3.5. The

Figures 3.6, 3.7, 3.8 and 3.9 show the chronological sequence of the monthly solid

transport data against the results calculated with the equilibrium and calculated with

the combination of the ARMA and recursive procedures for the four series of data.

As example, only for the first period (′30s) of Trento is reported the Figure 3.10. It

shows the graphs that compare the measured values with the results calculated with
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Table 3.4: Preliminary results of the ARMA procedure for the river Adige (also the NSE and
the RSR of the equilibrium results are reported for simplicity of comparison).

Trento Boara Pisani

’60s ’30s ’60s

k [d] 284 753 937

p [d] 7 525 252

Eu 0.2 2.5 0.2

a∗1 0.07655 0.16070 0.04897

a∗2 0.00411 0.00023 0.00027

NSE 45.32 % 74.22 % 61.99 %

equilibrium NSE 46.37 % 74.19 % 62.50 %

RSR 0.739 0.508 0.616

equilibrium RSR 0.732 0.508 0.612

the equilibrium formula and the results calculated with the ARMA/recursive model

respectively: on the left a) compares the results in the log scale and shows the number

of data included in an interval equal to +/− 10 %; on the right b) compares the results

in the absolute scale, with the interpolation line of both the results.

Table 3.5: Results of the combination of the ARMA and recursive procedures for the river
Adige (also the NSE and the RSR of the equilibrium results are reported for simplicity of
comparison).

Trento Boara Pisani

’30s ’60s ’30s ’60s

k [d] 1151 425 1146 1127

p [d] 420 14 889 700

Eu 2.5 0.1 0.0 2.5

a∗1 0.20962 0.00747 0.28656 0.13406

a∗2 0.00057 0.00632 0.00004 0.00033

NSE 70.8 % 47.6 % 78.6 % 64.0 %

equilibrium NSE 55.5 % 46.4 % 74.2 % 62.5 %

RSR 0.541 0.724 0.463 0.600

equilibrium RSR 0.667 0.732 0.508 0.612
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Figure 3.6: Comparison between the chronological series of suspended solid discharge mea-
sured (red crosses), evaluated with the equilibrium formula (green line) and calculated with
the complete model (blue dotted line) calculated with the complete model (blue dotted line)
calculated with the complete model (blue dotted line) calculated with the complete model (blue
dotted line) for the first period (′30s) of Trento.

Figure 3.7: Comparison between the chronological series of suspended solid discharge mea-
sured (red crosses), evaluated with the equilibrium formula (green line) and calculated with
the complete model (blue dotted line) calculated with the complete model (blue dotted line)
calculated with the complete model (blue dotted line) calculated with the complete model (blue
dotted line) for the first period (′60s) of Trento.
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Figure 3.8: Comparison between the chronological series of suspended solid discharge mea-
sured (red crosses), evaluated with the equilibrium formula (green line) and calculated with
the complete model (blue dotted line) calculated with the complete model (blue dotted line)
calculated with the complete model (blue dotted line) calculated with the complete model (blue
dotted line) for the first period (′30s) of Boara Pisani.

Figure 3.9: Comparison between the chronological series of suspended solid discharge mea-
sured (red crosses), evaluated with the equilibrium formula (green line) and calculated with
the complete model (blue dotted line) calculated with the complete model (blue dotted line)
calculated with the complete model (blue dotted line) calculated with the complete model (blue
dotted line) for the first period (′60s) of Boara Pisani.
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Figure 3.10: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (cicles)) for the first period (′30s) of Trento
in the log-scale (a) and in the absolute scale (b). In the log-scale graph (a) the dotted lines
identify a range of +/− 10% with respect to the perfect representation.
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3.7.2.3 Sensitivity analysis and discussion

The results from the Table 3.5 shows that the ARMA/recursive procedure gives an

improved result both in terms of NSE (greater) and in therm of RSR (smaller) with

respect to the evaluation of the solid transport calculated with the equilibrium formula.

From the Figures 3.6, 3.7, 3.8 and 3.9 we see, especially for the ′30s, that there are

some peaks of the measured solid discharge which are very much better interpreted by

the new model. In the Figure 3.10 the calculated data are compared with the measures

and we can see that the cloud of measured/calculated points are closer in the case of

the new model; moreover in the absolute scale (b) in Figure 3.10) the regression line

for the ARMA/recoursive model results closer to the perfect representation.

For the recursive procedure we have developed an automatic method and, as already

said, the set of parameters providing the best NSE is chosen as the result.

But a sensitivity analysis of the results shows that there are many sets of parameters

that gives similar response. In particular is important to observe that generally similar

results come out (i.e. provides positive ARMA parameters) for a certain range of k, but

the same range is repeated periodically every year, demonstrating that the boundary

conditions calculated on the measured values respect the sinusoidal behaviour with

annual period.

Moreover, even if acceptable results are provided for almost all the values of p and

Eu, the corresponding NSE varies with a p and Eu with a consistant inclination that

may give us some useful information, even if different for every data set and not yet

very clear. NSE increases with increasing Eu only for the first periods (′30s) of both the

stations (more evident for Trento), while decreases with Eu increasing for the second

periods (′60s). With increasing p the results for Boara Pisani do not show particular

tendency, and seem to be independent about it, apart from some preferences for very

low (< 100 days) and very high values (> 2 years). For Trento instead the dependence

on p is strong, expecially for the first period, and also in this case the dependence seems

to have a peculiar annual periodic behaviour (see Figure 3.11). These observations are

valid despite the results presented in the Table 3.5, where the best NSE is chosen: as

we can see from the Figure 3.11 the NSE variance is very low.
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The delay k found with the recursive procedure is always greater than the one

analytically evaluated with Fasolato et al. [2011]. Moreover, especially for the gauge

station of Trento, k presents lower values in the second period, while from the analytical

calculation we found an inverse tendency. Probably this is due by the fact that for the

calculation of the celerity of the perturbation waves we consider the same morphology

of the river, while from the first to the second period the reduction of the solid transport

along the river, caused mainly by the huge human intervention, lead to an armouring

of the bed that in its turn lead to an increasing speed of the propagating waves.

In any case, a direct inspection of the results shows that the propagation celerity

(and so the delay k) of the perturbations is hardly precisely constant as assumed by

the harmonic approach, basically because the input is not precisely sinusoidal. Yet the

inaccurate delay of the solid transport perturbations may also depend on the different

delay of the inputs coming from different area of the watershed (and not all concentrated

in the barycenter). In order to put it into account, some tests have been made by

splitting the watershed in sub-basins.

3.7.2.4 Improvement of the model by dividing the area in sub-basins

Taking a look to the map of the river Adige (see Figure 3.4), is possible to identify

many important tributaries: Rienza, Passirio, Noce and Avisio in the upper part and all

Figure 3.11: Example of the tendency of the NSE with p increasing. given k and Eu.
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the rivers coming from the Lessini mountain (Alpone, Chiampo, etc . . . ) downstream

Verona.

For sake of simplicity we do a simple division in two great sub-basins of the water-

shed area In this way we schematize the river in two LUF reach conveying in a unique

gauge station, as shown in the Figure 3.12.a. Properly this scheme lead to have 3

different LUF channel. In order to reduce the computational time the barycenter of

the second sub-basin is collapsed into the confluence, reducing the number of the LUF

channel to 2 (Figure 3.12.b).

Figure 3.12: Schematic of Adige river divided in two principle sub-basins: a) Schematic of
the river closing at Trento; b) Schematic of the river closing at Boara Pisani

Trento gauge station

As said in the section 3.7.1, the Adige river is composed by two ”main” courses

up to Bolzano. Moreover there are other two great tributaries flowing onto the Adige

river just before the Trento gauge station: the torrent Noce from the right side (about

10 km before the gauge station) and the torrent Avisio from the left side (about 7 km

before the gauge station). These two rivers convey to the Adige a great part of solid

transport.

The first sub-basin correspond to the upper part of the surface, properly the Isarco

and the upper-part of Adige watershed area. The second sub-basin is a great southern

basin that combine the watershed area of both Noce and Avisio.
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Boara Pisani gauge station

In this case we distinguish the mountain part with an ideal barycenter in Bolzano

from the portion with more flat features. This second part has not a main course, but

a lot of little torrent. We can for example collapse its barycenter in correspondance of

the city of Rovereto, at the confluence of the Leno torrent.

Some simulations have be done with this new configuration but, as already said, con-

sidering that we do not know the correct morphology of the different LUF channels, the

computational time required for the recursive method began to be important. More-

over the improvements obtained can be simply attributed to the increasing number of

the addends of the mathematical model (see equation (3.10)).
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3.8 Numerical applications to the Po river

The Po River represented in the Figure 3.13 is the longest and largest river of Italy:

it springs from a stony hillside at Pian del Re, a flat place at the head of the Val Po

under the northwest face of Monviso (in the Cottian Alps), it flows across northern

Italy for 652 km and then finally reach the Adriatic Sea, southern Venice, forming a

wide delta (with hundreds of small channels). It has a drainage area of 74000 km2.

The river flows through many important Italian cities, including Torino, Piacenza and

Ferrara.

Also in this case is then possible to recognize and differ the mountain part from

the plain. But now the mountain part may be further subdivided recognizing that the

Po river is feeded both from medium-large river flowing from the Alps and from rivers

with typical turrential behaviour flowing from the Apennines.

The river is subject to heavy flooding, consequently over half its length is controlled

with levees.

In this section is briefly presented the same analysis made in the previous section

3.7 for the Adige river, now made for the Po river.

3.8.1 Geomorphological data and calibration

From the collection of the Hydrological Annals of the SIMN we have very long

series of liquid discharge and some series of the solid discharge along the main course:

in Piacenza, just before the confluence of the torrent Trebbia, the solid concentration

was measured from 1956 to 1975 and again from 1977 to 1985; in Boretto from 1968

to 1972 and from 1976 to 1985; in Pontelagoscuro, near the delta on the Adriatic sea

from 1968 to 1985, but the year 1974. As for the calibration for the Adige river, we

assume that the total solid transport is quasi completely composed by the measured

suspended load (section 3.7.1).

3.8.1.1 Grain-size composition

We get the data about the sediment composition from the grain-size cartography

of the Basin Authority of the Po river. From these data we can evaluate the average
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Figure 3.13: Basin of the river Po and its tributaries and the identification of the three
considered gauge station. The bold black lines represent an hypothetical subdivision in three
principal sub-basins proposed in section 3.8.2.4.
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finer diameter d16 and the average coarser diameter d84 for the entire river and then

calculate the respective bed composition for the entire river closing in the different

gauge stations (see table 3.6).

Table 3.6: Representative actual grain-size composition of river Po closing at the gauge station
of Piacenza, Boretto and at the closet of the river in Pontelagoscuro.

d [mm] βi in Piacenza [%] βi in Boretto [%] βi in Pontelagoscuro [%]

0.72 29.97 55.17 70.03

11.66 70.03 44.83 29.97

3.8.2 Results

Also in this case though a Fourier analysis we found that the principal sinusoidal

wave of both the liquid flow and the solid transport has a period equal to one year. The

second and the third waves have respectively period of six and three months. These

results respect the limit of application of the LUF hypothesis found by Fasolato et al.

[2009] (see (2.22) in section 2.6.2), having that the Tw ≥ 4 Twind, calculated such that

ε̄ = 10, lead to shorter values (see Table 3.7).

3.8.2.1 Calibration of the equilibrium formula

In the Table 3.7there are the results of the calibration of the equilibrium formula,

its corresponding NSE and the resulting delay k and attenuation coefficient αatt.

In this case the no-datum period (about 4 years for all the three stations) is maybe

short enough in order to calibrate the model as we had a unique series of data. In the

Table 3.7 the calibration for both the two distinguished periods and the unique period

are shown.

3.8.2.2 ARMA calibration of the non-equilibrium perturbations

Also in this case there are all the problems about the available morphological data

discussed for the Adige river (section 3.7.2.2). Moreover here we have a bigger and more

differentiated watershed area. For these reasons here below, in the Table 3.8, we will

present directly the final results obtained by the application of the combination of the
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ARMA and the recursive procedures. The Figure 3.14 shows the chronological sequence

of the monthly solid transport data against the results calculated with the equilibrium

and calculated with the combination of the ARMA and recursive procedures for the

total period (1956-1985) for the station in Piacenza. In this case this tipe of graph is

less clear than the case of the Adige river (see section 3.7.2.2), because the great range

of variability of the solid transport and because of the minor differentiation between

the two calculations. So here the Figures 3.15, 3.16 and 3.17 are presented. They

show the graphs that compare the measured values with the results calculated with

the equilibrium formula and the results calculated with the ARMA/recursive model

respectively: on the left a) compares the results in the log scale and shows the number

of data included in an interval equal to +/− 10 %; on the right b) compares the results

in the absolute scale, with the interpolation line of both the results.

Figure 3.14: Comparison between the chronological series of suspended solid discharge mea-
sured (red crosses), evaluated with the equilibrium formula (green line) and calculated with the
complete model (blue dotted line) calculated with the complete model (blue dotted line) for
the total period of Piacenza

3.8.2.3 Sensitivity analysis and discussion

The better results obtained for the Piacenza gauge station are probably to attribute

to the fact that this station is just before the confluence of the last four important

Apennian affluent, which have a large contribution about the solid transport of the Po
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Figure 3.15: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles)) for the total period of Piacenza in
the log-scale (a) and in the absolute scale (b). In the log-scale graph (a) the dotted lines identify
a range of +/− 10% with respect to the perfect representation.

Figure 3.16: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles)) for the total period of Boretto in the
log-scale (a) and in the absolute scale (b). In the log-scale graph (a) the dotted lines identify
a range of +/− 10% with respect to the perfect representation.
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river: for Syvitski and Kettner [2007] more than the 50 % of the solid transport of the Po

river arrives from the rivers and torrents draining the southern Apennian hinterlan. For

this reason the following two gauge stations, Boretto and Pontelagoscuro, are worstly

represented by a unique LUF channel.

Also for the results obtained here for the Po river we can do the same type of

discussion done for the Adige river in the section 3.7.2.3. In particular we find that

similar results come out (i.e. provides positive ARMA parameters) for a certain range

of k and the same range is repeated periodically every year.

3.8.2.4 Improvement of the model by dividing the area in sub-basins

Some simulations with a preliminary hypothetical subdivision of the basin closing

in Piacenza in three principle sub-basins have be done. This subdivision is made by

the identification of a first great upstream sub-basin with mountain characteristics and

with the city of Torino as barycenter. The second sub-basin incorporates the Apennian

affluent represented with the Tanaro torrent. The last sub-basin incorporates the Alpine

affluent represented by the Ticino river. These three principal sub-basins are identified

with the thick black line in the map of the basin in the Figure 3.13.

In this way five principle LUF channel can be identified, as shown in the Figure

3.18.

Is interesting to note that during the LUF channel 123 of the Figure 3.18 in the

reality the river, from braided, become meandering, because the conjunction of two

facts: the great contribution in liquid discharge from Ticino river and the decreasing

of the slope due by a pre-Quaternary stone formation.

As said for the Adige river (see section 3.7.2.4), these simulations take great com-

putational time and the results may be not representative of the real behaviour of the

river because the lack of information about the real morphology.
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Figure 3.17: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles)) for the total period of Pontelagoscuro
in the log-scale (a) and in the absolute scale (b). In the log-scale graph (a) the dotted lines
identify a range of +/− 10% with respect to the perfect representation.

Figure 3.18: Subdivision of the basin of the river Po. They are identified also in the map of
the basin in the Figure 3.13.
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3.9 Numerical applications to the Venice Lagoon catch-

ment area

We have collaborated with a research program established between CORILA (Con-

sortium for the management of the center for coordination of research activities inherent

the Venice Lagunar system) and the Veneto Region oriented to the acquisition of new

information about the Venice Lagoon, its watershed area and its opposite see, the

Adriatic see. In this context we tried to apply the long-term equilibrium model to this

particular case, very dissimilar from the previous two. The Venice Lagoon is located

in northern Adriatic Sea (Gulf of Venice, Italy). The coastline of this region is affected

by the inputs of 11 main rivers of variable size and discharge.

The drainage basin investigated in this section is the territory whose surface supplies

water discharge to the Venice Lagoon during normal flow conditions [Autoritá di Bacino

dell’Adige e dell'Alto Adriatico, 2010]. The entire basin surface is nearly 2040 km2 and

the drainage network, with a total length of about 3780 km. It comprises some natural

waterways (Dese, Zero, Marzenego-Osellino, Lusore, Muson Vecchio, Tergola, Scolo

Soresina, Scolo Fiumazzo, Canale Montalbano), streams with controlled or partially

controlled flow, in the central and southern areas (Naviglio Brenta, Canale di Mirano,

Taglio Nuovissimo), canals with full mechanical drainage in the low-lying areas at south

and a dense network of outfall drain. The drainage basin also includes part of the area

of the resurgence waters (resurgent area) that does not drain superficially but, through

the groundwater, feeds the streams northernmost.

Furthermore the small river sub-basins are interconnected each other and exchange

substantial amounts of water (by pumping stations) with the large rivers which are not

flowing into the lagoon, like Brenta, Sile and Bacchiglione, especially in flood conditions.

The contributions of this total drainage basin flow into the lagoon of Venice in

27 distinct injection points. The drainage network has a total number of 27 outlets

in the the Venice Lagoon [Autoritá di Bacino dell’Adige e dell'Alto Adriatico, 2010]

distributed along perimeter of the lagoon. However, a predominant fraction (97% ac-

cording to Zuliani et al., 2005) of the total runoff is conveyed by the 12 main tributary
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sub-basins represented in the Figure 3.19.

Figure 3.19: The catchment area to the Venice Lagoon: in different colours are represented
the main sub-basins (this subdivision is valid in normal flow-conditions). With the dots are
represented the automatic network of gauging station: the codes visualized identify the gauge
stations used for the calibration of the model.

Obviously the model will not be applied to the entire catchment area, but it has to

be applied to each singular sub-basins identified in Figure 3.19, since the application

need to recognize the main course and the discharge of a river.

In this case the basins and the rivers investigated are much smaller with respect to

the previous two cases (Adige and Po rivers), and they are characterized by relatively

uniform territory. The small lowland watercourses, with relatively uniform arable wa-

tershed, transport finer material and the concentration of sediments does not have a

large variability as in the large mountain basins, dominated by the presence of landslides

and debris flows. By contrast, sporadic exceptional storms can produce deviations from

equilibrium, also related to the growth of the vegetation.
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3.9.1 Geomorphological data and calibration

The principal water courses of the basin are monitored through automatic gaug-

ing stations, some managed by ARPAV (Agenzia Regionale per la Prevenzione e la

Protezione Ambientale del Veneto, namely the Regional Environmental Agency) and

others by CVN (Magistrato alle Acque - Consorzio Venezia Nuova, namely the Venetian

Water Authority). The gauging stations measure at time intervals of one hour both

the hydrology and the quality parameters of the flow, among which the turbidity.

The liquid discharge is calculated on the basis of current measurements with the

methodology governed by ISO 6416.

Only for the river Zero (B2) the liquid discharge is calculated from data of the water

level through a rating curve calibrated in the 2007.

The turbidity is a parameter that quantifies the reduction of the transparency of the

water due to the presence of particles in suspension and is expressed in FTU (Formazine

Turbidity Units). For each station systematic samples of water are manually collected

in order to determine the suspended sediment concentration (SSC [mg/l]). Specific

correction and calibration procedures between the records of turbidity and the SSC

samples are made in order to transform the turbidity data in SSC data. Then the usual

conversion (3.15) explained in the section 3.7.1 was applied to achieve the measured

volumetric solid discharge P (t).

Moreover, for the period 1996-2011 data of temperature and daily precipitation

measured by several gauging stations from the regional network managed by the Me-

teorological Center of ARPAV are available.

Finally is important to note that some gauging stations, which are near to the outlet

of the river, are strongly influenced by the tidal excursion on the Lagoon. For certain

rivers, with very low values of liquid flow, negative discharges are sometime recorded.

It is physically more useful, beside easier to treat with, evaluate and deal with the daily

average values of the measured data. We can assume that the liquid discharge in the

rivers and the tide are independent of each other and so we can do the daily average of

the hourly records of the measures of the liquid discharge and of the data of the solid

discharge.



78 Chapter 3. Long-term equilibrium model with short-term perturbations

A lot of records are not continuous, but some of them have also very long periods

during which the gauging station did not worked. In the Table 3.9 there is the list

of the rivers with appreciable continuous records of measures that we analyzed with

the long-term equilibrium model. The code of the corresponding gauging stations are

represented in the Figure 3.19.

3.9.1.1 Grain-size composition

During the research project samples of the bottom sediments have been collected to

determine the grain-size distribution at each gauging station. The procedure was not

simple because the extremely fine sediment involved and the frequently presence of thick

vegetation on the bottom. However some results have been extrapolated, showing a

moderate variability with regard to the different grain-size fractions. We do not observe

a trend of the size fractions in relation to the location of stations. The diameters used

as representative for the two characteristic classes of grain-size are listed in the Table

3.9.

Its somehow surprising the fact that the level of uniformity of the bottom d =

d16/d84 results lower with respect to the value calculated both for the Adige and the

Po rivers. This is probably due, although the Adige and Po rivers have a part of the

main course of mountain characteristics, by the consideration of an average grain-size

distribution curve for the entire river, that lead to a probability distribution with long

tails (representing the finer and the coarser sediments) beyond the 16% and the 84%

respectively.

3.9.2 Results

A preliminary analysis of the records of data shows that their behaviour is less

seasonal than the previous two cases. Through a Fourier analysis we found that is

possible to recognize an annual principal sinusoidal wave only for the liquid discharge,

but it is not always the first. For the solid discharge most of the records present huge

peaks above a quasi-uniform signal that do not have a relevant characteristic period.

The minimum periods min[Tw] of the boundary conditions necessary for the ap-
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Table 3.9: List of the rivers of the catchment area in the Lagoon of Venice to which the
long-term equilibrium model has been applied.

Alias River d16 [µm] d84 [µm]

A2a r. Serraglio 8.32 309.00

A2b s. Tergolino 2.12 278.00

B2 r. Zero 4.23 209.00

C2 f. Marzenego 5.21 393.00

A5 c. Taglio di Mirano 2.37 52.00

A1 f. Tergola 3.73 171.00

E3 s. Lusore 3.29 75.10

G1 c. Vela 4.10 304.00

F1 s. Fiumazzo 1.61 77.94

plication of the LUF hypothesis (see section 2.6.2) are shown in the Table 3.10: for

almost all the rivers we can consider Tw equal both to 1year and to 6months. Only the

river Marzenego has a minimum Tw greater than 1year: we admit to apply the model,

namely using the hypothesis LUF, accepting a reasonable error due to a corresponding

value of ε̄ = 8, 1, which is however � 1. Below some results of the calibration of the

model are presented maintaining the characteristic period of the boundary conditions

Tw equal to 1year.

In this case the data available are daily mean values instead of the monthly mean

values. Even if this fact means that we can have theoretically a greater number of

data, the series are in any case short. In fact, considering that we have recognize the

characteristic period of the boundary condition equal to 1year, series of at most 5 years

are (statistically) too much short in order to recognize the chronological dependence

of the solid discharge P (t) from preceding values of the equivalent liquid discharge

Qm(t− k), especially because indeed the records are further reduced by the delay k.

In order to avoid to further reduce the series with the delay k and the accumulation

period p, a simple hydrological model (briefly exposed in Appendix C) has been devel-

oped to reconstruct the liquid discharge passing through the cross-section of the gauge

stations before 2006. We use the meteorological data starting from the 1996 and some

primary information from the land reclamation authority about the flow regulation

management.
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3.9.2.1 Calibration of the equilibrium formula

In the Table 3.10 there are the results of the calibration of the equilibrium formula,

its corresponding NSE, the resulting delay k and attenuation coefficient αatt.

From the Table 3.10 we see that the rivers Tergolino (A2b), Tergola (A1) and

Fiumazzo (F1) are the smallest three channel between the analyzed. In particular for

Tergola and Fiumazzo we have a really low values for the NSE of the equilibrium.

Tergola (A1) has a huge peak during the March of the 2011 that considerably reduce

the value of the NSE even if the results are good. This river naturally flow into the

Serraglio, then measured at the gauging station A2a. The great values for the March

of 2011 is not recorded, however another huge peak is measured during May of the

2010. Also for the river Lusore (E3) a peak turns out for the same period. Apparently,

correspondingly to these phenomena, there are not extraordinary high values of the

liquid discharge of the rivers.

3.9.2.2 ARMA calibration of the non-equilibrium perturbations

Preliminarily we tried to apply the usual formulation of the model to define the

dimensionless perturbation of the morphological characteristics mc(t), namely using

the equation (3.6). Then we used the (3.7) in order to better represent the surface

erosion as the main mechanism of sediment production.

If with the (3.6) formulation the delay p represent the characteristic time required

to fill the slopes and activate a landslide, in this case, with the (3.7), the delay p should

represent the time required to the sediments and water to cover the dense network of

irrigation ditch, in addition to the role played by the different vegetation cover.

Below the Figures for the rivers Serraglio (A2a), Marzenego (C2), Taglio Mirano

(A5) and Vela (V1) are presented as example only through the graphs that compare

the measured data with the calculated results.

First version for the dimensionless perturbation of the morphological char-

acteristics: mc(t). The first trial application of the combined ARMA-recursive pro-

cedure kipping the delay k equal to the value resulting from the calibration of the
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equilibrium formula (see Table 3.10) found positive ARMA parameters a∗1 and a∗2 only

for two rivers: Serraglio (A2a) and Tergolino (A2b). The results are reported in the

Tables 3.11.

Table 3.11: Preliminary results of the ARMA procedure for the rivers Serraglio (A2a) and
Tergolino (A2b) using the original formulation (3.6) for the evaluation of the boundary condition
mc(t) (also the NSE and the RSR of the equilibrium results are reported for simplicity of
comparison).

Serraglio (A2a) Tergolino (A2b)

k [d] 536 253

p [d] 413 581

Eu 1.7 0.5

a∗1 0.6671 0.0035

a∗2 0.0059 0.0007

NSE 36.54 % 59.97 %

equilibrium NSE 24.25 % 58.31 %

RSR 0.488 0.676

equilibrium RSR 0.373 0.658

The results obtained by the model with the recursive procedure applyed also on the

value of the delay k are shown in the Tables 3.12. In the Figures 3.20, 3.21, 3.22 and

3.23 there are the graphs of the results for the river Serraglio, Marzenego, Taglio Mirano

and Vela respectively. These Figures show the comparison between the measured data

with the results obtained both with the equilibrium formula and with the complete

model: on the left a) compares the results in the log scale and shows the number of

data included in an certain interval; on the right b) compares the results in the absolute

scale, with the interpolation line of both the results.

Alternative version for the dimensionless perturbation of the morphological

characteristics: mc(t). As for the previous case, the first trial application of the

combined ARMA-recursive procedure kipping the delay k equal to the value resulting

from the calibration of the equilibrium formula (see Table 3.10) found positive ARMA

parameters a∗1 and a∗2 only for the two rivers Serraglio (A2a) and Tergolino (A2b). The

results are reported in the Table 3.13.

The results obtained by the model with the recursive procedure applyed also on the
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Figure 3.20: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the original formulation (3.6)) for
station (A2a) Serraglio in the log-scale (a) and in the absolute scale (b). In the log-scale graph
(a) the dotted lines identify a range of +/− 10% with respect to the perfect representation.

Figure 3.21: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the original formulation (3.6)) for
the total period of (C2) Marzenego in the log-scale (a) and in the absolute scale (b). In the
log-scale graph (a) the dotted lines identify a range of +/ − 10% with respect to the perfect
representation.
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Figure 3.22: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the original formulation (3.6)) for
the total period of (A5) Taglio Mirano in the log-scale (a) and in the absolute scale (b). In
the log-scale graph (a) the dotted lines identify a range of +/−10% with respect to the perfect
representation.

Figure 3.23: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the original formulation (3.6))
for the total period of (G1) Vela in the log-scale (a) and in the absolute scale (b). In the
log-scale graph (a) the dotted lines identify a range of +/ − 10% with respect to the perfect
representation.
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Table 3.13: Preliminary results of the ARMA procedure for the rivers flowing in the Venice
Lagoon using the rainfall data (3.7) (also the NSE and the RSR of the equilibrium results are
reported for simplicity of comparison).

Serraglio (A2a) Tergolino (A2b)

k [d] 536 253

p [d] 168 91

Eu 2.5 0.1

a∗1 0.545 9.2 x 10−5

a∗2 5.4 x 10−5 2.6 x 10−6

NSE 31.61 % 58.35 %

equilibrium NSE 24.25 % 58.31 %

RSR 0.445 0.660

equilibrium RSR 0.373 0.658

value of the delay k are shown in the Tables 3.14. No results were found for the river

Zero (B2). In the Figures 3.24, 3.25, 3.26 and 3.27 there are the graphs of the results

for the river Serraglio, Marzenego, Taglio Mirano and Vela respectively. These Figures

show the comparison between the measured data with the results obtained both with

the equilibrium formula and with the complete model: on the left a) compares the

results in the log scale and shows the number of data included in an certain interval;

on the right b) compares the results in the absolute scale, with the interpolation line

of both the results.

3.9.2.3 Sensitivity analysis and discussion

The evaluation of the celerity of the perturbation waves ((2.23) in section 2.6.2) is,

although not obviously, directly proportional both to the grain-size and to the slope

of the river through the factor γ, but inversely proportional to the relative thickness

of the mixing layer. The celerity evaluated for the rivers flowing in the Venice Lagoon

reported in Table 3.10 are lower than either those evaluated for the river Adige (Table

3.3) or for the river Po (Table 3.7). This fact can lead to conclude that the slope

has a greater importance, but we have formerly corrected the values evaluated for the

Adige and the Po rivers with the recursive procedure and found also very lower values

(implicit in the resulting delay k).
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Figure 3.24: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the rainfall data (3.7)) for station
(A2a) Serraglio in the log-scale (a) and in the absolute scale (b). In the log-scale graph (a)
the dotted lines identify a range of +/− 10% with respect to the perfect representation.

Figure 3.25: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the rainfall data (3.7)) for the
total period of (C2) Marzenego in the log-scale (a) and in the absolute scale (b). In the
log-scale graph (a) the dotted lines identify a range of +/ − 10% with respect to the perfect
representation.
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Figure 3.26: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the rainfall data (3.7)) for the
total period of (A5) Taglio Mirano in the log-scale (a) and in the absolute scale (b). In the
log-scale graph (a) the dotted lines identify a range of +/ − 10% with respect to the perfect
representation.

Figure 3.27: Suspended solid transport measured vs calculated (with equilibrium formula
(crosses) and with the complete ARMA model (circles) using the rainfall data (3.7)) for the
total period of (G1) Vela in the log-scale (a) and in the absolute scale (b). In the log-scale
graph (a) the dotted lines identify a range of +/−10% with respect to the perfect representation.



90 Chapter 3. Long-term equilibrium model with short-term perturbations

The results found with the new formulation (3.7) seem less precise with respect to

the corresponding values of the NSE, lower than the values evaluated for the original

formulation (3.6). But the same results are characterized by values of RSR better

(namely lower) for the new formulation.

Also in this case with the sensitivity analysis we found a generally periodic behaviour

of the values of the delay k found as providing the best results.

On the contrary the model have not found a great importance for the cumulative

delay p. Probably the dense network of irrigation ditch over the watershed surface is

divided in area with different and various behaviour from a season to another and from

a zone to another. For this reason is difficult to identify a characteristic value for the

entire surface and the results are so variable.

This is not true for the rivers Serreglio (A2a) and Marzenego (C2), for which results

deeply depend on the value of p. These two are rivers with a resourgive contribution.

On the other hand there are some rivers, like Fiumazzo (F1), which present a

relevant dependence on the value of the parameter Eu. But this dependence seem to

in its turn depend on the value of k. However, in general, the value of Eu is indifferent,

except if equal to 0, for which no result has been found.

Finally the model is far to be a general method to evaluate the sediment input in the

Lagoon from its watershed. For this goal now the unique valid method is to continue

to use the gauging network. The model, instead, can be a valid procedure to complete

series of data measured by gauge that do not work correctly for all the time but that

gives records with many missed data. The model will complete these series in a better

way than the typical substitution of the missing data with the average value.



Chapter 4

Long-term non-equilibrium

model

In this chapter we investigate an intermediate temporal scale in order to improve

the evaluation of the solid transport of a river in the present day.

4.1 Renouncing to the long-term equilibrium

We renounce to the hypothesis of the existence of a long-term equilibrium, and

consider a slowly evolving river configuration at multiannual scale τ , above which a

short-term perturbation at scale t propagate as in the previous Chapter 3 (see Figure

4.2). Namely we assume that, integrated at scale τ , the averaged small perturbations

(P ′(x, t) in (3.2)) are null by definition, while the morphological parameter M (as well

as its component I and deq in equation (2.16)) are changing till an equilibrium long-

term configuration is eventually reached at τ → ∞. Note that the ”perturbation”

P ′(x, τ) will reamain also when the long-term equilibrium configuration is reached; at

t → ∞, by contrast, the τ -averaged values of the parameters will be constant and the

long-term solid input will be equal to the long-term output.

We will identify the τ averaged values with a tilde (˜).

In this Chapter we will maintain the LUF hypothesis with the sediment and water

input concentrated at the upstream end of the channel.

91
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At the short-time scale t we have:

P (t, τ) = P̃ (τ) + P ′(t) (4.1)

where the short-term perturbations P ′(t) are computed by the same procedure

described in the previous Chapter 3, while the τ -averaged transport P̃ (τ) is given by

the usual transport formula

P̃ (τ) = M(τ)Q̃m(τ) (4.2)

Differently from the preceding Chapter, we have now a τ -scale evolving morphody-

namic parameter M(τ).

The time-depending value of M(τ) depend in principle on the evolution of each mor-

phological parameter (slope, width of the bed and its grain-size composition) entering

the formulation of the Engelund-Hansen type (see equation (2.13)). The complete for-

mulation of M(τ), assuming two representative grain-size classes, is the equation (2.17),

recalled here below:

M(τ) = αEH
Ĩ(τ)n

Bp(τ)

β̃(τ)((1/d)q−s − 1) + 1

dqc(β̃(τ)(d− 1) + 1)s
= αEH

Ĩ(τ)n c1(β̃(τ))

Bp(τ)dqc
(4.3)

where dc is the diameter of the coarser class, β is the bottom composition of the

finer class, B and I are the width and the mean slope of the channel respectively and

c1 is an implicit function of β(τ) (and d = df/dc) as reported in the equation (2.18)

and recalled here below:

c1(β(t)) =

(
dc

deq(β(t))

)q
=
β(t)((1/d)q−s − 1) + 1

(β(t)(d− 1) + 1)s
(4.4)

Some other studies have been done about the long-term morphological response

of a river due to a change of boundary conditions; for example Tealdi et al. [2011]

have found an analytical solution to study the morphological changes of a river after
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Figure 4.1: scheme of the LUF channel without a long-term equilibrium, but evolving in
τ -scale.

Figure 4.2: Example of the τ -scale rating curve on the graph P (t) vs Q(t) graph: the crosses
are the t-scale data while the curve are derived by averaging in τ -scale.



94 Chapter 4. Long-term non-equilibrium model

stepwise perturbations on either the liquid or the solid input, but they consider a river

with uniform grain-size and a variable width of the bed.

The variations on the mean river width assessed by Tealdi et al. [2011] are very small;

in any case the relative importance of the width in the solid transport formula (see Table

(2.1)) is less than the relative importance of the slope and of the bed composition.

Moreover we want to preserve the LUF hypothesis with which we can integrate the

equations to a zero-dimensional model. Thus we maintain a uniform and constant river

width; this is compatible with the assumption of concentrated input and of relatively

constant sediment and solid discharge.

The non-uniform grain-size sediment, by contrast, is crucial in the erosion and

deposition processes at large spatial scales, as the grain-size distribution controls the

downstream fining of the bed and the formation of its longitudinal profile, typically

concave [Paola and Seal, 1995, Sinha and Parker, 1996].

Downstream fining and concave profile can be simulated by the 1-D model described

in Chapter 2. Under the LUF hypothesis, moreover, we can take into account only the

equations for the sediment continuity: namely the formal 1-D equation for the sediment

continuity (Exner equation (4.5)) and the mass balance of each size fraction in the active

layer (Hirano equation (4.6)):

B
∂(H̃)

∂τ
= −

2∑
k=1

∂P̃k
∂x

(4.5)

δB
∂(β̃k(x))

∂τ
= −∂P̃k

∂x
− β̃∗k(x)B

∂(H̃)

∂τ
(4.6)

where B is the width of the river, P is the solid transport, H is the bed elevation above

a reference and βk is the percentage of the k-th fraction of the grain size composition.

To obtain an even simpler solution, concentrated on the closure section, the par-

tial differential equations above will be preliminarily integrated to a zero-dimensional

formulation.
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4.2 Integration to a zero-dimensional model

We assume a zero-dimensional formulation as in Di Silvio and Nones [2013] (see

Figure 4.1 or 5.2 in the section 5.2.1.1 in the next Chapter). Summarizing we assume

LUF conditions, a constant (in time and space) width B and two characteristics grain

size. Moreover we postulate a fixed point at the outlet of the river at mean sea level,

so the horizontal length of the reach is constant. Thus we can integrate over x the

equations (4.5) and (4.6) from x = 0, corresponding to the upstream end of our 0-D

reach of the river, where the inputs of liquid and solid are concentrated, and x = L,

the downstream end of the river:


B

∫ L

0

∂H̃

∂τ
dx+

∫ L

0

∂P̃

∂x
dx = 0

δB

∫ L

0

∂β̃(x)

∂τ
dx+

∫ L

0

∂P̃k
∂x

dx+B

∫ L

0
β̃(x)

∂H̃

∂τ
dx = 0

(4.7)

We identify the mean value over the length of the reach with the over line. Applying

the divergence theorem we obtain:


BL

d ¯̃H

dτ
+ (P̃ (x = L, τ)− P̃ (x = 0, τ)) = 0

LδB
d

¯̃
β

dτ
+ (P̃k(x = L, τ)− P̃k(x = 0, τ)) +BL

¯̃
β
d ¯̃H

dτ
= 0

(4.8)

Practically we define our 0-D model as a LUF channel defined by a uniform slope

equal to mean slope ¯̃I(τ) (see Figure 4.1), which is univocally related to the mean bed

elevation ¯̃H(τ) ( ¯̃I(τ) = ¯̃H(τ)/L̄ = 2 ¯̃H(τ)/L, having L̄ = L/2), where at the upstream

end all the liquid and solid inputs from the watershed enter in the system while the

values of the parameters at the downstream end are representative of all the entire

reach. So we have that P̃ (x = 0, τ) = G̃(τ) and P̃ (x = L, τ) = P̃ (τ). Let us note that

in this case we have to know also the composition of the solid input α̃G(τ) to define

the term P̃k(x = 0, τ).

Recalling the (4.3) and the definition (2.15) of the composition of the solid transport
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α, we get to the following complete system of ordinary differential equations:



d ¯̃I

dτ
=

2

BL2
(G̃(τ)− P̃ (τ))

d
¯̃
β

dτ
=

1

δBL
[(α̃G(τ)− ¯̃

β(τ))G̃(τ)− ( ¯̃α(τ)− ¯̃
β(τ))P̃ (τ)]

P̃ (τ) = M(τ)Q̃m(τ)

M(τ) = Cost ¯̃I(τ)n c1(
¯̃
β(τ))

(4.9)

Equations (4.9) describe the evolution of the long-term river profile and bottom

composition represented by Figure 4.1. On the same figure are also indicated the

short-term perturbations to be computed as shown in Chapter 3.

The boundary conditions of the system (4.9) are G̃(τ) and α̃G(τ) at the upstream

end and the elevation at the downstream end, as well as the input of the equivalent

liquid discharge Q̃m(τ).

If the boundary conditions will remain constant, when τ → ∞ the system will

reach an equilibrium condition fo which the solid flux (aligned with the liquid flow) is

spatially constant; in this condition the sediment input and output of both grain-size

classes become equal, namely: P̃ (τ) = G̃(τ) and α̃(τ) = α̃G(τ).

As system (4.9) is implicit and non-linear, it is not possible to have an analytical

solution and so we need a numerical evaluation. Later on some hypothesis will be

introduced in order to analytically study this system and trying to apply it to the

Adige river data in pluri-annual time-scale.

4.3 Toward an approximate analytical solution

In order to streamline the equations, from here on we will omit the bar to represent

the mean 0-D value of the parameters.

The difference between the composition of the suspended transport of the input α̃G

and the composition of the transport α̃ will be ignored and we will consider a unique
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value of α̃(τ):

α̃(τ) ≡ α̃G (4.10)

In this way we can simplify the equations (4.9). We derive over the time τ the

fourth equation of the system(4.9) and find a formulation of the evolution of the reach

slope Ĩ(τ), the bottom composition β̃(τ) and the overall morphodynamic parameter

M(τ):



dĨ

dτ
=

2

BL2
(G̃(τ)− P̃ (τ))

dβ̃

dτ
=

(α̃(τ)− β̃(τ))

LδB
(G̃(τ)− P̃ (τ))

P̃ (τ) = M(τ)Q̃m(τ)

dM

dτ
= M(τ)

[
n

Ĩ(τ)

dĨ

dτ
+

1

c1(β̃(τ))

dc1(β̃(τ))

dβ̃

dβ̃

dτ

]
(4.11)

In equations (4.11) we may recognize two characteristic volumes: Ṽ0(τ) = Ĩ(τ)BL2/2,

namely the triangular ”filling” volume of the reach; while Vm = LδB is the ”filling”

volume of the mixing layer of the reach.

We substitute the first two equations in the fourth; having simplified the second

equation assuming the equivalence (4.10), we can collect the term (G̃(τ) − P̃ (τ)) and

obtain:

dM

dτ
=
M(τ)

A(τ)
(G̃(τ)− P̃ (τ)) (4.12)

where A(τ) is a characteristic volume which drives the morphodynamic evolution

of the river:

1

A(τ)
=

n

Ṽ0(τ)
+

1

c1(β̃(τ))

dc1(β̃(τ))

dβ̃

(α̃(τ)− β̃(τ))

Vm
(4.13)
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4.4 Analyzing the characteristic volume A(τ)

Recalling the expression of the term c1(β̃(τ)) reported in the equation (4.4)) and

the equation (2.15)) with which the transport composition α̃(τ) is written in terms of

bed composition β̃(τ), we can get to:


1

c1(β̃(τ))

dc1(β̃(τ))

dβ̃
=

((1
d)q−s − 1)

β̃(τ)((1
d)q−s − 1) + 1

− s(d− 1)

β̃(τ)(d− 1) + 1

α̃(τ)− β̃(τ) =
β̃(τ)(1− β̃(τ))((1

d)q−s − 1)

β̃(τ)((1
d)q−s − 1) + 1

(4.14)

Thus we obtain the complete formulation of A(τ):



1

A(τ)
=

n

Ṽ0(τ)
+

+
1

Vm

[
((1
d)q−s − 1)

β̃(τ)((1
d)q−s − 1) + 1

− s(d− 1)

β̃(τ)(d− 1) + 1

]
β̃(τ)(1− β̃(τ))((1

d)q−s − 1)

β̃(τ)((1
d)q−s − 1) + 1

=

=
1

Ṽ0(τ)
f1(i(τ)) +

1

Vm
f2(β̃(τ), d)

(4.15)

The behaviour of the transport composition α, of the function c1(β) and of the

different terms that appear in the previous equation (4.15) with respect to the bed

composition β is shown in the graphs of appendix D. In a typical river with a non-null

slope is always verified that V0 � Vm (as it is possible to verify from the synthetic

Table 4.1 about the volumes of Adige river); for this reason it is possible to ignore the

first addend in the denominator of the A(τ) formualation (4.15), and say that:

A(τ) ≈ Vm c1(β̃(τ))
dc1(β̃(τ))

dβ̃
(α̃(τ)− β̃(τ))

=
Vm

f2(β̃(τ), d)
(4.16)

where f2(β̃(τ), d) is a particular function of the river that evolves with β̃(τ). From
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the graph in the figure D.5 of the Appendix D is possible to verify that the value of the

function f2(β̃(τ), d) does not remarkably change when β̃(τ) ranges between 0, 4 and 1

(i.e. 0, 4 . β < 1). Let us also remember the hypothesis that the composition of the

input does not change during the analyzed period. Moreover we know from our daily

experience (and confirmed by the results of the next Chapter 5) that the mean slope of

the river changes slowly enough to be considered constant during the analyzed period.

Thus we may approximately consider also the bed composition constant and conclude

that the volume A is a characteristic parameter of the river in the period analyzed.

4.5 Logistic curve expressing the analytical evolution of

M(τ)

With a constant value of the characteristic volume A it is possible to analytically

study the evolution of M(τ) during the analyzed period considering that the input

of solid and liquid in the system are represented by the long-term τ -averaged values.

In fact, if we substitute P̃ (τ) with M(τ)Qm, the relation (4.12) can be read as the

logistic curve, solution of the Verhulst model [Gaeta, 2007]. In this model M is the

growing ”population”, Ḡ/A is the proportional increase of the ”population” M in one

unit of time and Ḡ/Qm is the equilibrium value of the ”population” toward to M tends

asymptotically because the antagonistic effect (called ”bottleneck”). We can assume

that this value is the value of M at (τ →∞), called M∞.

dM

dτ
=
M(τ)

A
(Ḡ− P̃ (τ)) = M(τ)

Ḡ

A

(
1− M(τ)

Ḡ/Qm

)

→ dM

dτ
= M(τ)

Ḡ

A

(
1− M(τ)

M∞

)
(4.17)
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By integrating equation (4.17), we find:

M(τ) =
M∞

1 +
(

M∞
M(τ0) − 1

)
e−

Ḡ
A

(τ−τ0)
(4.18)

This equation has a typical S shape (see figure 4.3), called logistic curve.

Figure 4.3: typical shape of the logistic curve.

The time τp1 required to reach the percentage p1 of M∞ starting from a M(τ0)

equal to a percentage p0 of M∞ is:

τp1 = −A
Ḡ
ln

(
p0(1− p1)

p1(1− p0)

)
+ τp0

Considering the Adige data that will be presented in the next section (see section

4.6) the time required to arrive to 90 %M∞ starting from a 10 %M∞ is only about 15

years.

We intuitively recognize that such a value of the ”reaction time” is definitely too

short for the Adige river. In the following paragraph 4.8 a discussion will be made. For

this moment, however, we will maintain equation (4.18) to estimate a constant value

of G̃, in order to have a sort of measure of the solid input from the basin. In fact, if

we have the measurements of the liquid and solid discharge, we also have a measure of

the morphodynamic parameter M(τ) from the equation (4.2) and so a measure of its

evolutions. Thus, by equation (4.12) we get:

Ḡ(τ) =
A

M(τ)

dM

dt
+ P (τ) (4.19)
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which provides the amount of sediment entering the river at time τ .
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4.6 Numerical application to Adige river

In this section we want to verify the model just exposed to the measurements of

the Adige river (the available data are described in the section 3.7).

Assuming that τ is equal to one year, is possible to evaluate the annual average

values of the solid and the m-power liquid discharges (equivalent discherges) and then

calculate the M(τ). The graphs of these three quantity are shown in Figures 4.4, 4.5

and 4.6. The values of the volumes V0 and Vm and the value of the characteristic

volume A are shown in the Table 4.1.

Table 4.1: Characteristic volumes for the river Adige.

δ [\] 10% Y 5% Y

Vm [m3] 7.63 x 105 1.35 x 106

V0 [m3] 1.31 x 109 3.31 x 109

A [m3] 2.97 x 105 9.86 x 105

Figure 4.4: Comparison between the annual average solid discharge (in grey, with the axes
on the right) and the equivalent discharge (in black, with the axes on the left) in Trento.

The resulting M(τ) for the Adige river in the two distinct gauge station is very

different.

Thus we can calculate the hypothetical sediment input from the basin G̃(τ) with
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Figure 4.5: Comparison between the annual average solid discharge (in grey, with the axes
on the right) and the equivalent discharge (in black, with the axes on the left) in Boara Pisani.

Figure 4.6: The annual morphodynamic parameter M(τ) evaluated for the river Adige.
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the equation (4.19), evaluating the derivative term of M(τ) as a central difference:

dM

dt
≈ M(τ + 1)−M(τ − 1)

2τ
(4.20)

The results are shown in the Figures 4.7 and 4.8. It seems that the river closing

in Trento is almost in equilibrium showing a great concordance between the input and

the output of sediment, i.e. the term A
M(τ)

dM
dt is very small. The river closing in Boara

is still evolving, showing a greater differences between the input and the output of

sediments.

Figure 4.7: Comparison between the annual solid transport measured in Trento, the evaluated
solid input calculated with the equation (4.19) and their difference.
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Figure 4.8: Comparison between the annual solid transport measured in Boara Pisani, the
evaluated solid input calculated with the equation (4.19) and their difference.
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4.6.1 Evaluation of the human intervention on the basin

Is important now to recognize that the basin is far to be natural: the human

intervention is instead great, especially with regard to the second period of measuring

(after 1958) for the Adige river. In fact during the ’50 in Italy there was a great rate

of construction of reservoirs, as well as a substantial intervention on the slope for the

erosion control and mines of material directly from the bed of the rivers. Indeed, from

the graph of the liquid and sediment discharge for the river Adige a reduction of the

these values from the first period to the second is clear.

For the basin of the Adige river we have collected a series of data about the main

reservoirs, the interventions for the erosion control and the mines, but its really difficult

to know with precision all the anthropogenic interventions made on this great surface.

Especially for the mine, which was regulated only after 1990.

In sake of simplicity the effects of the reservoirs and of the interventions for the

erosion control are taken into account as a reduction of the sediment input proportional

to the portion of the surface of the basin involved, thus we can evaluate the natural

input as follows:

G̃(τ) = G̃nat(τ) + ∆Gantr(τ) = G̃nat(τ)

[
1− γr

∆Sr
S
− γe

∆Se
S

]
− γm∆Gm(τ)

→ G̃nat(τ) =
G̃(τ) + γm∆Gm(τ)

1− γr∆Sr
S − γe

∆Se
S

(4.21)

where Gnat is the natural input, ∆Gantr is the sediment input removed by the

anthropogenic interventions, ∆Sr, ∆Se and S are respectively the surface affected by

the reservoirs, the surface affected by the erosion control intervention and the total

surface of the basin, ∆Gm(τ) is the quantity of sediment extracted from the bed of the

rivers by mining operations and γr, γe and γm are the proportionality coefficients.

The data about the portion of surface of the basin interested by reservoirs and in-

terventions on the soil erosion and about the mining from the bed of the river were col-



4.6 Numerical application to Adige river 107

lected from various data-base from the web-site of the Veneto Region [Veneto, b,a], the

independent Province of Trento [di Trento], from the independent Province of Bolzano

[di Bolzano], from the web-site of the commercial companies managing the reservoirs

(e Edison). The data collected are reported on the graph in the figure 4.9.

Figure 4.9: Portion of surface of the total basin year by year affected by the construction of
new reservoirs or by interventions of soil erosion

Assuming that the information about the anthropogenic intervention we have are

sufficiently complete, we consider that there is not a significant change on climatic

condition, and that the average natural input can be considered constant. Thus, in

order to calibrate this equation, we apply an ARMA procedure (see Appendix B). The

results lead to no possible γe values (negative calibration values). It is probably due

by the fact that the intervention of erosion control are underestimated and not taken

into account in the correct manner. It is very difficult to classify all these type of

intervention, and they are really very numerous. As we are using an empirical model

we can think that their contribution is still included in the other two terms.

The results of the calibration is reported in the Table 4.2.
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Table 4.2: Values of the parameter of the equation (4.21) calibrated for the river Adige.

γr γm γe

63.96 % 1.28 % 0.00 %
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4.7 Numerical application to Po river

In this section we briefly show some results obtained with the measurements of the

Po river (the available data are described in the section 3.8).

In the Table 4.3 the characteristic volumes described in the previous section 4.3 are

reported. The Figures 4.10, 4.11 and 4.12 represent the solid and the equivalent dis-

charge every year for each station, Piacenza, Boretto and Pontelagoscuro respectively.

The Figure 4.13 represent the subsequent ”measured” morphodynamic parameter from

the evaluation M(τ) = P̃ (τ)/Qm. Then the Figures 4.10, 4.11 and 4.12 represent the

comparison between the measured annual solid transport, the evaluated solid input

G̃(τ) calculated with the equation (4.19) and their difference A
M(τ)

dM
dt . In this case the

value of the difference is greater.

Table 4.3: Characteristic volumes for the river Po.

Piacenza Boretto Pontelagoscuro

δ [\] 5% Y 5% Y 5% Y

Vm [m3] 5.7481 x 106 1.17 x 107 2.03 x 107

V0 [m3] 4.9027 x 109 1.09 x 1010 1.98 x 1010

A [m3] 2.94 x 106 4.73 x 107 5.97 x 107

Figure 4.10: Comparison between the annual average solid discharge (in grey, with the axes
on the right) and the equivalent discharge (in black, with the axes on the left) in Piacenza.
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Figure 4.11: Comparison between the annual average solid discharge (in grey, with the axes
on the right) and the equivalent discharge (in black, with the axes on the left) in Boretto.

Figure 4.12: Comparison between the annual average solid discharge (in grey, with the axes on
the right) and the equivalent discharge (in black, with the axes on the left) in Pontelagoscuro.
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Figure 4.13: The annual morphodynamic parameter M(τ) evaluated for the river for the river
Po.

Figure 4.14: Comparison between the annual solid transport measured in Piacenza, the
evaluated solid input calculated with the equation (4.19) and their difference.
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Figure 4.15: Comparison between the annual solid transport measured in Boretto, the eval-
uated solid input calculated with the equation (4.19) and their difference.

Figure 4.16: Comparison between the annual solid transport measured in Pontelagoscuro, the
evaluated solid input calculated with the equation (4.19) and their difference.
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4.8 Discussion on the numerical value of A

In the preceding applications to Adige and Po rivers (respectively paragraphs 4.6

and 4.7) we have observed that the characteristic volume A (provided by equation

(4.16)) has invariably an extremely small value; consequently the sediment input G from

the watershed slopes results to be -every year- practically equal to the sediment output

P (sediment transport trough the closure section), as indicated by the equation (4.19).

Indeed, although in principle the value of A depend on both the ”filling volume” V0 of

the profile and the ”filling volume” Vm of the mixing layer, it is practically coincident

with Vm (being Vm � V0). In other words the 0-D model described by equations (4.11)

and Figure 4.1 seems to depend exclusively on the adaptation process of the grain-

size composition (almost instantaneous) and not on the adaptation process of the river

profile (very much slower). This outcome is valid only if we consider again (as in the

long-term equilibrium model described in the Chapter 3) that the system is not so far

from the equilibrium conditions, namely the slope is very similar to the equilibrium

slope. In other words this analytic solution can not be used for a generic river. The

reasons for this inefficiency is in principle due to different causes: 1) the linearization

process applied to the equations (4.9); 2) the assumption in the second equation of

the system (4.9) that αG = α and 3) the 0-D schematization of the watercourse,

based on one single reach. The last assumption implies that the typical concavity

of the profile (necessarily connected to the fining of the bottom grain-size) has totally

disappeared when we moved from the complete 1-D model towards a 0-D approach.

While neglecting the profile concavity may be possible in presence of a uniform grain-

size, this is not acceptable anymore when we want to deal with two interactive different

particle diameters.

For this reason in the next Chapter 5, the 0-D schematization has been reconsidered

by renouncing the simplification 1) and 2) (and so numerically solving the complete

system (4.9)) and also by assuming two different 0-D reaches in series (simplification

3)).





Chapter 5

Morphological reaction of rivers

at geological scale

In this chapter we investigate the morphological reaction of a schematic river and

its long-term evolution analyzed with a zero-dimensional model.

In order to streamline the equations, in this Chapter we will use the generic t to indicate

in this case the time in a geological temporal scale and omit any over symbol to indicate

temporal averaged values of the variables involved.

We have resumed here the complete mathematical formulation developed in the

previous Chapter 4 (see equation (4.9))but, in order to keep trace of the concave profile

of the river, the preliminary integration to a zero-dimensional model made in the section

4.2 has been made over two subsequent reaches connected in series.

We assume all the simplifications used till now by the other 0-D model. In particular

we have LUF conditions and two representative grain-size classes. The sediment and

water input are concentrated at the upstream end. As discussed in the previous chapter

(see section 4.1) we will consider a uniform river width B but evolving slope I and bed

composition β for each reach. Moreover we postulate for the downstream reach a fixed

point at the outlet of the river at mean sea level: the longitudinal length of each reach

are constant and equal, respectively, to the extension of the highland and the lowland

part of the river basin.

Moreover we assume that there are not neither substantial variations in the climatic

115
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conditions or substantial anthropogenic interventions. Thus we can consider that the

typical flow duration curve of the river is constant, and take into account only the equa-

tions for the sediment continuity: the formal 1-D equation for the sediment continuity

(Exner equation (4.5)), and the mass balance per each size fraction of the active layer

(Hirano equation (4.6)).

Finally we evaluate the solid discharge per each size fraction passing through a

section of a river with the usual rating curve as the (4.2).

If the boundary conditions will remain constant, for a t→∞ the system can reach

an equilibrium condition when the solid flux, aligned with the liquid flow, is spatially

constant, i.e. when the input and the output become equal. At this point the slopes

and the gran-size compositions of the two reaches will be the same and stationary

(equilibrium state).

In this Chapter we investigate the following questions: How and in how much time

the river gets to this equilibrium state?

With all these assumption we get to a system (see equation (5.1) in section 5.1)

which is implicit and non-linear and it is not possible to have an analytical solution of

it: we need a numerical evaluation. Nevertheless, solving it is extremely simpler and

faster than a 1-D model before investigated, for example by Tealdi et al. [2011].

5.1 Subdivision in two reaches

Without adding much complication to the 0-D model, we can divide the river in two

different reaches. In typical middle-large rivers one can distinguish a mountain part,

with higher slopes and coarser grain size, from an alluvial course, flatter and finer. If

we divide the schematic river in two reaches we can verify if the model can simulate

the typical concave profile of the natural rivers, at least before reaching the (eventual)

equilibrium state mentioned above.

The zero-dimensional, two-reaches model is represented in the Figure 5.1, where the

subscripts U and D are imposed to the parameters regarding respectively the upstream

and the downstream reach.

The 1-D model is preliminarily integrated in a 0-D model as described in the section
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Figure 5.1: Scheme of the zero-dimensional, two-reaches model

4.2, but for both the reaches (the upstream reach from x = 0 to x = LU , the downstram

reach from x = LU to x = LU +LD).In this case we get to a system of eight equations

(the overline indicate the space average of the parameter), similar to the four equations
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of the system (4.9), but four for each reach:



dIU
dt

=
2

B̄L2
U

(G(t)− PU (t))− 2LU
LD

(PU (t)− PD(t))

dβU
dt

=
1

LU δ̄B̄

[(
αG(t)− βU (t)

)
G(t)−

(
αU (t)− βU (t)

)
PU (t)

]
PU (t) = MU (t)Qm(t)

MU (t) = Cost IU (t)n c1(βU (t))

dID
dt

=
2

B̄L2
D

(G(t)− P (t))

dβD
dt

=
1

LD δ̄B̄

[(
αU (t)− βD(t)

)
U
P (t)−

(
αD(t)− βD(t)

)
PD(t)

]
PD(t) = MD(t)Qm(t)

MD(t) = Cost ID(t)n c1(βD(t))

(5.1)

We recognize that the term B̄L2
U/2 is the triangular ”filling” volume of the upstream

reach V0,U (from the elevation of the barycenter in x = 0 to the elevation in x = LU )

divided by the slope IU (t). Similarly B̄L2
D/2 is the triangular ”filling” volume of the

downstream reach V0,D divided by the slope ID(t). In the same way one can recognize

that the terms LU δ̄B̄ = Vm,U and LD δ̄B̄ = Vm,D are the ”filling” volumes of the mixing

layer of the upstream reach and of the downstream reach respectively.

If we derive over time the fourth and the eighth expression of the system (5.1) we

express the evolution of the morphodynamic of the river directly through the evolution

of the morphodynamic parameter M :

dM

dt
= M(t)

[
n

Ī(t)

dĪ

dt
+

1

c1(β̄(t))

dc1(β̄(t))

dβ̄

dβ̄

dt

]
(5.2)

The previous equation is valid for both the upstream reach and the downstream

reach respectively. Let us call c3(β̄(t)) = 1
c1(β̄(t))

dc1(β̄(t))

dβ̄
, namely the first equation of

the system (4.14), where c1 is expressed by the equation (4.4).
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5.1.1 A non-dimensional formulation of the 0-D model

Let us introduce the dimensionless parameters reported in the Table 5.1 and de-

fined as the relative deviation from the equilibrium (t → ∞) value. The slopes I

and the grain-size compositions α and β are in and of itself dimensionless parameters,

nevertheless we study the evolution of their relative deviations from the equilibrium

value.

If we consider the Figure 5.1, we may write:


iU (t) =

LU + LD
L

hU (t)− LD
LU

hD(t)

iD(t) = hD(t)

(5.3)

Table 5.1: List of the dimensional and dimensionless parameter

Dimensional Dimensionless

parameter parameter

HU , HD hU , hD
LU , LD lU , lD
IU , ID iU , iD
PU , PD pU , pD
G g

Qm qm

MU , MD morph,U , morph,D

βU , βD bU , bD
αG, αU , αD aG, aU , aD

Moreover we know that the equilibrium values of the three sediment discharges

G(t→∞), PU (t→∞) and PD(t→∞) coincide, as well as their grain-size composition,

namely αG(t→∞) = αU (t→∞) = αD(t→∞). If we call these values G∞ and α∞ ,
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the system (5.1), written in non-dimensional terms, becomes:



diU
dt

=
G∞
V0,U

[
(g(t)− pU (t))− 2LU

LD
(pU (t)− pD(t))

]
dbU
dt

=
G∞

β∞Vm,U
[(αG(t)− βU (t)) (g(t) + 1)−

− (αU (t)− βU (t)) (pU (t) + 1)]

(pU (t) + 1) = (morph,U (t) + 1) (qm(t) + 1)

(morph,U (t) + 1) = (iU (t) + 1)n
c1(bU (t))

c1(β∞)

diD
dt

=
G∞
V0,D

(pU (t)− pD(t))

dbD
dt

=
G∞

β∞Vm,D
[(αU (t)− βD(t)) (pU (t) + 1)−

− (αD(t)− βD(t)) (pD(t) + 1)]

(pD(t) + 1) = (morph,D(t) + 1) (qm(t) + 1)

(morph,D(t) + 1) = (iD(t) + 1)n
c1(bD(t))

c1(β∞)

(5.4)

In the dimensionless version of the equations all the characteristic ”filling” volumes

identified in the previous section are divided for the equilibrium value of the sediment

input G∞. Thus one can recognize four characteristic time of the evolution of the slopes

and of the bed composition:

�
V0,U

G∞
= T0,U : the ”filling” time of the triangular volume of the upstream reach;

�
V0,D

G∞
= T0,D : the ”filling” time of the triangular volume of the downstream reach;

�
β∞Vm,U

G∞
= Tmob,U : the ”filling” time which refer to the volume of the mixing

layer of the upstream reach;

�
β∞Vm,D

G∞
= Tmob,D : the ”filling” time which refer to the volume of the mixing

layer of the downstream reach;

As well as the triangular volume of the entire slope is very much greater then the

volume of the mixing layer, the evolution of the bed composition is faster than the
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evolution of the slope of the reach.

For sake of simplicity we assume that the equivalent water discharge Qm is constant,

meaning that there are not significant climatic changes or anthropogenic intervention

and that the dimensionless parameter qm(t) (in the considered temporal scale) is null.

In this way it is easy to find out that morph,U (t) = pU (t) and morph,D(t) = pD(t),

namely the non-dimensional perturbation of the morphodynamic parameter is equal

to the non-dimensional perturbations of the transport. Thus is possible to substitute

those terms in the system (5.4), omit the third and the seventh equations which are

simple equivalences, and derive over time the fourth and the eighth expressions also

for the non-dimensional version of the model in order to express the evolution of the

morphodynamic of the river directly through the evolution of the perturbation of the

morphodynamic parameter morph (remember that c3(b(t)) = 1
c1(b(t))

dc1(b(t))
db ):



diU
dt

=
1

T0,U

[
g(t)−morph,U (t)− 2LU

LD
(morph,U (t)−morph,D(t))

]
dbU
dt

=
1

Tmob,U
[(αG(t)− βU (t)) (g(t) + 1)−

− (αU (t)− βU (t)) (morph,U (t) + 1)]

dmorph,U

dt
= (morph,U (t) + 1)

[
n

iU (t) + 1

diU
dt

+ c3(bU (t))
dbU
dt

]
diD
dt

=
1

T0,D
(morph,U (t)−morph,D(t))

dbD
dt

=
1

Tmob,D
[(αU (t)− βD(t)) (morph,U (t) + 1)−

− (αD(t)− βD(t)) (morph,D(t) + 1)]

dmorph,D

dt
= (morph,D(t) + 1)

[
n

iD(t) + 1

diD
dt

+ c3(bD(t))
dbD
dt

]

(5.5)

5.2 River reaction to perturbations of the boundary con-

ditions

In this section some results of the reaction of the river schematized by the 0-D, two

reaches model just described to different variations of the boundary conditions, starting

from an equilibrium condition, are exposed.
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In order to find an analytical solution, we may linearize the system (5.4) assuming

that there are only little perturbations with respect to the equilibrium configuration

(t→∞) and so approximating the non linear terms as follow:



IU
n
(t)

In∞
= (1 + iU (t))n ≈(1 + n iU (t)) =

≈
[
1 + n

(
LU + LD

LU
hU (t)− LD

LU
hD(t)

)]
ID

n
(t)

In∞
= (1 + iD(t))n ≈ (1 + n iD(t)) = (1 + n hD(t))

c1(bU (t)) ≈ c1(β∞)

(
1 + β∞

1

c1(β∞)

dc1(bu(t))

dbU

∣∣∣∣
bU (t)=β∞

bU (t)

)

c1(bD(t)) ≈ c1(β∞)

(
1 + β∞

1

c1(β∞)

dc1(bD(t))

dbD

∣∣∣∣
bD(t)=β∞

bD(t)

)
(5.6)

Substituting the previous equations (5.6) in the definition of the perturbation of the

morphodynamic parameter morph (namely the fourth and the eighth equations of the

(5.4)), we find the following expression valid for both the upstream and the downstream

reach:

(morph(t) + 1) = (1 + ni(t)) (1 + β∞c3(β∞)b(t))

where c3(β∞) = 1
c1(β∞)

dc1(b(t))
db

∣∣∣
b(t)=β∞

.

However, the non-linearity remain in the mixed product (i(t) · b(t)). (Unluckily this

term is not explicit, but is inside the complicated formulation of i(t) · c3(b(t)), and is

not possible to reduce it writing i(t)b(t) ≈ i∞b∞ + i′(t)b∞ + i∞b(t)).

So, it is not possible to find an analytical solution of the problem and we need

numerical evaluation. In particular we use a predictor-corrector scheme using an explicit

Eulero prediction of the values of the variables in the (t+∆t), then cyclically corrected

with a Cranck-Nicholson algorithm until convergence.

The variations of the boundary conditions investigated are of two types: stepwise

and sinusoidal.
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Stepwise perturbation From equilibrium conditions we impose a stepwise pertur-

bation of a boundary condition (for example the sediment input G(t)) of the type:

g(t) = 0 per t ≤ 0

g(t) = g0 per t > 0

In this case, the dimensionless value g0 correspond to a constant perturbation that

lead the system to a new equilibrium condition controlled by the new sediment input

G1 = G(t > 0):

g0 =
G1 −G0

G0

Sinusoidal perturbation In this case we impose, for example, a sinusoidal sediment

input:

g(t) = 0 per t ≤ 0

g(t) = g0 sin(ωt) per t > 0

where g0 is the amplitude of the periodical input g(t) and ω = 2π/Tw is the angular

frequency linked to the forcing period Tw of the perturbation g(t). In this case the

quasi equilibrium conditions, reached after the transitory stage, will be periodical.

5.2.1 Particular cases of the model

Before numerically solving the system (5.5) we will analyze different particular cases

beginning from the simpler one: one single reach and a constant grain size composition.

Then we will sum these two complications one a time: firstly we will divide the river

in two reaches with constant grain-size, then we consider a time-variability of the grain

size composition and finally we expose the results of the complete model.

We generally impose that m = n = 2.
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5.2.1.1 One reach, constant grain size model

With the scheme adopted by Di Silvio and Nones [2013], this approach schematizes

the river as a unique reach with a uniform slope from the basin barycenter (where the

inputs of sediment and water enter in the system) to the downstream end, which is

supposed at a fixed elevation. Moreover this model assumes that the size of the bottom

sediments is constant, so that the only time-dependent variable is the slope. In order to

maintain the same terminology for the variables, we simply consider the model of the

Figure 5.1 but with IU = ID (or conveniently setting LD = 0). The zero-dimensional,

one-reaches model is represented in Figure 5.2

Figure 5.2: Scheme of the zero-dimensional, one-reach (namely one slope) model. The nomen-
clature of the Figure 5.1 is maintained, but formally here we have PU (t) = PD(t)

In this case we have that PU (t) = Cost1IU (t)n = Cost1ID(t)n = PD(t). The non-

dimensional terms iU (t) and iD(t) coincide, and coincide also with hU (t) = hD(t).

Having m = n = 2, if we linearize the problem through (1 + iU (t))n = (1 + iU (t))2 ≈

(1 + 2 iU (t)) = (1 + 2 hU (t)), we have that pU (t) = 2hU (t) and get to the follow-

ing simple ordinary differential equation describing the morphological evolution of the
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model:

dhU
dt

=
1

T0,U
(g(t)− 2hU (t)) (5.7)

The characteristic filling time of this model is referred to the trapezoidal volume

that has to be filled with respect to the position of the gauging station: T0,U =

2G0
H0LUB(2−LU/(LU+LD)) .

Stepwise perturbation (see page 122) Imposing the initial condition that hU (t =

0) = 0, the solution of the integration of the equation (5.7) is

hU (t) =
g0

2
(1− e2t/T0,U )

Having hU (t) = 2pU (t), this means that

pU (t) = g0(1− e2t/T0,U )

so pU (t→∞) = g0 and the solid transport PU (t→∞) tends to the new value G1.

In the Figure 5.3 there is the representation of an example of the evolution for a

river with a perturbation g0 equal to the 20 %. In the legend of the Figure some step

of the evolution are specified with the indication of both the level of the evolution for

the dimensionless morphodynamic parameter and for the slope.

Sinusoidal perturbation (see page 123) In this case the new equilibrium conditions

reached after a transient interval will be periodical. We assume again the initial condi-

tion hU (t = 0) = 0, then the solution of the integration of the linearized equation (5.7)

is:



126 Chapter 5. Morphological reaction of rivers at geological scale

hU (t) =
g0

4 + ω2T 2
0,U

(
T0,Uωe

−2t/T0,U + 2sin(ωt)− T0,Uωcos(ωt)
)

The transitory term is the exponential, which will tend to 0 for t → ∞, and the

dimensionless solid transport perturbation will be dumped with respect to g0 as follows:

pU (t→∞) =
2

4 + ω2T 2
0,U

(
2g(t)− T0,U

dg

dt

)
=

2g0

4 + ω2T 2
0,U

(2sin(ωt)− T0,Uωcos(ωt))

5.2.1.2 Two-reaches, constant grain size model

Now, we want to extent the previous model dividing the channel in two different

zero-dimensional reaches with different slopes IU (t) 6= ID(t). The inputs of sediment

and water are entering again in the system at the upstream end of the river and the

downstream end is supposed at a fixed elevation; but now there is a discontinuity of

the slope, where, however, the mass balance has to be verified (Figure 5.1).

The system is the (5.5) but with a constant bed composition (β̄(t) = β̄∞, b(t) = 0

and c1(β̄(t)) = c1(b(t)) = 1), so we have dbU/bt = dbD/dt = 0 and the second and the

fifth equations become two identities. Then we have that morph(t) + 1 = (i(t) + 1)n.

Substituting the first and the fourth equations respectively in the third and in the sixth,

we can obtain the following non-linear and implicit system with the equations of the

evolution of the morphodynamic parameters of the two reaches:



dmorph,U

dt
=

n

T0,U
(morph,U (t) + 1)1−1/n·

·
[
(g(t)−morph,U (t))− 2LU

LD
(morph,U (t)−morph,D(t))

]
dmorph,D

dt
=

n

T0,D
(morph,D(t) + 1)1−1/n (morph,U (t)−morph,D(t))

(5.8)

In this case we have two distinct characteristic filling time: T0,U referred to the

triangular upstream volume and T0,D referred to the triangular downstream volume.
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With m = n = 2, we can linearize the system (5.8) assuming the first two simplifi-

cations of the system (5.6), namely:


(iU (t) + 1)n = (morph,U (t) + 1) ≈(1 + n iU (t)) =

≈
[
1 + n

(
LU + LD

LU
hU (t)− LD

LU
hD(t)

)]
(iD(t) + 1)n = (morph,D(t) + 1) ≈ (1 + n iD(t)) = (1 + n hD(t))

and find that

dmorph

dt
≈ ndi

dt

The resulting following system describes the evolution of the morphodynamic of the

river with two reaches and a constant bed composition:


dmorph,U

dt
=

n

T0,U

[
g(t)−morph,U (t)− 2LU

LD
(morph,U (t)−morph,D(t))

]
dmorph,D

dt
=

n

T0V
(morph,U (t)−morph,D(t))

(5.9)

Stepwise perturbation (see page 122) Substituting g0 to g(t) in the linearized sys-

tem (5.9) we had integrated the system with the software Wolfram Mathematica and

found the explicit solutions for morph,U (t) and morph,D(t). These solutions are two ex-

ponential expressions which are very long and they will be not presented here. Both

morph,U (t → ∞) and morph,D(t → ∞) tend to g0 as we expected, but analyzing their

behaviour we find some instability when the speed of the convergence relaxes.

This expressions are not invertible, so we can not explicit the evaluation of the time

that the system takes to reach the new equilibrium conditions. From the graphs we

can see three cases:

1. when L ≈ LD for t ≈ 4T0,U we have morph,U (t) ≈ 90%g0 and morph,D(t) ≈ 80%g0;

2. when L >> LD we find great instability very soon;
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3. when L << LD we find a rapid convergence of the value morph,U (t) to g0 (since

t ≈ 0, 2% T0,D) and the instability occurs for t ≈ 17% T0,D, when morph,D(t) ≈

2% g0.

Then we solved numerically the systems, both the exact (5.8) and the linearized

(5.9). The linearized model is much slower then the exact one as a confirm of the

scarce reliability of the linearization. An example of the results of the exact solution

obtained for a river with LU = 0.2 LD and g0 = 0.5 are shown in the Figure 5.4. In

this Figure the horizontal axes is limited to low values in order to highlight the shape

of the function, that is similar to a classical logistic curve, with a certain delay of the

evolution of the downstream reach that depend on the relative length of the reaches.

Sinusoidal perturbation (see page 123) In this case we study the problem (both

exact solution (5.8) and linearized (5.9)) only numerically. If the period Tw of oscillation

of the boundary conditions is enough lower than the time required to reach the new

equilibrium configuration, the resulting curve of the evolution of the morphology are

similar to those found with the stepwise perturbations, but the curve are now periodical

around that solution. Otherwise the evolution can be more complicated. A larger

discussion about this argument will be done later with the complete solution (see 5.2.2)

.

Also in this case we find a faster convergence to the new state of equilibrium for

the exact solution.

5.2.1.3 One reach, variable grain-size model

Now we consider again a reach with a unique slope but with a variable bottom

composition β(t). This model correspond to the system (4.9) found in the previous

Chapter (see section 4.2).

Using the present notation and the dimensionless parameters, as for the section
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Figure 5.3: One reach, constant grain size model: example of the evolution of the slope of a
river from an initial equilibrium state applying a stepwise perturbation g0 equal to the 20 %.
In the legend some step of the evolution of the morphodynamic parameter are compared with
the correspondent step of the evolution of the slope.

Figure 5.4: Two-reaches, constant grain size model: example of the evolution of a river from
an initial equilibrium state applying a stepwise perturbation g0 equal to the 50 %. Numerical
results for the integration of the systems (5.8) and (5.9) for L = 0.2LD.
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5.2.1.1, we have morph,U (t) = morph,D(t).



diU
dt

=
dhU
dt

=
1

T0,U
[g(t)−morph,U (t)]

dbU
dt

=
1

Tmob,U
[(αG(t)− βU (t)) (g(t) + 1)−

− (αU (t)− βU (t)) (morph,U (t) + 1)]]

dmorph,U

dt
= (morph,U (t) + 1)

[
n

iU (t) + 1

diU
dt

+ c3(bU (t))
dbU
dt

]
(5.10)

As usual m = n = 2. If we linearize the previous system (5.10) with the first

and the third approximations of the system (5.6), we obtain that (morph,U (t) + 1) =

(1 + nhU (t)) (1 + β∞c3(β∞)bU (t)).

Thus, the linearized form of the third equation of the system (5.10) is:

dmorph,U

dt
= (morph,U (t) + 1)

[
n

1 + nhU (t)

dhU
dt

+
β∞c3(β∞)

1 + β∞c3(β∞)bU (t)

dbU
dt

]
(5.11)

In this case we have one more unknown and one more equation with respect to the

model without a variable bottom composition in the section 5.2.1.1. If we substitute

the equations of the system (5.10) in the (5.11), we obtain an implicit equation not only

dependent on morph,U (t), but also dependent by the terms h(t) and b(t), which in turn

are dependent by themselves and by morph,U (t). A numerical evaluation is necessary.

This fact happens also for the linearized form of the model.

A large discussion about the results of the model that involves the variability of the

bottom composition is directly postponed to the next section 5.2.2.

5.2.2 General case: two-reaches and variable grain-size model

Now we analyze the complete model described before in the section 5.1 and repre-

sented by the systems (5.1) and (5.4). If we know the boundary conditions Qm, Ḡ and
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αG = α∞, we can evaluate the equilibrium conditions as:



M∞ =
Ḡ

Qm

β∞ =
α∞

(1/d)q−s (1− α∞) + α∞

I∞ =

(
M∞
Cost

c1(β∞)

)1/n

(5.12)

Below we will take into consideration a perturbation of a different boundary condi-

tion at a time.

5.2.2.1 Perturbations of the amount of sediment input

In this section we are going to analyze the reaction of the river, initially in equilib-

rium conditions, in response to a perturbation of the sediment input G(t).

Stepwise perturbations From equilibrium conditions we impose a stepwise pertur-

bation g0 that correspond to a constant perturbation that lead the system to a new

equilibrium condition controlled by the new sediment input G1 = G(t > 0) = G0 as

described in the section 5.2 at page 122.

The results depend upon the length of the upstream reach with respect to the length

of the downstream reach. The results obtained for a schematic river with LU = 0.2LD

and a perturbation g0 = 0.2 are shown in the Figure 5.5. After a stepwise increase

of the solid input firstly we have a rapid fining of the bottom composition β(t) that

lead to a rapid increase of the morphodynamic parameter M(t), then there is a slower

phase during which the slope I(t) increase and the bottom composition decrease to the

equilibrium value, equal to the initial one.

As we increase the length of the upstream reach, the speed of its evolution decrease

and the curves of the evolution of the two reaches tend to coincide. In the Figure 5.6

are shown the results obtained for a schematic river similar to the river used for the

example presented in the section 5.2.1.1 with the model with a single reach and with a

constant bottom composition (see Figure 5.3). Namely we have a negligible length for
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(a)

(b)

(c)

Figure 5.5: Two-reaches, variable grain-size model: example of the evolution of a river with
L = 0.2LD from an initial equilibrium state applying a stepwise perturbation g0 equal to
the 20 %. 5.5(a) describe the evolution of the bottom composition β(t) with respect to its
equilibrium value β∞ (that is the same before and after the perturbation g0 as is possible to
verify from the equation 5.12); 5.5(b) describe the evolution of the slope I(t) of the river with
respect to its new equilibrium value I∞; 5.5(c) describe the evolution of the morphodynamic
parameter M(t) with respect to its new equilibrium value M∞.
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the downstream reach (LU = 5 LD) and so the solutions for the downstream reach are

almost equal to the solutions for the upstream reach (as we were taking into account

only one reach). From the comparison of the Figures we can see that the evolution in

the present section, with the exact solution developed numerically, is slower than the

results obtained with the linearized solution developed by Di Silvio and Nones [2013].

Figure 5.6: Two-reaches, variable grain-size model: example of the evolution of a river with
LU = 5 LD and a stepwise perturbation of the sediment input g0 = 0.2 that can be compared
with the Figure 5.3 that show the result for the same river calculated with the model with a
single reach and with a constant bottom composition (section 5.2.1.1). In the legend some step
of the evolution of the morphodynamic parameter are compared with the correspondent step
of the evolution of the slope.

Sinusoidal perturbations The perturbation of the sediment input g(t) is now si-

nusoidally variable in time as described in the section 5.2 at page 123.

The new equilibrium conditions have to be defined by average values over a longer

time, namely the forcing period Tw.

Also in this case the results are different taking different values of LU/LD. When

there is an important length of the downstream reach the solution for the two reaches

sensibly differ. Increasing the Tw we find that there is a limit for which the perturba-

tion is more similar to a step-wise type, because the time required to reach the new

equilibrium conditions are less than Tw/4 (note that it is the same result for the Twin

found by Fasolato et al. [2011] exposed in the section 2.6.2).
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5.2.2.2 Perturbations of the composition of the sediment input

In this section we analyze the effect of a stepwise (dimensionless) perturbation aG,0

of the composition of the sediment input αG(t):

aG(t) = 0 per t ≤ 0

aG(t) = aG,0 per t > 0
(5.13)

With the numerical results we find out that the perturbation of the composition

of the sediment input can substantially modify the slope of the river, as shown in the

Figure 5.7, which shows an example of the evolution of a river when the sediment input

become finer with a stepwise perturbation of the sediment input composition aG(t <

0) = 0.5 %. In fact, although the equilibrium (t → ∞) morphodynamic coefficient

M∞ = G∞/Q
m remain the same, the equilibrium bed composition is finer, thus the

equilibrium slope decrease. There is an initial rapid fining of the bottom, followed by

a very long period required to reach the new equilibrium. The slope change only very

slowly, while the morphodynamic parameter respond to the rapid fining increasing, and

then it will slowly decrease till the initial (and final) equilibrium value. In the Figure

5.7 the results shown are concentrated in the initial period of evolution with t < T0,U

showing the rapid fining of the bottom.

5.2.2.3 Subsidence and sea-level rise

The mean-sea level is changing in geological time. The only proved reason for this

phenomenon is the glacial cycles, but it can be influenced also by the tectonics. There

are many authors that estimats the local or the global changing of the sea level in the

history, often offering conflicting opinions. Watts and Torné [1992] reported that in the

last 8 millions of years the subsidence of the Valencia through (Western Mediterranean

sea) is of about 1000 m. It means that we can consider a mean subsidence of about

1.25 ∗ 10−2 mm/yr.

As one can guess, this type of simulations are maybe too long-term and the results

go beyond our engineering interests on the phenomenon we are studying.
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(a)

(b)

(c)

Figure 5.7: Two-reaches, variable grain-size model: example of the evolution of a river with
L = 0.2LD from an initial equilibrium state applying a stepwise perturbation aG,0 equal to
the 0.5 %. 5.7(a) describe the evolution of the bottom composition β(t) with respect to its
equilibrium value β∞; 5.7(b) describe the evolution of the slope I(t) of the river with respect to
its new equilibrium value I∞; 5.7(c) describe the evolution of the morphodynamic parameter
M(t) with respect to its new equilibrium value M∞ (that is the same before and after the
perturbation aG,0 as is possible to verify from the equation 5.12).
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5.2.2.4 Perturbation on the input of the liquid discharge

In this section we analyze the effects generated by a perturbation on the liquid

discharge. We have initially supposed that there was not substantial variation of

this value, in order to simplify the equations, finding that the perturbation on the

solid discharge correspond to the perturbation of the morphodynamic parameter, i.e.

p(t) = morph,U (t). Now we consider that exist a perturbation qm(t) of the equivalent

liquid discharge of the river. It means that there is a variation of the duration curve

but, in these temporal and spatial scales, we maintain the LUF hypothesis. Thus the

only parameter that should change in the equation of the evolution of the morphology

is the thickness of the mixing layer δ. This value is extremely arbitrary, sometimes

supposed to be a percentage of the mean water depth, sometimes the diameter of the

d90. For this reason we neglect the influence of the change of the liquid discharge in

the river and consider only the influence of the equivalent liquid discharge directly on

the equilibrium formula. Now we have that the perturbation parameter of the solid

discharge is evaluated as:

p(t) = (morph,U (t) + 1)(qm(t) + 1)− 1 (5.14)

A study of a series of perturbations of the duration curve of the liquid discharge,

characterized by a sinusoidal behaviour with different period, can represent the natural

changing of the climatic conditions. In the Figure 5.8 a comparison of the evolution

of the morphodynamic parameter M(t) with different characteristic period Tw. For

limited temporal simulations the results obtained for a Tw equal to 10, 100 and 1000

T0,U are shown.
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Figure 5.8: Two-reaches, variable grain-size model: comparison between the numerical results
of the system (5.4) and of the linearized version (obtained with the assumptions (5.6)) for LU =
0.2 LD and a sinusoidal perturbation of the equivalent discharge input qm(t > 0) = qmG,0sin(ωt)
with qmG,0 = 0.1 and for different period of oscillation Tw. Graphs of the evolution in time of
the morphodynamic parameter M(t)
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5.3 River evolution with t→∞

In this section we analyze the evolution for t → ∞ of the river with constant

boundary conditions if we begin the simulation from an arbitrary state of the river.

It seems that for every type of initial conditions, the variables swing in order to

arrive always at the same layout, from which then the river evolves toward the equilib-

rium conditions. This typical layout always verified has a bed composition of both the

two reaches finer then the equilibrium composition and a smaller slope of the equilib-

rium slope. Moreover it maintain the observed natural characteristics of concave profile

and downstream fining [Sinha and Parker, 1996], i.e. the downstream reach has smaller

slope and finer bed composition than the upstream bed.

This analysis can maybe represent a sort of a laboratory experiment about the

filling of a basin, given the boundary conditions. It is far from the natural conditions

because in this so long temporal scale the boundary conditions are far to be constant,

but a lot of processes take place, as climatic changing or degradation of the basin itself,

because the mountains are not an infinite source of sediments or because of humans

intervention [Park and Jain, 1987].

Indeed, if we start from any initial conditions, even if convex and with a uniform bed

composition, the morphology of the river evolves to a concave profile with downstream

fining before finally reach the equilibrium conditions, both considering an upstream

reach shorter and longer than the downstream reach, as is possible to see in the Figures

5.9 and 5.12. In the Figure 5.10 the evolution of the three parameters bottom slope

β(t), slope I(t) and morphodynamic parameter M(t) are shown for the case with an

upstream reach shorter than the downstream reach. In the Figure 5.11 there is a zoom

of the graph of the evolution of the bottom composition. From this zoom is possible to

verify that, starting form a bed composition formerly equal to the equilibrium value, the

sediment rapidly become finer and then start a slow evolution to the coarser equilibrium

value, always respecting the downstream fining characteristic.
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Figure 5.9: Evolving longitudinal profile of a schematic river with LU = 0.2LD starting from
a condition of a convex longitudinal profile.
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(a)

(b)

(c)

Figure 5.10: Evolution of a schematic river with LU = 0.2 LD starting from a condition of a
convex longitudinal profile and a bottom composition formerly equal to the equilibrium value.
5.10(a) describe the evolution of the bottom composition β(t) with respect to its equilibrium
value β∞; 5.10(b) describe the evolution of the slope I(t) of the river with respect to its new
equilibrium value I∞; 5.10(c) describe the evolution of the morphodynamic parameter M(t)
with respect to its new equilibrium value M∞.
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Figure 5.11: Zoom to the initial period of the graph 5.10(a) that describe the evolution of the
bottom composition β(t) with respect to its equilibrium value β∞ for a schematic river with
LU = 0.2 LD starting from a condition of a convex longitudinal profile.

Figure 5.12: Evolving longitudinal profile of a schematic river with LU = 5 LD starting from
a condition of a convex longitudinal profile.





Chapter 6

Conclusive remarks and

perspectives

In the present thesis a number of mathematical models have been developed with

the purpose to predict the amount of sediments (sediment yield) conveyed through

a certain cross section of a river.

The models are to be applied, separately or in combination, taking into account the

space- and the time-scale under consideration. The general idea is to utilize at their

best the hydrological, morphological and grain-size data at our disposal, as well as the

available measurements regarding sediment transport (solid discharge, concentration,

filling process of a reservoir, etc. . . ), no matter how numerous and continuous they can

be.

Most of the models developed in this work are physically based, namely based on

the typical ”conservation equation” of the physics (even if more or less simplified).

This class of models differs from other two classes of models applied for the simulation

of the sediment yield of a basin: the empirical models and the conceptual models.

This classification, mentioned also in the Chapter 1, is widely discussed by Merritt

et al. [2003]. While the physically based models are mainly applied to simulate the

sediment transport along the river network, the other two types are principally used to

simulate the sediment production from the basin surface. As explained in the Section

2.2, our purpose is to find basin-scale models able to evaluate the amount of sediments
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coming from a watershed area with no need of a sediment production model. Indeed a

reliable sediment production model should be necessarily very detailed and complicated,

needing many information and long computational time. In a physically based model,

by contrast, the sediment production from the basin surface is obtained indirectly from

the sediment transport data.

Theoretically the parameters used by physically based models are measurable, but

in practice also these types of models need to be calibrated against observed data,

because of the large number of parameters involved and the heterogeneity of their

values (the more so we are considering a basin scale).

A typical set of data to be utilized by the models of this work is formed by a

continuous record of water flow through a given cross-section and some basin-scale

averaged morphological (as river slope, width and length) and grain-size information.

If we have also a continuous record of the solid transport, contemporary to the water

flow record, is possible to calibrate the models.

All the models presented here refer to the classical rating curve of Engelund and

Hansen type (see equation (2.4)), a monomial power relation between the solid and the

liquid discharge (that always needs to be calibrated against a certain set of measures

of liquid discharge and solid transport at a cross-section of a river). We postulate that

this type of relation identifies a stationary condition of the system under consideration,

related to a specific space- and time-scale of the processes involved, called ”equilibrium”

condition. In this equilibrium formula of Engelund-Hansen type (see equation (2.4))

the proportionality parameter, that links the solid discharge with the m-power liquid

discharge (equivalent discharge, see section 3.2), is called morphodynamic parameter

and incorporates all the morphological and grain-size information.

Moreover all the models are based on the fundamental hypothesis of the Local

Uniform Flow (LUF), which implies a univocal relation between the solid transport

and the averaged bottom slope (slowly variable with the ”morphological” time) instead

of the energy slope (quickly variable, in principle, with the ”hydraulic” time). This

assumption (necessary consequence of working at basin-scale, see section 2.6.2) permits

in practice to carry out very long-term simulations on very large rivers. Indeed all the
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models proposed consider the basin-scale as the space-scale.

Finally all the models work with a non-uniform grain-size composition, identified

as a basic assumption in order to better represent the morphological behaviour of the

river. For sake of simplicity, we have considered only two representative diameter of

the sediments, representing the fine and the coarse fraction respectively. Two classes

have proved to be sufficient to show the typical behaviour of a river with a non-uniform

sediment composition.

The models developed permit to evaluate the deviations of the real solid transport

P (t) from the value calculated with the ”equilibrium” formula P̄ [Q(t)]. The deviations

P ′(t) and P ′(τ) depend on the time-scale considered:

P (t) = P̄ [Q(t)] + P ′(t) + P ′(τ)

In particular we have developed three models, valid in three different time-scales.

Long-term equilibrium model with short-term perturbations (Chapter 3):

with this model we consider a short time-scale (daily or monthly), assuming the

existence of a basic configuration (equilibrium condition) at a longer time-scale.

In order to evaluate the short-term deviations from this basic state, we have used

the information provided by the chronological behaviour of the liquid discharge.

In other words, with the support of the 1-D deterministic analytical solution

described in the Chapter 2, we link the present deviation of the solid transport

recorded downstream with the perturbation of the liquid discharge, happened

upstream at a previous time.

Some numerical application of the model have been made with the chronological

series of data for the Adige river (see section 3.7) and for the Po river (see section

3.8). Unluckily the morphological data available were not contemporary with the

records of the solid transport and of the liquid discharge. For this reason also

some parameters, theoretically measurable, had to be calibrated in order to be

coherent with the solid transport data. Moreover, in a context of a collaboration

with CoRiLa and Veneto Region, we tried to apply the long-term equilibrium
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model to the rivers flowing in the Venice Lagoon (see section 3.9), a particular

case very dissimilar from the previous two. The calibrated model was used to

complete lacking series of data for the evaluation of the long-term solid input

from the watershed area draining in the Lagoon. The numerical application

show that the model can improve the results obtain with the simple rating curve,

but the prediction could be further enhanced by considering the large watershed

ares subdivided in smaller and more uniform sub-basin, each one collecting a

different LUF channel (see section 3.6). This subdivision obviously needs the

morphological information (averaged at sub-basin scale) for each sub-basin.

Long-term non-equilibrium model (Chapter 4): with this model we investigate

an intermediate time-scale (pluri-annual). On the basis of the previous model,

we assume that the short-term perturbation averaged on this new time-scale are

null, but we renounce to the constant basic state of equilibrium. So there are now

long-term perturbations to be evaluated. With this purpose, the one-dimensional

model is integrated to a zero-dimensional model, enough representative for the

space- (basin scale) and for the time-scale considered. As we have not a basic

constant state, the morphodynamic parameter is evolving: in particular we con-

sider a constant river width and variable bottom composition and slope of the

LUF channel. The mathematical system found is implicit and non-linear. In or-

der to find an analytical solution for the morphological evolution of the river we

assume a series of simplifications finally leading to admit that the river is not so

far from the equilibrium conditions, namely that the present slope and grain-size

are very similar to their asymptotic values: the evolution depends on the adapta-

tion process of the grain-size (almost instantaneous) and not on the adaptation

process of the river profile (very much slower). Such a solution is in fact hardling

realistic; nevertheless the model has been applied to the records of Adige river

and Po river, inverting the formulation and finding a rapid and simple estimation

of the sediment production from the watershed area. As expected, the resulting

difference between the input and the output of sediment in and from the river is

very small, consistently with the (discutible) solution that we are not so far from
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the equilibrium condition.

Morphological reactions rivers at geological scale (Chapter 5): in this Chapter

we consider a geological time-scale, by renouncing from the previous integrated

0-D model many of the assumed simplifications.

With the assumption of a non-uniform grain-size bottom composition (that is

crucial in the erosion and deposition processes) and by splitting the LUF reach

in two LUF reaches representing the highland and the lowland part of the river

basin, we verified that the morphological evolution results to be (realistically)

much slower and that the model can simulate both the typical natural phenomena

of the downstream fining and of the concave longitudinal profile.

Moreover we find a strict intercorrelation between the slope and the bottom com-

position. A perturbation on a generic boundary condition generally cause a rapid

reaction of the river with the fining of the bed, followed by a very slow reaction

of both the slope and the bottom composition itself. The river will tend to the

new equilibrium condition, unless there is another perturbation.

The mathematical system is implicit and non-linear and it is not possible to

find an analytical solution; we used a numerical evaluation based on a Predictor-

Corrector scheme. Nevertheless, solving it is extremely simpler and faster than

solving a 1-D model.

It would be interesting apply this model also to shorter but more realistic per-

turbations, also of anthropogenic origin. For example estimating the response

of a river after its damming, by considering both the sediment interception by

the reservoir and the regulation of the liquid discharge for irrigation or potable

purpose. In particular the attention could be addressed to the Asian rivers, where

very large rivers are continuously monitored, both for the liquid discharge and

the sediment flux, also by more than fifty years. During the monitored periods

there are evident decreasing or increasing trend, generally due by human activi-

ties. For example the Pearl River, the second larger river in China (in terms of

mean annual water discharge), is monitored till the 50s by three gauging stations
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placed in its three main tributaries. Different response of this river to different

kind of human interventions happened in the observed period have been already

observed [Zhang et al., 2011].



Appendix A

Principal notation

Table A.1: List of the principal notation used in this thesis.

Symbol Definition Units

Q water discharge of the LUF channel m3/s

Y water depth of the LUF channel m

U velocity of the current of the LUF channel m/s

I bottom slope of the LUF channel -

J energy slope of the LUF channel -

B width of the LUF channel m

H bottom level of the LUF channel m

L Length of the LUF channel m

deq equivalent diameter of the sediment m

dc diameter of the coarser class m

df diameter of the finer class m

α percentage presence of the finer diameter in the current -

β percentage presence of the finer diameter in the bottom -

δ mixing layer thickness m

V0 characteristic triangular volume of the LUF channel m3

Vm characteristic volume of the mixing layer of the LUF channel m3

P output solid discharge m3/s

G input solid discharge m3/s

M morphodynamic parameter of the LUF channel (s/m3)m−1

m exponent of the transport formula -

n exponent of the transport formula -

p exponent of the transport formula -

q exponent of the transport formula -

αEH calibration coefficient of the Engelund-Hansen transport formula -
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ARMA procedure

A thorough description of the Auto-Regressive Moving-Average model (ARMA)

may be found in Choi [2012]. We synthesize herein the main features of this procedure.

To describe the output y(t) from a ”‘black-box” by means of a discrete-time model

(necessary from the computational point of view) we may express the analyzed variable

y(t) as a function of the n past values of the output itself and by the n values of the

input x:

y(t) = a1y(t− 1) + ...+ any(t− n) + b0u(t) + b1u(t− 1) + ...+ bnu(t− n) + ε(t) =

=

n∑
i=1

(aiy(t− i)) +

n∑
i=0

(bix(t− i)) + ε(t)

(B.1)

Equation (B.1)may be seen as a discrete formulation of the ordinary differential

equation that describe the evaluation of the quantity y(t) through the physical system

represented by the black-box. If we have a set of measures of the output y and of the

input x, we can calibrate this model against the measured data finding the values for

the coefficients ai and bi. The solution is found through the minimization of the term

ε(t).

As for finding the interpolation line of records of data, if we have a total of N

measures, the problem is the minimization of the mean square errors from the measured
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data:

MINai,bi

N∑
t=n

ε2(t)

where n is the order of the model. We call θ the vector which element are the

(2n + 1) unknowing ai, bi, while φ(t) is the vector which element are the set of data:

φ(t) = [y(t− 1)y(t− 2)...y(t−n)u(t)u(t− 1)...u(t−n)]T . In the case of n = 1 we have:

φ(t) =


y(t− 1)

u(t)

u(t− 1)


Thus, if we write ε(t) form the (B.1) in vectorial form we have:

ε(t) = y(t)− θTφ(t) = y(t)− φT (t)θ

We aim to minimize, in function of θ, the quantity:

Jn(θ) =
N∑
t=n

ε2(t) =
N∑
t=n

[y(t)− θTφ(t)]2 (B.2)

We can recognize that ε2(t) is a quadratic form:

ε2(t) = [y(t)− θTφ(t)]2 =

=
[
1− θT

]  y2(t) y(t)φT (t)

φ(t)y(t) φ(t)φT (t)]

 1

−θT

 =

=
[
1− θT

]
M(t)

 1

−θT


namely ε2(t) ≥ 0, so the matrix M(t) is at least a semi-defined positive matrix,
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namely M(t) ≥ 0. Moreover we can see that the M(t) matrices can be parted in four

matrix, which are in their turn semi-defined positive:

M(t) =

m1(t) mT
2 (t)

m2(t) m3(t)


Substituting this last result in the expression (B.2) of Jn(θ) we have:

Jn(θ) =
[
1− θT

] N∑
t=n

M(t)

 1

−θT

 =

=
[
1− θT

] N∑
t=n

 ∑N
t=n y

2(t)
∑N

t=n[y(t)φT (t)]∑N
t=n[φ(t)y(t)]

∑N
t=n[φ(t)φT (t)]

 1

−θT

 =

=
[
1− θT

]
M(N)

 1

−θT



If we define the matrices r(N) =
∑N

t=n y
2(t), s(N) =

∑N
t=n[φ(t)y(t)] and Q(N) =∑N

t=n[φ(t)φT (t)], we can say that:

Jn(θ) = r(N)− θT s(N)− sT (N)θ + θTQ(N)θ

Because M(N) ≥ 0, is possible to demonstrate that the equation Q(N) θ = s(N)

always has at least one solution, in particular, if Q(N) > 0 (i.e. strictly defined

positive), exists a unique solution: θ = Q−1(N) s(N).

We want to demonstrate that θ0 is a solution of the problem MINθJn(θ) if and

only if Q(N) θ0 = s(N).

1. Q(N) θ0 = s(N)⇒ θ0 = MINθJn(θ)

Any θ can be written as θ = θ0 + θ1.
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Jn(θ0 + θ1) =r(N)− (θ0 + θ1)T s(N)− sT (N)(θ0 + θ1)+

+ (θ0 + θ1)TQ(N)(θ0 + θ1) =

=r(N)− θT0 s(N)− sT (N)θ0 + θT0 Q(N)θ0 − θT1 s(N)− sT (N)θ1+

+ θT1 Q(N)θ1 + θT0 Q(N)θ1 + θT1 Q(N)θ0

The hypothesis are that Q(N)θ0 = s(N), so we have that θT1 Q(N) θ0 = θT1 s(N) =

sT (N) θ1 = θT0 Q(N) θ1. Then:

Jn(θ0 + θ1) =r(N)− θT0 s(N)− sT (N)θ0 + θT0 Q(N)θ0 + θT1 Q(N)θ1 =

=Jn(θ0) + θT1 Q(N)θ1 ≥ Jn(θ0)

because Q(N) ≥ 0.

2. θ0 = MINθJn(θ)⇒ Q(N)θ0 = s(N)

If Jn(θ0) ≤ Jn(θ) = Jn(θ0 + θ1), from the previous calculations we have that

Jn(θ0) = Jn(θ) if and only if θT1 Q(N)θ1 = 0. But, if Q(N) ≥ 0, we have also that

Q(N)θ1 = 0. In particular we have:

Q(N)θ = Q(N)(θ0 + θ1) = Q(N)θ0 +Q(N)θ1 = Q(N)θ0) = s(N)
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Hydrological model

A simple hydrological model has been developed to reconstruct the liquid discharge

passing through the cross-section of the gauge stations of rivers flowing into the Venice

Lagoon before 2006 (see section 3.9). We use the meteorological data of rainfall and

temperature starting from the 1996 and some primary information from the land recla-

mation authority about the flow regulation management. In particular we have recon-

struct the general network of the interconnections between the different sub-basins and

channels and we have the average monthly values of the artificial discharge diverted

from each one of them. The exact value of the diverted discharge moved every day is

impossible to know because the channel are regulated by hand and often according to

the opinion of the farmers.

The territory is quietly uniform, so we can interpolate the values of the meteo-

rological stations with the method of Thiessen polygons. We calculate the monthly

mean evapotranspiration with the Thornthwaite formula (C.1), and then extrapolate

the daily value (Pareira et al., 2004).

ET (t) = K

[
1.62

(
10 T (t)

I

)a]
(C.1)

where ET is the monthly evapotranspiration ([cm]); K is the latitude correlation coef-

ficient of the ith month, equal to the quotient between the daytime hours and the half

of the daily hours (= 12); T (t) is the monthly mean air temperature ([�]); a is a factor
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dependent on I and I is the annual index of heat.

For the entire area of the watershed of the Venice Lagoon we assume a mean runoff

coefficient ϕ (the ratio between the water volume which crosses the closing section of

the basin and the rainfall input over the related surface) equal to 70 % and that the

subsequent infiltration goes to an underground reservoir that will give back the water

Qinf to the river with a linear law.

Therefore we perform a smooth hydrological model based on the mass balance of

input and output of water in every single sub-basin system. We have to calibrate the

following schematic relationship:

Q(t) = [a1ϕR(t− d1)− a2ET (t− d1) + a3Qinf (t− d2)] +QIN (t)−QOUT (t)

WhereQ(t) is the liquid discharge measured at the gauge station, R(t) is the rainfall,

so ϕR(T ) is the runoff (input), ET (t) is the evapotranspiration (output), Qinf is the

contribute from the underground reservoir of the rainfall infiltrated (equal to (1−ϕ)R),

QIN and QOUT are the artificial input and output at the basin. Both the runof and

the evapotranspiration are relative to a previous time that has to be determined on

the bases of the time of concentration of the basin d1 (that is the time that a liquid

particle fallen in farthest point of the basin require to reach the closing section). The

process of infiltration followed by the linear empty of the underground reservoir implies

a different delay d2 associated to Qinf . The coefficient a1, a2 and a3 are the site-specific

calibration parameter determined by an ARMA procedure.

Notice that the real runoff coefficient, the ratio between the water volume which

crosses the closing section of the basin and the rainfall input over the related surface,

is influenced by the strong human activities, that deviate the natural flow of the water,

as we can see from the results of the DRAIN project published in Zuliani et al. [2005],

where they found also some values of ϕ greater than 1. Nevertheless the assumption

of the value of the runoff coefficient is negligible, because its value (or the correction of

the value chose) can be incorporated inside the calibration parameter.

The artificial regulations done by the land reclamation authority typically works
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through channel deviations by exceeding of a threshold, but there is no recording of

this work, and often the thresholds are manually modified case by case. As mentioned

before, we know only some principal values of the monthly average artificial input and

output from the different sub-basins. We extrapolate the daily regulation thinking

that the inputs have to be proportional to the evapotranspiration QIN (t) ∝ ET (t), i.e.

the need of water by the cultivations, and the output can occur when there are flood

conditions QOUT (t) ∝ R(t).

The model incorporates also a representation of the snow melting based on the daily

average temperature as explained in the section 3.6, but it has not a great importance

at this latitude and altitude.

The ARMA calibration of the model is combined with a recursive model in order to

find the values of the time of concentration d1, the characteristics delay of the under-

ground reservoir d2 and its initial condition (the volume of the reservoir at the begin of

the simulation) that best represent the record of data available. Although the anthropic

interventions are taken into account with some reasonable law, sometimes the calcu-

lated liquid discharge can be evaluated as negative. We assume that the contribution

of the underground reservoir can compensate the lack of specific information.
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Trend of the components of the

characteristic volume A(τ )
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Figure D.1: Trend of the transport composition α with respect to the bed composition β
varying the exponents s and q (and so m).
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Figure D.2: Trend of the function c1(β) with respect to the bed composition β varying the
exponents s and q (and so m).
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Figure D.3: Trend of the function (α(β)− β) with respect to the bed composition β varying
the exponents s and q (and so m).
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Figure D.4: Trend of the function 1
c1(β)

dc1(β)
dβ with respect to the bed composition β varying

the exponents s and q (and so m).
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Figure D.5: Trend of the function f(β̃(τ), d) with respect to the bed composition β varying
the exponents s and q (and so m).
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Figure D.6: Trend of the characteristic volume A with respect to the bed composition β
varying the exponents s and q (and so m).





Bibliography

H. Aksoy and M.L. Kavvas. A review of hillslope and watershed scale erosion and sediment transport

models. Catena, 64(2):247–271, 2005.

J.R.L. Allen. Reaction, relaxation and lag in natural sedimentary systems: General principles, examples

and lessons. Earth-Science Reviews, 10(4):263 – 342, 1974.

P.A. Allen and P.L. Heller. Dispersal and Preservation of Tectonically Generated Alluvial Gravels in

Sedimentary Basins. 2012.

N.E.M. Asselman. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234:228

– 248, 2000.
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