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RIASSUNTO 

La vite (genere Vitis) rappresenta una delle principali specie coltivate su scala mondiale , 

con una produzione che si avvicina ai 70 milioni di tonnellate e una superficie coltivata di 

oltre 7 milioni di ettari . Tra le 60 specie all'interno del genere Vitis, Vitis vinifera L. è la 

più utilizzata per la produzione di vino e distillati. Prima della devastazione della 

viticoltura europea causata dall'introduzione del parassita fillossera dal Nord America, le 

varietà di V. vinifera usate per la produzione di vino in Europa non erano innestate. 

Successivamente, l'utilizzo di portinnesti di origine americana ha permesso di fornire una 

maggiore resistenza al parassita e ad altre malattie che stavano seriamente 

compromettendo la viticolture Europea. I portinnesti più usati commercialmente derivano 

da incroci di svariate specie di vite, tra cui V. berlandieri, V. riparia e V. rupestris, e, oltre 

a migliorare la resistenza alla fillossera e altri patogeni, conferiscono caratteristiche di 

tolleranza a stress abiotici (come siccità, elevata salinità e Fe-carenza), regolano la crescita 

dell’acino, contribuiscono alla maturazione e alla qualità dei frutti, possono alterare alcuni 

aspetti legati alla qualità in post-raccolta dell’acino. 

I risultati presentati in questa tesi di dottorato sono parte integrante di un progetto multi- 

disciplinare chiamato SERRES (selezione di nuovi portinnesti di vite resistenti a stress 

abiotici attraverso lo sviluppo e la validazione di marcatori molecolari) e finanziato dalla 

fondazione Ager. La selezione e la caratterizzazione di portainnesti che conferiscano un 

maggiore grado di tolleranza agli stress abiotici è essenziale per lo sviluppo di modelli 

agricoli sostenibili e, allo stesso tempo, per l’induzione di un rapporto equilibrato tra fase 

vegetativa e produttiva, una progressione diversa della maturazione dell’uva, così come, 

differenze a livello qualitativo. Migliorare la conoscenza delle basi molecolari, 

biochimiche e fisiologiche della resistenza allo stress è un requisito fondamentale per la 

selezione di genotipi in grado di far fronte alle condizioni di stress senza conseguenze 

negative su crescita vegetativa e produzione di uva ad alta qualità. 

Lo stress idrico ha un impatto enorme sulla produzione agricola, infatti, è uno dei 

principali fattori che limitano la produttività delle piante e causano una grave riduzione 

della resa. Sulla base dei modelli climatici globali, che prevedono un aumento delle aree 

aride nel prossimo futuro, la carenza idrica può diventare il principale fattore limitante per 

la coltivazione. In questo contesto, i portinnesti potrebbero assumere un ruolo importante 



14 

 

nel limitare la perdita di raccolto migliorando l'efficienza dell'uso dell'acqua, il potenziale 

di sopravvivenza della pianta e la capacità di crescita del frutto in presenza di condizioni 

avverse come siccità ed elevata salinità del suolo (stress osmotici). Lo stress idrico porta a 

molti cambiamenti morfologici e fisiologici, tra cui ridotta espansione della parte aerea, 

limitazione della crescita radicale, diminuzione della traspirazione fogliare e 

dell’efficienza fotosintetica, accumulo di ioni e osmoliti, attivazione di processi di 

disintossicazione e parallelamente la regolazione a livello trascrizionale di un elevato 

numero di geni. In seguito allo stress idrico, si innesca uno stress secondario legato 

all’accumulo di specie reattive dell'ossigeno (ROS), quali H2O2, O
2-

, -OH, 
1
O2 e NO. Le 

ROS sono responsabili della maggior parte dei danni ossidativi nei sistemi biologici e 

nelle componenti cellulari. Un rigoroso controllo dei livelli delle ROS è obbligatorio per 

la sopravvivenza delle piante e il cross-talk tra l’accumulo di ROS lo stato redox è parte 

integrante di un preciso controllo omeostatico che gioca un ruolo fondamentale nella 

risposta agli stress. Le piante innescano svariati meccanismi di riduzione del livello di 

ROS (ROS-scavenging) volti all’induzione dell’espressione di geni che codificano per gli 

enzimi superossido dismutasi (SOD) , catalasi (CAT), ascorbato perossidasi e glutatione 

perossidasi. 

Recentemente è stato condotto uno studio di caratterizzazione a livello biochimico e 

fisiologico di M4 [(V. vinifera x V. Berlandieri) x V. berlandieri cv Resseguier n.1], un 

nuovo genotipo di vite candidato ad essere utilizzato come portinnesto. Questo genotipo, 

studiato dal 1985 dal gruppo di ricerca DiSAA dell'Università degli studi di Milano, è 

stato selezionato per la sua alta tolleranza allo stress idrico (WS) e salino (SS). Se 

confrontate con il genotipo commerciale 101.14, le piante di M4 sottoposte a deficit idrico 

hanno mostrato una maggiore capacità di tolleranza e una più elevata attività fotosintetica 

anche in condizioni di stress gravi. 

Nella prima parte di questa tesi sono stati osservati i risultati ottenuti da un’analisi 

trascrittomica condotta su larga scala (RNA -Seq), effettuata su foglie e radici dei 

portinnesti M4 e 101.14 campionati in condizioni di stress idrico progressivo (5 time-

points). Le analisi fisiologiche sono state effettuate sulle piante trattate (deficit idrico, WS) 

e di controllo (irrigate, WW) lungo tutto il campionamento. L'analisi multifattoriale, che è 

stata condotta sui dati mRNA-Seq, ci ha permesso di valutare il peso di tre diverse 



15 

 

componenti sulla risposta allo stress: genotipo ( R : 101.14 e M4 ), tipo di stress imposto 

(Trattamento, T : WW e WS) e time-point considerato ( P : T1 - T4 ). Con questa analisi  

stato inoltre possibile identificare i geni differenzialmente espressi (GDE) legati all’azione 

specifica o combinata di questi fattori (R:T , R:P , T:P e R:T:P). In WS radice si è sempre 

osservati un numero maggiore di GDE rispetto alla foglia. Una prima osservazione 

generale confrontando i risultati delle analisi multifattoriali eseguite su foglie e radici, è 

che nel tessuto radice il "trattamento" sembra essere la variabile che ha un impatto 

maggiore sull’espressione genica, mentre nel tessuto fogliare il peso del genotipo 

(portinnesto) sembra essere il più elevato. Questa osservazione non è sorprendente, 

considerato che il sistema radicale è il primo organo a percepire lo stress causato dalla 

carenza idrica e quello principale atto alla risposta. In questo caso è chiaro che il tipo di 

trattamento imposto rappresenta la variabile principale che influenza l’espressione genica 

mentre l'effetto del genotipo è meno determinante. Con i dati RNA-seq è stata eseguita 

una “Differential Cluster Analysis” (DCA), che si basa sul confronto delle correlazioni tra 

le espressioni dei trascritti di un organismo “reference” e di un “target”. Questa analisi ci 

ha permesso di identificare i pattern di co-espressione genica (T1-T4) conservati e pattern 

non-conservati tra M4 e 101.14. Per quanto riguarda gli ormoni vegetali, è stata osservata 

un’induzione dei geni legati ad auxine, jasmonati ed etilene nelle radici di M4 sottoposte a 

stress, mentre una sovra-regolazione degli stessi trascritti è stata osservata in 101.14. La 

categoria metabolica più interessante, emersa dall’analisi DCA, è quella legata ai 

metaboliti secondari. Infatti sono stati individuati diversi GDE legati a questa categoria sia 

in radice che in foglia di M4, indotti in condizioni di stress, ed è stata evidenziata una 

forte specificità di espressione tra i due tessuti. Infatti, in condizioni di carenza idrica, 

radici e foglie del genotipo tollerante M4 mostrano rispettivamente una maggiore 

induzione dei geni legati agli stilbeni (i.e. STS) e ai flavonoidi (e.g. CHS, F3H, LDOX, 

FLS). Il ruolo di questi geni potrebbe essere legato al controllo e al bilanciamento delle 

specie reattive dell’ossigeno (ROS), in aggiunta ai classici meccanismi di ROS-scaveging 

(meccanismi antiossidanti primari). In presenza di stress idrico, M4 potrebbe attuare 

meccanismi differenziali in radice e foglie che portano alla produzione di molecole, come 

resveratrolo e flavonoidi, correlate ad un sistema antiossidante secondario presente solo 
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nel portinnesto più tollerante. La maggiore tolleranza allo stress idrico di M4, in confronto 

a quanto osservato in 101.14, potrebbe essere relativo a questi eventi. 

Nella seconda parte di questa tesi, è stato valutato l’effetto dei portinnesti M4 e 1103P su 

sviluppo, maturazione e qualità delle bacche di Cabernet Sauvignon (CS). Per questo 

esperimento sono stati campionati da piante di CS/M4 e CS/1103P acini interi a 45, 59 e 

65 giorni dopo la piena fioritura (GDF). Successivamente la maggior parte delle bacche di 

CS/M4 avevano raggiunto l’invaiatura, si è quindi deciso di separare bucce e polpe per i 

campionamenti successivi, condotti a 72, 86 e 100 GDF. Sulla base dei parametri fisici 

(volume e colore) e chimici (solidi solubili totali, SSC), i due portinnesti hanno mostrato 

una diversa influenza sulla cinetica di sviluppo e maturazione delle bacche di CS. Per 

identificare le stesse fasi di sviluppo dei frutti raccolti da CS/1103P e CS/M4, è stato 

condotta un’analisi di espressione preliminare, mediante sistema real-time PCR, sui geni 

coinvolti nella biosintesi di fenoli, zuccheri e acidi organici. Questo approccio ha 

permesso di identificare la fase verde a 45 DAFB in entrambe le combinazioni d’innesto, 

mentre l’invaiatura è stata individuata a 72 e 86 DAFB rispettivamente per CS/M4 e 

CS/1103P. Le analisi mRNA-seq e micro-RNAseq sono state effettuate sulle bacche in 

fase di pre-invaiatura (45 GDF), invaiatura (72 GDF per CS/M4 e 86 GDF per CS/1103P) 

e epoca di raccolta tradizionale di CS (100 GDF). Le analisi statistiche sono state condotte 

sui dati RNA-seq confrontando il rapporto tra i dati di espressione di CS/M4 e CS/1103P 

ad ogni punto della cinetica e per entrambi i tessuti. Le analisi di “clusterizzazione” e di 

arricchimento hanno evidenziato la presenta di un elevato numero di GDE legati a 

metabolismi auxinici. Le auxine hanno un ruolo fondamentale durante lo sviluppo e sulla 

maturazione della bacca, si è quindi deciso di concentrare la nostra attenzione su questa 

classe ormonale e di eseguire una caratterizzazione e un’analsi filogenetica delle famiglie 

geniche ARF e AUX / IAA sul genoma di PN40024. Il ruolo delle auxine in questi 

processi è stato studiato anche in un altro un altro lavoro presentato in questa tesi, durante 

il quale è stato dimostrato che un trattamento sugli acini d’uva in fase di pre-invaiatura 

con l’auxina sintetica NAA causa un ritardo nella maturazione, che si manifesta  a livello 

fisiologico e di espressione genica, parallelamente alle quali è stata osservata l’induzione 

di un elevato numero di trascritti atti a controllare l’omeostasi delle auxine. Le analisi 

condotte con il software HORMONOMETER hanno suggerito che il recupero 
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omeostatico atto a portare i livelli dell’ormone a concentrazioni meno elevate è avvenuto a 

soli 7 giorni dal trattamento. Questa ipotesi è fortemente supportata dalla sovra-

regolazione di geni coinvolti nella coniugazione (GH3 -like) e nell'azione ( IAA4 e IAA31 

-like) delle auxine. Considerando questi risultati, le differenze osservate tra CS/M4 e 

CS/1103P durante lo sviluppo e la maturazione della bacca potrebbero essere collegate ad 

una diversa regolazione dell’auxina. Infatti, i dati di espressione (mRNA-seq, microRNA-

seq e qPCR) evidenziato importanti differenze nel metabolismo auxinico tra le due 

combinazioni d’innesto. I nostri dati suggeriscono un coinvolgimento importante 

dell’ormone nel controllo dello sviluppo/maturazione della bacca grazie all’espressione di 

legati, da un lato all’azione delle auxine (ARF e AUX/IAA) e, dall'altro , all’omeostasi di 

questo ormone attraverso trascritti coinvolti nella coniugazione (GH3) e nel trasporto (PIN 

e ABCB). In questo contesto , anche i miRNA hanno un ruolo importante, in particolare 

esercitando un controllo sulla trascrizione dei geni ARF (e.g. miR160 e miR167). In fase 

di pre-invaiatura, le auxine hanno un’azione positiva sulla trascrizione dei geni che 

controllano le dimensioni della bacca (e.g. espansine) e di geni legati alla famiglia delle 

ARF (ad esempio VvARF8A e VvARF1A ). Parallelamente all'induzione di geni che 

appartengono alla famiglia ARF, è stata osservata l’induzione di trascritti che controllano i 

livelli (e.g. VvGH3-1) e l'azione (VvIAA9, VvIAA15A, VvIAA16) dell’ormone, 

suggerendo un’accurata regolazione dei livelli auxinici in queste fasi importanti dello 

sviluppo del frutto. Inoltre, il controllo dei livelli di auxina nella bacca d’uva sembra 

essere legato anche ad altri meccanismi legati all’induzione di geni legati al trasporto 

ormonale durante le fasi precoci (ABCBs) e tardive (PIN) della maturazione del frutto. 

Tenendo conto delle differenze osservate tra CS/M4 e CS/1103P nell’espressione di 

trascritti legati al metabolismo dell’auxina, questo ormone sembra esercitare un’azione 

negativa su alcuni geni legati alla maturazione della bacca (e.g. flavonoidi), ma la sua 

induzione nella fase di pre-invaiatura potrebbe essere necessaria per far scattare altri 

processi metabolici coinvolti nella maturazione dell’acino d’uva. 
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SUMMARY 

Grapevine represents one of the major economic crop species on a worldwide scale, with a 

world production approaching 70 million of tons and a harvest area of over 7 million 

hectares. Amongst the 60 species within the Vitis genus, Vitis vinifera L. is the mostly 

used for the production of wine and distilled liquors. Before the devastation of European 

viticulture caused by of the introduction of phylloxera from North America, varieties of V. 

vinifera used commercially for wine production in Europe were traditionally grown on 

their own roots. Subsequently, the use of rootstocks from the pest’s origin was introduced 

to provide resistance to this and other deleterious diseases and to save the fate of European 

viticulture. Rootstocks have been bred from a number of Vitis species, especially V. 

berlandieri, V. riparia, and V. rupestris, and are known, in addition to the enhanced 

resistance to phylloxera and other pathogens, confer tolerance to abiotic stresses (e.g. 

drought, high salinity and Fe-deficiency), regulate the size of the scion, affected fruit 

development/ripening, contribute to fruit quality and can alter specific aspects of 

postharvest fruit quality of a scion. 

Results presented in this Ph.D thesis  are a part of a larger multi-disciplinary project called 

SERRES (Selection of new grape rootstocks resistant to abiotic stresses through the 

development and validation of molecular markers) granted by Ager foundation. Selection 

of resistant rootstocks is crucial for the development of sustainable agricultural models 

and, at the same time, for inducing a balanced vegetative/productive ratio, a different 

ripening progression in grape berries and, as well as, differences in their global quality. 

Improving the knowledge about the molecular, biochemical and physiological bases of 

stress resistance is an absolute requirement for the selection of genotypes able to cope 

with stress conditions without any negative consequences on the vegetative growth and 

production of high quality grape. 

Drought has an enormous impact on crop production, indeed, it is one of the major factors 

limiting plant productivity and cause a severe yield reduction. Based on the global climate 

models, which predict an increase in the aridity in the next future, water deficit may 

became the major limiting factor. In this context rootstocks may play an important role in 

limiting crop loss by improving water use efficiency, potential for survival, growth 

capacity and scion adaptability to stress conditions. Water deficit leads to many 
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morphological and physiological changes across a range of spatial and temporal scales, 

including reduced expansion of aerial organs, maintenance of root growth, decrease in 

transpiration and photosynthesis, accumulation of osmotic compounds and ions, activation 

of detoxifying processes and, in parallel, the transcriptional regulation of a large number 

of genes. Oxidative stress is related to the accumulation of reactive oxygen species, such 

as H2O2, O
2-

, -OH, 
1
O2, and NO. These ROS are responsible for most of the oxidative 

damages in biological systems and cellular components. Thus, a strict control of ROS 

levels, throughout the expression of genes coding for superoxide dismutases (SOD), 

catalase (CAT), ascorbate peroxidase and glutathione peroxidise ROS scavenging 

enzymes, is mandatory for plant survival and the cross-talk between ROS accumulation 

and redox state is integrating part of a fine homeostasis control that plays a pivotal role in 

the plant response to stresses. 

Recently, a biochemical and physiological study of the M4 [(V. vinifera x V. berlandieri) 

x V. berlandieri x cv Resseguier n.1] novel candidate genotype to be used as rootstock in 

grapevine was performed. This genotype, established from 1985 by the DiSAA research 

group operating at the Milan University, was selected for its high tolerance to water deficit 

(WS) and salt exposure (SS). In comparison with the 101.14 commercial genotype, M4 

un-grafted plants subjected to water and salt stress showed a greater capacity to tolerate 

WS and SS maintaining photosynthetic activity also under severe stress conditions and 

accumulating, especially at the root level, osmotic compounds and ions.  

In the first part of this thesis were reported results obtained from a large scale whole 

transcriptome analyses (RNA-seq) performed on root (whole apparatus) and leaf tissues of 

101.14 (drought susceptible) and M4 plants sampled in progressive drought (five time 

points). Physiological analyses were performed on treated (water-stress, WS) and control 

(well-watered, WW) plants over all the sampling. The multifactorial analysis , which was 

performed on mRNA -seq data concerning to both the analyzed tissues (leaf and root), 

allowed us to evaluate the relative weight of the genotype (R: 101.14 and M4), of the type 

of stress imposed (Treatment, T: WW and WS) and of the time point considered (P: T1-

T4), and to identify Differentially expressed Genes (DEGs) that are affected in a specific 

way or the combined action of these factors (R:T, R:P, T:P and R:T:P). In WS root 

dataset, all considered components (R, T and P) were found to affect the higher number of 



21 

 

genes in comparison to other dataset (WS leaf). A first general observation comparing 

results of the multifactorial analyses performed on leaves and roots is that in root tissue 

the “treatment” seems to be the main variable explaining differential gene expression 

depend on the kind treatment imposed, whereas in leaf tissue the weight of the genotype 

(rootstock) appear to be the highest. This observation is not surprising, considering that 

the root system is the first organ perceiving the water deprivation stress and the main one 

actively responding to it. In this case it’s clear the kind of treatment imposed represent the 

main variable influencing expression whereas the effect of the genotype is less 

determinant on differential expression of genes. RNA-seq data were used to performed a 

Differential Cluster Analysis (DCA), which is based upon comparison of correlation 

between genes expression of a “reference” and a “target” organism and allowed us to 

identify conserved and diverged co-expression patterns between related organisms. This 

analysis allowed us to compared the transcriptomic responses of M4 and 101.14 

rootstocks. As concerns plant hormones, it was showed an induction of auxin, JAs and 

GAs related-genes at the beginning of the stress kinetic in M4 stressed roots, whereas a 

up-regulation of these transcripts in unstressed root was observed in 101.14. The most 

interesting metabolic category was the “Secondary metabolism” one because several 

DEGs belonging to these metabolisms were founded in both root and leaf upon WS, but 

with a strong specificity of DEGs expression among two considered organs. Indeed, upon 

WS, roots and leaves of the tolerant genotype M4 exhibit an higher induction of stilbenes 

(i.e. STS) and flavonoids (e.g. CHS, F3H, LDOX, FLS) biosynthetic genes, respectively. 

We hypothesized the role of these genes in the control and balance ROS levels, in addition 

to the others well known ROS scavengers. In presence of water stress, M4 rootstock may 

acts differential mechanisms in root and leaves which leads to the production of 

molecules, such as resveratrol and flavonoids and these events may be related to a 

secondary antioxidant system in this rootstock. The higher resistance of M4 rootstock to 

water stress, in comparison to what observed in 101.14, should be related to these events. 

In the second part, in order to evaluate the effects of the rootstocks on grape berry quality 

and development/ripening, an RNA-seq experiment on Cabernet Sauvignon (CS) grafted 

onto M4 and 1103 Paulsen rootstocks was carried out. Whole berries were collected from 

CS/1103P and CS/M4 bunches at 45, 59, 65 days after full bloom (DAFB), in 
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correspondence to the end of lag phase. At this moment most of grape berries reached 

véraison, the other samples (separating skin and pulp) were collected at 72, 86 and 100 

DAFB. On the basis of physical (volume and colour) and chemical (Soluble Solids 

Concentration, SSC) parameters, the two rootstocks seem to induce a different 

development and ripening pattern on CS berries. To identify the same developmental 

phases of berries collected from CS/1103P and CS/M4, the expression profile of genes 

involved in phenols, sugar and organic acids metabolisms were overlapped. This approach 

allowed to establish that the green phase occurred at 45 DAFB in both combinations, 

while véraison happened at 72 and 86 DAFB for CS/M4 and CS/1103P, respectively. An 

mRNA-seq and a microRNA-seq experiments were carried out on CS berries sampled at 

pre-véraison (45 DAFB), véraison (72 and 86 DAFB for M4 and 1103P, respectively) and 

traditional CS vintage date (100 DAFB). For the statistical analyses on RNA-seq data a 

pairwise comparisons between M4 and 1103P genotypes were accomplished at each time 

point and a large numbers of DEGs related to auxin metabolisms were identified with 

enrichment and clustering analysis. It is well known the important role of auxins on grape 

berry development, so, it was decided to focus our attention on this hormone and to 

performed a characterization of grape ARF and AUX/IAA gene families. Indeed, in 

another work presented in this thesis, we showed that an NAA treatment just before 

véraison caused delayed grape berry ripening at the transcriptional and physiological 

level, along with the recovery of a steady state of its intracellular concentration. Hormone 

indices analysis carried out with the HORMONOMETER tool suggests that biologically 

active concentrations of auxins were achieved throughout a homeostatic recovery. This 

occurred within 7 days after the treatment, during which the physiological response was 

mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is 

strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) 

and action (IAA4- and IAA31-like). Considering these results, the differences observed 

among CS/M4 and CS/1103P in grape berry development and ripening should be related 

to a different regulation of auxin metabolism. Indeed, all transcripts/miRNAs analyses 

performed (RNA-seq, microRNA-seq and qPCR) highlighted important differences in the 

auxin metabolism among the two scion/rootstock combination. Our data suggest an 

important involvement in the control of grape berry development/ripening of genes that 
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are related, on one hand to auxin action (ARF and AUX/IAA) and, on the other hand, to 

homeostasis of this hormone through the expression of genes involved in conjugation 

(GH3) and transport (PIN and ABCB). In this context, also miRNA have an important 

role, especially by controlling ARF–related genes (e.g. miR160 and miR167). In the case 

of fruit ripening, auxin acted as a positive regulator of genes that control grape berry size 

(e.g. expansin-related genes) before the véraison stage; it was indeed observed the up-

regulation at the pre-véraison stage, which was different for CS/M4 and CS/1103P, of 

transcripts that control auxin-responsive genes (e.g. VvARF8A and VvARF1A). The 

induction of genes that belonged to ARF family was paralleled by the expression of 

transcripts that control auxin level(e.g. VvGH3-1) and action (VvIAA9, VvIAA15A, 

VvIAA16), suggesting that an accurate regulation of auxin homeostasis in grape berries at 

these phases. Moreover, control of auxin levels in grape berry seems pass through other 

mechanisms which involved control of transport-related genes in the early (ABCBs) and 

late (PINs) phases of berry development. Taking into accounts that at commercial CS 

harvest, CS/M4 berries berries were showing differences in some processes ripening-

related (e.g. flavonoids metabolism) and a different regulation of auxin metabolisms, 

when compared to those of CS/1103P, auxin seems to act as negative regulators on some 

genes related to grape berry ripening but its induction at the pre-véraison stage could be 

necessary to triggers other metabolism involved in ripening processes. 
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Chapter I 

 

GENERAL INTRODUCTION 
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1. Grapevine rootstocks 

Grafting, which involves the combination of two different varieties or species to form a 

plant with new characteristics, is a technique extensively used in the cultivation of several 

horticultural species, such as grapevine, apple and peach. Grafting technique involves the 

areal part, called scion, which is grafted onto the basal portion, called rootstock, of the 

plant (Arrigo and Arnold, 2007; Lee et al., 2010). So, the new-formed individual is made 

up by two bionts (scion and rootstock), which are characterized by two different 

genotypes. Grafting has two parameters of importance: ease of grafting and affinity 

between scion/rootstock combination (Gregory et al., 2013). To obtain a successful 

grafting the vascular cambium, responsible for cell division, of both bionts has to be in 

contact in order to connect xylem and phloem (Marguerit et al., 2012). In viticulture, 

practice of grafting was already widespread in ancient times but the principal reason for 

the widespread use of grafting in viticulture was the Daktulosphaira vitifoliae (phylloxera) 

epidemic. Phylloxera, native to North America, was introduced into Europe at the end of 

the nineteenth century and destroyed around four million of vineyard hectares. There are 

some evidences that a Bordeaux grower called Leo Laliman was the first to advise 

grafting European grape vines, Vitis vinifera, onto rootstocks from Vitis species originate 

from North America. The higher resistance to this pests observed in the American species 

is related to their co-evolution with phylloxera, which leads to the development of 

resistance mechanisms that still are not completely understood. Proper sanitation may 

reduce the risk of phylloxera infestation, but it is no guarantee against its spread. The 

potential economic loss from phylloxera infestation is so great that planting on resistant 

rootstocks is recommended even in regions where phylloxera is not yet present (Arrigo 

and Arnold, 2007). 

In addition to the enhanced resistance to phylloxera, the growth of many plants in 

cultivated systems is profoundly affected by selection of appropriate rootstocks. 

Rootstocks have been bred from a number of Vitis species, especially V. berlandieri, V. 

riparia, and V. rupestris, and are known to confer resistance to various pathogens, 

tolerance to abiotic stresses (e.g. drought, high salinity and Fe
2+

-deficiency), regulate the 

size of the scion, affected fruit development/ripening, contribute to fruit quality and 

further they can alter specific aspects of postharvest fruit quality of a scion (Arrigo and 
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Arnold, 2007; Lee et al., 2010; Gregory et al., 2013; Marguerit et al., 2012; Fisarakis et 

al., 2001; Grant and Matthews, 1996; Walker et al., 2002, 2004). 

 

1.1 Influence of rootstocks on grapevine abiotic stresses tolerance 

In addition to their ability to helped scion to cope with biotic stresses, rootstocks can 

confer also tolerance to a large range of abiotic stresses. Among these, drought and high 

salinity have an enormous impact on crop production, indeed, they were ones of the major 

factors limiting plant productivity and cause a severe yield reduction (Cramer et al., 

2007). So, breeding of crop varieties that use water more efficiently is a key strategy for 

the improvement of agro systems (Marguerit et al., 2012). Based on the global climate 

models, which predict an increase in the aridity in the next future (Dai, 2013), water 

deficit may became the major limiting factor. In this context rootstocks may play an 

important role in limiting crop loss by improving water use efficiency, potential for 

survival, growth capacity and scion adaptability to stress conditions (Marguerit et al., 

2012). 

Rootstocks exhibit differential degrees of tolerance in response to drought, for example 

101-14 and Schwarzmann are considered less tolerant, while Lider 116-60, Ramsey, 1103 

Paulsen, 140 Ruggeri, Kober 5BB and Richter 110 confer to scion higher drought 

tolerance (Flexas et al., 2009). 

The ability of these rootstocks to confer high tolerance to water stress depend on several 

factors. For some perennial crop species, altered scion vigour has been linked to 

differences in hydraulic parameters of the root system. Gambetta et al. (2012) hypotized a 

pivotal role of aquaporins proteins in relation to grapevine rootstocks vigour and control 

of water use during drought. In this study they showed that VvPIPs expression was 

consistently higher in high-vigour rootstock and demonstrate their role in control of 

rootstocks vigour. The hydraulic capacity of a root system to deliver water scion is related 

to the increase in Lpr (per root surface area or per biomass), and/or whole-root-system 

surface area. Indeed, (Alsina et al., 2011) found that grapevines grafted onto 1103P 

rootstock (high vigour) exhibited greater whole-root-system hydraulic conductance 

compared to 101-14 (low vigour) resulting from continued growth at greater depth during 

the warmer and drier summer months. 
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Stomata have another important role in regulating water loss during water stress 

(Marguerit et al., 2012), and stomatal closure is one of the earliest responses to water 

deficit (Damour et al., 2010). So, grapevine rootstocks which increased the efficiency of 

stomatal closure control  and water use efficiency induced also a major tolerance to water 

stress. 

Salt stress is another environmental perturbation which negatively affects grapevine 

growth and yield. High salinity cause problems in water uptake and availability of 

micronutrients, increasing toxic-ion concentration and degradation of soil structure (Ismail 

et al., 2013). Vitis vinifera is moderately sensitive to high salinity in the soil and damages 

caused by this stress are primary related to the chloride ions. The inhibition of grapevine 

growth and CO2 assimilation in relation to high salinity is mainly due to changes in 

stomatal conductance (similarly to what observed for water stress), electron transport rate, 

leaf water potential, chlorophyll, fluorescence, osmotic potential, and leaf ion 

concentrations (Cramer et al., 2007). Together with these physiological problems, salt 

stress causes, at molecular level, formation of reactive oxygen species (ROS), membrane 

disorganization, metabolic toxicity and reduced nutrient acquisition, as well as induction 

of several genes related to plant hormones (e.g. abscissic acid and jasmonates) (Cramer et 

al., 2007; Ismail et al., 2012). Grapevine responses to salinity depends on several factors, 

such as soil type, rootstock–scion combination, irrigation system and climate. Grapevine 

are more sensitive to Cl
−
 toxicity than Na

+
 toxicity (Cramer 2007). Rootstocks obtained 

from wild Vitis species differ widely in their ability to exclude Cl
−
 (in reducing order V. 

rupestris, V. cinerea, V. champini and V. berlandieri), and consequently in their capability 

to higher tolerate salinity; so, response efficiency of the scion in presence of salt soils vary 

in relation to the comparative exclusion of sodium versus chloride by the genotype of the 

root system (Fisarakis et al., 2001). Fisarakis et al. (2001) showed that there is a great 

variability in the uptake and accumulation of Na+ and Cl− among rootstocks. In this work 

they showed that V. berlandieri  specie had a great ability for Cl− and/or Na+ exclusion, 

although this ability is reduced in hybrids having V. vinifera as parent. This explains the 

reduced ability for Cl− exclusion of 41B (V.berlandieri×V.vinifera) compared to other 

rootstocks. Salinity, as well as water stress, negatively affects grapevine yield. In Walker 

et al. (2002) was shown a strong influence of rootstock on scion production upon salt 
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stress. In particular they observed that rootstocks imparting most vigour at high salinity 

(e.g. Ramsey, 1103 Paulsen and R2), determined by the weight of one-year-old pruning 

wood in each year also produced a higher number of bunches per vine at both the medium 

and high salinity treatments. 

Iron chlorosis is further physiopathology that affects grapevine grown on calcareous soil. 

Iron (Fe) deficiency chlorosis, associated with high levels of soil bicarbonate is one of the 

main nutritional disorders observed in sensitive grapevine genotypes. Fe deficiency causes 

a reduction of grapevine longevity and productivity, affected growth and reduced yield 

(Covarrubias and Rombolà, 2013). Grapevine upon iron chlorosis stress enhance the 

activity of Fe-reductase enzyme and increase the release of protons and organic 

compounds in roots. This result in a lower pH and higher solubility of Fe(III) and is 

known as strategy I (Jiménez et al., 2007). In this context bicarbonate concentration is 

particularly important, indeed bicarbonate is one of the main factors causing Fe chlorosis 

in strategy I plants but mechanisms of its involvement in this stress are still not clear 

(Covarrubias and Rombolà, 2013). Several V. vinifera cultivars are subjected to stress 

induced by calcareous soils, however the use of selected rootstocks can solve this 

problems. For example, Bavaresco and Lovisolo (2000) showed that different 

scion/rootstock combinations among three Pinot blanc cultivars and two rootstocks (SO4 

and 3309C) lead up to different results in response to iron chlorosis, strongly related to the 

chlorophyll content and vegetative growth which were correlated with specific 

conductivity in scion/rootstock surface. In another work, Bavaresco et al. (1993) 

compared the response of 140 Ruggeri and 101.14 rootstocks to iron choloris showing that 

the iron-efficient rootstock (140 Ruggeri) did not induce chlorosis when growing on the 

calcareous soil, while the opposite occurred with the iron-inefficient rootstock (101.14). 

 

1.2 Rootstocks widely used in viticulture and characterization of new 

genotypes with OMICS techniques 

Widely used grapevine rootstocks are individuals derived from crosses of two or more 

species belonging to the genus Vitis. In particular, the majority of commercial rootstocks 

used in viticulture belong to V. riparia, V. berlandieri and V. ruprestris hybrids (Arrigo 
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Figure 1. Widely used rootstock in Italian viticulture.
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Figure 2. Grapevine rootstocks of the M series and their parental.
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Improving the knowledge about the molecular, biochemical and physiological bases of 

stress resistance is an absolute requirement for the selection of genotypes able to cope 

with stress conditions without any negative consequences on the vegetative growth and 

production of high quality grape. The eco-physiological techniques of analysis, together 

with genomic, transcriptomic (the subject of this thesis), proteomic and metabolomic 

approaches used in this project may give a valuable contribution to the understanding of 

the syndrome kinetics, as well as the progressive deterioration of plant performances 

paralleling the onset of the stress. 

 

2. Study of genes expression by using a transcriptomic approach 

In order to evaluate the grapevine responses to abiotic stresses we use a whole-genome 

approach at transcriptomic level. 

In the field of functional genomics, transcriptome analysis has always played a central role 

in the studying of gene expression at a whole-level and to unravel gene-networks 

regulation (Nookaew et al., 2012). In order to study expression levels of thousands of 

genes simultaneously, in 1995 the microarray technology was introduced (Schena et al., 

1995). A DNA microarray is a collection of microscopic DNA spots attached to a solid 

surface. Each DNA spot contains pico-moles of a specific DNA sequence, known as 

probes. These can be a short section of a gene or other DNA element that are used to 

hybridize a cDNA sample (called target) under high-stringency conditions. Probe-target 

hybridization is usually detected and quantified by detection of fluorophore-, silver-, or 

chemiluminescence-labeled targets to determine relative abundance of nucleic acid 

sequences in the target. 

However, microarray technology has some limitations: (i) background levels of 

hybridization (i.e., hybridization to a probe that occurs irrespective of the corresponding 

transcript’s expression level) limit the accuracy of expression measurements; (ii) probes 

differ considerably in their hybridization properties; (iii) hybridization results from a 

single sample may not provide a reliable measure of the relative expression of different 

transcripts; (iv) arrays are limited to interrogating transcripts with relevant probes on the 

array (Marioni et al., 2008). 
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In recent years Next Generation Sequencing (NGS) technology, which is a novel high-

throughput sequencing technology producing millions of sequences per single sequencing 

run, has emerged (Fu et al., 2009). Among NGS techniques, RNA-seq is the most used for 

transcriptomics studies. This is due to the fast development of the technology, together 

with the decrease in the running cost and the possibility to uncover novel transcriptional-

related events. 

RNA-seq gave us several advantages: (i) analysis of novel transcripts, small RNA and 

alternative splicing events; (ii) the higher resolution in comparison to the microarray 

technology; (iii) definition of quantitative level of genes expression; (iv) less technical 

variation; (v) permit to avoid the problem of the “false positive”, observed with the 

microarray probes (Nookaew et al., 2012; Fu et al., 2009). A detailed comparison among 

RNA-seq and other transcriptomic methods is given in Table 1 (Wang et al., 2009). 

 

 

Table1. Advantages of RNA-Seq compared with other transcriptomics methods. Modified from Wang et al., 

(2009). 

 

After an RNA-seq course, reads have to be mapped onto a genome. There are two 

strategies to do that: the first one involve the alignment of RNA-seq reads onto a reference 

genome (Trapnell et al., 2010) (Figure 3), the second one is a de novo assembly of the 

short reads and is used when an annotated genome is absent (Robertson et al., 2010). 
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Figure 3. Count-based differential expression pipeline for RNA-seq data using edgeR and/or DESeq. 

Modified from Anders et al. (2013). 

 

In order to statistically analyze RNA-seq data and identify Differentially Expressed Genes 

(DEGs), several statistical methods have been developed. Among these, edger (Robinson 

et al., 2010) and DEseq (Anders and Huber, 2010) methods are the most used. These 

methods take similar strategies to perform differential analysis for count data. However, 

these R packages differ in the strategies to estimate the dispersion: edgeR moderates 

feature-level dispersion estimates toward a trended mean according to the dispersion-mean 

relationship, while DESeq takes the maximum of the individual dispersion estimates  and 
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the dispersion-mean trend. In practice, this means DESeq is less powerful, whereas edgeR 

is more sensitive to outliers. Recent comparative studies have highlighted that no single 

method dominates another across all settings (Anders et al., 2013) (Figure 3). 

 

3. Grapevine and its genome 

Since 2000, forty-nine plant species have been sequenced and fifty-five genomes have 

been published (Figure 4). 

 

Figure 4. Published plant genome statistics. (A) Number of plant genomes sequenced since Arabidopsis 

thaliana in 2000 by year. (B) Published plant genome size distribution with insert focused on median 

genome size between 77 and 2300 Mb. Modified by Michael et al. (2013). 

 

Publications of these genomes allowed the scientific community to investigate about 

intriguing aspects of plant genome biology. These observations were enabled not only by 

high quality genome assemblies but also by a greater number of genomes available for 

comparisons (Michael and Jackson, 2013). The large amount of produced information, 

helped to define the roles of hundreds of genes and provided access to sequence-based 

markers for breeding. 
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As concerns grapevine, the complete genome sequence was obtained in 2007 (Table 2) by 

two independent projects (Jaillon et al., 2007; Velasco et al., 2007). The availability of the 

genomic sequence gave the opportunity to conduct several genome-wide studies focused 

on different aspects of grape biology such as berry development and response to different 

biotic and abiotic stresses (Bottcher et al., 2013; Castellarin et al., 2007; Chaves et al., 

2010; Ziliotto et al., 2012; Vannozzi et al., 2012; Dal Santo et al., 2013; Fasoli et al., 

2012), as already described in the above chapter. 

 

 

Table 2. Grape published genomes. Abreviations:  kb, kilobases; Mb, megabases; Chr, chromosome; PMID, 

PubMed ID. 

 

The sequencing of the grapevine genome represented the fourth genome of the flowering 

plants, the second one among wood plants and the first one concerning fruit producting 

plants (Michael and Jackson, 2013). The French-italian sequencing (Jaillon et al., 2007) 

was obtained by the selection of the PN40024 line, a particular Pinot Noir clone 

characterized by a high degree of homozygosity (approximately 84%) and obtained 

through multiple auto-fecundation cycles in order to by-pass the high heterozygosis that 

characterize grapevine. The other grape genome, published by the Institute of S. Michele 

all’Adige (IASMA, Velasco et al., 2007), was obtained by sequencing the heterozygous 

clone ENTAV115 of Pinot Noir cultivar. 

The actual genome sequence available on line is the 12X assembly coverage of PN40024 

(http://genomes.cribi.unipd.it/grape/), the last annotation of the genome was carried out by 

the CRIBI institute (University of Padova, Italy) by using data retrieved from the 

PN40024 clone. 

As concern PN40024, the genome size is approximately 475 Mb and 30,434 genes have 

been identified. On the other hand, genome sequence obtained by the ENTAV115 clone, 

is slightly larger, with a size for the haploid genome estimated at 505 Mb and a total 

Paper Size 

(Mb)

Assembled 

(Mb)

Assem 

(%)

gene 

(#)

repeat 

(%)

scaffold N50 

(kb)

contig N50 

(kb)

Sequencer 

types

PMID

Jaillon et al. (2007) 475 487 103 30,434 41 2,065 66 Sanger 17721507

Velasco et al. (2007) 505 477 95 29,585 27 1,330 18
Sanger, 

Roche/4454
18094749
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number of 29,585 gene prediction (http://genomics.research.iasma.it/gb2/gbrowse/grape/). 

More detailed information about PN40024 and ENTAV115 are indicated in Table 2. 

The public release of these genomes represents a remarkable goal, but also a formidable 

starting point for a vast range of studies aimed at improving our knowledge about gene 

function and genetic variability in this species. Transfer and interpretation of results 

obtained in model organisms on molecular mechanisms involved in the determination of 

important agronomical characters is now feasible together with the new opportunity for a 

molecular breeding in grapevine.  

The advent of high-throughput re-sequencing technologies (Bentley, 2006),we have 

entered an exciting era in which we can finally learn what differences are found among 

individuals within a species at the DNA sequence level. Recent data obtained from 

different plant species have shown us how plastic, dynamic and variable plant genomes 

are. Comparison of genomic sequences related to different cultivar of Vitis vinifera species 

highlighted the presence of a core genome containing genes that are present in all strains 

and a dispensable genome composed of partially shared and strain-specific DNA sequence 

elements. Morgante et al.(2007) introduced this new concept called ‘pangenome’ (from 

the Greek word pan, meaning whole). 

In recent years, the number of Vitis vinifera cultivar and other non-vinifera species re-

sequenced has significantly increased, due to the lower cost and the higher speed of 

analysis of new generation sequencer (e.g. SOLiD, Illumina, Roche/454, Proton) 

(citazione). This should allow us to extend the concept of pan-genome to the genus Vitis, 

by indentifying a core genome which contains genes shared among V. vinifera and non-

vinifera species (e.g. V. rupestris, V. berlandieri, V. riparia and intra-specific hybrids). 
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1. Introduction 

Before the devastation of European viticulture caused by of the introduction of phylloxera 

(Daktulosphaira vitifoliae) from North America in the nineteenth century, varieties of V. 

vinifera used commercially for wine production in Europe were traditionally grown on 

their own roots. Subsequently, the use of rootstocks from the pest’s origin was introduced 

to provide resistance to this and other deleterious diseases and to save the fate of European 

viticulture. Although, at first, the replacement of the entire root system of “vinifera” 

varieties with “non vinifera” or “American” species was seen as a sort of contamination of 

the purity and quality of wine, subsequently, the use of grapevine rootstocks spread also 

over those countries where viticulture constituted a young and new challenge and where 

phylloxera did not represent a menace yet (Arrigo and Arnold, 2007; Gregory et al., 

2013). The explanation of this trend relies on the fact that the use of rootstocks was 

quickly found not only to confer resistance to diseases, but to imply a larger range of 

advantages, altering numerous physiological processes at the level of scion such as 

biomass accumulation (Gregory et al., 2013), fruit quality (Walker et al., 2002, 2004), and 

the ability to respond to many biotic and abiotic stresses (Meggio et al., IN PRESS; 

Marguerit et al., 2012). In fact, apart from conferring resistance to phylloxera, rootstocks 

were found to have many other desirable attributes, such as tolerance to calcareous soils 

(Covarrubias and Rombolà, 2013), salinity (Fisarakis et al., 2001), nematodes (McCarthy 

and Cirami, 1990) and drought (Marguerit et al., 2012; Gambetta et al., 2012). All these 

characteristics make the use of rootstocks and the development of new genotypes of 

crucial importance in the contemporary viticulture.  

Water availability is one of the major environmental factors contemporary viticulture has 

to cope with (Flexas et al., 2009; Cramer et al., 2007; Chaves et al., 2010). Most of the 

word’s wine-producing regions are subjected to seasonal drought, and, based on the global 

climate models, which predict an increase in the aridity in the next future (IPCC, 2007), 

water deficit may became the major limiting factor in wine production and quality. 

Moreover, the enhanced pressure on water resources increased the global perception of the 

need to reduce the “water footprint” for irrigated crops (Cominelli et al., 2013) and in 

addition to a product enjoyable in all sensorial aspects, consumers expect wines to be 

healthy and produced in an environmental sustainable manner (Bisson et al., 2002). 



45 

 

Grapes are well adapted to semi-arid climate such as that of Mediterranean and are 

generally considered relatively tolerant to water deficit. The large and deep root system, 

together with physiological drought avoidance mechanisms, such as stomatal control of 

transpiration, xylem embolism (Tramontini et al., 2013) and the ability to adjust 

osmotically, make these plants able to grow also in sub-optimal water conditions. 

However, considering that a large proportion of vineyards are now located in region where 

seasonal drought coincides with the grapevine growing season, the combined effect of soil 

water deficit, air temperature and high evaporative demand is known to limit grapevine 

yield and to delay the vintage date (Walker et al., 2004; Flexas et al., 2009; Chaves et al., 

2009), with a  negative effect on grape berry and, consequently, wine quality. Water 

deficit leads to many morphological and physiological changes across a range of spatial 

and temporal scales (Chaves et al., 2002), including reduced expansion of aerial organs 

(Cramer et al., 2007), maintenance of root growth (Sharp and Davies, 1979), decrease in 

transpiration and photosynthesis (Chaves et al., 2010), accumulation of osmotic 

compounds and ions (Cramer et al., 2007), activation of detoxifying processes and, in 

parallel, the transcriptional regulation of a large number of genes (Cramer et al., 2007; 

Tattersall et al., 2007; Tillett et al., 2011). Stomata closure is one of the early plant 

physiological responses upon moderate to mild water deficits conditions and this 

phenomenon is often related to a metabolic limitation (Chaves et al., 2002): CO2 diffusion 

is lowered by stomata closure and thus results in a lower rate of net carbon (C) 

assimilation. In grapevine, it has been reported that photosynthetic process is quite 

resistant to water stress (Chaves et al., 2009; Souza et al., 2003). Under low to moderate 

deficit irrigation, maintenance of the activity of the Calvin cycle and of the maximum 

rates of carboxylation and electron transport has generally been observed (Souza et al. 

2005a). However, as the water stress becomes severe, net CO2 assimilation (An) and other 

metabolic processes operating in the mesophyll are inhibited and water use efficiency thus 

declines. The imbalance between the light capture and its utilization results in a down-

regulation of photosystem II (PSII) activity, phenomenon known as photo inhibition 

(Reddy et al., 2004) and the changes in the photochemistry of chloroplasts in leaves result 

in the dissipation of excess light energy in the PSII core and antenna with the generation 

of active oxygen species (ROS) such as H2O2, O2-, -OH, 1O2, and NO. These ROS are 
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responsible for most of the oxidative damages in biological systems (Apel and Hirt, 2004) 

and cellular components. Thus, a strict control of ROS levels is mandatory for plant 

survival (Kar, 2011) and the cross-talk between ROS accumulation and redox state is 

integrating part of a fine homeostasis control that plays a pivotal role in the plant response 

to stresses (Suzuki et al., 2012). Together with the accumulation of ROS scavenging 

compounds and related genes, such as superoxide dismutases (SOD), catalase (CAT), 

ascorbate peroxidase and glutathione peroxidase (Kar, 2011; Mittler, 2002), the 

photorespiration provides an important strategy to cope with the effect of light energy 

excess as observed in a recent expression study conducted by Cramer et al. (2007).  

Phytohormones play a central role in the ability of plants to adapt to abiotic stresses by 

mediating a wide range of adaptive responses, which often alter gene expression by 

inducing or preventing the degradation of transcriptional regulators via the ubiquitin–

proteasome system (Kelley and Estelle, 2012; Peleg and Blumwald, 2011; Santner and 

Estelle, 2009). Abscisic acid (ABA) is one of the most studied stress-responsive hormone 

in plants, especially as concerns the plant response to water deficit (Fujita et al., 2011; Qin 

et al., 2011). Its synthesis is one of the fastest plants responses to abiotic stresses, 

triggering ABA-induced gene expression and inducing stomatal closure to reduce water 

loss and eventually limiting cellular growth (Peleg and Blumwald, 2011). Physiological 

studies showed that under abiotic stresses, especially drought and salinity, plants 

accumulate high levels of ABA accompanied by major transcriptome changes, including 

(Qin et al., 2011) genes involved in its sensing (PYR/RCAR), signal transduction (type 2C 

protein phosphatases, PP2Cs; SnRK2s kinases), regulation (e.g. AREB/ABFs, DREB, 

MYB), and response (e.g. response to dehydration-like, RD-like; LEA proteins; HIS) 

(Fujita et al., 2011; Qin et al., 2011; Novikova et al., 2009).  

Although ABA remains the best-studied hormone for plant stress response, a growing 

number of studies are revealing that many other hormones, such as auxins, ethylene, 

jasmonates (JAs), gibberellins (GAs), Salicylic acid (SA), and Brassinosteroids (BRs) are 

involved in the plant response to water stress (Peleg and Blumwald, 2011). Thus, plant 

adaptation to water limiting conditions, as well as other abiotic stresses, has to been seen 

as the concerted action of all the above cited plant hormones throughout a fine tuned 

cross-talk (Kohli et al., 2013). JA, for instance, accumulates, together with JA-responsive 
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genes, under many types of stress conditions including drought. This was observed in soy-

bean (Creelman and Mullet, 1995), Pinus pinaster (Pedranzani et al., 2007), tomato 

(Pedranzani et al., 2003) and rice (Kiribuchi et al., 2005). Although the precise function of 

JA in drought response is still unclear there are strong evidences of the cross-talk between 

JAs with ABA and other plant hormones. In rice, the ectopic expression of AtJMT, a gene 

which converts JA to MeJA, not only let to an higher accumulation of MeJA in young 

panicles, but also to a dramatic loss in grain yield substantial increase in ABA levels, 

suggesting a cross-talk between the two hormones. Moreover the JASMONATE ZIM-

DOMAIN (JAZ) protein, a repressor of the MYC2 transcription factor and thus of the JA-

signaling pathway, was recently found to interact with other partners beside MYC2, 

including the GA-signaling genes DELLAs, suggesting also a synergic JA-GA cross-talk 

(Wasternack, 2007). Plant hormones highlight an interesting cross talk also with ROS, 

which act as secondary messengers of these regulators (Kar, 2011). It is well known that 

H2O2 regulates ABA-mediated stomatal closure by acting on Ca
2+

 levels and inactivating 

PP2Cs (Meinhard et al., 2002). Stomatal closure is also mediated by ethylene via ETR1, 

an hormone receptor, which is involved in H2O2-sensing (Desikan et al., 2005).  Finally, 

in Joo et al. (2001) is reported an induction of ROS in roots mediated by auxins, 

suggesting a role downstream of transport in auxin signaling and gravitropism.  

The decrease of osmotic potential (π) in response to water stress is another well-known 

mechanism by which many plants adjust to drought conditions. Apart from the passive 

solute concentration resulting from dehydration, plants can accumulate solutes in an active 

and genetically regulated manner. The compounds involved in this adjustment widely 

between species: in the majority of perennial woody species they seem to be organic 

compounds as observed in peaches, apples and cherries, which accumulate sorbitol 

(Escobar-Gutiérrez and Gaudillére, 1994; Wang et al., 1996; Arndt et al., 2000), or in 

Morus alba, which accumulate amino acids (Ramanjulu et al., 1994). V. vinifera cv 

Cabernet Sauvignon shoot tips of water-deficit-treated plants were found to accumulate 

malate, proline and glucose concentration. 

Recently, a biochemical and physiological study of novel candidate genotype to be used as 

rootstock in grapevine was performed (Meggio et al., IN PRESS). This genotype, 

designed as M4 [(V. vinifera x V. berlandieri) x V. berlandieri x cv Resseguier n.1] and 
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established from 1985 by the DiSAA research group operating at the Milan University, 

was selected for its high tolerance to water deficit (WS) and salt exposure (SS). In 

comparison with the 101.14 commercial genotype, M4 un-grafted plants subjected to 

water and salt stress showed a greater capacity to tolerate WS and SS maintaining 

photosynthetic activity also under severe stress conditions and accumulating, especially at 

the root level, osmotic compounds and ions. Here we report results obtained from a large 

scale whole transcriptome analyses performed on leaf and root tissues of both M4 and 

101.14 genotypes under the same WS experimental conditions exposed in Meggio et al. 

(2013). The absolute novelty of this study relies on the fact that, differing from previous 

studies performed on plants subjected to an instantaneous decline in water availability, in 

our experiment, water deprivation was accomplished gradually, miming as far as possible 

those conditions that might occur in field 
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2. Materials and methods 

2.1 Experimental design and plant material. 

Two-years-old glass-house grown plants of the susceptible and tolerant grapevine 

rootstocks under study, respectively the widely used 101.14 genotype (V. riparia x V. 

rupestris) and the experimental M4 one ((V. vinifera x V. berlandieri) x V. berlandieri cv. 

Resseguier n. 1), were subjected to drought stress with the aim of understanding the 

genetic determinism of tolerance and susceptibility in both genotypes. A total number of 

108 glasshouse-grown plants from each genotype were subdivided into three groups: 

plants grown under well-watered (WW) conditions, plants grown under water-deficit 

conditions (WS, Water-Stress) and plants grown under high salinity (SS, Salt-Stress), not 

discussed in the present paper. WW plants, which were used as controls for water stress, 

were grown in pots with a water-availability equal to the 80% of the field capacity. The 

water-stress treatment (WS) was imposed by growing 101.14 and M4 plants in limited 

water-availability conditions in respect to the control. This was accomplished gradually 

decreasing the water-availability in pots from 80% to the minimum level of 30% of field 

capacity. The whole drought experiment had a duration of 10 days during which, leaf 

physiological measurements were performed on fully expanded leaves, immediately 

before sampling. Leaf water potential (Ψleaf) was determined using a Scholander-type 

pressure chamber (model PMS-1000, PMS Instruments, Corvallis, Oregon, USA), net 

assimilation rate (An) and stomatal conductance (gs) measurements were performed using 

a LI- 6400 portable photosynthesis system (Li-Cor Inc. Lincoln, Nebraska, USA), as 

reported in Meggio et al. (2014). In addition, we hereby report unpublished data of leaf 

transpiration rate (E, mmol H2O m
-2

s
-1

), performed in the same experimental conditions: 

600 µmol of photons m
-2

s
-1

, a CO2 concentration of 380 µmol mol
−1

, 1.5 kPa of vapor 

pressure deficit (VPD) and a block temperature of 25 °C. 

Both the genotypes experienced a similar degree of water deficit, allowing a robust 

comparison of their physiological and molecular responses as reported in Meggio et al. 

(IN PRESS). Four time points, designed as T1 to T4 were considered for both leaf and 

root tissues sampling. Five leaves and root tissues were collected from pools of at least 6 

plants for each genotype (101.14 and M4) and each condition (WW and WS), respectively 

at 2 (WS-T1), 4 (WS-T2), 7 (WS-T3) and 10 (WS-T4) days after the beginning of drought 
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treatment. The starting point of the kinetic (T0), considered as common for both the 

treatments, was constituted by 101.14 and M4 plants grown in WW conditions at the 

beginning of treatments. All samplings were performed in two biological replicates 

producing a total of 40 samples originated from leaves and 40 samples originating from 

roots for a total of 80 samples. 

 

2.2 Whole transcriptome analysis. 

Total RNA was extracted from frozen grapevine tissues using the “SpectrumTM  Plant 

total RNA Kit” (Sigma) according to manufacturer instructions. mRNA was extracted 

from the total RNA using the Dynabeads mRNA Direct kit (Invitrogen pn 610.12). A 

variable quantity of mRNA ranging from 0,4 to 1,6% respect to the amount total of RNA 

was obtained. Samples for Ligation Sequencing were prepared according to the SOLiD 

Whole transcriptome library preparation protocol (pn 4452437 Rev.B). The samples were 

purified before RNase III digestion with Purelink RNA micro kit columns (Invitrogen, pn 

12183-016), digested from 3' to 10' according the starting amount of mRNA, retro-

transcribed, size selected using Agencourt AMPure XP beads (Beckman Coulter pn 

A63881) and barcoded during the final amplification. Obtained libraries were sequenced 

using Applied Biosystems, SOLiD™ 5500XL , which produced paired end reads of 75 

and 35 nucleotides for the forward and reverse sequences respectively. Reads were aligned 

to the reference grape genome using PASS aligner, a program able to perform several 

alignments on a sequence subset trying different parameters to trim the low quality bases 

and select for those values that maximize the number of aligned reads (Campagna et al., 

2009). The percentage identity was set to 90% and one gap was allowed whereas the 

quality filtering parameters were set automatically by PASS. Moreover, a minimum reads 

length cutoff of 50 and 30 nt was set for the forward sequences and reverse reads 

respectively. The spliced reads were identified using the procedure described in PASS 

manual (http://pass.cribi.unipd.it). The forward and the reverse reads were aligned 

independently on the reference genome. We used PASS-pair program in the PASS 

package to perform the pairing between the forward and the reverse reads and we selected 

only those sequences that are uniquely aligned. As gene reference we used the v1 grape 

gene prediction available at http://genomes.cribi.unipd.it/grape and htseq-counts program 
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(http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) to quantify gene 

abundance. 

2.3 Multifactorial and pairwise statistical analysis. 

DEseq R package (http://www.r-project.org/) was used to perform the statistical analyses 

for discovering differentially expressed genes (DEGs) by using both a multi-factor and a 

pairwise-comparison approaches (Maza et al., 2013). In order to evaluate the single effects 

of the genotype (R: 101.14 and M4), of the type of stress imposed (Treatment, T: WW, 

WS, and SS for control, water stress and salt stress experiment, respectively) and of the 

time point considered (P: T1-T4 and T1-T3 for WS and SS, respectively) on gene 

expression, a multifactorial analysis was carried out by using the multi-factor designs 

method of DEseq R package (Anders and Huber, 2012; 

http://bioconductor.org/packages/release/bioc/html/DESeq.html). This method allows to 

evaluate the weight of each factor considered in the analysis (R, T and P) and its impact 

on gene expression and, consequently on DEGs, according to a false discovery rate (FDR) 

< 0.05 for both experiments and tissues. This procedure consist of the following passages: 

create a count data set with multiple factors (with the three components described above), 

estimate size factor and dispersions of the data, fit generalized linear models (GLMs) 

according to the two models (full model regresses the genes' expression on both the library 

type and the treatment condition, the reduced model regresses them only on the library 

type), and then compare them in order to infer whether the additional specification of the 

treatment improves the fit and hence, whether the treatment has significant effect (Anders 

and Huber, 2010). 

Pairwise tests (Anders and Huber, 2010) between stressed (WS) and unstressed (WW) 

tissues were also performed. In this case the analysis was performed considering each 

genotype, tissue and time point singularly. 

 

2.4 Ontology and Differential Clustering Analyses (DCA). 

In order to functionally classify the genes affected by drought treatment, the Gene 

Ontology (GO) terms were retrieved, imported in the Blast2GO software v2.5.0 (Götz et 

al., 2008) and increased of about 16% by means of the Annex function (Myhre et al., 
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2006) as previously reported by  Botton et al. (2008). DEGs resulted from multifactorial 

analysis, which were affected by the effect of all components (common DEGs between R, 

T, and P) and those ones in common between rootstock and treatment components, were 

associated to GO categories. Within the more representative GO categories, those DEGs 

associated to GO terms related to plant hormones, secondary metabolism, sugars, stresses, 

cell wall and transcription factors (TFs) were selected for the following Differential 

Clustering Analysis (DCA). 

The DCA analysis was performed by using an R script, which is a slightly modified 

version of the original method carried out by Ihmels et al. (2005), Lelandais et al. (2008) 

and Cohen et al. (2010). 

The DCA analysis is carried out in three steps that we develop here. (i) The correlation 

values of all DEGs belonging to the GO categories related to a reference rootstock (rr) and 

a target rootstock (tr) were initially calculated with the ‘cor’ R function. (ii) Correlation 

values of the rr were subsequently clustered by applying the ‘kmeans’ R function. The 

number of  clusters related to the rr were selected in accordance to an average correlation 

value, which was heuristically chosen higher than 0.65 for each cluster. The same order 

chosen for the rr was used to arrange the tr DEGs of the GO-selected categories. Hence, 

the transcripts from each cluster were co-expressed in the rr (correlation > 0.65) but not 

necessarily in the tr one. (iii) DEGs related to each cluster of the tr were subsequently 

grouped into two sub-clusters (a and b) by using a hierarchical clustering method (with 

‘hclust’ R function). The average of the correlation values belonging to each sub-cluster 

(Ca and Cb) and the average of the correlation values between the two clusters a and b 

(Cab) were eventually calculated. 

Correlation values of tr and rr matrices are graphically represented in white, yellow and 

red colors for strongly correlated, weakly correlated and anti-correlated genes, 

respectively. DCA results were finally presented as a unique distance matrix between gene 

expression measurements in which rr and tr rootstocks were respectively represented in 

rows and columns. Clusters of each rootstock were compared and assigned to “full”, 

“partial”, “split” or “no” conservation categories after comparing Ca, Cb  and Cab values 

with the threshold T, which is chosen equal to 0.5 in this study. Specifically, if (Ca and 

Cb) < T the cluster was assigned to the “no conservation” category, if (Ca or Cb) > T the 
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cluster was assigned to the “partial conservation” category, if (Ca and Cb) > T and Cab < 

T the cluster was assigned to the “split conservation” category and if (Ca, Cb and Cab) > 

T the cluster was assigned to the “full conservation” category. 
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3. Results 

3.1 Physiological traits analyses 

The present study was performed in order to shed light into the genetic determinism of 

tolerance and susceptibility to water stress in two grapevine rootstocks characterized by 

different levels of tolerance. The water-stress treatment (WS) was imposed gradually 

decreasing the water-availability in pots from 80% to the minimum level of 30% of field 

capacity whereas well-watered (WW) plants, which were used as controls for water stress, 

were grown in pots with a water-availability equal to the 80% of the field capacity. 

 

Figure 1. Average ± SE values of net CO2 assimilation (An) and leaf transpiration (E) for water stress 

plants. Results are expressed as a percentage of control. T1-4 represent sampling time points throughout the 

experimental period after control (T0). Values indicated with the same letters do not significantly differ 

according to Duncan’s test (P < 0.01). 

 

E measured in WW conditions was 2.73 ± 0.3 and 2.4 ± 0.2 mmol H2O m
-2

s
-1

 for M4 and 

101.14 genotypes and maintained similar values throughout the whole experiment. On the 

other hand upon WS, as drought gradually proceeded leading to severe stress conditions 

(around 30% of field capacity), 101.14 plants showed an almost complete stomatal 
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closure, whereas a transpiration rate of approximately 20 % with respect to its control was 

maintained in M4 (Figure 1). 

 

3.2 mRNA-seq sequencing and mapping of reads to the grapevine 

genome 

To gain a better understanding of the molecular mechanisms underlying the drought 

tolerance of the M4 genotype compared to the susceptible 101.14 one, an mRNA-seq 

analysis using Next Generation Sequencing (NGS) technologies was performed. The 

whole transcriptome sequencing was performed on a Solid 5500XL platform. The analysis 

was accomplished on all the 80 samples previously described, in order to obtain a detailed 

screenshot of the transcriptome changing of the two rootstocks within the entire stress 

kinetics. The whole experiment produced approximately 4.8 billion of paired-end reads 

(75 and 35 bp length for forward and reverse reads respectively), with the total number of 

reads produced for each time point ranging from 29 to 82 million paired-end reads and a 

median of 45 million reads. An average percentage of 90% of total reads passed the 

quality control test (filtered based on reads length after the trimming of the low quality 

bases) and were mapped to the PN40024 12Xv1 reference genome (Jaillon et al., 2007) 

producing a number of unique mapping reads ranging from 10 to 37 million depending on 

the sample. 

3.3 Multi-factor design and discovering of differentially expressed 

genes 

For the evaluation of Differentially Expressed Genes (DEGs) upon water stress in the two 

rootstocks under study, a main step in the statistical analysis was estimating the influence 

of different independent components (i.e. variables) on transcriptome. Amongst these 

were the effect of genotype, indicated as “R” (101.14 and M4 respectively), the type of 

treatment imposed, indicated as “T” (well watered, WW; water stress, WS) and the time 

point considered during the kinetic of stress, indicated as “P” (T1, T2, T3, T4). 

Thus, a multi-factor analysis was carried out on mRNA-seq data sets obtained from WS 

root tissues and WS leaf tissues, in order to evaluate both the singular (R, T, P) and 

combined (R:T, R:P, T:P, R:T:P) impacts of each component on DE genes according to a 



 

p-value lower than 0.05. The Venn diagram 

each component indicating the 

component and those ones influenced by more than one variable

undergoing water stress treatment, the total amount of 

component R, T and P was 7408, 7905 and 5839, respectively (

leaf tissues, DEGs were 3794 for R, 3476 for T and 2284 for P component (

other words, considering for example WS roots (Fig 1A), 2887 genes we

expressed only because of the effect of rootstock, i.e. of the different genotype, regardless 

of the effect of treatment (WW or WS) and time point considered (T1

2077 genes were exclusively influenced by the application of

the genotype (101.14 or M4) and the time point considered (T1

only 551 genes which appeared to change their expression just because of the ef

experiment kinetic. 

 

Figure 2. Venn diagram with DEGs resulted from Multifactorial analyses carried out on root and leaf tissues 

upon WS treatment, in according to a p<0.05

given in bracket. 

 

The multi-factorial analysis highlighted a strong influen

leaf) on the final number of DEGs. Indeed, WS root showed a significantly high number 
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. The Venn diagram shown in Figure 2A summarizes the impact of 

 number of genes specifically influenced by a single 

component and those ones influenced by more than one variable. In root tissues 

undergoing water stress treatment, the total amount of DEGs influenced by each single 

component R, T and P was 7408, 7905 and 5839, respectively (Figure 2A), whereas in 

leaf tissues, DEGs were 3794 for R, 3476 for T and 2284 for P component (Figure

other words, considering for example WS roots (Fig 1A), 2887 genes were differentially 

expressed only because of the effect of rootstock, i.e. of the different genotype, regardless 

of the effect of treatment (WW or WS) and time point considered (T1-T4). Conversely 

2077 genes were exclusively influenced by the application of treatment, independently by 

the genotype (101.14 or M4) and the time point considered (T1-T4). Finally there were 

only 551 genes which appeared to change their expression just because of the ef

DEGs resulted from Multifactorial analyses carried out on root and leaf tissues 

upon WS treatment, in according to a p<0.05. Total number of DEGs influenced by each component are 

factorial analysis highlighted a strong influence of the organ considered (root or 

leaf) on the final number of DEGs. Indeed, WS root showed a significantly high number 

summarizes the impact of 

number of genes specifically influenced by a single 

. In root tissues 

by each single 

2A), whereas in 

Figure 2B). In 

re differentially 

expressed only because of the effect of rootstock, i.e. of the different genotype, regardless 

T4). Conversely 

treatment, independently by 

T4). Finally there were 

only 551 genes which appeared to change their expression just because of the effect of the 

 

DEGs resulted from Multifactorial analyses carried out on root and leaf tissues 

Total number of DEGs influenced by each component are 

ce of the organ considered (root or 

leaf) on the final number of DEGs. Indeed, WS root showed a significantly high number 
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of DEGs, with 11792 transcripts, whereas in WS leaf the amount of DEGs was 

approximately 50% less, with 6404 transcripts. 

Interestingly, whereas in roots the treatment (T) component seemed to have the major 

influence on expression, showing the highest number of DEGs (7905) in comparison to all 

the other components, in leaves, the genotype (R) appears to have the highest impact on 

the modulation of transcripts, with 3794 DEGs. As concerns the effect of the stress kinetic 

on DEGs, its influence appeared to be less important for both root and leaf tissues. In 

addition to the Multifactorial analysis, a pairwise comparison between WS and WW data f 

both tissues and genotypes was carried out from T1 to T4. Taking into account that 

treatment and genotype were the variables showing the major impact of on transcriptome 

pairwise comparisons, performed separately for the two genotypes under study (101.14 

and M4), were accomplished between the water stressed tissues, respectively leaves and 

roots, and the non-stressed ones at each time point (T1-T4) (Figure 3). Apart from M4 leaf 

tissues, which showed a peak of DE genes at T2 (4 days after stress imposition, DASI) 

followed by a decrease (T3) and a new increase at T4, all other comparisons revealed an 

increased amount of differentially expressed genes within the first 7 days (T1-T3), with a 

peak at T3 probably related to the increasing stress levels (Figure 3A, B). Except for M4 

leaf tissues, T4, which corresponds to 10 DASI, showed a sensible decrease in the number 

of DE genes respect to T3 (Figure 3A, B). This could be due to the fact that all plants 

undergone a sort of pot-effect depression or, in the case of the susceptible genotype, that 

the plant metabolism is inhibited because of the stress. A first general observation is that, 

in both 101.14 and M4 rootstocks, water deficit affected an higher number of DEGs in 

root tissue (Figure 3B) in comparison to the leaf one (Figure 3A). 

Regarding the leaf tissues, there was a relatively low amount of DEGs between stressed 

and control plants on day 2 (T1), when stress levels were very low (Figure 3A). This was 

observed both in 101.14 and in M4 rootstocks, with respectively 29 and 44 DE genes 

detected. As the stress increased with time, so did the number of stress-responsive 

transcripts. Indeed, on day 4 (T2) there were massive changes in gene expression with 

over 1200 transcripts, which increased or decreased significantly in both genotypes (1232 

DEGs in 101.14 and 1223 DEGs in M4) (Figure 3A). As previously mentioned, for WS 

leaf data, a first macroscopic difference between the two rootstocks (for WS leaf) was 
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detected at T3 (7 DASI), with an increased number of  DEGs in 101.14 in comparison to 

T2 (1475 DEGs at T3) and a drastic decrease of M4-related DEGs (677 DEGs; Figure 

3A). Amongst those DEGs identified at each time point, there were genes found to be 

common to both 101.14 and M4 rootstocks and other genes, which appeared to be 

genotype-specific. 

As concerns data related to leaf tissue at 4 DASI (T2), there were 619 DEGs common to 

both 101.14 and M4 that were significantly different from the relative control and 604 

specific genes that were up or down regulated exclusively in M4 rootstock (613 were 

101.14-specific). Indeed, 4 days after the imposition of stress, the two genotypes appear to 

respond in a quite similar manner, at least based on the raw transcriptional data. 

Interestingly, at T3, the number of M4-private DE genes decreased, with only 168 

accessions that were significantly different from the control only in M4 and a much higher 

number (966) of 101.14-private DEGs. The opposite pattern was observed at T4, with a 

higher number of M4-private genes (715) against those (300) registered in 101.14. 

Approximately 21% to 31% of 101.14 rootstock genes were significantly different from 

controls both at T2 and T3 and T4 whereas 21% to 44% of DE genes were common for 

T2-T3-T4 in M4 (data not showed). 
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Figure 3. Pairwise statistical analyses. DEGs were identified calculating the log2-ratio (WS versus WW) of 

the counts detected for each gene in M4 and 101.14 rootstocks. The pairwise comparisons were 

accomplished at each time point, in according to a p<0.05. 

 

When compared with the root tissues expression data, the leaf transcriptome appeared to 

be less drought-responsive, which might reflect, in part, the higher sensitivity of an 

actively growing tissue to water deprivation, as already observed in other plant species 

such as poplar (Cohen et al., 2010). Figure 3B showed the number of differentially up- 

and down-regulated genes detected in pairwise comparisons between stressed (WS) and 

unstressed  (WW) root tissues. T1 was characterized by a much higher response in 101.14 

genotype compared to M4, with up to 748 DE genes in the first one compared to 312 in 

the latter. Similarly to what observed in leaves, as the stress severity increased so did the 

number of DE genes in both the rootstocks, reaching a peak at 7 DASI (T3), with 3737 

DE genes detected in 101.14 and 3674 in M4. An interesting observation that 

characterizes both the roots and leaves of stressed tissues is that the susceptible genotype 



60 

 

always appears to modulate the expression of more transcripts than the tolerant one, which 

might reflect the minor degree of perturbation undergone by the M4 rootstock. 

A subgroup of DEGs we considered of particular interest were those ones influenced by 

both the effect of the rootstock and of the treatment, further validated by pairwise 

analyses, and by the effect of all the three components. In this case, common DEGs 

between R and T were 989 and 421 for WS roots and WS leaves respectively, whereas 

common ones between R, T , P were 3083 for WS roots and 731 for WS leaves (Figure 2). 

These two groups of DEGs were associated to their respective GO terms. Genes 

considered were 4072 and 1152 for roots and leaves gene-set, respectively. GO terms were 

grouped into different macro-categories as follows: “plant hormones”, “antioxidant 

responses”, “sugars”, “cell wall”, “secondary metabolism” and “transcription factors” 

(TFs) (Figure 4). 

Amongst those macro-categories related to root tissue, “Transcription factors” was the 

one  counting the highest number of DEGs, with 307 genes corresponding to 7.5% of all 

DEGs considered (4072 in total). As far as concerns “secondary metabolism and sugars”, 

DEGs related to these category were 209 and 223, respectively, corresponding to 5.1% 

and 5.5%. A lower number of DEGs was associated to “plant hormones”, “cell wall” and 

“antioxidant responses” categories, corresponding to 3.7%, 3.3% and 3%.  

 

 

Figure 4. Ontologies analysis of plant-hormones, antioxidant responses, sugars, cell wall, secondary 

metabolism ant TFs –related GO terms. Number and percent of DEGs belonging to each category are given. 
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On the other hand, DEGs identified in WS leaves highlighted a different weight of 

ontology categories in comparison to the root tissue. In this case the highest percentage of 

transcripts was related to “sugars”, with 73 DEGs (6.3%). ”Transcription factors” and 

“secondary metabolism” categories were less represented, with respectively 56 (4.9%) and 

54 (4.7%) genes. Finally “Plant hormones”, “antioxidant responses” and “cell wall” 

categories showed 31 (2.8%), 21 (2%) and 26 (2.3%) DEGs, respectively. For each tissue 

and ontology category, a DCA analysis was carried out. 

To better investigate these common DE gene subsets, an additional analysis (DCA) was 

carried out in order to identify those transcript that showed different behavior between M4 

and 101.14 rootstocks. 

 

3.4 Differential cluster analysis (DCA) 

Results obtained from the multifactorial analysis and the pairwise analyses were used 

together in a Differential Cluster Analysis (DCA). Previous studies have demonstrated 

that generally, genes belonging to the same GO category and sharing a similar function, 

are significantly co-expressed (Eisen et al., 1998; Kim et al., 2001; Ihmels et al., 2004) 

showing high level of pair-wise correlation. Nevertheless, comparison of transcriptomes 

belonging to different organisms can highlight differences in the patterns of gene co-

regulation within individual GO categories. These differences are likely to reflect 

differences in the physiology, or in the adaptation to different environments.  To better 

capture differential expression patterns between 101.14 and M4, and to systematically 

characterize the conservation or divergence of co-expression between genes with a related 

function, we implement and used a recently developed approach, termed Differential 

Cluster Algorithm (DCA). This analysis was performed on gene groups defined by 

membership in the same GO categories previously described (i.e. those ones detected in 

the subgroup of R-T and R-T-P common DEGs by the multifactorial analysis) by 

correlating their expression values obtained from the pairwise analysis (provided as log2 

of the ratio between read counts obtained from WS and WW tissues). The DCA algorithm 

allowed us to identify co-expression clusters embedded within these gene sets and to 

assign each of these clusters to one of four categories indicating the level of conservation 
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between the two genotypes: “full”, “partial”, “split”, or ”absent”. A full conservation class 

is supposed to contain DEGs which are co-regulated in a similar manner in both 

genotypes, whereas a “partial conservation class” or a “split conservation” class  

identifies, together with subsets of genes that show similar co-regulation in the two 

genotypes, also sub-clusters of genes which display independent or even inversely 

correlated patterns. Those clusters that showed the most interesting results both in root and 

leaf tissues are reported in Figures 5 and 6. Again, roots and leaves highlighted different 

responses upon stress. 

In root tissue, the most interesting results concerned “Transcription factors” and 

“secondary metabolism” ontologies. Within TFs category (Figure 5A), reference DEGs 

(101.14) were subdivided into three primary clusters designed as R-TF1, R-TF2 and R-

TF3. Each of these clusters were uniformly co-expressed in 101.14. In contrast, in M4 

they were split in two distinct secondary clusters, one of which was similar in both 101.14 

and M4 indicating a “partial conservation”, the other one showing a different behaviour of 

several genes. Amongst them, of particular interesting were those belonging to the WRKY 

family for what concerns cluster R-TF1, MYB family for R-TF2 and NAC family for R-

TF3. In Figure 5A we listed these genes together with their pattern of expression within 

the whole stress kinetic in both the genotypes considered. Looking at the picture it’s clear 

that the totality of WRKY TFs show a different behaviour between the two genotypes, 

being strongly up-regulated at T2 (4 DASI) limitedly to the M4 rootstock. Regarding the 

other gene families belonging to the TFs ontology which highlighted particularly 

interestingly results, clusters R-TF2 and R-TF3 embed five MYBs and three NACs 

transcription factors that were induced at T1 (2 DASI) in M4 and, conversely were 

significantly down-regulated in 101.14 (Figure 5A). It is worthy to note that VvMYB14 

(VIT_07s0005g03340) and NAC83-like (VIT_14s0068g01490) TFs, which do not belong 

to the primary clusters R-TF1, R-TF2 and R-TF3 (the list of all primary clusters identified 

is reported in Supplementary table Z), have been included in the list since they are 

particularly interesting, in fact although highly expressed in both the genotypes analysed, 

they show patterns of expression totally different between them. VvMYB14 showed an 

high induction in stressed M4 roots at T2, T3 and T4 whereas its up-regulation in 101.14 

was limited to T2 (Figure 5A). VvNAC83 was induced at T2 only in M4 WS roots, while 
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in 101.14 it showed an unchanged expression from T1 to T3, and a significant down-

regulation at T4.  

As previously mentioned, “secondary metabolism” (SM) is another category which gave 

interesting results for DCA (Figure 5B). Within this ontology, most transcripts were 

related to the stilbene synthase (STS) and gluthatione-S-transferase (GST) gene families 

(clusters R-SM4, 2 and 3). Based on the nomenclature proposed by Vannozzi et al. (2012), 

VvSTS12 (VIT_16s0100g00800), VvSTS24 (VIT_16s0100g00940), VvSTS13 

(VIT_16s0100g00810), VvSTS16 (VIT_16s0100g00840), VvSTS17 

(VIT_16s0100g00850), VvSTS18 (VIT_16s0100g00860) and VvSTS27 

(VIT_16s0100g00990) were found to be significantly up-regulated in only in M4 stressed 

roots at T2, whereas they were generally down-regulated in 101.14 roots (Figure 5B) for 

both R-SM4 (no conservation) and R-SM3 (partial conservation) clusters. Regarding 

GST-related transcripts two distinct gene expression kinetics were identified. Indeed, 

VvGST29-like (VIT_01s0026g01380) and VvGST8 (VIT_05s0051g00110) showed an up-

regulation at T1 only in M4 stressed roots (cluster R-SM2, partial conservation) and 

VvGST7-like (VIT_07s0005g04890) and a VvGST-like gene (VIT_14s0060g02170) were 

strongly induced in M4 WS root at the second time point (cluster SM3). 

The last category considered for DCA analysis on roots is the one related to plant 

hormones (PH). For this category two interesting primary clusters were identified: R-PH1 

and R-PH2: R-PH1 belongs to the “no conservation” classand contains transcripts that 

were up-regulated only in M4 at T1. R-PH2 primary cluster, which display a “split 

conservation” contains genes induced exclusively in 101 at T2, T3 and T4 (Figure 5C).  

R-PH1 counts for genes related to auxin transport (Pin-formed, PIN1), auxin signal 

transduction (Small Auxin Up RNA genes, SAUR-like), jasmonates biosynthesis 

(jasmonates-O-methyltransferase-like, JAOMe-like) and gibberellins (GA) signal 

transduction (GA-Insensitive, GAI1; Repressor of Ga1-3-Like 1, RGL1). As concerns R-

PH2, it is noteworthy that two abscisic acid 8'-hydroxylase –related genes were present in 

this cluster. 



64 

 

 

Figure 5. Differential cluster analysis results of root tissue. For correlation matrix (DCA), white (value = 1), 

yellow (value = 0), and red (value = -1) indicate a complete correlation, no correlation, or anti-correlation, 
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respectively, among transcripts. As concerns tables with list of considered genes, red and blue represent up- 

and down-regulation, respectively, of genes upon WS treatment. 

 

Leaf tissue highlighted different results in comparison to root tissue. Within all considered 

categories, sugars (L-SG), secondary metabolism (L-SM) and transcription factors (L-TF) 

showed the most interesting results in the DCA. As previously described in the ontology 

analyses, sugars category is the most represented in terms of DEGs. Six transcripts 

contained in L-SG1 (partial conservation) cluster (Figure 6A) showed interesting 

expression kinetics. In particular the enolase, Pyruvate Kinase-like (PK-like) and 1,3-β-

glucananase sugar-related genes were slightly induced at T1 and strongly up-regulated at 

T2 in M4 stressed leaves. On the other hand, Glucose-1-phosphate adenylyltransferase 1-

like (AGPase 1-like)  and 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase -

like (PGK-like) showed a severe induction in both T1 and T2 time points in the M4 

rootstock. Finally, sugar transporter 13-like (SUC 13-like) was induced in M4 leaf at time 

points T2 and T3 (Figure 6A). On the contrary, these genes were down-regulated over all 

the kinetic in 101.14 leaves, considering log2 WS/WW values (Figure 6A). 

The second considered category in the DCA analysis is secondary metabolism. This group 

highlighted very specific results if root and leaf tissues were compared. As previously 

described, root tissue –related clusters contained several genes mainly belonging to 

stilbene synthase and gluthatione-S-transferase families. In contrast, leaf tissue L-SM4 

cluster included 12 interesting genes related to the flavonoid metabolic pathway, which 

were all induced at T1 and strongly expressed and induced at T2 in the M4 stressed leaves 

(Figure 6B). It is worthy of note that these genes are involved in most of the reactions 

which start from phenylalanine and lead to the biosynthesis of flavonols and anthocyanins 

–related compounds. Specifically L-SM4 (partial conservation) cluster contained: (i) 

Phenilalanine Ammonio Lyase (PAL), Chalcone Synthase (CHS) and Chalcone Isomerase 

(CHI) genes, that catalyzed the early reactions of the phenylpropanoids pathway; (ii) 

flavonoid 3-hydroxylase-related genes (F3’5’H 2-like and two F3H-like); (iii) Flavonol 

Synthase 4 (FLS4) and FLS5, which lead to the flavonols biosynthesis; (iv) 

Dihydroflavonol 4-Reductase (DFR 4-like), Leucoanthocyanidin Dioxygenase (LDOX) 

and Anthocyanidin Reductase (ANR), which lead to the anthocyanins biosynthesis. 
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Figure 6. Differential cluster analysis results of leaf tissue. For correlation matrix (DCA), white (value = 1), 

yellow (value = 0), and red (value = -1) indicate a complete correlation, no correlation, or anti-correlation, 
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respectively, among transcripts. As concerns tables with list of considered genes, red and blue represent up- 

and down-regulation, respectively, of genes upon WS treatment 

 

The third relevant category which comes from DCA is related to plant TFs (L-TF). Within 

this category, MYB family was the most represented gene family which showed opposite 

expression kinetic among M4 and 101.14. In L-TF2 (partial conservation) cluster (Figure 

6C) four MYB TFs were identified, which were induced 2 and 4 days after stress 

imposition (T1 and T2) only in M4 rootstock. On the contrary all these TFs showed an 

higher expression in the 101.14 unstressed leaf in comparison to the stressed one (Figure 

6C). In addition to these genes, L-TF2 cluster contained a rice DD1A (DD1A-like) gene 

and another gene with unknown function, which were both up-regulated at T1 in M4 leaf 

subjected to water stress. Transparent testa 2 (TT2-like) and NAC 71-like genes, that 

belongs to L-TF1 (partial conservation) cluster, were both up regulated in M4 (log2 

WS/WW) until 7 days after stress imposition (T3), while, Inducer of CBF expression 1 

(ICE1) stress-related genes was strongly induced in M4 rootstock over all the kinetic 

considered in this experiment (Figure 6C). 

Finally, the last considered category was the antioxidant responses (L-AR). Interestingly, 

in this group (split conservation) there were three genes belonging to the Laccase (LAC) 

family that highlighted an induction in M4 leaves in the early phase after water stress 

imposition (T1) (Figure 6D). 
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4. Discussion 

In this study the transcriptome profiles obtained from leaves and roots of a drought-

tolerant and a susceptible grapevine rootstock upon water stress were compared in order to 

clarify the molecular mechanisms explaining, at least at the transcriptional level, the 

different degrees of susceptibility observed. The novelty of the present work relies on two 

main aspects: firstly, to our knowledge this is the first report of a comparison between 

transcriptomes of a susceptible and a putative-tolerant grapevine rootstock, secondly, this 

work also introduces a comparison between the basal (roots) and the aerial (leaves) parts 

of the plants upon stress. 

In order to reproduce as accurately as possible real open-field conditions and thus study an 

adaptive instead of a shock response to water stress, drought imposition was progressively 

applied to M4 and 101.14 plants by gradually reducing water addiction to desired field 

capacity from 80 % to 30 % during a 10 days treatment (Figure 1). This was a different 

experimental design compared to what observed in Cramer et al. (2007), where authors 

completely stopped water addiction from the beginning of water stress experiment. 

During the first stages of water deprivation leaf physiological parameters decreased in 

both 101.14 and M4 genotypes, but after 6 days, when the stress became more severe 

(30% of field capacity), leaves transpiration was almost completely inhibited in 101.14 

plants, whereas maintained E values of about 24% with respect to its control in M4 (WW 

plants). In the same experimental condition, Meggio et al. (IN PRESS) observed a 

concurrent decrease of gs and An in both genotypes in the early stages of WS,, but at later 

time points, a different physiological response to water stress took place among the two 

genotypes. Indeed, an almost complete inhibition of both assimilation and transpiration 

rates was observed in 101.14 as stomatal conductance drop to values of 5 % with respect 

to its control. On the contrary M4, maintaining gs values of 20 % with respect to its 

control, allowed higher transpiration rates (24 %) partially recovered An to values of 

approximately 60 % compared to control. 

All these data indicates that, after a concurrent decrease of all physiological parameters 

observed in both genotypes in the early stages of drought (Meggio et al., IN PRESS), as 

stress conditions became severe, M4 was able to maintain  higher transpiration and net 
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assimilation rates demonstrating a much better ability to acclimatize in comparison to the 

susceptible genotype. 

RNA-seq analysis helped us to clarify the molecular mechanisms which explain these 

differential responses. Aligning reads obtained from transcriptomes deriving from 

different grapevine species such as V. riparia, V. rupestris, V. Berlandieri and V. vinifera 

to the reference genome obtained from a high homozygous Pinot noir line, could be 

hazardous since structural variation and variability had been described even within the 

vinifera species, as observed by Venturini et al. (2013) aligning V. vinifera cv Corvina 

against the PN40024 12v1 reference genome. Citing other examples, in a large scale study 

in which the assemblies of 18 genomes coming from 18 natural A. thaliana accessions 

were compared (Gan et al., 2011), was demonstrated that one-third of protein-coding 

genes predicted in Col-0 are disrupted in at least one of the other arabidopsis accessions 

and in some way restored under the form of alternative gene models. Moreover it was 

shown that gene expression of different ecotypes in the same conditions differs for nearly 

half of expressed genes and is associated with cis variants due to SNPs (approximately 0.5 

to 0.8 Mln between Col-0 and the other ecotypes) and in/del (about 1,2 Mln). 

Based on these observations seems to be necessary sequenced and reannotated each 

individual genomes to avoid bias interpreting the consequence of genetic variation and 

expression. Nevertheless, despite alignment of 101.14 and M4 transcriptomes against that 

PN40024 reference led to a “lost” of a remarkable number of reads which did not map to 

any prediction within the reference genome (approximately 50%), the high throughput of 

the instrument used for sequencing allowed to reach a suitable coverage of the grape 

transcriptome ranging from approximately 20 to 60 fold. Moreover, as we were dealing 

with a comparative approach, aligning reads to a common reference genome rather than 

making de novo assemblies for each single genotype was considered essential to establish 

comparisons and relations between transcriptional data obtained from the two genotypes. 

In these sense the PN40024 reference genome was utilized as a sort of common 

denominator for interpreting a part of the phenotypic variability observed between the two 

rootstocks. 

Multifactorial analyses (Figure 2) on the whole leaf and root transcriptome datasets 

allowed us to better define the weight of the genotype (i.e. the rootstock) and of the 
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treatment on the transcriptome layout and to filter out those DE genes whose expression is 

only liked to the contribute of a single component. In other word we excluded those genes 

which are differentially expressed just because of differences amongst genotypes or 

because of treatment and we only consider those ones which were affected by the 

contribute of both the variables (McCarthy et al., 2012). 

A first general observation comparing results of the multifactorial analyses performed on 

leaves and roots is that in root tissue (Figure 2A) the “treatment” factor seems to be the 

main variable explaining differential gene expression (7905 DEGs) depend on the kind 

treatment imposed) whereas in leaf tissue (Figure 2B) the weight of the genotype 

(rootstock) appear to be the highest (3794). This observation is not surprising, considering 

that the root system is the first organ perceiving the water deprivation stress and the main 

one actively responding to it. In this case it’s clear the kind of treatment imposed represent 

the main variable influencing expression whereas the effect of the genotype is less 

determinant on differential expression of genes. The opposite is true on the aerial part of 

plants: in leaves, the genotype factor appeared to have a major effect when compared to 

the other components. Frensch et al. (1997) observed that in maize plants undergoing 

water deprivation, roots and leaves use different strategies in response to stress and there 

is a preferential growth of root system in respect to shot. These differential responses were 

partially explained by the “cable theory”, according to which the elongation zones in roots 

and shot are hydraulically separated and use different strategies to control water potential 

gradients. A possible explanation of this event is that, after a first stress perception 

mediated by roots, secondary signals which caused perturbations were perceived by leaves 

and the effect of the genotype in countering these perturbations is of primary importance. 

As a general observation, the number of DEGs in roots was always higher compared to 

leaves, as reported in Figure 2, showing the Venn diagrams obtained from the 

multifactorial analysis, but also in Figure 3 showing the pairwise comparison within each 

timepoint considered. If we only compare those DEGs considered for the ontologies 

analysis (those ones common to R-T, and R-T- P components), there were 4072 DE genes 

detected in roots and only 1152 in leaf. 

In root, TFs category was the most represented one with 7.5% of total DEGs belonging to 

it. On the other hand, in leaf tissue, the majority of DEGs belong to “sugars” category. 
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This is not unexpected considering that sugars accumulation during osmotic stresses has 

been reported in numerous species and tissues (Wingler and Roitsch, 2008; Sun et al., 

2010; Castellarin et al., 2007; Valluru and Van den Ende, 2008). 

As concerns plant hormones category, it was showed an induction of auxin, JAs and GAs 

related-genes at T1 in M4 stressed roots (Figure 5C), whereas a up-regulation of these 

transcripts in unstressed root was observed in 101.14. Regarding JAs metabolism, 

VvJAOMe-like (VIT_04s0023g02200) is a key enzyme in jasmonates biosynthetic 

pathway and is involved in the formation of methyl jasmonate (MeJA) from jasmonic acid 

(Wasternack, 2007; Seo et al., 2001). MeJA mediates diverse developmental processes 

and defence responses against biotic and abiotic stresses in plants (Ismail et al., 2012). 

Some authors showed, in rice and chickpea (root), a strong correlation between drought 

and MeJA biosynthesis and they hypothesize its role in water stress mediated response. 

They speculate that plant produced MeJA in response to water scarcity, which in turn 

stimulated the production of the “stress hormone” ABA (De Domenico et al., 2012). 

In figure 5C was observed an induction at T1 in M4 WS root of GAI1 and RGL1, which 

are essential components of GAs signal transduction. It is well known that, under 

environmental stresses, DELLA protein, such as RGL1, were accumulated and conferred 

more tolerance to plants (Achard et al., 2008). Achard et al. (2008), showed that DELLA 

have an important role in oxidative stress responses by reduced ROS species; indeed, they 

observed that DELLAs delayed H2O2-induced cell death, thereby promoting stress 

tolerance (Achard et al., 2008). 

On the other hand, in leaf, DEGs related to sugars were the most represented in the 

ontology analysis (Figure 4) and they were strongly up-regulated in M4 leaves upon WS, 

conversely to what observed in 101.14 (Figure 6A). Among this category, VvAGPase1-

like (VIT_03s0038g04570) where highly induced in M4, indeed it showed an expression 

which is three and ten times higher upon WS at T1 and T2, respectively (Figure 6A). 

AGPase is a key enzyme in starch biosynthesis and its expression is related to threalose 

accumulation (O’Hara et al., 2013). In Arabidopsis thaliana, Kempa et al. (2008) showed 

that, in presence of osmotic stress, ADP-glucose pyrophosphorylase (AGPase1 and 2), 

which provides ADP-glucose, were induced. In addition they hypotesize a role of genes 

belonging to both starch mobilisation and starch synthesis processes when plants were 
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subjected to osmotic stresses (Kempa et al., 2008). In addition, Gamm et al. (2011) found 

that AGPase activity was increased after infection of grapevine leaves with the oomycete 

Plasmopara viticola, together with accumulation of trehalose and the induction of 

trehalase. 

Another category which showed particularly interesting results was the “antioxidant 

responses” one (Figure 4), in particular genes belonging to the laccase family were 

strongly induced at T1 only in M4 stressed leaves (Figure 6D). Laccase are part of another 

large family of enzymes, called the multicopper enzymes. They are present in both plants 

and fungi but their role in stress responses are still unclear (Mayer and Staples, 2002). As 

concerns abiotic stresses, Liang et al. (2006) demonstrated that maize LAC1 expression 

was enhanced upon high salinity and they suggested an involvement of this class of 

enzymes in response to salt stress (Liang et al., 2006). 

“Secondary metabolism” ontology category was the only one in common among 

considered organs but involved different responses between root and leaves. It is worthy 

of note that root (Figure 5B) and leaf (Figure 6B) highlighted a strong specificity of DEGs 

expression kinetics, as observed in DCA analysis. In particular, in M4 root tissue was 

observed a strong up regulation of several STS transcripts (e.g. VvSTS18/24/27) after 4 

DASI (T2) and an induction of four GST-related genes at T1 (GST8 and 29) and T2-T4 

(GST25 and GST-like). It is well known that genes involved in resveratrol biosynthesis 

(STSs) increased their expression in response to several biotic and abiotic stresses (UV, 

high salinity, drought) but their role in these processes is still matter of debate (Versari et 

al., 2001; Höll et al., 2013; Vannozzi et al., 2012). Stilbene and resveratrol synthase were 

expressed in several organs in response to abiotic stresses. A strong tissue specificity of 

resveratrol synthase was observed in peanut plants during development, indeed this 

compound was present at relatively high levels in both roots and pods organs, but at below 

the detection limit in leaves (Chung et al., 2001). As concerns Vitis species, an induction 

of STSs genes in response to treatment was observed in Vitis rotundifolia hairy root after 

H2O2 treatment (Nopo-Olazabal et al., 2014). Hydrogen peroxide is a ROS which have 

been suggested to play a key signaling role in plant responses to several abiotic stresses 

(such as extreme temperatures, drought, radiation, ozone, and wounding) treatment. In the 

above described work they highlighted a strong specificity in root tissue of these 
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transcripts in response to abiotic stresses perturbations (Nopo-Olazabal et al., 2014). As 

showed by Wang et al. (2010), stilbenes synthases expressions were higher in both young 

root and leaves of Vitis vinifera cv. Cabernet sauvignon, but STS was highly expressed 

only in leaves when an UV treatment was carried out. In the present paper it was reported 

for the first time in Vitis a strong specificity of STSs genes expression in root tissue after 

water stress treatment, considering the induction of these transcripts observed in various 

and specific organs in response to other kind of abiotic (UV light in particular) and biotic 

stresses (Vannozzi et al., 2012; Nopo-Olazabal et al., 2014; Wang et al., 2010; Shi et al., 

2014) we can hypnotized that the expression of this class of transcripts, listed in figure 5B, 

should be strongly related to drought treatment. In addition to STS, also GSTs transcripts 

(figure 5B) showed an up-regulation in M4 roots. Plant GSTs have also long been 

associated with responses to biotic and abiotic stress, hormones and developmental 

change; GSTs role in response to abiotic stress is due to their capability of normalizing 

ROS level (Kar, 2011; Dixon et al., 2010). 

On the other hand, in leaf tissue expression of genes related to secondary metabolism 

highlighted different responses to what observed in root. In this case it was observed a 

strong induction in M4 stressed leaves at T1 and a strongly induction at T2 (log2 WS/WW 

of 2-4) of transcripts leading to flavonoids biosynthesis, such as CHS, F3H, FLS, LDOX 

and other genes involved in this pathway (Figure 6B). The up-regulation of transcripts and 

metabolites in response to drought in the aerial part of grapevine and other species were 

reported in other studies (Castellarin et al., 2007; Ramakrishna and Ravishankar, 2011). 

Castellarin et al. (2007) showed that the majority of genes committed to the flavonoid 

pathway (i.e. CHS, F3’5’H, F3’H and UFGT) showed patterns of increased transcript 

accumulation in WS plants. In addition, drought often causes oxidative stress and was 

reported to show increase in the amounts of flavonoids and phenolic acids in willow 

(Pisum sativum) leaves (Chalker-Scott, 1999) and it was observed that plant tissues 

containing anthocyanins are usually rather resistant to drought (Larson, 1988). 

As previously described, upon WS, roots and leaves of the tolerant genotype M4 exhibit 

an higher induction of stilbenes and flavonoids biosynthetic genes, respectively. But, why 

plants choose to synthesize these compounds which are metabolically expensive? A 

possible explanation is related to their roles antioxidant compounds. 
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Water stress, which can be define as “primary stress”, induces the accumulation of several 

compounds and increase the production of reactive oxygen species (Kar, 2011). Indeed, 

metabolic pathways in plant organelles are sensitive to changes in environmental 

conditions (such as drought and other stresses), and metabolic imbalances can induce a 

“secondary” oxidative stress, which caused oxidation of cellular components and may 

damage organelle integrity (Apel and Hirt, 2004; Suzuki et al., 2012; Mittler, 2002). It is 

clear that ROS control and scaveging is mandatory for plant survival in presence of abiotic 

stresses. To protect themselves against oxidative damage and control ROS levels, plants 

evolved defence mechanism to scavenge ROS by producing a large numbers of molecules 

which acts as scavenger (i.e. SOD, CAT, APX) (Kar, 2011; Sozuki et al., 2012). In 

addition to these scavengers, there are other compounds with antioxidant activity in plant. 

Stilbenes and flavonoids are claimed to have this important function in these processes. 

Stilbenoids (resveratrol in particular) are a powerful defence antioxidant molecules 

founded in several species and their accumulation is particularly higher in grapevine 

species (Tillett et al., 2011; Höll et al., 2013; Vannozzi et al., 2012; Stuart and Robb, 

2013). The chemistry of stilbenes in grape compounds is very complex. These antioxidant 

compounds act as phytoalexins, synthesized by plants in response to biotic and abiotic 

stress (Flamini et al., 2013). Their antioxidant activity was extensively studied in humans 

(de la Lastra and Villegas, 2007; Hosoda et al., 2013) but how stilbenes act as antioxidant 

in plants are still object of experiments. Also flavonoids, which were significantly induced 

in M4 leaves upon WS (Figure 6B), have been suggested to play an important function as 

antioxidant in plant response to oxidative stresses (Ramakrishna and Ravishankar, 2011; 

Brunetti et al., 2013). 

Indeed, they contrast the oxidative stress related to an excess of excitation energy in the 

chloroplast by absorb solar wavelengths (Agati et al., 2012). Oxidative damage is strongly 

induced by environmental perturbations which limit CO2 assimilation and its diffusion to 

the carboxylation sites (Brunetti et al., 2013; Agati et al., 2012; Hernández et al., 2009). 

These events are exacerbated when plants were subjected to environmental stresses, such 

as drought or high salinity. This function of flavonoids may reduce the activity of 

enzymes which are claimed to acts as “primary” ROS scavenger (i.e. SOD and CAT) in 

the chloroplast (Brunetti et al., 2013; Mullineaux and Karpinski, 2002). In addition, 
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flavonoids were capable of quenching H2O2 and other free-radicals species and to protect 

the chloroplast membrane from oxidative damage thanks to their capability to stabilizing 

membranes that contain non-bilayer lipids (Agati et al., 2012). 

Taking into accounts the above discussed data, transcripts related to stilbenoids, together 

with GSTs and DELLAs related-genes (figure 5B, 5C), and flavonoids (figure 6B) 

biosynthesis have, respectively, a root and leaf tissue-specific expression upon drought. In 

presence of water stress, M4 rootstock may acts differential mechanisms in root and 

leaves which leads to the production of molecules, such as resveratrol and flavonoids. 

These events may constitute a secondary antioxidant system in these plant tissues. The 

higher resistance of M4 rootstock to water stress, in comparison to what observed in 

101.14, should be related to these events. Indeed, a possible explanation is that grapevine 

species which are drought-tolerant act, in addition to “primary mechanisms” of ROS 

scaveging, also other “secondary mechanisms” which leads to the biosynthesis of different 

secondary compounds in root and leaves. In this way, M4 (like other grapevine stress-

tolerant genotypes) have a greater capability to control ROS homeostasis and prevent 

oxidative damages than the susceptible genotypes. 

M4 and 101.14 showed an interesting differential regulation of flavonoids/stilbenoids-

related genes in root and leaf, but how is regulated the transcription of these gene? 

Transcription factors could have an important role in these processes. Role of stress-

responsive TFs is well documented, they interact with cis-elements in the promoter 

regions of several stress-related genes and thus up-regulate the expression of many 

downstream genes resulting in imparting abiotic stress tolerance (Agarwal and Jha, 2010). 

Transcriptomic data suggest that plant TFs are involved in a large number of metabolic 

processes in response to abiotic stresses and that controlled the expression of a large 

number of genes by an intricate regulatory network (Lata et al., 2011). 

As showed in figure 5A, in root, three classes of TFs showed the major changes in 

transcript abundance between M4 and 101.14 in response to water deficit: WRKY, MYB 

and NAC families. Among these, WRKY were the most represented. WRKY proteins 

represent an important class of transcriptional regulators involved in plants biotic and 

abiotic stress (e.g. drought, high salinity, UV) induced pathways. In this experiment, a 

relatively large group of VvWRKY genes were strongly induced in M4 root 4 days after 
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stress treatment, these included VvWRKY24. Despite what observed by Wang et al., (IN 

PRESS), which hypotized a role of VvWRKY24 only in response to cold stress, it was one 

of the most expressed in our dataset in response to drought. Interestingly, Li et al., (2010) 

showed that AtWRKY54, which is ortholog to our VvWRKY25 (Figure 5A), is significantly 

induced by cold and drought treatments, and by E. necator infection. These result suggests 

that VvWRKY25 may mediating plant defense response in V.vinifera and also play a role in 

abiotic stress responses.  

In our work, VvWRKY24/28/29/37/41 exybith a co-expression with STSs genes (figure 

5A), indeed they were all strongly induced at T2 only in M4, althought are ncessary more 

evidences,, it is might hypothesized that some WRKY are actively involved in the  

regulation of STSs gene expression . In addition to the WRKY family, also VvMYB14 

transcript were strongly induced in M4 stressed roots and its up-regulation paralleled those 

observed for STSs genes. As already observed by Höll et al. (2013), VvMYB14 (figure 

5A) control the expression of grapevine VvSTS25/27/29 under UV-C and wounding 

conditions. In our experimental conditions  the co-expression analysis reveals a 

cooperation between thatVvSTS27/29 and VvMYB14 (Figure 5A) suggesting for the latter 

a possible role also  in drought stress response. Except for VvMYB2 (Figure 5A), whose 

Arabidopsis ortholog cooperate with AtMYC2 as transcriptional activators of genes (as 

rd22) able to increase tolerance to drought (Abe et al., 2003), the other stress-induced 

MYBs are not already indicated as stress-related TFs. However, it is worthy of note that 

they are co-expressed with GST29-like and GST8-like (Figure 5B), two genes involved, as 

described above, in the response to oxidative stress. 

In WS root, last identified family of TFs in DEGs (Figure 5A), was that of NAC . Within 

this family, the involvement of NAC2 (Figure 5A) in the regulatory network governing 

responses to stresses is well documented. In transgenic rice plants for 

Os01g66120/OsNAC2/6 gene were showing an enhancement of drought tolerance 

(Nakashima et al., 2007) or AtNAC2 play a central role in the cross-talk among several 

hormonal metabolisms in response to salinity stress (He et al., 2005). 

In leaf tissue were observed a lower number of DEGs TFs-related, compared to root 

tissue, and most of them belong to the MYB-family. As well as in root, also in leaf MYB 

TFs are known to control several pathways in response to stress through the activation of a 
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large number of stress-responsive genes (Lata et al., 2011; Ambawat et al., 2013; 

Czemmel et al., 2012). In this work, all MYBs identified as DEG were induced at T1 and 

T2 (Figure 6C) in the putative-tolerant rootstocks and their expression paralleled that 

observed for DEGs coding for flavonoids biosynthetic enzymes (Figure 6B). A strong 

connection between MYB and flavonoids is well documented (for a review see Czemmel 

et al., 2012). R2R3-MYB proteins have been identified to be the key determinants in 

regulatory networks controlling not only the allocation of specific gene expression 

patterns during flavonoid biosynthesis, but also diverse aspects of development and 

responses to biotic and abiotic stresses which are not related to production of secondary 

metabolites (Ravaglia et al., 2013; Stracke et al., 2001). Among VvMYB genes (Figure 

6C), VvMYBPA1-like was one of the most abundantly expressed (Figure 6C). MYBPA 

genes are known to induce the expression of biosynthetic genes (CHS, CHI, DFR, LDOX 

and ANR)involved in proanthocyanidins (PA) biosynthetic pathway, indeed PA 

accumulation has been shown to be regulate by the presence of MYBPA1 and MYBPA2 

(Czemmel et al., 2012). Together with VvMYBPA1-like, also MYB12 is known to enhance 

the expression of several flavonoids biosynthetic genes, such as CHS, CHI, F3H and FLS 

(Ambawat et al., 2013), which are all induced at T1-T2 in M4 WS leaf (Figure 6B). 

Furthermore, MYB2 gene, which also is reported in our dataset, in Arabidopsis is known 

to be induced upon dehydration or salt stress (Ambawat et al., 2013). In order to confirm 

the differences observed among M4 and 101.14 in the control of secondary metabolism –

related genes by TFs, the next step in this work will be the analysis of the cis-elements 

present in the promoter region of both genotypes. 

In this work we exhaustively described the transcriptomic responses to drought of two 

genotypes in root and leaf tissues. Despite to what observed in other studies (Cramer et 

al., 2007; Tattersall et al., 2007; Tillett et al., 2011), we did not considered responses to 

water stress which were in common among susceptible and tolerant plants (e.g. ABA, 

photosynthetic and sugars –related genes) but only the expression of those genes which 

were strictly related to the tolerant rootstock. This allowed us to identify novel putative 

gene networks carried out by grapevine which showed an higher resistance to osmotic 

stress. In the near future, the expression of selected genes has to be evaluate on a large 

range of genotypes which showed differential responses upon drought in order to 
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understand if these genes can be used as functional markers for WS-tolerant grapevine 

plants. 
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1. Introduction 

Grape berry development exhibits a double-sigmoid pattern characterized by two phases 

of rapid growth separated by a lag phase, during which little or no growth occurs (Coombe 

and McCarthy, 2000). The onset of ripening (named véraison) occurs at the end of this lag 

phase and involves the accumulation of sugars (hexoses) in the vacuoles of mesocarp 

cells, anthocyanins in the berry skin, catabolism of organic acids, and the development of 

other compounds related to flavour and aroma (Conde et al., 2007; Symons et al., 2006; 

Kuhn et al., 2013). Several hormones may participate and interplay in the control of grape 

berry development and ripening, such as ethylene, auxin, abscisic acid (ABA), 

gibberellins (GAs), cytokinins (CKs) and brassinosteroids (BRs) (Davies and Böttcher, 

2009). The early stages of berry development, from fertilization to the formation of the 

fruit (fruit set), are mainly driven by auxins, CKs and GAs that promote cell division and 

expansion. Although these hormones have a pivotal role in grape berry development, they 

are produced mostly by the seeds (Giribaldi et al., 2010). The changes occurring from pre-

véraison to full ripening are accompanied by significant increases in ABA content, this 

hormone claimed to be a ripening determinant in non-climacteric fruits such as grape 

berry (Kuhn et al., 2013; Giribaldi et al., 2010; Sun et al., 2010). In addition to ABA, 

endogenous levels of BRs and ethylene transiently increase at pre-véraison and véraison, 

respectively. Exogenous applications of these hormones positively modulate many 

ripening-related processes such as the accumulation of anthocyanins, most likely by 

enhancing the transcription of CHS, F3H, UFGT, and MYB1 genes (Symons et al., 2006; 

Giribaldi et al., 2010; Chervin et al., 2008; Jeong et al., 2004; Ziliotto et al., 2012). These 

treatments can also induce the uptake and storage of sugars in the berries (Giribaldi et al., 

2010; Böttcher et al., 2011). On the other hand, it is well known that exogenous 

application of auxin at the pre-véraison stage cause a shift in grape berry ripening and a 

repression of several ripening-related genes (Ziliotto et al., 2012; Davies et al., 1997). 

Several studies pointed out that auxin levels increase during the early development of the 

grape berry (pre-véraison), and then decrease at the véraison stage. The decrease of auxin 

content is necessary, as demonstrated by the exogenous application of auxin at véraison 

that negatively affected the expression of genes encoding enzymes related to sugars and 

anthocyanins (CHS, F3'H and UFGT) biosynthesis and caused a delay in the reduction of 
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chlorophyll and acidity (Davies and Böttcher, 2009; Ziliotto et al., 2012; Böttcher et al., 

2011). However, it was also observed that treatments with this hormone are positively 

correlated with the induction of genes related to ethylene biosynthesis (ACC-oxidase, 

ACO, and ACC-synthase, ACS) (Ziliotto et al., 2012). This effect was not unexpected 

taking into account that high levels of auxin are required for the transition to auto-catalytic  

ethylene biosynthesis, the key event in the ripening of climacteric fruit (El-Sharkawy et 

al., 2010; Tatsuki et al., 2013). 

Böttcher et al. (2010) speculate that auxin levels might be controlled throughout 

conjugation by GH3 proteins; in particular they showed that GH3 protein catalyzed auxin 

conjugation to amino acids, such as aspartate, and they observed that low levels of free 

auxin content correspond to high levels of conjugated auxins (Böttcher et al., 2010). 

Despite the obvious economic implications of controlling these processes, the mechanisms 

that regulate auxin homeostasis and its control during grape berry ripening remain unclear. 

In order to clarify this aspect, it is necessary to well investigate the molecular control of 

auxin homeostasis based on genes involved in biosynthesis (TRYPS), conjugation (GH3), 

action (ARF and AUX/IAA) and transport (PIN). In a previous paper (Ziliotto et al., 2012), 

it was hypothesized that exogenous application of the synthetic auxin NAA caused an 

excessive availability of auxin, most likely counterbalanced by homeostatic mechanisms 

which are activated after the treatment. 

As above described, grape berry ripening is regulated by a complex regulatory networks in 

which also microRNA (miRNA) play a pivotal role. miRNAs are a class of non-coding 

RNA molecules with an important role as negative regulators of gene expression. In recent 

experiments (Carra et al., 2011; Carra et al., 2009; Wang et al., 2012; Wang et al., 2011), 

several conserved and novel miRNA, which showed a tissue specificity and have a 

putative role in grape berry ripening, has been characterized. Despite the large number of 

information given in the last years, miRNAs’ roles in the regulatory network linked to 

grape berry ripening are only partially understood. 

In addition to endogenous signals (i.e. hormones and miRNAs), grape berry ripening is 

modulated by exogenous stimuli such as environmental factors. Light, water availability 

and temperature severely affect grape berry ripening and quality, and may cause a shitf in 

the date of vintage (Kuhn et al., 2013). Among these, water deficit has been the most 
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studied for its negative impact on grapevine yield and wine quality (Chaves et al., 2010; 

Qin et al., 2011). Generally, drought cause an accumulation of secondary 

(phenylpropanoids, especially anthocyanins and stilbenoids) and primary (sugars and 

organic acids) metabolites and their related transcripts in grape berries (Castellarin et al., 

2007; Deluc et al., 2009). Grapevine responses to water deficit are heavily affected by the 

genotype; indeed, as observed by Deluc et al. (2009), under water stress, Cabernet 

sauvignon (CS) grape berries showed an higher accumulation of the “stress hormone” 

abscissic acid (ABA) and better responses to drought, in comparison to the white cultivar 

Chardonnay. 

In order to counteracts these problems, in lasts years the use of rootstocks and the 

development of new genotypes has assumed greater importance in modern viticulture 

(Corso et al., chapter I of this thesis). Rootstocks provide tolerance to exogenous limiting 

factors, both biotic (e.g., soilborne pests) and abiotic (e.g., salinity, water or oxygen 

deficit), while influencing the ecophysiological behaviour of the scion and its berry 

quality (Tramontini et al., 2013). 

As above mentioned, an acceleration of ripening may negatively affect grape berry and 

wine quality. Consequently, further investigations about rootstocks and genotypes with 

improved tolerance to abiotic stresses are essential. 

In order to evaluate the effect of rootstock on grape berry quality and development, a 

detailed investigation was performed at the transcriptomic level (mRNA-seq and 

microRNA-seq) on development and ripening of berries of Vitis vinifera L. cv Cabernet 

Sauvignon (CS) grafted either onto the “commercial” (i.e. the most commonly used) 

rootstock 1103P or onto a new rootstock, called M4 [(V. vinifera x V. berlandieri) x V. 

berlandieri xcv Resseguier n.1], the latter showing high tolerance to water deficit and 

salinity. Results pointed out differences in terms of berry ripening kinetics and a 

differential regulation of genes involved in auxin action (ARF and AUX/IAA), 

conjugation (GH3) and transport (PIN) among CS/M4 and CS/1103P. 
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2. Materials and methods 

2.1 Plant Material and experimental design 

Experiments were performed on Vitis vinifera L. cv Cabernet Sauvignon (CS) grafted onto 

1103P and M4 rootstocks (Pasqua vigneti e cantine, Novaglie VR, Italy). Grapevines were 

grown in well-watered conditions. 

Whole berries were collected from both CS/1103P and CS/M4 bunches, at 45, 59, 65 days 

after full bloom (DAFB). During this phase most berries reached véraison. Additional 

samples (skin and pulp separately) were collected at 72, 86 and 100 DAFB (Figure 1). All 

tissue samples were immediately frozen in liquid nitrogen and stored at -80 °C until use. 

Two biological replicates were collected, each made up of one hundred berries collected 

from fifty bunches (two berries per bunch) and chosen according to the CIRG index 

proposed by Carreño et al. (1995) at the same position within the cluster (median 

position). Sampling was performed in 2011 and 2012. 

 

 

 

Figure 1. Schematic representation of experimental trial. The sampling dates of both CS/rootstocks berries 

were at 45, 59, 65, 72, 86 and 100 DAFB. Véraison of CS/M4 (72 DAFB) and CS/1103P (86 DAFB) are 

also indicated. 

 

Physical (berry diameter and volume) and biochemical (Total Soluble Solids, Brix°) 

parameters were determined on 80 berries at each time point considered in the experiment. 

In order to better define grape berry ripening evolution in the two CS/rootstock 

combinations, colorimetric analyses were performed on 100 berries at 45, 59, 65, 72 and 
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86 DAFB, using the CR-10 colorimeter (Konica-Minolta Holdings Inc., Tokyo, Japan). 

Color was measured according to the L*a*b* space, defining brightness (L*, from white 

to black) and the chromatic coordinates (a*, from red to green; b*, from yellow to blue). 

 

2.2 RNA-seq and qPCR analyses. 

Total RNA for both mRNA-seq and real-time PCR experiments was extracted from either 

whole berry samples or from skin and pulp separately, using the perchlorate method as 

reported by Ziliotto et al. (2012). Small RNAs for microRNA-seq analyses were extracted 

from all samples following the CTAB method (Chang et al., 1993), with few 

modifications. 

mRNA was purified from the total RNA using the Dynabeads mRNA Direct kit 

(Invitrogen pn 610.12). A variable quantity of mRNA ranging from 0.4 to 1.6% with 

respect to the total RNA was obtained. 

Samples for Ligation Sequencing were prepared according to the SOLiD Whole 

transcriptome library preparation protocol (pn 4452437 Rev.B). Samples were purified 

before RNase III digestion with Purelink RNA micro kit columns (Invitrogen, pn 12183-

016), digested from 3 to 10 minutes according the starting amount of mRNA, reverse-

transcribed, size selected using Agencourt AMPure XP beads (Beckman Coulter pn 

A63881), and barcoded during the final amplification. Obtained libraries were sequenced 

using Applied Biosystems SOLiD™ 5500XL , which produced paired-end reads of 75 and 

35 nucleotides for the forward and reverse sequences, respectively. Reads were aligned to 

the reference grape genome using PASS aligner, a software able to perform several 

alignments on a sequence subset, trying different parameters to trim the low quality bases 

and select the best ones to maximize the number of aligned reads (Campagna et al., 2009). 

The percentage identity was set to 90% with one gap allowed whereas the quality filtering 

parameters were set automatically by PASS. Moreover, a minimum reads length cut-off of 

50 and 30 nt was set for the forward sequences and reverse reads, respectively. The 

spliced reads were identified using the procedure described in PASS manual 

(http://pass.cribi.unipd.it). Forward and reverse reads were aligned independently on the 

reference genome. PASS-pair was used from the PASS package to perform the pairing 

between forward and reverse reads and select only those sequences that are uniquely 
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aligned. The version 1 of grape gene prediction available at 

http://genomes.cribi.unipd.it/grape was used as a reference genome, whereas htseq-counts 

program (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) was adopted to 

quantify gene transcripts abundance. 

RNA-seq was carried out in three specific phases of berry development: pre-véraison, 

véraison and maturity. Specifically, pre-véraison. (45 DAFB) and traditional CS harvest 

date (100 DAFB) were the same for both combinations, while full véraison stage was at 

72 and 86 DAFB for CS/M4 and CS/1103P, respectively (Figure 1). mRNA and small 

RNA pre-véraison (whole berries), véraison and harvest (skin and pulp) for both 

CS/rootstocks combinations were used for mRNA-seq and microRNA-seq analysis, 

performed at CRIBI, University of Padova. 

For quantitative real-time PCR analysis (qPCR), cDNA was synthesized using 2 µg of 

total RNA, 2.5 µM (dT)18 primer, 200 Units of M-MLV Reverse Transcriptase (Promega) 

and 1 Unit of RNAguard (Amersham Biosciences), at 37°C for 90 minutes in a final 

volume of 20 µL. qPCR was carried out in triplicate on two biological replicates for each 

sample with StepOne Plus Real-Time PCR System (Applied Biosystems) by using 

specific primers listed in Supplementary table 1. 

For microRNAs quantification, cDNA synthesis and qPCR experiments were carried out 

using the TaqMan® MicroRNA Assays (Life Technologies) according to the 

manufacturer’s instructions. 

 

2.3 Statistical and bioinformatics analyses on mRNA-seq and 

microRNA-seq data 

The R package DEseq (Anders and Huber, 2010) was used for the statistical analyses of 

both mRNA-seq and microRNA-seq data. A false discovery rate (FDR) of 0.05 was set up 

as a threshold for identifying differentially expressed genes (including those encoding 

miRNAs). A pairwise comparison between M4 and 1103P genotypes was accomplished 

for each couple of samples at each time point (Pre-véraison, Véraison, Harvest). 

In order to cluster together transcripts and microRNAs with complementary behaviors, a 

Time Course Cluster analysis using the Mfuzz R package (Kumar and Futschik, 2007) 

was performed. 
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The Gene Ontology terms were retrieved and imported in the Blast2GO software v2.5.0 

(Götz et al., 2008). Enrichment analysis was performed for each set of differentially 

expressed genes with the built-in Fisher’s exact test function with P ≤ 0.01 and FDR 

correction. 

 

2.4 Phylogenetic analyses of ARF and AUX/IAA auxin-related gene 

families 

A characterization of grape ARF and AUX/IAA gene families and the consequent 

association with the gene expression data were carried out. 

For the characterization of these gene families, all Solanum lycopersicom and Arabidopsis 

thaliana ARF (Guilfoyle et al., 1998; Kumar et al., 2011) and AUX/IAA (Reed, 2001; 

Wu et al., 2012) proteins were blasted and aligned against Vitis vinifera PN40024 12X v1 

proteome (http://genomes.cribi.unipd.it/DATA/), by using MEGA4 software 

(http://www.megasoftware.net/mega4). To confirm the presence of the protein domains 

related to ARF (B3 + ARF + AUX/IAA domains, the last one is optional) and AUX/IAA 

(AUX/IAA domain), all putative proteins related to these families were checked by using 

InterProScan software (http://www.ebi.ac.uk/Tools/pfa/iprscan/). To check sequence 

similarities and genetic distance between Vitis vinifera, Solanum lycopersicom and 

Arabidopsis thaliana ARF and AUX/IAA families. The ARF and AUX/IAA aminoacids 

sequences of tomato, Arabidopsis and grape were aligned by using a pairwise (Gap 

opening penalty = 10; gap extension penalty = 0.1) and a multiple (Gap opening penalty = 

10; gap extension penalty = 0.2) alignments with ClustalW (MEGA4 software; Tamura et 

al., 2007). The phylogenetic tree was constructed by using the neighbor-joining method of 

MEGA4 software. Finally, expression level of the respective transcripts were checked on 

the mRNA-seq data. 
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3. Results 

3.1 Physical and biochemical analyses 

In order to evaluate the differences in grape berry ripening and quality parameters between 

CS/1103P and CS/M4, physical (volume and color) and chemical (Soluble Solids 

Concentrations; SSC) parameters were determined (Figure 2 and 3). Measurements were 

carried out on one hundred berries collected from fifty bunches (two berries per bunch) 

sampled in 2011 and 2012. 

 

Figure 2. Berry volume and soluble solids content in CS/1103P (circle) and CS/M4 (square) throughout 

fruit development. Solid and dotted arrows indicate véraison of CS/M4 and CS/1103P, respectively. Bars 

represent the SD. 

 

Grape berry volume followed different kinetics in CS/1103P compared to CS/M4 (Figure 

2). At pre-véraison (45 GDF), the volume of CS/M4 (1 cm
3
) berries was greater than that 

observed for CS/1103P (0.8 cm
3
), while in the subsequent stages (52-65 GDF) there were 

no significant differences among rootstocks. At 72 DAFB, when most of CS/M4 berries 

reached véraison, volume values measured for CS/M4 were significantly higher (+0.35 

cm
3
) compared to those observed for CS/1103P. These differences were maintained up to 

86 DAFB, when CS/1103P berries showed a significant increase in volume. At harvest 

time (100 DAFB) volume was similar in both rootstocks, indicating a partial recovery for 

CS/1103P berries. 

The above mentioned differences among CS/rootstock combinations were confirmed also 

for SSC (Soluble Solids Concentrations) values (Brix°) (Figure 2). SSC measurements 

indicated that, at the pre-véraison stages (45-65 DAFB), content of total soluble solids 

(related to the sugars content) was similar between rootstocks. From 72 DAFB, CS/M4 
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displayed a higher increase for SSC. CS/1103P berries increased their soluble solids 

content at 86 DAFB (18.55), when it reached values closed to those of CS/M4 berries at 

véraison (72 DAFB; brix° = 18). Thereafter, SSC contents were similar between 

CS/rootstock combination, although CS/M4 showed slightly higher values. 

Concerning the colorimetric measurements (Figure 3), at pre-véraison all samples were in 

the same situation in terms of ripening evolution (diamond indicator), while later on there 

were different kinetics related to pigmentation evolution between 1103P and M4 

rootstocks, as also observed in terms of berry volume. Indeed, CS grafted on 1103P 

showed a delay, in terms of pigmentation evolution, in comparison to the other 

CS/rootstock combination (square indicator). At post-véraison (circle indicator) all 

samples reached the same pigmentation levels, confirming the recovery of CS/1103P 

showed also for volume and SSC parameters (Figure 2) 

 

 

Figure 3. Colorimetric analyses, conducted on four time points, of CS/1103P and CS/M4 rootstocks, 

corresponding to different development conditions. 

 

Considering these results, rootstocks seem to induce a different ripening kinetics, affecting 

the degree of pigmentations and physical/chemical parameters, such as volume and sugars 

content (SSC). Thus, to better evaluate the effect of rootstock on berry ripening is 
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mandatory to “synchronize” ripening onset in the two CS/rootstocks, combinations. For 

this goal among samples collected in 2011 were identified two common phases (indicated 

as pre-véraison and véraison) between CS/1103P and CS/M4, by combining physical, 

chemical, colorimetric data and a preliminary expression profiles analysis, performed via 

qPCR technique (Figure 4), of key genes of flavonoid (chalcone synthase 3; CHS3; 

flavonol synthase 1, FLS1; Leucoanthocyanidin reductase 1 and 2, LAR1 and LAR2) and 

flavone and flavonols (UDP-glucose:flavonoid 3-O-glucosyltransferase, UFGT) pathways 

(Figure 4) to perform RNA-seq analyses. An additional transcriptome analysis was 

performed close to the commercial CS vintage date (100 DAFB) to evaluate how the 

expression of genes related to late ripening phase was evolved in the two combinations. 

This sampling date was chosen taking into account that at the commercial vintage no 

significant differences (p< 0.05) for traditional ripening parameters (brix°, pH and 

titratable acidity) were observed between the CS/M4 and CS/1103P ripe berries. No 

significant statistical differences (p <0.05) at commercial CS vintage were observed also 

when the analysis of traditional ripening parameters was extended to an historical series of 

seven years (data not showed). However, samples collected close to the commercial CS 

vintage can give us information about differences, still present, at transcriptomic level 

between the two combinations.  

Considering these findings, pre-véraison was confirmed to occur for both rootstocks at 45 

DAFB, while véraison appeared to be different for CS/M4 (72 DAFB) and CS/1103P (86 

DAFB) and full ripening was the same for all samples (100 DAFB). 

Samples of both CS/rootstock combinations corresponding to pre-véraison, véraison and 

full ripening phenological phases were chosen for the following mRNA-seq and 

microRNA-seq analyses. 
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Figure 4. Preliminary qPCR analyses conducted on all samples during the entire ripening phase. Graphs 

related to PAL3-like, CHS3, LAR2, FLS1 and UFGT genes are shown. Bars represent standard error. 

PAL3-like (Figure 4A), CHS3 (Figure 4B), LAR1 (data not showed) and LAR2 (Figure 4C) 

showed similar expression kinetics. In particular, a peak of expression was observed at 72 

DAFB in CS/M4 showed and at 86 DAFB in CS/1103P, confirming, as discussed above, a 

delay in ripening inception and skin pigmentation evolution for the latter combination. For 

FLS1 (Figure 4D) and UFGT  (Figure 4E) genes, only M4 showed a peak at 72 DAFB 

(Figure 4D, 4E). 

 

3.2 Differentially expressed (DE) genes, DEmiRNA and time course 

clustering analyses 

As previously described, mRNA-seq and microRNA-seq analyses were performed on 

CS/1103P and CS/M4 berries at pre-véraison, véraison and harvest phases. A detailed 

description of samples used for these analyses was given in table 1. 
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Table 1. Samples used for mRNA-seq and microRNA-seq analyses. DAFB, sampling date, phenological 

phases and sampled tissues are given. Two biological replicates of all samples were used for RNA-seq 

analyses 

 

 

As concerns statistical analyses, the pairwise comparisons between M4 and 1103P 

genotypes were accomplished at each time point (Pre-véraison, Véraison, Harvest), in 

according to a p<0.05. Differentially expressed genes (DEG) or Differential expressed 

miRNA (DEmiRNA) were identified calculating the log2-ratio (M4 versus 1103P) of the 

counts detected for each gene (or miRNA) in CS/M4 and CS/1103P combinations. Among 

comparisons, DEG were: 662 at pre-véraison; 3603 and 3412 at véraison in skin and pulp, 

respectively; 738 and 2618 at harvest in skin and pulp, respectively. To classify DEGs in 

relation to their molecular function and cellular processes, a Gene Ontology (GO) term 

enrichment analysis was performed (data not showed). As regards genes more expressed 

in CS/M4 combination (positive log2-ratio), DEGs belonging to "photosynthesis" 

(GO:0015979), "photosystems" (GO:0009521 ), "thylakoids" (GO:0009579), " cell wall 

organization and biogenesis" (GO:0071554) and "pectate lyase activity" (GO:0030570) 

were over-represented in both tissues at véraison stage (72 DAFB), whereas at harvest 

(100 DAFB) this over-representation was observed only in pulp tissue. As concerns plant 

hormones, at véraison several significant GO categories were found in CS/M4, 

specifically the GO terms "response to ethylene stimuli " (GO:0009723, GO:0009873), 

"responses to auxin stimuli " (GO:0009733), "auxin signaling” (GO:00009734) were over-

represented in pulp. At harvest, GO categories related to "abscisic acid -mediated 

signaling pathway" (GO:0071215) and "cellular responses abscisic acid" (GO:0009738) 

were over-represented only in pulp. 

Among DEGs observed in skin and pulp of CS/1103P berries (negative log2-ratio), 

sampled at  pre-véraison and véraison stage, were over-represented that annotated in  GO 

categories related to “cell wall organization and modifications” (GO:0005618, 

DAFB Date Phenologycal phase Sampled tissue
45 13-lug Pre-véraison Whole berry
72 09-ago Vèraison CS/M4 Skin and pulp
86 23-ago Vèraison CS/1103P Skin and pulp
100 06-set Harvest Skin and pulp
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GO:0071554, GO:0042545). As regards transcripts related to secondary metabolism, an 

over-representation of GO terms related to “metabolism and biosynthesis of 

phenylpropanoids and flavonoids” (GO:0009698, GO:0009699, GO:0009812 , 

GO:0009813) was observed at pre-véraison and harvest in pulp tissue. Categories related 

to stress responses, such as "response to biotic stimulus" (GO:0009607), "defenses 

responses" (GO:0006952) and "response to stress" (GO:0006950), were significantly 

over-represented at pre-véraison. At harvest, it was observed an over-representation of GO 

terms related to plant hormones, specifically those related to "cellular responses to auxin 

stimuli" (GO:0071365) and "signal transduction pathway auxin mediated" (GO:0009734). 

For what concerns miRNA-seq, only 30 novel and conserved DEmiRNA were identified 

(in at least one time-point) with statistical analysis. This result is not unexpected 

considering that the analysis was carried out with a total of 471 miRNA. 

In order to shed light about differences in CS/M4 and CS/1103P ripening regulation 

mediated by miRNA, DEmiRNA and the respective target genes were identified in pulp 

and skin gene datasets. To obtain this information, firstly DEGs and DEmiRNA, 

separately for each tissue, were subjected to a Time Course Cluster analysis, using the 

Mfuzz R package (Kumar and Futschik, 2007).,. This analysis allowed us to identify six 

and seven clusters for the DEG with different kinetic in skin and pulp, respectively, and 

six clusters for differentially expressed miRNA in both skin and pulp. The last step step 

was to identify target genes of differentially expressed miRNA and to check if these 

targets were significantly differentially expressed in our experiment.  

In skin tissues, miRNAs that showed an opposite behaviour in comparison to the 

respective genes-target were associated with metabolic categories mainly related to plant 

growth (figure 5A). In particular miR396, which has Growth-regulating factor 9 (GRF9) 

as target, showed a significant up-regulation at véraison and harvest in CS/M4 berries. 

On the other hand, in pulp tissue genes which seem to show a control mediated by miRNA 

belonged to growth regulation, auxin transcription factors, Homeobox-leucine zipper 

transcription factors and detoxification -related metabolic categories. Indeed, miR167 

(figure 5B) and miR166 (figure 5E) were strongly up-regulated in CS/M4 at harvest, and 

their relative gene-target ARF3/ARF6/ARF8 and REVOLUTA-PHABULOSA transcription 

factors (TFs), were down-regulated at the same phenological phase. Among pulp-related 
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clusters, other miRNAs showed an interesting behaviour; in particular miR160 (figure 

5C), which repressed ARF10A and ARF16, and miR171 (figure 5D), which control the 

expression of SCARECROW 6 (SCL6) and SCL-like transcripts, where both down-

regulated at pre-véraison and significantly induced at véraison stages. The last two 

considered miRNA were miR172 and miR159a (figure 5F, G). The first one repressed an 

AP2-like transcription factor (TF) showed and high up-regulation in CS/M4 at véraison 

and a slightly induction at harvest; conversely,  the second one was induced in CS/1103P 

at pre-véraison and véraison stages and negatively regulated the expression of 

GLIOXALASE 1 (GLX1). From these results and available literature (Ziliotto et al., 2012; 

Davies et al., 1997) is emerging the critical role of auxin in the modulation of grape berry 

ripening thus we decide to analyse in deep genes involved in the regulation of auxin 

action.  
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Figure 5. Expression pattern of miRNA (microRNA-seq data) and their respective genes target (mRNA-seq 

data. Expression values of RNA-seq data were al given as log2 (M4/1103P) ratio. Bars represented SE. 
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3.3 Characterization and phylogenetic analyses of grape AUX/IAA and 

ARF auxin-related families 

In order to characterize AUX/IAA and ARF putative grapevine protein, a phylogenetic 

analysis was carried out. AUX/IAA family is characterized by the AUX/IAA protein 

domain, while ARF proteins contains B3, ARF and the optional AUX/IAA domains. It is 

well known that aux/iaa inactivate arf proteins, with the formation of an heterodimer. All 

putative proteins which exhibit the typical domains of arf and aux/iaa proteins were 

blasted again family members previously identified in Arabidopsis thaliana and Solanum 

lycopersycom (Supplementary figures 1 and 2). 

In total were identified 18 and 21 proteins of grape belonging to ARF and AUX/IAA gene 

families (figure 6A, B), respectively; all proteins sequences contains domain related to 

these gene families, so it can be concluded which they are good candidates to be member 

of these categories of auxin transcription factors. In a previous work, 26 grape AUX/IAA 

putative proteins were identified (Çakir et al., 2013). Given the different results obtained, 

in this work we re-checked all the putative proteins identified in the other experiment and 

we found several identified sequences which contains with B3 and ARF domains, typical 

of the ARF proteins and not of the AUX/IAA ones. So, it can be concluded that the 

previous analysis conducted by Çakir et al. (2013) was not exhaustive and contained some 

mistakes , thus we decided to use our phylogenetic characterization. 

Arf putative proteins were distributed among 13 chromosomes and highlighted a varied 

sequences length among its members. Indeed, the longest sequence was 1155 aa-longer 

(VvARF19) and the lowest was 623 aa-longer (VvARF16) (Figure 6B). On the other 

hand, aux/iaa putative proteins were characterized by a distribution among a fewer number 

of grape chromosome (eight in total) and more uniform length. Between these family, the 

length of the sequences were lower in comparison to those observed for ARF family, with 

an average of 254 aa (Figure 6B). Expression data derived from mRNA-seq analyses were 

associated to annotated ARF and AUX/IAA putative transcripts identified in the version 

V1 grape annotation. In order to selected the transcripts for qPCR experiments, each 

transcript was associated with the number of RNA-seq counts and an heat-map with all 

values (log2 M4/1103P) was created (Supplementary figures 3 and 4). 
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Figure 6. A. Phylogenetic tree of all putative aux/iaa and arf proteins. B. List of arf and aux/iaa putative 

proteins. V1 12X identifier (V1 12X), protein name (name), length (aminoacids; aa), chromosome (Chr) and 

domain(s) were given. 
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3.4 CS/1103P and CS/M4 berries highlights differential regulation of 

auxin-related genes. 

Expression patterns of some selected ARF and AUX/IAA-related genes were investigated 

along the whole berry developmental kinetic by using qPCR (Figure 6). In addition to 

those, some selected transcripts belonging to GH3 (Böttcher et al., 2011) PIN and ABCB 

gene families were also tested by qPCR. 

These analyses highlighted that transcripts expression was strongly affected by the 

scion/rootstock combination, tissue and grape berry ripening kinetic (Figure 7, 8, 9). 

As concern ARF gene family, qPCR analyses were conducted on VvARF1A 

(VIT_18s0089g00910), VvARF5 (VIT_18s0001g13930), VvARF8A 

(VIT_12s0028g01170), VvARF8B (VIT_04s0079g00200), VvARF10A 

(VIT_06s0004g02750), VvARF10B (VIT_13s0019g04380) (Figure 7A-F). 

A first general observation is that ARF-related genes were highly induced in CS/M4 at 45 

DAFB (pre-véraison stage), in comparison to what observed in CS/1103P. This is true for 

all ARF transcripts, except for VvARF5 which showed a slightly induction at 45 DABF in 

CS/M4 (figure 7B). On the other hand, in CS/1103P berries was observed a delay in the 

induction of these transcripts, indeed a peak was registered at 65 DAFB. This observation 

was true for the most of ARF studied, in particular for VvARF1A, VvARF5, VvARF8A and 

VvARF10B (Figure 7A, B, C, F). In the sequent developmental stages (after 65 DAFB) 

1103P caused a general induction of these genes in CS berries, in comparison to M4, with 

some differences related to the timing and the analyzed tissue (skin or pulp). In particular, 

VvARF5 (figure 7B) was induced in CS/1103P at 86 and 100 DAFB in both tissues, 

highlighting a involvement for this genes in the late phases of ripening. Expression of 

VvARF8B (figure 7D) was related to tissue and developmental stages, indeed it was 

slightly induced at 72-86 DAFB and strongly up-regulated at 100 DAFB only in pulp 

tissue of CS/1103P. In addition, this transcript was induced in skin tissue of CS/M4 only 

at 86 DAFB. VvARF8A (figure 7C) showed an expression-specificity which is related to 

tissue, stages and CS/rootstock combination, with an earlier induction in the skin of 

CS/M4 (72 DAFB) in comparison to that observed for CS/1103P (86 DAFB). Finally, it is 

worthy of note that VvARF10B (figure 7F) transcript was always induced by 1103P 

rootstock in both CS tissues and during the entire grape berry ripening kinetics. 
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Figure 7. Expression pattern, evaluated by qPCR, of genes related to Auxin Response Factors (ARF). 

Expression pattern, evaluated by qPCR, of following auxin-related genes: VvARF1A (VIT_18s0089g00910, 

A), VvARF5 (VIT_18s0001g13930, B), VvARF8A (VIT_12s0028g01170, C), VvARF8B 

(VIT_04s0079g00200, D), VvARF10A (VIT_06s0004g02750, E), VvARF10B (VIT_13s0019g04380, F) in 

CS/1103P (grey) and CS/M4 (white) berries. Transcript levels are measured as means of normalized 

expression ±SE of three technical replicates. Two biological replicated were considered for this analysis. 

 

The second analyzed category of regulators of auxin action was the AUX/IAA one. In this 

case the expression of VvIAA1 (VIT_07s0141g00270), VvIAA6 (VIT_09s0002g05150), 

VvIAA9 (VIT_18s0001g08090), VvIAA15A (VIT_11s0016g04490), VvIAA15B 

(VIT_09s0002g05160) and VvIAA16 (VIT_14s0081g00010) was evaluated by qPCR in all 

samples (Figure 8A-F). 
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Figure 8. Expression pattern, evaluated by qPCR, of genes related to AUX/IAA transcription factors. 

Expression pattern, evaluated by qPCR, of following auxin-related genes: VvIAA1 (VIT_07s0141g00270, 

A), VvIAA6 (VIT_09s0002g05150, B), VvIAA9 (VIT_18s0001g08090, C), VvIAA15A 

(VIT_11s0016g04490, D), VvIAA15B (VIT_09s0002g05160, E) and VvIAA16 (VIT_14s0081g00010, F) 

in CS/1103P (grey) and CS/M4 (white) berries. Transcript levels are measured as means of normalized 

expression ±SE of three technical replicates. Two biological replicated were considered for this analysis. 

 

On the contrary to that reported for ARF, AUX/IAA-related genes showed an higher 

expression in CS/M4 in comparison to what observed in the other scion/rootstock 

combination, with some exceptions. In particular in CS/M4, the accumulation of VvIAA9 

(figure 8C), VvIAA15A (figure 8D) and VvIAA16 (figure 8F) transcripts slightly peaked at 

45 DAFB, therefore at the beginning they were co-expressed with the majority of ARF-

related genes (figure 7). These AUX/IAA genes were induced in CS/M4 also in the 

subsequent phases of grape berry development, especially at 72 and 100 DAFB for 

VvIAA16 and VvIAA9 genes, respectively, in skin tissue (figure 8C and F). VvIAA1 (figure 
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8A), VvIAA6 (figure 8B) and VvIAA15B (figure 8E) showed the higher differences among 

rootstocks in the last phases of grape berry ripening (86-100 DAFB). This behaviour was 

particularly evident for VvIAA6 (figure 8B) and VvIAA15B (figure 8E) being their 

significantly up-regulated at 86 and 100 DAFB in skin tissue of CS/M4 (3 times higher in 

comparison to CS/1103P). VvIAA1 (figure 8A) showed a strong induction at a specific 

time-point and tissue for both rootstocks, with differences related to the developmental 

phase. Indeed, the expression of this gene was induced in skin tissue at 86 DAFB in 

CS/M4 (20 times higher in comparison to CS/1103P), while it was also strongly induced 

(10 times higher) in CS/1103P but at the last stage of grape berry ripening (100 DAFB). 

The last two considered categories were GH3 and PIN –related transcripts (figure 9).  

 

Figure 9. Expression pattern, evaluated by qPCR, of genes related to auxin conjugation (GH3) and transport 

(PIN). Expression pattern of following auxin-related genes: VvGH3-1 (VIT_03s0091g00310, A), VvGH3-8 

(VIT_07s0104g00800, B), VvPIN4-like (VIT_01s0011g04860, C), VvPIN-like (VIT_05s0062g01120, D), 

VvABCB-like A (VIT_04s0044g01860, E) and VvABCB-like B (VIT_07s0031g02200, F) in CS/1103P 



111 

 

(grey) and CS/M4 (white) berries. Transcript levels are measured as means of normalized expression ±SE of 

three technical replicates. Two biological replicated were considered for this analysis. 

 

For these categories transcripts corresponding to VvGH3-1 (figure 9A), VvGH3-8 (figure 

9B), VvPIN2 (figure 9C), VvPIN6 (figure 9D), VvPIN9 (figure 9E) and VvPIN10 (figure 

9F)  were monitored along the berry ripening by qPCR. 

GH3 genes, involved in auxin conjugation and homeostasis, showed different expression 

kinetic among the two CS/rootstocks combinations. VvGH3-1 (figure 9A) was 

significantly induced in CS berries grafted onto M4 rootstock in the first phases of grape 

berry development, in particular at 65 and 72 DAFB. Conversely, it showed a delayed and 

lower induction in CS/1103P (86-100 DAFB). VvGH3-8 (figure 9B) exhibited a different 

expression pattern in comparison to VvGH3-1, in particular it was strongly induced in skin 

tissue at 86 and 100 DAFB in CS/M4 and CS/1103P, respectively. This results indicate 

again a strong specificity in the expression of genes belonging to these family, with a 

delay observed for CS/1103P. 

Also PIN-related genes, responsible for auxin transport, were differentially regulated 

among rootstocks. In fact, PIN-related transcripts were accumulated earlier and at higher 

level in CS/M4, as already observed for the other two (AUX/IAA and GH3 genes) negative 

regulators of auxin-related metabolisms. In both rootstocks VvPIN4-like (figure 9C) 

showed an interesting double peak but with some differences related to the developmental 

phase. Indeed, this genes was induced in CS/M4 at 45 and 86 (skin tissue) DAFB, and in 

CS/1103P at 59, 65 and 100 (skin tissue) DAFB. Analysis gene expression of VvPIN-like 

(figure 9D) highlighted similarities to what observed for VvPIN2 but only at last stages.. 

ABCB-like A (figure 9E) was significantly induced only in CS/M4 in the last phases of 

pre-véraison (59 DAFB).The last studied transcript was ABCB-like B (figure 9F), which 

was strongly induced by M4 rootstock, up to 65 DAFB. 

The above described results highlighted interesting differences induced by grapevine 

rootstocks in the regulation of genes belonging to several auxin metabolisms. In the next 

paragraph we will investigate about some microRNA which regulated auxin-related genes. 
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3.5 Effect of rootstock on miRNA expression and their control of auxin 

metabolisms. 

In order to dissect the effect of microRNA on auxin metabolism during grape berry 

ripening, some selected miRNAs and their targets (already describe previously, figure 5) 

were selected and validated by qPCR. 

Selected miRNAs were miR160 (figure 10A) and miR167 (figure 10B), which have as 

target VvARF16 and VvARF3, respectively; and miR171 (figure 10C) and its targets 

SCL6-like and another SCARECROW-like (data not showed), two genes regulating both 

shoot branching (Wang et al., 2010) and control cell division and auxin transport in root 

and leaves of several species (Dhondt et al., 2010; Gao et al., 2004). 

 

Figure 10. Expression pattern, evaluated by qPCR, of miRNAs and their respective genes targets related to 

auxin signal transduction and transport. Expression pattern of following auxin-related miRNAs and genes: 

A. miR160 and VvARF16 (VIT_08s0040g01810); B. miR167 and VvARF3 (VIT_10s0003g00420); C. 

miR171 and VvSCL6-like (VIT_02s0154g00400). Transcripts and miRNAs expression was evaluated in 
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CS/1103P (grey) and CS/M4 (white) berries. Expression levels are measured as means of normalized 

expression ±SE of three technical replicates. Two biological replicated were considered for this analysis. 

 

miR160 and miR167 have an important role in the control of ARF and consequently in the 

control of auxin action. As showed in figure 10A and 10B, expression level of the above 

cited miRNAs at 45 DAFB was higher in CS/M4 (2 times higher) in comparison to that 

observed for CS/1103P. On the other hand, the expression of VvARF16 and VvARF3 was 

significantly lower in CS/1103P in comparison to that observed in corresponding CS/M4 

samples (figure 10A and 10B), as already described in the previous paragraph. As 

concerns CS/M4, at 86 DAFB the accumulation of miR160 was significantly induced in 

pulp tissue and parallel a decrease in VvARF16 transcripts amount occurred (figure 10A). 

miR167 seems to have an earlier induction, with some differences among CS/rootstock 

combinations. Indeed, it was induced at 72 and 86 DAFB in pulp tissue of CS/1103P and 

CS/M4, respectively; the VvARF3 target, after an initial induction in CS/M4, was 

repressed in both rootstocks during all the kinetic (figure 10B). 

The last considered miRNA seems to have a major effects on CS/1103P berries. Indeed, 

when the expression levels of miR171 were significantly lower in skin tissue (100 DAFB), 

target transcripts SCL6-like were strongly induced. As concerns the other considered time 

points, miR171 was expressed at high level in both CS/rootstocks combinations and the 

target was consequently repressed (figure 10C). 
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4. Discussion 

In this work, for the first time the effect of two grapevine rootstocks on CS grape berry 

quality and development/ripening was evaluated by using a whole genome transcriptomic 

approach (mRNA-seq and microRNA-seq). 

It is well known that rootstocks, in function of their ability in the nutrients (like potassium 

or nitrogen) uptake, can significantly affected grape berry development and fruit 

composition (Gambetta et al., 2012; Walker et al., 2000; Stockert and Smart, 2008). The 

first massive use of rootstocks in viticulture was a consequence of the accidental 

introduction of phylloxera (Daktulosphaira vitifoliae), a root-feeding aphid, to Europe in 

the 1800s. Phylloxera epidemic was counteract by grafting grapevines of the species Vitis 

vinifera, including international varieties as Cabernet Sauvignon and Chardonnay, on 

American wild type grapes. Later on rootstocks were used for other purposes as the 

increment of vine performance or the adaptation to specific soil types and adverse 

environmental conditions (Gambetta et al., 2012; Covarrubias and Rombolà, 2013; 

Gregory et al., 2013; Meggio et al., IN PRESS). The impact of rootstocks on fruit 

composition and, therefore, on wine organoleptic properties is less clear but can be 

important to such an extent that grafting is desirable even in the absence of the above-

mentioned stresses. Rootstocks can have a direct effect on wine quality influencing 

content in nutrients, sugars and anthocyanins of the grape berry, or an indirect effect by 

controlling vigour and thus affecting berry size and as well as fruit ripening time (Cortell 

et al., 2007a, b). Generally speaking, rootstocks that are able to control/reduce vigor also 

can induce an acceleration of fruit ripening. However, in some cases very vigorous 

rootstocks were found to advance fruit maturation. In this work we showed that berry 

development and ripening of CS grapes was deeply altered when CS scions were grafted 

onto 1103P and M4 rootstocks. Indeed, 1103P delayed the véraison of CS berries (about 

14 days) from the date recorded for M4. These results were in according to that reported in 

the literature, indeed, it is well known that 1103P is a very vigorous rootstock which has a 

long vegetative cycle and delays ripening (Gambetta et al., 2012; Koundouras et al., 

2008), while M4 is considered a medium or high vigorous rootstock (Meggio et al., IN 

PRESS), but to a lesser extent in comparison to the 1103P one. This should partially 

explained the differences observed in terms of grape berry ripening and development 
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among the two CS/rootstocks combinations (Figure 2). One of the most important factors 

in determining the quality of the wine is the heterogeneity of grape ripening progression at 

the bunch level. At véraison the level ripening asynchrony is strongly influenced, beside 

the cultivar and the environmental conditions, by the hormonal content (Deluc et al., 

2009). In this context, the relationship between plant hormones and the effects of the 

hormonal treatments on grape berries have been extensively studied at the transcriptomic 

levels (Symons et al., 2006; Davies and Böttcher, 2009; Chervin et al., 2008; Ziliotto et 

al., 2012), while transcriptomic studies regarding the effect of the rootstock are almost 

absent. 

Physical and biochemical analyses carried in this work (figure 2), showed differences in 

terms of ripening kinetics among two CS/rootstocks combinations. In particular, the 

véraison for CS/M4 was identified at 72 DAFB, where samples showed a SSC of about 18 

brix°. In CS/1103P berries the same SSC value was reached only two week later (at 86 

DAFB) . These results were in according to those reported by other authors that recorded a 

significant delay in developing berries of Shiraz when grafted on 1103P instead of onto 

other less vigorous rootstocks (Walker et al., 2000). 

mRNA-seq results, enrichment analysis and qPCR (Supplementary figure 5) pointed out  

an early induction of genes involved in sugar metabolism in CS/M4. Hexose sugars 

accumulation begins at véraison (Grimplet et al., 2007), whereas in the earlier stages these 

solutes are not stored in the vacuoles but metabolised (Davies and Robinson, 2000). Flow 

of solutes from the phloem cells to the berry mesocarp occurs via apoplastic and is 

mediated by transporters (named HT1 and HT2) ,that allow the accumulation of hexoses, 

in particular fructose and glucose (Grimplet et al., 2007), in vacuole. HT1 expression  in 

CS/M4 skin was similar to what observed by Fillion et al. (1999) and Davies and 

Robinson, (2000). In particular two peaks were observed, at 59 and 86 DAFB which 

correspond to pre and post –véraison stages, respectively (supplementary figure 5C).  

VvGIN1 (supplementary figure 5A) and VvGLU-INV (supplementary figure 5B), two 

genes coding for a vacuolar invertase involved in the hydrolysis of sucrose to fructose and 

glucose, were expressed both in CS/1103P and CS/M4 at pre-véraison stage (45-65 

DAFB), as already reported by Davies and Robinson, (2000), but to a significantly higher 

level in CS/M4 berries. All these data indicate that in CS/M4 a higher accumulation of 



116 

 

soluble solids accumulation and sugars-related genes transcripts than that observed in 

CS/1103P occurred (Figure 2; Supplementary figure 5). 

Sugars concentration is positively correlated with the amount of anthocyanins during 

grape berry ripening and negatively correlated with others phenolics compounds because 

the latter offer another substrate for synthesis of anthocyanins (Castellarin et al., 2011; 

Gambetta et al., 2010; Liang et al., 2011). Genes involved in phenylpropanoids 

biosynthetic pathway were expressed earlier and to a higher level in CS/M4 (Figure 4). 

This pattern was in according with the earlier véraison (14 days) observed in CS/M4 

berries (Figure 3). Indeed, it is well known that accumulation of anthocyanins and 

induction of genes involved in their biosynthesis are strongly related to the onset of 

ripening in grape berries (Kuhn et al., 2013; Grimplet et al., 2007; Chen et al., 2006). The 

early expression of genes related to anthocyanins pathway is also positively related to the 

greater intensity of colour observed in CS/M4 berries in comparison to that observed in 

CS/1103P (data not showed), as already suggested by other authors (Pérez-Magariño and 

González-San José, 2004; Ryan and Revilla, 2003). 

Expression of PAL3-like genes (Figure 4A) was higher in skin tissue as observed by 

Grimplet et al. (2007) and Castellarin et al. (2011). As concerns PAL gene (VvPAL3-like) 

we observed a strong correlation between its expression and berries staining intensity. 

This fact was expected considering that PAL is the first enzyme of phenylpropanoid 

pathway and is therefore producing also precursors for the  of phenolic compounds, thus 

PAL is indicated as one of responsible for rate-limiting steps in anthocyanins biosynthesis 

(Guillaumie et al., 2011). Similarly, the increased expression of VvCHS3 and VvUFGT 

genes (Figure 4B, E) had a positive impact on anthocyanins accumulation (Liang et al., 

2011; Lijavetzky et al., 2012). The increase of  anthocyanins-related genes occurred 

during the ripening phase was paralleled by anthocyanins accumulation in the berry 

(Davies and Robinson, 2000). The same trend was also observed for the gene coding for 

the synthesis of flavonols (FLS1; Figure 4D), while the LAR2 gene (Figure 4C), which 

encodes for an enzyme involved in tannins biosynthesis, showed a induction in CS/M4 at 

pre-véraison (45 DAFB) and in both rootstocks at véraison (72 and 86 DAFB in CS/M4 

and CS/1103P, respectively). The increased expression of VvLAR2 at pre-véraison should 
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be linked to an induction of tannins accumulation that, as observed by Grimplet et al. 

(2007), were typically produced in the first phase of berry growth. 

The above discussed data showed significant differences in berry composition when CS 

scions are  grafted onto M4 or 1103P and support the fact that rootstocks exert a strong 

influence on berry development and ripening-related processes. But, what are the 

molecular mechanisms that control these events? A possible explanation could be related 

to auxin metabolism. Considering the large numbers of DEGs related to auxin identified 

using Mfuzz cluster and enrichment analyses, and the relevant role of auxins during grape 

berry development(Ziliotto et al., 2012), a characterization of grape ARF and AUX/IAA 

gene families and the consequent association with the gene expression data was carried 

out (Figure 6; supplementary figures 3 and 4). Level of the synthetic auxin indole-3-acetic 

acid (IAA) reached its maximum in flowers and young berries, and then decreased until 

véraison  (Bottcher et al., 2012). The decrease in IAA levels is thought to be a prerequisite 

for the onset and progression of ripening in a large range of fruit, including grapes 

(Ziliotto et al., 2012; Böttcher et al., 2011; Davies et al., 1997; Schaffer et al., 2013; 

Symons et al., 2012). In this work, we observed that the delayed véraison of CS/1103P 

berries was paralleled by a delayed induction and a lower expression of VvGH3-1 gene 

(Figure 9A) when these two events were compared to those occurring in CS/M4 ones. 

These results were in according to that observed by Böttcher et al. (2010 and 2011), which 

demonstrate that the increasing levels of conjugated form of IAA in grapes might be 

linked to the low levels of active IAA recorded at, and after, the onset of ripening. 

Conjugation of IAA to amino acids, catalyzed by GH3, have an important role in the 

control of auxin homeostasis and the pivotal role of GH3 proteins in control of fruit 

ripening is still under investigation (Pattison et al., IN PRESS). As already observed in 

rice, GH3-8 is linked to the repression of expansin-related genes and their expression is 

skin-tissue specific (Ding et al., 2008). Also the induction of VvGH3-8 (Figure 9B) 

detected at post-véraison phase of CS/M4 (86 DAFB) and CS/1103P (100 DAFB) was 

paralleled by a decrease in expansin-related transcripts expression as already observed by 

Ziliotto et al., 2012. 

ARFs and AUX/IAAs genes regulation was essential for several metabolisms related to 

grape berry development and ripening. Our data highlighted that ARF genes, which are 
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actively involved in the auxin action, showed an earlier induction at pre-véraison stage in 

CS/M4 berries (figure 7; supplementary figure 3), when auxin level reached its maximum 

(Davies et al., 1997). As concerns CS/1103P most of ARF transcripts, VvARF8A/10B in 

particular (Figures 7C, F), reached a peak (65 DAFB) in their expression later than 

occurred in CS/M4. Taking into accounts the differences observed between CS/rootstocks 

combinations in the regulation of ARF transcripts, a role in grape fruit development of 

these transcripts was suggested. Several genes belonging to this family were showing 

similar expression kinetic indicating that their function can overlap during fruit 

development, as already observed in tomato (Kumar et al., 2011). In particular expression 

of VvARF8A (Figure 7C) suggested, in both CS/M4 and CS/1103P, its involvement in 

fruit development and ripening. An involvement of ARF8 in fertilization and fruit s et was 

suggested (Goetz et al., 2007; Seymour et al., 2013), but its role during fruit ripening is 

still unknown. VvARF1A and VvARF10A (Figures 7A, E) were significantly induced at the 

pre-véraison stage, especially in CS/M4, suggesting a function in cell expansion during 

berry green phase and thus a role in the early phases of fruit development. Indeed, a recent 

work demonstrated a role of tomato ARF10 in the regulation of the size and shape of the 

fruit (Hendelman et al., 2012). As concerns ARF1, it was observed an induction at the 

mature green phase in tomato, suggesting its involvement in fruit development too 

(Kumar et al., 2011). 

VvARF5 was the only one highly expressed in the latter phases of berry ripening, 

especially at 86-100 DAFB period. Its high expression during fruit ripening was already 

observed by Kumar et al. (2011), in tomato fruit, but role of this genes during fruit 

developmental processes is still unknown. 

Several AUX/IAA-related genes showed an earlier and higher induction throughout all 

grape berry development in CS/M4 samples (Figure 8; supplementary figure 4). It is well 

known that in absence of auxin, AUX-IAA sequester ARF by protein-protein interaction 

and inhibit the binding between the latter and the promoter region of auxin-responsive 

genes. In this context AUX/IAA genes have been claimed as regulators of auxin response 

during fruit development and ripening (Pattison et al., IN PRESS; Wang et al., 2005; 

Woodward and Bartel, 2005). 
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Among this family, VvIAA9 and VvIAA15A were more induced during the green phase of 

grape berry development (Figure 8C, D), as already observed in tomato by Audran-

Delalande et al. (2012), so, their expression can be related to the control of auxin 

responsive genes in the early phases of berry ripening. Conversely, VvIAA6 and VvIAA15B 

(Figure 8E, F) were significantly induced in CS/M4 at 86-100 DAFB suggesting their role 

in control of auxin responsive genes in the latter phases of grape berry ripening. It is 

worthy of note that VvIAA1 showed a strong tissue specificity in both CS/rootstocks 

combinations, with differences among rootstocks related to the expression pattern, as 

already described in the results section (Figure 8A). 

Genes coding for cellular auxin transporter enzymes, were the lasts one considered in this 

experiment (Figure 9). Auxin concentration in fruit, as well as in other organs, is strictly 

related to its polar transport, which contributes to the formation of local auxin maxima and 

minima that control various aspects of fruit development and ripening development 

(Pattison et al., IN PRESS). Auxin efflux is mainly due to PIN and ABCB enzymes, while 

auxin influx is controlled by AUX/LAX proteins (Pattison et al., IN PRESS; Geisler and 

Murphy, 2006). mRNA-seq (data not showed) and qPCR (Figure 9) analyses highlighted 

interesting expression patterns in these genes families. As showed in figure 9C and 9D, 

PIN-like genes were mainly expressed in the final phases of grape berry ripening in skin 

tissue, with an early induction in CS/M4 in comparison to what observed in CS/1103P. 

ABCB-like genes were expressed in the pre-véraison stage (45-65 DAFB) and showed an 

higher expression in CS/M4 (Figure 9E, F). PIN and ABCB genes were suggested to 

control auxin intracellular levels and homeostasis in different species and tissues (Carraro 

et al., 2012; Forestan et al., 2012; Pattison and Catalá, 2012). Our results suggest a 

specific tissue and temporal -expression of both PIN and ABCB families and their 

involvement in the reduction of auxin levels and control of auxin homeostasis in grape 

berries. 

Taken together, these data suggest an important involvement in the control of grape berry 

development/ripening of genes that are related, on one hand to auxin signal transduction 

(ARF and AUX/IAA) and, on the other hand, to homeostasis of this hormone through the 

expression of genes involved in conjugation (GH3) and transport (PIN and ABCB). 

Analysis of the expression patterns of genes involved in auxin transport and metabolism 



120 

 

are an important first step to elucidate the control of auxin levels and gradients in the fruit, 

and are being performed in an increasing number of various fruit species (Ziliotto et al., 

2012; El-Sharkawy et al., 2010; Dal Cin et al., 2009; Kang et al., 2013). In addition to 

these mechanisms, miRNAs seems to be important in the control of fruit development and 

ripening and their role is currently emerging (Carra et al., 2011; Wang et al., 2012). An 

important role in the modulation of auxin-related genes after pre-véraison stage was 

indeed played by miR160 and miR167  which repressed VvARF16 and VvARF10, 

respectively, at véraison stage (Figure 10). The higher expression of miR160a/b-1, which 

corresponds to those considered in this word (figure 10A), during early and late stages of 

grape berry ripening was reported also by Wang et al. (2014), which showed an induction 

of this miRNA at young and mature berry of the table grapevine ‘Summer Black’. Despite 

what observed by Carra et al. (2009), which hypotized a role of only before grape 

ripening, we can speculate about its involvement also during the following phenological 

phases. As observed for miR160, also miR167a (Figure 10B) expression was induced 

during ripening, this should be related to its role in the repression of genes involved in 

growth and development, which were expressed in the pre-véraison phases (Liu et al., 

2012). Another important issue of transcriptional control mediated by miRNA, is related 

to their mobility. Indeed, in this study it was observed changes in conserved miRNA 

expression, together with the presence of novel miRNA genotype specific (data not 

showed), which is probably due to a production of these miRNA in the root zone and their 

transport to the aerial part. Long-distance 

transport of small interfering RNA and microRNA has been proven in several studies. For, 

example, Yoo et al. (2004) showed that small RNA corresponding to authentic regulatory 

RNAs (siRNA and miRNA) can enter and move through the phloem of several plant 

species. Furthermore, 

these authors identify a novel protein, Cucurbita maxima PHLOEM SMALL RNA 

BINDING PROTEIN1 (CmPSRP1), and show that it likely plays a role in trafficking of 

small RNA through 

the phloem. So, in both leaf and root development, miRNAs establish intercellular 

gradients of gene expression that are essential for cell and tissue differentiation 

(Gursanscky et al., 2011) but their translocation from the basal (root) to the aerial 
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(leaves/berries) part of the plant has still to be proven. It, therefore, remains a distinct 

possibility that proteins may facilitate or inhibit the movement of small RNAs not only 

from cell to cell, but to distal locations in plants via the phloem. 

In another paper, we observed that, after an NAA-treatment at the pre-véraison stage, 

Merlot grape berries counterbalanced the excessive availability of auxin controlling auxin 

homeostasis through the modulation of genes involved in biosynthesis, breakdown, 

conjugation and transport (Ziliotto et al., 2012). Data presented here confirmed that auxin 

level (in this case due to different scion/rootstock combination) can be a key factor in the 

onset and progression of grape berry ripening. The ability of rootstock to induce high 

auxin levels in scion buds was postulated Sorce et al. (2006) to explain the positive effect 

of vigorous peach rootstocks on scion branching. In the case of fruit ripening, auxin acted 

as a positive regulator of genes that control grape berry size (e.g. expansin-related genes) 

before the véraison stage; it was indeed observed the up-regulation at the pre-véraison 

stage, which was different for CS/M4 and CS/1103P, of transcripts that control auxin-

responsive genes (e.g. VvARF8A and VvARF1A). The induction of genes that belonged to 

ARF family was paralleled by the expression of transcripts that control auxin levels (e.g. 

VvGH3-1, VvIAA9, VvIAA15A, VvIAA16), highlighting an accurate regulation of auxin 

homeostasis in grape berries at these phases. Moreover, control of auxin levels in grape 

berry seems pass through other mechanisms involving the control of transport-related 

genes in early (e.g. ABCB) and late (PIN) phases of berry development (figure 9).  

Although several studies emphasize the function of auxin as a repressor of genes involved 

in the ripening process (Daminato et al., 2013; Sundberg and Ostergaard, 2009), a more 

complex role of auxin regulating this process is currently emerging from studies carried 

out both in climacteric fruit as peach (Tatsuki et al., 2013; Trainotti et al., 2007a) and in 

climacteric-suppressed fruit as plums (El-Sharkawy et al., 2010). These studies 

demonstrated that auxin can play an autonomous role in the ripening and, at the same 

time, to govern the ripening interacting with ethylene (Trainotti et al., 2007b). The 

interaction between auxin and ethylene in the controlling of ripening is supported by the 

ability of auxin treatment to restore a correct progression of ripening in fruit in which this 

event is partially impaired as in Stony-Hard peaches (Tatsuki et al., 2013) and on Shiro, a 
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suppressed climacteric plum (El-Sharkawy et al., 2010). These results suggest that a 

scarcity of auxin might negative affect the levels of autocatalytic ethylene production.  

In the case of grape, auxin treatment performed at véraison induced the expression of 

genes involved in the ethylene biosynthesis although the ripening progression was deeply 

delayed (Ziliotto et al, 2012). In this contest, auxin acted as negative regulators on some 

genes related to grape berry ripening  but its induction at the pre-véraison stage could be 

necessary to triggers other metabolism involved in ripening processes. Auxin seems to be 

accumulated rapidly and in higher levels in CS berries grafted onto the M4 genotype and 

high levels of ripening-related genes resulted in the early transition of the green fruit into 

the ripening stage as already observed in other fruit (El-Sharkawy et al., 2010; Pattison 

and Catalá, 2012; Trainotti et al., 2007b; Exposito-Rodriguez et al., 2011).  
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1. Introduction 

A large number of physiological and molecular events are known to occur during grape 

berry ripening, but the regulatory mechanisms controlling this critical developmental 

phase are still poorly understood. The onset of ripening (termed véraison) is accompanied 

by significant changes, at both physical (pulp firmness) and chemical (accumulation of 

sugars and flavor compounds, synthesis of anthocyanins and reduction of organic acids 

concentration) levels (Nunan et al., 1998; Robinson et al., 2000), concurrently with the 

modification of the transcription rate of a large number of related genes (Deluc et al., 

2007; Pilati et al., 2007). Auxin, ethylene, abscisic acid (ABA) and brassinosteroids (BRs) 

are actively involved, throughout a complex network of interactions with other mobile 

signals, in the regulation of grape berry ripening (Davies et al., 2009). Interestingly, the 

highest levels of auxin are observed at early berry development, then its concentration 

decreases rapidly before véraison, becoming undetectable after two weeks (Deytieux-

Belleau et al., 2007; Böttcher et al., 2010). 

On the other hand, another study showed no dramatic changes in auxin concentration 

during berry growth and development (Symons et al., 2006). Application of synthetic 

auxins before véraison delays ripening, as seen in several ripening related physiological 

processes (Davies et al., 1997; Böttcher et al., 2010a; Böttcher et al., 2010b), and heavily 

modifies the transcription of key genes involved in the sugars metabolism, cell wall turn-

over and biosynthesis of phenylpropanoids (Jeong et al., 2004). Among the latter, the 

expression of genes encoding chalcone synthase (CHS), flavanone  hydroxylase (F3H), 

UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), and MYB transcription factors 

(Davies et al., 1997; Davies et al., 2009;) is negatively affected by auxin. Davies et al. 

(1997) showed that treatments with the synthetic auxin BTOA (benzothiazole-2-oxyacetic 

acid) were able to modify the hexose accumulation mechanisms by altering the expression 

of the related genes. NAA applications at véraison also inhibited genes belonging to cell 

wall structure, such as GRIP4 coding for a proline-rich protein, and negatively affected 

ABA metabolism (Davies et al., 2009). Endogenous levels of ethylene, ABA and BRs 

increase at véraison, and exogenous applications of these hormones accelerate the 

initiation of the ripening phase, concurrently stimulating the accumulation of 

anthocyanins, most likely by enhancing the transcription of CHS, F3H, UFGT, and MYB1 
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genes (El-Kereamy et al., 2003; Jeong et al., 2004; Symons et al., 2006; Chervin et al., 

2008; Giribaldi et al., 2011). These treatments can also induce the uptake and storage of 

sugars by berries (Giribaldi et al., 2011). In addition, low doses of ethylene at véraison 

stimulated grape berry expansion, enabling cell elongation in pulp and skin, and inducing 

genes encoding aquaporins (AQUAPORIN1 and AQUAPORIN2) and cell wall 

hydrolase/esterase, such as Polygalacturonase (PG1) Expansin (EX), and Pectin-methyl 

esterase (PME) (Chervin et al., 2008; Sun et al., 2010). 

Since mutants with impaired ripening are not available in grapevine, the best alternative 

way to investigate the role of hormones during berry development consists in altering the 

specific process by means of exogenous applications of plant growth regulators. 

Transcriptome studies dealing with the effects of exogenous hormone treatments in 

grapevine have focused on ethylene (Chervin et al., 2008), referring to the pivotal role of 

this hormone in the transcriptional regulation of its biosynthesis and signal transduction 

during grape berry development. In particular, ethylene treatments were shown to induce 

the transcription of ARF8 (auxin response factor) and NCED (9-cisepoxycarotenoid 

dioxygenase) genes, the latter encoding a key enzyme of ABA biosynthesis (Chervin et 

al., 2008). Auxin treatments were also investigated, showing an increase in ethylene due 

to the stimulation of the expression of genes encoding its biosynthetic key enzymes (Chae 

et al., 2000; El-Sharkawy et al., 2008) and signal transduction elements (El-Sharkawy et 

al., 2009). 

In order to shed light on the hormone interactions occurring at véraison, a specific 

transcriptomic study was carried out on NAA treated berries. This study confirms the 

capacity of NAA to delay grape berry ripening at the transcriptional level. The duration of 

this delay may be associated with the recovery of a steady state of auxin concentration. In 

the presence of altered levels of auxin, the crosstalk between hormones involves diverse 

specific mechanisms, acting at both the hormone response and biosynthesis levels, thus 

creating a complex network of transcriptional responses. 
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2. Materials and methods 

2.1 Plant materials and treatment 

Experiments were performed on Vitis vinifera L. cv. Merlot berries collected at a 

commercial vineyard (Vini e vigne, Monselice PD, Italy). One-hundred bunches from fifty 

homogeneous plants (two bunches per plant) were treated in planta with a synthetic auxin 

(naphtalenacetic acid, NAA, 200 mg/L; SIGMA-N640) at the pre-véraison stage 

corresponding to fifty-three days after full bloom (DAFB), as suggested by Jeong et al. 

(2004). Whole berries from treated and untreated bunches were collected at 57, 60, 70, 95, 

and 110 DAFB (see Additional file 10), and either immediately used for biochemical 

analyses or frozen in liquid nitrogen and stored at -80°C for RNA isolation and 

transcriptomic evaluations. Because of a delayed ripening observed upon the treatment, 

additional samples were collected from NAA-treated bunches up to 160 DAFB. The 

sample at 148 DAFB was chosen ex post as being representative of the harvest date of 

treated berries, according not only to the Color Index for Red Grape (CIRG), but also to 

the biochemical parameters that were similar to the control samples at harvest (see Results 

section for a detailed description). At each time-point, three biological replicates were 

sampled for the biochemical analyses and two for transcriptomic assessments. Each 

replicate was collected from five to seven bunches and was made up of at least fifty 

berries chosen according to the CIRG index proposed by Carreño et al. (1995) at the same 

position within the cluster (median position). The juice from each replicate was used to 

assess the biochemical indicators (titratable acidity, pH, tartaric acid, malic acid, soluble 

solids) using a WineScan FT 120 multiple-parameter analyser (FOSS, Denmark), while 

anthocyanin content was determined as described by Mattivi et al. (2006). A colorimetric 

index was chosen since gene expression analyses in individual grape berries during 

ripening initiation revealed that pigmentation intensity could be assumed as a valid 

indicator of developmental staging within the cluster (Lund et al., 2008). 

 

2.2 RNA extraction, microarray analysis and quantitative real time 

PCR 

Total RNA for both microarray and real-time PCR experiments was extracted from whole 

berries stored at -80°C using the perchlorate method as reported by Rizzini et al. (2009). 
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Microarray experiments were carried out using the grape AROS V1.0 platform 

(http://www.operon.com), as described by Rizzini et al. (2009). The following samples 

were hybridized: NAA-treated berries at 60 DAFB versus untreated berries at 60 DAFB 

(N1/C1), NAA-treated berries at 110 DAFB versus untreated berries at 110 DAFB 

(N2/C2), and NAA-treated berries at 148 DAFB versus untreated berries at 110 DAFB 

(N3/C2). For each of the three comparisons, three slides were hybridized using targets 

corresponding to two biological replicates (at least one biological replicate was dye-

swapped, except for the N1/C1 comparison for which both replicates were dye-swapped 

and thus four slides were hybridized). Raw hybridization data were quality-filtered, 

background subtracted, and intra-array normalized with the loess method. The above 

calculations were all carried out with the package limma and other basic statistical 

functions of R for Mac OS X v2.13.1 (http://www.r-project.org/). The same package was 

also used for discovering differentially expressed genes by means of the linear modelling 

approach (lmFit) and the empirical Bayes statistics (eBayes), both implemented in limma 

(Smyth et al., 2004). All the experimental procedures comply with minimum information 

about a microarray experiment (MIAME) standards for array data (Brazma et al., 2001). 

Gene expression data have been submitted to Gene Expression Omnibus (GEO) 

(accession no. GSE37341) at NCBI (https://www.ncbi.nlm. nih.gov/geo/). For quantitative 

real-time PCR analysis (qPCR), cDNA was synthesized using 2 µg of total RNA, 2.5 µM 

(dT)18 primer, 200 Units of M-MLV Reverse Transcriptase (Promega) and 1 Unit of 

RNAguard (Amersham Biosciences), at 37°C for 90 minutes in a final volume of 20 µL. 

qPCR was carried out in triplicate, on two biological replicates for each sample, with 

StepOne Plus Real-Time PCR System (Applied Biosystems) by using specific primers 

listed in Additional file 11. The specificity of amplification was assessed as indicated by 

Botton et al. (2011). Data were acquired, elaborated, and exported with the StepOne 

Software version 2.1 (Applied Biosystems), whereas all the final calculations were carried 

out with the automated Excel spreadsheet Q-Gene designed by Simon (2003) using the 

modifications of the delta cycle threshold method suggested by Pfaffl (2001). Gene 

expression values were normalized to the housekeeping gene UbiCF (Ubiquitin 

Conjugating Factor; CF203457) already used by Castellarin et al. (2007) and reported as 

arbitrary units of mean normalized expression, using equation 2 of Q-Gene.  
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2.3 Microarray annotation and enrichment analysis 

The sequences of the oligos spotted onto the AROS V1.0 microarray were matched by 

means of the Blastn algorithm against the transcripts of the 12X genome assembly 

obtained at the CRIBI Centre of the University of Padova and publicly available at the 

website http:// genomes.cribi.unipd.it/. The Gene Ontology terms were retrieved, imported 

in the Blast2GO software v2.5.0 (Götz et al., 2008) and increased of about 16% by means 

of the Annex function (Myhre et al., 2006) as reported by Botton et al. (2008). Enrichment 

analysis was performed for each set of differentially expressed genes with the built-in 

Fisher’s exact test function with P ≤ 0.01 and FDR correction.  

 

2.4 HORMONOMETER analyses  

The HORMONOMETER tool (Volodarsky et al., 2009; http://genome.weizmann. 

ac.il/hormonometer/) was used by following the same pipeline adopted in peach by 

Bonghi et al. (2011). Since this bioinformatic tool accepts only Arabidopsis gene 

expression data, the probes spotted onto the grape microarray were matched against the 

12X genome assembly as reported above and, in turn, the genes predicted in the latter 

release were matched with those of Arabidopsis by blasting the respective protein 

sequences against each other (grape deduced proteins vs TAIR10 proteins). In this way, an 

association ‘array probe-grape gene-Arabidopsis gene’ was obtained, allowing to use as 

input data for HORMONOMETER the grape gene expression data coupled with the 

respective locus names and Affymetrix probe IDs of the putative Arabidopsis orthologs. 

In the case in which different grape genes matched a single Arabidopsis gene, their 

expression values were averaged and considered just once. In addition to the whole set of 

grape genes spotted onto the microarray, three subsets were submitted to 

HORMONOMETER: i) genes with hormone-specific responsiveness (i.e. that are not 

multiple targets of hormones), ii) hormone-responsive genes encoding transcription 

factors (TFs), and iii) genes encoding TFs with hormone-specific responsiveness (an 

intersection between the two previous groups). A short description of the basic principles 

of functioning of the HORMONOMETER tool is given by Bonghi et al. (2011). 
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3. Results 

3.1 Biochemical analyses 

Physical (berry volume) and chemical (total anthocyanins content, soluble solids 

concentration, titratable acidity) parameters were assessed in both control and NAA-

treated berries (Figure 1), in order to verify the actual efficacy of the treatment.  

Untreated berries showed an increase of volume after the time of the treatment (53 Days 

After Full Bloom, DAFB) until reaching a temporary lag phase (from 60 to 70 DAFB) 

during which this parameter did not vary significantly. Thereafter, it increased and 

reached its maximum at harvest (110 DAFB). The volume of NAAtreated berries showed 

a significant increase up to 70 DAFB, when their lag phase began. At this time, the 

volume of treated samples was about half that of the control. Moreover, the lag phase of 

NAA-treated berries was more than 50% longer (from 70 to 95 DAFB) with respect to the 

control. Thereafter, the volume increased, until reaching, at harvest (148 DAFB), a value 

similar to that observed in untreated samples (Figure 1A). 

Anthocyanins content of whole berries in control samples increased very rapidly up to five 

days following the lag phase, and then gradually decreased until harvest (110 DAFB). The 

accumulation of anthocyanins was significantly inhibited in NAA-treated berries to almost 

undetectable levels up to 80 DAFB. Thereafter, a constant increase was observed until 

harvest (148 DAFB), finally reaching a level similar to that measured in the control 

(Figure 1B). 

Soluble solids concentration (SSC) of control berries constantly increased throughout the 

whole experiment, especially during the lag phase of berry growth. NAA treatment 

showed an inhibitory effect also on this parameter, similar to that of anthocyanins. In fact, 

no increase of SSC was observed up to 80 DAFB, whereas a constant rise was measured 

thereafter, reaching at harvest the same values as the control (Figure 1C). 

In control berries, a constant decrease of titratable acidity, well correlated with both malic 

and tartaric acid degradation, was observed during ripening evolution. On the other hand, 

NAA-treated berries always showed significantly higher levels of total acidity than the 

control, except for samples at harvest, whose acidity was similar to that assessed in 

untreated samples. However, in treated berries a clear correlation was observed only 
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between titratable acidity and malic acid content. Additionally, a significant increase of 

tartaric acid was observed immediately after the NAA treatment (65 DAFB), followed by 

a constant but less rapid decrease compared to control fruit (Figure 1D). 

 

Figure 1. Biochemical analysis. Evolution of physical (berry volume) and chemical (anthocyanins content, 

solid soluble concentration, titratable acidity) parameters in control (circle) and NAA-treated (square) 

berries throughout fruit development. NAA treatment (arrow) was performed at 53 DAFB. Data concerning 

volume are the average of values obtained by fifty berries. Soluble solid concentration, tritatable acidity, 

malic acid, tartaric acid and anthocyanin contents are given by the average values of three biological 

replicates. Bars represent the SE. 

3.2 Differentially expressed genes and enrichment analysis 

Three comparisons were carried out by means of microarray experiments. The samples to 

be compared were chosen in order to achieve as much information as possible about the 

effect of the auxin treatment at the transcriptional level, its duration, and the implications 

in terms of physiological changes and technological relevance (see Additional file 1A and 

B). The first comparison was carried out between NAA-treated and control fruits at 60 

DAFB (N1/C1) in order to identify genes differentially expressed at 3 days after the auxin 

treatment, in correspondence with the onset of véraison in the control. The second 

comparison was made on NAA-treated and control berries at 110 DAFB (N2/C2) in 
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correspondence of the harvest of untreated berries, to point out the effects of the treatment 

on ripening evolution. The third comparison (N3/C2) highlighted transcriptional 

differences present in treated berries, which had biochemical and phenotypic parameters 

similar to the control at harvest. 

Among the three comparisons, genes with significant (P < 0.05) differential expression 

were 1,511 in N1/C1, 1,016 in N2/C2, and 1,136 in N3/C2 (see Additional file 2). Among 

the genes differentially expressed in N1/C1, N2/C2, and N3/C2, 239 (15.8%), 289 

(28.4%), and 74 (6.5%) genes, respectively, showed a fold-change variation of at least 2-

fold in terms of down- or up-regulation. It is noteworthy that treated samples at harvest 

(148 DAFB) showed an almost complete transcriptional recovery with respect to the 

control at 110 DAFB. 

Microarray data were validated by means of qPCR experiments performed on a subset of 

selected genes, revealing similar expression patterns as confirmed by the significant 

correlation (Pearson coefficient = 0.77; P = 0.0007) pointed out between them (see 

Additional file 3). 

In order to functionally classify the genes affected by the auxin treatment, Gene Ontology 

(GO) term enrichment analysis was performed, as described by Blüthgen et al. (2004) and 

Botton et al. (2008), in each of the three comparisons against the whole array background. 

A complete list of the enriched GO terms resulted from Fisher’s exact test can be found in 

Additional file 4, Additional file 5 and Additional file 6. In the first comparison (N1/C1), 

no significant enrichment was found when a Q < 0.05 was considered as a threshold value, 

although GO terms related to protein synthesis (ribonucleoprotein complex, translation, 

ribosome, ribonucleoprotein complex biogenesis, ribosome biogenesis, structural 

constituent of ribosome) were significantly over-represented (P < 0.01). It is noteworthy 

that also the terms “protein transport” and “establishment of protein localization” were 

those with a higher significance and shown to be under-represented. At the second 

comparison (N2/C2), few terms showed a significant Q. However, considering the P < 

0.01, terms related to the cell wall (external encapsulating structure organization, cellular 

cell wall organization or biogenesis) appeared to be overrepresented (Additional file 5). In 

the last comparison (N3/C2), GO terms related to development (developmental process, 

anatomical structure development, multicellular organismal development) were 
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significantly over-represented with Q < 0.05. It is worthy to note that among the terms 

with a significant P value, particularly enriched are those related to 1,3-β–glucan (1,3-

beta-glucan biosynthetic process, beta-glucan metabolic process, betaglucan biosynthetic 

process, 1,3-beta-glucan metabolic process, 1,3-beta-glucan synthase activity, 1,3-beta-

glucan synthase complex). Among the hormone-related terms, the “jasmonic acid 

mediated signaling pathway” was overrepresented. 

3.3 MapMan analysis 

To investigate the main metabolic pathways affected by the NAA treatment, a MapMan 

analysis (Thimm et al., 2004) was performed on N1/C1 comparison based upon 

differentially expressed genes chosen according to P < 0.084, which was shown to be an 

acceptable threshold according to array validation analyses carried out with qPCR. This 

specific threshold was chosen in order to enlarge the number of genes to be used as input 

data for the Map- Man software. 

 

Figure 2. MapMan analysis. MapMan visualization of differences in expression of genes involved in 

metabolic processes. Classification into bin categories were done by using a mapping file of the grape 



141 

 

AROS V1.0 platform (http://mapman.gabipd.org/web). Heat maps show genes with statistically significant 

(P value < 0.084) differential expression identified by comparing NAA-treated and control berries at 60 

DAFB (N1/C1). A conventional red-to-green scale was used to indicate up-regulation (red) or down-

regulation (green). 

 

MapMan pointed out that several metabolisms were down-regulated in NAA-treated 

berries, such as those involving cell wall metabolism, carbohydrates, lipids, secondary 

metabolites, and amino acids, with the only exception of the light reactions pathway that 

showed a general up-regulation (Figure 2). 

The cell wall and secondary metabolism bin categories, which were linked to the above 

described biochemical parameters, were investigated. The cell wall category included 

genes coding for pectin methyl esterase, endo- transglycosylase, polygalacturonase, and 

expansin-like protein (Figure 2), whereas the secondary metabolism included genes 

encoding alcohol dehydrogenase, phenylalanine ammonium lyase (phenylpropanoids and 

phenolics pathway) and chalcone synthase (flavonoid pathway). Within this secondary 

metabolism category, genes coding for ß-carotene hydroxylase (terpenes pathway) and 

cynnamoyl-CoA reductase (flavonoid pathway) showed an up-regulation in NAA-treated 

berries (Figure 2). Expression patterns of key genes involved in cell expansion and 

phenylpropanoids pathway were validated in qPCR experiments carried out in all samples 

(see Additional file 7). This validation analysis pointed out that the expression profiles of 

selected genes (anthocyanins: CHS1, Vv_10010748; CHS3, Vv_10004167; F3H, 

Vv_10003855; UFGT, Vv_10004481, MYB31, Vv17s0000g06190 and MYB4, 

Vv4s0023g03710; cell wall metabolism: PG1, Vv_10003791, and EX1, Vv_10000426; 

water uptake: TIP;2-like, Vv_10003817 and AQUA1, Vv_10003711), paralleled the 

kinetics of anthocyanins content and berry volume (Figure 1), showing an early inhibitory 

effect of the auxin treatment, followed by a recovery at harvest, when the treated samples 

showed transcripts levels similar to the control. 

A detailed list of genes with the respective bin codes belonging to each MapMan category 

is reported in Additional file 8. 

 



142 

 

3.4 HORMONOMETER analysis 

To understand the hormone-related transcriptional response of the berry to the auxin 

treatment, a HORMONOMETER analysis was carried out relying upon putative hormone 

indexes whose transcript levels were measured by means of the microarray. This tool 

allows to describe, in terms of correlation (or anti-correlation), the similarity (or 

dissimilarity) between a query transcriptional response and a transcriptional response 

typically assessed upon a certain hormone treatment as defined by known hormone 

indexes in Arabidopsis. Separate runs of this tool were carried out with different subsets 

of genes as input, as performed by Bonghi et al. (2011). The subsets are: i) all the 

hormone indexes (H), ii) genes with hormone-specific responsiveness (sRG), iii) 

hormone-responsive genes encoding TFs (TFs), and iv) genes encoding TFs with 

hormone-specific responsiveness (sTFs). Along with this analysis, mean log ratios 

(weighted according to the P level of significance) of genes belonging to biosynthesis 

(BS), metabolism (MET), transport (TR), perception (PER), signal transduction (ST) and 

hormone-responsiveness (HR) categories were calculated for each of the eight hormones 

considered by the HORMONOMETER. The categorization was made according to the 

Arabidopsis Hormone Database 2.0 (AHD) web site (http://ahd.cbi. pku.edu.cn/). Both 

analyses were carried out in the three comparisons made with microarrays and the 

resulting heat maps were focused on hormones involved in grape berry ripening with a 

primary role (i.e. auxin, ethylene, abscisic acid and brassinosteroids) (Figure 3). 

The proportion of hormone responsive genes in Arabidopsis ranges between 3.8 and 9.4% 

of the whole transcriptome (TAIR 10 version; 27,416 genes) according to the hormone 

considered, whereas in grape the percentage ranges between 5.5 and 10.1% of the whole 

gene set (12X genome assembly, see Materials and Methods section). As far as the grape 

microarray is concerned (14,562 genes), the proportion of hormone responsive genes are 

similar to that of Arabidopsis, ranging from 4.3 to 8.9% with values for each hormone 

comparable to those calculated for Arabidopsis (See Additional file 9). A minimal bias 

may therefore be assumed to exist when grape expression data are used as input for 

HORMONOMETER, as hypothesized in a recent work on peach (Bonghi et al., 2011). 
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Figure 3. HORMONOMETER. Heat maps showing the expression of AHD subcategories (top) and the 

HORMONOMETER results (down). A. The heat map was produced by considering the genes encoding 

elements of hormone biosynthesis (BS), metabolism (MET), transport (TR), perception (PER), signal 

transduction (ST), and response (HR), for auxin (AUX), ethylene (C2H4), abscisic acid (ABA) and 

brassinosteroids (BR), which are the hormone primarily involved in grape berry ripening. 

HORMONOMETER data were grouped into hormone-responsive genes (H), genes with hormone-specific 

responsiveness (sRG), hormone-responsive genes encoding TFs (TFs), and genes encoding TFs with 

hormone-specific responsiveness (sTFs). For each hormone, the following comparisons have been analyzed: 

N1/C1, N2/C2, and N3/C2. See the Materials and Methods section for a detailed description. B. Colour 

codes for the two heat maps. For the AHD subcategories, red and green represent up- and down-regulation, 

respectively. In the HORMONOMETER, orange (value = 1), white (value = 0), and blue (value = -1) 

indicate a complete correlation, no correlation, or anti-correlation, respectively, in terms of direction and 

intensity of the hormone index with the queried experiment.  

 

Within the AHD subcategories related to auxin, significant variations in genes encoding 

TR and ST elements were observed. In the first comparison (N1/C1), the auxin treatment 

repressed the transport of the hormone, at least at the transcriptional level, along with the 

significant up-regulation of its ST elements. The other AHD subcategories did not show 

any significant variations. These data were paralleled by a substantial correlation in the 

HORMONOMETER results, more significant when only the TFs were considered in the 

analysis, especially the auxin-specific ones (sTFs). The second comparison (N2/C2) 

reflected a situation typical of an auxin related transcriptional response. The AHD 

subcategories indicated that the BS elements were slightly repressed and that both the TR- 
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and ST-related genes were significantly up-regulated. This may be interpreted as a typical 

homeostatic response, confirmed by the HORMONOMETER results, which indicated a 

general unspecific correlation between auxin target expression and the typical auxinrelated 

transcriptional response. In the last comparison (N3/C2), the AHD categories were very 

stable and the HORMONOMETER analysis still pointed out an active transcriptional 

response to auxin, with a significant correlation for the TFs and sTFs subsets, suggesting 

that the response to the hormone may have involved mainly auxin specific transcription 

factors. 

As concerns ethylene, interesting data were observed regarding both the AHD 

subcategories and the HORMONOMETER results. As far as the biosynthetic genes are 

concerned, a strong up-regulation was found in the second comparison (N2/C2), whereas 

data in the other two cases were less significant. The ST-related transcription showed a 

significant variation in all comparisons, being stimulated in the first and second (N1/ C1 

and N2/C2, respectively), and repressed in the third (N3/C2). Significant variations were 

observed also in the HR genes, which were down-regulated in all cases except the N3/C2 

comparison. The HORMONOMETER analysis showed a strong and broad anti-

correlation in all situations when all genes and the ethylene-specific ones (sRG) were 

considered. An almost reversed situation was observed in the other subsets (TFs and 

sTFs), except for the first comparison (N1/C1) that still showed an anti-correlation and no 

correlation, for TFs and sTFs, respectively. In N2/C2, a stronger correlation was found for 

sTFs than for TFs, whereas in the third comparison no correlation was found for the 

hormone-specific TFs. 

Genes coding for BS elements of abscisic acid (ABA), were down-regulated at N1/C1 

comparison, while in the N2/C2 comparison they were up-regulated. A weak 

transcriptional repression was found for genes encoding PER elements in the first 

comparisons, although with low significance. A stimulation of transcription was found in 

ST-related genes that paralleled that of BS. The HORMONOMETER showed a general 

correlation in all subsets and all situations, without, however, any ABA-specificity.  

The brassinosteroids category showed significant data in both the analyses (AHD 

subcategories and HORMONOMETER). BS-related genes varied significantly in all three 

comparisons, with a down-regulation trend in all cases. Slight, but not significant, 
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variations were also observed with respect to the genes encoding MET elements. A down-

regulation was reported for genes coding for PER elements in the third comparison 

(N3/C2). Genes related to ST were down-regulated in N1/C1 and clearly up-regulated in 

all the other cases. Finally, the HORMONOMETER analysis evidenced an extensive anti-

correlation, with the only exceptions of all TFs and sTFs in the second and third 

comparisons, respectively. In particular, the latter case pointed out a significant 

correlation. 

3.5 Expression of auxin-, ethylene-, and abscisic acid related genes 

Expression patterns of selected auxin-, ethylene-, and ABA-related genes were validated 

by qPCR experiments. As far as the former genes are concerned (Figure 4), the NAA 

treatment negatively affected the expression of Tryptophan Synthase beta-subunit 1 

(TRYPS-like, Figure 4A), a gene involved in the biosynthesis of tryptophan, an auxin 

precursor. The treatment also induced the accumulation, up to 95 DAFB, of transcripts of 

genes responsible for auxin perception (Transport inhibitor response 1, TIR1-like; Figure 

4B), polar transport (PIN3-like; Figure 4C) and irreversible conjugation (Indole-3-acetic 

acid amido synthetase, GH3-like; Figure 4D). Concerning the signal transduction, two 

AUX/ IAA genes (IAA4-like and IAA31-like; Figure 4E and F) and Auxin response 

factor 8 (ARF8-like; Figure 4G) were upregulated in treated berries one week after NAA 

application (60 DAFB), whereas later on and up to harvest the accumulation of their 

transcripts was higher in control berries. 

ACC synthase (ACS6) and ACC oxidase (ACO2) genes, encoding the key enzymes of 

ethylene biosynthesis, were strongly up-regulated in treated berries during véraison 

(Figure 5A and B). Two genes encoding ethylene receptors, i.e. Ethylene insensitive 4 

(EIN4-like) and Ethylene response sensor 1 (ERS1-like), had similar expression levels in 

both control and NAA-treated fruits until the inception of ripening in the control (60 

DAFB), when a significant increase was registered earlier in untreated berries than NAA-

treated ones (Figure 5C and D). Three Ethylene response factors genes (ERF3-like, ERF-

AP2-like and ERF5-1), involved in the regulation of ethylene response, were all positively 

affected by the NAA treatment, although with different timings (Figure 5E, F and G). 

Since the HORMONOMETER analysis showed some significant variations also in the 

expression of abscisic acid (ABA) targets, two ABA-related genes were also investigated. 
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The 9-cis-epoxycarotenoid dioxygenase3 (NCED3), which is a key gene involved in ABA 

biosynthesis, was significantly down-regulated in NAA-treated samples one week after 

the treatment (60 DAFB) (Figure 5H) and Abscisic acid insensitive 3 (ABI3), involved in 

ABA perception, was down-regulated in NAA-treated berries up to 95 DAFB. Thereafter, 

its mRNA levels in NAA-treated samples reached those observed in untreated samples 

(Figure 5I). 

 

Figure 4. Expression pattern, evaluated by qPCR, of genes involved in auxin biosynthesis, conjugation, 

transport and signal transduction. Expression pattern, evaluated by qPCR, of the following auxin-related 

genes: TRYPS-like (Vv_1007514, A), TIR1-like (Vv_10005087, B), PIN3-like (Vv_10007217, C), GH3-

like (Vv_10007966, D), IAA4-like (Vv_10002615, E), IAA31-like (Vv_10000794, F), ARF8-like 
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(Vv_10003009, G). Transcript levels in NAA-treated (square) and control (circle) berries are shown as 

means of normalized expression ±SE. 

 

 

Figure 5. Expression pattern, evaluated by qPCR, of genes involved in ethylene and ABA biosynthesis and 

signal transduction. Expression pattern, evaluated by qPCR, of the following ethylene- and ABA-related 
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genes: ACS6 (Vv_10001614), ACO2 (Vv_10004370), EIN4-like (Vv_10010357), ERS1-like 

(Vv_10007917), ERF3-like (Vv_10001775), ERF-AP2-like (Vv_10000332), ERF5-1 (Vv_10001287), 

NCED3 (Vv_10009127), ABI3 (Vv_10001065). Transcript levels in NAA-treated (square) and control 

(circle) berries are shown as means of normalized expression ±SE. 
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4. Discussion 

A ripening delay caused by the application of auxins has been previously recorded both in 

climacteric and nonclimacteric fruits (Cohen et al., 1996; Davies et al., 1997). In 

grapevine, a ripening delay induced by the application of natural or synthetic auxins, 

including NAA, to berries before véraison was observed in a large range of cultivars 

(Jeong et al., 2004; Detyeux-Belleau et al., 2007). Results presented in this study 

confirmed that NAA, applied at the prevéraison stage, strongly delays ripening inception 

in cv. Merlot (Figure 1). All the parameters used to monitor the ripening progression (in 

particular berry volume, SSC, and titratable acidity), with the exception of the initial delay 

occurring in the treated berries, showed overlapping kinetics in both treated and untreated 

fruit. These data suggest that the auxin treatment caused just a shift in the initiation of 

ripening, as already hypothesized by Böttcher et al. (2010). This observation is also 

confirmed by the microarray data analysis, which showed a decreasing number of 

differentially expressed genes throughout the experiment (see Additional file 2). At the 

véraison of control fruit (60 DAFB), MapMan analysis clearly shows that NAA 

application down-regulated genes involved in cell expansion (cell wall metabolism and 

water uptake) and secondary metabolism, in particular those responsible for flavonoids 

biosynthesis (Figure 2), consistently with the biochemical analyses. This repressive effect 

remained well evident up to 110 DAFB, whereas a partial recovery was observed 

thereafter, as already reported by Davies et al. (1997) and Jeong et al. (2004). At harvest 

of NAA-treated berries (148 DAFB), the transcription level of genes involved in the 

flavonoids biosynthetic pathway was still enhanced with respect to the control fruit at 

harvest, while a full recovery was observed for those involved in cell wall metabolism and 

water uptake (see Additional file 7). These observations show that NAA is more effective 

in counteracting the accumulation of flavonoids rather than berry expansion, as 

demonstrated by Böttcher et al. (2011). 

Both in control and treated fruits there is a clear coordination of the transcriptional 

regulation of genes determining cell expansion (i.e. EX1 and PG1) and turgor (i.e. Pip1), 

in agreement with the model for cell expansion proposed by Cosgrove (1997), especially 

during the early post-treatment phases and up to 95 DAFB. During this phase, the NAA 

treatment clearly repressed the genes involved in both processes, which was consistent 
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with the berry volume measures and thus reflecting an almost exclusive transcriptional 

control of berry expansion. An inversion of this trend and a complete recovery to the 

levels of the control was observed thereafter (after 95 DAFB), although not correlated 

with the faster volume increase occurring in treated berries to reach a final volume at 

harvest equal to that of the control fruits. This may be due to different mechanisms 

controlling berry expansion other than the auxin-controlled transcription, most likely at 

posttranscriptional level, as previously demonstrated for aquaporins whose gating 

behaviour can be affected by phosphorylation, heteromerization, pH, Ca2+, pressure, 

solute gradients and temperature (Chaumont et al. 2005). Regulation of aquaporin 

trafficking may also represent a way to modulate membrane water permeability. Taken 

together, these data indicate that the berry expansion process is under the control of 

multiple regulatory pathways, involved according to a well-defined developmentally- 

programmed chronological sequence. 

To shed light on the role of auxin and its cross-talk with other hormones in the regulation 

of berry ripening, a specific analysis was carried out on hormone-related genes by using 

the HORMONOMETER bioinformatic platform (Volodarsky et al., 2009). This was 

paralleled by a merged analysis of specific gene categories (i.e. the AHD categories). This 

approach allowed to set up a hypothetical model describing what happened in terms of 

auxin-related response after the NAA treatment (Figure 4). The application of NAA 

caused an excessive availability of auxin, most likely counterbalanced by homeostatic 

mechanisms involving synthesis, breakdown, conjugation and transport (Perrot-

Rechenmann and Napier, 2005; Woodward and Bartel, 2005). However, at 60 DAFB 

auxin biosynthesis and metabolism gene categories did not differ significantly between 

control and treated samples, transport was generally repressed, and an auxin-specific 

transcriptional response was seen along with a general activation of signal transduction 

elements. Therefore, it is likely that the homeostatic mechanisms had already been 

activated within the first 7 days after the treatment. This hypothesis is supported by qPCR 

expression data, especially those related to GH3-like, IAA4-like, and IAA31- like genes 

(Figure 5D, E, F). In NAA-treated berries at 57 DAFB, the first of these three auxin-

related genes was expressed 6-fold higher compared to the control, then its expression 

decreased to just 2.5-fold at 60 DAFB, followed by a constantly decreasing trend leading 
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to the same levels measured in the control at 95 DAFB. GH3 (Gretchen Hagen 3) genes, 

specifically those belonging to group II (Staswick et al., 2005), encode enzymes that 

conjugate IAA to amino acids. Interestingly, it has been recently shown that GH3.1 plays 

a role in the formation of IAAAspartate at the onset of grape berry ripening, and it 

positively responds to the combined application of ABA and sucrose, and to ethylene, 

linking it to the control of ripening processes (Böttcher et al., 2011). Nevertheless, both 

the IAA genes showed well-correlated diverging trends from 57 up to 60 DAFB, with the 

highest differences pointed out in the latter time point, coinciding also with the highest 

level of their expression in NAA-treated berries. Also the ARF8-like gene showed the 

largest divergence at 60 DAFB and the HORMONOMETER data indicate a very active 

transcriptional control compatible with an auxinspecific response. The expression patterns 

of these four genes along with the HORMONOMETER data and the overall physiological 

response indicate that biologically active concentrations of auxin were achieved 

throughout a homeostatic recovery occurring within 7 days after the treatment, during 

which the physiological response is mainly unspecific and due to a likely pharmacological 

effect of NAA. During this period, conjugation and transport may contribute to a decrease 

in the auxin levels, leading to the same range of concentration that can be found before 

ripening inception, thus generating a developmental block. This block is most likely 

mediated by a primary auxin signaling, whose main players include the IAAs and the 

ARFs, as their expression patterns indicate. At 110 DAFB, an overall repression of 

biosynthetic genes along with a stimulation of those coding for TR and ST elements was 

observed in NAA-treated samples. 

The HORMONOMETER indicates the activation of specific gene targets that were not 

auxin-specific, although they were compatible with still biologically active auxin levels. 

In this phase, a likely secondary homeostatic response was occurring, mainly at the level 

of biosynthesis as shown by the repression of upstream auxin BS genes such as TRYPS-

like. The primary transcriptional response achieved within 110 DAFB triggered the 

recovery cascade that was active also thereafter, as demonstrated by biochemical 

parameters. However, at this stage the biological meaning of the homeostatic recovery is 

different from that occurring before 60 DAFB. It is likely that the early homeostatic 

reaction was just aimed at detoxifying from high auxin concentrations, whereas that 



152 

 

occurring at 110 DAFB was a symptom of a normal ripening progression resembling the 

natural ripening inception during which auxin levels were shown to decrease (Böttcher et 

al., 2011). Some auxin-specific targets, mainly TF encoding, were shown to be active up 

to 148 DAFB, most likely triggering the transcriptional regulation of genes, such as CHS1 

and F3H that were shown to be down-regulated (see Additional file 7, A and C). At this 

stage, however, the overall transcriptional response was scarce since berry ripening was 

definitely accomplished, as shown by the physiological and biochemical parameters. 

Fluctuations in auxin levels and response were shown to be correlated with ripening 

progression and a possible mechanism was hypothesized to explain how the berry reacts 

to the NAA treatment, but how does auxin action link to other hormones, such as ethylene, 

ABA, and brassinosteroids, that are known to regulate the same developmental processes? 

The HORMONOMETER analysis may help to explain this aspect, especially considering 

the first comparison (N1/C1), in which the existence of a strong antagonistic effect 

between auxin and ethylene and, to a lesser extent, a substantial ‘synergism’ between 

auxin and ABA were shown. Both these aspects were quite marked for both the whole 

subset of transcriptional indexes (H) and the specific ones (sRG). The transient positive 

effect of NAA on the transcription of ACS6 and ACO2 genes (Figure 5A and B), already 

measured in other fruits (Barry et al., 2000; Trainotti et al., 2007; El-Sharkawy et al., 

2008), may be interpreted as a part of the secondary homeostatic reaction to the auxin 

treatment, as described above. As such, the transient increase of ethylene biosynthesis 

specifically induced by biologically active auxin concentrations would counteract the 

excess of auxin by activating downstream mechanisms, in this case related to the 

biosynthesis of the hormone (i.e. the TRYPS gene), thus releasing the berry from the 

developmental block. 

According to the Arabidopsis model of ethylene signaling, reduced expression and activity 

of receptors increase sensitivity to ethylene, whereas increased receptor expression and 

activity decrease sensitivity (Lin et al., 2009). It is also known that ethylene receptors act 

in cooperation, according to mutual, but often unique roles, thus differentially regulating 

ethylene responses and giving diverse outputs according to the receptor complex 

combination (Liu et al., 2012). Furthermore, in Arabidopsis, EIN4 was shown to have a 

unique role in ethylene signaling (Hua et al., 1998; Cancel et al., 2002) and a synergistic 
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effect on ers1 function, as it is required to maintain ethylene insensitivity in an ers1 

background (Liu et al., 2012). Taking into account these data, a relevant role during grape 

berry ripening may be played by the putative AtEIN4 orthologue, as the corresponding 

gene was expressed in a ripening-dependent manner, with increasing levels after véraison, 

measured both in the control and NAA-treated samples (Figure 5C). Also an ERS1-like 

gene showed similar expression patterns, although shifted ahead (Figure 5D). Similar 

transcriptional behaviors were reported also by Deluc et al. (2007) and Chervin and Deluc 

(2010) along with a peak of ethylene biosynthesis, and may be consistent with a higher 

sensitivity to the hormone at véraison (delayed by the auxin treatment), which decreases 

thereafter throughout ripening. 

The effect of auxin on genes involved in ethylene response was very weak, as seen in both 

the AHD and the HORMONOMETER analyses (Figure 3), with the exception of an 

ERF5-1 gene, which was significantly up-regulated at 60 DAFB (Figure 5G). A 

significant correlation was observed between the expression patterns of this gene and 

ACS6, leading to the hypothesis that ERF5-1 may mediate the auxin-induced up-

regulation of ethylene biosynthetic genes in grape. This hypothesis is currently being 

investigated with dedicated experimental trials in order to shed light on the crosstalk 

between these two hormones, which is crucial for grape berry development and ripening. 

Although the NAA treatment caused a general stimulation of ethylene biosynthesis and 

action, a negative effect on the transcription of genes involved in flavonoids biosynthesis, 

cell wall metabolism and water uptake, previously shown to be ethylene-related (El-

Kereamy et al., 2003; Chervin et al., 2008), was observed. Several studies have examined 

the interactions between auxin and ethylene at the transcriptional level and different 

models were proposed (Stepanova et al., 2007; Lewis et al., 2011; Muday et al., 2012). 

Taking into account this information, the effect of NAA may have bypassed the primary 

level of crosstalk between the two hormones, resulting into the activation of only some 

targets in common with ethylene that may belong to the secondary crosstalk. Consistent 

with this possibility, the upstream regulatory regions of many genes induced by auxin and 

ethylene were shown to contain putative auxin response element (AuxRE) and ethylene 

response element (ERE) sequences, which are sites for ARF and EIN3/EIL binding, 

respectively (Lewis et al., 2011). Future studies should specifically address this aspect. 
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The existence of a synergism between auxin and ABA was unexpected taking into account 

the opposite roles previously claimed for these hormones in the regulation of grape berry 

ripening (Davies et al., 2009). These data, however, may indicate that the 

HORMOMETER analysis is able to reveal a previously unappreciated selectivity of auxin 

towards the regulation of ABA-related processes, as already reported by Volodarsky et al. 

(2009) for salicylic acid and auxin. In fact, data presented here pointed out that auxin 

down-regulated the genes involved in ABA biosynthesis (Figure 5H), while the signal 

transduction pathway elements were substantially unaffected or stimulated (see Additional 

file 2). These ambiguous outcomes were already pointed out in previous studies revealing 

that ABA and auxin signaling pathways belong to a very complex regulatory network with 

unexpected features (Nemhauser et al., 2006). 
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5. Conclusions 

Taking into account the available data concerning the hormonal regulation of the ripening 

syndrome in grape and tomato, a putative model was herein assembled to better 

understand the hormonal cross-talk occurring during our experiments (Figure 6).  

 

Figure 6. Hypothetical model summarizing the interactions occurring between the hormones mainly 

involved in the regulation of ripening inception and progression. A. Brassinosteroids and ethylene may 

trigger the first molecular events associated with ripening inception, with the latter hormone involved in the 

developmental shift preceding véraison. Ethylene would also negatively regulate auxin action by repressing 

its biosynthesis and trigger ABA-related genes in order to enable the progression of ripening-associated 

biochemical changes. A direct positive effect of ethylene on ripening may also be postulated based upon 

available data. Conventional symbols are used to describe positive and negative interactions. The thickness 

of the lines indicates the preferential ways of interactions determining ripening inception and progression, 

whereas dotted lines indicate possible feedback interactions. Interactions occurring between auxin and ABA 

are complex and still under investigation. B. Hypothetical model explaining auxin-related events occurring 

upon the NAA treatment (+NAA). This model was assembled based upon the expression of auxin-related 

genes. The yellow-shaded area indicates a likely range of auxin concentration compatible with its biological 

activity. Three main responsive phases were identified according to this model: phase I (53-60 DAFB), 

during which the berry displays a primary homeostatic response most likely due to an unspecific 

pharmacological reaction; phase II (60-70 DAFB), during which a biologically active concentration of auxin 

is recovered and a secondary homeostatic response is triggered, and phase III (70-148 DAFB), in which a 

normal ripening progression is observed. 
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According to this working model, which is currently being validated, brassinosteroids 

(BR) may start the cascade of events leading to ripening by increasing ethylene levels, as 

reported in tomato (Vardhini et al., 2002). It is known that a dramatic increase in 

endogenous BR levels occurs at the onset of fruit ripening in grape (Symons et al., 2006) 

and that also an ethylene peak is measurable just before véraison (Chervin et al., 2004). 

Moreover, ethylene seems to repress BR-regulated genes once ripening is triggered 

(Tonutti et al., unpublished data), thus indicating a possible feedback mechanism allowing 

a time progression of the syndrome through the coordination of the downstream events. 

According to this view, ethylene may play a central role in ripening inception. On one 

hand, it acts independently and directly on the activation of ripening-associated processes, 

such as those related to cell wall modifications (Chervin et al., 2008), and on the other 

hand it cooperates with ABA to indirectly trigger several biochemical changes associated 

with ripening, such as berry coloration (El-Kereamy et al., 2003; Sun et al., 2010). It also 

represses auxin biosynthesis, thus releasing the berry from the developmental block 

exerted by this hormone (Böttcher et al., 2010). When the NAA treatment was performed, 

the berry was most likely undergoing this developmental shift controlled by ethylene, 

which was still reversible. Therefore, the transient increase in auxin levels imposed by the 

exogenous treatment caused a reversion by counterbalancing the developmental control 

exerted by ethylene, thus leading the berry back to the pre-véraison stage with a 

consequent delay of the ripening progression. 
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Chapter V – General conclusions 

Viticulture and wine producing are important practices for the economy of several 

countries in Europe, and also in others continents. Despite its importance, global wine 

production decreased 6% in 2012 to 252 million hectolitres (Figure 1; Organization of 

Vine and Wine, OIV, 2013). 

 

 

Figure 1. Global wine production 2000-2012, source OIV 

 

This was partially due to a lower harvest in Europe during lasts years but also a longer 

term trend. France, Italy, and Spain are still the biggest producers, while it is worth 

noticing that China, Chile, and New Zealand recorded the largest increases in production 

over the last years. In spite of the downward trend in vine surface area, grape production 

underwent an upward trend over the last few years (Fraga et al., 2012). 

Viticulture and winemaking are influenced by a large number of factors, among which 

climate, soils, and grown varieties/genotypes are the most important (Fraga et al., 2012). 

Climate is a key factor in the present viticulture (Figure 2). Grapevine physiological 

change, together with grape berry development and ripening, are high related to the clime. 

As showed in Figure 2, the inception and the duration of each phenological stages is 

mostly related to environmental conditions (Jones and Davis, 2000). 
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Figure 2. Vegetative and reproductive cycles and vine phenological stages. Modified from Fraga et al. 

(2013) 

 

The duration of the growing season of a particular cultivar is affected, together with the 

climate which strongly influences the development of this crop and the yield and wine 

quality, also by the combination of these factors: soil moisture, air temperature, and crop-

management practices (Webb et al., 2012). Within this context, climate changes is the 

most important factor in which the viticulture have to cope with (Hannah et al., 2013). As 

described in the first chapter of this thesis, breeding of new grapevine genotypes, which 

can better deal with the environmental changes, is essential for Italian and European 

viticulture. Indeed, development of new grapevine rootstocks with an higher tolerance to 

environmental stresses, drought in particular, should be a successful strategy to overcome 

climate limitations (Hannah et al., 2013) and maintain the traditional Mediterranean 

grapevine growing area. This strategy have several advantages compared to the breeding 

programs associate to grape cultivar, mainly related to the handiness to confer desired 

carachteristic (e.g. drought tolerance) to the vine. Taking into account results presented in 

this thesis and in another work (Meggio et al., IN PRESS), M4 rootstock well comply 

with this requisite. Indeed it showed an higher resistance to drought in comparison to 

101.14 susceptible genotype, acting different strategies related to the regulation of 

different metabolism and pathways (e.g. plant hormones, sugars, flavonoids and 
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stilbenes). In addition to their capability to overcome climate limitations, grapevine 

rootstocks greatly influenced grapevine reproductive performances (Koundouras et al., 

2008; Kidman et al., 2013) fruit development, ripening and quality (Walker et al., 2002, 

2004). So, together with the induction of an higher tolerance to environmental disturbance 

to the scion, viticulture need new rootstocks which did not alter quality of grape berry and 

wine or, better, which increase their qualitative characteristics. 

The second part of this thesis showed that M4, in addition to the higher tolerance to 

drought, did not significantly alter grape berry quality of Cabernet sauvignon cultivar. 

Indeed, it was showed that it cause an advance in the onset of ripening in comparison to 

the 1103P rootstock, which is a more vigorous rootstock (Gambetta et al., 2012). Within 

this background, M4 not only enhance water stress tolerance, but also positively 

influenced grape berry development and ripening throughout the control of different 

metabolism, among which auxins seem to play a pivotal role.  

So, considering new scenario for the European and Italian vine growing and the climate 

changes which can alter quality of grape berries and wine on a global scale, development 

of new rootstocks with desirable traits, together with those belonging to the “M series”, it 

will be one of the main goal of the future viticulture. 
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1. Introduction 

At ripening Raboso Piave grape berries have high acidity level and an unbalanced 

polyphenols profile, in which condensed tannin precursors (e.g. catechin) are prominent 

(De Rosso et al., 2009). These two features cause the austere aroma (De Rosso et al., 

2010; Mattivi et al., 2006), which is the main contributor in the sensory profile of the 

Raboso Piave wine. 

To alter the composition of the berries, and consequently improve wine quality, viticulture 

strategies can be adopted based on a delay of traditional harvest (TH) using Late Harvest 

(LH) or withering carried out both on- or off-plant. LH produces significant changes in 

wine composition by inducing levels of proline, sugar, alcohol and total acid content in the 

decanted must and base wine (Guillaumie et al., 2011). Off-plant withering causes the 

accumulation of abscisic acid (ABA) and proline, as well as an increase in alcohol 

dehydrogenase (ADH) and lipoxygenase enzyme activity (Costantini et al., 2006). As an 

alternative to these techniques, a new practice called “Double Maturation Raisonnée” 

(DMR) has been developed (Cargnello G., 1995; Cargnello et al., 2006). DMR consists of 

a type of on-plant withering in which the heads bearing fruit and/or shoots are cut in a 

reasoned or well thought out, manner. In fact, cutting the cane produces two cluster 

populations: the first is located above the cut where the connection between cluster and 

vine is still active, while the second is located below the cut and is composed of clusters 

for which any connection with the trunk is severed. In the first population, the profile of 

metabolites is similar to that observed in LH berries as a vascular connection is 

maintained and over-ripe processes are not always characterized by major dehydration 

events (Guillaumie et al., 2011). In contrast, significant biochemical changes do occur in 

the second population, and these changes are primarily related to water loss (e.g. a strong 

increase in sugar content caused by the cellular juice concentration), as has been described 

previously in berries subjected to withering (Rizzini et al., 2009). In addition, polyphenols 

are “more mature” in DMR berries, titratable acidity remains high because malic and 

tartaric acid catabolism is slowed, and the susceptibility to pathogen attack is reduced 

(Carbonneau A., 2008). All these changes improve sensorial parameters of the wine 

obtained from DMR berries.  
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Metabolic profiles observed in LH and withered-berry techniques are paralleled by 

significant changes in the expression of genes involved in key ripening processes 

(Guillaumie et al., 2011; Rizzini et al., 2009; Bonghi et al., 2012; Zamboni et al., 2010). 

These genes belong to functional categories involved in abiotic and biotic stresses (e.g. 

desiccation, pathogen susceptibility), primary and secondary metabolisms (e.g. sugars, 

aroma and polyphenols biosynthesis and transport) as well as regulators of development 

(e.g. hormones and transcription factors). The effect of water loss on berry transcriptome 

is strongly dependent 

on genotype; however, it is well documented that water loss strongly affects the 

expression of several genes involved in the phenylpropanoids pathway (Versari et al., 

2001) and causes the accumulation of phenols (e.g. stilbenes) that have been assumed as 

putative biomarkers of the withering process (Bonghi et al., 2012; Zamboni et al., 2010; 

Versari et al., 2001; Zamboni et al., 2008). Similarly, the (+)-valencene synthase gene, 

encoding an enzyme involved in sesquiterpene biosynthesis, has been proposed as putative 

marker of LH berries because its expression was up-regulated in both white (Chardonnay) 

and red (Cabernet Sauvignon) cultivars (Guillaumie et al., 2011). Much informations are 

already available concerning changes in must sensory profiles and biochemical indicators 

of the grape ripening processes (Carbonneau A., 2008) in berries subjected to DMR, but 

molecular data are totally lacking. 

The goal of this research was to evaluate, by using a microarray approach, the impact of 

LH and DMR techniques on Raboso Piave berry transcriptome, focusing attention on 

differentially expressed genes related to sensory and biochemical parameters. Our data 

demonstrated that DMR Raboso Piave berries subjected to DMR, in comparison to TH 

and LH, maintained high titratable acidity and showed re-equilibration of polyphenols 

profile, mainly due to an increase of flavonol and a reduction of tannin precursors. These 

modifications were accompanied by significant changes in the transcription of genes 

involved in primary and secondary metabolism. 
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2. Materials and methods 

2.1 Plant Material, treatment and biochemical analysis 

The experiments were performed on Vitis vinifera L. cv. Raboso Piave berries collected in 

a commercial vineyard (Giorgio Cecchetto), located in the Piave DOC area (Treviso, 

Italy) in  2008. One-hundred bunches from sixty homogeneous plants were collected at 

different times to form six thesis: a) Traditional Harvest (TH), usually performed at the 

end of October (in this case at October 29th), b) Late harvest (LH) berries over-ripened on 

the plant and harvested 20 days after TH (DATH), and c) DMR berries collected from 

clusters located both above (DMR-A) and below the cut (DMR-B), each harvested at 36 

and 45 DATH. Every week representative berries were separated into two groups: the first 

was used for biochemical and sensory analyses, the other berries were frozen in liquid 

nitrogen and stored at -80 °C.  

In order to evaluate biochemical parameters, the juice from fifty homogenized berries was 

used to measure total acidity (g/L), malic and tartaric acid (g/L), pH and sugar content 

(°brix) , using a WineScan™ Basic (FOSS, Italia) analyzer following the manufacturer’s 

instructions.  

Total phenolic content in the grapes was determined using the Folin-Ciocalteu 

colorimetric method modified by (Yang et al., 2004). Anthocyanins content was evaluated 

using the protocol described by (Ribéreau-Gayon et al., 2006), while high-performance 

liquid chromatography (HPLC) was used to determine skin flavonoids (catechin and 

quercitin) and stilbenes (cis-piceids, cis-resveratrol and trans- resveratrol) amounts, 

following the protocol of (Sun et al., 2006). 

Biochemical data were statistically analyzed (one-way ANOVA and post hoc LSD test) by 

using the software package SPSS release 14.0 for Windows (SPSS Inc., Chicago, IL, 

USA). 

Sensorial analyses were conducted on musts obtained from TH-, LH-, DMR-A- and 

DMR-B berries using the protocols described by (Cargnello, 2009). 
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2.2 RNA extraction, microarray analysis and qPCR 

Total RNA for both microarray and real-time PCR experiments was extracted from whole 

berries using the perchlorate method as described by (Ziliotto et al., 2012). 

Microarray experiments were conducted using the grape AROS V1.0 platform 

(www.operon.com), as described by (Rizzini et al., 2009). The following samples were 

hybridized: LH versus TH, DMR-A versus TH and DMR-B versus TH only for the 36 

DATH. 

For each of the three comparisons, three slides were hybridized using targets obtained 

from two biological replicates. 

Raw hybridization data were quality-filtered and background-subtracted using TIGR 

Spotfinder software (www.tm4.org/spotfinder) as described by (Ziliotto et al., 2012). 

Resulting data were intra-array normalized using the median method (Yang et al., 2002). 

MeV software (www.tm4.org/mev) was used for discovering differential gene expression 

among the comparisons (t-test) and a Venn diagram with differentially expressed genes 

(DEG) among three comparisons was created using GeneVenn software 

(www.genevenn.sourceforge.net). 

Gene expression data have been submitted to Gene Expression Omnibus (GEO) 

(accession no. GSE43385) at NCBI (https://www.ncbi.nlm.nih.gov/geo/). 

PageMan software (Usadel et al., 2006) was used to perform an enrichment analysis based 

on a Fisher exact test. This analysis was conducted on each set of common and specific 

differentially expressed genes among three comparisons, with a p<0.05 (z > 1.96). 

In order to find patterns and highlight similarities and differences in data, a Principal 

Component Analysis (PCA) (Soumya Raychaudhuri, 2000) was performed on 

biochemical and transcriptomic data, and metabolites. For biochemical and metabolites 

PCA analysis, a log2 ratio of LH and DMRs versus TH were used as input data. For 

transcriptomic data, gene ontology (GO) categories related to acidity, sugars and 

phenylpropanoids metabolism were identified. Later on, transcripts of the grape AROS 

V1.0 platform related to each category were mediated and used as input data. For qPCR 

data, a PCA analysis with log2 ratio of LH and DMRs versus TH of transcripts studied 

with real-time PCR were used as input data. 
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cDNA synthesis and quantitative real-time PCR (qPCR) analyses were performed 

following methods described by (Ziliotto et al., 2012). Primers used in qPCR experiments 

are listed in Supplementary Table 1. 
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3. Results and discussion 

3.1 Biochemical and Sensorial Analysis  

FOSS analysis of berries subjected to LH, DMR-A and DMR-B, in comparison to those 

sampled at TH, showed statistically significant differences in terms of titratable acidity, 

malic and tartaric acids as well as sugar content and total polyphenols (Table 1). In 

particular DMR-B berries, maintained a titratable acidity similar to that observed in TH-

berries (reduction of 9%), while DMR-A and LH berries showed a reduction of 18 and 

21% in comparison to TH-berries, respectively,  as has been previously observed in other 

grapevine cultivars subjected to a late harvest dehydration (Guillaumie et al., 2011; 

Bellincontro et al., 2004). The malic acid content in DMR-B berries was very similar to 

TH berries; while in DMR-A and LH there was a decrease of 19% and 32%, respectively. 

In contrast, none of the late harvest techniques used significantly affected tartaric acid 

content. 

Variations of tartaric and malic acid levels in grape berries  led to a significant increase in 

pH only in LH-bunches (+0.26% in comparison to TH), while significant changes were 

not observed for DMR berries (+0.1% for DMR-B). These data demonstrated that DMR 

was effective in maintaining the titratable acidity measured in Raboso Piave berries at TH. 

This positive effect was absent when DMR berries were harvested later (45 days after TH, 

data not shown). In this case, a 40% and 45% reduction in malic acid level was observed 

in DMR-A and DMR-B, respectively. This strong reduction could be due both to an 

increase in malate oxidation and its transformation into soluble sugars, as suggested by 

(Terrier, 2001). To confirm this hypothesis it is necessary to verify if the increase in sugar 

content in DMR berries is  due simply to  dehydration or if it is also a result of the 

catabolism of malic acid. 

Total Soluble Solids (TSS) and total polyphenols were higher in LH, DMR-A and DMR-B 

in comparison to TH berries (Tab.1). This result was expected considering that a xylem 

backflow occurs in berries subjected to a delay in harvest time, with the concomitant 

reduction in the functionality of phloem leading to weight (water) loss (~7% of berry 

volume per day) (Tilbrook and Tyerman, 2009). The altered water potential magnifies the 
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changes occurring during ripening, in particular those concerning to sugar concentration, 

organic acid evolution and aroma and polyphenols profiling.  

 

Table 1 – Tritatable acidity, malic acid, tartaric acid, pH, sugar content and total polyphenols changes in 

must obtained from 200 Raboso Piave berries at traditional harvest (TH), late harvest (LH), Double 

Reasoned Maturation 36DATH above (DMR-A) and below (DMR-B) the cut. Data are the average of three 

biological replicates. x: average; SD: standard deviation; ns: not significant; average values followed by the 

same letter, in the same column, are not significantly different (LSD, 0.05). 

* Significant (p < 0.05). 

** Highly significant (p < 0.01). 

*** Very highly significant (p < 0.001). 

 

 

Sensorial analyses of Raboso Piave musts obtained from TH, LH and DMRs berries 

revealed significant organoleptic differences among the three techniques (Fig. 1), in 

accordance with the biochemical parameters. DMR musts (Fig. 1C, D), in comparison to 

those obtained from TH (Fig. 1A) and LH (Fig. 1B) berries, were less snappish and angry, 

more well-rounded and exhibited better phenolic maturity. 

Harvest 
Titratabl

e acidity

Malic 

acid

Tartaric 

acid
pH Sugar

Total 

polyohenols

TH x 12.15a 7.34a 5.93a 3.07b 16.5c 4.63d

SD 0.61 0.37 0.29 0.05 0.82 0.38

LH x 9.63bc 5.06c 4.66b 3.31a 17.6b 5.82c

SD 0.32 0.25 0.33 0.04 0.96 0.19

DMR-A x 10.05b 6b 4.98b 3.11b 18.9b 6.18bc

SD 0.49 0.3 0.28 0.07 0.7 0.49

DMR-B x 11.06a 7.06a 5.34ab 3.17b 20.9a 6.94a

SD 0.67 0.35 0.26 0.08 1.15 0.29

effect harvest 

time
** ** n.s. * *** ***
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Figure 1. Sensorial analysis. Evaluation of sugar/acidity ratio, smoothness, angry, harmonic, phenolic 

maturity, aggressive sensorial parameters of Raboso Piave berries at TH, LH, DMR-A and DMR-B. For 

each category a score is given (100 is the maximum score). 

 

3.2 Transcriptome profiling of TH, LH and DMR berries 

LH, DMR-A and DMR-B transcriptome profiles were compared to those obtained from 

berries sampled at TH. Among LH/TH, DMR-A/TH and DMR-B/TH comparisons, genes 

differentially expressed were 662, 1000 and 1556, respectively (p value <0.05) (Figure 2). 

 

 

Figure 2. Venn diagram of differentially expressed genes. Specific and common differentially expressed 

genes (p < 0.05) resulting from statistical analysis of LH/TH, DMR-A/TH and DMR-B/TH comparisons. 
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A list of common and specific genes can be found in Supplementary Table 2. 

Microarray data were validated by qPCR techniques performed with a set of 12 random 

genes, showing similar expression patterns among microarray and qPCR techniques (r= 

0.56; R2= 0.75) (Supplementary Figure 1). 

 

The Venn diagram (Fig. 2) showed that 12 significant genes, belonging mainly to primary 

metabolism and stress responsive gene networks, are in common among the three 

comparisons (Supplementary Table 2). It is well known that grape berry dehydration is 

paralleled by an accumulation of abiotic and biotic stress related transcripts, as well as an 

up-regulation of sugar-related genes (Deluc et al., 2009). 

To identify significantly overrepresented metabolic pathways, a PageMan analysis was 

performed on common and specific genes. Metabolic pathways were categorized by 

applying the MapMan ontology vocabulary and the complete list of the enriched BIN (i.e. 

functional classes) terms resulting from Fisher’s exact test can be found in Supplementary 

Table 3. No significant enriched BIN terms were found in PageMan analysis performed on 

LH/TH comparison.  

For PageMan enrichment analysis, BIN terms related to simple phenols (secondary 

metabolism.simple phenols, BIN 16.10) were significantly overrepresented in both DMR-

A/TH and DMR-B/TH up-regulated genes. In the BIN category 16.10, the majority of up-

regulated genes are coding for laccase (data not shown), a class of enzymes responsible 

for flavonoids oxidation, which is involved in plant protection from biotic and abiotic 

stresses (Bonghi et al., 2012; Zamboni et al., 2010; Pourcel et al., 2007). Taking into 

account that the laccase family is, along with other polyphenol oxidase gene families, 

massively expanded in grapevine with respect to Arabidopsis (>60 genes in V. vinifera 

against 17 in Arabidopsis) (Mica et al., 2009) it is worthy to note that 

VIT_18s0001g00680 and VIT_18s0117g00550 were up-regulated in both DMR-bunches, 

while the transcription of VIT_18s0122g00420 was induced only in DMR-B bunches 

(Supplementary Table 2).  

Among down-regulated genes, a significant over-representation was observed for genes 

belonging to the BIN category related to water transport (transport.Major Intrinsic 

Proteins.PIP, BIN 34.19.1), in particular aquaporins, in both DMR-A/TH and DMR–B/TH 
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comparisons. Aquaporins are a family of transmembrane proteins considered to be largely 

responsible for the high permeability to water exhibited by plasma membranes thus the 

down-regulation of aquaporins transcripts during ripening or LH has been suggested as a 

strategy for reducing water loss (Guillaumie et al., 2011). In this work, we observed that 

an higher number of aquaporin isoforms (six isoforms) were down-regulated in DMR-B 

bunches, on the other hand only two isoforms were differentially regulated in the DMR-A 

ones (two isoforms) (Supplementary Table 2). This difference could be explained 

considering that  ripening grape berry is not hydraulically isolated from the parent plant by 

xylem occlusion but, rather, is “hydraulically buffered” by water delivered via the phloem 

(Choat et al.,2009). In the case of DMR-A bunches (still attached to the plant), the 

delivery of excess phloem water could be related with the less number of down-regulated 

aquaporin isoforms. 

For DMR-A/TH comparison, specific down-regulated genes belonging to categories 

regarding cell wall (cell wall.cell wall proteins.LRR, BIN 10.5.3 and cell 

wall.degradation.mannan-xylose-arabinose-fucose, BIN 10.6.2) and lipid metabolism 

(lipid metabolism.exotics.methylsterol monooxygenase, BIN 11.8.2, lipid metabolism.FA 

synthesis and FA elongation.acyl coa ligase, BIN 11.1.8) were overrepresented. 

Metabolisms related to cell wall degradation and reduction of lipid biosynthesis (mainly 

sterols) were stimulated in the case of a prolongation of berry ripening on the plant (Le 

Fur et al., 1994). Concerning terms related to up-regulated genes those associated to “cell 

wall.modification” and lignin biosynthesis (secondary 

metabolism.phenylpropanoids.lignin biosynthesis, BIN 16.2.1) were overrepresented. 

Activation of the lignin pathway is likely a reaction of skin cells to an advanced stage of 

dehydration (Guillaumie et al., 2011; Bonghi et al., 2012; Zamboni et al., 2008), which 

could represent a barrier for the gas exchange between cells and the surrounding 

environment. In still metabolically active fruit tissues (skin, in particular), this stress 

condition activates specific reactions aimed at stress adaptation and the minimization of 

microbial attacks. It has already been reported that the application of DMR is particularly 

effective in indirect grey mold control on grapevine (Cargnello et al., 2006). 
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For DMR-B specific genes, terms related to fermentation (fermentation.aldehyde 

dehydrogenase, BIN 5.10) and stress (stress.abiotic.touch/wounding, BIN 20.2.4) were 

significantly overrepresented in the up-regulated genes. 

Among BIN categories over-represented in DMR-A/TH and DMR-B/TH comparison, 

those related to sugars/acidity and polyphenols were selected, for which the GO terms 

were retrieved to implement the information present in the MapMan ontology vocabulary. 

These GO categories were used to perform a PCA analysis to better identify those 

specifically affected by the application of different harvest techniques (Fig. 3). For 

sugars/acidity (Fig. 3A) and polyphenols (Fig. 3B), most of the GO terms were separated 

by the first principal component, with a variance of 58.8% and 83.3%, respectively, while 

second principal component showed a variance of 28.4% and 11.5%, respectively. 



179 

 

              

Figure 3. PCA analysis of sugar-acidity and polyphenols GO categories PCA analyses with sugar-acidity 

and phenylpropanoids GO category using LH/TH, DMR-A/TH and DMR-B/TH microarray data; number of 

described GO terms are given in brackets. A. PCA analysis of following sugar/acidity GO terms: 

transcription activator activity ATHB-12 (1), citrate transport (2), malate metabolic process (3), fructose 2,6-

bisphosphate metabolic process (4), galactose metabolic process (5), alcohol dehydrogenase (NAD) activity 

(6), gluconeogenesis (7), pyruvate metabolic process, fumarate metabolic process, phosphoenolpyruvate-

dependent sugar phosphotransferase system, beta-fructofuranosidase activity (invertase), sucrose metabolic 
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process, sucrose biosynthetic process, glucose metabolic process, sucrose transport, nucleotide-sugar 

transport. B. PCA analysis of the following polyphenols GO terms: L-phenylalanine catabolic process (1), 

leucoanthocyanidin reductase activity (2), naringenin-chalcone synthase activity (3), L-phenylalanine 

biosynthetic process, laccase activity, flavonoid 3',5'-hydroxylase activity, anthocyanidin 3-O-

glucosyltransferase activity, flavonol synthase activity, leucocyanidin oxygenase activity. 

As shown in figure 3, DMR-B/TH, DMR-A/TH and LH/TH comparisons exhibited different distribution of 

microarray transcriptomic data. Specifically, DMR-B/TH data were located on the left side in both graphs 

(Fig. 3A, B), data regarding LH/TH were on the opposite side and DMR-A/TH showed an intermediate 

position (between the DMR-B/TH and LH/TH comparisons). 

 

For sugars/acidity categories, PCA data calculated as cumulative expression of genes 

belonging to “malate metabolic metabolism” (GO:0006108) obtained from DMR-B/TH 

berries were clearly separated from those of DMR-A and LH, as highlighted also in the 

PageMan results (Supplementary Table 3). These results confirm that malate metabolism 

is a process specifically affected in the grape cluster located below the cut of the vine, 

when the DMR technique is applied. As pointed out by biochemical parameters (Tab. 1), 

malate content in DMR-B berries showed levels similar to those observed in TH berries, 

highlighting a slowing down in its catabolism. On the other hand, changes in 

malate/tartrate ratios and the rapid consumption of malic acid observed in LH and DMR-

A berries reflect the modulation of the metabolism that acts in response to the decrease in 

cell water potential (Bellincontro et al., 2004; Tonutti and Bonghi, 2013). 

For sugar metabolism, LH/TH “fructose 2,6-bisphophate metabolic process” 

(GO:0006003, nr. 4), “galactose metabolic process” (GO:0006012, nr. 5) and 

“gluconeogenesis” (GO:0006094, nr. 7) GO terms were separated from those of DMR/TH 

by the first principal component for GO:0006003 and by both components for 

GO:0006012 and GO:0006094. In DMR/TH comparison, genes belonging to fructose and 

galactose metabolic GO categories showed a slight up-regulation, in comparison to LH. 

DMR/TH comparisons showed different regulation of genes belonging to alcohol 

dehydrogenase (AHD), the enzyme which catalyzes the conversion of acetaldehyde into 

ethanol. Indeed GO category “alcohol dehydrogenase (NAD) activity” (GO:0004022, nr. 

6) of DMR/TH data was separated by the first principal component from LH/TH 

comparisons, emphasizing modification of sugar metabolism. Alcohol dehydrogenase 1 

(ADH 1) transcripts was up-regulated in DMR/TH berries, in comparison to LH/TH 
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(Supplementary Table 2), due to an activation of the fermentative pathway, already 

observed in several experiments with an increase in ethanol and acetaldehyde levels 

following dehydration (Bellincontro et al., 2004; Chkaiban et al., 2007; Cirilli et al., 

2012). The induction of aerobic fermentation is probably related to an excess of sugars 

concentration, which may also be the case for DMR berries that showed higher levels of 

total soluble solids in comparison to LH berries (Table 1). In this case increasing levels of 

ADH 1 may be a necessary step in removing acetaldehyde related to an increasing 

concentration of sugars. In PCA analysis, GO terms related to sugar transport (nucleotide-

sugar transport, GO:0015780, and sucrose transport, GO:0015770) did not show 

significant differences among three comparisons. It is well known that severe water stress 

affects phloem unloading, inhibits the accumulation of sugars and negatively regulates 

sugar transporters in grape berries (WANG et al., 2003), as evidenced for genes coding for 

sugar transporters that showed low expression values (data not shown). 

Taken together, these data highlighted that dehydration did not influence sugars 

biosynthesis and transport; therefore it can be concluded that the increase in sugar levels 

in DMR grape berries is due to the excess of concentration which occurs after grape berry 

dehydration. 

For the polyphenols category, DMR/TH “L-phenylalanine catabolic process” 

(GO:0006559) terms, related to the Phenylalanine ammonia-lyase (PAL) gene, were 

significantly separated in the LH/TH comparison. Besides, genes that act in the next steps 

of the phenylpropanoids pathways (“naringenin-chalcone synthase activity”, GO:0016210, 

and “leucoantocyanidin reductase activity”, GO:0033788) also showed different 

distribution in PCA graphs of DMR/TH and LH/TH comparisons. These data highlighted 

significant differences between samples in the regulation of phenylpropanoids 

metabolism, with the adoption of different routes in DMRs and LH berries. This category 

will be discussed in more detail in the next section. 

3.3 Phenylpropanoids metabolomics and transcriptomic analysis 

Biochemical and sensorial analyses pointed out that DMRs grape berries reached a 

balanced polyphenols profile (Table 1) and complete phenolic maturity (Figure 1), two of 

the major factors affecting red wine quality. Metabolites analysis revealed that the amount 
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of polyphenols in DMRs berries is significantly higher than that measured in berries 

harvested at TH and LH (Supplementary table 4). 

To better understand changes in polyphenols metabolism, a PCA analysis was performed 

on data related to the content of resveratrol, quercitin, catechin and anthocyanins, 

normalized against TH berries values, measured in LH, DMR-A and DMR-B berries 

(Figure 4A). Quercitin and catechin of DMRs were significantly separated from LH data 

by the first principal component accounting for 96.8% of variance. Trans-resveratrol value 

was also separated among the three delayed harvests by the first principal component, in 

this case with more marked differences. Instead, cis-resveratrol of LH was separated from 

DMR-A and DMR-B by the second principal component accounting for 3.2% of variance. 

Anthocyanins data did not show significant differences among the three harvest 

techniques. 

Detailed data on metabolites quantification in TH, LH and DMRs are listed in 

Supplementary Table 4. 

Transcript amounts of the main genes involved in polyphenols biosynthesis (listed in 

Supplementary Table 1) were analyzed using the procedure described for metabolites 

(Figure 4B). 

PCA analysis highlighted that most of data can be explained by the first and second 

principal component, with a variance of 97.0% and 2.0%, respectively. 

Data distribution observed for PAL gene (Nr. 2) was the same as that observed for PCA 

conducted with GO terms data (Figure 3) The ratio between the level of PAL transcripts 

measured in DMR-B- and TH berries was clearly separated from that recorded for DMR-

A and LH samples by the first principal component with a variance of 97.0%, confirming 

the existence of a different regulation of PAL gene expression among the three harvests. 

Stilbene synthase gene (STS, nr.1) is involved in resveratrol production and showed 

significant differences between DMRs and LH. PCA pattern shown by STS transcripts 

parallels those obtained for trans-resveratrol in the PCA analysis conducted using phenol  
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Figure 4. PCA analysis of polyphenols metabolomics-qPCR data and heat map of qPCR genes expression 

PCA analyses using LH/TH, DMR-A/TH and DMR-B/TH polyphenols metabolomics and transcriptomic 

data; number of described terms are given in brackets. A. PCA analysis of the following polyphenols 

metabolomics data: trans-resveratrol (1), cis-resveratrol (2), quercitin (3), catechin (4), trans-piceid, total 

polyphenols. B. PCA analysis of following polyphenols qPCR genes: STS (1), PAL (2), MYB-B (3), FLS 1 

(4), LAR 2 (5), LAC (6), F3H, PPO2, UFGT, CHS3, MYB-A, LAR1-1, LDOX. C. qPCR visualization of 

genes involved in polyphenols metabolisms. Heat map showing LH/TH, DMR-A/TH and DMR-B/TH genes 

expression. Black (4) and White (Unchanged) indicate respectively maximum and unchanged log2 ratio of 

the qPCR genes of the experiment. 
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metabolites (Figure 3). Similar results, although to a lesser extent, were obtained for 

flavonol-synthase 1 (FLS 1, nr. 4) and MYB-B (nr. 3), involved in flavonol biosynthesis 

and its regulation, respectively, and leucoanthocyanidin-reductase 2 (LAR2, nr 5), which 

is involved in catechin biosynthesis. No significant differences were observed for the 

expression of genes involved in anthocyanins synthesis (e.g. leucoanthocyanidin oxidase 

and UDP-glucose:flavonoid 3-O-glucosyltransferase) as well as flavonoids catabolism 

(e.g. polyphenol oxidases and laccases) by comparing the three harvest strategies.  

Taken together, metabolites and transcripts analyses revealed that there are different 

regulation mechanisms of polyphenols metabolism in DMR and LH samples. DMR 

showed high expression of PAL gene (Figure 4C), confirming that this gene is strongly 

activated during both over-ripening and postharvest dehydration (Rizzini et al., 2009; 

Bonghi et al., 2012; Zamboni et al., 2010). However, two members of the PAL gene 

family were shown to be down-regulated in withering Raboso Piave berries (Bonghi et al., 

2012). This suggests that the expression regulation of the numerous members of the V. 

vinifera PAL multigene family is complex and may represent a key step in the multiple 

physiological responses to postharvest stress. The increasing availability of polyphenols 

precursors was used for synthesizing stilbenes and some categories of flavonoids. As far 

as stilbenes are concerned, DMR and LH berries, showed higher content of trans-

resveratrol (e.g. 3 times more in DMR-B than in TH, Supplementary Table 4), as already 

reported by (Carbonneau A., 2008),  paralleled by an up-regulation of STS 1 gene (more 

than 40 times higher in DMR-B than that observed in TH, Fig. 4C). This result was not 

unexpected, indeed senescence (Vannozzi et al., 2012) and abiotic stresses, such as 

dehydration, are able to induce STS expression (Bonghi et al., 2012; Zamboni et al., 2010; 

Versari et al., 2001). Among flavonoids, the application of DMR-B induced the 

accumulation of quercitin, a flavonol-related metabolites (Supplementary Table 4), while 

catechin was significantly reduced. These trends were consistent with the induction of 

transcripts encoding for FLS 1 and MYB-B in comparison to TH (Fig. 4C) suggesting a 

shift in DMRs samples (DMR-B in particular) towards a flavonol pathway and a 

concomitant repression of tannins biosynthesis. To the contrary, in LH berries flavonoids 

composition remained almost similar to that registered in TH berries characterized by a 

low level of quercitin and FLS1 transcripts as well as an accumulation of catechin and 
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LAR 2 mRNAs (Fig. 4C), which means that the LH technique was less efficient than 

DMR in the reallocation of dehydroquercitin toward quercitin instead of 

leucoantocyanidin and then catechin. The increase of quercitin observed in DMR-B 

berries has an important impact on quality parameters considering that this flavonol 

contributes to the bitter taste and color of red wine by stabilizing anthocyanin pigments 

(Cheynier et al., 2006). The decrease of catechin results in reduced synthesis of tannins. 

This event is correlated to the reduction of astringency registered in Raboso Piave musts 

obtained from DMR berries, as demonstrated by sensorial analysis. A decrease in total 

anthocyanins was observed for DMR berries, in comparison to TH and LH berries. This 

could be due to the diversion of a common precursor towards flavonols instead of 

anthocyanins. 

In DMR berries harvested later (45 days after H), the positive effect on polyphenols 

balance disappeared (data not shown). This event, associated with a drop in titratable 

acidity (Tab. 1), suggests that an excessive delay in the harvest of DMR berries negatively 

affects the global quality of Raboso berries. 

The unique traits of wines obtained from overripe and/or dehydrated berries are the result 

of processes and events, some of which are strictly regulated in terms of gene expression. 

Several pathways, related to wine quality traits, appear to be positively modulated by 

delaying the harvest and, in particular, when berries undergo DMR. However, the 

effectiveness of DMR is strongly influenced by the technical expertise of the wine grower, 

who should modify the duration of DMR in relation to climate and perform sensorial 

analyses on grapes in order to establish the best vintage time. The DMR technique can 

successfully modify grape berry quality only when these factors are taken into 

consideration in a well thought out manner. 
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