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ABSTRACT 

 

 

Stem cell therapy is gaining momentum as an effective treatment strategy for 

degenerative diseases. As embryonic stem cells pose a lot of ethical issues, adult stem 

cells, isolated from various sources like cord blood, bone marrow or adipose tissue, are 

being considered as a realistic option due to their well documented therapeutic 

potentials. In our lab, we have standardised a method to isolate human fibroblastic 

multipotent stem cells (hPBMCs) from human peripheral blood, that are able to sustain 

long term in vitro culture and differentiate towards adipogenic, chondrogenic and 

osteogenic lineage.  

In this work, hPBMCs were stimulated to obtain in vitro neuronal and myogenic-like 

cells. Moreover, their restorative potential in degenerative diseases of skeletal muscle 

and nervous tissue was evaluated using in vivo models. In order to test the neuronal 

differentiation potential, the cells were seeded (1x104) on gelatin coated dishes and 

cultured for 7 days in neurobasal medium with EGF and FGF followed by Retinoic acid 

and NGF for next 7 days. Myogenic induction was carried out using IGF and ascorbic acid 

for 14 days. At different time points, morphological studies were performed by SEM and 

specific neuronal and myogenic marker expression were evaluated using RT-PCR, flow 

cytometry and western blot. hPBMCs showed characteristic dendrite like morphology 

and expressed specific neuronal markers both at mRNA and protein level. The calcium 

flux activity of hPBMCs under stimulation with KCl 56 mM and the secretion of the 

neurotransmitter, noradrenalin, a precursor in the dopamine synthesis confirmed their 

ability to acquire a functional phenotype. When premarked by a cell tracker Qdot 800 

and injected stearotactically into a rat brain, hPBMCs showed to be migratory and 

proliferative as detected after 10 and 20 days of injection. No tumor mass was identified. 

The myogenic potential of hPBMCs were confirmed by their ability to form syncitium 

like structures in in vitro culture and to express typical myogenic markers both at early 

and late phases of differentiation. hPBMCs were showed to integrate within the host 

tissue and to take part in tissue repair as demonstrated in a bupivacaine induced muscle 

damage model. 
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RIASSUNTO 

 

 

Il trapianto di cellule staminali è una strategia terapeutica che sta conoscendo uno 

sviluppo sempre maggiore come possibile approccio clinico per il trattamento delle 

malattie degenerative. Considerando i problemi di carattere etico sollevati dall’impiego 

delle cellule staminali embrionali, le cellule staminali adulte isolate da varie fonti 

(sangue cordonale, midollo osseo, tessuto adiposo﴿ rappresentano una realistica 

alternativa, in virtù della loro potenzialità rigenerativa ben documentata. Nel nostro 

laboratorio è stato standardizzato un metodo per isolare cellule staminali fibroblastoidi 

multipotenti (Peripheral Blood Multipotent Cells, hPBMC) da sangue periferico umano, 

che possono essere espanse in vitro durante la coltura a lungo termine e sono in grado di 

differenziare in senso adipogenico, condrogenico e osteogenico. Nel lavoro di tesi del 

Dott. Senthilkumar Rajendran, le cellule hPBMC sono state stimolate per l’ottenimento in 

vitro di cellule simil-neuronali e -muscolari. Inoltre è stato valutato il loro potenziale 

rigenerativo nel trattamento di malattie degenerative del muscolo scheletrico e del 

tessuto nervoso attraverso la sperimentazione in vivo su modelli animali. Al fine di 

testare il potenziale di differenziazione neuronale, le cellule sono state seminate (1x104) 

su coating di gelatina e coltivate per i primi 7 giorni in Neurobasal medium addizionato 

con EGF e FGF, e per i 7 giorni successivi in terreno basale contenente acido retinoico e 

NGF. L’induzione miogenica è stata effettuata utilizzando IGF e acido ascorbico per 14 

giorni. Ad ogni time point, sono stati realizzati studi morfologici mediante SEM e analisi 

di espressione di specifici marcatori neuronali e miogenici mediante RT-PCR, 

citofluorimetria e western blot. Le cellule hPBMC hanno mostrato una caratteristica 

morfologia simil-dendritica e l’espressione di specifici marcatori neuronali a livello sia 

di mRNA che di proteine. Lo studio del flusso del calcio dopo stimolazione con KCl 56 

mM e l’attività di secrezione del neurotrasmettitore noradrenalina, precursore nella 

sintesi della dopamina, hanno confermato la capacità delle cellule hPBMC di acquisire un 

fenotipo funzionale. Dopo marcatura con il tracker cellulare Qdot 800 e iniezione per 

stereotassi in un cervello di ratto, le hPBMC hanno dimostrato un elevato potenziale 

migratorio e proliferativo dopo 10 e 20 giorni dall'impianto. Non è stata identificata 

alcuna massa tumorale. Il potenziale miogenico delle popolazioni isolate è stato 

confermato dalla loro capacità di formare strutture simil-sinciziali durante la coltura in 

vitro e di esprimere marcatori tipici della linea miogenica, sia a tempi precoci che nelle 
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fasi tardive del differenziamento. Infine, testate in un modello animale di danno 

muscolare indotto con bupivacaina, le cellule hPBMC sono state in grado di integrarsi 

all'interno del tessuto ospite e di prendere parte nella riparazione dei tessuti.
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INTRODUCTION 

 

 

1. Degenerative disorders: a clinical challenge 

Degenerative diseases are a poorly understood and largely untreatable set of 

pathologies that take a heavy toll in disability and death and have far-reaching 

socioeconomic impacts. They can be considered a biological phenomenon, which can be 

defined and understood in molecular and physiological terms. Much of biomedical 

research focuses on discovering the molecular basis of degenerative diseases to define 

and understand their natural history, etiology and pathogenesis. Thanks to that, modern 

medicine is accumulating an ever-increasing arsenal of molecular-based diagnostics and 

therapeutics for a large number of these disorders (Kolodny and Fattal-Valevski, 2005). 

Despite increasing knowledge on this field, degenerative disorder treatment still have to 

face some specific clinical challenges, which include: a) improving diagnostic capability, 

particularly early diagnosis; b) developing tools to measure changes accurately over 

time; c) understanding more about mechanisms of disease; d) developing new therapies 

aimed at slowing progression or preventing these disorders. 

As a starting point, degenerative disorder classification can be useful to understand their 

molecular origin and mechanism. To simplify the topic, these conditions can be classified 

according to three principal mechanisms responsible for their pathology and resulting 

clinical symptomatology (Kolodny and Fattal-Valevski, 2005): 

 Storage disorders. These are gradually progressive disorders in which large 

molecules are stored (i.e., glycolipid and glycoprotein), leading to multiorgan 

involvement according to the site of the storage material (i.e., bone, liver, spleen, 

bone marrow, central nervous system [CNS]). 

 Disorders with cellular intoxication. These tend to involve small molecule diseases 

(amino and organic aciduria, urea cycle diseases) and have an acute presentation, 

usually at a young age or even in the neonatal period. Clinical symptoms are 

nonspecific and are typical for toxic encephalopathy (vomiting, lethargy, 

hypotonia, and respiratory abnormalities). 

 Disorders with energy deficiency. These disorders mainly affect organs with high-

energy requirement such as the CNS, skeletal muscle, cardiac muscle, and liver. 

They present with intermittent metabolic crises precipitated by stress. 
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Among degenerative disorders, some of the most common ones are pathologies which 

affect CNS (Alzheimer's and Parkinson's disease, multiple sclerosis), skeletal muscle 

(muscular dystrophies), heart muscle (myocarditis) bone (osteoporosis) and joints 

(osteoarthritis, rheumatoid arthritis). 

 

1.1 Degenerative neural disorders 

Neurodegenerative diseases result from the gradual and progressive loss of neural cells, 

leading to nervous system dysfunction (Brown et al., 2005). The hallmark of several 

degenerative disorders in the central nervous system (CNS), such as amyotrophic lateral 

sclerosis, Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease, is the massive 

loss of one or several types of neurons. Although neurological disorders manifest with 

different clinical features, the disease processes at the cellular level appear to be similar. 

For example, Parkinson's disease affects the basal ganglia of the brain, depleting it of 

dopamine. This leads to stiffness, rigidity and tremors in the major muscles of the body, 

typical features of the disease. In Alzheimer's disease, there are deposits of tiny protein 

plaques that damage different parts of the brain and lead to progressive loss of memory. 

Research focuses on the similarities in neurodegeneration that occur in all of these 

diseases. This can provide clues in the development of new therapies and therapeutic 

strategies that may benefit patients in any of the three conditions. Cell death and 

deposition of abnormal proteins and plaques, for example, is a feature common to most 

neurodegenerative disorders (Chesselet, 2001). 

The development of new therapeutic strategies was once complicated by the fact that 

the nerve path was first thought to be static, immobile, and incapable of regeneration. In 

the last decade, much evidence demonstrates that generation of new neurons, namely 

neurogenesis, is not entirely restricted to prenatal development, but continues 

throughout adult life in certain regions of the mammalian brain (Gage, 2002). This may 

open new perspectives in clinical research and therapy of degenerative neural disorders. 

 

1.2 Degenerative skeletal muscle disorders 

A degenerative muscle disease is a condition marked by the progressive deterioration of 

muscle tissue that causes weakness and impairs normal function. There are various 

types of degenerative muscle diseases, and each one may affect different muscle groups. 

Usually, degenerative muscle diseases are marked by problems with walking, balance, 

and coordination, and many affect speech, swallowing, and even breathing. Some 
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examples of diseases that cause muscle deterioration include muscular dystrophy, 

which is inherited, and amyotrophic lateral sclerosis, which eventually causes the death 

of the patient (Tabebordbar et al., 2013).  

Current treatment options for degenerative muscular disorders are disappointingly 

limited and focus mainly on managing symptoms and suppressing the immune and 

inflammatory response. Therapeutic approaches that aim instead to cure these diseases 

have been a subject of research for many decades and can be grouped broadly into two 

categories on the basis of their strategic approach. The first category seeks to repair or 

replace the mutated gene, whereas the second aims to reduce the impact of the mutation 

by activating alternative pathways or intervening downstream to correct the 

pathological consequences. Each of these strategies presents unique advantages and 

challenges, and past experiences have helped inform and focus the direction of future 

research and the design of future clinical trials (Partridge, 2011).  

 

2. Degeneration and Regeneration 

Advances in basic knowledge and clinical therapy of degenerative diseases have led to 

new and compelling ideas about treating these disorders with novel tissue regeneration 

strategies. 

 

2.1 Mechanisms of tissue regeneration 

Effective functioning of the body’s tissues and organs depends upon innate regenerative 

processes that maintain proper cell numbers and replace damaged cells after injury. In 

many tissues, regenerative potential is determined by the presence and functionality of 

dedicated populations of stem and progenitor cells, which respond to exogenous cues to 

initiate tissue repair when needed (Figure 1). However, in many instances, resident 

precursor cells suffer declining activity in response to advancing age, leading to reduced 

repair potential and chronic degenerative disease. If a tissue is chronically or widely 

injured, normal and efficient repair can no longer occur and exogenous regenerative 

strategies have to be developed (Yamskova et al., 2010). For this purpose, regenerative 

medicine therapies, fueled by advances in stem cell biology and technologies, seek to 

direct inherent non-healing injuries towards full restoration of tissue structure and 

subsequent function. Numerous studies have demonstrated that - when recruitment of 

endogenous stem cells is not enough - exogenous administration of a number of stem 
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cell populations to injured and pathological tissues has resulted in structural 

regeneration as well as functional improvement (Baraniak and McDevitt, 2010). 

 

 

Figure 1. Mechanism of tissue regeneration 

 

2.2 Transdifferentiation and lineage switching  

Transdifferentiation has attracted great controversy in recent years, mostly in regards 

to whether stem cells from the bone marrow can colonize other tissues after 

transplantation. However, the general subject area of tissue-type switching is much 

wider than this specific controversy. It embraces some fascinating biological and 

pathological phenomena that deserve more attention than they have received. There has 

been a recent tendency to use the word transdifferentiation to mean ‘conversion of 

anything into anything else’. But it is preferable to reserve the term for its original 

meaning — transformation of one differentiated cell type into another — and to use the 

term ‘metaplasia’ for the more general transformation of one tissue type into another. 

This is because tissues generally consist of several differentiated cell types and 

metaplasia often involves the transformation of undifferentiated stem or progenitor 

cells such that they produce a repertoire of cell types that are characteristic of a 

different tissue (Alison et al., 2004). Recently, there has been interest in the possibility of 

reprogramming cells from a differentiated state back to a pluripotent state that 

resembles the embryonic stem (ES) cell, shown here as ES transformation. In this article, 

the term ‘metaplasia’ will be used for any tissue-typeswitching (Figure 2) event and 

‘transdifferentiation’ will be used only when both the precursor and the product are 

differentiated cell types. The phenomena discussed here are mostly metaplasias in 

which the starting cell type is an undifferentiated cell of some sort, which indicates that 
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it might be easier to convert a committed but undifferentiated cell to another lineage 

than to convert one differentiated cell type into another differentiated cell type. But are 

stem or progenitor cells really more labile than terminally differentiated cells? The 

numerous experiments involving grafts of haematopoietic stem cells into irradiated 

hosts did not seem, in the end, to have involved the large-scale reprogramming of cells. 

But there is probably a small residue of genuine metaplasia after the various other 

processes, such as marker gene transfer or cell fusion (Slack et al., 2007). 

 

 

Figure 2. Transdifferentiation process 

 

2.3 Role of Adult Stem Cells in Tissue Repair 

While some tissues, such as the blood, skin, gut, respiratory tract and testis, must 

perpetually renew, the majority of cells and tissues in adult mammals exhibit very low 

turnover under normal circumstances; some of these respond poorly to regenerative 

pressure (e.g., heart), while other respond quite well (e.g., liver). These observations 

have been interpreted as indicating the existence and function of stem cells within some 

highly regenerative tissues and a lack of stem cell function in other tissues. Nonetheless, 

multiple organs, including the brain and heart, once thought of as non renewing, 

postmitotic tissues, actually have been shown to exhibit previously unappreciated cell 

turnover (Altman and Das, 1965; Kajstura et al., 1998; Kuhn et al., 1996). These 

observations have opened the door for studies aimed at identifying additional tissue-

resident adult stem cell populations and evaluating their regenerative potential; 

however, the degree to which particular tissues depend upon replenishment of mature 

cells from relatively undifferentiated stem and progenitor cells is in many instances 

uncertain. Injury/repair studies provide strong support for essential stem cell function 

in the hematopoietic system, intestinal epithelium, dermal epithelium, and skeletal 

muscle, but whether endogenous stem cells play a significant role in tissue homeostasis 
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or responses to damage in other systems is unclear. In addition, in many cases the 

mechanisms by which such cells contribute to tissue regeneration are poorly defined, 

and in particular, whether regeneration of adult tissues from endogenous stem cells 

exploits the same molecular pathways used to establish that tissue during development 

has yet to be elucidated. 

 

2.4 Crossing the Germ Layers 

Hematopoietic stem cells (HSC), which reside predominantly in the bone marrow of 

adult mice and humans, normally function to generate all of the lineages of mature blood 

cell types necessary for maintaining proper hematopoietic function (Kondo et al., 2003). 

The concept that adult HSC function solely to maintain hematopoietic cell lineages was 

challenged by a series of papers suggesting that unfractionated bone marrow cells, or 

bone marrow cells enriched by various methods for hematopoietic stem cell activity, 

could be seen to contribute at low levels to multiple nonhematopoietic tissues following 

transfer into lethally irradiated, and often injured, recipient mice or humans (Herzog et 

al., 2003). Such studies have reported the expression of donor-derived genetic markers 

in nonhematopoietic cells within the skin (Krause et al., 2001), lung epithelium (Theise 

et al., 2002), intestinal epithelium (Krause et al., 2001), kidney epithelium (Kale et al., 

2003), liver parenchyma (Krause et al., 2001, Lagasse et al., 2000), pancreas (Ianus et al., 

2003), skeletal muscle (Brazelton et al., 2003), endothelium (Grant et al. 2002), 

myocardium (Jackson et al., 2001), and CNS neurons in the cortex and cerebellum ( 

Priller et al., 2001). Such findings were extended by some to a general hypothesis of 

adult stem cell plasticity (Figure 3), wherein adult stem cells from one tissue were 

considered to be roughly equivalent in developmental potential to adult stem cells in 

another tissue, with the outcome of stem cell differentiation largely determined by 

different microenvironments encountered following differential trafficking from the 

bloodstream (Blau et al., 2001). BM cell contributions to nonhematopoietic tissues, 

including myocardium (Orlic et al., 2001) and skeletal muscle (Ferrari et al., 1998), also 

have been reported following direct delivery of cells to injured tissues in unirradiated 

recipients. The frequency with which such unexpected events have been detected has 

varied widely, from less than 0.1% to almost 20% of differentiated cells (reviewed in 

Herzog et al., 2003). In most cases where BM contributions to nonhematopoietic tissues 

have been detected, significant tissue injury has been necessary, but some have reported 

incorporation of cells into tissues without substantial additional injury aside from that 
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induced by the irradiation required for hematopoietic cell transplantation (Krause et al., 

2001). With a few notable exceptions, in which contribution of transplanted cells to 

recovery of liver (Lagasse et al., 2000) or kidney (Kale et al., 2003) function has been 

documented, most reports of BM or HSC plasticity have not evaluated the tissue-specific 

function of putatively transdifferentiated cell types. Such determinations clearly will be 

important in assessing the biological relevance and clinical utility of such events. 

Disconcertingly, a significant number of studies also report a failure to detect BM or HSC 

contributions to nonhematopoietic tissues in similar experimental systems (Castro et al., 

2002); the reasons for this apparent irreproducibility of results in different laboratories 

are not entirely clear, but may relate in part to differences in injury models, detection 

strategies and identification of donor markers, and/or cell purification techniques 

(Goodell, 2003). Given that in most cases the mechanism(s) and cell types involved in 

reported instances of BM or HSC plasticity have not been clearly defined, multiple 

alternative explanations for such observations remain, and must now be evaluated. 

 

 

Figure 3. Crossing the lineage barrier 

 

2.5 Non hematopoietic to Hematopoietic switch 

Some studies have suggested that brain or muscle-derived stem cells may harbor 

hematopoietic potential. These include the observation that cultured neurosphere cells, 



 

12 

 

presumed to derive from central nervous system stem cells (CNS-SC), when injected into 

lethally irradiated recipient mice were seen to contribute to mature cells of various 

blood lineages (Bjornson et al., 1999), although these findings have proved difficult to 

reproduce in other laboratories (Morshead et al., 2002). In addition, muscle 

mononuclear cells (Jackson et al., 1999) or muscle SP cells (Gussoni et al., 1999) 

exhibited hematopoietic activity when injected intravenously into lethally irradiated 

recipient mice. Although such experiments have been interpreted to indicate the 

transdifferentiation of neural or muscle stem cells, it is important to note that HSC 

constitutively circulate in the blood of normal animals, potentially at very high rates of 

flux (Wright et al., 2001). Such blood-borne HSC are fully functional and can stably re 

engraft BM at distinct sites, contribute to ongoing hematopoiesis, and maintain the 

ability to competitively reconstitute lethally irradiated recipients. Thus, circulating or 

itinerant HSC likely contaminate many nonhematopoietic tissues, and may confound 

interpretation of experiments designed to test the hematopoietic potential of these 

tissues. In fact, subsequent experiments have demonstrated that the muscle SP 

population is actually a heterogeneous mixture of stem and progenitor cells and that all 

muscle SP cells with hematopoietic reconstituting activity are in fact committed 

hematopoietic precursors, expressing the panhematopoietic marker CD45 (McKinney-

Freeman et al., 2002). Hematopoietic stem and progenitor cells appear to seed the 

muscle from BM cells following BM transplant (Issarachai et al., 2002), indicating that 

the hematopoietic activity of muscle cells likely derives from itinerant HSC, and does not 

in fact constitute an example of stem cell transdifferentiation. 

2.6 Peripheral blood-lineage shift source  

Bone marrow has been considered for ages the main hematopoietic and multipotent 

stem cell source, but its clinical use faces some practical difficulties, such as extraction 

procedures, which are highly invasive for the donor and cell yield, which is highly 

variable and dependent on the donors age (Stenderup et al., 2003). That is the reason 

why in the last decade alternative sources have been studied, such as umbilical cord 

(Rubinsteinet al., 1993), adipose tissue (Zuk et al., 2002) and peripheral blood (Seta and 

Kuwana, 2007). In particular, peripheral blood stem cell research is knowing great 

development because of many advantages offered by this novel ASC source: large 

availability, non invasive extraction practice and autologous cell origin. 
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Cells of fibroblastic morphology with clonogenic and proliferative potential have been 

identified in human peripheral blood (He et al., 2007) and adult animals such as guinea 

pig (Kuznetsov et al., 2001) , rabbit (Wan et al., 2006) , dog (Huss et al., 2000) , mice 

(Kuznetsov et al., 2001) and rat (Wu et al., 2003) . Cultured ex vivo, these populations 

tend to adhere to plastic and form typical colonies with fibroblastic morphology (CFU-

F). PB CFU-F (Peripheral Blood Colony Forming Unit - Fibroblast) (Maximow, 1982) or 

PBMSC (Peripheral Blood-Derived Multipotent Mesenchymal Stromal Cells) (He et al., 

2007), express the typical hematopoietic lineage markers (CD14, CD45), endothelial cell 

line (CD117/c-Kit ) and histocompatibility complex (HLA-DR). Within the population of 

PB CFU-F were also identified CD133 positive cells (Tondreau et al., 2005), a marker 

typically expressed by cells with potential to form hematopoietic, endothelial, or 

mesoangioblastic cells (Loges et al., 2004). In vitro and in vivo studies have 

demonstrated the differentiation potential of PB CFU-F in osteogenic, adipogenic and 

chondrogenic lineages (Kuznetsov et al., 2001; Wu et al., 2003; Tondreau et al., 2005). In 

response to tissue damage or stress conditions, it has been shown that PBMSC cells 

undergo a significant increase in number by a yet unknown mechanism. Some authors 

suggest that these cells are, in normal conditions, accumulated at the level of the bone 

marrow (Kucia et al., 2005) or in locations of peripheral blood vessels (perivascular 

stem cell niche) (Figure 4) (Songtao Shi and Stan Gronthos , 2003). In particular 

physiological conditions or in response to tissue damage, they get activated, migrating 

into the blood stream and stimulate the process of regeneration of the injured tissue. 

Some scholars speculate that the PB CFU-F cells are released into the circulation from 

the bone marrow and bone marrow stem cells that are derived from pluripotent 

primitive type or tissue-specific precursors, which accumulate in the bone during 

ontogeny (Figure 4). 
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Figure 4. Stem Cell Niches 

 

Kucia and colleagues (2005) suggest that during ontogeny and the rapid body growth 

and/or expansion of tissue-specific stem cells (e.g. for muscle, neurons, liver, heart, 

pancreas, endocrine, renal tubular epithelium). Pluripotent Stem cells (PSCs) and 

hematopoietic stem cells circulate at high levels in peripheral blood and gradually 

accumulate in the bone marrow, where they find the ideal microenvironment for their 

survival (Ratajczak et al., 2004). These cells, similar to the HSC express CXCR4 and 

respond to a gradient of SDF-1 (Ratajczak et al., 2003). Kucia and co-workers have also 

observed that the number of stem cells non-hematopoietic origin in peripheral blood 

can be increased by the administration of agents similar to those used for the 

mobilization of HSC (e.g. G-CSF) (Ratajczak et al. , 2004) or stimulated by stress factors 

associated with tissue damage (e.g. stroke) (Kucia et al., 2005). An increase of these cells 

in peripheral blood following damage supports the hypothesis that these populations 

may play an important role in tissue regeneration. Thus, it is likely that the processes of 

regeneration involves, not only the local recruitment of progenitors present in the 

region, but also the stem cells specific to the damaged organ, which reside in the bone 

marrow or perivascular niche. 

 

3. Therapeutic significance of stem cell lineage shift 

There has been considerable debate about the trans-differentiation of adult stem cells 

into other tissue types. If stem cells can repopulate a variety of tissue types (that is, be 

multipotential), or if tissue repair can be induced by the mobilisation or delivery of 

harvested stem cells, the clinical options for repairing damaged tissues are increased 
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(Trounson, 2004). Observations made in the last few years support the existence of 

pathways, in adult humans and rodents, which allow adult stem cells to be surprisingly 

flexible in their differentiation repertoires. Termed plasticity, this property allows adult 

stem cells, assumed, until now, to be committed to generating a fixed range of progeny, 

to switch, when they have been relocated, to make other specialized sets of cells 

appropriate to their new niche (Poulsom et al., 2002). The potential use of stem cells to 

replace functional tissue loss in degenerative disorders may depend on their capacity to 

derive tissue-specific cells without any detrimental in vivo side effects. By manipulating 

the culture conditions in which stem cells differentiate, it has been possible to control 

and restrict the differentiation pathways and thereby generate cultures enriched in 

lineage-specific cells in vitro (Trounson, 2004). Stem cell plasticity may occur through 

engraftment in another organ and assumption of some or all of the phenotypic traits of 

that organ – trans-differentiation, the acquisition of a new phenotype – or the engrafted 

cell could become a local stem cell in its new niche. The latter mechanism would ideally 

require the isolation and transplantation of single cells that self-renew and produce a 

family of descendants that eventually become fully functional. Some commentators have 

claimed that this phenomenon should be shown to occur ‘naturally’ in organs not forced 

to undergo degeneration before accepting that stem cells jump a lineage boundary 

(Anderson et al., 2001). Clearly, it is difficult to track cells without intervention and most 

of the studies to date involve damage consequent upon ablation of bone marrow by 

irradiation or chemical means, or the traumas of surgery and rejection, where organs 

have been transplanted and then studied some time later. A counter-argument is that a 

degree of organ damage is essential to allow trans-differentiation or stem cell plasticity 

to take place at recognizable levels. It may be that migration of bone marrow stem cells 

throughout the body acts essentially as a back-up system, able in extremis to augment 

an organ’s intrinsic regenerative capacity (Poulsom et al., 2002).  

 

4. Stem cell therapy for the treatment of neurological diseases 

Human neurological disorders such as Parkinson’s disease, Huntington’s disease, 

amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, multiple sclerosis (MS), stroke, 

and spinal cord injury are caused by a loss of neurons and glial cells in the brain or 

spinal cord. Cell replacement therapy and gene transfer to the diseased or injured brain 

have provided the basis for the development of potentially powerful new therapeutic 

strategies for a broad spectrum of human neurological diseases. However, the paucity of 
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suitable cell types for cell replacement therapy in patients suffering from neurological 

disorders has hampered the development of this promising therapeutic approach. In 

recent years, neurons and glial cells have successfully been generated from stem cells 

such as embryonic stem cells, mesenchymal stem cells, and neural stem cells, and 

extensive efforts by investigators to develop stem cell-based brain transplantation 

therapies have been carried out (Kim SU and de Vellis J, 2009). 

 

4.1 Parkinson’s disease 

Parkinson’s disease (PD) is characterized by an extensive loss of dopamine neurons 

(DA) in the substantia nigra pars compacta and their terminals in the striatum (Kish et 

al., 1988; Agid, 1991). In the last twenty years, advanced regenerative medicine 

strategies such as stem cell therapy, have been investigated as a possible cure (Figure 5).  

 

 

Figure 5. Possible stem cell sources for the treatment of Parkinson disease 

 

Since the late 1980s, transplantation of human fetal ventral mesencephalic tissues into 

the striatum of PD patients has been adopted as a successful therapy for patients with 

advanced disease (Lindvall et al., 1990; Olanow et al., 1996; Kordower et al., 1997a; 

Dunnett and Bjorklund, 1999). 

DA neurons were generated from mouse ESCs or mouse NSCs after treatment with 

fibroblast growth factor 8 (FGF8) and sonic hedgehog (Lee et al., 2000; Hagell and 

Brundin, 2002; JH Kim et al., 2002; TE Kim et al., 2003), overexpression of Nurr1 
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(Wagner et al., 1999; Chung et al., 2002; Kim et al., 2003), Bcl-xL (Shim et al., 2004), or 

co-culture with a mouse bone marrow stromal cell line (Kawasaki et al., 2000). Neurons 

with a DA phenotype have been generated from monkey ESCs by co-culturing with 

mouse bone marrow stromal cells (Takagi et al., 2005) and also from human NSCs 

derived from fetal brain (Redmond et al., 2007), and behavioral improvement was seen 

in MPTP lesioned monkeys following intrastriatal transplantation of these cells (Takagi 

et al., 2005; Redmond et al., 2007). DA neurons were also generated from fetal murine 

mesencephalic progenitor cells and induced functional recovery following brain 

transplantation in parkinsonian rats (Studer et al., 1998). 

 

4.2 Alzheimer’s disease 

AD is characterized by degeneration and loss of neurons and synapses throughout the 

brain, particularly in the basal forebrain, amygdala, hippocampus, and cortical area. 

Recent studies have shown that intracerebral injection of a lentivirus vector expressing 

human neprilysin in transgenic mouse models of amyloidosis reduced Ab deposits in the 

brain and blocked neurodegeneration in the fronal cortex and hippocampus (Marr et al., 

2003), and intracerebrally injected fibroblasts overexpressing the human neprilysin 

gene were found to significantly reduce the amyloid plaque burden in the brain of Ab 

transgenic mice with advanced plaque deposits (Hemming et al., 2007). These studies 

support the use of Ab-degrading proteases as a tool to therapeutically lower Ab levels 

and encourage further investigation of ex vivo delivery of protease genes using human 

NSCs for the treatment of AD.  

 

4.3 Multiple sclerosis 

In Multiple sclerosis, oligodendrocytes (OLs) and myelin are destroyed by an 

inflammation-mediated mechanism (McFarlin and McFarland; 1982; Ebers, 1988). 

Previous studies have reported that OLs or OL progenitor cells isolated from mouse or 

rat brain that were transplanted into the brain of dysmyelination mutants or chemically 

induced demyelination lesions in rats induced remyeliation in previously dysmyelinated 

or demyelinated lesion sites (Franklin and Blakemore, 1997; Espinosa de los Monteros 

et al., 1997; 2001; Learish et al., 1999; Zhang et al., 1999; Ben-Hur et al., 2003). Recent 

studies have reported that OLs could be generated from mouse and human ES cells 

(Brustle et al., 1999; Liu et al., 2000; Glaser et al., 2005), bone marrow mesenchymal 

stem cells (Akiyama et al., 2002), or mouse NSCs (Yandava et al., 1999). OLs could also 
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be generated from stable, established cell lines of human NSCs and used as cell source of 

transplantation.  

 

4.4 Stroke 

There are two major types of stroke: ischemia (infarct) and intracerebral hemorrhage 

(ICH). Ischemic stroke caused by abrupt and near-total interruption of cerebral blood 

flow produces ischemic changes in the striatum and cortex, leading to a long-term 

sensorimotor deficit. Once damage from a stroke occurs, little can be done to restore 

premorbid functions, and, although numerous neuroprotective agents have been 

clinically tried, no specific agents replaced the lost neurons, improved the deteriorated 

functions, and reduced the long-term sequelae (Marshall and Thomas, 1988). There 

have previously been several reports of cell transplantation in the brain in ischemia 

animal models (Savitz et al., 2002), and various cellular sources such as rodent bone 

marrow mesenchymal stem cells (Sinden et al., 1997; Chen et al., 2001; Chen et al., 2003; 

Zhao et al., 2002; Modo et al., 2002), human umbilical cord blood cells (Chen et al., 

2001), immortalized mouse neural precursor cells (Veizovic et al., 2001), and human 

teratocarcinoma NT2-derived neurons (Borlongan et al., 1998; Saporta et al., 1999) 

were grafted into the ischemic brain, reducing the neurological deficits induced by 

experimental brain ischemia. A recent study has reported that, in humans with ischemic 

infarct, intracerebral implantation of human teratocarcinoma NT2-derived neurons has 

resulted in functional improvement (Kondziolka et al., 2000). 

 

4.5 Spinal cord injury 

Recent advances in stem cell biology have opened up an avenue to therapeutic strategies 

to replace lost neural cells by transplantation of stem cells in various disorders in the 

CNS. For spinal cord injury (SCI), various cell types such as genetically modified 

fibroblasts, olfactory ensheathing cells, Schwann cells, and stem cells have been used to 

promote axonal regeneration (Tuszynski et al., 1994; Xu et al., 1995; Li et al., 1997; Liu 

et al., 1999; Teng et al., 2002). Since an earlier study showing that transplantation of 

ESCs promotes functional recovery (McDonald et al., 1999), several studies have 

reported that various stem or progenitor cells types, including ESCs, bone marrow MSCs, 

neural stem cells, and glia restricted precursor cells, induce functional improvement 

following transplantation into the injured spinal cord (Teng et al., 2002; McDonald et al., 

1999; Hofstetter et al., 2002; Ogawa et al., 2002; Cao et al., 2005; Cummings et al., 2005; 
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Keirstead et al., 2005; Iwanami et al., 2005; Karimi-Abdolrezaee et al., 2006; Xu et al., 

2006). However, there are still many obstacles to be overcome before stem cell-based 

therapy can be adopted for SCI. One such problem is a massive death of stem cells 

transplanted into the injured spinal cord tissue. In the case of bone marrow MSCs, they 

barely differentiate into neurons or the glial lineage following transplantation, calling 

into question the therapeutic potential of bone marrow derived MSCs (Hofstetter et al., 

2002).  

 

5. Stem cell therapy for the treatment of muscular dystrophies 

Muscular dystrophy comprises a group of genetic diseases that cause progressive 

weakness and degeneration of skeletal muscle resulting from defective proteins critical 

to muscle structure and function (Figure 6). This leads to premature exhaustion of the 

muscle stem cell pool that maintains muscle integrity during normal use and exercise.  

Muscle wasting diseases affect millions of people worldwide. Among these, the various 

types of muscular dystrophy (MD) caused by mutations in structural proteins are 

characterized by loss of functional muscle due to muscle fiber damage, inflammation, 

and deposition of fibrotic tissue (Emery et al., 2002). With Duchenne muscular 

dystrophy (DMD) in particular, muscle tissue begins to deteriorate early in childhood, 

pushing the resident muscle stem cell pool to its limit, leading to the exhaustion of 

normal muscle repair mechanisms (Matsumura et al., 1994; Decary et al., 2000). 
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Figure 6. Mechanism of muscular dystrophy 

 

DMD is caused by mutations in the dystrophin gene (Hoffman et al., 1987), which 

encodes a cytoskeletal protein found in skeletal muscle, smooth muscle, cardiac 

myofibers, and brain (Durbeej et al., 2002). Dystrophin deficiency primarily leads to the 

pathologic perturbation of myofibers; however, the disease also is associated with 

absence of several glycoproteins that interact with dystrophin. Although the precise 

sequence of the events is incompletely understood, the mechanical weakness leading to 

sarcolemmal lesions causes abnormal calcium influx and inflammation, which in turn 

alter the composition of structural glycoproteins in the extracellular matrix (ECM). This 

disruption of the ECM causes resident muscle stem cells to undergo fibrogenesis, rather 

than myogenesis, leading to abnormal collagen deposition and subsequent necrosis; 

multiple cycles of fibrosis and necrosis result in exhaustion of the stem cell pool (Heslop 

et al., 2000; Grounds et al., 2008). Progressive telomere shortening also has been 

associated with exhaustion of the muscle stem cell pool. Shorter telomeres have been 

reported in muscle cells from DMD patients compared with those of healthy individuals 

(Mouly et al., 2005; Sacco et al., 2010). Interestingly, human telomeres are shorter then 

mouse telomeres, which may explain why the X-linked muscular dystrophy (mdx) 

mouse model of DMD exhibits a less severe degenerative phenotype compared with the 

human disease. To test this, Sacco et al. (2010) engineered the mdx/mTR mouse strain, 

which lacks the RNA component of telomerase as well as dystrophin, and showed that 
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muscle wasting and a decline in muscle stem cells parallels human DMD when 

telomerase function is disturbed in the mouse.  

 

5.1 Role of resident myogenic progenitors 

The limitations encountered with myoblast transplantation have led many groups to 

pursue the identification of other populations of stem-like cells with myogenic 

properties for potential therapeutic application (Figure 7). These various progenitor 

cells differ in anatomical location, self-renewal, and differentiation potential, as well as 

cell surface marker expression (Zheng et al., 2007).  

 

 

Figure 7. Stem Cells resident in the muscle 

 

Whether these are derived from muscle resident satellite cells or other remnants of 

primary myogenesis is unclear. Some progenitor cells are associated with the circulatory 

system, suggesting that they may have the advantage of easy access to the vascular 

network throughout the muscle tissue, whereas others are in closer contact with 

myofibers. The phenotypes of these various resident stem cells have suggested specific 

modes of delivery to which they might be best suited. A subset of satellite cells in adult 

muscle that co-express markers associated with the vascular system have been 
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identified as myoendothelial cells (Zheng et al., 2007; Crisan et al., 2008). These are 

capable of long-term expansion in vitro and appear to support muscle regeneration at 

rates superior to myoblasts (Tamaki et al., 2002). Myoendothelial cells represent 0.4% 

of resident muscle stem cells and, on the basis of cell surface marker expression, share 

myogenic as well as endothelial features. The myoendothelial cell population (CD56+ 

CD34+ CD144+) can be purified from myogenic (CD56+ CD34- CD144+) and endothelial 

(CD56- CD34+ CD144+) cell populations on the basis of surface marker expression 

(Zheng et al., 2007). Other blood vessel-associated cells called pericytes, located beneath 

the basal lamina of small vessels (Crisan et al., 2008; Dellavalle et al., 2007), lack 

endothelial markers but express NG2 proteoglycan, platelet-derived growth factor 

receptor (PDGFR), and CD146. They can be derived by outgrowth from tissue explants 

and purified by sorting for alkaline phosphatase expression in the absence of CD56 

expression. Although pericytes lack expression of myogenic markers (Pax7, Myf5, 

MyoD), they differentiate into multinucleated myotubes when exposed to myogenic 

differentiation medium. Pericytes injected intra-arterially into immunodeficient mdx 

mice after in vitro expansion have led to formation of large numbers of new dystrophin-

expressing muscle fibers (Dellavalle et al., 2007).  

 

5.2 Directed differentiation of stem cells for muscle regeneration 

Several groups have reported the derivation of myogenic progenitor cells from human 

ESCs (hESCs). The exposure of hESC-derived embryoid bodies to serum in the presence 

of epithelial growth factor directed their differentiation toward myogenic precursors 

(Zheng et al., 2006). Darabi et al. (2008) used inducible Pax7- and Pax3-overexpressing 

mouse ESC (mESC) lines to direct myogenic commitment. Another approach taken to 

direct the differentiation of mESCs toward paraxial mesoderm has been the selection of 

PDGFR+ VEGFR2- cell populations from cultured mESC monolayers. VEGFR2 expression 

was excluded from paraxial mesoderm, whereas PDGFR+ VEGFR2+ cells were committed 

to lateral mesoderm (Sakurai et al., 2008). Barberi et al. (2007) enriched for a myogenic 

progenitor cell fraction from hESC-derived mesenchymal precursors. Transplantation of 

the CD73+ Neural Cell Adhesion Molecule (NCAM)+ cells to hind limb muscle of 

immunodeficient mice resulted in long-term survival and myofiber commitment. Other 

groups have taken advantage of known molecular cues to guide the differentiation of 

myogenic cells from hESCs. Activation of the transforming growth factor 

(TGF)/activin/nodal pathway through activin A and serum enhances endodermal 
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specification of hESCs (D’Amour et al., 2005). Mahmood et al. (2010) blocked the TGF 

pathway with SB431542 to obtain hESC-derived mesenchymal progenitors. 
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AIM OF THE WORK 

 

 

 The most exciting of all applications of stem cells could be their use in cell replacement 

therapies and regenerative medicine. The chronic shortage of organ transplants in 

conjunction with the limitation of artificial implants (prostheses) has intensified 

research in cell and tissue based therapies. The key advantage of cell and tissue therapy 

over pharmacological therapies to treating debilitating diseases and abnormalities is 

that the former offers “living biological replacements” while the latter merely provides a 

palliative solution. However, before stem cell based therapies could be transferred from 

the “bench to the bedside”, many fundamental biological and engineering challenges 

need to be overcome that include: controlling the self renewal of stem cells, directing the 

lineage/tissue-specific stem cell differentiation, in vivo delivery, and integration to the 

host milieu. Adult multipotent stem cells from peripheral blood present a viable option 

for easy manipulation to control self renewal and to direct towards a tissue specific 

differentiation. In this thesis, human peripheral blood multipotent cells (hPBMCs), 

which are isolated by standard protocol and characterized for an unique 

immunophenotype, tested for stability in long term culture and plasticity towards 

mesenchymal lineages in agreement with the guidelines defined by the International 

Society for Cellular Therapy (Dominici et al., 2006), have been tested for lineage 

switching capacity based on:  

 Analysis on directed differentiation of hPBMCs towards neuronal lineages by flow 

cytometry, RT-PCR, western blot and Immunofluorescence. 

 Evaluation of hPBMCs for their ability to acquire a functional neuronal phenotype 

by HPLC and spectrofluorimetry. 

 Validation of myogenic lineage shift responses of hPBMCs by flow cytometry, RT-

PCR, western blot and immunofluorescence. 

  Suitability of hPBMCs to integrate in a foreign milieu by in vivo responses in an 

induced muscle damage model. 
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MATERIALS AND METHODS 

 

 

1. Characterization of human Peripheral Blood Multipotent Cells (hPBMCs)  

Before testing shift lineage responses of multipotent cells from peripheral blood for 

their potential use in degenerative neural and muscle disorder treatment, a detailed 

characterization of cell population of interest was performed to assess their distinctive 

stem properties.  

Multipotent cells were isolated from peripheral blood using Ficoll-Hystopaque (Sigma-

Aldrich) for density gradient separation, and adherent cells were grown in proliferative 

culture medium prepared with Alpha-Modified Eagle Medium (α-MEM) Without 

Nucleosides (Life Technologies), 16.5% Fetal Bovine Serum (FBS) (Life Technologies), 

1% glutamax (Life Technologies), 1% antibiotic solution of penicillin (100mg/ml) and 

streptomycin (100mg/ml) (Sigma-Aldrich). After isolation and stabilization of cell 

culture, all characterization studies were carried out on three different hPBMC 

populations, each analysed at three different generations (VII, XV, XXXI). First of all, 

morphologic analysis was performed, using optical and scanning electron microscopy 

and cell proliferation rate was defined by investigating doubling time and population 

doubling level. After that, hPBMC immunophenotype was identified by flow cytometry, 

labeling cells with monoclonal antibodies against CD14, CD45, CD34, CD44, CD13, NG2, 

CD73, CD90, CD105, CXCR4 and HLA-DR. Cell karyotype stability was assessed by 

cytogenetic analysis, while Pluripotency marker (NANOG, OCT4, SOX2, REX1, klf4, c-Myc, 

NOTCH, STAT3) gene expression was quantified by Real-Time PCR. hPBMCs were finally 

tested for their capacity to differentiate towards mesenchymal lineage, by treating them 

with specific adipogenic and osteogenic factors. 

 

2. Lineage shift responses of hPBMCs 

2.1 Neuronal shift 

For the study of neurogenic differentiation, subcultures of hPBMCs (generations VIII-XV-

XXXI) were seeded on 6-well multiwell plates (BD Falcon) at a density of 104 cells/cm2. 

The cells were grown in specific inductive medium composed of Neurobasal Medium 

(Life technologies), 2% B27- (Life technologies), Epidermal Growth Factor (20 ng/ml) 

(EGF) (Sigma-Aldrich), basic Fibroblast Growth Factor (10 ng/ml) (bFGF) (Sigma-
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Aldrich), 1% glutamax, 1% penicillin and streptomycin solution. To optimize the 

treatment, inductive cultures were set up on surfaces conditioned with gelatin (Sigma-

Aldrich), prepared in MilliQ water at 2%. 

After coating obtained by incubation of 2 h at 37°C, the plates were washed with PBS 

and subsequently used for cell seeding. The change of medium was performed after 3 

days at which 50% of the total volume was replaced and on the seventh day, the culture 

medium was completely replaced with specific inductive medium composed of 

Neurobasal medium, 2% B27-, 0.5 mM retinoic acid (RA) (Sigma-Aldrich), 20 ng/ml 

Nerve Growth Factor (NGF) (Sigma-Aldrich), 1% glutamax, 1% penicillin/streptomycin. 

The culture was maintained for another 7 days. Control samples were prepared by 

growing the cells in standard hPBMCs medium composed of Neurobasal Medium, 2% 

B27-, 1% glutamax, 1% penicillin/streptomycin. 

 

2.2 Myogenic shift 

For the study of myogenic differentiation, subcultures of hPBMCs (7th generation) were 

seeded in 6-well plates at a density of 104 cells/cm². The hPBMCs were grown in 

standard medium composed of α-MEM, 16.5% FBS, 1% glutamax, 1% 

penicillin/streptomycin. On reaching a confluence of 90%, myogenic differentiation was 

performed using a myogenic induction medium, composed of proliferation medium 

supplemented with 100 ng/ml IGF and 200 µM Vitamin C. The medium was changed 

every 3 days. As a control, cells were cultured in proliferation medium.  

 

2.3 Assessment of neurogenic and myogenic shift responses 

hPBMCs were assessed at time intervals of 7 and 14 days for neurogenic differentiation 

response and 3, 7 and 14 days, in case of myogenic differentiation, by optical and 

scanning electron microscopy, flow cytometry, RT-PCR, immunofluorescence and 

Western blotting. 

 

3. Morphologic analysis by optical microscopy 

Cell cultures treated with neurogenic and myogenic factors were daily analysed by a 

DM/IL optical microscope and, at 7 and 14 days of treatment, images were captured by a 

Nikon Digital Sight DS-SMC camera (Nikon Corporation). 
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4. Scanning Electron Microscopy (SEM) study 

A better morphologic analysis was performed by SEM (Scanning Electron Microscopy): 

differentiated hPBMC cultures were seeded on sterile glass slides (Falcon) and grown in 

proliferation medium. After 24 hours, samples were fixed with 0.1 M cacodylate buffer 

solution, pH 7.2 (Sigma) in 3% glutaraldehyde (Sigma) and stored at 4°C until the time 

of dehydration, which was performed by immersion in increasing concentrated alcohols 

(70%, 90%, 95%) (5 min/alcool). Cells were then kept in absolute alcohol until analysis, 

and subsequently subjected to Critical Point Drying and metallized with gold. The 

images were acquired using Jeol JSM 6490 scanning electron microscope of CUGAS, 

Interdepartmental Service Centre at University of Padua. 

 

5. Flow cytometry evaluation  

The identification of specific neural and muscle membrane markers on differentiated 

hPBMC populations was performed by flow cytometry. 

 

5.1 Flow cytometry 

Flow cytometry (FCM) is a technology that simultaneously measures and then analyzes 

multiple physical characteristics of single particles, usually cells, as they flow in a fluid 

stream through a beam of light. The properties measured include a particle’s relative 

size, relative granularity or internal complexity, and relative fluorescence intensity. 

These characteristics are determined using an optical-to-electronic coupling system that 

records how the cell or particle scatters incident laser light and emits fluorescence. 

Flow cytometry is routinely used in the diagnosis of health disorders, especially blood 

cancers, but has many other applications in both research and clinical practice. 

A flow cytometer is made up of three main systems: fluidics, optics, and electronics 

(Figure 8):  

 the fluidics system transports particles in a stream to the laser beam for 

interrogation; 

 the optics system consists of lasers to illuminate the particles in the sample 

stream and optical filters to direct the resulting light signals to the appropriate 

detectors; 

 the electronics system converts the detected light signals into electronic signals 

that can be processed by the computer.  
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Figura 8. Flow cytometer components 

 

In the flow cytometer, particles are carried to the laser intercept in a fluid stream. Any 

suspended particle or cell from 0.2–150 micrometers in size is suitable for analysis. Cells 

from solid tissue must be disaggregated before analysis. The portion of the fluid stream 

where particles are located is called the sample core. When particles pass through the 

laser intercept, they scatter laser light. Any fluorescent molecules present on the particle 

fluoresce. The scattered and fluorescent light is collected by appropriately positioned 

lenses. A combination of beam splitters and filters steers the scattered and fluorescent 

light to the appropriate detectors. The detectors produce electronic signals proportional 

to the optical signals striking them (Figure 9). 
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Figure 9. Cell analysis on the flow cytometer 

 

In FCM, the identification of specific cell markers is performed by using fluorochrome-

conjugated antibodies. Fluorochromes are fluorescent compounds which absorb light 

energy over a range of wavelengths that is characteristic for that compound. This 

absorption of light causes an electron in the fluorescent compound to be raised to a 

higher energy level. The excited electron quickly decays to its ground state, emitting the 

excess energy as a photon of light. This transition of energy is called fluorescence. The 

range over which a fluorescent compound can be excited is termed its absorption 

spectrum, while the range of emitted wavelengths for a particular compound is termed 

its emission spectrum. The absorption and emission peaks are 15-40 nm shifted (Stokes 

shift) (Figure 10). 
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Figure 10. Typical fluorochrome absorption-emission spectral diagram 

 

The argon ion laser is commonly used in flow cytometry because the 488-nm light that it 

emits excites more than one fluorochrome. One of these fluorochromes is fluorescein 

isothiocyanate (FITC). In the absorption spectrum of FITC, the 488-nm line is close to 

the FITC absorption maximum. Excitation with this wavelength will result in a high FITC 

emission. More than one fluorochrome can be used simultaneously if each is excited at 

488 nm and if the peak emission wavelengths are not extremely close to each other. The 

combination of FITC and phycoerythrin (PE) satisfies these criteria. The excitation and 

emission spectra of each of these fluorochromes is shown in Figure 11. 

 

  

Figure 11. FITC and PE emission spectra 
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5.2 Immunophenotype shift of differentiated hPBMCs 

For flow cytometry analysis, differentiated hPBMC subcultures were detached from the 

culture dish by EDTA/trypsin treatment, centrifuged at 1200 rpm for 5 min and finally 

resuspended in PBS, 0.2% bovine serum albumin (BSA ) (Sigma-Aldrich) (PBS-BSA) . 

Each sample was prepared by treating, at room temperature (RT) in the dark for 15 min, 

2x105 cells/100μl PBS-BSA with 5 μl of the following primary monoclonal antibodies: 

mouse anti-human Tyrosine Hydroxylase (TH), mouse anti-human Microtubule 

Associated Protein 2 (MAP2), mouse anti-human βIII Tubulin (TBB3) (Millipore), mouse 

anti-human Tropomyosin (TPM), mouse anti-human, mouse anti-human CD73, mouse 

anti-human CD105, mouse anti-human Myogenic factor 5 (Myf5), mouse anti-human 

Myoblast determination protein 1 (MYOD) (Santa Cruz). After incubation with the 

unconjugated primary antibody, samples were rinsed in PBS-BSA and treated at room 

temperature (RT), in the dark for 15 min with the secondary antibody FITC- or PE- 

conjugated. In parallel, indirect labeling controls have been set up as cells labeled only 

with the secondary antibody. At the end of the procedure, all samples were rinsed with 

PBS-BSA and centrifuged at 1200 rpm for 5 min. Analysis was performed on FACS Canto 

II (Becton Dickinson) resuspending samples in 200 μl of FacsFlow buffer. Data relative 

to 104 total cells were acquired using FacsDIVA software, in the wavelength range from 

530 ± 40 nm (FITC) and 580 ± 30 nm (PE). Results have been expressed as percentage of 

positive cells compared to the control sample and were obtained by applying the 

statistical function Substraction of Summit 4.3 software. 

 

6. RT-PCR 

RT-PCR technique allows to identify the presence of a specific messenger RNA (mRNA) 

by reverse transcription of the same and the amplification of the cDNA complementary 

to it. 

 

a) Extraction of total RNA 

The procedure of extraction of mRNA was done using Trizol® Reagent (Sigma-Aldrich), a 

monophasic solution of phenol and guanidine isothiocyanate. Induced cells were 

detached, rinsed in PBS, fixed in RNA later R0901 (Sigma-Aldrich), kept at 4°C for one 

night and then frozen at -80°C until extraction of RNA. At the time of extraction, each 

sample was treated first with 1 ml of Trizol for 5min, at RT and then with 200 μl of 

chloroform. To promote greater separation of RNA, the samples were shaken by hand 
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for 15 sec and then incubated at RT for 3 min. After centrifugation at 12000 rpm for 

15min at 4°C, the samples were resolved as a lower phase containing proteins, white 

interphase containing DNA and finally an upper aqueous and colorless phase, containing 

RNA. After collection of the aqueous phase, the precipitation of RNA was performed by 

adding 500 μl of isopropanol (Fluka) (0.5 ml per 1 ml of Trizol used) and mechanically 

shaking the sample. After incubation for 10 min at RT, the sample was centrifuged at 

12000 rpm for 10 min at 4°C. After removal of the supernatant, the pellet was washed 

with 1 ml of cold 75% ethanol and then centrifuged at 8600 rpm for 5 min, at 4°C. The 

supernatant was removed and the pellet was allowed to air dry for 5-10min and then 

resuspended in 10 μl of RNase-free water (Life technologies). After quantification by 

spectrophotometric analysis, RNA samples were stored at -80°C. 

 

b) Spectrophotometric quantitation of extracted RNA  

The quantification of RNA was performed by the spectrophotometer NanoDrop 2000 

(Thermo Scientific) measuring absorbance of 1 μl of sample at the wavelength of 260 

nm. In parallel, purity of the sample was evaluated by identification of absorbance at 

280 and 230 nm, corresponding respectively to absorbance wavelength of proteins and 

carbohydrates. RNA samples, whose 260/280 ratio were in the range of 1.8 - 2.0, were 

further used for gene expression studies. 

 

c) One Step RT -PCR 

The study was conducted using the Qiagen® One Step RT-PCR Kit, which allows to run in 

a single tube, the reverse transcription of RNA into cDNA and then its amplification, 

using a mixture of enzymes specially formulated containing a) Sensiscript and 

Omniscript Reverse Transcriptases (reverse transcription)and b) HotStarTaq DNA 

Polymerase (amplification). Specific action and efficiency of the system is dependent on 

temperature. During reverse transcription, the HotStarTaq DNA Polymerase is 

completely inactive. Instead, during amplification, simultaneously with the deactivation 

of the reverse transcriptase, DNA polymerase is activated at a temperature of 95°C. The 

reaction mixture (25 μl) was prepared in ice using 1 μl of RNA at a concentration of 30 

ng/μl, 3 μl forward primer (5 μM), 3 μl reverse primer (5μM), 1 μl dNTP mix (10mM), 1 

μl Qiagen® One Step RT-PCR Enzyme Mix, 1 μl RNase inhibitor (125 U), 5μl 5X buffer and 

RNAse-free water. One Step RT-PCR was performed with the thermal cycler iCycler iQ™ 

(Bio-Rad) and the conditions reported in Table 1. 
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Reaction Step Time Temperature 

Reverse Transcription: 30 min 50°C 

Initial PCR activation step: 15 min 95°C 

3 step cycling   

Denaturation: 1 min 95°C 

Annealing: 1 min 50-68°C 

Extension: 1 min 72°C 

Number of cycles 40  

Final extension: 10 min 72°C 

Table 1. Thermal cycler conditions 

 

The primer pairs used for RT-PCR analysis are shown in Table 2. In parallel, the 

expression of the housekeeping gene GAPDH was also evaluated. 

 

Primers Abbreviation Sequence (5’-3’) Reference Lenght 

Microtubule-associated protein 2 MAP-2 F- GAGGTTGCCAGGAGGAAATCAGT NM_002374.3 703 bp 

  R- GCCCTGAAGCCATCTGTCCAAA   

Synaptophysin SYP F- TGTGAAGGTGCTGCAATGGGTC NM_003179.2 337 bp 

  R- GGGCCCTTTGTTATTCTCTCGGT   

Glutamate aspartate transporter GLAST F- ATCGCCTGCCTGATCTGTGGAAA U01824.1 249 bp 

  R- AACGAAAGGTGACAGGCAAAGT   

Neurofilament, medium 
polypeptide 

NEFM F- AATATGCACCAGGCCGAAGAGT NM_005382.2 296 bp 

  R- AAATGACGAGCCATTTCCCACT   

Neurogenin 1 NEUROG1 F- GCGCTTCGCCTACAACTACATCT NM_006161.2 301 bp 

  R- TGAAACAGGGCGTTGTGTGGAG   

Nestin NES F- GACACCTGTGCCAGCCTTTCTTA NM_006617.1 469 bp 

  R- TGCTGCAAGCTGCTTACCACTTT   

βIII tubulin TBB3 F- CAACGAGGCCTCTTCTCACAAGT NM_006086.3 325 bp 

  R- TACTCCTCACGCACCTTGCTGAT   

Nerve Growth Factor NGF F- GCCCACTGGACTAAACTTCAGCA NM_002506.2 356 bp 

  R- GATGTCTGTGGCGGTGGTCTTA   

Brain-derived neurotrophic 
factor 

BDNF F- GCAAACATCCGAGGACAAGGTG NM_170735.5 244 bp 

  R- GCTCCAAAGGCACTTGACTACT   

Glial-derived neurotrophic factor GDNF F- GCGCTGAGCAGTGACTCAAATA NM_000514.3 275 bp 

  R- GTTTCATAGCCCAGACCCAAGT   
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Neuronal Nuclei Antigen NeuN F- ACCAACGGCTGGAAGCTAAATC 
NM_0010825

75.1 
216 bp 

  R- ATCCATCCTGATACACGACCGCT   

Myogenic factor 5 Myf5 F- ACCCTCAAGAGGTGTACCACGA NM_005593.2 213 bp 

  R- ACAGGACTGTTACATTCGGGCA   

Myoblast determination 
protein 1 

MYOD1 F- GCCACAACGGACGACTTCTATGA NM_002478.4 316 bp 

  R- GGCCTCATTTACTTTGCTCAGGC   

Tropomyosin TPM F- AGCACATTGCTGAAGATGCCGAC 
NM_0010180

05.1 
244 bp 

  R- AGCTTGTCGGAAAGGACCTTGA   

Skeletal α-actin ACTA1 F- TCACGAGACCACCTACAACAGCA NM_001100.3 263 bp 

  R- CTCCTGCTTGGTGATCCACATCT   

Glyceraldehyde 3-phosphate 
dehydrogenase 

GAPDH F- GGTCGGAGTCAACGGATTTGGT NM_002046.3 887 bp 

  R- AAAGTGGTCGTTGAGGGCAATG   

Table 2. Primer pairs for RT-PCR 

 

d) Agarose gel Electrophoresis  

The electrophoretic analysis of PCR reaction products was performed by running 

samples on 2% agarose gel (Sigma-Aldrich) prepared in 1X TBE buffer (tris, 0.04mM 

Borate, 0.001M EDTA, pH 8) (Sigma-Aldrich). For loading, 6 μl of amplified product were 

mixed with 2 μl of loading dye (Sigma-Aldrich). As a reference marker to the molecular 

weights between 100 and 1000 bp, the PCR 100 bp Low Ladder (Sigma-Aldrich) was 

used. The bands of amplified samples were visualized by staining with Gel Red 

(0.1μl/ml) (Biotium) and exposure to UV light. Images were acquired with Gel Doc 2000 

(Bio-Rad). 

 

7. Real Time PCR (qPCR) 

Real-Time PCR is a technique used to monitor the progress of a PCR reaction in real 

time. At the same time, a relatively small amount of PCR product (DNA, cDNA or RNA) 

can be quantified. Real-Time PCR is based on the detection of the fluorescence signal 

produced by a reporter molecule which increases, as the reaction proceeds. This occurs 

due to the accumulation of the PCR product with each cycle of amplification. By 

recording the amount of fluorescence emission at each cycle, it is possible to monitor the 

PCR reaction during exponential phase (Lekanne Deprez et al., 2002). In this work, 

SYBR® Green was used as dye reporter for fluorescence signal generation. SYBR® Green 

I binds to the minor groove of the DNA double helix. In the solution, the unbound dye 
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exhibits very little fluorescence. This fluorescence is substantially enhanced when the 

dye is bound to double strand DNA. SYBR® Green remains stable under PCR conditions 

and the optical filter of the thermocycler can be affixed to harmonize the excitation and 

emission wavelengths. SYBR Green fluorescence upon binding double strand DNA is 

detected by the qPCR machine’s detector so, as the amount of target sequence increases 

in the reaction mix, there will be a corresponding increase in the fluorescent signal. It 

allows to measure the number of cycles required for detection of a fluorescent signal 

(threshold cycle, Ct) and use it to quantify the level of expression of the target sequence, 

defined by comparison with that of a housekeeping gene (reference). In fact, the greater 

the number of starting copies of the target gene, the lower the amplification cycle in 

which a significant increase of the fluorescence will be observed. Since SYBR® Green 

technology does not allow to distinguish between specific and unspecific amplification 

products, it is important to perform melting point analysis after each qPCR run. The 

utility of this analysis derives from the observation that the temperature at which a DNA 

duplex will denature is dependent upon length and nucleotide composition. 

Fluorescence measurements are made while slowly increasing the temperature of the 

reaction products (in this case, from 55° to 95°C). At the low temperature, the amplicons 

are all double stranded and thus bind the SYBR Green dye, producing a strong 

fluorescence signal. As the temperature increases, the PCR products are denatured, 

resulting in a decrease in fluorescence. This fluorescence is measured continuously and 

when the Tm (melting temperature) of a particular target gene is reached, there will be a 

rapid decrease in the fluorescence over a short temperature range. This is detected by 

the instrument and plotted as the first negative differential of the fluorescence signal 

with respect to temperature. In case of specific amplification, the plot will appear as one  

peak centered on the specific Tm of the target gene. 

 

7.1 RNA reverse transcription with random hexamers 

The total RNA extracted from hPBMCs was reverse transcribed into cDNA with reverse 

transcriptase enzyme using as a primer a mixture of hexanucleotides. To performed this 

reaction, the kit "Thermoscript™ RT-PCR System" (Life technologies) was used. The 

reaction was carried out in a 0.2-ml tube by adding 1 µl of random hexamers (10 ng/µl), 

2 μl of dNTP mix (10 mM), a volume of mRNA containing 1 µg of nucleic acid, and finally 

water RNase-free up to a total volume of 12 μl. After incubation at 65°C for 5 min to 

promote RNA denaturation, 4 μl of cDNA Synthesis 5X buffer, 1 µl of DDT (0.1 M), 1 µl of 
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RNAse OUT™, 1 µl of Thermoscript™ and 1 µl of water were added to the tube. The 

reaction was performed in the iCycler iQ™ thermocycler (Bio-Rad) under the following 

conditions: 25°C 10 min (binding of RNA hexamers), 55°C 45 min (reverse 

transcription) and 85°C 5 min (transcriptase enzyme inactivation). Finally 1 µl of 

RNasiH was added and samples were incubated at 37°C for 20 min: this is useful to 

degrade the RNA left. After reverse transcription, the cDNA was stored at -20°C. 

 

7.2 qPCR reaction 

The cDNA samples obtained by reverse transcription were amplified using the 

oligonucleotides listed in Table 3 and HPRT (hypoxanthine phosphoribosyltransferase) 

as the reference gene for data quantitation.  

For cDNA amplification, the kit Platinum® SYBR® Green qPCR SuperMix - UDG (Life 

Technologies) was used. It consists of a SuperMix containing Platinum® Taq DNA 

polymerase, SYBR® Green I, Tris-HCl, KCl, 6 mM MgCl2, 400 mM dGTP, 400 mM dATP, 

400 mM dCTP, 800 mM dUTP, the enzyme uracil DNA glycosylase (UDG) , and other 

reaction stabilizers. The reaction was carried out in a 0.2-ml tube by adding 12.5 ml of 

the described mix, 0.5 μl of forward primer (10 µM) and reverse primer (10 µM), 2 μl of 

cDNA and 9.5 μl of RNAse-free water. The amplification conditions were the following: 

50°C for 2 min (to allow the action of the enzyme UDG), 95°C for 2 min, 40 cycles of 

denaturation at 95°C for 30 sec, annealing at 50°C for 30 sec and extension at 72°C for 1 

min. At the end of the amplification, the melting curves were obtained in a range of 

temperatures between 55 and 95°C, increasing one degree per second. 

Real-Time PCR was performed using the DNA Engine Opticon® Real-Time Thermal 

Cycler (MJ Research), a 96-well plate thermocycler with a fluorescence detector, a light 

source (LED Lamp) and the Opticon Monitor 3 software for data extraction. This 

detection system allows to monitore qPCR products: during each amplification cycle, 

fluorescence emissions are collected from each tube and at the end of PCR reaction data 

are processed by the software. 
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Primers Abbreviation Sequence (5’-3’) Reference Lengh 

Nanog homeobox  NANOG  F- CGGACAAAGAGTTGGCTGTGCAAT NM_024865.2  106 pb  

  R- AGCTGGGTGGAAGAGAACACAGTT   

POU class 5 homeobox  OCT4  F- TATGCAAAGCAGAAACCCTCGTGC NM_002701.4 102 pb 

  R- TTCGGGCACTGCAGGAACAAATTC   

Zinc finger protein, 
omolog 42  

REX1  F- TGGAGGAATACCTGGCATTGACCT NM_174900.3  105 pb  

  R- AGCGATTGCGCTCAGACTGTCATA   

Sex determining region Y 

box 2  
SOX2  F- CACATGAAGGAGCACCCGGATTAT NM_003106.3  191 pb  

  R- GTTCATGTGCGCGTAACTGTCCAT   

Kruppel-like factor 4  KLF4  F- TGAACTGACCAGGCACTACCGTAA NM_004235.4  106 pb  

  R- TCTTCATGTGTAAGGCGAGGTGGT   

Gene coding for p67 

myc protein  
c-Myc F- ACAGCATACATCCTGTCCGTCCAA D10493.1  79 pb  

  R- TGTTCTCGTCGTTTCCGCAACAAG   

Signal transducer and 
activator of transcription 3  

STAT3  F- ATGGAAGAATCCAACAACGGCAGC NM_213662.1  175 pb  

  R- GGTCAATCTTGAGGCCTTGGTGA   

Hypoxanthine 

phosphoribosyltransferase 1 
HPRT1  F- ATGGACAGGACTGAACGTCTTGCT NM_000194.2  79 pb  

  R- TTGAGCACACAGAGGGCTACAATG   

Table 3. Primers for Real-Time PCR 

 

8. Western Blotting 

 Western blotting or immunofixation is a biochemical technique that allows to identify a 

specific protein in a protein extract, through the binding with specific antibodies. In 

general, proteins are first separated on a polyacrylamide gel based on the molecular 

weight and then transferred to a membrane nitrocellulose or polyvinyldifluoride 

(PVDF). The target protein is then recognized through the use of a specific primary 

antibody and a secondary conjugated to an enzyme or a fluorophore. 

 

a) Extraction of proteins 

After treatment with Trizol (Sigma-Aldrich), proteins in the phenol-chorloform fraction 

were collected, treated with 300 µl of absolute ethanol and then incubated for 2 -3 min 

at RT. After centrifugation at 4°C for 5 min, at a speed of 4600 rpm, the supernatant was 

collected and treated for 10 min with 1.5 ml of isopropanol (Carlo Erba). The samples 

were then centrifuged for 10 min at 12000 rpm and the pellet was collected, treated 
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with 2 ml of a solution 0.3 M guanidinium chloride for 20 min and finally centrifuged at 

9000 rpm for 5min. The samples were further purified by washing for 20 min, at room 

temperature with 2 ml of absolute ethanol. After centrifugation at 9000 rpm for 5min at 

4°C, the pellet was dried for 5-10min and then resuspended in 100 µl of 1X SDS and then 

stored at -20°C until the time of protein quantification. 

 

b) Protein Quantification 

The quantification of proteins extracted included the use of the BCA Protein Assay 

Reagent Kit (Pierce). This method combines the reduction of copper (Cu+2 → Cu+1) 

carried out by the target protein in an alkaline medium (the biuret reaction) with the 

colorimetric determination of the cation Cu+1 by bicinchoninic acid (BCA). In particular, 

the colorimetric reaction is given by the chelation of two molecules of BCA with a copper 

ion. The absorbance of this complex is water-soluble at 562 nm with corresponding 

increase of protein concentration. For the assay quantification, a set of 8 dilutions of the 

stock standard BSA (2 mg/ml; Pierce) and a blank solution (Table 4) were prepared. 

Subsequently, 25 μl of each dilution solution and the samples to be quantified were 

placed in 96-well plates and 200 μl of Working Reagent was added to all the wells. The 

plate was then incubated for 30 min at 37°C. The Working Reagent solution was 

prepared by mixing 50 parts of Reagent A (sodium carbonate, sodium Bicarbonate 

reagent for the detention of BSA and sodium tartrate in 0.2 N NaOH), with a part of 

reagent B (solution of copper sulphate to 4%).  

 

 Diluent (µl) BSA (µl) [BSA] (mg/ml) 

A 0 300 µl from stock solution 2 

B 125 375 µl from stock solution 1,5 

C 325 325 µl from stock solution 1 

D 175 175 µl from standard B 0,75 

E 325 325 µl from standard C 0,5 

F 325 325 µl from standard E 0,25 

G 325 325 µl from standard F 0,125 

H 400 100 µl from standard G 0,025 

I 400 0 0 mg/ml = blank 

Table 4. BSA standard dilutions 
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The absorbance was then measured at a wavelength of 562 nm using the Microplate EL 

13 autoreader tool (Bio-Tek Instruments). The calibration curve was prepared using the 

concentrations of standard. Using linear regression analysis, performed on the computer 

(Prism, Graph Pad), standard equation was calculated to extrapolate the protein 

concentration (mg/ml) of the individual samples.  

 

c) Polyacrylamide gel electrophoresis 

This procedure allows to analyze and separate the proteins, exploiting their size and 

their charge (Figure 12). The gel is prepared by copolymerization of acrylamide 

(monofunctional monomer) (CH2 = CH-CO-NH2) and an agent that form cross-links to 

form a three-dimensional lattice (N,N'-methylene bisacrylamide) (bifunctional 

monomer) (CH2 = CH-CO-NH-CH2-NH-CO-CH = CH2). The polymerization takes place by 

means of a chain reaction due to the formation in a series of free radicals by addition of 

ammonium persulfate and the base N, N, N', N'-tetraetilendiammina (TEMED). TEMED 

catalyzes the decomposition of the ion persulfate with the production of the 

corresponding free radical. In this way long chains of acrylamide are formed. These are 

held together by bonds arising from the occasional intersection within the chain of 

molecules bis-acrylamide. 

 

 

Figure 12. Protein gel electrophoresis equipment 

 

The polyacrylamide gel is composed of two parts: the stacking gel and the running gel. 

The stacking gel is to concentrate the sample protein loaded into the appropriate wells, 

so that all samples are at a same level, when they begin to separate. The running gel 

allows to separate proteins according to their molecular weight. Stacking gel and 
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running gel have same composition but have a different concentration of acrylamide, 

usually lower in the stacking gel (Table 5). In particular, the composition of the running 

gel is decided according to the size of the protein to be detected. A higher concentration 

allows to separate the small proteins from those of larger. For the analysis of TH protein, 

NSE, β-III tubulin in the treated samples in case of neuronally induced cells and 

Myogenin and Myosin Heavy chain (MHC), in case of myogenic differentiation, it is was 

used a 4% stacking gel and a 10% running gel. Acrylamide, ammonium persulfate (APS), 

the TEMED were purchased from Bio-Rad company while SDS and Tris-HCl from Sigma -

Aldrich. 5 μg of total protein was loaded for each sample, supplemented with SDS and 

loading buffer (Bio-Rad) in a total volume of 30 μl. In parallel, 5 μl ProteinTM, the 

Precision Plus Dual Color (Bio-Rad) for the definition of the molecular weight reference, 

was loaded. After loading, electrophoresis apparatus was filled with 1M running buffer, 

with the lid closed, and after connecting the electrodes, electrophoretic run was 

performed at 140 Volt for 2 h. 

 

4% Stacking gel 12% Running gel 

Acrylamide and bis-Acrylamide solutions  

(37:1) 

Acrylamide and bis-Acrylamide solutions 

(37:1) 

0.5 M Tris-HCl, pH 6.8 1.5 M Tris-HCL, pH 8.8 

MilliQ water MilliQ water 

10% SDS 10% SDS 

10% APS 10% APS 

TEMED TEMED 

Table 5. Stacking and Running gel composition 

 

d) Transfer 

At the end of the run, the gel was transferred into the apparatus, in contact with the 

PVDF membrane and the electrophoretic run was performed at 25 Volt overnight, at 4°C 

(Figure 13). The transfer of the proteins from the gel to the membrane was verified by 

staining with Ponceau Red (Sigma-Aldrich): the membrane was immersed for a few 

minutes in the dye solution and then rinsed with distilled water. 
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Figure 13. Protein transfer on PVDF membrane 

 

e) Immunoblotting 

To prevent any non-specific interactions with the antibody, the membranes were 

saturated in 5% milk (Sigma-Aldrich) in PBS, for 2 h, under stirring. Subsequently, the 

membranes were treated for one night at 4°C with rabbit polyclonal antibody anti-

human Tyrosine Hydroxylase (TH) (Millipore), monoclonal mouse anti-human β-III 

tubulin (Millipore) diluted 1:1000 in 1% milk in PBS, monoclonal mouse anti-human 

myogenin, monoclonal mouse anti-human MHC and with the monoclonal antibody 

mouse anti-human Neuron Specific Enolase (NSE) (Millipore) diluted 1:500 in 1% milk 

in PBS. Mouse and rabbit anti-human GAPDH antibodies (Millipore; diluted 1:1000) 

were used as control protein. At the end of the incubation period, the antibody solution 

was aspirated and subsequently repeated washes with PBS + 0.25% Tween (Bio Rad). 

Subsequently, the membrane was incubated for 1 h with a solution of the secondary 

antibody anti-rabbit-HRP or anti-mouse HRP (Bio-Rad) diluted (1:5000) in 1% milk 

prepared in PBS. 
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f) Detection of signal 

The signal detection was performed after repeated washings of the membranes with 

PBS + 0.25% Tween and incubation of the membrane with the Chemiluminescent 

Peroxidase Substrate (Sigma-Aldrich) for 1 min, prepared using the solutions A and B in 

the ratio 1:1. Once dried, the membrane was placed in a Deposit autoradiography, in the 

dark and in contact with an autoradiographic film (Sigma-Aldrich) for a variable time 

depending on the antibody (5-30 min). Subsequently, the impressed plate was 

developed by incubation in liquid development XOMAT EX II and fixing RP X-OMAT LO 

(Kodak). 

 

9. Immunofluorescence 

This technique allows to detect the presence of specific antigens in the sample of 

interest using antibodies conjugated directly or indirectly with fluorescent substances. 

In this work, the immunolocalization of the target of interest was performed by indirect 

staining with the following primary antibodies : polyclonal rabbit anti-human Tyrosine 

Hydroxylase (TH) (Millipore), monoclonal anti-human Neuronal Nuclei (NeuN) 

(Millipore), monoclonal mouse anti-human Neurofilament (NEFM) ( Millipore), rabbit 

polyclonal anti-human Dopamine Transporter (DAT) (Santa Cruz), rabbit polyclonal 

anti-human Musashi (Millipore), monoclonal mouse anti-human Nestin (NES) 

(Millipore), monoclonal mouse antihuman Neural Cell Adhesion Molecule (NCAM) 

(Millipore). For myogenic differentiation, monoclonal mouse anti-human myogenin and 

monoclonal mouse anti-human MHC were used. For each marker, the primary antibody 

was subsequently localized with the secondary antibody FITC-conjugated donkey anti-

rabbit/anti-mouse (Millipore). The samples were then fixed in BD CytofixTM Fixation 

Buffer (BD Biosciences) for 20min at 4°C and then rinse with cold PBS. The deactivation 

of nonspecific sites was performed treating the samples with donkey serum (DS) 

(Sigma-Aldrich) prepared at 10% in PBS. Each sample was then treated overnight at 4°C 

in a humidity chamber with 100 µL of the primary antibody solution (1:250) prepared in 

PBS + 10% HS ( Sigma Aldrich). After three washes with PBS + 3% DS, each sample was 

incubated for 30 min, at room temperature, in humidity chamber, with secondary 

antibody (1:200) in PBS + 1.5% DS. After three washes with PBS, the samples were 

mounted with the mounting medium with DAPI (Vectastain) for nuclear 

counterstaining. 
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10. Evaluation of membrane properties: measurement of intracellular calcium  

To perform the detection of intracellular calcium, Jasco FP-6500 spectrofluorometer was 

used. This analysis allows us to determine whether the cells, following neuronal 

induction, have acquired the ability to transport calcium in them and release from 

intracellular stores, a typical feature of excitable cells such as cells of the nervous 

system. Calcium plays, in fact, an important role as a mediator in the transduction of 

transmembrane signals. After 14 days of induction, the treated samples (T7 and T14) 

and controls (C14) were stimulated with 56 mM KCl at room temperature for 30 min. 

Each sample was then incubated for 30 min at 37°C with 5 μl of calcium fluorescent 

indicator Indo-1 AM (Life technologies), which is a membrane-permeable dye used for 

determining changes in calcium concentrations in the cell using fluorescence signal 

detection. Once Indo-1 enters the cell, esterases cleave the AM group yielding a 

membrane-impermeable dye. Upon binding calcium, there is a shift in the peak emission 

of Indo-1 (Figure 14). The analysis was carried out at 37°C in PBS, before and after 

permeabilization of the cells with 0.05% Triton X-100. The samples were excited at a 

wavelength of 355 nm and the fluorescence intensity was recorded in a range of 

wavelength 355-600 nm. 

 

 

Figure 14. Free and bound INDO-1 AM fluorescence emission  

 

11. HPLC analysis for neurotransmitter release 

The inductive medium of hPBMCs were discarded after 7 and 14 days of neuronal 

differentiation and the cultures were placed in HBSS for 30 min at 37°C under 

stimulation with 56 mM KCl. The supernatant was collected and separation of the 

injected samples (20 μl) was achieved by isocratic elution on a Hewlett- Packard Series 
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1050 HPLC system with a reverse-phase C18 column (3 μm particle size, 80x4.6 mm 

dimension, ESA, Inc.) (Figure 15) in a commercially available MD-TM mobile phase (ESA 

Inc.). The flow rate was set at 1 ml per min, resulting in a working pressure of 100 bar 

and the results were validated by co-elution with nor adrenaline standards under 

varying buffer conditions and detector settings. The baseline elutions were detected. 

 

 

Figure 15. HPLC analysis of catecholamines 

 

12. In vivo evaluation of hPBMCs in an induced muscle damage model 

Regenerative potential of isolated hPBMCs was assessed in vivo by transplanting cells 

into a rat model of muscle damage (Figure 16). After Lewis rats (n=6) were anesthetized 

gaseously, an incision was made in the cutaneous followed by subcutaneous layer to 

reveal the tibialis anterior muscle. After That, 0.5 ml of 0.5% bupivacaine hydrochloride 

diluted in saline was injected both at the two ends and in the middle part of the muscle, 

as described by Hill and Goldspink (2003). After surgery, the animals were treated with 

antibiotic (Baytril 0.2 ml/kg for two days) and painkillers (Contramal 3-5 mg/kg 2-3 

times daily intramuscularly for 2-3 days). hPBMCs were stained with 15 nM Qdot 800 

(cell labeling kit, Life technologies) for 45 min at 37°C and then washed with PBS to 

remove excess staining material. After 48 hours of muscle damage, pre-stained hPBMCs 

(1.5x105 cells per animal, n=6) were injected intramuscularly. Animals (n=6) treated 

with physiological solution were considered as controls. The animals were treated with 

antibiotics and painkillers as described above and were sacrificed by overdose of 
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anesthesia after 7 and 14 days from the administration of the cell suspension. The 

muscle specimens were fixed using isopentane and liquid nitrogen vapours and sections 

were made using Thermo RTE-111 cryostat (Leica). 

Immunofluorescence staining was done using rabbit anti human vimentin antibody (Cell 

signaling) and mounted with DAPI to stain the nuclei. 

 

 

Figure 16. In vivo experimental plan 
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RESULTS AND DISCUSSION 

 

 

1. hPBMC characterization study  

Research studies on cell populations for tissue regeneration require to identify cellular 

and molecular properties to confirm their pluripotency and determine their 

regenerative potential for in vivo experiments.  

The invitro model of hPBMCs, used for lineage shift studies, was found to possess 

distinct characteristics (Figure 17). They represented a unique population with a 

fibroblastic morphology (Figure 17 A). The population doubling time was calculated to 

be 48 hours and they had a constant population doubling level till 31 passages (Figure 

17 B). They possessed a stable karyotype during long term culture (Figure 17 C). The 

flow cytometry characterization revealed an immunophenotype of 

CD73+/CD105+/CD90+/CD34+/CD13+/ NG2+/ CD44-/CD14-/CD45-/HLA-DR- (Figure 17 

D). hPBMCs showed differentiative potential towards adipogenic and osteogenic 

lineages (Figure 17 E, F) and were found to express various pluripotency genes such as 

Nanog, OCT4, Rex1, Sox2, Klf4, C-Myc, NOTCH and STAT3 (Figure 17 G). 

 

 

Figure 17. In vitro characterization model of hPBMCs. (A) Morphological analysis by SEM. (B) Population 

Doubling study. (C) Karyotype analysis. (D) Immunophenotype investigation by flow cytometry. (E) 

Adipogenic (Oil Red O) and (F) osteogenic (Von Kossa) differentiation responses. (G) Gene expression 

profile identification by qPCR 
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2. Neurogenic shift responses of hPBMCs 

At specific time intervals, the lineage shift responses of hPBMCs towards neuronal 

phenotype were documented stage by stage. The morphological analysis of hPBMCs was 

the first indication that they were responding to the external stimuli as noted by the 

gradual change in their organization (Figure 18). The control cultures (C7) that were 

maintained only in Neurobasal medium tend to stay away from the differentiation 

pathway, as they proliferated to attain confluence and became elongated structures. 

Instead, the treated cultures at 7 days (T7) responded to the stimuli from EGF and FGF2 

by random distribution and small spindles shaped structures. The initial preparative 

phase was efficient in producing a morphological change in hPBMCs. In the next 7 days, 

the control cultures, due to lack of space to proliferate, started to get detached from the 

culture plates. The treated cultures (T14), due to the effect of retinoic acid and nerve 

growth factor, were obtaining a drastic morphological change similar to dendrite like 

structures as evidenced clearly by SEM analysis (Figure 18). hPBMCs made a shift from 

their initial fibroblastic morphology to dendrite like processes. The inductive factors 

used in this differentiation process were effective enough to bring about a neuron like 

morphology in hPBMCs. The first indication that hPBMCs were entering into a 

differentiation pathway was the fact that the control cultures continued to proliferate 

and the treated cultures stopped proliferating. The immediate lineage shift capacity of 

hPBMCs to respond to initial phase of induction, where they respond to epidermal 

growth factor (EGF) and basic fibroblast growth factor (bFGF) by changing their 

morphological organisation, was evident that these cells enter into commitment state. 

The EGF and bFGF responsiveness of hPBMCs were highly correlated to many precursor 

cells of neural origin as reported in the literature (Ciccolini et al., 1998). After initial 

priming, hPBMCs were induced with Retinoic acid (RA) and Nerve Growth factor. RA is a 

developmentally regulated morphogen that has diverse roles that include controlling 

generation of primary neurons in Xenopus (Sharpe and Goldstone, 2000; Franco et al., 

1999), patterning of the hindbrain (Begemann and Meyer, 2001), motor neuron 

specification (Novitch et al., 2003) and limb bud patterning (Thaller and Eichele, 1987). 

Consequently, RA has been widely used for differentiating embryonic carcinoma and 

embryonic stem cells since the pioneering studies of Strickland (Strickland and Mahdavi, 

1978). Both RA and nerve growth factor have been implicated in the process of 

neuritogenesis (Scheibe et al., 1991). 



 

51 

 

 

Figure 18. Morphological study by Optical Microscopy (OM) and SEM of hPBMCs cultured in NeuroBasal 

Medium (C7), treated with EGF (20 ng/ml) and bFGF (10 ng/ml) for 7 days (T7) and then with Retinoid 

Acid (RA) (0.5 µM) and NGF (20 ng/ml) up to 14 days (T14) 

 

The next step in the process of confirmation of neuronal shift was the analysis of gene 

expression of early and late neuronal markers. Undifferentiated hPBMCs expressed 

many neurotrophins namely, BDNF (brain derived neurotrophic factors), GDNF (glial 

derived neurotrophic factors) and NGF (nerve growth factor) (Figure 19). The absence 

of nestin expression at mRNA level can be attributed to the sensitivity of the technique 

as the expression was confirmed by immunofluorescence even at the undifferentiated 

state (Figure 19). The expression of some neurotrophins were maintained in the control 

cultures (C7) as Neurobasal medium contained factors that could stimulate the 

expression of neurotrophins at mRNA level. The expression of typical neuronal markers 

such as TBB3 and MAP2 appeared at T7 days and their expression was maintained at 

T14 days (Figure 19). Some of the late neuronal markers such as Neurofilament medium 

(NEF M), Neuronal nuclear antigen (NeuN), GLAST (Glutamate-Aspartate transporter), 
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SYP (Synaptophysin), and neurogenin 1 (NEUROG 1) were detected only at the final 

phase of the induction (T14) (Figure 19).  

 

 

Figure 19. OneStep RT-PCR study of neuronal marker expression in hPBMCs grown in proliferation 

medium (Undiff), control cells (C7) and cells treated for 7 and 14 days (T7, T14) with inductive factors. In 

parallel, the expression of the housekeeping gene GAPDH was detected in all samples 

 

After confirming the presence of mRNA towards a neuronal shift, the ability of hPBMCs 

to translate that into a neuronal phenotype was tested out using western blot, 

immunofluorescence and flow cytometry.  

Flow cytometry analysis showed that- when hPBMCs were cultured for 14 days with 

αMEM containing ascorbic acid, a weak expression of MAP2 and TH was observed. NBM 

demonstrated to be effective to promote a significative increase of TBB3, MAP2 and TH 

and, after addition of neuronal factors, demonstrated to be suitable to differentiate 

terminally the cells (Figure 20). 
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Figure 20. Flow cytometrical study of TBB3, MAP2, TH on induced (T14) hPBMCs (coloured profile) 

compared to control sample cultured in αMEM, NBM, and NBM added with neuronal factors for 14 days 

(black profile for all). Indirect staining with FITC-conjugated secondary antibodies was used. For each 

marker, data were expressed as % positives ± SD of T14 versus C14 

 

As evidenced by Western Blot results, the expression of TBB3 was maintained at the 

protein level both in control and treated cultures (C7, T7, T14) (Figure 21) and the 

protein expression of TH (tyrosine hydroxylase) followed the same pattern. The 

evidence that retinoic acid and nerve growth factor directed hPBMCs towards a mature 

neuronal phenotype was highlighted from the protein expression of active form of 

Neuron specific enolase (NSE) 47 KDa only in T14 samples (Figure 21), whereas as the 

inactive Enolase form 66 KDa was detected in all other samples. 

 

 

Figure 21. Western Blot analysis on undifferentiated (Undiff), C7, T7 and T14 hPBMCs using 10 g 

protein extract and chemiluminescence detection 
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The immunofluorescence analysis revealed the expression on typical neuronal markers 

such as Musashi, neural cell adhesion molecule (NCAM), dopamine transporter (DAT), 

NEFM, NeuN and TH (Figure 22).  

 

 

Figure 22. Assessment by immunofluorescence of neuronal lineage markers on induced hPBMCs (T14) 

compared to undifferentiated samples (Undiff). Cells were indirectly labeled using FITC-conjugated 

secondary antibodies and data were acquired with the Leica TCS SP5 confocal microscope 
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Both the RNA and protein expression studies on hPBMCs subjected to neuronal shift 

induction revealed some interesting results. The expression, even in the undifferentiated 

state, of mRNA for nestin, BDNF and NGF suggests a differentiative potential of hPBMCs 

towards neuronal lineage, besides highlighting the fact that, after specific induction, 

such markers continue to be expressed until achievement of a mature differentiated 

state. The expression of GDNF in the undifferentiated state and the loss of its expression 

during process of differentiation confirm that the inductive protocol is neural lineage 

specific. During the first preparative phase of the differentiation, hPBMCs expressed 

several typical markers of neuronal lineage. Nestin is a protein of intermediate filament 

type VI, which is expressed in the cytoskeleton of the nerve cells and it is involved in the 

radial growth of the axon (Yan et al., 2001) and expressed in dividing cells during the 

early stages of development of the nervous tissue, where it is progressively replaced in 

the nerve cells as tissue-specific intermediate filament proteins. It is uniquely expressed 

in multipotent stem cells and regarded as a characteristic marker for plasticity. GDNF is 

a dopaminergic neurotrophic factor secreted by glial cells. It promotes the survival, 

proliferation and differentiation of different types of neurons of the nervous system 

(Ernest et al., 1995; Luis et al., 2001). BDNF is a secreted protein, belonging to the family 

of neurotrophins, critical in the regulation of structural, synaptic and morphological 

plasticity (Thoenen, 2000). It is also involved in nerve regeneration, and in maintaining 

the structural integrity and neuronal plasticity in the adult brain, regulating the 

synthesis of neurotransmitters (Huang and Reichardt, 2001). There was a genomic shift 

in the identity of hPBMCs as they started to express some typical neuronal markers such 

as TBB3, constitutive element of microtubules in neurons of fetal and postnatal age ( 

Seve et al., 2008; Katsetos et al., 2003), MAP2, the gene encoding the associated protein 

neurotubules type II, SYP, a integral membrane glycoprotein of presynaptic vesicles and 

present in the neuroendocrine cells and in almost all the neurons of the brain and spinal 

cord that participate in the synaptic transmission and GLAST, a protein of the inner 

mitochondrial membrane that mediates the transport of L-glutamate and L- and D-

aspartate. In the central nervous system mammalian L-glutamate is the main 

transmitter for the majority of excitatory neurons, which are involved in complex 

physiological processes such as learning and memory (Jungblut et al., 2012; Storck et al., 

1992). NEUROG1 is a protein belonging to the family of transcription factors, neuronal 

basic helix- loop- helix (bHLH), involved in the regulation of the process of 

differentiation (Cau et al., 2002; Gowan et al., 2001). Neural cell adhesion molecules 
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(NCAMs) of the immunoglobulin superfamily engage in multiple neuronal interactions 

that influence cell migration, axonal and dendritic projection, and synaptic targeting. 

Their downstream signal transduction events specify whether a cell moves or projects 

axons and dendrites to targets in the brain (Schmid et al., 2008). The fact that 

differentiated hPBMCs expressed NCAM, may attribute to their migratory capacities in 

vivo. The final phase of induction, where hPBMCs responded to external stimuli from 

retinoic acid and nerve growth factor, was a crucial one in the progression of the 

differentiation to the mature state. Withdrawal of FGF2 and the addition of retinoic acid 

lead to the expression of specific neuronal markers that characterise a mature neuronal 

phenotype in hPBMCs. The ability of hPBMCs to attain a mature neuronal phenotype 

was dependent on the addition of retinoic acid and NGF in the culture. The stimuli from 

RA and NGF were specific for neuronal lineage and it is confirmed by the expression of 

Tyrosine hydroxylase, a catalyzing enzyme in the rate-limiting step in the biosynthesis 

of Dopamine, and Dopamine transporter, a membrane-spanning protein that pumps the 

neurotransmitter dopamine out of the synapse back into cytosol, from which other 

transporters sequester Dopamine and Nor epinephrine into vesicles for later storage 

and release. The progression of hPBMCs towards neuronal differentiation pathway was 

completed by the verification of their functionality with HPLC and spectrofluorimetry. 

Noradrenaline, a neurotransmitter involved in the catecholamine synthesis pathway, 

was detected only in the T14 (Figure 23) samples at the final phase of the neuronal 

induction indicating the fact that hPBMCs, when evoked by KCl, acquired an excitable 

neuronal phenotype.  

 

 

Figure 23. Noradrenaline release study by HPLC in hPBMC cultures after neurogenic induction 
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hPBMCs showed to respond to the external stimuli to acquire membrane excitability by 

conducting calcium flux, when evoked with KCl. The intracellular free calcium 

concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) 

regulate neuronal plasticity underlying learning and memory and neuronal survival. 

Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology 

maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between 

intracellular organelles and compartments integrate diverse cellular functions (Zündorf 

et al., 2011). Calcium flux, a major event in the synaptic signal transduction, was 

analyzed with the help of Indo-1, a fluorescent calcium indicator having absorbance at 

355nm, after stimulation with KCl and permeabilizing with Triton X-100. The treated 

samples at 14 days showed a significant accumulation of both intracellular and 

extracellular calcium as evidenced by the increased fluorescent absorbance at 355nm 

when compared with control samples (Figure 24). hPBMCs were able to conduct calcium 

flux across their membranes, when stimulated by KCl, underlines the fact that induction 

protocol was efficient enough to promote the attainment of a functional phenotype. 

Neurotrophins are essential players in neuronal maturation during development. The 

synergistic action of retinoic acid and nerve growth factor switched hPBMCs towards 

mature neurotransmitter phenotypes. These results indicate that RA and NTs act 

sequentially and dependently during adult neurogenesis, with RA promoting the early 

events of neuronal differentiation and NTs acting later in the RA-stimulated cascade to 

promote neuronal maturation.  

 

 

Figure 24. Emission spectrum of the fluorescent calcium indicator Indo1 AM (5μM) after incubation (30 

min, 37°C) with differentiated hPBMC samples (C14, T14) previously treated with KCl 56 mM 
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3. Myogenic lineage shift responses of hPBMCs 

To investigate the potential of hPBMCs to respond to specific stimuli to activate a 

myogenic cascade within them, control and treated cultures were examined 

morphologically both under optical microscopy (Figure 25) and SEM (Figure 26).  

Control samples, starting from day 3, presented a random organization, whereas the 

treated samples (T3) acquire differentiation-related morphological changes and aligned 

parallelly to each other (Figures 25, 26). At 7 days, treated samples continued to 

respond by forming packed bundles as evidenced from the Figures 25 and 26; at 14 

days, some multinucleated structures with partial stratification can be appreciated 

(Figure 26). This morphological re organization by hPBMCs was confirmed by the 

immunofluorescence staining for the characteristic mesodermic intermediate filament 

protein, Vimentin (Figure 27). 

Cells switched from a fibroblast like phenotype to an appearance that resembled that of 

primary myotubes, ascertaining that hPBMCs were responsive to stimuli from IGF 1 and 

vitamin C. It is well known that insulin-like growth factor-I (IGF-I) plays multiple 

important roles during myogenesis by stimulating both growth and differentiation. 

Transgenic mice which over- express IGF-I in skeletal muscles display promoted adult 

muscle regeneration and hypertrophy via activation of muscle satellite cells (Musarò et 

al., 2001). Unlike most growth factors, the insulin-like growth factors, IGF-Iand IGF-II, 

are also capable of promoting muscle differentiation in cell culture(Engert et al., 1996), 

and their actions through the IGF-I receptor have been linked to the formation, 

maintenance, and regeneration of skeletal muscle in vivo (Coleman et al., 1995). 
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Figure 25. Morphological analysis by optical microscopy of hPBMC cultures at 100% confluence (T0) and 

after treatment with myogenic inductive medium for 3, 7 and 14 days 

 

The stimulatory effect of various nutrients, especially ascorbic acid, on the extracellular 

matrix (ECM) production of cells in vitro has been extensively investigated. Ascorbic 

acid plays a key role as a cofactor in the post-translational modification of collagen 

molecules and increases collagen production (Sodek et al., 1982). An investigation of the 

ascorbic acid effect on procollagen synthesis in human skin fibroblast cultures revealed 

an increased production of Type I collagen (Chan et al., 1990).  
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Furthermore, it is well-known that ascorbic acid stimulates the proliferation of various 

mesenchyme-derived cell types including osteoblasts, adipocytes, chondrocytes, and 

odontoblasts in vitro (Alcain et al., 1994), and modulates cell proliferation in vitro 

(Chepda et al., 2001). As reported in the literature, IGF 1 and ascorbic acid acted 

synergistically on hPBMCs to bring about a change in morphological organisation with 

syncytium formation and as the differentiation proceeds, stratification can be observed 

due to excess extracellular matrix deposition.  

 

 

Figure 26. Morphological study by SEM of hPBMC cultures at pre-confluent state, at 100% confluence and 

after treatment with myogenic inductive medium for 3, 7 and 14 days 
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Figure 27. Immunofluorescence study of hPBMCs grown in proliferation (A, B, C) and differentiation (D, E, 

F) media and labeled with mouse anti-human Vimentin-FITC conjugated antibody (green). Nuclei were 

counterstained with DAPI (blue) 

 

The FCM analysis (Figure 28) revealed a marked reduction (94-98%) in the expression 

of CD73 and CD105, known stem cell markers, starting from 3 days after induction 

confirming that hPBMCs have entered into the differentiation pathway.  

 

 

Figure 28. FCM study of stem cell markers in hPBMCs differentiated towards myogenic lineage. Data are 

expressed as % positive treated cells compared to undifferentiated control cells 

 

To further analyze the initiation of the skeletal muscle program in hPBMCs, we 

examined the expression of the skeletal muscle-specific myogenic determination factors, 

namely Myf5, MyoD, myogenin, MHC (myosin heavy chain) and tropomyosin by RT-PCR 
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(Figure 29), flow cytometry (Figure 30), Western Blot (Figure 31A) and 

immunofluorescence (Figure 31B). 

As shown by gene expression study, hPBMCs mimicked the in vivo myogenic 

differentiation process as noted from the expression pattern of MYF5 and MyoD.  

 

 

Figure 29. Gene expression analysis by One step RT-PCR of myogenic markers in specific differentiated 

hPBMC cultures. In parallel, the expression of housekeeping gene GAPDH has been detected in all samples 

 

The mRNA and protein expression of both the transcription factors was elevated in 

treated cultures with respect to controls at 3 days of induction (Figure 29, 30) and as the 

differentiation proceeds, the expression level of MYF5 was greatly reduced at 7 and 14 

days. Instead, MyoD expression was lower than the level at 3 days, but maintains a 

higher level than the control cultures (Figure 30). During the in vivo myogenic 

differentiation, MYF5 and MyoD controls the phase of cycling myoblasts and the 

expression of MYF5 fades away in the differentiation phase, whereas MyoD continues to 

be expressed in the myocytes. In the final phase of maturation, MyoD expression is 

replaced by the expression of Myogenin(Le Grand and Rudnicki, 2007). The temporal 

expression pattern of Myogenin, followed immediately after MyoD in vivo, was observed 

from 3 days and maintained at 7 days and faded away at 14 days (Figure 30). This data 

is consistent with the function of this protein that induces the formation of 

multinucleated cells, observable in treated cultures at 14 days.  
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Figure 30. FCM study of specific markers in hPBMCs differentiated towards myogenic lineage. Data are 

expressed as % positive treated cells compared to undifferentiated control cells 

 

The differentiation of hPBMCs towards a mature muscle phenotype was highlighted by 

the presence of proteins that constitute to form sarcomeres, such as myosin and 

tropomyosin. Myosin heavy chain, as protein, was not expressed in early days of 

induction and started to appear at 7 days and progressively increased with the time of 

differentiation (Figure 31). Moreover, at 7 and 14 days, as evidenced from the Figure 29 

and 30, the expression of sarcomeric tropomyosin, both as mRNA and protein, was less 

appreciable at 3 days and during the final fusion stage of differentiation, there was a 

progressive increase. 
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Figure 31. Protein expression analysis by Western Blot (A) and Immunofluorescence (B) of myogenic 

markers in hPBMCs treated with inductive medium 

 

Skeletal myogenesis is a developmental cascade that involves the regulatory MyoD gene 

family that determines the progress of multipotential progenitors to myogenic lineage. 

The MyoD family is one of the basic helix loop helix transcription factors that directly 
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regulate myocyte cell specification and differentiation (Edmondson et al., 1993). In all 

the anatomical sites where skeletal muscle forms, determination and terminal 

differentiation of muscle cells are governed by a network of four MRFs: myogenic factor 

5 (MYF5), muscle-specific regulatory factor 4 (MRF4; also known as MYF6), myoblast 

determination protein (MYOD) and myogenin. MRFs are transcription factors that 

activate many downstream genes to initiate muscle cell differentiation. MYOD and MYF5 

are muscle-specific transcription factors and constitute a cross-regulatory 

transcriptional network that is at the core of muscle cell determination and 

differentiation; disruption of this network completely abrogates skeletal muscle 

formation. MYF5 and MYOD are generally thought to act as determination genes, 

whereas myogenin is essential for the terminal differentiation of committed myoblasts ( 

Braun et al., 2011). In vitro differentiation of hPBMCs as a response to stimulation by 

IGF1 and vitamin C seem to be in line with the time specific expression pattern of 

skeletal muscle diiferentiation, evidenced by the initial expression phase of MYF5, 

immediately followed by MyoD and the expression of Myogenin during the terminal 

differentiation.  

4. In vivo evaluation of hPBMCs in a muscle damage model 

To evaluate the integration capacity of hPBMCs, a bupivacaine induced muscle damage 

model was used. After 2 days of inducing necrosis in the tibialis anterior muscle, Qdot 

800 marked hPBMCs were injected on the site of injury and the cryostat sections 

revealed interesting results. As we can appreciate from Figure 32, co localization of 

hPBMCs (red) along with vimentin (green) were located along the muscle fibres of the 

host and hPBMCs took the parallel alignment of the host muscle organization from 7 

days. At 14 days, hPBMCs seem to fuse with the host muscle fibres giving an appearance 

of an ex vivo repair at the site of damage. When transplanted into the tibialis anterior 

muscle, hPBMCs survived for up to two weeks in absence of immunosuppression, 

migrating into the muscle among muscle fibers. Moreover, we never observed cell 

masses suggestive of tumorigenesis. Those which remain close to the injection site show 

an immature phenotype, whereas those in the muscle have more elongated 

morphologies. When in close proximity to muscle cells, hPBMCs displayed an elongated 

morphology aligned with muscle fiber orientation. This is in accordance with existing 

reports, who showed that strings of peripheral MSC nuclei can be positioned along the 

length of pre existing fibers (Shabbir et al., 2009).  
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Figure 32. Immunofluorescence analysis of vimentin in rat tibialis anterior muscle after damage 

induction with bupivacaine hydrochloride and injected with Q Dot labeled hPBMCs for 7 and 14 days  
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CONCLUSIONS 

 

 

‘Stem cell plasticity’ is a new term that has been used to describe the recent 

observations that greater potential might persist in post-natal adult stem cells than 

previously thought. Normally, stem cells are maintained in a quiescent state and need 

specific stimuli for renewal and differentiation. When stem cells differentiate, they have 

to suppress genes that are incompatible with the upcoming cell type (Belema et al., 

2005). In this thesis, peripheral blood multipotent cells (hPBMCs), having an identity 

close to mesenchymal and non-hematopoietic, were isolated from normal healthy 

patients without any invasive mobilization techniques, cultured in a standard 

proliferation medium without any specific growth factors and were directed to switch 

phenotype towards neuronal and myogenic lineage. Peripheral blood, when compared 

with bone marrow, present an optimal source due to its easy and abundant availability 

and the multipotent cells (hPBMCs), which were isolated without any usual mobilization 

techniques, represent an ideal type of cells for regenerative medicine applications. 

hPBMCs were highly responsive to external stimuli and presented a stable karyotype 

with multidifferentiative potential, essential characteristics of adult stem cell plasticity. 

The absence of expression of HLA-DR on hPBMCs was evident that these cells have the 

least probability to elicit an immune response during transplantation. hPBMCs hide in 

them an innate ability to break the lineage barrier was evident by the findings that they 

expressed several specific markers for neuronal and myogenic lineages at an 

undifferentiated state. The neuronal lineage switch was evident from the late phase of 

differentiation, when Retinoic acid and Nerve growth factor acted synergistically to 

induce the expression of several specific neuronal markers in hPBMCs. Partial 

differentiation of adult stem cells had been widely explored, yet the functional side of it 

remains elusive. It was interesting to note that hPBMCs could overcome their lineage 

imprint and initiate a different lineage program to attain a functional neuronal 

phenotype as highlighted by the calcium flux activity and neurotransmitter release. 

Transcription factors involved in myogenic lineage progression are not strictly acting in 

a linear manner but are organized in complex feedback and feed-forward networks. The 

temporal expression pattern of Myogenic determination factors was successfully 

simulated in vitro due to the combined induction of IGF1 and Vitamin C. hPBMCs present 

a candidate population suitable for in vivo transplantation studies as they integrated 
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well within the host tissue and presented no risk of tumorigenesis. As highlighted by the 

abovementioned results, hPBMCs represent an ideal invitro model for synthetic 

substrate testing studies for neurogenic and myogenic differentiation and drug 

screening assays. hPBMCs can be subjected to high throughput expansions and can be 

stored for future translational studies. The potential to exploit adult stem cell plasticity 

for degenerative diseases has been met with disappointing results. It is yet to be well 

documented that single cells derived from adult tissue differentiate into multiple 

lineages characterized not only based on phenotype but also on function and support, 

sustained and functional multilineage engraftment in vivo. Nonetheless, future 

concerted effort, aimed at dissecting the rare phenomenon of lineage switching, 

rigorously identifying, purifying and potentially expanding the appropriate cell 

populations responsible for plasticity, characterizing the tissue-specific and injury-

related signals that recruit, stimulate, or regulate plasticity, and determining the 

mechanisms underlying plasticity, enhance tissue regeneration to clinically useful levels 

and could yield fruitful results in animal models of degenerative diseases. 
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