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Riassunto 

Sequenze di acidi nucleici ricchi di guanine possiedono la capacità di ripiegarsi in 

conformazioni secondarie non canoniche dette G-quadruplex. La presenza di sequenze G-

quadruplex è stata evidenziata in numerose regioni del genoma umano, ad esempio le 

estremità telomeriche, i promotori di oncogeni e diverse sequenze codificanti. In particolare, 

la formazione di strutture G-quadruplex a livello delle regioni promotoriali del genoma 

umano risulta correlata al silenziamento dell’espressione genica. E’ interessante notare come 

la presenza di sequenze G-quadruplex nei promotori sia stata descritta anche per genomi di 

altri organismi eucarioti, tra cui lieviti, e procarioti. Queste evidenze supportano fortemente 

una funzione regolatoria ubiquitaria svolta dalle strutture G-quadruplex a livello promotoriale, 

dove agiscono per lo più come silenziatori. Inoltre, anche la presenza di strutture G-

quadruplex in sequenze codificanti del genoma umano può regolare l’espressione genica, 

perturbando il processo di trascrizione. Il presente lavoro di tesi ha avuto come scopo 

principale lo studio della presenza e della formazione di strutture G-quadruplex a livello del 

genoma provirale di HIV-1 al fine di valutare possibili effetti antivirali mediati dalla 

stabilizzazione di queste strutture secondarie. A livello della regione LTR di HIV-1, dove è 

situato il promotore virale, abbiamo dimostrato la presenza di strutture G-quadruplex 

analoghe a quelle già descritte a livello di promotori eucariotici. I risultati ottenuti 

evidenziano per la prima volta una regolazione dell’espressione genica virale da parte di 

queste strutture. La stabilizzazione delle strutture G-quadruplex virali, mediata da un ligando 

specifico, è risultata sufficiente a reprimere l’attività promotoriale del virus. Lo stesso 

composto è risultato inoltre efficace nell’inibire la produzione di HIV-1 in cellule infettate. 

Anche a livello di sequenze codificanti proteine virali, in particolare la proteina accessoria 

Nef, abbiamo individuato un cluster di sequenze che possono formare strutture G-quadruplex. 

L’induzione e la stabilizzazione di queste strutture secondarie mediate da un ligando specifico 

hanno determinato una significativa riduzione dell’espressione della proteina, supportando 

ulteriormente la possibilità di una regolazione dell’espressione genica mediata dai G-

quadruplex. Inoltre, il medesimo composto è risultato efficace nell’inibire la replicazione 

virale in cellule infettate con un meccanismo d’azione Nef-dipendente. Infine, è stato 

effettuato uno screening di ligandi G-quadruplex per valutarne il possibile effetto anti-HIV-1. 

Diversi composti sono risultati promettenti inibitori virali e sono stati oggetto di 

caratterizzazioni più approfondite per quanto riguarda il meccanismo d’azione antivirale. I 
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risultati presentati in questa tesi pongono le basi per un’azione anti-HIV-1 mediata da 

strutture G-quadruplex indotte o stabilizzate da piccole molecole e rappresentano un 

importante punto di partenza per lo sviluppo di composti antivirali con un meccanismo 

d’azione innovativo. 
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1. Abstract 

 
G-quadruplexes are non-canonical nucleic acid structures: their presence and functional role 

have been established in telomeres, oncogene promoters and coding regions of the human 

chromosome. In particular, they act as silencers in the promoter regions of human genes and 

putative G-quadruplex forming sequences are also present in promoters of other mammals, 

yeasts, and prokaryotes. Moreover, they have been proposed to be directly involved in gene 

regulation at the level of transcription. We investigated G-quadruplex formation in the HIV-1 

proviral genome to assess the potential for viral inhibition through G-quadruplex stabilization. 

Here we show that the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional 

regulation with striking similarities to eukaryotic promoters and that treatment with a G-

quadruplex ligand inhibits HIV-1 infectivity. In addition, we found three conserved putative 

G-quadruplex forming sequences uniquely clustered in the coding region for the accessory 

protein Nef that were efficiently stabilized or induced by G-quadruplex ligands. Upon 

incubation with a G-quadruplex ligand, Nef expression was reduced in a reporter gene assay 

and Nef-dependent enhancement of HIV-1 infectivity was significantly repressed in an 

antiviral assay. Finally, a comprehensive screening of G-quadruplex ligands against HIV-1 

disclosed significant potential of some of them as HIV-1 inhibitors, likely with a G-

quadruplex-mediated mechanism of action. These findings open up the possibility of 

inhibiting the HIV-1 by G-quadruplex-interacting small molecules, providing a new pathway 

to the development of anti-HIV-1 drugs with unprecedented mechanism of action. 
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2. Introduction 

 

2.1.  DNA G-Quadruplexes 

The DNA mainly exist in its typical double helix (B DNA) conformation proposed by Watson 

and Crick, however it can also adopt other secondary structures, such as G-quadruplexes. The 

first proof of the guanine (G) self-association called G-quadruplex was reported by Davies 

and coworker in 1962 (Gellert et al, 1962), although first evidences were known since 1910 

(Bang, 1910). G-quadruplexes are secondary structures formed by single-stranded G-rich 

sequences. In the recent years, they have gained importance because of the increasing 

evidence of their potential to act as regulatory sequences in different biological processes. 

Indeed, many regions in eukaryotic and prokaryotic genomes display the ability to fold into a 

G-quadruplex conformation. Recently, cell-cycle dependent G-quadruplex formation in 

mammalian living cells and their stabilization by G-quadruplex ligands has been 

demonstrated (Biffi et al, 2013). Thus, G-quadruplex can provide a selective site for small 

molecules in the treatment of various disorders, for example cancer and viral infections. 

Also RNA molecules can fold into G-quadruplex, with many similarities with the DNA G-

quadruplex (Brown & Hurley, 2011). However, because of the topic of this thesis, only DNA-

G-quadruplexes will be further discussed.  

 

2.1.1. General features 

The building blocks of G-quadruplex are the G-quartets (or G-tetrads) that form by the 

association of 4 Gs in a cyclic Hoogsteen hydrogen bonding planar array. Two or more G-

quartets can stack on top of each other to form the tetraplex secondary structure (Figure 2.1a). 

The sequences located between successive G-tracts serve to link stacked G-quartets and are 

named loops. Comparing the association of G bases in a G-quartet with Watson-Crick base 

pairs in the double helix, it is evident that the G-quartet’s surface reaches bigger dimensions 

(Figure 2.1b).This peculiarity of G-quadruplex structure in possessing a big aromatic surface 

makes the basis for the design of selective small molecules. 
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Figure 2.1 Comparison of the dimensions of A) G-quadruplex DNA structures and B) duplex DNA (Ou et 

al, 2008) 

 

Monovalent cations, such as K
+
 and Na

+
, can stabilize and even induce the G-quadruplex 

folding (Engelhart AE, 2009); the explanation of this behavior is in the G-quartet chemical 

properties. In fact, the hole between a G-tetrad has a strong negative electrostatic potential 

due to carbonyl O6 atoms and cations can neutralize electrostatic repulsions (Figure 2.2A). In 

addition, the cations channel in the hole between stacked tetrads can strongly stabilize the 

whole G-quadruplex structure (Figure 2.2B). It is important to mention that because of their 

difference in size, cations can have different position: Na
+
 ions are positioned mainly in the 

plane of the G-tetrads, whereas K
+
 ions are positioned between G-tetrad planes (Phan et al, 

2006). 

 

Figure 2.2 G-tetrad structure A) G-tetrad coordinates monovalent cations thanks to the strong negative 

electrostatic potential due to carbonyl O6 atoms B) K
+ 

in a G-quadruplex ion channel 

A

B

A B 
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2.1.2. Structural polymorphism of G-quadruplex structures 

G-quadruplexes are highly polymorphic and can adopt different folding topologies depending 

on several factors, especially G-tetrads number and composition, the orientation of the 

strands, the syn/anti glycosidic torsion angle of Gs and composition and size of the loops that 

link the Gs. Moreover, metal ions in solution, presence of small molecules and molecular 

crowding conditions can influence the G-quadruplex architecture.  

First of all, three main G-quadruplex arrangements are possible (Figure 2.3): 

 Tetramolecular: G-quadruplex formed by the association of four separated strands, 

each with at least one G-tract 

 Bimolecular: G-quadruplex formed by the association of two separated strands, each 

with two G-tracts 

 Monomolecular (or intramolecular): G-quadruplex formed within one strand 

composed of four G-tract connected by loop sequences 

The intramolecular G-quadruplex forming sequence is composed by at least four runs of G 

bases (G-tracts). This is the so called “G-4 motif” and can be represented as follow: 

G≥2Nx G≥2Ny G≥2Nz G≥2 

where N are loops of x, y, z length. 

 

 
Figure 2.3 Different G-quadruplex topologies on the basis of the number of strands involved: 

tetramolecular, bimolecular and monomolecular G-quadruplexes 

 

The relative arrangement of strand polarities in a G-quadruplex can be classified in parallel 

(same strand orientation) or antiparallel (opposite strand orientation). Thus, the polarities of 

the four strands in the G-quadruplex can be: 
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 All parallel 

 Three parallel and one antiparallel 

 Adjacent parallel  

 Alternating parallel 

The relative arrangement of strand polarities gives rise to different G-quadruplex 

conformations: 

 Parallel G-quadruplex (Figure 2.4A): all the four strands are parallel 

 3+1 Hybrid (or mixed) G-Quadruplex (Figure 2.4B): three parallel and one antiparallel 

strands 

 Antiparallel G-quadruplex: with adjacent (Figure 2.4C) or alternating parallel strands 

(Figure 2.4D) 

 

 

Figure 2.4 Different G-quadruplex topologies on the basis of the relative arrangement of strand polarities 

A) Parallel G-quadruplex B) 3+1 hybrid G-quadruplex C) Antiparallel G-quadruplex with adjacent parallel 

strands D) Antiparallel G-quadruplex with alternating parallel strands 

 

Variations in strand polarities affect also the orientation of connecting loops further increasing 

the conformational polymorphism. The loops can be classified into four major categories:  

 Lateral (or edgewise): loops connecting two adjacent antiparallel strands (Figure 2.5A) 

 Diagonal: loops connecting two opposing antiparallel strands (Figure 2.5B) 

 Double-chain-reversal (or propeller): loops connecting adjacent parallel strands 

(Figure 2.5C) 

 V-shaped: loops connecting two corners of a G-tetrad core in which one supporting 

column is lacking (Figure 2.5D).  

A B C D 
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Figure 2.5 Possible orientation of connecting loops in a G-quadruplex structure A) Edge wise loop (in red) 

B) Diagonal loop (in red) C) Double chain reversal loop (in red) D) V-shaped loop (in red) 

 

The guanine glycosidic bond angles (GBA) are another important parameter that contributes 

to the G-quadruplex high polymorphism. In a G-quadruplex structure, stacked G may adopt 

either an anti or a syn GBA (Figure 2.6A). All parallel G-quadruplexes have G bases with anti 

GBA (Figure2.6b), whereas antiparallel G-quadruplexes have G with both syn and anti GBA 

(Figure 2.6C-D). 

 

Figure 2.6 Glycosidic bond angles (GBA) in a G-quadruplex structure A) anti or a syn GBA B) Parallel G-

quadruplex with anti GBA C) antiparallel G-quadruplex with anti-anti syn–syn GBA D) antiparallel G-

quadruplex with anti-syn anti-syn GBA. anti GBA are represented as light blue rectangles while syn GBA are 

represented as magenta rectangles  

A B

DC

B C D 

A 
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Overall, topology and stability of G-quadruplex structure is influenced by many factors and, 

for this reason, could be relatively complex to be predicted and characterized. However, this 

great polymorphism can constitute the basis for a drug-targeting with a high level of 

selectivity over duplex and theoretically selective for a G-quadruplex structure with unique 

characteristic over non-related G-quadruplex structures.  

 

2.1.3. Biological roles of G-quadruplexes 

G-quadruplex potential folding sequences occur in different regions of the human genome, 

such as oncogene promoters, telomeres, ribosomal DNA, mini-satellites and the 

immunoglobulin heavy chain switch region (Ou et al, 2008). It has been estimated that more 

than 300,000 sites in the human genome have potential to fold in a G-quadruplex (Huppert & 

Balasubramanian, 2005), suggesting an important role of these structures in regulating 

biological processes. Computational analysis showed that “G-4 motif” are not randomly 

distributed and that are similarly distributed, especially in specific functional region such as 

promoters (Huppert & Balasubramanian, 2005). G-quadruplexes have been extensively 

studied in vitro and increasing evidences suggested a key biological role of these tetraplex 

structures in vivo.   

 

2.1.3.1. G-quadruplex at telomeric ends 

Telomeres are nucleoprotein complexes located at the ends of eukaryotic chromosomes. 

Telomeric DNA in human somatic cells is composed of tandem repeats of d(TTAGGG) 

sequence that can reach 15 kilobases in length. Moreover, telomeric DNA is characterized by 

a 3’ single-stranded overhang of up to 300 bases, named G-overhang, that results particularly 

G-rich. Since the linear G-overhang can be recognized as DNA double-strand breaks and so 

degraded by DNA repair mechanisms, a protective structure is formed at this level thanks to 

proteins of the shelterin complex. The shelterin complex is composed of several binding 

proteins (telomeric-repeat-binding factor 1 (TRF1), TRF2, TRF1-interacting protein 2 (TIN2), 

the transcriptional repressor/activator protein RAP1, protection of telomeres 1 (POT1) and the 

POT1- and TIN2-organizing protein TPP1) that cover both the double and single stranded 

repeats, generating a protective alternative structure at telomeric ends named T-loop. In detail, 

the T-loop is generated by invasion of the single-stranded G-overhang into the double-
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stranded TTAGGG repeats. The looped structure protects telomeres on several levels. 

Invasion effectively sequesters the G-overhang and allows natural chromosomes ends to be 

distinguished from double-strand breaks (Figure 2.7). 

 

 

Figure 2.7 The structure of human telomeres Human telomeres consist of tandem repeats of TTAGGG 

sequence with a G-rich strand that extends in the 3’ direction, forming the G-OVERHANG. The shelterin 

complex consists in several proteins (the double stranded telomeric repeat binding factors TRF1 and TRF2, 

the TRF2 interacting factor RAP1, the bridging molecules TIN2 and TPP1 and the telomeric protection 

factor POT1), and forms a protective structure at chromosome ends, the T-loop (O'Sullivan & Karlseder, 

2010) 

 

Telomeres are thought to be essential for chromosome stability and in general for genomic 

integrity; they provide sites for recombination events and transcriptional silencing and 

play a critical role in cellular aging and cancer (O'Sullivan & Karlseder, 2010). This latter 

aspect is particularly important and refers to the so called “end replication problem”. 

Briefly, the lagging strand of linear chromosomes is copied in a semi-conservative manner 

by the replication machinery, causing a progressive shortening of telomeric ends at every 



Introduction 

 

10 

mitotic cycle (Figure 2.8A). As consequence, somatic cells can only undergo a defined 

number of doublings before telomeres become critically short (Hayflick limit), losing their 

protective properties and sending cells into a replicative senescence, followed by 

apoptosis (Hayflick & Moorhead, 1961). Since this mechanism limits the replicative 

lifespan of individual cells, it is essential not only in controlling cell cycle but also in 

cellular immortalization and tumorigenesis. In fact, telomere-induced senescence is an 

important tumor suppressor mechanism that contrasts the infinite replicative potential of 

cancer cells.  This unlimited replicative potential is due to the Telomerase activity that in 

cancer cells is not repressed. Telomerase is a ribonucleoprotein mainly composed by the 

enzymatic part hTERT (human Telomerase Reverse Transcriptase) and by the RNA part 

hTR (human Telomerase RNA). Telomerase drives the synthesis of the G-rich tandem 

repeats at telomeric G-overhangs by using hTR as template (Figure 2.8B). Then, during 

the next round of DNA replication, DNA polymerase fill in the other strand. As a 

consequence, telomerase activity is able to resolve the “end replication problem” 

mentioned above. 

 

Figure 2.8 Mechanism of DNA replication of telomeric ends A) Semi-conservative replication of lagging 

strand B) Telomerase drives the synthesis of the G-rich tandem repeats at telomeric G-overhangs by using an 

RNA template (hTR) (O'Connor, 2008) 

 

Telomerase attachment and consequent elongation of telomeres can be inhibited by the 

sheltering complex that acts as protector of the G-overhang (Figure 2.7). In somatic cells 

telomerase activity is absent or weak and it is not sufficient to maintain a constant telomeric 

length. On the contrary, embryonic and germ cells possess telomerase activity that ensures the 

B

A
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maintenance of telomeric ends in length. The exceptions include highly proliferative cells, 

such as those in the skin, hematopoietic tissues, and the intestinal epithelium. It has been 

reporter that telomerase is overexpressed in about 85% of cancer cells and primary tumor 

(Kim et al, 1994), suggesting its importance as tumor promoter element.  

The single stranded G-overhang can fold in a G-quadruplex structure. Of course the G- 

quadruplex folding and the T-loop structure are in a dynamic equilibrium. Several studies on 

architectures and folding kinetics of telomeric intramolecular G-quadruplex revealed two 

stable conformation both in K
+
 and Na

+ 
(Ying et al, 2003). In Na

+
 solution, an intramolecular 

antiparallel G-quadruplex can form with both diagonal and lateral loop (Figure 2.9A) 

(Parkinson et al, 2002; Wang & Patel, 1993). In a K
+ 

containing crystal a very different G-

quadruplex structure can fold: a parallel G-quadruplex conformation with double-chain 

reversal loops and anti GBA (Figure 2.9B) (Parkinson et al, 2002). In K
+ 

solution several 

others G-quadruplex structures have been reported and these are in equilibrium with each 

other. For example, two intramolecular mixed G-quadruplex can form (Figure 2.9C-D) (Phan 

et al, 2007). Moreover, two bimolecular G-quadruplexes that forms in K
+
 solution have been 

reported: one parallel G-quadruplex with diagonal loops and one antiparallel G-quadruplex 

with lateral loop (Phan & Patel, 2003). 

 

 

Figure 2.9 Telomeric G-quadruplexes A) d[AGGG(TTAGGG)3] in Na
+
 solution; B) d[AGGG(TTAGGG)3] in 

K
+
 - containing crystal; C-D) d[AGGG(TTAGGG)3] in K

+
 solution. Loops are red. Anti and syn G bases are light 

blue and magenta, respectively. 
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Telomeric G-quadruplexes seems to have two major functions in protecting telomeric 3’ 

overhang from degradation by nucleases and in blocking telomerase activity. In fact, it has 

been reported that intramolecular antiparallel G-quadruplexes block telomerase activity in 

vitro (Zahler et al, 1991) suggesting a similar mechanism in vivo. This effect is probably due 

to the folding of the secondary structure that prevents the annealing of hTR to the G-

overhang. The folding and stabilization of G-quadruplex structures at telomeric ends, 

especially mediated by specific ligands, can act as an alternative protection mechanism to 

avoid not only genomic instability and but also telomeres elongation in cancer cells (Figure 

2.10). 

 

 

Figure 2.10 Biological role of telomeric G-quadruplex Telomere shortening or damage could reactivate repair 

mechanisms or telomerase enzyme, triggering tumorigenesis. Induction or stabilization of telomeric G-

quadruplex can thus block telomerase from binding to telomeric ends (Ou et al, 2008) 

 

This is the main reason that made telomeric G-quadruplexes  promising targets, especially in 

the anticancer therapy. The interaction of telomeric G-quadruplex with ligands give rise to 

different effect on telomere functions and it has been extensively studied in the past years.  

Many of these G-quadruplex ligands resulted promising in vitro. One of the most interesting 

ligands is BRACO-19. This acridine compound induces a rapid senescence in cancer cells due 

to the displacement of hPOT1, one of the protein of the shelterin complex. The anticancer 
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effect of BRACO-19 is determined by both an induced DNA damage response and a 

displacement of hTERT enzyme (Figure 2.11) (Neidle, 2010). Unfortunately, this molecule, 

as for most of the G-quadruplex ligands, has not progress into clinical trials, probably because 

it is not drug-like enough. This highlights the necessity of going on with the G-quadruplex 

research to disclose therapeutically effective ligands. 

 

 

Figure 2.11 Anticancer effect of BRACO-19 (Neidle, 2009) 

 

2.1.3.2. Effects of G-quadruplex structures during DNA replication 

Since the G-quadruplex structure is a dynamic structure that can form from a single-stranded 

sequence, the denaturation of DNA is required in a double-stranded context. The separation of 

the two complementary strands mainly occurs during physiological processes such as 

replication or transcription. As a consequence, these two processes can be mainly perturbed 

by a G-quadruplex folding (Maizels, 2006). 

During DNA replication, replicative helicase separates the two strands, allowing the leading 

and the lagging strand synthesis (Figure 2.12A). During this process, the DNA is transiently 

single stranded and provides opportunities for G-quadruplex formation. In addition, it has 
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been reported that the G-quadruplex formation occurs mainly in the lagging strand template 

that it is replicated discontinuously, triggering fork pausing and instability (Lopes et al, 2011). 

Of course, G-quadruplex structures have to be solved to allow a correct DNA replication. In 

this context, helicases have been proposed as necessary to unwind the G-quadruplex 

structures. Many helicases have been tested for their ability to unwind G-quadruplexes in 

vitro and some of them resulted active. Deregulation of most of the human helicases that 

unfold G-quadruplexes in vitro is associated with diseases correlated with the genomic 

instability: for example the RecQ helicase WRN is associated with premature ageing 

(Mohaghegh et al, 2001), whereas FANCJ and PIF1 are associated with an increased cancer 

risk (London et al, 2008; Sanders, 2010). Probably one of the best well-characterized example 

of G-quadruplex unwinding helicases is PIF1 that has been demonstrated to specifically bind 

and solve G-quadruplex structures (Figure 2.12B) (Sanders, 2010).  

 

Figure 2.12 DNA replication process A) During DNA replication, replicative DNA helicases unwind the two 

strands into a leading- and a lagging-strand template to form a replication fork. The replication protein A (RPA) 

binds to the lagging strand and ensures smooth progress of replication along the strand. B) Where this strand 

contains a G-rich sequence, RPA is inefficient, allowing the strand to fold into a G-quadruplex structure 

including G-quadruplexes. Consequently, progress of DNA polymerase-δ is blocked, leading to stalling of the. 

Pif1 helicases unwind G-quadruplexes, allowing replication to progress (Mirkin, 2013) 
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2.1.3.3. Effects of G-quadruplex structures during transcription 

G-quadruplex structures could influence transcription both in positive or negative ways, 

depending on the location of the G-quadruplex sequence. As a matter of fact G-quadruplexes 

can fold in regulatory (such as promoters) or coding regions. In addition they can form on the 

template or non-template strand. A G-quadruplex structure in a template strand of a coding 

region can block the transcription machinery (Figure 2.13a), whereas a G-quadruplex in the 

non-template strand can promote the transcription, maintaining the single-stranded 

conformation (Figure 2.13b). G-quadruplexes located in promoters can modulate transcription 

both preventing and recruiting proteins. Thus, G-quadruplexes can bind proteins (mainly 

transcriptional activators) that recruit or facilitate polymerase (Figure 2.13c) or can bind 

repressors that affect transcription (Figure 2.13d). 

 

 

Figure 2.13 Putative effects of G-quadruplexes during transcription process (Bochman et al, 2012) 

 

A

B

C

D
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2.1.3.3.1. G-quadruplexes in promoter regions 

Bioinformatic analysis shows that putative G-quadruplex forming sequences are prevalent  at 

promoters in human genome (Huppert & Balasubramanian, 2007). A similar enrichment of 

“G-4 motifs” in promoters is found in other organisms, including yeast (Capra et al, 2010), 

plants (Mullen et al, 2010) and bacteria (Rawal et al, 2006), suggesting a transversal role of 

G-quadruplexes among different species. Interestingly, “G-4 motifs” seem to be over-

represented near binding element for transcription factors, such as Sp1 (Todd & Neidle, 

2008). 

In the human genome, about 50% of human genes present “G-4 motif” upstream or 

downstream the Transcription Start Site (TSS), suggesting a role of tetraplex structures in 

regulating gene expression. Further investigations about “G-4 motif” in regulatory regions 

revealed a correlation between gene function and the so called “G-quadruplex forming 

potential” (G4P) of sequences. Interestingly, tumor suppressor genes have a very low G4P, 

whereas proto-oncogenes show an high G4P, suggesting a specific enrolment of G-

quadruplexes as transcriptional up-regulators of cancer-related genes (Eddy & Maizels, 2006). 

These findings opened up further investigations about G-quadruplexes in ongogene promoters 

and evidences for a G-quadruplex formation was found in promoters of several genes that are 

related to the six hallmarks of cancer (Figure 2.14) (Brooks et al, 2010). The expression of 

these genes results altered in cancer diseases supporting the therapeutic potential of targeting 

G-quadruplex for the treatment of human diseases, primarily cancer. The most representative 

among these genes are c-myc (Siddiqui-Jain et al, 2002), VEGF (Sun et al, 2005), bcl2 

(Dexheimer et al, 2006), c-kit (Rankin et al, 2005), hTERT (Palumbo et al, 2009) and PDGF-

A (Qin & Hurley, 2008). 
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Figure 2.14 The six hallmarks of cancer and the association with G-quadruplexes found in the promoter 

region of these genes (Brooks et al, 2010) 

 

Often G-quadruplex forming sequences in promoters contain multiple G-tracts thus multiple 

tetraplex structures can form. This fact sometimes makes the characterization of the structure 

complicated. In 2010, Brooks and coworkers tried to categorize promotorial G-quadruplexes 

in four classes summarized as follow(Brooks et al, 2010).  

 Class I (Figure 2.15A): a single G-quadruplex predominates but many loop isomers 

are possible. The biological consequence of formation and stabilization of G-

quadruplex in these promoter elements is gene silencing. One example is G-

quadruplex in c-myc promoter.  

 Class II (Figure 2.15B): two different G-quadruplexes separated by several bases can 

fold. The unique example of this class is G-quadruplex in c-kit promoter. As for Class 

I, the biological consequence is inhibition of gene expression. 

 Class III (Figure 2.15C): two different tandem G-quadruplexes can form. These two 

structures resulted more stable than the individual structures because of intermolecular 

interactions. Two examples are G-quadruplexes in c-myb and hTERT promoters. For 

both cases, G-quadruplexe sequences contain binding sites for the transcription factor 

Sp1. Again, G-quadruplex at this level inhibits gene expression 
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 Class IV (Figure 2.15D): Multiple overlapping G-quadruplexes species can form in a 

dynamic equilibrium. The greatest example of this class is bcl-2. 

 

 

Figure 2.15 Four classes of unimolecular G-quadruplexes found in eukaryotic promoter regions (Brooks et 

al, 2010) 

 

It is important to underline that promoter regions are DNA duplex elements that would be 

unwound prior to G-quadruplex formation. How these tetraplex structures can fold from a 

double stranded context and whether they are stable once formed remain an open question. 

However, increasing evidence supports the thesis that G-quadruplex structures in promoter 

regions could regulate repression or activation of gene expression and may have an essential 

role in gene transcription regulation. The G-quadruplex folding could be facilitated by 

formation of single-stranded tract during replication and further stabilized through addition of 

G-quadruplex-ligands. Moreover, G-quadruplex binding protein could be involved in this 

dynamic process. 
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2.1.3.3.1.1. G-quadruplex in c-myc NHE III1 

One of the best characterized example of regulatory G-quadruplex structures is located in the 

NHE III1 region of the c-myc promoter. The reported biological consequence of formation and 

stabilization of this G-quadruplex structure is the repression of c-myc transcription. c-MYC is 

a protein that plays a central role in several aspect of cancer biology, including proliferation, 

differentiation, apoptosis, metastases and chancing in the tumor microenvironment. The 

oncogenic role of c-MYC is mainly due to its overexpression in transformed cells which is 

often an early step in oncogenesis. Since c-MYC appears deregulated in most tumor type 

(about 80%) and stages, the potential of c-MYC-targeted therapies is really attractive 

(Gonzalez & Hurley, 2010). 

The regulation of c-myc promoter activity is complex since it involves several promoters and 

start sites. One important element that control c-myc expression is the transcriptionally 

induced negative supercoiling: this effect is due to the RNA polymerase movement during 

transcription. Since the DNA has to be screwed through the enzyme, this creates an under-

twisting behind the transcriptional machinery called negative supercoiling. Some cis-elements 

in the c-myc promoter, such as the nuclease hypersensitive element 1 (NHE1), are dynamically 

affected by supercoiling. The NHE1region interact with the transcriptional activator Sp1 in its 

duplex state. However, the negative superhelical stress facilitates the denaturation of this 

regions and favors the  binding of other proteins (heterogeneus ribonucleoprotein K (hnRNP 

K) and CCHC-zinc finger nucleic acid binding protein (CNBP)) in a single-stranded context, 

again facilitating the transcription process. But the separation of the two complementary 

strands can allow also the formation of a G-quadruplex structure when no proteins are bound. 

In this case, the G-quadruplex structure prevent c-myc transcription acting as a silencer 

element (Figure 2.16) (Brooks & Hurley, 2009). This effect is particularly significant since 

the NHE1 controls about 80% of c-myc transcription. It appears clear that ligands that can 

stabilize this structure could be used to specifically repress c-MYC expression in cancer cells 

overexpressing the oncogenic protein. Interestingly, GQC-05, an analogue of the 

antineoplastic drug Ellipticine binds the G-quadruplex  structure in the NHE III1 region of c-

myc in vitro with high affinity and selectivity. Moreover, when added to Burkitt's lymphoma 

cell lines, GQC-05 results in reduced levels of transcribed c-MYC mRNA (Brown et al, 

2011). 
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Figure 2.16. Models of the different promoter forms within the c-myc NHE III1 A) Duplex representation of 

the promoter without any proteins bound. B) Binding of Sp1 to the duplex structure, leading to activation of c-

MYC expression. C) Binding of hnRNP K and CNBP to the single-stranded C- and G-rich regions, respectively, 

leading to activation of c-myc transcription. D) Repression of c-myc  transcription when Sp1, hnRNP K, and 

CNBP are not bound, leading to the formation of the G-quadruplex and i-motif (Brooks & Hurley, 2009) 

 

2.1.3.3.2. G-quadruplexes in coding regions 

Besides promoter regions, G-rich sequences capable of forming G-quadruplex were also 

found within other regions of the human genome, including minisatellites (Weitzmann et al, 

1997), immunoglobin heavy chain switch regions (Dunnick et al, 1993) and rDNA (Hanakahi 

et al, 1999), and were shown to be the target of binding proteins (Law et al, 2010). “G-4 

motifs” are less often found in the template strand than in the non-template strand. Normally, 

those that are located on the template strand tend to cluster at the 5’ and of 5’UTR (Huppert et 

al, 2008). However, recent work has shown that G-quadruplex can also form within coding 

regions both on the leading and on the lagging strand. On the leading strand G-quadruplexes 

arise during replication and promote genetic instability in human and yeast (Lopes et al, 2011; 

Nambiar et al, 2011). Besides these evidences, very little is known up to now on how G-

quadruplex structures are processed when encountered by an elongating RNA polymerase. 

A

B
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Broxson and coworker in 2011 demonstrated that a G-quadruplex forming sequence located 

in c-Myb proto-oncogene can fold in vitro and can cause a T7 RNA Polymerase block during 

transcription (Figure 2.17). A block of transcription in the dsDNA when the G-quadruplex 

sequence was located in the template strand was demonstrated, suggesting that c-Myb 

expression is regulated by G-quadruplex formation in vivo (Broxson et al, 2011). 

 

Figure 2.17 Transcription arrest by a G-quadruplex in a template strand (Broxson et al, 2011) 

 

On the lagging strand G-quadruplex-forming sequences were found to generate G loops 

(Figure 2.18) during transcription both in vitro and in Escherichia coli (Belotserkovskii et al, 

2010; Duquette et al, 2004). Such structures may help to keep the transcribed template 

accessible for transcription by preventing its annealing to its complementary strand. In this 

case, G-quadruplexes could even promote transcription of certain genes.  

 

Figure 2.18 Formation of a G-loop due to G-quadruplex structures in the non-template strand (Tornaletti, 

2009) 

 

Further, association between G-quadruplexes and single nucleotide polymorphisms and 

expression of the corresponding gene in individuals has been proposed (Baral et al, 2012). 
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2.1.4. G-quadruplexes as targets for drug design 

2.1.4.1. Interaction modes of G-quadruplex ligands 

In the recent years, G-quadruplexes have emerged as promising target for the anticancer 

therapy, primarily to block telomerase activity and to inhibit G-quadruplex related oncogene 

expression. To date, a diverse array of G-quadruplex stabilizing compounds have been 

identified. General features of these G-quadruplex-recognising ligands include a large flat 

aromatic surface and cationic charges. The polymorphism of G-quadruplexes is thought to 

allow a recognition by G-quadruplex ligands trough different binding modes. In fact, these 

small molecules can both interact with loops and G-quartets of the tetraplex structure. The G-

quadruplex stabilization occurs mainly via π–π stacking and electrostatic interactions resulting 

in the binding of the ligand on the external G-quartet of the structure. This binding mode is 

called “external stacking” (Figure 2.19A) and is typical of flat aromatic molecules. A specific 

G-quadruplex ligand should possess an aromatic surface larger than that of a duplex binder to 

improve the aromatic–aromatic overlap and provide selectivity. Intercalation of a small 

molecule between G-tetrads (Figure 2.19B) is theoretically possible but it is thought to be 

difficult. In fact G-quadruplex structure is a rigid structure, thus the distortion induced by a 

ligand is energetically unfavorable. However these interactions are much less understood than 

those occurring with duplex DNA and are under investigation. Finally, small molecules can 

interact with the tetraplex structure through the groove binding mode (Figure 2.19C), 

specifically interacting with loops. Electrostatic interactions between positively charged 

ligands and the G-quadruplex-DNA scaffold also strongly promote stabilization (Ou et al, 

2008). 

 

Figure 2.19 Mode of interaction of G-quadruplex ligands A) external stacking mode on the surface of the 

terminal G-quartet B) intercalating mode between stacked G-tetrads C) grove binding mode 
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To date, numerous ligands have been synthesized but interactions mode resulted really 

complicated to be elucidated in vitro. Examples include perylenes, such as PIPER (Fedoroff et 

al, 1998), porphyrins, such as TMPyP4 (Izbicka et al, 1999), trisubstituted acridines, such as 

BRACO-19 (Campbell et al, 2008) and natural macrocycles, such as Telomestatin (Kim et al, 

2002). Some of these compounds have shown encouraging anticancer activity in vitro, in vivo 

and in clinical trials (Drygin et al, 2009; Ou et al, 2008). 

 

2.1.4.2. Main classes of G-quadruplex ligands 

In general, G-quadruplex ligands can be classified into four categories on the basis of their 

cationic nature: 

 Cationic compounds upon in situ protonation of an amine appendage 

 Cationic compounds via N-methylation of an aza-aromatic moiety 

 Cationic compounds due to the presence of a metal centre 

 Non-cationic ligands 

 

2.1.4.2.1. In situ protonated G-quadruplex ligands 

Besides flat aromatic surfaces prone to π-stacking with G-tetrad, G-quadruplex ligands should 

retain sufficient water solubility. To ensure this, normally protonable sidearms (e.g. amine 

groups) are introduced around the aromatic core, thus the charges are far from the 

hydrophobic center.  

BRACO-19 is probably one of the best examples of this class of compounds. BRACO-19 is a 

3,6,9 trisubstituted acridine derivative (9-[4-(N,N-dimethylamino)phenylamino]-3,6-bis (3-

pyrrolodino-propionamido) acridine × 3HCl) (Figure 2.20A) that interact with three G-

quadruplex grooves thanks to three side-arms (Schultes et al, 2004). The acridine motif seems 

very efficient in recognizing G-quadruplex structures, with a very high selectivity (31-fold) 

over duplex DNA (White et al, 2007). BRACO-19 has been intensively investigated for its 

ability of stabilizing telomeric G-quadruplexes and resulted a strong inhibitor of telomerase 

firstly by TRAP (telomeric repeat amplification protocol) assay (Kim et al, 1994). Further 

biological investigations show that BRACO-19 is efficient in inhibiting cancer cell 

proliferation in vitro and in arresting tumor growth in vivo, targeting specifically the telomeric 

G-quadruplex (Burger et al, 2005). 
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Another group of compounds that belong to the in situ protonated G-quadruplex ligands is the 

perylene derivatives, such as PIPER. This compound is a perylene diimide (PDI) 

characterized by a broader hydrophobic core with two external amine appendages (Figure 

2.20B). NMR studies indicate that PIPER can bind G-quadruplex structures with different 

topologies with stechiometries of 1:2, 1:1 and 2:1 (Ou et al, 2008). As for BRACO-19, PIPER 

resulted a good telomerase inhibitor with an IC50 (50% inhibitory concentration) in the low-

M range. Interestingly, it has been reported that PIPER can induce the transition duplex-

quadruplex in the c-myc promoter region (Rangan et al, 2001). 

 

Figure 2.20 Chemical structure of A)BRACO-19 and of B) PIPER 

 

The substituted naphthalene diimides represent another interesting class of G-quadruplex 

ligands. The naphthalene diimide core is reported in Figure 2.21. Among the 1,4,5,8-

naphthalene tetracarboxylic diimides (NDIs) analogues, tri- and tetra-substituted NDIs show  

promising G-quadruplex binding properties (Cuenca et al, 2008). Interestingly, a tetra-

substituted NDI is able to strongly bind the human telomeric G-quadruplex DNA and to 

selectively inhibit the growth of several cancer cell lines at sub-μM concentrations (Hampel et 

al, 2010). The great advantage of NDIs is that the synthetic route of NDIs allows the 

introduction to the ND core of up to four different side chains, which in principle can be 

exploited to produce ligand diversity that may discriminate between different types of G-

quadruplexes. Tri-substituted NDIs chemically engineered to embed an alkylating 

quinonemethide precursor (QMP) resulted extremely efficient alkylating agents of telomeric 

G-quadruplex DNA, showing a promising anticancer activity in vitro (Nadai et al, 2011). 

Moreover, also NDIs with an extended core (e.g. core fused to 1,4-dihydropyrazine-2,3-

dione), resulted good G-quadruplex ligands  with a promising anticancer activity against 

different human telomerase-positive cell lines (Doria et al, 2012). NDI core tethered to 

activatable alkylating moieties by flexible spacers showed a selective alkylation and 

stabilization of G-quadruplexes, providing the first example of thermally induced non-metal-

A B 
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based G-quadruplex adduct formation (Di Antonio et al, 2009). Moreover, NDI–oxirane 

conjugates showed a significant affinity for G-quartets and a selective alkylation of the loop 

adenines (Doria et al, 2013). 

 

Figure 2.21 Chemical structure of the naphtalene diimide (NDI) core 

 

Other compounds in this group are the quinoanthroxazine derivatives, such as the 

fluoroquinolone QQ58 that stacks onto an external G-tetrad as the main binding mode (Duan 

et al, 2001). 

2.1.4.2.2. N-methylated aromatic G-quadruplex ligands 

N-methylated ligands, for example compounds quaternized on the aromatic ring nitrogens, 

show several advantages such as an increasing water solubility and π-stacking ability.  

Porphirins with their planar arrangement of the aromatic rings have proved to bind G-

quadruplexes by staking with the G-tetrads. One of the most important exponent of this 

category is the tetracationic porphyrin TMPyP4 (5,10,15,20-tetra-(N-methyl-4-

pyridyl)porphyrin) (Figure 2.22A). TMPyP4 have shown to bind and stabilize both parallel 

and antiparallel G-quadruplex structures and to efficiently inhibit telomerase (Shi et al, 2001). 

Moreover this compound resulted efficient in downregulating the expression of several 

oncogenes, such as c-myc (Siddiqui-Jain et al, 2002). TMPyP4 showed diverse G-quadruplex 

binding modes, including intercalation between adjacent G-tetrads and stacking onto the 

external G-quartet. The TMPyP4 isomer, named TMPyP2 (tetra-(N-methyl-2-

pyridyl)porphyrin) (Figure 2.22B) has two N-methyl groups in the sterically hindered 2-

position  resulted unable to stabilize G-quadruplex structures and showed a weak activity in 

inhibiting telomerase activity (Rha et al, 2000), supporting the specificity of TMPyP4. For 

this reason, TMPyP2 is considered a kind of “negative control” in characterizing G-

quadruplexes and is widely used in parallel with TMPyP4. However, cationic porphyrins have 

H
N

N
H
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only 2-fold greater affinity for quadruplex over duplex, thus they are used only for the 

preliminary biophysical characterization of G-quadruplex structures.  

A small molecule has to be mentioned in this category: RHPS4 (3,11-difluoro-6,8,13-

trimethyl(H)-quino[4,3,2-kl] acridinium methylsulfate) is a N-methylated pentacyclic 

acridinium (Figure 2.22C) that showed a potent anti-telomerase activity through a selective G-

quadruplex binding. In vitro and in cellulo studies demonstrated the ability of this ligand to 

decrease telomeres length and to act in synergy with the anti-cancer agent Taxol (Gowan et al, 

2001). RHPS4 is one of the rare ligands whose complex with G-quadruplex-DNA has been 

solved by NMR (Gavathiotis et al, 2001). As expected, the cationic molecule sandwiches the 

quadruplex-structure thanks to strong stacking interactions between the ligand and the two 

external G-quartets of the G-quadruplex. 

 

Figure 2.22 Chemical structures of A) TMPyP4 B) TMPyP2 and C) RHPS4 

 

2.1.4.2.3. Metallo-organic G-quadruplex ligands 

This class of ligands is interesting thanks to very promising G-quadruplex binding properties. 

The central metal core of these ligands could be positioned over the cation channel of the G-

quadruplex, optimizing the stacking interactions of the surrounding chelating agent with 

the G-quartet. Moreover, their cationic or highly polarized nature makes the association with 

the negatively charged G-quadruplex-DNA more favorable. 

The most representative examples are Cu(II)-TMPyP4 (Figure 2.23A) and Mn(III)-TMPyP4 

These compounds are characterized by the insertion of a metal in the central cavity of 

TMPyP4, forming a metallo-complexes. In particular, Mn(III)-TMPyP4 showed a 10-fold 

increased selectivity for quadruplex over duplex (Dixon et al, 2005). The pentacationic 

manganese(III) porphyrin (Figure 2.23B) is another example of metallo-organic G-quadruplex 

ligands and contains a central aromatic core with four flexible cationic arms. Interestingly, 
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this compound is one of the most potent G-quadruplex ligands, showing a 10000-fold 

quadruplex versus duplex selectivity (Dixon et al, 2005). 

 

 
Figure 2.23 Chemical structures of A) CuTMPyP4 and B) Mn(III)porphyrin 

 

2.1.4.2.4. Neutral macrociclyc G-quadruplex ligands 

This category includes one of the most interesting G-quadruplex ligands, Telomestatin.  This 

compound is a macrocyclic natural molecule isolated from Streptomyces annulatus and 

consists in seven oxazole rings and one thiazoline ring (Figure 2.24). Telomestatin is actually 

one of the most efficient telomerase inhibitor in vitro, with an IC50 in the nano molar range, 

and appears as one of the most selective G-quadruplex ligands (70-fold quadruplex over 

duplex selectivity)  (Shin-ya et al, 2001). This efficiency is probably due to a perfect shape 

adaptation between its structure and the G-quartet. However, Telomestatin has a big 

disadvantage related to its synthesis that has been recently reported (Doi et al, 2006). In fact, 

the synthesis is really complex and thus hardly compatible with large-scale preparation. 

 

Figure 2.24 Chemical structure of Telomestatin 
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2.2.  G-quadruplex in microrganisms 

Besides humans, other mammals (Verma et al, 2008), yeasts (Hershman et al, 2008) and 

prokaryotic organisms (Beaume et al, 2013; Rawal et al, 2006; Wieland & Hartig, 2009) 

exhibit putative G-quadruplex forming sequences in key regions. Computational analysis on 

several organisms showed that, as for the human genome, “G-4 motifs” appear similarly 

distributed and are over-represented in promoter regions (Huppert & Balasubramanian, 2005). 

The fact that also prokaryotic genomes possess the potential to adopt a G-quadruplex 

conformation made G-quadruplexes a new and interesting topic for the scientific community. 

In fact, G-quadruplex can provide a selective site for small molecules in the treatment of 

various disorders, for example bacterial or viral infections. To date, very little is known about 

G-quadruplexes at the viral level. The Epstein Barr virus (EBV) encodes for the EBV nuclear 

antigen 1 (EBNA1) protein that is critical for replication and maintenance of the genome 

during latency in proliferating cells. It has been demonstrated that EBNA1 specifically binds 

to a G-rich RNA sequence that is predicted to form G-quadruplex structures. Interestingly, the 

G-quadruplex ligand BRACO-19 inhibited EBNA1-dependent stimulation of viral DNA 

replication. BRACO-19 treatment also disrupted the ability of EBNA1 to tether to metaphase 

chromosomes, suggesting that maintenance function is also mediated through G-quadruplex 

recognition (Norseen et al, 2009). However, no more evidences have been reported about G-

quadruplex effects on EBV biology. The Human Papillomavirus (HPV) presents highly 

conserved regions with an high propensity in G-quadruplex folding that could be implicated 

in regulation of viral processes. These sequences can fold in relatively strong G-quadruplex 

structures. However, these reported results do not show possible biological consequences of 

G-quadruplexes for the HPV nor possible implications for medical treatment of viral infection 

(Tluckova et al, 2013).  

Overall, the evidences about G-quadruplex formation and biological roles in viruses remain 

elusive, suggesting a need to further investigate this promising area of research. Since this 

thesis focuses on G-quadruplex structures in the Human Immunodeficiency Virus (HIV), the 

main features of this virus and reported evidences for G-quadruplex implications in its viral 

biology will be presented in the following paragraphs.  
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2.3. The Human Immunodeficiency Virus (HIV) 

The human immunodeficiency virus (HIV) was first characterized in 1983 when was 

proposed as the causal agent of the acquired immunodeficiency syndrome (AIDS) (Barre-

Sinoussi et al, 1983; Gallo et al, 1983). AIDS was first reported in 1981 by the US (United 

States) Center for Disease Control and Prevention (CDC). In 1985, the US Food and Drug 

Administration approved a commercial test to detect the virus. As result in that year over 

17000 cases were reported from 71 countries, clearly showing the AIDS pandemic nature 

(Merson et al, 2008). The progression of the disease results in a compromised immune system 

of an individual leading to increase susceptibility to opportunistic infections caused by 

bacteria, fungi, viruses and parasites. This is mainly due to the depletion of CD4+ T-helper 

lymphocyte cells that are a key component of the human immune system. Nowadays, AIDS 

remains one of the most significant infectious disease and AIDS-related illnesses are one of 

the leading causes of death of premature mortality worldwide. High mortality is without 

doubts the most serious outcome of AIDS, but it impairs also other aspects of social live 

(socio-economic development, poverty) especially in undeveloped countries (e.g. Africa). The 

Joint United Nations Programme on HIV/AIDS (UNAIDS) estimates that there were 33.3 

million people living with HIV at the end of 2009, underlying an increase of about 27% in ten 

years. Africa remains the global epicentre of AIDS pandemic with the highest number of 

people living with HIV and AIDS (UNAIDS/WHO, 2012). To date, important progress has 

been achieved in preventing new HIV infections, which have been steadily declining since the 

late 1990s, this decrease is of set by the reduction in AIDS-related deaths due to the 

significant scale up of antiretroviral therapy over the past few years.  

HIV is a member of the Retroviridae family in the Lentivirus genus which comprises two 

types of HIV, HIV-1 and HIV-2. HIV-1 is the worldwide predominant  and is the main 

responsible for the AIDS pandemic. HIV-1 is characterized by an high and complex diversity, 

mainly due to the error prone reverse transcriptase enzyme, the high virus replication rate and 

the frequent recombination events. Because of this high diversity in the HIV-1 genome, it has 

been phylogenetically divided into four groups: group M (major), group O (outlier), group N 

(new/non M or non O) and group P. Groups N and P are relatively new groups and together 

with group O are extremely rare. In fact, more than 90% of HIV-1 infections belong to HIV-1 

group M. Group M viruses have been classified into 9 main subtypes (A,B,C,D,F,G,H,J and 

K) and several circulating recombinant forms (CRFs) (Hemelaar, 2012). Although subtype B 
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is responsible for 11% of all infections worldwide, it represent the predominant subtype in 

Europe (Hemelaar et al, 2011). 

2.3.1. Viral structure and genome 

HIV-1 virion has a spherical shape (110 nm diameter) and consists of an envelope that 

surrounds a conical capsid which contains two molecules of the viral single stranded RNA 

genome. The capsid core is composed of approximately 1500 molecules of the viral p24 

capsid protein (CA) and encloses two copies of positive-sense single-stranded RNA genome 

that is tightly bound to the nucleocapsid protein (NC). Moreover, the capsid contains the viral 

enzymes integrase and reverse transcriptase and the four accessory  proteins Vif, Vpr, Vpu 

and Nef. The outer membrane of the virus, called envelope, is composed by a host-cell 

derived lipid membrane and is coated in the interior by the matrix proteins (MA). On the 

envelope two glycoproteins are anchored: the trimer gp120 surface protein and the gp141 

transmembrane protein complex (Figure 2.25). 

 

Figure 2.25: Schematic representation of HIV-1 virion 

 

The 9.18 kilobases HIV-1 RNA genome (Figure 2.26) consists in three primary genes (gag, 

pol and env) and two regulatory genes (tat and rev) and four accessory genes (vif, vpr, vpu, 

nef). Gag, Pol and Env are the prototypical retroviral proteins: gag encodes for capsid proteins 

(MA, CA, NC and p6), pol encodes for the three viral enzymes protease (PR), reverse 

Vif, Vpr, Vpu and Nef
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transcriptase (RT) and integrase (IN) and env encodes for the two viral glycoprotein gp120 

and gp141. Gag, Pol and Env result essential for viral replication. Besides these three 

proteins, also the two regulatory proteins Tat and Rev are essential. On the contrary, the four 

so-called accessory proteins Nef, Vif, Vpr and Vpu are not essential for viral replication in 

vitro, but can have consequences on viral life cycle, altering replication or disease 

progression. 

 

 

Figure 2.26 HIV-1 RNA genome organization Protein coding region are shown as grey boxes; polyprotein-

domain junctions are depicted as solid vertical lines.CA, capsid; IN, integrase; MA, matrix; NC, nucleocapsid; 

PR, protease; RT reverse transcriptase; SP, signal peptide (Watts et al, 2009) 

 

The main features of the HIV genes and proteins will follow, with a particular focus on the 

Nef protein that is one of the topics of this thesis. 

 Gag 

The gag gene encodes for the 55-kilodalton Gag precursor protein (p55) which is expressed 

from the unspliced viral mRNA. During translation, the p55 is associates with host cell 

membranes, recruits two copies of the viral genomic RNA along with other viral and cellular 

proteins that triggers the budding of the viral particle from the surface of an infected cell. 

After budding, p55 is cleaved by the virally encoded protease (PR) (a product of the pol gene) 

during the process of viral maturation into four smaller proteins designated MA (matrix or 

p17), CA (capsid or p24), NC (nucleocapsid or p9), and p6. The MA molecules are attached 

to the inner surface of the virion, stabilizing it. Moreover these molecules facilitates the 

nuclear transport of viral genome (Gallay et al, 1995). The p24 protein forms the conical core 

of viral particles. It has been reported that the cellular peptidylprolyl isomerase cyclophilin A 

interacts with the p24 region of p55 leading to its incorporation into HIV particles and it is 
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essential for viral replication (Franke & Luban, 1996). The NC of p55 is responsible for 

specifically recognizing the so-called “packaging signal” that mediated the incorporation of 

RNA gemone into HIV-1 virions.  The packaging signal consists of four stem loop structures 

located near the 5' end of the viral RNA and are bounded by NC through interactions 

mediated by two zinc-finger motifs (Harrison & Lever, 1992). NC appears also essential in 

facilitating the reverse transcription of RNA genome allowing the formation of proviral DNA 

(Lapadat-Tapolsky et al, 1993). Finally the p6 polypeptide region mediates interactions 

between p55 Gag and the accessory protein Vpr, leading to the incorporation of Vpr into 

assembling virions (Paxton et al, 1993). The p6 region also contains a so-called late domain 

which is required for the efficient release of budding virions from an infected cell. 

 Gag-Pol precursor 

The Gag-Pol precursor (p160) is generated by a ribosomal frame shift. During viral 

maturation, the virally encoded protease cleaves the Pol polypeptide away from Gag and 

further digests it to separate the protease (PR or p10), the reverse transcriptase (RT or p50), 

RNase H (p15), and integrase (INT or p31). The HIV-1 protease is an aspartyl protease that 

acts as a dimer. Protease activity is required for cleavage of the Gag and Gag-Pol polyprotein 

precursors during virion maturation as described previously. The RT enzyme is a DNA 

polymerase-RNA dependent that synthesizes a double-stranded DNA from the single stranded 

RNA genome. RNase H removes the original RNA template from the first DNA strand, 

allowing synthesis of the complementary strand of DNA. Because the polymerase does not 

contain a proof-reading activity, replication is error-prone and introduces several point 

mutations into each new copy of the viral genome. The integrase protein mediates the 

insertion of the proviral DNA into the genomic DNA of an infected cell. This process is 

mediated by three distinct functions of IN. First, an exonuclease activity trims two nucleotides 

from each 3' end of the linear viral DNA duplex. Then, a double-stranded endonuclease 

activity cleaves the host DNA at the integration site. Finally, a ligase activity generates a 

single covalent linkage at each end of the proviral DNA (Bushman et al, 1990). 
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 Env 

The polyprotein Env (gp160) is expressed from singly spliced mRNA and is synthesized in 

the endoplasmic reticulum. Then, Env undergoes glycosylation, an essential step for viral 

infectivity (Capon & Ward, 1991). A cellular protease cleaves gp160 into the transmembrane 

protein gp41 and the surface protein gp120.  

 Tat 

Tat (trans-activator of transcription) is a transcriptional transactivator essential for HIV-1 

replication. Tat is an RNA binding protein that interacts with a short-stem loop structure 

called TAR (transactivation response element) located at the 5’ end of viral RNA. The 

binding of Tat to TAR activates transcription from the HIV promoter LTR (Long Terminal 

Repeats) at least 1000-fold (Roy et al, 1990). Tat seems to promote primarily the elongation 

phase of HIV-1 transcription to produce full-length transcripts. In the absence of Tat 

expression, HIV generates mainly short (>100 nucleotides) transcripts (Feinberg et al, 1991). 

 Rev 

Rev (regulator of viral expression) is a 13-kD sequence-specific RNA binding protein and 

acts to induce the transition from the early to the late phase of HIV gene expression (Kim et 

al, 1989). In the absence of the Rev , the host splicing machinery in the nucleus splices the 

RNA allowing the production of the regulatory proteins Rev and Tat and the accessory 

protein Nef. In the presence of Rev, RNA is exported from the nucleus before it can be 

spliced, so that the structural proteins and RNA genome can be produced. Interestingly, Rev 

binds to a RNA secondary structure, called RRE (Rev response element), facilitating the 

export of unspliced and incompletely spliced viral RNAs from the nucleus to the cytoplasm. 

This mechanism allows to overcome the host’s splicing machinery system in the nucleus and 

to produce the structural viral proteins (Strebel, 2003). 

 Vif 

Vif (virulence factor) is a 23 kDa accessory protein and the lack of this protein seems strongly 

impair the viral infectivity. In fact, virions generated in absence of this protein seem to be 

about 1000 times less efficient in establishing the infection (Strebel et al, 1987). Although this 
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protein is not essential for viral replication, the absence of Vif in primary cells results in a 

defected replication (Fan & Peden, 1992). 

 Vpr 

The 14-kDa accessory protein Vpr (Viral protein R) confers rapid growth advantage to Vpr-

expressing viruses. This evidence is more pronounced in macrophages than in primary T-cells 

(Balliet et al, 1994). As for the Vif protein, Vpr is incorporated into viral particles, with 

approximately 100 molecules of Vpr in each virion (Cohen et al, 1990). Moreover, Vpr 

facilitates the nuclear localization of the Pre Integration Complex (PIC, see HIV replication 

cycle section) in non-dividing cells, elucidating its important role at a preintegration level 

(Heinzinger et al, 1994). 

 Vpu 

Vpu (Viral Protein U) is an unique accessory protein of HIV-1 and is expressed from the 

mRNA that also encodes env.  Vpu is translated from this mRNA at levels tenfold lower than 

that of Env because the Vpu translation initiation codon is not efficient (Schwartz et al, 

1990).Vpu is an integral membrane phosphoprotein that is primarily localized in the internal 

membranes of the host cell. The two main functions of Vpu are the down-modulation of CD4 

antigen and the enhancement of virion release (Schubert et al, 1996). 

 Nef 

The Nef (Negative Factor) coding region, a 621 bp-long sequence located at the 3’-end of the 

viral genome, partially overlaps with the 3’-long terminal repeat (LTR) region. Nef was 

originally characterized as a negative regulator of HIV infection and was thus named as 

“negative factor”. This was then refused by several research groups. Nef is a 27 kDa 

myristoylated protein expressed early in the HIV-1 life cycle. The nef gene is highly 

conserved in all primate lentivirus e.g. HIV-1, HIV-2 and SIV. Although Nef is not required 

for HIV-1 replication in vitro, it appears as a fundamental factor for efficient viral replication 

and pathogenesis in vivo; it also facilitates virus replication and enhances viral infectivity in 

vitro (Miller et al, 1994). Moreover, virus produced from a nef mutated proviral DNA results 

in a 4 to 40 less infectious virions in single-round infection assay (Das & Jameel, 2005). An 

essential role for Nef in vivo has been demonstrated in a subset of long-term non progressors, 
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HIV-infected individuals that do not progress to AIDS. Viral isolates from some of these 

individuals exhibit either a deletion in the nef gene or defective nef alleles (Salvi et al, 1998). 

In addition, rhesus macaques infected with an engineered strain of SIV that lacked the 

functional Nef protein also did not attain high viral loads and did not progress to clinical 

disease (Kestler et al, 1991). Nef has a positive effect on viral infection and replication by 

promoting the survival of infected cells by several mechanisms: for example, to promote 

escape from the immune system and infectivity, it downregulates CD4 and Major 

Histocompatibility Complex I (MHC I) expression on the cell surface, to enhance viral 

replication and infectivity it activates CD4+ T lymphocytes (Richter et al, 2009). The 

downmodulation of critical cell surface protein, such as CD4 and MHC I, is the most 

extensively studied function of Nef and is represented in Figure 2.27. Nef accelerates the 

endocytosis of MHC I molecules through the phosphofurin acidic cluster sorting protein 1 

(PACS1)/phosphatidylinositol 3-kinase (PI3K)-dependent activation of ADP ribosylation 

factor 6 (ARF6) mediated endocytosis (Figure 2.27A). The downregulation of MHC I 

decreases the efficiency of cytotoxic T cells in killing HIV infected cells. Nef is also 

responsible for the CD4 downmodulation (Figure 2.27B). At the plasma membrane, Nef 

connects the cytoplasmic tail of CD4 with clathrin-coated pits through an interaction with 

adaptor protein 2 (AP2) and the vacuolar ATPase (v-ATPase), triggering rapid endocytosis of 

the CD4 receptor (Das & Jameel, 2005). 

 

 

Figure 2.27 Nef-induced downmodulation of A) MHC class I and B) CD4 molecules (Peterlin & Trono, 

2003) 
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Moreover, Nef induces apoptosis in both infected and uninfected immune effector cells 

(Figure 2.28). In vivo HIV-infection of lymphatic tissue is accompanied by enhanced 

apoptosis, which affects mainly bystander cells. This effect is in part due to the Nef-induced 

upregulation of expression of FAS ligand (FASL) on the surface of infected cells. FASL 

could interact with FAS molecules on neighboring cells, including virus-specific Citotoxix T-

cells (CTLs), thereby triggering their apoptosis (Das & Jameel, 2005). 

 

Figure 2.28 Nef protein induces apoptosis (Peterlin & Trono, 2003) 

 

Interestingly, Nef protein has been proposed as one attractive target for the anti-HIV therapy 

(Breuer et al, 2011; Chutiwitoonchai et al, 2011; Narute & Smithgall, 2012). In fact, 

combinations of the existing drugs are very effective in slowing down progression to AIDS; 

however, the high mutation rate of HIV gives rise to resistance which ultimately impairs 

antiretroviral therapy. Therefore, there is an urgent need for new anti-HIV drugs with an 

innovative mechanism of action, possibly against highly conserved viral sites. Interestingly, 

Nef represent one of the most conserved viral sites, as previously reported.  
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2.3.2. HIV replication cycle 

The HIV replication cycle takes about 24 hours and is represented in Figure 2.29. 

 

Figure 2.29 HIV replication cycle (Rambaut et al, 2004) 

 

The viral particle recognizes the host cell, mainly CD4+ T lymphocytes and macrophages, 

thought the glycoprotein gp120 that specifically binds to the cellular CD4 receptor. Viral 

entry requires additional binding to a co-receptor molecule CCR5 or CXCR4 (Doms & Trono, 

2000). The differential recognition of a co-receptor is responsible for the viral tropism. In fact, 

M-tropic strains use the beta-chemokine receptor CCR5 for entry and are thus able to 

replicate in macrophages and CD4+ T-cells. These strains are now called R5 viruses. T-tropic 

strains replicate in primary CD4+ T-cells as well as in macrophages and use the alpha-

chemokine receptor, CXCR4, for entry. These strains are now called X4 viruses (Clapham & 

McKnight, 2001). Binding of gp120 to CD4 and the co-receptor triggers a conformational 

change that exposes the gp41 viral fusion protein which insert into the host membrane. The 

resulting fusion of viral and cellular membrane injects the viral core into the host cytoplasm 

where, after the uncoating process, the two RNA genome copies are reverse transcribed into a 
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linear double-stranded DNA molecule by the viral reverse transcriptase (Mougel et al, 2009). 

The full reverse transcription process is represented in Figure 2.30. 

 

Figure 2.30 HIV reverse transcription process 

 

The full-length double-stranded DNA, viral integrase, MA and Vpr and various cellular 

proteins form the so-called pre-integration complex (PIC) that is imported into the nucleus. 

The viral enzyme integrase mediates integration into the human chromosome of the proviral 

DNA. In the proviral form the HIV-1 DNA genome contains two identical copies of the long 

terminal repeat (LTR) at the 5’ and 3’ end of the genome (Figure 2.31A). The LTRs are 

composed of the segment U3 (derived from a unique sequence located at the 3’ end), R 

(repeated sequence at both ends) and U5 (derived from a unique sequence located at the 5’ 

end). The promoter region U3 can be divided in three functional sections: an upstream 

modulatory element (-454 to -104, with the respect of the first transcribed base) including 

binding sites for cellular transcription factors, an enhancer (-105 to -79) with two binding sites 

for the nuclear factor κB (NF-κB), and the core promoter (-78 to -1) composed of three 

tandem binding sites for specificity protein 1 (Sp1) and a TATA box (Figure 2.31B) (Luciw, 
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1996). The LTR-directed gene expression is regulated in a cell type and differentiation-

dependent manner by the binding of both host and viral protein to the LTR region. The most 

important host transcription factors are members of the following categories: the Specificity 

protein (Sp) family (e.g. Sp1), nuclear factor kappa B (NF-kB) family, activator protein 1 

(AP-1) proteins, nuclear factor of activated T cells (NFAT) and CCAT enhancer binding 

protein (C/EBP) family. All these proteins bind specific LTR sequences located in the U3 

region with a different level of conservation. Genetic variability within LTR binding sites in 

U3 and TAR regions has been observed in several HIV-1 subtypes (de Arellano et al, 2010; 

Michael et al, 1994). However, NF-κB and Sp1 binding sites are remarkably conserved 

(Jeeninga et al, 2000). AP-1 and NFAT bind to the modulatory region, NF-κB binds to 2 sites 

located in the enhancer region while Sp factors interacts in the core promoter region. Among 

the Sp proteins, Sp1 plays a crucial role in regulating HIV-1 transcription. In fact, Sp1 is a 

transcriptional activator that specifically binds 3 sites located in the HIV promoter through its 

zinc finger binding domain. Interestingly, Sp1 shows affinity and specificity for the GC rich 

sequence GGGGCGGGGC. The core promoter contains also a TATA box essential for the 

initiation and regulation of transcription. Also viral protein such as Vpr and Tat bind to the 

LTR to regulate transcription. The role of these viral proteins have been anticipated in the 

previous part of the thesis (Kilareski et al, 2009).  
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Figure 2.31 HIV-1 proviral genome A) HIV-1 proviral genome organization B) HIV Long Terminal Repeat 

(LTR) organization (de Arellano et al, 2010) 

 

Thus, viral genes are expressed from the stably integrated HIV-1 proviral DNA by the host 

transcription machinery including RNA polymerase II. As anticipated, the viral promoter is 

located in the U3 region of the 5’ LTR and requires activation by host transcription factors 

(Figure 2.32). Upstream from the transcription start site, in the core promoter the initiator 

(Inr), the TATA BOX and three Sp1-binding sites are necessary for the correct position of 

RNA polymerase II (RNAPII) in the so-called pre-initiation complex. Moreover, also the 

TATA-binding protein (TBP) and TBP-associated factors (TAFs) contributes to the formation 

of this complex. After the formation of the pre-initiation complex, the RNAPII clears the 

promoter, starting the transcription. The initial transcriptional output is however very low, due 

to the blocked elongation of viral transcripts early in the 5’ portion of the RNAs. The viral 

transactivator protein Tat, which is made very early from the tiny amounts of successfully 

A 

B 
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terminated mRNAs, is required to achieve normal levels of expression (Coiras et al, 2010). A 

peculiar feature of the LTR is the presence of a RNA regulatory element known as the TAR 

element. As anticipated, Tat protein binds TAR element. Tat and its cellular co-factor P-TEFb 

(Positive Transcription Elongation factor B) cooperate to bind TAR with high affinity, 

allowing RNAPII to produce full-length viral transcripts. P-TEFb contains the components 

cyclin T1 (CYCT1) and cyclin-dependent kinase 9 (CDK9) that mediates a phosphorylation 

of the carboxy-terminal domain of the RNAPII. This converts the initiating transcription 

complex to an elongating transcription complex (Peterlin & Trono, 2003). 

Figure 2.32 The HIV Long Terminal Repeat (LTR) promoter TATA-binding protein (TBP) and TBP-

associated factors (TAFs) bind the core promoter. The co-activator complex binds SP1 and cooperates to recruit 

and position RNA polymerase II (RNAPII) in the pre-initiation complex. RNAPII then clears the promoter. 

Positive transcription elongation factor b (P-TEFb) and transactivator of transcription (Tat) bind the TAR 

(Transactivation response) element. Thus, the initiating transcription complex is converted into an elongating 

transcription complex and the transcription efficiently starts. The enhancer binds members of the nuclear factor-

kB (NF-kB), nuclear factor of activated T cells (NFAT) and ETS families (Peterlin & Trono, 2003) 

 

Thereafter, full-length mRNA transcripts are efficiently synthesized. These unspliced 

transcripts contain multiple splice sites for the generation of over 40 unique viral transcripts 

for translation of the nine viral proteins. To date, the full-length mRNA serve as the template 

for the polyproteins gag (p55), gag-pol (p160) and env (gp160), while accessory proteins are 

translated from spliced mRNA.  The mRNA molecules are next transported to the cytoplasm 

where the translation of viral proteins occurs. The env polyprotein (gp160) is then cleaved 
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resulting in the two glycoproteins gp41 and gp120 (Hallenberger et al, 1992). These envelope 

glycoproteins are transported to the plasma membrane of the host cell where a immature 

virion is assembled from the precursors proteins together with and two copies of the viral 

genomic RNA. After this, the virion starts to bud off from the surface of the cell. After the 

release, the enzyme protease cleaves the gag and gag-pol polyproteins to complete the 

maturation of the virion. 

 

2.3.3. Antiretroviral treatment 

In 1987, the first anti-HIV drug was approved by the U.S. Food and Drug Admisnistration 

(FDA) for the AIDS treatment. This was the reverse transcriptase inhibitor 3’-azido-3’-

deoxythymidine (AZT), also known as Zidovudine. Until the 2012, 25 more antiretroviral 

compounds were approved by FDA. These drugs belong to several classes, based on their 

mechanism of action and viral target: 

1) Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

2) Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

3) Protease Inhibitors (PI) 

4) Entry Inhibitors 

5) Integrase inhibitors 

6) CCR5 antagonists 

These drug classes target four key steps in the  viral cycle: viral entry, reverse transcription, 

integration and protein processing/maturation (Palmisano & Vella, 2011). Currently the 

indicated treatment is a combination of drugs, the so-called highly active antiretroviral 

therapy (HAART). The HAART consists in a cocktail containing at least three different 

drugs, usually two NRTIs and one NNRTI or PI. This therapy resulted really effective against 

AIDS, determining a decline in mortality and mobility. However, the high mutation rate of 

HIV due to lack of RT proofreading activity gives rise to resistance which, at the end, impairs 

antiretroviral therapy. In addition, although HAART is very effective in blocking HIV-1 

spread within the body, it is not a cure, as viral loads readily rebound when treatment is 

interrupted (Chun et al, 1999). Moreover, the existence of latently infected CD4+ T-cells 

represent a big problem, since HAART do not affect the latent virus resting in this cell 

population (Chan et al, 2013). Therefore, there is an urgent need of new anti-HIV drugs with 
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an innovative mechanism of action, possibly against highly conserved viral sites and able to 

clear the virus from the infected human host in order to reach complete recover. All anti-HIV 

drugs have focussed so far on inhibition of viral proteins; however, the viral genome, both at 

the pre-integration (single-stranded RNA) and post-integration (double-stranded DNA) stage 

could be a very effective and selective target. 

2.3.4. G-quadruplexes and HIV-1 

In 1992 Sundquist and Heaphy demonstrated for the first time a role of G-quadruplex 

structure during the dimerization of HIV-1 genome. As anticipated, mature HIV-1 virions 

contain 2 homologous copies of their single stranded RNA genome which are stably 

associated within an RNA-gag protein complex. This RNA-RNA association appears more 

stable in a site near the 5’ end of each strand named dimer linkage structure (DLS). HIV RNA 

genomes dimerizes spontaneously in the absence of protein cofactors under condition of high 

ionic strength by forming an interstrand G-quadruplex (Sundquist & Heaphy, 1993). Ten 

years later, Lyonnais et al. discovered a G-quartet structure associated within a single-

stranded portion (central DNA flap) of the reverse-transcribed pre-integration HIV-1 genome 

(Lyonnais et al, 2002). Moreover, this tetraplex structure specifically interacts with the viral 

nucleocapsid (NC) protein: in particular, G-quadruplexes can promote the NC assembly along 

ssDNA, thereby protecting the pre-integrated genome from nuclease degradation (Lyonnais et 

al, 2003). In addition, Kankia et al. discovered a peculiar function of NC in unfolding DNA 

quadruplex (Kankia et al, 2005). Recently, G-quadruplexes have been proposed to promote 

the genetic recombination in a specific recombinant gag hot spot at the genomic RNA level. 

In fact, when the two co-packaged RNA templates are non-identical, template switching 

mediated by the RT enzyme results in genetic recombination. Sequences and structures, such 

as G-quadruplexes, that cause RT pausing seem the main actors of these genetic 

recombination. (Shen et al, 2009). Together these evidences support the hypothesis of a 

regulatory role of G-quadruplex structure during HIV-1 viral cycle. However, in the proviral 

genome no G-quadruplex structures have been reported. 
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3. Aim of the study 

The principal aims of this study were 1) to evaluate the presence of putative G-quadruplex 

forming sequence in the HIV-1 proviral genome, 2) to dissect their biological/virological 

significance, 3) to assess the effect of G-quadruplex ligands on the HIV-1 G-quadruplex 

structures.  

In the first part of this study, the LTR promoter region was characterized for the presence of 

G-quadruplex structures in order to investigate G-quadruplex-mediated alterations in the 

regulation of transcription. The second part of this thesis focused on G-quadruplex 

implication in Nef protein expression, evaluating possible consequences for the HIV-1 viral 

cycle. Finally, the antiviral activity of G-quadruplex ligands was tested to elucidate their 

modes of action against HIV-1 and to further investigate G-quadruplex as innovative antiviral 

targets.  
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4. Materials and Methods 

 

4.1. Materials and compounds 

Oligonucleotides were from Sigma-Aldrich (Milan,Italy). T4 polynucleotide kinase was from 

Invitrogen (Paisley, UK), [γ-
32

P]ATP from Perkin-Elmer (MA, USA). 

Clerocidin (CL) was a gift of Leo Pharmaceutical Products (Ballerup, Denmark). 

Dimethylsulfate (DMS) was from Sigma Aldrich, TMPyP4 and PIPER from Calbiochem, 

(Merck Chemicals, Nottingham, UK), and BRACO-19 from ENDOTHERM, (Saarbruecken, 

Germany).  

Dextran sulfate (DS) was purchased from Sigma (Bornem, Belgium). Nevirapine was 

obtained from BoehringerIngelheim (Ridgefield, CN). AMD3100 was a gift from Dr. G. 

Henson (AnorMED, Langley, British Columbia, Canada), Zidovudine (AZT) was synthesized 

C. Pannecouque (Rega Institute for Medical Research, Leuven, Belgium) according to the 

method described by Horwitz et al. (Horwitz et al, 1964). Ritonavir was purchased from 

Molekula (Dorset, United Kingdom) 

4.2. Cells 

HEK 293T (Human Embryonic Kidney 293T) cell line was grown in DMEM medium (Gibco, 

Life Technologies, Paisley, UK) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) (Gibco, Life Technologies, Paisley, UK). 

TZM-bl is an engineered cell line to express the reporter gene Luciferase from HIV-1 LTR 

promoter. In this system, infectivity is measured as stimulation of luciferase reporter gene 

expression driven by the HIV-1 LTR in response to infection with HIV-1, and this effect is 

enhanced by HIV-1 Nef (Emert-Sedlak et al, 2013). TZM-bl reporter cell line was provided 

by NIH AIDS Research and Reference Reagent Program to Prof. T.E. Smithgall (University 

of Pittsburg School of Medicine, Pennsylvania, USA).  

MT-4 (human T-lymphotropicvirus type I (HTLV-I)-transformed cells) were provided by Dr. 

N. Yamamoto (Tokyo Medical School and Dental University School of Medicine, Tokyo, 

Japan), MT-4/IIIB (HIV-1(IIIB) persistently infected MT-4 cell line) was selected in the lab of 

Prof. C. Pannecouque (Rega Institute for Medical Research, Leuven, Belgium) and MT-4-

LTR-eGFP cell lines were kindly provided by provided by Tibotec. MT-4 and MT-4/IIIBwere 

grown in RPMI 1640 medium (Life Technologies, Merelbeke, Belgium) supplemented with 
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10% fetal bovine serum (FBS; Sigma-Aldrich, Diegem, Belgium), 2mM L-glutamine(Life 

Technologies, Merelbeke, Belgium), 0.1% sodium bicarbonate (Life Technologies, 

Merelbeke, Belgium) and 20 g/ml gentamicin (Life Technologies, Merelbeke, Belgium). 

MT-4-LTR-eGFP (MT-4 engineered cell line to express the reporter gene GFP from HIV-1 

LTR promoter) cell line were kindly provided by Tibotec and were grown in RPMI 1640 

medium supplemented with 10% FBS, 2 mM L-glutamine, 0.1% sodium bicarbonate, 20 

g/ml gentamicin (Life Technologies, Merelbeke, Belgium) and 100µg/ml G418 (Sigma-

Aldrich, Diegem, Belgium). 

Peripheral blood mononuclear cells (PBMCs) were isolated from HIV-seronegative donor 

buffy coats using Lymphoprep (Nycomed, Oslo, Norway), and stimulated in RPMI 1640 

medium containing 15% FBS (Sigma-Aldrich, Diegem, Belgium), 2 mM L-glutamine (Life 

Technologies, Merelbeke, Belgium), 0.1% sodium bicarbonate (Life Technologies, 

Merelbeke, Belgium), 60 µg/ml gentamicin (Life Technologies, Merelbeke, Belgium),2 µg/ml 

phytohaemagglutinin (Sigma, Diegem, Belgium) and 5 U/ml human interleukin-2 (Roche 

Diagnostics,Vilvoorde, Belgium). After 3 days of stimulation the cells are washed and 

resuspended in RPMI 1640 medium supplemented with 2 mM L-glutamine (Life 

Technologies, Merelbeke, Belgium), 0.1% sodium bicarbonate (Life Technologies, 

Merelbeke, Belgium), 15% FBS (Sigma-Aldrich, Diegem, Belgium), 60 g/ml gentamicin 

(Life Technologies, Merelbeke, Belgium) and 10 U/ml human interleukin-2 (Roche 

Diagnostics, Vilvoorde, Belgium). 

All the cell lines were incubated at 37°C in a humidified CO2-controlled atmosphere. 

4.3. G-quadruplex analysis of the HIV-1 proviral genome 

The HIV-1 wild type genome (strain HXB2_LAI; NC_001802) was analyzed by QGRS 

Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php) for prediction of G-quadruplex 

forming sequences in both coding and non-coding strands (Kikin et al, 2006). The following 

restrictions were applied: maximum length 30 nucleotides (nt); minimum G-group size 2 nt; 

loop size 0−15 nt. The found putative G-quadruplex forming sequences were ranked based on 

the G-score, which is the likelihood to form a stable G-quadruplex, according to the following 

principles: a) shorter loops are more common than longer loops; b) G-quadruplexes tend to 

have loops roughly equal in size; c) the greater the number of G tetrads, the more stable the 

G-quadruplex. For further investigations, we chose sequences on the basis of assigned G-

score and of relevant location in the HIV-1 genome. We focused on putative G-quadruplex 
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forming sequences in the Long Terminal Repeats (LTR) promoter region and in HIV-1 nef 

coding region. 

For the HIV-1 LTR region, conserved bases were evaluated by aligning 953 LTR U3 

sequences from the HIV database 

(http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html) using Jalview 

(http://www.jalview.org/). 

For the HIV-1 nef coding region, three putative G-quadruplex sequences (Nef 8528 and 

Nef8624 in coding strand, Nef8547 in non-coding strand) were evaluated for their consensus 

sequence by aligning 3224 Nef sequences (HIV-1, M Group) from the HIV database 

(http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html) using Jalview 

(http://www.jalview.org/). In addition, the conservation grade of the G-pattern necessary for 

G-quadruplex folding was investigated. Aligned sequences were searched for G-quadruplex 

patterns expressed as Perl compatible regular expressions using GNU grep command line 

tool. 

4.4. Spectroscopic analysis 

4.4.1. Circular Dichroism analysis 

Circular Dichroism (CD) is a polarized light spectroscopy that offers the possibility to 

discriminate a G-quadruplex conformation from other secondary architectures. CD could give 

information about topology and thermal stability of a G-quadruplex structure. In fact, since 

most of the G-quadruplex conformations have a characteristic CD spectrum, it is possible to 

distinguish them simply analysing the different CD spectra: parallel G-quadruplex has a 

positive CD peak around 260nm and a negative CD peak around 240 nm; antiparallel G-

quadruplex shows a positive peak at 295nm and a negative peak around 260nm while a mixed 

G-quadruplex conformation exhibits two positive peaks at around 260 nm and 295nm. In 

addition, following the G-quadruplex CD-spectrum over a range of increasing temperatures, it 

is possible to study the thermal stability properties of the secondary structure and to have 

quantitative information in terms of melting temperature. This is particularly useful to 

investigate the stabilizing effect of G-quadruplex ligands that is proportional to the increasing 

of melting temperature (Tm) of the G-quadruplex. Finally, CD can provide information about 

G-quadruplex-ligand complexes. Normally, G-quadruplex ligands are non-chiral molecules 

and so CD-inactive. However, upon interaction with the secondary structure, non-chiral 

molecules could show an induced CD (ICD) signal due to the chiral environment of the 



Matherials and Methods 

 

50 

bounded ligand. Although the ICD spectrum represents a strong and direct evidence of DNA-

ligand interaction, the absence of an ICD does not mean the absence of the ligand’s binding to 

the secondary structure.  

For CD analysis, all DNA oligonucleotides (Table 4.1) were diluted from stock to final 

concentration (4 μM) in lithium cacodylate buffer (10 mM, pH 7.4) and, where appropriate, 

KCl or NaCl. All samples were annealed by heating at 95°C for 5 min, gradually cooled to 

room temperature, and measured after 24 h. Compounds at 16 μM final concentration were 

added after DNA annealing. CD spectra were recorded on a Jasco-810 spectropolarimeter 

(Jasco, Easton, MD, USA) equipped with a Peltier temperature controller using a quartz cell 

of 5mm optical path length and an instrument scanning speed of 100 nm/min with a response 

time of 4 s over a wavelength range of 230−320nm. The reported spectrum of each sample 

represents the average of 2 scans at 20°C and is baseline-corrected for signal contributions 

due to the buffer. Observed ellipticities were converted to mean residue ellipticity (θ) = deg × 

cm
2
 × dmol

−1
 (mol.ellip.). For the determination of Tm, spectra were recorded over a 

temperature range of 20−95°C, with temperature increase of 5°C/min or 2°C/min, followed 

by an equilibration step of 1 min. Tm values were calculated according to the van’t Hoff 

equation, applied for a two state transition from a folded to unfolded state, assuming that the 

heat capacity of the folded and unfolded states are equal (Doria et al, 2013; Greenfield, 2006). 

 
Application Project Name Sequence (5’→3’) 

CD 

 

LTR region 

characterization 

LTR FL 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGG

GAGGCGTGGCCTGGGCGGGACTGGGGAGTGG

TTTTT 

LTR I 
TTTTTGGGACTTTCCGCTGGGGACTTTCCAGG

GAGGCGTGGCCTGGGTTTTT 

LTR II 
TTTTTGGGGACTTTCCAGGGAGGCGTGGCCTG

GGCGGGTTTTT 

LTR III 
TTTTTGGGAGGCGTGGCCTGGGCGGGACTGG

GGTTTTT 

LTR II+III 
TTTTTGGGGACTTTCCAGGGAGGCGTGGCCTG

GGCGGGACTGGGGTTTTT 

nef coding region 

characterization 

Nef8528 GAGGAGGAGGTGGGT 

Nef8547 GGTCTTAAAGGTACCTGAGGTCTGACTGG 

Nef8624 GGGGGGACTGGAAGGG 

Nef8528-Compl ACCCACCTCCTCCTC 

Nef8547-Compl CCAGTCAGACCTCAGGTACCTTTAAGACC 

Nef8624-Compl CCCTTCCAGTCCCCCC 

 

Table 4.1 Oligonucleotides used in HIV-1 LTR region characterization and in nef coding region 

characterization for CD analysis 
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4.4.2. UV Spectroscopy analysis 

Similarly to CD spectroscopy, UV spectroscopy is used both to discriminate the G-

quadruplex from other secondary structures and to further characterize them. For example, the 

difference in the UV absorbance before and after the melting temperature (respectively 20°C 

and 95°C) in the region 220-320nm gives rise to the so called Thermal difference spectrum 

(TDS) that is characteristic for the G-quadruplex structure. This typical TDS shows four 

distinct positive/negative bands around at 243, 255, 273 and 295 nm and provide further proof 

of the effective G-quadruplex formation in vitro. In addition, it is possible to calculate the 

TDS factor (ΔA240 nm/ΔA295 nm, where ΔAλ is the difference, at the given wavelength λ, 

between the absorbance above and below the melting temperature, expressed as absolute 

value) that could give information about G-quadruplex topology since parallel and mixed-

antiparallel G-quadruplex showed a big difference in terms of TDS factor value. Normally 

parallel G-quadruplex topology gives a TDS factor value around 4, while mixed-antiparallel 

G-quadruplex shows a TDS factor value around 1.  

For thermal difference spectrum (TDS) analysis, all DNA oligonucleotides (Table 4.2) were 

diluted from stock to final concentration (4 μM) in lithium cacodylate buffer (10 mM, pH 7.4) 

and KCl (100mM). All samples were annealed by heating at 95°C for 5 min, gradually cooled 

to room temperature, and measured after 24 h. UV spectra were recorded on Lamba25 

UV/Vis spectrometer (Perkin-Elmer) equipped with a Peltier temperature controller over a 

temperature range of 20−95°C. TDS spectra were calculated by subtracting the spectrum at 

20°C from the spectrum at 95°C. TDS factors were calculated as the absolute values of ΔA240 

nm/ΔA295 nm, where ΔAλ is the difference, at the given wavelength λ, between the 

absorbance above and below the melting. 

Application Project Name Sequence (5’→3’) 

UV 

 

LTR region 

characterization 

LTR FL 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAG

GGAGGCGTGGCCTGGGCGGGACTGGGGAGT

GGTTTTT 

LTR I 
TTTTTGGGACTTTCCGCTGGGGACTTTCCAG

GGAGGCGTGGCCTGGGTTTTT 

LTR II 
TTTTTGGGGACTTTCCAGGGAGGCGTGGCCT

GGGCGGGTTTTT 

LTR III 
TTTTTGGGAGGCGTGGCCTGGGCGGGACTGG

GGTTTTT 

LTR II+III 
TTTTTGGGGACTTTCCAGGGAGGCGTGGCCT

GGGCGGGACTGGGGTTTTT 

 

Table 4.2 Oligonucleotides used in HIV-1 LTR region characterization for UV analysis 
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4.5. Taq polymerase stop assay 

The formation of G-quadruplex structure in a DNA template can be investigated using a Taq 

Polymerase Stop assay. The basis of this assay is that a G-quadruplex structure could 

sterically block the Taq enzyme progression in elongating a 
32

P-labeled primer (Figure 4.1). 

Products representing the full length and major arrest sites can be evaluated by denaturing 

electrophoresis. In this assay it is essential to optimally set the G-quadruplex folding 

conditions (e.g. cations concentration in solution) together with the choice of G-quadruplex 

ligands concentration to avoid any influences on the enzyme activity. Normally the Taq 

reaction is performed in a single cycle at a temperature below or around the Tm of the G-

quadruplex structure. However, some G-quadruplexes can be stable also in a complete PCR 

cycle. 

 

Figure4.1. Taq Polymerase Stop Assay 

 

For the HIV-1 LTR region characterization, primer (LTR G4 Taq primer, Table 4.3) was 5′-

end labeled with [γ-32P]ATP using T4 polynucleotide kinase at 37°C for 30 min. The labeled 

primer (72 nM), annealed to the template (36 nM) in lithium cacodylate buffer (10 mM, pH 

7.4), was extended with AmpliTaq Gold DNA polymerase (2 U/reaction, Applied Biosystem, 

California) at 47°C for 30 min. Sequences of all templates used in this assay were reported in 

Table 4.3. Where specified, samples were incubated with G-quadruplex ligands and 100 mM 
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KCl for 20 min at room temperature and primer extension performed as described. Reactions 

were stopped by ethanol precipitation, extension products were separated on 12% denaturing 

gel and visualized by phosphorimaging (Typhoon FLA9000,GE Healthcare). 

For the HIV-1 nef coding region characterization, primers (Table 4.3) were 5′-end-labeled 

with [γ-
32

P] ATP using T4 polynucleotide kinase for 30 min at 37°C and purified with Illustra 

Micro Spin G-25 Column (GE Healthcare, Life Sciences, Milan, Italy). DNA templates 

(Table 4.3) were diluted from stock to the final concentration (50 μM) in lithium cacodylate 

buffer (10 mM, pH7.4) with 100 mM KCl and then let fold by heating at 95°C for 3 min, 

gradually cooled to room temperature, and incubated at 4°C overnight. DNA templates were 

further diluted to a concentration of 1 μM and mixed with DNA primer (200 nM), 1X PCR 

reaction buffer (Applied Biosystems, Carlsbad, California, USA), and 0.1 mM dNTPs. Where 

appropriate, TMPyP4 was added. AmpliTaq Gold DNA polymerase (1 U/reaction, Applied 

Biosystem, Carlsbad, California, USA) was then added. Samples were subjected to 30 cycles: 

95°C 30 sec, 60°C 30 sec, 72°C 30 sec. Reactions were stopped by ethanol precipitation. 

Marker lanes were generated on the labelled double stranded PCR product using the Maxam 

and Gilbert protocol. Briefly, ethanol precipitated PCR products were treated with formic acid 

(12 μl) for 5 min at 20°C. Reactions were stopped by ethanol precipitation. Samples were 

treated with piperidine 1 M for 30 min at 90°C; reactions were stopped on ice for 5 min. 

Samples were concentrated in SpeedVac. Markers corresponded to the C-rich complementary 

strand. The primer extension products and markers were separated on a 12% polyacrylamide 

denaturing gel and visualized by phosphorimaging (Typhoon FLA 9000, GE Healthcare, 

Milan, Italy). 
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Application Project Name Sequence (5’→3’) 

Taq polymerase 

stop assay 

LTR region 

characterization 

LTR G4 Taq 

primer 

GGCAAAAAGCAGCTGCTTATATGCAG 

LTR G4 

LTR I Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTGGCCTGGGTTTTTCTGCATATAAGCAG

CTGCTTTTTGCC 

LTR G4 

LTR II Taq 

TTTTTGGGGACTTTCCAGGGAGGCGTGGCCTGG

GCGGGTTTTTCTGCATATAAGCAGCTGCTTTTT

GCC 

LTR G4 

LTR III Taq 

TTTTTGGGAGGCGTGGCCTGGGCGGGACTGGG

GTTTTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

Taq 

GCTACAAGGGACTTTCCGCTGGGGACTTTCCA

GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTG

GCGAGCCCTCAGATCCTGCATATAAGCAGCTG

CTTTTTGCC 

LTR G4 FL 

m1 Taq 

TTTTTGTGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTGGCCTGGGCGGGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m2 Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTTGCCTGGGCGGGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m3 Taq 

TTTTTGGGACTTTCCGCTGTGGACTTTCCAGGG

AGGCGTGGCCTGGGCGGGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m3’ Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

ATGCGTGGCCTGGGCGGGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m3” Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTGGCCTGGGCGGGACTGTGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m4 Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTGGCCTGTGCGGGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m5 Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTGGCCTGGGCGTGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m6 Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGGG

AGGCGTGGCCTGGGCGGGACTGGGGAGTTGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

LTR G4 FL 

m6’ Taq 

TTTTTGGGACTTTCCGCTGGGGACTTTCCAGTG

AGGCGTGGCCTGGGCGGGACTGGGGAGTGGTT

TTTCTGCATATAAGCAGCTGCTTTTTGCC 

nef coding 

region 

characterization 

Nef8528pol 
TTGGAGGAGGTGGGTTTTCCAGTCACACACCTC

AG 

Nef8624pol 
TTGGGGGGACTGGAAGGGTTTTCCAGTCACACA

CCTCAG 

Nef8547pol 
TTGGTCTTAAAGGTACCTGAGGTCTGACTGGTTT

TCGAGACACAGCTCAG 

NefControl1 
TTGTCGTCACAGTCTGACTGTTTTCCAGTCACAC

ACCTCAG 

NefControl2 
TTGTCGTTGAAGATAGCCGTGTAGCTGACGTTTT

TCGAGACACAGCTCAG 

DNA primer 1 ATCGATCGCTTCTCGTCTGAGGTGTGTGACTGG 

DNA primer 2 ATCGATCGCTTCTCGTCTGAGCTGTGTCTCG 

 

Table 4.3 Oligonucleotides used in HIV-1 LTR region characterization and in nef coding region 

characterization for the Taq Polymerase Stop Assay 
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4.6. Footprinting assays 

The chemical footprinting assay is a useful technique for studying the G-quadruplex structure 

and in particular to detect guanine bases involved in the G-quadruplex folding. In this assay, a 

32
P-labelled template bearing the putative G-quadruplex sequence is incubated in G-

quadruplex folding conditions (normally in the presence of cations such as K
+
) and subjected 

to an alkylating agent to alkylate guanine bases. The sample is then treated with piperidine 

that cleaves the alkylated guanine bases and evaluated by denaturing electrophoresis. The 

basis of this assay is that guanines involved in the secondary structure’s folding are protected 

from alkylation and create a so called “footprint” in the electrophoretic band pattern (Figure 

4.2). 

 

Figure4.2. Footprinting assay 
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4.6.1. DMS footprinting assay 

DMS methylates the N7 position of the guanines (G-N7) both in single-stranded and double-

stranded DNA. However, in a G-quadruplex G-N7 is involved in Hoogsteen base pairing and 

therefore cannot be free for DMS methylation. For this reason, DMS have been widely 

employed as alkylating agent for characterizing G-quadruplexes in footprinting assay. 

All oligonucleotides (Table 4.4) were gel-purified before use and prepared in 

desalted/lyophilised form. Oligonucleotides were 5’-end-labelled with [γ- 
32

P]ATP by T4 

polynucleotide kinase and purified by MicroSpin G-25 columns (Amersham Biosciences, 

Europe). They were next resuspended in lithium cacodylate 10 mM, pH 7.4, with or without 

KCl 150 mM, heat-denatured and folded. Each 
32

P-labeled and annealed DNA was treated 

with DMS (0.5% in ethanol) for 5 min. Reactions were stopped by adding gel loading buffer 

containing 10% glycerol and β-mercaptoethanol. Samples were loaded on 16% native 

polyacrylamide gel and run until the desired resolution was obtained. DNA bands were 

localized via autoradiography, excised and eluted overnight. The supernatant were recovered, 

ethanol-precipitated and treated with 1M piperidine at 90°C for 30 min. Samples were dried 

in a speed vac, washed with water, dried again and resuspended in formamide gel loading 

buffer. The DMS-treated oligonucleotides were separated on a 20% denaturating gel and 

visualized by phosphorimaging analysis (Molecular Dynamics Amersham Biosciences). 

 

4.6.2. Clerocidin footprinting assay 

More recently, published data of our research group proposed Clerocidin (CL) as a new tool 

to asses G-quadruplex conformation in a footprinting assay (Nadai et al, 2012; Nadai et al, 

2013). CL is a natural product that has been shown to react at single-stranded DNA regions, 

with different mechanisms. In particular, CL targets the G-N7 when a guanine base is 

exposed. The CL protection assay not only can provide a further confirmation of the data 

obtained with the DMS protection assay but makes also the footprinting protocol simpler and 

less time-consuming. In addition, at 25°C CL is a stable non-volatile solid and in aqueous 

solution hydrolysis rates are slow and products are non-toxic, whereas DMS is an unstable, 

hygroscopic and volatile liquid which degrades fast in solution generating toxic hydrolysis 

products. Another great advantage of CL is that it does not react with double-stranded DNA, 

while DMS is equally reactive towards single and double-stranded DNA: this can allows the 

detection of a G-quadruplex within a double-stranded context, mimicking the DNA folding 

state in physiological conditions.  
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All oligonucleotides (Table 4.4) were gel-purified before use and prepared in 

desalted/lyophilised form. Oligonucleotides were 5’-end-labelled with [γ- 
32

P]ATP by T4 

polynucleotide kinase and purified by MicroSpin G-25 columns (Amersham Biosciences, 

Europe). They were next resuspended in lithium cacodylate 10 mM, pH 7.4, with or without 

KCl 150 mM, heat-denatured and folded.  

CL reactions with the labelled G-quadruplex folded or unfolded oligonucleotides (4 pmol/ 

sample) were performed at 37°C in annealing buffer (50 mM phosphate buffer, pH 7.4) for 24 

h. These conditions were selected to maintain the stability of the target structure and to 

minimize the possible competition of buffer molecules for CL alkylation. Samples were 

precipitated with ethanol to eliminate non-reacted drug, resuspended and either kept on ice, or 

treated at 90°C for 30 min with 1 M piperidine. Samples were then lyophilised, resuspended 

in formamide gel loading buffer, and heated at 95°C for 2 min. Reaction products were 

analyzed on 20% denaturing polyacrylamide gels and visualized by phosphorimaging analysis 

(Molecular Dynamics Amersham Biosciences). 

 

Table 4.4 Oligonucleotides used in HIV-1 LTR region characterization and in nef coding region 

characterization for the footprinting assay 

 

4.7. Reporter assays 

The reporter assays are useful to investigate the biological function of G-quadruplexes and are 

usually performed via transient cell-transfection of plasmids carrying the G-quadruplex 

sequence of interest fused to a reporter gene, such as the enhanced green fluorescent protein 

(eGFP) gene. Moreover, it is possible to evaluate the efficacy and selectivity of G-quadruplex 

ligands in cellulo comparing and eventually validating the in vitro data. To further confirm the 

G-quadruplex related effect in these assays, it is useful to employ constructs with point 

mutations that abrogate G-quadruplex folding as control.  

Application Project Name Sequence (5’→3’) 

DMS or CL 

footprinting 

assay 

 

 

LTR region 

characterization 

LTR FL 
TTTTTGGGACTTTCCGCTGGGGACTTTCCAGG

GAGGCGTGGCCTGGGCGGGACTGGGGAGTGG

TTTTT 

LTR I 
TTTTTGGGACTTTCCGCTGGGGACTTTCCAGG

GAGGCGTGGCCTGGGTTTTT 

LTR II 
TTTTTGGGGACTTTCCAGGGAGGCGTGGCCTG

GGCGGGTTTTT 

LTR III 
TTTTTGGGAGGCGTGGCCTGGGCGGGACTGG

GGTTTTT 

LTR II+III 
TTTTTGGGGACTTTCCAGGGAGGCGTGGCCTG

GGCGGGACTGGGGTTTTT 
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4.7.1. Plasmid construction 

For the LTR region characterization, the LTR DNA region was amplified by PCR on the 

HIV-1 genome (AF033819.3) using reported primers (Table 4.5). The LTR amplicon was 

subcloned into pGL4.10-Luc2 (Promega) within XhoI and HindIII sites. The resulting 

pGL4.10-Luc2/LTR vector contained the sequenced 464 bp-long LTR-region (corresponding 

to nts−381/+83 in the HIV-1 genome) fused to the luciferase coding region. Mutant pGL4.10-

Luc2/LTR vectors were generated using Quik-Change mutagenesis kit (Stratagene/Agilent 

Technologies) and primers (Table 4.5). 

For the HIV-1 nef coding region characterization, plasmid p-Nef-HA EGFP-N1 containing 

Nef-HA fused to eGFP was obtained by PCR amplification of the Nef-HA coding sequence 

(strain HXB2/LAI; NC_001802) in plasmid pNefHABJ5 (kindly donated by Prof. M. Pizzato, 

Centre for Integrative Biology, University of Trento, Trento, Italy). PCR was performed using 

primers prFNef and prRNef (Table 4.5), which introduced NheI and EcoRI restriction sites for 

subsequent insertion in the pEGFP-N1 vector (Clontech, Mountain View, CA, USA). The 

obtained coding sequence of the fused Nef-HA GFP protein was confirmed by sequencing.  

 

Application Project Name Sequence (5’→3’) Vector 

LTR cloning 

for reporter 

assays 

LTR region 

characterization 

LTR-Xho I 
GGGCCCCTCGAGCCCTGATTGGCAGAAY

TACACACCAGG pGL4.10-

Luc2/LT

R-wt 
LTR-Hind 

III 

GGGCCCAAGCTTCCTGCGTCGAGAGAGC

TYCTCTGG 

LTR mutants 

cloning for 

reporter 

assays 

LTR region 

characterization 

pr m4a 
CCAGGGAGGCGTGGCCTGTGCGGGACTG

GGGAGTGGCG 
pGL4.10-

Luc2/LT

R-m4 pr m4b 
CGCCACTCCCCAGTCCCGCACAGGCCACG

CCTCCCTGG 

pr m5a 
GGGAGGCGTGGCCTGGGCGTGACTGGGG

AGTGGCGAGC 
pGL4.10-

Luc2/LT

R-m5 pr m5b 
GCTCGCCACTCCCCAGTCACGCCCAGGCC

ACGCCTCCC 

pr m4+5a 
CAGGGAGGCGTGGCCTGTGCGTGACTGG

GGAGTGGCGAGC 
pGL4.10-

Luc2/LT

R-m4+5 pr m4+5b 
GCTCGCCACTCCCCAGTCACGCACAGGCC

ACGCCTCCCTG 

pr m3”a 
GACTTTCCAGGGAGGCGTAGCCTGGGCG

GGACTGGGG 
pGL4.10-

Luc2/LT

R-m3” pr m3”a 
CCCCAGTCCCGCCCAGGCTACGCCTCCCT

GGAAAGTC 

Nef cloning 

for reporter 

assays 

nefcoding 

region 

characterization 

prFNef 

TAAGCTAGCACGCGTCATGGGTGGCAAG

TGG 
p-Nef-

HA-

EGFP-N1 

prRNef 
ACTGAATTCTAGCGTAATCTGGGACGTC pNef-HA-

EGFP-N1 

 
Table 4.5 Oligonucleotides used in HIV-1 LTR region characterization and in nef coding region 

characterization for the Reporter Assays 
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4.7.2. Dual-Luciferase reporter assay 

This assay is particularly useful to investigate the effect of G-quadruplex folding at the 

promoter level. The promoter bearing the G-quadruplex sequence of interest is cloned in a 

construct where it drives the expression of the Firefly luciferase gene. The latter construct is 

co-transfected with a control plasmid containing another promoter (e.g. Herpes simplex virus 

thymidine kinase promoter) that drives the Renilla luciferase gene expression. Measuring the 

luminescence signals of the two lucifarase, it is possible to normalize the expression of an 

experimental reporter to the expression of the control reporter and it is essential for 

differentiating between specific and not-specific cellular responses. Importantly, this 

normalization can provide information on transfection efficiencies and allow to have more 

precise data.  

Vectors pGL4.10Luc2/LTR and pGL4.74 (200 ng each) were transfected in 5.5 × 10
4
 HEK 

293T cells per well onto 96-well plates, using TransIT-293 transfection reagent (Mirus, 

Madison, WI, USA). Plasmid pGL4.74-hRLUC/TK (Promega), containing a Renilla 

luciferase gene driven by the Herpes Simplex virus thymidine kinase promoter, was used as a 

control for transfection efficiency. Expression of firefly luciferase, with respect to that of 

Renilla luciferase, was determined 24 h after transfection using the Dual-Glo luciferase assay 

system (Promega). Cell lysate (75 μL) was mixed with reconstituted Dual-Glo luciferase 

buffer (75 μL) or Dual-Glo Stop&Glo buffer, and light output detected with VICTOR X2 

multilabel plate reader (Perkin-Elmer). Luciferase and Renilla output ratio was calculated. 

4.7.3. eGFP reporter assays 

This assay is useful to investigate G-quadruplexes at different levels, both in promoter and in 

coding regions, following the eGFP expression by flow citometry.  

For the LTR-GFP reporter assay, 2 × 10
5
 of HEK 293T cells in 6-well plates were transfected 

with pcLTR-EGFP DNA 3.1 (kindly provided by Prof. A. Loregian, University of Padua). 

After 4 h, cells were treated with BRACO-19 or TMPyP2 and incubated overnight. After 

trypsinization, cells were washed, resuspended in 500 μl of PBS 1X and analyzed by flow 

citometry (see flow citometry analysis below). 

For the Nef-eGFP reporter assay, 8 × 10
4
 of HEK 293T cells were seeded in a 12-well plate in 

1 ml of DMEM/10% FBS medium and incubated for 24 h. Cells were next transfected with 

pNef- HA EGFP-N1 by TransIT-293 Transfection Reagent (Mirus, Madison, WI, USA). 

After 4 h, cells were treated with TMPyP4 or TMPyP2 (10 μM) and incubated overnight. 
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After trypsinization, cells were washed with PBS, resuspended in 500 μl of PBS 1X and 

analyzed by flow citometry (see flow citometry analysis below). 

4.7.3.1. Flow Citometry analysis 

To evaluate mean of eGFP fluorescence, a total of 30000 events were acquired for each 

sample with an LRS 2 instrument using FACS DIVA software (BD Bioscience) and analyzed 

with Flow Jo (Tree Star, OR, USA). Cell debris was excluded from the analysis by gating on 

forward versus side scatter dot plots 

4.8. Antiviral assays 

4.8.1. Viruses 

The HIV-1 NL4.3 (wild type) and HIV-1 ΔNef  NL4.3 (Nef defective) were kindly prepared 

and handled by Dr. J. Poe and Prof. T.E. Smithgall (University of Pittsburg School of 

Medicine, Pennsylvania, USA). 

The HIV-1(IIIB) strain was originally provided by Prof. R.C. Gallo and Dr. M. Popovic (at 

that time at the NIH, Bethesda, MD, USA). HIV-1(BaL) was originally provided by R.C. 

Gallo (at that time at the NIH, Bethesda, MD, USA). HIV-2(ROD) was originally obtained 

from L. Montagnier (at that time at thePasteur Institute, Paris, France) and SIV(Mac251) from 

C. Bruck (Smith Kline-RIT, Rixensart, Belgium).  

4.8.2. Antiviral Assay in HIV-1 infected TZM-bl cell line 

TZM-bl is an engineered cell line which contains the Luciferase reporter gene under the 

control of the HIV-1 LTR promoter. In this cell line, the HIV infection drives transcription of 

the HIV-1 LTR-Luciferase reporter gene construct and thus it is possible to evaluate the 

antiviral effect of test compounds following the Luciferase expression. Since the HIV-1 

replication is enhanced by Nef in this cell line (Emert-Sedlak et al, 2013), TZM-bl cells 

represent a good system to evaluate specifically Nef-related effect during viral replication. For 

this reason it’s essential to work also with a Nef-defective (Nef) virus as control. A similar 

antiviral effect both against wild-type and Nef viruses indicate an effect not Nef-related.  

For the LTR region characterization, TZM-bl cells were seeded in 96-well plates (2 × 10
4
) 

and grown overnight. BRACO-19 and TMPyP2 were preincubated separately with both cell 

culture medium (100 μL) and wild-type HIV-1 or ΔNef-HIV-1 (100 μL) for 4 h prior to 

infection in a combined final volume of 200 μL. After 48 h at 37°C, cells were washed with 
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PBS and lysedin luciferase lysis buffer (Promega). Lysates (40 μL) with 50 μL of luciferase 

reagent (Promega) were read with a delay time of 2 s and an integration period of 10 s. 

Cytotoxicity of test compounds was assessed in parallel using the Cell Titer Blue reagent 

(Promega). 

For the HIV-1 nef coding region characterization, TZM-bl cells were seeded in 96-well plates 

(2 x 10
4
) and grown overnight to permit adherence prior to treatment and viral infection. 

TMPyP4 was solubilized in DMSO and preincubated separately with both the cell culture 

medium (100 μL) and wild-type HIV-1 or ΔNef HIV-1 (100 μL) for 4 h prior to infection in a 

combined final volume of 200 μL. After 48 h at 37C, the cells were washed with PBS and 

lysed in luciferase lysis buffer (Promega) by rocking for 15 min. Lysates (40 μL) were 

transferred to white 96-well plates, and 50 μL luciferase reagent (Promega) was injected into 

each well. Readings were recorded with a delay time of 2 s and an integration period of 10 s. 

Cytotoxicity of test compounds was assessed in parallel using the Cell Titer Blue reagent 

(Promega). 

4.8.3. MTT-based antiviral assay in HIV infected MT-4 cell line 

The evaluation of antiviral effect of the compounds against HIV-1 strain IIIB, HIV-2 strain 

ROD and SIV strain mac251 in MT-4 cells was performed using a tetrazolium-based 

colorimetric assay (Pannecouque et al, 2008). Briefly, this method is based on HIV-induced 

cytopathogenic effect (CPE) on MT-4 cells 5 days after infection. The antiviral effects of test 

compounds is directly correlated to the inhibition of viral induced CPE and can be measured 

spectrophotometrically following the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) to a blue formazan product in metabolically active cells. 

Since this assay covers the complete viral cycle, it is possible to discover direct inhibitors of 

HIV replication. Mock-infected cells are used in parallel to assess the cytotoxicity of test 

compounds. Test compounds (25 l/well of 10X final concentration) were added to two series 

(to evaluate the effect on both HIV and mock-infected cells) of triplicate wells in a 96-well 

plate and 5-fold diluted using a Biomek 3000 robot (Beckman instrument, Fullertone, CA). 

For each compound 9 serial 5 fold dilutions were made and untreated HIV and mock samples 

were also included as controls. Virus stock, 50l of HIV-1(IIIB), HIV-2(ROD) and 

SIV(mac251) at 100-300 CCID50 (50% cell culture infectious doses, corresponding to a 

multiplicity of infection (MOI) of 0.003) or complete medium were added. Finally, 50 l per 

well of MT-4 cells (6 x 10
5
 cells/ml) were added. 5 days after infection, the viability of HIV 
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and mock-infected cells was evaluated using the MTT assay. The absorbances were measured 

in an eight-channel computer-controlled photometer (Infinite M1000, Tecan, Mechelen, 

Belgium), at two wavelengths (540 and 690 nm) and the median absorbance value of three 

wells was calculated. The 50% cytotoxic concentration (CC50) was defined as the 

concentration of test compound that was able to reduce the absorbance of the mock-infected 

cells by 50%. The 50% effective concentration (EC50) was defined as the concentration of test 

compound that protect 50% of the HIV-infected cells from CPE. HIV-1 production in selected 

samples was also evaluated by measuring HIV-1 core antigen (p24 antigen) in the supernatant 

with a p24 antigen enzyme-linked immunosorbent assay (Perkin-Elmer, Brussels, Belgium).  

The antiviral activity of BRACO-19 against HIV-1(IIIB) in MT-4 cells was tested also 1 day 

post infection. The antiviral activity of BRACO-19 against HIV-1 was based on the inhibition 

of HIV-1 p24 antigen production in MT-4 infected cells. BRACO-19 (22 l/well of 10X final 

concentration) was added to one series of duplicate wells in a 96-well plate and 9 serial 5 fold 

dilutions were made. MT-4 cells were infected with HIV-1(IIIB) at MOI of 0.5 and incubated 

at 37°C. After 1h cells were washed 3 times in PBS 1X and seeded (100,000 cells/well) in a 

96-well plate. At 31 h post infection, supernatants were collected and p24 antigen was 

measured with a p24 antigen enzyme-linked immunosorbent assay (Perkin-Elmer,Brussels, 

Belgium). Cytotoxicity of BRACO-19 on MT-4 cells was tested in parallel using an MTT 

assay.  

4.8.4. Antiviral assay in HIV-1 infected MT-4/LTR-eGFP cell line 

To further confirm the antiviral activity of BRACO-19 at 1 day post infection, another cellular 

system was used. MT-4-LTR-eGFP is an engineered cell line which contains the eGFP 

reporter gene under the control of the HIV-1 LTR promoter. In this cell line, the HIV 

infection drives transcription of the HIV-1 LTR-eGFP reporter gene construct and thus it is 

possible to evaluate the antiviral effect of test compounds following the eGFP expression. 

This experiment is useful to have a rapid indication of anti-HIV activity that could eventually 

be confirmed measuring directly the p24 antigen in the supernatant. BRACO-19 (22 l/well 

of 10X final concentration) was added to one series of duplicate wells in a 96-well plate and 9 

serial 5 fold dilutions were made. MT-4-LTR-eGFP cells were infected with HIV-1(IIIB) at 

MOI of 0.5 and incubated at 37°C. After 1 h cells were washed 3 times in PBS 1X and seeded 

(100,000cells/well) in the 96-well plate. 31 h post infection, supernatants were collected and 

cells were fixed in 3% aqueous paraformaldehyde. HIV-1 production was determined 
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following the GFP-expression by using flow cytometry (see flow cytometry analysys below). 

In addition, p24 antigen was measured in the supernatant to further confirm the data (p24 

antigen enzyme-linked immunosorbent assay; Perkin-Elmer, Brussels, Belgium). Cytotoxicity 

of BRACO-19 on MT-4-LTR-eGFP cells was tested in parallel using an MTT assay.  

4.8.4.1. Flow Cytometry analysis 

Flow cytometric analysis was performed on a FACS CantoII flow cytometer (Becton 

Dickinson, San Jose, CA, USA). Before acquisition, cells were pelleted at 1000 rpm for 10 

min and fixed in 3% paraformaldehyde solution. Acquisition was stopped when 10,000 events 

were counted. Data analysis was carried out with FACS Diva Software (Becton Dickinson). 

Cell debris was excluded from the analysis by gating on forward versus side scatter dot plots  

4.8.5. Antiviral assay in HIV-1 infected PBMCs 

The antiviral activity of BRACO-19 was further investigated in stimulated PBMCs against 

two HIV-1 strains: HIV-1 strain IIIB and HIV-1 strain BaL. This two viruses use two different 

chemokine-receptors for entry: HIV(IIIB) is a X4 virus that uses the alpha-chemokine receptor 

CXCR4 while HIV(BaL) uses the beta-chemokine receptor CCR5 for entry. 2 × 10
5
cells were 

seeded in the presence of serial dilutions of the test compound and were infected with HIV-

1(IIIB) or with HIV-1(BaL) at 1000 CCID50 per ml. At 4 days post infection, 125 μl of cell 

suspension of the infected cultures were removed and replaced with 150 μl of fresh medium 

containing the test compound at the appropriate concentration. After 7 days, supernatants 

were collected and p24 antigen was detected by enzyme-linked immunosorbent assay (Perkin-

Elmer, Brussels, Belgium). 

4.8.6. Antiviral effect of test compounds in persistently HIV-1 infected cells 

(MT-4/IIIB cell line) 

The antiviral activities of test compounds against persistent HIV-1 infection were based on 

the inhibition of p24 antigen production in persistently-infected MT-4/IIIB cells untreated or 

pretreated with AZT (10 ng/ml). The pretreatment with AZT, a NRTI, allows to evaluate the 

effect of the compound only in post integration viral steps. AMD3100 (a CXCR4 Antagonist) 

and Ritonavir (a PI) were tested in parallel as reference drugs. BRACO-19 (22 l/well of 10X 

final concentration) was added to one series of triplicate wells in a 96-well plate and 9 serial 5 

fold dilutions were made. Finally, untreated or pretreated MT-4/IIIB cells (3 x 10
4
 cells/well) 
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were added in a final volume of 200 l/well. After 5 days, supernatants were collected and 

HIV-1 production was determined by measuring p24 antigen with a p24 antigen enzyme-

linked immunosorbent assay (Perkin-Elmer,Brussels, Belgium). Cytotoxicity of BRACO-19 

on MT-4/IIIB cells was tested in parallel using an MTT assay. 

4.9. Viral binding assay 

This assay allows to investigate the inhibitory effect of test compounds on viral binding to 

MT-4 cells. MT-4 cells (5 x 10
5
/tube in 100 l) were incubated with 4 serial 5-fold dilutions 

of test compounds (100 l/tube of 4X final concentration) in 5ml tubes. Finally, 200 l of 

HIV-1(IIIB) dilutions (corresponding to 100 ng of p24) were added to each tube. Dextran 

Sulfate (DS) and AMD3100 were tested in parallel as reference compounds. After 2 h at 

37°C, the cells were washed three times with PBS 1X to remove unbounded viral particles 

and then lysed with PBS 1X containing 0.5% tergitol NP-40 (Sigma, St-Louis, MO). The 

amount of p24 antigen was measured by a p24 antigen enzyme-linked immunosorbent assay 

(Perkin-Elmer,Brussels, Belgium).   

4.10. Virucidal assay 

To investigate the antiviral properties of BRACO-19 against HIV-1-virions’ structural parts, a 

virucidal assay was performed. If the compound has virucidal effect against HIV-1 virions, a 

compound-pretreated and subsequently compound-cleared virus stock has a minor efficacy in 

infecting MT-4 cells that could be evaluated by titration. Aliquots of HIV-1(IIIB) stock were 

incubated with various concentrations of test compounds in 100 l of complete RPMI-1640 

medium for 1h at 37°C. The samples were next diluted 4000 times with complete medium to 

reach a concentration of compound so far below the IC50 and used to infect MT-4 cells. Five 

days after infection, viral infectivity was quantified by titration (Daelemans et al, 2011). 

4.11. Time-of-Addition experiments 

The Time-of-Addition (TOA) assay allows to determine how long the addition of a compound 

can be postponed before it loses its antiviral activity in cells and was used to investigate the 

target of test compounds as HIV inhibitors (Daelemans et al, 2011). Since the HIV replication 

cycle proceed in a well-established chronological order (Fig. 4.3A), it is possible to 

investigate the target of a test compound by comparing its action to that of reference drugs in 

the time scale (Fig.4.3B). The choice of reference drugs is essential: well-characterized anti-
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HIV drugs with a high selectivity are preferred, since 10 to 100-fold their 50% inhibitory 

concentration (IC50) is used. The anti-HIV-1 reference drugs chosen for this assay could cover 

almost every step of viral cycle: Dextran Sulfate (DS) is an inhibitor of viral adsorption, 

AMD3100 is a CXCR4 co-receptor anatgonist, NV038 is an NC inhibitor, AZT is a NRTI, 

Nevirapine is a NNRTI, L-708,906 is a strand transfer integrase inhibitor, WP7-5 is a 

transcription inhibitor and finally Ritonavir acts as PI. For all the compounds mentioned 

above, HIV-1 replication is blocked up to a time point corresponding to the occurrence of the 

replication process targeted by the drug. 

 

 

Figure 4.3 Time-Of-Addition A) Chronological representation of the essential steps in the HIV-1 viral 

replication cycle. B) Example of typical results obtained with the well-characterized anti-HIV drugs 

 

MT-4 cells were infected with HIV-1(IIIB) at the MOI of 0.5. After 1 h, cells were washed 3 

times with complete RPMI 1640 medium and seeded into a 96-well plate (100,000 cells/well 

and incubated at 37°C. Test compounds and reference compounds were added at different 

times (0,1,2,3,4,5,6,7,8,24 and 25 h) post infection. The reference compounds DS, AMD3100, 

AZT, Nevirapine and Ritonavir were added at a concentration of 100-fold their IC50 (IC50 

required to reduce by 50% the CPE of HIV-1(IIIB) in MT-4 cells). HIV-1 production was 

determined 31 h post infection by measuring HIV-1 core antigen (p24 antigen) in the 

supernatant with a p24 antigen enzyme-linked immunosorbent assay (Perkin-Elmer, Brussels, 

Belgium). 
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5. Results and Discussion 

 

5.1. G-Quadruplex analysis of the HIV-1 Proviral Genome 

5.1.1. Computational analysis of the HIV-1 proviral genome for the presence of 

putative G-Quadruplex forming regions 

The HIV-1 proviral genome (strain HXB2/LAI, NC_001802) was analysed with QGRS 

Mapper which is an online algorithms-based software program for recognition and mapping 

of putative Quadruplex forming G-Rich Sequences (QGRS) (Kikin et al, 2006). The found 

QGRS were ranked based on the G-score, which is the likelihood to form a stable G-

quadruplex. Since the single-stranded RNA viral genome is retrotranscribed into double-

stranded DNA and inserted into the human genome, analysis for QGRS was performed also 

on the antisense strand. In fact, as anticipated in the introduction, transcription and/or 

replication can be perturbed by G-quadruplexes located on both strands. It is important to 

underline that this QGRS analysis represented only a preliminary screening of the HIV-1 

proviral genome, since complex sequences with multiple runs of Gs can form several G-

quadruplex structures in equilibrium that are not necessarily predicted by the software.  

The distribution of QGRS along the HIV-1 is represented in Figure 5.1. Overall, forty-one 

QGRS were found: the sequences displayed a G-score from 10 to 33 and appeared uniformly 

distributed in all the proviral genome. Interestingly, thirty-two sequences were located in the 

sense strand while only nine sequences were located in the antisense strand. This preliminary 

analysis showed an asymmetry in QGRS distribution between the two strands, with a strong 

prevalence of QGRS in the sense strand. Only nine sequences showed a relatively high G-

score (≥ 20) and were considered for further characterizations, taking into account also the 

relevance of the location in the HIV-1 genome. Since transcription can be perturbed by G-

quadruplexes located both in promoter and in coding regions, we focused on putative G-

quadruplex forming sequences in the Long Terminal Repeats (LTR) promoter region and in 

HIV-1 coding regions. Interestingly, one of the sequences that displayed the highest G-score 

(=32) was located in the U3 region of LTR, within the viral promoter. Thus, G-quadruplex 

formation in this region could affect regulation of transcription and consequently the viral 

cycle. We decided to further investigate this putative G-quadruplex region in the HIV-1 LTR 

promoter: results are presented in paragraph 5.2. In addition, we noticed that four putative 
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QGRS were located in the nef gene. If these latter sequences were able to fold in G-

quadruplex, this region of the HIV-1 proviral genome could perturb polymerase processing. 

Our results about this putative G-quadruplex forming region in the nef coding sequence are 

described in paragraph 5.3. 

 

 

Figure 5.1 Putative Quadruplex forming G-Rich Sequences (QGRS) in the HIV-1 proviral genome 
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5.2. G-Quadruplex structures in the HIV-1 Long Terminal Repeat (LTR) 

Promoter 

 

5.2.1. Analysis of putative G-quadruplex sequences in the HIV-1 LTR promoter 

region 

In the proviral HIV-1 DNA, two identical copies of the Long Terminal Repeat (LTR) are 

located at the 5’ and 3’ end of the genome. Each LTR is composed of the segment U3, R and 

U5 (Figure 5.2A). The viral promoter is located in the U3 region of the 5’ LTR and requires 

activation by host transcription factors. The U3 region contains an enhancer (position -105 to 

-79, with respect to the transcription initiation site) with two binding sites for the nuclear 

factor κB (NF-κB), and the core promoter (position -78 to -1, with respect to the transcription 

initiation site) composed of three tandem binding sites for Specificity protein 1 (Sp1) and a 

TATA box (Figure 5.2B). This region appears particularly G-rich: the segment corresponding 

to part of the core promoter and enhancer consists of 50% G and 70% GC. Interestingly, Gs 

were mainly clustered in groups of 2−4 continuous G bases (Figure 5.2C). Because of these 

features, the possibility of G-quadruplex folding was further analyzed. Besides the sequence 

found in the preliminary QGRS analysis (Figure 5.1), a total of twelve putative overlapping 

sequences were found and were ranked based on G-score (Table 5.1): three sequences, 

namely LTR-I, -II, and -III, were composed of GGG repeats (numbered 1−6, Figure 5.2C) 

and could thus generate G-quadruplexes with three stacked G-quartets exhibiting the highest 

G-scores. The remaining nine sequences (Figure 5.2D) involved two stacked quartets and 

were ranked with lower G scores. These sequences differed in the length of the loop segments 

connecting G-tracts (Table 5.1). Interestingly, the G-rich −105/-48 tract was also the binding 

region of two important cellular transcription factors that stimulate viral transcription: NF-κB, 

with two binding sites at −105/-96 and −92/-82, and Sp1, three molecules of which bind at 

−79/−68, −67/−57, and −56/−4817 (Figure 5.2B). 
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Figure 5.2 Architecture of the G-rich HIV-1 LTR region spanning -105/-48 nucleotides A) Scheme 

representing the U3, R and U5 regions and their positions in the HIV-1 LTR sequence. B) The NF-κB (orange) 

and Sp1 (magenta) binding sites and the TATA box (blue) are highlighted. C-D) Sequence of the G-rich LTR 

region spanning -105/-48 nts. The orange and magenta lines above the sequence indicate the bases involved in 

transcription factor binding. G bases that may be involved in G-quadruplex are shown in bold. G-tracts are 

consecutively numbered (1-6 for GGG- or GGGG-tracts and 3’, 3”, 6’ for GG-tracts). The sequences that may 

form G-quadruplexes with three stacked tetrads are denoted in roman numbers with brackets (C) The sequences 

that may form G-quadruplexes with two stacked G-quartets are indicated by Arabic numbers and differently 

colored brackets (D). 
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Sequence name # G-quartets 
# linker nucleotides 

(min-max) 
G-score 

  loop I loop II loop III  

LTR-I 3 10 8 11 69-70 

LTR-II 3 8-9 11 1 62-68 

LTR-III 3 11 1 3-4 62 

LTR-4 2 10-11 0 8-9 10-11 

LTR-5 2 9-11 7-9 1-2 13 

LTR-6 2 0 8-9 12 12-13 

LTR-7 2 8-11 1-2 3 15 

LTR-8 2 1-2 3 3-4 18-20 

LTR-9 2 3 3-4 1-3 18-21 

LTR-10 2 3 1-3 3-4 13-21 

LTR-11 2 1-3 3-4 0 17-18 

LTR-12 (or LTR IV) 2 1-3 3-5 3-4 13-20 
 

Table 5.1 Properties of G-quadruplex forming sequences in the -105/-48 HIV-1 LTR U3 region  

 

To establish the importance of these predicted sequences within the viral context, the degree 

of base conservation among HIV-1 strains was assessed. 953 LTR sequences of different 

HIV-1 strains were analyzed. In particular, 24 LTR sequences belonged to strains of subtypes 

A, 485 of subtypes B, 119 of subtype C and 325 of others strains. Among all the analyzed 

LTR sequences, G bases were highly conserved, reaching a conservation grade up to 99%. 

Interestingly, also most non-G bases were highly conserved (Figure5.3). This evidence 

suggested a key role of this highly conserved viral site. 

 

Figure 5.3 Base conservation among 953 HIV-1 strains G-bases are shown in red, non-G-bases are shown in 

lilac. Percentages of conservation of G-bases are shown above corresponding bars. 
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5.2.2. Characterization of putative G-quadruplex forming sequences LTR I, II 

and III  

The three LTR sequences, namely LTR-I, -II, and -III, embedding four GGG tracts each 

(Figure 5.2C) and displaying higher G-scores (Table 5.1), were selected and analyzed for their 

ability to form G-quadruplexes.  

 

5.2.2.1. Spectroscopic analysis 

Circular dichroism (CD) spectroscopy was initially performed in the absence or presence of 

increasing concentrations of K
+
 to monitor G-quadruplex formation and its likely topology. 

LTRII and LTR-III produced CD spectra characteristic of a G-quadruplex structure in a K
+
-

dependent manner (Figure 5.4A). Spectra of both oligonucleotides exhibited a positive band 

at 266 nm and a negative peak at 244 nm, a signature suggesting a parallel-like G-quadruplex. 

In contrast, LTR-I showed a negative band at 240 nm, a shoulder at 260 nm, and a positive 

peak at 280 nm, and low K
+
-dependence, features not typical of G-quadruplex structures 

(Figure 5.4A). 

The topology of the selected sequences was further assessed by UV thermal difference 

spectroscopy (TDS). LTR-II and LTR-III produced TDS signatures with three positive bands 

at 275, 257 and 239 nm, and three negative bands at 296, 261 and 252 nm, characteristic of 

the G-quadruplex structure (Figure 5.4B). In addition, the TSD factor, calculated as 

ΔA240nm/ΔA295nm was above 5, indicating a parallel-like topology (Figure 5.4B; inset). In 

contrast, the TDS signature of LTR-I was not representative of G-quadruplex (Figure 5.4B). 

Overall, spectroscopic analysis strongly supported a parallel-like G-quadruplex folding only 

for LTR II and LTR III sequences. The two independent analysis excluded a G-quadruplex 

formation for LTR I sequence. 
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Figure 5.4 Spectroscopic data of LTR I, LTR II and LTR III putative G-quadruplex forming sequences A) 

CD spectra of each oligonucleotide in the presence of increasing concentration of K
+
 (0-150 mM). Only LTR II 

and LTR III present G-quadruplex characteristic spectra. B) TDS spectra of each oligonucleotide. Only LTR II 

and LTR III exhibit the G-quadruplex TDS signature. Where available, TDS factors graphs are shown in the 

insets.  
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5.2.2.2. Footprinting studies 

Further support for the formation of G-quadruplexes was obtained by protection assays. Two 

G-N7 alkylators were separately employed: DMS, the standard reactant to highlight G bases 

involved in G-quartets, and clerocidin (CL), endowed with finely tunable reactivity. 

In the CL protection assay, tracts 2, 3, 4, and 5 in the LTR-II sequence were all protected 

(Figure 5.5A). In particular, in G-tract 2, the three 5′-Gs were involved in G-quadruplex, 

while the 3′-G was excluded (symbol *, lane 10). Surprisingly, in tract 3, the 5′-G was 

overexposed to cleavage (symbol ¤, lane 10). On the basis of CL discrimination between 

protected and stretched bases, the cleaved G, adjacent to the 8-nt-long linker region, is likely 

strained and therefore exposed to CL alkylation. In the LTR-III sequence, tracts 3, 4, 5, and 6 

were clearly protected, while the 3′-G of tract 6 was not (symbol *, lane 15). Conversely, no 

protection was observed in the LTR-I sequence in the CL protection assay (lane 2-3, Figure 

5.5 A). 

Similar results were obtained using the G-N7 alkylator DMS (Figure 5.5B): LTR-I seemed 

not to form any G-quadruplex since no protection sites were detectable (lane 2-3, Figure 

5.5B). Again, LTR-II showed a protection of G-tracts from 2 to 5 (lane 5-6, Figure 5.5B). In 

LTR-III sequence, G-tracts from 3 to 6 were protected and again in G-tract 2, the 3′-G 

appeared excluded from G-quadruplex structure (lane 8-9, Figure 5.5B).  

A summary scheme of the protected G-bases involved in the G-quadruplex folding is reported 

in Figure 5.5C. 
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Figure 5.5 Protection assays of LTR I, LTR II and LTR III A) LTR sequences were heat denatured, cooled 

down in the presence or absence of K
+
, and treated with DMS before cleavage induction at the G alkylated sites 

with hot piperidine. B) LTR sequences were heat denatured, cooled down in the presence or absence of K+, and 

treated with clerocidin followed by hot piperidine to induce cleavage at the G alkylated sites (CL lanes) or just 

treated with hot piperidine (C lanes). Base sequences are provided on the left of each oligonucleotide. Protected 

G-tracts are indicated with vertical lines and corresponding numbers. The ¤ symbol indicate overexposed bases 

and the * symbol indicate non-protected bases within a protected G-tract. M indicate marker lanes obtained with 

the Maxam and Gilbert sequencing protocol. C) Overlapping sequences of LTR I, LTR II and LTR III. Relevant 

G-tracts are shown in bold and numbered (1-6). Protected G bases are underlines. 
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5.2.2.3. Melting studies 

Preliminary spectroscopic analysis revealed a G-quadruplex formation in LTR-II and LTR-III 

sequences, thus only these two sequences were selected for further characterizations.  

Stability of LTR-II and LTR-III G-quadruplexes in the absence/presence of 100 mM K
+
 was 

assessed by thermal unfolding experiments monitored by CD and melting temperatures (Tm) 

were calculated. In the presence of K
+
, both LTR-II and LTR-III showed an increase of Tm of 

9.3 and 13.9°C, respectively, suggesting a K
+
-dependent G-quadruplex stabilization. 

Moreover, LTR-III appeared slightly more stable than LTR-II with a Tm of 51.9°C (Table 

5.2). 

Next, we asked whether the G-quadruplexes in LTR-II and LTR-III are prevalently inter or 

intramolecular structures. Tm values of LTR-II and LTR-III unfolding were 2.6 and 1.8°C 

(respectively) higher than Tm values gained during the refolding process (Figure 5.6B). The 

small hysteresis was indicative of reversible and intramolecular G-quadruplex formation, with 

folding kinetics faster for LTR-III than for LTR-II. These data indicate that the presence of 

two long loops in LTR-II (9, 11, 1 nt-loops) versus only one long loop in LTR-III (11, 1, 3 nt 

loops) moderately affected both the thermodynamic stability and the kinetics of G-quadruplex 

formation. To further confirm these data, UV melting experiments at 4 and 60 μM oligomer 

concentrations were made. In fact, an higher oligomer concentration promotes the 

intermolecular structure with a difference in Tm values. UV melting experiments showed a 

superimposable Tm values for both concentrations, confirming intramolecular G-quadruplex 

formation for LTR-II and LTR-III (Figure 5.6C). 
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Figure 5.6 Thermal stability of LTR-II and LTR-III A) LTR-II and LTR-III oligonucleotides (3-6 μM) were 

treated at increasing/decreasing temperature (20-95°C 2°C/min) and CD spectra recorded. B) Molar ellipticity 

values recorded at 265 nm were plotted against temperature and fitted with the van’t Hoff equation to extrapolate 

Tm values. Down- and up-pointing arrows indicate denaturation and renaturation experiments, respectively. Tm 

values are indicated aside the corresponding melting curve. C) LTR-II and LTR-III oligonucleotides at low (4 

μM) and high concentration (60 μM) were treated at increasing temperature (20-95°C) and UV absorbance 

spectra recorded. Absorbance values recorded at 295 nm were plotted against temperature to extrapolate Tm 

values, which are indicated aside the corresponding melting curve.  
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The commercially available G-quadruplex ligands TMPyP4, BRACO-19, and PIPER were 

next tested by CD for binding to the novel LTR G-quadruplex structures in the 

absence/presence of 100 mM K
+
. In the presence of K

+
, the average ΔTm was above 30°C, 

indicating both LTR sequences were significantly stabilized by the compounds. BRACO-19 

was most efficient determining an increase of Tm up to 43.3°C for LTR-III. TMPyP4 resulted 

in an increase of Tm of about 30°C for both LTR sequences. PIPER was less effective, 

especially with LTR-III with an increase of Tm of 15.3°C. Interestingly, even in the absence 

of K
+
, compounds induced a G-quadruplex conformation with average ΔTm around 15°C 

(Table 5.2).  

 

G-

quadruplex 

sequence 

K
+
 

(mM) 

Drug 

added 
Tm (°C) 

ΔTm (°C) 

(TmK
+
[100] -  

TmK
+
[0]) 

ΔTm (°C) 

(Tm K
+
[100] drug - 

Tm K
+
[100]) 

LTR-II 

0 - 39.7 ± 1.2 - - 

0 TMPyP4 52.1 ± 1.8 - 12.4 

0 BRACO-19 57.3 ± 1.7 - 17.6 

0 PIPER 53.5 ± 4.0 - 13.8 

100 - 49.0 ± 0.2 9.3 - 

100 TMPyP4 82.4 ± 1.5 30.3 33.4 

100 BRACO-19 88.9 ± 0.6 31.6 39.9 

100 PIPER 80.1 ± 3.3 26.6 31.1 

LTR-III 

0 - 38.0 ± 1.5 -  

0 TMPyP4 60.9 ± 2.5 - 22.9 

0 BRACO-19 50.9 ± 1.1 - 12.9 

0 PIPER 53.0 ± 1.2 - 15 

100 - 51.9 ± 0.2 13.9 - 

100 TMPyP4 89.9 ± 0.7 29 38 

100 BRACO-19 94.2 ± 2.0 43.3 42.3 

100 PIPER 68.3 ± 1.3 15.3 16.4 
 

Table 5.2 Stabilization (Tm) of LTR II and III Sequences (4 μM) in the absence and presence of 100 mM 

K+ and G-quadruplex ligands (16 μM) 
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5.2.2.4. Taq polymerase stop assays 

Further evidence of the stability of the LTR G-quadruplexes was provided by Taq polymerase 

stop assay (Figure 5.7). Samples were incubated in the absence/presence of 100 mM K
+
 

(Figure 5.7, lanes 1 and 2) and with increasing concentrations (50−100nM) of TMPyP4 

(Figure 5.7, lanes 3 and 4). TMPyP2, a non-G-quadruplex binding porphyrin (Han et al, 

2001), was used as a negative control (Figure 5.7, lanes 5−6). Taq polymerase activity was 

tested at 47°C against LTR-I, LTR-II, and LTR-III DNA templates. Full length products were 

obtained in the absence of K
+
 in the three sequences. However, in the presence of K

+
, a 

premature stop site occurred in LTR-II and LTR-III (Figure 5.7, lanes 2) at the first two 3′-G 

bases involved in G-quadruplex (G-tract 5 in LTR-II and 6 in LTR-III). The stop became 

clearer upon incubation with TMPyP4 (Figure 5.7, lanes 3−4). The stop observed in the 

presence of TMPyP2 was comparable to the stop with K
+
 alone (Figure 5.7, compare lanes 

5−6 with 2), confirming that the compound did not affect G-quadruplex formation. In 

addition, no stop was observed in LTR-I confirming that no G-quadruplex formation occurred 

and showing that polymerase activity was not directly inhibited by the compounds (LTR-I, 

lanes 2−6).  
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Figure 5.7 Taq polymerase stop assay Oligonucleotides were folded in the presence or absence of K
+
. K

+
-

treated samples were further incubated with either TMPyP4 (P4) or the control compound TMPyP2 (P2). 

Oligonucleotides were used as templates in a Taq polymerase reaction at 47°C. Bases at the 3′-end and the 

corresponding 3′-G-tract are indicated for each sequence. P indicates the band of the labeled primer. M is a 

marker lane obtained with the Maxam and Gilbert sequencing protocol. 
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5.2.3. Characterization of multiple G-quadruplexes folding in the full-length 

LTR G-rich region  

Considering that LTR-II and LTR-III sequences have a portion in common in the full length 

LTR G-rich region, we investigated the dynamic equilibrium that regulates the G-quadruplex 

folding in the full-length region. In fact, the full-length LTR G-rich sequence comprises four 

GGG-tracts (1, 3−5), two GGGG-tracts (2, 6) and three additional GG-tracts (3′, 3″, 6′) which 

could be used for multiple G-quadruplex formation (Figure 5.2C-D). Moreover, we examined 

a number of subsequences to dissect this issue, corresponding to LTR-II, LTR-III, and their 

combination of LTR-(II+III).  

 

5.2.3.1. Melting experiments 

CD-monitored melting experiments showed that the Tms of LTR-II and LTR-III increased by 

10−13°C in the presence of K
+ 

(Table 5.2). Also LTR-(II+III) and the full length LTR (FL-

LTR) were greatly stabilized by the metal ion, with an average ΔTm around 22°C. The two 

Tms resulted very close to each other (55.8°C for LTR-(II+III) and 61.1°C for FL-LTR) and 

4−6°C higher than for LTR-II and LTR-III. The G-quadruplex ligands TMPyP4, BRACO-19, 

and PIPER were again tested by CD for stabilizing the G-quadruplex structures in the FL-

LTR sequence. In the presence of K
+
, G-quadruplex ligands further stabilized these 

conformations with an average ΔTm from 4.5 to 8.8°C. Interestingly, PIPER resulted the most 

efficient ligand in stabilizing (Table 5.3).  

 

G-

quadruplex 

sequence 

K
+
 

(mM) 

Drug 

added 
Tm (°C) 

ΔTm (°C) 

(TmK
+
[100] -  

TmK
+
[0]) 

ΔTm (°C) 

(Tm K
+
[100] drug - 

Tm K
+
[100]) 

LTR-(II+III) 
0 - 34.4 ± 2.0 - - 

100 - 55.8 ± 0.3 21.4 - 

FL-LTR 

0 - 33.8 ± 5.1 - - 

100 - 56.6 ± 0.8 22.8 - 

100 TMPyP4 61.1 ± 0.5 - 4.5 

100 BRACO-19 62.2 ± 0.5 - 5.6 

100 PIPER 65.4 ± 0.4 - 8.8 
 

Table 5.3 Stabilization (Tm) of LTR-(II+III) and FL-LTR sequences (4 μM) in the absence and presence 

of 100 mM K+ and G-quadruplex ligands (16 μM) 
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5.2.3.2. Footprinting studies 

LTR-(II+III) and FL-LTR were next examined in a CL-protection assay (Figure 5.8). In the 

LTR-(II+III) sequence, all G-tracts present (2−6) were protected, indicating the coexistence of 

LTR-II and LTR-III structures (compare lanes 5 and 4, Figure 5.8A). In the FL-LTR, G-tract 

1 was not protected (compare lanes 4 and 3, Figure 5.8B), showing its exclusion from G-

quadruplex folding. In the 3′-region of FL-LTR, magnified in Figure 5.8C, G-tracts 4, 5, and 6 

were clearly protected (compare lanes 4 and 3, Figure 5.8C). Tracts 3 and 2 were partially 

protected (G −77, G −90, and G −87) and partially overexposed (G −76, G −78, and G −89) 

(symbols * and ¤, respectively, lane 4, Figure 5.8C), indicating involvement of these tracts in 

the G-quadruplex, with buried and stretched bases. In addition, G-71 was protected, 

suggesting participation in the G-quadruplex conformation or burial within the long linker 

region possibly folded on the quadruplex core. These data imply that both LTR-II and LTR-

III conformations form in the FL-LTR. Note that similar dynamic G-quadruplexes have been 

previously proposed (Qin et al, 2010). In addition, both LTR-II and LTRIII display a 11-bp 

long loop that could form four Watson− Crick base pairs and a GTG hairpin. Similar folding 

in the loop of the hTERT promoter G-quadruplex structure has been shown to promote 

cooperative binding (Palumbo et al, 2009; Yu et al, 2012). However, on the basis of the 

footprinting data, such a folding does not likely occur in the LTR G-quadruplexes. 
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Figure 5.8 Characterization of G-quadruplex structures in extended regions of the LTR G-rich sequence 
A) The LTR-(II+III) oligonucleotide and (B) the FL-LTR sequence were folded in the presence or absence of K

+
 

and treated with CL followed by hot piperidine (CL lanes) or just treated with piperidine (C lanes). Relevant G-

tracts are highlighted by vertical lines and corresponding numbers. M indicates the marker lane. Base sequences 

are shown aside each gel image. C) Magnification of the 3′-end of the FL-LTR oligonucleotide. Samples were 

treated as described above but they were run for shorter time in the denaturing gel. The * and ¤ symbols indicate 

protected and overexposed nucleotides, respectively. 

 

 

 

 

LTR-(II+III)

A
G
G
G
C
G
G
G
T
C
C
G
G

T
G

C
G

G

A

G

G

G

A

C

C

T

T

T

C

A

G

G

G

G

T5
G
G
G
G
T
C

- +  - +  K+

M  C    CL

1   2  3  4   5

6

5

4

3

2

5T
G
G
T 
G
A
G
G
G
G
T
C
A
G
G
G
C
G
G
G
T
C
C
G
G
T

6

5

4

3

2

1

1     2     3    4    5

FL-LTR 

- +     - +       K+

C         CL     M

5T
G
G
T 
G
A
G
G
G
G
T
C
A
G
G
G
C
G
G
G
T
C
C
G

G
T

6

5

4

1     2    3     4    5

FL-LTR

- +     - +         K+

C          CL     M

***

***

*
*
*

¤

*
¤

*

A B C

G -71
C
G
G
A
G -76
G -77
G -78
A
C
C
T

T

T
C

A

G

G

G

G

T

C

G

C

C

T

T

T

C

A

G

G

G

3

2

G -71
C

G -73

G

A

G -76

G -77

G -78

A

C

C

T

T

T

C

A

G -87

G -88

G -89

G -90

T

C

G

C

C

*

¤

*

*



Results and Discussion 

 

84 

5.2.3.3. Taq Polymerase stop assays 

In Taq polymerase stop assays, at increasing concentrations of K
+
, pausing sites were 

observed at all G-quadruplex relevant G-tracts, i.e., 6, 5, 4, 3, and 2 (lanes 2−4, Figure 5.9), 

confirming the coexistence of LTR-II and LTR-III structures. With TMPyP4, two major stops 

emerged at G-tracts 6 and 5, while pausing at G-tracts 4−2 was no longer observed (lanes 

5−6, Figure 5.9). Using BRACO-19, an identical behavior was obtained (lanes 9−10, Figure 

5.9), whereas the control compound TMPyP2 maintained a stop site pattern similar to that 

observed in K
+
 alone (lanes 7−8, Figure 5.9). The strong stabilization imparted by the ligands 

(see Table 5.2 and 5.3) apparently caused the polymerase to stop at the first G repeat involved 

in a G-quadruplex, without allowing the enzyme to further proceed on the DNA template. We 

concluded that BRACO-19 and TMPyP4 mainly stimulated formation of an LTR-III-like 

structure and in part of an LTR-II-like structure (3′-stops at 6 and 5, respectively, Figure 5.9). 

Interestingly, a new pausing site arose at G-tract 6′, which suggests the formation a new LTR 

structure, namely LTR-IV (Figure 5.9). The LTR-IV is a sequence of 19 bp that may form a 

G-quadruplex with two stacked G-quartets (Table 5.1).  
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Figure 5.9 G-quadruplexes forming in the FL-LTR sequence Taq polymerase stop assay on the FL-LTR 

template in the presence of increasing concentration of K
+
 (0−150 mM) (lanes 1−4) and of 100 mM K

+
 and G-

quadruplex ligands TMPyP4 (lanes 5−6), TMPyP2 (lanes 7−8) and BRACO-19 (lanes 9−10). The base sequence 

is shown on the right. Vertical lines indicate stop sites observed in the presence of K
+
. Arrows point to the 

structures of G-quadruplexes stabilized in the presence of G-quadruplex ligands. 

 

 

Single-base mutations were next introduced in the FL-LTR to assess the role of each G-tract 
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inhibited formation of LTR-IV, indicating that these G-tracts must all be involved in its 

structure. Similar results were obtained with TMPyP4 (Figure 5.10B).  

 

Figure 5.10 G-quadruplexes forming in the FL-LTR sequence Taq polymerase stop assay on the wild-type 

and mutants FL-LTR templates in the presence of 100 mM K
+
 and (A) 100 nM BRACO-19 or (B) 100nM 

TMPyP4. The base sequence is shown on the right. Vertical lines indicate stop sites observed in the presence of 

K
+
. Arrows point to the structures of G-quadruplexes stabilized in the presence of G-quadruplex ligands. 
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A summary of single-base mutation analysis is reported in Figure 5.11. In the WT sequence, 

in the presence of ligands, three G-quadruplexes corresponding to LTR-II, LTR-III, and LTR-

IV are present. The core of the LTR G-quadruplex architecture rests on G-tracts 4 and 5 

whose mutations completely abolish quadruplex building. 

 

 
 

Figure 5.11 G-quadruplexes forming in each of the examined mutant FL-LTRs Brackets indicate G-tracts 

involved in the relevant G-quadruplex. Blue, red and green brackets indicate LTR-II, LTR-III, LTR-IV G-

quadruplexes, repèsectively. Mutated mases are shown in red. LTR-II-III is an alternative structure that forms 

involving G-tracts 2,4,5 and 6when G-tract 3 is unavailable. 
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5.2.4. Characterization of LTR-IV G-quadruplex 

The G-quadruplex analysis on FL-LTR revealed a putative new G-quadruplex structure 

namely LTR-IV. Thus, we decided to further characterize this putative G-quadruplex forming 

sequence. The 19 bp LTR-IV sequence including these G-tracts revealed CD and UV features 

characteristic of a parallel G-quadruplex (Figure 5.12A and D) showing increased stability 

upon K
+
 addition (Table 5.4). Although in the presence of 100 mM K

+
 LTR-IV was less 

stable than LTR-II, LTR-III, LTR-(II+III), and FL-LTR, upon addition of G-quadruplex 

ligands, LTR-IV stability significantly increased; in particular, Tm values of LTR-IV in the 

presence of ligands were consistently higher than Tm of LTR-III and LTR-II (Table 5.4). 

These data corroborate the results presented in Figure 5.9 and 5.10 and demonstrate that G-

quadruplex ligands both stabilize naturally occurring G-quadruplex conformations and induce 

(and greatly stabilize) a novel G-quadruplex structure which is not present under 

physiological conditions. Interestingly, LTR-IV could form a G-quadruplex with a single 

bulge, a type of structure recently reported in G-quadruplex conformations (Mukundan & 

Phan, 2013). 
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Figure 5.12 Thermal stability of LTR-IV in A) the absence and B) presence of BRACO-19. LTR-IV 

oligonucleotide was treated at increasing temperature (20-95°C) and CD spectra recorded. C) Molar ellipticity 

values recorded at 265nm were plotted against temperature and fitted with the van’t Hoff equation to extrapolate 

Tm values. D) TDS spectrum of LTR IV. LTR IV exhibit the G-quadruplex TDS signature. TDS factor graph is 

shown in the inset. E) Taq polymerase stop assay performed at 47°C in the absence (K-) and presence (K+) of 

K
+
, and in presence of TMPyP2 (P2), TMPyP4 (P4) or BRACO-19 (B). FL indicates full-length polymerase 

product. The 3’ end sequence is shown on the left.  
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G-quadruplex 

sequence 

K
+
 

(mM) 

Drug 

added 
Tm (°C) 

ΔTm (°C) 

(TmK
+
[100] -  

TmK
+
[0]) 

ΔTm (°C) 

(Tm K
+
[100] drug - 

Tm K
+
[100]) 

LTR IV 

0 - 26.2 ± 0.5 - - 

100 - 43.4 ± 0.2 17.2 - 

100 TMPyP4 87.3 ± 3.4 - 43.9 

100 BRACO-19 97.4 ± 3.2 - 54.0 

100 PIPER 99.2 ± 6.5 - 55.8 
 

Table 5.4 Stabilization (Tm) of LTR-IV sequence (4 μM) in the absence and presence of 100 mM K+ and 

G-quadruplex ligands (16 μM) 

 

On the basis of these data, involvement of G-tracts and G-quadruplex types could be 

extrapolated as shown in Figure 5.13. 

 

Figure 5.13 Models of characterized LTR G-quadruplex structures. G, T, C, and A bases are shown in red, 

blue, yellow, and green, respectively. Numbers in the structures indicate nucleotide position within the HIV-1 

integrated genome. 

 

 

5.2.5. Biological significance of G-quadruplexes in the LTR region.  

To evaluate the biological significance of G-quadruplex structures within the LTR sequence, 

the WT LTR sequence (position −381/+83) and selected point mutants were cloned upstream 

of the firefly luciferase gene in a promotorless plasmid. A control vector with Renilla 

luciferase under the HSV-1 TK promoter was used to normalize transfection efficiency. 

Mutants corresponding to m4 and m5, which totally prevent G-quadruplex formation as 

described above, were assayed along with WT FL-LTR and mutant m3″ which served as 

controls, respectively, for the original G-quadruplex-forming sequence and for a mutated 

sequence that does not disrupt G-quadruplex. LTR promoter activity was tested in HEK 293T 
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cells: m4 and m5 LTR promoter activities were about twice as high as that of the WT LTR 

(Figure 5.14A). This increment is in line with that observed in eukaryotic promoters, i.e., 

human c-MYC, KRAS, and thymidine kinase 1 (Basundra et al, 2010; Membrino et al, 2011; 

Siddiqui-Jain et al, 2002). In contrast, when G-quadruplex formation was unharmed (m3″), 

LTR promoter activity was comparable to wild-type. These data suggest that G-quadruplexes 

act as repressor elements in the transcriptional activation of HIV-1. The promoter activities of 

WT and m5 LTRs were next tested in the presence of increasing concentrations of BRACO-

19. As shown in Figure 5.14B, WT LTR promoter activity decreased to around 70% of the 

untreated control while displaying no effect on m5 LTR activity, supporting a G-quadruplex-

mediated inhibition. We also observed concentration-dependent inhibition of the control 

Renilla luciferase reporter gene by BRACO-19 (less intense than inhibition of the LTR-driven 

firefly luciferase) attributable to the toxic effects produced by ligand binding to eukaryotic G-

quadruplex structures (data not shown). A similar effect has been previously observed 

(Siddiqui-Jain et al, 2002). 

Therefore, the effects of G-quadruplex ligands were next evaluated in a eGFP-reporter system 

in the presence/absence of the transcriptional activator Tat, using flow cytometry to gate only 

GFP+ cells with viable morphology. In the presence of Tat, BRACO-19 was able to impair 

LTR promoter activity in a dose-dependent fashion (around 50% inhibition at 6 μM, Figure 

5.14C). Moreover, in the absence of Tat, inhibition was 30%, confirming the results obtained 

in the luciferase assay. In contrast, the control ligand TMPyP2 did not show significant 

inhibition under these conditions (Figure 5.14D). Because Tat-mediated trans-activation 

boosts viral transcription acting on early mRNA transcripts originating by LTR-mediated 

transcription, when the latter is blocked, a magnified inhibition may be observed in the 

presence of Tat.  
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Figure 5.14 Biological evaluation of LTR G-quadruplexes and treatment with G-quadruplex ligands (A) 

Luciferase expression of the wild-type and mutant LTRs normalized to the Renilla luciferase expression and to 

the wild-type sequence in HEK 293T cells. (B) Normalized luciferase expression of the WT and m5 LTRs in the 

presence of BRACO-19 (1.5−6.0 μM). (C) EGFP mean of fluorescence of cells transfected with the WT LTR-

GFP plasmid and treated with increasing concentration (1.5−6.0 μM) of BRACO-19 in the absence or presence 

of Tat. (D) EGFP mean of fluorescence of cells transfected with the WT LTR-GFP plasmid and treated with 

increasing concentration (1.5−6.0 μM) of TMPyP2 in the absence or presence of Tat.  In all data sets: n = 3, 

mean ± SD, Student’s t-test, *P < 0.05, **P < 0.01 

 

 

5.2.6. The G-Quadruplex Ligand, BRACO-19, displays antiviral activity.  

Having observed a reduction in HIV LTR-driven promoter activity, we next assayed the most 

active compound, BRACO-19, for antiviral activity. For these experiments, we used infected 

TZM-bl reporter cell line, in which HIV infection drives transcription of an HIV-1 LTR-

luciferase reporter gene construct (Derdeyn et al, 2000; Platt et al, 1998). We observed a 

significant inhibition of HIV-dependent gene expression upon treatment with the G-

quadruplex ligand (Figure 5.15A). HIV LTR activity in TZM-bl cells has been previously 

reported to be sensitive to the HIV accessory protein Nef (Derdeyn et al, 2000; Emert-Sedlak 

et al, 2013). To rule out a role for Nef in BRACO-19-mediated inhibition, the same 

experiment was repeated with Nef-defective HIV (ΔNef). A similar inhibitory effect was 

observed indicating that the effect of BRACO-19 is Nef-independent. In contrast, the control 
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ligand TMPyP2 did not affect LTR activity in response to either virus (Figure 5.15B). To 

date, tested ligands’ concentrations did not affect cell viability (Figure 5.15C).These data 

indicate that G-quadruplex ligands significantly inhibit HIV-1 and that this effect may depend 

on stabilization of G-quadruplex structures within the HIV-1 LTR promoter region.   

 
 
Figure 5.15. Antiviral effects of LTR G-quadruplexes and treatment with G-quadruplex ligands TZM-bl 

cells were infected with wild-type (black bars) and ΔNef (gray bars) HIV NL4−3 in the presence of the (A)G-4 

stabilizing ligand, BRACO-19 or (B) the negative control G-4 ligand TMPyP2. After 48 h, levels of gene 

expression were assessed as relative luciferase activity in infected cells. Results are shown relative to the wild-

type control cells incubated with only the carrier solvent (DMSO) ± SEM (n = 3). Significant inhibtion (P < 

0.05) was observed at 3 and 6 μM for both wild-type and ΔNef infected cells. C) Cytotoxicity of BRACO-19 and 

TMPyP2 on TZM-bl cells was assessed via the Cell-Titer Blue assay (Promega). TZM-bl cells were incubated 

with the indicated concentrations of compounds for 48 h and cell viability was assessed via the Cell- Titer Blue 

assay relative to control cells incubated with carrier solvent. Assays were done in triplicate. 
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5.3. G-Quadruplex structures in the HIV-1 nef coding region 

5.3.1. Analysis of putative G-quadruplex sequences in the HIV-1 nef coding 

region  

As anticipated, the QGRS analysis of the HIV-1 proviral genome pointed out four putative 

QGRS located in the nef gene (Table 5.5): two were located in the forward strand (positions 

8528 and 8624, where +1 is the first base of the HIV-1 genome as reported in GenBank, 

NC_001802) and two on the reverse strand (positions 8547 and 8727). In particular, the three 

that displayed the highest G-score (≥ 20) were also adjacent to one another: the first on the 

forward strand (Nef8528) and the second on the reverse strand (Nef8547) were separated by 

just 4 nucleotides (nts); the second from the third sequence on the forward strand (Nef8624) 

by 48 nts (Figure 5.16A-B). The identified G-quadruplex forming sequences comprised at 

least four tracts of two consecutive Gs, with the possibility to form G-quadruplexs with two 

stacked tetrads. Although in principle two G-tetrads would confer less stability than more 

extended G-tetrads, the existence and biological role of G-quadruplexes with two stacked 

tetrads has been reported in several cases (Raiber et al, 2012; Xu & Sugiyama, 2006). 

Interestingly, in certain instances, two-tetrads G-quadruplexes showed higher stability than 

three-tetrads G-quadruplexes (Hu et al, 2009; Phan, 2010). If these three sequences were able 

to fold in G-quadruplex, this region of the HIV-1 proviral genome could constitute an 

important cluster of non-canonical DNA structures with possible effects on polymerase 

processing (and therefore impact on replication and transcription events). In addition, in a 

supercoiled environment, I-motif conformations may arise in the C-rich complementary 

sequences independently of G-quadruplex formation (Brooks et al, 2010). We thus foresaw 

the possibility of creating a structured environment upon induction of non-canonical nucleic 

acid conformations, with the possibility of blocking enzymes involved in Nef protein 

expression. I-motif formation in this region will not be discussed in this thesis.  It is 

interesting to note that all selected G-quadruplex putative sequences code for amino acids of 

the Nef core, which is the most conserved region of the protein and is essential for interaction 

with cellular proteins to mediate key viral functions (Cheng et al, 1999; Grzesiek et al, 1996; 

Lee et al, 1996) (Figure 5.16C-D). 
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Position in the 

F strand 
Length Putative G-quadruplex nef sequence G-score 

8528 15 GGAGGAGGAGGTGGG 17-21 

8547 29 CCAGTCACACCTCAGGTACCTTTAAGACC 21 

8624 16 GGGGGGACTGGAAGGG  16-20 

8727 30 CCAGGGCCAGGGGTCAGATATCCACTGACC 12 

 

Table 5.5 Putative G-quadruplex forming sequences within the HIV-1 nef gene (HIV-1 strain HXB2/LAI, 

NC_001802) in the forward and reverse strand Putative bases involved in G-quadruplex formation are in bold 

and underlined 

 

 

 

Figure 5.16 Putative G-forming regions in the HIV-1 nef coding region A) Scheme of G-quadruplex 

formation within the double-stranded DNA of the nef region: Nef8528, Nef8547, Nef8624 G-quadruplex 

structures are shown in blue, green and red, respectively. The numbers of nts separating each G-quadruplex 

structure are indicated. The scheme indicates the possibility of formation of a cluster of non-canonical DNA 

structures within a small portion (112 nts) of the HIV-1 genome. B) Nucleotide sequence of the nef coding 

region where three putative G-quadruplex sequences were identified. Nef8528 is shown in blue and Nef8624 in 

red. Nef8547 was identified on the non-coding strand, thus the reverse complementary sequence is shown on the 

upper strand (in green). C) Scheme of the HIV-1 nef coding sequence with numbering referring to the HIV-1 

strain HXB2/LAI, NC_001802. D) Scheme of the aminoacidic sequence of the Nef protein indicating reported 

structural domains (Geyer et al, 2001). The protein moiety coded by the G-quadruplex rich nucleotide region is 

highlighted by the rectangular yellow shape, indicating involvement of the conserved N-terminal Nef core 

region. Note that the first three nts of the Nef8528 sequence exactly code for the first amino acid of the protein 

core region 

5’
5’3’
3’

Nef 8528 Nef 8624

Nef 8547

48nt

4nt

D

5’-GGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAG

CTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGG-3’

Nef Coding sequence

8343 8963 bp8528 8639

B

C

1 206 AA

N-terminus Core domain Core domainloop C-terminus

62 99

nef

G4 
region

A



Results and Discussion 

 

96 

To establish the importance of the identified sequences from a virus standpoint, the degree of 

conservation in terms of sequence and G-quadruplex formation among HIV-1 strains was 

assessed. Initially, the presence of the exact sequences identified in the HIV-1 HXB2/LAI 

strain was analysed in 3224 nef sequences of the HIV-1 M group reported in the HIV database 

(http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html). Among these, 1538 

sequences belonged to clade B, 612 to clade C, 486 to clade A, and 588 to other clades. As 

shown in Table 5.6, Nef8528, Nef8547 and Nef8624 were fairly well conserved in the M 

group, especially in the B subtype, where conservation was higher with respect to the other 

clades of the M group. Next, the possibility of G-quadruplex formation was statistically 

analysed by maintaining the number and size of G repeats, while varying loop regions. Two 

cases were considered: in instance i) loops could diverge in base composition while 

maintaining a constant length; in instance ii) both loop composition and length were allowed 

to vary. As shown in Table 5.6, Nef8547 and Nef8624 reached a degree of conservation 

higher than 95% in both cases across all considered HIV subtypes. Nef8528 was conserved to 

a significant extent in clades A and B (up to 66.3%); its presence was negligible only in clade 

C.  

 

G-quadruplex 

name 
G-quadruplex sequence or pattern 

Conservation grade (%) 

Group 

M 

Clade 

A 

Clade 

B 

Clade 

C 

Nef8528 GGAGGAGGTGGG 13.9% 0.6% 27.2% 0.3% 

A) G2 X1 G2 X1 G2 X1-2 G2 15.7% 2.4% 29.9% 0.5% 

B) G2 X0-7 G2 X0-7 G2 X0-7 G2 46.8% 57.6% 66.3% 9.3% 

      

Nef8547 CCAGTCAGACCTCAGGTACCTTTAAGACC 24.1% 0.0% 39.2% 11.1% 

A) C2 X7 C2 X7 C2 X7 C2 98.6% 97.6% 99.1% 98.5% 

B) C2 X1-10 C2 X1-10 C2 X1-10 C2 99.0% 99.4% 99.1% 98.9% 

      

Nef8624 GGGGGGACTGGAAGGG 66.4% 13.3% 86.5% 58.8% 

A) G2 X2 G2 X3 G2 X2-3 G2 98.0% 95.2% 97.9% 98.7% 

B) G2 X0-7 G2 X0-7 G2 X0-7 G2 99.9% 99.4% 99.9% 100.0% 

 

Table 5.6. Statistical analysis of the conservation grade of the G-quadruplex nef  sequences or their G-

quadruplex patterns. In bold bases possibly involved in G-quadruplex folding 

 

Consensus sequences and base conservation in each position are reported in Table 5.7.  
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Table 5.7 Consensus sequences and percentages of base conservation at each position 

 

Overall these data indicate that the G-quadruplex pattern, therefore the possibility of G-

quadruplex folding, in the selected G-rich sequences in the Nef coding region is extremely 

conserved among circulating HIV-1 strains, at least for Nef8547 and Nef8624. 

 

5.3.2. Characterization of putative G-quadruplex forming sequences Nef8528, 

Nef8547 and Nef 8624 

5.3.2.1. CD spectroscopic analysis 

The actual folding of the selected nef sequences in a G-quadruplex conformation was initially 

assessed by circular dichroism (CD) spectroscopy. In the case of Nef8528, which presents 

five GG repeats, we used the minimal sequence that could fold into G-quadruplex. The three 

nef sequences were incubated in the presence of increasing concentrations of K
+
 or Na

+
. Both 

cations increased the CD signal, with K
+
 exhibiting a remarkably higher effect than Na

+
. 

Nef8528 andNef8624 displayed a clear parallel-type conformation upon addition of K
+
 and 

Na
+
, with a maximum at 260 nm and a minimum at 240 nm (Figure 5.17). Conversely, 

Nef8547 presented a maximum at around 275 nm and a negative peak at 240 nm, with low 

K
+
/Na

+
 dependence. Therefore, the 7-nt-long loopNef8547 apparently did not naturally fold 

into a canonical G-quadruplex conformation: to note, however, that similar CD spectra have 

been reported for G-quadruplex forming oligonucleotides with long loops (i.e. at least two 

loops ≥ 5 nts) (Guedin et al, 2010).  

Nef8528 G G A G G A G G A G G T G G G                             

Consensus 

seq 
G G A G G A G G A G G T A G G                             

% 

consensus 
76 96 90 35 94 87 65 99 95 50 99 99 51 99 99                             

                                                            

Nef8547 C C A G T C A C A C C T C A G G T A C C T T T A A G A C C 

Consensus 

seq 
C C A G T C A C A C C T C A G G T A C C T T T A A G A C C 

% 

consensus 
99 99 97 99 99 91 98 85 80 99 99 75 99 99 86 99 99 77 99 99 86 79 98 90 99 99 91 99 99 

                                                            

Nef8624 G G G G G G A C T G G A A G G G                           

Consensus 

seq 
G G G G G G A C T G G A A G G G                           

% 

consensus 
98 99 99 99 99 99 99 99 99 99 99 99 68 99 99 99                           
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Figure 5.17 CD spectra of the putative G-quadruplex forming oligonucleotides in the nef region For each 

oligonucleotide, CD spectra were measured in the absence or presence of increasing concentrations (50-150 

mM) of K
+
 or Na

+
 cations 

 

Stability of the G-quadruplex structures was next evaluated by CD thermal unfolding and Tm 

were calculated as the first derivative of the melting profiles (Figure 5.18 and Table 5.8). In 

all cases the CD signal decreased with increasing temperature. For Nef8547 and Nef8624 a 

single transition between 25°C and 95°C was appreciable leading to discrete Tm values (35°C 

and 59°C, respectively, Table 5.8). For Nef8528 two transitions were present: a first structural 
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variation at 39°C and a second at Tm > 50°C, where a clear inflection point was not observed. 

This behaviour could also be evinced by spectra overlapping, where two isosbestic points 

(asterisks in Figure 5.18) were detected, indicating the presence of at least three 

spectroscopically distinct species: the initial G-quadruplex structure, a second folded form, 

likely a more flexible G-quadruplex conformation, and the unfolded random coiled structure. 

In addition, Tm values measured by UV thermal unfolding at oligonucleotide concentration of 

40 μM were very similar to those obtained at 4 μM (Table 5.8), indicating a prevalent 

intramolecular G-quadruplex folding. 

 

 

Figure 5.18 CD thermal unfolding of the G-quadruplex nef oligonucleotides CD spectra measured at 

increasing temperatures (25-95°C) are shown on the left. Arrows indicate spectral trends at the corresponding 

wavelengths. Asterisks indicate isosbestic points. Plots of molar ellipticity values (black circles) measured at the 

indicated wavelength (corresponding to positive peaks) as a function of temperature are reported on the right. 

Arrows indicate Tm points 
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Three G-quadruplex ligands with different central cores (i.e. porphyrin for TMPyP4, acridine 

for BRACO-19, and perylene for PIPER) were incubated in the presence of each of the three 

nef G-rich oligonucleotides to check for the compound ability to induce/stabilize the G-

quadruplex topology. CD thermal unfolding analysis was employed to check stabilization of 

the G-quadruplex conformation imposed by the G-quadruplex ligands. G-quadruplex ligands 

highly stabilized the G-quadruplex conformations of Nef8528 and Nef8547 (Table 5.8). 

Nef8624 in general was less efficiently stabilized, likely due to the higher innate stability of 

this latter oligonucleotide. In cases where two transitions were observed, Tm values for each 

transition were reported (Table 5.8). 

 

G-quadruplex DNA Drug added Tm (°C) 4M * ΔTm (°C) 4M **  

Nef8528 

- 39 / > 50 - 41 

TMPyP4 57  18 - 

BRACO 69  30 - 

Piper 80 41 - 

Nef8547 

- 35 - 37 

TMPyP4 56 21 - 

BRACO 48 13 - 

Piper 56 21 - 

Nef8624 

- 59 - 58 

TMPyP4 72 13 - 

BRACO 64 / 75  5 / 16 - 

Piper 61 /  >100 2 / > 40 - 

 

Table 5.8 Tm and ΔTm of the three G-quadruplex nef sequences (4 µM and 40 µM) in the absence and 

presence of G-quadruplex ligands (16 µM) measured by CD and UV spectroscopy.*Average standard 

deviation was 0.3. **Average standard deviation was 0.4. 

 

Moreover, CD spectra of all three oligonucleotides in the presence of G-quadruplex ligands 

were evaluated and resulted characteristic of G-quadruplex conformations. In particular, 

Nef8528 and Nef8624 maintained the initial parallel-like topology with TMPyP4 and PIPER; 

in the presence of BRACO-19 an additional positive peak appeared at 290 nm, which is 

characteristic of a G-quadruplex topology and might depict a shifting towards a hybrid 

topology. In the case of Nef8547, PIPER induced an antiparallel-like spectrum, while 

TMPyP4 and BRACO-19 stabilized hybrid-type G-quadruplex structures (Figure 5.19A), 

indicating that G-quadruplex ligands are able to drive Nef8547 folding into a G-quadruplex 

conformation. To note that in most cases an induced CD spectrum was observed in the 

UV/Vis absorption region of the ligands, further confirming oligonucleotide/compound 

interaction.  
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Since the G-rich nef sequences in the proviral genome are normally embedded in a DNA 

double-helix, TMPyP4 was incubated with each nef oligonucleotide in the presence of its 

complementary counterpart in order to assess the ability of a G-quadruplex ligand to promote 

G-quadruplex folding from a double-stranded (ds) DNA. CD spectra of the ds 

oligonucleotides in the absence or in the presence of K
+
 were very similar and characteristic 

of a B-DNA (Kypr et al, 2009). However, when TMPyP4 was added, the CD spectra clearly 

shifted, presenting two maxima at 290 and 260 nm, which are indicative of a G-quadruplex 

conformation (Figure 5.19B). Since TMPyP4 absorbance below 300 nm is extremely low 

(Morris et al, 2012), the observed molar ellipticity variation must be due to changes in the 

absorbance of the nucleic acid. These data altogether confirm the ability of the nef sequences 

to fold in G-quadruplex: G-quadruplex ligands can bind, induce and stabilize their G-

quadruplex conformations. Moreover, our results show that nef sequences are normally 

present in a B-DNA conformation within the double-helix, and that a G-quadruplex binder is 

able to induce their folding in G-quadruplex. 
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Figure 5.19 CD spectra of G-quadruplex nef single-stranded or double-stranded oligonucleotides in the 

presence of G-quadruplex ligands A) CD spectra of G-quadruplex nef single-stranded oligonucleotides in the 

presence of TMPyP4, BRACO-19 or PIPER. Addition of ligands stabilized G-quadruplex conformations and 

generated ICD bands in the UV/Vis absorption regions of G-quadruplex ligands. B) CD spectra of G-quadruplex 

nef doublestranded oligonucleotides in the presence or absence of K
+
 and TMPyP4. Addition of the G-

quadruplex binding compound induced shifting from double-stranded DNA spectra to mixed type G-quadruplex 

signatures in all three cases 
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5.3.2.2. Taq polymerase stop assay 

G-quadruplex folding in the selected sequences was additionally proved by the Taq 

polymerase stop assay. The three G-quadruplex nef oligonucleotides were designed in order 

to contain additional flanking bases at both the 5’- and 3’-ends (see Materials and Methods 

Section); in particular, an additional sequence at their 3’-end was used as primer annealing 

region. A 4-T linker region was added to separate the 3’-end of the primer and the first G of 

the G-quadruplex portion. An additional oligonucleotide lacking the possibility to fold in G-

quadruplex was designed and used as negative control. Primer annealing and G-quadruplex 

folding were obtained by incubating the template G-quadruplex forming oligonucleotides and 

the primer in K
+
 buffer at 95°C and slowly cooling down to room temperature. Taq 

polymerase was incubated with the different template/primer combinations in the presence of 

increasing amount of TMPyP4. As shown in Figure 5.20A, in the presence of both Nef8528 

and Nef8624 templates, increasing drug concentrations induced arrest of the DNA polymerase 

processing at the T linker region, just before the G-quadruplex folded region (lanes 10-12 and 

17-18, Figure 5.20A), while no effect was detected in the negative control (lanes 2-6, Figure 

5.20A). In the case of the Nef8624 template, at low amounts of TMPyP4, a polymerase 

pausing site was observed corresponding to the second G-tract of the Nef8624 oligonucleotide 

(* symbol, lanes 15-16, Figure 5.20A). In addition the polymerase was partially inhibited also 

in the absence of TMPyP4 (¤ symbol, lane 14, Figure 5.20A). We ascribed this behavior to 

the fact that the G-quadruplex conformation of Nef8624 was inherently very stable in the 

presence of K
+
 (Tm 59.8°C, see Table 5.8) and thus could affect polymerase activity even 

without G-quadruplex ligands, similarly to other reported G-quadruplex structures (Palumbo 

et al, 2009). In the case of the Nef8547 template, several stop sites were observed in the G-

quadruplex forming template, while the polymerase was not inhibited in the control (compare 

lanes 2-5 and 7-10, Figure 5.20B). In particular, stop sites were clustered at G bases at low 

TMPyP4 concentrations (* symbols, lane 8, Figure 5.20B) and at the T-linker at higher G-

ligand amounts (lane 10, Figure 5.20B). 

Overall these data indicate that a G-quadruplex binder can induce and stabilize the G-

quadruplex conformations at the nef DNA level. 
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Figure 5.20 Taq polymerase stop assay A) and B) Templates containing the G-quadruplex nef sequences 

Nef8528, Nef8624 and Nef8547, a 4-T linker and a primer annealing region were allowed to fold and anneal to 

the P32-5’-end labelled primer in K
+
 100 mM, treated with increasing concentrations of TMPyP4 (0-2 μM) and 

subjected to Taq polymerase extension. The control template contained a sequence unable to fold in G-

quadruplex, and the same 4-T linker and primer annealing region as the nef templates. A) The * symbol indicates 

pausing sites in the G-quadruplex region of nef templates. The ¤ symbol indicates a polymerase stop site 

obtained prior to addition of TMPyP4 in Nef8624. Lanes 1, 7 and 13 (A), and lanes 1 and 6 (B) were Maxam and 

Gilbert marker lanes performed on the double stranded PCR amplified region. Markers indicate the C-rich 

complementary strand.  

 

 

5.3.3. Biological significance of G-quadruplexes in the HIV-1 nef coding region 

To check the effect of G-quadruplex stabilizing ligands on gene expression, a eGFP-based 

reporter gene assay was set up. The nef gene was cloned upstream of a eGFP coding region in 

a plasmid optimized for protein expression in mammalian cells. In principle, G-quadruplex 

folding in the nef sequence should impair the polymerase activity on the DNA template, 

therefore reducing expression of the fused Nef-eGFP protein. Transfected cells were treated 

with TMPyP4 (10 µM) or the control compound, TMPyP2, which is not able to bind G-

quadruplexes; both compounds did not show toxicity on HEK293T cells up to 100 µM (data 

not shown). eGFP fluorescence was quantified by flow cytometry-based analysis. As shown 

in Figure 5.21, mean of fluorescence consistently decreased in the presence of TMPyP4, 

while slightly increased upon treatment with the control TMPyP2 indicating a selective 

impairment of gene expression mediated by the interaction of the G-quadruplex ligand with 

the nef sequence. 
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Figure 5.21. Effects of the stabilization of the nef G-quadruplexes by TMPyP4 on gene expression Effect of 

TMPyP4 and TMPyP2 on Nef- GFP expression measured by flow-cytometry. HEK 293T cells were transfected 

with a Nef-GFP encoding plasmid and treated with TMPyP4 or TMPyP2 (10 μM) for 24 h. Results are shown as 

percent mean of fluorescence relative to the control cells incubated ± SD (n = 4). Statistical difference was 

observed for TMPyP4 (p<0.05), but not for TMPyP2. 

 

5.3.4. The G-Quadruplex Ligand, TMPyP4, displays antiviral activity  

Having observed an impairment of Nef protein expression levels, the effect of G-quadruplex 

stabilizing ligands was next assessed in HIV-1 infected cells. As Nef has been previously 

shown to enhance HIV-1 infectivity (Aiken & Trono, 1995; Chowers et al, 1994; Spina et al, 

1994; Vermeire et al, 2011), we evaluated the impact of TMPyP4 on infectivity using the 

TZM-bl reporter cell line. As anticipated, TZM-bl cells support HIV-1 replication in a Nef-

dependent manner and contain a luciferase reporter driven by the HIV-1 LTR in response to 

infection with HIV-1 (Derdeyn et al, 2000; Emert-Sedlak et al, 2013). As shown in Figure 

5.22A, TMPyP4 impaired the enhancement of Nef-mediated viral infectivity in a dose-

dependent manner, while the negative control (TMPyP2) had no effect (Figure 5.22B). In 

addition, a Nef-deleted virus (ΔNef) showed no significant effects by treatment with either 

TMPyP4 or TMPyP2 at the highest concentrations (Figure 5.22A-B). Cytoxicity assays 

further confirmed the observed impairment of viral infectivity as minimal toxicity was 

observed over the range of concentrations tested (0.1-6 µM) (Figure 5.22C). Taken together, 

these results provide support for a G-quadruplex mediated, Nef-directed anti-retroviral 

mechanism of action. Since the Nef protein has a fundamental function in vivo and its lack of 

activity prevents progression to the clinical development of AIDS (Salvi et al, 1998),  its G-

quadruplex mediated depletion could have critical antiviral effects and open a new avenue in 

the development of anti-Nef  compounds with an unprecedented mechanism of action. 

no drug TMPyP2 TMPyP4

M
e

a
n
 o

f 
flu

o
re

s
c
e

n
c
e

 (
%

 o
f 

c
o

n
tr

o
l)

0

20

40

60

80

100

120



Results and Discussion 

 

106 

 

Figure 5.22. Effects of the stabilization of the nef G-quadruplexes by TMPyP4 on viral infectivity in Nef 

sensitive cells A) and B) TZM-bl cells were infected with wild-type (black bars) and ΔNef (grey bars) HIV 

NL4-3 in the presence of either the G-quadruplex ligand, TMPyP4 (A), or the negative control compound, 

TMPyP2 (B). After 48 h, infectivity was assessed as relative luciferase activity in infected cells. Results are 

shown as percent infectivity relative to the control cells incubated with carrier solvent (DMSO) ± SEM (n = 3). 

In A), no statistical difference was observed across ΔNef infected cells, even at the highest concentration (p > 

0.15). In B), no statistical difference was observed for the wild-type virus at 3 μM and 6 μM (p >0.345 and 

>0.325, respectively) relative to the untreated control. The negative control compound, TMPyP2, further had no 

impact on the ΔNef virus at any concentration tested (p>0.29 at 6 μM). C) TZM-bl cell viability in the presence 

of compounds was assessed via the Cell-Titer Blue assay (Promega). TZM-bl cells were incubated with the 

indicated concentrations of compounds for 48 h and cell viability was assessed via the Cell-Titer Blue assay 

relative to control cells incubated with carrier solvent. Assays were done in triplicate. 
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5.4. Evaluation of anti HIV-1 activity of G-quadruplex ligands 

5.4.1. Antiviral activity of BRACO-19 

We discovered several putative G-quadruplex forming sequences similarly distributed along 

all the HIV-1 proviral genome (Figure 5.1) and thus we tried to assess biological the 

relevance of these G-quadruplexes in the viral context. Interestingly, we demonstrated that G-

quadruplexes formation and stabilization in LTR promoter (see paragraph 5.2) and in the nef 

coding region (see paragraph 5.3) perturbed viral processes. In addition, the commercially 

available G-quadruplex ligand BRACO-19 (Table 5.9) displayed antiviral activity against 

HIV-1 in infected TZM-bl cells and a significant inhibition of HIV-dependent gene 

expression (Figure 5.15). This promising antiviral activity of BRACO-19 prompted us to 

carry out further studies on its mechanism of action. 

 

 

Class of compound 

 

Name 
Molecular 

Weight 
Chemical structure 

Trisubstituted Acridine BRACO-19 593.77 

 

 
 

 

Table 5.9 The G-quadruplex ligand BRACO-19 

 

5.4.1.1. HIV-1 infected MT-4 cells 

5.4.1.1.1. Antiviral assays 

To further confirm the antiretroviral activity of BRACO-19, we investigated the effect of this 

compound in other HIV-1-infected cell lines.  

We started to evaluate BRACO-19 for its antiretroviral activity against HIV-1 strain IIIB 

(HIV-1(IIIB)). The inhibition of viral replication was first monitored by evaluating the 

protection from HIV-induced cytopathogenic effect (CPE) in MT-4 cells 5 days after 

infection. This MTT-based assay is relatively simple to perform and allows to screen large 

numbers of compounds evaluating in parallel the cytotoxicity in mock-infected cells. Thus, it 

is possible to obtain both the 50% cytotoxic concentration (CC50) and the 50% effective 

concentration (EC50). The CC50 was defined as the concentration of test compound that 



Results and Discussion 

 

108 

induced cytotoxicity in 50% of mock-infected while the EC50 was defined as the 

concentration of the test compound that protect the 50% of the HIV-infected cells from CPE. 

In addition, it is possible to evaluate the maximum percentage of protection of infected cells 

from HIV-induced CPE. Having the CC50 and the EC50 values, it is possible to calculate the 

selectivity index (SI) that is the relative effectiveness of the tested product in inhibiting viral 

replication compared to inducing cell death (CC50 value/EC50 value). Obviously, it is 

desirable to have a high SI giving maximum antiviral activity with minimal cytotoxicity.  

BRACO-19 yielded EC50 of 7.9 M showing a maximum of protection from CPE of around 

51% with average SI around 3 (Figure 5.23A). Interestingly, we noticed that BRACO-19 

induced an increase in cell viability in mock-infected cells and this effect seemed correlated 

with the observed antiviral effect. In fact, cell viability reached 120% with respect to the 

control at 8.4 M, in correspondence to the peak of antiviral effect (Figure 5.23A). This effect 

observed in MT-4 cells was completely absent in TMZ-bl cells (Figure 5.15C) and suggested 

a dual effect of BRACO-19, both at cellular and viral level.  This unexpected effect of 

BRACO-19 in promoting cell growth and viability has never been reported. In fact, it has 

been demonstrated that BRACO-19 targets telomeric G-quadruplex inducing cellular 

senescence after 15 days in uterus carcinoma cell line UXF1138L (Burger et al, 2005). A 

similar effect was observed in DU145 prostate cancer cell lines where BRACO-19 blocked 

cell growth and induced senescence after 7 days of treatment (Incles et al, 2004). However, in 

our case we observed the opposite effect of BRACO-19 on MT-4 cells: this aspect will be 

further investigated in a different work. Overall these data confirmed that BRACO-19 

retained its antiviral activity also 5 days after infection in HIV-1 infected MT-4 cells and was 

able to partially reduce the viral induced CPE up to 50 %. Apart from the evaluation of viral 

induced CPE that is an indirect measure, it is possible also to measure inhibition of HIV-1 

p24 antigen production. The measurement of p24 protein in the supernatant of HIV-1 infected 

MT-4 cells provides a direct and precise information about the antiviral effect of a test 

compound. Thus, we decided to evaluate the p24 amount of MT-4 infected cells and treated 

with increasing concentrations of BRACO-19. We observed a progressive dose-dependent 

decrease of p24 amount in presence of BRACO-19 that resulted in an EC50 of 1.4 M and in 

an increased SI of 15.6 (Figure 5.23B). This evidence suggested that the antiviral effect of 

BRACO-19 was not fully detectable with the MTT-based assay evaluating the inhibition of 

CPE. Moreover, BRACO-19 seemed to produce a decrease in p24 starting from very low 

concentration: in fact a decrease of about 30% in p24 amount was observed in presence of 
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BRACO-19 0.013 M. This decrease was more pronounced at 1.68 M reaching 47% (Figure 

5.23B). 

 

 
 

Figure 5.23 Antiviral effect of BRACO-19 on MT-4 infected with HIV-1(IIIB) 5 days post infection MT-4 

cells were infected with HIV-1(IIIB) in the presence of the G-4 stabilizing ligand, BRACO-19. A) After 5 days,  

the viral inhibition was assessed as % of protection against viral induced CPE using an MTT-based assay. 

Cytotoxicity of BRACO-19 on MT-4 cells was assessed via MTT-assay in parallel. Results are presented as 

mean±std dev from 2 independent experiments each in triplicate. The CC50, EC50 and SI values are shown in the 

inset table. B) After 5 days, the viral inhibition in one series of samples treated with increasing concentrations of 

BRACO-19 was determined as % of p24 antigen present in the supernatant compared to the control. Cytotoxicity 

of BRACO-19  on MT-4 cells was assessed via MTT-assay in parallel. Results are presented as values of p24 

measured in a single series of samples. The CC50, EC50 and SI values are shown in the inset table. 
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The antiviral activity of BRACO-19 against HIV-1(IIIB) in MT-4 cells was further tested 1 

day post infection. This allowed to evaluate the effect of the test compound in a single 

replication cycle that takes about 24 h. In this assay the antiviral effect was based on the 

inhibition of HIV-1 p24 antigen production in MT-4 infected cells, since no evaluation of 

CPE is possible in these conditions. Again, BRACO-19 displayed a significant antiviral 

activity with an EC50 in the micro molar range (5.6 M). The SI was 28. The increased SI was 

due to the fact that BRACO-19 was less cytotoxic 24 h post infection (CC50 154 M) 

suggesting that the cytotoxicity is the main limiting factor for using this compound in this 

cellular system (Figure 5.24A). 

To further confirm the antiviral activity of BRACO-19 at 1 day post infection, the MT-4-

LTR-eGFP cellular system was used. In this cell line, the HIV infection drives transcription of 

the HIV-1 LTR-eGFP reporter gene construct and thus it is possible to evaluate the antiviral 

effect of test compounds following the GFP expression. Moreover, it is possible to measure 

directly the p24 antigen in the supernatant to have a further confirmation of the results. At 8,4 

M BRACO-19 caused a decrease in GFP signal of about 58% and in p24 amount of about 

67%, resulting in an EC50 of 6.2 M. Overall the dose-dependent decrease in eGFP signals 

appeared in line with the progressive decrease in p24 amounts with increasing concentrations 

of BRACO-19. Again the SI value of 15 confirmed a significant effect of BRACO-19 in 

inhibiting HIV-1(IIIB) virus production (Figure 5.24B). Interestingly, BRACO-19 did not 

induce any increase in cell viability in mock-infected cells 1 day post infection, both in MT-4 

and in MT-4-LTR-eGFP cells. This evidence suggested that the antiviral effect of BRACO-19 

was not correlated with the cellular effect on cell viability previously observed 5 days post 

infection (Figure 5.23).  
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Figure 5.24 Antiviral effect of BRACO-19 on MT-4 and MT-4-LTR-eGFP infected with HIV-1(IIIB) 1 day 

post infection A)MT-4 cells were infected with HIV-1(IIIB) in the presence of the G-4 stabilizing ligand, 

BRACO-19. After 1 day, viral inhibition was assessed as % of  p24 antigen present in the supernatant compared 

to the untreated control. Cytotoxicity of BRACO-19 on MT-4 cells was assessed via MTT-assay in parallel. 

Results are presented as mean±std dev from 3 independent experiments each in triplicate. The CC50, EC50 and SI 

values are shown in the inset table. B) MT-4-LTR-eGFP cells were infected with HIV-1(IIIB) in the presence of 

the G-4 stabilizing ligand, BRACO-19. After 1 day, the viral inhibition was assessed as % of eGFP signal 

measured by Flow Cytometry compared to the untreated control. Results are presented as mean±std dev from 2 

independent experiments. Viral inhibition in one series of samples treated with increasing concentrations of 

BRACO-19 was evaluated as % of p24 antigen present in the supernatant compared to the control cytotoxicity of 

BRACO-19 on MT-4-LTR-eGFP cells was assessed via MTT-assay in parallel. CC50, EC50 and SI values are 

shown in the inset table. 
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Therefore, we demonstrated a pronounced antiviral effect of BRACO-19 both 1 and 5 days 

post infection in HIV-1 infected MT-4 cells. The maximum SI was observed in MT-4 cells 

infected with HIV-1(IIIB) 1 day post infection (Figure 5.24A).  

 

5.4.1.2. Virucidal assay 

Since BRACO-19 is a G-quadruplex ligand, we hypothesized an intracellular viral target 

responsible for its antiretroviral effect. However, BRACO-19 could be active against the 

infectious viral particle preventing the virus entry process. To exclude that the observed 

activity of BRACO-19 was due to an effect on the viral particle prior infection, an assessment 

of the virucidal effect was performed. In fact, if the compound has a virucidal effect on HIV-1 

particles, a compound-pretreated and subsequently compound-cleared virus stock should have 

a diminished infectivity in MT-4 cells. The virus infectivity can be then evaluated by titration 

5 days post infection and expressed as the 50% cell culture infective dose (CCID50). As 

reported in Figure 5.25, BRACO-19 had no effect on the infectivity of HIV-1(IIIB) virions. In 

addition, treatment with BRACO-19 did not affect the amount of virus associated p24 core 

protein in the viral stock prior infection (Figure 5.25). These evidences suggested that 

BRACO-19 did not interfere with the HIV-1 virions.  

 

 
Figure 5.25 Virucidal assay for BRACO-19 against HIV-1(IIIB) viral particles Aliquots of HIV-1(IIIB) stock 

were pretreated with increasing concentration of BRACO-19 and subsequently compound-cleared. These 

samples were then diluted and used to infect MT-4 cells. 5 days after infection, viral infectivity was quantified 

by titration and expressed as logCCID50/ml . A part of pretreated viral aliquots were tested in parallel for virus 

associated p24.  
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5.4.1.3. Viral Binding Assay 

As anticipated in the introduction of this thesis, BRACO-19 is a trisubstituted acridine with 

protonable amine-containing sidearms (Table 5.9), ensuring a good water solubility of the 

compound. Depending on the protonation state, BRACO-19 can possess two positive charges 

becoming a cationic ligand. It has been reported that compounds with multiple positive 

charges can specifically block viral entry. In particular, CXCR4-specific inhibitors are 

characterized by several positive charges that specifically interact with acidic residues in the 

extracellular loops of the coreceptor. These loops are not conserved in the coreceptor CCR5 

that seems less affected by the presence of cationic groups in its antagonist (Wilkinson et al, 

2011). Since in the performed antiviral assays we used HIV-1(IIIB) that is a X4 strain (a virus 

that needs the CXCR4 coreceptor for its replication), we wanted to exclude an effect of 

BRACO-19 on viral adsorption. Thus we performed a viral binding assay that allows to 

investigate the inhibitory effect of test compounds on HIV-1(IIIB) binding to MT-4 cells. 

BRACO-19 proved to be ineffective in inhibiting viral binding to MT-4 cells at 

concentrations up to 125 g/ml (corresponding to 210 M). As expected, the reference entry 

inhibitors DS and AMD3100 were able to block entry process up to 60 and 50%, respectively. 

Surprisingly, BRACO-19 seemed to slightly stimulate the viral adsorption with an increase in 

binding affinity of about 20% at the highest concentrations (25-125g/ml corresponding to 

42 and 210 (Figure 5.26)Importantly, these concentrations were highly far from the 

EC50 calculated in the antiviral assays on MT-4 cells both 1 and 5 days post infection. In fact, 

we observed EC50 values from 1.4 to 7.9 M (Figure 5.23 and 5.24). We concluded that the 

antiviral effect observed in infected MT-4 cells was most probably not due to an inhibition of 

viral binding. 
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Figure 5.26 Effect of BRACO-19 on HIV-1(IIIB) binding to MT-4 cells 

 

5.4.1.4. HIV-1 infected PBMCs 

We also investigated the antiretroviral properties of BRACO-19 in freshly isolated Peripheral 

Blood Mononuclear Cells (PBMCs) from an healthy donor that were subsequently infected 

with HIV-1(IIIB). This experiment is particularly significant since PBMCs are primary cells 

and represents the cells that are naturally infected by HIV in vivo. Again, to exclude an 

antiviral effect of BRACO-19 on viral entry due to its positive charges, the experiment was 

carried out infecting PBMCs with two viruses characterized by a different tropism. HIV(IIIB) 

is a X4 virus that uses the alpha-chemokine receptor CXCR4 while HIV(BaL) uses the beta-

chemokine receptor CCR5 for entry. This allowed to exclude any effect of BRACO-19 on the 

CXCR4 co-receptor in PBMCs, as previously observed in MT-4 infected cells (Figure 5.26).  

We demonstrated that BRACO-19 was active against both strains 7 days after infection of 

PBMCs, confirming that the effect of the compound was not correlated to the nature of the co-

receptor involved in the entry process (Figure 5.27). In PBMCs infected with HIV-1(IIIB), the 

treatment with BRACO-19 caused a peculiar dose-dependent relation. Up to 8.4 M, 

BRACO-19 induced an increase in cell viability that is directly correlated with an slightly 

increase in p24 production up to 140%. This latter effect probably reflected an effect of 

BRACO-19 at cellular level. However, in presence of BRACO-19 42 M, viral production 
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antiviral activity of BRACO-19 did not correlate with cytotoxicity, since at 42 M cell 

viability was around 80% (Figure 5.27A). This evidence suggested a different target, probably 

at viral level, of BRACO-19. In PBMCs, the antiviral effect of BRACO-19 against HIV-

1(IIIB) resulted in an EC50 of 28.3 M with an SI of 3. Similar results were obtained in 

PBMCs infected with HIV-1 (BaL). Again, the compound seemed to promote an increase of 

about 30% in cell viability in presence of BRACO-19 up to 8,4 M. However, in this case the 

amount of p24 did not reflect this increasing trend. The antiviral effect of BRACO-19 against 

HIV-1 (BaL) resulted more pronounced with an EC50 of 17.4 M and a with a SI of 4.6 

(Figure 5.27B). Besides the fact that infected PBMCs appeared less susceptible to the 

antiviral action of BRACO-19 7 days after infection, the anti-HIV-1 effect of the G-

quadruplex ligand was confirmed.  

 

 

Figure 5.27 Antiviral effect of BRACO-19 on PBMCs infected with HIV-1(IIIB) or HIV-1(BaL) 7 days 

post infection PBMCs were infected with (A) HIV-1(IIIB) or (B) HIV-1(BaL) in the presence of the G-4 

stabilizing ligand, BRACO-19. After 7 days, the viral inhibition was assessed as % of p24 antigen present in the 

supernatant compared to the untreated control. Cytotoxicity of BRACO-19 on untreated PBMCs was assessed in 

parallel via cell counting. Results are presented as mean±std dev from 1 experiment made in triplicate. The CC50, 

EC50 and SI values are shown in the inset tables. 
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5.4.1.5. HIV-1 persistently infected cells (MT-4/IIIB) 

We decided to further investigate the antiviral activity of BRACO-19 in persistently HIV-1 

infected cells using the MT-4/IIIB cell line. These cells are persistently infected by HIV-

1(IIIB) and resistant to the viral induced CPE, stably producing infectious viral particles. MT-

4/IIIB treated with increasing concentration of BRACO-19 for 5 days showed a progressive 

decrease in p24 production that reached the 26% of the control. The G-quadruplex ligand 

determined a pronounced increase in cell viability that corresponded to the maximum antiviral 

effect of the compound. Overall, BRACO-19 is effective with an EC50 of 5 M with a SI of 

around 6 (Figure 5.28A). Overall the SI was lower as compared to that observed in an acute 

infection model using HIV-1 (IIIB) in MT-4 cells (SI around 15, see Figure 5.23 B). This 

cellular system provided all viral steps, from entry to budding of viral particles, thus it was 

not possible to evaluate which viral target could be perturbed by BRACO-19. Since we 

excluded an effect of BRACO-19 on HIV-1(IIIB) absorption to MT-4 cells (Figure 5.26), we 

decided to evaluate a possible implication of this test compound in post-integration steps and 

to test BRACO-19 in persistently-infected cells pretreated with Zidovudine (AZT, 10 ng/ml). 

The pretreatment with AZT allows to evaluate the effect of the compound only at post 

integration level, since this compound inhibits the viral cycle at the reverse transcription step. 

Interestingly, the results obtained after the pretreatment with AZT were similar. Again, 

BRACO-19 caused an increase in cell viability and an inhibition of about 80% of viral 

production showing an EC50 of 3.9 M. The SI showed a slightly increase reaching the value 

of 8.3 (Figure 5.28B).  
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Figure 5.28 Antiviral effect of BRACO-19 on MT-4/IIIB persistently infected cells MT-4/IIIB cells (A) 

untreated or (B) pretreated with AZT were treated with increasing concentration of the G-4 stabilizing ligand, 

BRACO-19. After 5 days,  the viral inhibition was assessed as % of  p24 antigen present in the supernatant 

compared to the untreated control.  Cytotoxicity of BRACO-19  on MT-4/IIIB cells was assessed via MTT-assay.  

Results are presented as mean±std dev from 2 independent experiments each performed in triplicate. The CC50, 

EC50 and SI values are shown in the inset tables.  
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entry inhibitor AMD3100 and the protease inhibitor Ritonavir. In fact, if the AZT-

pretreatment resulted efficient AMD3100 would lose its antiviral effect while Ritonavir would 

retain its antiretroviral properties. As expected, AMD3100 was active in MT-4/IIIB acting pre-

integration and blocking viral entry while completely lost its activity after the pretreatment 

with AZT (Figure 5.29A). On the contrary, Ritonavir showed similar antiviral activity in 

untreated and AZT-pretreated MT-4/IIIB since it acted post integration as protease inhibitor 

(Figure 5.29B). As for Ritonavir, BRACO-19 resulted active in inhibiting HIV-1(IIIB) 

persistent infection both in AZT-pretreated and untreated MT-4/IIIB (Figure 5.29C). These 

data suggested that BRACO-19 could perturb viral cycle acting at post integration steps, such 

as transcription process.  

 
 
Figure 5.29 Antiviral effect of AMD3100, Ritonavir and BRACO-19 on MT-4/IIIB persistently infected 

cells untreated and pretreated with AZT MT-4/IIIB cells untreated or pretreated with AZT were treated with 

increasing concentration of (A)AMD3100 or (B)Ritonavir or (C) BRACO-19. After 5 days, the viral inhibition 

was assessed as % of  p24 antigen present in the supernatant compared to the untreated control. Cytotoxicity of 

test compounds on MT-4/IIIB cells was assessed via MTT-assay. Results are presented as value of one single 

experiment.  
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5.4.1.6. Time of Addition (TOA) 

To further investigate the target of BRACO-19 as HIV-1 inhibitor, a time-of-addition (TOA) 

assay was performed. This experiment allows to determine how long the addition of a test 

compound can be postponed before it loses its antiviral activity. HIV-1 replication is blocked 

up to a time point corresponding to the occurrence of the last replication process targeted by 

the drug. Thus, the last inhibited viral step can be revealed comparing the antiviral effect of 

test compound to that of reference drugs in the time frame of replication events. The antiviral 

activities of test compounds were based on the assessment of the inhibition of p24 antigen 

production (Daelemans et al, 2011). 

Surprisingly, the final viral step inhibited by BRACO-19 at the two concentration tested (8.4 

and 20 M) was the reverse transcription process that normally occurs from 3 to 5 hours post 

infection. As for the reference drug AZT that is a NRTI, BRACO-19 was able to fully block 

the HIV-1 cycle if administered up to 3 post infection. It is interesting to note that addition of 

BRACO-19 from 4 to 8 h post infection resulted in a slight inhibition of HIV-1, since p24 

levels did not reach the control values (Figure 5.30). Overall, BRACO-19 seemed act 

prevalently at a pre integration level blocking the reverse transcription process as the final 

target process. Apparently, these results are in contrast with the evidence presented in Figure 

5.29 where BRACO-19 showed a nice antiviral effect with a probable post integration target 

of action. A possible explanation is that it was not possible to use 100-fold compound’s EC50 

as required for the TOA experiment, since at that concentration BRACO-19 resulted 

cytotoxic. In fact, the EC50 of BRACO-19 against HIV-1(IIIB) 1 day post infection was 

5.(Figure 5.24) while the CC50 was 154.6 , thus making it impossible to test the 

compound at 100-fold its EC50. This represented the main limitation in characterizing 

BRACO-19 target of action with TOA. Besides the TOA experiment suggested an implication 

of BRACO-19 in perturbing reverse transcription process, this fact does not exclude another 

post-integration target of the test compound as previously described. Further experiments 

have to be carried out to further investigate the viral targets of BRACO-19.   
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Figure 5.30 Time-of-addition experiment with the test compound BRACO-19 MT-4 cells were infected with 

HIV-1(IIIB) and test compounds were added at different time points after infection. Virus associated p24 antigen 

was measured 31 h post-infection.  

 

 

5.4.2. Antiviral screening of G-quadruplex ligands 

The possible antiviral effect of a variety of newly synthesized G-quadruplex ligands provided 

by Prof. M. Freccero (University of Pavia, Italy) was subsequently investigated (Table 5.10). 

These compounds belonged to two of the major G-quadruplex binder classes such as perylene 

diimides (PDIs) and naphthalene diimides (NDIs). As mentioned in the introduction of this 

thesis, PDIs and NDIs are in situ protonated G-quadruplex ligands that are prone to π-stacking 

with G-tetrad thanks to their aromatic core. Originally, these compounds were synthesized as 

ligands against telomeric G-quadruplex or oncogene promoter G-quadruplexes. 

 

 

 

 

 

 

 

Time (h)

0 1 2 3 4 5 6 7 8 24 25

p
2

4
 (

p
g

/m
l)

0

5000

10000

15000

20000

25000

30000

Control

AMD3100

DS

Nevirapine

AZT

BRACO-19 (20 M)

BRACO-19 (8,4 M)

Ritonavir



Results and Discussion 

 

121 

 

Class of 

compound 

 

Name 
Molecular 

Weight 
Chemical structure 

PDIs 

Br-GBP-02 872.08 

 

 

 

 
 

 

 

Br-SPP-02 900.12 

 

 

 

 
 

 

H-SPP-02 816.25 

 

 

 

 
 

 

 

H-SPP-03 1028.15 

 

 

 

 
 

 

PDI-Morph 688.19 
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Br-PDI-Morph 844.01 

 

 

 

 
 

 

 

Br-Tri-PDI-

Morph 
930.17 

 

 

 

 
 

 

 

Tri-PDI-Morph 852.26 
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PDI-Pip 758.17 

 

 

 

 
 

 

 

Br-PDI-Pip 913.99 

 

 

 

 
 

 

 

Tri-PDI-NMe2 726.23 
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H-Tri-prop-NMe2 

 

 

 

644.24 

 

 

 

 

 
 

 

NDIs 

Br-tri-prop-NMe2 722.15 

 

 
 

 

Tetra-prop-NMe2 780.32 

 

 

 
 

 

H-NMe2-PhAm 540.61 
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NDIs Extended 

Core 

Br-NMe2-PhAm 619.51 

 

 

 
 

H-NMe3-PhAm 570.68 

 

 

 
 

 

Br-NMe3-PhAm 649.58 

 

 

 
 

H-NMe2-

PhAmCOOH 
584.62 
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Br-NMe2-

PhAmCOOH 
663.52 

 

 
 

Tri-NMe2-PhAm 640.78 

 

 
 

 

Table 5.10 G-quadruplex ligands tested in the antiviral screening 

 

We started to screen selected compounds for their antiretroviral activity against HIV-1 strain 

IIIB (HIV-1(IIIB)). Inhibition of viral replication was first monitored by evaluating the 

protection from HIV-induced CPE on MT-4 cells 5 days after infection. Among the twenty-

one tested compounds, only two showed a significant antiviral activity with an EC50 in the 

micromolar range (Table 5.11). These two compounds belonged to the PDI class. The 

perylenes H-SPP-03 and PDI-Pip reached a high percentage of protection from HIV-induced 

CPE of 96,7% and 73%, respectively. The estimated EC50 values were 10.41 M for H-SPP-

03 and 3.89 M for PDI-Pip. The average SI for these active compounds was not so high 

since H-SPP-03 and PDI-Pip showed a SI of 9 and 5, respectively. Other PDIs compounds 

appeared slightly active in inhibiting HIV-1: PDI-Morph and Br-PDI-Pip produced a 

percentage protection against CPE up to 11.8% and 17.7%, respectively. PDI-Morph is 

characterized by a perylene core with two morpholine groups in the sidearms while Br-PDI-

Pip has two piperazine groups at the sidearms and two bromines linked to the aromatic core. 

Since these latter two compounds did not reach the protection in 50% of HIV-1-infected cells, 

it was not possible to calculate their EC50. Overall, PDIs compounds resulted more effective 

as antiretroviral agents as compared to NDIs. This preliminary anti-HIV-1 screening 
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highlighted at least two G-4 ligands, H-SPP-03 and PDI-Pip with a promising antiviral 

activity and prompted us to carry out a more detailed study of their mechanism of action. 

 

Compound EC50 M CC50 M SI Max protection (%) 

Br-GBP-O2 - 2.60 <1 - 

Br-SPP-O2 - 2.75 <1 - 

H-SPP-O2 - 14.33 <1 - 

H-SPP-O3 10.41 88.21 9 97 

PDI-Morph - >36.32 - 12 

Br-PDI-Morph - 0.11 <1 - 

Br-Tri-PDI-Morph - 3.13 <1 - 

Tri-PDI-Morph - 10.16 <1 - 

PDI-Pip 3.89 18.99 5 73 

Br-PDI-Pip - 2.65 <1 18 

Tri-PDI-NMe2 - 3.44 <1 - 

H-Tri Prop-Nme2 - 0.04 <1 - 

Br-Tri-Prop Nme2 - 0.03 <1 - 

Tetra Prop-Nme2 - 0.60 <1 - 

H-Nme2 PhAm - 0.007 <1 - 

Br-NMe2 PhAm - 0.006 <1 - 

H-NMe3 PhAm - >43.80 - - 

Br-Nme3 PhAm - 8.65 <1 - 

H-NMe2 PhAm COOH - 0.93 <1 - 

Br-NMe2 PhAm COOH - 0.76 <1 - 

Tri-Nme2 PhAm  0.033 <1 - 

 

Table 5.11 Antiviral activity of test compounds against HIV-1(IIIB)  on MT-4 cells 5 days post infection 

 

5.4.2.1. Evaluation of antiviral activity of H-SPP-03 

H-SPP-03 (Figure 5.31) is a perylene and it has been synthetized by Prof. M Freccero 

(University of Pavia) and proposed as G-quadruplex ligand. In fact, the chemical structure of 

this compound resulted similar to the well-known G-quadruplex binder PIPER (See 

Introduction). The big aromatic core of this compound ensures π-stacking interactions with G-

tetrads, moreover the two stable positive charges at the sidearms increase the affinity for 

tetraplex structures. To date, persistent positive charges may have a key role in the antiviral 

activity of this compound. In fact, it has been reported that several CXCR4-specific inhibitors 
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possesses  several positive charges that specifically interact with the extracellular loops of the 

co-receptor (Wilkinson et al, 2011). Moreover, a series of quaternary ammonium salts (QAS) 

are highly potent and selective inhibitors of HIV-1 replication in vitro, perturbing viral 

adsorption and/or virus-cell fusion process (Pannecouque, 2000). To elucidate the role of 

positive charges in H-SPP-03, the analogue H-SPP-02 was used in comparison. H-SPP-02 

(Figure 5.31) has the same chemical structure as H-SPP-03 but is protonable instead of being 

permanently charged. Since previous results of our lab indicated that the positive charges of 

H-SPP-03 prevented the entry of the compound in cells (data not shown), we hypothesized an 

action of the compound at cell membrane level probably in preventing viral attachment or 

entry. An additional indication that probably H-SPP-03 did not enter the cells was reflected 

by its high CC50 (88M) compared to the lower CC50 of H-SPP-02 (14M). 

 

Figure 5.31 Chemical structures of H-SPP-02 and H-SPP-03 

 

As anticipated in the previous paragraph, H-SPP-03 is active in blocking HIV-1 cycle 

producing a protection from viral induced CPE up to 96%. The antiviral activity of H-SPP-03 

resulted in an EC50 of 10.4 M. Interestingly, H-SPP-02 did not show any antiviral activity 

against HIV-1(IIIB) (Table 5.12), supporting the hypothesis that the permanent positive 

charges of H-SPP-03 are required for antiviral activity. We decided to further test both 

compounds against HIV-2 strain ROD (HIV-2(ROD)) to try to assess the specificity. We 

found that both H-SPP-03 and H-SPP-02 did not inhibit viral cycle and did not show any 

antiviral effect in infected MT-4 cells 5 days post infection. These data suggested that H-SPP-

03 displayed a specific antiviral activity against HIV-1. This effect against HIV-1 is probably 

due to the positive charges present in the compound.  
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 HIV-1 HIV-2 

Compound EC50 M CC50 M SI 
Max protection 

(%) 
EC50 M CC50 M SI 

Max protection 
(%) 

H-SPP-O2 - 14.33 - - - 14.82 - - 

H-SPP-O3 10.41 88.21 9 96.7 - 88.30 - - 

 

Table 5.12 Antiviral activity of H-SPP-03 and H-SPP-02 against HIV-1(IIIB) and HIV-2(ROD) on MT-4 

cells 5 days post infection 

 

To further investigate the target of H-SPP-03 as HIV-1 inhibitor, a time-of-addition (TOA) 

assay was performed. The final viral step inhibited by the compound at 48M was the viral 

entry process that normally occurs within 1 hour post infection (Figure 5.32).  

 

 
 

Figure 5.32 Time-of-addition experiment with the test compound H-SPP-03 MT-4 cells were infected with 

HIV-1(IIIB) and test compounds were added at different time after infection. Virus associated p24 antigen was 

measured 31h post infection.  

 

Even if H-SPP-03 did not result a specific G-quadruplex ligand acting at intracellular level, 

we were able to demonstrate a significant antiviral activity of this compound against HIV-

1(IIIB). 
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5.4.2.2. Evaluation of antiviral activity of PDI-Pip 

PDI-Pip is a compound characterized by a perylene aromatic core with piperazine groups at 

the two sidearms. As for H-SPP-03, the core is similar to that of PIPER. Since we found PDI-

Pip active against HIV-1(IIIB) with a SI of 5 (Table 5.11), we decided to further investigate its 

antiretroviral properties. Surprisingly, we observed that the antiretroviral activity of the 

compound against HIV-1(IIIB) in infected MT-4 cells was not so reproducible. An example of 

two independent experiments each in triplicate is reported in Table 5.13. The compound 

resulted in a consistent decreased antiviral activity in the second experiment, showing a 

maximum protection from CPE of 16% instead of 73%. These results suggested a mode of 

action similar to that observed for QAS in inhibiting viral entry (Pannecouque, 2000). The 

explanation of this peculiar behavior relies in the composition of cell membrane of cells and 

in particular in the polysaccharide heparan sulfate (HS) role. It has been demonstrated that 

cell-surface HS participates to the HIV-1 attachment and entry processes in MT-4 cells (Patel 

et al, 1993). In particular, the interaction between HIV-1 gp41 and HS on T-lymphocyte cell 

membrane seems to promote the viral adsorption (Cladera et al, 2001). The HIV-1 strain IIIB 

used to infect MT-4 cells in these antiviral experiments consisted in mixed subpopulations 

and only some of them strictly required HS involvement in entry process. The initial prevalent 

subpopulation in the infectious stock and the expression of HS on the cell surface could select 

viral subpopulations that are differently dependent on HS for efficient infection. If a viral 

subpopulation fully dependent on HS is selected, compounds that interfere with HS are 

extremely efficient in blocking HIV-1 cycle. On the contrary, if some selection occurs, HIV-1 

infectious population could be partially insensitive to the inhibitory effect of test compound 

directed against HS.  Thus, this could determine different results in antiviral assays with HIV-

1(IIIB)-MT-4 infected cells. These evidences have been reported for QAS (Pannecouque, 

2000). It is possible to test this hypothesis implying the use of Simian Immunodefiency Virus 

(SIV) to infect MT-4 cells. In fact, SIV strain mac251 (SIV(mac251)) depends on the 

presence of HS to infect MT-4 cells and it has been reported that QAS are able to completely 

block infection at this level . Thus, if an antiviral compound act interfering with HS, it should 

be extremely active against SIV(mac251) and the obtained results should be extremely 

reproducible. Moreover, HS seems not to be required in HIV-2 infection, compound that 

interfere with HS should be completely inactive against HIV-2.  
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We thus decided so to test PDI-Pip against SIV(mac251) and HIV-2(ROD). The inhibition of 

viral replication was monitored by evaluating the protection from induced CPE on MT-4 cells 

5 days after infection. Exactly as for QAS, PDI-Pip resulted extremely efficient in blocking 

SIV(mac251) infection in a reproducible way while no antiviral activity was observed against 

HIV-2(ROD) (Table 5.13). 

 

 PDI-Pip 

Virus # exp EC50 M CC50 M SI Max protection (%) 

HIV-1 (IIIB) 
I 3.9 18.9 5 73 

II - 16.3 - 16 

SIV(Mac251) 
I 2.5 17.3 7 100 

II 2.2 18.9 8 100 

HIV-2(ROD) I - 19.1 - - 

 

Table 5.13 Antiviral activity of PDI-Pip against HIV-1(IIIB) , SIV(ROD) and HIV-2(ROD) on MT-4 cells 5 

days post infection. 

 

Therefore, even if also PDI-Pip did not show a G-quadruplex-mediated antiviral activity, we 

argued evidences for its antiretroviral mode of action by inhibiting virus adsorption and/or 

virus-cell fusion processes.  
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6. Conclusions 

This thesis focused on the evaluation of the presence of conserved putative G-quadruplex 

forming regions in the HIV 1 proviral genome and on possible implications of G-quadruplex 

structures as target for antiviral therapy. We checked the effect of several G-quadruplex 

ligands as HIV-1 inhibitors. We presented the first reported evidence of conserved G-rich 

sequences that can fold in the G-quadruplex conformation within the HIV-1 proviral genome. 

In particular, we highlighted two G-quadruplex-forming regions located in the HIV-1 LTR 

promoter and in the nef coding region. The U3 region of the HIV-1 LTR had the potential to 

form multiple G-quadruplexes (i.e., LTR-III, LTR-II, and LTRIV) that we demonstrated 

could actually fold in a G-quadruplex structure. We investigated structural features of these 

G-quadruplexes, observing a shared parallel-like topology for all the evaluated structures. 

Moreover, we were able to characterize the G bases effectively involved in G-quadruplex 

folding, discovering a specific core of the LTR G-quadruplex architecture whose mutations 

completely abolished quadruplex building, Interestingly, these single-base mutations were 

able to increase by 2−3-folds the LTR promoter activity in a luciferase reporter assay, 

suggesting that G-quadruplexes act as repressor elements in the transcriptional activation of 

HIV-1. Moreover, the G-quadruplex ligand BRACO-19 inhibited LTR promoter activity only 

when the LTR promoter sequence maintained its ability to fold into G-quadruplex, whereas 

resulted inactive in the presence of mutations that abolished G-quadruplex folding. These 

features point out the biological relevance of the HIV-1 promoter G-quadruplex forming 

region and open up the possibility of inhibiting the HIV-1 LTR promoter activity by G-

quadruplex interacting small molecules.  

In the HIV-1 nef coding region three G-rich/G-quadruplex prone tracts were closely clustered 

and located on both the leading and lagging strands. These G-quadruplex forming sequences, 

and in particular the G pattern necessary for G-quadruplex folding, resulted extremely 

conserved within the HIV-1 M group and in its subtypes largely distributed worldwide. The 

identified sequences could form G-quadruplexes with two stacked tetrads that could be 

strongly stabilized by G-quadruplex ligands. Interestingly, the G-quadruplex ligand TMPyP4 

resulted efficient in inhibiting Nef expression in a eGFP-reporter assay. Most importantly, the 

same G-quadruplex ligand was sufficient to impair the Nef-mediated enhancement of HIV-1 

infectivity. In fact, a significant antiviral effect of TMPyP4 against the wt HIV-1 in Nef 

sensitive cells was observed, while the effect on the ΔNef HIV-1 resulted negligible, further 
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indicating a specific anti Nef effect. Thus, G-quadruplex stabilization within the nef coding 

region of the viral genome may impair not only Nef expression through inhibition of 

transcription that directly generates mRNAs, but also overall transcription for production of 

new copies of the RNA genome to be assembled in the viral progeny. 

Here we have shown that the commercially available G-quadruplex ligands BRACO-19 and 

TMPyP4 were effective towards HIV-1 with minimal effect on cell viability. Therefore a 

therapeutic window can be envisaged that would consent the employment of known G-

quadruplex binders as anti-HIV compounds. Several G-quadruplex ligands were tested for 

their anti-HIV-1 effect. We confirmed a promising antiviral activity of BRACO-19 in several 

cell lines and primary cells, with an encouraging Selectivity Index up to 28. BRACO-19 

resulted effective both against ex novo and persistent HIV-1 infection. We excluded any HIV-

1-virions’ structural parts as possible target for BRACO-19 activity. Moreover, since 

BRACO-19 was not able to block viral adsorption/entry, we concluded that the ligands had 

intracellular viral targets. Preliminary evidences suggested that BRACO-19 interfered with a 

pre-integration viral step, probably reverse transcription, together with a post-integration step. 

Finally, we discovered two perylenes G-quadruplex ligands that showed an interesting anti 

HIV-1 activity, probably direct against viral entry. Thus, for these two compounds we tended 

to exclude a viral G-quadruplex target. However, our antiviral characterization of BRACO-19 

resulted compatible with a direct viral G-quadruplex target. It is important to consider that 

available G-quadruplex ligands were principally developed against the telomeric/eukaryotic 

G-quadruplexes and that they interact with G-quadruplex features that are common to all G-

quadruplex conformations, therefore displaying no specificity against different G-quadruplex 

structures. In progress detailed structural characterization of the HIV-1 G-quadruplexes will 

allow rational design of small molecules for improved selectivity towards the viral G-

quadruplexes versus the eukaryotic structures. This work has thus paved the way for the 

development of anti-HIV-1 drugs with an unprecedented mechanism of action.  
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