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Abstract

There is a high potential of information available in Behaviour Risk Factor

Surveillance (BRFS) data, and especially for studying trends, as these data

collect information in an ongoing and almost continuous manner for long

periods of time. In order to account for the complex and dynamic relation-

ships between the variables and avoid the aggregation of measures so as not

to lose information in variability, the use of varying coefficient models with

non-parametric techniques have been studied. These models allow the stu-

dy of the trends and inter-relationships in the effects of the variables on the

outcome of interest either over time or space, therefore providing valuable

information for health policy interventions.

A comparison of the possible estimation techniques, using the Italian

surveillance data, has resulted in the selection of P-splines for estimation

due to the flexibility in their use and the faster computation times. This

estimation method was applied for a time varying coefficient model for a

smoking status outcome variable using Italian surveillance data, and a time

varying coefficient model for an obesity status outcome variable using U.S.A.

surveillance data. The results of these models provide coefficient plots in

which one can observe which subgroups of the population have an effect on

the outcome which is changing over time. A spatial varying coefficient model

was also studied for one point in time using smoothing spline estimation

with tensor product smooths, and the maps produced from this model were

able to show how the probabilities of the outcome variable (obesity) are

changing across the counties of a U.S. state within each population subgroup.

The strengths and limitations of these methods are discussed, as well as

recommendations for further research such as the study of a spatial-temporal

model using health surveillance data. Notwithstanding few limitations, the

varying coefficient model represents an effective approach proving to produce

interesting results (not accessible with the usual standard epidemiological

approach) in this particular field of application and with BRFS data.





Sommario

C’è un alto potenziale di informazioni disponibili nei dati di sorveglianza sui

fattori comportamentali di rischio, specialmente per lo studio di tendenze

evolutive nella popolazione: questi dati vengono infatti raccolti in modo

quasi continuo e per lunghi periodi temporali. Per spiegare le relazioni

complesse e le dinamiche tra le variabili, evitando l’aggregazione di misure

per non perdere l’informazione sulla variabilità, è stata studiata la possibilità

di applicare a questi dati modelli a coefficienti variabili con tecniche non

parametriche. Questi modelli permettono lo studio delle tendenze e delle

interrelazioni negli effetti delle variabili sul risultato di interesse nel tempo

o nello spazio, fornendo quindi informazioni preziose per gli interventi di

politica sanitaria.

Un confronto delle possibili tecniche di stima, utilizzando i dati di sorve-

glianza italiani, ha portato alla selezione delle P-spline perché più flessibili

nel loro utilizzo e computazionalmente più veloci. Questo metodo di sti-

ma è stato applicato ad un modello a coefficienti variabili nel tempo per

lo studio di una variabile risposta sulle abitudini al fumo utilizzando i dati

di sorveglianza italiani. Inoltre, è stato studiato un modello a coefficienti

variabili nel tempo per l’esito di una variabile risposta sullo stato di obesità

utilizzando i dati di sorveglianza statunitensi. Dai risultati derivanti dall’ap-

plicazione di questi modelli vengono prodotti grafici (di coefficienti e OR)

utili per osservare quali sottogruppi della popolazione presentano effetti che

stanno evolvendo nel tempo. Anche un modello a coefficienti spazialmente

variabili è stato studiato (in riferimento ad un determinato momento tempo-

rale) utilizzando stime spline con lisciature fornite dal prodotto tensoriale.

Le mappe prodotte da questo modello sono state in grado di evidenziare

come le probabilità della variabile risposta (obesità) stanno cambiando at-

traverso le contee di un stato negli USA all’interno di ogni sottogruppo della

popolazione. I punti di forza e i limiti di questi metodi sono stati discussi,

inoltre alcune raccomandazioni per ulteriori ricerche sono state proposte per

lo studio di un modello spazio-temporale utilizzando i dati di sorveglianza

sanitaria. Nonostante alcune limitazioni, il modello a coefficienti variabili

rappresenta un approccio efficace dimostrando di produrre risultati interes-

santi (non accessibili con il consueto e tipico approccio epidemiologico) in

questo particolare campo applicativo.
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Chapter 1

Introduction

1.1 Overview

Behaviour risk factor surveillance (BRFS) data can be a great source of

information for studying changes of various health outcomes and risk fac-

tors. Results obtained from surveillance data analysis are vital for forming

health policy interventions and planning, particularly when the analysis in-

form about temporal or spatial trends. Sometimes, the complexity of the

relationship among relevant variables requires to know if and how the ef-

fects of various independent variables on a certain outcome are themselves

changing over time or space. Varying coefficient models (VCM) with non-

parametric techniques can be used to catch the dynamics of BRFS data,

being a useful method which allows coefficients to vary with time or space

using smooth functions. This allows for the study of the changing effects of

possible determinants on a health outcome in order to better inform policy

interventions.

Behaviour Risk Factor Surveillance (BRFS) data has a frequent data

collection design (usually monthly data), and has developed from the histor-

ical registry of infectious diseases to a more detailed look at health risks and

behaviours for the study of non-communicable diseases (Lee and Thacker,

2010). There are several health surveillance systems that provide this type

of data, one of the longest running is the U.S.A. Behavioral Risk Factor

Surveillance System (BRFSS) which has collected monthly data since 1984

(Mokdad, 2009). Another surveillance system with a similar design is the

Italian Progressi delle Aziende Sanitarie per la Salute (PASSI) surveillance
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system which has begun collecting monthly data on health behaviours and

risk factors in 2007 (PASSI - Coordinating technical group of the behavioural

risk factor system, 2013). These two sources of data will be used in the anal-

ysis to demonstrate the benefit and practicality of using varying coefficient

models for the analysis of trends for the study of health risks and outcomes,

as well as some of the limitations.

1.2 Main Contributions of the Thesis

Although there are many articles which discuss varying coefficient mod-

els, the application of this type of model to data exclusively from a BRFS

system in the health and epidemiological setting, and particularly for the

analysis of large sample sizes for long periods of observation, has not been

performed. The main objective of this research is to study the use of varying

coefficient models on BRFS data to explore the practicality and feasibility

of this method for this kind of data which can reach very large sample sizes.

One of the main traditional methods used for trend analysis for the anal-

ysis of health outcomes, other than the simple parametric regression which

includes time as a covariate along with other covariates, includes time se-

ries methods in which the main assumption is the presence of a dependence

structure between the observations. In time series analysis the observations

are usually aggregated for each unit of time before analysis is performed;

for instance for the analysis of monthly means, proportions or sums (Dig-

gle, 1990). Aggregation of observations is also conducted in cohort trend

analysis, another method often used for analysis of health outcome trends.

This type of analysis can be performed on a dataset of pooled independent

cross-sectional surveys in which individual observations are aggregated ac-

cording to certain cohorts (such as an age cohort) and then analysed over

time (Deaton, 1985). Finally, there is also longitudinal data analysis which

involves using data that contain multiple measurements on the same ob-

servation with time and therefore the observations are serially correlated

(Diggle, 2002). This type of analysis is usually limited to a specific health

problem and has a problem of attrition due the nature of the data collection

method. On the other hand, in BRFS data, the observations are not nec-

essarily dependent since there is a new random sample of individuals taken

every month. Therefore there are no problems of attrition as in longitudinal



1.2 Main Contributions of the Thesis 3

data, although causality can not be determined. BRFS data also covers

a wide variety of health topics and risk factors. In addition, the type of

analysis proposed using varying coefficient models does not require the ag-

gregation of observations. This is favoured as it would be of more interest to

use all the observations in the analysis to account for the variations between

them. Therefore combining the use of the varying coefficient model methods

and BRFS data can provide some advantages compared to the traditional

methods for trend analysis.

The types of analysis discussed above through the traditional trend anal-

ysis methods all provide one value for each parameter for the entire period of

observation; this assumes that the parameters are constant with time. The

use of varying coefficient models however, where the parameters are allowed

to vary with time, can show which parameters are actually time varying

and which in fact are remaining constant. In other words, the interest is

not to study the overall trend of a certain outcome with time, but whether

the effects on the outcome are themselves changing with time. This kind of

dynamic nature of the data would not be captured in the traditional time

series, longitudinal or cohort analysis methods. The results of this kind of

analysis can be very useful for identifying certain risks or characteristics that

are changing for purposes of intervention and planning.

The thesis will begin with a literature review of varying coefficient mod-

els which mainly summarizes the estimation methods used for these models,

namely estimation using smoothing splines and estimation using local re-

gression methods. This will be followed by the methodology chapter to

describe how the varying coefficient models were constructed for the analy-

sis of the BRFS data. The thesis will then have two result chapters. One

of the result chapters will discuss the Italian PASSI data to compare five

different estimation techniques using a smoking status binary outcome vari-

able for a time varying coefficient model. The estimation methods which

will be compared are estimation using polynomial splines, penalized spline

regression, P-spline estimation using the gam function of the mgcv pacakge,

P-spline estimation using the bam function of the mgcv package designed for

large datasets, and smoothing spline estimation with cubic regression spline

and the bam function. While all these methods are using spline methods for

estimation, the computational times as well as their construction can differ,

and therefore the comparison made is to highlight the most practical and
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feasible method to use in this setting. The recommended method is then

used to further describe the smoking status time varying coefficient model

using odds ratio plots which show how the odds ratios (i.e. the coefficients)

are changing over time. The second results chapter will discuss the use the

U.S.A. BRFSS data to demonstrate the application of the method to a very

large sample size (2,065,689 observations) for studying temporal trends, as

well as applying the method to one U.S. state in one year for studying a spa-

tial varying coefficient model, thus showing how the proposed method can

also be used to study spatial trends. In the U.S. analysis, an obesity status

binary outcome variable is used, and for the first part of the analysis a time

varying coefficient model is constructed to again produce odds ratio plots,

and in the second part a spatial varying coefficient model is constructed to

produce probability maps for each of the covariates categories in the varying

coefficient model. The final aim is to demonstrate whether varying coeffi-

cient models can be used as a tool for health surveillance data analysis, and

provide recommendations for their use in this setting.



Chapter 2

Literature Review

2.1 Surveillance Systems

2.1.1 Background

The collection of health data for the purpose of informing public health

interventions can be first tracked back to the time of the pneumonic plague

in 1348 by the Venetian Republic, which monitored infected people aboard

ships in order to be quarantined (Declich and Carter, 1994). This was then

developed further for the purpose of monitoring infectious diseases (Lee

and Thacker, 2010). However, as non-communicable diseases became more

prominent the need for monitoring these diseases as well as their risk factors

became more important (Campostrini et al., 2011). A more encompass-

ing surveillance system was needed to not only monitor and track diseases

but also their risk factors as well as the social determinates that can effect

their development. The concept of population surveillance or public health

surveillance was then adopted which contains three main characteristics of:

systematic or continuous collection of data; data analysis; and dissemina-

tion of information and findings (Declich and Carter, 1994). The importance

of including risk factors to public health surveillance systems, and partic-

ularly the main four risks factors of smoking, physical inactivity, diet and

alcohol consumption, eventually led to the name Behavioural Risk Factor

Surveillance (BRFS).

One of the main purposes of health surveillance systems is to study the

trends of diseases and their risk factors, as well as the social determinants

that can affect disease (Declich and Carter, 1994; Campostrini et al., 2011).
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It would not be sufficient for this purpose to rely on cross-sectional health

surveys which are usually conducted every few years, for example the Demo-

graphic and Health Surveys (DHS) which are performed in several countries

usually every four years or more. Changes in behaviours could be occurring

more rapidly in a population and therefore a more rapid and continuous

data collection system is required to study trends in a public health setting,

as is conducted by public health surveillance or BRFS systems. One of the

first to establish a stable and well developed BRFS was the United States of

America in 1984 (U.S. BRFSS - Behavioural Risk Factor Surveillance Sys-

tem) and it is still ongoing (Mokdad, 2009). However, other countries have

also adopted this type of surveillance system including Italy, Canada, Brazil

and Australia (Campostrini and McQueen, 2011).

2.1.2 Methodological issues

Since the main purpose of a BRFS is to collect information on chang-

ing behaviours which can affect diseases, a theoretical understanding of how

and which behaviours can have this effect is essential in order to know what

needs to be measured and in which manner. Therefore a public health

framework is required so as not only to include questions on disease and

well known risk factors, but also to include variables which measure social

determinants. Therefore the BRFS surveys usually include questions on de-

mographic aspects including sex, age marital status, education and location,

as well as some measure of income status. In the U.S. BRFSS, there is a

questionnaire that contains a fixed core of questions that is asked every year

and a rotating core of questions asked every other year or more (Mokdad,

2009). The rotating core would include questions on specific topics which

are found to require more in-depth information, or which are not expected

to change very rapidly and therefore do not require more frequent measure-

ments. In addition, while the core questions, which must include all the

questions on social determinates and certain diseases, are asked in all of the

50 U.S. states and four territories, each state has the option to include in

the survey additional questions from 19 optional modules on various topics

(Mokdad, 2009). Therefore, one must consider which questions to select for

creating the variables required in the analysis, as they may not be available

in all the years or all the states and regions.

The method of data collected for BRFS is usually by telephone inter-
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view though computer-assisted telephone interview systems (CATI), and

using samples selected by random-digit-dialed (RDD) method (Campostrini

and McQueen, 2011; Mokdad, 2009). However, other methods can also be

used depending on the country including face-to-face, web-based, mail ques-

tionnaires, and mixed mode surveying (Campostrini and McQueen, 2011).

The U.S. BRFSS originally used landline telephone interviews using RDD

sampling, however an increase in cell phone use as well as other factors have

caused a decrease in response rates (Mokdad, 2009; Pierannunzi, 2012). This

decrease can affect the quality of the estimates although perhaps to a small

extent as found by Fahimi et al. (2008) when a comparison was made with

other national surveys in the United States. However, in an effort to in-

crease response rates and reduce bias in estimates due to the increase in

cell phone only households, a mixed mode method was tested in the United

States which includes cell phones, mailing of advance letters to potential

sample members, and mail surveys with telephone follow-ups (Hu et al.,

2011; Mokdad, 2009; Pierannunzi, 2012). As a result, it was found that

including cell phones in the sampling frame is capturing households previ-

ously missed by using only land lines, and as of 2011 the U.S. BRFSS public

release data set began including cell phones (Center for Disease Control

and Prevention (CDC), 2014). Changes in methodology however, can give

rise to certain challenges. For instance, the inclusion of cellphones in the

U.S. BRFSS will not only increase costs but can also have an effect on the

estimates due to the changes required for weighting method used. While

initially a post-stratification method was used for weighting survey data,

the inclusion of cell phones required a raking or iterative proportional fit-

ting weighting method (Pierannunzi, 2012). Comparison of estimates using

these two weighting methods has shown a slight change in the prevalence

estimates, however the shape and slope of the trends of these prevalences

do not change much (Pierannunzi, 2012). This break in the methodology

creates a problem for the study of trends using data before and after the

inclusion of cell phones users, and careful consideration is required if this is

attempted for analysis of trends.

2.1.3 Trend analysis using BRFS data

Many researchers have used BRFS data (mainly the U.S. BRFSS or

the South Australian Monitoring and Surveillance System) to study trends
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and changes of various health outcomes. The statistical methods used are

usually very similar, and is mainly a question of comparing the prevalence

or mean estimates of a certain health related outcome for each year included

in the analysis and perhaps across various characteristics (Ahluwalia et al.,

2005; Ashford et al., 2010; Fan, 2013; Flegal et al., 2002; Serdula et al., 2004;

Shi et al., 2011; Simpson et al., 2003; Taylor et al., 2013; Zack et al., 2004).

Some articles have gone further in the analysis to produce a logistic or linear

regression with year as a variable to study the trend of the outcome (Ashford

et al., 2010; Fan, 2013; Shi et al., 2011; Taylor et al., 2013; Troost et al.,

2012; Zack et al., 2004). Simpson et al. (2003) did not use regression but

simply observed the absolute prevalence differences between the first and

last year in the analysis to observe changes. Jia and Lubetkin (2009) used

time series analysis to study trends in physically and mentally unhealthy

days from 1993 to 2006 of the U.S. BRFSS. The model used contained a

trend component which was defined as local linear trend model that allowed

for the estimation of the trend in the means of the outcome over time, and

also after controlling for several independent variables and seasonal effects.

Time series analysis of U.S. BRFSS data was also used to study policy

interventions in the U.S. by Campostrini et al. (2006) to study the impact

of changes in the law on drinking and driving, and by Ma et al. (2013)

to study the impact of an increase of cigarette tax on smoking prevalence.

Therefore, the common methods used for trend analysis of BRFS data are

to study the trends of the outcome variable and at times across different

characteristics. The trend is often assumed to be linear and non-parametric

methods are not used. In addition, the measures used in the analysis are

usually aggregated to compare the prevalence or means for different time

periods, or for use in time series models.

2.2 Varying Coefficient Models

Varying coefficient models can be used to capture the changing affects

of the covariates on the response. It is a favoured model from a practical

sense as well since at times it is implausible to assume that the impacts of

the coefficients on the response is constant (Fan and Zhang, 2008) and espe-

cially when long periods of observation is involved. In addition, it does not

require the aggregation of measure before analysis therefore reducing loss of
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information. It is also a flexible method for modelling interactions between a

factorial covariate for instance and a metrical one, versus the methods used

in semi-parametric or generalized additive models where effects of covariates

are modelled additively and without interactions (Hastie and Tibshirani,

1993; Kauermann and Tutz, 1999). There are two main non-parametric

estimation methods used for varying coefficient models; estimation using

smoothing splines and estimation using local regression methods. The liter-

ature on these estimation methods usually discuss the Gaussian case however

all the methods can be adapted for a non-Gaussian distributed response as

is usually required for the analysis of health data. The literature review

gives an overview of the theory behind the estimation of these models after

introducing the model below.

If we define Y as a normally distributed random variable with given

covariates (U,X1, . . . , Xp)
T ; then a standard varying coefficient model has

the form

Y =

p∑
j=1

aj(U)Xj + ε, (2.1)

where E(ε|U,X1, . . . , Xp) = 0 and var(ε|U,X1, . . . , Xp) = σ2(U) (Hastie and

Tibshirani, 1993; Fan and Zhang, 1999, 2008). The variable U is referred to

as the effect modifier and can technically be any covariate including time.

In addition, as described by Hastie and Tibshirani (1993), the Uj terms can

be scalar or vector valued and the functions aj(Uj) can be modelled by flex-

ible parametric functions (example polynomials, Fourier series or piecewise

polynomials) or non-parametric functions. If X is a binary variable then

having Xa(U) means that there is a separate curve which corresponds to

each value of X. More generally, if we have factor variable F where each

Xj represents a coding for the levels of F then we would have Fa(U) which

represents an interaction between the factor F and the function a(U). One

important type of model discussed by Hastie and Tibshirani (1993) is if we

have the same variable for the Uj then the model is a varying coefficient

model with a single modifying variable. This is usually used for analysis of

repeated measurements where Uj would be time so that the model would be

of the form Y = a0(t) +X1(t)a1(t) + . . .+Xp(t)ap(t)(Hastie and Tibshirani,

1993).

The study of the generalized varying coefficient model began with Hastie

and Tibshirani (1993) who described the different forms varying coefficient
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models can take, although the description of the estimation method was

only shown for the standard model. These models were also discussed by

Fan and Zhang (2008), Cai et al. (1999), Cheng et al. (2009) and Marx

(2010). Suppose that we have a variable Y with a distribution that is from

an exponential family, and this distribution depends on the parameter η,

then a generalized varying coefficient model has the form

η = a0 +X1a1(U1) + . . .+Xpap(Up)

where η = g(µ) with µ = E(Y ), and g() as the link function. The covariates

are x = (X1, . . . , Xp)
T with the effect modifier covariate u. Hastie and

Tibshirani (1993) describes how the generalized varying coefficient model

can be reduced to more common models, for example:

• if aj(Uj) = aj then the model is the generalized linear model,

• if all the terms are linear and/or have the form where Xj = c so that

the jth term would be aj(Uj), then the model is a generalized additive

model, and

• if we have a linear function, i.e. aj(Uj) = ajUj then this is a product

interaction of the form ajXjUj .

2.3 Estimation of Varying Coefficient Models

The estimation, testing and asymptotics of varying coefficient models

have been covered by a number of articles. Researchers studying the above

model have used two main estimations techniques: local regression and

estimation using splines (polynomial spline, penalized spline regression or

smoothing spline). Parametric methods are not favoured for estimation due

to the lack of flexibility of these methods as well as the strong assumptions it

requires which can lead to misspecification of the data and large bias (Hastie

and Tibshirani, 1993; Fan and Zhang, 2008).

Most of the literature appears to focus on standard varying coefficient

models with a(U) modelled using non-parametric methods. However, the

same estimation procedures can be adapted for the generalized varying co-

efficient models. For instance, Cheng et al. (2009) applied the generalized

varying coefficient model for a binary response variable of infant mortality
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and Cai et al. (1999, 2000) used Poisson and binary response variables. In

addition Marx (2010) described polynomial P-spline smoothing estimation

for both the standard and generalized varying coefficient models. Although

Hastie and Tibshirani (1993) discussed the generalized varying coefficient

model, the estimation procedures were shown only for the standard case;

however an example was provided for a binary outcome for heart disease.

Hastie and Tibshirani (1993) described that extensions of the estimation

used in the standard varying coefficient model to the generalized model usu-

ally involves inserting a Newton-Raphson type algorithm. What follows is a

review of the literature for the non-parametric methods used for estimating

both the standard and generalized varying coefficient models.

2.3.1 Estimation using splines

Before discussing the various forms of estimation using splines, a short

description of splines is needed. To define splines we begin with a regression

model of the form

yi = s(xi) + εi,

which is minimized to find the estimates ŝn(xi) by

n∑
i=1

(yi − ŝn(xi))
2

(Wasserman, 2006). The function s(xi) can be any function including linear

functions, polynomials or splines. For instance, if we have a linear function,

then the we have the simple linear regression model with the minimization

leading to the least squares estimator. Splines are then special piecewise

polynomials joined by knots (i.e. specific position points), and the various

types of splines depend on the basis defined as well as the order of the spline

and the knot placement. To have an M th-order spline, there is a piecewise

M − 1 degree polynomial with M − 2 continuous derivatives at the knots

(Wasserman, 2006). For example, starting with a set of ordered knots in a

certain interval, in a cubic spline (M = 4) the function s(·) is a continuous

cubic polynomial function over the knots, and it has continuous first and

second derivatives at these knots (Wasserman, 2006).

A commonly used spline is that using a B-spline basis functions which are

favoured because they have compact support that can speed up calculations
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(Wasserman, 2006; Hastie et al., 2009). To describe B-splines the knot

sequence first needs to be defined. Starting with the boundary knots ξ0 < ξ1

and ξK < ξK+1, there is an augmented knot sequence τ such that

τ1 ≤ τ2 ≤ . . . ≤ τM ≤ ξ0,

τj+M = ξj , for j = 1, . . . ,K, and

ξK+1 ≤ τK+M+1 ≤ τK+M+2 ≤ . . . τK+2M

(Hastie et al., 2009). Usually the extra τ knots that are beyond the boundary

knots are set to be equal, and equal to ξ0 and ξK+1 respectively, i.e. τ1 =

. . . = τM = ξ0 and ξK+1 = τK+M+1 = . . . = τK+2M (Hastie et al., 2009).

The ith B-spline basis function is then denoted by Bi,m(x) for a basis of

order m with the knot-sequence τ,m ≤M . The B-spline basis functions are

then defined recursively as follows:

Bi,1(x) =

1 if τi ≤ x < τi+1

0 otherwise

for i = 1, . . . ,K + 2M − 1. Then for m ≤M we have:

Bi,m =
x− τi

τi+m−1 − τi
Bi,m−1 +

τi+m − x
τi+m − τi+1

Bi+1,m−1

for i = 1, . . . ,K + 2M −m (Hastie et al., 2009). Therefore, this recursive

process can be used for any order B-spline.

Now to find the estimates ŝ(x) using spline estimation, we first write

sn(x) =

N∑
j=1

γjBj(x) (2.2)

with B1, . . . , BN defined as the basis for splines such as B-splines. Then to

find the coefficients γ = (γ1, . . . , γN )T , the following is minimized

(y −Bγ)T (y −Bγ) + λΩ

(Wasserman, 2006). In smoothing spline estimation as shown below, a

penalty is added to the objective function 2.2 above. In this case the so-

lution to the minimization is γ̂ =
(
BTB + λΩ

)−1
BTy, where λΩ is the
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added penalty which shrinks the regression coefficients towards a subspace

resulting in a smoother fit (Wasserman, 2006) and is described further in

the smoothing spline estimation section.

In the case of varying coefficient models, the coefficients are smooth

functions and therefore the model in equation 2.1 can be written as yi =

s(xi1 . . . , xip, ui) + εi, where s(xi1 . . . , xip, ui) =
∑p

j=1 aj(ui)xij . The goal

is then to find âj(U), and with spline methods this is performed either

with added penalties (as in smoothing spline and penalized regression spline

estimation), or with no penalties (as in polynomial spline estimation).

Polynomial Spline Estimation

Polynomial splines, which are piecewise polynomials joined together smoothly

at a set of interior knot points, was used for estimation by Huang et al. (2004,

2002) for analysis of time-varying coefficient models using longitudinal data.

Therefore, the effect modifier variable of time (t) in this case replaces the

above notation of having U represent the effect modifier variable. It is im-

portant to note that the data in these longitudinal studies are data where

the same measurements are made on the same subject with time, and this

differs from data where the measurements are repeated with time but with

a new random sample of subjects for each time period. However, the same

estimation procedures are applied, although in longitudinal data there is the

issue of having dependence between the observations.

Polynomial spline estimation applies to both time-invariant and time-

dependent covariates. The procedure is very similar to the smoothing spline

estimation, however there is no penalty and the smoothing parameter is de-

fined differently. The estimation begins by approximating the functional co-

efficients al to be estimated by spline functions, i.e. al(t) ≈
∑Kl

k=1 γlkBlk(t),

as was done in the description of the spline estimator in equation 2.2.

In polynomial spline estimation, for each l = 0, . . . , L there is a basis

{Blk(·), k = 1, . . . ,Kl} from a linear space Gl of spline functions with a fixed

degree and knot sequence. Differently from the smoothing spline method

where λ is the smoothing parameter (as shown in the next section), in this

method the Kl (or the number of knots) play the role of the smoothing

parameters and can be selected by using the cross-validation method, AIC

or BIC (Huang and Shen, 2004). (Huang and Shen, 2004) showed that the

selection of models using AIC was the preferred method. Having a different
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number of knots for each coefficient function allows for these functions to

have different amounts of smoothing. Huang et al. (2004, 2002) both used

B-splines for the basis functions Blk(·) in their estimation due to their good

numerical properties. After substituting the coefficient functions al with

the basis approximation, the varying coefficient model for a specific knot

sequence becomes

yij ≈
L∑
l=0

Kl∑
k=1

xijlBlk(tij)γlk + εij .

The extra subscript in this model compared to the smoothing spline model

is due to the use of longitudinal data by Huang et al. (2004, 2002), and

therefore it is used to indicate the subject which is followed over time. This

would not be the case for instance when analysing surveillance data where

the subjects are not followed with time. From the model above, the estimate

of γlk can be found by minimizing

n∑
i=1

wi

ni∑
j=1

(
yij −

L∑
l=0

Kl∑
k=1

xijlBlk(tij)γlk

)2

,

where wi are the weights which can be one if equal weight is given to each

single observation or 1/ni to give equal weight to each subject (since in

longitudinal data one subject has repeated observations). To write this in

matrix notation the following terms are defined

B(t) =

 B01(t) . . . B0K0(t) 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . . 0 BL1(t) . . . BLKL
(t)

 ,

for i = 1, . . . , n, j = 1, . . . , ni, and l = 0, . . . , L. Also we define

RT
ij = XT

i (tij)B(tij), Ri = (Ri1, . . . ,Rini)
T

γl = (γl0, . . . , γiKl
)T , γ = (γT0 , . . . ,γ

T
L)T

yi = (yi1, . . . , yini)
T , Wi = diag(wi, . . . , wi)

then we have
n∑
i=1

(yi −Riγ)T Wi (yi −Riγ) .
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This is minimized to give the estimator

γ̂ =

(∑
i

RT
i WiRi

)−1∑
i

RT
i Wiyi.

The spline estimate of a(t) can be found by â(t) = B(t)γ̂ = (â0(t), . . . , âL(t))T ,

where âl(t) =
∑Kl

k=1 γ̂lkBlk(t) (Huang et al., 2004).

Smoothing Spline

Smoothing spline estimation was used as a the method for estimation of

varying coefficient models by Hastie and Tibshirani (1993) which was the

one of the original articles on varying-coefficient models. It was also used by

Hoover et al. (1998) and Chiang et al. (2001) for longitudinal data analysis.

The estimation details begin with the observations y1, . . . , yn and xij

and uij of the predictors Xj and Uj for the model yi = xi1a1(ui1) + . . . +

xipap(uip) + εi (data are not longitudinal). To find the estimators, the pe-

nalized sum of square residuals

n∑
i=1

yi −
p∑
j=1

xijaj(uij)


2

+

p∑
j=1

λj

∫
a′′j (uj)

2duj

is minimized, where λj is the smoothing parameter which penalizes the

roughness of the functional coefficients aj . The first term is the summa-

tion of the square residuals and the second term is the summation of the

penalties (λΩ presented previously) for each coefficient function. The aj

are again expressed in terms of basis functions aj(uij) =
∑nj

l=1 γijBjl(uij),

where nj are the number of unique values of Uj (i.e. the number of knots).

The Bjl(Uj) are basis functions for the jth variable, these functions can be

polynomial bases, Fourier bases, natural cubic splines or B-splines functions.

By letting aj represent aj(uij) evaluated at the n observed values of Uj so

that aj = Bjγj , where Bj is a matrix of spline functions, we can rewrite

the above penalized least squares equation above in matrix form as∥∥∥∥∥∥y −
p∑
j=1

DjBjγj

∥∥∥∥∥∥
2

+

p∑
j=1

λj ‖ γj ‖2ΩJ
,



16 CHAPTER 2. LITERATURE REVIEW

where Dj is the diagonal matrix with the n observed values of Xj on the

diagonal. The last term contains the penalty seminorm ‖ γj ‖2ΩJ
, with Ωj

having the ikth element as
∫
Bi
j”(r)Bk

j ”(u)du. Minimizing the above gives

γ̂ which can then be used to find âj by âj(uij) =
∑nj

l=1 γ̂ijBjl(uij) using

backfitting procedures. The smoothing parameters λ1 . . . λp are fixed, they

control the amount of smoothing and they must be estimated usually by

cross-validation or generalized cross-validation.

Penalized Spline Regression

The polynomial spline approach described above required knowledge of

the location and the number of knots, however this is unknown and needs to

be found by cross-validation or AIC. Similar to smoothing spline estimation,

in penalized spline regression, a penalty is added to allow for automatic knot

selection by using all or a reasonable number of knots but then constrain

their influence (Ruppert et al., 2003). The type of penalty however differs

from the penalty used in smoothing spline estimation. Here the penalty used

is similar to that used in ridge regression. Following the matrix notation

described for smoothing spline estimation, the model to be minimized is∥∥∥∥∥∥y −
p∑
j=1

Djaj

∥∥∥∥∥∥
2

+

p∑
j=1

λ2
ja
T
j P aj ,

where P can be an identity matrix or other matrix of operators such as

difference operators as used in P-splines as will be shown. This type of

penalized estimation will shrink all coefficients of the spline basis functions

toward zero. The smoothing parameter λ is chosen by cross-validation as in

smoothing spline estimation.

P-splines Estimation:

As described by Eilers and Marx (1996) the main advantages of using P-

splines versus polynomial spline estimation using B-splines are that P-splines

have no boundary effects, they conserve moments of the data and have a

polynomial curve fits as limits. For finding the estimates and achieving

smoothness the method first uses a rich regression basis to overfit the smooth

coefficient vector with a modest number of equally spaced B-splines, then

to ensure the proper amount of smoothness P-splines are added which are
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constructed by placing a difference penalty on the coefficients of adjacent

B-splines. The penalized loss in this case can be written as∥∥∥∥y − p∑
j=1

DjBjγj

∥∥∥∥2

+

p∑
j=1

λj ‖∆dγj ‖2,

where again Dj is the diagonal matrix with the n observed values of Xj

on the diagonal as in the smoothing spline estimation, Bj is a matrix of

spline functions, and ∆d is a matrix which constructs the dth differences of

γ. Then by defining R = DjBj as in the polynomial spline estimation, the

above loss is minimized to find γ̂ by

γ̂ =
(
RTR + P

)−1
RTy.

The matrix P = block diag(λ0∆
T
d∆d, . . . , λp∆

T
d∆d) has a block diagonal

structure that breaks the linkage of the penalization from one smooth term

to the next. There is a separate λ for each term and this is chosen by

cross-validation or minimum AIC (Marx, 2010). The penalty in P-spline

estimation can have different degrees so that the first, second or third dif-

ference can be taken. Eilers and Marx (2002) recommend using at least a

second degree difference penalty with either a quadratic or cubic B-spline

basis.

The adaptation of the P-spline to a generalized varying coefficient model

was also described by Eilers and Marx (1996) and Marx (2010) and this

simply involves the maximization of

l(γ)−
p∑
j=1

λj ‖∆dγj ‖2,

where l(γ) is the log-likelihood function. Here the penalty term is subtracted

from the log-likelihood function to discourage roughness of any varying co-

efficient vector. A Fisher’s schoring algorithm is used to find the estimates.

Wang et al. (2008) used penalized spline regression estimation for esti-

mating a varying coefficient model for the analysis of repeated measure-

ments in longitudinal data. However, in addition to the penalty, knot

selection was still performed. The authors describe that the purpose of

the penalty is for the selection of variables. This is performed by adding
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a regularization penalty to the minimization of a weighted sum of square

residuals (as in the polynomial spline estimation) so that non-relevant vari-

ables assumed to have zero coefficient functions are estimated as identically

zero. Wang et al. (2008) used function space notation to write the estima-

tion procedure by first letting Gk denote all functions that have the form∑Kl
l=1 γlkBlk(t) where Blk(t) are again basis functions. Then gk(t) was de-

fined as gk(t) =
∑Kl

l=1 γlkBlk(t) ∈ Gk and ‖ gk ‖ the L2-norm of the function

gk. Also pλ(u), u ≥ 0, was defined as the penalty function with penalty

parameter λ; this function could be defined in many ways, and in the ap-

plication of the method Wang et al. (2008) used a quadratic spline function

known as the SCAD (smoothly clipped absolute deviation) for the penalty

function. This leads to the penalized weighted sum of square residuals to

be rewritten as

1

n

n∑
i=1

wi

Ji∑
j=1

{
yi(tij)−

p∑
k=1

gk(tij)x
(k)
i (tij)

}2

+

p∑
k=1

pλ(‖ gk ‖),

where n are the number of subjects and Ji is the number of observations for

the ith subject. Here the smoothness of the coefficient functions is controlled

by the Kl and the λ parameter decides the variable selection. The interior

knots can be equally spaced or placed on the sample quantiles of the data.

The knots were selected by an approximated cross-validation criterion pro-

posed by the authors. The above is then solved by an iterative algorithm to

find the estimates.

2.3.2 Estimation using local regression:

Local regression can be seen as an effective alternative to smoothing

splines. It involves calculations around a neighbourhood so only part of the

data is used and therefore it is considered less computationally intensive

then spline methods (Fan and Zhang, 2000). Fan and Zhang (1999) used

this method in a two-step estimation procedure to resolve the issue of having

different degrees of smoothness of the different coefficient functions, and

Hoover et al. (1998); Wu et al. (2000); Wu and Chiang (2000) applied the

procedure to longitudinal data.

Instead of using splines for estimation, we have kernels which are de-

scribed using Wasserman (2006). A Kernel is defined as any smooth function
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K such that K(x) ≥ 0 and satisfies the following conditions:∫
K(x) dx = 1,∫
xK(x) dx = 0, and∫
x2K(x) dx > 0.

An example of a kernel function is the Gaussian kernel

K(x) =
1√
2π

exp−x
2/2,

or the commonly used Epanechnikov kernel

K(x) =
3

4
(1− x2)I(x)

where

I(x) =

1, if |x| ≤ 1,

0, if |x| > 1.

For using kernels in local nonparametric regression, a weighted average of

the yis are taken to give higher weights to points near x. In other words we

define the kernel estimator as

r̂n(x) =
n∑
i=1

K
(
x−xi
h

)∑n
j=1K

(
x−xj
h

)yi
for a positive valued bandwidth h. The choice of kernel is not as important

as the choice of the bandwidth which controls the amount of smoothing. A

small bandwidth can give rough estimates while a larger one gives smoother

estimates, and therefore the bandwidth is usually chosen by cross-validation

(Wasserman, 2006).

The local regression estimation procedures used in the literature for vary-

ing coefficient models involves the use of kernel-local polynomials. This is

because kernel estimators can suffer from boundary bias which can be re-

duced by using local polynomial regression (Wasserman, 2006). As described

by Wasserman (2006), to find the estimate r̂n(x) we take a smooth regression

function r(u) in the neighbourhood of the target value x and approximate it
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with a polynomial Px(u; a). This polynomial can be defined using a Taylor

series expansion, i.e.

Px(u; a) = a0 + a1(u− x) + . . .+ ap
(u− x)p

p!
.

The estimates â = (â0, . . . , âp)
T are found by minimizing the locally weighted

sum of squares
n∑
i=1

wi(x)(yi − Px(xi; a))2,

where wi(x) = K((xi − x)/h). Then the local estimate of r is r̂n(u) =

Px(u; â) and for u = x we have r̂n(x) = Px(x; â) = â0(x).

One step local regression estimation

For a model Y =
∑p

j=1 aj(U)Xj+ε with a sample {(ui, xi1, . . . , xip, yi)}ni=1,

one can approximate the coefficient functions aj(·)(j = 1, . . . , p) for each

given point u0 by a truncated Taylor series expansion by aj(u) ≈ aj +

bj(u− u0) for u in a neighbourhood of u0 (Fan and Zhang, 1999). Then the

least-squares problem is to minimize

n∑
i=1

yi − p∑
j=1

{aj + bj(ui − u0)}xij

2

Kh(ui − u0)

whereKh(·) = K(·/h)/h is a kernel function usually taken to be the Epanech-

nikove kernel, with bandwidth h (Cleveland et al., 1992; Fan and Zhang,

2008, 1999). Bandwidth selection can be conducted by cross-validation

method (Hoover et al., 1998). Then the linear estimator â(u) of a(u) =∑p
j=1 aj(u) in matrix form is

â(u) = (Ip,0p)(Γ
T
uWuΓu)−1ΓTuWuy,

where

X = (x1, . . . ,xn)T , Uu = diag(u1 − u, . . . , un − u)

Γu = (X,UuX), y = (y1, . . . , yn)T ,

Wu = diag (Kh(u1 − u), . . . ,Kh(un − u)) ,
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with (u1, . . . , un) in a neighbourhood of u, Ip is a p size identity matrix,

and 0p is a p size matrix of 0 entries. The estimator â(u) is asymptotically

normally distributed (Fan and Zhang, 2008).

Two-step local regression estimation

A shortcoming of the above local regression method is that it involves

only one smoothing parameter, and this can cause an undersmoothing of

some coefficient functions when they have different degrees of smoothness

(Hoover et al., 1998). With the one-step method, one bandwidth is used

for estimation, however a larger bandwidth would be required for smoother

components, and a smaller bandwidth is needed for rougher components. A

proposed solution for this issue is used by Fan and Zhang (2000, 1999) which

suggest using a two-step estimating procedure. To describe this procedure

assume that we have the model

yi =

p−1∑
j=1

aj(ui)xij + ap(ui)xip + εi, i = 1, . . . , n.

Here we assume that ap(·) is smoother than any aj(·), j = 1, . . . , p−1 which

have the same smoothness (Fan and Zhang, 2008). First the local regression

estimation procedure described above is used with a small bandwidth to ob-

tain the initial estimator of a(u) where a(u) = (a1(·), . . . , ap(·))T . This gives

an estimate with a larger variance but a smaller bias. Then the estimator

ãj(ui) replaces aj(ui) for j = 1, . . . , p− 1, which gives

yi −
p−1∑
j=1

ãj(ui)xij = ap(ui)xip + εi, i = 1, . . . , n.

Since ap(·) is the smoother component, assumed to have a fourth derivative,

by Taylor expansion it can be represented by ap(ui) ≈
∑3

k=0(k!)−1a
(k)
p (u)(ui−

u)k with ui in a neighbourhood of u with length 2h1. Then by using a larger

bandwidth this leads to the minimization of

n∑
i=1

yi −
p−1∑
j=1

ãj(ui)xij − xip
3∑

k=0

ap,k(ui − u)k


2

×Kh1(ui − u)
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with respect to (ap,0, ap,1, ap,2, ap,3) to find the estimator of ap(u) which

corresponds to ap,0. This final estimator is

âp(u) = eT1,4(GTW1G)−1GTW1ỹ

where

ỹ = (ỹ1, . . . , ỹn)T , ỹi = yi −
p−1∑
j=1

ãj(ui)xij

W1 = diag (Kh1(u1 − u), . . . ,Kh1(un − u)) , G = diag(x1p, . . . , xnp)Q,

and

Q =


1 u1 − u (u1 − u)2 (u1 − u)3

...
...

...
...

1 un − u (un − u)2 (un − u)3


The two-step estimation procedure was shown to outperform the one-

step estimation procedure when the residual sum of squares were compared;

this was true even in the case where all coefficients had the same level of

smoothness. However, even when the two-step estimation procedure is used

this gives only two levels of smoothness compared to spline methods which

provide a separate level of smoothness for each coefficient function. In addi-

tion, Huang et al. (2002) criticized the approach of Fan and Zhang (2000) by

stating that the two-step estimation binned data from adjacent time points

but the methods of bin selection were not studied. Huang et al. (2002)

demonstrated that his proposed approach of the one-step polynomial spline

estimation through basis expansions, as described above, allows different

amounts of smoothing for different individual coefficient curves and requires

no binning of data when the observations are sparse at distinct observation

times (Huang et al., 2002).

Semi-varying coefficient models in local regression estimation

In practical problems it is very plausible to have some coefficients which

are varying and some which are not. This translates to a semi-varying
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coefficient model with the form

Y = Z1a1(U) + Z2a2 + ε,

where (Z1, Z2)T = X with Zi a pi dimensional covariate, i = 1, 2, and

p1 + p2 = p (Fan and Zhang, 2008; Zhang et al., 2002). The model has a

non-parametric component with the coefficient functions a1(U), and a linear

component with the constant functions a2 (Zhang et al., 2002).

Zhang et al. (2002) proposed a two-step procedure for this model which

involves first estimating the coefficients in the linear component of the model

using a small bandwidth and the same procedure of the local polynomial

estimation described previously. To estimate a2 first, it is treated as a

functional parameter and then using the local polynomial estimation the

initial estimator of a2(ui) was found to be

ã2(ui) = (0p2×p1 , Ip2 ,0p2×p)
(
ΓTuiWuiΓui

)−1
ΓTuiWuiy,

with the terms having the same definition as described in the one-step local

regression estimation. Then to obtain â2 the initial estimator is averaged

over i = 1, . . . , n as follows

â2 =
1

n

n∑
i=1

(0p2×p1 , Ip2 ,0p2×p)
(
ΓTuiWuiΓui

)−1
ΓTuiWuiy.

This final estimate of â2 is then substituted in the original model which

then transforms it to a standard varying coefficient model. Zhang et al.

(2002) then used Fan and Zhang (2000, 1999) two-step estimation method

to estimate the coefficient functions of the non-parametric part of the model.

Xia et al. (2004) also studied the estimation of semi-varying models, how-

ever they proposed using a semi-local least squares estimation by estimating

a1(U) locally and a2 globally. Their procedure is similar to that of Zhang

et al. (2002), in that the estimate for a2 is found first and then substituted

this into the model to obtain a standard varying coefficient model which is

then estimated using the procedure of Fan and Zhang (2000, 1999). Xia

et al. (2004) also described a model selection process using cross-validation.

Model selection is crucial in semi-varying coefficient models since we need

to test which coefficients are varying and which are not. Other methods of
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hypothesis testing for model selection is discussed in more detail further on.

A different approach for estimating semi-varying coefficient models was

through the use of profile least-square estimation by Fan and Huang (2005).

This begins with assumption that a2 is known, which allows the semi-varying

model to be rewritten as

yi − zi2a2 = zi1a1(Uui) + εi, i = 1, . . . , n,

where (zi1, zi2)T = xi Fan and Zhang (2008); Fan and Huang (2005). The

local regression estimation can then be applied to find the estimator of a1(ui)

which is

ã1(ui) = (Ip1 ,0p1)
(
Γ̃
T
uiWuiΓ̃ui

)−1
Γ̃
T
uiWui ỹ,

where Γ̃u is the same as the previously defined Γu in the local regression

estimation above but with the X replaced by Z1, i.e.

Γ̃u = (Z1,UuZ1), also we have

Z1 = (z11, . . . , zn1)T , Z2 = (z12, . . . , zn2)T ,

ỹ = y − Z2a2.

After substituting ã1(ui) for a1(ui) in the model above, a least squares

estimation can be used to find â2.

Local regression estimation for generalized VCMs

The local regression method equivalent for generalized varying coefficient

models involves the maximization of

ln(a,b) =
1

n

n∑
i=1

l

g−1


p∑
j=1

(aj + bj(ui − u0))xij

 , yi

×Kh(ui − u0),

where Kh(·) is a kernel function with a bandwidth h, and aj(u) ≈ aj+bj(u−
u0) as was described in the standard case. Cai et al. (2000) explains that in

order to find the estimates one needs to maximize the local likelihood above

for perhaps hundreds of distinct values of u0 each requiring an iterative

algorithm. To save the computational cost a one-step Newton-Raphson

estimator was proposed. If we let β = β(u0) = (a1, . . . , ap, b1, . . . , bp)
T

and l′n(β) and l′′n(β) be the gradient and Hessian matrix of the local log-
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likelihood ln(β), then the one-step of the Newton-Rapshon algorithm gives

the updated estimator

β̂OS = β̂0 − {l′′n(β̂0)}−1l′n(β̂0),

where β̂0 = β̂0(u0) = (â(u0)T , b̂(u0)T ) is the initial estimator. For example

in a logistic regression, the one-step estimator would be given by

β̂OS = β̂0 +

(
Hn,0, Hn,1

Hn,1 Hn,2

)−1

+

(
vn,0

vn,1

)
,

where

Hn,j =
n∑
i=1

Kh(ui − u0)p̂i0(1− p̂i0)(ui − u0)jxix
T
i , j = 0, 1, 2,

satisfies

logit(p̂i0) =

p∑
j=1

{âj,0 + b̂j,0(ui − u0)}xij , and

vn,j =
n∑
i=1

Kh(ui − u0)(yi − p̂i,0)(ui − u0)jxi, j = 0, 1.

Cheng et al. (2009) proposed an approach to find both constant and

functional parameters, which is similar to the estimation of the semi-varying

coefficient models described earlier in the standard estimation. Li and Liang

(2008) also described an estimation procedure for generalized case of semi-

varying coefficient model using a penalized quasi likelihoods for the main

purpose of variable selection, which will be discussed in the next section.

Both Cheng et al. (2009) and Li and Liang (2008) used local likelihood

estimation as was shown in the semi-varying coefficient model estimation,

however there were some difference in the approaches used. Cheng et al.

(2009) used a similar method to Zhang et al. (2002) which was to estimate

the constant vector parameter θ first by treating it as an unknown function

of U , and then plug this estimate to the local likelihood function to estimate

the functions aj(·). The details of this estimation begins with the conditional

log-likelihood function
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L0(θ,a) =
n∑
i=1

log f
(
yi,xi,θ,x

T
i,1a1(ui), . . . ,x

T
i,lal(ui)

)
,

where f is a known parametric density function, θ = (θ1, . . . , θq)
T is the

unknown constant vector and aj(·) = (aj1(·), . . . , ajpj (·))T is the unknown

function. As was done in the standard case, a truncated Taylor’s expansion

was used for the approximation aj(ui) ≈ aj(u) + bj(u)(ui− u), with ui in a

a neighbourhood of u. Then the local log-likelihood function was written as

n∑
i=1

Kh(ui−u) log f
(
yi,xi,θ,x

T
i,1{a1 + b1(ui − u)}, . . . ,xTi,l{al + bl(ui − u)

)
,

where Kh(·) is a kernel function with bandwidth h. Maximizing the above

gives
(
θ̃(u)T , ã1(u)T , b̃1(u)T , . . . , ãl(u)T , b̃l(u)T

)T
, then by averaging the

θ̃(ui) over i = 1, . . . , n the final estimator is found, i.e.

θ̂ =
1

n

n∑
i=1

θ̃(ui).

To obtain the functional parameters, θ̂ was replaced for θ in the local log-

likelihood and maximizing this gave the estimators(
â1(u)T , b̂1(u)T , . . . , âl(u)T , b̂l(u)T

)T
.

Alternately, Li and Liang (2008) did not average the constant parameter

as shown above but used a penalized likelihood to find the final estimator

for the constant parameter. This procedure begins by first maximizing the

local likelihood function

n∑
i=1

Q
[
g−1{aTxi + bTxi(ui − u) + Ziθ}, yi

]
Kh(ui − u),

where again the functional parameters are approximated by a truncated

Taylor’s expansion, with a = (a1, . . . , ap)
T and b = (b1, . . . , bp)

T . Here

the constant parameter θ has the covariates Z. The solution to the above

maximization gives ã, b̃, θ̃ which is then replaced to obtain the penalized
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likelihood

n∑
i=1

Q
{
g−1

(
ãTxi + b̃Txi(ui − u) + Ziθ

)
, yi

}
− n

p∑
j=1

pλj (|θj |),

with pλj (·) a pre-specified penalty function (such as the SCAD penalty) with

regularization parameter λj . This penalized likelihood is maximized to ob-

tain θ̂, which also performs a variable selection for the constant parameters.

Finally to obtain the functional parameters, θ̂ is substituted for θ to obtain

the following local likelihood function,

n∑
i=1

Q
[
g−1{aT + bTxi(ui − u) + Ziθ̂}, yi

]
Kh(ui − u),

which can now be maximized to find the final estimators of {â, b̂}.

2.3.3 Bayesian approach to VCMs

Hastie and Tibshirani (1993) briefly described a Bayesian approach for

estimating the varying coefficient model. For a simple standard varying

coefficient model Y = Xa(u) + ε with normally distributed ε, a prior is

placed on a(u). West and Harrison (1997) described this approach in more

detail by defining

Yt = Xtat + νt, νt ∼ N(0, Vt),

at = Gtat−1 + tωt, ωt ∼ N(0,Wt)

where t refers to time in this case. The first equation is the observation

equation and the second is the evolution equation, the regression parameter

here is a function of time defined by a Markov process as shown in the

evolution equation. Having a Markov formulation in the second version

makes it convenient to make inference sequentially, by an updating formula

based on the Kalman filter. However, the Markov assumption and normality

assumptions might not always hold, and other Bayesian approaches may be

required (Hastie and Tibshirani, 1993).

Fahrmeir and Lang (2001) describes the Bayesian approach for gener-

alized varying coefficient models with applications to temporal and spa-

tial effects. Beginning with the observations (yi, xi1, . . . , xip, wi) for i =
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1, . . . , n, lets assume yi belongs to an exponential family with mean µi =

E(yi|xi, wi) = h(ηi), where h is a known link function and xi and wi are

covariates, the model described is written as

ηi = f1(xi1)zi1 + . . .+ fp(xip)zip + w′iβ + bgi,

where f1, . . . , fp are unknown smooth functions of the covariates. The bgi

terms are unit or group specific random effects for any g = 1, . . . , G, and

z = (z1, . . . , zp) is a design vector that could contain components of x or

w. The covariates x1, . . . , xp described are either metrically or spatially cor-

related and have a non-linear effect on the outcome, and w is a vector of

further covariates who are assumed to have a linear effect. In the Bayesian

framework, the functions f1, . . . , fp, the parameters β = (β1, . . . , βr)
T and

the random effects b = (b(1), . . . , b(G))T are all random variables that re-

quire appropriate priors. For timescales and metrical covariates, priors are

based on Gaussian smoothness priors while for spatial covariates Gaussian

Markov random fields priors are used. For instance, if time was the covariate

for x which are equally spaced observations, then the common priors for the

smooth functions are first or second order random walk models with nor-

mally distributed errors. For inference, Gibbs sampling is used for Gaussian

responses and Metropolis-Hastings algorithms are used for non-Gaussian

responses.

The use of a Bayesian framework for estimation of varying coefficient

models (or GAMs which can be easily extended to varying coefficient mod-

els) was described by Biller and Fahrmeir (2001); Brezger and Lang (2006);

Fahrmeir and Lang (2001) for studying temporal trends, by Assunçao (2003);

Congdon (2003); Gamerman et al. (2003); Fahrmeir et al. (2004) for study-

ing spatial trends, and for spatial-temporal trends as well by Brezger and

Lang (2006); Fahrmeir et al. (2004, 2000). For the spatial-temporal models,

the effects of time and space are modelling additively, although interactions

between space and time were discussed by Fahrmeir et al. (2000) by trans-

forming time into a categorical variable of two periods.

2.3.4 Spatial VCMs using tensor product smooths

Bayesian methods are usually used for the analysis of spatially varying

coefficients, however their application may not always be feasible and espe-
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cially for large datasets. An alternative, that is more consistent with the

estimation methods discussed previously, is to use nonparametric methods

using local regression or splines as discussed previously. Local regression

techniques were used for estimation of spatially varying coefficient models

by Brunsdon et al. (1996); Muller (2007); Wheeler and Páez (2010) where

they are referred to as geographically weighted regression techniques. Young

et al. (2008) applied this method using U.S. BRFSS data and other sources

of data to study the association between myocardial infarctions and ambient

ozone levels to demonstrate variation with space. An alternative estimation

method is described by Wood (2006a), which shows how spatially varying

coefficient models can also be estimated using spline estimation methods,

as this can also provide a flexible model for studying spatial variations.

This method was used by Augustin et al. (2009) for studying forest health

and Augustin et al. (2013) for studying fishery management, both of which

used a tensor products of smooths of spatial coordinates as well as time to

study spatial-temporal trends. Wood (2006b) and Wood et al. (2013) also

applied a spatial-temporal varying coefficient model and showed how the

method can be used in mixed models, and Heim et al. (2007) and Eilers

et al. (2005) showed how this method could be applied to 3-dimensional

cases. The spatial-temporal models using this method are not modelled ad-

ditively, but are taken as a tensor product smooth of space and time, and

are seen as a useful method as the tensor products are invariant to the units

in which the covariates are measured.

Tensor products smooths as discussed by Wood (2006a) are used to build

smooths of several variables, for instance when we have the variables ux and

uy as the latitude and longitude coordinates in spatial data. Although, this

method may not capture boundary effects, it is still a very flexible model

and it is a compromise for the reduced computation time compared to using

MCMC methods to estimate the spatial coefficients. To demonstrate how

these products are formed, we begin with the assumed low rank bases for

representing the smooth functions sx and sy for each variable. Then, similar

to what was shown previously to describe splines, we have

sux(ux) =

J∑
j=1

γjBj(ux) and suy(uy) =

L∑
l=1

δlCl(uy),
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where γj and δl are parameters with Bj(ux) and Cl(uy) the known basis

functions. In order to write the tensor product, we need to convert the

smooth function sux(ux) to a smooth function of ux and uy. This can

be achieved by allowing the parameters γj to vary smoothly with uy, i.e.

γj(uy) =
∑L

l=l δjlCl(uy), which then gives us

suxuy(ux, uy) =
J∑
j=1

L∑
l=1

δjlCl(uy)γj(ux).

This procedure can be followed to construct tensor products for any number

of variables required for the analysis (i.e. for 3-dimensional cases or more).

The same concept can be followed to construct the tensor product penal-

ties. To find the penalty of the smooth suxuy(ux, uy) for instance, we can

write

J(suxuy) = λux

∫
uy

Jux(sux|uy)duy + λuy

∫
ux

Juy(suy |ux)dux.

Where λux and λux are the smoothing parameters that control the tradeoff

between the wiggliness in different directions, and allows the penalty to be

invariant to the relative scaling of the variables. For example, if a cubic

spline is used, then we have the penalty

J(s) =

∫
ux,uy

λux

(
∂2s

∂u2
x

)2

+ λuy

(
∂2s

∂u2
y

)2

duxduy.

A penalty of the type defined by Eilers and Marx (2002) for P-splines can

also be used.

With these components defined, the tensor product smooths can be es-

timated using the methods described for estimation with splines.

2.4 Hypothesis Testing

Hypothesis testing in varying coefficient models attempts to find whether

coefficients are actually varying or not, and also if certain covariates are sta-
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tistically significant. This translates to testing two different null hypotheses

H0 : ak(·) = ak, k = 1, . . . , p, and

H0 : ak(·) = 0, for certain k

(Fan and Zhang, 2008). The first null hypothesis involves testing the para-

metric null hypothesis against the non-parametric alternative hypothesis.

The second null hypothesis involves testing a non-parametric null hypothesis

against a non-parametric alternative hypothesis, since it contains unknown

non-parametric components aj(·) for j 6= k (Fan and Zhang, 2008).

Cai et al. (1999, 2000) discussed the use of a non-parametric generalized

maximum likelihood ratio test statistic for testing the hypotheses above.

The test statistic is T = 2{`(H1) − `(H0)} where `(H0) and `(H1) are the

log-likelihood functions under the null and alternative hypotheses or more

specifically

T =

n∑
i=1

(
`[g−1{xTi â(ui)}, yi]− `{g−1(xTi â, yi)}

)
,

where â(·) is the local maximum likelihood estimator of the functional coeffi-

cient a(·) under the alternative hypothesis, and â is the maximum likelihood

estimator of the constant vector a = (a1, . . . , ap)
T under the null hypothesis

(Fan and Zhang, 2008). Then the null hypothesis is rejected when T > cα

for a critical value cα computed by either the asymptotic distribution of T

or bootstrap under the null hypothesis (Fan and Zhang, 2008).

For constructing a test statistic, Cai et al. (2000) explains that while

in parametric models the likelihood ratio test is asymptotically chi-squared,

for nonparametic models the number of parameters tends to infinity and so

the test statistic would be asymptotically normal and also independent from

the value of a. Therefore, a conditional bootstrap can be used to construct

the null distribution of the test statistic T . Cai et al. (2000) describes

the procedure as first obtaining the estimates under the null hypothesis

(say â1, . . . , âp) and then generating a bootstrap sample for the Y ∗ from

the generalized linear model η̂(ui,xi) =
∑p

j=1 âjxij to compute T ∗. Then

the distribution of T ∗ is used as an approximation to the distribution of

T , which is valid since the asymptotic null distribution does not depend

on the values of {aj}. The same procedure applies when it is required to
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test ap(·) = 0, however here the data should be generated from the mean

function g{m(u,u)} =
∑p−1

j=1 âj(u)xj , where âj(·) is an estimate under the

null hypothesis. The conditional bootstrap method described above also

applies readily to the Poisson and Bernoulli distributions since there is no

dispersion parameter involved. If there is a dispersion parameter involved,

then this has to be estimated as well.

Li and Liang (2008) described a generalized quasi-likelihood ratio test for

selection of significant variables of the functional parameters. As described

previously the constant parameters were selected using a penalized quasi

likelihood estimation procedure (Li and Liang, 2008). This leads to testing

the two hypotheses

`(H1) =

n∑
i=1

Q
{
g−1

(
α̂T (ui)x

T
i + zTi θ̂

)
, yi

}
,

and

`(H0) =
n∑
i=1

Q
{
g−1

(
zTi θ̄

)
, yi
}
,

for the null hypothesis (which is equivalent to the second null hypothesis

shown above). This gives the generalized quasi-likelihood ratio test statistic

TGLR = rK{`(H1)− `(H0)},

where rK =
{∫

K(0)− 0.5
∫
K2(u)du

}{∫
{K(u)− 0.5K ∗K(u)}du

}−1
. As

was done by Cai et al. (2000), the null distribution of TGLR is estimated by

Monte Carlo simulation or the bootstrap procedure.

Kauermann and Tutz (1999) used a different approach and proposed a

graphical technique for testing between a parametric model and a varying

coefficient model. They express the varying coefficient model as

E(Y |X,U) = h{Z(X)a(U)}

where h(·) is the inverse link function, Z(X) is a design matrix of the covari-

ates X, and a(U) as an unknown and smooth function in U . A parametric

form of this model was expressed by replacing the varying coefficient a(U)

with the parametric function V(U)β where V(U) is a matrix built from

U . This leads to the ability to check between the parametric and varying



2.4 Hypothesis Testing 33

coefficient models by studying the local discrepancy

ρ(U) := γ(U)−V(U)β;

if ρ(u) ≡ 0 then we have a parametric model. Kauermann and Tutz (1999)

showed how ρ(u) can be studied by graphical methods for testing between

the parametric and varying-coefficient models.
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Chapter 3

Methodology

3.1 Constructing the Varying Coefficient Model

Estimation methods using splines was used for estimation of varying

coefficient models (VCM) in the analysis. This includes polynomial spline

estimation, smoothing spline estimation, and P-spline estimation methods.

Local polynomial regression was not used as this provides only one or two

levels of smoothing for each coefficient function as discussed in the liter-

ature review. Spline methods were preferred as they provide a separate

level of smoothing for each coefficient function. The results as well the the

computational feasibility and practicality of these spline methods for use

in surveillance data analysis were compared. This chapter describes the

methodology in which the models were constructed and applied to the Ital-

ian PASSI data for a smoking status binary outcome variable, and the U.S.

BRFSS data for a obesity status binary outcome variable. These datasets

and the variables used in the analysis are described in more detail in the

results chapters.

The methodology for constructing the varying coefficient model using the

different spline estimation methods are very similar. For all these methods,

the modifying variable is time, which for the Italian PASSI surveillance data

for instance are the months of observation from 2008 to 2011. This gives

44 months in which a new random sample was extracted at each month, as

July and August were combined in the data collection phase. Therefore, the

maximum number of knots that can be used for estimation is 44 knots for

this dataset. In polynomial spline estimation, there is an additional step to
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the methodology which requires the selection of the number of knots Kl for

each variable. However, in smoothing spline, penalized spline regression and

P-spline estimation, this step is not required as a high number of knots (or

all the knots) are placed with an added penalty to control the smoothing.

In the first step of constructing the varying coefficient model, a varying

coefficient model is fit in which each variable alone is allowed to have varying

coefficients while all other variables have constant coefficients. The second

step then involves testing these models against a parametric model (or a

model in which all the coefficients are constant) to see if the coefficients are

actually varying. The final step then combines all the significantly varying

coefficients in a step wise selection method to find the final varying coefficient

model. The final varying coefficient model that needs to be found, could be

theoretically written as

log

(
P (Y = 1|Z = z,X = x, T = t)

1− P (Y = 1|Z = z,X = x, T = t)

)
= b0+

p∑
j=1

bjZj+a0(t)+

q∑
k=1

ak(t)Xk,

where Y is the outcome binary variable, Zj are the independent variables

with constant parameters bj , and Xk are the independent variables with

varying coefficients ak(t). The left expression of the model above will be

represented in the remaining of the thesis by logit(Y ) for simplicity, where

logit is the log odds of the binary outcome variable. For the spatial varying

coefficient model, t in the above model is replaced by s to represent space.

3.1.1 Step One: Fitting a VCM for each variable

For the estimation using the polynomial estimation method, the number

of knots was selected for each variable using the AIC criterion. Having

a separate number of knots for each variable’s coefficient functions allow

for different degrees of smoothness. A third degree B-spline was used, and

therefore the knots to be checked were from 5 to 44 knots; a minimum

of five knots is used since three knots are required for the degrees of the

spline and two knots for the boundaries of the domain. This procedure was

conducting using R software with the mgcv package (R Core Team, 2012;

Wood, 2007) used for generalized additive models. To use the gam function

for estimating a varying coefficient model the ‘‘by’’ option is used as shown

in the following example:
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gam(SMK ~ Zj + income + s(time, bs = "bs", fx=TRUE, k = i,

by = income), family = binomial("logit")),

where SMK is the binary response variable for smoking status for instance,

income is the independent variable for income status, Zj are all the other

independent variables, k="bs" is to select the B-spline, fx=TRUE indicates

that there is no penalty, and the by option allows for defining varying coef-

ficients. B-splines are used due to their good numerical properties, and as

this spline is not found in the options of the gam function, it added from the

splines package using the smooth.construct function in the mgcv pack-

age, which allows for the construction of other types of spline functions. In

the above example, ‘‘i" refers to the number of knots to be checked from

5 to 44. Therefore the same model above is fit 40 times, each time selecting

a different number of knots from 5 to 44. The model which gives the lowest

AIC value is selected to determine the number of knots for that variable,

and this model is then used in the test discussed below to indicate if the

coefficients are constant or varying. Although knot selection is not required

for the penalized spline regression, this was performed so as to compare with

the polynomial spline estimation method as the only difference is the addi-

tion of the penalty. Therefore, the code used to fit the model is the same as

shown in the example above except for the change fx=FALSE which is the

default setting in the gam function.

For the estimation using the smoothing spline or P-spline methods, there

is no need to perform the procedure for the selection of knots. Both these

estimation methods contain a penalty with a smoothing parameter λ. For

the P-spline estimation the R code to fit the model for each variable is as

shown in the following example:

gam(SMK ~ Zj + income + s(time, bs = "ps", k = 44, m=c(3,2),

by = income), family = binomial("logit")).

Here k="ps" is to select for using P-splines, and m=c(3,2) indicates that a

third degree B-spline is used with a second order difference penalty. The

maximum number knots of 44 were used in the estimation. The same code

as above was used but with the bam function of the mgcv package in order

to observe if this function can significantly improve computation time. This

function is ideal for large datasets as it can reduce computation time by

reducing the model matrix required for finding the estimates (Wood, 2007).
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The bam function uses a fast restricted maximum likelihood (REML) method

to selection the smoothing parameter, whereas models fit with the gam func-

tion use the default GCV method to select the smoothing parameter (Wood,

2011, 2007).

The final method to be compared is using the smoothing spline estima-

tion. Earlier computations not shown here have indicated that this estima-

tion method has a high computation time due to the type of penalty used,

and therefore only the bam function was used to save computational time.

A cubic regression spline was also used and therefore the following code was

used:

bam(SMK ~ Zj + income + s(time, bs = "cr", k = 44, by = income),

family = binomial("logit")),

where bs="cr" selects a cubic regression spline.

3.1.2 Step Two: Test for varying coefficients

For the second step, the model selected is tested against the parametric

model, or a model where all the independent variables have constant coef-

ficients, to see if the variable has coefficients that are actually varying. For

instance if we an independent variable X1, and again a smoking status bi-

nary outcome variable, the following alternative hypothesis is tested against

the parametric null hypothesis

H0 : logit(SMK) =

p∑
j=1

bjZj ,

and

H1 : logit(SMK) =

p∑
j=1

bjZj + a1(t)X1,

where Zj are the variables from the parametric model with constant coef-

ficients bj , and a1(t) are the functional coefficients of X1. This test would

show if the varying coefficients a1(·) are actually varying or should remain

constant, and it is performed using the a chi-square test with the function

anova. This test can be used since there are a limited number of parame-

ters to be estimated (parameters are not increasing with increasing n), and



3.1 Constructing the Varying Coefficient Model 39

the sample size is large enough to guarantee the asymptotic chi-square dis-

tributed of the test statistics. Any variable which gives a significant p-value

is then included in the forward selection process of the final step, and any

variable which gives a non-significant p-value indicates that it has coefficients

that are constant.

3.1.3 Step Three: Constructing the final VCM using forward

selection

The final step involves finding the full varying coefficient model where

more than one variable with varying coefficients are required in the model.

This is conducted using a stepwise method beginning with the varying co-

efficient model from step one which gave the largest deviance explained. To

know which variable should be added next, the residuals of the first model

(or each previous model in the step-wise process) is fit with each of the

remaining variables and the variable from the model which provides the

best explanation for these residuals is added next. For polynomial spline

estimation, knot selected is then performed again. However, in this step,

the best combination of the number of knots when two or more variables

with varying coefficients are included in the model needs to be found. For

each combination of knots a varying coefficient model is fit and the model

which gives the minimum AIC is selected to determine the number of knots

and the model to be examined. The same procedure is conducted using the

penalized spline regression method. However, in the P-spline and smooth-

ing spline methods there is no knot selection performed and the maximum

number of knots is used again for each variable with varying coefficients.

Once the models are fit, a new test is performed to see if an additional

variable with varying coefficients should be added when a previous one is

already in the model, i.e. continuing with the example above the test is

H0 : logit(SMK) =

p∑
j=1

bjZj + a1(t)X1,

H1 : logit(SMK) =

p∑
j=1

bjZj + a1(t)X1 + a2(t)X2,

where X2 is another variable which has coefficients that are actually varying

according to the test in step two. The final varying coefficient model is found
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by testing each additional variable with varying coefficients using the above

test until all the coefficient functions for all the independent variables are

tested.

3.2 Odds Ratio Plots

From the results, plots of the varying coefficients over time can be con-

structed to observe and understand the trends of the effects of the variables

on the outcome. The plots provided by the mgcv package show the changing

coefficient estimates with time, and these kinds of plots will be shown for

all the time varying coefficients to compare the results of the five methods

used. However, to understand these plots better and particularly for using

in public health interventions, it is preferable to look at odds ratio plots.

These plots are constructed by adding the constant estimate of a certain

category to the spline plot of that category. This is done because the vari-

ables in the varying coefficient models have a constant coefficient found in

bj as shown in the models above, as well as the time varying coefficients

found in a(t) if this was found to be significant in the tests. Since a logistic

model is being used, the odds ratios are then constructed by taking the ex-

ponential of the coefficients to produce odds ratio plots which are easier to

interpret, the plots are therefore on an exponential scale. These plots can be

interpreted as the change with time in the odds ratio of a certain category

compared to the reference category on the outcome. For plots produced by

the plot.gam function of the mgcv package, Bayesian confidence intervals

for the smooth terms are added to the plot, these confidence intervals can

be obtained by simulating from the posterior distribution of the functional

coefficients (Wood, 2006a).

3.3 Spatial VCMs

The methods discussed for constructing the time varying coefficient model

can also be used to estimate a spatial varying coefficient model by defining

spatial coordinates as the modifying variables. The same basic procedure is

followed (steps 1 to 3), however here we have a tensor product of smooths of

the spatial coordinates as discussed in the literature review. This procedure

is described by Wood (2006a) and can also be extended for creating a tensor
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product of spatial coordinates and time for the study of a spatial-temporal

varying coefficient model. Again using the mgcv package, the following code

can be used to fit the spatial varying coefficient models

bam(SMK ~ Zj + income + te(x,y, k = 10, by = income),

family = binomial("logit")).

Here te represents tensor product smooths and the longitude and latitude

are represented by the variables x and y. The coordinates can be taken

to be the centroids of specific geographical locations (for example regions

or counties), or population centroids, i.e. coordinates of highest population

locations. The code above uses the default cubic regression spline, however

other splines can also be used. The number of knots can be defined for each

coordinate separately; in the above example placing one value for the number

of knots implies using the same number for both coordinates. Therefore,

there are 100 knots used in this example as there are 10 knots for each

coordinate.

To represent the results, maps are constructed for each category with

space varying coefficients from the final model. The maps represent the

probabilities of the outcome variable for the indicated category at each cen-

troid while keeping all the other categories constant at the reference level.

This is conducted by using the final model to predict the probabilities of the

outcome at the centroid coordinates of the regions or counties under study.

The predictions are first made for estimating the probabilities when all the

categories are kept at the reference level (the reference map). Then to ob-

serve the spatial variation for each category of a variable, a new prediction

is made by changing the variable in question from the reference category to

another category again while keeping all the other categories at the reference

level. The resulting maps can show whether the probabilities are changing

spatially. The application of this method is discussed in the USA analysis

results chapter.
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Chapter 4

Results: Italian Analysis

4.1 Italian PASSI Data

The data used for analysis is from the PASSI (Progressi delle Aziende

Sanitarie per la Salute or Progress in the Italian Local Health Units) surveil-

lance system in Italy, the details of which are described by Baldissera et al.

(2011) as well as Minardi et al. (2011); Binkin et al. (2010) who have used

the PASSI data for analysis. The unit used for data collection is the local

health unit which are found in all the 21 Italian regions. Each region in

Italy has between 1 and 22 local health units and these units are responsible

for providing health services for its residents. Data collection began in mid

2007 and is still ongoing and is conducted by each local health unit par-

ticipating in the surveillance system, which is over 90% of the Italian local

health units. A monthly random sample is chosen from a list of residents

from each local health unit aged 18-69 years and an interview with those

selected is conducted by telephone. The questionnaire used in the telephone

interview covers a wide variety of behavioural and preventive topics and the

interview lasts for a median of 20 minutes.

4.2 Data Preparation

For the current analysis, the Italian PASSI surveillance data for the years

2008 to 2011 is combined for a total sample size of 148,266 observations.

The variables used in the analysis are found in Table A.1. Most of these

variables are self explanatory, namely age, sex, marital status, education,
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region, citizenship, and income level (or economic difficulty). However, the

variables smoking, alcohol consumption, physical activity and depression

require more than one question to be constructed as described below.

The smoking variable required three questions from the smoking section

of the questionnaire to be constructed. The first question asked the subject

whether they had smoked at least 100 cigarettes in their entire life, the

second question asks whether they are currently smoking, and the third

questions asks if during the last 12 months they had stopped smoking at

least one day with the intention to quit smoking. Four categories can then

be created from these questions as follows:

• if the subject indicates that they have not smoked 100 cigarettes in

their life then they are a non-smoker,

• if they have smoked 100 cigarettes in their life but they are currently

not smoking then they are ex-smokers,

• if they have smoked 100 cigarettes in their life, are currently not smok-

ing and have stopped smoking at least one day in the 12 months for

the intention to quit smoking then they are persons attempting to quit

or quitters,

• if they have smoked 100 cigarettes in their life and are currently smok-

ing then they are smokers.

To construct the binary smoking status variable, the smoking variable is

reduced to two categories where smokers and quitters are combined to be

the current smoker category, and ex-smokers and non-smokers are combined

to be the new non-smoker category.

For alcohol consumption, the questionnaire used in the interview asks

how many days did the subject drink at least one unit of alcohol in the last

30 days, if the answer is zero days than this was classified as a non-drinker.

Otherwise, the following question asks on average how many units of alcohol

they drank per day. If for females this was more than one on average per

day and for males more than two on average per day, then the person is

classified as a high risk drinker. If less than this amount, then the person

is classified as a low risk drinker. Therefore three categories are created for

the alcohol variable: non-drinker, low risk drinker, and high risk drinker.
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For the depression variable two questions are used to construct the vari-

able following the technique of Binkin et al. (2010), who have also used

PASSI data for studying depression. The first question asks for how many

days in the last two weeks did the person feel they had little interest and did

not want to do anything, and the second question asks for how many days

in the last two weeks did the person feel depressed or that their moral was

low. For both variables, the responses were categorized as: 0 for 0-1 days,

1 for 2-6 days, 2 for 7-11 days and 3 for 12-14 days. These categories were

then combined; if the total was from 3-6 then the person was categorized as

depressed, and from 0-2 as non-depressed.

The physical activity variable was constructed by the PASSI team and

found in the dataset. There are three categories to this variable: active,

partially active, and sedentary. An active person is considered a person

that performs heavy work or has a job that requires a lot of physical effort,

that performs moderate physical activity for at least five days a week for

30 minutes, or performs vigorous activity at least three days a week for

more than 20 minutes. A partially active person is a person who does not

have a heavy physical job but still does some physical activity in their free

time, however without reaching the recommended physical activity guideline

levels. A sedentary person is a person who does not have a heavy physical

job and also does not exercise in their free time.

4.3 Parametric Smoking Model

Before conducting the analysis required for the varying coefficients, a

parametric model was found to describe the independent variables involved

and their effect on the smoking status binary outcome variable. The pro-

portion of smokers with time was found to be decreasing as shown in Figure

4.1. For performing the analysis, no observations were removed and the

sample size was 148,266 individuals from the years 2008 − 2011. The vari-

ables used for this model are summarized in Table A.1 in the Appendix. The

proportions of each independent variable by the outcome status is shown in

Table A.2. Also shown are the unadjusted and adjusted odds ratios with

95% confidence intervals, which were produced using a logistic model with

the smoking status outcome variable. The results in Table A.2 indicate that

all the independent variables were significant in the unadjusted models. In
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Figure 4.1: ]
Proportion of smokers with time with a logistic trend line

the adjusted model, only the citizenship variable and the 30-39 age group

category lost their significance. The highest odds ratios were found for high

risk drinkers with an odds ratio of 2.31 (C.I. 2.22-2.40), which indicates

that high risk drinkers have more than twice the odds of being smokers than

those who do not drink. The best parametric model was found by both

forward and backward selections using AIC, and this was found to be the

model which excluded the citizenship variable. This model had practically

the same estimates as those shown in the Table A.2 and therefore are not

presented here. Therefore, the smoking status varying coefficient models

constructed will exclude the citizenship variable.

4.4 Comparison of Methods for Smoking VCM

The analysis is performed on a smoking status outcome variable with a

comparison of different non-parametric estimation methods used for varying

coefficient models. The five methods compared are:

Method I: Polynomial spline,

Method II: Penalized spline regression,

Method III: P-spline using the gam function,

Method IV: P-spline using the bam function,

Method V: Smoothing spline with a cubic spline using the bam function.
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Knot selection was performed for Method I and Method II which requires

more computation time. Method III, IV and V do not require knot selec-

tion, and the maximum number of knots of 44 knots were used to fit the

models using these methods. Method III and IV are the same except for the

function used from the mgcv package. The bam function should give very

similar results to the gam function but with much faster computation. The

same basic methodology is used for the different varying coefficient model

estimation methods, and the comparison is made between these methods

particularly for studying the practicality and the computational feasibility

of these methods for use in surveillance data analysis. In addition the es-

timates and plots are compared to observe any significant changes between

these methods. The recommended method is then described in more detail

in a separate section.

The steps described in the methodology chapter were used for the five

methods to be compared. The main purpose of this comparison was to study

the reliability and practicality of these methods in its application to health

surveillance data. For large data sets such as in health surveillance data, a

main obstacle can be computation time. For polynomial spline estimation,

while using fewer knots and no penalty can decrease computation time,

the computation time required for selection of knots can be large. While

parallel computation is used for the selection of knots of different variable

simultaneously, the computation time can still be large when there are many

variables in the model. In penalized regression spline estimation, a penalty is

added and the knots are again selected, this increases the computation time

even further. Another option was to use P-splines which does not require

selection of knots since a penalty is added. Finally the smoothing spline

estimation method can also be used which also has a penalty which differs

from the penalty used in P-splines. The results and computation times are

compared in further detail in this section.

Following the first and second step described in the methodology chapter,

each independent variable is tested to see if it has coefficients that are time

varying. To perform this test, a model is found in which each independent

variable is allowed to have time varying coefficients while all other coefficients

are constant. Once this model is found, the test is performed. Table 4.1

shows the number of knots and the time in minutes to fit of each of these

models as described in step one of the methodology. Also shown in the
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table are the p-values of the chi-square test performed (with p-values less

than 0.1 indicated in bold); this tests the model against the parametric null

hypothesis as explained in step two of the methodology chapter.

Table 4.1: Comparison of methods in finding the coefficients of variables
which are time varying using a chi-square test (with reported p-values).
Models are for each variable with varying coefficients and remaining variables
with constant coefficients using a smoking status dependent variable.

Model Method I Method II Method III Method IV Method V
for var* k t p-value k t p-value t p-value t p-value t p-value

age 5 109.0 0.020 9 660.9 0.001 54.7 0.001 2.8 0.002 2.5 0.002
sex 5 43.0 0.448 9 105.2 0.10 10.5 0.143 0.9 0.178 0.9 0.178
mstatus 5 61.6 0.588 5 213.1 0.136 39.7 0.216 1.5 0.212 1.3 0.212
edu 5 66.9 0.367 12 455.5 0.040 48.8 0.066 2.0 0.212 1.9 0.212
inc 5 55.4 0.150 5 264.5 0.015 30.5 0.035 1.4 0.034 1.3 0.035
work 5 33.6 0.770 16 129.0 0.144 18.6 0.381 0.9 0.375 0.8 0.375
region 5 49.2 0.297 19 276.8 0.036 23.9 0.062 1.8 0.351 1.3 0.351
phy 5 53.4 0.159 18 236.5 0.002 26.4 0.008 1.5 0.062 1.2 0.062
alco 5 55.1 0.060 7 282.1 0.018 38.5 0.023 1.4 0.060 1.2 0.060
depress 8 33.6 0.453 41 127.1 0.030 17.9 0.295 0.9 0.293 0.8 0.293

Total 560.9 2750.7 309.5 15.1 11.9

Notes: * Variable abbreviations found in Table A.1. k is for knots and t is for time.

Method III, IV and V all used 44 knots.

As shown in the Table 4.1, all the methods selected age and alcohol

consumption to have significant time varying coefficients at the 0.1 level.

Methods II, III, IV and V also selected income and physical activity as

having time varying coefficients. Method II and III gave significant p-values

in the test for education and region, and Method II included depression as

well. In addition to the listed independent variables in Table 4.1, a test was

performed for a model with varying coefficients for the time variable alone

(i.e. to have a time varying intercept) against the parametric model as the

null hypothesis. This model was rejected for all five methods.

In terms of computational time, the largest were for Method I and II

since these methods required knot selection, with Method II having a higher

computation time since there is also an added penalty. Method III used the

P-spline method with 44 knots and the gam function and this was faster than
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Method I and II, however the computation time was still relatively large.

Using the bam function significantly decreased the computational time and

provided similar results as Method III. Method IV and V have very similar

computation times and results, both methods use a penalty and 44 knots

with the bam function.

Once the variables with varying coefficients are found, the next step re-

quires the building of the varying coefficient model as described in step three

of the methodology chapter. This was done by starting with the variable

which gave the highest percent of deviance explained; for all the methods

this was the variable age. Then to see which variable to add next, the

residuals of the model with age varying coefficients was fit with each of the

remaining variables that gave a significant p-value in Table 4.1 to see which

variable gives the best explanation. The percent deviance explained were

compared to know which variable gave the best explanation and therefore

should be added next. The order of adding the variables differed from one

method to the next as shown in Table 4.2. The table also shows the time

required to fit each model as well as the p-value test of testing each model

with the lower model in the step wise building of the model.

The results of the model building process for the five methods resulted

in the selection of the same model for Methods II, III, IV and V. This model

includes time varying coefficients for the variables age, alcohol consumption,

income level and physical activity, and can be written as

logit(SMK) = b0 +

p∑
j=1

bjZj + a1(t)age+ a2(t)alcohol + a3(t)income

+ a4(t)phyical,

where Zj are all the remaining independent variables with constant coeffi-

cients bj . Although, as shown in Table 4.2, the selected model for Method II

was Model 3, it is possible that Model 4 or 5 could have been selected. How-

ever, is unknown since these models were not completed and required a large

computation time (> 80, 000 minutes) and memory (> 70GB) to complete,

and it was therefore terminated. However, it is not expected that Model

4 or 5 would have been chosen since most of the methods selected Model

3, and therefore this is the likely model for this application. In Method I,

which uses polynomial spline estimation, a different model was selected. The
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selected model for this method, Model 1, includes time varying coefficients

for only the age and alcohol variables and can be written as

logit(SMK) = b0 +

p∑
j=1

bjZj + a1(t)age+ a2(t)alcohol.

Another step was performed in which the addition of the time varying

coefficient for the intercept was tested again for inclusion in the final models.

For Methods I and II the inclusion of a spline of time was rejected, however

for Methods III, IV and V, the p-value of the test was significant although

borderline for Methods IV and V (p-values 0.092 and 0.095 respectively).

Therefore, the final model now becomes

logit(SMK) = b0 +

p∑
j=1

bjZj + a0(t) + a1(t)age+ a2(t)alcohol + a3(t)income

+ a4(t)phyical,

with a0(t) the new addition which allows the intercept to vary with time as

well. The results of the estimates and the spline plots did not change much

with this addition.

As for the computation times, since Method I only required the addition

of one more variable with a small number of knots, the computation time was

very small. The largest computation time was for Method II, and the total

time shown in Table 4.2 is only for reaching Model 3. Methods IV and V had

the lowest computation times as these methods both use the bam function

for large datasets designed to cut computation time. The benefits of using

the bam function is clear and especially when comparing Method III and IV,

which use the same estimation methods with P-splines. As shown in Table

4.2, Method III, which uses the gam function, required over 5000 minutes

to find the final varying coefficient model while Method IV, which uses the

bam function, only required 29 minutes. Based on the computational time

and practicality of the method, it is recommended to use Method IV which

uses the P-spline method with 44 knots and the bam function. Although

Method V has similar computation time, Method IV allows the selection of

the degree of the spline and the order of the penalty separately, which gives

more flexibility to researchers in applying this method to different settings.
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Once the final varying coefficient models have been selected for each

method, the models can then be examined further to observe if there are

any significant differences between the methods. The estimates of the con-

stant coefficients are not discussed here as these do not change very much

from one method to the next and is not the main interest here. Table 4.3

gives the p-values of the splines for all the five methods with p-values less

than 0.1 indicated in bold. These p-values are not very reliable as they are

underestimated so that any border line significant p-value could actually

be non-significant (Wood, 2006a). The p-values would behave correctly for

un-penalized models, however when a penalty is added the calculation of

the p-values neglects the smoothing parameter uncertainty in the reference

distributions used for testing (Wood, 2006a). Therefore, if there is a non-

significant p-value in Table 4.3 then the term is probably not needed in the

model. However, if there is a significant p-value, this should be taken with

caution and especially if the p-value is borderline significant such as that of

the low income category in Method III and IV. Therefore it is better to rely

on the spline plots to observe any changes in the coefficients over time.

To see the differences in the results of the splines estimations between

the methods more clearly, plots of the coefficients over time are shown in the

Appendix in Figures A.1 for the alcohol categories, A.2 for the age categories,

A.3 for the income categories, and A.4 for the physical activity categories.

Note that for Methods III, IV, and V, the models include a time varying

intercept (plots for this not shown) while for Methods I and II there is no

time varying intercept in the model. The plots have a horizontal line at zero

so as to clearly see where the coefficients are negative or positive, and also

show how they are changing from the constant line. From the plots, one can

see that excluding Method I, the plots look very similar and especially for

Methods III, IV and V. The plots indicate that there are some trends that

are not constant for many of the categories of the variables. Most of these

trends appear linear, however for some categories such as high risk drinker

and low income in Methods III, IV and V, a non linear trend is observed in

which there is an increase and then a decrease in the trend after the year

2010.
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Table 4.3: Reported p-values for the spline estimates of the selected smoking
status VCM for each of the five methods used in the analysis.

Variable Method I Method II Method III Method IV Method V

Age

18-29 0.134 0.202 0.380 0.388 0.012

30-39 0.022 <0.001 0.017 0.017 0.300

40-49 0.100 0.777 0.865 0.834 0.062

50-59 0.017 0.036 0.166 0.159 0.992

60-69 0.017 0.920 0.953 0.924 0.160

Income

High - 0.491 0.324 0.054 0.363

Medium - 0.803 0.926 0.047 0.991

Low - 0.015 0.068 0.093 0.266

Physical activity

Active - 0.636 0.992 0.556 0.557

Partially active - 0.017 0.154 0.016 0.016

Sedentary - 0.070 0.403 0.989 0.985

Alcohol

Non-drinker 0.023 0.004 0.319 0.839 0.246

Low risk drinker 0.028 0.071 0.986 0.478 0.819

High risk drinker 0.209 0.338 0.077 0.155 0.139

4.5 Description of Smoking VCM from the Rec-

ommended Method

The recommended method resulting from the comparison of the five

methods in the previous chapter, is Method IV which uses P-spline estima-

tion and the bam function. This is mainly due to the relatively fast compu-

tation time, and the flexibility the method provides in selecting the degree

of the spline and the order of the penalty separately. The selected varying

coefficient model for this method was the same as the model selected for

Method II, III and V, and is the model which includes varying coefficients

for the variables age, income, alcohol and physical activity and also with the
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addition of a time varying intercept, i.e.

logit(SMK) = b0 +

p∑
j=1

bjZj + a0(t) + a1(t)age+ a2(t)alcohol + a3(t)income

+ a4(t)phyical.

The previous section concentrated on the comparison of the five methods in

obtaining the final varying coefficient model. In this section however, the

details of the model from the recommended method will be discussed. The

summary estimates of this selected model, including the odds ratios (OR)

with 90% confidence intervals and p-values, are shown in Table 4.4. The

constant estimates in the model did not change significantly when compared

to the parametric model (not shown). The only main change is for the

age category 30-39, which was not significant in the parametric model with

an OR of 0.9, and was now found to be significant with an OR of 1.1.

Again caution should be taken for the p-values of the splines as they can

be underestimated, therefore the p-values for the income categories splines

reported in Table 4.4 could all be in-fact non-significant.

To understand the trends in the varying coefficients, odds ratio plots are

produced for all the varying coefficients in the selected model as shown in

Figure 4.2. Unlike the time varying coefficient plots shown in the appendix

for the five methods, odds ratio plots cannot be produced for the reference

categories. To observe the changes in the reference categories the coefficient

plots in the appendix can be examined; for instance, the reference category

for age 18-29 has a slightly decreasing trend. The odds ratio plots are on an

exponential scale since the exponential of the estimates are taken to obtain

the odds ratios, and all the plots contain Bayesian confidence intervals.

For the age categories, the categories 40-49 and 60-69 have a constant

trend and therefore these ORs are not changing over time. However, the

age category 30-39 has a clear linear and increasing trend above one. This

indicates that those in this category are increasing their odds with time of

becoming smokers compared to the 18-29 age group. The age category 50-59

has a slightly increasing linear trend with ORs below one. This indicates

that while those in this age category have lower odds of being smokers than

the reference group, this odds is increasing, and therefore this age category

is becoming more similar to the reference group over time.
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Table 4.4: Summary of estimates with reported odds ratios and p-values for
the selected smoking status VCM - Model 3 of Method IV (p-values < 0.1
indicated in bold).

Variable OR (90% C.I.) p-value

Age (Ref: 18-20)

30-39 1.11 (1.05-1.16) 0.011

40-49 0.89 (0.85-0.94) 0.004

50-59 0.85 (0.81-0.90) <0.001

60-69 0.52 (0.49-0.56) <0.001

s(time):18-29 - 0.388

s(time):30-39 - 0.017

s(time):40-49 - 0.834

s(time):50-59 - 0.159

s(time):60-69 - 0.966

Sex (Ref: Female)

Male 1.58 (1.55-1.60) <0.001

Marital Status (Ref: Married)

Single 1.47 (1.44-1.50) <0.001

Widowed/Divorced 1.84 (1.79-1.90) <0.001

Education (Ref: University or higher)

High school 1.35 (1.32-1.39) <0.001

Middle school 1.80 (1.75-1.85) <0.001

Primary school or less 1.41 (1.36-1.46) <0.001

Income (Ref: High)

Medium 1.24 (1.18-1.30) <0.001

Low 1.50 (1.38-1.63) <0.001

s(time):High - 0.054

s(time):Medium - 0.047

s(time):Low - 0.093

Work status (Ref: Work)

Do not work 0.75 (0.73-0.76) <0.001

Region (Ref: North)

Centre 1.21 (1.18-1.23) <0.001

South 1.10 (1.08-1.13) <0.001

Physical activity (Ref.: Active)

Partially active 0.90 (0.87-0.94) <0.001

Sedentary 1.17 (1.12-1.22) <0.001

s(time):Active - 0.556

s(time):Partially - 0.016

s(time):Sedentary - 0.989

Alcohol consumption (Ref: non-drinker)

Low risk drinker 1.55 (1.50-1.61) <0.001

High risk drinker 2.23 (2.05-2.43) <0.001

s(time):Non-drinker - 0.839

s(time):Low risk drinker - 0.478

s(time):High risk drinker - 0.155

Depression (Ref: Not depressed)

Depressed 1.43 (1.38-1.47) <0.001

Notes: Ref - reference category, OR - odds ratios with 90% confidence intervals.
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For the income categories, the medium income category shows an in-

creasing OR linear trend that is above one. This indicates that those with

medium income have increasing odds over time of becoming smokers com-

pared to those with high income. A slight non-linear trend can be observed

for low income category where the trend is increasing until 2010 after which

it appears to change direction to be constant or decrease. More years of

observation may be required to see if this trend is actually decreasing.

For the physical activity categories, we can see that only the partially

active category gives a linear trend while the sedentary category remains

constant over time. For the partially active category, the trend is decreas-

ing and below one. This indicates that those who are partially active are

decreasing their odds of being smokers compared to active persons.

Finally in the alcohol categories we have a relatively constant trend for

the low risk drinker category. However, we can observe a slight non-linear

trend for the high risk drink category. For this category the trend was

slightly increasing until the year 2010 after which it starts to become con-

stant. Therefore for high risk drinkers, while the odds of being a smoker

was increasing over time compared to non-drinkers, this increase apparently

ceases after 2010.

Performing the usual model diagnostics by plotting the residuals ver-

sus the fitted values is not useful in the case of having binary data (Wood,

2006a). Therefore, another technique as proposed by Wood (2006a, p. 115)

can be used in which we take the fitted values of the final time varying co-

efficient model and produce simulated binary independent data from these

values. The same final time varying coefficient model is then fit using the

simulated data, then the residuals of the model from the simulated data are

compared to the residuals from the final model. This is conducted by order-

ing both residuals according to the fitted values, and then observing whether

one has fewer or more values above or below zero. For this comparison, an

initial check of the plot of each of these residuals versus the fitted values

produced very similar plots as shown in Figure 4.3. A further check was

made by fitting a gam model of the residuals over zero with a spline of the

fitted values (comparable to the usual plot of residuals versus fitted values in

Gaussian case). This also produced very similar plots and estimates; there-

fore indicating that the residuals from the final varying coefficient model

above and the residuals from the same model fit with the simulated inde-
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Figure 4.2: Odds ratio plots of the smoking status VCM.
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pendent data are similar. This could provide sufficient evidence that the

final varying coefficient model has residuals that are independent. This was

conducted using one simulation however, as there is a high computation

time required to perform several simulations due to the size of the model.

(a) residuals from final VCM using observed data

(b) residuals from final VCM using simulated data

Figure 4.3: Comparison of residuals from final VCM model between ob-
served and simulated data.



Chapter 5

Results: USA Analysis

Two types of analysis were carried out using U.S. BRFSS data. Part I

involves all the U.S.A. states for the years between 1993 and 2009 for a time

varying coefficient model, and Part II involves using the county level data

for Florida state for the year 2010 for a spatial varying coefficient model.

Both analyses used spline estimation for fitting varying coefficient models

for an obesity status binary outcome variable, with some differences as will

be shown in more detail. This chapter will begin with a description of the

data used for each part of the analysis, followed by the methodology used

to construct the models (with only slight changes from the methodology

chapter), and finally the results.

5.1 U.S. BRFSS Data

The data used for the analysis in this chapter is from the U.S. BRFSS

(Behavior Risk Factor Surveillance System) data of the Center of Disease

Control in the United States of America (Center for Disease Control and

Prevention (CDC), 2014). The U.S. BRFSS currently covers all the states

and territories of the U.S.A., and has collected monthly data since 1984,

making it the largest and longest running BRFS of its kind (Mokdad, 2009).

For Part I, the data used for analysis was restricted to include the years

from 1993 to 2009 with gap years of 2004, 2006, and 2008 (i.e. 14 years

of monthly data). This was due to the availability of the questions that

were asked by each state. Some of the variables required in the analysis

were derived from questions that were not asked each year, or not asked
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by all the states. For instance the fruit variable is derived from questions

concerning the fruit and vegetable intake of individuals and these questions

were asked on the years 1994, 1996, 1998, 2000, 2002, 2003, 2005, 2007, and

2009 for all the states, and on 1993, 1995, 1997, and 1999 for some of the

states. It was not asked for any of the states in 2004, 2006, 2008 and 2010,

therefore this restricted the analysis to not include these years. The same

was true for the question regarding physical activity except that physical

activity was asked in the year 2010. However, most of the variables used in

the analysis were derived from questions asked each year for all the states,

i.e. core questions. These include questions on socio-demographic aspects

(age, sex, marital status, etc), as well as smoking status. The questions on

whether the individual has access to health care and on their general health

started in 1993, and therefore the analysis was selected to begin in this year.

As for the outcome of interest, the proportion of obesity in the USA between

1993-2009 was found to be steadily increasing as shown in Figure 5.1 below.
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Figure 5.1: Proportion of obesity with time

For Part II, the 2010 county level data used for Florida state was selected,

as this dataset contains a reasonable sample size per county to be able to

conduct the analysis. Using this data, with the 67 counties of Florida, a

spatial varying coefficient model could be constructed. The variables used
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in this analysis were the same variables as those found in Part I, however

the fruit variable was not included as this was found in 2010, and of course

the region variable was not applicable to this case. The proportions of

obesity for each county in 2010 are shown in Figure 5.2, which shows that

the proportions of obesity are varying by county.

Figure 5.2: Proportion of obesity by county in Florida in 2010.

5.2 Data Preparation

5.2.1 Part I: Time VCM

Initially, after eliminating all the missing values for the variables used in

the analysis, a total sample size of 1,813,072 observations remained for the

14 years of available data. However, one variable derived from a question on

household total earnings, used to construct the income variable, had a large

number of missing values (13.8%). To reduce the number of missing values of

this variable in order to include it in the analysis, a prediction was made with

the available data using a model with income as the outcome variable and

several socio-demographic variables as the predictors (in this case an ordered

logistic regression was used). This model was then used to impute the

missing values for the income variable. After the imputation of the missing

values, the new sample size increased to 2,065,689 observations available for

analysis. The variables used in the analysis are found in Table B.1 of the

Appendix, and mainly involved combining certain categories in the original

questions. The income variable however was constructed from household
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earning while taking into consideration the poverty threshold for each year

as well as the number of persons in a household (US Department of Health

and Human Services, 2013). If the total earnings was below the poverty

threshold for that year, then this was classified as a low income category.

If the total earnings was three times more than the poverty threshold, then

this was classified as high income, and all remaining values between these

two extremes was classified as medium income.

5.2.2 Part II: Spatial VCM

For the spatial analysis using Florida state county level data for 2010,

the sample size before imputing the missing values for the income variable,

as was conducted in Part I, was 27,678 observations, and after imputing the

missing values it was 32,110 observations. The same variables as the those

found in the analysis of Part I were used except for the absence of the fruit

and region variables. The descriptives of the variables in this part of the

analysis is found in Table B.2 in the Appendix.

5.3 Constructing the Varying Coefficient Models

For the analysis of the USA data, there was no comparison of methods

as was conducted with with Italian data analysis. Therefore, P-spline esti-

mation was used for Part I and a smoothing spline estimation using cubic

regression splines and tensor products was used for Part II. To construct

the model for both Part I and Part II, the same procedure was followed as

described in the methodology chapter. Briefly, the first step was to fit a

varying coefficient model for each variable while leaving all other variables

with constant coefficients (as in the examples shown below), then this model

was tested against the null hypothesis which contains a model where all the

variables have constant coefficients. A significant p-value would indicate

that the coefficients for the tested variable are actually varying. This pro-

cedure is followed for each variable before beginning to build the varying

coefficient model. To build the varying coefficient model, each new addition

of a variable with varying coefficients is tested with a lower model where the

variable being tested has constant coefficients. This procedure is performed

until the full model is reached. Further detail on the methodology used for

Part I and Part II is described below.
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5.3.1 Part I: Time VCM

For this part of the analysis the modifying variable is time, and for the 14

years of observation of monthly data, this provides 168 months. The models

were fit using a P-spline method using a third degree B-spline and a second

order difference penalty. A higher number of knots would greatly increase

the computation time and particularity for large datasets, and therefore

placing the maximum number of knots of 168 knots would be computation-

ally infeasible. Therefore, 42 knots were selected to fit the models (three

for each year), and the sufficiency of the number of knots was checked using

the gam.check function of the mgcv package in the R software program. As

described previously in methodology chapter, the following example R code

was used to fit the varying coefficient models using the mgcv pacakge:

bam(OBS ~ Zj + income + s(time, bs = "ps", k = 42, m=c(3,2),

by = income), family = binomial("logit")).

Here OBS is the binary outcome variable for obesity status. The bam function

is used for fitting GAM models for large datasets, k="ps" is for P-splines,

k=42 is to select 42 knots, and m=c(3,2) indicates that a third degree B-

spline is used with a second order difference penalty. The example above

shows that we are using obesity as an outcome and income as the covariate

which contains varying coefficients.

Once the final time varying coefficient is found, odds ratio plots can then

be constructed for each category of the variable which were found to have

varying coefficients. These plots can then be used to see the changing odds

ratio trends of these categories on the outcome with respect to the reference

category.

5.3.2 Part II: Spatial VCM

For the space varying coefficient model for Florida state, the modifying

variable is space. Here the space variable is represented by the longitude and

latitude coordinates of the centroids of each county in Florida. These were

obtained from the National Center for Ecological Analysis and Synthesis

of the University of California in Santa Barbara (NCEAS, 2013). The file

obtained from this source contained the centroids as well as the fips codes

(Federal Information Processing Standards) for each county in the USA.
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This was matched with the fips codes in the Florida dataset in order to

import the coordinates; a Florida map showing the location of the resulting

coordinates was checked to ensure accuracy. The models were then fit using

smoothing spline estimation with tensor products of cubic regression splines.

The number of knots used was ten for each coordinate, therefore creating

100 knots for each tensor product. The following is an example of the code

that was used:

bam(OBS ~ Zj + income + te(x,y, k = 10, by = income),

family = binomial("logit")).

In this example te represents tensor product smooths, and the longitude

and latitude of the centroids are represented by the variables x and y. Here

we are again using obesity as the outcome with an example shown for the

income covariate.

The function te is invariant to linear rescaling of covariates but not

to the rotation of the covariate space (i.e. it is not isotropic). Thin plate

splines on the other hand are isotropic, but are not invariant to rescaling

of covariates. Tensor products can also use variables measured in different

units (for example if the analysis requires a smooth of space and time), and

they are also more computationally efficient than thin plate splines (Wood,

2006a). To select between the use of the tensor product or the thin plate

splines, a chi-square test was used between the two models, which were

the same except for the type of function used (te versus s with bs=”tp”)

(Wood, 2006a). This resulted in the rejection of the model which uses thin

plan splines.

The maps used to represent the results show the probabilities of obesity

for the indicated category at each centroid while keeping all the other cat-

egories constant at the reference level. A reference map is also constructed

which contains the probabilities of obesity with all the categories at the ref-

erence level. This map can be used to compare to the remaining maps to

see how the probabilities differ across categories. In addition, each map can

be observed separately to see any spatial variations of the probabilities of

obesity for that category. In other words, observing different probabilities

across the counties show how the coefficient is varying spatially.
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5.4 Results

The results focus on discussing the varying coefficient models from the

analyses in Part I and Part II. The parametric results, which involves fitting

a logistic model with obesity as the binary outcome, are found in Table

B.3 for Part I and Table B.4 for Part II in the Appendix. These tables

summarize the unadjusted and adjusted odds ratios of the constant terms

with their confidence intervals, these results are discussed briefly below.

In general for Part I, all the variables gave significant unadjusted and

adjusted odds ratios in the logistic model except for the race category other

race (non-Hispanic minority groups). The highest odds ratios belonged to

the race category black (adjusted OR 1.71 C.I. 1.69-1.73 ), and for having

poor to fair health (adjusted OR 1.86 C.I. 1.84-1.87). Some trends in the

ordered categories were found such as increasing odds ratio of obesity with

age (except for the 65 and older age category), and with decreasing income

level. For the health risk variables, not performing any physical exercise

gave a higher odds ratio of obesity (1.48 C.I. 1.47-1.49) compared to those

who do exercise. The analysis also found that current smokers had a lower

odds of obesity than non-smokers (OR 0.61 C.I. 0.60-0.61).

For Part II, using Florida county level data for the year 2010, all the

variables gave significant odds ratios in the unadjusted models except for

the categories of other for the race variable, and the combined widowed, di-

vorced, or separated category for the marital status variable. In the adjusted

model however, several categories lost their significance. All the categories

for marital status, the high income category, the does not work category, the

Hispanic and other race categories, and the have a health plan category did

not have significant odds ratios in the adjusted model. There was a general

agreement in the odds ratios between the results of Part I and Part II except

for the 65 and older category which now had a lower odds of obesity com-

pared to the reference group in Florida. Note that in Part II the reference

category for the variable sex and smoking status was changed compared to

the analysis in Part I, and this was mainly due to the presence of spatial

variation in the female and non-smoker reference groups in the final spatially

varying coefficient model (there was little or no spatial variation in males or

current-smokers). Therefore, the reference categories were changed in order

to highlight these spatial variations in these categories. Finally, it was found
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that the variable marital status was not required in the parametric Florida

model, and therefore the building of the spatially varying coefficient model

does not include this variable. The coefficients in the parametric logistic

model excluding the martial status variable do not change very much from

those in Table B.4, and are therefore not reported.

5.4.1 Part I: Time VCM for USA

To begin the procedure of constructing the varying coefficient model,

a model was required which contains all the independent variables with

constant coefficients. This model represents the model used in the null

hypothesis of the tests which determine whether the coefficients are actually

varying. In the Italian data analysis, this was the parametric logistic model

since in the first step a time varying intercept was rejected. However, the

analysis for the U.S. data has shown that the intercept was significantly

changing with time, therefore the model used as the null hypothesis to test

each variable for varying coefficients is:

logit(OBS) = b0 +

p∑
j=1

bjZj + a0(t), (5.1)

where OBS is the outcome variable obesity, a0(t) is the time varying co-

efficients for the intercept, and Zj are the covariates with their constant

coefficients bj . The following step involved the testing of the addition of

a time varying coefficient for each independent variable using a chi-square

test with the function anova in R. This is then followed by the testing of

nested models to find the final time varying coefficient model. Table 5.1

summarizes the process of building the model with p-values less than 0.05

indicated in bold.

As can be seen in the table, in the first step, all the variables gave

a significant p-value when tested against Model 5.1. In the second step

however, the smoke variable was found to not have time varying coefficients

when other time varying coefficients were present in the model. The test for

Model XII is not available, as this model required over 300 hours to process.

The final model was therefore selected to be Model XI, which is the model

that contains varying coefficients for all the variables except for the smoke
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and fruit variables. This model can be written as:

Model XI : logit(OBS) = b0 +

p∑
j=1

bjZj + a0(t) + a1(t)age+ a2(t)income+ a3(t)phy

+ a4(t)edu+ a5(t)mstatus+ a6(t)region+ a7(t)race

+ a8(t)sex+ a9(t)hplan+ a10(t)work + a11(t)genhealth,

Table 5.1: Constructing the time VCM for obesity outcome in the USA
(Part I).

Model Description time (min) p-value H0 used

Selection of variables that have varying coefficients

Model age LM + s(t):age 13.0 <0.001 LM

Model sex LM + s(t):sex 5.5 <0.001 LM

Model mstatus LM + s(t):mstatus 7.7 <0.001 LM

Model edu LM + s(t):edu 12.6 <0.001 LM

Model work LM + s(t):work 12.6 <0.001 LM

Model race LM + s(t):race 13.1 <0.001 LM

Model income LM + s(t):income 14.8 <0.001 LM

Model region LM + s(t):region 11.3 <0.001 LM

Model phy LM + s(t):phy 7.0 <0.001 LM

Model smoke LM + s(t):smoke 6.9 0.041 LM

Model fruit LM + s(t):fruit 1.4 0.009 LM

Model hplan LM + s(t):hplan 5.6 <0.001 LM

Model genhealth LM + s(t):genhealth 6.9 <0.001 LM

Finding the full varying coefficient mode

Model I Model age + s(t):income 26.9 <0.001 Model age

Model II Model I + s(t):phy 70.2 <0.001 Model I

Model III Model II + s(t):edu: 235.6 <0.001 Model II

Model IV Model III + s(t):mstatus 325.3 <0.001 Model III

Model V Model IV + s(t):region 540.5 <0.001 Model IV

Model VI Model V + s(t):race 656.1 <0.001 Model V

Model VII Model VI + s(t):sex 785.3 <0.001 Model VI

Model VIII Model VII + s(t):hplan 943.0 <0.001 Model VII

Model IX Model VIII + s(t):smoke 957.2 0.588 Model VIII

Model X Model VIII + s(t):work 1129.6 <0.001 Model VIII

Model XI Model X + s(t):genhealth 1113.8 <0.001 Model X

Model XII Model XI + s(t):fruit > 18000.0 NC Model XI

Notes: LM - Model 5.1, s(t) - spline of time, variable abbreviations found in Table B.1,

NC - not completed.



68 CHAPTER 5. RESULTS: USA ANALYSIS

where again OBS is the outcome variable for obesity, and Zj are the covariates

with constant parameters bj . The time varying coefficients,
∑11

i=1 ak(t), were

found for the variables age, income, physical activity, education, marital

status, region, race, sex, access to health care, work status, and general

health status. The time varying coefficient a0(t) allows the intercepts to vary

with time. The high number of covariates that were found to be significantly

varying with time may be due to the large observation period used in the

analysis. For this length of time, it is expected that some change would

occur in most of the coefficients which is captured by the model.

To understand these results, one can observe the trends in the time

varying coefficient plots of Figures B.1 and B.2 in the Appendix. These

plots show how each time varying coefficient
∑11

i=1 ak(t) is changing over

time, and which coefficients were found to be actually constant. Odds ratio

plots are also produced for the categories in Figure 5.3. These plots were

produced in the same manner as was done with the Italian smoking status

varying coefficient model, where the constant term of the variable is added

to the spline and then the exponential is taken to produce the odds ratio

plot. The reference categories of the variables do not have odds ratio plots,

however one can observe the coefficient plots to see any changes in the

reference categories.

The odds ratio plots show that although a variable was found to be

time varying in the tests of Table 5.1, not all the categories of that variable

have coefficients that are varying. For example, the age category 65 and

over shows a constant odds ratio trend, and the age category 50-64 was also

constant until approximately the year 2005 where the odds of being obese

began to drop slightly with time compared to the 18-34 reference age group.

However, the age group 35-49 was found to have a slightly increasing odds

ratio trend, indicating that the odds of being obese for this age category is

increasing with time compared to the reference category. The reference age

category of 18-34 does not have an odds ratio plot, but the coefficient plot

of this category in Figure B.1 shows an increasing trend.

Other interesting trends for the socio-economic and demographic vari-

ables, include the male category in which there is a increasing odds ratio

trend which begins from an odds ratio below one to an odds ratio above

one compared to the female reference category. The divorced, widowed, or

separated marital status category shows a decreasing odds ratio trend for
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being obese compared to the the reference married category, while the never

married category showed a constant odds ratio trend. The reference cate-

gory for martial status also has a decreasing coefficient trend as shown in

Figure B.1. For the education variable, all the categories including the ref-

erence category have more or less a constant trend except for the education

category of grade 11 or less. In Figure 5.3, we see a non-linear trend for

this category that begins to decrease after the year 2000, but then becomes

constant after the year 2005. The medium income level category has an

increasing odds ratio trend which is above one, while the low income level

trend is constant compared to the high income reference category (which has

an increasing coefficient trend). The does not work category has a decreas-

ing odds ratio trend that begins from from odds ratios slightly above one

and then decreases to odds ratios below one, while the retired have a con-

stant odds ratio trend compared to the working reference category. For the

race variable, the black category has a relatively constant odds ratio trend

as does the coefficient trend of the white reference race category. However,

the other race category has a non-linear odds ratio trend that increases then

decreases after the year 2005, and is always below an odds ratio of one. The

Hispanic race category also has a non-linear odds ratio trend that decreases

then increases after the year 2005 (odds ratios above one). Finally, for the

region variable, the Midwest and South regions have increasing odds ratio

trends compared to the West reference category.

For the remaining variables in the model, only having a health plan

has a non-constant odds ratio trend as shown in Figure 5.3. The does not

exercise category has a constant odds ratio trend, although the does perform

exercise reference category has a decreasing coefficient trend in Figure B.2.

Therefore, this indicates that not performing exercise has a steadily higher

odds of being obese compared to performing exercise. Both categories of the

general health variable have constant trends. For the health plan variable,

the category ’ have a health plan’ has an increasing odds ratio trend that

is below one, however the increase begins to level off around the year 2005

compared to the ’have no health plan’ category. This indicates that having

a health plan while being protective for being obese (odds ratios below one)

compared to having no health plan, these odds ratios are moving towards

one in the most recent years.
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Figure 5.3: Odds ratio plots of the obesity time VCM for the USA.
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As was conducted for the final varying coefficient model chosen from

the Italian data analysis, a comparison of the residuals from the final model

above and the residuals from the same model fit using simulated independent

data was performed. As in the Italian case, the plots of these residuals ver-

sus the obesity fitted values produced very similar plots, therefore possibly

indicating that the residuals are in fact independent.

5.4.2 Part II: Spatial VCM for Florida

For the spatially varying coefficient models, the modifying variable is

space which is represented by s (replacing the modifying variable of time

t found in the previous models). For the analysis space was represented

by the longitude and latitude coordinates of the centroids of all 67 Florida

counties. As was conducted with the time varying coefficients for the USA,

a model is required that contains variables which are constant to represent

the model in the null hypothesis in the tests. This was found to be the

model similar to Model 5.1 which contains a spatially varying intercept as

this was found to be significantly spatially varying when tested against the

parametric logistic model. This model can be written as:

logit(OBS) = b0 +

p∑
j=1

bjZj + a0(s). (5.2)

Again we have that OBS is the outcome variable obesity, a0(s) is the spatially

varying intercept, and Zj are the covariates with their constant coefficients

bj . The same procedure was followed to build the varying coefficient model

with the results summarized in Table 5.2, with p-values less than 0.05 indi-

cated in bold.

As shown in the first part of Table 5.2, the variables age, sex, education,

income, physical activity, smoke, and general health were found to have

significantly spatially varying coefficients. The variables work, race, and

health plan were found to have spatially constant coefficients, and were

therefore not including in the building of the model in the second part of

Table 5.2. The final spatial varying coefficient model found in the step-

wise building of the model, was Model V which contains spatially varying

coefficients for the variables age, income, education, sex, physical activity

and smoke. The general health variable was found to have spatially constant
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Table 5.2: Constructing the spatial VCM for obesity outcome in the Florida
(Part II).

Model Description time (min) p-value H0 used

Selection of variables that have varying coefficients

Model age LM + te(x,y):age 3.5 0.017 LM

Model sex LM + te(x,y):sex 1.4 <0.001 LM

Model edu LM + te(x,y):edu 3.7 0.045 LM

Model work LM + te(x,y):work 2.2 0.247 LM

Model race LM + te(x,y):race 5.0 0.060 LM

Model income LM + te(x,y):income 2.3 0.004 LM

Model phy LM + te(x,y):phy 1.3 0.032 LM

Model smoke LM + te(x,y):smoke 1.4 0.006 LM

Model hplan LM + te(x,y):hplan 1.4 0.444 LM

Model genhealth LM + te(x,y):genhealth 1.5 0.022 LM

Finding the full varying coefficient mode

Model I Model age + te(x,y):income 11.3 0.009 Model age

Model II Model I + te(x,y):edu 32.7 0.014 Model I

Model III Model II + te(x,y):sex: 53.5 <0.001 Model II

Model IV Model III + te(x,y):phy 94.4 0.026 Model III

Model V Model IV + te(x,y):smoke 209.9 0.003 Model IV

Model VI Model V + te(x,y):genhealth 340.1 0.166 Model V

Notes: LM - Model 5.2, te(x,y) - tensor product of coordinates, variable abbreviations

found in Table B.2.

coefficients when other spatially varying coefficients were found in the model.

The final model found can be written as:

Model V : logit(OBS) = b0 +

p∑
j=1

bjZj + a0(s) + a1(s)age+ a2(s)income

+ a3(s)phy + a4(s)edu+ a5(s)sex+ a6(s)smoke,

where
∑6

i=1 ak(s) are the spatially varying coefficients for the variables age,

income, physical activity, education, sex and smoke.

To understand the spatial variations of these coefficients, maps are pro-

duced which show the probabilities of obesity for each category at each

centroid while keeping the other variables constant at the reference level.

These plots can be compared to the reference map (map the reference cat-

egories for all the variables), to compare between categories. In addition,
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each individual map for each category can show how the obesity probabilities

and coefficients are varying by space. A flat map of the same probabilities

indicates that the coefficients did not vary spatially.

One can clearly see when comparing each category to the reference map

in Figure 5.4, which categories give higher probabilities of obesity and in

which counties. For instance for the female category, we see that the prob-

abilities are lower than the reference map (which contains the the male

category) in almost all the counties. The highest probabilities were found

for the non-smoker and does not exercise categories, which is expected as

these categories had the highest odds ratios in the parametric results of Ta-

ble B.4. In the parametric results the black race category also had a high

odds ratio of being obese compared to whites; however, the race variable was

found to have spatially constant coefficients according to the test as shown

in Table 5.2, and therefore there is no map produced for the race categories.

The high obesity rates in the does not exercise and non-smoker maps also

appear to be spatially varying as we see different probabilities of obesity in

different counties. The highest probabilities of obesity (over 20%) appear

in some counties in the North and South of Florida. More spatial variation

can be seen in the grade 11 or less category, which contains a county in

the Northwest (Escambia county) with a predicted probability of obesity

as low as 6-10% for this category, while also having obesity probabilities of

22-26% in the Southeastern and Northeastern counties. Other categories

have less spatial variation, such as the age category 65 and over which have

predicted probabilities of obesity between 6-14% in all the counties. Low

income appears to be more spatially varying than medium income as we see

several different probabilities of obesity in different counties for those with

low income, with higher probabilities of obesity in the Southeastern and

Northwestern counties compared to the other counties. For medium income,

the probability of obesity was divided in two regions, with the Northern

counties all having probabilities between 10-14% , and the Southern counties

between 14-18%.

To check whether there is any spatial auto-correlation in the final model,

a variogram of the model residuals was produced as shown in Figure 5.5

using the geoR package in R. Variograms plot the variance of the pairwise

residual differences from two spatial locations (the longitude and latitude

in this case) versus the distance between these two spatial coordinates. A
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(a) reference map (b) females

(c) age35 − 49 (d) age50 − 64 (e) age65+

(f) medium income (g) low income

(h) some university (i) high school (j) grade 11 or less

(k) does not exercise (l) non smoker

Figure 5.4: Maps of the probabilities of obesity for each category of the variables found
to be significantly spatially varying. The reference map shows the probabilities when
the reference categories males, age 18 − 34, high income, university graduate and above
education, does exercise, and current smoker are selected.
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variogram which is flat (a constant horizontal straight line) indicates that

the residuals are uncorrelated, while residuals which are spatially correlated

will result in a variogram which increases sharply before plateauing (Wood,

2006a). The figure below shows a flat variogram, which indicates that the

final spatial varying coefficient model found has no spatial auto-correlation.
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Figure 5.5: Variogram of residuals from the final spatial VCM.

In addition to testing for spatial auto-correlation, further analysis was

conducted to check whether there are any boundary effects in the selected

final spatial varying coefficient model. The results of this analysis are shown

in Appendix B.3 and indicate that there are in fact no or very little boundary

effects. This is expected as the method used is a very flexible model, however

this is provided that enough knots are used in the model.
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Chapter 6

Discussion and conclusions

The approach presented and discussed provides an alternative method

for the study of health surveillance data for temporal and spatial trends. Us-

ing varying coefficient models provides a sufficiently dynamic approach for

studying trends while taking into consideration the relationships between

the changes in the effects of the independent variables in the model. The

traditional methods used for the analysis of public health surveillance data

(such as BRFS data), while important for studying the trends of outcomes

as well as for understanding the impact of certain health policies on these

outcomes, do not look at the time or spatial related effects. Therefore, in

the traditional methods, a different question is being addressed compared

to that from using the varying coefficient model approach. The application

of the varying coefficient model approach to BRFS data produces results

which can directly show the improving or deteriorating situations in cer-

tain subgroups of the population with respect to the outcome of interest.

In both applications, using the smoking status outcome in Italy and the

obesity outcome in the U.S.A., it was found that certain categories had

increasing odds ratio trends while others decreased, therefore highlighting

which subgroups in the population to target in health policy interventions.

The same is true for the spatial analysis, in which one can see where and

in which subgroups interventions need to be made. The next step would be

constructing a spatial-temporal model to not only see where interventions

are required, but how this is changing over time and in which subgroups of

the population.

The comparison of the five techniques to fit the models in the Italian



78 CHAPTER 6. DISCUSSION AND CONCLUSIONS

results chapter, was mainly conducted between estimation methods that re-

quired the selection of the number of knots to fit the smooth functions (such

as in polynomial spline estimation), and methods which did not require this

step since a high number of knots are added with a penalty to control the

smoothness. Comparisons were also made between two functions used in the

R software mgcv package, one which is designed for large datasets. The high-

est computation times were found when knot selection was required. When

using P-splines or smoothing splines, knot selection was not required and

computation times were improved especially when using the bam function

designed for large datasets compared to the gam function. The selection

of P-splines as the recommended method was due to the flexibility this

method gives the user in selecting the degree of the spline and the degree

of the penalty separately, therefore giving more control over the nature of

the smoothing functions. Local regression was not used in the analysis and

was not recommended, as this method does not allow for a separate level of

smoothing for each coefficient. Therefore, this method assumes that all the

coefficients have the same level of smoothness which may not be the case. A

two-step local regression procedure was developed to provide two levels of

smoothness (less smooth and more smooth) (Fan and Zhang, 2000), however

this still does not have a separate level of smoothness for each coefficient as

is the case with estimation using splines.

There are some limitations to using the varying coefficient model ap-

proach with non-parametric techniques. For one, when studying temporal

trends, the larger the observation period the more likely the method used to

construct the varying coefficient models will capture changes in the coeffi-

cients even if the change is not very large. This was evident in the U.S. data

analysis in which for the 168 months of observation, the method required

almost all the independent variables to have varying coefficients even though

many of the coefficient plots showed relevantly constant trends. This is a

problem from a computational point of view, as the more there are variables

with varying coefficients required in the model, the greater the computation

time. In fact, the final model for the U.S. time varying coefficient model

could not be completed due to the large computation time and memory re-

quired. Increases in the period of observation also means that more knots

are required in the model which also increases computation time. In fact,

for the U.S.A. analysis three knots were taken for each year of observation,
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as placing the full number of knots (one for each month for 168 months)

would have been computational infeasible. The recommendation is there-

fore to use a limited number of variables when the sample size becomes

significantly large. Despite these issues, the recommended method of using

the P-splines with the bam function, still allowed for fitting a varying co-

efficient model to a large dataset from the U.S. BRFSS (over two million

observations) with eleven variables having significant varying coefficients in

the final model, and with an acceptable computation time (1113.8 minutes

or approximately 19 hours). With the growing importance of big data and

the fact that BRFS systems (both in Italy and the U.S.A.) are still ongoing

and therefore the sample size is continuously increasing, computation time

becomes an important issue and it is important to have a method that is

practical and feasible to use in future applications.

Another important limitation is regarding the method used for the spa-

tial varying coefficient models. The method used with taking the ten-

sor product of the variables which represent the longitude and latitude of

the geographical centroids, do not take into account the boundary effects.

Bayesian methods are usually used for studying spatial varying coefficient

models and are able to account for boundary effects. However, the increased

computation time and the assumptions required for selecting the prior distri-

butions are some limitations of using Bayesian methods. The method used

here for the spatial varying coefficient models is still a very flexible model

which can take into account the spatial local variations (given that enough

knots are provided), and give us a good idea of the changes in the prob-

abilities of the outcome of interest across space. Even if boundary effects

could be present in the model, their contribution in predicting the outcome

probabilities should not be of greater importance than the contributions of

the independent variables and their varying coefficients which are present

in the model (as was found in further analysis in Appendix B.3). Another

issue, is the use of geographical centroids for representing space. The use

of population centroids may be more meaningful for the analysis of health

data as it takes the coordinates of highest population locations.

Finally, as the outcome variables used in both applications were binary

variables and the measures were not aggregated before analysis, model di-

agnostics can be difficult to obtain. The usual plots of fitted values versus

the residuals are not meaningful in this case (Wood, 2006a). However, other
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techniques can be used in this case, for instance comparing the residuals of

the final model to the residuals of the final model using simulated data (in-

dependent observations) (Wood, 2006a). This was conducted for both time

varying coefficient models from the Italian and the U.S.A. data, and in both

bases the results have shown that the residuals may in fact be independent.

For the spatial varying coefficient model, a variogram was produced which

showed that the residuals are spatially independent. Therefore, as expected

this provides possible evidence that the data are independent since a new

random sample is taken each month for these BRFS data.

In conclusion, the varying coefficient approach can be a useful tool for

obtaining more insight from the BRFS data. It provides a novel technique

for studying temporal and spatial trends in the public health field with this

type of data, and can be easily adapted to any health outcome of interest

and with simple to follow steps. The computation times are also reasonable,

although with increasing periods of observation the computation time will

naturally increase. Finally, the method can produce results in forms that are

easily understood by health practitioners or health policy makers in order

to influence decision makers for health policy interventions.
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Appendices: Italian Data

A.1 Parametric Results: Italian Analysis

Table A.1: Descriptives of variables used for analysis using the Italian
PASSI data.

Variable (abbreviation) No. Percent

Response Variable

Smoking status (smoke) Smoker 41654 28.1

Non smoker 106612 71.9

Socio-economic and Demographic Variables

Age (age) 18-29 26634 18.0

30-39 31351 21.1

40-49 35119 23.7

50-59 28398 19.2

60-69 26764 18.1

Sex (sex) Female 75293 50.8

Male 72973 49.2

Marital Status (mstatus) Married 90918 61.3

Single 45603 30.8

Widowed/Div./Sep.* 11745 7.9

Education (edu) University 19272 13.0

Continued on next page
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Table A.1 – Continued from previous page

Variable (abbreviation) No. Percent

High school 65347 44.1

Middle school 46575 31.4

Primary school or less 17072 11.5

Income level (inc) Low 17912 12.1

Medium 58448 39.4

High 71906 48.5

Work status (work) Yes 87124 58.8

No 61142 41.2

Region (region) North 74687 50.4

Centre 36275 24.5

South 37304 25.2

Citizenship (citizen) Italian 142845 96.3

Non-italian 5421 3.7

Lifestyle Variables and health risk variables

Physical activity (phy) Active 49051 33.1

Partially active 56799 38.3

Sedentary 42416 28.6

Alcohol consumption (alco) Non-drinker 90575 61.1

Low risk drinker 42428 28.6

High risk drinker 15263 10.3

Depression (depress) Depressed 9843 6.6

Not depressed 138423 93.4

*Widowed, divorced, or separated.
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Table A.2: Prevalence of smoking status by socio-demographic and health
risk factors as well as unadjusted and adjusted odds ratios using the Italian
PASSI data.

Non smoker Smoker Unadjusted Adjusted

Variable No. (%) No. (%) OR (95% C.I.) OR (95%C.I.)

Socio-economic and Demographic Variables

Age

18-29 17513 (65.8) 9121 (34.2) Referent group Referent group

30-39 21443 (53.7) 9908 (31.6) 0.89 (0.86-0.92)*** 0.98 (0.94-1.01)

40-49 24819 (70.7) 10300 (29.3) 0.80 (0.77-0.82)*** 0.87 (0.83-0.91)***

50-59 20840 (73.4) 7558 (26.6) 0.70 (0.67-0.72)*** 0.78 (0.74-0.82)***

60-69 21997 (82.2) 4767 (17.8) 0.42 (0.40-0.43)*** 0.51 (0.48-0.54)***

Sex

Female 57410 (76.2) 17883 (23.8) Referent group Referent group

Male 49202 (67.4) 23771 (32.6) 1.60 (1.52-1.59)*** 1.58 (1.54-1.62)***

Marital Status

Married 69313 (76.2) 21605 (23.8) Referent group Referent group

Single 29672 (65.1) 15931 (34.9) 1.72 (1.68-1.77)*** 1.47 (1.42-1.52)***

Widowed/Div. 7627 (64.9) 4118 (35.1) 1.73 (1.66-1.80)*** 1.84 (1.77-1.92)***

Education

University 14957 (77.6) 4315 (22.4) Referent group Referent group

High school 46828 (71.7) 18519 (28.3) 1.37 (1.32-1.42)*** 1.35 (1.30-1.41)***

Middle school 31313 (67.2) 15262 (32.8) 1.69 (1.62-1.76)*** 1.80 (1.72-1.87)***

Primary or less 13514 (79.2) 3558 (20.8) 0.91 (0.87-0.96)*** 1.41 (1.33-1.49)***

Income

Low 11280 (63.0) 6632 (37.0) 1.79 (1.73-1.85)*** 1.75 (1.68-1.82)***

Medium 41205 (70.5) 17243 (29.5) 1.27 (1.24-1.31)*** 1.28 (1.24-1.31)***

High 54127 (75.3) 17779 (24.7) Referent group Referent group

Work status

Work 59878 (68.7) 27246 (31.3) Referent group Referent group

Do not work 46734 (76.4) 14408 (23.6) 0.68 (0.66-0.69)*** 0.75 (0.73-0.77)***

Region

North 54510 (73.0) 20177 (27.0) Referent group Referent group

Centre 25415 (70.1) 10860 (29.9) 1.15 (1.12-1.19)*** 1.21 (1.17-1.24)***

South 26687 (71.5) 10617 (28.5) 1.10 (1.05-1.11)*** 1.11 (1.07-1.14)***

Citizenship

Italian 102846 (72.0) 39999 (28.0) 0.89 (0.84-0.94) )*** 0.98 (0.92-1.05)

Non-italian 3766 (69.5) 1655 (30.5) Referent group Referent group

Continued on next page
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Table A.2 – Continued from previous page

Variable No. (%) No. (%) OR (95% C.I.) OR (95%C.I.)

Lifestyle and Health Risk Variables

Physical activity

Active 34829 (71.0) 14222 (29.0) Referent group Referent group

Partially active 41835 (73.7) 14964 (26.3) 0.88 (0.85-0.90)*** 0.95 (0.92-0.98)***

Sedentary 29948 (70.6) 12468 (29.4) 1.02 (0.99-1.05) 1.15 (1.12-1.19)***

Alcohol

Non-drinker 68275 (75.4) 22300 (24.6) Referent group Referent group

Low risk drinker 29377 (69.2) 13051 (30.8) 1.36 (1.33-1.40)*** 1.51 (1.47-1.55)***

High risk drinker 8960 (58.7) 6303 (41.3) 2.15 (2.08-2.23)*** 2.31 (2.22-2.40)***

Depression

Depressed 6335 (64.4) 3508 (35.6) 1.46 (1.39-1.52)*** 1.43 (1.36-1.49)***

Not depressed 100277 (72.4) 38146 (27.6) Referent group Referent group

Significance codes: *** 0.001, ** 0.01, * 0.05. Each variable gave a p-value of < 0.001 in the χ2 test

of independence. OR - odds ratios with 95% confidence intervals.
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Figure A.3: Comparison of income categories coefficient plots from the
smoking status time VCM between four methods (Method I did not include
an income variable).
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Figure A.4: Comparison of physical activity coefficient plots from the smok-
ing status time VCM between four methods (Method I did not include a
physical activity variable).
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Appendix B

Appendices: U.S.A. Data

B.1 Parametric Results: USA Analysis

Table B.1: Descriptives of variables used for obesity time VCM for the USA
from 1993-2009 (Part I).

Variable (abbreviation) No. Percent

Response Variable

Obesity (obese) Obese 487111 23.6

Not obese 1578578 76.4

Socio-economic and Demographic Variables

Age (age) 18-34 416991 20.2

35-49 591648 28.6

50-64 554967 26.9

65+ 502083 24.3

Sex (sex) Female 1232820 59.7

Male 832869 40.3

Marital Status (mstatus) Married/couple 1196085 57.9

Widowed/Div./Sep.* 577875 28.0

Never married 291729 14.1

Education (edu) University+ 650556 31.5

Some university 558948 27.1

High school 643981 31.2

< grade 11 212204 10.3

Continued on next page
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Table B.1 – Continued from previous page

Variable (abbreviation) No. Percent

Income level (income) Low 142280 6.9

Medium 1186708 57.4

High 736701 35.7

Work status (work) Works 1197726 58.0

Retired 470179 22.8

Does not work 397784 19.2

Region (region) West 459546 22.2

North East + DC 498748 24.1

Mid West 478134 23.2

South 629261 30.5

Race (race) White 1691971 81.9

Black 152806 7.4

Hispanic 109351 5.3

Other 111561 5.4

Lifestyle and health risk variables

Physical exercise (phy) Exercises 1526432 73.9

Does not exercise 539257 26.1

Fruit and 5+ servings 510563 24.7

vegetable consumption (fruit) < 5 servings 1555126 75.3

Smoking status (smoke) Current smoker 423058 20.5

Non smoker 1642631 79.5

Other variables

Health care (hplan) Has health plan 1827584 88.5

access Does not have health plan 238105 11.5

General health (genhealth) Good to excellent 1717326 83.1

status Poor to fair 1717326 16.9

*Widowed, divorced, or separated.
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Table B.2: Descriptives of variables used for the obesity spatial VCM for
Florida state in 2010 (Part II).

Variable (abbreviation) No. Percent

Response Variable

Obesity (obese) Obese 9431 29.4

Not obese 22679 70.6

Socio-economic and Demographic Variables

Age (age) 18-34 2846 8.9

35-49 5782 18.0

50-64 10237 31.9

65+ 13245 41.2

Sex (sex) Female 19849 61.8

Male 12261 38.2

Marital Status (mstatus) Married/couple 17983 56.0

Widowed/Div./Sep.* 11387 35.5

Never married 2740 8.5

Education (edu) University+ 9392 29.2

Some university 9132 28.4

High school 10422 32.5

< grade 11 3164 9.9

Income level (income) Low 4034 12.6

Medium 19758 61.5

High 8318 25.9

Work status (work) Works 12263 38.2

Retired 11714 36.5

Does not work 8133 25.3

Race (race) White 26861 83.7

Black 2432 7.6

Hispanic 1717 5.3

Other 1100 3.4

Continued on next page
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Table B.2 – Continued from previous page

Variable (abbreviation) No. Percent

Lifestyle and health risk variables

Physical exercise (phy) Exercises 22808 71.0

Does not exercise 9302 29.0

Smoking status (smoke) Current smoker 5854 18.2

Non smoker 26256 81.8

Other variables

Health care (hplan) Has health plan 27832 86.7

access Does not have health plan 4278 13.3

General health (genhealth) Good to excellent 24510 76.3

status Poor to fair 7600 23.7

*Widowed, divorced, or separated.
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Table B.3: Prevalence of obesity by socio-demographic and health risk fac-
tors as well as unadjusted and adjusted odds ratios for the USA between
1993-2009 (Part I).

Not obese Obese Unadjusted Adjusted

Variable No. (%) No. (%) OR (95% CI) OR (95% CI)

Age

18-34 340758 (81.7) 76233 (18.3) Referent group Referent group

35-49 446888 (75.5) 144760 (24.5) 1.45 (1.43-1.46)*** 1.48 (1.47-1.50)***

50-64 394038 (71.0) 160929 (29.0) 1.82 (1.81-1.84)*** 1.81 (1.79-1.83)***

65+ 396894 (79.0) 105189 (21.0) 1.18 (1.17-1.20)*** 1.03 (1.02-1.04)***

Sex

Female 943740 (76.6) 289080 (23.4) Referent group Referent group

Male 634838 (76.2) 198031 (23.8) 1.02 (1.01-1.03)*** 1.07 (1.07-1.08)***

Marital Status

Married/couple 917082 (76.7) 279003 (23.3) Referent group Referent group

Widowed/Div. 435676 (75.4) 142199 (24.6) 1.07 (1.06-1.08)*** 0.97 (0.96-0.98)***

Never married 225820 (77.4) 65909 (22.6) 0.96 (0.95-0.97)*** 1.02 (1.01-1.03)***

Education

University+ 529781 (81.4) 120775 (18.6) Referent group Referent group

Some university 420410 (75.2) 138538 (24.8) 1.45 (1.43-1.46)*** 1.38 (1.37-1.39)***

High school 478012 (74.2) 165969 (25.8) 1.52 (1.51-1.54)*** 1.36 (1.34-1.37)***

<grade 11 150375 (70.9) 61829 (29.1) 1.80 (1.78-1.82)*** 1.35 (1.34-1.37)***

Income

High 583771 (79.2) 152930 (20.8) Referent group Referent group

Medium 898974 (75.8) 287734 (24.2) 1.22 (1.21-1.23)*** 1.11 (1.10-1.12)***

Low 95833 (67.4) 46447 (32.6) 1.85 (1.83-1.87)*** 1.43 (1.41-1.45)***

Work status

Works 921920 (77.0) 275806 (23.0) Referent group Referent group

Retired 367471 (78.2) 102708 (21.8) 0.93 (0.93-0.94)*** 0.90 (0.89-0.91)***

Does not work 289187 (72.7) 108597 (27.3) 1.26 (1.25-1.27)*** 0.99 (0.98-0.99)**

Region

West 360699 (78.5) 98847 (21.5) Referent group Referent group

NorthE+DC 389526 (78.1) 109222 (21.9) 1.02 (1.01-1.03)*** 0.98 (0.97-0.99)***

Midwest 358436 (75.0) 119698 (25.0) 1.22 (1.21-1.23)*** 1.17 (1.16-1.18)***

South 469917 (74.7) 159344 (25.3) 1.24 (1.23-1.25)*** 1.07 (1.06-1.08)***

Race

White 1313672 (77.6) 378299 (22.4) Referent group Referent group

Black 97857 (64.0) 54949 (36.0) 1.95 (1.93-1.97 )*** 1.71 (1.69-1.73)***

Hispanic 80638 (73.7) 28713 (26.3) 1.24 (1.22-1.25) *** 1.06 (1.04-1.07)***

Other 86411 (77.5) 25150 (22.5) 1.01 (0.99-1.03) 0.99 (0.97-1.00)

Physical activity

Exercises 1208995 (79.2) 317437 (20.8) Referent group Referent group

No exercise 369583 (68.5) 169674 (31.5) 1.75 (1.74-1.76)*** 1.48 (1.47-1.49)***

Continued on next page
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Table B.3 – Continued from previous page

Variable No. (%) No. (%) OR (95% CI) OR (95% CI)

Fruit & vegetable consumption

5+ 405500 (79.4) 105063 (20.6) Referent group Referent group

< 5 1173078 (75.4) 382048 (24.6) 1.26 (1.25-1.27)*** 1.16 (1.15-1.17)***

Smoking status

Non smoker 1240742 (75.5) 401889 (24.5) Referent group Referent group

Current smoker 337836 (79.9) 85222 (20.1) 0.78 (0.77-0.79)*** 0.61 (0.60-0.61)***

Health care access

No health plan 177042 (74.4) 61063 (25.6) Referent group Referent group

Has health plan 1401536 (76.7) 426048 (23.3) 0.88 (0.87-0.89)*** 1.04 (1.03-1.05)***

General health status

Good/excellent 1356546 (79.0) 360780 (21.0) Referent group Referent group

Poor/fair 222032 (63.7) 126331 (36.3) 2.14 (2.12-2.16)*** 1.86 (1.84-1.87)***

Significance codes: *** 0.001, ** 0.01, * 0.05. Each variable gave a p-value of < 0.001 in the χ2 test

of independence. OR - odds ratios with 95% confidence intervals.
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Table B.4: Prevalence of obesity by socio-demographic and health risk
factors as well as unadjusted and adjusted odds ratios for Florida in 2010
(Part II).

Not obese Obese Unadjusted Adjusted

Variable No. (%) No. (%) OR (95% CI) OR (95% CI)

Age

18-34 2059 (72.3) 787 (27.7) Referent group Referent group

35-49 3863 (66.8) 1919 (33.2) 1.30 (1.18-1.44)*** 1.31 (1.18-1.45)***

50-64 6774 (66.2) 3463 (33.8) 1.34 (1.22-1.47)*** 1.29 (1.16-1.43)***

65+ 9983 (75.4) 3262 (24.6) 0.85 (0.78-0.94)*** 0.79 (0.70-0.89)***

Sex

Female 14178 (71.4) 5671 (28.6) 0.90 (0.86-0.95)*** 0.83 (0.79-0.88)***

Male 8501 (69.3) 3760 (30.7) Referent group Referent group

Marital Status

Married/couple 12753 (70.9) 5230 (29.1) Referent group Referent group

Widowed/Div. 8082 (71.0) 3305 (29.0) 1.00 (0.95-1.05) 0.96 (0.91-1.02)

Never married 1844 (67.3) 896 (32.7) 1.19 (1.09-1.29)*** 1.00 (0.91-1.10)

Education

University+ 7175 (76.4) 2217 (23.6) Referent group Referent group

Some university 6386 (69.9) 2746 (30.1) 1.39 (1.30-1.49)*** 1.36 (1.27-1.46)***

High school 7147 (68.6) 3275 (31.4) 1.48 (1.39-1.58)*** 1.37 (1.27-1.47)***

< grade 11 1971 (62.3) 1193 (37.7) 1.96 (1.80-2.12)*** 1.56 (1.41-1.72)***

Income

High 6236 (75.0) 2082 (25.0) Referent group Referent group

Medium 13946 (70.6) 5812 (29.4) 1.25 (1.18-1.32)*** 1.02 (0.96-1.09)

Low 2497 (61.9) 1537 (38.1) 1.84 (1.70-2.00)*** 1.17 (1.06-1.30)**

Work status

Works 8544 (69.7) 3719 (30.3) Referent group Referent group

Retired 8781 (75.0) 2933 (25.0) 0.77 (0.72-0.81)*** 0.91 (0.84-0.98)*

Does not work 5354 (65.8) 2779 (34.2) 1.19 (1.12-1.27)*** 0.97 (0.91-1.04)

Race

White 19447 (72.4) 7414 (27.6) Referent group Referent group

Black 1290 (53.0) 1142 (47.0) 2.32 (2.13-2.52 )*** 1.95 (1.78-2.13)***

Hispanic 1157 (67.4) 560 (32.6) 1.27 (1.14-1.41) *** 1.02 (0.91-1.14)

Other 785 (71.4) 315 (28.6) 1.05 (0.92-1.20) 0.92 (0.80-1.06)

Physical activity

Exercises 17002 (74.5) 5806 (25.5) Referent group Referent group

No exercise 5677 (61.0) 3625 (39.0) 1.87 (1.78-1.97)*** 1.67 (1.58-1.77)***

Smoking status

Non smoker 18258 (69.5) 7998 (30.5) 1.35 (1.27-1.44)*** 1.88 (1.75-2.02)***

Current smoker 4421 (75.5) 1433 (24.5) Referent group Referent group

Continued on next page



96 APPENDIX B. APPENDICES: U.S.A. DATA

Table B.4 – Continued from previous page

Variable No. (%) No. (%) OR (95% CI) OR (95% CI)

Health care access

No health plan 2865 (67.0) 1413 (33.0) Referent group Referent group

Has health plan 19814 (71.2) 8018 (28.8) 0.82 (0.77-0.88)*** 1.07 (0.99-1.16)

General health status

Good/excellent 18133 (74.0) 6377 (26.0) Referent group Referent group

Poor/fair 4546 (59.8) 3054 (40.2) 1.91 (1.81-2.02)*** 1.67 (1.57-1.77)***

Significance codes: *** 0.001, ** 0.01, * 0.05. Each variable gave a p-value of < 0.001 in the χ2 test

of independence. OR - odds ratios with 95% confidence intervals.
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B.2 Time Varying Coefficient Plots: USA analysis
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Figure B.1: Time varying coefficient plots for age, sex, marital status,
education, income, and work variables of the obesity VCM (Part I analysis).
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Figure B.2: Time varying coefficient plots for race, region, physical exer-
cise, health plan, and general health variables of the obesity VCM (Part I
analysis).
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B.3 Boundary effect analysis for the spatial VCM

To check whether there are boundary effects in the spatial varying coef-

ficient model, two methods were used. Method I tests whether the probabil-

ities of the border counties (i.e. counties that are on the border) predicted

from the final spatial varying coefficient model,

logit(OBS) = b0 +

p∑
j=1

bjZj + a0(s) + a1(s)age+ a2(s)income (B.1)

+ a3(s)phy + a4(s)edu+ a5(s)sex+ a6(s)smoke,

which was fit with all the data, lies in the 95% confidence interval of the

probabilities of the border counties from the same model fit using only in-

land county data (i.e. counties that are not on the border). For Method II, a

new model was fit which includes a dummy variable for the counties (border

or inland county) in the same final spatial varying coefficient model. In ad-

dition, interaction terms with this dummy variable and the variables which

had spatially varying coefficients were added. This model can be written as:

logit(OBS) = b0 +

p∑
j=1

bjZj + a0(s) + a1(s)age+ a2(s)income (B.2)

+ a3(s)phy + a4(s)edu+ a5(s)sex+ a6(s)smoke

+ α1cnty + α2cnty:age+ α3cnty:income+ α4cnty:phy

+ α5cnty:edu+ α6cnty:sex+ α7cnty:smoke,

where cnty is the county dummy variable. The results of this model show

that the p-values of this dummy variable and all the interaction terms were

not significant except for the interaction with female category and non-

smoker category. The following step was to check the probabilities, in which

we see whether the probabilities of the border counties predicted from Model

B.1 lies in the 95% confidence interval of the probabilities of the border

counties from Model B.2. The results of these coverage probabilities for

both methods are found in Table B.5.

The results shown from Method I have reasonably high coverage prob-

abilities except for the two age categories 35-49 and 50-64. The data used

to fit the model for this method uses only inland county data, which pro-
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Table B.5: Checking boundary effects of final spatial VCM, with reported
coverage probability for each category with spatially varying coefficients
using two Methods.

Method I Method II
Variable Categories Cov. prob. (%) Cov. prob. (%)

Reference categories 90.7 100.0
Sex female 93.0 97.7
Age 35-49 58.1 100.0

50-64 51.1 97.7
65+ 88.4 100.0

Education university 93.0 100.0
high school 100.0 100.0
< grade 11 100.0 100.0

Income medium 97.7 100.0
low 95.3 100.0

Physical Activity no exercise 90.7 100.0
Smoking status non-smokers 86.1 100.0

duced a much smaller sample size of 11,388 observations compared to the

total sample size of 32,110 and the border county data of 20,722. Therefore,

there may be some lack of precision of the estimates due to this reduced

sample size. However, we still see that most of the categories have high

coverage probabilities. In Method II, we see very high coverage probabili-

ties, in fact only two categories did not give a 100% coverage probability.

This indicates that the county dummy variable and their interaction terms

are not changing the probability estimates and are therefore not important

predictors in the model, which was also indicated by the non-significant p-

values of the these variables in the model. These results indicate that there

is little boundary effect in the final spatial varying coefficient model shown

in Model B.1.
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