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Abstract 
Electric vehicles are being considered as one of the pillar of eco-friendly solutions to 

overcome the problem of global pollution and radiations due to greenhouse gases. 

Present thesis work reports the improvement in overall performance of the propulsion 

system of an electric vehicle by improving autonomy and torque-speed characteristic. 

Electric vehicle propulsion system consists of supply and traction system, and are 

coordinated by the monitoring & control system. Case of light electric vehicle propulsion 

system with permanent-magnet (PM) brushless dc (BLDC) drive being used in electric 

scooters and electric-mini cars is considered for analytical study and the implementation 

of the proposed solutions. PM BLDC motor and voltage source inverter are considered as 

a part of traction system and electric energy source such as battery, fuel cell or 

photovoltaic panel are considered as a part of supply system.  

Available electric energy sources are capable of delivering higher current at lower 

terminal voltage, so are connected either in series or -more often- to the higher voltage 

dc-link through a circuital arrangement (boost topology) to achieve higher voltage. For 

the evaluation of boost topologies, traditional dc-to-dc boost converter with cascade VSI 

(DBI) and Z-source inverter (ZSI) are considered for fuel cell and battery as on-board 

energy sources. Evaluation of the convenience of the two supply topologies is carried out 

in terms of the factors defining transistor power utilization, and voltage and current 

transistor solicitation. In addition to mentioned defined factors, sizing of the passive 

components in terms of the power contribution factor of fuel cell is considered. In respect 

to the defined factors, DBI supply is found to be beneficial for PM BLDC drive whereas, 

with respect to the power contribution factor, ZSI supply is good to adopt for the cases 

were major contribution of power is from battery.  

For the improvement in torque-speed characteristics of the considered drive, issue of 

torque ripple due to non-ideal phase commutation in case of conventional square-wave 

phase current (SqPC) supply is studied analytically by establishing a correlation between 

the behavior of the commutating phase currents and motor torque. Behavior of the motor 

torque during commutation for low and high speed zone as a function motor speed and 

defined motor specific quantity are explained in detailed. The analytical results are used 

to explain the dropping torque-speed characteristic of the drive and are verified 

experimentally for a propulsion drive available in the laboratory. Dropping torque-speed 

characteristic limits the use of the drive up till the nominal speed. To overcome this issue 

sinusoidal phase current (SPC) supply is proposed. SPC offers constant motor torque. A 

detailed convenience analysis of SPC over SqPC is carried out. Strategy for the 

implementation of SPC supply is also discussed and the analytical results were verified 

by the experimentally.  

The study of the PM BLDC drive by means of the space phasor/vector approach has been 

executed. While such an approach is quite common for drives with motors with 

sinusoidal back-emf and phase currents, it is not explored in the literature for the present 

case, where back-emfs are trapezoidal and phase currents are square-wave in nature. 

Behavior of the PM BLDC drive has been revisited in stationary plane and the current 

commutation between the motor phases has been explained with the help of phase 

variable vectors. All the results obtained in a-b-c plane are cross verified in stationary 

plane showing the simplicity and potentialities of the vector approach for PM BLDC 

drive.  
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To address the issue of the autonomy of electric vehicles, use of solar energy to assist the 

on-board batteries of an electric mini-car is considered. Photovoltaic Geographical 

Information Systems database provided by Joint Research Centre Europe, is used to 

estimate the solar irradiance available in Padova, Italy. Output of a 0.487 sq-meter, 20-

cell multi-crystalline PV panel is estimated and accordingly a conventional dc-to-dc 

boost converter is designed to interface PV panel with dc-link of a mini-car available in 

the laboratory. Appropriate control is implemented through DSP to track maximum 

power point. Whole system was tested outside the laboratory and measurements were 

carried out. Analytical loss model of the dc-to-dc boost converter is developed to explain 

the variations in gain, efficiency and loss components of the converter under varying 

solar irradiance.  

The thesis work has been carried out at the Laboratory of “Electric systems for 

automation and automotive” headed by Prof. Giuseppe Buja. The laboratory belongs to 

the Department of Industrial Engineering of the University of Padova. 
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Sommario 
I veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per 

superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi 

tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un 

veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-

velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di 

alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e 

controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema 

di propulsione sono stati svolti con riferimento ad un motore brushless a magneti 

permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici 

leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore 

PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da 

sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici.  

Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati 

valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni 

richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse 

mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un 

tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) 

o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle 

due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in 

termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in 

precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di 

potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore 

soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare 

conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle 

batterie.  

Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale 

commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, 

stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del 

motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in 

dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati 

utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi 

sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in 

laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore 

nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata 

un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una 

coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia 

il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la 

strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati 

verificati sperimentalmente.  

E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei 

fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti 

con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in 

letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-

elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il 

comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la 
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commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle 

grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano 

stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale.  

Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. 

Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center  

Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a 

Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 

0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il 

convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua 

di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato 

in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è 

stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un 

modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per 

descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare 

dell’irraggiamento solare.  

Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per 

l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al 

Dipartimento di Ingegneria Industriale dell’Università di Padova. 
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Chapter 1 

Introduction 

Research work reported in this Ph.D. thesis is in the area of Electric Vehicle Propulsion 

System (EVPS). This research carries out the study, performance improvement and 

evaluation of the components of an EVPS. Different components of an EVPS are 

categorized under three subsystem termed as supply system, traction system, and control 

& monitoring system. Supply and traction systems are connected to each other through a 

high-voltage dc-link. Control system & monitoring system continuously monitors the 

activities of two subsystems and other on-board accessories. Traction system of an electric 

vehicle consists of traction motor(s) together with appropriate converters, for controlled 

conversion of energy submitted by the supply system to the dc-link. Converter used for the 

controlled energy conversion are dc-to-ac converter as per the type of traction motor used 

for propulsion. Supply system consists of energy sources alone or together with bi-

directional converters to meet bi-directional power flow requirements for the recovery of 

energy during regeneration. 

Present research considers electric scooters and electric mini-cars as an example of study 

and implementation of developed strategies for the improvement of the performance of 

supply and traction system. Improvement of performance refers to the speed torque 

characteristics of the traction motor and the extension in the autonomy of the considered 

electric vehicles. Both of the considered electric vehicles belongs to the category of light-

electric vehicles whose mobility is limited to a city or town. The two vehicles use 

Permanent-magnet (PM) brushless dc (BLDC) motors for traction. PM BLDC motors are 

characterised by their capability of offering higher power density and motor-torque 

compared to the motors of other types and of same size. Chapter 2 of the thesis discusses 

above mentioned subsystems of the used PM BLDC drive explaining the principle of 

operation, and electrical & mechanical characteristics of the drive. 

PM BLDC motors used for the traction purpose are generally designed for higher terminal 

voltages to reduce the copper loss, whereas the existing on-board dc sources are capable 

of delivering higher current with low terminal voltage. To meet the higher dc-link voltage, 

energy sources are either connected in series or are connected to the dc-link through 

circuital arrangements to achieve proper gain in the voltage. Use of any of the boost 

topology is important for the cases where space and electrical response are big concern, 

such as the cases of fuel cells and photovoltaic (PV) panel as an energy source. Dc-to-dc 

boost converter is one of the popular topology for such case. Chapter 3 of the thesis carries 

out a discussion on the comparative evaluation of another popular boost topology termed 

as Z-source inverter (ZSI) with a topology having a combination of dc-to-dc boost 

converter and VSI termed as DBI for PM BLDC drive having fuel cell as an energy source. 

Case of DBI is a two stage energy conversion process (dc-to-dc and then dc-to-ac); 

contrary to this, ZSI uses z-connected passive network together with VSI and offers single 
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stage energy conversion process (dc-to-ac). For the comparative evaluation, total voltage 

and current solicitation of the transistors, transistor utilisation and the sizing power of the 

passive components are defined as evaluation factors. In addition to this, sizing of the 

passive component as a function of power contribution is considered as another measure. 

Based on the outcome, overall evaluation is carried out for the two topologies. It has been 

found that, the current and voltage ratings of the transistors and sizing power of the passive 

components are quite higher for the ZSI supply compared to the DBI supply. This raises 

cost of the devices and voltage stress on the stator windings of the PM BLDC motor. Thus, 

although the ZSI supply provides single stage power conversion with reduced switching 

losses and short-circuit protection of the transistors, the DBI supply could be preferable. 

The influence of the fuel cell power fraction with respect to the nominal power of the 

traction motor on the supply design states that, for fraction less than 20%, the transistor 

peak current in the ZSI supply is less than that in the DBI supply but this fraction requires 

high values for the inductors. However, as the current solicitation is an important factor 

affecting the cost of the supply, ZSI can be preferred in the cases where the major power 

source is a battery. 

PM BLDC motors are characterized by their trapezoidal phase-back. To ensure flat and 

maximum torque per ampere, motor requires injection of square-wave phase current 

(SqPC) synchronized with the flat portion of the corresponding back-emf. For this VSI 

uses its 120° mode of operation, in which two phases conduct at time. Therefore 

commutation of phase currents takes place with the periodicity of 60° to ensure square-

wave nature of the current. In practice dynamics of the phase currents during phase 

commutation is affected by the phase inductance and limited voltage supply causing 

deviation in the ideal behavior of the phase currents. This deviation causes issues of: a) 

torque ripple, causing discomfort in driving, and b) dropping speed torque characteristic, 

limiting the use of PM BLDC drive up till the nominal speed. Phenomenon of phase current 

commutation is addressed in chapter 4. At first correlation of phase currents with the motor 

torque is established and then behavior of the phase currents during commutation as a 

function of speed and defined motor specific quantity is discussed analytically. Outcome 

of the analytical results was used to explain the issues of torque ripple and dropping speed-

torque characteristic of the motor. Based on the results, nominal speed and torque of the 

motor were defined. As a case study an in-wheel surface mounted PM BLDC motor drive 

used in a light electric vehicle is considered for the experimental verification of the 

obtained analytical results. 

Chapter 5 proposes sinusoidal phase-current (SPC) supply over SqPC supply as a solution 

to utilize the drive up till the nominal speed. In case of square-wave phase current, 

commutation process does not remain complementary, i.e. rate of rise or fall of 

commutating currents defers and affects the non-commutating current by inducting ripple. 

In case of sinusoidal phase current supply, as always all the three-phases continue to 

conduct, phase commutation remains balanced and motor offers a speed independent 

constant torque. For the same copper loss per phase, SPC offers 5% higher torque then 
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SqPC. Convenience analysis of SPC supply is carried out and the improvement in the speed 

torque characteristics is discussed with analytical results. A comparison of the torque ripple 

for the two cases show that: a) the torque ripple in case of SPC remains constant to 

approximately 15% up till the nominal speed after which motor fails to develop required 

torque, whereas torque ripple for SqPC varies from +50% to -50% from low speed to 

nominal speed with 0 at the mid-speed point; b) apart from a span of 22% of nominal speed 

around mid-speed point, torque ripple for SPC remains much lower compared to the case 

of SqPC. Thus the utilization of SPC supply in place of SqPC supply can provide 

significant improvements in overall torque performance. Experimental arrangement has 

been made for the implementation of both kinds of the supply strategy. Implementation is 

discussed starting from the generation of reference currents from the estimated rotor 

position to the injection of phase-currents through proper control action. At last speed-

torque characteristic is evaluated experimentally. 

Use of space-phasor/vector approach for the phase variables is quite common with the ac 

motors having sinusoidal back-emf and phase current. Vector approach for the case of PM 

BLDC motor is never explored, reasoning behind it could be that this is operated by a non-

sinusoidal phase currents. Chapter 6 has revisited the PM BLDC drive behavior in 

stationary plane by presenting a quite simple and powerful approach to understand the 

drive. Under ideal case of commutation for a supply interval, back-emf vector continues 

to move along the side of a regular hexagon; during this time current vector remains 

stationary representing the vertex of a regular hexagon. At the end of the supply interval, 

back-emf changes its slope to the next corresponding side of the hexagon and current 

makes instantaneous transition to the current vector representing next state. Thus trajectory 

of both current and back-emf vectors in stationary plane follow a regular hexagon. Re-

visitation is extended to explain the electrical dynamics of the motor in case of non-ideal 

phase commutation during the low and high speed zone. All the results obtained in the a-

b-c plane were validated in a simple way in stationary plane showing the strength of the 

vector approach for PM BLDC motor drive. 

Another important issue of an electric vehicle is the limited autonomy due to the lower 

energy density and longer charging time of on-board batteries compared to the internal 

combustion engine (ICE) vehicles. Possibilities of fast and ultra-fast charging of the 

batteries are becoming popular and are in their immature stage of research and 

marketization. Another option is the utilization of solar energy to support the batteries. 

Utilization of solar energy for light electric vehicles have constraints of limited available 

on-board space and lower efficiency of PV-panel. Even under such constraints, for the 

cases where mobility of the vehicle is limited within the city, solar energy can be utilised 

to assist energy sources like battery. In Chapter 7 integration of a PV panel with an electric 

mini-car available in the laboratory is considered. At first basics of solar irradiation, 

photovoltaic and datasheet specifications together with the characteristics of a photovoltaic 

module are discussed. Then a discussion on the estimation of solar irradiance available in 

Padova (Italy), is carried out for the calculation of input and output power of a considered 
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0.487 sq-meter, 20-cell multi crystalline PV panel. Based on these data a conventional dc-

to-dc boost converter is designed and built up as an interface between panel and dc-link. 

Appropriate control is implemented through DSP to track the maximum power point 

(MPP). Analytical loss model is developed for the explanation of the variations in gain, 

losses and efficiency as observed during the experimentation under varying solar 

irradiance. Efficiency of the converter is evaluated analytically and experimentally and 

found to be in agreement, showing the accuracy of the developed loss model. 5% increase 

in the autonomy of the electric mini-car is estimated, which is a good assistance by the 

mounted PV panel of such a small area. 
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Chapter 2 

Electric Mini-car 

Summary: An electric mini-car called Birò and produced by Estrima, is considered as a 

case of study and platform for the experimental verification of the proposed strategies for 

the improvement of the performance of the propulsion system of a light electric vehicle. 

Strategies for the improvement in performance and their experimental verifications are 

discussed and presented in separate chapters. Present chapter discusses the electric 

propulsion system for the mini-car. Traction and supply system of an electric vehicle is 

discussed in reference to the mini-car. Discussion on the construction, operation and torque 

speed characteristics of permanent magnet brushless dc motor used is placed under traction 

system. Discussion on the lead-acid battery together with the specification, I-V 

characteristics of the battery used for the vehicle is also presented under supply system. 

 2.1  Electric propulsion system of the electric mini-car 

In general propulsion system of any electric vehicle can be grouped into two parts, termed 

as traction system and the supply system. The two systems are connected to each other 

through a high voltage dc-link. Traction motor together with voltage source inverter (VSI) 

is the part of the traction system. Supply system consists of series connected batteries as 

energy source. In some of the cases, battery is also assisted by the fuel cell or photovoltaic 

panel in combination with ultra-capacitor are also preferred. In addition with the above 

mentioned two parts, vehicle also requires a control system to manage the various 

constraints as required and under the limits with the help of voltage and current sensors. 

Due their higher torque and power density as well as cost and compactness compared to 

the motor of other types of the same size, permanent magnet brushless dc (PM BLDC) 

motors are preferred as traction motor. Figure 2.1.1 shows the schematic of an electric 

vehicle propulsion system (EVPS). 
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Fig. 2.1.1 Schematic of an electric vehicle propulsion system (EVPS) 
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Schematic of the electric propulsion system of BIRO is shown in Figure 2.1.2. It consists 

of two 48V (nominal line-to-line voltage) and 2 kW in-wheel PM BLDC motors with the 

peak power of 4kW. Each motor is connected to a 48V dc-link through two separate VSI. 

Four series connected 12V, 100Ah VRLA batteries are used to feed 48V dc-link. Control 

system of BIRO monitors the state of charge (SOC) of the battery, generates the PWM 

signals for VSI to be operated under specific condition as per drivers requirement under 

constraints set by the manufacture. On board batteries can be charged from 220V, 5A ac 

power point at home or in parking places. 

 2.2  Traction System 

Traction motors for an electric vehicle application require certain characteristics as 

discussed in [1] and are listed as: 

 High torque and power density 

 High starting torque for low speeds and high power for high speed cruising. 

 Wide speed range, with a constant power operating range 3 to 4 times the base 

speed. 

 Higher efficiency over wide speed and torque range including low torque operation. 

 Intermittent overload capability typically twice the rate torque for short duration. 

 High reliability and robustness appropriate to vehicle environment. 

 Acceptable cost. 

Induction motor, switch reluctance motor and the permanent magnet brushless (PMBL) 

motor are possible candidates for the purpose. PMBL motors are efficient, offer higher 

 

Fig. 2.1.2 Schematic of electric propulsion system of BIRO 
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torque and power density together with reliability and robustness compared to the motors 

of the same size and other types. Therefore PMBL motors are preferred for the electric 

vehicle application. These motors cannot be operated by the direct connection to ac or dc 

supply just like in case of induction or dc motors respectively. Rather these need a VSI, 

whose switches are operated as per the angular position of the rotor. Angular position of 

the rotor is sensed by the Hall sensors mounted on to the stator of the motor. This is one of 

the reasons why VSI is considered as a part of traction system in place of part of supply 

system. Figure 2.2.1 shows the layout of traction system. 

 

As per the nature of stator back-emf PMBL motor are classified as PM BLDC motor if 

back-emf is trapezoidal in shape and PM BLAC motor, if the shape is sinusoidal one. For 

light and medium power application PM BLDC motor are considered due to higher torque 

and power density. Since our case study lies in this power range, therefore discussion on 

PM BLDC motor is considered. 

2.2.1 Permanent Magnet Brush-less DC (PM BLDC) motor 

The mini electric car utilizes an in-wheel surface mounted PM BLDC motor and falls in 

the category of radial flux machine. In such type of motor permanent magnets are mounted 

on the surface of the rotor and are termed as surface mounted permanent magnet (SPM) 

motors. The two possible configurations of the placement of the magnet on the surface of 

the rotor are shown in Figures 2.2.2a and 2.2.2b. In first type of structure, rotor core is 

non-salient type and the magnets are mounted on the surface of the rotor as shown in 

Figure 2.2.2a. Whereas in another type permanent magnets are placed between the teeth 

of the salient rotor structure as shown in Figure 2.2.2b. Stator winding is distributed one 

similar to that of an induction motor. 
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Fig. 2.2.1 Traction system of a PM BLDC motor (general layout) 
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PMBL DC motor utilizes 180° and 120° arc magnets, as shown in Figures 2.2.3a and 

2.2.3b respectively, to produce rectangular distribution of flux density in the air gap [2]. 

 

180° arc magnet motor requires injection of 120° duration of square wave current to 

produce the flat and ripple free torque, whereas 120° arc magnet requires injection of 180° 

duration of square-wavewave current. Current injection requirement makes it compulsory 

for the stator winding to be star connected in the first case and delta connected in the second 

case. Although in case of motor with 120° arc magnet phase current is of 180° duration, 

line to line current remains of 120°; duration thus same switching strategy and control can 

be applied in this case. 

Structure of the motor used in mini-car is similar to Figures 2.2.2a and 2.2.3a with the 

difference of the use of 8 pole pairs of magnet in place of 4 pole pairs as shown in figures. 

  
(a) (b) 

Fig.2.2.2. Permanent-magnet brushless motor topologies with PM on rotor [1]: a) surface-mounted; b) 

surface inset. 
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(a) (b) 

Fig.2.2.3. PMBL DC motor with: a) 180° arc magnet; b) 120° arc magnet [2] 
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Figure 2.2.4 shows the stator currents for 180° arc magnets. In the case of motor with delta 

connected stator winding circulating current result in unnecessary winding losses and 

increased torque ripple whereas in case star connected winding only two phases conduct 

at a time so losses are lesser, therefore 180° arc magnet motor is preferred in place of 120° 

arc magnet motor. 

2.2.2 Principle of operation of PM BLDC motor 

Consider 180° arc magnet PM BLDC motor with three phase star-connected stator winding 

as shown in Figure 2.2.5 and the stator winding is energised by a quasi-square wave type 

phase current with 120° of conduction duration, as shown in Figure 2.2.4. In further 

following considerations have been made: 

 arc magnet is considered as equivalent to a bar permanent magnet with the axis 

perpendicular to the arc magnet. 

 even though the stator windings have multiple number of coils per phase per slot 

connected in series, it is considered that this arrangement is equivalent to a single 

coil per phase. 

 the coils for the three phases are displaced from each other by 120° electrical 

angle in space. 

 positive and negative phase currents are represented by cross and dot 

respectively. 

 whenever the coil is excited by a current, it produces a flux and can be 

considered as equivalent to North-South pole pair of an electro-magnet 

depending upon the direction of entrance of the current into the coil. 

 axis of the electro-magnet pair coincides with the axis of the coil perpendicular 

to the area of the coil and passing through the centre of the coil. 

 as the stator coils are stationary and fixed on the stator core, position of the 

electromagnets remain same. Their polarity changes as per the excitation of the 

coil decided by the switching of the VSI, to obtain current pattern as shown in 

Figure 2.2.4. 

Figures 2.2.5a and 2.2.5b shows the PM BLDC motor layout and its equivalent layout for 
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Fig.2.2.4. Stator winding currents in case of 180° arc magnet motor. 
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the discussion of principle of operation. 

 

Considering that rotor angular position θ is measured in anti-clock direction from the initial 

rotor position shown in Figures 2.2.5b and 2.2.6a. Square-wave phase current of 120° 

duration is fed to the motor by proper switching of the switches of the VSI as per the rotor 

position [Figure 2.2.1]. Figures 2.2.6a to 2.2.6c shows the rotor position and equivalent 

electro-magnet pole pairs for the stator coils due to the excitation by the phase currents as 

shown in Figure 2.2.4. For the angular position from 0° ≤ θ < 60° as phase-A current is 

positive and phase phase-B current is negative. This result in development of electro-

magnet pole pairs (Na, Sa) and (Nb, Sb) due to the coils, A-a and B-b respectively. N and S 

poles of the rotor are attracted by electro-magnets (Sa, Sb) and (Na, Nb) respectively. This 

results in rotation of the rotor (bar-magnet) towards the equilibrium position shown by the 

dashed dotted bold line in Figure 2.2.6a. Equilibrium position of the pairs (Na, Nb) and (Sa, 

Sb) is at 60° angular position from the initial rotor position. To this position rotor becomes 

stagnant and requires injection of another phase current combination to rotate further. This 

is achieved by turning OFF phase-B current and sending negative current in phase-C. This 

results in the development of pole-pairs (Nc, Sc) for phase-C as shown in Figure 2.2.6b. 

During the angular position 60° ≤ θ < 120°, rotor pole N is attracted by poles Sa and Sc and 

S pole is attracted by Na and Nc in anti-clock wise direction and result in the further rotation 

of the rotor towards the equilibrium position of the rotor pole shown by the bold dotted 

line at an angle θ = 120° where rotor again becomes stagnant. To avoid the stagnancy 

current through phase-A coil is turned OFF and positive current is fed to the phase-C coil 

by maintaining negative current through phase-B coil. This results in the development of 

pole-pairs (Nb, Sb) as shown in Figure 2.2.6c. During the angular position 120° ≤ θ < 180°, 

N is attracted by the poles (Sc, Sb) and S is attracted by (Nc, Nb) in anti-clock wise direction. 

Thus rotor keeps rotating towards the next equilibrium position at θ = 180°, as shown in 

Figure 2.2.6c. After 180° of angular position reversal of the phase-A current takes place to 

repeat the same cycle during negative half. This keeps the rotor to rotate in anti-clock wise 

direction. 
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Fig.2.2.5. a) PMBL DC motor with: 180° arc magnet and star connected stator coils 

and; b) Equivalent arrangement of PM BLDC motor with electro-magnet pairs in place 

of stator coils. 
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As explained that, at the end of each 60° of the angular position, rotor achieves equilibrium 

position and becomes stagnant, therefore to keep rotor in rotation, injection of phase 

current in proper sequence is required as per the rotor angular position. Information of 

rotor position is obtained with the help of three Hall sensors mounted on the stator. Hall 

sensors work on the principle of Hall Effect and give either high of low signal of 180° 

duration. When a hall sensor comes in the vicinity of north-pole of the arc-magnet it gives 

high signal and when it comes in the vicinity of south-pole it get reset. φs is the resultant 
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Fig.2.2.6. Poles of the equivalent electro-magnet and position of the rotor as per the 
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c) 120° ≤ θ ≤ 180°; 
 



16 

 

of the stator fluxes in the air gap to the excitation of two required phases responsible for 

the rotation of rotor. Under ideal conditions φs remains constant in magnitude and occupies 

six angular positions corresponding to the six equilibrium positions of rotor or six active 

states of VSI with a shift of 60° electrical angle. 

Phase back-emfs, Hall sensors and corresponding Hall states are shown in Figure 2.2.7a 

and the conducting transistors corresponding to a different Hall states,and phase currents 

are shown 2.2.7b. 

 

2.2.3 Torque-speed characteristics of PM BLDC motor 

Interaction of the flux due to stator currents and flux-linkages due to the flux from the PM 

through the stator coil result in the development of the required motor torque to drive a 

load. Flux linkage to the stator coil appears as back-emf.  

 

Trapezoidal behaviour of the back emf of the motor can be explained with the help of a 

two pole 180° arc magnet three phase PM BLDC motor with 18 slots (three slots per pole 

per phase). Let NC is the number of turns of a full pitch coil of say, phase A as shown in 
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Fig.2.2.7. a) Phase back-emf and Hall sensor signals as per rotor position; b) phase 

currents through the VSI as per Hall-states. 
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Fig.2.2.8. Layout of two pole 180° arc magnet PM BLDC motor with three series 

connected coils per phase (only phase A coils are shown) 
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Figure 2.2.8. Each phase winding is single layer and consists of three coils with their axes 

displaced by the 30° from the central coil in positive and negative directions. For the 

present case for phase A the three full pitch coils are a1-A1, a2-A2.and a3-A3. Consider the 

rotor angular position at θ = 0°. Flux linkages λ through the coils varies linearly from zero 

to maximum value with the rotation of rotor.  

 

Flux linkage in coil a1-A1 as shown in Figure 2.2.9a, during the angular position 0°< θ ≤ 

90° 

max1

2
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 (2.2.1) 

where λmax is the maximum value of the flux linkage through the coil a1-A1 and is equal to 

NCBgπrl. Where Bg is the air gap flux density. Considering that the cross and the dot 

represents current entering and leaving, to and from the coil respectively. Then the emf 

induced in the coil a1-A1 is expressed by (2.2.2) 
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Fig. 2.2.9. Flux linkages and back-emf of phase A coils. 
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1

1   (2.2.2) 

where ωm=dθ/dt. (2.2.1) and (2.2.2) gives the expression for the emf induced in a1-A1 is 

equal to  

mgCa rlBNe 21  Volt (2.2.3) 

Flux linkages and the back-emf for the coils a3-A3 and a2-A2 leads and lags by 30° with 

that of first a1-A1. Net flux linkage and the back emf for a phase is the sum of these 

quantities for the three coils of a phase. Flux linkage and back emf developed in the three 

coils for phase A are shown in Figure 2.2.9b.  

Net emf ea induced in phase A coil is given by the sum (ea1+ea2+ea3). Magnitude of the flat 

top portion of ea i.e E is given by 

mg rlNBE 2 Volt (2.2.4) 

where N =3NC. 

Variation in the back-emf of phase A is shown in Figure 2.2.9b by continuous bold line. 

The dotted bold line, shows the trapezoidal behaviour of the back emf. More closeness of 

the back-emf with trapezoidal one is achieved by the use of higher number of slots/coils 

per-pole/phase and is cost concern of the motor. 

 

In reference with the circuital representation of PM BLDC motor, as shown in Figure 

2.2.10, motor phase to neutral voltage is given by  

j

j

jjn e
dt

di
LRiv   (2.2.5) 

where j = a, b and c; vPn is phase to neutral voltage; iP is phase current and eP is phase 

back-emf.  

Magnitudes of the flat portions of the back-emf are equal to ±E, where E is equal to kωm, 

ωm is the motor speed and k is the motor back-emf constant and is equal to 2NBgrl. Portions 

of the back-emf representing the transition from +E to –E and vice-versa are in general 

expressed as  
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Fig.2.2.10. PM BLDC motor drive: circuital representation. 
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where θt is the angular position of the rotor with respect to the starting positions of the 

transition. s can be +1 or -1 depending upon whether the transition is from +E to –E or –E 

to +E respectively. Supply angular frequency, ωe is np times the motor angular speed ωm, 

where p is the number of pole pairs of the motor. 

Instantaneous motor torque developed is equal to  





cbaj

jj

m

m ei
,,

1


  (2.2.7) 

If the square-wave phase currents are maintained in synchronism with the flat portion of 

the corresponding back-emf, (2.2.7) results in a constant value of the motor torque given 

by (2.2.8). 
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Thus the electrical torque developed by the motor is similar to that of a dc shunt motor 

with constant filed flux. 

In steady state (2.2.5) and (2.2.7) reduces to 
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(2.2.9) results in the speed torque characteristic of a PM BLDC motor in steady state and 

ideal condition and is 

R
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 (2.2.10) 

In practice torque vs speed characteristic is dominantly affected by the problem of non-

ideal phase commutation and the back-emf causing drop in motor torque with the increase 

in speed. Figure 2.2.11 shows the torque vs speed characteristics with non-ideal phase 

commutation.  
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Fig.2.2.11. Speed torque characteristic of a PM BLDC motor 
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Constant torque and constant power zone of the motor are also labled in the figure. 

 2.3  Supply system 

Supply system of an electric vehicle consists of battery, fuel cell, ultra-capacitor or 

photovoltaic (PV) module as a source of energy. In general traction motor are designed for 

higher terminal voltage so to reduce the problem of cu losses and the available energy 

sources are capable of delivering higher current at lower voltage. Therefore energy sources 

are either connected in series to achieve higher dc-bus/link voltage to power the motor or 

are connected to dc-bus through a dc-to-dc boost converter. Dc-to-dc boost converter is 

preferred for the cases where on board space is matter of great concern, like in the case of 

photovoltaic and fuel cell. Fuel cells have higher energy density and much lower power 

density whereas Ultra-capacitors have very high power density and much lower energy 

density. Thus the combination of fuel and ultra-capacitor is a perfect match. Availability of 

hydrogen for fuel cell is an issue due to the infrastructural requirements for the storage and 

distribution of hydrogen. This makes the use of battery ultra-capacitor system for the 

vehicles as secondary choice, since batteries have sufficient energy density to meet the 

vehicle requirements. Although Li-ion batteries have much higher energy density and less 

charging time compared to lead acid batteries, cost of the Li-ion batteries is a decision 

factor for its application in low-cost light electric vehicles. Electric mini car under 

consideration uses four lead-acid batteries to provide traction and auxiliary load.  

2.1.1 Valve Regulate Lead-acid battery 

Electric mini car under consideration uses four, LPC12-100 (12V, 100Ah) Valve Regulated 

Lead Acid (VRLA) batteries as an energy source. Figures 2.3.1a and 2.3.1b show VRLA 

battery and its internal arrangement, respectively. 

 

VRLA batteries are widely used energy source in industry. Anode (positive plate) and 

cathode (negative plate) of this battery are placed in the electrolyte. To avoid short circuit 

between anode and cathode, non-woven fabric of fine glass fibres are used as separator. 

Electrodes are made of lead-tin-calcium alloy in the form of grid frame as shown in Figure 

2.3.1b. Porous portion of the anode frame holds PbO2 as an active material, whereas 

cathode holds spongy lead as an active material. Dilute sulphuric acid is used as an 

electrolyte to provide medium for the conducting ions during the electrochemical reaction 

in the battery. Electrochemical reactions taking place at anode-cathode are written as  

  
(a) (b) 

Fig.2.3.1. VRLA battery: a) LPC12-100 (LEOCH) b) internal arrangement. 
 



21 

 

  

 

During the discharge of the battery, spongy Pb at cathode combines with sulphuric acid to 

form PbSO4with the release of electrons and H+ ions. These electrons are received at anode, 

with the conversion of PbO2 into PbSO4 and formation of water. During the charge process 

of the battery, PbSO4 at anode get converted into PbO2 at anode and Pb at cathode.  

Characteristics of the battery used in electric mini-car, as per the data sheet provided by 

the manufacture are shown in Figures 2.3.2a and 2.3.2b. 

 

 VRLA battery exhibits almost flat terminal voltage characteristics as it is shown in Figure 

2.3.2a. Flatness of the terminal voltage for VRLA battery depends upon the capacity C 

being utilised. For smaller value of capacity it remains flat, whereas for larger values of 

capacity terminal voltage variation is wide as are shown in Figure 2.3.2a. Figure 2.3.2b 

shows the variations in the charging characteristics (charging current, charged voltage and 

charging volume) for the two cases of discharge, first when the charging started with 100% 

discharge (bold lines) and second when charging is started with 50% of discharge (dashed 

line). Half discharge requires much lesser volume of charge and time as compared to the 

case of full discharge. In case of full discharge charging time is almost double of that in 

case of half discharge.  

2.1.2 Mixed storage system in mini-electric car 

LPC12-100 contains 6 cells connected in series with the nominal voltage of 2V. Each cell 

and hence the battery has defined lower and upper threshold values for the terminal 

voltages. As for the present case during the discharge if terminal voltage of the battery falls 

below 36V, supply should be disconnected from the load. Similarly in the case of charging 

or regenerative braking if terminal voltage rises above 56V battery should be disconnected 

from the charger or load. Further during acceleration batteries are required to deliver 

current peaks which results in the drop of the battery voltage so the autonomy of the vehicle 

  
(a) (b) 

Fig.2.3.2. LPC12-100 characteristics: a).discharge; b) charging (Source: LEOCH, 

LPC12-100 data sheet) 
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is affected. Likewise during deceleration or regenerative breaking, a large amount of 

current are required to be absorbed by the batteries. To improve the performance of the 

vehicle autonomy and battery performance a battery ultra-capacitor mixed storage system 

for mini-electric car is developed in the line of ECE 15, in the laboratory by another group 

of researchers [3]. Circuital arrangement of the PM BLDC motor drive with mixed storage 

system is shown in Figure 2.3.3. 

 

This storage system uses an interleaved bi-directional dc-to-dc converter in between dc-

bus and a properly sized ultra-capacitor bank. Current pulses during the acceleration are 

supplied by the ultra-capacitor bank and pulses are absorbed during the regenerative 

braking. Overall control strategy maintains a proper balance between the energy 

transferred from the battery for the regular traction operation and the operation during 

transients. 
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Chapter 3 

Converter Topologies for Electric Propulsion 

Summary: PM Brushless dc motors used in traction applications like electric vehicle are 

generally designed for higher terminal voltage to minimize the cu-losses. Whereas the 

available on board energy sources like, batteries, hydrogen fuel cell, photovoltaic modules 

are capable of delivering higher current at comparatively lower voltage. Thus they require 

some circuital arrangements that can meet the higher dc link voltage requirement to feed 

the traction motor. Output of these sources is dc in nature. Possible arrangements which 

are being widely considered for the purpose are: a) use of series combinations of such 

sources and b) use of dc-to-dc boost converter.  Use of only series combination of energy 

source is quite common, in case of batteries. Consider an example, to have 48V dc bus 

either four 12V, 100A.h (f.i. LEOCH battery) series connected battery or two 12V, 200A.h 

series connected battery with a boost converter with two times boost can be used. In the 

second case A-h of the battery is doubled to have same performance. But this case does 

not give any improvement in terms of weight and volume. Rather in second case for battery 

weight and volume are 5 kg and 1.12 times respectively more. However use of boost 

converter in case of fuel cell and photovoltaic panel gives a significant improvement in 

terms of weight and volume reduction of energy source. Traction system uses voltage 

source inverter (VSI) to convert dc-bus voltage to alternating terminal voltage for motor so 

converter strategy for electric propulsion can be termed as: VSI supply, when series 

connected energy source is used and dc boost inverter (DBI) supply when VSI with dc-to-

dc boost converter is used. Z-source Inverter (ZSI) supply is another solution to have 

voltage boost. It can provide single stage power conversion from source to motor with the 

advantages of reduced switching losses and has an inherent protection from undesirable 

turn ON of the transistors of the same leg of a voltage VSI due to EMI noises. Present 

chapter considers DBI and ZSI supply topologies for the comparison in terms of sizing of 

passive components, defined voltage stress and current stress. Fuel cell stack is considered 

as a source of energy because of its prospect for electric vehicle propulsion. In the case of 

fuel cells energy recovery during regenerative braking is not possible and it has wide 

variation in V-I characteristics, so it requires quit tight norms for the regulation of voltage 

and current. Therefore fuel cell as an energy source can be considered as worst case 

situation. PM BLDC motor is considered as traction motor. 

3.1 Dc-to-dc boost inverter (DBI) supply for PM BLDC motor drive 

Consider a PM BLDC motor drive fed by a fuel cell with nominal voltage VFC which is 

less than the nominal voltage VN of the motor. Necessary voltage boost is obtained by the 

use of a dc-to-dc boost converter voltage with gain G. Gain G is defined by the ratio of 

nominal terminal voltage of the motor to nominal voltage of the fuel cell, i.e. G= VN/VFC 

and is greater than one. Traction system utilizes a conventional VSI to fed alternating 

square-wave voltage to the motor. Such an arrangement is termed as dc boost inverter DBI. 

Schematic of the drive with DBI is shown in Figure 3.1.1. Figure 2.2.7 shows the variation 

of the back-emf of the motor and the switching of the VSI transistors to achieve square-

wave phase current of 120° with the electrical angular position of the rotor. Magnitude of 

the average voltage across the motor terminals varies from 0 to VN as per the motor speed 

whereas the magnitude of the phase current varies from 0 to the nominal value IN as per 
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the torque demand. Variation in the voltage and current is achieved by chopping anyone of 

the conducting transistors. 

 

As the energy recovery is not possible during regenerative braking, it is considered that the 

fuel cell FC is assisted by a battery. As the battery imposes a constant voltage to the dc bus 

and it has to power motor over the full voltage range, therefore its voltage must be equal 

to VN i.e VB = VN. 

DC-to-dc boost chopper boosts the lower fuel cell voltage VFC to VN by operating the 

transistor Tb. Let Ts be the switching period of Tb. During the ON time of the transistor, 

diode D gets reversed biased and current iL through the inductor L increases to store the 

energy. During this time VSI is fed by the output capacitor C and the battery. When the 

transistor Tb is turned OFF energy stored in the inductor together with the energy from the 

fuel cell is transferred to the output capacitor and battery to maintain the higher voltage at 

dc bus. Under the hypothesis that the internal impedance of the capacitor is much lesser 

than that of the battery, it can be considered that the energy transferred is entirely absorbed 

by the capacitor and the presence of the battery can be neglected for the sizing of the 

capacitor. During the steady state operation balance of the energy stored in inductor and 

energy transferred to the capacitor results in 

FC

N

N VV



1

1
 (3.1.1) 

Where δN is the duty cycle of Tb to produce nominal voltage VN. Gain of the boost converter 

is given by  

N

G



1

1
 (3.1.2) 
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Fig.3.1.1. Schematic of DBI for PM BLDC motor drive 
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Figure 3.1.2 shows the variation in the capacitor voltage and the inductor current of the 

boost converter for DBI. Average value of the voltage across the capacitor remains equal 

to the nominal voltage VN. 

3.2 Z-source Inverter (ZSI) supply for PM BLDC motor drive 

 

Figure 3.2.1 shows the schematic of a PM BLDC drive with ZSI supply. Conventional ZSI 

uses a diode Ds, and a symmetric z-network to interface a low voltage energy source with 

a VSI. Z-network is formed by two inductors L1, L2 and two capacitors C1, C2. Diode Ds is 

used to prevent the reverse current through the low voltage energy source (fuel cell). 

Battery is connected in parallel with C1 to assist the fuel cell during the regenerative 

braking. z-network is designed to be symmetric, therefore L1=L2=L and C1= C2 = C. These 

ensure that, the voltages across and current through the two inductors and capacitors to be 

equal. For inductors these are, vL, and iL respectively and for capacitors, vC, and iC 

CV

LI
Cv

Li

0

VN

IL

Ts tTs  
Fig.3.1.2. Capacitor voltage and inductor current of the boost converter 
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respectively.  

ZSI has three modes of operation: i) active (A) mode when the VSI delivers any one of its 

six active voltage vectors, ii) open (O) mode when the VSI deliver any one of its two zero 

voltage vector, and iii) shoot-through (T) mode when both the transistors of a leg (or of all 

the three legs) of the VSI are intentionally turned ON to create a short-circuit at Z-link to 

have boost function. During the steady state average voltages across the two inductors 

remain zero therefore battery has to impose the average value of the voltage vi across the 

Z-link and it must be equal to VN to supply the motor over the full voltage range.  

NBi VVV   (3.2.1) 

This makes ZSI to boost fuel cell voltage VFC to motor nominal voltage VN by introducing 

mode-T during modulation period of VSI. 

Let Tc is the modulation period of ZSI. da, do and dt are the duty-ratio of the modes A, O 

and T, respectively with da+do+dt=1. During mode-A, fuel cell supplies energy to VSI as 

well as to the capacitors through the inductors and continues until sum of the voltages 

across the capacitors becomes greater than or equal VFC. During this interval current 

through the inductors continue to decrease with the increase in capacitor voltages. At the 

end of mode-A, shoot through state is imposed to make the parallel combination of pairs 

(L1, C2) and (L2, C1). This allows the transfer of energy from capacitors to inductors, which 

increases the boost capability of ZSI. Mode-T continues until capacitor voltages fall below 

VFC. 

Under the hypothesis that Tc is short enough, the Z-link delivers a current ii that is nearly 

constant within each mode; it can be expressed as 











TeI

OeO

AeI

i

t

d

i

mod

mod

mod

 (3.2.2) 

where Id is the current absorbed by the PM BLDC motor and It is the shoot-through current. 

As the current iL into the inductors of the Z-network is nearly constant during Tc, therefore 

it is denoted with IL. Waveforms of the voltages vi, vL and the currents ii, iC are shown in 

Figures 3.2.2a and 3.2.2b, respectively. It is worth to note that the Z-link voltage vi is not 

constant rather it is pulsating. 

The average value of vi as a function of VFC is given by 

FCai VBV   (3.2.3) 

where Ba is termed as average boost factor and is expressed as 

t

t
a

d

d
B

21

1




  (3.2.4) 
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From (3.2.4), it can be concluded that dt has an upper limit of 0.5. The peak value of vi as 

a function of VFC is given by 

FCpi VBv 


 (3.2.5) 

where Bp is termed as peak boost factor and is expressed as  

t

p
d

B
21

1


  (3.2.6) 

(3.2.4) and (3.2.5) point out that introduction of mode-T (dt>0) results in boost factor 

greater than 1, with a step-up of both the average and peak values of the voltage vi with 

respect to VFC. By (3.2.3) to (3.2.6), the ratio between the peak and average values of vi is 

given by (3.2.7) and tends to 2 as dt tends to 0.5. 

ti

i

dV

v




1

1ˆ
 (3.2.7) 

The peak value of vi, in turn, determines the average value of the line-to-line VSI output 

voltage according to  

  iotLL vddV ˆ1   (3.2.8) 

The current IL through the inductors as a function of Id is given by  
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Fig.3.2.2. Plots of a) voltages and b) currents for Z-link during modulation period Tc. 
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The shoot-through current It as a function of Id is given by  

d

t
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t I
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dd
I
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


  (3.2.10) 

As just like mode-O, mode-T introduces a zero vector at the output of the VSI, application 

of mode-O is not convenient when the nominal voltage is required at the terminals of the 

VSI. Therefore only modes-A and T can be considered. Similar to DBI supply, under the 

hypothesis that the internal impedance of the capacitor is much less than that of battery, 

the energy stored into the inductors during modes A and T is entirely swapped with the 

capacitors and the presence of the battery can be neglected for the sizing of capacitors.  

 

Figure 3.2.3 shows the variation in iL and vC as a function of the time. In this case also 

average value of vC is equal to VN. VN as a function of VFC and nominal value of dt , dt,N and 

vice versa dt,N as a function of VN and VFC be written as 
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Therefore gain G for ZSI is given by 

Nt

Nt

d
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,
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  (3.2.12) 

The current ii of the Z-link is given by  
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ode        
 (3.2.13) 

where it is the shoot-through current. 
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Fig.3.2.3. Capacitor voltage and inductor current for the z-network of ZSI supply. 
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3.3 Evaluation of ZSI and DBI for battery assisted fuel cell supply 

DBI supply for the purpose of boost of low voltage energy source like fuel cell and 

photovoltaic module for traction purpose is widely accepted. ZSI needs evaluation for the 

case of PM BLDC motor drive due to following reasons: 

• It provides single stage power conversion (dc-to-ac) with dc source voltage 

boost. 

• Inherent protection from shorting of transistors of the same leg, due to EMI 

noises. 

• Reduced switching losses compared to DBI. 

• In case of PM BLDC motor drive two transistors of VSI conduct during a regular 

interval of operation, whereas applications with ZSI and the comparisons 

available, consider only the cases where three transistors conduct during regular 

interval of operation. 

• Like dc-link voltage in case of DBI, Z-link voltage is not continuous; rather it 

varies from 0 to 2Vi-VFC. [Figure 3.2.2a] For example to have average z-link 

voltage equal to 48V with 24V input dc voltage, peak value of the z-link voltage 

is 72V.  

Current and voltage ripple in a supply topology are quite important points of consideration 

for the life cycle of battery/fuel cell and dc link voltage regulation. Current and voltage 

ripples are limited by the proper sizing of the passive components. Voltage and current 

stress on the switching devices are other factors for the selection of a supply topology as 

these are related with cost and reliability of a topology. 

Present section considers the discussion on above mentioned issues with the help of 

defined evaluation factors related as a function of current and voltage stress on the 

transistors. Fuel cell stack is considered as a source of energy because of its prospect for 

electric vehicle; also it is a worst case situation where energy recovery during regenerative 

braking is not possible and requires quit tight norms for the voltage and current regulation 

due to its widely varying V-I characteristics. PM BLDC motor is considered as traction 

motor. As the DBI is the widely accepted topology so it is considered as a reference to 

make a formal comparison.  

3.3.1 Evaluation factors 

3.3.1.1 Defined evaluation factors 

Total voltage solicitation VS: defined as the sum of the maximum voltage VM across the 

transistors as a fraction of 6VN, where 6 are the transistors of the VSI supply. 

N

n

i

iM

V

V

VS
6

1

,
  (3.3.1) 

where n is the number of transistors of the topology. 

Total current solicitation: There can be three possible current solicitation factors and are 

defined by considering the peak, rms and average current through the transistors. 

Total peak current solicitation CSp: is defined as the sum of the maximum 

peak current Ip,M through the transistors as a fraction of 6IN. 
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Total average current solicitation CSav: is defined as the sum of the 

maximum average current Iav,M through the transistors as a fraction of 6IN. 
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Total rms current solicitation CSrms: is defined as the sum of the maximum 

rms current Irms,M through the transistors as a fraction of 6IN. 

N

n

i

iMrms

rms
I

I

CS
6

1

,,
  (3.3.4) 

Transistor utilization TU: is defined as the ratio of PT and PN, where PT is the sum of the 

products of the maximum voltage Vp,M across the transistors and the maximum peak current 

Ip,M through them. 
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 (3.3.5) 

In a similar manner an evaluation factor for the passive components can be defined as is  

Passive component sizing power PS: is defined as the ratio between AT and PN, where AT 

is the sum of the product of the maximum voltage VM across the passive components 

(inductors and capacitors) and the maximum peak current Ip,M through them. 
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  (3.3.6) 

where m is the number of passive components of the topology. 

3.3.1.2 Evaluation factors for ZSI 

When the motor operates at nominal voltage, VLL must be equal to VN. By (3.3.4), this is 
conveniently obtained by setting do=0. Inspection of (3.3.3) and (3.2.8) together with (3.3.4) 
discloses that both VLL and VB are equal to VN. Then the average boost factor is equal to the 
required voltage gain, i.e. 

GBa   (3.3.7) 

By (3.3.7) and (3.2.10), dt is expressed as 

12

1






G

G
dt  (3.3.8) 

and the peak boost factor as  
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12  GB p  (3.3.9) 

From (3.3.1) voltage solicitation VS for ZSI is calculated as  

G

G
VS

12 
  (3.3.10) 

As Vp,M=BpVFC and VN=GVFC, (3.3.10) indicates that VS tends toward 2 as G increases. 

The product of VS by VN gives the maximum voltage applied not only to the transistors of 

the VSI but also to the motor phases, which therefore must be properly isolated to sustain 

this solicitation. 

Mode-T has an inverter state that does not exist in a VSI topology. It can be achieved in 

several ways; the most convenient one is to switch ON all the transistors of the three legs 

of the VSI for them to share the shoot-through current. By recognizing from (3.2.9) and 

(3.2.10) that It/3>Id/2 and by assuming that i) the shoot-through current divides equally 

among the three legs, and ii) the motor current flows half through the upper transistor of 

the VSI leg feeding the motor and half through the bottom one, it comes out that the 

magnitude of the current iT1 flowing through transistor T1 along the six motor supply 

angular intervals is as given in Table 3.3.1.  

 

Table 3.3.1. Conducting transistors and current flowing through the transistor T1 

Angular intervals & conducting transistors mode iT1 

0-/3 & T5,T6 

-/3 & T3,T2 

A, O 0 

T It/3 

/3-/3 & T1,T6 

/3-T1,T2 

A, O Id 

T It/3+Id/2 

/3-/3 & T3,T4 

/3-T5,T4 

A, O 0 

T It/3-Id/2 


The currents flowing into transistors T3, T5, T4, T6 and T2 are shifted of 2π/3, -2π/3, π, 

π+2π/3 and π-2π/3, respectively, from that of T1. The maximum current solicitation of the 

transistors occurs when do=0 and the motor currents is IN. Then, by (3.2.10) and (3.3.8), 

the maximum value of It is  

NMt GII 2,   (3.3.11) 

and Ip,M in (3.3.3) is expressed as 

23

2
,

NN

Mp

IGI
I   (3.3.12) 

For the passive components of the ZSI supply, by (3.2.9) the maximum peak current 

through the inductors is achieved again for do=0 and Id=IN and is equal to GIN whilst the 

maximum voltage across the inductors is VB. The maximum peak current through the 

capacitors coincides with that through the inductors, i.e. it is GIN. Therefore, by processing 
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the current values in Table 3.3.1, the evaluation factors of the ZSI topology are  
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3.3.1.3 Evaluation factors for DBI 

Under the assumption of ideally smooth current through inductor L, during the ON-time 

of transistor Tc, a constant current flow through it. Magnitude of this current is equal to G 

times the maximum current absorbed by the VSI, i.e. GIN. Thus the maximum current 

through inductor L is equal to GIN and the maximum voltage across the inductor is  
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Maximum voltage across the capacitor C is equal to VN whereas maximum current through 

it is  
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Therefore, the evaluation factors of the DBI supply become 
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Evaluation factors for ZSI and DBI as a function of voltage gain are enlisted in Table. 3.3.2. 
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3.3.2 Sizing of Transistor and Passive components as a function of voltage gain and 

power contribution factor for fuel cell [14] 

For the sizing of passive components a 48V, 2.8kW, 600rpm wheel PM BLDC motor that 

propels a city scooter [13] is considered. The traction drive is powered by a 27V, 2kW fuel 

cell, thus requiring a voltage boost with G equal to 1.8. The fuel cell is assisted by a 48V 

Li-ion battery. The supply is controlled for the fuel cell to deliver the entire power up to a 

traction power demand of 2kW; after that, the battery participates in fulfilling the power 

demand with a contribution up to 0.8kW that is reached when the traction drive absorbs 

the nominal power. 

3.3.2.1 Fuel cell power 

To broaden the study case, a situation is considered where the nominal power PFC,N of the 

fuel cell is a generic fraction of the nominal power of the traction motor. Considering that 

power fraction is represented by x, i.e.  

N

NFC

P

P
x

,
  (3.3.17) 

Battery contributes to the nominal power with the quantity PB,N =PN-PFC,N, i.e. with the 

fraction  

x
P

P

N

NB
1

,
 (3.3.18) 

Since the average voltage of the Z-link in the ZSI supply is equal to VN, (3.3.17) and (3.3.18) 

yield, under nominal traction power demand,  

x
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 1,

,,  (3.3.19) 

where GNFCI /,  is the average current generated by the fuel cell and referred to the battery 

Table 3.3.2.Evaluation factors for ZSI and DBI as a function of voltage gain 
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side, and IB,N is the continuous current generated by the battery. In the study case, x is equal 

to 0.7, G/I N,FC  to 41A and IB,N to 17A. 

3.3.2.2 Design procedure 

Considering that the specifications for the current ripple through the inductors is ri and 

voltage ripple across the capacitors is rv, i.e. 

N

C

v

NL

L

i
V

V
r

I

I
r





 ;

,

 (3.3.20) 

where the nominal value of current through the inductors, IL,N, is depending on x, and IL 

and VC are the specified peak-to-peak excursions of current and voltage, respectively.  

The design of the ZSI and DBI supplies is carried out by limiting both the ripples in (3.3.20) 

at 5%. Note that, while essential in sizing the passive components, the ripples can be 

neglected in determining rms and peak current as well as peak voltage of the devices, 

provided that they are sufficiently small. Since this condition is here verified, the effect of 

the ripples on the above-mentioned quantities will be neglected in the design.  

3.3.2.3 Sizing of Transistor 

From the operation of the ZSI supply and the PM BLDC motor, the peak value of the 

shoot-through current is given by 

  NNt IxxGII  12ˆ  (3.3.21) 

and the ratings of the transistors of the VSI are [12] 
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The peak current in (3.3.22) is determined by assuming that mode T is implemented by 

switching ON all the three legs of the VSI and that the short-through current equally splits 

into the three legs. 

3.3.2.4 Sizing of the passive components  

By [10] and the Figure 3.2, the values of inductors and capacitors of the Z-network, 

expressed as a function of dt,N and the relevant current and voltage excursions, are  

Nt
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sN d
V
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  (3.3.23) 

where LI  is the average current in the inductors. In terms of the ripples and the nominal 

values of voltage and power of the motor, (3.3.23) becomes  
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and the values of the inductors and the capacitors can be readily calculated from the ripple 

specification and the data of the study case. Moreover, rms current, peak voltage and sizing 

power of each inductor for both ZSI and DBI supplies are enlisted in Table 3.3.3. Values 

of L and C for DBI supply are  
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3.3.3 Discussion and comments 

3.3.3.1 Discussion based on evaluation factors 

Table 3.3.3 enlists the expressions for the evaluation factors for ZSI and DBI in terms of 

voltage gain G. Variations of these factors have been shown in Figures 3.3.1. As shown in 

Figure 3.3.1a, total voltage solicitation of the ZSI supply is higher than the DBI for G 

Table 3.3.3. Circuit variable expressions for the passive components and transistors 
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greater than 1.2; moreover, it increases with G for the ZSI while it remains constant at 1.16 

for the DBI. This means that the transistors of the ZSI supply undergo higher voltage 

stresses compared to the DBI for G greater than 1.2, with the stress that tends to 2 as soon 

as G increases. On the other hand, the ZSI is supportive for G less than 1.2 due to the 

contribution of transistor Tc to the cost factor VS of the DBI. 

 
Figures 3.3.1b, 3.3.1c and 3.3.1d show total current solicitations. As concerns the total 

peak and average current solicitations, the ZSI supply exhibits values higher than the DBI 

and the gap in the cost factors increases with G. On the contrary, the DBI supply is more 
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advantageous than the ZSI with regard to the total rms current solicitation. Higher values 

of peak and average current solicitation call for transistors with greater current ratings 

whilst high values of the rms current solicitation call for transistors with greater dissipation 

arrangement. 

Figures 3.3.1e reveals that the total transistor utilization of the ZSI supply is poorer than 

the DBI, the difference between the two supplies widens faster as G increases from 1 to 2 

while remaining nearly constant for G greater than 2. At last Figure 3.3.1f shows that the 

sizing power of the passive component of the ZSI supply is somewhat higher than the DBI. 

The main reason is that the ZSI supply includes four passive components whilst the DBI 

needs only two passive components. The trace for the VSI is not drawn in Figure 3.3.1f 

because this supply does not include any passive component. 

3.3.3.2 Discussion based on component sizing as a function of power contribution 

factor 

Table 3.3.3 enlists the circuit variable expressions for the passive components and 

transistors as a function of gain and power contribution factors. Figure 3.3.2 shows the 

variation in peak transistor current, size of passive components and sizing power of the 

passive components with power contribution factor. 

 
Peak current through the transistors of DBI supply remains constant, whereas in case of 

ZSI supply, as shown in Figure 3.3.2a variation with x is linearly increasing one. For a 

fraction x = 0.2 i.e, up till 20% of power contribution form fuel cell, peak current through 
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the transistors are less for ZSI supply then DBI supply and keep on increasing for higher 

values of x. 

Variation in the size of the inductors for the two supplies are quite sensitive for lower 

values of fraction x up till x=0.4 and decreases with increase in x, after x=0.4 variation in 

L with x is slower as shown in Figure 3.3.2b. Whereas size of capacitors increase linearly 

with x. In any case sizes of the passive components are lower for DBI supply than ZSI 

supply. Plots in Figure 3.3.2b also explain that the size of the inductors required is much 

higher for lower fraction of power from fuel cell compared to higher power fraction.  

Variations in the sizing power for the passive components are shown in Figure 3.3.2c. 

Sizing power of the passive components increases linearly with x. For the higher value of 

x both the supply topologies require higher sizing power of passive components. Sizing 

power of inductors are noticeable one as for lower values of x, difference is smaller and 

increases widely with the increase in x. For all the values of x sizing power of ZSI remains 

higher than that of DBI. 

 
Specifications of the wheel motor and the supply is enlisted in Table 3.3.4. As per the 

Table 3.3.4. In wheel motor nominal data 

Power  PN 2.8 kW 

Voltage  VN 48 V 

Torque TN 45 Nm 

Speed N 600 rpm 

SUPPLY DATA AND SPECIFICATIONS 

Fuel Cell nominal voltage  VFC 27 V 

Voltage gain G 1.8 

Inductor current ripple  ri 5% 

Capacitor voltage ripple  rv 5% 

Switching/modulation period Ts 100 s 

 

DESIGN RESULTS DBI ZSI 

Chopper transistor average current TbI  33 A  

Chopper transistor peak current TbÎ  73 A  

Chopper transistor peak voltage TbV̂  48 V  

VSI transistors average current TI  19 A 35 A 

VSI transistors peak current TÎ  58 A 84 A 

VSI transistors peak voltage  TV̂  48 V 69 V 

Inductor value L 323 H 2×402 H 

Capacitor value C 756 F 2×942 F 

Rms value of inductor current rms,LI  73 A 73 A 

Peak inductor voltage LV̂  27 V 48 V 

Inductor sizing power LSP  2 kVA 2×3.5 kVA 

rms value of capacitor current rmsCI ,  37 A 49 A 

Peak capacitor voltage CV̂  48 V 48 V 

Capacitor sizing power CSP  1.8 kVA 2×2.3 kVA 
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expressions summarized in Table 3.3.3, values of the circuit variables and components 

were calculated for 1.8 times of voltage gain 70% of power contribution from fuel cell. 

From the calculations in Table 3.3.4 it is clear that cost of the transistors and the 

components will be higher for ZSI due to: much higher value of transistor peak voltage and 

current; higher value of transistor peak voltage; bigger size of passive components and 

higher sizing power of passive components. 

3.4 Conclusion 

Two different approaches have been used to decide, which topology would be preferable 

for the PM BLDC motor powered by a fuel cell in assistance with a battery. Both of the 

approaches result into the facts that major issues, apart from the switching losses in the 

energy conversion unit, are voltage stress, current stresses and power utilisation of the 

transistors and the size of the passive components. Percentage of power contribution from 

the fuel cell also plays an important role in the decision for the selection of passive 

components and transistors. It has been found that current and voltage ratings of the 

transistors and sizing power of the passive components are quite higher for the ZSI supply 

compared to the DBI supply. This raises cost of the devices and voltage stress on the stator 

windings of the PM BLDC motor. Thus, although the ZSI supply provides single stage 

power conversion with reduced switching losses and short-circuit protection of the 

transistors, the DBI supply could be preferable. The influence of the fuel cell power 

fraction with respect to the nominal power of the traction motor on the supply design states 

that, for fraction less than 20%, the transistor peak current in the ZSI supply is less than in 

the DBI supply but this fraction requires high values for the inductors. However, as the 

current solicitation is an important factor affecting the cost of the supply, ZSI can be 

preferred in the cases where the major power source is a battery. 
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Chapter 4 

Analytical Study of the Behavior of PM BLDC Motor Drive 

under Square-wave Phase Current 

Summary: PM BLDC motors are fed by square-wave phase currents for the production of 

flat and ripple free torque. However in practice due to phase inductance and limited supply 

voltage, phase currents deviate from their ideal square-wave shape. This results in the 

problem of phase-commutation in terms of torque ripple and drop in the average torque of 

the motor, which increases with the increase in motor speed. Present chapter correlates the 

current and torque behaviours, explains the behaviour of the current and the torque during 

phase commutation to discuss the torque vs speed characteristics of the motor. Current and 

torque behaviour are explained as function of defined motor-distinctive quantity and motor 

speed. Finally analytical results are cross verified with the experimental result. 

4.1 Correlation between current and torque behaviour 

PM BLDC motors have trapezoidal back-emf with the flat top portion of 120° electrical 

angular duration. Therefore to achieve flat and maximum torque per ampere, injection of 

Square-wave Phase Currents (SqPC) synchronised with the flat portion of the 

corresponding phase back-emf is required. Injection of SqPC is ensured by the 120° mode 

of operation of VSI switches. Commutations of phase-currents take place in the interval of 

60°. In practice injection and removal of phase currents during commutation are 

constrained by the phase inductance and limited supply voltage. Thus motor phase currents 

deviates from the ideal square-wave nature and cause torque ripples. 

 

Trapezoidal behaviour of the stator back-emf is shown in Figure 4.1.1. Ideal and non-ideal 

behaviour of phase currents and motor torque with rotor position are shown in Figures 

4.1.1a and 4.1.1b.  
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Fig. 4.1.1. Back-emf, phase current and motor torque of PM BLDC motor: a) ideal 

behaviour; b) indicative non-ideal behaviour 
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Consider a case of phase commutation as shown in Figure 4.1.2 where ia and ib are 

commutating currents and ic is a non-commutating current. ia is an outgoing current. 

 

General expression for the motor torque during commutation in terms of outgoing current 

and non-commutating current can be written as  









 goingoutgcommutatinnonm iiks __

3
2




  (4.1.1) 

where‘k’is the motor back-emf constant and is equal to E/ωm. ωm is the motor mechanical 

speed and E is the magnitude of flat portion of the back-emf. θ is the rotor position 

measured from the starting instant of phase commutation and is equal to (θe – θj). θj’s with 

j=1, ..6 are the phase commutation instants as shown in Figure 4.1.1. inon_commutating is the 

non-commutating current 1  and iout_going is the outgoing current. ‘s’ is +1 for positive current 

commutation2 and -1 for negative current commutation3. Instantaneous torque expression (4.1) 

is obtained with the help of the expressions of back-emf and torque as in (2.6) and (2.7) 

respectively of chapter 2. 

In ideal situation as the commutations are instantaneous at the instant of commutations, 

say θj, second term in (4.1) does not come into the picture and torque remains constant to 

the set value and no ripple in torque is observed as it is shown in Figure 4.1.1a. Whereas 

in practice, during commutation, outgoing current continues beyond θj due to phase 

inductance and vanishes after some duration. Once outgoing current vanishes, motor 

torque follows the non-commutating current which in turn is equal to the incoming current. 

Sign of outgoing current and the non-commutating current are always opposite to each 

other. Therefore during commutation any delay in outgoing current results in decrease or 

increase, i.e. ripple in the motor torque.  

As the motor torque is affected by the phase currents, so it is necessary to understand their 

behaviour during phase commutation.  

                                                 
1 Phase current which do not take part in commutation during phase current commutation is termed as non-

commutating current. 
2 Positive commutation is termed for the case where commutation of two positive currents takes place. 
3 Negative commutation is termed for the case where commutation of two negative currents takes place. 

 
Fig. 4.1.2. Phase current commutations at θ2 [Figure 4.1.1b] 
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4.2 Current behaviour during phase commutation 

Expressions of the commutating and non-commutating currents can be derived from the 

Kirchhoff’s equations for the circuital representation of PM BLDC motor drive as shown 

in Figure 4.2.1. 

 

With respect to the circuital arrangements shown in Figure 4.2.1, circuit variables are 

expressed as  
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where j = a, b and c. Vjn is phase to neutral point voltage; ij is phase current; ej is phase 

back-emf and vno is the neutral point voltage. Term ‘o’ corresponds to the negative terminal 

of the battery and the reference point for the measurement of voltages. R is the phase 

resistance and L is the phase inductance including the effect of mutual inductance. As the 

phase resistances are very small, therefore these can be neglected.  

Control of PM BLDC motor can be accomplished by the control of either phase or dc-link 

variables voltage or current. Current control schemes for PM BLDC motor drive are 

popular due to their capability to maintain the phase currents near to square wave type.  

For the present case dc-link current control is considered. Figure 4.2.2 shows the schematic 

of dc-link current control. In the case of dc-link current control switches of the VSI are 

controlled as per the information of rotor position obtained from the Hall sensors in terms 

of six different hall-states. Once a Hall-state is over switches are left under the influence 

of forced commutation circuits to get turn OFF. Under such a control two switches conduct 

at time. The current reference Iref is compared with the feedback current id coming from 

the dc-link before being manipulated by the PI regulator. The latter one outputs the duty-

cycle  for chopping one of the two conducting transistors. In the study, Iref is set at the 

rated current magnitude IR and the current regulator is assumed to deliver the maximum 

effort in presence of a small current error. 
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Fig. 4.2.1. Circuital representation PM BLDC motor drive 
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As a template, the commutation at θe=0 is examined. With this for a very short duration of 

phase commutation compared to π/3, θe can be considered to be equal to equal to θ. At this 

position, T1 is turned ON to allow the incoming current ia to get the value IR, T5 is turned 

OFF to force the outgoing current ic to vanish and T6 is kept ON. Both the incoming and 

outgoing transients take time to be completed. 

Therefore, from (4.2.1) variation in commutating phase currents ia and ic with respect to 

time is expressed as  
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 (4.2.2) 

Let IR, V and Ωb are the rated current, terminal voltage and motor speed respectively and 

are considered as the base values, and then the expression (4.2.2) can be represented in the 

form of per unit representation of phase quantities as in (4.2.3) 
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where Θm = npLIR/2k  is a motor-distinctive quantity expressed in radians, for most of the 

PM BLDC motors value of Θm is fraction of percentage of maximum allowed duration of 

commutation π/3 to maintain the rated torque; np is the number of pole pairs and Ωm is the 

motor mechanical speed. 

During the steady state, for negligible phase resistance first equation of (4.2.1) results in 

V/ER=2. ER is the back-emf at rated speed. Thus (4.2.3) reduces to the first equation of 

(4.2.4) and the remaining equations of (4.1.1) are written as 
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For small values of θe, ec can be approximated to its flat-top value E. For the present case 
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Fig.4.2.2. Current control scheme of PM BLDC motor drive 
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in per unit form of representation ea,pu = -eb,pu= ec,pu = Ωpu. Solution of (4.2.4) results in the 

expressions of phase-A and phase-C currents as in (4.2.3)  
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Current ib of the non-commutating phase is given by 
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Once the switch T5 is turned OFF and T1 is turned ON, keeping T6 ON, incoming current 

ia starts rising through T1 and T6. At the same time outgoing current ic freewheels through 

T6 and body diode D2 until it extinguishes. Three states of the inverter before during and 

after the end of commutation are shown in Figures 4.2.3a, 4.2.3b and 4.2.3c respectively. 

 

Depending upon the rate of rise or fall of the commutating currents, which in turn is a 

function of speed, either of commutating current can reach to their final value earlier or 

simultaneously. Three possible cases are: a) incoming current ia reaches to final value IR 

before the outgoing current ic vanishes [Fig. 4.2.4a]; b) ia reaches to final value after ic 
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Fig. 4.2.3. Phase currents a) before; b) during and c) after the commutation θe=0. 
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vanishes [Fig. 4.2.4b] and c) both of ia and ic reaches to their final value at the same instant 

[Fig. 4.2.4c]. 

 

Therefore from (4.2.3) rise interval θr of ia and vanishing interval θv of ic are given by 
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Expressions for θr and θv are not valid at the same time. Θr is less than θv in the speed zone 

Ω<Ωb/2 (low-speed zone) whilst θr is greater than θv in the speed zone Ω>Ωb/2 (high-speed 

zone). It is clear that the commutation interval consists of two parts: in the first part both 

the commutating currents are subjected to transients toward their final values whilst in the 

second part only one of them is subjected to the transients. The angular interval taken by 

the slowest commutating current to reach its final value is denoted by θf and represents the 

(total) commutation interval.  

In the case of θr < θv, behavior of ic can be explained the help of KVL equation for its 

freewheeling path written as in (4.2.6) 
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c  22  (4.2.6) 

Once ia reaches to its final value, it is modulated to maintain the desired value. Thus second 

term in (4.2.3) vanishes after θr and increase in slope of ic takes place. 

Along the commutation interval, current ib undergoes a fluctuation due to unbalanced 

behavior of the commutating currents. The fluctuation is superimposed to the constant 

amplitude of –IR and attains its maximum magnitude at the angle where the quicker of the 

commutating currents reaches its final value.  

In terms of voltage quantities, the low-speed zone is encountered when V>4ER and the 

high-speed zone when V<4ER. The speed Ωb/2 separates the two zones. For this speed 

value, θr is equal to θv, no unbalance occurs in the commutating currents and ib does not 

undergo any fluctuation. The transients of both the commutating currents and the non-
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Fig. 4.2.4. Phase commutations with: a) θr < θv; b) θr > θv; and c) θr = θv 
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commutating current in the two speed zones are exemplified in the upper graphs of Figure 

4.2.4. The traces clearly show the different behavior of the currents in the two speed zones. 

Therefore it is convenient to study separately in each speed zone the torque characteristics 

ensuing from the behavior of the commutating currents. 

4.3 Torque behaviour during phase commutation 

In per unit form of representation, expression of the motor torque in (4.1.1) reduces to  
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Under the approximation: for small value of θ, value of ec is equal to the flat top value E, 

(4.3.1) reduces to (4.3.2) for phase commutation at θe=0. 
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i.e. motor torque is equal to the opposite of the non-commutating current. Similar torque 

equations can be derived for the other intervals along the supply period. Torque behavior 

in the two speed zones is exemplified in the graphs of Figure 4.2.4.  

If Δib is the ripple in the non-commutating current ib then ib can be expressed as 

    pubpub ii ,, 1   (4.3.2) 

Average value of the motor torque calculated over a supply period is given by 
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Because of the triangular behavior of ib during the commutation interval, (4.3.3) can be 

rewritten as 
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From (4.3.1) torque ripple is defined as the peak-to-peak excursion and is equal to the 

magnitude of current excursion. 

 mpubiT ,  (4.3.5) 

where θm is equal to θr for Ω<Ωb/2 and to θv for Ω>Ωb/2.  

 

4.4 Torque vs speed characteristics 

4.4.1 Torque characteristics for Ωpu<0.5 

In the low-speed zone, ia reaches the reference value IR before ic vanishes. The rising 

interval θr of ia is given by the first of (4.2.5); its maximum value is m and is taken for 

Ωpu=0.5. This proves that the approximation ecE is well grounded for θe<θr. The 

amplitude of ic at θr is 
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Along θr, the current regulator keeps T1 ON until the current reaches IR and id is equal to 

ia. For θe>θr, T1 is chopped. Taking into account that i) the feedback current is id and ii) id 

coincides with ia when T1 is ON, the control scheme must operate in a discrete way and 

sample id during the ON time of T1 to regulate ia at IR. Due to the chopping of T1, VSI does 

not more apply the source voltage V across the motor phases but V. Then the term V in 

(4.2.4) must be substituted for by V. For the second part of commutation rate of variation 

of ic is given by 
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By (4.4.1) and (4.4.2), the expression of ic in the second part of the commutation interval 

is 
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Current ic vanishes for  
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By substituting the first equation of (4.2.5) in (4.4.3), it turns out that the commutation 

interval is equal to  

mf   (4.4.4) 

(4.4.4) shows that, in the low-speed zone, θf is depending only on motor data through the 

motor-distinctive parameter m whilst it is independent of the speed. Moreover, (4.4.4) 

proves that the approximation ecE also used (4.3.1) is well grounded.  

From (4.2.4), (4.3.2) and (4.4.1), the amplitude of ib,pu at θr is calculated in 
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By substituting (4.4.4) and (4.4.5) in (4.3.5) and (4.3.4), the motor torque and the torque 

ripple are formulated as a function of the speed for a PM BLDC drive operating in the low-

speed zone. They are expressed as 
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(4.4.6) shows that the motor torque exceeds the requested value of a quantity that is 

maximum as the speed approaches zero and reduces as the speed increases, becoming zero 

at =b/2. Eq. (4.4.7) shows that the torque ripple has the same profile vs. the speed as 
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the excess of the motor torque. (4.4.6) and (4.4.7) do not apply at zero speed, i.e. at 

standstill, where the motor develops a torque exactly equal to its rated value and the torque 

ripple due to the commutations disappears. 

4.4.2 Torque characteristics for Ωpu>0.5 

In the high-speed zone, ic vanishes before ia reaches to IR. The vanishing interval θv of ic is 

given by the (4.2.5); its maximum value is 1.5 m and is taken for Ωpu=1. This proves that 

the approximation ecE used to derive (4.2.3) is well grounded for θe<θv. As a consequence, 

the approximation is also well grounded when used in deriving (4.3.1). Value of ia at θv is 
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Along θv, id is equal to ia. For θe>θv, T1 is kept ON since ia is still less than IR, and id 

remains equal to ia. As phase-c is now no more conducting, so rate of variation of ia can be 

obtained from the voltage equation for the mesh formed by phase-a and phase-b. 
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By (4.4.8) and (4.4.9), the expression of ia in the second part of the commutation interval 

is 
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Current ia reaches to IR for  
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from (4.2.5) and (4.4.11), the commutation interval is  

pu

pu

mf





1
  (4.4.12) 

Expression (4.4.12) shows that, different from the low-speed zone, in the high-speed zone 

θf depends upon both the motor-distinctive quantity m and the motor speed. As Ωpu approaches 

1, (4.4.12) is no more applicable, since the drive operates under voltage limitation.  

To calculate the motor torque and the torque ripple in the high-speed zone it is necessary 

to determine ib,pu at θv. From (4.2.4), (4.3.2) and (4.4.8), we get 
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On substituting (4.4.13) in (4.3.3) and (4.3.4), we get  
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Expression (4.4.13) and (4.4.14) formulate the torque characteristics of a PM BLDC drive 

in the high-speed zone. (4.4.14) explains that the motor torque drops below the requested 

value of a quantity that is zero for pu=0.5 and increases to a maximum as the speed 

approaches the no-load speed. (4.4.15) explains that the torque ripple has a similar profile 

vs. the speed as the drop of the motor torque. 

4.5 Nominal speed and torque values 

Nominal speed ΩN is defined as the maximum speed at which the source voltage is able to 

bring the incoming phase current to the rated value of current IR, at maximum by the end 

of the sixty-degree of supply interval of phase-a and phase-b, i.e. at π/3 where the 

successive current commutation starts. Under this situation, θf coincides with π/3. Thus on 

substituting θf = π/3 in (4.4.12), nominal value of motor speed is given by,  
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Equation (4.5.1) states that ΩN is less than the rated speed. From (4.4.14) to (4.5.1), 

nominal vlaues of the motor torque and corresponding torque ripple are given by (4.5.2) 

and (4.6.1) respectively. 
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4.6 Case study 

An inwheel suface mounted PM BLDC motor drive used in a city electric scooter is 

considered as a case of study for the present analytical study. Data of the motor are enlisted 

in Table 4.6.1. Experimental setup for the cross verification of analytical study is shown in 

Figure 4.6.1. Calculated values of motor-distinctive quantity Θm and nominal speed ΩN are 

47mrad and 0.96pu respectively.  

Figure 4.6.2 plots the rising interval θr of ia and the commutation interval θf in the low-

speed zone, and the vanishing interval θv of ic and again the commutation interval θf in the 

high-speed zone. The graphs point out that that i) the commutation interval is constant and 

equal to m in the low-speed zone whilst it increases notably in the high-speed zone, 

reaching the value of /3 at the nominal speed, ii) in the low-speed zone the rising interval 

increases from zero to commutation interval m at pu=0.5, and iii) in the high-speed zone 

the vanishing interval starts from the value of m at pu=0.5 and then increases little by 

little up to 69 mrad at the nominal speed; the corresponding value of ec is about 0.87 times 
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E, meaning is that certain mismatch exists in the upper part of the high-speed zone 

regarding the approximation ecE made in deriving (4.2.3) and (4.3.1). 

 

 

The motor torque and the torque ripple are plotted in Figure 4.6.3 with the blue solid line 

Tab. 4.6.1. PM BLDC motor data 

 
Fig. 4.6.1 Experimental setup 

Data Symbol Value 

Rated motor 

voltage 
VR 48 V 

Rated motor 

current 
IR 50 A 

Rated torque TR 32 Nm 

Pole pairs np 8 

Phase resistance R 50 mΩ 

Inclusive phase 

inductance 
L 75μH 

Motor constant k 
0.32 

V·s/rad 

 

 
Fig. 4.6.2. Commutation interval (blue solid line), rising interval of ia in the low-speed 

zone (green dashed line) and vanishing interval of ic in the high-speed zone (red dotted 

line). 
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Fig. 4.6.3. Per-unit motor torque: analytical (blue solid line), experimental (blue star 

dots) and torque ripple (red dotted line). 
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and the red dotted line, respectively. The graphs show that i) the motor torque continuously 

drops with the increase in speed and falls by 23% of the rated value at the nominal speed, 

ii) the torque ripple has a symmetrical profile with respect to Ωpu=0.5, as it can easily 

deduced by inspecting (4.4.15) and (4.4.7), and is as high as 50% both at low speeds and 

at high speeds. 

To validate the theoretical findings, the study case consisting of an in-wheel PM BLDC 

motor fed by a dc-link current-controlled VSI has been considered and the experimental 

set-up of Figure 4.6.1 has been arranged. The PM BLDC motor, which is visualized on the 

right hand side of Figure 4.6.1, has been coupled to a brake motor, which is visualized on 

the upper side of Figure 4.6.1. The brake motor, together with its drive, is in charge of 

developing the load torque. For testing purposes, a closed-loop control of speed has been 

built up around the PM BLDC drive. For a given speed, the motor torque has been 

measured by increasing the torque of the braking motor until the speed regulator of the PM 

BLDC drive outputs a current request equal to IR and by detecting the corresponding torque 

developed by the braking motor. This test has been repeated for different speeds up to the 

nominal one to span the torque characteristic. To account for the phase resistances, it has 

been assumed that i) the effective voltage source is given by V minus the drop on the 

resistances of two conducting phases, and ii) the relevant phase currents are equal to IR all 

along the conduction interval. The resulting speed value, given by 

k

RIV R

2

2
   (4.6.1) 

is equated to the base speed of the motor. Under these assumptions, the measured torque-

speed values, denoted by stars, are reported in Figure 4.6.3. They are in good agreement 

with the theoretical findings, apart from at higher speeds where the transition interval of 

the vanishing current is comparable and the approximation of constant back emf assumed 

for the phase of the vanishing current starts to be rough. 

4.7 Conclusion 

An analytical study of the torque characteristics of a PM BLDC drive with DC-side current 

control has been performed, stressing the effects of the commutations on motor torque and 

torque ripple. The study has divided the speed range into two zones each of them having a 

proper behaviour of the phase currents during the commutations. The calculated motor 

torque exhibits a continuous drop with the speed whilst the calculated torque ripple is high 

both at low and high speeds, becoming zero just at half the speed range. The theoretical 

results on the motor torque have been supported by experimental tests executed on a 

commercial in-wheel PM BLDC drive. 
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Chapter 5 

Sinusoidal Phase Current Supply for PM BLDC Motor 

Summary: PM BLDC motor fed by square-wave phase current (SqPC) suffers the 

problem of torque ripple causing drop in average motor torque with the increase in speed. 

Such a problem limits the utilisation of the motor up till the nominal speed and affects the 

life of the on board dc-source. Due to phase inductance outgoing current does not vanish 

instantly rather it starts freewheeling through the body diode of the another switch of the 

same phase and non-commutating phase switch. This changes the state of VSI from 

conduction of two phases to conduction of three phases causing a short of imbalance in 

circuital conditions. Under the consideration of same copper losses in stator winding 

injection of sinusoidal phase current (SPC) results in higher power and motor torque in 

constant torque zone. Although, phase commutation is present in this case, but the state of 

inverter remains same with the conduction of all the three phases before, during and after 

the phase commutation. Thus it is possible to achieve an average torque that remains 

independent of rotor position and limited by the magnitude of back-emf. In this case torque 

ripple remains constant in contrary with SqPC, where it increases with speed. Thus use of 

SPC in coordination with SqPC can result in overall improvement in speed vs torque 

behaviour of the motor.  

Present chapter discusses the torque behaviour of the PM BLDC motor in terms of torque 

ripple and average torque in the case SPC supply. Discussion is further extended for the 

control issues of PM BLDC motor for SPC supply. Discussion is supported by the 

simulation and experimental results. 

5.1 Torque-speed characteristic for the sinusoidal phase current supply 

From the discussion on SqPC supply for PM BLDC motor it is clear that, motor suffers 

with the problem torque ripple due to phase commutation. Magnitudes of the torque ripples 

continue to increase with the increase in speed and can be 50-60% at higher speed. 

Dropping torque speed characteristics limits its application up till the end of constant 

torque zone. As it is observed that problem of ripple associated with commutation is due 

to the non-uniformity in the in the state of inverter due to phase inductances, i.e. during 

regular interval two phases of the inverter operate whereas during commutation all the 

three phases comes into action. In case of sinusoidal phase current (SPC) supply, inverter 

state before, during and after the phase commutation remains same and result in smooth 

and balanced phase commutations. SPC is achieved by properly modulating the voltage 

applied to the phases in order to maintain the corresponding phase current as sinusoidal 

one. To maximize the torque, phase currents are kept in phase with the phase back-emf. 

SPC supply for PM BLDC motor in constant torque zone is an un-traditional approach. 

Therefore speed torque characteristic of the motor is analysed. 

Figure 5.1.1 shows the phase currents and corresponding phase back-emf waveforms for 

a PM BLDC motor drive fed by SPC. 
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In order to limit the cu-losses for the two cases of supply, rms value for SPC and SqPC 

must be same i.e Irms,s=Irms,sq. ‘sq’ is used to represent square-wave ‘s’ is used to represent 

sinusoidal. With the consideration that there is no ripple in the quasi square phase current, 

if IN is the nominal current, then the corresponding peak value of the sinusoidal phase 

current IN,s is given 

NN II
3

2
s,   (5.1.1) 

Phase-a current ia in terms of rotor position θe is equal to IN,s sin(θe). Phase-b and phase-c 

currents are displaced from ia by -2π/3 and 2π/3 radians. Back-emf for phase-a is expressed 

as 







































































































































2,
6

11

6

116
1

6

11
,

6

7

6

7
,

6

5

6

56
1

6

5
,

6

6
,0

6

)(

ee

e

ee

e

ee

a

E

E

E

E

E

te  (5.1.2) 

Fourier series representation of ea in terms of rotor position is given by (5.1.3). For phase-

b and phase-c, θe is replaced by θe - 2π/3 and θe + 2π/3. 
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Fig.5.1.1 Sinusoidal phase currents and back-emf of PM BLDC motor drive. 
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Percentage contributions of odd harmonic components of trapezoidal back-emf are shown 

in Table 5.1.1. From the table it is clear that only first and fundamental components are 

dominant in nature and the effect of other components can be neglected. As the 

fundamental component of the back-emf is responsible for the production of necessary 

electrical power and so torque, power can be expressed in terms of fundamental component 

of back-emf and is given by 

1s,s
2

3
aN eIP   

where ea1 is the fundamental component of ea and is equal to 12E/π2. On substituting the 

values in (5.1.4), electrical power is given by 

sqN PEIP 053.1
312

sq,2s 


 

where Pqs is the electrical power with SqPC supply and is equal to 2EIN. From (5.1.5) it 

can be concluded that in case of SPC it is possible to obtain approximately 5% higher 

power and hence torque as compared to SqPC fed PM BLDC motor. Corresponding 

expression for nominal torque is given by 

sqNN

m

N TkI
P

T ,sq,2

s
s, 053.1)2(

36






 

5.1.1 Torque ripple vs speed for the sinusoidal supply 

Instantaneous torque of the motor in terms of fundamental component of the back-emf is 

expressed by (5.1.7) 

 ccbbaa

m

m ieieie 



1

  

where ωm is the motor speed in rad/sec. for the fundamental components of back-emf, 

instantaneous torque (5.1.7) is re-written as 

Table 5.1.1. Percentage of harmonic components in trapezoidal back-emf 

Harmonic order ea,peak(n)/E Normalized in (%) 

1 1.2158 100.00 

3 0.2708 22.27 

5 0.0446 3.67 

7 -0.0248 2.03 

9 -0.0300 2.46 

11 -0.0100 0.82 

13 0.0072 0.59 

15 0.0100 0.82 

17 0.0042 0.35 
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where τm1 is the motor torque due to fundamental components of the back-emf. 

Expression within the bracket of (5.1.8) have constant value equal to 1.5 for all the values 

of θe and results in constant value of torque τm,avg= τm1=18kIN,s/π
2 and is equal to (5.1.6). 

This validates the consideration of fundamental component of back emf to calculate 

average value of torque and motor power. Thus (5.1.8) gives the average value of torque.  

Instantaneous value of the motor torque is calculated by considering expression of 

trapezoidal back-emf as a function of θe in (5.1.7). Variation in instantaneous torque and 

average torque with rotor position is shown in Figure 5.1.2. Instantaneous motor torque 

τ6for the region θeϵ[0, π/6) is given by (5.1.9). 
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Torque ripple of the motor is given by the (5.1.10). 
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Thus the motor torque ripple in case of SPC remains constant and is equal to 

approxemately15% of the nominal motor torque. 

From the study of SqPC and SPC supply it is observed that although SqPC provide a flat 

torque characteristic, problem of torque ripple during phase commutation results in 

dropping speed torque characteristic. Magnitude of the torque ripples increases with speed 

and go up to 50-60% of the rated torque before the motor fails to build up the necessary 

 
Fig. 5.1.2 variation in average and instantaneous value of motor torque 
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electrical torque. In contrary SPC supply result in pulsating torque with a ripple of 

approximately 15%. Both the average torque (5.1.8) and torque ripple (5.1.10) in case of 

SPC supply are independent of motor speed. Therefore overall torque behaviour of the 

PMBL DC motor in constant torque zone can be improved with the conditional utilisation 

of SPC supply together with SqPC supply. Condition for the utilisation can be the shift to 

SPC from SqPC when the torque ripple goes beyond 15% of the rated torque with the 

preset motor speed. This approach can result in the extension of constant torque zone of 

the motor. From the table (5.1.1) it is clear that the effect of third harmonic component of 

trapezoidal back-emf cannot be neglected. Consideration of third harmonic component for 

the analysis results in 12% of torque ripple. As the difference is not big, for the sake of 

simplification only fundamental component of back-emf is considered. 

5.1.2 Base speed in case of SPC supply 

For the SPC supply, the base speed Ωs,B of the motor is defined as the maximum speed at 

which VSI is able to inject SPC of nominal magnitude into the motor. Ωs,B depends on the 

maximum output voltage of the VSI.  

Line-to-line voltage vab of the motor is expressed as  

  abbaab eii
dt

d
Lv   (5.1.11)

First term on the right hand side of (5.1.11) is inductive voltage drop vL,ab and eab (= ea - 

eb) is the line back-emf. vL,ab and eab as a function of rotor position θe are expressed by 

(5.1.12).  
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vL,ab has cosine variation and continues to decrease in the interval θeϵ[-π/6, π/6] where as 

eab increases with θe up till θe= π/6 where eab becomes equal to 2E. Thus overall increase 

in vab is observed. As from θe= π/6, eab becomes constant and vL,ab continues to decrease in 

vab is observed. Therefore it can be concluded that at θe= π/6, vab reaches to its peak value. 

Variations in line voltages vab, vL,ab and eab with θe are shown in Figure 5.1.3.  

 

Condition for vab to reach its peak value is confirmed by the condition of increasing func-

tion with respect to θe for (5.1.11) in the interval θeϵ[-π/6, π/6] i.e.  

e

eab

vL,ab
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Fig. 5.1.3 Line voltages 
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(5.1.13) further simplifies to the condition (5.1.14). 

105.11
32
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sNpLIn

k


 (5.1.14) 

(5.1.14) is true for a PM BLDC drive, as motor specific quantity Θm is very small compared 

to one and confirms the behaviour of vab to reach its peak value at θe= π/6. Further (5.1.14) 

can be rearranged as  

NLN VE ,
32


  (5.1.15) 

where VL,N is equal to npΩNLIN,s. Thus the inequality (5.1.15) is satisfied by an ordinary 

PM BLDC drive, where under nominal condition conditions, back-emf is much larger than 

the voltage drop across the phase inductance. From (5.1.11) and (5.1.12) for speed Ω, Ω 

peak value of vab is equal to 

 kLInV sNpab 2
2

3
,  (5.1.16) 

As the maximum line-to-line voltage generated by the VSI in linear modulation zone is 

equal to VN. Thus by substituting Vab =VN and Ω = ΩB,s in (5.1.16) with the approximation 

VN ≈ 2EN for negligible voltage drop across phase resistance, (5.1.16) results in the expres-

sion for base speed of PM BLDC drive for SPC supply and is equal to  
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Beyond the base speed, motor operates under the voltage limitation. For the speed range 

beyond ΩB,s and up to Ωo, magnitude of SPC must be reduced for the VSI to operate in 

linear modulation zone. Magnitude of the Is,L is derived from (5.1.16) and is equal to 
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From (5.1.8) and (5.1.18), corresponding value of motor torque and torque ripple are 
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From the analytical study of PM BLDC motor drive for SqPC supply as carried out in the 

previous chapter, base speed and the corresponding torque are summarized as 
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5.1.3 Convenience analysis of SPC over SqPC 

The per-unit motor torque and torque ripple for SPC and SqPC supplies are plotted in 

Figures 5.1.4 and 5.1.5, respectively for the considered PM BLDC motor drive. 

 

 

In both the figures, the red dashed lines refer to the SqPC supply whilst the blue solid lines 

refer to the SPC supply. A cross-examination of the graphs shows the better performance 

of the sinusoidal current supply both from the motor torque and torque ripple point of view. 

Indeed, besides the above-mentioned 5% higher value of the motor torque, the graphs in 

Figure 5.1.4 together with the help of the data reported in Table 5.1.2, point out that i) the 

base speeds for both the types of current supply are almost equal, ii) the PM BLDC drive 

with SPC supply develops a constant torque up to the base speed while its SqPC supply 

counterpart develops a lower torque starting from about half the nominal speed to about 

 
Fig. 5.1.4. Torque speed characteristics of PM BLDC motor drive with a) SPC supply 

(red dots) and b) SqPC supply (blue line) 
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Fig. 5.1.5. Torque ripple vs speed characteristics of PM BLDC motor drive with a) 

SPC supply (red dots) and b) SqPC supply (blue line) 
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0.76 times at the base speed, and iii) above the nominal speed, the torque of the PM BLDC 

drive with SPC supply decreases linearly, approximately likely to that one of the SqPC 

supply counterpart but keeping a higher value. In turn, the graphs of Figure 5.1.5 point out 

that the torque ripple in the case of SPC supply is much lower at both low and high speeds 

while it exceeds that one of the SqPC supply in a speed interval of about 0.22 pu centered 

at half of the nominal speed. 

 

Numerical simulations have been executed to investigate the effect of the phase resistances 

on the torque performance of the PM BLDC drives with the two types of current supply. 

The simulations have demonstrated that the voltage drop across the resistances reduces the 

base speed of about 0.9 times the value reported in Table 5.1.2 for the SPC supply and of 

about 0.89 for the SqPC. Therefore the results obtained above are not substantially 

modified by accounting for the motor resistances. 

Theoretical findings have demonstrated that the torque performance obtained with SPC 

supply outperforms the SqPC supply in almost all over the speed range. The torque-speed 

characteristic is higher all along the speed range, especially nearly the base speed. The 

torque ripple is less almost all along the speed range, apart from a speed interval centered 

at half the nominal speed and about 22% the nominal speed long, where the torque ripple 

of a PM BLDC drive with SqPC reduces due to the nearly matching profile between the 

injected current and the removed current. 

5.2 Control strategy for SqPC and SPC supply 

Sinusoidal phase current supply for PM BLDC motor drive can be realized by the current 

control scheme. Conventional current control scheme for PM BLDC motor drive is shown 

in Figure 5.2.1. 

 

In such a scheme as per the rotor position and torque reference current references for the 

Table 5.1.2 PM BLDC motor drive quantities 

Data  Symbol Value 

 Θm 46.8 mrad 

Base speed with sinusoidal current supply ΩB,s,pu 0.955 

Base speed with square-wave current supply ΩB,s,pu 0.957 

Torque at base speed with square-wave current supply TB,sq,pu 0.766 
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Fig.5.2.1. Conventional current control scheme for PM BLDC motor drive 
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three phases are generated. Generated reference current is compared with the feed-back 

current from the motor. PI controllers to generate the references for the duty-ratios for the 

corresponding inverter legs. These reference duty-ratios are modulated with the carrier 

signal to generate driver signals g1 to g6 for the switches of the 3-φ VSI Generated duty 

ratio corresponds to the phase voltage to be applied to the motor to ensure the phase current 

as per the reference. 

5.2.1 Estimation of speed, rotor position and generation reference current  

Rotor position is estimated from the information of hall signals. Hall sensor gives a high 

value, when it remains in the vicinity of North Pole of the permanent magnet for 180° 

electrical angle duration and low value for next 180° duration when it comes in the vicinity 

of South Pole of the magnet. Hall sensors are displaced from each other by 120° electrical 

angle in positive negative direction.  

Figure 5.2.2a and 5.2.2b shows the back-emf and Hall sensor signals for the three phases 

with sinusoidal and square-wave current refrence simultaneously. Rotor position is 

estimated with respect to Hall-c and starting point of the measurment is considered from 

the instant where Hall-c fall down to zero as shown in Figure 5.2.2. Reason behind the 

consideration of hall-c and its falling to zero instant for the position measurement is, at this 

particular instant phase-a current can be expressed by cosine function of rotor position with 

peak at this particular instant as shown in figure. 

 

Thus the refrence currents are written as  
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Fig.5.2.2 Phase back-emf, hall signal and rotor position with: a) sinusoidal phase 

current reference and b) square-wave phase current reference 
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where θe=Ωet. ωe is the motor electrical speed in rad/sec and is equal to pΩm.  

Speed of the motor Ωe , can be calculated with two approaches: 

 measurement of duration of each of the six hall states is considered 

 measurement of duration of high or low state of individual hall sensors  

In the first approach, if Δthall_sate is the duration of any of the hall state, then the estimated 

period T of the supply cycle will be equal to 6 ×Δthall_sate. Therefore the speed of the motor 

is estimated as 

hall_statet 3

2






T
e  (5.2.2)

In this case speed is updated at the end of each of the six hall state i.e. with each 60° 

duration of supply cycle speed is updated. Up till the next speed update, previous value of 

speed is considered for the calculation of rotor position. Rotor position is calculated with 

the previous value of speed multiplied by the time laps from the start of falling edge of 

Hall-c. 

In the second approach speed is updated with the falling edge of each of the hall sensor. If 

Δthall_high is the duration for which particular hall remains high, then the estimated period 

T of the supply cycle is equal to 2× Δthall_high. Therefore the speed of the motor is estimated 

as  

hall_hight

2







T
e  (5.2.3)

In this case speed update is available with the gap of 120° electrical angle duration. If 

Δthall_c is the time laps from the instant of falling edge of hall-c and ωe,prev, is the previous 

updated of motor electrical speed, then the position is estimated by the relation 

challprevee t _,   (5.2.4)

At the end of each falling edge of hall-c, Δthall_c is set to zero for the start of next cycle of 

position measurement from 0 to 2π as shown in Figure 5.2.2. Rotor position can also be 

extracted from the information of phase variables like phase currents and terminal voltages. 

This type of estimation is placed under sensor-less control of the PM BLDC motor. Present 

chapter consider only position estimation through hall sensor. With the information of 

position from (5.2.3) square-wave or sinusoidal phase current reference can be generated 

as listed in Table 5.2.1.  

 

Table 5.2.1 Reference currents for SqPC and SPC supply 

Hall state 
Rotor 

position θe 

SqPC  SPC  

ia ib ic ia ib ic 

4 0-π/3 +I 0 -I 

I P
 s

in
(θ

e)
 

I P
 s

in
(θ

e-
2

π
/3

) 

I P
 s

in
(θ

e+
2

π
/3

) 

6 π/3-2π/3 0 +I -I 

2 2π/3-π -I +I 0 

3 3π/3-4π/3 -I 0 +I 

1 4π/3-5π/3 0 -I +I 

5 5π/3-2π +I -I 0 
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5.2.2 Calculation of controller parameters 

Figure 5.2.3 shows the Block diagram representation of the transfer function model for 

phase current control scheme for SqPC supply. 

 

where τe=L/R is electrical time constant, τm=J/B is mechanical time constant. J is combined 

moment of inertia of the motor and B is the coefficient of viscous friction, kp and τi are the 

proportional gain and integral time constant of the PI controller. 

As the speed mechanical dynamics is much slower than the current dynamics, for a supply 

interval, back-emf can be consider as a disturbance for the current loop. This assumption 

results in the closed loop transfer function for the phase current control, and is given by 
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For a given damping ratio ζ and natural frequency ωn (= 2π fband_width), where fband_width is 

the bandwidth of the current loop, controller parameter are given by  

 
R

k
Rk

ne

p

ienp 2
;12


   (5.2.6) 

For the motor used for experimentation with parameters R= 35mΩ, L = 75μH (including 

mutual inductance), J = 0.1kg-m2 and B=0.5N-m/rad/sec and control specification as 

ζ=0.7 and fband_width= 700Hz, values of kp and τi are 0.427 and 2.94×10-3. For the purpose 

of simulation and experimentation parameters of PI controller were kept same for the case 

of SqPC supply and SPC current supply 
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Fig.5.2.3 Block diagram representation of transfer function model of phase current 

control scheme. 
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Figure 5.2.5a and 5.2.5b show the phase-a current, torque and rotor position with SqPC 

and SPC supply respectively, at motor mechanical speed equal to 70.74rad/sec.  

As discussed in theoretical analysis and observed in simulation, motor suffers with the 

torque ripple of 26% in case of SqPC supply and 18% in case of SPC supply with around 

5% higher average torque. Lesser torque ripples in case of SPC support the consideration 

of SPC during constant torque zone of the PM BLDC motor. Thus combined use of SqPC 

and SPC supply can be preferred for the improvement of overall torque behaviour of the 

motor in constant torque zone. Combined use of SqPC and SPC supplies are demonstrated 

in Figures 5.2.6a and 5.2.6b 

 

  
(a) (b) 

Fig. 5.2.5 Phase current, torque and rotor position with: a) SqPC; b) SPC at motor 

mechanical speed equal to 70.74rad/sec. 
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(a) (b) 

Fig. 5.2.6 Phase-a current, back-emf, and torque with SqPC and SPC, shift from: a) 

SqPC supply to SPC supply; b) SPC supply to SqPC supply 
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5.3 Implementation of current control schemes 

5.3.1 Implementation strategy 

Figures 5.3.1a shows the PM BLDC as discussed earlier with two servomotors as load 

used for experimentation. Figure 5.3.1b shows the VSI together with DSP-interface 

circuits.  

 

Flow chart representation of main program, ADC subroutine and the scheme for discrete 

PI controller used in the PI_Update subroutine are shown in Figures 5.3.2a – 5.3.2c. In 

scheme of Figure 5.3.2c, T is sampling period, Kp is proportional gain and Ki. Frequency 

for the PWM moudlation is selected as 14kHz. Therefore T = 35.71μSec.  

For the purpose of current refrence generation and transformation of circuit variables, 

calculation of cosine function is required. For this cosine series up to 9th term is considered 

as this gives more accurate value. Since the computation of cosine is a quite costly in terms 

of time, therefore for the reduction in evaluation time, cosine table for 0 to 90° is pre-

considered, and method of interpolation is used to evalueate cosine for a perticular rotor 

positon. Like wise limitiation of duty ratio on the circle also require computation of 

function square_root. This is also evaluated by the method of interpolation.  

Cosine series used for the the computation is 


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
9..2,1
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)1(1cos
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en

e
n


  (5.3.1)

code for the computation of cosine is given in Table 5.3.1. 

 

  
(a) (b) 

Fig. 5.3.1 a) PM BLDC motor with two servomotors as load and b) VSI with DSP-

interface circuits 
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For the measurment of speed time laps is calculated as per the counting of call of ADC 

subroutine. Counter selected for the measurment of speed is incremented by one with each 

call. Therefore Δt in (5.2.2) and (5.2.3) for the caluculation of speed is equal to number of 

counts of the the counter count multiplied by 2T, i.e Δt = 35.71×count μSec. Codes used 

for the computation of speed and position are placed in Table 5.3.1. 

  

Initialisation of PLL 

and peripheral clocks

Configuration of general 

purpose IO (GPIO) pins

Initialisation of 

Interrupts

Initialisation of 

peripherals

all_error = 0

Wait for inturrupt

Manage_error ()

YES

NO

 

Read 

Hall sensor signls

Verification of hall states fail_hall()

Read

sampled signals

Processing of 

Sampled singnals

check_hall()

ADC_isr()

Calculation of 

errors

UpdatePI()

Transfer of signals 

to registers for 

modulation

Re-initialization of 

ADC

Return

 

(a) (b) 

Ki×T×e(k)
e(k)

yi(k-1)

+
+

KP×e(k)

+

+

duty 

cycle

Limitation Limitation 5358×(1-duty)

 

(c) 

Fig. 5.3.2. Flow chart for: a) main program b) interrupt service subroutine for ADC, c) 

scheme for PI update. 
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Table 5.3.1 Codes for the computation of cosine, speed and position 

/*Computation of cosine with table*/ 
/* code for calculation of speed based on 

period of three Hall sensors*/ 

/*Start of the code for the calculation of 

position*/ 
float cosine_table(float angle) 
{ 

if (angle<0) 

  angle += 360; 
if (angle>360) 

  angle -= 360; 

angle_ip = angle; 
  if(angle_ip>=0 && angle_ip<90) 

cos = cos_table[angle_ip] + (angle- angle_ip)*(cos_table[angle_ip+1]-

cos_table[angle_ip]); 

  if(angle_ip>=90 && angle_ip<180) 

   { 
   angle_ip = angle_ip - 90; 

cos = -( cos_table[90-angle_ip] + (angle-90-angle_ip)*(cos_table[90-

angle_ip-1]-cos_table[90-angle_ip])); 
   } 

  if(angle_ip>=180 && angle_ip<270) 

   { 
angle_ip = angle_ip - 180; 

cos = -( cos_table[angle_ip] + (angle-180-

angle_ip)*(cos_table[angle_ip+1]-cos_table[angle_ip])); 
   } 

  if(angle_ip>=270 && angle_ip<360) 

   { 
   angle_ip = angle_ip - 270; 

cos = cos_table[90-angle_ip] + (angle-270-angle_ip)*(cos_table[90-

angle_ip-1]-cos_table[90-angle_ip]); 
   } 

return cos;    

 } 

 

 if (hCBA.bit.hA == prevA) 
count_a++; 

 else 

  { 
  deltat_1_A = 2*count_a*35.71e-6; 

  speed1_A = 2*3.14159/deltat_1_A; 

  count_a = 0; 
  prevA = hCBA.bit.hA; 

  } 

 

 if (hCBA.bit.hB == prevB) 

  count_b++; 
 else 

  { 

  deltat_1_B = 2*count_b*35.71e-6; 
  speed1_B = 2*3.14159/deltat_1_B; 

  count_b = 0; 

  prevB = hCBA.bit.hB; 
  } 

 

 if(hCBA.bit.hC == prevC) 
  count_c++; 

 else 

  { 
  deltat_1_C = 2*count_c*35.71e-6; 

  speed1_C = 2.*3.14159/deltat_1_C; 

  count_c = 0; 
  prevC = hCBA.bit.hC; 

  } 

 if(hCBA.all==prev) 
theta_e = theta_e + speed/28000;  

 else 

  { 
  position(); 

  theta_e = theta_e + speed/28000;   

  prev = hCBA.all; 
  }  

/*End of the code for the calculation of position*/ 

 

void position() 

{ 
switch(hCBA.all)  

 { 

 case 0x0:    
 case 0x7:  //fail_hall();  

  break; 

 case 0x4: //0 gradi 
  theta_e = 0; 

  break;   

 case 0x6: //60 gradi 
  theta_e = 1.04719755; 

  break; 

 case 0x2: //120 gradi 
  theta_e = 2.09439510; 

  break; 

 case 0x3: //180 gradi 
  theta_e = 3.14159265; 

  break; 

 case 0x1: //240 gradi 
  theta_e = 4.18879020; 

  break; 

 case 0x5: //300 gradi 
  theta_e = 5.23598775; 

  break;  

     } 
 return; 

} 
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5.3.2 Experimental results 

Figures 5.3.3a and 5.3.3b shows the acquird hall states and refrence currents generated for 

the two cases of phase current supply.  

 

 

In Figure 5.3.3 hall sensor signals aquired are complemented one. This so because in DSP 

interface circuit, the aquired hall signls are complemented from that of actual signals. 

Figure 5.3.4a shows the estimated speed and postion. Figure 5.3.3b shows the plot of 

  
(a) (b) 

Fig.5.3.3 Hall states and generated reference currents for: a) SqPC b) SPC supply 

 

 

 

(a) 

 
(b) (c) 

Fig. 5.3.4 a) estimated speed and position as per hall sensor positions; b) phase-a 

generated reference current and sampled current; c) phase-a current and hall signals as 

from oscilloscope, 25rad/sec mechanical speed 
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sampled value of phase-a current of as shown in Figure 5.3.4c. Ripples in actual and 

sampled current with the interval of 60° i.e. with each commutation and its correspondace 

with the ripples in estimated speed is confirmed by the appearance of ripple in the 

estimated position and refrecence current. Therefore, the selection of method for speed 

estimation is important. This problem of ripple is solved by adopting the approach, to 

update of speed information with measurement of duration of low state of individual hall 

sensors. And the position estimation is carried out with the falling edge of hall sensor c. 

Shift between square-wave and sinusoidal phase current supplies are shown in Figure 

5.3.5. 

 

Figures 5.3.6a and 5.3.6b show the traces of phase currents for a motor speed of about 200 

and 600 rpm respectively, pointing out that they are effectively sine waves with 

superimposed oscillations at the PWM frequency.  

 

The first test refers to the PM BLDC drive operating in the constant torque zone at the 

nominal current whilst the second one refers to the drive operating in the voltage-limited 

zone at about half the nominal current.  Note that the oscillations superimposed to the 

current are somewhat large due to the low inductance of the motor under test. 

  
(a) (b) 

Fig.5.3.5 Shift between square-wave and sinusoidal phase current supply 

 

  
(a) (b) 

Fig.5.3.6 Current waveform with sinusoidal current supply at about: a) 200 rpm and b) 

600 rpm. 
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The torque-speed characteristic of the PM BLDC drive is found by measuring the torque 

developed by the motor for different speeds. With the view to find it correctly, a 

preliminary set of tests have been executed to determine the friction torque of the setup. 

To this purpose, the PM BLDC motor has been disconnected from the VSI and the torque 

requested to rotate the motor has been measured for different speeds. The friction torque 

helps braking the drive under test and hence it must be added to the torque developed by 

the brake drive to obtain the total torque developed by the motor under test. The resulting 

torque-speed characteristic of the PM BLDC drive both in the constant-torque zone and in 

the voltage-limited zone is reported in Figure 5.3.7 with the blue circles. In the same figure, 

the results measured in [4] and reported in Chapter 4 for the same PM BLDC drive with 

square-wave current supply are reported with the red stars. The experimental 

characteristics fully agree with the theoretical findings, and demonstrate the overall 

superior torque characteristic achievable with the sinusoidal current supply. 

 

5.4 Conclusion 

This chapter has analyzed the convenience of supplying a PM BLDC motor with sinusoidal 

currents instead of with square-wave currents from the point of view of the torque 

performance, namely the motor torque and the torque ripple. Theoretical findings, 

corroborated by experimental results, have demonstrated that the torque performance 

obtained with sinusoidal current supply outperforms the square-current supply almost all 

over the speed range. The torque-speed characteristic is higher all along the speed range, 

especially nearly the nominal speed. The torque ripple is lower almost all along the speed 

range, apart from a speed interval centered at half the nominal speed and long about 22% 

of the nominal speed, where the torque ripple of a PM BLDC drive with square-wave 

current supply reduces due to the nearly complimentary profile between the injected 

current and the removed current. 
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Chapter 6 

Stationary-plane based investigation of PM BLDC drives 

Summary - Vector approach in either stationary or synchronous plane is commonly used 

for the analysis of the AC drives like induction and PM brushless AC drives whilst it has 

been hardly ever used for the PM brushless DC (BLDC) drives. A possible reason is that 

they require injection of square-wave currents into the motor phases, which are non-sinus-

oidal in nature. This chapter proposes and applies vector approach in the stationary plane 

to an in-depth analysis of the operation of the PM BLDC drives during the current com-

mutations, illustrating the potentialities of the approach in giving a better insight into the 

current transients and the ensuing torque characteristics [5]-[6]. At last, two voltage control 

strategies proposed to eliminate the torque ripple due to the current commutations are con-

sidered, showing that they can be readily understood by the vector approach. 

6.1 Electrical dynamics of PM BLDC motor drive in stationary axis plane 

6.1.1  PM BLDC drive 

As discussed in Chapter 4, circuital schematic of PM BLDC drive is shown in Figure 

6.1.1. 

 

Electrical dynamics of the drive expressed by (4.2.1) [Chapter 4] can be re-written as 

a function of rotor position in electrical radians θe 
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Fig. 6.1.1 Circuital schematic of a PM BLDC motor drive  
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Where θe = Ωet; Ωe = npΩ is the electrical speed of the motor, np is the number of pole 

pairs and Ω is the mechanical speed of the motor in rad/sec.  

The instantaneous electrical power p converted into mechanical form and the 

corresponding motor torque τ can be expressed as  
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 (6.1.2) 

Figure 6.1.2 shows the trapezoidal back-emfs of the PM BLDC motor phases and the 

corresponding SqPCs (square-wave phase currents) injected into the motor phases in 

synchronism with the flat portion of the back-emf, so as to develop flat and constant torque.  

 
Magnitude of the flat portions of the back-emf equal to +E or -E and their duration 

equal to 2π/3 (electrical) radians. The value of E is given by  

 kE  (6.1.3) 

where k is the motor constant. For motor operation, the phase currents occupies +I or –I 

as per the sign of the back-emfs.  

From Figure 6.1.2, it emerges that the supply period of the motor can be divided into 

six supply intervals S1, S2, …, and S6 of the duration of π/3 radians. At the beginning of 

each supply interval, one phase starts to conduct (incoming phase) and another one finishes 

of conducting (outgoing phase). During the remaining part of the supply interval, only two-

phases with back-emfs of opposite polarities conduct (conducting phases). To identify the 

supply interval and, from it, the conducting transistors of the VSI, the drive control uses 
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Fig. 6.1.2 Circuital schematic of a PM BLDC motor drive  
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the information delivered by three Hall sensors mounted on the stator and displaced of 

2π/3 electrical radians. The required voltage is applied to the conducting phases by 

stepping down the DC link voltage Vd through choppering of the conducting transistors. 

For the present case of study, DC-link current control of the PM BLDC drive is 

considered. Schematic of the control is shown in Figure 6.1.3.  

 
Regulation of the phase currents at the reference value Iref can be accomplished by the 

closed-loop control of the DC link current id. In fact, this current remains equal to the 

current flowing into a motor phase when both the conducting transistors are ON; therefore, 

if properly sampled, the DC link current gives the feedback of the phase currents. The 

current error is processed by a PI regulator that delivers the required voltage vc for the 

motor phases. 

Application of vc across the phases of the motor is commonly attained by chopping only 

one of the two conducting transistors to reduce the switching losses; a common strategy is 

to chop the transistor carrying either the incoming or the outgoing current. Hereafter, it is 

assumed that the control applies the required voltage without any delay.  

6.1.2  Stationary plane representation 

Time-varying three phase periodic quantities can be transformed to the quantities in 

stationary axis by α-β transformation. In case of star connected windings, where neutral 

point is not accessible, zero component of the transformation is not considered. For a three 

phase system with isolated neutral-point; if the variables in time space are xa, xb and xc 

with phase displacement of -2π/3 and +2π/3 for phase-b and phase-c with respect to phase-

a, stationary axis transformation is carried out by the expression (6.1.1). 
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Where xα and xβ are the components of the time varying periodic quantity in stationary 

plane. Factor 2/3 in expression (6.1.1) is used to maintain amplitude variance, whereas 
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Fig. 6.1.3 Schematic of the control of a PM BLDC drive.  
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factor (2/3)1/2 is used for power variance. 

Equations of the PM BLDC motor can be written in terms of the vectors i = [iα iβ]
T, e 

=[eα eβ]
T, and v =[vα vβ]

T of the currents and the back-emfs of the motor phases, and the 

VSI output voltages in the stationary plane. The vectors, calculated with a magnitude-

invariant transformation, are given by  
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By (6.1.5), the voltage equations in (6.1.1) become 
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Calculation of the current and back-emf vectors for the waveforms in Figure 6.1.2 

shows that:  

i). the current vector i remains stationary within the supply intervals S1, S2, …, and 

S6, and coincides with the radii I1, I2, …, and I6, respectively, of an hexagon 

(current hexagon) 

ii). the back-emf vector e moves along the sides of an hexagon (back-emf hexagon) 

during the supply intervals, and coincides with the radii E1, E2, …, and E6 of the 

hexagon at the beginning of the supply intervals.  

Current and back-emf vectors are traced in Figure 6.1.4 whilst their values as a fraction of 

I and E are reported in Table 6.1.1. 
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(-I, -I/√3)

-2E/3
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E4
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E6

 
Fig. 6.1.4 Current and back-emf vectors in the stationary plane. 
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As an example, in the supply interval S1 the current vector jumps from I6 (-I, I/√3) to 

I1 (0, -2I/√3) at θe = 0 and, after that, stays at I1 within the whole S1. Instead, the back-emf 

vector takes the value E1 (-2E/3, -2E/√3) at θe = 0 and moves towards E2 (2E/3, -2E/√3) 

during S1, reaching E2 at θe = π/3. For given values of I and E, the magnitude of the current 

vector remains the same and equal to 2I/√3, whereas the magnitude of the back-emf vector 

undergoes a continuous change from the maximum value of 4E/3 at the beginning of the 

supply interval to the minimum value of 2E/√3 at the mid of supply interval and then again 

to the maximum value of 4E/3 at the end of the supply interval.  

Power equation in (6.1.2) can be expressed in terms of the inner product of the vectors 

e and i as 

              eeeeeee ieiep     
2

3

2

3
 ie  (6.1.7) 

For the ideal case of instantaneous commutation, during the interval -0 ≤ θe ≤ π/3 the 

magnitude of the projection of e over i is constant and equal to 2E/√3. Thus the motor 

torque in (6.1.2) turns out to be constant and equal to  

kI2T  (6.1.8) 

6.2 Current commutation 

In practice, the incoming and outgoing currents take some time to get the required 

magnitude and the current commutation is not instantaneous. The analysis of the PM 

BLDC drive operation during the current commutations is carried out by supposing that  

i). the voltage drop across the phase resistances is negligible compared to the other 

voltage terms in (6.1.6), so that it can be disregarded, 

Table 6.1.1 Current and back-emf vectors in stationary plane 

Supply Interval 
Current vectors  

(in fraction of I) 

Back-emf vectors  

(in fraction of E) 

S1 𝐈𝟏 = −𝑗
2

√3
 𝐄𝟏 = −

2

3
− 𝑗

2

√3
 

S2 𝐈𝟐 = 1 − 𝑗
1

√3
 𝐄𝟐 =  

2

3
− 𝑗

2

√3
 

S3 𝐈𝟑 = 1 + 𝑗
1

√3
 𝐄𝟑 =  

4

3
 

S4 𝐈𝟒 = 𝑗
2

√3
 𝐄𝟒 =  

2

3
+ 𝑗

2

√3
 

S5 𝐈𝟓 = −1 + 𝑗
1

√3
 𝐄𝟓 = −

2

3
+ 𝑗

2

√3
 

S6 𝐈𝟔 = −1 − 𝑗
1

√3
 𝐄𝟔 = −

4

3
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ii). the commutation interval is small compared to the maximum allowed interval of 

π/3 [1] so that e remains equal to the back-emf vector taken at the beginning of 

the relevant supply interval. 

Above assumptions reduce (6.1.6) to 

 
  

 


e

e

ee

e
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d
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




Lv

1Ev
i





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 (6.1.9) 

For the supply interval S1 (6.1.9) shows that the change in the current vector is parallel 

to vL. 

Let us consider the current commutation taking place at the beginning of the supply 

interval S1, which starts at θe = 0 as in Figure 6.1.2. The drive control system turns T4 OFF 

and T6 ON, and keeps T5 ON. The commutating currents are ib and ia, with ib that is ingoing 

and ia that is outgoing, whilst ic is the non-commutating current. Current ia freewheels 

through D1 until it extinguishes.  

Generally, the commutation interval is divided into two subintervals, and the current 

transients depend on whether the motor runs in the low-speed zone, which occurs for Vd > 

4E, or in the high-speed zone, which occurs for Vd < 4E [2]. The current transients in the 

two speed zones and for Vd = 4E are shown in Figure 6.2.1, where the duration of the 

commutation interval is denoted with θc, and the two commutation subintervals are marked 

with #1 and #2. Hereafter, quantities pertinent to the low-speed zone are identified with 

the subscript l and those to the high-speed zone with the subscript h. 

 

6.2.1  Current transients in subinterval #1 

During subinterval #1, all the three motor phases conduct and the VSI exerts the 

maximum effort to the motor for the commutating currents to reach the required 

magnitudes, i.e. it is vao =Vd, vbo = 0 and vco =Vd. From (6.1.5), the vector of the VSI output 

voltages during subinterval #1is  

0 θe

ia

ib

ic

θcθi

ΔIl  I

-I

#1 #2

 

0 θe

ia

ib

ic

θc

I

-I

#1

 

0 θe

ia

ib

ic

θc θo

ΔIh
I

-I

#2#1

 
(a) (b) (c) 

Fig. 6.2.1 Current transients during commutation: a) in the low-speed zone (4E<Vd), b) 

for 4E=Vd , and c) in the high-speed zone (4E>Vd). 
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dVj 









3

1

3

1
1V  (6.2.1) 

The vector has fixed magnitude and is aligned along E2. By (6.19) and (6.2.1), the 

vector of the voltage drops across the phase inductances is 

   EVjEV dd 2
3

1
2

3

1
 11L,1 EVV  (6.2.2) 

The vector in (6.2.2) has a slope of  
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 (6.2.3) 

which is a function of E and, therefore, depends upon the motor speed Ω.  

Integration of (6.1.9) with the initial condition i(0) = I6 leads to the current vector i 

during subinterval #1  

      62
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1
2

3
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Ii1 








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
 edd

e

e EVjEV
L

  (6.2.4) 

From (6.2.3) and (6.2.4) it can be concluded that the current vector during subinterval 

#1 moves towards I1 along a straight line with the slope in (6.2.3).  

 

So, as shown in Figure 6.2.2, there are three possible trajectories of the tip of the current 

vector: 

i). in the low speed zone, i.e. for 4E<Vd , m1 is less than -1/√3 and the tip of i1 

moves along a line like x, which has an angular slope in the range from –/6 to 

–/3,  

ii). for 4E=Vd, m1 becomes equal to -1/√3 and the tip of i1 moves along the line 

joining I6 and I1, which has an angular slope of –/6, and  

α

β

I1

I6 I2

E1

w
x

4E>Vd

4E=Vd

4E<Vd

i

V1VL,1

4E>Vd

4E=Vd

4E<Vd

 
Fig. 6.2.2 Current vector trajectories during subinterval #1. 
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iii). in the high speed zone, i.e. for 4E>Vd , m1 becomes greater than -1/√3 and the tip 

of i1 moves along a line like w, which has an angular slope in the range from 0 

to –/6. 

Subinterval #1 ends in three possible modes:  

i). for 4E<Vd, the incoming current ib reaches the required magnitude -I at the angle 

θi before that ia the outgoing current vanishes [Figure 6.2.1a];  

ii). for 4E=Vd, ib reaches -I at the same angle that ia vanishes and the commutation 

completes at the end of the subinterval #1, [Figure 6.2.1b] 

iii). for 4E>Vd, ia vanishes at the angle θo before that ib reaches –I [Figure 6.2.1c].  

In both the modes i) and iii), the commutation continues with a second subinterval where 

ia vanishes and ib gets the required magnitude; at the completion of this subinterval, 

denoted with #2, commutation is completed and the current vector becomes equal to I1. 

Subinterval #2 lasts θci = θcl – θi in mode i) and θco =θch – θo in mode iii).  

6.2.2  Current transients in low-speed zone 

During subinterval #1 the tip of the current vector moves along a line like x, as 

explained in the previous Subsection. At the end of the subinterval #1, the current of phase 

b reaches the required magnitude –I, i.e. it is ibl (θi) = -I, while the current of phase a is still 

flowing.  

During subinterval #2, the drive control system regulates ib at -I by applying the 

voltage vbo =Vd-E at the output b of the VSI, while the other two outputs of the VSI are 

kept at the same voltages as before, i.e. it is vao=Vd, and vco = Vd, for ia to vanish. The 

vectors of the VSI output voltages and the voltage drops across the phase inductances are 

expressed as  

Ej 









3

1

3

1
2V  (6.2.5) 

EjL 









3

1
12, V  (6.2.6) 

Both the vectors have a magnitude that depends on the speed and a slope that is 

independent of the speed. In particular, the slope of the vector in (6.2.6) is 

3

1
2 m  (6.2.7) 

that, as shown in Figure 6.2.3, is the same as the line s. Substitution of (6.2.6) into (6.1.9) 

and integration of (6.1.9) give the current vector in subinterval #2  

    ieiie

e

ie
L

E
j  










 )(

3

1
1 12  ii   (6.2.8) 

where i1l(θi) is the current vector at the end of subinterval #1. The angle θi can be 

obtained by calculating the current vector at θe=θi by means of the first equation in 

(6.1.5), which becomes 
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    iaiai iIji   2
3

1
)(1i  (6.2.9) 

Then, by equating the real and imaginary parts of (6.2.9) to (6.2.4), also calculated at 

θe=θi, the values of θi and ia(θi) can be obtained. In particular, θi results in 

 EV
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d

e
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


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2

3
  (6.2.10) 

Finally, substitution of (6.2.10) into (6.2.4) yields i1l(θi).  

The trajectory of the tip of the current vector in subinterval #2, i.e. of i2l(θe - θi), is a 

straight line having the slope in (6.2.7). Since the current vector coincides with I1 at the 

end of subinterval #2, and the slope of the vector I21=I2 - I1 is the same as (6.2.7), the 

trajectory is represented by the line s of Figure 6.2.3 that passes through the tips of the 

vectors I1 and I2. Thus, it can be stated that subinterval #1 ends when the line x intersects 

the line s. 

 
Subinterval #2 finishes when the current vector reaches I1. This occurs when the 

current of the phase a vanishes. Being ia equal to the real part of the current vector, the 

duration of subinterval #2 can be obtained by equating to zero the real part of (6.2.8) 

calculated at θe=θcl. It is 
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 (6.2.11) 

and, from (6.2.1.) and (6.2.11), the duration of the commutation interval is  

k

LIn

E

LI pe
c

22
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
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 (6.2.12) 

It is worth to note that the commutation interval does not depend on the motor speed and, 

furthermore, it coincides with the commutation interval as obtained for 4E=Vd. 

The transients of the phase currents in the low-speed zone drawn in Figure 6.2.1a can 

be readily found by projecting the current vector on the axes a, b, and c of Figure 6.2.3. 
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Fig. 6.2.3. Phase vectors during subinterval #2 in low-speed zone. 
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6.2.3  Current transients in high-speed zone 

During subinterval #1 the tip of the current vector moves along a line like w, as 

explained in Subsection A). At the end of the subinterval #1, the current of phase a vanishes, 

i.e. it is iah (θo)=0, while the current of phase b is still on the way to get the required 

magnitude. This means that at θe=θo the real part of the current vector becomes zero and 

hence subinterval #1 finishes when the line w intersects the current vector I1. 

The angle θo is found by equating to zero the real part of (6.2.4) calculated at θe=θo and 

is equal to 

EV

LI

d

e
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  (6.2.13) 

Substitution of θe=θo in (6.2.4) results in only imaginary part and gives the current vector 

at the end of subinterval #1; it is 
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As anticipated, the vector is aligned along I1 and has a magnitude lower than 3/2I .  

During subinterval #2, the control system does not chop the VSI transistors T6 and T5 

but keeps them ON to facilitate the incoming current to reach the required magnitude. Then 

only the legs b and c of the VSI conduct and the voltage of the neutral point of the motor 

with respect to o is Vd/2. Let us suppose that the leg a is fictitiously chopped at the voltage 

of vao = ea + Vd/2 so as to maintain the zero current condition for the phase a.  The other 

output voltages of the VSI are vbo = 0 and vco = Vd. Thus the vector of the output VSI 

voltages can be determined and results in   

dh VjE
3

1

3

2
2 V  (6.2.15) 

whilst the vector of the voltage drops across the phase inductances becomes 

)2(
3

1
2, EVj dhL V  (6.2.16) 

The two voltage vectors in (6.2.15) and (6.2.16) have both the magnitude and the slope 

that depend on the motor speed.  

From (6.1.9) and (6.2.16), the current vector is given by  
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Eqs. (6.2.14) and (6.2.17) points out that the tip of the current vector moves along the 

imaginary axis as shown in Figure 6.2.4. Magnitude of the vector increases and then the 

tip continues to advance along I1 until it reaches the tip of I1 at θe = θch. Duration of 

subinterval #2 is obtained by equating (6.2.17) at I1. It is  
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and, from (6.2.13) and (6.2.18), the duration of the commutation interval is 
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The transients of the phase currents in the high-speed zone drawn in Figure 6.2.1c  can 

be readily found by projecting the current vector on the axes a, b, and c of Figure 6.2.4. 

As discussed in [1], in high-speed zone i2h must equate I1 within θe=π/3 to get the required 

current reference at least at the end of the allowed commutation interval, i.e. of the supply 

interval. 

6.3 Effects of current commutations on motor torque 

The instantaneous motor torque during current commutations can be still calculated by 

(6.1.3) and (6.1.7). For the current commutation occurring at the beginning of supply in-

terval S1, the instantaneous motor torque can be expressed as 

   ee  iE 


 1
2

3
 (6.3.1) 

By (6.3.1), the torque changes during the commutation interval. The change is proportional 

to the projection of [i(e) - I1] on E1 and, by accounting of the expressions of i(e), the 

change is a linear function of e.  

In the low-speed zone, the projection of i(e) on E1 is greater than the projection of I1 

and the instantaneous motor torque has a positive dip. The torque ripple, which is the ab-

solute of the maximum excursion, is equal to  
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Fig. 6.2.4. Phase vectors during subinterval #2 in high-speed zone. 
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After some manipulations the following expression is obtained for (6.3.2) 
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In the high-speed zone, the projection of i(e) on E1 is lower than the projection of I1 

and the instantaneous motor torque has a negative dip. The torque ripple is now equal to  
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After some manipulations the following expression is obtained for (6.3.4) 
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From Figures. 6.2.3 and 6.2.4, it can be easily realized that the torque ripple in both the 

low-speed and high-speed zones is proportional respectively to the maximum swing of the 

current of phase c. 

Due to the torque dip, the motor torque, defined as the average value of the instantaneous 

motor torque over a supply period, changes with respect the expected value in (6.1.8), by 

increasing in the low-speed zone and decreasing in the high-speed zone. The terms in 

excess and in defect can be found by calculating the average value of the torque dip over 

the supply interval /3. It comes out 
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By substituting (6.2.12) and (6.3.3) into (6.3.6), and (6.2.19) and (6.3.5) into (6.3.7), the 

following expressions can be obtained for the two terms 
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6.4 Exemplification 

To demonstrate the potentialities of the vector approach in analyzing the operation of a 

PM BLDC drive, two control techniques of the VSI during the current commutations are 

considered, that have been proposed to eliminate the torque ripple produced by the 

commutations in the low-speed zone [3] and in the high-speed zone [4], respectively.  
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6.4.1  Low-speed zone 

The control technique in [3] proposes to slow down reaching of the required magnitude 

from the incoming current ib by forcing it to have a magnitude complementary to that one 

of the outgoing current ia, i.e. by taking constant the sum of the magnitudes of ib and ia and 

equal to the required current magnitude -I. To fulfill this condition, [3] chops the transistor 

T6 of the incoming phase during the commutation interval with the following duty-cycle: 

d

l
V

E4
  (6.4.1) 

The VSI output voltages are then:  vao=Vd , vbo=(1-l)Vd , vco=Vd. By (6.1.5) and (6.1.9), 

the vectors of the VSI output voltages and the voltage drops across the phase inductance 

become  
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Note that the voltage vector in (6.4.2) has the same direction as V1 in (6.2.1) and a 

magnitude scaled of δl. As it can be recognized from Figure 6.4.1, this control technique 

forces the voltage vector (6.4.3) to stay in parallel to the line joining I6 and I1 irrespectively 

from the motor speed, so that the current vector during the commutation moves along this 

line and its magnitude does not exhibit any positive swing. The commutation interval spans 

only subinterval #1 as the incoming current reaches the required magnitude at the same 

time as the outgoing current vanishes, and the commutation angle is still given by (6.2.12).  

 

Clearly, the duty-cycle in (6.4.1) can be applied only for 4E<Vd , i.e. for δl<1, and hence 

this technique is effective only in the low-speed zone.  
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Fig. 6.4.1. PM BLDC control techniques to eliminate torque ripple. 
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6.4.2  High-speed zone 

The control technique in [4] proposes to slow down vanishing of the outgoing current ia 

by forcing it to have a magnitude complementary to that one of the incoming current ib, i.e. 

by taking constant the sum of the magnitudes of ib and ia and equal to the required current 

magnitude -I. To fulfill this condition, [4] chops the transistor T4 of the outgoing phase 

during the commutation interval with the following duty-cycle: 

1
4


d

h
V

E
  (6.4.4) 

The VSI output voltages are then:  vao=(1-h)Vd , vbo=0, vco=Vd. By (6.1.5) and (6.1.9), 

the vectors of the VSI output voltages and the voltage drops across the phase inductance 

become  
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Note that direction of the vector in (6.4.5) depends on the motor speed; in spite of this, the 

vector in (6.4.6) is parallel to the line joining I6 and I1 irrespectively from the motor speed, 

as shown in Figure 6.4.1, so that the current vector during the commutation moves along 

this line and does not exhibit any swing. Therefore this control technique operates in a 

similar way that the technique in the low-speed zone but with the difference of chopping 

the output VSI voltage of the outgoing phase instead of the incoming one. As above, the 

commutation interval spans only subinterval #1 as the incoming current reaches the 

required magnitude at the same time as the outgoing current vanishes. Here, instead, the 

commutation angle changes with the speed and is given by 

EV

LI

d

e
c

2


  (6.4.7) 

As an example, Figure 6.4.2 gives the trajectory on α, β plane of the current vector 

obtained without and with the control technique. The curves, obtained by simulation, 

clearly show the beneficial effect of the control.  

Clearly, the duty-cycle in (6.4.4) can be applied only for 4E>Vd  and up to 2E=Vd , i.e. 

for h<1, and hence this technique is effective only in the high-speed zone. Note that 

extension of (6.4.5)-( 6.4.7) to the case of 2E=Vd  leads to the situation where the DC link 

voltage is no more able to inject any current into the motor phases at the voltage drop on 

the phase inductances is zero. 
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6.5 Conclusions 

The current transients during the commutations of the PM BLDC drives have been ana-

lyzed in the stationary plane with the help of the vector representation of the drive varia-

bles. Vectors of the VSI output voltages and the voltage drops on the phase inductances 

have been calculated and utilized to get the current vector trajectories for different motor 

speeds as well as to find out the commutation intervals. The results of the analysis have 

been used to obtain the motor torque and the torque ripples due to the current commuta-

tions. Lastly, the vector approach has been applied to two control techniques of the PM 

BLDC drives with the end of explaining how they operate to eliminate the torque ripples 

due to the current commutations.  
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Chapter 7 

Integration of Photovoltaic panel with an Electric Mini-car 

Summary: Solar energy is a clean, inexhaustible, abundantly and universally available 

source of energy. Use of solar energy for the space exploration is common and its way of 

utilizations for other means of transportation especially for electric vehicles, ships and 

airships are being explored. Utilization of solar energy for light electric vehicles is a 

concern due to limited available on board space and lower efficiency of photovoltaic (PV) 

modules. Even under such constraints, for the cases where such vehicles are in parking 

during office hour and/or mobility is limited within the city, solar energy can be utilised to 

assist energy sources, like battery, ultra-capacitors or the combination of these. Autonomy 

of the electric vehicles can be improved by reducing the dependency of auxiliary supplies 

on main energy sources. This dependency can be reduced by delivering the energy 

requested by the auxiliaries through the charge to batteries from photovoltaic module 

mounted on the vehicle. Present chapter at first discusses the basics of solar irradiation, 

photovoltaic and datasheet specifications together with the characteristics of a photovoltaic 

module. Then a discussion on estimation of solar irradiance available in Padova, (Italy) is 

carried out for the calculation of input and output power of a given module. After this 

design and the experimentation of a high gain DC-to-DC boost converter for the integration 

of photovoltaic module with the battery of the mini-electric car is discussed. Efficiency 

measurement of the developed converter under real situation through experimental 

arrangement is carried and the results were explained with the help of developed analytical 

model for the efficiency measurement. At the end possible extension in the autonomy of 

the mini-electric car is explained. 

7.1 Solar irradiation and photovoltaic 

7.1.1 Solar irradiation 

Sun is approximated as a perfect black body which radiates energy in all the directions in 

the form of electromagnetic waves. Average solar power received by the earth surface is 

approximately 1.2×1014kW. Solar radiation reaching to earth is clean, inexhaustible, abun-

dantly and universally available source of energy. 

 

 
 

(a) (b) 

Fig. 7.1.1 a) Solar radiation through Earth’s atmosphere b) distribution of average flux 

incident 
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Figure 7.1.1 shows the solar radiation through the Earth’s surface. Solar radiation inci-

dent on the outer atmosphere of the earth is known as extra-terrestrial radiation and the 

solar radiation reaching the earth surface is called terrestrial radiation. Average solar en-

ergy incident on a unit area perpendicular to the direction of propagation of the radiation 

outside the earth’s atmosphere is known as solar constant ‘S’ and is equal to 1367W/m2. 

Total power falling on a unit area is termed as solar irradiance. 

Average solar energy incident on a unit surface area is obtained by dividing total solar 

energy incident on the earth ( = S × πR2) by total surface area of the Earth ( =4πR2) and is 

equal to S/4 i.e. 342W/m2,  where R is the radius of the Earth. 

When solar radiation enters into the Earth’s atmosphere, a part of it suffers scattering 

and absorption by aerosol, clouds and atmosphere. Scattered radiation is called diffused 

radiation, and a part reaching directly to the surface without any scattering is termed as 

direct or beam radiation. Some of the parts of direct beam after reaching the Earth’s surface 

got reflected, whereas some part gets absorbed; reflected part is termed as albedo. Total of 

the direct radiation and diffused radiation is called global radiation. Amount of radiation 

reaching the ground is variable in nature and depends upon the climatic like clouds and 

geographical situations. One of the characterizations of the clear atmosphere on sun light 

is air mass ‘AM’, which is equivalent to the relative length of the direct beam path through 

the atmosphere. On a clear day in summer at sea level radiation from the sun at zenith 

corresponds to air mass 1 (AM1), and at other angles it is approximately equal to the re-

ciprocal of the cosine of zenith angle θz. Spectrum of the extra-terrestrial radiation is rep-

resented by AM0 and is important for satellite applications of solar cells. AM1.5 is a typ-

ical solar spectrum on the Earth’s surface on a clear day which, with total irradiance of 

1kW/m2, is used for the calibration of solar cells and modules. Available irradiance is usu-

ally less than the global irradiance value 1kW/m2 because of earth rotation and climatic 

conditions. 

For the design purpose of a photovoltaic system, solar irradiation or solar insolation is 

an important factor and is equal to total solar irradiance over a time interval. Daily solar 

irradiation is obtained by calculating total solar irradiance over 24 our duration (One day). 

As the solar irradiance observed on the surface of the earth is 30% of the incident one 

because of scattering and reflection, thus average daily solar radiation on the Earth’s sur-

face Gav is equal to 5.75kW∙h/day (0.7×342×24h). This value is used as a standard value 

of average daily irradiation for the comparison with average irradiation to other places on 

the Earth’s surface. 

Figure.7.1.2 shows the instruments used for the measurement of solar radiation. Pyra-

nometer is used to measure global radiation, whereas pyranometer with shadow band 

measures only diffused radiation. Beam radiation is measured with the help of pyrheliom-

eter and sun shine hours are measured with the help of sunshine recorder. 
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7.1.2 Basics of Photovoltaic 

7.1.2.1 Principle of operation 
Solar power can be utilized in two ways, first by collecting the radiant heat and using it 

in a thermal system, which is called solar thermal system, and the second is by directly 

converting solar energy into electrical energy by photovoltaic. Feasible solution of the use 

of solar energy for automotive application is photovoltaic.  

Photovoltaic is the process of energy conversion in which solid state material is used for 

the direct conversion of solar energy into electrical energy and is similar to the theory of 

photo-electric effect, as per which when a photon of sufficient energy falls on material of 

lower work-function, for example solid state materials, electrons from valance band jumps 

to conduction band due to sufficient gain in energy. Photovoltaic is a bit different from 

photo electric effect in the sense that in this case electrons do not eject out from the mate-

rial. In case of semiconductor materials, light of relatively low energy like visible photon 

can shift electrons to conduction band. When the electrical path is completed with the 

semiconductor material, electric current in the electrical circuit is observed. 

7.1.2.2 Solar Cell 
Fundamental unit of solid state material used for the energy conversion in photovoltaic 

(PV) system is called solar cell or PV cell. Solar cell is basically a current source driven 

by the flux of solar radiation. A crystalline solar cell can generate approximately 

35mA/cm2 current at a voltage of 550mV with a solar radiation of 1kW/m2. Commercial 

PV cells have efficiency in the range of 10-20% and produces 1-2kWh/m2 in a day. Next 

higher energy conversion unit of PV system is PV module where solar cells are connected 

together in series to achieve higher voltage rating. Larger number of PV modules can be 

connected in parallel and series to increase current and voltage ratings of the system. This 

arrangement of PV modules is called a PV array. 

7.1.2.3 Classification of solar cells 
Solar cells can be classified on the basis of its physical structure, like thickness and type 

of the active material used for its fabrication. As per the thickness of the active material, 

solar cells are classified as bulk material solar cell and thin film solar cell. In bulk material 

solar cells, base material itself is an active material whereas in thin film solar cell active 

material is deposited on a support known as substrate.  

As per the type of the active material used for the fabrication, solar cells are classified 

as  

 Mono-crystalline silicon cell 

 Poly-crystalline silicon cell 

    
(a) (b) (c) (d) 

Fig.7.1.2. Solar radiation measuring instruments: a) pyranometer, b) pyranometer with 

shadow band, c) pyrhelometer, d) sunshine recorder. 
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 Amorphous silicon: a-Si cell (Inorganic thin film) 

 CIGS Copper Indium diselenide cells (CuInSe2) with Galium (Inorganic thin 

film) 

 Organic PV cell (Plastic solar cells) 

 Organic-inorganic PV cell (Dye-sensitized solar cells DSSCs) 

Crystalline silicon cells possess higher conversion efficiency but are costly compared to 

cells of other type. A-Si, CIGS, plastic solar cells and DSSCs comes in the category of 

flexible cells. Thermal coefficient for power of these cells are lower compared to crystal-

line Si cells (0.5%/°C). Thermal coefficient for a-Si cell is 0.21% per °C. It means that at 

a normal cell temperature of 60° C, the relative power output of a crystalline module will 

reduced by approximately 17% from the standard test condition rating, whereas for a-Si 

cells output is reduced by about 4-6%. Thus a-Si cells have higher power output at normal 

than at higher cell temperature. CIGS are approaching efficiency of 20.3% of silicon based 

rigid cells (crystalline cells) and the conversion efficiency is very stable over time. These 

cells are purely self-repairing as some of the chemical bonds break easily and free the 

copper atoms to wander through the crystals to distribute themselves naturally in even. By 

this way their presence fixes the problem. DSSCs work well over a wide range of lighting 

conditions and orientation, as they are less sensitive to partial shadowing and low-level 

illumination [2]. Comparison of crystalline and thin film PV cells in terms of efficiency 

and cost is listed in Table 7.1.1.  

 

7.1.3 Characteristics of PV modules 

Electrical characteristics of a solar cell are defined by the output-current vs terminal 

voltage (I~V) and output-power vs voltage (P~V) curves. Amount of electrical current 

generated by the solar cell due to excitation by light at a given temperature depends upon; 

a) intensity of the light (solar irradiance) falling on the cell surface and b) wavelength of 

Tab.7.1.1: Comparison of solar cells in terms of cost and efficiency 

 

Bulk type/ Wafer-based (Crystalline) 

Mono-

crystalline Si 
Ploy-crystalline Si Poly-crystalline 

Pros 
 High effi-

ciency 

 High efficiency with respect 

to price 
- 

Cons 
 Increased manufacturing cost caused by the sup-

ply shortage silicon 
- 

 

Thin-film type 

Amorphous Si CIGS 
CdTe (Cadmium 

telluride) 
Polymer organic 

Pros  Low price 

 Low price 

 Able to automate all manufac-

turing process 

 Low manufactur-

ing  

 Can be more effi-

cient (still in re-

search) 

Cons 
 Low effi-

ciency 
 Low efficiency 
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the incident rays. Figures 7.1.3a and 7.1.3b shows I-V and P-V curves for a solar module 

under different solar irradiance level.  

 

 

 It is clear that, there is wide variation in the current produced by the solar module in 

comparison of terminal voltage with solar irradiance. Corresponding to each of the curve 

there is a point where cell/module generates maximum power, this point is called maxi-

mum power point; it is always desirable to operate the cell/module at this point to extract 

maximum power from the module. 

7.1.3.1 Technical specifications of a solar cell/module as per data sheet 
 For the utilization purpose of the PV modules there are some specification which 

are required and necessarily mentioned by the manufacturers in their data sheet. These are 

generally termed as rating at STC (Standard test condition) or SRC (Standard Reporting 

Conditions). STC/SRC is considered as, nominal cell temperature 25°C, nominal irradi-

ance level 1000W/m2, at spectral distribution of AM1.5. STC is developed by UL (Under-

writers Laboratories) [3]. Electrical Parameters generally found in a data sheet are enlisted 

in Table 7.1.2. 
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Fig.7.1.3. Output current vs voltage (I-V) characteristics curves for a photovoltaic 

module for different solar irradiances (image resources: www.pvresources.com) 
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Fig.7.1.4. Output power vs voltage (P-V) characteristics curves for a photovoltaic 

module for different solar irradiances (image resources: www.pvresources.com) 
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Module ratings are also required to be mentioned at NOCT, which is defined as the equi-

librium cell junction temperature corresponding to an open-circuit module operating in a 

reference environment of 800W/m2 irradiance, 20°C ambient air temperature with a 1m/s 

wind across the module from side to side. Other information which a data sheet includes, 

are mechanical characteristics, cell information, absolute maximum ratings. Mechanical 

characteristics includes, physical dimension of the module, type of enclosures, weight etc. 

Cell information includes information about the cell type, Cell size, number of cells etc. 

Absolute maximum ratings includes information about application, fire resistance class, 

maximum over current rating, operating temperature (°C), storage temperature (°C), max-

imum load capacity (Kg/m2), maximum wind resistance (km/h) and maximum Hai diam-

eter@80km/h.  

7.1.3.2 Electrical Equivalent circuit model of a PV cell 
PV cell can be modelled as a current source in parallel with a diode. In case of non-

availability of light, PV cell behaves as diode, and as light intensity increases, it starts 

generating current.  

Various electrical models such as, Anderson’s method [4], Bleasser’s method [5], IEC-

891 procedure [6], semiconductor model [7], two-exponential model [8], F. Z. Peng’s 

method [9] etc, have been proposed to explain the energy conversion method of a PV cell. 

Out of these methods, Anderson, Bleasser and IEC 891 methods work on point by point 

principle, whereas semiconductor model, two exponential model, and Peng’s method are 

based on analytical models. Except Peng’s method, all other mentioned methods require 

some data which are not available in data sheet. Circuit model with two diodes [10] is 

considered to be more accurate one. Figure 7.1.5 shows the simplified equivalent circuit 

model for a PV cell as per the solar cell semiconductor model [7].  

Total current IPV for the circuit shown in the Figure 7.1.5 in terms of circuit parameters 

is given by (7.1.1), [7].   

 
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


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 (7.1.1) 

Tab. 7.1.2: Electrical parameters of a photovoltaic module provided by manufacturers 

 Peak Power (Wp)  Fill factor (FF) 

 Power Tolerance (%)  Module efficiency (η) 

 Open circuit voltage (Voc)  Temperature coefficient Voc 

 Short circuit current (Isc)  Temperature coefficient Isc 

 Voltage at maximum power (Vmp)  Temperature coefficient power 

 Current at maximum power (Imp) 
 NOCT (Nominal operating cell tem-

perature) 

 Maximum System voltage (Vdc)  
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where, IG is the generated current, I0 is the saturation current of the diode, q is the ele-

mentary charge (1.6×10-19 Coulomb), k is the Boltzmann constant (1.38×10-23J/K), T is the 

cell temperature in Kelvin, V is the measured cell voltage  or applied voltage for the pur-

pose of voltage biasing, RS and RSH are the series and shunt resistance of the equivalent 

electrical model and are equal to the inverse of the slope of the I-V curve at Voc and Isc 

respectively. 

 

7.1.3.3 Definitions associated with the electrical characteristics of a PV cell 
Various parameters defined with the help of (7.1.1) and the characteristic curves are: 

a) Short circuit current ISC: Short circuit current corresponds to the current from the 

solar cell when the load impedance is zero and the output terminal voltage is equal 

to zero as shown in Figure 7.1.6a. ISC is the maximum value of the current in power 

quadrant. For an ideal cell it is equal to the maximum current generated by the solar 

cell. 

b) Open circuit voltage VOC: Open circuit voltage VOC is the measured cell voltage when 

no current is delivered by the cell. VOC is also equal to maximum potential difference 

across the cell for a forward-bias sweep in the power quadrant. 

c) Peak power or Maximum power WP: Peak power produced by the solar cell is equal 

to the maximum rectangular area sweep by I-V curve as shown by the shaded area 

in Figure 7.1.6a. At the point of open circuit voltage and short circuit current of the 

cell power generated by the cell is equal to zero and in between these two points it 

rises to a peak value from zero and then again reduces to zero as shown in Figure 

7.1.6b. This peak point is called maximum power point (MPP) and is the operating 

point, where the maximum power from the solar cell can be extracted. Current and 

voltage corresponding to the MPPs are termed as Imp (current at peak power point) 

and Vmp (voltage at peak power point) respectively. 

d) Fill factor FF: Fill factor is the measure of closeness of the practical I-V curve with 

the ideal one. It is equal the ratio of maximum/peak power of the solar cell to total 

theoretical power WTh (product of VOC and ISC). It can also be defined as the ratio of 

maximum area sweep by I-V curve to area formed by the VOC and ISC as shown in 

Figure 7.1.6c. Value of the FF ranges from 0.5 to 0.82. Mathematically fill factor is 

given by (7.1.2) 

L
O

A
D

RS

RSH

IPV

IG
VPV

 
Fig. 7.1.5 Simplified Equivalent circuit model for a PV Cell 
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SCOC

mpmp

T IV

IV
=

W

W
=FF

p
 (7.1.2) 

e) Efficiency η: Efficiency of a PV cell of module is defined by the ratio of the electrical 

power output Wout to solar power input Win. Input power is calculated by the product 

of solar irradiance in (W/m2) with the cell area in m2. For the calculation of maximum 

efficiency solar irradiance is considered as 1000W/m2.  

η=
W

out

W input
solarpower

 (7.1.3) 

 

7.1.3.4 Effect of variation of solar irradiance and cell temperature 
Figure 7.1.7 shows the variation in PV cell current, voltage and power due to the variation 

in irradiance and cell temperature. With the increase in irradiance, movement of free 

electrons in conduction band is considerably higher in comparison with the thermally 

generated free electrons. Therefore much higher variation in the cell current is observed 

in case of variation in irradiance, Figure 7.1.7a, compared to variation in temperature, 

Figure 7.1.7b. Negative voltage thermal coefficient, result in noticeable drops in the open 

circuit voltage with the increase in temperature, as it is shown in Figure 7.1.7b. Variation 

in the current due to temperature is generally neglected because of much lower positive 

thermal coefficient. 

iPV

vPVVmp
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vPV
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iPV
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(c) 

Fig. 7.1.6. a) I-V curve; b) P-V curve; c) I-V curve for the explanation of fill factor 
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Three different types of thermal coefficients for a solar cell are:  

 short circuit thermal coefficient, expressed as percentage change in short circuit 

current with unit change in temperature and is represented as %ISC/°C. 

 open circuit voltage thermal coefficient, expressed as percentage change in open 

circuit voltage due to unit change in temperature and is represented as %VOC/°C. 

 nominal power thermal coefficient, expressed as percentage change in nominal 

power with unit change in temperature and is expressed as %W/°C.  

In general, values of the thermal coefficients of open circuit voltage and nominal power 

thermal are negative and that of short circuit current is positive and negligible compared 

to two thermal coefficients.  

7.1.3.5 Effect of variation in RS and RSH 
As shown in Figures 7.1.8a and 7.1.8b, variations in the series and shunt resistances 

affect the shape of I-V curve. With the increase in these parameters peak power shifts to 

lower value and hence the fill factor reduces due decrease in maximum area sweep by I-V 

curve. 
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(a) (b) 

Fig.7.1.7. Variation in current and voltage of a PV cell due to variation in a)  irradiance; 

b) cell temperature, variation in output power due to variation in c) irradiance; d) cell 

temperature 
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7.1.4 Solar irradiance available in Padova 

JRC (Joint Research Centre) of European Commission provides information of daily 

and monthly irradiation for different places of Europe by using PVGIS (Photovoltaic Ge-

ographical Information System) and CM-SAF-PVGIS (Satellite Application Facility on 

Climate Monitoring PVGIS) data base system [11]. For the determination of irradiance in 

different places two methods have been adopted:  

 ground measurements of solar radiation and  

 solar radiation estimates from satellite.  

The PVGIS database available for Europe is based on an interpolation of ground station 

measurements. The ground station measurement data are long-term monthly average of 

global and diffuse irradiation on a horizontal plane. These data were originally part of the 

European Solar Radiation Atlas from 1981 to 1990. CM-SAF-PVGIS database for Europe 

are based on calculation from satellite images performed by CM-SAF and is taken over for 

12 years of duration. Data from 1998 to to 2005 are from the first generation of Meteosat 

satellites knows as (MFG) and from June 2006 to May 2010 data is obtained from second 

generation Meteosat satellite known as (MSG).  

Figure 7.1.9a shows the distribution of yearly sum of global irradiation on a horizontal 

surface in kWh/m2 and potential solar electricity map kWh/kWp generated by a 1kWP sys-

tem per year with photo-voltaic modules mounted on a horizontal surface, assuming sys-

tem performance ratio of 0.75. Distribution is averaged over ten year duration from 1981 

to 1990. Figure 7.9b shows the irradiance distribution for optimally inclined surface. From 

the map we can say that global irradiation at Padova on horizontal surface is around 1400 

kWh/m2 and for optimally inclined surface is in between 1550 to 1600 kWh/m2. PVGIS 

database provides estimation of the performance of grid connected photo-voltaic system 

to be installed in any of the place in Europe.  

In case of electric vehicles (say an electric mini-car) it is a costlier affair to maintain 

inclination of photo-voltaic module to optimal angle of inclination in due south-east direc-

tion, to acquire maximum possible irradiance. Roof top of a vehicle is a best place to mount 

a module, as most of the time it remains parallel to the horizontal surface. Thus information 

iPV

vPV

Increasing 

RS

 

iPV

vPV

Increasing 

RSH

 
(a) (b) 

Fig. 7.1.8. Variation in the shape of I-V characteristic curve due to variation in a) series 

resistance RS; b) variation in shunt resistance RSH 
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provided by PVGIS/CM-SAF database can also be used for the electric vehicles.  

 

Table 7.1.3 shows the global irradiation on horizontal surface at Padova as provided by 

PVGIS and PVGIS CM-SAF database respectively. Difference in the irradiation measured 

by CM-SAF and PVGIS is may be due to climatic changes as PVGIS is based on ground 

measurement data during 1981-1990, error due to distinction between snow and clouds 

and other factors specified by JRC. Figures 7.1.10a and 7.1.10b shows the graphical vari-

ation in global irradiation at Padova.  

 

  

(a) (b) 

Fig.6.1.9. Global irradiation and potential electricity map for: a) horizontally mounted 

photo-voltaic modules; b) optimal angle mounted photo-voltaic module. 

 

  
(a) (b) 

Fig.7.1.10. Global irradiation on horizontal surface and optimally inclined surface at 

Padova estimated by: a) Classic PVGIS database and b) CM-SAF database. 
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From the Table 7.1.3 it is clear that irradiation is minimum in the month of December and 

maximum in the month of July. Therefore, for the present case both global and diffused 

daily irradiance during clear and real sky at Padova for two extreme cases, i.e. for the 

month of July and December are considered. Variations in irradiation during two months 

are plotted in Figure 7.1.11. 

 

Tab.7.1.3: Monthly incident global irradiation H at Padova, Italy 

Month 

Classic PVGIS database CM-SAF PVGIS database 

Average 

day time  

temperature 

Hh 

(kWh/m2/day) 

Hopt 

(kWh/m2/day) 

Hh 

(kWh/m2/day) 

Hopt 

(kWh/m2/day) 

TD 

(°C) 

Jan 1.29 2.08 1.30 2.28 4.6 

Feb 1.89 2.65 2.38 3.81 6.4 

Mar 3.09 3.80 3.64 4.83 10.4 

Apr 4.18 4.56 4.97 5.57 13.9 

May 5.10 5.07 6.26 6.25 19.3 

Jun 5.95 5.69 6.72 6.34 23.2 

Jul 6.07 5.93 6.99 6.78 25.2 

Aug 5.12 5.44 5.80 6.25 24.9 

Sep 3.89 4.71 4.34 5.41 20.7 

Oct 2.37 3.24 2.61 3.76 16.2 

Nov 1.46 2.27 1.51 2.50 10.3 

Dec 1.03 1.65 1.23 2.33 5.9 

Yearly 

average 
3.46 3.93 3.99 4.68 15.1 

 

Hh : Irradiation on horizontal surface; Hopt : Irradiation on optimally inclined 

surface; Optimal angle of inclination: 34° (source PVGIS database system) 

 

  
(a) (b) 

Fig.7.1.11. Daily irradiance at Padova estimated by Classic PVGIS database in the 

month of: a) December; b) July. (G: Global; Gd: diffused; Gc: Clear sky) 

 



102 

 

 

Estimated peak and minimum value of the global during real sky, diffuse during real sky 

and global during clear sky for Padova in the month of December and July are listed in 

Table 7.1.4. It provides important information for the decision of calculation of minimum 

and maximum solar input to a photo-voltaic module mounted on a horizontal surface. 

 

From the Table 7.1.4 it is clear that there is not much difference in the data estimated by 

the two measurement system used by JRC. So we can use CM-SAF PVGIS data base for 

the estimation of possible power out from a photovoltaic module. 

  
(c) (d) 

Fig.7.1.11. Daily irradiance (global and diffuse) at Padova estimated by PVGIS CM-

SAF database in the month of: c) December; d) July. (G: Global; Gd: diffused; Gc: 

Clear sky) 

 

Tab. 7.1.4: Estimated solar irradiance on a horizontal surface 

 
Solar irradiance estimated by classic 

PVGIS (December) 

Solar irradiance estimated by 

classic PVGIS (July) 

 Time G Gd Gc Time G  Gd Gc 

 08:07 43 38 45 04:52 52 47 39 

Peak 11:52-12:07 175 107 367 11:52-12:07 645 237 921 

Minimum 16:07 28 28 16 19:22 29 29 18 

   

 
Solar irradiance estimated by CM-

SAF PVGIS (December) 

Solar irradiance estimated by 

CM-SAF PVGIS (July) 

 08:07 43 34 45 04:52 48 40 39 

Peak 11:52-12:07 212 96 367 11:52-12:07 771 198 923 

Minimum 16:07 25 25 16 16:07 25 25 18 
         

G: Global irradiance on horizontal plane (W/m2); Gd: diffused irradiance on 

horizontal plane (W/m2); Gc: Global irradiance on horizontal plane during clear sky 

(W/m2) 
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7.1.5 Calculation of input and output power of a PV module mounted on a electric 

mini-car 

7.1.5.1 Calculation of solar energy input to a PV module mounted on a mini electric 

car 

For the case study, Electric mini-car, Birò Estrima is considered. Roof area of this car 

is 750×880 mm2 (0.66 m2). Available roof area when multiplied with the estimated solar 

irradiance for Padova results in total input solar power. Input power varies from 242 W in 

the month of December, to 609W peak in the month of July for clear sky. Whereas it varies 

from 140 W to 508W peak with real sky from December to July respectively. Minimum 

solar power input is equal to 16.5W and 11-12 W for real sky and clear sky respectively 

for both the extreme months. Therefore we can consider that solar power input to the 

photo-voltaic module mounted on the roof of the car with the available space is minimum 

11W and maximum 609W (=923W/m2×0.66 m2).  

Output power of the photo-voltaic module is calculated by multiplying the input power 

with the efficiency of the module specified by the manufacturer. One of the most important 

constraints with the present application is availability of space to mount the photo-voltaic 

module on the roof top of the car.  

7.1.5.2 Calculation of electrical power output from a PV module mounted on the 

mini car 
Case 1: Crystalline photo-voltaic module from Enecom, Italia  

Considering the datasheet of HF-40  

Physical dimension of this module is 670×526×1.5 (0.352m2, horizontal area). Thus the 

maximum input solar power is 324.896W and minimum solar input power is 5.632W. 

Therefore possible output power for module with: a) crystalline cell (18% conversion ef-

ficiency) will be in between 1.014W to 58.48W; b) poly crystalline cell (16% conversion 

efficiency) will be in between 0.901W to 51.98W. 

Other parameters of the module at STC (Standard test conditions) are  

VOC= 21.96V; ISC = 2.4A; Imp=2.16A; Vmp= 18.18V; Number of Cells in series = 36; Cell 

dimension = 62.5×125 mm2. 

As the estimated extreme irradiations are 923W/m2 and 16W/m2 so ISC for two cases are 

(2.4×923/1000) ≈ 2.22A and 0.04A. Since current is negligible affected by the variation in 

temperature due to smaller thermal coefficient, effect of variation in temperature is ne-

glected.  

For crystalline solar cells, thermal coefficients for open circuit voltage and peak power 

are -125.8mV/°C and -0.45%/°C respectively. Average day time temperature at Padova in 

the month of July is around 25°C and in the month of December is 5°C. As the in the month 

of July temperature is equal to standard value, open circuit voltage for July will remain 

same and is 21.96V. Open circuit voltage in the month of December will be 77.21V.  

Peak power in the month of July will also remain approximately same, i.e. 58.48W for 

mono crystalline and 51.98W for poly crystalline solar module, due to same temperature. 

But in the month of December, it will be 10.14W and 9.01W for mono crystalline and poly 

crystalline photo-voltaic module respectively. 
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Formula used for the calculation of voltage and power at different temperature are given 

by (7.1.4) and (7.1.5) for voltage and power respectively 

 TVVt  10  
(7.1.4) 

 TPPt  10  
(7.1.5)  

where Vt and Pt are the voltage and power respectively at any temperature, V0 and P0 are 

voltage and power at STC and β and γ are thermal coefficients for open circuit voltage and 

peak power as described earlier. 

Case 2: Poly crystalline Silfab module with 20 cells 

Effective cross sectional area of the PV module is 20×0.1562 and is equal to 0.48672m2. 

Parameters of this module at STC are:  

VOC = 12.48V; ISC= 8.305A; Vmp= 10.46V; Imp= 8.305A; Pmax = 80.17W; η = 16.8%. Tem-

perature coefficients are:  -2.23mV/K (voltage); +3.69mA/K (current) and -0.046 %/K 

(power). 

Input and output power to and from the PV module, as per the available irradiance during 

real and clear skies are tabulated in Table 7.1.5.  

 

Extreme irradiances available are 16 and 923 W/m2 and the corresponding output powers 

are 1.31W and 75.47 W. Short circuit current for the two cases are 133mA and 7.67A 

(=8.305×923/1000). As the temperature coefficient for the current is very small, variation 

in current with temperature can be neglected. 

For the considered solar cells, thermal coefficients for open circuit voltage and peak 

power are -2.23mV/°K and -0.046%/°K respectively. Average day time temperature at Pa-

dova in the month of July is around 25°C. As the in the month of July temperature is equal 

to standard value, open circuit voltage for July will remain same. i.e.12.48V. Consider that 

in the month of December temperature fall down to -10°C (worst case), in this case open 

Tab.7.1.5: Estimated solar irradiance on a horizontal surface and power output of 

SilFab module 

Climatic 

condition 

Extreme 

months 

Estimated global 

irradiance on 

horizontal plane (Wm-

2) 

Input power 

(W) 

Output power 

@ η =16.8% 

(W) 

max min max min max min 

Clear 

sky 

July  923  18 449.24 8.76 75.47 1.47 

December 367 16 178.63 7.79 30.01 1.31 

Real sky 
July  717 25 375.26 12.17 63.04 4.2 

December 212 25 103.18 12.17 17.33 4.2 

ISC 
8.305A at 

STP 
923 16   7.67A 133mA 
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circuit voltage will be equal to 13.45V.  

Peak power in the month of July will also remain approximately same, i.e. 75.47W and in 

the month of December, it will be 3.42W. 

Other possible modules which can be used on the roof of the car are HF-70 (Peak power 

at STC 70W, with cross-sectional area 1104×526), HF-80 (Peak power at STC 80W, with 

cross-section area 1230×526 mm2) from Enecom, Italia, BP 365 (Peak power at STC 65W, 

with cross-sectional area 1111×502 mm2) of BP Solar and 75W, 20 Cell SilFab module 

with cell cross-sectional area 156×156 mm2. 

7.2 Interfacing of PV module with DC-link through high gain dc-to-dc boost con-

verter  

7.2.1 Calculations of output voltage and current from PV module 

Specification of the multi crystalline SiLFab PV module to be used for the mini-car are 

summarised in Table 7.2.1 

 

Input and output power to and from the PV module, as per the available irradiance 

during real and clear skies are tabulated in Table 7.2.2. 

 

Extreme irradiances available are 16 and 923 W/m2 and the corresponding output powers 

are 1.31W and 75.47 W. Short circuit current for the two cases are 135mA and 7.79A (= 

8.305×923/1000). As the temperature coefficient for the current is very small variation in 

Tab. 7.2.1: Specifications of photovoltaic module 

Number of cells: 20 
Unit cell area: (0.156x0.156) 

m2 

Module efficiency: 

16.8% 

Voltage VOC = 12.43V Vmp = 9.479V 

Current ISC = 8.44A Imp = 7.92A 

Temperature coefficients 
ISC(α):  0.06%/K; VOC(β): -0.31%/K; Pmax(γ): -

0.41%/K 

Operating temperature -40°C to +85°C 

 

Tab. 7.2.2: Estimated solar irradiance on a horizontal surface and power output of 

sil-fab module 

Climatic 

condition 

Extreme 

months 

Estimated global 

irradiance on 

horizontal plane 

(W/m2) 

Input power 

(W) 

Output power 

@ η =16.8% 

(W) 

max min max min max min 

Clear sky 
July 923 18 449.24 8.76 75.47 1.47 

December 367 16 178.63 7.79 30.01 1.31 

Real sky 
July 717 25 375.26 12.17 63.04 4.2 

December 212 25 103.18 12.17 17.33 4.2 
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current with temperature can be neglected. For the considered solar cells, thermal 

coefficients for open circuit voltage and peak power are -0.31%/°K and -0.41%/°K 

respectively. Average day time temperature at Padova, Italy in the month of July is around 

25°C. As in the month of July temperature is equal to standard value, open circuit voltage 

for July will remain same. i.e.12.48V. Consider that in the month of December temperature 

fall down to -10°C (worst case), in this case open circuit voltage will be equal to 13.45V. 

Peak power in the month of July will also remain approximately same, i.e. 75.47W and in 

the month of December, it will be 1.5W. 

7.2.2 Decision of input specifications for the boost converter 

Figure 7.2.1 shows the I-V and P-V characteristics of SilFab 20 cell PV module. 

Maximum short circuit current possible in Padova for 923W/m2 is 7.79A. Figure 6.2.1b 

shows that the open circuit voltage is widely affected by the variation in temperature. 

Voltage at maximum power point varies from around 7.5V to 13.5V for insolation of 

100W/m2 at 40°C to 0°C respectively. From the behaviour of PV characteristics at 

100Wm-2 at 0° it can be predicted that voltage at maximum power point for worse case 

temperature (-10°C) would be around 14V. So input voltage variation for the boost 

converter is considered as from 7.5V to 15V. Variation of input current is considered from 

0.8A to from 8.44A. Output power of the module varies in between minimum 4.2W to 

maximum 75.47W under different solar insolation. 

 

Variation in the input power as per insolation 

WPWPPP iiii 47.758max,min,   

Variation in input current as per insolation 

AIAIII iiii 44.8844.0max,min,   

Variation in input voltage as per insolation  

VvVVVV iiii 160.7max,min,   
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(a) (b) 

Fig. 6.2.1 Characteristic curves of SilFab photovoltaic module: a) IV curve; b) PV 

curve for different insolation and temperature. 
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7.2.3 Design of high gain boost converter 

 

Figure 7.2.2 shows the circuital arrangement of a dc-to-dc boost converter used for the 

integration of SilFab PV module with the dc-bus of the mini-electric car. Boost converter 

is required to track the maximum power point (MPP) of the PV module and submit charge 

to batteries connected to the DC-bus. Boost converter is connected with the DC-bus 

through a filter inductor Lfilter, so as to reduce the battery current ripples. Filter capacitor 

Cfilter at the input side is used to reduce the current ripple in the PV module, which is forced 

to follow the current ripple of the inductor L in the absence of filter capacitor. Following 

specifications are considered: 

Operating frequency fs  : 20kHz 

Nominal input power Pi,nom  : 42W (average of Pi,min and Pi,max) 

Nominal input current Ii,nom  : 4.6A (average of ii,min and ii,max) 

Nominal input voltage Vi,nom  : 9V (Pi,nom/Ii,nom) 

Nominal battery voltage VB,nom : 48V  

Maximum output voltage  : 56V;  

Battery current ripple: 5% of the C/10 of the nominal charging current 

Ripple in PV current: less than 1% 

 

Consider that the boost converter operates in continuous mode of operation [14]. 

Relationship between input and output variables are given by (7.2.1). 




1

1

o

i

i

o

I

I

V

V
 (7.2.1) 

where δ is the duty ratio of the boost converter and is equal to the ratio TON/T. TON is the 

ON duration of the switch and T =1/fs is the period of switching operation and fs is the 

switching frequency of the switch. 

As per the minimum and maximum insolation available insolation output current varies 

from 0.143A to 1.348A. 

AIAIII iooo 348.1143.0max,min,   (7.2.2) 

Average value of the minimum and maximum output current is equal to 0.746A and is 

approximately equal to the nominal output current 0.750A as per the considered 

specification. Maximum and minimum duty ratio required to have 56V output is calculated 

from 

875.0732.011
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Fig.7.2.2. DC-to-DC boost converter for charging battery through PV module. 

 



108 

 

For nominal values of voltage duty ratio is equal to 0.839. 

7.2.3.1 Calculation of the values of the input inductor L and filter capacitor Cfilter 

Continuous conduction mode of operation of boost converter is considered. It has been 

considered that the current at the boundary of continuous and discontinuous mode of 

operation is equal to the minimum input current Ii,min, i.e. IL,B= Ii,min=0.844A.  

Figure 7.2.2 shows the current and voltage at the boundary of the continuous and 

discontinuous modes of operation. Value of inductance to ensure continuous current mode 

is calculated by  

H
I

Tv
L

i

L 


224
844.02

1050839.09

2

6

min,









 (7.2.3) 

Value of L considered is 323μH. 

Considering that, the input current ripple is measured with respect to the nominal current 

Ii,nom, then the current ripple for L =323μH is given by 

 %4.25254.0
6.410323

1050839.09
6

6

,,












nomi

L

nomi

L

LI

Tv

I

i 
 (7.2.4) 

 

As the inductor forces current ripples into the PV, higher value of the current ripple 

deteriorates the performance of the PV module. A filter capacitor is connected at the input 

of the boost converter to filter the current ripples. Figure 7.2.3 shows the inductor current 

iL, filter capacitor current iC,filter and voltage across the filter capacitor vC,filter. 

vL

δT T
0

iL

ILB=Ii,min

t

t

2Ii,min

Vi

-(VC -Vi)

0

 
Fig.7.2.2. Inductor current and voltage at the boundary of continuous and discontinuous 

mode of operation 
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For PV current to remain unaffected from the ripples in the inductor, ripple component 

should be absorbed by the filter capacitor. Thus iC,filter should follow the behaviour of 

inductor current ripple with negative sign i.e. iC,filter= -ΔiL = -(iL - IL,avg) with average value 

equal to zero.  

Value of the required filter capacitor can be calculated from the information of the relation 

between voltage ripple across the filter capacitor i.e. ΔVC,filter and ΔIL. Such a relationship 

is obtained as followed: 
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  (7.2.5) 

and the voltage across the Cfilter is given by 

constdti
C

v filterC

filter

filterC   ,,

1
 (7.2.6) 

Solution of (7.2.6) with boundary conditions, at t = 0; vC,filter = vC1,min and at t = δT; vC,filter= 

vC1,min= vC2,max as shown in Figure 7.2.3, results in expression of vC,filter during two intervals. 

Suffix 1 and 2 are used to represent the expressions of the waveform during 0 ≤ 𝑡 ≤ 𝛿𝑇 

and 𝛿𝑇 ≤ 𝑡 ≤ 𝑇 respectively. 
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 (7.2.7) 
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Fig.7.2.3. inductor current and filter capacitor current and voltage 
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Expressions in (7.2.7) represents the parabolic variations of vC,filter with maximum value at 

t = δT/2 and minimum value at (1+δ)T/2. Maximum and minimum values of vC,filter are  

min,1min,2

min,1max,1

)1(
8

8

C
filter

L
C

C
filter

L
C

VT
C

I
V

VT
C

I
V















 (7.2.8) 

Therefore, the ripple in filter capacitor voltage ΔVC,filter = VC1,max-VC2,min in terms of 

inductor current ripple is expressed as 

L
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,  (7.2.9) 

Value of the filter capacitor is calculated from (7.2.9) and (7.2.4)  
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where (ΔVC,filter/Vi,nom) is the fractional change in filter capacitor voltage with respect to 

nominal input voltage. Therefore, for 25.4% of inductor current ripple and 1% of voltage 

ripple, calculated value of filter capacitor is Cfilter = 81.14μF. Value of capacitance selected 

is 110 μF. Thus ripple in the filter capacitor voltage reduces to less than 1% and is equal to 

0.74% 

7.2.3.2 Calculation of the output capacitor C and the value of the filter inductor Lfilter 

Figure 7.2.4 shows the variation in the voltage across the output capacitor and filter 

inductor together with the current through the filter inductor.  

For the worst case situation, Io,max = 1.348A and the maximum duty ratio δmax = 0.875. 

Capacitor voltage ripple ΔVC is considered as equal to 0.1V. Fraction of capacitor voltage 

ripple with respect to the nominal battery voltage VB,nom (=48V) i.e. ΔVC/VB,nom is equal 

to 0.2%. Value of the capacitor C is calculated by the expression (7.2.11) [14]. 
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Calculated value of C is 614.32μF. Considered value of the capacitor is 660 μF. This 

reduces the capacitor voltage ripple to 0.186% and ΔVC to ≈0.09V. 

Voltage across the filter inductor is given by (7.2.12)  

Bc
o

filterfilterL Vv
dt

di
Lv ,  (7.2.12) 
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As the average voltage across the filter inductor is equal to zero, therefore average voltage 

across the capacitor C remains equal to battery voltage VB. Thus from (7.2.12) voltage 

ripple across the filter inductor follows the voltage ripple across the output capacitor as 

shown in figure. In this case also we have the same situation as it was in the case of filter 

capacitors discussed in previous section. Voltage across the filter inductor vL,filter is 

expressed as (7.2.13). 
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Current io through filter inductor is given by (7.2.14)  

constdtv
L

i filterL
filter

o   ,
1

 (7.2.14) 

With the boundary conditions, io = io1,min at t = 0 and io = io2,max = io1,min at t = δT, (7.2.14) 

result in the expressions of io as in (7.2.15). 
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Output current reaches to its maximum and minimum value at t = δT/2 and t = (1+δ)T/2 as 

shown in Figure 7.2.4. Maximum and minimum values of io are  
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Fig.7.2.4. waveforms of the voltage across the output capacitor and current through the 

filter inductor  
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Thus the output current ripple ΔIo (= io1,max-io2,min) and the ripple in output capacitor voltage 

ΔVC are related as 
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(7.2.17) can be re-arranged as  
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where ΔIo/IB,C10 is the fraction of battery current ripple with respect to the nominal battery 

charging current C10.  

It is considered that battery current ripple should be 5% of C/10. As the battery is of 100A.h 

so 5% of C/10 (=10A) is 0.5A i.e. ΔIo=0.5A. With the selected value of capacitor C=660μH 

and ΔVC =0.09V value of filter inductor is 1.125μH. Considered value of Lfilter is 10μH. 

Therefore the current ripple is 0.57% of C10 of the battery nominal charging current. 

Selected values of the passive components of the boost converter are tabulated in Table 

7.2.3. 

 

7.3 Experimental arrangement of boost converter with DSP and DSP interface cir-

cuitry 

For the control of boost converter, DSP interface is made. PV module current, voltage and 

battery voltage were considered as input for the MPPT and control algorithm. For voltage 

sensors op-amp as a differential amplifier is considered with reduction of 15/3V and 56/3V 

for measurement of input and output voltage respectively, 0-15A range LEM current 

sensor is used with minimum 2.5V for 0A, and 3.125V for 15A. Interface circuit layout 

with sensor positions are shown in Figure 7.3.1. TMS320F28335 experimenter kit is used 

for the implementation of control algorithms. Figure 7.3.2 shows the experimental 

arrangement of boost converter with DSP and interface circuitry. 

Tab.7.2.3: Values of the passive components 

Passive component Values 

Input inductor 323 μH 

Filter capacitor 100 μF 

Output capacitor 660μF 

Filter inductor 10 μH 
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7.3.1 Diode and MOSFET 

Schottky diode 16CTQ100PBF is used as a diode for the boost converter. I6CTQ100PBF 

pack is a three pin arrangement as shown in Figure 7.3.3 and consists of two diodes with 

individual maximum average current rating 8A and maximum reverse voltage 60V. Two 

diodes are connected in parallel. 

L D Lfilter

C Vbat
Vo

Sw

Vi Cfilter

id io

ic

iL

ioiPV

vBvPV

SNUBBER 

CIRCUIT

GATE

DRIVER

vB

iPV

vPV

PWM OUTPUT TO 

GATE DRIVER

A
D

C

io

MPPT

ALGORITHM

CONTROL 

LOOP
Vo,ref

TMS320F28335 Board  
Fig.7.3.1. DSP interface of the boost converter 

 

 
Fig.7.3.2. DC-to-DC boost converter with DSP and interface circuit 
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IRFB 3307ZPBF MOSFET is used as a switch with current and voltage ratings 84A and 

75V respectively. 

7.3.2 MOSFET driver 

TC1411N MOSFET driver is used to drive the MOSFET of the converter. Maximum 

output current of the driver is 1A with the possibility of 5, 10 or 15V supply. This driver 

is used with +5V biasing supply. Duty ratio output from the DSP at GPIO-00 is provided 

to the driver as an input. Output of this driver is connected to the Gate terminal of the 

MOSFET. Functional block diagram and PIN out of the driver are shown in Figure 7.3.4. 

 

7.3.3 Passive components 

Input inductor L of 323μH is made from the 2.0mm dia and 2HG varnish coated copper 

wire. Rod Core Choke 10μH 5A inductor is selected as filter inductor. 100μF 63V 

electrolytic capacitor is selected for filter capacitor Cfilter and two parallel connected 330μF 

63V capacitors are selected as output capacitor C. 

7.3.4 Voltage sensor circuit 

Inverting op-amp as a differential amplifier as shown in Figure 7.3.5 is considered as 

voltage sensor. 

 
Fig.7.3.3. 16CTQ100PBF 
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Fig.7.3.4. Functional block diagram and PIN out of TC1411N MOSFET driver 
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AD8005ANZ op-amp is used for the voltage sensors. Ratio R1/R2 and R3/R4 are kept equal 

and is equal to 5 for 15V to 3V reduction for the sensor for vPV and is 18.67 for the battery 

voltage vB. Relation between input and output of the voltage sensor is given by  
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For R1/R2 = R3/R4, (7.3.1) reduces to the expression (7.3.2) which is enables the reduction 

in vPV and vB to admissible voltage to DSP. 

 12
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2 VV
R

R
Vout   (7.3.2) 

Values of R1 and R2 selected are 100kΩ and 18kΩ respectively for 15/3V and 220kΩ and 

10kΩ respectively for 56/3V. Supply voltage biasing voltages for the considered op-amp 

circuit are +5V and 0. 

7.3.5 Current sensor 

LTSR 15-NP current transducer is considered as current sensors. An output voltage vs 

primary current characteristic of the selected current sensor is shown in Figure 7.3.6. LTSR 

15-NP is suitable for the electronic measurement of DC, AC, pulsed and mixed current 

with a galvanic isolation between power circuit and control circuit. Primary nominal 

current IPN is equal to 15A. It requires biasing voltage equal to +5V. Maximum input 

current for the input side of converter is 9A and for the output side is approx. 2A. Therefore, 

the current transducer works in the region on 0 to IPN with output voltage varying linearly 

from 2.5V to 3.125V.  
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Fig.7.3.5. Voltage sensor circuit and connections 
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Relationship between input current and output voltage is given by the expression (7.3.3). 

P
PN

o i
I

v
625.0

5.2   (7.3.3) 

where iP is the input current to the transducer. Maximum output voltage corresponding to 

the PV current is 2.875V and the maximum voltage corresponding to the output current of 

the boost converter is 2.583V. 

7.3.6 Power supply for the MOSFET driver and sensors 

To provide the biasing voltage of 5V, for current and voltage sensors and MOSFET driver, 

a 10W TRACO Power dc-to-dc converter THL 10-4811WI is considered. THL10-4811WI 

provides an output of 5.1V dc for input voltage from 18V to 75V and the maximum output 

current is 2000mA. DC power supply gets power from the dc-bus and is 84% efficient. 

7.3.7 DSP 

TMS320F28335 DSC is used for the implementation of control algorithm for the control 

of boost converter to follow maximum power point of PV module as per the insolation. 

iPV, vPV, io and vB are the input variables to the DSP as obtained from the current and 

voltage sensors.  Duty-ratio δ is the output variable after the control action and is fed to 

the input of MOSFET driver. Connection of the DSP with boost converter through 

interface circuitry is shown in Figure 7.2.6. Assignments of input/output variables to 

GPIO (General Purpose Input Output) pins are listed in Table 7.2.4. 

 

DSP uses 12bit ADC module with sample and hold to convert the analog input value into 

0

2.5

4.5
5.0

IPN-IPN IP-IP

vout [V]

iP [AT]

3.125

 
Fig.7.3.6. input output characteristic of LTSR 15-NP current transducer 
 

Tab.7.2.4: input/output variables and GPIO connections 

Variables GPIO Input/output 

iPV 01 Input 

vPV 02 Input 

io 03 Input 

vB 04 Input 

δ 00 Output 
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corresponding digital values ranging from 0 to 4096. Conversion is carried out by the 

expression (7.3.4). 
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(7.3.4) 

Analog input value is measured with respect to ADCLO pin which is connected to analog 

ground. 

7.4 Current control of the boost converter 

7.4.1 Transfer function for the current control scheme 

 

Figures 7.4.1a, 7.4.1b and 7.4.1c show the distribution of voltage across and current 

through the passive components input inductor L, output capacitor C and filter inductor 

Lfilter. Consider that the current through and voltage across L are iL, and vL respectively; 

voltage across the switch SW is vSw and its average value is VSw = (1-δ)VC; VC is the average 

value of the voltage vC across the output capacitor; id, iC and io are respectively diode 

current, output capacitor current and output current of the boost converter; vL,filter and vB 

are the voltage across Lfilter and battery; and VPV is the output voltage of the PV terminal.  

From the Kirchhoff’s equations for Figures 7.4.1a and 7.4.1b we have  
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Block diagram representation of the boost converter for current control is shown in Figure 

7.4.2. The average voltage across Lfilter is zero so the average value of the capacitor voltage 

equates to battery voltage i.e. VC = VB. Thus VC can be considered as constant. Further, on 

considering (VC-VPV) as a disturbance, transfer function of the current loop is given by 

(6.4.3) 
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Fig. 7.4.1. Voltage and current distribution: a) input inductor; b) output capacitor; c) 

filter inductor 
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where 
L
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cn

,2
,   and 
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VK Cci
cn

,2
,   . Kp,c and Ki,c are proportional and 

integral gain of the PI controller. Subscript ‘c’ is used to represent current loop. ζ is the 

damping factor and ωn,c is the bandwidth of the current loop.  

 

For the bandwidth of 1kHz and ζ = 0.8 calculated values of Kp,c and Ki,c are equal to 0.058 

and 227.7 respectively. 

At the output side of the converter i.e. for the loop in Figure 6.4.1c, Kirchhoff’s equation 

is written as 
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On differentiating the expression (7.4.4) with respect to time, we get a second order 

differential expression (7.4.5) for io. 
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Consider that vB remains constant over a period. Then the derivative term of vB in (7.4.5) 

vanishes. Thus the transfer function Io(s)/Id(s) is expressed as  
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(7.4.6) 

7.4.2 Control scheme with Maximum Power Point Tracking Algorithm 

Control scheme with Maximum Power Point Tracking (MPPT) algorithm is shown in 

Figure 7.4.3. Subroutine is called in an interval of 20ms. Symmetrical PWM modulation 

is used. Current and voltages are sampled at the middle of the PWM interval to read the 

average values of the current and voltage. Reference voltage is compared with the battery 

voltage. In case of difference, current reference generated by the voltage loop is compared 

with the current reference from the MPPT algorithm. In this case if current reference from 

MPPT is less than current reference from the voltage loop, reference current for current 

loop is set to that generated by the voltage loop; otherwise it is set to the reference from 

the MPPT algorithm. In case of no error in voltage loop current reference iref is set to zero. 
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Fig. 7.4.2. Current control scheme for the boost converter 
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7.4.3 MPPT algorithm  

 

Perturb and observe (P&O) MPPT algorithm for current control [15] has been used to 
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Fig. 7.4.3. Control scheme of the boost converter with MPPT algorithm 
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Fig. 7.4.4. P&O, current control MPPT algorithm 
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track the Maximum Power Point (MPP) of the P-V characteristic of the PV module. P&O 

subroutine is called at the interval of 20ms. Algorithm is explained with the help of flow 

chart as shown in Figure 7.4.4. At first current and voltage samples IPV(k) and VPV(k) 

respectively of the PV module are acquired and then, the corresponding power PPV(k) is 

computed. Change in the voltage ΔVPV(k) and power ΔPPV(k) with respect to previous 

sampled value are computed. In case of ΔPPV(k) > 0, sign of ΔVPV(k) is checked. If ΔVPV(k) 

is positive current reference Iref,MPPT is decreased otherwise it is increased by a fixed value 

(perturbation) C. In case of ΔPPV(k) < 0, for negative ΔVPV(k) Iref,MPPT is perturbed with 

positive C and for positive ΔVPV(k) Iref,MPPT is perturbed by negative C. After this current 

reference iref is updated and the subroutine becomes idle until the next call. 

7.4.4 Verification of MPPT algorithm through DC power supply 

In practice, a photovoltaic panel is a non-linear source network, and cannot be considered 

as Thevenin’s or Norton equivalent source network as is done for the case of linear active 

and bilateral source network. But for the purpose of the verification of the tracking of 

boost converter with battery load to the MPP, a simple experimental arrangement is 

proposed. It is considered that, a PV panel is equivalent to a DC power supply Vdc,supply in 

series with a resistance Rs as is shown in Figure 7.4.5a. Vdc,supply and Rs corresponds to 

IGRSH and (RS+RSH) respectively of the simplified equivalent circuit model of a PV panel 

shown in Figure 7.1.5. Presence of the non-linear component diode D is neglected for the 

sake of equivalence with a linear network. Therefore a combination of dc power supply 

in series with an external resistor Rs can be considered as a Thevenin equivalent circuit of 

a dc source network with Vth equal to the set Vdc,supply and Ith equal to Vth/Rs. 

 

RLoad is the equivalent resistance of the boost converter together with battery as seen from 

the input side of converter. Load lines for such a supply for different values of Rs are shown 

in Figure 7.4.5b by dotted lines. With each variation in series resistance Rs, boost converter 

together with MPPT algorithm adjusts its equivalent resistance RLoad to be equal to the sum 

of the series resistance and the internal resistance of the dc supply, so as to enable 

maximum power absorption by the load from the dc supply network. At maximum power 

point, voltage across the load becomes equal to the half of the Thevenin’s voltage, as are 
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Fig. 7.4.5 a) experimental circuital arrangement for the verification of MPPT and 

Thevenin equivalent circuit; b) I-V curve of the source network confirming tracking of 

maximum power point, with the variation in series resistance Rs. 
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observed in experimental results along vin,converter= Vth/2. Any perturbation in source current 

caused by changing the series resistance, leads to the point of maximum power fulfilling 

the criteria of maximum power transfer theorem. Observations are in line with the theory, 

thus tracking along MPP line verifies functionality of the MPPT algorithm. 

7.5 Experimental results and discussion 

7.5.1 Open loop waveforms 

 

 

For the open loop test, boost converter is fed by a dc supply with input voltage 8.5V and 

average input current 0.46A. Figure 7.5.1 shows the waveforms of the input current (pink), 

inductor current (green) and gate pulses to the MOSFET (yellow). Converter is operated 

with duty-ratio 0.8 at 20kHz switching frequency. Converter operates at the boundary of 

the continuous and discontinuous mode of conduction. 7.17% of current ripple with 

idc,supply

vgate

iL

 
Fig.7.5.1. waveforms of dc supply current (pink), inductor current (green) and gate 

pulses to the MOSFET (yellow) in case of open loop control 

 

iinput
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io

vo

 
Fig.7.5.2. waveforms of output current (yellow), input current (green) output voltage 

(blue) and gate pulses to the MOSFET (green) in case of open loop control 
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respect to IPV,nom is observed in the supply current. Figure 7.5.2 shows the waveforms of 

input current, output current, output voltage and gate pulses. Duty-ratio for this case is 0.8, 

input current is 1.8A (average) output current is 0.3A 

7.5.2 Waveforms with P&O current control MPPT algorithm 

Figures 7.5.3 and 7.5.4 shows the variations in current and voltage at the input and output 

of the boost converter fed by the PV module. In the first case input current is 6.4A and 

output current is approx. 0.8A and the input voltage is 6V. Output current ripple observed 

is 1% with respect to the C/10 charging current of the battery. 

 

 

Figure 7.5.4 is the trace of the input and output circuit variables captured in the span of 

400 seconds. Regions of the drops in input voltage and current and output current of the 

converter is caused by creating 100% shading from direct insolation on the PV module. 

When module is exposed to sun it works around MPP, with the PV current varying from 

7.2A to 7.6A and vPV at around 7V. During the full shading conditions MPPT is not active. 

iPV

io

vo

vPV

 
Fig.7.5.3. waveforms of the output voltage (blue), output current (green), input current 

(pink), PV module voltage (yellow)  
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Fig.7.5.4. waveforms of the output voltage (blue), output current (green), input current 

(pink), PV module voltage (yellow)  

 



123 

 

To validate the proper functionality of the control with MPPT, call of MPPT algorithm is 

set to active state when the PV current is more than 3.5A. As it is observed in the Figure 

7.5.5 that, the time span during which PV current is less than 3.5A, output current is zero. 

As the PV current becomes greater than 3.5A, MPPT algorithm becomes active and tries 

to bring the operating point to Maximum power point. Thus increase in input current, 

input voltage and output current are observed and settles to the set MPP reference. 

 

Trace in the Figure 7.5.5 is the capture of 10 seconds. From the waveform of PV current 

from the instant of activation of MPPT it takes 2.6sec to achieve MPP point. Figure 7.5.6 

shows the tracking of MPP. 

 

7.6 Experimental and analytical measurement of efficiency 

Efficiency of the dc-to-dc boost converter is defined by the ratio of output power to input 

power. 
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Fig.7.5.5. waveforms of the output voltage (blue), output current (green), input current 

(pink), PV module voltage (yellow)  
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Fig.7.5.6. tracking of maximum power point I-V characteristics curve under different 

solar insolation 
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where output power Pout = vBio and input power Pin = vPViPV. Power loss in the converter 

Ploss is equal to Pout – Pin. Power loss components are, switching and conduction losses in 

switch and forward diode, and conduction and core losses in input and filter inductor [16]. 

Efficiency of the converter can be determined by experimental, and or analytical approach. 

7.6.1 Efficiency measurement through experimentation 

For the measurement of the efficiency YOGOKAWA power analyser is used. Expected 

time of the experimentation for the measurement of efficiency has been decided, from the 

information of estimated hourly irradiance of PVGIS CM-SAF database for June. 

 

As shown in Figure 7.6.1, during 11:00AM to 1:00PM variation in global irradiance for 

real sky (blue line) varies from 601W/m2 to 610W/m2. Expected peak output power from 

the panel is 50W (approx.). Figure 7.6.2 shows the variations in input power to the boost 

converter, its efficiency and gain. 

 

 
Fig.7.6.1. estimated hourly irradiance (W/m2) from PVGIS data base, in June at the 

location of laboratory. 

 

13.00hrs11.00hrs

610W/m2

940W/m2

 
Fig.7.6.2. variations in input power to the boost converter, efficiency and gain of the 

converter on 26th June 2012, during peak of the global irradiance. 
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Peak power of 50W (approx.) is observed during the measurement. Against the estimation, 

observed lower values of the input power during peak hour of irradiance are because of 

partial shading of PV panel due clouds. For the lower irradiance, during input power 

variation from 10 to 30W highest efficiency around 95% has been observed. For input 

power near to the nominal value (43W), efficiency varies from 87 to 90% as shown in 

Figure 7.6.3a. For the nominal input power efficiency stays at around 89%. Variation of 

efficiency with gain is shown in Figure 7.6.3b. Gain of the converter varies from 5.5 to 

8.8, efficiency of the converter drops with the increase in gain. 

 

With the increase in isolation, increase associated conduction, switching and core losses 

take place and causes drop in the efficiency. Major loss component responsible for the drop 

in efficiency is conduction loss in the inductor. Effect of the various loss components on 

the efficiency and gain of the converter have been explained analytically in the next 

subsection. 

7.6.2 Analytical verification of drop in efficiency 

Loss components of the boost converter can be summarized as, switching, conduction and 

core losses [16]-[20]. Switching loss Psw can further be classified into ON state loss Psw,ON 

due to ON state voltage drop Vsw,ON and commutation loss Psw,com during commutation 

from ON state to OFF state. Similarly diode has losses PD,ON during ON state and reverse 

recovery loss PD,rr during reverse recovery period of the diode. Conduction losses Pind,cond 

is due to resistances of input and filter inductor, rL and rL,filter respectively, and PSw,cond is 

due ON state resistances of switch and diode rSw and rd respectively. Core losses Pcore are 

eddy current loss Pcore,e and hysteresis losses Pcore,h in ferrite core of the inductors. Ferrite 

cores are characterised with negligible eddy current loss. Therefore expression of the total 

loss Ploss in the converter is expressed as (7.6.2) 

coreDswcondSwcondindloss PPPPPP  ,,
 (7.6.2) 

Analytical models for the estimation losses in MOSFET (Sw) and diode (D), and core loss 

in input inductor (L) are discussed in [18]-[20]. However here simplified loss component 

model of the considered dc-to-dc boost converter as shown in Figure 7.6.4 has been 

considered. 

As our objective is to provide an analytical support to the drop in efficiency with the 

increase in solar irradiance, and to look for the factor responsible, at first Psw,com, PD,rr and 

  
Fig.7.6.3. efficiency vs input power plot of the boost converter under varying solar 

insolation 
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Pcore are neglected. Analytical efficiency determined with this consideration is then 

compared with the experimental value. Information of the differences between analytical 

and experimental result is used to determine residual resistance rres equivalent to neglected 

loss components Pres by curve fitting. rres is expressed as a function of duty ratio. rres is 

considered as in series with the input inductor. This approach gives satisfactory result. 

Values of the associated parameters for the computation of efficiency are enlisted in Table 

7.6.1. 

 

 

It is considered that the average values of the circuit variables, iL, iC, io, vL and vC 

corresponds to the average of the corresponding maximum and minimum values and are 

represented by IL, IC, Io, VL and VC respectively. 

Average values of the capacitor current iC, filter inductor voltage vL,filter, and input inductor 

vL are given by the expressions (7.6.3), (7.6.4) and (7.6.5) respectively. 

)1)(( dIIdII oLoC   (7.6.3) 

filterLoBCfilterL rIVVV ,,   (7.6.4) 

    )1()()( ,,,, dVVrIrrIVdVrIrrIVV CONDONDLresLLiONSwONSwLresLLiL 

 (7.6.5) 

For average values of iC, vL and vL,filter to be zero, (7.6.3) to (7.6.5) result in 

dI

I

o

L




1

1
 (7.6.6) 

L Lfilter

C Vbat

rswvi

iL id io

ic

rL + rres rd

Vsw,ON

Vdf

rL,filter

vL vL,filter

-+ -+

+

+

1

2

vB

 
Fig.7.6.4. Circuital layout of dc-to-dc boost converter with loss components 

 

Tab.7.6.1: Parameters of the dc-to-dc boost converter for analytical calculation of 

efficiency 

Input inductor resistance rL 72.4mΩ 

Filter inductor resistance rL,filter 13mΩ 

Dynamic resistance of forward diode rd 11.1mΩ 

Drain to source resistance of MOSFET rsw 4.6mΩ 

ON-state voltage of switch Vsw,ON 0.1V 

Forward voltage drop across diode VD,ON 0.72V 
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With the help of (7.6.6), (7.6.7), and (7.6.8), overall gain G =VB/Vi, of the boost converter 

is given by (7.6.9) 
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Since the resistive drop IorL,filter is negligible as compared to VB, so the fraction IorL,filter/VB 

can be neglected without affecting the results. Thus (7.6.9) reduces to (7.6.10). 
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From, (7.6.1), (7.6.6) and (7.6.10), efficiency of the converter is expressed as 
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In the expressions of gain and efficiency, Vi and IL are considered as equal to VPV and IPV 

respectively. Thus efficiency and gain of the converter turn out to be a function of duty 

ratio d, input current IPV (hence solar irradiance), input voltage VPV and various 

components as discussed at the beginning of this subsection.  

Figure 7.6.5 shows the analytical plots of efficiency with varying input power as per solar 

irradiance and duty ratio, as obtained from the experimental measurement. Suffixes “CL”, 

“SwCL” and “RL” are used to represent “conduction losses”, “switch conduction loss”, 

and “residual losses” respectively. ‘i’ and “ni” are used to represent “included” and “not 

included” respectively. To study the effect of various losses on the efficiency, analytical 

model is brought to the more practical one, in steps. Topmost plot in Figure 7.6.5 is the 

efficiency when Pcond and Pres losses are not considered, i.e. only ON state switching and 

diode losses are considered. This variation is far from the measured one. Inclusion of 

Pind,cond, brought the analytical curve very close to the measured one, as shown by 

SwCL_ni_RL_ni, third plot from the top. Inclusion of Psw,cond and PD,cond shifts the 

analytical efficiency curve more closer to the measured one as shown by SwCL_i_RL_ni. 

Remaining difference between the measured and analytical plot is due to Pres. To avoid the 

complex process to determine it, as discussed earlier, rres is considered in series with the 
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inductor and is expressed as 
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Value of the residual resistance widely varies with duty-ratio from lower solar irradiance 

to higher irradiance; satisfactory curve fit of its variation with duty ratio d is given by 

82.1176.2484.13 2  ddrres
Ohms (7.6.13) 

Although the above approximation is not an accurate approach, it gives much closeness of 

analytical value with the measured value, as shown in Figure 7.6.5 by CL_i_RL_i, it can 

be used to analyse the effect of major loss components on the efficiency under the varying 

condition of input power and duty ratio.  

Variation in associated losses and gain of the converter with input power and duty ratio are 

shown in Figures 7.6.6 and 7.6.7 respectively. From the analytical plots for the losses, it is 

clear that all the loss components are smaller during the lower irradiance, comparably 

lower duty-ratio and gain. So it justify the higher efficiency of 95%. With the increase in 

input power because of increasing irradiance, increase in duty ratio takes place, increasing 

duty ratio, increases Pres (= Pind,core + Psw,com+ PD,rr) and ON state switch and diode losses 

(Psw,ON+PD,ON). Major drop in efficiency is caused by the conduction loss in input inductor, 

as is observed in both experimental and analytical measurement. Wide variation in Pind,cond 

takes place with the increase in irradiance i.e. with the increase in PV current iPV as shown 

in Figure 7.6.5 by the curve CL (inductor). Likewise, as shown by the curve CL_ni_RL_ni 

in Figure 7.6.7, gain is mostly affected by the resistive drop across the inductor. Thus for 

the present application as Pind,cond plays an important role in dropping down the efficiency 

of the converter due to increase conduction loss proper selection of cu-wire with lower 

 
Fig.7.6.5. Variation in efficiency of the dc-to-dc boost converter with varying solar 

irradiance and duty ratio. 
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resistance for the inductor is important to improve the efficiency. 

 

 

Analytical variation in the efficiency and gain of the converter with duty ratio for nominal 

power of 43W is shown in Figure 7.6.8. From Figure 7.6.7, it can be confirmed that, at 

around nominal input power, converter operates with duty ratio 0.885 and gain 8.4. With 

 
Fig.7.6.6. Variation in switching loss (Psw,ON+PD,ON); switch conduction loss 

(Psw,cond+PD,cond); inductor conduction loss Pind,cond and residual loss Pres (Pind,core + 

Psw,com+ PD,rr). 

 

 
Fig.7.6.7. Measured and analytical variation in gain with input power and duty ratio. 
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this value, plot of efficiency and gain vs duty-ratio confirms efficiency of 89% as measured 

from the experimental observation. 

 

7.6.3 Extension in autonomy of the mini-electric car 

Annual average insolation available on horizontal surface in Padova is 3.46kWh/m2/day, 

so with the considered panel it is possible to get 283Wh (=3.46×103×0.1562×20×0.168) 

of energy per day. Thus the annual average energy per day, which could be submitted to 

the DC-bus from the PV panel, during day time is ≈252Wh (=283×0.89) and is equivalent 

to a 5Ah energy source connected to the DC-bus. Thus, if the mini-electric car consumes 

50A of current while running at speed of 50km/hour continuously, possible extension in 

autonomy is at least 5km. This could be a good assistance to on board batteries with 

limited roof top space less than a half square meter (0.487m2). 

7.8 Conclusion 

Variation in solar insolation and irradiance in Padua, Italy on a horizontal surface were 

estimated to determine the possible output from the considered multi crystalline SilFab 

PV panel. Nominal values of power, voltage and current have been considered to design a 

high gain and high efficiency dc-to-dc boost converter. Perturb and Observe current 

control MPPT algorithm has been used to track the maximum power point of the PV panel. 

An experimental strategy is suggested to validate the capability of designed boost 

converter to track maximum power point. Efficiency of the designed high gain boost 

converter under nominal condition is measured as 89% and validated with analytical facts 

with the help analytical efficiency model. Expected extension in the autonomy of the mini-

electric car is at least 5km. Mini-electric car with implanted 20 cell SilFab PV panel is 

shown in Figure 7.7.1 

 
Fig.7.6.8. Variation in of the gain and efficiency of the converter with duty ratio. 
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