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SOMMARIO 

La giunzione neuromuscolare è una regione anatomica altamente specializzata in cui i segnali 

elettrici che corrono lungo l’assone del motoneurone sono convertiti in segnali chimici, che 

vengono a loro volta riconosciuti dalle cellule muscolari causandone la contrazione. E’ 

composta dal terminale assonico del motoneurone, dalle cellule di Schwann perisinaptiche 

che avvolgono quest’ultimo, dalla fibra muscolare e dalla lamina basale. La giunzione 

neuromuscolare non è protetta da barriere anatomiche e pertanto può essere bersaglio di 

differenti patogeni come virus, batteri, tossine. Inoltre la giunzione può essere affetta da 

diverse patologie quali la sclerosi laterale amiotrofica o la Sindrome di Guillain-Barrè di 

origine autoimmune. Per questi motivi e per la sua funzione fisiologica essenziale per la vita 

degli animali, non sorprende dunque la capacità della giunzione neuromuscolare di rigenerare 

e recuperare la sua funzionalità a seguito di differenti tipi di danno. Questa abilità si è 

mantenuta durante l’evoluzione animale, e differenzia le sinapsi del sistema nervoso 

periferico da quelle del centrale, che non hanno invece capacità rigenerativa. 

In seguito a denervazione le cellule di Schwann perisinaptiche mostrano una grande plasticità, 

de-differenziando ed iniziando a proliferare. Esse partecipano attivamente ai processi di 

rigenerazione nervosa, contribuendo al rilascio di diversi fattori in grado di agire sul terminale 

nervoso degenerato promuovendone la ricrescita ed il pieno recupero della sua funzionalità.  

Sono ancora poco conosciuti gli eventi intra- ed inter-cellulari che avvengono alla giunzione 

durante la degenerazione e soprattutto quelli che governano il processo rigenerativo del 

terminale nervoso. 

A tale scopo, nel nostro laboratorio è stato messo a punto un approccio sperimentale 

innovativo che permette di studiare la degenerazione e rigenerazione della giunzione 

neuromuscolare sfruttando il meccanismo d’azione di una neurotossina presinaptica animale, 

α-Latrotoxin, presente nel veleno dei ragni del genere Latrodectus. Questa tossina agisce 

selettivamente a livello della membrana presinaptica del motoneurone, inducendo un danno 

acuto e localizzato del terminale nervoso. Il terminale degenera rapidamente ma in breve 

tempo, in seguito alla rimozione dei detriti neuronali da parte delle cellule di Schwann, è in 

grado di ricrescere e di riacquisire una piena funzionalità. 

L’azione di tali neurotossine rappresenta quindi un sistema appropriato e controllato per 

indurre una degenerazione acuta, localizzata e reversibile del terminale nervoso, evitando il 

coinvolgimento di molti tipi cellulari e mediatori dell’infiammazione come accade nel corso 

della degenerazione indotta da cut/crush del nervo sciatico, tradizionalmente utilizzato fino ad 



 
 

oggi. Questo approccio può dunque aiutare a definire i meccanismi molecolari ed identificare 

i segnali intra- ed inter-cellulari alla base della degenerazione e rigenerazione nervosa. 

Con lo scopo di identificare molecole in grado di promuovere la rigenerazione del terminale 

nervoso, abbiamo messo a punto un protocollo che ci ha permesso di ottenere per la prima 

volta un’analisi trascrizionale a livello di giunzione neuromuscolare durante le diverse fasi di 

degenerazione e rigenerazione del terminale nervoso periferico in seguito ad intossicazione 

con α-latrotoxin. Abbiamo isolato e sequenziato da un numero adeguato di giunzioni RNA 

codificanti e non. Tra i diversi trascritti abbiamo selezionato quelli che presentavano un basso 

valore di espressione nel controllo, un aumento durante le fase rigenerativa per poi tornare ad 

un livello basale quando la rigenerazione è conclusa. Tra questi abbiamo approfondito lo 

studio della chemochina CXCL12, dimostrando che viene prodotta dalle cellule di Schwann 

terminali durante la degenerazione nervosa, e che l’iniezione intraperitoneale di un anticorpo 

neutralizzante comporta un ritardo nel processo rigenerativo. Inoltre abbiamo dimostrato che 

questa chemochina è in grado di promuovere la crescita dei neuriti di motoneuroni in coltura. 

Questi risultati suggeriscono come CXCL12 sia un importante fattore rilasciato dalle cellule 

di Schwann perisinaptiche con un ruolo cruciale nei processi rigenerativi del terminale 

nervoso.  

Parallelamente abbiamo indagato quali potessero essere i segnali di allarme rilasciati dal 

terminale nervoso in degenerazione in grado di attivare le cellule di Schwann e di promuovere 

la rigenerazione nervosa. Abbiamo dimostrato che l’ATP viene rilasciato da neuroni in 

seguito ad intossicazione con α-latrotoxin, ed è in grado di attivare nelle cellule di Schwann 

diverse vie di segnalazione intracellulari quali il calcio, l’AMP ciclico, ERK1/2, CREB, 

importanti per il recupero della funzionalità nervosa in seguito a danno.  

I dati presentati in questa tesi identificano l’ATP come importante molecola segnale nella 

comunicazione tra il terminale nervoso in degenerazione e le vicine cellule di Schwann 

perisinaptiche, ed estendono tale ruolo anche ad altre forme di degenerazione del terminale 

nervoso presinaptico. 

 

 

 



 
 

SUMMARY 

The neuromuscular junction (NMJ) is a specialized tripartite synapse that allows the 

transmission of an electrical impulse travelling along the axon to the muscle. It is composed 

of the motor axon terminal (MAT), covered by perisynaptic Schwann cells (PSCs), and the 

muscle fibre (MF), which are separated by a basal lamina. The NMJ is not protected by 

anatomical barriers: it can be therefore exposed to traumas, to the attack of many pathogens 

including neurotoxins, and affected by many neuromuscular diseases such as amyotrophic 

lateral sclerosis and immune-mediated disorders, such as the Guillain-Barré and Miller Fisher 

syndromes. For these reasons and for its essential role in life and survival the NMJ has 

retained throughout vertebrate evolution an intrinsic ability for repair and regeneration, 

differently from central synapses. After nerve injury the glial cells of the NMJ, the PSCs, 

acquire a regenerative phenotype and release a series of factors that act on the stump of the 

MAT, providing several cues to promote neuronal regeneration. Following peripheral nerve 

injury, many changes taking place at the NMJ have been reported so far, but the inter- and 

intra-cellular signaling that occur during MAT degeneration and, more importantly, those 

governing the ensuing regeneration are not completely understood.  

We have recently established a model to study NMJ degeneration and regeneration in mice 

based on the specific action of -latrotoxin, a presynaptic neurotoxin isolated from the venom 

of the black widow spider, which targets specifically the presynaptic terminal causing its 

complete degeneration. Following intoxication and the subsequent clearing of MAT debris by 

PSCs, the axon stump regrows in few days in mice allowing complete NMJ recovery. This 

toxin represents therefore a simple and controlled method to induce an acute, localized and 

reversible nerve terminal degeneration not blurred by inflammation, and can help to identify 

molecules involved in the intra- and inter-cellular signalling governing NMJ regeneration.  

In the search of candidate molecules involved in triggering and sustaining nerve recovery we 

choose to perform a transcriptomic analysis of the mouse NMJs at different time points after 

injection of -latrotoxin. This approach has been very challenging: to our knowledge a 

transcriptomic analysis of the sole NMJ was never reported before. We succeeded in 

collecting a number of NMJs suitable for RNA isolation and sequencing of both coding and 

non–coding RNAs. Among the coding transcripts we selected a series of messenger RNAs 

(mRNAs) that are expressed at low level in controls, at higher levels during regeneration, and 

then return to basal when substantial regeneration is attained and we selected the mRNA 

encoding for the chemokine CXCL12. We found that CXCL12 is produced by PSCs during 



 
 

nerve degeneration, and that intraperitoneal injection of a neutralizing antibody for CXCL12 

slows down the regeneration process. Moreover, the exposure of primary motor neurons to the 

recombinant chemokine stimulates neurite growth. 

These data suggest that CXCL12 is an important factor released by PSCs with a crucial role in 

the nerve terminal regeneration process.  

Parallely, we looked for molecules released by injured neurons that could activate SCs and 

stimulate nerve regeneration. We found that ATP released by intoxicated neurons activates a 

series of intracellullar signaling pathways in SCs including Ca
2+

, adenylate cyclase, ERK 1/2 

and CREB, that are of fundamental importance for the recovery of nerve function. We 

propose ATP as an important alarm signal partecipating in the cross-talk between 

degenerating nerve terminals and adjacent PSCs not only in a model of degeneration by a 

spider toxin, but also in different forms of neurodegeneration of the presynaptic nerve 

terminal.   
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ABBREVIATIONS 
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NT-4: neurotrophin 4 

ATF-3: cyclic AMP-dependent transcription factor 

CREB: cyclic AMP-responsive element-binding protein 

STAT: signal transducers and activators of transcription 



 
 

ALS: amyotrophic lateral sclerosis 

α-Ltx: α-Latrotoxin 
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NRX: neurexin 
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WD: Wallerian degeneration 

LPH1: latrophilin 1 

PTPσ: protein tyrosin phosphatase σ 

PLC: phospholipase C 

IP3: inositol triphosphate 

PKC: protein kinase C 

NT-3: neurotrophin 3 

MIP-1a : macrophage inflammatory protein-1a 

mRNA: messanger RNA 

ncRNA: non-coding RNA 

miRNA: microRNA 

lncRNA: long non-coding RNA 

MNs: motoneurons 
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ERK: extracellular-signal regulated kinase 
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P2Y: metabotropic purinergic receptors 

P2X: ionotropic purinergic receptors 

CD68: cluster of differentiation 68 

CFP: cyan fluorescence protein 

YFP: yellow fluorescence protein 

GFP: green fluorescence protein 
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Introduction 

The neuromuscular junction (NMJ) is the specialized anatomical structure where the electric 

signal transmitted along the myelinated axon is converted into a chemical message, the 

neurotransmitter, which is released into the intersynaptic space, permeates through the basal 

lamina (BL), a structured form of extracellular matrix, and binds to post-synaptic receptors 

causing muscle contraction. The regulation of voluntary and involuntary movements, which 

relies on this transmission, is crucial for many physiological functions such as breathing, 

moving and feeding.  

This synapse consists of three main components: motor axon terminal (MAT), muscle fiber 

(MF), and perisynaptic Schwann cells (PSCs). MAT is covered by a multi-cellular carpet of 

PSCs, and the NMJ is enveloped by the largely permeable BL separating MAT from MF.  

Most NMJs are exposed to mechanical traumas and represent the main target of several 

pathogens: indeed during evolution, both animals and bacteria have developed several toxins 

which selectively interfere with nerve-muscle transmission, causing paralysis and in most 

severe cases death. Moreover in many neuromuscular diseases such as amyotrophic lateral 

sclerosis and immune-mediated disorders, including the Guillain-Barré and Miller Fisher 

syndromes, the synaptic transmission between motor neurons and muscle cells is 

compromised, with demyelination and axonal degeneration. 

For these reasons and for its essential role in life and survival the NMJ, at variance from most 

mammalian tissues, has retained through evolution the capacity to regenerate. Damaged 

MATs regenerate readily (unlike those in the central nervous system), and form new NMJs 

that look and perform as the original ones. PSCs are main players of NMJ regeneration and 

provide fundamental cues that trigger neuronal regenerative responses. Following injury PSCs 

de-differentiate and acquire phagocytic properties, remove cellular debris and guide axon 

growth to its original site with recovery of function (Son et al., 1996; Jessen et al., 2015). This 

complex response is governed by molecular signals that are exchanged among the three 

cellular components of the NMJ and the BL, whose nature is largely unknown.  

This work has been focused on the setting up of an innovative experimental system to define 

the NMJ transcriptome profile and the crosstalk between the different components of NMJ 

during nerve degeneration\regeneration. The final purpose was to identify pathways involved 

in the recovery of NMJ functionality, and to find out molecules released by PSCs and MF 

capable of promoting the growth of the axonal stump for the reconstitution of a functional 

MAT and of an active NMJ.  
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The unravelling of the complex interplay of inter- and intra-cellular signaling occurring 

among the three cellular partners of the NMJ is essential to devise more effective therapies for 

the treatment of patients affected by motor neuron peripheral degenerations of any kind. 
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1. The neuromuscular junction 

Motor neurons in the brain stem and in the spinal cord have axons that branch intramuscularly 

to provide peripheral single nerve terminals at each muscle fibre. The motor neuron and the 

innervated muscle fibre form a motor unit. A muscle fibre can be innervated by one motor 

neuron only, except for the extraocular muscle fibre, which can be innervated by axons from 

multiple motor neurons. The neuromuscular junction (NMJ) is a specialized chemical synapse 

where transmission of information takes place between the axon of a motor neuron and a 

skeletal muscle fibre. This synapse consists of three main components: motor axon terminal 

(MAT), muscle fiber (MF) and perisynaptic Schwann cells (PSC) (Fig.1). Moreover the 

synaptic cleft of NMJ contains a structured form of extracellular matrix known as basal 

lamina (BL), that separates the MAT from the MF, but includes PSCs. The nerve terminal 

branches are covered by non-myelinating PSCs (Sanes and Lichtman, 1999). The synaptic 

cleft is about 60 nm wide.  

 

 

 

 

 

 

 

 

Fig.1. Scanning electron micrograph (SEM) of a motor nerve and two motor end plates (arrows).  

 

1.1 Pre- and postsynaptic specializations of NMJ 

The NMJ contains highly specialized pre- and postsynaptic sites, with different organization 

and roles in neurotransmission. In vertebrate NMJs the neurotransmitter is acetylcholine 

(ACh), which is synthesized in the cytosol of the nerve endings from acetyl coenzyme A and 

choline by choline acetyltransferase. A single nerve terminal has approximately 200,000 
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synaptic vesicles, each containing ACh. Under controlled conditions fusion of a pool of 

vesicles with the presynaptic membrane results in neurotransmitter release into the synaptic 

cleft. The neurotransmitter diffuses in about 0.5 ms across the extracellular synaptic space and 

binds to nicotinic ACh receptors (nAChRs) on the postsynaptic cell. After activation of the 

nAChRs the neurotransmitter is catabolized by acetylcholinesterase in the extracellular 

synaptic space. The postsynaptic membrane is specialized to respond adequately to the 

released neurotransmitter. It contains nAChRs, which are ligand-gated ion channels, clustered 

in lipid rafts. Clustering is dependent, amongst others, on agrin, muscle-specific kinase, and 

rapsyn (Zhu et al., 2006; Chen et al., 2007). The AChR is a Na+ / K+ channel. When 

activated by ACh binding, the channel opens and allows for a relative large influx of Na+ ions 

and a smaller flow outwards of K+ ions: the net influx of positivity leads to a depolarization 

of the muscle membrane. These changes in the electric properties of the membrane are termed 

"end plate potential" (EPP). If the EPP is sufficiently large, a muscle fibre action potential is 

triggered by opening of the voltage-gated Na+ channels, leading to contraction of the muscle. 

The total charge of an EPP required to produce an action potential has to overcome a 

threshold value. During normal activity the amount of neurotransmitter released is abundantly 

greater than the required threshold, allowing a safety margin for more stressful situations, and 

ensuing the NMJ to be a reliable synapse (Wood and Slater, 2001). 

 

1.2 Basal lamina 

 

BL is composed of extracellular matrix (ECM) proteins that reside within the synaptic cleft at 

the NMJ. It plays an essential role in almost all aspects of synaptic development including 

synaptic initiation, topography, ultrastructure, maturation, stability and transmission. BL is an 

ordered ECM structure that contains laminin and collagen IV as its main protein constituents, 

along with heparan sulfate glycosaminoglycans, which in muscle include agrin and perlecan, 

and other ECM proteins, including tenascin, fibronectin and nidogen (Yurchenco et al., 2004). 

McMahan and colleagues, in the late 1970s, demonstrated that, after injury of either the pre- 

or postsynaptic NMJ components, ECM proteins of the synaptic BL help to dictate the 

topography of synapses on regenerated cell membranes (McMahan et al., 1978; Burden et al., 

1979). Denervation of motor axons, coupled with muscle destruction, leads to re-innervation 

of original synaptic sites on the BL, while postsynaptic differentiation of regenerated muscle 

occurs at the original synaptic sites on the BL even in the absence of the nerve. 
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Thus, the synaptic BL not only marks the location of the NMJ during development, but also 

provides trophic support to allow NMJ regeneration, and contains essentially indelible 

markers of synaptic localization and differentiation. 

 

1.3 Perisynaptic Schwann cells 

 

PSC (also termed terminal SCs) are the glial cells at NMJ that share markers with other glial 

cells, such as S-100 (Son and Thompson, 1995). At mammalian and amphibian NMJs, there 

are typically 3 to 5 PSCs.  

PSCs are non-myelinating SCs, traditionally believed to play passive roles at the synapse. By 

contrast, it has become clear that PSCs roles at NMJ are more dynamic than originally 

thought. Indeed, PSCs display a higher number of neurotransmitter receptors and ion channels 

than myelinating SCs. In this regard, PSCs are more analogous to CNS astrocytes than to 

myelinating SCs. For instance, they have functional L-type voltage-dependent Ca
2+

 channels 

(Robitaille et al., 1996), muscarinic (Robitaille et al., 1997), purinergic (Robitaille, 1995), and 

substance P (SP) receptors (Bourque and Robitaille, 1998). PSCs express receptors for ACh 

and ATP. Moreover, they contain and/or can synthesize numerous potential neuromodulatory 

substances, including nitric oxide (NO) (Descarries et al., 1998), and glutamate (Pinard et al., 

2003). The anatomical relationship between PSCs and the presynaptic and postsynaptic 

elements of the NMJ, and the presence of receptors able to detect neurotransmitters and 

neuromodulators suggest that synaptic activity is controlled by PSCs, and this might 

indirectly contribute to synaptic stability. Additionally, PSCs play a direct role in the 

competition during NMJ development. PSCs are indeed present at the neonatal junction (Brill 

et al., 2011) where they play a major role in the removal of losing axons once they are 

eliminated from the muscle surface (Bishop et al., 2004). As losing axons withdraw from the 

synapse, forming so-called retraction bulbs (Riley, 1977), PSCs phagocytose pieces of them 

(Bishop et al., 2004). PSCs are also important for the maintenance of axon terminals, as their 

ablation in frog tadpoles reduces the growth of NMJs (Reddy et al., 2003). SCs deletion in 

mice (Wolpowitz et al., 2000) results in loss of muscle innervation and motor neuron death.  

Hence PSCs are important for an activity dependent continuum of synaptic efficacy, stability, 

and plasticity at the NMJ. We expect that this relationship helps to maintain synaptic efficacy 

under normal conditions and contributes to reestablishing synaptic connections after 

denervation. Indeed, non-traditional executive roles for PSCs are being recognized during 

recovery after nerve injury. Following denervation PSCs de-differentiate to an earlier 
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developmental stage, becoming “reactive” PSCs, and start proliferating. These reactive PSCs 

actively participate in the process of nerve degeneration and regeneration: they undergo 

changes in their gene expression and acquire macrophagic-like activities, thus contributing to 

the removal of nerve debris as well as to the recruitment of macrophages, by releasing 

cytokines and chemokines. Moreover, following nerve terminals degeneration, PSCs at 

denervated end-plates extend long processes that find innervated endplates, where they then 

induce a terminal sprout and guide nerve regrowth to the denervated endplate. 

In conclusion, the NMJ is a complex structure where an intense cross talk occurs among the 

cellular partners during its development and maturation (Fig.2). The identification of the 

inter- and intra-cellular signaling among the components of this specialized synapse is 

essential to molecularly define the mechanism of nerve degeneration/regeneration, and to 

devise more effective therapies for the treatment of patients affected by motor neuron 

degeneration of any kind. 

 

Fig.2. Mammalian NMJs. A: Immunohistochemistry of Levator Auris Longus (LAL) muscle of a transgenic 

mouse expressing GFP in the cytosol of SCs under the plp promoter (green). Presynaptic nerve terminals are 

labelled with an antibody against the vesicular Ach transporter (VAChT, blue), while the muscle end-plate is 

stained by α-Bungarotoxin (α-Btx) Alexa 555-conjugated (red). Scale bar: 10 µm. B: Diagram of molecular 

signaling between MAT, PSCs, BL and MF. 
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2. Peripheral nerve degeneration 

 

Disruption of axonal integrity during injury to the peripheral nerve system (PNS) sets into 

motion a cascade of responses including inflammation, SCs mobilization, and degeneration of 

the nerve fibres distal to the injury site. There are different types of axonal degeneration. In 

1850, Augustus Waller described changes in axons of cranial nerves after they were 

disconnected from their cell bodies (Waller, 1850; reprinted in Stoll et al., 2002). Those 

phenomena have been collectively termed Wallerian degeneration (WD), the simplest model 

of axonal degeneration, which includes the rapid disintegration of the distal axons, with the 

subsequent recruitment of immune cells that clear nerve debris. This process is required for 

successful regeneration to occur in the PNS (Gaudet et al., 2011). In the central nervous 

system (CNS), regeneration is inhibited in part because WD occurs much more slowly, and 

because myelin contains inhibitory molecules (Vargas and Barres, 2007; Filbin et al., 2003). 

The inhibitory environment in the CNS is the greatest challenge for regeneration of CNS 

axons. WD usually begins within 24-36 hours from the lesion. Early pathological changes in 

the distal stump include failure of synaptic transmission, target denervation and granular 

disintegration of the axonal cytoskeleton. Within minutes after damage to the axonal 

membrane, Ca
2+

-mediated proteolytic activity by calpain initiates fragmentation of axonal 

cytoskeleton, leading to a massive decrease of microtubular and neurofilament protein levels 

(Coleman, 2005; Glass et al., 2002) and inner organelles, together with axolemma swelling; 

bead-like formation leading to the breakdown of axons occurs within 48 h (Beirowski et al., 

2005). Early alterations also include endoplasmic reticulum degradation, and accumulation of 

swelled mitochondria at the paranodal regions at the site of injury (Conforti et al., 2014). 

Mitochondria have been proposed to have key roles in WD: in the earliest phase they swell, 

accumulate at paranodal sites and lose their membrane potential. Mitochondrial disfunction 

lowers ATP levels, generates reactive oxygen species (ROS) and impairs calcium buffering, 

leading to cellular homeostasis imbalance, mitochondrial permeability transition pore 

opening, release of pro-apoptotic signals and activation of other cell death mechanisms. 

Indeed ROS scavengers delay WD and axon pathology associated with neurodegenerative 

disorders (Press et al., 2008). However, whether these changes are a cause or simply a 

consequence of degeneration remains unclear (Conforti et al., 2014). 

At the end of the process the axon undergoes complete fragmentation; the rate of degradation 

depends on the type of injury. Another factor affecting degradation rate is axon length: in 

longer axons cytoskeleton degrades more slowly, thus longer axons take longer to degenerate. 
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The second, and more delayed injury-induced signaling phase is mediated by signaling 

complexes transported in a retrograde manner back to the cell body. A key aspect of the 

increased retrograde transport following peripheral nerve injury is the increased expression or 

activation of adaptor molecules that facilitate the association of transcription factors with the 

dynein motor proteins of the retrograde transport (Ben-Yaakov, et al.,2012). Clinically, WD is 

observed following traumatic or ischemic nerve injury. 

Another type of nerve degeneration is called “Wallerian-like”, pathologically reminiscent of 

WD but not necessarily due to nerve transection. It is observed in a variety of disease states 

that may involve focal axonal interruption (Glass, 2002). Examples include inflammatory and 

demyelinating diseases, as well as degenerative diseases that result in formation of large 

axonal swellings or spheroids or disruption of axonal transport (Coleman, 2005). The third 

type of axon degeneration comprises the so-called “dying-back” neuropathies, in which axon 

degeneration is most prominent in distal nerves (Cavanagh et al., 1964)(Fig.3). It includes 

peripheral neuropathies that may result from a variety of insults including diabetes mellitus, 

exposures to toxics, HIV infection, nutritional deficiencies, aging and neurodegenerative 

diseases such as ALS and autoimmune neuropathies, including the Guillain-Barré and Miller 

Fisher syndromes (Coleman et al., 2005). In these types of nerve degeneration many 

molecular changes influencing motor neuron degeneration are thought to occur at the NMJ at 

very early stages of the disease prior to symptom onset (Moloney et al., 2014). 

 

Fig.3. Dying back model of axon degeneration.  The ‘dying back’ model (top) proposes that degeneration of 

each axon starts at the distal end and moves retrogradely. (Coleman et al., 2005) 

 

However axonal degeneration due to a diverse array of insults seems to share common 

features: (1) impaired axonal transport, (2) mitochondrial failure, and (3) rise in axonal Ca
2+

, 

with calpain activation and degradation of axonal components. While the proximal cause(s) of 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ben-Yaakov%20K%5Bauth%5D
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axonal degeneration in peripheral neuropathies and degenerative motor neuron diseases are 

unknown, substantial evidence supports the idea that degeneration ultimately proceeds 

through these pathways (Coleman, 2005). 

Another feature in common to different types of nerve degeneration is that, immediately after 

peripheral nerve injury, SCs dissociate from axons, dedifferentiate to a progenitor-like state, 

become “reactive”, and start proliferating (Clemence et al., 1989). They undergo changes in 

gene expression, down-regulate structural proteins such as protein zero (P0), myelin basic 

protein (MBP) and myelin associated glycoprotein, whilst up-regulate cell-adhesion 

molecules and glial fibrillary acidic protein (GFAP), along with growth factors (Thomson et 

al., 1993). Following peripheral nerve injury, specific laminin subunits are up-regulated by 

SCs (Doyu et al. 1993; Wallquist et al., 2002), favoring the formation of different laminins to 

support nerve growth. Indeed, genetic deletion of the gamma1 (γ1) laminin subunit causes a 

significant decrease in regenerating nerve fibres crossing into the distal fragment of crushed 

sciatic nerves (Chen and Strickland, 2003). The myelin sheaths separate from the axons, 

rapidly deteriorate and shorten to form bead-like structures. Moreover, reactive SCs acquire 

macrophagic-like activities and start clearing up the axonal and myelin debris (Stoll et 

al.,1989); they secrete cytokines and chemokines, such as chemoattractantprotein-1 (MCP-1) 

or leukemia inhibitory factor (LIF), that promote infiltration of macrophages, thus improving 

the clearing rate of cell debris (Tofaris et al., 2002). Indeed, the influx of macrophages has 

proved to be a critical step in nerve regeneration (Rotshenkeret al., 2011). Macrophages also 

produce growth factors and regulate the constituents of the extracellular matrix (ECM) 

(Griffin et al., 1993; Shen et al., 1998). Macrophages recruited to the site of peripheral nerve 

injury seem to be of the M2 phenotype, and act to both suppress inflammation and promote 

repair (Ydens et al., 2012). 

The disruption of normal innervation results in an extensive array of PSCs responses which 

includes: de-differentiation, proliferation, invasion of the synaptic cleft, release of Ach, 

changes in neurotransmitter receptor properties, expression of growth-associated, cytoskeletal, 

and other proteins, and extensive process extension. Within 24 h from denervation growth-

associated protein 43 (GAP-43) is upregulated in PSCs at the rat NMJ, and its levels drop 

following reinnervation (Woolf et al., 1992). GAP-43 expression is not dependent on 

neurotransmission, but likely results from a loss of nerve contact or degeneration products 

(Hassan et al., 1994). Moreover, PSC immunoreactivity for the p75 neurotrophin receptor 

increases during denervation (Reynolds and Woolf, 1992). PSCs at degenerating NMJs, once 

completed the clearing of MAT debris, occupy the denervated synaptic cleft and start 
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releasing ACh, giving rise to miniature endplate potentials in the muscle fibre (Auld and 

Robitaille 2003).  

 

3. Peripheral nerve regeneration 

 

The injured PNS differs from the injured CNS in its remarkable capacity of self-recovery, 

which depends on the extent and type of nerve injury. Regeneration involves a series of 

molecular events involving the injured neuron and associated SCs that leads to axon regrowth, 

remyelination, and functional restitution. Over time, the understanding on the PNS 

regeneration process has increased significantly. Injured axons form proximal regenerative 

buds that, in a process largely governed by factors produced by SCs, sprout and grow toward 

their distal targets. Furthermore, the importance of degeneration as the rate limiting step in the 

process of recovery has also been elucidated. After PNS injury, there is exponential migration 

of glia and macrophages to the lesion site for the purpose of removing debris. This process 

clears the path for the growing axons. Once the debris is cleared, the proximal end of the 

injured axon can sprout, leading to regenerative buds. If an axon is able to survive following 

nerve injury, it urgently needs to regain its ionic homeostasis through the rapid repair of the 

ruptured membrane. This occurs in two stages: first, plasma membrane at the cut end 

collapses, thereby reducing the diameter of the ruptured membrane and in some cases even 

leading to fusion of the cut end; second, vesicles move to the ruptured plasma membrane to 

form multivesicular structures that fuse with the plasma membrane, the so-called “sealing 

patch”. After closure of the interrupted plasma membrane, the assembly of a growth cone 

apparatus can begin (Bradke et al., 2012). 

Growth cones are highly motile structures that explore the extracellular environment, guide 

and promote the extension of the axon and determine the direction of growth. The main 

morphological   characteristic  of  a  growth cone is a sheet-like expansion of the growing 

axon at its tip, called lamellipodium. The highly dynamic nature of growth cones allows them 

to respond to the surrounding environment by rapidly changing direction and branching in 

response to various stimuli. Overall, axon elongation is the product of a process known as tip 

growth. This process requires the recruitment of membrane and its insertion into the 

neurolemma. The source of this membrane is mostly anterogradely transported vesicles that 

derive from the Golgi apparatus (Erez et al., 2007); it is conceivable that a fraction of the 

retrieved plasma membrane from the cut axonal end is reused for the growth process 

(Schaefer et al., 2008). Laminins of the BL interact with the integrins of the growth cone to 

http://en.wikipedia.org/wiki/Integrin
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promote the forward movement of the axon tip. Additionally, axon outgrowth is also 

supported by the stabilization of the proximal ends of microtubules, which provide the 

structural support for the axon. Many of the molecules that are necessary for immediate 

growth cone assembly are provided by recycling axonal material; however, growth cones also 

contain proteins that are not part of the structure of mature axon shafts. These new proteins 

could arrive via axonal transport or through local protein translation. Indeed, some axons in 

mammalian PNS contain messenger RNAs (mRNAs), ribosomal proteins and Golgi-like 

structures and can synthesize proteins within the axon (Sotelo-Silveira et al., 2008; Yoo et al., 

2010). 

SCs play a crucial role in repair of peripheral axons. Within the distal nerve stump, SCs 

undergo several changes that are required to support growth cone outgrowth. After the initial 

injury, they transdifferentiate, loose their myelinating phenotype, and become repair cells. 

Their expression of myelin protein is downregulated, and growth-promoting genes, including 

those encoding cell adhesion molecules, growth factors such as NGF, BDNF, GDNF and NT-

3 and their receptors, are upregulated (Hoke et al., 2002; You et al., 2007). These changes in 

SCs after injury might be actively triggered by an injury signal, or might occur as a result of 

loss of axonal signals. During their proliferation phase, SCs begin to form a line of cells 

called Bands of Bungner, within the basal laminar tube, which guide and encourage axon 

growth in the proper direction (Sheib et al., 2013).   

Also PSCs at NMJs greatly contribute to axonal regeneration after nerve injury. After full 

denervation, PSC processes were shown to extend between adjacent endplates and often form 

fasciculated bundles (Son et al., 1995). During reinnervation, regenerating axons that follows 

myelinating SCs tubes do not stop once found the endplates on the muscle. They keep on 

growing beyond the endplate region, where they follow PSC extensions very closely (Son et 

al., 1995). In this manner, the processes act as bridges between endplates for reinnervating 

axons. These bridges precede axons, and instances were observed where PSC processes 

extended well beyond the limit of their associated axon (Son and Thompson, 1995). By 

contrast, axons were not observed extending past their associated PSC processes. Thus, 

processes guided reinnervating axons to endplates. Following partial denervation, nerve 

sprouts from undamaged axons extend from terminals to innervate denervated muscle fibres 

(Brown et al., 1981). In addition to nerve sprouting, PSCs extend numerous long processes 

after partial denervation (Mehta et al., 1993; Son and Thompson 1995; Love and Thompson, 

1999). They contact other endplates, and the vast majority of connections are formed by 

processes from denervated endplates contacting innervated endplates. Interestingly, all nerve 



12 
 

sprouts resulting from partial denervation were associated with PSC processes. Moreover, 

PSC processes always extend beyond their associated nerve sprouts, giving the impression 

that they were leading the growing sprouts. Of the nerve sprouts that had reinnervated 

endplates, most were associated with PSC processes from denervated endplates (Love and 

Thompson, 1999). These data suggest that PSC processes from denervated endplates find 

innervated endplates, inducing a terminal sprout and guide it to the denervated endplate. 

Because most bridges exist between denervated and innervated endplates, PSC processes 

appear to select innervated endplates, which is clearly an advantage for facilitating 

reinnervation of their denervated endplate. It is not clear if this is achieved through selective 

guidance or stabilization by signals from innervated endplates.  

 

4. Factors that positively influence nerve regeneration 

 

The growth of axons, their guidance to the original synaptic sites on denervated fibers and the 

functional recovery from peripheral nerve injury are complex processes that involve many 

still unknown factors, both intrinsic and extrinsic to neurons. Neuronal survival after injury is 

a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple 

sources, including neurotrophins, cytokines, chemokines, insulin-like growth factors (IGFs), 

and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch 

from a transmitting mode to a growth mode and express growth-associated proteins, such as 

GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of 

which have the potential to promote axonal regeneration. After peripheral injury also SCs 

express cytokines and chemokines important for successful nerve regeneration. These 

dedifferentiated SCs upregulate synthesis and secretion of the chemokine monocyte 

chemoattractant protein-1 (MCP-1, now referred to as CCL2, chemokine C–C motif ligand 2) 

and macrophage inflammatory protein-1a (MIP-1a, also known as CCL3), with a peak in 

mRNA expression at 1 d after injury (Subang and Richardson, 2001; Perrin et al., 2005). It 

was recently shown that during degeneration MAT releases signaling molecules such as 

mtDNA and Cyt c, which in turn activate PSCs and promote nerve regeneration (Duregotti et 

al., 2015).  

SCs in the distal stump undergo proliferation and phenotypical changes to prepare the local 

environment for axonal regeneration. They increase the expression of surface cell adhesion 

molecules (CAMs) such as N-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, they elaborate 

a basement membrane that contains many ECM proteins such as laminin, fibronectin, and 
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tenascin, creating a permissive environment to axonal growth and playing an important role in 

the promotion of post injury nerve regeneration. Laminin for instance, the major component 

of the ECM in the PNS, exhibits clear stimulatory effects on axonal growth, and is able to 

counteract inhibitory myelin influences (Lemons et al., 2005). Numerous studies have 

demonstrated that laminin not only improves neurite growth but also mediates SCs migration, 

proliferation, or remyelination (Tucker et al., 2008; Previtali et al., 2001). Moreover, 

denervated SCs of the distal nerve fragment up-regulate trophic factors, such as nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), that 

support neuronal survival and axon growth (Gordon et al., 2009). Even the interactions 

between neurotransmitters, such as Ach and ATP, released by nerve terminal and their 

receptors expressed in PSCs play an important role in the regeneration of axons. Indeed after 

blockade of nicotinic AChRs and purinergic P2Y receptors of injured peripheral nerves, fewer 

axons grow into the peripheral nerve stump than in untreated (Vrbova et al., 2009), indicating 

that the interactions between transmitters released from the growth cones and SCs in the distal 

stump are important for nerve regeneration. 

Several transcription factors are thought to be important for promoting the regenerative 

phenotype, including ERK (Duregotti et al., 2015),  c-Jun (Arthur Farraj et al., 2012), cyclic 

AMP-dependent transcription factor ATF-3, members of the cyclic AMP-responsive element-

binding protein (CREB) family of transcription factors, signal transducers and activators of 

transcription (STAT) proteins, and NF-κB (Scheib and Höke 2013). One transcription factor 

essential for nerve regeneration is c-Jun, a component of transcription factor AP-1. After 

injury, c-Jun is upregulated in repair SCs. When c-Jun is inactivated in SCs of mice, these 

cells become less supportive of regeneration: myelin debris persists, neuronal death increases, 

bands of Büngner are not maintained, and functional recovery is impaired (Arthur-Farraj et 

al., 2012). Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-

coding RNAs (lncRNAs), have been reported to be dysregulated following a variety of 

peripheral nerve injury (Yu et al., 2015). 

In addition to the classic mechanisms of intercellular signaling, the possibility of 

communication through secreted vesicles has been poorly explored to date. Recent findings 

suggest the occurrence of a lateral transfer mediated by vesicles from glial cells to axons that 

could have important roles in axonal growth and axonal regeneration (Lopez-Verrilli et al., 

2013). In the following paragraphs I will describe more in detail some of the molecules 

important for nerve regeneration. 
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4.1 ATP 

 

ATP is well known as a free energy source involved in many biochemical pathways, but it is 

also recognized as an extracellular messenger. ATP was found co-released with ACh at NMJs 

more than 30 years ago (Silinsky, 1975), and  interacts with both neurons and SCs. A number 

of different receptors are expressed at the NMJ by the presynaptic nerve terminal, the 

postsynaptic muscle, and PSCs (Fig.4). They include P1 adenosine receptors on presynaptic 

terminals (Baxter et al., 2005) and PSCs (Robitaille 1995), and P2 receptors on PSCs 

(Robitaille 1995), nerve terminals (Grishin et al., 2005), and muscle fibres (Collet et al., 

2002). Purinergic signaling in the PNS and at the NMJ takes place during development of 

NMJ, PNS myelination, and neuron-glia interactions (Todd and Robitaille, 2006). ATP is a 

functionally important extracellular signaling molecule in the CNS also during nerve injury. 

A recent study revealed that both resting and activated microglia express P2X4, P2X7, and 

P2Y12 receptors after nerve injury, and that released ATP can trigger significant Ca
2+

 entry 

into the cytoplasm, thus contributing to the activation of resting microglia (Fields and 

Burnstock, 2006). In vitro findings demonstrate that cultured SCs respond to ATP with a 

transient increase in intracellular calcium that is blocked by the P2 purinoreceptor antagonist 

suramin (Ansellin et al., 1997). These observations, together with the presence of purinergic 

receptors, provide further evidence that SCs respond to ATP released by nerve terminals. 

However, the mechanism of ATP release after peripheral nerve axons injury and its effects are 

not well known. In particular, it is not clear whether ATP released from injured nerve induce 

the activation of denervated SCs in the distal nerve stumps, and if this interaction plays a role 

in peripheral nerve regeneration. 

 

 

 

 

 

 

Fig.4. Purinergic receptors and their natural ligands. Purinergic receptors are divided into P2 receptors, 

activated by a variety of nucleotides, which can be further subdivided into ionotropic P2X receptors activated by 

ATP and the metabotropic G-protein-coupled receptors (P2Y) stimulated by nucleotides, di- or triphosphates, 

purines or pyrimidines. In contrast, metabotropic P1 receptors are preferentially activated by adenosine. 

Recently, evidences for the functional expression of adenine receptors, designated as P0 receptors, have been 

found. At NMJ both P1 and P2 receptors are expressed. 
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5. Experimental model 

 

The classical experimental approach used to study nerve degeneration/regeneration is the in-

vivo cut or crush of sciatic nerves in rats or mice. This approach leads to WD with consequent 

inflammation, and involvement of many cell types and mediators. This surgically-induced 

nerve degeneration closely mimics the cascade of events observed following traumatic or 

ischemic nerve injury, such as impaired axonal transport, mitochondrial failure, and 

cytoskeletal fragmentation of injured nerves, thus representing a well-established model to 

characterize these pathological conditions.  

However in several motor neuron diseases, collectively referred to as “dying-back” 

neuropathies, axon degeneration is most prominent in distal nerves. Many molecular changes 

influencing motor neuron degeneration are thought to occur at the NMJ at very early stages of 

the disease, prior to symptoms onset (Moloney et al., 2014). Dying-back axonopathies include 

ALS and autoimmune neuropathies such as the Guillain-Barré and Miller Fisher syndromes. 

The ability of injured peripheral nerves to regenerate and re-innervate their original targets is 

characteristic of the PNS. Successful regeneration at NMJ is a consequence of well arranged 

interactions between injured nerve, non-neuronal cells, especially PSCs, MF and BL. Hence, 

further characterization of pathological events that occur peripherally during initial 

denervation may provide insight into disease onset, help in the discovery of pre-symptomatic 

diagnostic disease markers, lead to the identification of additional pathways involved in the 

recovery of NMJ functionality, and hopefully of new therapeutic targets. 

To this purpose, we induced a very specific and localized damage to the MAT in order to 

avoid the activation of many cell types (including myelinating SCs), and the production of a 

massive inflammatory response. This localized damage mimics the main pathological events 

that lead to nerve terminal degeneration in injured patients and in other neurodegenerative 

conditions. The original and novel experimental approach described here employs a 

presynaptic neurotoxin, α-Latrotoxin (α-Ltx), a pore forming toxin from black widow spiders, 

to provide an acute and localized damage of MAT, that is much more controllable than 

classical methods and is fully repaired within a short time.  
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5.1 α-Latrotoxin 

 

Black widow spiders (genus Latrodectus) are largely diffused in many parts of the world. The 

venom of Latrodectus spp. contains at least 86 unique proteins (Duan et al., 2006), including 

several homologous latrotoxins (LTXs) which play a role in its toxicity towards insects and 

crustaceans, with only one component, alpha-Latrotoxin (α-Ltx), targeting vertebrates 

specifically (Grishin, 1998). 

The toxin almost always exists as a stable dimer in which the monomers are associated “head 

to tail” (Orlova et al. 2000). Association of dimers, strongly catalysed by Mg2+, produces a 

cyclical structure that can contain four monomers only. The tetramer has C4 rotational 

symmetry and resembles a bowl, in which the bottom is formed by the “horizontal” parts of 

the bodies (Fig.5). This part is important for penetration into lipid bilayers, and it is likely that 

structural rearrangements required for tetramerisation expose the surface regions favourable 

to interaction with lipid bilayers. In addition, this part represents the intracellular mouth of the 

channel, with a large (30 Å) central hole in its center. Above this, in the centre of the “bowl”, 

the four heads form a cylindrical assembly surrounding the channel, which is restricted at one 

point to 10 Å; this constriction probably corresponds to the cations binding site of the α-Ltx 

channel. The role of tetramerisation in toxin pore formation has been vividly illustrated by 

mutagenesis. Indeed mutated α-Ltx fails to incorporate into the membrane and form pores, 

providing a powerful argument that the tetramer is the molecular species that inserts into 

membranes. (Ashton et al., 2001; Volynski et al., 2003).  

 

 

 

 

 

 

 

 

 

 

Fig.5. reconstructions of the α-Ltx tetramer, viewed from the top and side. The tetramer is the active form of 

α-Ltx (Ushkaryov, 2008). 
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Although α-Ltx is able to insert into pure lipidic membranes, reconstituted receptors greatly 

enhance the rate of insertion (Scheer et al., 1986). Biological membranes seem even more 

refractive to the toxin: when cells do not possess α-LTX receptors, no pore formation can be 

detected (Volynski et al., 2000), whereas expression of exogenous receptors allows abundant 

α-LTX insertion and concomitant channel formation. It is not clear whether some receptors 

are directly involved in membrane insertion, if they simply concentrate toxin near membrane 

or if they organise membrane lipid domains to make them accessible to α-Ltx. However till 

now, three surface-proteins have been identified to be selectively bound by α-Ltx: neurexin 

(NRX) (calcium-dependent interaction), latrophilin 1 (LPH1) and protein tyrosin phosphatase 

σ (PTPσ) (calcium-independent interaction). Such receptors are present mostly in the brain, 

but they have also been found, though in small amounts, in other secretory tissues such as 

pancreas, lung and kidney. Thus, receptors confer specificity to the pore-mediated effects of 

α-Ltx (Ushkaryov, 2008). Moreover, the makeup of lipid bilayer seems to influence the rate 

of α-Ltx insertion into lipid membranes (Robello et al., 1984). All α-Ltx actions in biological 

systems require receptors, which provide binding sites for the toxin on the cell surface. Once 

bound to its target membrane, α-Ltx can cause both calcium-dependent and -independent 

release of neurotransmitters. Part of its calcium-dependent action is due to the pore formation 

and resulting calcium influx; this mechanism triggers the release of both the readily releasable 

and the reserve pools of vesicles (Ashton et al., 2001). Another action is based on receptor-

mediated signaling, which involves stimulation of PLC, production of IP3 and diacyl glycerol, 

with release of stored calcium and activation of protein kinase C (PKC) respectively. This 

mechanism, most likely mediated by LPH1, affects the readily releasable vesicles only. Both 

the pore and receptor mediated signals can be amplified by the release of intracellular 

calcium, for istance mitochondria can contribute to the increase in intracellular [Ca
2+

], and the 

extracellular calcium influx (Ushkaryov, 2008). 

Electrophysiologically, α-Ltx causes an increase in the frequency of spontaneous miniature 

postsynaptic potentials (mepps), and it also affects evoked action potentials (epps) and 

synchronous release in a time-dependent manner, eventually inhibiting them, thus leading to 

skeletal muscles paralysis (Capogna et al., 1996). 

Electron microscopy studies at mouse soleus muscles show that, within 30 minutes from 

intoxication, motor nerve terminals become markedly swollen, as a consequence of the toxin-

mediated entry of cations, and depleted of synaptic vesicles, due to the massive vesicle fusion 

(Fig.6). Mitochondria appear also swollen and rounded (Duchen et al., 1981; Matteoli et al., 

1998; Tedesco, Rigoni et al., 2009). The massive calcium influx cause the activation of 
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calcium-dependent calpains, triggering cytoskeletal fragmentation (Duregotti et al., 2013), 

and eventually to nerve terminals degeneration.  

By 6 hours from intoxication motor nerve terminals are disrupted and engulfed by SCs. By 24 

hours end-plates are denervated. Noteworthy, MAT regenerates in a short time, with fully 

recovery of the NMJ (Duchen et al., 1981). 

 

Fig.6. Electron microscopy of mouse NMJs treated or not with α-Ltx. A: A control terminal densely 

populated by synaptic vesicles. B: Exposure to α-Ltx causes a massive release of small synaptic vesicles. This 

results in an enlargement of the plasmalemma and a total depletion of the neurotransmitter-containing vesicles 

(Matteoli et al., 1998).  
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6. AIM 

Injured nerve terminals at NMJs can regenerate. This complex response is governed by 

molecular signals that are exchanged among the main cellular components of the NMJ: motor 

axon nerve terminal (MAT), perisynaptic schwann cells (PSC), muscle fibre (MF), and the 

basal lamina.  

Although clearly documented, the regeneration of MAT is still ill-known in many cellular and 

molecular aspects. Here we have used the spider toxin α-Latrotoxin (α-Ltx), which targets 

specifically the presynaptic terminal causing its complete degeneration, to further investigate 

the mechanisms underlying peripheral neuroregeneration. This neurotoxin induces a very 

specific and localized damage of MAT, and its action mimics the cascade of events that leads 

to nerve terminal degeneration in injured patients and in other neurodegenerative conditions. 

Strikingly, after the clearing of MAT debris by PSCs, the axon stump grows allowing 

complete NMJ recovery. Therefore this toxin represents a simple and controlled method to 

induce an acute, localized and reversible MAT degeneration followed by full regeneration of 

the NMJ.  

The aim of the present work is to define the transcriptomic profile of the NMJ during 

neurotoxin- induced degeneration and regeneration in mouse. This is a major effort that could 

allow to identify additional pathways involved in the recovery of NMJ functionality, and to 

find out molecules released by PSCs and MF involved in MAT regeneration. This 

experimental approach will allow to characterize the cross-talk between degenerating MAT 

and adjacent PSCs and, in particular, to identify the molecular mediators released by MAT 

that might be involved in PSCs activation.  
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7. MATERIALS AND METHODS 

7.1 MATERIALS 

Toxins. -Ltx was purchased from Alomone. The purity of the toxins was checked by SDS-

PAGE and their neurotoxicity by ex-vivo mouse nerve-hemidiaphragm preparation as 

previously described (Rigoni et al., 2005). 

Chemicals. Unless otherwise stated all reagents were purchased from SIGMA. 

Animal strains. C57BL/6 mice expressing cytosolic GFP under the plp promoter (Mallon et 

al., 2002; Brill et al., 2011) were kindly provided by Dr. W.B. Macklin (Aurora, Colorado) 

via the collaboration of Dr. T. Misgeld (Munchen, Germany). All experiments were 

performed in accordance with Italian animal care guidelines, law no. 116/1992. Experiments 

using Wistar rats (Plaisant Srl) were performed in accordance with the Council Directive 

2010/63/EU of the European Parliament, the Council of 22 September 2010 on the protection 

of animals used for scientific purposes, and approved by the Italian Ministry of Health.  

 

7.2 METHODS 

7.2.1 Laser microdissection 

-Ltx (5 µg/kg) was diluted in 15 µl of physiological saline (0.9% w/v NaCl in distilled 

water) and injected subcutaneously in proximity of Levatoris auris longus (LAL) muscle of 

anesthetized transgenic   C57BL/6  male  mice (expressing a cytosolic GFP under the plp 

promoter) of around 20-25 gr. Control animals were injected with saline. LAL muscles were 

sacrificed, subcutaneously fixed in 4% PFA in PBS for 5 min and then dissected at different 

time points after injections. Muscles were then incubated with fluorescent -bungarotoxin in 

sterile PBS for 30 min at 37°C and then frozed in liquid nitrogen. Crio-sections (7 µm thick) 

were transferred to UV treated microscope glass slides (six to eight sections per slide). 

Microdissection was performed under direct microscopic visualization with PALM 

RoboMover automatic laser microdissector (Carl Zeiss, Oberkochen, Germany). 
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7.2.2 RNA isolation 

LCM samples were incubated with 50 l of lyisis buffer PKD (Qiagen, Venlo, Netherlands) 

and 10 l of proteinase K (Promega, Madison, WI, USA) at 55 °C over night with the sample 

upside down. The day after samples were centrifuged for 10 minutes at 10000 rpm, and RNA 

extracted with the automated system Maxwell 16 (Promega, Madison, WI, USA) using the 

Maxwell® 16 LEV RNA FFPE Purification Kit. The protocol was followed starting from the 

DNase treatment. It was not possible to measure the concentration of the RNA extracted from 

LMD samples, even with Qubit RNA HS assay kit, because of the low amount of material.  

7.2.3 Ribosomal RNA Removal 

Because of the too low amount of starting material, ribosomal RNA (rRNA) was not removed 

before retro-transcription into cDNA, but only at the time of data analysis, using appropriate 

filters.  

7.2.4 cDNA Synthesis 

To prepare the library we used the SMARTer Universal Low Input RNA kit. 

It was not possible to check the quality of the cDNA libraries with Agilent 2100 Bioanalyzer 

instrument because of the low quantity of the starting material.  

7.2.5 Adapters Ligation, Size Selection and Amplification 

Only samples from fresh tissues were fragmented with Ion TargetSeq Exome Enrichment kit, 

using the Ion Shear Plus Reagents for 3-5 minutes at 37 °C. Ligation of the adapters and of 

the barcodes to the cDNA samples was then performed (two libraries were loaded together in 

the same chip doing a pooled library), following the instruction for the Ion TargetSeq Exome 

Enrichment (Life Technologies). Samples were purified with Agencourt AMPure XP Reagent 

(Beckman Coulter, Indianapolis, IN).  

The unamplified libraries were run on the E-Gel SizeSelect 2% Agarose Gel (Life 

Technologies, Grand Island, NY) to obtain about 270 bp library DNA. The size-selected 

fragment library was then amplified with Platinum PCR SuperMix High Fidelity (Life 

Technologies, Grand Island, NY) with this PCR cycling program: 95 °C for 15 seconds of 

denaturation; 95 °C for 15 seconds, 58 °C for 15 seconds, 70 °C for 1 minute (22 cycles) and 

70 °C for 5 minutes. and purified. The quality and the quantity of the amplified library was 
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checked with Agilent 2100 Bioanalyzer instrument with the Agilent High Sensitivity DNA 

Kit.  

Our libraries were ready for template preparation in Ion OneTouch 2 Instrument (Ion Torrent, 

Life Technologies, Grand Island, NY). 

7.2.6 Template Preparation 

cDNA was amplified using emulsion PCR performed via Ion OneTouch 2 Instrument (Ion 

Torrent, Life Technologies, Grand Island, NY). One DNA molecule per Ion Sphere particle in 

an oil emulsion was obtained. The cDNA library was diluted to 10 pM and loaded in the Ion 

PI Plus Reaction Filter Assembly (Ion Torrent). The run was performed overnight in the Ion 

OneTouch 2 Instrument. The day after the template-positive Ion PI Ion Sphere Particles 

(ISPs) were recovered, the unenriched template ISPs were measured by the Qubit 2.0 

Fluorometer (Invitrogen, Life Technologies, Grand Island, NY) with the V3.10 firmware and 

the Ion Sphere Quality Control Assay (Ion Torrent, Life Technologies, Grand Island, NY). 

The non-templated ISPs were removed from the template ISPs by the Ion OneTouch ES 

Instrument (Ion Torrent, Life Technologies, Grand Island, NY), which uses magnetic bead 

technology to isolate template-positive ISPs.  

7.2.7 Sequencing on the Ion Proton 

Unlike Illumina and 454, Ion proton sequencing does not make use of optical signals; instead, 

it is based on the release of a H
+
 ion each time a dNTP is added to a DNA polymer. As in 

other kinds of Next generation sequencing, the input DNA or RNA is fragmented, ~200bp 

fragments. Adaptors are added to fragments and one molecule is placed onto a bead. The 

molecules are amplified on the bead by emulsion PCR. Each bead is placed into a single well 

of a slide. 

Like 454, the slide is flooded with a single species of dNTP, along with buffers and 

polymerase, one NTP at a time. The pH is detected by sensors at the bottom of each well, as 

each H
+
 ion released will decrease the pH. The changes in pH allow us to determine if that 

base, and how many thereof, was added to the sequence read. 

The Ion PI Sequencing 200 kit was employed for sequencing (Ion Torrent, Life Technologies, 

Grand Island, NY). The Ion PI Chip (Ion Torrent, Life Technologies, Grand Island, NY) was 

prepared and calibrated for loading. The Ion PI Chip (Ion Torrent, Life Technologies, Grand 

Island, NY) was loaded with the template-positive ISPs and run on Ion Proton Sequencer. 
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7.2.8 Bioinformatic Analysis 

Bioinformatics analysis was carried out using several command line software included in Bio-

Linux (http://nebc.nerc.ac.uk/tools/bio-linux/bio-linux-7-info), a custom version of Ubuntu 

12.04 LTS. Fastq files were extracted from the Torrent Server and previously analysed for 

quality, length and presence of contaminants, by using the software Fastqc 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and FastqScreen 

(http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/).  

Using Star aligner the reads, previously filtered for the quality, length and contaminants, were 

processed and aligned to Mus musculus reference genome. The unmapped reads, generated 

from the first step, were re-aligned by using Bowtie2 with the preset options “local” and “very 

sensitive” selected. The reads mapped with Star and Bowtie2 were then merged by using the 

Picard command SamMerge. The quality of the mapping was evaluated by using the SamStat 

software. 

7.2.9 NMJ immunohistochemistry 

-Ltx injection in LAL muscles was performed as described for sample preparation for laser 

microdissection. Muscles were dissected at different time points and fixed in 4% PFA in PBS 

for 30 min at RT. Samples were quenched, permeabilized and saturated for 2 h in 15% goat 

serum, 2% BSA, 0.25% gelatin, 0.20% glycine and 0.5% Triton X-100 in PBS.  Incubation 

with the following primary antibodies was carried out for at least 48 h in blocking solution: 

anti-VAChT (rabbit polyclonal Synaptic Systems, 1:200), anti-CD68 (mouse monoclonal, 

Santa Cruz, 1:200). Muscles were then washed and incubated with secondary antibodies 

(Alexa-conjugated, 1:200 in PBS, Life Technologies). For CXCL12 detection incubation with 

the primary antibody (mouse monoclonal anti-CXCL12, R&D, 1:50) was carried out for 72 h 

and the tyramide signal amplification kit (Perkin Elmer) was used. 

To stain acidic compartments, LAL muscles collected after 4 h of intoxication were loaded 

ex-vivo with LysoTracker Red DND-99 (1:5000, Life Technologies) for 2-3 min (Song et al., 

2008), while being continuously perfused with oxygenated Neurobasal A medium (Life 

Technologies). Samples were then fixed and processed for indirect immunohistochemistry as 

described above. Images were collected with a Leica SP5 Confocal microscope equipped with 

a 63x HCX PL APO NA 1.4. Laser excitation line, power intensity and emission range were 

chosen accordingly to each fluorophore in different samples in order to minimize bleed-

through.  
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7.2.10 Electrophysiological recordings 

Electrophysiological recordings were performed in oxygenated Krebs-Ringer solution on 

soleus muscles using intracellular glass microelectrodes (WPI, Germany) filled with one part 

of 3 M KCl and two parts of 3 M CH3COOK. Measurements were done on muscles from 

control mice, from mice locally injected with the toxin (-Ltx 5 µg/kg), and from mice that 

were i.p. injected with 100 µg of anti-CXCL12 antibody (diluted in 40 µl physiologic solution 

0,2 % gelatine) prior to local injection of -Ltx. Different time points were analysed. 

Evoked neurotransmitter release was recorded in current-clamp mode and resting membrane 

potential was  adjusted with current injection to −70 mV. Evoked junction potentials (EJPs) 

were elicited by supramaximal nerve stimulation at 0.5 Hz using a suction microelectrode 

connected to a S88 stimulator (Grass, USA). To prevent muscle contraction after dissection 

samples were incubated for 10 min with 1 µM µ-Conotoxin GIIIB (Alomone, Israel). Signals 

were amplified with intracellular bridge mode amplifier (BA-01X, NPI, Germany), sampled 

using a digital interface (NI PCI-6221, National Instruments, USA) and recorded by means of 

electrophysiological software (WinEDR, Strathclyde University). EJPs measurements were 

carried out with Clampfit software (Molecular Devices, USA), statistical analysis with Prism 

(GraphPad Software, USA). 

7.2.11 Cerebellar granular neurons  

Rat cerebellar granular neurons (CGNs) were prepared from 6-days-old Wistar rats as 

described elsewhere (Levi et al., 1984). Briefly, neurons were isolated from freshly dissected 

cerebella by mechanical disruption in the presence of trypsin (0,08% m/w) and DNase I (0,08 

mg/ml) and then seeded onto 24-wells culture plates coated with poly-L-lysine (10 µg/ml). 

Cells were seeded at a density of 3 x 10
5
/well in BME (Life Technologies) supplemented with 

10% FBS (Euroclone), 25 mM KCl, 2 mM glutamine and 50 µg/ml gentamycin. Cultures 

were maintained at 37 °C in a humidified atmosphere of 95% air, 5% CO2. Cytosine 

arabinoside (10 µM) was added to the culture medium 18-24 hours after plating to arrest the 

growth of non-neuronal cells. Experiments were performed at 6 days in-vitro. 
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7.2.12 Spinal motoneurons  

Primary rat spinal motoneurons (MNs) were isolated from Sprague-Dawley rat embryos 

(embryonic day 14) and cultured following previously described protocols (Arce et al., 1999). 

Briefly, spinal cords were dissected from E14 rat embryos, treated with trypsin (0,025% m/w) 

and DNase (0,1 mg/ml) and collected under a bovine serum albumin (BSA) cushion. Cells 

were then resuspended in Neurobasal medium (Life Technologies) supplemented with 2% 

B27 supplement (Life Technologies), 2% horse serum (Euroclone), 0,5 mM glutamine, 25 

µM 2-mercaptoethanol, 10 ng/ml CNTF (R&D Systems), 100 pg/ml GDNF (R&D Systems), 

5 µg/ml Pen/Strep and 25 µM L-glutamic acid, and seeded on poly-ornithine and laminin 

coated plates. Cultures were maintained at 37 °C in a humidified atmosphere of 95% air, 5% 

CO2, and experiments were performed at 6 days in-vitro. 

 

7.2.13 Primary Schwann cells 

Primary SCs were purified from sciatic nerves of six P3 Wistar rats. Briefly, sciatic nerves 

were dissected and tissues digested in 0.1% w/v collagenase, 0.25% w/v trypsin in L15 

medium (Life Technologies) plus 0.3% BSA for 1 h. Dissociated cells were seeded onto 

uncoated Petri dishes in DMEM (Life Technologies) 10% FBS and 50 µg/ml gentamycin; 24 

h after seeding 10 M arabinoside C was added to the medium and kept for 2 days to prevent 

fibroblasts mitosis. Five days after seeding an immunopanning with an anti-Thy1.1 antibody 

(1:500, 30 min at 37 °C) followed by rat complement addition (1:10, 2 hours) were performed 

to eliminate contaminating fibroblasts. Purified SCs were subsequently plated on poly-L-

lysine-coated dishes and allowed to grow in Expansion Medium consisting of DMEM, 

supplemented with 10% FBS, 2 M forskolin and 10 nM heregulin  -1. SCs were then 

seeded on laminin-coated 24 wells-dishes (2 x 10
4
 cells/well) and kept in Expansion Medium. 

 

7.2.14 Neurons-SCs co-cultures  

CGNs and spinal MNs were used to set up co-cultures with primary SCs. Briefly, 4 days after 

primary neurons seeding, primary SCs were added to neuronal cultures at an average density 

of 1 x 10
4
 cells/cm

2
. Co-cultures were kept for 2-3 days in CGNs or MNs medium 

respectively. 
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7.2.15 Cell treatments 

CGNs or spinal MNs plated onto 24 wells-plates were exposed for 24 h to recombinant 

CXCL12 (100, 250, 500 or 700 ng/ml, R&D) at 37°C in in Neurobasal medium supplemented 

with 2% B27 supplement, 2% horse serum, 0,5 mM glutamine, 25 µM 2-mercaptoethanol, 10 

ng/ml CNTF, 100 pg/ml GDNF, 5 µg/ml Pen/Strep and 25 µM L-glutamic acid. A low 

density motor neuron culture system was chosen to easily compare the effects of CXCL12 on 

axon growth. AMD3100 (10 µM, SIGMA), a CXCR4 antagonist, was added to MNs together 

with CXCL12. 

 

Primary SCs were exposed to 100 µM ATP for different incubation times in KRH at 37°C. 

 

In some experiments primary neurons, SCs or co-cultures were pre-incubated for 5 min with 

1,5 U/well apyrase before toxin addition and apyrase was kept throughout the experiments. 

Samples were then processed for Western blotting or immunofluorescence. 

 

7.2.16 Microfluidic chambers 

 

Microfluidic chambers (MFCs) were produced using established methods (Park et al.,2006). 

Polydimethylsiloxane (Dow Corning) inserts were sterilized and fixed to 50 mm glass-

bottomed WillCo dishes (IntraCel) using plasma cleaning. MFCs were blocked with 0.8% 

BSA in PBS overnight at 37°C and then coated with poly-L-ornithine and laminin. Spinal 

MNs were plated in the somatic compartment of the MFC and left to adhere before the full 

medium was applied. The chemokine CXCL12 (500 ng/ml) was added in the distal 

compartments. Immunofluorescence analysis were performed after 5 days of treatments. 

 

7.2.17 Western Blot 

Primary cell cultures were treated as described above, then lysed in Lysis Buffer (Hepes 10 

mM, NaCl 150 mM, SDS 1%, EDTA 4 mM, protease inhibitors cocktail (Roche), and 

phosphatase inhibitor cocktail). Samples were then denatured at 95°C for 5 min, loaded on 

precast 4-12% SDS-polyacrylamide gels (Life Technologies) and transferred to a 

nitrocellulose membrane in a refrigerated chamber. Following saturation, membranes were 

incubated o.n. with primary antibodies (rabbit polyclonal anti-Phospho-CREB, Cell 

Signaling, 1:1000, mouse monoclonal anti-Hsc70, Synaptic Systems, 1:10000) followed by a 
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secondary antibody HRP-conjugated (Life Technologies, 1:10000). Chemiluminescence was 

developed with Luminata TM Crescendo (Millipore) or ECL Advance western blotting 

detection system (GE Healthcare), and emission measured with ChemiDoc XRS (Bio-Rad). 

For densitometric quantification the software Quantity One (Bio-Rad) was used, and the 

bands of interest were normalized to the housekeeping protein Hsc70. None of the bands 

reached signal saturation. 

 

7.2.18 Immunofluorescence  

Following treatments, primary MNs, primary SCs or co-coltures were fixed for 15 min in 4% 

PFA in PBS, quenched (0.38% glycine, 0.24% NH4Cl in PBS) and permeabilized with 0.3% 

Triton X-100 in PBS for 5 min at RT. After saturation with 3% goat serum in PBS for 1 h, 

samples were incubated with primary antibodies (polyclonal anti-3  tubulin, SIGMA 1:200); 

polyclonal anti-CXCR4 Abcam 1:500, rabbit polyclonal anti-Phospho-CREB, Cell Signaling, 

1:800, mouse monoclonal anti-S100, SIGMA, 1:200) diluted in 3% goat serum in PBS o.n. at 

4°C, washed, and then incubated with the correspondent secondary antibodies (Alexa-

conjugated, 1:200, Life Technologies) for 1 h at RT. Coverslips were mounted in Mowiol and 

examined by confocal (Leica SP5) or epifluorescence (Leica CTR6000) microscopy. 

 

7.2.19 Extracellular ATP measurement 

ATP in cell culture supernatant was quantified using ATP Lite One-Step kit (Perkin-Elmer, 

Waltham, MA, USA). Quick centrifugation of the plates was performed to get rid of cell 

debris. Luminescence was measured with a luminometer (Infinite M200 PRO, Tecan) and 

ATP concentration determined using a standard curve. 

 

 

7.2.20 Cytosolic Calcium Determination with Fluo-4.   

SCs or co-cultures were loaded with 5 μM Fluo-4 (Molecular Probes, Invitrogen) in saline for 

10 min, then washed. After being loaded with dye, cells were moved to the stage of an 

inverted fluorescence microscope (Eclipse-Ti; Nikon Instruments) equipped with the perfect 

focus system (PFS; Nikon Instruments) and with high numerical aperture oil immersion 

objectives (60X). Calcium signals were recorded with excitation of the fluorophore performed 

at 465-495 by means of an Hg arc lamp (100 W; Nikon). Emitted fluorescence was 
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collected  at 515-555 nm. Fluorescence was measured in a selected region of interest (ROI) 

containing cell cytosol corrected for background. 

 

 

7.2.21 FRET 

SCs alone or in co-cultures, plated on glass coverslips, were transfected with 0,5 g of  the 

regulatory (pCDNA3-RIIRI-CFP) and catalytic subunit(pCDNA3-RIIRI-CFP) of cAMP-

binding protein kinase A (PKA) based sensor or with 1 μg of the FRET sensor Epac 

(Exchange protein directly activated by cAMP)-based in Opti-MEM, using 6 μl of 

Lipofectamine 2000 (Invitrogen). This is a new sensor for cAMP with an increased affinity, 

consisting of the cAMP-binding Rap-1 activating protein Epac, sandwiched between a 

suitable donor protein mTurquoise2- and an acceptor fluorescent protein cp137Venus 

(Klarenbeek et al., 2015). The construct was transfected 24 hours prior to experiments. Cells 

were monitored using an inverted fluorescence microscope (Eclipse-Ti; Nikon Instruments) 

equipped with the perfect focus system (PFS; Nikon Instruments). Excitation of the 

fluorophore was performed by means of an Hg arc lamp (100 W; Nikon) using a 435-nm filter 

(10- nm bandwidth). YFP and CFP intensities were recorded by means of a cooled CCD 

camera (C9100-13; Hamamatsu) equipped with a 515-nm dichroic mirror at 530 nm (25-nm 

bandwidth) and 470 nm (20-nm bandwidth), respectively. Signals were digitized and FRET 

was expressed as the ratio between donor and acceptor signals. YFP and CFP intensities were 

corrected for background by defining two corresponding regions of interest (ROIs) in each 

channel: one relatively, taking care that the cell selected remained within the ROI, and a 

smaller ROI located near the border of the image for background recordings. FRET ratio was 

set = 1 at the onset of the experiment. SCs were treated with ATP (25 μM) and co-cultures 

with -Ltx (0,1 nM) after 3 min of recordings, and stimulated with 25 μM forskolin at the end 

of each experiment to maximally raise the cAMP levels.  

7.2.22 Statistical analysis 

The sample size (N) of each experimental group is described in each corresponding figure 

legend, and at least with three biological replicates were performed. GraphPad Prism software 

was used for all statistical analyses. Quantitative data displayed as histograms are expressed 

as means ± SEM (represented as error bars). Results from each group were averaged and used 

to calculate descriptive statistics. Significance was calculated by Student’s t-test (unpaired, 

two-side). P- values less than 0.05 were considered significant. 
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8. RESULTS 

 

8.1 Isolation of mouse NMJs 

For transcriptomic analysis several NMJs have been collected at different time-points during 

nerve terminal degeneration/regeneration using the Laser microdissection technique (LCM), 

that allows the isolation of single cells or tissue areas from a variety of tissue samples (Fig.7). 

The microdissected samples are then available for further molecular biological procedures 

such as PCR, real-time PCR, transcriptomics, proteomics and other analytical techniques.  

Fig.7. Laser microdissection technology. A laser is coupled into a microscope and focuses onto the tissue on 

the slide. By movement of the laser by optics or the stage the focus follows a trajectory which is predefined by 

the user. This trajectory is then cut out and separated from the adjacent tissue. The laser cutting width is usually 

less than 1 µm, thus the target cells are not affected by the laser beam. The technology used in our approach 

(Carl Zeiss PALM) cuts around the sample then collects it by a "catapulting" technology. The section is 

catapulted from a slide, by a defocused U.V laser pulse which generates a photonic force, to a collection cap 

positioned directly on the cut tissue section. 

 

A fundamental step in LCM is to develop a specimen preparation technique that perfectly 

balances the dissection of specimens and the downstream analysis. The first step is the choice 

of the most suitable mice muscle. Initially we chose the soleus, since we had already defined 

its kinetic of degeneration/regeneration following -Ltx injection, both by 

electrophysiological recordings and by immunostaining. We then realized that, despite the 

huge number of slices that could be obtained by cryo-sectioning, only in few of them the 

NMJs were concentrated; therefore a time-consuming screening of the NMJ-positive slices 

was required. Indeed we moved to the Levator Auris Longus (LAL), a very thin muscle 

located behind mice ears, ideal for imaging (Angaut-Petit et al., 1987). Although very thin, 

https://en.wikipedia.org/wiki/Laser
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this muscle can be longitudinally cryo-sectioned, and the majority of the slices contain a high 

number of NMJs, allowing their easy collection by LCM. We injected α-Ltx subcutaneously 

at the level of LAL of anesthetized C57BL/6 mice which express a cytosolic GFP in SCs, that 

allows to recognize the NMJs (together with the post-fixation staining by α-bungarotoxin). To 

prevent RNA degradation, we fixed LAL muscles with a subcutaneous injection of 4% PFA 

in PBS before dissection. We also tested alternative fixatives such as acetone and methanol, 

more suitable for RNA analysis (Yan et al., 2010), but they led to GFP loss and, in some 

cases, to muscle fibre damage. After muscle fixation and dissection, a proper care needs to be 

taken to preserve tissues and to achieve optimal staining. One method of tissue preservation 

involves the muscle embedding  with paraffin wax. However this method failed to preserve 

the morphology of LAL muscles, and RNA extracted from paraffin sections resulted often 

fragmented. Hence we moved to frozen tissues. Following collection, LAL muscles were 

flash frozed in liquid nitrogen without embedding medium. Muscles were then cryo-sectioned 

(7 m) and NMJs collected by LCM. This method provides a superior morphology 

preservation and an high quality RNA recovery. 

 

 

 

 

 

 

 

 

 

 

 

http://www.jove.com/science-education/5039/histological-sample-preparation-for-light-microscopy
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8.2 Transcriptomic analysis of mouse neuromuscular junction during nerve 

degeneration and regeneration 

Nerve regeneration could be supported by intrinsic factors of the motor neuron but also by 

molecules produced by surrounding cells, i.e. skeletal muscle and/or PSCs. Only few of them 

have been identified so far. Hence we decided to perform a transcriptomic analysis of NMJ 

during nerve degeneration and regeneration to try to identify additional molecules important 

for the regenerative process. These molecules could be involved in various aspects of cell-cell 

signaling and/or cell adhesion, govern axon guidance, axon growth and/or synapse formation.  

As the first step α-Ltx was subcutaneously injected at the level of the Levator auris longus 

(LAL) muscle in transgenic mice expressing GFP in SCs. After local fixation, muscles were 

collected at different time points during degeneration/regeneration for the transcriptomic 

analysis (Fig.8). These time points were chosen on the basis of the kinetic of 

degeneration/regeneration previously determined in the same muscle (Duregotti et al., 2015)  

 

 

 

 

 

 

 

 
Fig.8. Kinetic of degeneration and regeneration of α-Ltx-poisoned NMJs of LAL muscles. A: Time points 

selected for transcriptomic analysis. B: SNAP-25 labeling, a presynaptic marker (red), was used as marker to 

monitor degeneration and regeneration of nerve terminals.  Muscles were collected after 4, 16, 24 and 48 h, and 

representative images are shown. (Scale bars: 10 μm.). 

 

Samples were frozen, cryosectioned, and fluorescent NMJs were isolated from cryoslices by 

laser microdissection, collected and pooled (40 to 50 NMJs/sample). GFP-expressing PSCs 



34 
 

and the post-synaptic staining by fluorescent -bungarotoxin allowed the identification of the 

NMJs. (Fig.9) 

 

 

 

 

 

Fig.9. Double visualization of mouse NMJs in cryosections from LAL muscles of transgenic mice. 

Fluorescent -bungarotoxin stains the postsynaptic element, while GFP-positive cells are SCs. 

Total RNA was extracted, purified, retro-transcribed, amplified and sequenced with the Ion 

Proton technology in collaboration with the Laboratory of Genoproteomics of the Fondazione 

Pisana per la Scienza. Ion Proton system uses semiconductor sequencing technology. When a 

nucleotide is incorporated into the DNA molecules by the polymerase, a proton is released. 

By detecting the change in pH, Ion Proton recognized whether the nucleotide is added or not. 

Each time the chip was flooded with one nucleotide after another, if it is not the correct 

nucleotide, no voltage will be found; if there is 2 nucleotides added, there is double voltage 

detected.  By this approach we have obtained a dataset for each time point of coding (and 

non-coding) RNAs which are significantly down- or up-regulated during the 

degeneration/regeneration process (p<0,05) (Fig.10). The full dataset analysis obtained by this 

approach will be not presented in this thesis because still unpublished.  

 

Fig.10. Coding RNAs which are significantly down- or up-regulated after transcriptomic analysis of NMJ 

during nerve degeneration and regeneration (p<0,05). A: Transcripts up and down regulated;  ctr vs 4h. B: 

Transcripts up and down regulated;  ctr vs 24h. 
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We decided to focus for first to coding RNA: among the different mRNAs that significantly 

change their abundance with time, we selected via bioinformatic analysis (Uniprot and Target 

P1 tools) those encoding for putative secreted factors, with the aim of identifying molecules 

that PSCs and/or MF produce to stimulate MAT regeneration. This analysis led to the 

identification of several hits, among which we selected the mRNA encoding for the 

chemokine CXCL12, which results up-regulated during nerve degeneration.  Previous reports 

indicate that this molecule is involved in different pathways, among them axon guidance, 

growth and branching in some central neurons, but its involvement in NMJ formation and 

regeneration was not reported before. Therefore we decided to focus our further investigations 

on this molecule beginning with the validation of the transcriptomic data. 
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8.3  Perisynaptic Schwann cells express CXCL12 during nerve degeneration  

By LCM we collect tissues deriving from MAT, MF and PSCs at the same time, and therefore 

the cellular origin of a given RNA molecule cannot be easily attributed. In addition, not all 

mRNAs are translated into proteins in a cell; therefore, the validation of the transcriptomic 

data by independent approaches is crucial. One way is to use specific antibodies, that provide 

information about the expression and localization of a given transcript product. Alpha-Ltx 

was injected in LAL muscles; 4, 24 and 96 hours later muscles were dissected and processed 

for indirect immunohistochemistry. We found CXCL12 overexpressed by PSCs 4h after α-Ltx 

injection, during the degeneration phase, confirming the transcriptomic data. No CXCL12 

was detected in PSCs at 24 and 96 hours, when regeneration is well under way (Fig. 11).  

 

 

 

 

 

 

 

 

 

 

 

Fig.11. PSCs express CXCL12. LAL muscles from transgenic mice were injected with α-Ltx, collected at 

different time points (4, 24 and 96 h), and processed for indirect immunohistochemistry. PSCs (cyan) show 

intracellular structures (white arrows) positive for CXCL12 (red) after 4h of intoxication. Presynaptic nerve 

terminal is stained with VACht (green). (Scale bars: 10 μm) 

 

Surprisingly, CXCL12 appears to localize within intracellular structures, that result 

Lysotracker-positive, speaking in favour of an acidic nature of such compartments(Fig.12). 
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Fig.12.  Ex vivo Lysotracker staining (red) of α-Ltx-treated LAL (4 h) confirms the acidic nature of 

intracellular vacuoles (Scale bar: 10 μm). 

 

These intracellular structures are reminiscent of phagosomes involved in the clearance of 

nerve debris during nerve degeneration (Duregotti et al., 2015). In order to investigate 

whether CXCL12 is expressed in phagocytic structures, we performed an immunostaininig for 

CD68, a lysosomal glycoprotein associated with phagocytic function (Ramprasad et al., 

1996), and involved in the lysosomal traffic (Holness and Simmons, 1993). After α-Ltx 

injection, PSCs of LAL NMJs do express CD68 in the same intracellular structures were the 

chemokine is localized (Fig.13). These observations suggest a possible role of such acidic 

compartments in CXCL12 secretion, similar to the one involved in IL-1 release (Piccioli and 

Rubartelli, 2013). 

 

Fig.13. The chemokine CXCL12 localizes in phagocytic structures in PSCs during nerve degeneration. 

LAL muscles from transgenic mice were injected with α-Ltx, collected at 4h and processed for indirect 

immunohistochemistry. PSCs (cyan) in intoxicated NMJs become positive for both CXCL12 (red) and the 

phagocytic marker CD68 (green), which stains intracellular vesicular structures. No CD68 signal is detected in 

control NMJs (Scale bars: 10 μm). 

 

http://www.sciencedirect.com/science/article/pii/S0887233302000280#BIB26
http://www.sciencedirect.com/science/article/pii/S0887233302000280#BIB26
http://www.sciencedirect.com/science/article/pii/S0887233302000280#BIB18
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8.4 Anti-CXCL12 antibodies delay the NMJ recovery of function  

CXCL12 knock-out mice are non viable (Nagasawa et al., 1996); to evaluate whether 

CXCL12 produced by PSCs upon nerve injury is important for functional regeneration, we 

injected a specific anti-CXCL12 neutralizing antibody intraperitoneally in mice after local 

toxin administration in the soleus muscle. By electrophysiological recordings we compared 

the kinetics of functional regeneration in muscles injected with α-Ltx pre-treated or not with 

the anti-CXCL12 antibody (Fig.14).  

 

 

 

 

 

 

 

 

 

Fig.14. Electrophysiological recordings at the NMJ. Top scheme of motor endplate is adapted from O’Hanlon 

et al. (2002) and shows the micro-electrode (on the right) inserted into the muscle fibre. This way, alterations in 

the membrane potential of the muscle fibre can be recorded. These alterations are the result of ACh molecules 

that have been released from the motor nerve terminal (spontaneously or evoked) and bound to postsynaptic 

receptors. Below, examples traces of the three signals that can be measured at the NMJ are shown: The 

membrane potential baseline is -75 mV. Successful transmission results in a muscle action potential. When a 

selective muscle sodium channel blocker is applied (μ-conotoxin), the action potential is reduced to an EPP. A 

MEPP is the result of the spontaneous release of a quantum ACh from a single vesicle of ACh. In our 

experiments we measured Evoked endplate potentials. 

 

As showed in Fig.15 in both conditions no evoked junction potentials (EJPs) were detected 48 

hours after toxin treatment, meaning that nerve degeneration took place successfully. Muscles 

pre-treated with the neutralizing antibody alone showed EJPs indistinguishable from the 

control. Three to 4 days after treatment, fibres injected with α-Ltx plus anti-CXCL12 showed 

EJPs with significantly smaller amplitudes than those injected only with the toxin, indicating 

a slowdown of the regeneration process. 
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Fig.15. CXCL12 is crucial for nerve regeneration. Electrophysiological recordings of EJPs at soleus NMJs 

treated with α-Ltx alone (black bars) or with α-Ltx plus anti-CXCL12 (white bars). At 72 and 96 h EJP 

amplitudes of fibres exposed to the toxin plus anti-CXCL12 are significantly smaller than those exposed to the 

sole toxin. Data are mean ± s.e.m. from four independent experiments. > 15 fibers analyzed per muscle. *P < 

0.05 (student’s t-test), ns: not significant. 

After EJPs recordings, soleus muscles were processed for immunohistochemistry: to monitor 

the structural degeneration of nerve terminals we used an antibody specific for the presynaptic 

marker vesicular acetylcholine transporter (VAChT). At 48 hours VAChT completely 

disappears from poisoned NMJs, meaning that nerve terminal degeneration and debris 

clearing have occurred successfully in both conditions. However, at 96 hours MAT 

regeneration appeared delayed in muscle injected with toxin plus anti-CXCL12, with VAChT 

signal still missing in the vast majority of the NMJs analysed (Fig.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16. Regeneration of poisoned presynaptic nerve terminals is delayed by neutralization of CXCL12. 

VAChT labeling (green) was used as read-out to monitor degeneration and regeneration of nerve terminals. 

Soleus muscles were s.c. injected with α-Ltx or i.p. injection of anti-CXCL12 was performed prior to toxin 

administration. Muscles were collected after 96 h. Representative images at low (A) and high (B) magnification 

are shown (Scale bars: 10 μm). 



40 
 

Taken together, these data strongly support the idea that CXCL12 is an important factor 

released by PSCs, with a crucial role in nerve terminal regeneration.  

 

8.5 CXCL12 promotes axon growth of spinal motor neurons 

Primary MNs were exposed to different concentrations of recombinant CXCL12, and axon 

length monitored after 24h. We chose a low density motor neuron culture system to easily 

compare the effects of CXCL12 on axon growth. Fig.17 A shows that CXCL12 has a 

remarkable ability to promote axon elongation. This effect has been quantified and is shown 

in Fig. 17 B. A concentration of 500 ng/ml was effective. 

 

Fig 17. CXCL12 stimulates motor axon growth. MNs were plated and exposed to recombinant CXCL12. 

After 24h MNs were fixed and processed for immunofluorescence with 3-tubulin (green). Axon length was 

measured with NeuronJ. A: 500 ng/ml of CXCL12 is effective in promoting motor axon growth (Scale bars: 10 

μm). B: quantitative estimation of the effect. Data are mean ± s.e.m. from three independent experiments. *P < 

0.05 (student’s t-test), ns: not significant. 

 

The same approach was performed in microfluidic chambers consisting of two compartments, 

a somatic one where neurons are plated, and a distal one connected by parallel micrometer 

size grooves along which axons can grow (Fig.18). 
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Fig.18. Schematic representation of a microfluidic chamber. Neurons are plated in the left compartment (cell 

body compartment), and extend their axons through microgrooves into the right compartment (axonal 

compartment) (Hengst et al., 2009). 

 

 

Spinal MNs were plated in the somatic compartment whilst recombinant CXCL12 was added 

in the distal one; 5 days after plating axon length was measured. By this approach we 

confirmed the role of the chemokine in promoting axon growth (Fig.19). 

 

Fig.19. CXCL12 stimulates motor axon growth. MNs were cultured for 5 days in microfluidic chambers. Cells 

were plated in the somatic compartment whilst recombinant CXCL12 was added in the distal one. Axon length 

was measured with NeuronJ. After 5 days MNs were fixed and processed for immunofluorescence with 3-

tubulin (green) A: CXCL12 promotes the motor axon growth into the grooves (Scale bars: 10 μm). B, C: 

quantitative estimation of the effect. Data are mean ± s.e.m. from three independent experiments *P < 0.05 

(student’s t-test). 
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8.6 The CXCL12-CXCR4 axis controls axonal growth  

CXCL12 signals via the CXCR4 receptor (Nagasawa et al., 2014), which is expressed in 

different cell types including neurons (McGrath et al., 1999; Opatz et al., 2009). We found 

that this receptor concentrates on the growing tip of MN axons starting from 1 day of culture 

(Fig.20 A). To demonstrate that the increase in axon length is induced by the CXCL12-

CXCR4 axis we treated MNs with CXCL12 alone in the presence or absence of AMD3100, a 

well known CXCR4 antagonist. Our preliminary results show that in the presence of 

AMD3100 mixed with CXCL12, the axonal length  was similar to values in the control 

(Fig.20 B, C), suggesting that the effects of CXCL12 on axon growth  are mediated through 

binding to CXCR4. Further experiments are required. 

 
Fig.20. AMD3100 reduces the effect of CXCL12 on axonal growth. A: MNs were plated and after 24h MNs 

were fixed and processed for immunofluorescence with CXCR4 (green). White arrows indicate CXCR4 receptor 

concentrates on the growing tip of MN axons and exposed to recombinant CXCL12 (Scale bars: 10 μm). B: 

MNs were plated and exposed to recombinant CXCL12 in presence or not of AMD3100. After 24h MNs were 

fixed and processed for immunofluorescence with 3-tubulin (green). Axon length was measured with NeuronJ 

(Scale bars: 50 μm). C: quantitative estimation of the effect. Data are mean from two independent experiments. 
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8.7 Degenerating neurons release ATP 

 

Adenosine triphosphate (ATP) is not only an intracellular energy source but also as an 

extracellular messenger. ATP is an important signaling molecule in the PNS, where it plays a 

crucial role in chemical communication between several cell types. A first evidence indicating 

the ability of neurons to communicate with glial cells through ATP was obtained at the frog 

NMJ (Robitaille, 1995; Rochon et al., 2001). At this synapse, the pre- and post- synaptic 

compartments are covered by PSCs. During synaptic activity ATP, which is co-released with 

Ach from nerve endings, evokes calcium responses in PSCs by activating P2 receptors 

(Robitaille, 1995), which enable these cells to detect ATP escaping the synaptic cleft. 

Through ATP and Ach sensing, PSCs are able to detect and monitor synaptic activity. We 

wondered whether PSCs could be activated by ATP released upon NMJ injury, and which 

downstream signalling pathways become activated in these cells. 

To address this question, we performed experiments on primary cultured CGNs and spinal 

MNs, well-established models to study the processes of intoxication by α-Ltx in-vitro 

(Tedesco, Rigoni et al., 2009; Duregotti et al., 2015). To quantify extracellular ATP released 

from neuronal culture after intoxication, we used the luminescence ATPLite assay system 

which is based on the production of light caused by the reaction of ATP with luciferase and 

D-luciferin. CGNs were intoxicated with α-Ltx, the supernatant collected and ATP measured. 

We found that by 10 minutes intoxication there is an increasing release of ATP (Fig.21). After 

20 min the extracellular level of ATP decreases probably due to ATP hydrolysis by 

ectonucleotidases. 

Fig.21. ATP is released following MAT injury.  ATP in cell culture supernatant from control and neurons 

treated with the toxin was quantified by a luciferase–luciferin assay. Intoxication by α-Ltx triggers ATP release. 

A: CGNs, B: MNs. *P < 0.05; **P < 0.01; n = 5. 
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The LDH and calcein assays on neuronal supernatant were performed to exclude a loss of 

membrane integrity (Fig. 22), supporting the idea of an active mechanism for ATP release by 

injured neurons. 

 

Fig.22. ATP is  released from intact membranes. A: LDH enzymatic activity was determined in the 

supernatants of neurons exposed to α-Ltx. LDH release is an index of loss of membrane integrity. Data represent 

the mean of three independent experiments. B: Membrane integrity was also assessed by calcein-AM retention in 

CGNs treated with α-Ltx. Calcein staining is lost after saponin-induced membrane permeabilization (Scale bar: 

10 μm). 

 

 

8.8 Neuronal ATP triggers calcium waves in Schwann cells co-cultured with 

degenerating neurons 

At NMJ PSCs respond to neuronal ATP, that is co-released with Ach during 

neurotransmission, by increasing their cytoplasmic calcium concentration, and ATP triggers 

calcium increase in different cell types (Nobile et al., 2003; Cheng et al., 2011), with 

consequent activation of downstream signaling pathways. ATP acts through an extended 

family of nucleotide receptors that can be divided in two different subfamilies, the ionotropic 

P2X and the metabotropic P2Y receptors. Since SCs express some of them, we wondered 

whether ATP might play a role in the crosstalk between degenerating neurons and SCs. 

Primary SCs loaded with the calcium indicator Fluo-4 AM respond to micromolar ATP 

concentrations by increasing their intracellular calcium levels, as reported by live imaging 

experiments (Fig.23) 
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Fig.23. ATP addition triggers calcium increase in Schwann cells. Primary SCs were loaded with Fluo4 AM. 

ATP (3µM) was added after 30 sec  and intracellular calcium levels measured. B: Calcium increase was detected 

in SCs (black dots) with a peak around 4 minutes. Data are representative of eleven independent experiments. A: 

in controls no calcium increase was detected in SCs (n=3).  

We next loaded CGNs-SCs co-cultures with Fluo-4 AM, and then α-Ltx was added (at t=3 

min). As expected from previous results, calcium started increasing first in neurites, in 

correspondence to bulges, hallmarks of intoxication (Rigoni et al., 2004, 2007); soon after 

calcium spikes were detected in the cytoplasm of SCs (Fig.24 B). In control experiments no 

calcium increase was detectable either in neurons nor in SCs (Fig.24 A). These experiments 

suggest that molecules released by degenerating neurons trigger a calcium response in nearby 

SCs. 

Fig.24. Intoxication of neurons-SCs co-cultures triggers calcium waves in Schwann cells. Co-cultures of 

primary SCs and neurons were loaded with Fluo4 AM, then exposed to α-Ltx, and intracellular calcium levels 

measured. A: In controls no calcium increase was detected either in neurons (colored lines) nor in SCs (black 

lines). B: In intoxicated co-cultures after a progressive calcium increase in neurons (colored lines), calcium 

spikes were detected in SCs (black lines). 
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Pre-incubation of co-cultures with apyrase, which hydrolases ATP in AMP and inorganic 

phosphate, strongly reduces calcium transients in SCs, leaving calcium levels in neurons 

unaffected (Fig.25). Our results indicate that ATP released by degenerating neurons is one of 

the signals responsible for Ca
2+

 increase in nearby SCs.   

 

 

 

 

 

 

 

Fig.25. Calcium spikes in SCs are reduced by apyrase. Co-cultures of SCs and neurons loaded with Fluo4 

AM were incubated with apyrase, then exposed to α-Ltx and calcium measured. The addition of the toxin was 

performed after 3 min. After the initial increase of calcium in neurons (colored lines), no calcium spikes were 

detected in SCs (black lines). 
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8.9 Neuronal ATP induces cAMP increase in Schwann cells  

Purinergic receptors convert the extracellular input ATP into intracellular signalling via the 

activation of various intracellular pathways, including cAMP signaling (Knott et al., 2014) 

(Fig.26). We tested this possibility in the present case using FRET to image cAMP levels in 

isolated SCs exposed to extracellular ATP, and in SCs co-cultured with neurons before and 

after toxin exposure. 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 
Fig.26. Role of cAMP in peripheral nerve injury. Following PNS injury, cyclic AMP is involved in a variety 

of positive (green line), inhibitory (red line), and as yet to be identified (dashed line) signaling mechanisms 

within the injured neurons and their accompanying glia that culminates in PNS regeneration (Knott et al., 2014). 

 

 

In a first set of experiments SCs were transfected using Lipofectamine 2000 with a 

fluorescent sensor based on the cAMP-binding protein kinase A (PKA). This probe was 

generated by fusing the regulatory and catalytic subunit of PKA to the cyan (CFP) and the 

yellow (YFP) variants of the green fluorescent protein, respectively. In quiescent cells, the 

CFP and YFP subunits are associated in a complex and FRET occurs among them, but a rise 

in cAMP induces their separation with loss of FRET. Exposure of primary SCs to 25 M ATP 

led to a significant cAMP increase as show in Fig.27B. At the end of experiment SCs were 

stimulated with forskolin to raise cAMP to maximal levels.  
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Fig.27. FRET sensor PKA-based. B: ATP was added after 30 sec, forskolin after 10 min. FRET was expressed 

as the ratio (F/F0) between donor and acceptor signals (YFP and CFP intensities) corrected for background (F0). 

A: in controls no cAMP increase was detected in SCs.  

 

 

Co-cultures were then transfected with the FRET sensor (SCs only expressed the probe) and 

cAMP levels measured after α-Ltx exposure. We observed a very small and progressive rise in 

cAMP in SCs after few minutes from toxin addition (Fig.28).  

 

Fig.28. Intoxication of co-cultures induces a small increase in cAMP in Schwann cells.  Co-cultures were 

transfected with the FRET sensor and then exposed to α-Ltx (B, t = 3 min). Forskolin was added after 35 min as 

positive control. FRET (F/F0) was expressed as the ratio between donor and acceptor signals (YFP and CFP 

intensities) corrected for background (F0). A: in controls no cAMP increase was detected in SCs.  
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To exclude that the very low cAMP increase was due to the low sensitivity of the sensor 

PKA-based, we switched to the improved FRET sensor Epac (Exchange protein directly 

activated by cAMP)-based, kindly provided by Prof. Jalink (Klarenbeek et al.,) which has an 

increased affinity for cAMP. Hence co-cultures were transfected with new probe and then 

exposed to α-Ltx. Cyclic AMP starts increasing significantly in SC cytoplasm after 15-20 

minutes from toxin addition (Fig.29B) No cAMP increase was observed in controls.  

 

Fig.29. Intoxication of co-cultures induces cAMP increase in Schwann cells.  Co-cultures of SCs and neurons 

were transfected with the FRET sensor and then exposed to α-Ltx (B, t = 3 min). Forskolin was added after 35 

min as positive control. FRET (F/F0) was expressed as the ratio between donor and acceptor signals (YFP and 

CFP intensities) corrected for background (F0). A: in controls no cAMP increase was detected in SCs.  

These results suggest that molecules released by degenerating neurons activate adenylate 

cyclase within SCs. To address whether ATP is among these molecules, co-cultures were pre-

incubated with apyrase and then exposed to α-Ltx: both a reduction and a delay in cAMP rise 

were observed in SCs (Fig.30). 

.  

 

 

 

 

 

 

Fig.30. Neuronal ATP contributes to cAMP increase in SCs. Co-cultures transfected for FRET measurements 

were pre-treated with apyrase, and then exposed to α-Ltx (0,1nM). Forskolin was added after 35 min as positive 

control. FRET (F/F0) was expressed as the ratio between donor and acceptor signals (YFP and CFP intensities) 

corrected for background (F0). 
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Our results demonstrate that ATP released by degenerating neurons indeed contributes to 

cAMP increase in SCs. 

 

8.10 Neuronal ATP induces ERK 1/2 and CREB phosphorylation in 

Schwann cells co-cultured with degenerating neurons 

 

The MAPK signaling pathway plays a central role in controlling SCs plasticity and peripheral 

nerve regeneration via the activation of ERK1/2 and JNK (Napoli et al., 2012; Arthur-Farraj 

et al., 2012). We have recently reported that mitochondrial alarmins released by degenerating 

neurons activate SCs via the ERK 1/2 pathway, among which hydrogen peroxide appears to 

be the stronger inducer (Duregotti et al., 2015). We therefore wondered whether also ATP 

contributes to MAP kinase activation. Isolate SCs respond to ATP by phosphorylating ERK 

1/2 very rapidly (Fig.31A, B). ERK 1/2 phosphorylation in SCs in co-cultures exposed to -

Ltx is reduced in the presence of apyrase (Fig. 31C, D ), thus demonstrating the involvement 

of ATP in the engagement of the MAP kinase signaling pathway.  
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Fig.32. ATP released by intoxicated neurons activates ERK in Schwann cells.  A,B: Time-course of ERK 

phosphorylation induced in primary SCs by ATP (100 μM) (Western blot and quantification). C,D: Apyrase 

pretreatment of cocultures (1,5 U) significantly reduced ERK phosphorylation induced by α-Ltx (0,1 nM) 

(Western blot and quantification). No ERK phosphorylation is induced in neurons by the toxins. *P < 0.05; ns 

not significant; n = 3. 

Activation of ERK 1/2 and cAMP pathways could modulate CREB-mediated transcription: 

indeed CREB becomes very rapidly phosphorylated in SCs exposed to ATP (Fig.32A,B), and 

in SCs in co-cultures upon -Ltx treatment. The extent of phosphorylation is reduced by the 

presence of apyrase (Fig.32C,D). 

Fig.32. ATP released by intoxicated neurons activates CREB in Schwann cells.  A,B: Time-course of CREB 

phosphorylation induced in primary SCs by ATP (100 μM) (Western blot and quantification). C,D: Apyrase 

pretreatment of cocultures (1,5 U) significantly reduced CREB phosphorylation induced by α-Ltx (0,1nM) 

(Western blot and quantification). No CREB phosphorylation is induced in neurons by the toxins. *P < 0.05; ns 

not significant; n = 4. 
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DISCUSSION 

The NMJ is a specialized tripartite synapse formed by MAT, MF, and PSCs. The NMJ has 

retained throughout vertebrate evolution the capacity to regenerate after nerve injury due to 

traumas and to the attack of many pathogens including neurotoxins and autoimmune 

antibodies. Hence, the NMJ is a privileged point of study of the molecular events of inter- and 

intra-cellular signaling that occur during the degeneration of MAT, due to mechanical injury 

or neurodegenerative diseases, and, more importantly, of those governing the ensuing 

regeneration.  

The data presented in this thesis were obtained with a model of mouse NMJ degeneration 

induced by a very specific toxic agent: the presynaptic pore-forming toxin α-Ltx. This model 

is characterized by a specific biochemical lesion of MAT which induces a rapid Ca
2+

 overload 

within the nerve terminals. This results in MAT complete degeneration, with consequent 

activation of the PSCs triggered by at least a several mitochondrial alarm molecules 

(Duregotti et al., 2015). This model is characterized by a high reproducibility and a well 

defined and rapid time-course of recovery; indeed the entire degeneration and regeneration 

process induced by -Ltx is completed within about 5 days. In addition, there is no 

involvement of the innate immune reaction which would blur and complicate the 

transcriptomic analysis, as it is the case with the classical cut & crush model.  

To identify crucial factors released by PSCs and MF to induce nerve regrowth, we performed 

a transcriptomic analysis of the NMJ at different time points after injection of -Ltx. This 

choice has been very challenging, as a transcriptomic analysis of the NMJ was never reported 

before.  

We succeeded in collecting a number of NMJs suitable for RNA isolation and sequencing of 

both coding and non–coding RNAs. Among the different mRNAs whose levels increase 

during degeneration and then progressively return to basal, we selected that encoding for 

chemokine CXCL12. CXCL12 (stromal cell-derived factor 1/SDF1) is a member of the α-

chemokine subfamily; it was originally identified as a stimulatory factor for B-lymphocyte 

precursor cells (Nagasawa et al., 1994) and, together with its cognate receptor, CXCR4, 

represents the best-known chemokine ligand/receptor pair. CXCL12 plays an important role 

during development of the nervous system, where it is necessary for the survival and correct 

pathfinding of neurons (Arakawa et al., 2003; Pujol et al., 2005). CXCL12 has been found to 
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facilitate optic nerve regeneration (Heskamp et al., 2013), but its involvement in NMJ 

recovery of function has been never exploited so far.   

By immunostaining we found CXCL12 expressed by PSCs 4h after α-Ltx injection 

(degeneration  phase), while its levels are very low at 24 and 96 hours, when substantial 

regeneration is attained. Moreover, the protein localizes within intracellular structures 

Lysotracker- and CD-68-positive, pointing out a possible role of acidic compartments in its 

secretion, similarly to the secretion route employed by IL-1beta. We are currently 

investigating the secretion pathway employed by CXCL12. The importance of CXCL12 in 

nerve recovery is highlighted by the data coming from electrophysiological recordings on 

soleus muscles injected with the toxin in the presence of a neutralizing antibody against the 

chemokine. Clearly, there is a significant delay in recovery of functionality of those NMJs in 

which CXCL12 has been inactivated by the antibody. Immunofluorescence analysis on LAL 

muscles treated as described above show a delay in the reappearance of VAChT staining, a 

presynaptic marker, in samples exposed to α-Ltx plus anti-CXCL12, compared to muscles 

injected with α-Ltx alone, thus confirming the electrophysiological results. As expected the 

antibody did not abolish completely the regeneration process, as several factors are thought to 

drive NMJ recovery. Moreover, we demonstrated that CXCL12 stimulates motor axon 

growth. CXCL12 acts via the CXC4R receptor which appears concentrated at the tip of the 

growing axon. In preliminary experiments performed in vitro the CXCR4 antagonist 

AMD3100 appears to slow down the effects of the chemokine on axon elongation.  

In summary, we have collected data about the transcriptional status of the mouse NMJ during 

degeneration and regeneration, in terms of both coding and non-coding RNAs. We have 

provided evidence for an important role of the chemokine CXCL12 in NMJ regeneration after 

an acute damage of MAT. This result might have translational applications for example for 

the formulation of a mixture of growth factors aimed at improving the recovery of NMJ 

functionality that is impaired in many human neurodegenerative conditions. 

By using α-Ltx as experimental tool, we have also provided evidence that ATP is a signaling 

molecule involved in the cross-talk between degenerating neurons and SCs. We detected an 

early release of ATP by cultured primary neurons upon intoxication with α-Ltx, with no loss 

of plasma membrane integrity. It is generally thought that the main source of ATP acting on 

purinoreceptors are dying cells, but the present data indicate that this is not the case at least in 

the present mouse model of peripheral neurodegeneration.  
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ATP signals through purinergic receptors, whose activation elicits different signaling 

pathways in target cells including Ca
2+

, cAMP, inositol-1,4,5-triphosphate, phospholipase C 

and many others. Since SCs express a range of purinergic receptors (Fields and Burnstock, 

2006), we investigated which downstream signaling pathways could be activated in SCs by 

ATP released by degenerating neurons. Exposure of primary SCs to ATP leads to calcium 

spikes and cAMP increase. Intoxication of co-cultures with α-Ltx triggers cytosolic Ca
2+

 

waves and cAMP rise in SCs. Both effects are reduced by preincubation with apyrase, an 

ATP-degrading enzyme, indicating that neuronal ATP diffuses to reach nearby SCs, 

contributing to Ca
2+

 and cAMP response. This supports a role for ATP as alarm signal 

released following PNS injury, able to activate different signaling pathways in SCs, functional 

to nerve regeneration. Indeed it has been reported that upon neuronal damage SCs undergo a 

series of cellular changes including dedifferentiation and proliferation, which rely on cAMP 

signaling. Moreover, given that cAMP has been implicated as an important second messenger 

regulating phagocytosis (Pryzwansky et al., 1998), it is likely that this signaling cascade could 

be important also for PSCs, that display macrophagic-like properties during nerve 

regeneration (Son et al., 1996; Duregotti et al., 2015).  

Even the MAPK signaling pathway plays a central role in controlling SC plasticity and 

peripheral nerve regeneration, and we have recently reported that a major trigger of ERK 1/2 

phosphorylation in SCs is hydrogen peroxide, that is produced inside disfunctional 

mitochondria during MAT degeneration (Duregotti et al., 2015). Here we found that also ATP 

contributes to ERK 1/2 activation, since intoxicated co-cultures pretreated with apyrase 

display lower phospho-ERK levels. Both MAPK and PKA engagement can promote CREB 

transcriptional activity. CREB activates the transcription of target genes in response to a vast 

array of stimuli including neurotransmitters, hormones, growth factors, synaptic activity, 

stressors, and inflammatory cytokines (Shaywitz et al., 1999). Indeed we found CREB 

phosphorylated in the nuclei of isolated SCs exposed to ATP and in our co-culture system:  

phospho-CREB is detectable at early time points during intoxication, and ATP hydrolysis 

lowers its levels.  

These results highlight the role of ATP as signaling molecules able to activate, in an in vitro 

model of neurodegeneration, a series of intracellullar signaling pathways in SCs including 

Ca
2+

, adenylate cyclase, ERK 1/2 and CREB, that are of fundamental importance for the 

recovery of nerve function.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Shaywitz%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=10872467
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At the NMJ PSCs and MAT are in close contact: it is likely that in vivo ATP released by 

degenerating axon terminals can reach high local concentrations and activate several 

pathways in PSCs.  

In conclusion the present study has contributed to define the intercellular cross-talk that takes 

plays at the NMJ during the poisoning by a spider toxin, that could be shared by different 

forms of neurodegeneration of the presynaptic nerve terminal.   
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An acute and highly reproducible motor axon terminal degeneration
followed by complete regeneration is induced by some animal
presynaptic neurotoxins, representing an appropriate and controlled
system to dissect the molecular mechanisms underlying degeneration
and regeneration of peripheral nerve terminals. We have previously
shown that nerve terminals exposed to spider or snake presynaptic
neurotoxins degenerate as a result of calcium overload and mito-
chondrial failure. Here we show that toxin-treated primary neurons
release signaling molecules derived from mitochondria: hydrogen
peroxide, mitochondrial DNA, and cytochrome c. These molecules
activate isolated primary Schwann cells, Schwann cells cocultured
with neurons and at neuromuscular junction in vivo through the
MAPK pathway.We propose that this inter- and intracellular signaling
is involved in triggering the regeneration of peripheral nerve
terminals affected by other forms of neurodegenerative diseases.

motor axon degeneration | presynaptic neurotoxins | mitochondrial
alarmins | Schwann cells

The venoms of the black widow spider Latrodectus mactans,
the Australian taipan snake Oxyuranus scutellatus scutellatus,

and the Taiwan krait Bungarus multinctus cause the paralysis of
peripheral skeletal and autonomic nerve terminals in enveno-
mated subjects. Such paralysis is completely reversible, and
within a month or so, patients, supported by mechanical venti-
lation, recover completely (1–3). Paralysis in mice/rodents has
a shorter duration, and again recovery is complete (4, 5). Major
presynaptic toxins of these venoms are α-latrotoxin (α-Ltx),
taipoxin (Tpx), and β-bungarotoxin (β-Btx), respectively (6, 7).
α-Ltx induces a very rapid nerve terminal paralysis by forming
transmembrane ion channels that cause a massive Ca2+ entry,
with exocytosis of synaptic vesicles and mitochondrial damage
(7–11). This is followed by Ca2+-induced degeneration of motor
axon terminals, which is remarkably limited to the unmyelinated
endplate. Complete regeneration is achieved in mice within
8–10 d (4). Tpx and β-Btx are representative of a large family
of presynaptic snake neurotoxins endowed with phospholipase
A2 activity (SPANs), which are important, although neglected,
human pathogens (12–15). We have contributed to the defini-
tion of their mechanism of action, which involves generation of
lysophospholipids and fatty acids on the external layer of the
plasma membrane (16, 17). The mixture of these lipid products
favors exocytosis of ready-to-release synaptic vesicles and
mediates the rise of cytosolic Ca2+, presumably via transient lipid
ion channels (16, 18). In turn, this Ca2+ influx causes a massive
release of synaptic vesicles and mitochondrial damage, with
ensuing complete degeneration of axon terminals (5, 18–20).
Similar to α-Ltx, SPANs-induced peripheral paralysis is followed
by a complete recovery: regeneration and functional reinnervation
are almost fully restored in rats by 5 d (20). The similar outcome
and time-course of the paralysis induced by the two types of
presynaptic neurotoxins suggest that the common property of
inducing Ca2+ entry into the nerve terminals is the main cause

of nerve terminal degeneration (21). Indeed, these neurotoxins
cause activation of the calcium-activated calpains that contribute to
cytoskeleton fragmentation (22).
Although clearly documented (4, 5, 20), the regeneration of

the motor axon terminals after presynaptic neurotoxins injection
is poorly known in its cellular and molecular aspects. Available
evidence indicates that, in general, regeneration of mechan-
ically damaged motor neuron terminals relies on all three cel-
lular components of the neuromuscular junction (NMJ): the
neuron, the perisynaptic Schwann cells (PSCs), and the muscle
cells (23, 24). The regeneration steps that take place on animal
neurotoxin poisoning are likely to be similar to those after the
cut or crush of nerves, as a closely similar cascade of toxic events
occurs in both conditions (i.e., calcium overload, mitochondrial
impairment, and cytoskeleton degradation). Similar neurodegener-
ative events are also shared by traumatized patients. However, the
model system used here provides the advantage of being much
more controlled and more reproducible. In addition, it does not
involve the death of many cell types, as it follows a well-char-
acterized biochemical lesion of the end plate only (7, 8, 10–12,
16, 18). Therefore, the mouse NMJ treated with α-Ltx, Tpx, or
β-Btx represents a relevant model of acute motor axon terminal
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The neuromuscular junction is the site of transmission of the
nerve impulse to the muscle. This finely tuned synapse relies on
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nerve degeneration, we have identified several mitochondrial
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municates with nearby cells, activating signaling pathways in
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degeneration and regeneration, which is likely to provide in-
formation useful to the understanding of the pathogenesis not
only of envenomation but also, more in general, of other human
pathological syndromes.
Cell death and injury often lead to the release or exposure of

intracellular molecules called damage-associated molecular patterns
(DAMPs) or alarmins. Recently, mitochondria have emerged as
major sources of DAMPs (25). Mitochondria are abundant sub-
cellular components of the NMJ that have been recently shown
to release mitochondrial DNA (mtDNA) and cytochrome c (Cyt c)
after trauma or snake myotoxin-induced muscle damage, thus
contributing to the systemic or local inflammatory responses
associated with such conditions (26, 27). In this study, we tested
whether α-Ltx and SPANs induce the release of mitochondrial
signaling molecules from primary neuronal cultures and found
that, in addition to mtDNA and Cyt c, hydrogen peroxide (H2O2)
is released. First candidate targets of these mitochondrial media-
tors released by damaged neurons are nonmyelinating PSCs,
which are intimately associated with the end plate. They play an
active role in the formation, function, maintenance, and repair of
the NMJ (28–33). PSC activation parallels nerve degeneration
and contributes to neuronal regeneration by phagocytosis of

cellular debris and by extension of processes that guide rein-
nervation (34, 35). We therefore investigated whether mito-
chondrial DAMPs released by injured neurons were able to
activate SCs, and through which downstream pathway. Using
isolated primary cells, neuron-Schwann cell cocultures, and
the NMJ in vivo, we found that PSCs are activated by mito-
chondrial alarmins and that the MAPK signaling pathway is
involved in this process.

Results
Hydrogen Peroxide Is Produced by Neurons Exposed to Spider or Snake
Presynaptic Neurotoxins.Given that mitochondria of stressed cells
produce superoxide anion, which is rapidly converted into H2O2,
and that in neurons exposed to the neurotoxins, mitochondria
functionality is impaired, we asked whether intoxication of neu-
rons by α-Ltx or SPANs leads to H2O2 production, an ideal can-
didate as intercellular signaling molecule (36–38). We therefore
loaded rat cerebellar granular neurons (CGNs) with specific H2O2
probes with different cellular localization and monitored the
samples for up to an hour. MitoPY1 is a bifunctional molecule
that combines a chemoselective boronate-based switch and a
mitochondrial-targeting phosphonium moiety for the detection

Fig. 1. Live-imaging of neuronal hydrogen peroxide production. Rat CGNs were loaded with the H2O2-specific probes PF6-AM (A) or MitoPY1 (B), washed,
and then exposed to Tpx 6 nM or α-Ltx 0.1 nM for 50 min. Changes in fluorescence resulting from H2O2 production were monitored with time and expressed
as a percentage of the fluorescence value at t = 0 (Right). ***P < 0.001. Arrows in bright-field images and in the green channel point to neuronal bulges.
(Scale bars: 10 μm.)
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of H2O2 localized to mitochondria (39). PF6-AM takes advantage
of multiple masked carboxylates to increase cellular retention, and
hence sensitivity to low levels of peroxide. In its ester-protected
form, PF6-AM can readily enter cells. Once inside cells, the
protecting groups are rapidly cleaved by intracellular esterases to
produce their anionic carboxylate forms, which are effectively
trapped within cells (40).
After exposure to α-Ltx or Tpx, H2O2 levels increased with

time, markedly at the level of neurite enlargements (so-called
bulges), which are a hallmark of intoxication (16, 41), as shown
in Fig. 1. Bulges are sites of calcium overload and accumulation
of depolarized mitochondria (18), and the MitoPY1 signal indicates
that these mitochondria produce H2O2. Quantification of the sig-
nals indicates a more pronounced effect of α-Ltx with respect to
Tpx, in agreement with the fact that the pore formed by the former
neurotoxin mediates a larger Ca2+ entry than Tpx (21). Similar
results were obtained following intoxication of rat spinal cord motor
neurons (MNs; Fig. S1). That mitochondria are the major source
of H2O2 is reinforced by the finding that toxins failed to induce
membrane translocation of cytoplasmic p47phox, a regulatory
component of the NADPH oxidase complex, which excludes
a role of the NADPH oxidase system (Fig. S2).

Hydrogen Peroxide Released by Degenerating Nerve Terminals Activates
Schwann Cells and Stimulates Regeneration. Growing evidence indi-
cates that H2O2 is a largely used intercellular signaling molecule
regulating kinase-driven pathways (37, 38, 42): it triggers ERK
phosphorylation in different cell types (43), with consequent
activation of downstream gene transcription, and ERK signaling
was recently shown to play a central role in the orchestration of
axon repair by SCs (44, 45).
In preliminary experiments, we checked whether primary SCs

isolated from rat sciatic nerves were responsive to H2O2 by an-
alyzing ERK phosphorylation by Western blotting and immu-
nofluorescence. Exposure of primary SCs to H2O2 led to ERK
phosphorylation and translocation of p-ERK into the nucleus
(Fig. S3 A and B). Cocultures of primary spinal cord motor
neurons and sciatic nerve-derived SCs were then exposed to
α-Ltx or Tpx: bulges appeared within few minutes along neuro-
nal processes, and p-ERK was detected in the cytoplasm and
nucleus of SCs (Fig. 2A). Phospho-ERK-positive cells were
also positive for S-100, a specific SC marker (Fig. S3C). In
cocultures, the score of S-100-positive cells that become p-ERK-
positive is 59% on intoxication with β-Btx (n = 81) and 78% in
the case of α-Ltx (n = 69). These percentages were obtained by
counting many S-100-positive cells randomly distributed in dif-
ferent fields, but the value is actually much higher if one con-
siders only clustered SCs in close proximity of intoxicated
neurites; this observation further supports the conclusion that
molecules released by injured neurons reach nearby SCs, thus
activating them.
ERK phosphorylation was reduced in cocultures preincubated

with catalase, which converts H2O2 into water and O2, indicating
that H2O2 produced inside neurons diffuses to reach nearby SCs,
contributing to their ERK activation (Fig. 2B). Residual p-ERK
signal might be a result of mediators other than H2O2 released
on neuronal injury. Toxins failed to induce a direct ERK phos-
phorylation either in isolated SCs (Fig. S3D) or in isolated pri-
mary neurons (Fig. 2B).
Next we tested whether the ERK pathway is activated also

within PSCs at the NMJs of intoxicated mice. Sublethal doses of
the neurotoxins were s.c. injected in transgenic mice expressing
a cytoplasmic GFP specifically in SCs under the plp promoter
(46, 47), in proximity to the levator auris longus (LAL) (48),
a thin muscle ideal for imaging. Twenty-four hours later, muscles
were collected and processed for indirect immunohistochemistry.
A clear p-ERK signal was detected at the level of PSCs in treated
NMJs, thus extending in vivo the results obtained in cocultures

Fig. 2. Hydrogen peroxide released after nerve terminal degeneration
activates ERK in Schwann cells and stimulates regeneration. Phospho-ERK
(green) was detected in primary SCs cocultured with spinal cord MNs on
exposure to α-Ltx (0.1 nM) or SPANs (6 nM) for 50 min by immunofluores-
cence (A), as well as by Western blots of total lysates (B). Arrows in A point to
neuronal bulges stained with an antibody against neurofilaments (NF; red).
Nuclei are stained with Hoechst (blue). (Scale bars: 10 μm.) (B) Catalase
pretreatment of cocultures (1,000 U) significantly reduced ERK phosphory-
lation induced by the toxins (Western blot and quantification). No ERK
phosphorylation is induced in neurons by the toxins. *P < 0.05; **P < 0.01;
n = 4. (C) α-Ltx or β-Btx s.c. injections in LAL muscle of transgenic mice trigger
ERK phosphorylation (p-ERK; red) in PSCs (green). Muscles were collected
24 h after injection. (Scale bars: 10 μm.) (D) Electrophysiological recordings of
EJPs at soleus NMJs treated with α-Ltx alone (5 μg/kg; black bars) or with
α-Ltx plus catalase (750 U; white bars). At 72 h EJP amplitudes of fibers ex-
posed to toxin plus catalase are significantly smaller than those exposed to
the sole toxin (**P < 0.01).
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(Fig. 2C). The importance of ERK pathway for SCs activation
and regeneration was addressed by a pharmacologic approach:
SCs-MNs cocultures exposed to the neurotoxins show a de-
creased ERK phosphorylation in the presence of the MEK 1
inhibitor PD98059 (Fig. S4 A and B); moreover, soleus muscles
of mice pretreated with PD98059 and then locally injected with
α-Ltx show a delayed recovery from paralysis with respect to
mice injected with toxin only (Fig. S4C).
PSCs respond to neurotoxin-induced nerve degeneration by

forming long sproutings and bridges between junctions of different
fibers by the first day of injection (Fig. S5). This response has been
long known to follow nerve terminal damage (35), and therefore,
the present toxin-based model of acute nerve degeneration repro-
duces the known crucial aspects of regeneration.
To test whether H2O2 production by injured nerve terminals is

important for functional regeneration, we performed electro-
physiological recordings at soleus NMJs 16, 24, 48, and 72 h after
i.m. injections of α-Ltx alone or α-Ltx plus catalase. Three days
after treatment, fibers injected with α-Ltx plus catalase showed
evoked junction potentials (EJPs) with significantly smaller ampli-
tudes than those injected only with the toxin, indicating a slowdown
of the regeneration process; muscles treated with catalase
alone showed EJPs indistinguishable from the control (Fig. 2D).
Immunohistochemistry on LAL muscles treated as described earlier
confirmed the electrophysiological results, showing a delay in the
recovery of synaptosomal-associated protein 25 (SNAP-25) staining,
a presynaptic marker, in samples exposed to α-Ltx plus catalase
compared with muscles injected with α-Ltx only (Fig. S6). At 24 h,
SNAP-25 staining is recovered in 80% of the NMJs treated with
α-Ltx (90% at 48 h) compared with 17% of the NMJs treated with
α-Ltx plus catalase (33% at 48 h; n = 40). The disappearance of
SNAP-25 during the degeneration steps takes place with a closely
similar kinetic under the two conditions (Fig. S6). Four hours
after intoxication, SNAP-25 displays a spotty distribution in nearly
all NMJs analyzed (indicative of nerve terminal degeneration),
both in the presence and absence of catalase; at 16 h, 68% of
α-Ltx-treated NMJs have no more SNAP-25 versus 60% of cat-
alase and α-Ltx-treated NMJs (n = 30).

mtDNA and Cyt C Are Released by Degenerating Neurons and Activate
the ERK Pathway in Schwann Cells. We next tested whether mtDNA
and Cyt c could act together with H2O2 as neuronal mediators of
PSCs activation. For mtDNA detection, primary neurons were
intoxicated, the supernatants collected, and DNA purified. The
eluates were subjected to real-time PCR, using primers specific
for the rat mitochondrial genes Cyt b and NADH dhI. Fig. 3A
shows that mtDNA is indeed released in the neuronal super-
natant after treatment with Tpx or α-Ltx. In another set of
experiments, TCA-precipitated cell supernatants (sham or toxin-
treated) were loaded in SDS/PAGE, followed by Western blot-
ting. Samples were probed with an antibody against Cyt c: only
toxin-treated samples showed a clear band corresponding to the
intact, monomeric form of the protein (Fig. 3B). Control experi-
ments showed no amplification when primers for the nuclear gene
GAPDH were used (Fig. S7A), and the LDH assay on neuronal
supernatant excluded a loss of membrane integrity (Fig. S7B).
Thioredoxin 2, a mitochondrial protein with a molecular weight
similar to Cyt c, was undetectable by Western blot of toxin-treated
supernatants precipitated with TCA, thus supporting the conclu-
sion that neuronal alarmins are released from intact membranes
(Fig. S7C). Moreover, CGNs loaded with calcein-AM did not lose
dye during 50 min incubation with both the toxins, indicating
conservation of plasma membrane integrity (Fig. S7D).
Exposure of isolated SCs to mtDNA or Cyt c led to a sustained

ERK phosphorylation, whereas a peak of p-ERK followed by
progressive decline was observed upon H2O2 stimulation. When
the three mitochondrial alarmins were added together, an ad-
ditive effect on ERK phosphorylation was observed (Fig. 3C).

Mitochondrial Alarmins Exit from Neurons. H2O2 is permeable to
biological membranes (49), whereas mtDNA and Cyt c must be
released from mitochondrial and plasma membranes to reach
the extracellular medium. Pretreatment of neurons with cyclo-
sporin A, a drug that desensitizes the mitochondrial permeability
transition pore (PTP) via its binding to cyclophilin D (50), reduces
both mtDNA and Cyt c release triggered by the toxins (Fig. 4 A
and B), suggesting these molecules can exit mitochondria and

Fig. 3. Mitochondrial DNA and cytochrome c are released by degenerating neurons and activate the ERK pathway, together with hydrogen peroxide. (A)
Real-time qPCR performed on CGNs supernatants from control and toxin-treated samples (Tpx 6 nM or α-Ltx 0.1 nM for 50 min), using primers specific for rat
mitochondrial genes Cyt b and NADH dhI. DNA copy numbers of control and treated samples have been quantified. *P < 0,05; n = 11. (B) Supernatants from
control and neurons treated as described earlier were precipitated with TCA and probed for Cyt c immunoreactivity in Western blot. (C) Time-course of ERK-
phosphorylation induced in primary SCs by H2O2 (10 μM), mtDNA (10 μg/mL), and Cyt c (1 μg/mL) added alone or in a mixture and the relative quantification.
Phospho-ERK signal was normalized to the Hsc70 band. *P < 0.05; **P < 0.01; n = 3.
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reach the cytoplasm through the PTP, whose opening is indeed
induced by snake neurotoxins (51).
Because neuronal plasma membrane integrity is preserved,

how do these alarmins reach the extracellular medium? We
posited that exosomes might be involved and have purified them
from control and treated neuronal supernatants. Purified exo-
somes were found enriched in Hsp90, Hsc70, flotillin, and CD63;
no contamination with Golgi, mitochondrial, or plasma mem-
branes was detected (Fig. 4C and Fig. S8 A and B). Electron
microscopy and immunogold labeling of purified exosomes con-
firmed their correct morphology, size, and positivity for Hsp90
(Fig. S8C). Next, we purified total DNA from exosomes and
performed real-time PCR to check for their mtDNA content. Fig.
4D shows that exosomes released by α-Ltx- and β-Btx-intoxicated
neurons do contain mtDNA. Similar mtDNA copy numbers were
found before and after DNase treatment of exosomal fractions,
indicating that mtDNA is indeed inside exosomes (Fig. S8D). In
contrast, no Cyt c was detected in exosomes by Western blotting;
this is likely to be a result of the much lower sensitivity of Western
blotting with respect to RT-PCR, but the possibility that Cyt c is
released from damaged nerve terminals via other mechanisms
cannot be discarded.

Phagocytosis Is Induced in PSCs During Nerve Terminal Injury.During
toxin-induced neurodegeneration, PSCs at poisoned NMJs un-
dergo evident morphological changes, showing a number of in-
tracellular structures appearing dense by light microscopy (Fig.
5A, Lower). These structures are particularly evident at 4 h after
α-Ltx injection, with a reduction in number and size with time
(Fig. 5A).
The appearance and life span of these structures parallel nerve

terminal degeneration, suggesting they might be phagosomes in-
volved in the clearance of nerve debris. Accordingly, immunostaining
of sham or poisoned LAL muscles for the scavenger macrophage
receptor CD68 was performed. After α-Ltx injection, perineural

SCs of LAL NMJs do express CD68 on these intracellular struc-
tures, supporting their phagocytic role (Fig. 5B). CD68-positive
structures also appear after β-Btx treatment, but at a later time
(16 h), as expected on the basis of the different time course of
pathogenesis of the two neurotoxins (Fig. 5B). Lysotracker-positive
staining confirmed the acidic nature of such compartments (Fig.
5C). CD68-positive macrophages were also recruited in the prox-
imity of neurotoxin-treated NMJs, with a typical migrating pheno-
type (Fig. S9); this is consistent with the chemoattractant role of
H2O2 (52–54). In contrast, polymorphonuclear leukocytes, which
are recruited by axonal degradation (54), were rarely seen in the
many samples we have inspected.
Four hours after α-Ltx injection, the distribution of the pre-

synaptic markers neurofilaments (NF) and SNAP-25 is altered,
with clear fragmentation in many junctions, as a result of the
specific and localized nerve terminal degeneration induced by
the neurotoxins (Fig. 6 A and B). SNAP-25-positive spots lo-
calize within PSCs phagosomes (the same holds true for NF),
as shown by orthogonal projections (Fig. 6C), confirming that
phagocytosis by PSCs and macrophages is taking place during
nerve terminal degeneration.

Discussion
The present article describes an original approach to study motor
axon terminals degeneration and regeneration. This model system is
based on the use of animal presynaptic neurotoxins highly specific
for nerve terminals with a well-defined biochemical mechanism of
action (10, 12, 16, 18). Here, these neurotoxins are used as tools to
induce localized and reversible nerve degeneration, followed by
complete regeneration. This system is more controllable than the
classical cut and crush approaches, which are invasive and inevitably
damage several cell types, triggering a pronounced inflammatory
response (55). Moreover, this model avoids some adverse effects of
techniques such as laser ablation (high temperatures, photooxida-
tion, etc). The model proposed here is therefore better suited to

Fig. 4. Mitochondrial alarmins exit from neurons. Preincubation with cyclosporine A (5 μM for 30 min) significantly reduced both mtDNA (A) and Cyt c
release (B) induced by exposure of CGNs to Tpx or α-Ltx (6 nM and 0.1 nM for 50 min, respectively). *P < 0.05; **P < 0.01; n = 3. (C) Exosomes were purified
from CGNs supernatants and probed for the exosome-enriched proteins flotillin, Hsc70, and Hsp90. The absence of the Golgi marker GM130 and of the
mitochondrial one Tom20 is indicative of uncontaminated preparations (Right). Cellular lysates are positive for all markers tested (Left). (D) DNA was
extracted from exosomes purified from the supernatants of α-Ltx- and β-Btx-treated CGNs (0.1 and 6 nM for 50 min, respectively) and subjected to real-time
qPCR for the detection of mtDNA. *P < 0.05; **P < 0.01; n = 5.
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study the inter- and intracellular signaling and transcriptomic events
involved in the regeneration process.
Spider and snake presynaptic neurotoxins induce, by differ-

ent biochemical mechanisms, a large entry of calcium in axon
terminals, which in turn leads to mitochondrial failure and
nerve terminal degeneration. At the same time, PSCs perceive
the damage occurring to the motor axons and respond by
dedifferentiating to a progenitor-like state, proliferating and

assisting nerve regeneration. They acquire macrophagic-like ac-
tivities that contribute to the removal of nerve cell debris and
facilitate reinnervation, similar to what was found previously after
nerve crush (23). Moreover, upon extensive cytoskeletal re-
organization, PSCs send out long projections, along which the
regenerating nerve terminals extend sprouts, which originate
from the nonmyelinated axon terminal to innervate adjacent
denervated junctions (34, 35).
It was recently shown that the MAPK signaling pathway has

a central role in controlling SC plasticity and peripheral nerve
regeneration via the activation of ERK1/2 and JNK, which ac-
tivate the transcription complex activator protein 1, of which
c-Jun is a key component (44, 45, 56). The major result obtained
here, using p-ERK as a read-out, is that alarmins released by
mitochondria of degenerating axon terminals activate SCs. Mi-
tochondria are abundant components of the motor axons ter-
minals, and here we define them as a source of mediators that
are released under cytosolic calcium overload. The rapid accu-
mulation of Ca2+ inside mitochondria causes the opening of the
PTP and the exit of alarmins (50). Mitochondrial alterations are
hallmarks of nerve terminal damage (19, 20), and therefore the
present findings can be extrapolated to several other nerve
terminal pathological conditions.
Mitochondria of stressed cells produce reactive oxygen spe-

cies (ROS), among which H2O2 is the most stable species (37,
38, 57). It is a very reactive molecule that can permeate bi-
ological membranes. As PSCs and axon terminals are in close
contact within the NMJ, significant amounts of H2O2 released by
axon terminals can reach PSCs before it becomes inactivated by
cellular antioxidant defense systems. Once within the target cell,
H2O2 can act as a second messenger via chemoselective oxidation of
cysteine residues in signaling proteins and via ERK phosphorylation.
Collectively, these properties make H2O2 an ideal mediator of
signal transduction processes (36–38, 42, 58). Recent experimental

Fig. 5. Nerve terminal degeneration triggers phagocytosis in terminal SCs
at the NMJ. (A) LAL muscles from transgenic mice were injected with α-Ltx
(5 μg/kg), collected at different time points (4, 16, 24 h), and processed for
indirect immunohistochemistry. PSCs (cyan) show intracellular structures of
different size that are particularly evident after 4 h of intoxication. These
structures appear dense by light microscopy (brightfield, Lower, arrows).
Nuclei are stained with Hoechst (blue). (Scale bars: 10 μm.) (B) PSCs (green) at
α-Ltx- and β-Btx-treated NMJs (4 and 16 h of intoxication, respectively) are
positive for the phagocytic marker CD68 (red), which stains intracellular
vesicular structures. A very low CD68 signal is detected in control NMJs.
(Scale bars: 10 μm.) (C) Ex vivo Lysotracker staining (red) of α-Ltx-treated LAL
(4 h) confirms the acidic nature of intracellular vacuoles. (Scale bar: 10 μm.)

Fig. 6. Degenerating terminals are engulfed by perisynaptic SCs. (A) PSCs
engulf presynaptic components, as shown by NF-positive staining of PSCs
phagosomes at NMJs treated for 4 h with α-Ltx (red, Lower). (Upper) control
NMJs. Nuclei are stained with Hoechst (blue). (Scale bars: 10 μm.) (B) Control
NMJs with typical SNAP-25 presynaptic localization (red). In α-Ltx-treated NMJs
(4 h), SNAP-25 aggregates localize within PSC phagosomes. (Scale bars: 10 μm.)
(C) Orthogonal projections of α-Ltx-treated NMJs show that SNAP-25 positive
aggregates are inside PSCs phagosomes. (Scale bars: 10 μm.)
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evidence in different animal models demonstrated that a rapid
concentration gradient of H2O2 is generated during injury and
that H2O2 is a powerful chemoattractant of leukocytes (53, 54).
Moreover, lowering ROS levels by pharmacologic or genetic
approaches reduces cell proliferation and impairs regeneration
(59). We therefore have imaged H2O2 in living neurons exposed
to neurotoxins with novel specific fluorescent probes (39, 40) and
found that the degenerating nerve terminals release H2O2 of
mitochondrial origin. This H2O2 activates PSCs in vitro and in
vivo. We also found that macrophages are recruited around the
neurotoxin-treated NMJs. It is therefore likely that these mac-
rophages are attracted by H2O2, as well as by molecules released
by activated PSCs, as previously found (60, 61). The prominent
role of H2O2 in neurotoxin-induced nerve degeneration and re-
pair is proved by the impaired regeneration we observed in the
presence of catalase.
In addition to H2O2, we found that mtDNA and Cyt c can act

as mediators of neuronal damage and activate SCs via ERK
pathway. When added in a mixture with H2O2, an additive effect
on ERK phosphorylation is observed. As neuronal membrane
integrity is preserved, the question arises of how mtDNA and
Cyt c, coming from the mitochondrial matrix or the intermembrane
space, respectively, can exit the cell. Several pieces of evidence
indicate that mitochondria are central sensors for axonal de-
generative stimuli (62), and the release of mtDNA fragments from
PTP in isolated mitochondria has been documented (63). Here, the
mitochondrial PTP was found to be involved in the exit of both
mtDNA and Cyt c from mitochondria, with a significant reduction
in the presence of the PTP desensitizing molecule cyclosporin A.
Once in the cytosol, mtDNA and Cyt c could be released via the
nonclassical or unconventional secretory route, including secre-
tory lysosomes, membrane blebbing, multivesicular body-derived
exosomes, or autophagy (64). Here, we found that exosomes pu-
rified from intoxicated neuronal supernatants contain mtDNA,
whereas Cyt c was not detected, possibly because of the insufficient
sensitivity of Western blot. It is also possible that Cyt c is released
directly via contact sites between mitochondria and the presynaptic
membrane, similar to those observed by electron microscopy
in a closely similar pathological condition caused by autoim-
mune anti-ganglioside antibodies (65).
The present work has identified three mitochondrial alarmins

involved in PSCs activation after an acute nerve injury and
proposes H2O2 as the strongest inducer of PSCs response. In-
activation of H2O2 by catalase reduces ERK phosphorylation
in SCs in culture and delays NMJ recovery in vivo after toxin-
induced neuroparalysis and degeneration, supporting a crucial
role of this molecule in the regeneration process.
Nerve damage triggers important morphologic and functional

changes in PSCs aimed at promoting NMJ regeneration, con-
firming their endowed high plasticity and their crucial role in the
clearance of nerve debris. Indeed, during nerve terminal de-
generation, PSCs become CD68-positive, indicating an acquired
phagocytic activity. Together with macrophages, but not neu-
trophils, activated PSCs were found here to remove nerve debris,
thus permitting a functional nerve regeneration. This is at vari-
ance from what was found during axonal degeneration, where
a pronounced neutrophil infiltration was detected (54).
The phagocytic features of PSCs described here represent an

additional early read-out of PSCs activation at the injured NMJ.
PSCs respond to axonal damage caused by neurotoxin poisoning
by engulfing degenerating terminals, by extending long processes,
and by activating intracellular signaling pathways crucial for re-
generation. On the basis of these perspectives, we plan to study
more in detail the intracellular signaling and transcriptomic
events taking place inside activated PSCs. More in general, it
appears that the present experimental approach can be extended
to the investigation of other motor neuron diseases, including the
non-cell-autonomous and dying-back axonopathy of ALS and

autoimmune neuropathies including Guillain-Barré and Miller-
Fisher syndromes (66, 67). Such studies are likely to provide
relevant insights for future therapeutic endeavors.

Materials and Methods
Animal Strains. C57BL/6 mice expressing cytosolic GFP under the plp promoter
(46, 47) were kindly provided by W. B. Macklin (Aurora, CO) via the collab-
oration of T. Misgeld (Munchen, Germany). All experiments were performed
in accordance with the European Communities Council Directive n° 2010/63/
UE and approved by the Italian Ministry of Health.

Hydrogen Peroxide Detection. Hydrogen peroxide generation in primary
neurons was measured using Mitochondria Peroxy Yellow 1 (MitoPY1) (39) or
Peroxyfluor 6 acetoxymethyl ester (PF6-AM) (40), synthesized in the C.J.C.
laboratory (Berkeley, CA), specific probes of H2O2 production in mitochondria
and cytoplasm, respectively. Both probes were loaded at 5 μM for 30 min at
37 °C in Krebs ringer buffer (KRH: Hepes 25 mM at pH 7.4, NaCl 124 mM, KCl
5 mM, MgSO4 1.25 mM, CaCl2 1.25 mM, KH2PO4 1.25 mM, glucose 8 mM).
Images were acquired at different points after toxin exposure with a DMI6000
inverted epifluorescence microscope (Leica) equipped with a 63× HCX PL APO
oil immersion objective NA 1.4. Filter cubes (Chroma Technology) have an ex-
citation range of 470/40 nm, a dichroic mirror 495LPXR, and an emission of 525/
50 nm. Images were acquired with an Orca-Flash4 digital camera (Hamamatsu).
Illumination was kept at a minimum to avoid ROS generation because of pho-
totoxicity. To detect neuronal bulges, we took advantage of differential in-
terference contrast microscopy. Fluorescence intensity quantification was carried
out with ImageJ, and the statistical analysis with Prism (GraphPad).

Cell Treatments. CGNs (6 d in culture) plated onto 35-mm dishes (1.2 million cells
per well) were exposed for 50–60 min to SPANs (6 nM) or to α-Ltx (0.1 nM) at
37 °C. In some experiments, neurons were preincubated for 30 min with cyclo-
sporin A 5 μM before toxin addition. Supernatants or cell lysates were collected
and then processed for real-time quantitative PCR (qPCR) or Western blot.

Primary SCs were exposed to different mitochondrial alarmins [H2O2 10–
100 μM, Cyt c (R&D) 1 μg/mL, mtDNA 10 μg/mL] or to the toxins for different
times and lysed in Lysis Buffer [Hepes 10 mM, NaCl 150 mM, SDS 1%, EDTA
4 mM, protease inhibitors mixture (Roche), and phosphatase inhibitor mixture].

Cocultures were treated with the toxins and then lysed after different
points; in a set of experiments, 1,000 U per well catalase was added 5 min
before intoxication and kept throughout the experiment; in another set,
cocultures were incubated with the MEK1 inhibitor PD98059 (Cell Signaling;
80 μM) 1 h before toxins addition. Samples were then probed for p-ERK.

Immunofluorescence. After treatments, isolated SCs or cocultures were fixed
for 15 min in 4% (wt/vol) paraformaldehyde (PFA) in PBS, quenched (0.38%
glycine, 0.24% NH4Cl in PBS), and permeabilized with 0.3% Triton X-100 in
PBS for 5 min at room temperature (RT). After saturation with 3% (vol/vol)
goat serum in PBS for 1 h, samples were incubated with primary antibodies
[anti-Phospho-p44/42 MAPK (Cell Signaling), 1:1,000; anti- anti-NF200 (Sigma),
1:200; anti-S100 (Sigma), 1:1,000] diluted in 3% (vol/vol) goat serum in PBS
overnight at 4 °C, washed, and then incubated with the correspondent sec-
ondary antibodies (Alexa-conjugated, 1:200; Life Technologies) for 1 h at RT.
Coverslips were mounted in Mowiol and examined by confocal (Leica SP5) or
epifluorescence (Leica CTR6000) microscopy.

In a set of experiments, CGNswere exposed to α-Ltx (0.1 nM, 50min) or PMA
(phorbol 12-myristate 13-acetate, 1 μg/mL, 20 min) and processed for immu-
nofluorescence as described earlier. p47phox was detected by a monoclonal
antibody (Santa Cruz; 1:200).

NMJ Immunohistochemistry. α-Ltx (5 μg/kg) or β-Btx (10 μg/kg) were diluted
in 25 μL physiological saline (0.9% wt/vol NaCl in distilled water) and injected
s.c. in proximity of the LAL muscle of anesthetized transgenic C57BL/6 male
mice (expressing a cytosolic GFP under the plp promoter) (46, 47) of around
20–25 g. Control animals were injected with saline. LAL muscles were dis-
sected at different points after injections and fixed in 4% (wt/vol) PFA in PBS
for 30 min at RT. Samples were quenched, permeabilized, and saturated for
2 h in 15% (vol/vol) goat serum, 2% (wt/vol) BSA, 0.25% gelatin, 0.20%
glycine, and 0.5% Triton X-100 in PBS. Incubation with the following primary
antibodies was carried out for at least 48 h in blocking solution: anti-neu-
rofilaments (mouse monoclonal, anti-NF200, 1:200; Sigma), anti-SNAP-25
(SMI81 mouse monoclonal, 1:200; Covance), and anti-CD68 (mouse mono-
clonal, 1:200; Santa Cruz). Muscles were then washed and incubated with
secondary antibodies (Alexa-conjugated, 1:200 in PBS; Life Technologies).
Nuclei were stained with Hoechst. For p-ERK detection incubation with the
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primary antibody (anti-Phospho-p44/42 MAPK, 1:1,000; Cell Signaling) was
carried out for 72 h and the tyramide signal amplification kit (Perkin-Elmer)
was used (45).

To stain acidic compartments, LAL muscles collected after 4 h of in-
toxication were loaded ex vivo with LysoTracker Red DND-99 (1:5,000; Life
Technologies) for 2–3 min (68) while being continuously perfused with ox-
ygenated Neurobasal A medium (Life Technologies). Samples were then
fixed and processed for indirect immunohistochemistry, as described earlier.
Images were collected with a Leica SP5 confocal microscope equipped with
a 63× HCX PL APO NA 1.4. Laser excitation line, power intensity, and emis-
sion range were chosen according to each fluorophore in different samples
to minimize bleed-through.

Electrophysiological Recordings. Electrophysiological recordings were per-
formed in oxygenated Krebs-Ringer solution on sham or α-Ltx-injected soleus
muscles (α-Ltx 5 μg/kg, with or without 750 U catalase), using intracellular
glass microelectrodes (WPI) filled with one part 3 M KCl and two parts 3 M
CH3COOK. In another set of experiments, muscles were locally injected with
PD98059 (50 μg in DMSO) 1 h before α-Ltx injection.

Evoked neurotransmitter release was recorded in current-clamp mode, and
resting membrane potential was adjusted with current injection to −70 mV.
EJPs were elicited by supramaximal nerve stimulation at 0.5 Hz, using a suction
microelectrode connected to a S88 stimulator (Grass). To prevent muscle

contraction after dissection, samples were incubated for 10 min with 1 μM
μ-Conotoxin GIIIB (Alomone).

Signals were amplified with intracellular bridge mode amplifier (BA-01X,
NPI), sampled using a digital interface (NI PCI-6221, National Instruments) and
recorded by means of electrophysiological software (WinEDR; Strathclyde
University). EJPs measurements were carried out with Clampfit software
(Molecular Devices).

Statistical Analysis. The sample size (N) of each experimental group is described
in each corresponding figure legend, and at least three biological replicates
were performed. Prism (GraphPad Software)was used for all statistical analyses.
Quantitative data displayed as histograms are expressed as means ± SEM
(represented as error bars). Results from each group were averaged and used
to calculate descriptive statistics. Significance was calculated by Student’s t test
(unpaired, two-side). P values less than 0.05 were considered significant.
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SI Materials and Methods
Toxins. α-Ltx and Tpx were purchased from Alomone, and β-Btx
from Sigma. The purity of the toxins was checked by SDS/PAGE,
and their neurotoxicity by ex vivo mouse nerve-hemidiaphragm
preparation, as previously described (1).

Chemicals. Unless otherwise stated, all reagents were purchased
from Sigma.

Primary Cell Cultures.Rat cerebellar granular neurons and rat spinal
motoneurons were purified as described in ref. 2. Primary SCs were
purified from sciatic nerves of six P3 Wistar rats. Briefly, sciatic
nerves were dissected and tissues digested in 0.1% wt/vol colla-
genase and 0.25% wt/vol trypsin in L15 medium (Life Technolo-
gies), plus 0.3% BSA for 1 h. Dissociated cells were seeded onto
uncoated Petri dishes in DMEM 10% (vol/vol) FBS; 24 h after
seeding, 10 μM arabinoside C was added to the medium and kept
for 2 d to prevent fibroblasts mitosis. Five days after seeding, an
immunopanning with an anti-Thy1.1 antibody followed by rabbit
complement addition was performed to eliminate contaminating
fibroblasts. Purified SCs were subsequently plated on poly-L-
lysine-coated dishes and allowed to grow in expansion medium
consisting of DMEM, supplemented with 10% (vol/vol) FBS,
2 μM forskolin, and 10 nM heregulin β-1.

Primary Neurons-SCs Cocultures. CGNs and spinal MNs were used
to set up cocultures with primary SCs. Briefly, 4 d after primary
neurons seeding, primary SCs were added to neuronal cultures at
an average density of 1 × 104 cells/cm2. Cocultures were kept for
2–3 d in CGNs or MNs medium, respectively, and then pro-
cessed for immunofluorescence or Western blotting.

Sample Preparation for Western Blotting.
Cyt c detection.CGNs were intoxicated as previously described, the
supernatant was collected, and total proteins were precipitated
with TCA [10% (vol/vol) final concentration]. The resulting pellet
was suspended in loading sample buffer and denatured at 95 °C
for 5 min. Samples were loaded on Precast 4–12% SDS-poly-
acrylamide gels (Life Technologies) and transferred to a nitrocel-
lulose in a refrigerated chamber. After saturation, membranes were
incubated overnight with a mouse monoclonal anti-Cyt c antibody
(BD Biosciences; 1:1,000) followed by a secondary anti-mouse
antibody HRP-conjugated (Life Technologies; 1:2,000). Chem-
iluminescence was developed with the Luminata TM Crescendo
(Millipore) or ECL Advance Western blotting detection system
(GE Healthcare) and was emission measured with ChemiDoc XRS
(Bio-Rad). Band intensities were quantified on the original files
with the software Quantity One (Bio-Rad). None of the bands
reached signal saturation. In another set of experiments, TCA-
precipitated supernatants were probed with a monoclonal anti-
body specific for thioredoxin 2 (Abcam; 1:1,000).
Phospho-ERK detection. Seven to 10 μg of total lysates from SCs or
cocultures were loaded on SDS/PAGE. Protein concentration
was quantified using the BCA assay (Protein Assay Kit; Pierce).
Phospho-ERK was detected with a rabbit polyclonal antibody
(anti-Phospho-p44/42 MAPK, 1:1,000; Cell Signaling). For densi-
tometric quantification, the bands of interest were normalized to
the housekeeping protein Hsc70 (monoclonal anti-Hsc70, 1:10,000;
Synaptic Systems).

Real-Time qPCR. Supernatants of intoxicated neurons were collected
and total DNA was extracted using the DNeasy Blood & Tissue

kit (Qiagen) following manufacturer’s instructions and sub-
jected to real-time PCR. Primers for rat cytochrome B (for-
ward 5′- TCCACTTCATCCTCCCATTC-3′ and reverse 5′-
CTGCGTCGGAGTTTAATCCT-3′), rat NADH dehydrogenase
I (forward 5′- CAATACCCCACCCCCTTATCAA-3′ and reverse
5′- GAGGCTCATCCCGATCATAGAA-3′), and rat GAPDH
(forward 5′-ATTTCCTTTAATAAAGCCGGT-3′ and reverse
5′- TAAGAGACTTAAAATGACTTTG-3′) were synthesized
by Life Technologies. Primer sequences have no significant
homology with DNA found in any bacterial species published
on BLAST.
Standards for quantification were obtained by PCR on total

DNA isolated from cultured CGNs. Samples that produced no
PCR products after 33 cycles were considered undetectable. Real-
time qPCR was performed using iCyclerH thermal cycler (Bio-
Rad). Amplification conditions were the following: 10 min at
95 °C, 40 cycles: 10 s at 95 °C, 30 s at 47.6 °C. A melting curve
analysis, consisting of an initial step of 10 s at 65 °C and a slow
elevation of temperature (0.5 °C/s) to 95 °C, was performed at
the end of the amplification cycles to check for the absence of
primer dimers and nonspecific products, using iQ SYBR Green
supermix (BioRad). Results were expressed as copy numbers of
target genes.

Mitochondrial DNA Purification.Mitochondrial DNA was extracted
from 25 μg mice tibialis muscle, using the DNeasy Blood &
Tissue kit (Qiagen), following manufacturer’s instructions. DNA
concentration was determined by spectrophotometer. No protein
contamination was found. We checked the purity of mtDNA by
real-time PCR, using primers for nuclear GAPDH.

Lactate Dehydrogenase Assay. Lactate dehydrogenase (LDH) ac-
tivity was measured on the supernatants of CGNs plated on 96-well
plates (150,000 cells/well) and exposed to the toxins as previously
described, following manufacturer’s instructions (Sigma). LDH
activity measured in the total cell lysate was taken as 100% (n = 3).

Calcein Imaging. CGNs were loaded with calcein-AM (Life Tech-
nologies), 1 μM for 15 min at 37 °C in KRH, washed, and then
exposed to α-Ltx 0.1 nM or Tpx 6 nM for 50 min. Fluorescence
was monitored with time. Loss of calcein dye because of mem-
brane permeabilization was achieved by the addition of 0.1% sa-
ponin. Images were acquired by epifluorescence (Leica CTR6000)
microscopy.

Exosomes Purification. Exosomes were obtained from CGNs iso-
lated from four rat cerebella (P6) following standard protocols (3).
The mean total cell yield was 50–60 million cells (Mc). Cells
plated on poly-L-lysine-coated 100-mm Petri dishes (10 Mc/dish)
were grown till 6 d in culture; on the day of the experiment, plates
were washed three to four times with warm KRH to remove the
culture medium. α-Ltx 0.1 nM or β-Btx 6 nM were incubated in
KRH for 45–60 min, and control samples were incubated with
saline. Supernatants were then collected and subjected to cycles
of centrifugations (300 × g for 10 min at 4 °C and 16,500 × g for 20
min at 4 °C). The supernatant was then filtered through a 0.2-μm
filter and centrifuged again at 120,000 × g for 70 min at 4 °C to
pellet exosomes, which were resuspended in loading buffer for
SDS/PAGE analysis or in lysis buffer for DNA extraction. Each
lane of SDS/PAGE corresponds to exosomes obtained from the
medium of 107 neurons. Proteins enriched in exosomes such as
flotillin, Hsc70, Hsp90, and CD63 were detected in both the
exosomal and the total lysate fractions [anti-flotillin, 1:500 (BD
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Biosciences); anti-Hsc70, 1:10,000 (Synaptic Systems); anti-
Hsp90, 1:1,000 (BD Biosciences); and anti-CD63, 1:200 (Santa
Cruz)]. To exclude contamination with other cell compartments,
the exosomal fraction was assayed for Golgi (anti-GM130,
1:1,000; BD Transduction laboratories), mitochondrial (anti-
TOM20, 1:1,000; Santa Cruz), and plasma membrane markers
(anti-syntaxin 1A, 1:2,000; Synaptic Systems). DNA extraction
from exosomes and real-time qPCR were performed as de-
scribed earlier. In a set of experiments, exosomes were pre-
treated with purified DNase (1 U/μL, 1 h at 37 °C); DNase was
inactivated at 65 °C for 10 min before DNA extraction and real-
time qPCR.

Exosomes Identification by Electron Microscopy
The exosome-enriched pellet (purified from 60 Mc) was resus-
pended in PBS and ultracentrifuged at 120,000g for 70 min at 4 °C
to repellet the exosomes. The pellets were immediately fixed
by 2% (wt/vol) paraformaldehyde and applied to formvar-
carbon-coated EM grids. For immunogold labeling, grids were
incubated with anti-Hsp90 primary antibodies, which were then
revealed using 5-nm gold-conjugated secondary antibodies
(Sigma, 1:100). The exosomes were then stained with 1% uranyl
acetate for 30 min. Observations were made using a transmission
electron microscope (TECNAI G12, FEI) at 100 kV, equipped
with a digital camera (Veleta, OSIS).

1. Rigoni M, et al. (2005) Equivalent effects of snake PLA2 neurotoxins and lysophos-
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3. Lachenal G, et al. (2011) Release of exosomes from differentiated neurons and its
regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46(2):409–418.

Duregotti et al. www.pnas.org/cgi/content/short/1417108112 2 of 7

www.pnas.org/cgi/content/short/1417108112


Fig. S1. Live-imaging of hydrogen peroxide production in spinal cord MNs. Rat MNs were loaded with the H2O2-specific probes PF6-AM (A) or MitoPY1 (B),
washed, and then exposed to Tpx 6 nM or α-Ltx 0.1 nM for 50 min. Changes in fluorescence resulting from H2O2 production were measured at t = 50 min and
expressed as a percentage of the fluorescence value at t = 0 (Right). *P < 0.05; ***P < 0.001; n = 15. Arrows in bright-field images and in the green channel
point to neuronal bulges. (Scale bars: 10 μm.)
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Fig. S2. NADPH oxidase is not involved in hydrogen peroxide production. p47phox staining was performed in CGNs exposed to α-Ltx (0.1 nM for 50 min) or to
PMA (1 μg/mL for 20 min) as positive control for p47phox translocation. Arrows point to membrane accumulation of p47phox signal in PMA-treated cells. (Scale
bar: 10 μm.)

Fig. S3. Primary SCs respond to hydrogen peroxide by phosphorylating ERK. (A) Kinetic and dose-dependence of ERK phosphorylation induced in primary SCs
by H2O2. (B) Immunofluorescence of p-ERK (green) in SCs after exposure to H2O2 (100 μM for 60 min). Nuclei are stained in blue. (Scale bar: 10 μm.) (C) Phospho-
ERK positive cells (red) in SCs-MNs cocultures exposed to the neurotoxins are positive for the SCs marker S-100 (green, arrowheads). Arrows in bright-field
panels point to bulges. (Scale bar: 20 μm.) (D) Preincubation of SCs with increasing amounts of catalase prevents ERK-phosphorylation by H2O2 to a different
extent. Both α-Ltx and SPANs are ineffective in phosphorylating ERK in SCs.
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Fig. S4. ERK pathway is involved in SCs activation and subsequent nerve regeneration. SCs-MNs cocultures were pretreated with the MEK1 inhibitor PD98059
before α-Ltx exposure and then probed for p-ERK both in Western blot (A) and in immunofluorescence (B). The red channel represents p-ERK, and the green
one the S-100 marker. Nuclei are stained with Hoechst. (Scale bar in B: 20 μm.) (C) Electrophysiological recordings of EJPs at soleus NMJs treated with α-Ltx
alone (5 μg/kg, black bars) or pretreated with PD98059 (50 μg) before α-Ltx injection (white bars). At 72 h, EJP amplitudes of fibers pretreated with the inhibitor
are significantly smaller than those exposed to toxin only (**P < 0.01).

Fig. S5. PSCs activation after toxin-induced nerve terminal degeneration. (A) PSCs sproutings (green), typical hallmarks of regeneration, are observed at
poisoned LAL NMJs by 24 h from α-Ltx injection. Nuclei are stained with Hoechst (red). In some instances, PSCs sproutings form bridges between adjacent
junctions (B). (Scale bar: 50 μm in A, 10 μm in B.)
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Fig. S6. Regeneration of poisoned presynaptic nerve terminals is delayed by catalase. SNAP-25 labeling (red) was used as read-out to monitor degeneration
and regeneration of nerve terminals at the NMJs of LAL muscles s.c. injected with α-Ltx or α-Ltx plus catalase (750 U). Muscles were collected after 4, 16, 24, and
48 h, and representative images are shown. (Scale bars: 10 μm.)

Fig. S7. Neuronal DAMPs are released from intact membranes. (A) No GAPDH amplification (nuclear housekeeping gene) was detected by real-time qPCR in
neuronal supernatants after 50 min intoxication with α-Ltx or SPANs. *P < 0.05; **P < 0.01; n = 3. (B) LDH enzymatic activity was determined in the super-
natants of neurons exposed for 50 min to Tpx or to α-Ltx. LDH release is an index of loss of membrane integrity. Data represent the mean of three independent
experiments. (C) Thioredoxin 2, a mitochondrial protein of similar size to Cyt c, is detectable by Western blot only in CGNs lysates, but not in supernatants of
neurons treated with α-Ltx or β-Btx (0.1 or 6 nM for 50 min, respectively) after TCA precipitation. (D) Membrane integrity was also assessed by calcein-AM
retention in CGNs treated with Tpx or α-Ltx for 50 min. Calcein staining is lost after saponin-induced membrane permeabilization. (Scale bar: 10 μm.)
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Fig. S8. Mitochondrial DNA is carried inside exosomes. Purified exosomes are positive for the exosomal marker CD63 (A) and negative for the plasma
membrane marker syntaxin 1A (B). (C) Immunogold labeling of purified exosomes shows positivity for the exosomal marker Hsp90 and confirms their correct
size and morphology. (Scale bars: 50 nm.) (D) Real-time PCR for the detection of mtDNA in exosomes treated with DNase (1 U/μL for 60 min). Exosomes were
incubated with DNase before or after lysis and DNA purification. *P < 0.05; **P < 0.01; n = 3.

Fig. S9. Macrophages are recruited at the poisoned NMJ. CD68-positive macrophages (red, white arrows) are observed at the NMJs of LAL muscles injected
with α-Ltx during nerve terminal degeneration (16 h intoxication). (Scale bar: 10 μm.)
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