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“La cosa più bella che possiamo sperimentare è il mistero. 

E’ questa la fonte di ogni vera arte e scienza. Colui al quale questa emozione è estranea, che non riesce più a 

sorprendersi e rimanere in soggezione, è praticamente morto, i suoi occhi sono chiusi”. 

 

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He 

to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: 

his eyes are closed." 

 

                                                                                                                            Albert Einstein 
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1. ABBREVIATIONS 

 

AIBN     Azobisisobutyronitrile 

BCA    Bicinchoninic acid 

CDCl3     Deuterated chloroform 

CO2     Carbon dioxide 

DCC     Dicyclohexylcarbodiimide 

DCM     Dichloromethane 

DCU     Dicyclohexylurea 

DDS    Drug delivery system 

DLS     Dynamic Light Scattering 

DMAP    4-Dimethylaminopyridine 

DMF     Dimethylformamide 

DMSO    Dimethyl sulfoxide 

DP     Degree of Polymerization 

DTNB    5,5'-dithiobis-(2-nitrobenzoic acid) 

EDTA     Ethylenediaminetetraacetic acid 

EPR    Enhanced permeability and retention  

Et2O     Diethyl ether 

EtOAc    Ethyl acetate 

FBS     Fetal Bovine Serum 

FFDMEM    Folic free Dulbecco's Modified Eagle Medium 

FR     Folate Receptor 

GMA     Glycerol Methacrylate 

GNPs    Gold nanoparticles 

GPC     Gel permeation chromatography 

HAuCl4    Tetrachloroauric (III) acid 

HCl    Hydrochloric acid 

HNO3    Nitric acid 

HPMA    N-(2-Hydroxypropyl) methacrylamide 

H2SO4     Sulfuric acid 
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KB cells    Human cervical carcinoma cell line 

KCl     Potassium chloride 

macro CTA    Macro Transfer Agent 

MCF-7 cells    Human breast adenocarcinoma cell line 

MCH    (methacryloyloxy)ethyl-3-chloro-4-hydroxybenzoate 

MeOH    Methanol 

MgCl2     Magnesium chloride 

MgSO4    Magnesium sulfate 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide 

MW     Molecular Weight 

MWCO   Molecular weight cut-off 

N2     Nitrogen 

NaOH     Sodium hydroxide 

NaCl     Sodium Chloride 

NHS     N-Hydroxysuccinimide 

NIR    Near infrared 

PBS     Phosphate Saline Buffer 

PDI     Polydispersity Index 

PEG    Polyethylene glycol 

pKa    Acid dissociation constant 

PLGA    Poly(lactic-co-glycolic acid) 

RAFT     Reversible addition fragmentation chain transfer  

    polymerization 

RES    Reticuloendothelial System 

ROS    Reactive oxygen species 

RP-HPLC    Reverse Phase High Pressure Liquid Chromatography 

SPR    Surface Plasmon resonance 

TAC    Computer assisted tomography 

TEA    Triethylamine 

TFA     Trifluoroacetic acid 

TEM    Transmission electron microscopy 

THF     Tetrahydrofuran 
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TLC     Thin Layer Chromatography 

UV     Ultraviolet 

Vis     Visible 

VEGF    Vascular endothelial growth factor 
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2. RIASSUNTO 

Il presente progetto di ricerca prevede lo studio e lo sviluppo di sistemi 

nanoparticellari intelligenti per uso farmaceutico e terapeutico, capaci di rispondere 

in modo adeguato a variazioni fisiopatologiche al fine di migliorare l’efficienza del 

direzionamento selettivo e di ridurre la distribuzione aspecifica nei tessuti sani 

minimizzando così gli effetti collaterali e abbassando la dose efficace. 

Numerosi studi riportati in letteratura hanno sottolineato come determinate 

patologie siano associate a peculiari condizioni micro-ambientali a livello dei tessuti. 

In particolare i tessuti tumorali sono in genere caratterizzati da un corredo 

enzimatico amplificato, un’alterazione del potenziale ossido-riduttivo, un incremento 

della temperatura tissutale, un abbassamento del pH e alterazioni morfo-funzionali a 

carico della vascolarizzazione e del sistema linfatico. 

Sulla base di tali variazioni è stato possibile disegnare un sistema intelligente in grado 

di rispondere con alterazioni fisico-morfologiche alle mutate caratteristiche 

ambientali tipiche dei tessuti tumorali. Tra i vari sistemi colloidali di dimensione 

nanometrica disponibili in ambito farmaceutico, nanoparticelle d’oro (GNPs) sono 

state selezionate come carrier in virtù dei numerosi vantaggi quali l’elevata 

biocompatibilità, semplice chimica di modifica superficiale, elevato rapporto 

superficie/massa atto a permettere un’ampia funzionalizzazione e dimensioni 

adeguate per by-passare le barriere fisiologiche e raggiungere quantitativamente il 

sito d’azione sfruttando l’effetto EPR. Nanoparticelle d’oro sono state sintetizzate 

secondo la procedura riportata da Turkevich mediante riduzione di acido cloroaurico 

da parte di sodio citrato, ottenendo particelle dal diametro medio di 15 nm e 

contenuta polidispersività. La decorazione superficiale di particelle d’oro con un 

agente di targeting (Folato-PEG) ha inoltre permesso di sfruttare un direzionamento 

attivo del sistema e di traghettare selettivamente il farmaco a cellule tumorali 

sovraesprimenti il recettore per l’acido folico. In particolare, uno degli scopi del 

progetto è stato quello di valutare se vi fosse un’influenza della densità dell’agente 

direzionante nel determinare l’efficienza d’internalizzazione del sistema. A tal 

proposito sono stati compiuti studi approfonditi per valutare quale fosse la densità 

ottimale di Folato-PEG in grado di garantire la massima internalizzazione del 

nanocarrier. Nanoparticelle d’oro decorate con quantità crescenti di acido folico sono 
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state testate sulla linea di cellule tumorali KB, sovraesprimente il recettore per il 

folato. Dagli studi è emerso come 50 catene di Folato-PEG per particella garantiscano 

la massima efficienza di uptake. Inoltre la presenza di acido folico libero nel terreno 

di coltura ha inibito la penetrazione delle GNPs confermando come il meccanismo di 

uptake sia effettivamente mediato dall’agente di targeting Folato-PEG. Ulteriore prova 

della specificità di internalizzazione è stata fornita incubando GNPs decorate con 

Folato-PEG con la linea cellulare MCF-7, non esprimente il recettore per il folato. 

Cellule MCF-7 hanno infatti dimostrato l’uptake di un numero trascurabile di GNPs. 

Studi in letteratura evidenziano inoltre come sistemi multi-direzionati possano subire 

diversi meccanismi d’internalizzazione rispetto a ligandi monovalenti. Al fine di 

valutare il delivery lisosomiale di nanoparticelle multi-direzionate e confrontarlo con 

quello del ligando Folato, nanoparticelle d’oro modificate con diverse densità di 

Folato-PEG (50 e 10 catene per particella) sono state marcate con Rodamina in modo 

da consentire studi di trafficking intracellulare mediante microscopia confocale. Allo 

stesso modo, acido folico è stato marcato con Rodamina utilizzando cadaverina come 

spacer. Dall’analisi quantitativa delle immagini di microscopia confocale si nota come 

particelle con elevata densità di Folato-PEG (50 catene/particella) raggiungano i 

compartimenti lisosomiali più rapidamente e in quantità significativamente superiore 

rispetto a particelle con bassa densità di Folato-PEG (10 catene/particella), che hanno 

invece dimostrato un profilo di uptake comparabile a quello del monoconiugato 

Folato-Cadaverina-Rodamina. Si ritiene che un meccanismo di clustering recettoriale 

indotto dalla presenza di particelle multivalenti possa essere responsabile di un tale 

effetto. Infatti, in linea con molti studi presenti in letteratura, sistemi multi-

direzionati aumentano l’affinità per il binding recettoriale. In seguito sono stati 

compiuti studi di inibizione del meccanismo di internalizzazione al fine di chiarire 

quale processo di endocitosi fosse coinvolto. Tali studi hanno evidenziato come GNPs 

decorate con Folato-PEG, come anche il coniugato Folato-Cadaverina-Rodamina 

vengano internalizzati mediante endocitosi clatrina-indipendente. Questo risultato è 

in accordo con quanto emerso dalle immagini di microscopia elettronica di cellule KB 

incubate con GNPs funzionalizzate con Folato-PEG. Dalle immagini TEM è infatti 

possibile notare la presenza di invaginazioni della membrane plasmatica dalla forma 

e dimensioni compatibili con quelle che caratterizzano le caveole. L’endocitosi 

caveole-mediata è uno dei meccanismi clatrina-indipendente. 
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Nanoparticelle d’oro presentano inoltre proprietà chimico-fisiche uniche, fortemente 

dipendenti da dimensione e forma, correlate ad una serie di altre capacità 

"multifunzionali" che forniscono l’opportunità di combinare diagnostica con un 

trattamento terapeutico (farmacologico o fisico) mirato. Un ulteriore sviluppo del 

progetto ha perciò riguardato  lo sfruttamento di GNPs direzionate come 

sensibilizzanti della terapia sonodinamica che prevede l’utilizzo di ultrasuoni per 

causare la morte cellulare. Dai risultati degli studi cellulari si nota come il trattamento 

con ultrasuoni in seguito all’internalizzazione di GNPs direzionate determini una 

consistente morte cellulare. Al contrario, nessun effetto citotossico è stato rilevato dal 

solo trattamento con ultrasuoni o nanoparticelle. Il test di competizione ha inoltre 

ribadito la selettività dell’uptake recettore-mediato. 

Il concetto di targeting multi-modale è stato successivamente ampliato per lo 

sviluppo di nanoparticelle d’oro pH responsive, utilizzando un polimero responsivo 

agli stimoli micro-ambientali, in grado di mascherare le unità direzionanti nel 

torrente sanguigno ed esporle a livello tumorale. In particolare, è stato sintetizzato il 

copolimero pH sensibile poli(MCH-co-GMA) mediante tecnica di polimerizzazione 

RAFT. In condizioni fisiologiche il polimero si trova nella conformazione estesa, 

esercitando un’azione schermante nei confronti dell’agente di targeting; al contrario 

nel tessuto tumorale, grazie all’alterazione del pH rispetto al tessuto sano, si verifica il 

collasso della struttura con acquisizione di una conformazione idrofobica globulare. 

Ciò determina l’esposizione del direzionante, promuovendo l’endocitosi cellulare.  

Particelle d’oro sono state decorate con Folato-PEG (50 catene/particella, densità in 

grado di garantire una buona internalizzazione, come stabilito dagli studi descritti in 

precedenza), saturando poi la superficie con il copolimero poli(MCH-co-GMA). Test di 

uptake sulla linea cellulare KB, eseguiti in terreno privo di acido folico a pH 7.4 e 6.5, 

hanno evidenziato l’effettiva possibilità di ottenere un targeting selettivo determinato 

da variazioni microambientali di pH. L’internalizzazione del nanocarrier è stata 

quantificata sia mediante analisi di spettroscopia atomica che citofluorimetria, 

confermando come a pH fisiologico il polimero si trovi in conformazione estesa 

mascherante l’agente direzionante. A pH 6.5, caratteristico dell’interstizio tumorale, si 

verifica il collasso del polimero, l’esposizione del ligando che viene riconosciuto dallo 

specifico recettore che ne media l’endocitosi. 
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Un successivo sviluppo del sistema prevede la funzionalizzazione superficiale delle 

nanoparticelle con un polimero dotato di gruppi idrazinici a cui coniugare 

Doxorubicina mediante legame idrazonico. In virtù della sensibilità al pH del legame 

idrazonico, la Doxorubicina sarà rilasciata esclusivamente nei comparti 

endosomiali/lisosomiali, in seguito all’uptake cellulare mediato dal recettore FR per 

l’acido folico.  
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3. ABSTRACT 

The present research project was aimed at developing smart nanosystems able to 

selectively respond with morphological alterations to external physio-pathologic 

stimuli. These systems are intended for diagnostic or therapeutic applications in 

anticancer treatment. The responsiveness of these devices is intended to improve the 

site-selective targeting efficiency and reduce uncontrolled distribution in healthy 

tissues thus minimizing the severe side effects and the required dose. 

Several studies reported in literature highlighted that certain diseases are associated 

with specific tissue micro-environmental condition such as temperature, pH and 

redox alterations. Based on these changes it is possible to design smart nanosystems 

able to selectively respond to physio-pathologic stimuli through physical and 

morphological alterations. Among the many colloidal systems available for 

pharmaceutical applications, gold nanoparticles (GNPs) were selected as carriers 

because of their several advantages, such as the good biocompatibility, ease of 

synthesis and functionalization, the high surface-to-volume ratio and dimension that 

allow to take advantage of the EPR effect. Gold nanoparticles were produced 

following the Turkevich method by reduction of tetrachloroauric acid by sodium 

citrate. 15 nm gold nanosphere were obtained with a narrow polydispersity. 

Afterwards, GNP surface was decorated with a targeting molecule (Folate-PEG) to 

combine an active and a passive targeting aiming to enhance the selective 

accumulation within the tumour site. Notably, one of the aims of the project was the 

evaluation of the influence that the targeting agent density on the particle surface 

could have on the internalization of the system. For this purpose, deep cell studies 

have been done to assess whether an optimum targeting agent density exists. Gold 

nanoparticle surface was decorated with increasing Folate-PEG/GNP ratios and then 

GNPs were incubated with KB overexpressing Folate receptor cell line. As shown by 

the results, 50 chains of Folate per particle assure the maximum particle 

internalization. Moreover, the cell competition assay showed the breakdown of the 

particle internalization due to the presence of free folate which competes with the 

GNPs for the binding to the receptor, confirming the endocytosis selectively mediated 

by the Folate receptor. Folate decorated GNPs were tested also with MCF-7 cells, 
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which are not provided of the Folate receptor, revealing a negligible uptake, further 

confirmation of the selectivity of the internalization. 

As reported by many research studies, multivalent systems can undergo different 

internalization route with respect to monotargeted ligand. Aiming to further clarify 

the uptake mechanism and investigate the lysosomal delivery, two representative 

multivalent particles modified with different degrees of Folate-PEG (50 and 10 

chains/GNP) and the monovalent ligand Folate were fluorescently labelled with 

Rhodamine to allow the particle detection by confocal microscopy. In particular, 

Folate was conjugate to Rhodamine using Cadaverine as spacer. Quantitative analysis 

of confocal images showed that high Folate-PEG density particles (50 chains/GNP) 

traffic faster and more efficiently to lysosomes with respect to the other particle 

formulation (10 Folate-PEG chains/GNP) and the monoconjugate Folate-Cadaverine-

Rhodamine. One of the hypotheses that justify this result is the different ability of the 

two GNP formulations to induce the Folate receptor clustering and subsequent 

delivery to lysosomes. A multivalent network may increase the GNP avidity for FRs, in 

line with numerous studies. Afterwards pathway inhibition assay was performed 

aiming to elucidate the internalization mechanism. The results showed that Folate 

targeted GNPs are taken up by clathrin independent pathway, in agreement with the 

transmission electron microscopy images in which vesicles compatible with the 

caveolae were detected. Caveolae-mediated endocytosis is one of the clathrin-

independent pathways.  

Furthermore, gold nanoparticles possess distinct physico-chemical attributes that 

make them a versatile platform, suitable for the transport of drugs but also of many 

other functional molecules offering the great opportunity to combine a diagnostic to a 

specific therapeutic treatment (pharmacological or physical). A further development 

of the project concerns the exploitation of GNPs as sensitizers in the sonodynamic 

therapy. This is a non-invasive approach which uses ultrasound to trigger the cell 

death as direct consequence of ROS production. Sonodynamic cell study highlighted 

that the combination of the ultrasound exposure and the pre-incubation of cells with 

Folate targeted particles induced a significant cell death. On the contrary the 

incubation of cells with either the sole ultrasound or GNPs showed no cytotoxic effect. 

The competition assay further confirmed the uptake selectively mediate by the Folate 

receptor. 
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The concept of multimodal targeting was extended to the development of pH 

responsive gold nanoparticles, using a responsive polymer able to respond with 

morphological alterations to environmental pH changes. The pH responsive polymer 

poly(MCH-co-GMA) was obtained by RAFT polymerization. At physiological pH 

(blood stream), the copolymer is in the extended and hydrophilic conformation 

shielding the targeting agent; once reached the tumour compartment it becomes 

hydrophobic, collapses and exposes the targeting ligand that promote the 

endocytosis.  

Gold nanoparticles have been decorated with Folate-PEG (50 chains/GNP, which 

guarantee a good internalization as reported above) and then the particle surface was 

saturated with the pH responsive polymer poly(MCH-co-GMA). 

We had clear evidences that the gold nanoparticle cell uptake can be controlled by the 

environmental pH. Significant increase of the particle uptake was detected by either 

atomic adsorption spectroscopy or flow cytometry analysis, when KB cells were 

incubated with pH responsive Folate targeted gold nanoparticles at pH 6.5 mimicking 

the tumour interstitium with respect to pH 7.4. 

The nanosystem is intended for drug delivery to the tumour. For this purpose a third 

polymer bearing hydrazidic pendant groups will be synthetized. Then, Doxorubicin 

will be conjugated to the hydrazidic polymer via hydrazone bond, which once reached 

the endosomal/lysosomal compartments will by hydrolysed, allowing the drug 

release. 
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4. INTRODUCTION 

During the last few decades, much effort has been dedicated to biopharmaceutical 

research and great results have been achieved. However, many issues are still to be 

solved. The development of a new drug molecule is an expensive and time consuming 

process. Drugs must reach the target site avoiding uncontrolled distribution through 

the body and so limiting undesired side effects. This selectivity has been shown by 

very few molecules. The current methods of drug delivery exhibit specific drawbacks 

that scientists are attempting to address. Even if a drug is very potent, its therapeutic 

effect might be reduced by low aqueous solubility, unfavorable pharmacokinetics, 

poor biodistribution, premature drug degradation before reaching the desired target 

and lack of selectivity for target tissue. For this reason, novel technologies for drug 

administration and a step change in the drug delivery science are required in the 

biopharmaceutical area.  

Drug Delivery Systems (DDS) are non-conventional systems exploited to realize a 

controlled and site specific drug release. The traditional drug formulations show 

much limitation that can be overcome by the use of these delivery systems. Among 

the several advantages offered by DDSs, there is the improvement of the drug 

pharmacokinetic profile, the enhancement of therapeutic efficacy, less side effects and 

a better patient compliance.  

In the past decades manipulation of materials has been changing deeply with a focus 

on nanometric scale processes. This size range became of major interest in many 

scientific fields, from physics to chemistry to pharmaceutical and biomedical science. 

Nano-sized materials exhibit unique physico-chemical properties which are 

significantly different from their conventional bulk counterpart. With novel capacity 

to compose multifunctional systems, biomedical research started to aim at designing 

nanocarriers, such as micelles, liposomes, polymersomes, dendrimers, metal 

nanoparticles etc., which can be employed in treatment of relevant diseases such as 

cancer, and in the diagnosis field. 

Nanoparticles can be assembled according to a bottom-up process with natural 

components, such as phospholipids or with synthetic polymers1. The nanocarriers 

properties derive from the functional component features and the assembling 
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strategies. Aiming to an in vivo administration of these drug vehicles, nanocarriers 

must exhibit defined characteristics, and many parameters have to be taken in 

account: size, shape, surface charge, hydrophilic/hydrophobic balance, 

biocompatibility, complement activation, bioelimination, drug release profile etc. 

Drug delivery nanovehicles protect the drug from the external environment and 

possess adequate size to extravasate through the fenestrae of cancer capillaries, while 

being too bulky to be subject to kidney glomerular filtration. This results in long 

circulation time and enhanced accumulation within the tumour. Furthermore, their 

prolonged lifetime and the ability to extravasate to disease sites largely improves the 

safety and tolerability of the therapy, best shown by reduced cardiotoxicity of 

liposomal doxorubicin (Doxil) compared to the free drug2. This evidence led to the 

approval of Doxil for the treatment of Kaposi’s sarcoma by the US Food and Drug 

Administration (FDA) in 1995. Despite all these advantages, the drug loaded carriers 

have to face a complex series of biological barriers that limit the site-specific 

accumulation. Among all the obstacles, we have to take in account the opsonization 

process and the sequestration by phagocyte system (MPS), pressure gradients, 

endosomal and lysosomal escape and drug efflux pumps3. 

Nanoparticles, due to their size, can undergo internalization pathways (mainly 

endocytosis) that do not occur for small molecules4. Nanocarriers loaded with 

macromolecules, such as proteins and oligonucleotides, can be internalized by 

endocytosis and then traffic to lysosomes, where the release and the degradation of 

the loaded drugs occurs5. A vast amount of resources are continuously invested in the 

design of innovative multifunctional nanocarriers to proper overcome the biological 

barriers and avoid the rapid sequestration by macrophages. The chemical 

manipulation of the surface properties of nanovehicles with multiple functionalities 

enables specific distribution. A targeting agent is a ligand that binds a specific 

receptor in the body. Conventionally, targeted nanocarriers are directed towards 

tissues that overexpress a specific receptor which can ameliorate the therapeutic 

efficacy of treatment. Regrettably the protein corona around the nanoparticles, as 

direct consequence of the aforementionedopsonization process, might mask targeting 

ligands, resulting in decreased specific accumulation. The opsonisation is dependent 

on the particle size, surface charge, hydrophobicity and surface decoration. In 

particular, many studies highlighted that neutral hydrophilic particles undergo less 
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opsonisation as compared to hydrophobic charged ones6-8. In the light of this, the 

widely surface decoration with hydrophilic polymers, such as polyethylene glycol 

(PEG), is a powerful strategy to limit undesired protein adsorption. Notably a 

hydrophilic PEG polymer on a nanoparticle surface creates an elastic shell able to 

counterbalance the attraction forces between opsonins and the particle surface9. 

Nevertheless, nanocarriers may aggregate in biological systems due to the high ionic 

content of the plasma.  

Recently, sophisticated systems for better control over drug distribution and release 

have been generated. Stimuli-responsive carriers represent a promising approach for 

targeted drug delivery, since the drug release is triggered by external stimuli, that 

might be physical, chemical or biological (e.g. pH, temperature, ultrasound, enzymes 

etc.).  

Among the many different drug delivery systems developed in the last decades, gold 

nanoparticles (GNPs) have emerged for their unique combination of properties which 

allow them to act as a multifunctional platform: they can serve in the imaging and 

diagnosis fields10, in the delivery of therapeutic agents to disease sites11 but also as 

transfection agents for selective gene therapy or to monitor and guide surgical 

procedures12-14. Furthermore, as a result of their physico-chemical composition these 

metal nanovectors can be exploited as sensitizers in physical approaches such as the 

thermal ablation15 and radiotherapy16, and the emerging sonodynamic treatment 17. 
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Figure 1. Graphical representation of some of the common approaches currently used to develop 

multifunctional nanocarriers and its bio-applications18. 

4.1. CANCER AND THERAPY 

Cancer is currently one of the leading cause of death worldwide and is responsible for 

approximately one quarter of all deaths in the USA and UK13. About 70% of all cancer 

deaths occurred in low- and middle-income countries and a further rapid rise is 

pending soon (over 13.1 million deaths in 203019). 

4.1.1. Carcinogenesis 

Cancer begins with a cell, or a group of cells, that starts to replicate in an uncontrolled 

way.  Cancers which gains the ability to invade other tissues are called maligns, while 

benign tumours are not invasive and remain in the origin tissues without irreversibly 

compromising organ functionality. Cancer cells can spread from the tissue where they 

first generate to others through a fast growing blood and lymph systems able to avoid 

the recognition by the immune system. There are more than 100 different types of 

cancer, and most cancers are named by the organ or type of cell where they start (e.g. 
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lymphoma, melanoma). Physiologically, cell proliferation is controlled by a delicate 

equilibrium between pro-proliferation and anti-proliferation biochemical mediators 

and the replication cycle is carefully regulated20. This equilibrium ensures cell 

replication and growth when it is needed (i.e. during child growth, tissue repair after 

an injury and tissue regeneration) and contributes to the homeostasis of tissues and 

organs sizes during life. In addition to fast replication, cancer cells develop angiogenic 

ability and drug resistance which contribute to the peculiar features of tumour 

tissues. 

The cancer genesis is due to DNA damages or alterations. Over time, DNA 

accumulates changes that the DNA maintenance mechanisms, such as nucleotide- and 

base-excision repair, homologous recombination, end joining, mismatch repair and 

telomere metabolism, are unable to solve. This leads to activation of proto-oncogenes 

and inactivation of tumour-suppressor genes21. Proto-oncogenes encode proteins 

that activate mitosis. As a consequence of mutations, they become oncogenes 

provoking overexpression of cell division signals and leading to uncontrolled mitosis. 

Tumour-suppressor genes encode proteins that stop cell division in order to repair 

genetic damages.  

The causes of these alterations are associated with environmental agents such as the 

ultraviolet (UV) component of sunlight, ionizing radiation and numerous genotoxic 

chemicals, but also viral and hormonal factors.  

The carcinogenesis process can be divided in 4 main stages: 

 Initiation: permanent DNA damages caused by exogenous and endogenous 

factors. Irreversible step which proceeds very rapidly.   

 Promotion: increased DNA synthesis to face the fast proliferation of the 

transformed cells. Changes induced by promotors are reversible and 

promotors do not transform cells that are not initiated.  

 Malignant conversion: Carcinogenesis requires the conversion of benign 

hyperplastic cells to a malignant state, and invasion and metastasis are 

manifestations of further genetic and epigenetic changes. 

 Progression: appearance of malignant neoplasms accompanied by genetic 

alterations which lead to karyotype change. In addition, a continuing evolution 
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of chromosomal abnormalities within the cell providing new "independent 

characteristics” such as the ability of invasion, metastatic growth, anaplasia. 

 

During its multistep development, cancer acquires different capabilities identified as 

the six hallmarks of cancer which enable tumor growth and metastatic dissemination: 
 

• Inducing and Sustaining proliferative signaling: Cancer cells deregulate the 

production and release of growth-promoting signals, even stimulating neighbor 

normal cells to supply various growth factors. Moreover cancer cells overexpress 

some specific receptor on the cell membrane rendering such cells hyper-responsive 

to otherwise-limiting amounts of growth factors. The activation of additional 

downstream pathways can result in somatic mutation. Then, the disruptions of 

negative-feedback mechanisms that ensure homeostatic regulation lead to the 

enhancement of proliferative signaling. 
 

• Evading Growth Suppressor and Promotion of Malignancy: Cancer cells defect in 

tumor suppressor (such as RB and TP53 proteins) allowing persistent proliferation. 

Furthermore Contact Inhibition mechanisms, that in normal tissues operate to 

counterbalance proliferative signals, are abolished. Although TGF-β is a well-known 

anti-proliferative agent, recent studies has found TGF-β to activate in many late-stage 

tumors the epithelial-to-mesenchymal transition (EMT) program, which confers high-

grade malignancy to cancer cells. 
 

• Resisting Cell Death: The death process is divided in 3 main mechanisms: 

apoptosis, autophagy and necrosis. Apoptotic cells contract into small corpses which 

are consumed by neighbors. This process is activated in response to various 

physiologic stresses, such as high levels of oncogene signaling, DNA damages etc., and 

it is controlled by counterbalancing pro- and antiapoptotic regulatory proteins (Bcl-2 

family). An imbalance toward the overexpression of antiapoptotic agents or 

downregulation of proapoptotic factors results in the attenuation of apoptosis, often 

associated to tumors with high-grade malignancy state. Autophagy, like apoptosis, 

operates at the basal levels in normal cells but can be induced in situations of strong 

cellular stress. Induction of autophagy can prevent tumorigenesis, either in 

association or not with apoptosis. Nonetheless, in analogy to TGF-β, autophagy 

mechanism seems to have conflicting effects on cancer cells and tumor progression. 
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Necrosis leads to the explosion of cells, with the release of the contents, and 

proinflammatory signals in the surrounding microenvironment which attract 

inflammatory cells of the immune system. These cells can be actively tumor 

promoting. 
 

• Enabling Replicative Immortality: Contrary to cancer cells which show 

uncontrolled replication, normal cells can pass through a limited number of growth-

and-division cycles. This limitation is due to senescence and crisis steps. Senescence 

is an irreversible non proliferative but viable state. Those cells which circumvent this 

barrier fall into the crisis phase and die. Rarely, some cells emerge from the crisis 

statement developing immortality, the capability of unlimited replicative potential. 

Many studies have highlighted that telomere shortening represents a clock device 

which controls cell proliferation. Telomerase is the DNA polymerase involved in the 

elongation of telomeres, the protecting ends of chromosomes. This is the reason why 

telomerase activation is correlated to the resistance to senescence and cell death, 

promoting uncontrolled replication of the cell. On the other hand, lack of telomerase 

can provoke the generation of tumor promoting mutation, whereas subsequent 

telomerase activation stabilizes the mutant genome and allows unlimited 

proliferation. 
 

• Inducing angiogenesis: In adults angiogenesis is in a quiescent state and is turned 

on only transiently. Tumor progression leads to an “angiogenic switch” following the 

early stages of neoplasia, causing the continued growth of new vessels to sustain the 

expansion.  
 

• Activating Invasion and Metastasis: The invasion and metastasis cascade begins 

with a local invasion, then the intravasation by tumor cells in the blood stream and 

lymphatic system, the extravasation into the parenchyma in distant tissues forming 

micrometastatic lesions, which finally develop macroscopic tumors. Cancer cells 

acquire a combination of attributes that enable invasiveness and apoptosis resistance, 

leading to metastasis. 
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Figure 2. Representation of the six hallmark capabilities of cancer22. 

4.1.2. Anticancer therapies 

Cancer is still one of the leading causes of death worldwide and the goal of a cancer 

therapy is to achieve efficient and selective treatments with less damage to healthy 

tissues. Many approaches are available; the choice of the therapy depends upon the 

localization, the stage of the disease and the performance status of the patient. The 

most common treatments for solid tumours are:  
 

 Surgical resection including cryosurgery, hyperthermia and Photodynamic 

Therapy (local treatment). 

 Radiation therapy: high doses of radiation are exploited to kill cancer cells and 

shrink tumours. 

 Chemotherapy: a pharmacological systemic treatment. 

 Immunotherapy (cancer vaccines): a biological treatment that helps the immune 

system fight cancer based on antibodies and cytokines. 

 Hormone therapy: a cancer treatment that slows or stops the growth of cancer 

whose development is hormone dependent (monoclonal antibody, interferons). 

 Gene therapy: this strategy aims at the insertion a functional gene into the host 

cells to correct errors of metabolism or alter or repair a genetic abnormality. 

 Stem Cell Transplant: stem cells are given to replace those that were destroyed 

by chemotherapy and radiotherapy. 
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 Angiogenesis inhibitors: this strategy includes the administration of agents that 

interfere with the angiogenetic process by blocking signaling molecules and 

receptors. 

• Targeted therapies: this strategy specifically delivers drugs towards cancer cells 

avoiding side effects. 
 

Chemotherapy is a major therapeutic approach which may be used alone or 

combined with other forms of therapy. Classical antitumoural therapy involves the 

use of chemotherapeutics. These agents are, in general, small molecules that inhibit 

the replication or induce apoptosis of cells that divide rapidly, one of the specific 

cancer features.  

An important drawback of this treatment is that antitumourals indiscriminately kill 

cancerous and healthy cells, harming also normal cells which constitutively replicate 

fast, such as bone marrow cells, cells in the digestive tract, hair follicles. An 

uncontrolled systemic distributions diminish the drug concentration in the disease 

site, thus high drug doses are required to be effective against the tumour, leading to 

intolerable cytotoxic effects such as myelosuppression, gastrointestinal distress and 

anaemia. 

A long term administration of a specific drug at high doses can lead to multidrug 

resistance (MDR) reducing the therapeutic effects: there’s a delicate balance between 

drug sensitivity and resistance displayed by target tumour cells. MDR is mainly due to 

overexpression of efflux pumps (e.g. P-glycoprotein) in the cell membrane, which are 

responsible for transport of drugs out of cells, or upregulation of genes which can 

overcome the damage of these agents23. Often chemotherapy involves the use of 

different anticancer agents and supportive drugs; this combination can lead to drug 

interactions which represent a real clinical concern in patient toxicity or therapeutic 

response24. Moreover, most of the anticancer drugs show poor solubility in aqueous 

solutions requiring solvents that contribute in increasing the formulation toxicity. 

Among the anticancer drugs on the market, anthracyclines, cyclophosphamides, 

taxanes, and fluorouracil are some of the most useful antineoplastic agents, displaying 

a broad range of clinical activity against several solid and haematological 

malignancies24,25. Their main common problem is that they lack selectivity toward 

cancerous cells and indiscriminately kill cancerous and healthy cells.  
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New therapeutic strategies are rapidly progressing in order to overcome all the 

limitations of conventional anticancer drugs: 
 

 High-volume cellular screening for anticancer agents with combinatorial 

chemical libraries or by in silico research. 

 New target for anticancer drug design such as specific antigens and receptors 

overexpressed by certain types of tumour, transduction signals, and 

antiangiogenics factors. 

 Gene therapy and antisense oligonucleotides. 

 Administration of antitumourals by drug delivery systems (DDS) to enhance the 

selectivity of the therapy. 
 

Looking at the market, some of the chemotherapeutics are alkylating agents or anti-

metabolites that act on DNA and RNA molecules, causing crosslinking and blocking 

the replicative process. Other examples of drugs currently on the market are anti-

microtubule agents, topoisomerase inhibitors and cytotoxic antibiotics which inhibit 

cell mitosis.  

The new frontier of anticancer therapies is a high specific treatment against tumour 

cells that prevent damage to healthy tissues.  

The combination of different treatments can generate new effective strategies such 

as: 
 

 Neoadjuvant therapy (pre-surgery treatment): approached to shrink a tumour 

allowing surgical resection or radiotherapy. 

 Adjuvant therapy (post-surgery treatment): after a surgical excision of the 

tumour mass, chemotherapy and radiotherapy are administered to eliminate 

any micro metastases and to prevent relapses. 
 

Notably, in November 2014 the Food and Drug Administration (FDA) approved 

Bevacizumab solution for intravenous infusion (Avastin®, made by Genentech, Inc.), 

in combination with Paclitaxel, PEGylated liposomal doxorubicin, or Topotecan, for 

the treatment of patients with platinum-resistant recurrent epithelial ovarian, 

fallopian tube, or primary peritoneal cancer.  The Progression-free survival 

assessment demonstrated a statistically significant improvement in patients who 

received Bevacizumab plus chemotherapy compared with those who received 

chemotherapy alone (p<0.0001)26. 
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Even the combination of physical approaches to pharmacological treatment, such as 

thermal, mechanical or biochemical damage, can produce a selective and effective cell 

killing. 

Hence, a multidisciplinary strategy can become the standard approach to avoid an 

inadequate management of side effects and to improve clinical outcomes and quality 

of life. 

4.1.3. Sonodynamic therapy 

Sonodynamic therapy (SDT) is a noninvasive approach which involves the synergistic 

effect of sonosensitizer and ultrasound on tumor damage. Individually, these 

components are non-toxic but when combined together generate cytotoxic reactive 

oxygen species (ROS) 27, responsible of irreversible destruction of tissues. Ultrasound 

is a kind of mechanical wave able to penetrate into depth through human tissue with 

weak decade. As a result SDT can be exploited even for the treatment of deep seated 

malignant tumours28. Moreover, ultrasound can be tightly focused in a limited focal 

zone without affecting healthy tissues. The interaction of ultrasound with aqueous 

environments results in a unique phenomenon known as cavitation which consists of 

three stages leading to the release of energy: nucleation, growth and implosive 

collapse of gas-filled bubbles. The implosion of these bubbles leads to extreme 

temperatures and pressures responsible for the ROS generation. 

With the development of SDT, some adjuvant agents were introduced to enhance its 

curative effect, like porphyrins, xanthene-based sensitizers etc. Despite their potency 

in the enhancement of SDT effect, most of sonosensitizers suffer of poor water 

solubility, chemical instability and uncontrolled distribution causing a decreased ROS 

production. Moreover, even if ultrasound is generally considered “ safe”, it can affect 

tissue through a variety of mechanisms, mainly thermal or non-thermal, depending 

on various factors such as the intensity of the beam, the duration of exposure and 

frequency29. 

As a result, there has been increasing interest in using drug delivery systems to allow 

a preferential accumulation of sonosensitizer. Nanotechnology offers the great 

possibility to manipulate molecules and supramolecular structures to produce 

devices with programmed functions. Recent studies showed that gold nanoparticles, 

owing to their special physical properties, can accelerate the cavitation phenomena, 
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emerging per se as therapeutic nano-sonosensitizers. Notably gold nanoparticles have 

a good biocompatibility and their surface can be decorated with suitable targeting 

agents to exert a preferential accumulation in tumors where the local ultrasound 

exposure contributes to selective elimination of tumors. 

4.2. PATHOPHYSIOLOGY OF TUMOUR TISSUE 

Overexpressed receptors, mutated proteins and other molecules that interfere with 

key transduction signalling pathways are some of the major targets for drug 

development in order to eliminate mutated cancer cells. Although this common 

strategy can be initially successful, multidrug resistance can lead to a disease relapse.    

This implies some missing links between the actual underlying carcinogenic 

mechanisms and current drug development. Recently, tumour microenvironment has 

been recognized as a key contributor for cancer progression, invasion and 

metastasis30. As proposed by Steven Paget, cancer is not an isolated group of cells, it is 

a “seed” which needs a fertile “soil” (the microenvironment)31 to grow. Cancer tissue 

presents a complex pathophysiology and biological features which differ remarkably 

from healthy tissue. In light of this, targeted therapies have been developed taking 

advantage of all these characteristics to enhance the treatment efficacy. The more 

evident alterations which tumours undergo are at cellular, molecular and metabolic 

level, as a result of different gene activations. 

 

Hypoxia. Uncontrolled cell division is fundamental for fast growth of the tumour 

mass; this process requires a considerable quantity of oxygen. Due to poor capillary 

development, oxygen tension decreases to 0-20 mmHg, while in normal tissues it is in 

the range of 24-66 mmHg32, thus causing hypoxic conditions. The association of 

hypoxia to malignant tumour development has been observed in human tumours, 

since oxygen depletion can affect the regulation of pathways promoting angiogenesis, 

and causing necrosis. Oxygen radical production and reoxygenation of the tumour 

after hypoxia will drive additional oxygen radical formation33. Moreover, as firstly 

reported by Gray L.H. in 1953, hypoxia can produce aggressive phenotypes that are 

more resistant to radiotherapy and chemotherapy and favouring the tumour 

progression34. 

 



 Introduction  

33 
 

Acidic pH. Tumour tissues often exhibit an acidic pH, which is a consequence of high 

production of acidic metabolites such as lactic acid. The fats replication process needs 

to be supported by a high amount of energy. Healthy cells get energy from aerobic 

glycolysis by oxidation of pyruvate, which takes place within the mitochondria. By 

contrast tumour cells prefer the glycolytic pathway, even if oxygen is abundant. 

An insufficient cellular respiration, due to inadequate oxygen supply or mitochondrial 

damage, can cause an increase of glucose consumption, switching the metabolism to 

anaerobic glycolysis. This effect was first postulated by Warburg, so called “Warburg 

effect”35. The massive production of lactic acid, mainly due to lactate dehydrogenase 

activity, and the subsequent activity of proton pumps are the major causes of the low 

extracellular pH36. High levels of lactate can help tumour cells to escape from the 

immune system, promoting a chronical inflammation37. These changes are often 

supported by mutations which affect the tumour cell metabolism38, such as genes for 

membrane-based ion transporters (e.g. the Na+/H+ antiport and the Na+-coupled 

HCO3-/Cl- transporter). Moreover the CO2 accumulation can contribute in 

microenvironment acidification since it is processed into carbonic acid by carbonic 

anhydrase enzyme. 

As a result of the modification of cancer cells’ energetic metabolism, the pH value in 

the extracellular microenvironment of the tumour is around 6.4-6.8 instead of 6.9-7.4 

as showed by normal tissue39,40. This mutate range of pH can be exploited to design 

pH responsive materials able to selectively deliver chemotherapeutics to cancerous 

cells. 

 

Tumour vascular architecture. Cancer originates from a single neoplastic cell. The 

malignant mass grows up to a mass of 1-2 mm by exploiting the existing vessels 

which support healthy tissues41. A further increase in tumour mass generates a 

situation of hypoxia in the inner area of the mass itself, due to limited oxygen 

diffusion. 

Thus, in order to guarantee an adequate supply of oxygen, nutrients and the removal 

of waste products, a tumour rapidly develops its blood supply, leading to a vascular 

architecture that is significantly different from that of normal tissue. Cancer vascular 

networks present tortuous vessels, loops, shunts, dramatically variable intervascular 

distances, and large avascular areas, generally absent in normal vascular 
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architecture42. The new vascular network development is triggered by up-regulation 

of pro-angiogenic factors and down-regulation of inhibitors of vessel growth43. 

Hypoxic conditions deriving from the increasing distance between the growing 

tumour cells and the capillaries can induce some angiogenic phenotypes44. The 

balance between pro-angiogenic and anti-angiogenic factors leads to structurally 

organized vessels, with a complete basal membrane to support the endothelium. In 

tumour tissue this missing balance produces a vascularization network with 

incomplete endothelium and ample fenestrations of 100-800 nm45, compared to 50-

60 nm of healthy tissues. As a consequence blood vessels show an enhanced 

permeability to macromolecular components such as plasma proteins and 

macromolecular therapeutics. Furthermore, leaky tumour vessels contribute to the 

generation of interstitial hypertension, which limits the delivery of drugs to tumour46. 

 

Enhanced Permeability and Retention effect (EPR effect). The peculiar structure 

of the tumour vasculature led to the discovery of the Enhanced Permeability and 

Retention (EPR) effect by Matsumura and Maeda who found that molecules with high 

hydrodynamic size accumulate in tumour more efficiently than in healthy tissues47.  

This phenomenon originates from two main reasons:  
 

 Newly formed tumour microvasculature shows disorganization and lack of 

conventional hierarchy. Moreover the endothelial surface is fenestrated with 

gaps between endothelial cells, smooth muscle and a proper basal membrane 

are often lacking. Blood vessel leakiness enables molecules that cannot 

permeate healthy tissues to infiltrate deeply in the tumour matrix and reach 

cancer cells. 
 

 A second important characteristic of tumours is the dysfunctional lymphatic 

drainage system: small molecules can diffuse back to the blood circulation, 

while macromolecules, such as colloids, which have a bigger hydrodynamic 

size, are entrapped into the tumour tissue, where they can easily accumulate. 

 

The EPR effect is further enhanced by many pathophysiological factors such as 

bradykinin, nitric oxide, prostaglandins, vascular endothelial growth factor VEGF, and 

tumour necrosis factor. 
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Figure 3. Schematic representations of the EPR effect in a cancer tissue. Nanocarriers can extravasate 

through the large fenestrations of the tumor capillary, as a consequence of the defective angiogenesis. 

Targeted nanoparticles can thus recognize a specific receptor expressed on the cell surface, triggering 

a receptor-mediated endocytosis48. 

 

Redox equilibrium. Cancer cells produce large quantities of hydrogen peroxide49 

since NADPH-oxidase is regulated by the GTPase Rac1, which is itself downstream of 

the proto-oncogene Ras. ROS can cause strand breaks, alterations in guanine and 

thymine bases, and sister chromatid exchanges33. This may deregulate the body's 

cellular defence system and lead to genomic instability50. 

4.3. PRINCIPLES OF NANOCARRIER DESIGN 

Despite a century of perpetual discovery and development, nowadays formulations 

leave drugs incapable of localizing specifically at sites of interest. In this scenario 

nanotechnology has been increasingly applied to the area of drug development. 

Nanotherapeutics have emerged as suitable drug vehicles able to increase the 

solubility of high hydrophobic anticancer agents, overcome pharmacokinetic 

limitations of conventional drug formulations and realize a site-selective treatment 

by combining different targeting strategies. With all these worthy characteristics, 

nanocarriers can realize a potent, less toxic and site-selective treatment like the 

elusive magic bullet postulated by Paul Ehrlich. However, despite these potential 

advantages, only a relatively small number of nanoparticle-based medicines have 
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been approved for clinical use by regulatory authorities51, with numerous challenges 

and hurdles at different stages of development. Lack of efficacy and safety are the 

main reasons of approval failure in later-stage clinical trials52. Nonetheless, there are 

some other concerns to consider. Nanoparticle-based systems are complex three 

dimensional entities which require a definite design, controlled production and 

highly reproducible scale-up process to obtain a product with all the desired 

physicochemical characteristics52. Overall, although many efforts have been made to 

redact nanomedicine’s regulatory standards, there is still a lack of guiding 

considerations in the examination of nanoparticle-based medicines compared with 

conventional medicines. 

Nanotherapeutics have to cross many biological barriers before reaching a successful 

accumulation within the targeted disease sites. Among the different obstacles which 

limit the efficacy of the treatment, there is the uncontrolled distribution of the 

therapeutics which freely diffuse into the body. The direct consequence is an 

inadequate drug accumulation in the target sites limiting the achievement of 

efficacious dose. Site-specific delivery represents a formidable challenge if 

nanocarrier design doesn’t take into account the features of biological barriers and 

microenvironments encountered upon intravenous administration.  

 

Particle extravasation from the blood stream: passive targeting. As described by 

Maeda and co-workers, tumour vasculature is characterized by incomplete 

endothelium and ample fenestrations which allow for colloid extravasation from the 

blood circulation. Moreover, the inefficient lymphatic drainage associated with high 

interstitial pressure retains these accumulated macromolecules, increasing the 

permanence in the disease site. The EPR effect depends on several parameters: 

 

 Size: Several biological phenomena depend on nanoparticle size, such as 

circulation half-life, extravasation through leaky vasculature, macrophage 

recognition, biodistribution and the mechanism of cell uptake. Vascular 

endothelium of healthy tissue presents junctions of different size, depending 

on the tissue type. In most tissues pore size is below 2-6 nm, so too small for 

colloids to penetrate. Noncontiguous endothelia with vascular fenestrations of 

40–150 nm are present in the liver and kidney glomerulus leading to 
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nonspecific accumulation of larger particles53. Moreover, spleen endothelium 

can have openings between 200–500 nm allowing the retention of particles 

>200 nm. Nanoparticles smaller than 5 nm are rapidly filtered by kidneys and 

cleared in the urine54. Particles with a dimension in the micrometer range (2–5 

μm) can be exploited to target metastatic lung cancer since it has been proved 

to highly accumulate in this district3. In light of this, nanoparticles with a 

dimension range of 80-150 nm can guarantee for an optimal circulation time, 

consequently increasing the extravasation capacity into the tumour55. As size 

increases beyond 150 nm, more and more nanoparticles are entrapped within 

the liver and spleen. 

 Shape: Distinct particle geometries affect dynamics, cellular uptake and in vivo 

fate3. Discoidal particles interact with vessel walls much more than spherical 

particles, with higher adhesion to the endothelium56. Many studies highlighted 

that high aspect ratio particles have prolonged-circulating lifetimes and so 

enhanced accumulation within tumours.57 

 Surface charge: Particle surface charge can impact opsonization process, 

circulation times and interaction with resident macrophages. In particular 

cationic particles show a higher rate of nonspecific uptake probably as 

consequence of the interaction with sialic acids, important components of cell 

membranes. On the other hand, positively charged particles facilitate 

endosomal release through mechanisms, such as the “proton sponge” effect, 

preventing degradative effects of the endosomal compartment. Neutral and 

slightly negatively charged nanoparticles have longer circulation lifetimes 

thanks to the reduced protein adsorption.  

 Stealth-like behaviour: Particle surface functionalization with hydrophilic 

flexible polymers stems the opsonization process and increases the circulation 

time. Polyethylene glycol (PEG) is the polymer of choice to produce stealth 

nanocarriers. The long circulation lifetimes and ability to extravasate to 

disease sites largely improved the safety and tolerability of nanoparticle-

formulated drugs. This is the case of Doxil, pegylated liposomal doxorubicin, 

which showed a high stability and reduced cardiotoxicity compared to free 

drug.  
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Figure 4. Nanoparticle designs, in terms of size, shape, modulus, charge, material, surface, and cargo, as well as 

their interactions in the body, determine their individual behavior54. 

 

Although the EPR effect in tumors has propelled the field of nanoparticle-based drug 

delivery, the phenomenon has been shown to vary dramatically with regards to the 

degree of tumor vascularity, tumour type and the expression of permeable factors. 

 

Evasion of macrophage sequestration. After intravenous administration, 

nanoparticles are coated by a layer of plasma protein called opsonins. The protein 

corona is recognized by specific receptors on the surface of phagocytes which 

sequester nanoparticles. The opsonization process depends on size, surface charge, 

hydrophobicity and surface chemistry58. 

 

Cellular internalization: active targeting. Low molecular weight hydrophobic 

molecules easily diffuse through the cell membrane. On the contrary, supramolecular 

systems require active uptake mechanisms. Efficient targeting may be obtained by 

conjugation of specific target molecules, distinguishing of tumour type, organ or 

tissue. Many targeting moieties can be used for the chemotherapeutic delivery 

specifically to cancer cells: antibodies, peptides, lectins, sugars, and vitamins are 

some examples59. Cancer cells require abundance of oxygen and nutrients to sustain 

the rapid proliferative activity and promote tumour invasiveness. For this reason 

several receptors are up-regulated in some cancer tissue and may play a role in 
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cancer progression (e.g. Human epidermal growth factor receptor 2 (HER2), Folate 

receptor, Transferrin receptor60). 

The term “active targeting” simply means a specific “ligand–receptor type 

interaction”, condition that occurs only after blood circulation and extravasation. A 

long circulation time can ameliorate drug accumulation in tumour site. Consequently 

“active targeting” by itself does not automatically translate into effective delivery to 

the entire tumor, while the combination of passive and active targeting can further 

increase the drug accumulation.  

Once drug carriers reach cancer cells, an efficient ligand–receptor interaction is 

dependent upon a variety of factors which include: targeted cell selective expression 

of the receptor relative to non-target cells, receptor availability on the target cell 

surface, the rate of internalization against shedding of that surface receptor following 

ligand binding, etc61. 

Even the targeting agent density on particle surface can influence the uptake 

efficiency. It has been shown how decoration of particles with multiple copies of such 

targeting ligands can increase the avidity of particles for target-cell binding, via the 

cooperative nature of multivalent binding to cell-surface receptors62. 

 

Drug release. When interaction with the receptor occurs, the drug can have two 

fates:  
 

a) Drug is released from the carrier in the extracellular space, and then diffuses into 

the cell.  
 

b) Carrier is internalized, and then the drug diffuses out of the carrier (if physically 

entrapped) or it is released by bond cleavage (if chemically conjugated to the 

carrier) upon reaching the endosomal compartment. Some proportion of the 

encapsulated material can escape the endosomes and traffics to its intracellular 

site of action. 
 

The release mechanism can be triggered by several stimuli: 
 

 Temperature: Thermosensitive polymers exhibit a phase transition at a 

certain temperature, called LCST, which results in changes in conformation, 

solubility and hydrophilic-hydrophobic balance. The drug release could be in 

response to an endogenous temperature increase which makes the 
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thermosensitive polymer collapse, or to an externally applied temperature 

increase63. 

  pH: pH change can induce the polymer hydrolysis and consequent disruption 

of the vesicle and drug release64. Another method to realize a controlled drug 

release upon pH change is the chemical conjugation of the drug to the carrier 

via a pH-sensitive bond (e.g. hydrazone bond, azo bond, citraconic amide 

bond).  

  Oxidation/Reduction: Polymers which contain disulfide bonds between the 

hydrophobic and hydrophilic blocks reveal a good stability in the typically 

oxidizing 

extracellular environment, and lability once within the intracellular 

compartments. In particular, the elevated level of glutathione (GSH) found in 

many tumours can be exploited to realize a redox sensitive system able to 

selectively release content in the cytosolic compartment65. 

  Ultrasound: Ultrasounds are an effective harmless method which allow for a 

spatiotemporal controlled drug release. US are noninvasive and the tissue 

penetration depth can be easily regulated by varying frequency, duty cycles 

and time of exposure. Ultrasound treatment can induce the release of the drug 

by either thermal or mechanical effects generated by cavitation phenomena or 

radiation forces.  

  Light: Drug release can be induced by illumination at a specific wavelength. 

An interesting system was reported by Mabrouk and coworkers who 

introduced azobenzene moieties to polymerosomes. Illumination with UV 

light triggered a conformational change in the membrane inducing 

polymerosome disruption. 

4.4. ENDOCYTOSYS PATHWAYS 

The plasma membrane is a fluid, dynamic, semi-permeable bilayer that surrounds 

cells and forms a barrier which gates access to the cell, permitting entry to nutrients 

and extracellular messenger molecules, but locking out hazardous compounds and 

deadly viruses66. The internal composition of the cell is maintained by specific 

transport proteins which mediate the selective transport of small molecules such as 

aminoacids, sugars and ions. On the other hand, macromolecules are internalized via 
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receptor-mediated endocytosis (RME) which involves the interaction with specific 

receptors on cell surface. Macromolecules are carried into the cell in membrane-

bound vesicles derived by the invagination and pinching-off of pieces of the plasma 

membrane in a process termed endocytosis. Endocytosis involves many mechanisms 

that can divided in two main categories: 

 Phagocytosis: this is a highly controlled process for the uptake of large 

particles and represents a prerogative of mammalian cells. Specific cell-

surface receptors and signalling cascades mediated by Rho-family GTPases 

are involved67,68. 

 Pinocytosis: this is a fluid-phase uptake which occurs in all cells. Pinocytosis 

can be further divided into three main pathways: clathrin-mediated pathway, 

caveolae-mediated endocytosis and clathrin and caveolae independent 

pathway69. 

Deep knowledge of the endocytic pathways will allow the design of drug delivery 

systems able to release their drug payload only inside the cell, with obvious 

advantages in term of systemic toxicity and side effects. 
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Figure 5. Multiple cell uptake mechanisms. The endocytic pathways differ with regard to the size of the 

endocytic vesicle, the nature of the cargo (ligands, receptors and lipids) and the mechanism of vesicle 

formation70. 

4.4.1. Clathrin mediated endocytosis 

Clathrin mediated endocytosis (CME) is a constitutive process in mammalian cells 

and it is involved in the uptake of nutrients, growth factors, pathogens and 

receptors69. Cargo is packaged into vesicles of well-defined size that are surrounded 

by a coat predominantly made of the protein clathrin and adaptor protein 

complexes71. Clathrin shows a triskelion shape composed of three clathrin heavy 

chains and three light chains. It forms a polyhedral lattice surrounding the vesicle 

which mediates the cargo internalization. The uptake process is highly selective and 

includes 4 key steps, illustrated in Figure 6. 
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• Initiation and cargo selection: cargo recognition by specific receptors on cell 

membrane. 
 

• Coat assembly: concentration of high-affinity transmembrane receptors and their 

bound ligands into ‘coated pits’ on the plasma membrane which are formed by the 

assembly of clathrin (clathrin-coated pits, CCPs). 
 

• Scission: CCPs invaginate and pinch off to form endocytic vesicles (CCVs) that are 

encapsulated by a polygonal clathrin coat and carry concentrated receptor–ligand 

complexes into the cell. Finally the conditions are ripe for the assembled scission 

molecule dynamin and subsequently the uncoating molecule auxilin to function. 
  

• Uncoating: After that, clathrin is usually removed from the vesicle (clathrin 

recycle), whose final size is around 120 nm68. When the internalization occurs 

through this pathway, the vesicle finally fuses with an endosome and, later on, the 

endosome fuses with a lysosome in which the internalized particle can be degraded. 

The pH of the endo-lysosome gradually drops from about 6 in the early endosome to 

around 5 in the late endosome, due to proton pump activity72. 
 

 

Figure 6. The Key Steps in Clathrin-Mediated Endocytosis: endocytic vesicles starting from clathrin-

coated pit. Graphical representation (A) and TEM images of the process over time (B). 
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Intracellular transport and processing after receptor-mediated endocytosis vary 

markedly among different receptor-ligand systems and different cell types, and 

determine the fate of drug-carrier composites to specific intracellular destinations. 

Endogenous ligands and receptors can follow various routes: 
 

- Receptors are recycled along with the ligand, back to the site from where the 

receptor originated. 

- Receptors can move to lysosomes and, with the ligand bound to them, share 

the fate of the ligand.  

- Receptors can provide for intracellular transport of ligand and return to the 

initial plasma membrane domain. 

- Receptors can return to a different domain of the plasma membrane 

(transcytosis). 

 

When the internalization occurs through this pathway, the vesicle finally fuses with 

an endosome and, later on, the endosome fuses with a lysosome where the 

internalized cargo is degraded. Through its route, cargo encounters a mildly acidic pH 

in early endosomes (6.8-6.5), an acid pH in late endosomes (pH 6-5) and finally 

reaches a strongly acidic milieu in lysosomal compartments (pH 5-4). These different 

pH conditions can promote the dissociation of the ligand-receptor complex and the 

degradation of vesicle cargos. 

4.4.2. Caveolae-mediated endocytosis 

Caveolae are flask-shaped invaginations of the plasma membrane. The shape and 

structure are conferred by caveolin, a dimeric protein that binds cholesterol and self-

associates to form a striated caveolin coat on the surface of the membrane 

invaginations68. Many signalling molecules are associated with caveolae and are 

involved in key signalling cascades, such as cholesterol homeostasis. In most cells, 

caveolae internalization rate is quite slow and the small vesicles, 60-80 nm in 

diameter, can carry little fluid-phase volume73. Caveolin pathway is one division of 

the non-clathrin endocytic pathways and, even if the internalization process is very 

similar to CME, it doesn’t involve any enzymatic activity. Folic acid and albumin are 

ligands usually undergoing internalization by Caveolae-mediated endocytosis.  
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4.4.3. Clathrin- and caveolae- independent pathway 

Caveolae represent just one type of cholesterol-rich microdomain on the plasma 

membrane. Others, more generally referred to as ‘rafts’, are 40–50nm structures that 

diffuse freely on the cell surface68. These small rafts internalize extracellular fluid, 

GPI-linked proteins, Interleukin-2 and growth hormone receptors etc. One such 

pathway is  GPI AP-enriched early endosomal compartments (GEECs) which delivers 

cargoes to endosomes through the formation of acidic, tubulovesicular 

compartments73. Even if the recruitment of GPI-linked proteins into these endocytic 

structures is dependent on the GPI moiety, the mechanisms that govern clathrin- and 

caveolae- independent endocytosis remain poorly understood. 

4.4.4. Folate receptor endocytosis and trafficking 

Folic acid (Figure 7.) is an essential vitamin which cannot be synthetized by humans 

and must be supplied through diet. Folates are important one-carbon donors in de 

novo nucleotide synthesis of eukaryotic cells. For this reason, Folate deficiency is 

associated with many diseases, including fetal neural tube defects, cardiovascular 

disease and cancers74. 

 

 

 

Figure 7. Chemical structure of Folic acid. 

 

Folate uptake is mediated by different transporters. Reduced Folate Carriers are 

ubiquitously expressed anion channels with a low folate-binding affinity (Kd = 1–

10 μM) that transport reduced folates directly into the cell cytosol. By contrast, high-

affinity uptake of folic acid is mediated by Folate Binding Proteins (FBP), known also 

as Folate receptors (FR). Folate receptors (FRα, FRβ and FRγ) are cysteine-rich cell-

surface glycoproteins that bind Folate oxidized form with high affinity (Kd < 1 nM) to 

mediate its cellular uptake. FRα and FRβ are (GPI)-anchored whereas the FRγ isoform 
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is a soluble protein75. Folate receptors are identified as low capacity transporters that 

require to recycle back to the cell surface76. Although Folate receptors are expressed 

at low levels in most of healthy human tissues, FRα isoform expression is up-

regulated in a large number of epithelial malignancies to sustain the demand for rapid 

cell replication75. For this reason, FR is exploited as diagnostic marker of various 

tumors (e.g. brain77, and ovarian cancers76), but also as targeted drug delivery to 

cancer tissues. 

FRα possesses a globular structure stabilized by eight disulphide bonds and contains 

a deep open folate-binding pocket. The folate pteroate moiety is hidden inside the 

receptor, while its glutamate moiety is exposed to the solvent. Notably, Folate shows 

two carboxylic groups: the one in α position is responsible for the biological activity, 

while the γ-carboxylic group can be conjugated to drugs without affecting the affinity 

for the receptor74.  

 

 

Figure 8. Interaction map of folic acid with ligand-binding-pocket residues. The folic acid chemical 

structure is shown in magenta, pocket residues in black and hydrogen bonds as green dashed lines 

with bond distances (Å) indicated. Hydrophobic interactions are presented as curved red lines. The 

pteroate and glutamate moieties of folic acid are indicated above the map74. 

 

Quantitative analysis of Folate receptor distribution highlighted the diffusely 

distribution on cell membrane, and only after cross-linking there is a substantial 

folate receptor enrichment localized to caveolae75,78. Although FR redistribution and 

clustering to caveolae was not mediated by folate binding, it is however induced by 
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incubation with cross-linking antibodies. As confirmed by many studies reported in 

literature, endocytosis of GPI-APs is mediated by clathrin-independent pathway79,80, 

in particular GEEC compartments appear to be involved in the delivery to late 

endosomes75,81. 

After folic acid binds to the transmembrane receptor, internalization occurs via 

caveolae-mediated pathway, and then the ligand is released from the complex in an 

acidic intracellular compartment and exported from the intact endosome into the 

cytoplasm. This putative exporter was shown to require a trans-endosomal pH 

gradient82. 

 The described process is termed potocytosis and is specific for small molecules, such 

as folic acid. The rate of FRα internalization is not affected by folic acid binding: a 

dynamic exchange between the internalizing receptors and an internal pool 

guarantees a constant number of FRs on the cell surface83. 

Granted the specific FR overexpression by some human tumors, folic acid can be 

exploited for efficient intracellular delivery of anticancer agents84. Several 

nanocarriers such as cyclodextrin, dendrimers, gold nanoparticles and liposomes, 

have been widely decorated with folic acid. Many studies highlighted important 

implications of multi-ligand attachment per nanoparticle for the development of 

more effective targeting systems. Multivalent targeting 

devices can provide dramatic improvements in avidity by enhancing the resident time 

of the drug on the cell target85. On the other hand, increasing the average number of 

ligands per nanoparticle will create competition among multiple ligands for a single 

receptor, limiting the access that ligands have to receptors86. In several reports it was 

further shown that once a certain threshold in the ligand density is reached, there is 

no further improvement of internalization efficiency, due to the receptor saturation 

effect.  

Moreover, multivalent targeted carriers can induce receptor clustering, as reported 

for folate receptor87, αvβ3 integrin88 and the transferrin receptor89. Targeting these 

clusters can be optimized by decorating carrier surface with intermediate ligand 

density, to assure multiple nanoparticles binding to each cluster. On the contrary, too 

high ligand density will hinder the binding of  the same cluster to other particles, 

because of the high ratios of receptors bound per nanoparticle86. Even the use of 

linkers to connect the nanoparticle surface and folate can affect the affinity to the 
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receptor. For instance, PEG linker with different lengths and flexibility could increase 

the availability of targeting ligands and alleviate potential steric hindrances. 

In conclusion, there are so many factors that can affect the affinity for the receptor, 

the uptake efficiency and even the internalization pathway. 

4.5. ENVIRONMENTALLY RESPONSIVE CARRIERS FOR CANCER THERAPY  

Various in vivo studies have demonstrated that the specific delivery of antineoplastic 

drugs can be obtained by incorporation of active targeting moieties that bind to 

antigens or receptors overexpressed on the target cells relative to normal tissues.  

Despite their potential for increased drug half-lives, stability and improving a drug’s 

propensity to accumulate at sites of injury, the nanocarriers have to face a complex 

framework of sequential biological barriers that severely limit site-specific 

bioavailability, preventing achievement of proper therapeutic outcomes3. A vast 

amount of research and resources are continually invested in the incorporation of 

innovative design features within traditional nanocarrier constructs for proper 

negotiation of biological barriers, resulting in the creation of multifunctional 

nanoparticles. The structural particularity of the vascular endothelium and the micro-

environmental characteristics (pH, temperature, redox potential and enzymatic 

composition) can be exploited to control the delivery of drugs in specific tissue, organ 

or intracellular compartment. For these reasons, stimuli-responsive systems are 

becoming more important in the field of anticancer therapy as it is possible to tune 

and control their properties at the molecular level by applying certain external 

triggers. Thus, stimuli-responsive nanomedicines could be one class of possible 

candidates to fulfill all the requirements of “magic bullets”, able to realize an on-

demand drug delivery. 

This approach requires the use of biocompatible materials that are able to undergo a 

specific protonation, a hydrolytic cleavage, or a molecular or supramolecular 

conformational change in response to a desired stimulus90. 

Among the array of the stimuli-sensitive systems, pH responsive nanocarriers have 

been the most investigated: the wide range of pH gradients available in different 

tissues and subcellular compartments in physiological and pathological conditions 

can be exploited to exercise a finely carrier response.  
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Moreover, several exogenous physical stimuli can be applied to the disease site to 

allow for tailored release profiles with excellent spatial, temporal and dosage control. 

Among the various external stimuli, thermoresponsive drug delivery is among the 

most investigated stimuli-responsive strategies, and thus has the highest potential for 

clinical applications. Temperature sensitive carriers are generally liposomes, polymer 

micelles or nanoparticles whose constituents are generally lipids or polymer (usually 

poly(N-isopropyl acrylamide), PNIPAM). These materials are able to switch from the 

hydrophilic to the hydrophobic state upon dehydration when exposed to 

temperatures above the LCST (Lower Critical Solution Temperature). This switch 

takes place because at lower temperatures the hydrogen bonds between the polymer 

and water molecules maintain the adequate polymer hydration thus allowing the 

polymer dissolution. As the temperature increases, the water is desorbed from the 

polymer and hydrophobic interactions among the side chains of polymers become 

prevalent. This behaviour leads to finely control on the release of the drug following a 

variation in the surrounding temperature. Ideally thermoresponsive nanocarriers 

should retain the cargo at body temperature (~37 °C), and rapidly release the drug 

within a locally heated tumour (~40–42 °C). Thermosensitive liposomes are at the 

present the most advanced thermoresponsive nanosystems and thus have the highest 

potential for clinical applications. Lyso-Thermosensitive Liposomal Doxorubicin 

(LTLD) is a proprietary heat-activated liposomal encapsulation of doxorubicin, an 

approved and frequently used oncology drug for the treatment of a wide range of 

cancers (Phase III clinical trial for primary liver cancer and a Phase II clinical trial for 

recurrent chest wall breast cancer). 

4.6. GOLD NANOPARTICLES AS CARRIER FOR DRUG DELIVERY APPLICATION 

4.6.1.  Historic introduction 

Gold is a transition metal with a high stability thanks to its electronic configuration: 

[Xe]4f145d106s1. Since the 6s orbital with one electron is contracted, this electron is 

more tightly bound to the nucleus and less available for bonding with other atoms. 

The 4f and 5d orbitals expand, but cannot be involved in bond formation since they 

are completely filled. Under standard conditions, gold is solid. In its bulk form, this 

element is a dense, soft, malleable and ductile metal with a bright yellow colour and 
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luster. The extraction of gold started in the 5th century B.C. in Bulgaria and reached 10 

tons per year in Egypt around 1200-1300 B.C. when the marvellous statue of 

Touthankamon was constructed91. Its soluble form, colloidal gold, first appeared in 

China and Egypt around the 5th century B.C. for therapeutic and decorative purposes. 

A famous example is the Lycurgus cup, from the 4th century A.C., visible at the British 

Museum in London: the cup is ruby red in transmitted light and green in reflected 

light, due to the presence of gold colloids. In antiquity, gold solutions were used for 

curative purposes for various diseases, such as heart and venereal problems, 

dysentery, epilepsy, and tumours. In the 17th century the heterocoagulation of gold 

particles and tin dioxide became popular as glass-colouring process, called “Purple of 

Cassius”. In 1857, Faraday reported the first scientific article on gold nanoparticle 

(GNPs) synthesis by reduction of tetrachloroauric acid solution using phosphorus in 

CS2 (a two-phase system), following a procedure already reported by Paracelsus in 

16th century for the preparation of “Aurum potabile”. He investigated the optical 

properties of gold solutions attributing for the first time the red colour to the colloidal 

nature of GNPs. At the beginning of the 20th century, the German physicist Gustav Mie 

rationalized the plasmon resonance absorption of gold colloids using Maxwell's 

electromagnetic theory. Afterwards, various methods for the preparation of gold 

colloids were developed. One of the most common synthesis methods  

was introduced by Turkevitch et al. in 1951: it is a reduction of HAuCl4 by sodium 

citrate in water which allows the production of  20 nm gold nanoparticle. In 1973, 

aiming to obtain GNPs of a chosen size, Frens reported the direct correlation of the 

particle size with the citrate-to-gold ratio. In this way, particles with a size range of 

16-147 nm can be obtained by varying the stabilizer/gold ratio92. Smaller size 

particles can be obtained using stronger reducing agents such as sodium 

borohydride. This reduction strategy was proposed by Brust et al. in 1994 and is 

based on the gold reduction by sodium borohydride in a two phase (water-toluene) 

system in the presence of an alkanethiol.  

Due to their considerable applications in several fields such as optics, catalysis, 

materials science, nanotechnology, biology and nanomedicine, other methods for gold 

colloids synthesis have been developed, including seeding-growth procedures, and 

physical methods, such as sonolysis. 
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4.6.2. Gold nanoparticle synthesis 

Two main approaches are traditionally used in nanotechnology, involving a physical 

or chemical synthetic strategy respectively.  

 

Top-down methods. 

In the “top-down” approach, nanoparticles are produced from larger entities without 

atomic-level control. Laser ablation is one of the most exploited method for the 

synthesis of gold colloidal suspensions. This approach consists in the ablation by a 

laser beam of a gold solid target dipped in water Control on particles size and 

particles distribution is usually done by modulating the main ablation parameters 

(duration, wavelength and frequency of laser pulse)  

Other physical methods that have been exploited for the control of GNP size are 

sonochemistry and radiolysis91. 

 

Bottom up methods. 

The “top-down” approach is a chemical self-assembly processes of molecular 

components in liquid, solid or gas phase. The most widely used methods are based on 

chemical reduction in solution to yield nanoparticle colloids.  

 

 Turkevitch method: this is the most popular method which consists of a single 

step reduction of tetrachloroauric acid in a boiling aqueous solution by sodium 

citrate (Scheme 1.). Citrate anions act both as reducing agent and capping 

agent, preventing particle aggregation by neutralizing surface charge. The 

average particle diameter can be tuned between 10 – 100 nm with narrow 

distributions by varying the citrate-to-gold ratio93,94. Nanoparticle decoration 

occurs by citrate displacement by various stabilizing ligands. 

 

 

Scheme 1. Turkevitch's reaction of reduction of Au(III) to metal gold, Au(0), by using sodium citrate as 

a reducing agent. 
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 Brust-Schiffrin method: this synthesis method is used to prepare thermally 

stable and air-stable GNPs of narrow dispersity and controlled size in non-

miscible organic liquids (a two phase system of water-toluene). In detail, 

tetrachloroaurate is transferred to toluene by tetraoctylammonium bromide 

(TOAB, the phase transfer catalyst), and is reduced by sodium borohydride in 

the presence of an alkanethiol which act as stabilizing agent (Scheme x.)95. 

Particle ranging in diameter between 1.5 and 5.2 nm can be produced. 

These alkanethiol-protected GNPs possess higher stability when compared to 

most other GNPs due to the synergic effect of the strong thiol-gold interactions 

and van der Waals attractions between the neighboring ligands96. 

 

Figure 9. Brust-Schiffrin method for two-phase synthesis of gold nanoparticles. 

 

 Seed-mediated growth97,98: The seeding-growth procedure is another popular 

technique which allows to control the size distribution in the range 5-40 nm91. 

Gold nanospheres are synthetized by reduction mediated by a weak reducing 

agent of Au salt over preformed “seed”. A growth solution, prepared by addiction 

of cetyltrimethylammonium bromide (CTAB, stabiling agent) to a chloroauric 

solution, is brought to 100 °C. A part, a seed solution is prepared by adding sodium 

citrated to a chloroauric aqueous solution. Finally, the seed solution is mixed with 

the growth solution in the presence of ascorbic acid.  

The step-by-step particle enlargement was shown to be more effective than a one-

step seeding method to avoid secondary nucleation91. Moreover gold nanorods can 

be easily fabricated by using a variety of different seeds with different sizes and 

surface functionalities99.  
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4.6.3. Physico-chemical properties of colloidal gold 

Gold nanoparticles in the size range of 2-100 nm exhibit various size-dependent 

optical and electronic properties that are significantly different from their bulk 

counterpart. These specific properties arises from the “size quantum effect”, typical of 

nanosized materials. Irradiation with light in the visible spectra window results in a 

collective oscillation of electrons known as surface resonance plasmonic band. Any 

changes to the gold nanoparticle surroundings, such as surface decoration, 

aggregation, local environment, leads to SPR absorption peak red shifts to longer 

wavelength, in good agreement with the Mie's theory100. This phenomenon is clearly 

visible by a colorimetric change of the dispersions. SPR bands are characterized by 

extremely high extinction coefficients, up to 1011 M-1cm-1, which are much higher than 

those of organic dyes. Beside the light absorption, which is prevalent in particles 

smaller than 20 nm, scattering is another peculiar property of particles up to 80 nm. 

Thanks to all these unique optical features, gold nanoparticles have been exploited in 

several fields such as biosensing, labeling and biological imaging.  

Moreover In virtue of their large surface-to-volume ratio, gold nanoparticles can be 

largely functionalized with different ligands, such as fluorophores, biomolecules, 

drugs, oligonucleotides etc., endowing the nanosystem of suitable characteristics for 

the application in the drug delivery field. Due to their ability to participate in 

noncovalent and covalent/dative bonding, GNPs can undergo facile surface 

chemistry13. Notably many chemical groups have shown the ability to form stable 

bonds with gold surfaces. Among those, thiols, disulfides, thioesters, thioethers and 

isocyanates interact strongly, by a chemisorbing process that spontaneously forms 

strong and stable Au-S bonds, whereas amino and carboxyl groups bind weakly, 

comparable to in strength with a hydrogen bond and thus easily displaced. 

The reason of this strong affinity is still not completely clear. An explanation may be 

that as the thiol end of an alkanethiol approaches gold, the Sulphur hydrogen bond 

becomes weak and hydrogen is released, as shown in (1). 

 

(1)   R-SH + Au0 → R-S- Au+ ∙ Aun0 + ½ H2     

 

The thiolate molecule serves as a nucleophile and donates a pair of electrons to the 

gold surface, which participate to the formation of a strong bond, with strength very 
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similar to that of a covalent one. The energy estimated for this bond is 45 kcal/mol13. 

Whereby stabilizing polymers and biomolecules are often modified to contain a thiol 

end-group to enhance their conjugation on the surface of the Au surface.  

4.6.4. Gold nanoparticle applications 

Gold nanoparticles exhibit distinctive physico-chemical and optical properties, which 

have been exploited in many fields from electronics to medicine, diagnostics and 

catalysis. Nanometric size and multiple surface functionalities are the main features 

of this nano-objects which allow for the wide surface decoration with biomolecules, 

imaging labels, therapeutic agents and other functionalities for site specific drug and 

gene delivery and cellular uptake. Gold nanoparticles show several advantages as the 

the easiness of synthesis, colloidal stability, biocompatibility and the versatility of 

GNP size (good stability in the range of 2-100 nm), shape (Gold nanorods, Gold 

nanoshells, Gold nanocages, Gold nanosphere) and surface decoration has provided 

useful materials for a broad range of biomedical applications. The transport of 

therapeutic agents to the cells is a critical process especially in the treatment of 

cancer. GNP therapeutics can be delivered into cells through either passive or active 

targeting mechanisms. Surface functionalization with specific cancer-markers, such 

as antigens or receptors whose expression is up-regulated in the tumour, enhance the 

selective accumulation of the carrier within the disease site. Passive targeting relies 

on the enhanced permeability and retention (EPR) effect whereby GNPs will 

accumulate within the tumour via its irregular vasculature, allowing larger particles 

to pass through the endothelium. Furthermore, decoration of gold nanoparticles with 

stimuli-responsive materials and targeting ligands provide the unique opportunity to 

achieve a multimodal targeting arising from both environmental and phenotypical 

variations. This is reflected into an enhanced therapeutic benefit, while minimizing 

side effects and decreasing the administration dose. Several nanoformulations for the 

treatment of cancer are currently undergoing phase II-III clinical trials and few of 

them have been approved. Aurimmune (Cytimmune Sciences, Rockville, MD) is a 

27nm gold nanoparticle coated with thiolated PEG and attached to recombinant 

human tumor necrosis factor α (TNF-α). It is in clinical trial phase II for the treatment 

of Head and Neck cancer101.  
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Effective targeting strategies have been exploited also for therapeutic applications 

including genetic regulation, photothermal and sonodynamic therapy. In virtue of 

their great extinction coefficient, GNPs can strongly absorb light energy which is then 

converted into thermal energy inducing cell damage and death102. In particular, 

thermoresponsive GNPs can be induced to aggregate in clusters causing a redshift of 

the absorption band towards near infrared wavelengths (700-1000 nm) which 

possess remarkable tissue penetration features allowing for the treatment of deep 

cancer tissues. AuroShell (Nanospectra Bioscience Inc, Houston, Texas) consist of 

silica nanoparticles coated with a thin layer of gold currently used in clinical trial 

phase I as enhancer of  photothermal therapy of head and neck cancer101. 

Gold nanoparticles are currently being studied for the improvement of sensitivity and 

resolution of tumour imaging. The high atomic number of gold (Au = 79) enables a 

high absorption and enhancement of ionizing radiation, as well as superior X-ray 

attenuation for imaging applications. Other physical characteristics of gold such as 

surface plasmon resonance and Raman scattering activity have been exploited in non-

radiation based cancer applications including optical imaging and photoacoustic 

tomography of tumours and tumour-specific photothermal therapy agents103. 

Recently decorated gold nanoparticles have been proposed as new NMR 

chemosensing agents that enable the detection and identification of metabolites in 

biological fluids. Gold nanoparticles decorated by a monolayer of self-organized 

receptors allow the binding to the substrates with high selectivity and sensitivity. The 

interacting molecule appears in the NMR spectrum allowing its detection and 

recognition104. 

In conclusion, GNPs have emerged as potent tool for the use in bionanotechnology 

thanks to multiple attributes: the wide range of surface functionality and 

bioconjugates coupled with the outstanding physical properties of GNPs and 

controllable release of their cargo make these systems valuable for imaging and drug 

delivery applications96. Moreover, gold nanoparticle synthesis revealed a good 

reproducibility, high yield and low cost providing homogeneous products: this result 

enables the scalability of the production. 105 
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4.6.5. Nanotoxicity 

Although bulk gold is generally accepted as inert and nontoxic, some concerns arise 

about the biocompatibility of gold nanocolloids due to their deeper penetration and 

wider systemic distribution. 

 As showed in many studies reported in literature, cytotoxicity depends on the 

particle size. GNPs with a size of 1-2 nm revealed necrosis, induction of oxidative 

stress and mitochondrial damage106. In general GNPs with a dimension less than 6 nm 

show a limited circulation time and renal clearance. However they can efficiently 

interact with DNA and other key molecules. Larger particles (>6 nm) showed a 

diminished cytotoxicity because of the diminished binding to DNA, and a prologed 

systemic circulation thus enhancing accumulation within tumours. Notably 20 nm 

GNPs decorated with PEG exhibited the lowest clearance and a significantly higher 

accumulation in the tumour site as direct consequence of the EPR effect. 50 nm GNPs 

showed a faster internalization rate compared to the other particle sizes and gold 

nanorods, resulting in a high accumulation in the blood, liver and spleen. Cytotoxicity 

is also correlated to the GNPs concentration: at low concentration (1 ppm), GNPs in 

size range of 2-20 nm were found nontoxic to murine macrophage cell line, whereas 

concentrations higher than 10 ppm induced apoptosis of cells and upregulation of 

pro-inflammatory genes106. Furthermore, the interaction of naked GNPs with plasma 

proteins determines an increase in the hydrodynamic size.  Interestingly, 30 nm 

particles with protein corona from plasma showed a larger hydrodynamic size in 

comparison to 50 nm particles.  

However, it is essential to distinguish between the toxicity of the GNP core and that 

one rising from the ligands91. Many studies highlight that cationic GNPs are more 

toxic than anionic particles due to the electrostatic interaction with negatively 

charged cell membrane105. In particular, CTAB-stabilized GNPs were found very toxic 

as it is a cationic surfactant that can break open cell membranes105,106. GNP 

cytotoxicity can be reduced by PEGylation (coating with polyethylene glycol) that is a 

well-known material able to reduce nonspecific binding of biological molecules to 

surfaces and provide stealthness to the nanosystem.  

Furthermore, it is important to differentiate between cytotoxicity and cellular 

damage. In fact, particles that show negligible cytotoxicity via several standard assays 

may be still able to cause serious cellular damage. It is reported that 13 nm citrate-
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capped GNPs showed no relevant cytoxicity according to an assay, but were able to 

promote the formation of abnormal actin filaments, which led to decreases in cell 

proliferation, adhesion, and motility107. Cytotoxicity also depends on the type of cells 

used. Finally, GNP cytotoxicity may also depend on the cell lines91,105. 

Concerning the in vivo distribution of GNPs, size, surface charge and surface 

hydrophobicity are crucial features. The presence of biocompatible amphiphilic 

chains on GNP surface reduced the recognition by macrophages, thus prolonging the 

circulation time in blood. The biological distribution of various sizes (15, 50, 100 and 

200 nm) of GNPs on intravenous administration in mice was investigated and 

revealed that GNPs of all sizes were mainly accumulated in liver, lung and spleen, 

whereas accumulation in various tissues depended on GNP size. Notably, 15 nm and 

50 nm GNPs spread in all tissues, whereas small amount of 200 nm GNPs were found 

in blood, brain, stomach and pancreas91. 

4.7. RAFT POLYMERIZATION 

Reversible Addition Fragmentation chain Transfer (RAFT) polymerization is one of 

the most versatile methods for conferring living characteristics on radical 

polymerizations108. This technique was first reported in 1970s but the process was 

irreversible, so the transfer reagents could not be used to control radical 

polymerization at this time. Scientists began to realize the potential of RAFT in 

controlled radical polymerization in the 1980s. RAFT technology can be used to 

synthesize polymers with predetermined molecular weight, narrow polydispersity 

index (Mw/Mn) and defined architecture obtaining linear block copolymers, random 

copolymers, and other complex architectures. RAFT process allows to obtain high 

monomer conversion and polymerization rate. Moreover, polymerization can be 

performed in a wide range of monomers, initiators, solvent and heterogeneous media 

(emulsion, suspension).  

It involves the use of Chain Transfer Agent (CTA), known as RAFT agent, to afford 

control over the generated molecular weight, polydispersity, chemical composition 

and rate of the reaction. The most commonly used CTA are thiocarbonylthio 

compounds (Figure 10.). 
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Figure 10. Chemical structure of representative RAFT agents: (a) dithiocarbonate, (b) xanthate, (c) 

dithiocarbamate and (d) trithiocarbonate. 

The efficiency of the RAFT agents is dictated by the substituents R and Z. Notably Z-

group (aryl or alkyl group) controls the reactivity of the C=S bond towards radical 

addition and influences the stability of the intermediate radicals. R is the free radical 

leaving group: it undergoes a scission from the RAFT-adduct radical and the 

generated radical must be able to reinitiate the polymerization. R group must give 

better homolytic cleavage from the RAFT agent in comparison with the growing 

polymeric chain and give efficient re-initiating species towards the monomer used. 

The mechanism of the RAFT polymerization is shown in Figure 11.  

At the start of the process (Initiation) a radical species I● is generated from a suitable 

initiator. Initiators are usually azo-compounds, such as azobisisobutyronitrile (AIBN), 

which decomposes and releases a molecule of nitrogen and two radicals (2 I●). I● 

reacts with a monomer forming a propagating radical species (Pn
●). The propagating 

chain then adds to the RAFT agent generating into a polymeric thiocarbonyl 

derivative. R-group is released which will reinitiate the polymerization (Reinitiation).  
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Figure 11. Mechanism of RAFT polymerization. A radical initiator, I●, reacts with a single monomer 

molecule (M) to yield a propagating polymeric radical, which subsequently react with other monomer 

to form a longer propagating chain (Pn●). A polymeric radical reacts with the RAFT agent to form a 

radical RAFT adduct, and fragmentation may occur, releasing a radical (R●) and a polymeric RAFT 

agent. This step of the reaction is reversible. The radical R▪ can reinitiate another polymerization 

process. The main RAFT equilibrium consists of steps of RAFT adduct formation and fragmentation, 

until a bi-radical termination ends the growing chain. 

 

The key step in the RAFT polymerization process is the establishment of equilibrium 

the growing chains and the dormant poly-RAFT agent species.  

To achieve control over polymerization it is required that the dormant species 

concentration is favored than that of the active one but in rapid exchange with one 

another. In this way the radical-radical termination is minimized and the resulting 

chains grow homogeneously, with narrow, unimodal molecular mass distributions 

and low polydispersity index. Termination may occur when living chains react in a 

process known as a bi-radical termination, which leads to a dead polymer. Ideally, the 

RAFT adduct is sufficiently hindered such that it does not undergo termination 

reactions. The total number of radical chains formed is determined by the initial 

amount of radicals, which depends by the amount of initiator, while the number of 

polymer chains elongation is mainly controlled by the RAFT agent.  
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At the end of the polymerization reaction, most of the chains retains the thiocarbonyl 

group at the end. In light of this polymers with defined end-groups can be 

synthetized98. 
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5. MATERIALS AND METHODS 

5.1. REAGENTS 

 Folic acid, sodium citrate tribasic dihydrate, tetrachloroauric(III) acid 

trihydrate, iodine, potassium iodine, barium chloride, sodium hydroxide, 

hydrochloridric acid, dimethyl sulfoxide, tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP), triethylamine, azobisisobutyronitrile (AIBN), 

sodiumhydroxide (NaOH), oxalyl chloride, glycidyl methacrylate, 

magnesium sulfate, N,N dimethylamino pyridine (DMAP), dimethyl 

formamide anhydrous (DMF), dimethylsulfoxide anhydrous (DMSO), 

chloroform, dichloromethane (DCM), ethyl acetate (EtOAc), methanol 

(MeOH), diethyl ether (Et2O), petroleum ether (b.p. 40-60 °C), (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) and Alfa Aesar companies. 

 Cysteine, N-iydroxysuccinimide (NHS), N,N'-Dicyclohexylcarbodiimide and 

5,5'-di-thiobis-(2-nitrobenzoic acid) (DTNB) were purchased from Fluka 

(Buchs, Switzerland). 

 Sephadex G-25 and sephadex LH 20 gel filtration resins were obtained from 

Amersham Pharmacia Biotech (Uppsala, Sweden). 

 Amino-mercapto PEG 2 kDa and 3.5 kDa, methoxy-mercapto poly PEG 2kDa 

were purchased from Iris Biotech GmbH (Marktredwitz, Germany). 

 Carboxytetramethylrhodamine (Rhodamine NHS) was purchased from 

Thermo Fisher Scientific (Waltham, MA, USA). 

 Bodipy FL NHS was purchased from Lumiprobe GmbH (Hannover, 

Germany) 

 All the chemical reagents for cell culture, Dulbecco's modified Eagle's 

medium (DMEM) and folic acid free DMEM, RPMI-1640 medium, L-

Glutamine solution, D-(+)-Glucose solution, sodium bicarbonate solution, 

fetal bovine serum (FBS), penicillin-streptomycin solution, Trypan Blue 

solution, fibronectin and trypsin were supplied by Sigma-Aldrich (St. Louis, 

MO, USA). 
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 Analytical thin-layer chromatography (TLC) was carried out on glass sheets 

coated with silica gel (Merck F-254, Merck, Darmstadt, Germany) 

 KB (human epithelial cervix carcinoma cell line) and MCF7 (human breast 

adenocarcinoma cell line) cells were obtained from the American Type. 

Culture Collection. 

 Water for the preparation of all suspensions and solutions was “ultrapure” 

water (milliQ-grade, 0.06 µSiemens cm-1) produced with the Millipore 

Milli-Q purification system (MA, USA). 

 Salts and buffers were purchased from Fluka Analytical (Buchs SG, 

Switzerland) and Sigma-Aldrich (St. Louis, MO, USA).  

5.2. INSTRUMENTATION 

 Spectrophotometric analysis were carried out with an UV-Vis λ25 Perkin 

Elmer spectrophotometer (Norworlk, CT, USA)  

 Multiwell plate detections were carried out with Microplate Autoreader 

purchased from Biotek Instruments inc., mod. EL311SK (Highland, Vermont 

U.S.A.). 

 HPLC system Jasco, equipped with two pumps PU-2080 Plus, a detector UV-

2075 Plus and Hercule 200 JMBS, and analytic column Luna (C18, 5 μ, 300 Å, 

250 x 4.6 mm) from Phenomenex (Torrance, U.S.A.) was used for reverse 

phase chromatographic analysis (RP-HPLC). 

 Sample vials were kept stirring with Rotating stirrer, MOD 708 (ASAL S.r.l.) 

and Heto Mastermix. 

 Lyophilization was carried out with freeze-dryier Hetossic HETO Lab 

Equipment (Birkerod, Denmark). 

 Solvents were evaporated with Rotavapor R114 of BÜCHI Labortechnik AG 

(Postfach, Switzerland). 

 pH measurements were carried out with a pH-meter Seven Easy 20-K Mettler 

Toledo with a Mettler Toledo Inlab 413 electrode (Schwerzenbach, 

Switzerland) and with a 744 pH Meter - Metrohm (Herisau, Switzerland) 

 The buffers were filtered with Millipore Systems using a 0.22 µm cellulose 

acetate filter. 
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 The samples were centrifugated with a Sigma 1-14 Microfuge (Celbio Spa) and 

on a Centrikon T-42K, Kontron Instruments, Eching, Germany. 

 Dynamic Light Scattering measurements were performed by Zetasizer NanoZS 

(Malvern instruments Ltd, UK). 

 TEM images were obtained with a Tecnai G2 (FEI, Oregon, USA). Samples were 

placed on copper grid, the excess was removed with filter paper and then 

stained with uranyl acetate (1% in deionized water). Particle size analysis 

were performed with ImageJ Software (developed at the National Institute of 

Health, USA). 

 Polymerizations were carried out using standard Schlenk techniques under a 

nitrogen atmosphere. Thin layer chromatography (TLC) was performed using 

pre-coated plates (silica gel 60 ALUGRAM SIL G/UV254) and eluted in the 

solvent system indicated. Compounds were visualized by using UV light (254 

nm) or stained with a basic solution (10% w/w K2CO3 in water) of KMnO4. 

Across Organic 60 Å (0.035-0.070 mm) silica gel was used for column 

chromatography. 

  1H and 13C NMR spectra were recorded on a Bruker DPX400 Ultrashield 

spectrometer and Bruker Spectrospin AMX 300 MHz (Fallanden, Switzerland). 

All NMR data were processed using MestreNova 6.2.1 Software.  

 Biological studies were carried out in biological safety cabinet Space, cells 

were grown using the incubator from PBI International and imaged with 

optical microscope Axiovert 40CFL Zeiss. 

 Fluorimetry analyses were performed using a LS 50 B Perkin-Elmer 

fluorimeter (Norworlk, CT, USA). 

 Flow cytometric analyses were performed using a BD FACSDiva flow 

cytometer (Becton, Dickinson and Company, Buccinasco, Milan) and results 

were processed with BD FACSDiva Software. 

 Confocal microscopy images were obtained using a Leica TCS SP5 confocal 

laser-scanning microscope equipped with a 488 nm Ar laser, 543/633 nm 

HeNe laser, 100 × 1.4 NA or 40x 1.4 NA objectives using a Leica Type F 

immersion oil - Leica Microsystems GmbH (Wetzlar, Germany). Image 

quantification and elaboration was performed using ImageJ Software 

(developed at the National Institute of Health, USA). 
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5.3. ANALYTICAL METHODS 

5.3.1. Iodine assay for quantitative and qualitative evaluation of polyethylene 

glycol 

“Iodine assay” is a colorimetric test originally described by Sims and Snape109, which 

allows to assess the polyethylene glycol (PEG) concentration in an aqueous solution. 

The test is performed by using two reagent solutions: Barium chloride (5% m/v in 

1M HCl) and Iodine (1.27 g di I2 in 100 mL of a 2% w/v KI solution) solutions. PEG 

forms a complex with Barium Iodine that absorbs light at 535 nm. 

Solutions of PEG to be quantified in milliQ water (1 mL) were added of 250 µL of a 

Barium chloride solution and 250 µL of a Iodine solution. The Blank sample was 

prepared as described above by replacing the PEG solution volume with milliQ water. 

The samples were incubated in the dark for 15 minutes at room temperature, and 

then analyzed spectrophotometrically at 535 nm. 

The PEG concentration was derived from a calibration curve previously prepared in 

the concentration range 0-10 µg/mL, from serial dilutions (in triplicate) of a 5 mg/mL 

stock solution of mPEG5kDa in milliQ water (Figure 12). 
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Figure 12. Calibration curve of PEG obtained with Iodine assay. Optical density was measured at 535 

nm. 
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5.3.2. Calibration curve for the block copolymer poly(MCH-co-GMA) 

The quantitative assessment of the pH sensitive copolymer poly(MCH-co-GMA) was 

carried out by UV-Vis spectroscopy. The UV-Vis analysis of a poly(MCH-co-GMA) 

solution in NaOH 0.1 N showed a bell-shaped profile with a maximum absorption 

peak at 300 nm.  

In light of this, a calibration curve was prepared as follows. Five mg of poly(MCH-co-

GMA) were precisely weighed and dissolved in 1 mL of NaOH 0.1 M to generate a 

stock solution. Serial dilutions were then prepared from the stock solution in the 

range 0-80 µg/mL (in triplicate). The optical density of each solution was measured 

at 300 nm and plotted versus the concentration to obtain the calibration curve 

(Figure 13).  

Polymer solutions with unknown concentration were suitably diluted in NaOH 0.1 N 

and analyzed as described above. 
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Figure 13. Calibration curve of poly (MCH-co-GMA) in NaOH 0.1 N obtained by UV-Vis analysis at 300 

nm. 

5.3.3. Ellman’s assay for quantitative analysis of thiol groups 

Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid) - DTNB) is a chemical used to 

quantify the concentration of thiol groups in a sample solution. It possesses a 

disulphide bond which reacts stoichiometrically with free thiol groups.  The reaction 

with thiols implies the cleavage of the disulphide to yield 2-nitro-5-thiobenzoate 
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(TNB−) which ionizes to the TNB2− dianion in water at neutral and alkaline pH. TNB2- 

shows an UV-Vis absorption band at 412 nm110,111. 

This assay was exploited to evaluate the ratio of free thiol groups of the polymeric 

derivatives after synthesis and purification. A calibration curve was prepared using 

dilutions of cysteine. 

Cysteine (2 mg, 16.5 μmol) was dissolved in 1 mL of freshly prepared 0.1 M PBS 

added of 1 mM EDTA at pH 8. Dilutions from 10 to 200 μM were prepared in the same 

buffer and plated into a 96-well plate (100 μL/well). A 10.1 mM DNTB solution in 0.1 

M PBS added of 1 mM EDTA at pH 8 was prepared and 30 µL of this solution were 

added to the cysteine dilutions. Blank sample was prepared by replacing the cysteine 

volume with the dilution buffer. All the samples were incubated for 30 minutes at 

room temperature and then optical density was measured at 405 nm.  
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Figure 14. Calibration curve for the Ellman’s assay; optical density was measured at 405 nm. 

 

The polymer solutions of unknown thiol concentration were analyzed as described 

above and the thiol concentration was derived from the calibration curve of Figure 

14. 

5.3.4. Bicinchoninic acid (BCA) Test for cell countig 

BCA test is a colorimetric assay developed by Paul K. Smith112 which enable to assess 

the total concentration of proteins in a solution. At alkaline pH, in the presence of 

specific aminoacids of the peptide sequence (cysteine, cystine, tyrosine, and 

tryptophan), Cu2+ ions are reduced to Cu+. Afterwards, two molecules of BCA chelate 



 Materials and Methods  

67 
 

each Cu+ ion, forming a purple-colored complex that strongly absorbs light at a 

wavelength of 570 nm.  

The concentration of proteins on cell lysates was determined by a calibration curve 

generated according to the following procedure. Serial dilutions of a cell lysate 

obtained from cell suspension at known cell concentration were plated into a 96 well-

plate (100 μL). 200 μL of BCA reagent (50 parts of Bicinchoninic acid and 1 part of 

Copper sulfate (II)) were added to each well. The plate was incubated for 30 minutes 

at 37 °C and then was read at 570 nm by a UV-Vis Microplate Autoreader. 

 

Figure 15. BCA Calibration curve obtained from cell lysates. 

5.4. SYNTHESIS OF POLYMERS 

5.4.1. Synthesis of Lipoic terminating CTA 

The Lipoic terminating chain transfer agent (CTA) was synthetized by a dual step 

procedure. The carboxylic group was activated to acyl chloride as described in 

literature113,114 and then conjugated to tetraethylenglycole. 

Lipoic acid (1 g, 4.85 mmol) was dissolved in anhydrous DCM (5 mL) and the solution 

was cooled into an ice bath. Oxalyl chloride (0.61 g, 4.85 mmol) was added dropwise 

to the reaction mixture using a dropping funnel. The reaction vessel was sealed with a 

glass stopper and the reaction was left under stirring for 4 hours at 0 °C. The volume 

of the reaction mixture was reduced under vaccum. The residue was redissolved in 

anhydrous DCM (5 mL) and the organic solvent removed in vacuum to remove the 

final traces of oxalyl chloride115.  
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Traces of water were removed from tetraethyleneglycole (TEG) (9.42 g, 48.5 mmol) 

by azeotropic distillation with toluene under reduced pressure. TEG was then 

dissolved in anhydrous DCM (5 mL) in the presence of triethylamine (0.77 g, 7.63 

mmol). Acylchloride activated Lipoic acid was dissolved in 4 mL of anhydrous DCM 

and added dropwise to the tetraethylenglycole solution and the mixture was left 

overnight at room temperature under stirring. Afterwards the solvent was removed 

under reduced pressure to yield the crude product mixture as brown oil, which was 

further purified by column chromatography on silica gel using elute with 4:1 (v/v) 

diethyl ether/ethyl acetate mixture. The conjugate Lipoic-TEG was obtained as 

viscous yellow oil that was used for the next synthetic step (0.39 g, 1.03 mmol, 22 % 

of yield).  

 

Lipoic acid-TEG (0.23 g, 0.60 mmol) and 4-cyano-4-(phenylcarbonothioylthio) 

pentanoic acid (0.17 g, 0.60 mmol) were dissolved in anhydrous DCM (2 mL) and the 

mixture was cooled in an ice bath. Separately, DCC (0.15 g, 0.72 mmol) and DMAP 

(3.66 mg, 0.03 mmol) were solved in anhydrous DCM (1 mL) and added dropwise to 

the solution. The mixture was stirred for 48 hours. The purification was performed by 

chromatography on silica gel (Petroleum ether/Ethyl acetate v/v 4:1) which yielded 

the pure product as a red oil: 0.16 g (42 % of yield). 

5.4.2.  Synthesis of poly(MCH) macro-CTA 

MHC was synthesized as reported before116. MCH (1.5 g, 5.28 mmol), Lipoical CTA 

(77.2 mg, 0.12 mmol) and AIBN (20 mg, 0.05 mmol) were dissolved in anhydrous 

DMF (9 mL) in a Schlenk tube. After deoxygenation by nitrogen bubbling for 30 

minutes, the resulting mixture was thermostated in an oil bath at 70°C. The 

polymerization was monitored by regular withdrawal of samples analyzed by 1H 

NMR in DMSO-d6. The monomer conversion was calculated following the formation of 

a new broad peak at 6.9 ppm deriving from the shift of the MCH aromatic protons 

(originally at 7.08 ppm in the monomer) throughout the polymer formation. 

At 70 % of conversion (DP=26) the polymerization was stopped by exposing the 

reaction mixture to the air. The polymer was recovered by precipitation in 1:1 (v/v) 

diethyl ether/petroleum ether, redissolved in DCM and precipitated again in the same 
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solvent mixture. After filtration, the organic solvent residues were removed under 

reduced pressure obtaining 730 mg of a pink precipitate (0.091 mmol, 49 % of yield). 

5.4.3. Synthesis of glycerol methacrylate (GMA) 

Glycidyl methacrylate (23.1 g, 0.16 mol, 21.5 mL) was dissolved in distilled water 

(487 mL) and sulfuric acid (0.5 equivalents) was added dropwise. The reaction was 

carried out under stirring at room temperature for 2 hours. The glycerol 

methacrylate (GMA) generated from the reaction was isolated by extraction with 

dichloromethane (DCM – 200 mL x 3), washed with brine, dried over anhydrous 

magnesium sulfate (MgSO4) and then concentrated under vacuum. 

The GMA monomer was purified by flash chromatography on silica gel using a 1:1 v/v 

DCM/EtAcO mixture. The pure product (14.8 g, 0.09 mol, 57 % of yield) was 

characterized by 1H NMR in DMSO-d6 and ESI-TOF mass spectrometry. 

5.4.4. Synthesis of poly(MCH-co-GMA)  

Poly(MCH) (0.619 g, 77.1 µmol), GMA (0.815 g, 5.01 mmol) and AIBN (6.3 mg, 38.5 

µmol) were solved in anhydrous DMF (9 mL) in a Schlenk tube. The solution was 

degassed by nitrogen bubbling for 30 minutes and then placed inside of an oil bath 

thermostated at 70 °C. The polymerization progress was checked by 1H NMR in 

DMSO-d6 at scheduled times. The polymerization was stopped at 81 % of conversion 

(DP=53) by lifting the Schlenk tube and exposing the reaction mixture to the air. The 

conversion of monomer to polymer was determined by 1H NMR spectroscopy in 

DMSO-d6 of reaction samples and looking at the decrease of vinylic proton integrals 

(5.74 and 6.13 ppm) referred to the DMF peak (2.97 ppm) used as solvent for the 

polymerization. Finally, the polymer was isolated by precipitation in a 1:1 v/v 

diethylether/petroleum ether mixture, dissolved in methanol and precipitated again 

in the same solvent mixture. The precipitate was dried under vacuum and 1.01 g was 

recovered (60.9 µmol, 79 % of yield). 
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5.4.5. Synthesis of poly(GMA) 

GMA (1.28 g, 7.99 mmol), Lipoical RAFT agent (51.90 mg, 80.70 µmol) and AIBN (6.62 

mg, 40.35 µmol) were dissolved in anhydrous DMF into Schlenk tube and 

deoxygenated by N2 bubbling for 30 minutes. Then the Schlenk tube was dipped into 

a thermostated oil bath at 70 °C to trigger the polymerization reaction. The reaction 

kinetic was monitored by 1H NMR in DMSO-d6. The polymerization degree was 

calculated by monitoring the decrease of the integrals of the monomer vinyl signals 

(6.11 and 5.58 ppm) using the singlet at 7.95 ppm of the DMF as reference. At 80% of 

conversion, the polymerization was stopped by exposing the reaction mixture to the 

air. The polymer was isolated by precipitation in a 1:1 v/v diethyl ether/petroleum 

ether mixture, redissolved in methanol and precipitated again in the same solvent 

mixture. The precipitate was dried under reduced pressure and 0.986 g was 

recovered (74.20 µmol, 92 % of yield). 

5.4.6. Removal of Thiocarbonylthio Group 

The removal of thiocarbonylthio end groups  from polymers generated by RAFT 

polymerization was performed according to the method reported by Perrier et al.117. 

Typical reaction conditions described below were applied to each of the polymers 

synthetized by RAFT polymerization.   

Poly(GMA) (0.986 g, 74.20 µmol) and AIBN (0.366 g, 2.23 mmol) were dissolved in 

anhydrous DMF (1:30 polymer:AIBN molar ratio) and dipped in a thermostated oil 

bath at 80 °C. After 4 hours the reaction mixture was precipitated dropwise in a 1:1 

v/v Et2O/petroleum ether mixture and desiccated under reduced pressure (0.940 g, 

71.23 µmol, 96 % of yield). 

5.4.7.  Turbidimetric analysis of poly(MCH-co-GMA) 

1.0 mg/mL poly(MCH-co-GMA) solution in deionized water was prepared and the pH 

was adjusted to pH 12 by addiction of 1 N NaOH. The solution was sequentially added 

of 10 µL aliquots of 1 N HCl until pH 3.0 was achieved. The spectrophotometric 

transmittance at 500 nm was plotted versus the pH. The relative transmittance was 

calculated referring to the transmittance at pH 12 (100%). 
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5.4.8. Potentiometric titration of poly(MCH-co-GMA) copolymer 

Poly(MCH-co-GMA) (10 mg, 0.61 µmol ) were dissolved in deionized water (10 mL) 

and the pH was brought to 12 with 1 N NaOH. Potentiometric titration was carried 

out by addition of 2 µL aliquots of HCl 1 N under stirring over a pH range of 12 to 3. 

The back titration was started from the pH 3 by addition of 2 µL aliquots of NaOH 1 N 

until pH 12 was achieved. pH variations were plotted the total volume of titrant 

obtaining two overlapping sigmoidal profiles. The apparent pKa was calculated as the 

median of the equivalence points of each curve.  

5.4.9. Synthesis of Folate-PEG3.5kDa-SH (FA-PEG3.5 kDa-SH) and Folate-PEG2 kDa-SH 

(FA-PEG2kDa-SH)  

Folic acid (50.0 mg, 0.113 mmol) was dissolved in 1 mL of anhydrous DMSO. N-

hydroxysuccinimide (NHS - 15.6 mg, 0.136 mmol) was added to the solution, followed 

by dicyclohexylcarbodiimide (DCC - 28.1 mg, 0.136 mmol). The mixture was stirred 

overnight in the dark and then filtered to remove the insoluble byproduct, 

dicyclohexylurea. The N-Hydroxysuccinimidyl-ester-activated folic acid product was 

isolated by precipitation in diethyl ether and dried under reduced pressure. N-

hydroxysuccinimidyl-ester-activated folic acid (25 mg, 0.046 mmol) and NH2-

PEG3.5kDa-SH (54.1 mg, 0.015 mmol) were dissolved in 1 mL of anhydrous DMSO 

added of triethylamine (1.51 mg, 0.015 mmol) as catalyst. The reaction mixture was 

stirred for 12 h at room temperature in the dark and then added dropwise in diethyl 

ether (40 mL). The precipitate was recovered by centrifugation and dried under 

vacuum. The crude product FA-PEG3.5kDa-SH was purified from the excess of folic acid 

by size exclusion chromatography using a Sephadex G-25 resin run with ammonia 

solution (pH 9) as mobile phase. The column fractions were tested by UV-Vis 

spectroscopy at 363 nm and Iodine test109 to assess the presence of Folate and PEG 

respectively. The positive fractions to both colorimetric assays were collected and 

freeze-dried.  

The regeneration of the thiol end-group of conjugate FA-PEG3.5kDa-SH was performed 

in 50 mM acetate buffer pH 5 in the presence of Tris(2-carboxyethyl)phosphine 

(TCEP) as reducing agent. FA-PEG3.5kDa-SH (20 mg, 8.2 µmoles) and TCEP (20.5 mg, 82 

µmoles) were dissolved in acetate buffer and left under stirring for 3 hours. The 
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mixture was then purified by dialysis against 1 mM HCL, 1 mM EDTA for 2 days 

(Spectra/Por Float-a-lyzer G2, MWCO =0.5-1 kDa) and freeze-dried. The final product 

FA–PEG3.5kDa-SH was dissolved in phosphate buffer at pH 7.4 and analyzed by UV-Vis 

spectroscopy at 363 nm (ε363= 6.197 M-1 cm-1), Iodine test to assess the conjugation 

efficiency and by Ellman assay111 to assess the percentage of free thiol groups. FA–

PEG3.5kDa-SH was characterized by MALDI mass analysis to assess the identity and the 

purity of the product, and by RP-HPLC to quantify folic acid traces. The system was 

equipped with a RP-C18 column eluted with 10 mM ammonium acetate buffer, pH 6.5 

(eluent A) and acetonitrile (eluent B), in a gradient mode from 10 to 40% of eluent B 

in 40 minutes using a UV detector set to 363 nm. No traces of free folate were 

detected in the chromatogram confirming the purity of the product. 

The same synthetic and characterization procedures were used for the production of 

Folate-PEG2kDa-SH using a NH2-PEG2kDa-SH instead of NH2-PEG3.5kDa-SH. 

5.4.10. Synthesis of the fluorescent label Rhodamine-PEG-SH (Rho-PEG2kDa-SH) 

Rhodamine-NHS (25 mg, 47.3 µmol) was dissolved in anhydrous DMSO (500 µL) 

under stirring and added of NH2-PEG2kDa -SH  (78.9 mg, 39.4 µmol) in the presence of 

triethylamine (3.99 mg, 39.4 µmol). The reaction was carried out overnight under 

stirring at room temperature in the dark. The reaction mixture was purified by size-

exclusion chromatography using Sephadex LH 20 resin and ethanol as eluent. The 

column fractions were collected and analyzed by UV-Vis spectroscopy at 552 nm and 

Iodine test (535 nm) for Rhodamine and PEG determination, respectively. Fractions 

positive to all tests were pooled and the solvent evaporated under reduced pressure. 

The obtained residue was dissolved in water at pH 6 obtained by adding HCl and 

freeze-dried. The lyophilized pink powder was dissolved in water and the optical 

density was measured at 552 nm to derive the Rhodamine content referring to a 

calibration curve, while the concentration of PEG was assessed by Iodine test. The 

conjugation yield refered as Rhodamine/PEG molar ratio was shown to be of 96%.  

In order to regenerate the thiol groups of the conjugate, which might be oxidized after 

purification, Rhodamine–PEG2kDa-SH (20 mg, 8.28 µmol) was dissolved in 1 mL of 50 

mM acetate buffer pH 5. Tris(2-carboxyethyl)phosphine (TCEP, 20.73 mg, 82.85 

µmoles) was added to the solution and the reaction was carried out for 3 hours under 

rotational stirring at room temperature. The polymer was then purified from the 
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excess of TCEP by dialysis for 24 h against 0.5 mM HCl using a dialysis membrane 

with a MWCO of 1000 Da. The product was lyophilized and characterized by MALDI-

TOF mass analysis.  

5.4.11. Synthesis of Folate-Cadaverine-Rhodamine (FA-C5-Rho) 

The conjugate FA-C5-Rho was synthetized by a three step procedure.  
 

I. Activation of Folic acid to N-Hydroxysuccinimidyl-ester: folic acid was activated 

as NHS-ester according to the procedure reported in Chapter 5.4.9.  

II. N-Hydroxysuccinimidyl-ester-activated Folic acid conjugation to Cadaverine: 

Cadaverine (C5 -130.5 mg, 1.28 mmol) was dispersed in 150 µL of anhydrous 

DMSO. N-Hydroxysuccinimidyl-ester-activated Folic acid (FA-NHS - 23.0 mg, 0.04 

mmol) was dissolved in anhydrous DMSO (1 mL) in the presence of triethylamine 

(TEA – 178.1 µL, 1.28 mmol) and added dropwise to the Cadaverine solution. The 

reaction was performed overnight under stirring at room temperature in the 

dark. The reaction mixture was added dropwise to 40 mL of Et2O in order to 

remove the excess of Cadaverine that, on the contrary of folic acid, is soluble in 

Et2O. The precipitated Folate-Cadaverine conjugate was washed with Et2O (3 x 40 

mL) and then dried under vacuum. 

III. Rhodamine-NHS conjugation to Folate-Cadaverine: Folate-Cadaverine (16.6 

mg, 31.56 µmol) was dissolved in anhydrous DMSO (1 mL) and added of TEA 

(3.83 mg, 37.88 µmol). 700 µL of a 54.1 mM Rhodamine-NHS solution in 

anhydrous DMSO were added dropwise to the Folate-Cadaverine solution. The 

reaction was left overnight under stirring at room temperature in the dark. The 

crude product was recovered by precipitation in Et2O and the precipitate was 

redissolved in 500 µL of DMSO. The unreacted Rhodamine was removed by size 

exclusion chromatography using a Sephadex LH20 resin eluted in ethanol. The 

fractions containing the product FA-C5-Rho were pooled and treated under 

reduced pressure to remove the solvent. The residue was dissolved in milliQ 

water and lyophilized obtaining a pink powder (18.2 mg, 19.4 µmol, 61 % of 

yield) that was characterized by ESI-TOF mass analysis and 1H-NMR. 
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5.4.12.  Synthesis of Bodipy FL-PEG-SH (Bdp-PEG2 kDa-SH) 

Bodipy FL-NHS (14.6 mg, 37.6 µmol) was dissolved in anhydrous DMSO (400 µL) 

under stirring and added of NH2-PEG2kDa-SH (62.7 mg, 31.3 µmol) in the presence of 

triethylamine (4.4 µL, 31.3 µmol). The reaction was carried out overnight under 

stirring conditions at room temperature in the dark. The mixture was purified by 

size-exclusion chromatography using Sephadex LH 20 resin and ethanol as eluent. 

The column fractions were collected and analyzed by UV-Vis spectroscopy at 503 nm 

and Iodine test (535 nm) for Bodipy FL and PEG assessment, respectively. Fractions 

positive to both tests were pooled and the solvent removed under reduced pressure. 

The resulting yellow oil was dissolved in water added of HCl to a final pH 6 and 

freeze-dried. The lyophilized product was analyzed by UV-Vis spectroscopy at 503 

nm (ε503= 80000 L⋅mol−1⋅cm−1, as reported by the manufacturer) and tested by Iodine 

assay for the determination of Bodipy FL and PEG concentration, respectively. The 

conjugation yield expressed as Bodipy FL/PEG molar ratio was shown to be 94%.  

5.5. GOLD NANOPARTICLE PRODUCTION, SURFACE DECORATION AND 

CHARACTERIZATION 

5.5.1. Synthesis of gold nanoparticles (GNPs)  

Preparation of gold nanoparticles was performed following the Turkevich method94 

using sodium citrate as reducing and capping agent. All the glassware was widely 

washed with aqua regia (3:1 v/v of [12.2 M Hydrochloric acid] : [14.6 M Nitric acid]) 

and then rinsed with deionized water. 0.25 mM tetrachloroauric solution in milliQ 

water (100 mL) was prepared and heated up to 75 °C under stirring. Trisodium 

citrate dihydrate (100 mg) was dissolved in milliQ water (0.34 M) and 3 mL of this 

solution were added dropwise to the HAuCl4 solution. The mixture was left under 

stirring for 1 hour at 75 °C. Then, the colloidal suspension was cooled down to room 

temperature and characterized by UV-Vis spectroscopy, Dynamic Light Scattering, 

Transmission Electron Microscopy.  
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5.5.2. GNP characterization 

Dynamic Light Scattering (DLS) Measurements. The size of GNPs was measured at 25 

°C with a Dynamic Light Scattering Zetasizer Nano equipped with a red (633 nm) 

laser at a fixed angle of 173°. DTS applications 6.12 software was used to analyze the 

data. All sizes were refered to number average. For each sample, three DLS 

measurements were performed with a fixed 10 runs per 10 second measurement.  

Transmission electron microscopy (TEM) analysis. TEM images were obtained with a 

Tecnai G2 microscope (FEI). The particle samples (2 nM) were suspended in milliQ 

water, placed on a carbon coated copper grid and the water was allowed to dry at 

room temperature. The average diameter of particles was calculated by measuring 

200 individual particles with SIS Soft Imaging GmbH image analysis software.  

The polymer functionalized GNP samples were negatively stained with 1% uranyl 

acetate dissolved in distilled water, and analyzed as described below. 

Concentration assessment. The concentration of gold nanoparticle suspensions was 

assessed according to the method reported by Liu et co-workers 118. Equation (2) was 

applied to derive the molar extinction coefficient (ε506) referred to the sample 

absorbance at 506 nm: 

 

(2)   ln ε = k lnD + a 

 

where D is the diameter of the nanoparticles (measured by DLS), k and a are two 

constants whose values are 3.32111 and 10.80505, respectively 119,120. 

The gold nanoparticles concentration (M) was calculated with the Lambert–Beer 

Equation (3):  

(3) Conc. (M)= A506/ ε506b 

 

where A506 is the sample absorbance at 506 nm and b is the cell path length. 

5.5.3. Assessment of GNP surface decoration efficiency   

Particles were incubated with increasing ratios of the different polymers generated in 

order to assess the efficiency of conjugation. Folate-PEG2kDa-SH, Folate-PEG33.5kDa-SH, 

Rhodamine-PEG2kDa-SH, mPEG2kDa-SH and poly(MCH-co-GMA) aqueous solutions 
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were prepared. Different volumes of each polymer solution were added to 3 nM gold 

nanoparticle suspensions to generate samples with increasing polymer/GNPs molar 

ratios. A reference sample, which corresponds to the polymer amount added to the 

particles, was prepared for each polymer excess by replacing the particle volume with 

milliQ water. 

After 8 hours of rotational stirring at room temperature, the nanoparticles were 

removed by centrifugation at 14000 rpm for 30 minutes. The supernatants containing 

Folate–PEG were tested by Iodine assay and UV-Vis spectroscopy at 363 nm to 

quantify unbound Folate-PEG, supernatants containing Rhodamine–PEG were tested 

by Iodine assay and UV-Vis spectroscopy at 552 nm to quantify unbound Rhodamine-

PEG; supernatants containing mPEG were tested by Iodine assay to quantify unbound 

mPEG; supernatants containing poly(MCH-co-GMA) were tested by UV-Vis 

spectroscopy at 300 nm to quantify unbound poly(MCH-co-GMA). 

5.5.4. Production of polymer decorated GNPs 

Folate targeted GNPs: 11.8 µL of 0.5 mg/mL FA-PEG3.5kDa-SH aqueous solution were 

mixed with 6 µL of 50 µg/mL mPEG2kDa-SH aqueous solution. The polymer mixture 

was quickly added to a 3 nM gold nanoparticle suspension (10 mL) to a final 50:5:1 

FA-PEG3.5kDa-SH /mPEG2kDa-SH/GNP molar ratio. The mixture was left under 

rotational stirring overnight at room temperature. An aliquot (1 mL) of the mixture 

was centrifuged at 14000 rpm for 30 minutes at 4 °C to isolate the particles and the 

supernatant was analyzed by UV-Vis spectroscopy at 363 nm to assess the unbound 

FA-PEG3.5kDa–SH. Then, 48 µL of 5 mg/mL mPEG2kDa-SH aqueous solution were added 

to the particle suspension aiming to saturate the particle surface with mPEG2kDa-SH as 

stabilizing component (mPEG2kDa-SH/GNP molar ratio= 4000:1). The mixture was left 

overnight under rotational stirring. The resulting particle suspension was centrifuged 

at 14000 rpm for 30 minutes at 4 °C. The suspension supernatant was analyzed by 

Iodine test (FA-PEG3.5kDa-SH + mPEG2kDa-SH). The GNP pellet was diluted 10 times in 

milliQ water and analyzed by Dynamic Light Scattering (DLS) and by UV-Vis 

spectroscopy in the range 600-400 nm for the determination of the size and the 

particle concentration, respectively. Control non targeted particle (mPEG-GNPs) were 

produced and characterized as describe above, using mPEG3.5kDa-SH instead of FA-

PEG3.5kDa-SH. Particle size and morphology were characterized also by TEM analysis 
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Rhodamine labelled gold nanoparticles: Folate targeted gold nanoparticle 

formulations were produced by decorating the particle surface with increasing ratio 

of Folate–PEG3.5kDa-SH. All the particle batches were labelled with Rhodamine-

PEG2kDa-SH to allow the particle tracking in vitro. Typical particle surface decoration 

procedure is explained hereinafter. In the first step, gold nanoparticles were 

functionalized with increasing ratio of targeting agent Folate–PEG3.5kDa-SH combined 

with 10% mol/mol of mPEG2kDa-SH to ensure the particle stability. For particle 

visualization and stabilization, GNP surface was saturated with Rhodamine-PEG2kDa-

SH. 

23.6 µL of 0.5 mg/mL FA–PEG3.5kDa-SH aqueous solution were mixed with 12 µL of  50 

µg/mL mPEG2kDa-SH aqueous solution. The polymer mixture was added to a 3 nM 

gold nanoparticle suspension (10 mL) in order to achieve a 100:10:1 FA–PEG3.5kDa -SH 

/mPEG2kDa-SH/GNP molar ratio and the suspension was left under rotational stirring 

overnight at room temperature. An aliquot (1 mL) of the mixture was centrifuged at 

14000 rpm for 30 minutes at 4 °C to isolate the particles and the supernatant was 

analyzed by UV-Vis spectroscopy at 363 nm to assess the unbound FA-PEG3.5kDa–SH. 

Subsequently Rho-PEG2kDa-SH (5 mg, 2.07 µmol) was dissolved in 1 mL of milliQ 

water and 14.5 µL of the solution were added the particle suspension together with 

12 µL of 0.5 mg/mL mPEG2kDa-SH aqueous solution. (1000:100:1 Rho–PEG2kDa-SH/ 

mPEG2kDa-SH/GNP molar ratio). Control non targeted particles (mPEG-GNPs) were 

produced by replacing the amount of Folate- PEG3.5kDa-SH with mPEG3.5kDa-SH. The 

resulting decorated particles were recovered by centrifugation at 14000 rpm for 30 

minutes at 4 °C. The GNP pellet was diluted 10 times in milliQ water and analyzed by 

Dynamic Light Scattering (DLS) and TEM, and by UV-Vis spectroscopy in the range 

600-400 nm for the determination of the size and the particle concentration, 

respectively. The supernatant was analysed by UV-Vis spectroscopy at 552 nm for the 

determination of the unbound Rho-PEG2kDa-SH. 

 

Folate targeted pH responsive GNPs: Folate–PEG2kDa-SH (5 mg, 2.06 µmol) was 

dissolved in milliQ water and diluted to obtain a 0.5 mg mL-1 solution. In a vial, 11 µL 

of 0.5 mg mL-1 Folate–PEG2kDa-SH solution (5.46 µg, 2.25 nmol) were mixed with 9 µL 

of a 50 µg mL-1 mPEG2kDa-SH solution in water (0.45 µg, 0.22 nmol). The mixture was 

quickly added to 15 mL of freshly prepared 3 nM GNP suspension to yield a 50:5:1 
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Folate-PEG-SH/mPEG-SH/GNP molar ratio. The particle suspension was incubated at 

room temperature under rotational stirring overnight protected from the light. Bdp-

PEG2kDa-SH (5 mg, 2.18 µmol) was dissolved in 1 mL of milliQ water and diluted ten 

times in milliQ water. GNP suspension was added of 21 µL of the 0.5 mg mL-1 Bdp-

PEG-SH solution yielding a 100:1 Bdp-PEG-SH/GNP molar ratio and the suspension 

was left under rotational stirring overnight at room temperature. Afterwards 278 µL 

of a 8 mg mL-1 solution of poly(MCH-co-GMA) in 0.2 N NaOH were added to the GNP 

sample (3000:1 poly(MCH-co-GMA) /GNP molar ratio and the mixture was stirred 

overnight at room temperature in the dark. A reference mixture was also prepared 

with the same ratio and concentrations of polymer without GNPs. The particles were 

isolated by centrifugation at 14000 rpm for 30 minutes. The supernatant was isolated 

and analyzed by UV-Vis spectroscopy at 300 nm. The particle pellet was resuspended 

in milliQ water and centrifuged again to remove unreacted components; this process 

was repeated three times. The nanoparticle suspension was analyzed by different 

techniques to assess the size, morphology and concentration: UV-Vis spectroscopy, 

Dynamic Light Scattering and Transmission Electron Microscopy.  

5.5.5. Stability studies of gold nanoparticles 

Naked GNPs, PEGylated GNPs and Folate targeted pH responsive GNPs were diluted 

with either milliQ water or Folic-free DMEM without serum at pH 6.5 or 7.4 to a final 

concentration of 2 nM. Particles size was then analyzed with Dynamic Light Scattering 

(DLS) at scheduled intervals for 2 hours. 

5.6. IN VITRO CELL STUDIES 

5.6.1. Cell culture 

KB cells (human cervical carcinoma) were grown at 37 °C, in 5% CO2 atmosphere, 

using folic acid free DMEM medium supplemented with 15% FBS, 2 mM L-glutamine, 

100 IU/mL penicillin, 100 μg/mL streptomycin and 0.25 μg/mL of amphotericin B 

(Sigma-Aldrich). MCF-7 (human breast adenocarcinoma) were grown at 37 °C, in 5% 

CO2 atmosphere, using RPMI-1640 medium supplemented with 10% FBS, 100 IU/mL 

penicillin, 100 μg/mL streptomycin and 0.25 μg/mL of amphotericin B.  
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5.6.2. Cell viability assay 

MCF-7 cells in RPMI-1640 containing 10% fetal bovine serum (FBS) and KB cells in 

FFDMEM added of 15% of FBS were seeded in a 96-well plate at a density of  5 x 103 

cells per well (200 µL/well). After 24 hours, the medium was replaced with Folate 

targeted pH responsive GNP suspension at concentrations in the 0.2-2 nM range, in 

FFDMEM at pH 7.4 and pH 6.5 and cells were incubated for 6 hours. Afterwards, the 

medium was removed and each well was washed three times with 100 µL of PBS and 

200 µL of fresh FFDMEM was placed per well. The cell viability was tested by the MTT 

assay. 20 µL of MTT solution (5 mg/mL in PBS pH 7.4) were added to each well and 

the plates were incubated for 3 hours at 37 °C. Then the medium was removed and 

formazane crystals were dissolved into 200 µL of DMSO per well. The absorbance of 

each well was read by an EL311SK microplate autoreader (Bio-Tek Instruments, 

Winooski, VT-USA) at a wavelength of 570 nm. All experiments were repeated six 

times. 

 

CELL UPTAKE STUDIES 

5.6.3. Atomic Absorption Spectroscopy on cell lysates 

MCF-7 and KB cells in Folic free DMEM medium (FFDMEM) containing 15% fetal 

bovine serum (FBS) were seeded in 12-well plates at a density of 5 x 105 cells per well 

and grown for 24 hours. Then, the medium was replaced with 2 nM Folate targeted 

pH responsive GNPs in FFDMEM at pH 7.4 and 6.5; while 2 nM Folate targeted GNPs 

and Rhodamine labelled Folate targeted GNPs were tested on cells in FFDMEM at pH 

7.4. After 2 hours of incubation at 37 °C, the particle containing medium was removed 

and the cells were washed 3 times with PBS without MgCl2 and CaCl2. The cells were 

then detached by 1% w/v trypsin treatment (150 µL per well). The trypsin was 

blocked by adding 500 µL of PBS with MgCl2 and CaCl2 and the sample was 

centrifuged at 1000 rpm for 5 minutes. The cellular pellets were washed twice with 

PBS and then added of Triton® X-100 0.1% in water (600 µL). All cellular samples 

were lysated under ultrasounds treatment for 1 hour and then centrifuged at 1000 

rpm for 5 minutes. 500 µL of cell lysate were digested by aqua regia treatment 

(HNO3/HCl 1:3 v/v, 5 mL) at 80 °C for 1 hour. The mineralized samples were diluted 
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to 5 mL with 1 % w/v HCl. Gold quantification was performed by Atomic Absorption 

Spectrometry (AAS) using a Varian AA240 Zeeman instrument equipped with a 

GTA120 graphite furnace, Zeeman background corrector and an autosampler (Varian 

Inc., Palo Alto, CA-USA). The gold content was normalized by the number of cells 

which was derived by the BCA Protein Assay (Thermo Fisher Scientific Inc.,Waltham, 

MA-USA) performed on 100 µL of the cell lysate. 

5.6.4. Flow cytometric analysis 

KB cells were seeded in 12-well plates at the density of 3x105 cells per well and 

allowed to adhere and acclimate for one day. The medium was discharged, replaced 

with 2 nM polymer decorated GNP suspensions (Folate targeted pH responsive GNPs 

in FFDMEM at pH 7.4 and 6.5; while 2 nM Rhodamine labelled Folate targeted GNPs 

were tested on cells in FFDMEM at pH 7.4. and cells were incubated for 2 hours at 37 

°C in a humidified 5% C02 incubator. Then, cells were washed with PBS without CaCl2 

and MgCl2 (3 x 1 mL) and detached by treatment with 1% w/v trypsin in PBS without 

CaCl2 and MgCl2 (150 μL per well). After 4 minutes of incubation at 37 °C, trypsin 

activity was blocked by addition of 500 μL of FFDMEM and cells were recovered by 

centrifugation at 1000 rpm for 5 minutes. Supernatants were removed and the 

cellular pellet was fixed with freshly prepared 4% w/v paraformaldehyde (PFA) in 

PBS for 15 minutes. Samples were centrifuged at 1000 rpm for 5 minutes, washed 

with PBS to remove PFA traces and analyzed by flow cytometry. Cell samples 

incubated with Rhodamine labelled Folate targeted GNPs were analized at λex 550 and 

λem 575 for Rhodamine detection. Cell samples incubated with Folate targeted pH 

responsive GNPs were analysed λex 488 nm ex and λem 525 nm for Bodipy detection.  

5.6.5. Confocal microscopy 

KB cells were seeded onto 35 mm imaging dishes (MatTek, Ashland, US) at the 

density of 1.5 x 105 cell per well in FFDMEM  added of 15% v/v Fetal Bovine Serum 

(FBS) and grown for 48 hours at 37°C and 5% CO2. 250 μL of 2 nM Folate targeted pH 

responsive GNPs and Rhodamine labelled Folate targeted GNPs in FFDMEM at pH 

7.4.and 6.5 were added to each dish and cells were incubated at 37 °C in the dark for 

2 hours. FA-C5-Rho was tested on KB cells under the same condition at the 
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concentration of 100 nM, a comparable concentration to the amount of Folate-PEG on 

the surface of Folate targeted pH responsive GNPs. Particle suspensions or FA-C5-Rho 

solution were removed and wells were gently washed three times with PBS. Cells 

were incubated in pre-warmed imaging medium (phenol red-free DMEM pH 7.4 

containing 25 mM HEPES and supplemented with 1 mg/mL BSA). Cells were imaged 

on a Leica SP5 confocal laser-scanning microscope equipped with a 488 nm Ar laser, 

543/633 nm HeNe laser, 100 × 1.4 NA or 40x 1.4 NA objectives using a Leica Type F 

immersion oil. Cell samples incubated with Rhodamine labelled Folate targeted GNPs 

were irradiated with a 514 nm laser for Rhodamine detection; cell samples incubated 

with Folate targeted pH responsive GNPs. were irradiated with a 488 nm laser for 

Bodipy FL detection. The microscopy imaging was performed on live cells.  

The confocal images were analyzed through an ImageJ script without any manual 

intervention.  The selection of Fluorescent pixels was performed after setting an 

ImageJ IsoData threshold to derive the fluorescence intensity. The background 

intensity was set by looking at pixels that showed a fluorescence intensity below the 

IsoData threshold. The fluorescence intensity correction of each image was 

performed by subtracting the background intensity from the intensity value. 

Corrected mean intensities were calculated as the mean intensity value of 5 images 

for each sample. All the fluorescence intensity values were normalized to the relative 

maximum corrected mean intensity value. The mean normalized intensity from 3 

independent experiments was plotted. 

5.6.6. Transmission electron microscopy (TEM) of KB cells 

Intracellular disposition of gold nanoparticles was imaged by TEM analysis. KB cells 

were seeded at the density of 3 x 105 cells per well in 12 wells plates. After 24 Folate 

targeted pH responsive GNPs were tested on cells in FFDMEM at pH 7.4 and 6.5; while 

2 nM Folate targeted GNPs and Rhodamine labelled Folate targeted GNPs were tested 

on cells in FFDMEM at pH 7.4. 

After 2 hours of incubation at 37 °C, the medium was discharged and the cells were 

washed three times with PBS. Cells were fixed with 2.5 % w/v glutaraldehyde in 0.1 

M sodium cacodylate buffer at 4 ˚C for 1 hour. The cells were washed twice with 

sodium cacodylate buffer and post fixed in 1% w/v osmium tetroxide in 0.1 M sodium 

cacodylate buffer for 1 h. Cell samples were dehydrated using ethanol. Afterwards the 
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samples were embedded in fresh EPON resin. Ultrathin sections of the samples were 

cut and observed with Tecnai G2 Transmission Electron Microscope (FEI, Oregon, 

USA). 

5.6.7. Cell uptake inhibition assay 

KB cells were seeded in 12-well tissue culture treated plates at a density of 5 x 105 

cells/well. After 24 hours the culture medium was discharged and the cells were 

treated with 0.5 mL of GNP suspensions in FFDMEM) at pH 7.4 and 6.5, added of 200 

μM free Folate. After 2 hours incubation time, the samples were treated as described 

above for Atomic Absorption, Flow cytometry and confocal  microscopy analysis. 

5.7. INTRACELLULAR TRAFFICKING STUDIES 

5.7.1. Particle trafficking to the liposomes 

KB cells were seeded onto 35 mm imaging dishes (MatTek, Ashland, US) at the 

density of 1.5 x 105 cell per well in FFDMEM added of 15 % v/v Fetal Bovine Serum 

(FBS) and grown for 48 hours at 37 °C and 5% CO2. Cells were pulsed for 8 hours with 

Dex-647 (50 µg/mL in FFDMEM supplemented with 15% v/v FBS) to allow the 

lysosome labelling. Then cells were chased for 12 hours in dextran-free FFDMEM 

complete medium. Cells were incubated for 30 minutes with the following samples: 

 

• 2 nM GNPs decorated with 10 chains of FA-PEG3.5kDa-SH and labelled with 

Rhodamine (10x FA-PEG-GNPs) in FFDMEM medium 
 

• 2 nM GNPs decorated with 50 chains of FA-PEG3.5kDa-SH and labelled with 

Rhodamine (50x FA-PEG-GNPs) in FFDMEM medium 
 

• 100 nM FA-C5-Rho solution in FFDMEM medium 

 

After the incubation, the medium was discharged, the cells were washed with PBS for 

three times and added of pre-warmed imaging medium (phenol red-free DMEM pH 

7.4 containing 25 mM HEPES and supplemented with 1 mg/mL BSA). Cells were 

incubated at 37 °C , 5% CO2 atmosphere and were imaged at scheduled times (0, 1, 2 
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and 4 hours) on a Leica SP5 confocal laser-scanning microscope equipped with a 488 

nm Ar laser, 543/633 nm HeNe laser, 100 × 1.4 NA or 40x 1.4 NA objectives using a 

Leica Type F immersion oil. 

Fluorescence microscopy images of Rhodamine labelled particles (50x FA-PEG-GNPs 

and 10x FA-PEG-GNPs) and the conjugate FA-C5-Rho in the 514 channel and the 

images of Dex-647 in the 633 channel were captured simultaneously. Dex-647 was 

used to label the lysosomal regions. Analysis of each field was performed using an 

ImageJ script without manual intervention. A Li threshold was applied to the Dex-647 

channel aiming to identify the lysosomal regions. The background fluorescence 

intensity was calculated by setting an IsoData threshold and considering the mean 

intensity of pixels below this threshold for each channel. The image analysis of 

samples incubated with Rhodamine labelled particles (514 nm channel) and the 

images for lysosome tracking (633 nm channel) allowed to derive the fluorescence 

intensity of Rhodamine in the lysosomes. Rhodamine fluorescence intensity within 

the lysosome was corrected by subtracting the background intensity from the 

intensity value. The mean intensity value of 5 images for each sample provided the 

corrected mean intensity value. All the values were normalized to the relative 

maximum corrected mean intensity value which provided the normalized intensity 

for each sample. The mean normalized intensity in Lysosomes from 3 independent 

experiments was plotted. 

The colocalization of Rhodamine labelled particles (50x FA-PEG-GNPs and 10x FA-

PEG-GNPs) and the conjugate FA-C5-Rho within lysosomes was evaluated by 

Pearson’s coefficient (PC). 5 images per time point were captured and analysed. To 

avoid the variation between a cell and another, 5 individual cells were manually 

selected for each image. PC values were calculated using the JaCOP ImageJ plugin and 

the mean PC value of 5 cells per 5 different images per time point was calculate. 

Standard deviation was calculated as variation between mean PC values of 3 

independent experiments. 

5.7.2. Pathway inhibition assay 

KB cells were seeded onto 35 mm imaging dishes (MatTek, Ashland, US) at the 

density of 1.5 x 105 cell per well in FFDMEM added of 15% v/v Fetal Bovine Serum 

(FBS) and grown for 48 hours at 37 °C and 5% CO2. Cells were preincubated for 30 
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minutes at 37 °C with 80 µM Dynasore in FFDMEM without serum. Then the medium 

was removed and cells were incubated for 30 minutes with the following samples in 

the presence or absence of Dynasore (80 µM): 

 

• 10 µg/mL AlexaFluor 488 labelled Transferrin (Tf-488) in FFDMEM without FBS 

• 100 nM FA-C5-Rho in FFDMEM without FBS 

• 2 nM Rhodamine labelled GNPs decorated with 50 chains of FA-PEG3.5kDa-SH (50x 

FA-PEG-GNPs) in FFDMEM without FBS  

After incubation, the medium was discharged, cells were washed 3 times with PBS 

and fixed with 4% w/v PFA in PBS for 15 minutes. Cells were washed twice with PBS 

and then analyzed by confocal microscopy. Tf488, FA-C5-Rho and Rhodamine labelled 

Folate targeted GNPs were irradiated with a 514 nm laser for AlexaFluor 488 and 

Rhodamine detection. The uptake inhibition due to the presence of Dynasore was 

evaluated.  

5.8. IN VITRO SONODYNAMIC TREATMENT 

5.8.1. Ultrasound treatment and cell proliferation assay 

KB and MCF7 cells in the exponential growth phase were incubated for 2 hours with 2 

nM FA-PEG-GNP and mPEG-SH suspensions in FFDMEM and cells were incubated for 

2 hours. Then cells were detached with 0.05% trypsin-0.02% EDTA solution (Sigma). 

Aliquots of 1 mL cell suspensions adjusted to 5 × 105 cell/mL were collected in 

polystyrene tubes which were completely filled with PBS. Cell-containing tubes were 

treated with continuous 1.8 MHz ultrasound (US), at energy flux density (EFD) of 

0.008 mJ/cm2 for 5 minutes. The ultrasound exposure was performed under a dim 

light without observing any temperature increase in the medium. After the treatment, 

cell growth was monitored by WST-1 cell proliferation assay (Roche) to evaluate the 

effects of the US treatment. In detail, 2 × 103 cells were seeded in 96-well culture 

plates (100 μL/well) in replicates (n=8). WST-1 reagent (10 μL) was added at 24, 48, 

and 72 hours, and the plates were incubated at 37°C in 5% CO2 atmosphere for 2 

hours. The absorbance at 450 and 620 nm (reference wavelength) was measured by 
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in a microplate reader (Asys UV340; Biochrom, Cambridge, UK). Cell proliferation 

data were expressed as a percentage of untreated cells. 

5.8.2. Cell competition assay 

Cell uptake competition assay was performed, as reported in “CELL UPTAKE STUDY” 

section, by addiction of 200 μM free Folate to the 2 nM FA-PEG-GNP suspension in 

FFDMEM. Cells were then detached and subjected to ultrasound treatment as 

described above. 

5.8.3. Cell death analysis 

KB cell death was evaluated using the Dead Cell Apoptosis Kit with allophycocyanin 

(APC)-Annexin V and Sytox® Green (Life Technologies, Milan, Italy) with a C6 flow 

cytometer. Cells were incubated for 2 h with culture medium containing 2 nM FA-

PEG-GNPs, cells were then trypsinized, PBS washed and normalized to to 5 × 105 

cell/mL in 2.5 mL of PBS for ultrasound treatment. After ultrasound exposure cells 

were seeded in 6-well culture plates for 2 h, then collected, washed twice in 1x 

Annexin-binding buffer at 1500 rpm for 5 min and stained with APC-Annexin V and 

Sytox® Green for 15 minutes at 37 °C. Any cell debris with low forward light scatter 

and side light scatter were excluded from the analyses and a total of 10,000 events 

were analyzed. Fluorescence was collected at 660 and 530 nm to discriminate APC-

Annexin V and Sytox® Green signals, respectively. 

 



 Materials and Methods  

86 
 

 

 

 

 

 

 

 

 

 



 Results and Discussion  

87 
 

6. RESULTS AND DISCUSSION 

6.1. SYNTHESIS OF MONOMERS, INTERMEDIATED AND POLYMERS 

6.1.1. Synthesis of Lipoic terminating CTA 

The preparation of Folate targeted pH responsive gold nanoparticles involved the 

synthesis of a pH sensitive polymer featuring a pKa in the 6-7 range, a targeting agent 

and a fluorescent moiety. To chemically adsorb these materials on the particle 

surface, a thiol-terminating PEG can be used: the S–H bond cleaves and the thiol 

molecule chemisorbs to the surface through a fairly strong Au–S bond. This is the 

strategy that we used for the synthesis of the targeting ligand, Folate-PEG-SH, and the 

fluorescent labels, Rhodamine-PEG-SH and Bodipy-PEG-SH.   

A second method for decorating GNP surface is by replacing the terminal thiol 

substituent with a disulfide moiety. Lipoic acid was chosen to graft the pH responsive 

polymer to the particle surface: it possesses a disulfide moiety contained in a strained 

5-membered ring that can adsorb on the gold surface by forming a stable bond. For 

this reason, Lipoic acid is frequently employed in the bioconjugates synthesis for gold 

nanoparticles decoration121 as well as to prepare Self-assembled monolayers on gold 

surfaces122. 

 

The pH responsive polymer poly(MCH-co-GMA) was synthetized by living radical 

polymerization called Reversible Addition Fragmentation chain Transfer (RAFT). 

RAFT technology can be used to synthesize polymers with predetermined molecular 

weight and narrow polydispersity index (PDI). Moreover this procedure endorses to 

control the polymer architecture allowing the production of linear block copolymers, 

random copolymers, star polymers and many other complex structures. RAFT 

polymerization is a chain transfer process which involves a chain transfer agent 

(CTA), known as RAFT agent, which affects polymer length, chemical composition and 

rate of the reaction. For this thesis work we selected a Lipoic terminating CTA which 

enable either the particle decoration thanks to its simple coupling chemistry or the 

polymerization reactions. 
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Lipoic terminating CTA was produced by an initial activation of Lipoic acid to acyl 

chloride performed at 0 °C since it is an exothermic reaction (Scheme 2. - Step I). The 

1H NMR analysis confirmed the Lipoic acyl chloride formation by addiction of 

Methanol: oxygen of methanol instantly attacks the fairly positive carbon of Lipoic 

acyl chloride leading to the formation of the ester and hydrogen chloride, clearly 

visible in the 1H NMR spectrum by the formation of a peak at 3.6 ppm corresponding 

to the methoxide group.   

In the second step, a short alkane chain (Tetraethylene glycol) was introduced 

between the Au surface and the polymer chain, which is thought to produce a dense, 

ordered “brush” morphology on the Au surface123.  

TEG was dried from water by azeotropic distillation with toluene under reduced 

pressure. Then Lipoic acyl chloride was added dropwise to the TEG solution in DCM 

in order to avoid the dimer formation (Scheme 2. - Step II). 

 

 

 

Scheme 2. Synthesis of Lipoic terminating CTA. Reaction conditions: I. Oxalyl chloride, anhydrous DCM, 

0 °C. II. TEG, anhydrous DCM. III. 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid/ DCC/ DMAP, 

DCM 0 °C. 

The product Lipoic-TEG was purified by the 10-fold TEG excess by flash 

chromatography, isolating a yellow viscous oil which was characterized by 1H and 13C 

NMR, FTIR analysis and ESI TOF mass spectrometry. Expected a signal for m/z [M+H] 

383.15 u.m.a., found 383.09 Da; and one signal at  404.99 Da for [M+Na]. 
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Figure 16.  ESI TOF mass spectrometric analysis of Lipoic-TEG conjugate. 
 

 

Lipoic-TEG was finally conjugated to 4-cyano-4-(phenylcarbonothioylthio) pentanoic 

acid, obtaining the Lipoic terminating CTA, used for the further polymerization 

reactions. The Lipoic RAFT agent chemical identity was confirmed by 1H NMR, FTIR 

analysis and ESI TOF mass spectrometry. Expected m/z [M+H] 643.18 u.m.a., found 

644.18 u.m.a. [M+H]1+ and 666.16 u.m.a. [M+Na]+. 

 

Figure 17. ESI TOF mass spectrometric analysis of Lipoic terminating CTA. 

6.1.2. Synthesis of poly(MCH) macro CTA 

2-(methacryloyloxy)ethyl-3-chloro-4-hydroxybenzoate monomer(MCH) was 

produced as described in previously reported procedures116, and used as unit in the 

production of the pH responsive block of the di-block copolymer poly (MCH-co-GMA).  

 

Poly(MCH-co-GMA) was used to decorate the surface of Folate targeted pH responsive 

gold nanoparticles which were designed to selectively accumulate in the tumor 
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compartment, avoiding the uncontrolled biodistribution in the body as result of the 

interplay of each component of the system. The pH responsiveness of the particle 

decorating polymer assures the targeting agent exposition once reached the target 

tissue. Notably poly(MCH-co-GMA) was selected among an array of pH responsive 

materials since it showed a satisfactory pKa (in the physiopathological range) for the 

aim of the project. The pH responsiveness is modulated by the MCH/GMA monomer 

molar ratio in the polymer backbone and by the polymer molecular weight. A key 

parameter is the polymer length to assure the targeting agent shielding and 

“revealing” in response to pH. For all these reasons, considering the bond distances, 

poly(MCH-co-GMA) was synthetized with a polymerization degree of 80 (number of 

monomeric units) and a MCH/GMA ratio of 1:2.  

 

The polymerization of MCH was performed using MCH monomer, AIBN as radical 

initiator and Lipoic terminating CTA as RAFT agent (Scheme 3.). The molar ratio of 

the reagents was [Raft Agent]/[AIBN]/[MCH]=1:0.5:37.  

 

 

Scheme 3. RAFT polymerization of MCH to obtain poly(MCH) macro-CTA. 

 

The reaction was monitored by 1H-NMR to determine the monomer conversion. 

Aliquots of the reaction mixture were withdrawn at regular intervals of time and the 

reaction was stopped after 150 minutes once reached a monomer conversion of 70 %. 

The polymerization kinetic showed a first order kinetic profile, in which the rate of 

the reaction varies with the concentrations of the monomers (Figure 18.). The 

monomer conversion was calculated by monitoring the decrease of the multiplet at 

4.44-4.5 ppm, relative to the two methylene groups of the MCH monomer, and the 

appearance of a new broad peak at 4.1-4.3 ppm, due to the polymer formation. The 

monomer conversion was also calculated by looking at a new broad signal at 6.9 ppm 
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due to the shift of the aromatic proton (originally at 7.08 ppm in the monomer) as the 

polymer chain grow. 

The number of the repeat units in a polymer is defined by the Polymerization Degree 

(DP) which can be calculated by the following formula: 
 

DPn=Mn/M0 

 

where Mn is the number-average molecular weight, whereas M0 is the molecular 

weight of the monomer unit.  
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Figure 18. First order kinetic plot of the homopolymerization of MCH monomer using a Lipoic 

terminating CTA. 

 

Considering the Polymerization Degree of 26, the molecular weight was calculated to 

be 8 kDa. The polymer was isolated by precipitation in a 1:1 (v/v) diethyl 

ether/petroleum ether mixture and then characterized by 1H NMR and Gel 

Permeation Chromatography (GPC). In particular, GPC analysis showed a narrow PDI 

with a value of 1.13, which confirmed the high control of the RAFT polymerization 

technique.  
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Figure 19. 1H-NMR spectrum of poly(MCH) after precipitation performed in DMSO-d6 with peak 

assignment.  

6.1.3. Glycerol methacrylate synthesis 

The Glycerol methacrylate synthesis was performed according to the protocol 

reported in literature124 in which the efficient formation of diols was obtained by 

reacting epoxides (glycidyl methacrylate) with sulfuric acid (0.5 equiv.) in a water at 

RT. This method favorably competes with the classical one consisting in hydrolysis of 

dioxolane derivatives. Water and high-diluted H2SO4 were used as nucleofilic-acid 

catalysts and solvents and were efficient in promoting the ring opening of the epoxide 

to yield the diol.  
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Scheme 4. Reaction scheme of the glycerol methacrylate in acidic water at room temperature. 

 

The GMA monomer was efficiently purified by gel flash chromatography and 1H-NMR, 

13C-NMR and ESI TOF mass spectroscopy analysis confirmed the GMA structure. 

 

 

Figure 20. 1H-NMR spectrum of GMA performed in DMSO-d6 with peak assignment. 
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6.1.4. Synthesis of poly(MCH-co-GMA) 

Poly(MCH) was by employed as macro CTA in the polymerization with GMA aiming to 

generate a di-block copolymer with suitable length for the aim of the project. 

Poly(MCH), AIBN and GMA were employed as reagents in molar ratio of 

[poly(MCH)]/[AIBN]/[GMA]=1:0.5:66 and the RAFT polymerization was performed 

at 70 °C in anhydrous DMF according to the Scheme 5. 

 

 

Scheme 5. Synthesis of di-block copolymer poly(MCH-co-GMA) by RAFT polymerization using 

poly(MCH) as macro CTA, AIBN as radical iniziator and GMA as monomer. 

 

The polymerization progression was monitored by 1H NMR through regular 

withdrawals of the reaction mixture, showing a first order kinetic plot (Figure 21.). 

The exposition of the solution to air caused the polymerization termination at a 

monomer conversion of 81 % (DP=53). The polymerization degree was determined 

by 1H NMR spectroscopy in DMSO-d6, following the decrease of the GMA vinylic 

proton integrals (5.74 and 6.13 ppm) referred to the DMF peak (2.97 ppm), the 

solvent used for the polymerization. DMF is high-boiling-solvent (153 °C) and it can 

be assumed that its concentration stay constant during the polymerization reaction 

which is performed at 70 °C. Therefore DMF can be used as internal standard to 

measure the decreasing in the vinylic proton integrals. 
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Figure 21. First order kinetic plot of the synthesis of di-block copolymer poly(MCH-co-GMA). 

 

The polymer was purified by precipitation in diethyl ether-petroleum ether mixture 

and characterized by 1H NMR and GPC. Notably the analysis of the 1H NMR spectrum 

highlighted that the aromatic signals of MCH (5H at ∼7 ppm) and the hydroxyl groups 

of GMA (2H at 4.6-4.9 ppm) have a relative ratio of 1:2, confirming the expected 

polymer composition. Moreover the GPC analysis revealed a PDI of 1.17, further 

prove of the relevance of this polymerization method.  

 

Figure 22. 1H-NMR spectrum of poly(MCH-co-GMA) after precipitation, performed in DMSO-d6 with 

peak assignment.  
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Potentiometric acid/base titration and back titration on poly(MCH-co-GMA) was 

carried out by adding aliquots of 1 N HCl or NaOH to a 1 mg/mL solution of the 

polymer. The polymer solubility decreased with the decrease of the pH due to the 

MCH protonation. This phenomenon caused the polymer precipitation triggered at 

lower pH with respect to pKa. On the other hand, the back titration showed that the 

polymer protonation and deprotonation occurs reversibly. Aggregation phenomena 

could make more difficult the access of the titrant to the phenolic group of MCH in the 

pH responsive block, causing a delay in the protonation/deprotonation process. For 

this reason, the pKa of the polymer is commonly named “apparent pKa” due to the 

effect of aggregation on the protonation of the polymer.  

 

 

Figure 23. (A) Potentiometric Titration (●) and back titration (●) curves of poly(MCH-co-GMA). (B) 

Turbidimetric analysis (●) of 1 mg/mL poly(MCH-co-GMA) solution. 

 

Turbidimetric assay was performed to assess the polymer cloud point (CP) which is 

defined as the pH at which precipitation occurs. Starting from a polymer solution at 

pH 12, the pH was gradually decreased by adding 1 N HCl and transmittance 

decrease, due to polymer aggregates scattering, was recorded at 500 nm (Figure 23 - 

B.). The polymer cloud point was shown to be 5.17, calculated as the pH at which a 

decrease in transmittance at 500 nm starts to be detected.  

 

Poly(MCH-co-GMA) copolymer is soluble at physiological pH conditions, since the 

hydroxyl benzyl group is in its ionized form. At slightly acidic pH value, the phenolic 

hydroxyl moiety is protonated, and the polymer converts to an uncharged form. 

While the potentiometric titration provides evidence of the molecular event of the 

MCH monomer titration, the cloud point of the polymer is a descriptor of the 
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macroscopic aggregation that stems from the polymer chain conversion from coil to 

globule occurring when the MHC monomers undergo protonation. The cloud point is 

dictated by polymer protonation, and consequent hydrophobic shift, dehydration and 

is also affected by the polymer concentration. Notably, the polymer shift to a 

hydrophobic globular state is a dynamic event that takes place throughout the 

polymer protonation process, where the apparent pKa correspond to 50% of the MCH 

monomer protonation (Figure 24.). 

The pH responsiveness of poly(MCH-co-GMA) can be used as sensor of the local pH 

decrease typical of the tumor interstitium and is suitable for the aim of the project.  

 

 

Figure 24. Poly(MCH-co-GMA) is designed to change its length upon different pH conditions. A pH 

decrease results in the protonation of the hydroxyl moiety of the hydroxybenzoic acid; in such a case, 

the polymer becomes hydrophobic and it collapses in a globular conformation. 

6.1.5. Synthesis of poly(GMA) 

Aiming to provide certainty that Folate biorecognition is driven by the sensing effect 

of the changed microenviromental pH, a polymer endowed of the same length of 

poly(MCH-co-GMA) (equal monomeric units) was synthetized. With this intention 

GMA was polymerized using AIBN as radical initiator and Lipoic terminating CTA as 

RAFT agent with a molar ratio of [Raft Agent]/[AIBN]/[GMA]=1:0.5:99.  

 

 

Scheme 6. RAFT polymerization of GMA to obtain poly(GMA). 
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The polymerization kinetic was followed by 1H NMR performed at regular intervals of 

time. At 80 % of monomer conversion (DP=79) polymerization was stopped by 

exposing the reaction mixture to air. The polymerization degree was calculated 

monitoring the decrease of the integrals of the monomer vinyl signals (6.11 and 5.58 

ppm) with respect to the singlet signal at 7.95 ppm of the DMF, used reference peak. 

Poly(GMA) was isolated by precipitation in 1:1 (v/v) diethyl ether/petroleum ether 

mixture and was characterized by 1H NMR in DMSO-d6 and GPC. 

 

  

Figure 25. 1H-NMR spectrum of poly(GMA) after precipitation, performed in DMSO-d6 with peak 

assignment. 

 

The GPC analysis revealed that the di-block copolymer possesses a PDI of 1.16, which 

confirm the very low molecular weight polydispersity and that the synthetic 

procedure ensure for a very controlled and homogenous polymer chain growth. 

6.1.6. Removal of Thiocarbonylthio Group 

The Thiocarbonylthio Group removal from polymers synthetized by RAFT technique 

is an important issue to prevent problems with reactivity and degradation into 
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malodorous sulfur-containing compounds125. Moreover the eventual formation of a 

thiol end-group could compete with the Lipoic termination of the polymer chain for 

the gold surface adsorption. This will lead to the production of particles decorated 

with poly(MCH-co-GMA) whose hydrophilic block poly(GMA) is directly conjugated to 

the GNP surface and the poly(MCH) block is exposed to the solvent. The hydrophilic 

poly(GMA) block provide for stealth properties, henceforth the loss of this external 

layer can induce the particle instability. Moreover the pH responsive block 

(poly(MCH)) exhibits a higher steric hindrance which could hinder the polymer chain 

adsorption on the particle surface. For all these reasons the cleavage of 

thiocarbonylthio group is paramount to ensure a correct polymer docking to the 

particle surface through the lipoic acid and the exposure of the hydrophilic block 

towards the bulk assuring the system stealthness. 

The RAFT end-group removal reaction involves heating the polymer with a large 

excess (30 molar equivalents) of AIBN. Analysis of the end-group removed polymers 

can be achieved using traditional techniques such as NMR, when the RAFT agent 

signals are still detectable, and GPC. However, a reliable method is also UV-Vis 

spectroscopy of the polymer since the thiocarbonylthio chromophore absorbs 

strongly in the Visible range at 400-500 nm and this spectroscopic feature is unique 

for polymers possessing a RAFT end-group. Visual comparison of the colour of the 

polymer solution before and after end-group removal can also be used to confirm if 

the end-group has successfully been removed125. 

RAFT agent cleavage reaction was performed on poly(GMA) and poly(MCH-co-GMA). 

At the beginning of the reaction polymer solutions were red coloured whereas at the 

end-group removed polymers appeared discolored. The polymer was finally isolated 

by precipitation in diethyl ether-petroleum ether mixture. 

 

 

 

Scheme 7. RAFT agent cleavage reaction performed on poly(GMA). 
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6.1.7. Synthesis and characterization of targeting agent Folate-PEG-SH. 

A targeting agent was synthesized for the delivery of particles to Folate receptor 

overexpressing cancer cells. In order to ensure proper exposure of the targeting 

moiety on the particle surface, folic acid was conjugated to a flexible and hydrophilic 

thiol terminating PEG linker. Two derivatives were synthesized provided of two 

different PEG lengths, 2 and 3.5 kDa, which have been combined on the surface of 

Folate targeted pH responsive GNPs and Folate targeted GNPs formulations 

respectively. Folate-PEG-SH synthesis was performed by adapting procedures 

reported in literature126 (Figure 26.).  

 

 

 

Figure 26. Synthesis of Folate-PEG conjugate – I. Activation of γ-COOH group of folic acid by NHS and 

DCC in anhydrous DMSO. II. Conjugation of NHS-Folate ester to NH2-PEG-SH in anhydrous DMSO in 

presence of TEA as catalyst. n=45 kDa for FA-PEG2kDa-SH synthesis, n= 79 for FA-PEG3.5kDa-SH synthesis. 

 

 

The conjugation efficiency of the purified product was determined by 

spectrophotometric methods. FA–PEG-SH was dissolved in milliQ water basified at 

pH 9 by addiction of ammonia and then diluted to 0.5 mg/mL in phosphate buffer, 

NaCl 150 mM, at pH 7.4. The UV absorption at 363 nm of the solution was measured 

to assess the Folate content considering the molar extinction coefficient of folic acid 

reported in literature (6197 mol-1 cm-1 in PBS buffer pH 7.4)127. The Iodine test 

performed on the FA–PEG-SH diluted solution in milli-Q water provided the PEG 

quantification based on a previously prepared calibration curve.  
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The conjugation efficiency was then calculated as follows: 
 

% conjugation efficiency = (Abs. at 363 nm/6197 M−1 cm−1)/[PEG (mg/mL)]/(PEG 

MW (g/mol)) x 100 

 

The conjugation yield of Folate to NH2-PEG-SH was of 98% mol/mol underling that 

the conditions used for the synthesis allowed for the almost complete conjugation of 

the free amino groups of PEG with the carboxylic acid of folic acid. Notably, folic acid 

possesses two carboxylic groups: the one in α position is required for the biological 

activity. In order to limit the conjugation to the gamma carboxylic group, the reaction 

was performed with a low excess of NHS-activated Folate. In this condition it is 

reasonable that the reaction of the less hindered carboxylic group with NH2-PEG-SH is 

favored. The literature reports that about 70% of the gamma carboxylic groups reacts 

with free amino groups thus most of the alpha carboxylic groups of the Folate are 

available for the binding to the Folate receptors77,128. 

The Ellman’s test carried out on the pure product after the reduction with TCEP 

showed a percentage of free thiol groups of 96% mol/mol with respect to the 

theoretical percentage. The MALDI TOF mass spectrometry confirmed the chemical 

identity and provided a bell shaped profile centered at 2369 m/z (expected [M+H]= 

2424 Da) for FA-PEG2kDa-SH (Figure 27 - A) and 4137 m/z (expected [M+H]= 3924 

Da) for FA-PEG3.5kDa-SH (Figure 27 - B). 

 

         

Figure 27. MALDI TOF analysis of (A) FA-PEG2kDa-SH and (B) FA-PEG3.5kDa-SH conjugate. 

 

The reverse phase high-performance liquid chromatography analysis performed on 

both the Folate-PEG-SH conjugates showed no traces of free Folate, confirming the 

high degree of purity of the products. 
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6.1.8. Synthesis and characterization of Bodipy-PEG2kDa-SH 

Bodipy FL is a neutral dye with a good photostability, outstanding brightness, sharp 

emission peak and high quantum yield. It is insensitive to variations in pH thus it is a 

good candidate for the labelling of Folate targeted pH responsive gold nanoparticles.  

 

Figure 28. Normalized fluorescence excitation (▬) and emission (▬) spectra of Bodipy FL-NHS.  

 

Bodipy FL was grafted to the particle surface through a PEG spacer of 2 kDa. The 

conjugation reaction was performed using N-hydroxysuccinimidyl-ester-activated 

Bodipy FL (1.2 equivalents) with respect to NH2-PEG2kDa-SH to promote a high 

derivatization of the PEG primary amino group (Scheme 8.). 

 

 

Scheme 8. Reaction scheme of Bodipy-NHS conjugation to NH2-PEG2kDa-SH .  

 

The purification of the crude product was performed by size exclusion 

chromatography eluted in organic solvent. The column fractions were analyzed 

spectrophotometrically at 503 nm and 535 nm (Iodine test) for the Bodipy and PEG 

assessment, respectively. The gel filtration chromatogram, reported in Figure x, 

highlight the very good separation of the product and the unreacted Bodipy-NHS 

excess. 
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Figure 29. Gel filtration chromatographic profile of the conjugate Bodipy-PEG2kDa-SH on Sephadex 

LH20 column, eluted with Ethanol. Fractions were analized by UV-Vis spectroscopy at 503 nm and 

Iodine assay (535 nm) for the Bodipy (●) and the PEG (■) determination respectively.  

 

The purified product was lyophilized and analyzed by MALDI TOF mass spectrometry 

showing a bell shaped profile centered at 2227.6 m/z, expected [M+H] at 2276.12 Da 

(Figure 30 – B). The presence of oxidized product traces was highlighted by the mass 

analysis, justified by the dimerization of the starting material (Figure 30 – A). UV-Vis 

spectroscopic analysis performed on the purified Bodipy-PEG solution revealed a 

conjugation yield of 94% mol/mol, calculated as the molar ratio between the Bodipy 

and the PEG content. 

 

Figure 30. MALDI TOF analysis of mPEG2kDa-SH starting material (A) and of the Bodipy-PEG2kDa-SH 

conjugate (B). 
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6.1.9. Synthesis and characterization of Rho-PEG2kDa-SH  

Rho-PEG2kDa-SH was synthetized as labelling agent to track the cell uptake of Folate 

targeted Rhodamine labelled gold nanoparticles. Rhodamine-NHS was conjugated to 

NH2-PEG2kDa-SH via amide bond (Scheme 9.).  

  

 

 

 

 

 

Scheme 9. Reaction scheme of Rhodamine-NHS conjugation to NH2-PEG2kDa-SH .  

 

The crude product Rho-PEG2kDa-SH, recovered from the reaction mixture by 

precipitation in diethyl ether and was purified by size exclusion chromatography to 

remove excess of unreacted Rhodamine-NHS. 

The Rho-PEG2kDa-SH was dissolved in water and analyzed by UV-Vis spectroscopy at 

552 nm, to assess the Rhodamine concentration based on a previously prepared 

calibration curve, and by the Iodine test to derive the PEG concentration. The 

conjugation efficiency, obtained as the ratio between the Rhodamine and the PEG 

concentration, was 96% mol/mol.  
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Figure 31. Calibration curve of Rhodamine-NHS in milliQ water at 552 nm. 
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The derivative was further characterized by 1H NMR spectroscopy and MALDI TOF 

mass spectrometry. The MALDI TOF analysis of the Rho-PEG2kDa-SH conjugated 

(Figure 32.) showed a bell shaped profile centered at 2662.4 m/z (expected 2429 

u.m.a.), while no trace of unreacted mPEG-SH (MALDI TOF mass signal at 2016.2 m/z) 

was found. 

  

 

Figure 32. MALDI TOF analysis of Rho-PEG2kDa-SH conjugate. 

6.1.10. Synthesis and characterization of Folate-Cadaverine-Rhodamine (FA-C5-

Rho).  

Several studies reported in literature highlight that the introduction of multiple 

targeting ligands onto nanoparticle surface can increase binding avidity, rate of 

internalization and so improve the therapeutic efficacy. In light of this will be suitable 

to determine whether an optimal ligand density exists.  

In the present work we developed Folate targeted gold nanoparticle at differing 

ligand densities. Particles were fluorescently labelled with Rhodamine-PEG2kDa-SH 

(500 chains per particle). Moreover in order to investigate the potential effect that 

multivalency could have on the internalization pathway, monovalent Folate ligand 

was synthetized and labelled with Rhodamine using Cadaverine as spacer. 

The Folate-Cadaverine-Rhodamine synthesis was performed according to a twostep 

procedure. First, Folic acid was activated to N-Hydroxysuccinimidyl-ester (Scheme 10 

– I) and then conjugated to Cadaverine (Scheme 10 – II). 
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Scheme 10. Reaction scheme of FA-C5-Rho. - I. Folic acid activation to N-Hydroxysuccinimidyl-ester. – 

II. Folate-NHS conjugation to Cadaverine. – III. Conjugation of Rhodamine-NHS to Folate-Cadaverine. 

 

The Folate-Cadaverine was isolated by precipitation in diethyl ether in order to 

eliminate the excess of Cadaverine that, on the contrary of Folic acid, is soluble in 

ether. The dried product was then characterized by ESI-TOF mass spectrometry, 

confirming the chemical identity of the product: expected a signal at 527.26 u.m.a for 

[M+H], found [M+H]=527.25 u.m.a. and [M+2H]2+=218.15 u.m.a. (Figure 33.).  
 

 
 

Figure 33. ESI TOF spectrum of Folate-Cadaverine. 

 

In the second step, Rhodamine-NHS was conjugated to the amino end-group of 

Folate-Cadaverine through the formation of an amide bond using a molar excess of 

Rhodamine-NHS of 1.2 equivalents with respect to Folate-Cadaverine in order to 
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promote the conjugation reaction. The crude product was purified by the unreacted 

Rhodamine by size exclusion chromatography. The chemical identity of the final 

product FA-C5-Rho was confirmed by ESI-TOF mass spectrometry (expected 940.41 

u.m.a for [M+H], found 464.21 for [M-2H]2-. 

          

 
 

Figure 34. ESI TOF spectrum of Folate-Cadaverine-Rhodamine. 

6.2. GOLD NANOPATICLE PRODUCTION AND CHARACTERIZATION 

Nanoparticles were generated by reduction of Tetrachloroauric(III) acid (HAuCl4) 

with sodium citrate according to the Turkevich’s method introduced in 1951 that 

consists in the reduction of HAuCl4 by citrate. Citrate was used as reducing agent and 

stabilizing agent since it remains adsorbed on particle surface providing negative 

repulsive charges94. The presence of citrate prevents aggregation of the formed gold 

(Au) solution which would take place as a consequence of attractive Van der Waals 

and depletion forces13. The HAuCl4 solution was brought to 75 °C and trisodium 

citrate dihydrate was quickly added under vigorous stirring. Before the addition of 

the reducing agent, gold is in solution in the cationic Au(III) oxidation state. The 

average diameter of the colloidal gold resulting from reduction can be tuned in the 

range of 10-100 nm by varying the citrate/Au ratio. A low amount of sodium citrate 

allows to achieve the formation of a low number of nucleation seeds and provides 

limited citrate ions available for the stabilization of the particles. This will lead to the 

aggregation of small particles into bigger ones until the total surface area of all 
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particles will be coated by the available citrate ions. When the reducing agent is 

added, metallic gold atoms are generated in the solution, and their concentration 

rises rapidly until the solution exceeds saturation. This process was visible by the 

rapid color change from pale-yellow to grey, which corresponds to the gold “nuclei” 

formation. After few minutes, a wine-red colloidal gold suspension was obtained. 

GNPs were characterized by DLS (Figure 35 – A) showing a size of 14.5±1.6 nm, based 

on the size distribution expressed by Number, and a polydispersity index (PDI) of 

0.20±0.08. TEM analysis confirmed that the method for the GNP preparation results 

in homogenous populations of spherical particles (Figure 35 – C). TEM images 

(n=200), analyzed by ImageJ open source image processing program showed a size of 

14.6±2.3 nm (Figure 35 – C’) which was in perfect agreement with the data provided 

by the DLS analysis. 

 

 

Figure 35. (A) Dynamic Light Scattering, (B) UV-Vis spectrum and (C) TEM analysis of citrate stabilized 

gold nanoparticles freshly prepared by Turkevich’s method. (C’) Size distribution profile of particles 

obtained by the elaboration of TEM images by ImageJ image processing program. 

 

A revision of the Mie theory and the study reported by El-Sayed and co-workers was 

published by Liu et Co. in 2006118. In their work they underlined a linear correlation 

of the double logarithm of the extinction coefficient of gold nanoparticle aqueous 

suspensions versus the particle diameter. This concept is mathematically expressed 
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by equation (2), where ε506 is the molar extinction coefficient (M−1 cm−1) referred to 

the absorbance at 506 nm, D is the core diameter of the nanoparticles, k and a are two 

constants whose values are 3.32111 and 10.80505 respectively. 

(2)   ln ε = k lnD + a 

 

In order to assess the concentration of particle samples prepared in this thesis work, 

the extinction coefficient of each formulation was derived by Eq. (2) in agreement 

with what has been reported by El-Sayed and Mie119,120. The gold nanoparticles 

concentration (M) was determined using the Lambert–Beer law, equation (3), where 

A506 is the absorbance at 506 nm and b is the path length. 

(3) Conc. (M)= A506/ ε506b 

 

The final concentration of the citrate stabilized GNP suspension was of about 3 nM for 

the different formulation batches. 

 

Spherical gold nanoparticles synthesized through the Turkevich’s method show an 

overall negative surface charge which is ascribed to the presence of the surface 

adsorbed citrate layer. Citrate anions, act both as reducing and stabilizing agent that 

allow for facile, efficient and high-density ligand exchange. Notably gold and citrate 

interact with a bond strength comparable to the hydrogen bond and it can thus be 

easily displaced by ligands providing for stronger bonds such as thiols or disulphides. 

The Gold-Sulfur bond (Au–S) is fairly strong (45 kcal/mol) and results from the soft 

atom characteristics of both Au and S13. Gold nanoparticles were decorated with 

stabilizing polymers (namely PEG), responsive polymers for environmental sensing 

and biomolecules to provide for biorecognition and targeting. To this aim, functional 

polymers were selected with a thiol ending group to allow a straightforward 

decoration of the gold nanoparticle surface.  
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6.3. FOLATE TARGETED GOLD NANOPARTICLES AS ULTRASOUND 

SENSITIZERS FOR ANTICANCER TREATMENT 

In recent decades Sonodynamic therapy (SDT) has received great attention by the 

researchers because of its excellent application prospects in the treatment of cancer. 

It is a non-invasive approach based on acoustic cavitation generated by ultrasound 

which lead to cytotoxic effects on tumor cells by producing reactive oxygen species 

(ROS), able to generate irreversible damage of the tissues17. Ultrasound can be 

precisely applied in a limited focal zone and the penetration depth can be selected by 

tuning the frequency. As described by Tuziuti et al., the presence of particles in a 

liquid creates nucleation sites that participate in the formation of cavities to reduce 

the threshold intensity needed for the cavitation process129. This leads to a great 

enhancement of the sonodynamic treatment efficacy. 

 The most used sonosensitizers are porphyrins and their derivatives. Even if very 

efficient, many of these agents suffer of physico-chemical problems, such as low 

solubility, instability after intravenous injection, uncontrolled biodistribution, which 

limit their clinical application. In this scenario, gold nanoparticles have emerged as 

promising nanosensitizers in sonodynamic therapy. In virtue of their intriguing 

physical properties, gold nanoparticles were found to accelerate the cavitation 

phenomena under acoustic tension resulting in enhancement of both mechanical bio-

effects and the amplitude of acoustic emissions. Moreover, gold nanoparticles are 

biocompatible carriers which, thanks to the high surface-to-volume ratio, can be 

additionally decorated with cancer-specific biomarkers allowing for a site-specific 

accumulation. Notably, the nanoparticle dimensions are suitable for the exploitation 

of the EPR effect that yields enhanced accumulation in the tumor tissue thus 

minimizing potential off-site effects. 

6.3.1. Aim of the study 

The aim of the colloidal gold formulation discussed in this chapter was to investigate 

in depth the therapeutic potentials of ultrasound irradiation on cancer cells pre-

incubated with targeted gold nanoparticles. To this aim, gold nanoparticle surface 

was decorated with Folate-PEG3.5kDa-SH, selected as targeting agent for the 

biorecognition of Folate receptor overexpressing cancer cells. The effect of targeting 
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ligand surface density on the particle uptake efficiency was thoroughly studied 

together with the cell killing effect of pulsed or continuous ultrasounds. This study 

intends to provide a proof-of-concept for the exploitation of targeted gold 

nanoparticles as site-selective sensitizers for ultrasound-triggered cancer cell killing 

(Figure 36.). Unlike previous literature reports, we aim here to induce cancer cell 

killing by the sole combination of gold nanoparticles and ultrasound irradiation 

without the aid of sonosensitizers such as porphyrin derivatives130 or the use of 

intense pulsed light129. 

 

Figure 36. Schematic representation of selective uptake of Folate targeted gold nanoparticles mediated 

by the Folate receptor biorecognition. The active targeting mediated GNP accumulation enhances the 

efficacy of the sonodynamic therapy 

6.3.2. Assessment of GNP surface decoration efficiency  

GNPs were modified with increasing molar excesses (1:500, 1:1000, 1:2000, 1:3000 

and 1:6000 GNP/polymer molar ratio) of mPEG2kDa-SH and FA-PEG3.5kDa-SH in order 

evaluate the decoration efficiency of each of the two polymeric components. 

Reference samples containing equimolar polymer concentrations without colloidal 

gold were prepared by replacing the particle volume with milliQ water. 

After incubation, gold nanoparticles were isolated by centrifugation. The conjugated 

polymer on the GNP surface was derived by difference between the concentration of 
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unbound polymer in the supernatant and that of the corresponding reference sample. 

This allowed to assess the conjugation efficiency for each incremental polymer excess 

incubated with the particle samples. Based on the particle surface area, estimated to 

be 707 nm2 for 15 nm GNPs, the density of polymer chains per nm2 was also 

calculated (Figure 37.). 

0 2000 4000 6000
0.0

0.5

1.0

1.5

2.0

polymer/GNP m.r.

c
h

a
in

s
/n

m
2

 

 

Figure 37. mPEG2kDa-SH (■) and FA-PEG3.5kDa-SH (■) density on particle surface at increasing polymer 

feed.   

 

The functionalization profile of GNPs with both polymers tested showed to plateauing 

at a polymer/GNP molar ratio above 3000:1. The two polymers associate to the 

particle surface with an overlapping profile. The gyration radius and the distance of 

the anchorage site are crucial parameters which dictate the chains conformation. At 

the maximum density achieved, the distance among chains is minimized and the 

polymer is forced to assume a “brush-like” conformation. In contrast, at low polymer 

density, chains are organized in “mushroom-like” structures. Studies reported in 

literature demonstrated that the optimal surface coverage is the particular condition 

between the “mushroom” and “brush” configurations: polymer chains are in a slightly 

confined configuration which guarantee no uncoated areas on the particle surface and 

sufficient flexibility of the chains to generate a soft and protein repelling layer that 

minimize the opsonization process131.  
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Table I. reports in details the conjugation yield percentages that were assessed for 

each sample. The functionalization yield, as expected, decreases with the increase of 

the polymer molar excess. In fact, at low molar excess the competition between 

polymer chains for the gold surface adsorption is negligible: the whole particle 

surface is available for the polymer attachment through the thiol group. As the 

polymer density increases on the particle surface, the adsorbed chains rearrange 

from flat “mushroom-like” to “brush-like”. The surface saturation is set by the 

polymer features, in particular the gyration radius of the polymer chain and its 

hydrodynamic size. Under the fully brush-like conformation, the polymer molecules 

are so tightly packed that the sliding of additional polymer chains is prohibited. 

Henceforth the conjugation yield falls significantly. 

 

Table I. Conjugation yield of mPEG2kDa-SH and FA-PEG3.5kDa-SH to GNP surface at 

increasing polymer feed ratios. 

 

GNP/polymer molar 
ratio in feed  

Conjugation yield  
of mPEG2kDa-SH (%) 

Conjugation yield  
 of FA-PEG3.5kDa-SH (%) 

1:500 83 84 

1:1000 71 72 

1:2000 39 42 

1:3000 30 28 

1:6000 19 16 

 

The functionalization profile of GNPs with Folate-PEG3.5kDa-SH or mPEG2kDa-SH 

yielded a very similar maximum polymer chain density of 1.39 and 1.58 chains/nm2, 

respectively. This result can be ascribed to the comparable hydrodynamic size of 

Folate-PEG3.5kDa-SH and mPEG2kDa-SH.  

Overall we concluded that, under the conditions and the particle concentration used, 

a PEG-SH/GNP molar ratio below 500:1 allows both thiolated PEGs to quantitatively 

conjugate on the particle surface. 
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6.3.3. Folate targeted gold nanoparticle preparation and characterization 

Folate targeted GNPs were obtained by a dual step method. In the first step gold 

nanoparticles were decorated with Folate-PEG3.5kDa-SH by incubating particles with 

different molar excess of Folate-PEG-SH (0 to 100-fold excesses) with respect to GNP 

in order to generate particles at different targeting agent density. The amount of 

conjugated Folate-PEG3.5kDa-SH was estimated by UV-Vis spectrophotometric analysis 

and Iodine test of the medium after particle isolation, which confirmed the high 

efficiency of the conjugation procedure (above 98 % conjugation efficiency for all the 

formulations prepared). This was expected based on preliminary tests reported in 

Chapter 6.3.2 based on the information included in Table I. The particle surface was 

then saturated with a 4000 mPEG2kDa-SH molar excess to endow stealth properties 

while ensuring exposure of the targeting agent. Folate targeted GNPs were then 

recovered by centrifugation and characterized. The mPEG2kDa-SH feed ratio used 

allowed to generate particle decorated with an average polymer density of 0.99 

chains/nm2 (700 chains/GNP) The presence of Folate-PEG3.5kDa-SH on the particle 

surface slightly decresed the mPEG2kDa-SH adsorption efficiency. 

By using this formulation strategy, we prepared Folate targeted gold nanoparticles at 

4 different Folate-PEG3.5kDa-SH density in order to select the formulation with higher 

targeting capacity toward FR overexpressing cancer cells. The polymeric composition 

of each GNP formulation is reported in Table II. 

 

Table II. Coating composition of Folate targeted GNP formulations. 

 

GNPs formulation 
N° of FA-PEG3.5kDa-SH 

chains/GNP 
N° of mPEG2Da -SH 

chains/GNP 

PEG-GNPs 0 700 

10x FA-PEG-GNPs 10 690 

25x FA-PEG-GNPs 25 675 

50x FA-PEG-GNPs 50 650 

100x FA-PEG-GNPs 100 600 

 

The particle distribution profiles obtained by Dynamic light scattering analysis 

showed a significant increase of the hydrodynamic size of surface decorated particles 

with respect of naked ones (Figure 38 – A). In particular Folate targeted particles, 
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regardless of the density of Folate-PEG3.5kDa-SH, displayed a size of about 28 nm 

(28.1±5.2 nm for the GNPs coated with 50 chains of Folate-PEG3.5kDa-SH and 650 

chains of mPEG2kDa-SH) and a narrow PDI of 0.297. The sample size homogeneity was 

confirmed by TEM analysis which highlighted also a good particle stability reflected 

in the absence of particles aggregates (Figure38 – B). The analysis of the TEM images 

by ImageJ software allowed to derive the mean diameter of 34.4±2.7nm of the 

different formulations. 

 

 
 

Figure 38. (A) Dynamic Light Scattering profile of naked GNPs (■) and Folate targeted GNPs (■) in 

milliQ water. (B) Representative TEM image of 50x FA-PEG-GNPs dispersed in milliQ water. 

 

Furthermore, the TEM images clearly show that the particle core (black dots on 

Figure 38 – B) possesses a grey less dense corona confirming the homogeneous 

polymer decoration of the colloidal gold.  

Finally the particle concentration of each formulation was derived by combining the 

UV-Vis spectroscopic (Figure 39.) and DLS analysis. While the freshly prepared naked 

particles possess a concentration of about 3 nM, decorated particles isolated by 

centrifugation showed a concentration of about 35 nM, 15-fold higher compared to 

the naked ones. 
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Figure 39. UV-Vis spectrum of Folate targeted GNPs in milliQ water.  

6.3.4. CELL UPTAKE QUANTIFICATION BY ATOMIC ABSORPTION 

SPECTROSCOPY.  

Cell uptake study was performed on KB cells, that overexpress the Folate receptor, 

and control MCF-7 cell line that does not express the Folate receptor on the cell 

membrane132. The particle uptake by KB and MCF-7 cells was quantified by Atomic 

adsorption spectroscopy (Figure 40.) on the basis of the average particle volume by 

assuming a sphere shape of the particles (calculated to be 1767.1 nm3), the atomic 

gold cell volume and the number of cells in each sample (derived by BCA assay).  
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Figure 40. Cell uptake profile of gold nanoparticles decorated with different Folate-PEG3.5kDa-SH 

densities (10x, 25x, 50x and 100x FA-PEG-GNPs) and non-targeted particles (mPEG-GNPs) obtained by 

Atomic adsorption analysis. Cell internalization study was performed on KB and MCF-7 cell lines. 

Statistical significance was calculated either versus non targeted particles (*** p<0.001) or FR non 

expressing MCF-7 cell line (### p<0.001). 
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The increase of the ligand density on the nanoparticle surface resulted in increased 

internalization efficiency of Folate targeted GNPs by the KB cells, up to saturation 

which was achieved with the formulation with 50 chains of FA-PEG-SH per particle. In 

fact, even increasing the FA-PEG-SH amount up to 100 chains/GNP, no significant 

increase in the particle uptake was noticed. The observed plateau in cell 

internalisation at higher ligand density than 50 unit/GNP may arise from the 

saturation of Folate receptors at the cell surface. Beyond this Folate density, the 

maximum number of receptor interactions occurs and the rate of particle 

internalisation approaches the maximum rate allowed by the uptake cellular 

process133.  

Notably, while only 570 non-targeted particles were found per cells, the presence of 

the targeting agent on the particles surface induced an uptake increase up 40 times 

compared to the uptake of mPEG-GNPs. 

The unspecific particle association with cells was evaluated by testing the uptake of 

Folate targeted GNPs with MCF-7 cells that were used as control. A negligible uptake 

was shown by all the Folate targeted GNP formulations. A very limited internalization 

was also observed for non-targeted particles (mPEG-GNPs) by both KB and MCF-7 

cell lines confirming the selectivity of the uptake that is mediated by the Folate 

receptor. 

To further confirm the high selectivity of the particle internalization, a cell 

competition assay was performed with KB cells. The presence of free Folate in the cell 

incubation medium containing the Folate targeted GNP significantly inhibited the 

Folate targeted GNP internalization (7-fold decrease) showing that the competition 

with the targeted GNPs occurs for the binding to the cellular Folate receptor (Figure 

41.). 
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Figure 41. Competition assay profile: 50x FA-PEG-GNPs (■) and mPEG-GNPs (■) were incubated with 

KB cells in the presence (KB HiFR + free FA) or not (KB HiFR) of free Folate. Statistical significance was 

calculated versus 50x FA-PEG-GNPs incubated with KB HiFR: *** p<0.001.  

6.3.5. TRANSMISSION ELECTRON MICROSCOPY ON KB CELLS 

TEM images of slices of KB cells incubated with Folate targeted GNPs showed that the 

endocytosed particles are associated to intracellular vesicles that originate from the 

plasma membrane (Figure 42 – A, A’). Notably, particles are not aggregated even in 

the subcellular compartments showing that their colloidal stability is preserved 

throughout the endocytosis process without clustering and no single particle was 

significantly detectable in the cytosol. The latter event can be ascribed to negligible 

diffusion of particles across cell membrane. Control non-targeted particles (mPEG-

GNPs) incubated with KB cells were not detectable in the cytosols confirming that 

these particles were not taken up as shown in Figure 42- B, B’.  
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Figure 42. Representative TEM images of KB cells incubated with 50x FA-PEG-GNPs (A, A’) and non-

targeted particles (B, B’). 50x FA-PEG-GNPs are entrapped into vesicles (red arrows), while no mPEG-

GNPs were found inside of the cells. 

 

The cell uptake study of Folate targeted gold nanoparticles modified with increasing 

Folate-PEG-SH molar ratio highlighted that 50 chains of Folate-PEG-SH per particle 

ensure the maximum particle internalization by KB cells. For this reason, 50x FA-PEG-

GNPs were selected as ideal formulation for further studies to evaluate if targeted 

gold nanoparticles can improve the efficacy of the sonodynamic treatment. 

6.3.6. Sonodynamic treatment 

KB and MCF-7 cells were incubated for 2 hours with Folate targeted GNPs coated with 

50 Folate-PEG-SH chains to allow the particle uptake, and then irradiated with 1.8 

MHz continuous ultrasound (US) at an energy density of 0.008 mJ/cm2 for 5 minutes. 

The viability of KB and MCF-7 cells was assessed. As shown in Figure 43 − A, the 

sonodynamic treatment on KB cells after incubation with FA-PEG-GNPs (FA-PEG-

GNPs + US) significantly decreased the KB cell growth rate at 24 (* p<0.05), 48 (*** 

p<0.001) and 72 hours (*** p<0.001). On the contrary, neither ultrasound (US) nor 

FA-PEG-GNPs (GNPs) nor mPEG-GNPs alone affect cell growth compared to untreated 

cells (Ctrl). Noteworthy, ultrasound treatment associated to the pre-contact with non-
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targeted particles showed no effect on cell grown, further confirming that the 

increased ultrasound effect results from the particle uptake mediated by the Folate 

receptor. The sonodynamic treatment of MCF-7 cells (Figure 43 – B), which do not 

express the Folate receptor, with either FA-PEG-GNPs (FA-PEG-GNPs + US) or mPEG-

GNPs (mPEG-GNPs + US) did not affect cell growth. Similar growth rate was observed 

when cells were treated with ultrasound, FA-PEG-GNPs or mPEG-GNPs alone. 

These results emphasize the safety of US treatment alone and the biocompatibility of 

the GNP samples. The KB cell growth rate decrease was observed only for the 

combination of US and Folate targeted GNPs, confirming that gold nanoparticles act as 

nano-sonosensitizers and are selectively taken up by Folate receptor expressing cells. 

In contrast, no effect was shown by non-targeted particles, even in association to US 

treatment, confirming the selective particle internalization. To further confirm that 

the KB cell growth rate decrease upon sonodynamic treatment was due to sensitizing 

effect of the endocytosed targeted gold nanoparticles, cell uptake competition assay 

was performed under the same conditions generating the results reported in Figure 

43 – A’). Notably, ultrasound exposure of KB cells after co-incubation with free Folate 

(US + FA) and FA-PEG-GNPs (FA-PEG-GNPs + US + FA) did not induced a significant 

decrease of cell growth. 

 

 

 

 

 



 Results and Discussion  

121 
 

 

Figure 43. Effect of different treatment conditions on KB (A) and MCF-7 (B) cell proliferation as a 

function of time. Cells were treated with ultrasound, Folate-PEG-GNPs, non-targeted GNPs alone or the 

combination of US and the different GNP formulations. (A’) Effect on KB cell growth of sonodynamic 

treatment upon incubation with FA-PEG-GNPs (GNPs + US) in presence of free Folate (FA) as 

competitive agent. Statistically significant difference versus untreated cells: * p<0.05; *** p <  0.001. 

 

Moreover, flow cytometric analysis showed a significant increase of late 

apoptotic/necrotic cells when KB cells were treated sequentially with FA-PEG-GNPs 

and US. A different pattern of ROS production was also observed with respect to 

untreated cells and cells receiving either of the two treatments (Figure 44.). Notably, 

the cell population in the late apoptosis was almost 5 times higher with respect to 

controls.  

 

Figure 44. KB Cell death analysis after treatment with US or Folate targeted GNPs or in combination. 

Cell samples were analyzed by flow cytometry. 
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Overall, the evidences showed that the simultaneous exploitation of the targeting 

capacity of the gold nanoparticles and their sensitizing effect upon external physical 

stimuli (ultrasound) allow to achieve a site-specific physical treatment of cancer cells. 

Gold nanoparticles were shown to be a potent tool for cancer cell killing. The use of a 

dormant colloidal system that can be precisely and effectively targeted to cancer cells 

and then remotely activated to trigger apoptosis presents unquestionable potential as 

alternative to classical anticancer chemotherapy.  
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6.4. FOLATE DENSITY EFFECT ON CELL INTERNALIZATION PATHWAY OF 

TARGETED GOLD NANOPARTICLES 

A vast number of in vitro studies have shown that the presence of multiple copies of 

folate on the surface of targeted drug carriers increases the therapeutic effect of the 

treatment as consequence of the enhancement of the folate receptor binding avidity 

and the internalization rate of the carrier85. Although this may be true , little work has 

been done to determine whether an optimal ligand density exists. 

 Cell uptake and trafficking of nanoparticles is affected by sever parameters including 

size, shape, material composition, charge, surface decoration. In general, it has been 

found that nanoparticles can be internalized via multiple pathways, which are 

currently poorly understood.  Furthermore, it is not known in detail if and how the 

density of folate on nanocarrier surface can hijack colloids toward one specific uptake 

pathway or can dictate the rate of migration across the pathway. The answers to all 

these questions can be of great value for therapeutic applications of targeted systems. 

6.4.1. Aim of the study  

In the presented section, detailed and extensive intracellular trafficking studies were 

performed in order to evaluate the folate density effect on the particle uptake 

efficiency using alternative analytical tests and on the internalization pathway. Gold 

nanoparticle surface was decorated with increasing densities of Folate-PEG3.5kDa-SH, 

which was selected as targeting agent. In this section, to investigate GNP uptake and 

trafficking, gold nanoparticles were fluorescently labelled with Rhodamine. The 

fluorophore was bound to the particles through a thiol-PEG linker of 2 kDa. The 

Rhodamine-PEG-SH was used to saturate the GNP surface, thus it served both as 

labelling and stabilizing agent. Notably, 2 kDa PEG was selected as spacer for the 

Rhodamine conjugation to provide for suitable exposure of the targeting moiety 

Folate-PEG3.5kDa-SH and alleviate potential steric hindrances for folate receptor 

binding.  
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6.4.2. Determination of GNP surface decoration efficiency 

The conjugation efficiency of each polymer used for the generation of Rhodamine 

labelled Folate targeted gold nanoparticles, was assessed by modifying GNPs with 

increasing molar excesses of the polymers and then by quantification of unreacted 

polymer. Particles samples were reacted with 1:25, 1:50, 1:100, 1:200, 1:500, 1:1000 

and 1:2000 GNP/Rho-PEG2kDa-SH molar ratios. Reference polymer samples, 

containing the same Rho-PEG2kDa-SH concentration used to decorate the particles, 

were prepared for each GNP/polymer feed ratio by replacing the particle volume 

with milliQ water.  

After incubation, gold nanoparticles were isolated by centrifugation. 

Spectrofluorometric analysis of the supernatant for the quantification of the Rho-

PEG2kDa-SH bound on the particle surface provided the conjugation efficiency for each 

GNPs/polymer feed ratio (Table III.). 

 

Table III. Conjugation yield of Rho-PEG2kDa-SH to GNP surface at increasing 

polymer/GNPs feed ratios. 

 

GNP/polymer feed 
molar ratio 

Rho-PEG-SH 
conjugation yield (%) 

1:25 98 

1:50 98 

1:100 95 

1:200 87 

1:500 67 

1:1000 56 

1:2000 27 

 

At low coverages, PEG chains collapse on the particle surface and dispose in a 

“mushroom-like” conformation; however, as the density increases, they undergo a 

transition to a more extended conformation (i.e., the “brush-like” structure) toward 

the bulk123. Taking into account the GNP surface area (calculated to be 707 nm2 for 15 

nm gold nanoparticles simplified to spheres) and the results from the coating 

efficiency study, 1:1000 GNP/Rho-PEG-SH feed molar ratio ensures the particle 

surface saturation with 560 polymer chains/GNP, corresponding 0.79 chains/nm2. 
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Notably, the incubation of gold nanoparticles with a higher excess of Rho-PEG2kDa-SH 

(1: 2000 GNP/Rho-PEG-SH m.r.) do not increase the polymer density on the particle 

surface as shown in the functionalization profile reported in Figure 45. 
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Figure 45. Functionalization profile of GNPs at increasing molar excesses of Rho-PEG2kDa-SH. 

 

The maximum density of Rho-PEG2kDa-SH on the particle surface is in agreement with 

the previous results obtained with mPEG2kDa -SH. The slightly lower density of the 

polymer may be dictated by the Rhodamine hindrance on the surface of the GNPs, 

which reduces the sliding of the Rhodamine-PEG-SH chains during the coating 

equilibrium.  

The GNP surface decoration efficiency with Folate-PEG3.5kDa-SH was previously 

described in Chapter 6.3.2. 

6.4.3. Rhodamine labelled folate targeted gold nanoparticle preparation and 

characterization 

Rhodamine labelled Folate targeted gold nanoparticles were produced by decoration 

of gold nanoparticles with different ratios of Folate-PEG3.5kDa-SH and then the surface 

was saturated with Rhodamine-PEG2kDa-SH.  

Gold nanoparticles were decorated with Folate-PEG3.5kDa-SH by incubating particles 

with increasing Folate-PEG-SH/GNP feed molar ratios (from 10:1 to 100:1). Then, 

Folate decorated particles were added of a 1000 Rhodamine-PEG2kDa-SH molar excess 

with respect to GNPs. As shown by the surface decoration study in the previous 

Chapter (Chapter 6.4.2.), 1000:1 Rho-PEG-SH/GNP feed molar ratio ensure the 
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particle surface saturation. Rhodamine labelled Folate targeted GNPs were finally 

isolated by centrifugation. The conjugation yield of Rhodamine-PEG2kDa-SH was 

derived by UV-Vis analysis by difference between the non conjugated polymer 

quantified in the supernatant and the fed polymer. About 500 Rhodamine-PEG2kDa-SH 

chains/GNP (0.70 chains/nm2) were detected: the presence of Folate-PEG3.5kDa-SH 

slightly decreased the Rho-PEG-SH conjugation efficiency with respect to the result 

obtained when naked particles were modified with only Rhodamine-PEG-SH (see 

Table III) without affecting the total chain number on the particle surface.  

Rhodamine labelled Folate targeted GNPs were characterized by DLS, TEM and UV-Vis 

spectroscopy. The dynamic light scattering analysis revealed a particle size of about 

30 nm (29.3±6.5 nm for the Rhodamine labelled 50x Folate targeted GNPs) and a low 

PDI (0.312 for the same formulation). The DLS correlogram confirmed the narrow 

size distribution of the particle formulation (Figure 46 – B). In fact, the time of 

analysis on the correlogram at which the correlation coefficient starts to significantly 

decay indicates the mean size of the sample. The steeper the profile, the more 

monodisperse the sample is. 
 

 

Figure 46. Dynamic Light Scattering profile of Rhodamine labelled 50x Folate targeted GNPs in milliQ 

water (A) and the corresponding correlogram (B).  

 

The particle morphology was shown by TEM imaging (Figure 47.) which confirmed 

the particle homogeneous size distribution, the absence of aggregates and an average 

particle size of 29.9±3.2 nm, in excellent agreement with the DLS analysis. 
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Figure 47. TEM image of Rhodamine labelled 50x Folate targeted GNPs dispersed in milliQ water. 

 

Furthermore, the grey corona surrounding the particle core (black dots) confirms the 

presence of the polymeric material and results from the low electron density of the 

organic material with respect to the metallic core of the particles. 

6.4.4. Rhodamine labelled folate targeted gold nanoparticle preparation and 

cellular studies 

We investigated here the effect of surface ligand density on the internalization of 

nanoparticles by KB cells (which up-regulate the expression of FR) and MCF-7 control 

cell line by using cytofluorimetric analysis that was expected to confirm the 

quantitative data obtained by atomic absorption spectroscopy on non-fluorescent 

GNP platform discussed in the previous chapter. In addition, fluorescently labelled 

targeted particles were exploited for cell tracking and intracellular trafficking study. 

GNPs were surface modified by adsorption of Folate-PEG3.5kDa-SH at different molar 

ratios, ranging from 10 to 100 molecules of Folate per particle (Table IV). Control 

non-targeted particles were produced by replacing the Folate-PEG3.5kDa-SH with 

mPEG3.5kDa-SH. The particle surface was then saturated with the fluorescent label 

Rhodamine-PEG2kDa-SH which acts was used also to provide for particle colloidal 

stabilization, to reduce aggregation and to yield a “stealth” nanosystem with low 

protein opsonization. 
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Table IV. Composition of Rhodamine labelled Folate targeted GNP formulations 

decorated with different Folate-PEG-SH density. 

 

Sample 
FA-PEG-SH 

chains/GNP 
Rho-PEG-SH 
chains/GNP 

PEG-GNPs 0 500 

10x FA-GNPs 10 500 

25x FA-GNPs 25 500 

50x FA-GNPs 50 500 

100x FA-GNPs 100 500 

 

 

The particle uptake efficiency was evaluated by Atomic absorption spectroscopy on 

the KB cell lysates. Data in Figure 48. clearly demonstrate that KB cell uptake of 

Rhodamine labelled Folate targeted gold nanoparticles is remarkably affected by the 

number of Folate molecule per particle, whereby the uptake increases with an 

increase in folate density on the particle surface and achieves a plateau for particles 

coated with 50 chains of the Folate-PEG3.5kDa-SH/GNP. The profile trend in Figure 48. 

is in good agreement with the previous uptake study carried out with Folate targeted 

gold nanoparticles (Chapter 6.3.4), showing a maximum particle uptake of 19387 

GNPs/cell. This result indicated that the fluorescently labelled targeted particles 

behave similarly to the non-fluorescently labelled particles in term of cell association 

and that the Rhodamine at the terminus of the 2 kDa PEG-SH does not affect the 

extent of particles uptake by KB cells. Control non-targeted particles showed a 

negligible KB cell uptake confirming that the endocytotic process is mediated by the 

Folate receptor.  

The range of Rhodamine labelled Folate targeted gold nanoparticles with different 

Folate density was also tested on MCF-7 cell line that does not express FR, revealing a 

very limited association, further confirmation of the uptake selectivity. 

 



 Results and Discussion  

129 
 

P
E
G
-G

N
P
s

10
x 

FA
-P

E
G
-G

N
P
s

25
x 

FA
-P

E
G
-G

N
P
s

50
x 

FA
-P

E
G
-G

N
P
s

10
0x

 F
A
-P

E
G
-G

N
P
s

0

5000

10000

15000

20000

25000

*** *** *** ***
G

N
P

s
/c

e
ll

 

Figure 48. Cell uptake profile of Rhodamine labelled Folate targeted gold nanoparticles (FA-PEG-GNPs) 

at different FA density and non-targeted gold nanoparticles (PEG-GNPs) by KB HiFR (●) and MCF-7 (■) 

cell lines by Atomic absorption analysis. Statistical significance was calculated either versus non 

targeted particles or MCF-7 FR non expressing cell line: *** p<0.001. 

 

The particle uptake profile obtained by the Atomic absorption analysis was by the 

cytofluorimetric study. As reported in Figure 49., GNPs modified with 25 chains of FA-

PEG-SH per particle (25x FA-PEG-GNPs) are taken up significantly more respect to 

non-targeted GNPs. On the contrary non statistically significant higher uptake was 

shown by 10x FA-PEG-GNPs respect to PEG-GNPs. A linearly higher cell uptake was 

observed by increasing the Folate density from 25 to 100 chains per particle.  
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Figure 49. Mean Fluorescence intensity percentage of KB HiFR cells incubated with Rhodamine 

labelled Folate targeted gold nanoparticles (FA-PEG-GNPs) with different FA-PEG-SH density on the 

particle surface (10x, 25x, 50x and 100x) and non-targeted gold nanoparticles (PEG-GNPs) gold 

nanoparticles by KB HiFR cell line. The MFI were normalized to the MFI of cells incubated with 100x 

FA-PEG-GNPs. Statistical significance was calculated either versus non targeted particles (PEG-GNPs): 

*** p<0.001. 

 

Confocal microscopy studies were performed on KB cells incubated with Rhodamine 

labelled Folate targeted GNPs modified with different density of folate and non-

targeted GNPs in FFDMEM medium at pH 7.4 and 6.5 to mimic the physiological and 

tumor conditions, respectively. Representative images for this experiment are shown 

in Figure 50. (A, B, C, D, E) which highlight the increased particle internalization as 

the FA-PEG-SH density on the GNP surface increase. 
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Figure 50. Confocal microscopy images of KB cells incubated with Rhodamine labelled gold 

nanoparticles decorated with increasing number of FA-PEG-SH units (0, 10, 25, 50 and 100 units per 

particle) at pH 7.4 (A, B, C, D, E) and pH 6.5 (A’, B’, C’, D’, E’). Scale bars of 20 µm. 

 

Quantitative analyses of the confocal images (Figure 51.) showed a very limited 

association of PEG-GNPs at both pHs endorsing the Folate receptor mediated uptake. 

The increase of FA-PEG-SH density from 10 to 25 chains per particle results in a 

dramatic rise of the cell uptake which levels out from 25 up to 100 chains of FA-PEG-

SH per particle.  
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Figure 51. Normalized Mean Fluorescence Intensity of confocal images of KB cells incubated with 

different Rhodamine labelled Folate targeted GNP formulations (10, 25, 50 and 100 chains of FA-PEG-

SH per particle) and control non-targeted GNPs (PEG-GNPs) at pH 7.4 (■) and 6.5 (■). The data were 

normalized to the Mean Fluorescence Intensity value of 50x FA-PEG-GNPs sample at pH 7.4. Error bars 

represent SD between mean normalized values of three independent experiments. 
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Competitive studies were performed to assess the cell uptake selectivity of Folate 

targeted particles. Figure 52. shows that the uptake inhibition of Rhodamine labelled 

folate targeted GNPs caused by the presence of free Folate is significant and is 

ascribed to the competition of free folate for the Folate receptor binding. In particular, 

50x FA-PEG-GNP uptake decreased of about 3.5 times upon the addition of 200 µM 

Folate to the incubation media. 

 

 

 

Figure 52. (A) Representative confocal microscopic images of KB cells incubated with 50x FA-PEG-

GNPs in the presence or not of free Folate as competitive agent. Scale bars of 20 µm. (B) Normalized 

Mean Fluorescence Intensity of confocal microscopic images of KB cells incubated with fluorescent 

Folate targeted GNPs (50x FA-PEG-GNPs) in the presence (■) or not (■) of free Folate. The data were 

normalized to the Mean Fluorescence Intensity value of cells incubated with particles. Error bars 

represent SD between mean normalized values of three independent experiments. 

 

In order to better underline the effect of the pH on the particle internalization, in 

Figure 53. we have referred the uptake of each particle formulation at pH 6.5 to that 

of the same formulation at pH 7.4. The acidic pH causes a significant decrease (at least 

50-60%) of the GNP KB cell uptake for all the Rhodamine labelled Folate targeted GNP 

formulations. Consistently with the literature, Folate receptor exhibits a lower affinity 

to its ligand at acidic pH because of the structural rearrangement between an ‘‘open’’ 

accessible conformation, accessible to the ligand at neutral pH, and a ‘‘closed’’ state at 

slightly acidic pH as consequence of a partial unfolding of a key α-helical motif134. 

Notably, the uptake decrease percentage at acid pH mimicking the tumor 

environment is quite similar for all formulations, which reasonably reflects the loss of 

affinity of the folate cellular receptor at pH 6.5.  
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Figure 53. Normalized Mean Fluorescence Intensity of confocal microscopy images of KB cells 

incubated with different Rhodamine labelled Folate targeted GNP formulations (0, 10, 25, 50 and 100 

chains of FA-PEG-SH per particle) and the monovalent ligand FA-C5-Rho at pH 7.4 (■) and 6.5 (■). The 

data were normalized to the MFI value of each sample at pH 7.4. Error bars represent SD between 

mean normalized values of three independent experiments. 

 

Aiming at understanding whether the internalization efficiency was affected by the 

pH also for a monovalent ligand, Folate-Cadaverine-Rhodamine (FA-C5-Rho) was 

tested with KB cells in FFDMEM at pH 7.4 and 6.5 (Figure 54.). The image 

quantification showed even for the small mono-targeted molecule the negative effect 

of the acidic pH on the internalization process (Figure 53.) confirming that it should 

be ascribed to the receptor binding affinity rather than to the structural feature of the 

carrier. Moreover, the incubation of FA-C5-Rho in the presence of free folic acid 

revealed a significant decrease of the fluorescent labelled ligand uptake, confirming 

the endocytosis mediated by the Folate receptor (Figure 54.). 
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Figure 54. Confocal microscopy images of KB cells incubated with FA-C5-Rho at pH 7.4 and 6.5, in the 

presence or not of free folate as competitive agent for the binding to the Folate receptor. Scale bars of 

30 µm. 

6.4.5. INTRACELLULAR TRAFFICKING STUDIES 

6.4.5.1. Lysosomal delivery  

Historically, the lysosomal compartment has been considered the endpoint of the 

active endocytic process. Lysosomal delivery of targeted drug nanocarriers allows the 

release of therapeutic molecules from the prodrugs and the simultaneous 

degradation of cell membrane receptors bound to the delivery systems. An enhanced 

trafficking toward the lysosomal compartments was observed for many receptors 

when they were induced to cluster on the cell membrane. This was observed for ErbB 

receptors135, epidermal growth factor receptor, rabies G protein136 and Transferrin 

receptor (TfR), while this was not clearly proved for the Folate receptor89,137. In order 

to evaluate the effect of the surface folate density on the lysosomal delivery of 

Rhodamine labelled Folate targeted gold nanoparticles, we selected two 

representative multivalent particles modified with different degrees of Folate-PEG-SH 

(50x FA-PEG-GNPs and 10x FA-PEG-GNPs) and a monovalent ligand (FA-C5-Rho) as 

control. Cells were pulse-chased with the fluid-phase endocytosis probe Dex-647 to 

specifically label lysosomes138. Cells were imaged by confocal microscopy at 

scheduled times and the average intensity per pixel in the fluorescent vesicle regions 

pH 7.4 

pH 6.5 

FA-C5-Rho FA- C5-Rho + free FA 
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. 



 Results and Discussion  

135 
 

was calculated using a threshold and background subtraction method as described in 

the Methods section.  

Representative images of the KB samples (Figure 55.) demonstrated the increased 

colocalization of both the GNP formulations tested with Dex-647 labeled lysosomes 

over time. Quantitative analysis of these fluorescence images (Figure 56.) shows an 

increase in mean fluorescence intensity (MFI) between 0 and 2 hours after the initial 

incubation of 30 minutes. The MFI values tend to plateauing between 2 and 4 hours. 

Notably, the 50x FA-PEG-GNP formulation displayed a 30% higher colocalization in 

the lysosomal compartments with respect to either 10x FA-PEG-GNPs or FA-C5-Rho. 

 

 

 

Figure 55. Representative confocal microscopy images of KB cells pulse-chased with Dex-647 to label 

lysosomes, and then incubated with gold nanoparticles decorated with different densities of targeting 

agent FA-PEG-SH (50x FA-PEG-GNPs and 10x FA-PEG-GNPs) for 30 minutes at 37 °C in 5% CO2 

atmosphere. Live cells were imaged at 0, 1, 2 and 4 hours. Arrowheads denote vesicles containing 

lysosomes and FA-PEG-GNPs only, while arrows point the colocalization of FA-PEG-GNPs within the 

lysosomes. Scale bars of 5 µm. 
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Figure 56. Relative Mean Fluorescence intensity of 10x FA-PEG-GNPs (●) and 50x FA-PEG-GNPs (■) 

within lysosomal compartments of KB cells over time (0, 1, 2 and 4 hours) after 30 minutes incubation. 

The data were normalized to the Mean Fluorescence intensity value of 50x FA-PEG-GNPs after 4 hours. 

Error bars represent SD between mean normalized values of three independent experiments. 

 

The evidences showed that the accumulation of particles in the lysosomes is 

significantly affected by the density of the folate on their surface.  

The images of KB cells incubated with FA-C5-Rho are shown in Figure 57. At time 0 

the FA-C5-Rho is mostly adsorbed on the cell membrane. This in accordance with 

diffusively distribution at the cell surface of Folate receptor described in literature, 

without any local concentration of FRs in the lumen of the caveolae. 

Between 1 and 2 hours there is a dramatic increase of the fluorescence intensity 

associated to lysosomes which stabilizes between the 2 and 4 hours. A slight dip of 

the FA-C5-Rho disposing in the lysosomes was registered at the 4th hour probably due 

to the destabilization of the lysosome or the recycling out from the cell which induce 

the release of FA-C5-Rho in the bulk. 
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Figure 57. (A) Representative images of KB cells pulse-chased with Dex-647 to label lysosomes, and 

then incubated with the conjugate Folate-Cadaverine-Rhodamine (FA-C5-Rho) for 30 minutes. After 

incubation, live cells were imaged at 0, 1, 2 and 4 hours. Arrowheads denote vesicles containing 

lysosomes and FA-C5-Rho only, while arrows point the colocalization of FA-C5-Rho within the 

lysosomes. Scale bars of 5 µm. (B) Relative Mean Fluorescence intensity of FA-C5-Rho (▲) within 

lysosomal compartments of KB cells over time (0, 1, 2 and 4 hours) after incubation of 30 minutes. The 

data were normalized to the MFI value of FA-C5-Rho after 2 hours. Error bars represent SD between 

mean normalized values of three independent experiments 

 

Furthermore the colocalization within lysosomes was evaluated by Pearson’s 

coefficient (PC), which is calculated as the r value for the correlation of pixel 

intensities between corresponding pixels of two images (Figure 58.). PC allows to 

compare different treatment regardless the concentration and the sample relative 

fluorescence intensity. Cells incubated with 50x FA-PEG-GNP sample showed a linear 

increase of the PC between the 0 and 2 hours achieving a PC value of 0.75 which 

corresponds to a strong colocalization with the lysosomal compartments. No PC 

increase was observed even after 4 hours. On the contrary GNPs decorated with the 

lower density of FA-PEG-SH (10x FA-PEG-GNPs) exhibited a maximum PC value of 

0.57 after 4 hours, which corresponds to a 20% lower colocalization than the 50x FA-
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PEG-GNPs. The profile of 10x FA-PEG-GNPs almost overlaps the profile shown by FA-

C5-Rho. The maximum PC value of 10x FA-PEG-GNP and FA-C5-Rho samples was 

achieved by the 50x FA-PEG-GNP formulation after 1.3 hours instead of 4 hours.  
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Figure 58. Pearson’s Coefficient of Folate targeted GNPs (10x FA-PEG-GNPs (●), 50x FA-PEG-GNPs (■)) 

and the conjugate FA-C5-Rho (▲) within the lysosomes of KB cells. 

 

Overall, the results and the Pearson’s coefficient deconvolution indicate that the 

higher the density of folate on the particle surface the faster is the migration of 

particles to the lysosomes. One hypothesis to explain the faster kinetic to lysosomes 

of the 50x FA-PEG-GNP formulation compared to the monovalent ligand FA-C5-Rho 

and 10x FA-PEG-GNP sample can be ascribed to a different internalization pathway of 

these systems. The binding of targeted nanocarriers to membrane associated Folate 

receptors can induce, depending on folate density, a different clustering of the 

receptors on the membrane, which triggers a signal to highjack the colloidal system to 

different intracellular routes. It is fascinating to see how cells can sense folate density 

on particle surface and respond accordingly by addressing targeted nanocarriers 

either to lysosomes or other organelles. 

Furthermore, the results are supported by in vitro studies reported in the literature 

showing that membrane associated receptors traffic to lysosomes when 

crosslinked137. In fact, a multivalent targeting agent network may increase the GNP 

avidity for the membrane associated FRs, which, may mimic a crosslinking event of 

the receptor inducing the observed intracellular trafficking. 
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6.4.5.2. Pathway inhibition assay 

The pathway by which the “Folate receptor-ligand” complex is internalized into a 

cancer cell has been a matter of debate. In the present study, we focused on 

elucidating the pathways and mechanisms of endocytic sorting of the cell membrane 

Folate receptor (FR). There are many hypotheses about the FR internalization 

pathways and reasonably a single mechanism is not sufficient to describe the 

intracytosolic Folate receptor fate. As reported by Parton et al.79, Skretting et al.80 and 

further confirmed by Fivaz et al.81, endocytosis of FR occurs via clathrin-independent 

pathway. In light of this, KB cells were incubated in the presence or not of Dynasore 

which is a non-competitive inhibitor of dynamin, an essential molecule for the 

clathrin-dependent coated vesicle formation. Then cells were treated with FA-C5-Rho, 

50x FA-PEG-GNPs and AlexaFluor488 labelled Transferrin with (Tf-488). Tf-488 was 

selected as positive control to test the effective endocytosis inhibition by Dynasore, 

since transferrin is conventionally used as marker of the clathrin route139. 

By looking at the images of KB cells incubated with Tf-488, the Dynasore treatment 

caused a significant reduction of Tf-488 uptake compared to what observed in KB 

cells incubated with the FA-C5-Rho and 50x FA-PEG-GNPs, which were equally taken 

up by KB cells in the presence or absence of Dynasore (Figure 59.). These results 

indicate that the cell uptake of Rhodamine labelled Folate targeted nanoparticles and 

the labelled ligand FA-C5-Rho is independent on the clathrin-mediated pathway. 
 

 

Figure 59. Representative confocal microscopy images of KB cells incubated with Transferrin-488 (Tf-

488), FA-C5-Rho and Rhodamine labelled Folate targeted GNPs (50x FA-PEG-GNPs) in the presence (+ 

Dyn) or not (-Dyn) of Dynasore. Scale bars of 20 µm.  
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6.4.5.3. Trasmission electron microscopy on KB cells 

As established by the pathway inhibition assay, Rhodamine labelled Folate targeted 

GNPs are taken up by a clathrin-independent mechanism. Among the different non-

clathrin dependent pathways, potocytosis represents the major route from the cell 

surface to endosomes. According to the potocytosis model, small molecules or 

macromolecules or the bulk liquid are transported into the cytosol by caveolae140, 

small flask shaped plasma membrane invaginations with a dimension of about 50-60 

nm68. Quantitative analyses of the FR distribution on the cell membrane have shown 

that FRs are diffusively distributed at the cell surface and there is no significant 

concentration of Folate receptors in caveolae. However, the administration of 

multivalent particles induces a substantial enrichment of the FR clusters in 

caveolae75. In particular, a significant colocalization of the Folate receptor clusters 

with caveolin, a fundamental component of the caveolae membrane coat, was 

measured78. In contrast to the findings described above, other research has pointed to 

internalization of FR by clathrin-coated pits. Clathrin mediated endocytosis occurs 

with the formation of vesicles with a final size of about 120 nm68. After the membrane 

invagination, the final vesicle fuses with an endosome and, later on, the endosome 

fuses with a lysosome in which the internalized particle can be degraded.  

To better understand the process of Folate receptor mediated endocytosis of the 

Rhodamine labelled Folate targeted GNPs, we have analyzed KB cell slices by TEM 

imaging. Looking at the TEM images in Figure 60., the size and the shape of the 

endocytic vesicles support for the “caveolae-hypothesis” of folate receptor 

endocytosis pathway. This evidence is in agreement with the results discussed in the 

previous chapter that showed no involvement of the clathrin mediated uptake of 

these targeted particles.  

Notably, the particles localize in the vesicles without aggregation, which show that 

the hydrophilic and flexible coating of the GNPs inhibits their aggregation also in 

contact with the biological environment. It is still to be elucidated if and how the 

localization of folate targeted particles on the cell membrane can cooperate to trigger 

caveolae invagination. 
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Figure 60. (A, B) TEM images of KB cells incubated with Rhodamine labelled Folate targeted GNPs (50x 

FA-PEG-GNPs) incubated with KB cells. Red arrows point to GNPs. Panel A’ and B’ are magnifications of 

panel A and B, respectively. 
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6.5. SMART pH SENSITIVE GOLD NANOPARTICLES FOR ENHANCED SITE-

SELECTIVE ANTICANCER THERAPY 

6.5.1. Aim of the study 

In this study we propose the design for a nanoparticle carrier that combines different 

tumor targeting motifs into a single construct: 15 nm gold nanoparticles were 

decorated with a targeting agent, namely Folate-PEG2kDa-SH, and stabilized by a pH 

sensitive polymer shell, made with poly(MCH-co-GMA) conjugated to the particles 

surface through the poly(MCH) block. 

The physico-chemical and biological features of the individual components equip the 

construct of several enticing properties, among them: (i) Folate-PEG2kDa-SH is a 

tumour-specific ligand that allows a biorecognition of malignant cells by the 

nanocarrier and trigger the intracellular disposition of the drug vehicle; (ii) the 

hydrophilic external block of poly(MCH-co-GMA), namely poly(GMA), stabilizes the 

particles against a variety of external stresses; (iii) the pH responsiveness of 

poly(MCH) block of poly(MCH-co-GMA) ensures the masking of the targeting moiety 

(namely the folate) at physiological pH while exposing only once the nanosystem has 

achieved the acid tumour compartment; (iv) nanocarrier size was properly selected 

to take advantage of the EPR effect aiming at combining an active and a passive 

targeting. The combined cancer cell biorecognition endowed by the folate ligand and 

the locally activated de-shielding of the latter by the pH responsive polymer is 

expected to result in a cooperative effect to enhance the system site-selectivity 

(Figure 61.). 
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Figure 61. Graphical representation of the Folate targeted pH responsive gold nanoparticle system 

composition and function: the gold nanoparticle decoration is aimed at improving site-selectivity and 

local accumulation in the tumour compartment where the mild acidic conditions activate the 

nanoparticle biorecognition of the Folate receptor overexpressing cancer cells 

 

The length and the grafting density of each component on the particle surface were 

accurately adjusted to guarantee an effective and site-selective accumulation in the 

tumour.  

Folate was tethered to the particle surface via a PEG spacer of 2 kDa, which is the 

most representative material used to produce stealth nanocarriers. According to their 

hydrophilic and flexible nature, PEG chains can acquire an extended conformation on 

particle surface allowing the docking of Folate with the cellular Folate receptor. 

Considering the Folate-PEG2kDa-SH length (calculated to be of about 20 nm on the 

basis of bond distances), poly(MCH-co-GMA) was synthetized with a proper length to 

guarantee the targeting agent shielding and exposition according to local pH 

alterations. As described before, poly(MCH-co-GMA) is a di-block copolymer whose 

composition (MCH/GMA molar ratio) and molecular weight were carefully designed 

to confer the desired pH responsiveness to the system. The predicted length of 

poly(MCH-co-GMA) is 27 nm resulting from the 12 nm of the pH responsive 
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poly(MCH) block and 16 nm of the hydrophilic poly(GMA) block. The polymer length 

is adequate to shield the Folate-PEG-SH when in the charged hydrated conformation, 

while shrinking is expected when the anionic poly(MCH) is protonated and become 

hydrophobic converting to a globule conformation.  

Moreover, previously reported cell uptake studies (Chapter 6.3.4 and 6.4.4.) well 

established that 50-fold ratio of Folate-PEG-SH on the particle surface ensure the 

optimum condition for the particle internalization. 

We will argue that by combining design principles that have individually proven 

successful in other nanoscale drug carriers, the system proposed in this thesis work 

not only inherits beneficial properties from its components but acquires novel 

features useful to its function. 

6.5.2. Determination of GNP surface decoration efficiency 

Aiming to assess the conjugation efficiency to the particle surface of each polymer 

used for the production of Folate targeted pH responsive gold nanoparticles, GNPs 

were surface modified with increasing molar excesses (1:500, 1:1000, 1:2000, 1:3000 

and 1:6000 GNP/polymer molar ratio) of FA-PEG2kDa-SH and poly(MCH-co-GMA) in 

order evaluate the decoration efficiency of each polymeric component. A reference 

sample for each polymer excess was prepared according to the same procedure, 

replacing the gold nanoparticle volume with milliQ. 

After incubation, gold nanoparticles were isolated by centrifugation. The surface 

functionalization was estimated by UV-Vis spectrophotometric determination at 300 

nm and 535 nm (Iodine assay) for the determination of the unbound poly(MCH-co-

GMA) and FA-PEG2kDa-SH, respectively. The corresponding reference sample was 

analyzed in the same way to assess accurately the polymer added to the particle 

suspension. The difference between the polymer added in feed (derived from the 

reference sample) and the non-unbound (in the supernatant) corresponds to the 

polymer attached to the particle surface. 
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Figure 62. Functionalization profile of GNPs at increasing molar excesses of FA-PEG2kDa-SH (●) and 

poly(MCH-co-GMA) (▲).  

 

Increasing overall molar ratios of FA-PEG2kDa-SH and poly(MCH-co-GMA) resulted in 

increased ligand density on the particle surface, up to a saturation level reached with 

a polymer excess between 3000 and 6000 with respect to GNPs. As well described in 

Chapter 6.3.2, at low polymer molar excess most of the surface is accessible to the 

polymer adsorption resulting in high decoration efficiency. In this condition polymer 

chains assume a “mushroom-like” conformation in order to homogenously cover the 

particle surface. As the polymer concentration increases, the binding of new polymer 

chains is retarded by the presence of the adsorbed ones. Nevertheless the binding to 

the surface is still possible due to transient excursions of polymer chains: polymers in 

solution are highly dynamic due to thermal fluctuations.  At this point the adsorption 

of other chains enforces the polymer to rearrange from flat “mushroom-like” to 

“brush-like”. In Table V are summarized the conjugation yield percentages of FA-

PEG2kDa-SH and poly(MCH-co-GMA). 
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Table V. Conjugation yields of FA-PEG2kDa-SH and poly(MCH-co-GMA) to GNP surface 

at increasing feed ratios. 

 

GNP/polymer m.r. 
Conj. yield % 

 FA-PEG2kDa-SH 
Conj. yield % 

poly(MCH-co-GMA) 

1:500 89 72 

1:1000 74 52 

1:2000 39 33 

1:3000 29 24 

1:6000 15 13 

 

Particle decoration with Folate-PEG2kDa-SH revealed a maximum chain density of 1.27 

chains/GNP in agreement with the decoration value reported in literature141,142. The 

amount of conjugated poly(MCH-co-GMA) per unit surface area showed a maximum 

ligand density of 1.10 chains/nm2, a decreased conjugation yield with respect to 

linear polyethylene glycol, as the pH sensitive polymer side chains increase the 

hydrodynamic hindrance.  

Moreover poly(MCH-co-GMA) is chemically adsorbed on particles via a Lipoic end-

group linker which is provided of a dithiol ring that is more hindered as respect to the 

thiol group of Folate-PEG2kDa-SH. This could be a reasonable hypothesis for the slight 

lower decoration efficiency showed by poly(MCH-co-GMA) with respect to Folate-

PEG2kDa-SH. To trace particles uptake and trafficking, Folate targeted pH responsive 

gold nanoparticles were labelled with Bodipy FL which was grafted to the particle 

surface through a PEG spacer of 2 kDa. As for the conjugation of Folic acid, 2 kDa PEG 

was selected in order to ensure the exposure of the targeting agent and allow the pH 

sensitive polymer to perform the shielding/deshielding pH mediated activity. Bodipy 

FL retains an high quantum yield once conjugated to macromolecules. thus a limited 

number of molecules could afford a good particle tracking without hindering the 

“globule” conversion of the pH responsive polymer on the particle surface at acid pH. 

Notably, 2 kDa PEG was already shown to provide for suitable distance between the a 

fluorescent tag and gold particle core to minimize the fluorescence quenching effect 

of the particles143,144. A 100:1 Bodipy-PEG2kDa-SH/GNP feed molar ratio provided 

particles labelled with 95 units of Bodipy-PEG2kDa-SH, highlighting the high 

conjugation yield of the decoration method (95% conjugation efficiency). 
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6.5.3. Folate targeted pH responsive gold nanoparticle production and 

characterization 

In this project, we formulated and Pharacterized Folate targeted pH responsive gold 

nanoparticles. Decorated GNPs were obtained by a three-step procedure. In the first 

stage gold nanoparticles were surface modified by contact with 50 chains of Folate-

PEG2kDa-SH. Afterwards particles were labelled with Bodipy-PEG2kDa-SH and then the 

surface was saturated with the pH responsive polymer poly(MCH-co-GMA). 

The particle decoration degree was established at each step by spectrophotometric 

analysis of the supernatant at 535 nm (Iodine assay) and 300 nm to assess the 

adsorption of Folate-PEG2kDa-SH and poly(MCH-co-GMA) respectively. The particle 

labelling with Bodipy-PEG2kDa-SH was assessed by fluorometric analysis of the 

supernatant (λex 503 nm, λem 509 nm). Folate targeted pH responsive gold 

nanoparticles decorated with 50 chains of Folate-PEG2kDa-SH, 400 chains of 

poly(MCH-co-GMA) and labelled with 100 chains of Bodipy- PEG2kDa-SH were 

produced and characterized by and UV-Vis spectroscopy, TEM and DLS.  

The decoration of particles with the three polymeric components induced a red shift 

of the particle absorption band from 520 nm to 523 nm (Figure 63 - A.) which 

highlights that the GNP dielectric environment changed due to the exchange of the 

polymers to the citrate145,146. DLS analysis of functionalized particles showed a 

hydrodynamic volume of 34.2±3.1 nm, a significant increase compare to the size of 

naked GNPs (14.5±1.6). Folate targeted pH responsive gold nanoparticles showed a 

homogeneous size distribution as confirmed by both the narrow PDI value of 0.34, 

assessed by DLS, and the TEM images (Figure 63 – C). Furthermore, TEM images 

showed very nicely the presence of a grey corona surrounding the particle core 

proving the presence of an organic layer coating the particles. Figure 63 – C’ reports 

the size distribution profile obtained by the elaboration of TEM images by ImageJ 

image processing program (n=200). 
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Figure 63. (A) UV-Vis spectra and (B) Dynamic Light Scattering profiles of naked GNPs (■) and Folate 

targeted pH responsive gold nanoparticles (■) in deionized water. (C) TEM analysis of Folate targeted 

pH responsive GNPs and (C’) TEM size distribution profile of naked GNPs (■) and Folate targeted pH 

responsive GNPs (■) obtained by the elaboration of TEM images using ImageJ image processing 

program. 

6.5.4. Stability study of folate targeted pH responsive gold nanoparticles 

Stability of Folate targeted pH responsive gold nanoparticles was investigated in milliQ 

and FFDMEM medium at pH 7.4 and pH 6.5 by Dynamic Light Scattering analysis at 

25°C. Control citrate-capped GNPs and mPEG2kDa-GNPs were also tested. 

Folate targeted pH responsive gold nanoparticles (FA pH resp.-GNPs) were prepared 

according to the procedure reported in the previous chapter. FA pH resp.-GNPs 

dispersed in milliQ water revealed a good stability for up 2 hours and no aggregation 

was observed.  

In order to evaluate particle behavior at different pH, FA pH resp.-GNPs were 

suspended in FFDMEM at pH 7.4 and the pH was decreased by adding 0.1 N HCl. The 

acidification of the medium caused a slight destabilization of the particles with a 

mean size increase from 38 nm up to 141 nm which can be attributed to particle mild 
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aggregation. This event caused the sudden color change from red to violet since the 

particle Surface Plasmon is affected by size and aggregation. Then the gold 

suspension was brought again to pH 7.4 by adding 0.5 N NaOH resulting in immediate 

particle redispersion (size = 56 nm).  

These results underline that the external block of the coating layer, namely the 

poly(GMA), guarantees for a good colloidal stability both at pH 7.4 and 6.5. At pH 7.4 

the poly(MCH-co-GMA) polymer is extended and the coating layer is fully hydrated. 

On the contrary at a pH lower than its cloud point, the pH sensitive block poly(MCH) 

loses its charge and converts into the hydrophobic globular conformation which 

induces the partial particle instability, as shown by DLS data. 

 

 

Figure 64. DLS profile of FA pH resp.-GNPs in FFDMEM in the pH range 7.4 - 5. The analysis was 

performed by decreasing the pH of the colloidal suspension from 7.4. After pH 5 was achieved (pink 

line), particle suspension was brought to pH 7.4 (black line). 

 

The pH responsive stability was compared to that of naked (negative control) and 

PEG coated particles (positive control).  

Colloidal dispersions of citrate-capped GNPs in milliQ water revealed a high stability 

over time without any variation of the mean diameter after 2 hours (Figure 65. − A). 

This is due to the electrostatic stabilization and charge repulsion provided by the 

citrate. Once diluted in FFDMEM, citrate-capped GNPs showed a massive aggregation 

(>1 µm) at both pH 7.4 and 6.5. After the first of incubation, the particle size grew 

significantly and the aggregate size achieved its maximum at the 2nd hour. This 

behavior may be induced by the charge/charge interaction of the cations of the buffer 

salts with the particle external citrate anions, leading to the neutralization of the 

surface charge, minimization of the repulsive forces thus destabilizing the colloidal 

system (Figure 65 - B). 
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Figure 65. Stability profile of citrate capped GNPs in milliQ water (A) and FFDMEM at pH 7.4 and 6.5 

(B). 

 

The stability test performed on PEGylated particles (PEG-GNPs) highlighted the 

remarkable colloidal stabilization provided by the PEG coating which generates a 

steric hindrance to particle aggregation and helps lowering free energy on the surface 

of colloidal particles. The repulsive forces generated by a flexible PEG layer 

counterbalance the attractive van der Waals forces that involve approaching particles 

(Figure 66). The increased particle size respect to the citrate stabilized particles is 

due to the presence of the polymer corona.  

 

 

Figure 66. (A) Stability profile of PEG-GNPs in milliQ water and FFDMEM, at pH 7.4 and at pH 6.5. 

6.5.5. Biocompatibility study 

The Folate targeted pH responsive gold nanoparticle biocompatibility was explored by 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability 

assay. Tetrazolium dye reduction into formazan salt depends on the mitochondrial 

activity associated to NAD(P)H flux. The quantity of formazan produced by 
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dehydrogenase activity is directly proportional to the number of living cells and it is 

quantified upon dissolution at 570 nm. 

Folate targeted pH responsive GNPs cytotoxicity was tested in FFDMEM at pH 7.4 and 

6.5 to assess if the pH condition was affecting the toxicity of the carrier. The 

biocompatibility test performed on MCF-7 breast cancer and KB human cervical 

carcinoma cell lines showed that Folate targeted pH responsive particles are non-toxic 

in the concentration range 0.2 – 2 nM at both pHs. A slight viability decrease was 

recorded for GNPs tested on KB cells at a concentration higher than 0.8 nM. However, 

cell viability was found to be higher than 85 % at all conditions and particle 

concentration proving the non-toxicity of the multicomponent system. 
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Figure 67. MTT cell availability profile of MCF-7 cells at increasing concentration of Folate targeted pH 

responsive GNPs at pH 7.4 (■) and 6.5 (●).  
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Figure 68. MTT cell availability profile on KB cells at increasing concentration of Folate targeted pH 

responsive GNPs at pH 7.4 (■) and 6.5 (●). 
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6.5.6. Folate targeted pH responsive gold nanoparticle cell uptake study 

Folate targeted pH responsive gold nanoparticles were tested on high Folate receptor 

expressing KB cells (HiFR KB cells) and MCF-7 cells, which do not exhibit the FR on 

the cell membrane. Control non targeted particles were produced by replacing the 

Folate-PEG2kDa-SH amount with mPEG2kDa-SH. Particles decorated with Folate-

PEG2kDa-SH and the non-pH responsive polymer (poly(GMA)) were synthetized as 

additional controls to prove that the particle uptake is selectively mediated by the 

bioregnition of folate under the sensing effect of the pH change which triggers the 

polymer shrinking. poly(GMA) was generated to have the same monomer number 

and thus the same length of poly(MCH-co-GMA) but is not pH responsive: it maintains 

the extended conformation at all pH values, mask the targeting agent and prevent the 

interaction with the Folate receptor which mediates the endocytosis. 
 

6.5.6.1. Atomic absorption analysis on cell lysate 
 

KB and MCF-7 cells were incubated with Folate targeted pH responsive GNPs and 

control formulations for 2 hours in FFDMEM at pH 7.4 and 6.5. Cells were then 

detached and lysated upon Triton treatment. Cell lysates were mineralized by aqua 

regia and analyzed by Atomic absorption spectrometry for the gold quantification.  
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Figure 69. Cell uptake profile of Folate targeted pH responsive GNPs at pH 7.4 (■) and pH 6.5 (■) and 

non-targeted pH responsive GNPs at pH 7.4 (■) and 6.5 (■) by Atomic absorption spectrometry. 

Statistical significance was calculated versus Folate targeted pH responsive GNPs at pH 6.5: ns p>0.05; 

*** p<0.001. 
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Folate targeted pH responsive particles showed a 3-fold higher uptake at pH 6.5 with 

respect to pH 7.4 highlighting that the FR biorecognition is driven by the particle 

sensing capacity of the changed microenviromental pH. At physiological pH (7.4) 

poly(MCH-co-GMA) shows a hydrophilic coil conformation which confers the desired 

stealth properties to the nanosystem and hide the Folate ligand. When the 

protonation of the phenolic hydroxyl group occurs, the collapse of the pH responsive 

block of poly(MCH-coGMA) and the exposition of the targeting agent occurs. The 

specificity of the uptake was proved by the failed internalization of control non-

targeted particles at both pHs.  

In addition, uptake study performed on MCF-7 cell line showed a negligible 

internalization for each formulation further confirming the selective Folate mediated 

particle uptake.   
 

6.5.6.2. Flow cytometry analysis 

KB cells were incubated with the following particle formulations suspended in 

FFDMEM at pH 7.4 and 6.5: 

• Folate targeted pH responsive gold nanoparticles (FA pH resp.-GNPs). 

• Non Folate targeted pH responsive gold nanoparticles (Non FA pH resp.-GNPs). 

• Folate targeted non pH responsive gold nanoparticles (FA non pH resp.-GNPs). 

 

All formulations were labelled with Bodipy-PEG-SH as discussed in Chapter 6.5.3. 
 

After 2 hours of incubation, cells were detached, fixed with PFA and analyzed by FACS 

(Bodipy FL: λex 488 nm, λem 525 nm). 

Cell uptake profile obtained by cytofluorimetric analysis confirmed the pH 

responsiveness of poly(MCH-co-GMA) which is able to finely control the Folate 

exposure. A very limited association was shown by either the non-targeted pH 

responsive particles or the Folate targeted non-pH responsive particles.  

The data were in excellent agreement with the particle cell association performed 

with atomic absorption spectroscopy. This also validates the alternative use of the 

two analytical methods.  

These results strongly support the selectivity of Folate targeted pH responsive GNP 

internalization which arises from the cooperative effect of the targeting agent and the 

pH sensitive component.  



 Results and Discussion  

154 
 

 

FA
 p

H
 r
es

p.-G
N
P
s

N
on F

A
 p

H
 r
es

p.-G
N
P
s

FA
 n

on p
H
 r
es

p.-G
N
P
s

0

20

40

60

80

100

*** ***

*** ***
***

n.s.

n.s.M
F

I 
%

 

Figure 70. Cell uptake profile of Folate targeted pH responsive (FA pH resp.-GNPs), non-targeted pH 

responsive (Non FA pH resp.-GNPs) and Folate targeted non pH responsive (FA non pH resp.-GNPs) 

gold nanoparticles at pH 7.4 (■) and 6.5 (□) by Flow cytometry. The MFI % values were normalized to 

MFI of cells treated with Folate targeted pH responsive GNPs at pH 6.5. Statistical significance was 

calculated versus Folate targeted pH responsive GNPs at pH 6.5: *** p<0.0014 

 

6.5.6.3. Confocal microscopy 

Confocal microscopy analysis was carried out on live KB cells previously incubated 

for 2 hours with the following particle formulations suspended in FFDMEM at pH 7.4 

and 6.5: 
 

• Folate targeted pH responsive gold nanoparticles (FA pH responsive GNPs). 

• Non Folate targeted pH responsive gold nanoparticles (NON FA pH responsive 

GNPs). 

• Folate targeted non pH responsive gold nanoparticles (FA NON pH responsive 

GNPs). 

 

As shown in Figure 71. and previously quantified by FACS and Atomic Adsorption 

Spectroscopy, Folate targeted pH responsive gold nanoparticles were selectively and 

very efficiently taken up by KB cells at pH 6.5 while at pH 7.4 very few fluorescent 

spots associated to the cells were detectable. Non Folate targeted pH responsive gold 

nanoparticles underwent a very limited internalization confirming the Folate receptor 

mediated uptake. Folate targeted non pH responsive gold nanoparticles likewise 
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showed a negligible internalization at both pHs since the non-responsiveness of 

poly(GMA) do not allow the Folate ligand to be exposed and bind the biological folate 

receptor. 

          

 

Figure 71. Representative images obtained by confocal microscopy of KB cells incubated Folate 

targeted pH responsive (FA pH responsive GNPs), NON targeted pH responsive (NON FA pH 

responsive GNPs) and Folate targeted NON pH responsive (FA NON pH responsive GNPs) gold 

nanoparticles at pH 7.4 and 6.5. Scale bars of 20 µm.  

 

Competitive assay was performed by incubating the particle samples in the presence 

of free Folate as competitor for the Folate receptor binding. Representative images in 

Figure 72. highlight the particle uptake inhibition due to the receptor saturation by 

the free vitamin, endorsing the hypothesis of the Folate receptor mediated 

internalization mechanism. The cells incubated with Folate targeted pH responsive 

GNPs in the presence of free folate at pH 6.5 showed a low fluorescence that was 

comparable to the cells incubated without free folate at pH 7.4. This confirms that the 

particle uptake is significantly dictated by the mechanism involving the folate 

receptor biorecognition.  
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Figure 72. Representative images obtained by confocal microscopy of KB cells incubated with Folate 

targeted pH responsive GNPs in the presence or not of free Folate as competitive agent. Scale bars of 

20 µm. 

 

6.5.6.4. Transmission electron microscopy on KB cells 

TEM analysis of KB cells incubated with Folate targeted pH responsive GNP 

suspensions in FFDMEM at pH 7.4 and 6.5 were performed to investigate the 

intracellular GNP distribution. 

At pH 6.5 Folate targeted pH responsive GNPs are largely taken up by KB cells as 

shown in Figure 73. GNPs are present in the cytoplasm and are associated to tubular 

vesicles whose morphology is compatible with the GPI-anchored protein enriched 

early endosomal compartments (GEECs). Most of the particles observe intracellularly 

were entrapped in these subcellular compartments. As described in paragraph 6.4.5, 

Folate targeted pH responsive GNPs may be internalized by a clathrin-independent 

pathway. More in detail, GEEC is a clathrin- and caveolae-independent endocytosis 

with ∼90 nm vesicles147, in agreement with the vesicles in Figure 73. On the contrary 

particles incubated at pH 7.4 showed a negligible internalization and most of the 

detected particles were found adsorbed on the external cell membrane (Figure 74.). 

This unspecific adsorption, at least in part, may account for the particles quantified by 

Atomic adsorption and Flow cytometry analysis at pH 7.4. 
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Figure 73. (A, B, C, D) TEM images of Folate targeted pH responsive GNPs incubated with KB cells in 

FFDMEM at pH 6.5. Red arrows denote the presence of GNPs. Panel A’ and B’ are magnifications of 

panel A and B respectively. 

         

Figure 74. (A, B, C, D) TEM images of Folate targeted pH responsive GNPs incubated with KB cells in 

FFDMEM at pH 7.4. Red arrows denote the presence of GNPs. Panel A’ and B’ are magnifications of 

panel A and B respectively. 
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7. CONCLUSIONS 

Current anticancer drugs suffer from several limitations such as poor solubility, short 

half-life and uncontrolled distribution throughout the body. This inability to 

discriminate between malignant and healthy cells limits the accumulation within the 

target tissue whereby high doses are required to reach a biologically effective 

concentration, further increasing the severe side effects. In 1906, Paul Ehrlich 

described the need of a drug able to specifically accumulate in the targeted site 

postulating the creation of “magic bullets” for use in the fight against human diseases. 

In this scenario, gold nanoparticles have emerged because of their tremendous 

opportunities for the design of next-generation, multimodal anticancer treatment 

strategies involving photothermal and sonodynamic therapy, drug delivery and gene 

therapy. Spherical gold nanoparticle can be easily synthetized by Turkevich method: 

it is a gold chloride citrate-mediated reduction in which citrate also acts as a labile, 

anionic capping agent which stabilizes the colloid by electrostatic repulsion. The 

obtained citrated-capped gold nanoparticles possess a narrow polydispersity index 

and long stability. After synthesis, stabilizing agents can be displaced by other 

molecules in ligand exchange reactions. Thanks to the high affinity of thiol/disulphide 

groups for gold surface, most frequently thiol modified ligands are used for the 

particle decoration involving the formation of Au-S stable bond. Due to their large 

surface area-to-volume ratio and functional versatility, these particle conjugates can 

exhibit increased targeting selectivity, augmented binding affinity, long circulatory 

half-life, high biocompatibility and size-enhanced tumour uptake. The optical and 

electronic properties of gold nanoparticles can further provide high contrast in 

photothermal therapeutic treatments, X-ray CT imaging and other non-invasive 

diagnostic imaging techniques. The intrinsic biomolecular interactions of gold 

nanoparticles can additionally provide cancer-selective cytotoxic activity. Notably, 

recent studies highlighted the use of gold nanoparticles as novel nanosensitizers in 

sonodynamic therapy able to kill cancer cells through the generation of highly 

reactive products, such as reactive oxygen species (ROS), through apoptotic and/or 

necrotic mechanism. Efficient and specific delivery of particles to tumour tissue can 

be accomplished either by passive accumulation through leaky tumour vessels, or by 
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biological molecule that possesses the appropriate cell-receptor binding functionality. 

Thus particle surface can be widely decorated with several ligands such as 

radioactive agents, fluorescent labels and tumour targeting molecules (like 

antibodies, peptides, nucleic acids etc.).  

 

In the present thesis work a novel gold/organic hybrid nanocarrier with enhanced 

site-selectivity for anticancer drug delivery was developed. Nanocarrier size was 

tuned to combine the EPR accumulation of 15 nm gold nanoparticles with an active 

targeting moiety to selectively deliver and treat solid tumours. Due to its possibility of 

conjugation, non-immunogenic properties, and requirement for cancer cell growth, 

Folate was selected as targeting agent for malignant tumours which overexpress the 

Folate receptor (e.g. osteosarcoma, non-Hodgkin lymphoma, ovarian cancer). Folate 

was conjugated to the particle surface via a thiol-PEG spacer of proper length to 

promote the interaction with the specific receptor. Several studies reported in 

literature celebrate the enhanced internalization efficacy deriving from multi-

targeted systems; however, little work has been done to determine whether an 

optimal ligand density exists. This study widely investigates the effect of surface 

ligand density on the internalization efficiency of gold nanoparticles and their 

intracellular trafficking through multiple analysis instrumentations (Atomic 

adsorption spectroscopy, Flow cytometry and Confocal microscopy). Consistent 

results obtained by different techniques showed a linear correlation between the 

number of targeting ligands and the internalization efficiency up to a saturation level 

reached with 50 chains of Folate-PEG-SH. Thereby 50-fold ratio of Folate-PEG-SH 

assures the optimum condition for the particle internalization by high Folate receptor 

expressing KB cells. The specificity of the uptake was proved by several controls: (i) 

non targeted particles revealed a negligible association with KB cells; (ii) Folate 

targeted GNPs were not taken up by MCF-7 cells, which is not provided of the Folate 

receptor on the cell membrane; (iii) cell competition assay showed that the 

incubation of Folate targeted particles in the presence of free Folate induce the 

inhibition of GNP uptake. We can conclude that a multivalent network may increase 

the GNP avidity for FRs.  

Moreover detailed trafficking studies of multi-Folate targeted particles with different 

ligand density and a monovalent ligand were performed. Confocal analysis suggests 
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that ligand density not only affects the level of cell internalization of targeted 

nanoparticles, but also influences the pathway of nanoparticle uptake by the cells. 

Notably a higher Folate density corresponds to a faster and more efficient lysosomal 

delivery. This can be ascribed to a different internalization route or a different ability 

to induce the Folate receptor clustering and subsequent delivery to lysosomes. 

Studies reported in literature revealed that monovalent folate-drug conjugate recycle 

through endosomes with median pH of 6.8. In contrast, multivalent folate conjugates 

were found to traffic to lysosomes148, line with the numerous studies of membrane 

receptors that traffic to lysosomes when crosslinked137. Once established the best 

Folate density which enables an efficient accumulation at disease sites, other 

targeting strategies have been examined.  

Recently the discoveries concerning the physio-pathology of tumour formation are 

inspiring the design of tailor-made nanocarriers with features that suit the local 

environment of this tissue, which may include specific enzyme overexpression, low 

pH and elevated glucose metabolism. These particular conditions can be exploited 

either to realize a selective internalization of the carrier modulating its surface 

properties or to trigger the drug release by degradation of the carrier. The stimulus 

nature could also be external such as light, temperature or magnetic field. 

Significantly the internal stimuli operate in a biologically control manner, whereas 

the external stimuli provide spatio-temporal control over the release149149149. 

The carrier here developed is intended to sense environmental alterations after 

extravasation from the blood to the tumour and respond with morphological 

rearrangements that allow for the biorecognition of cancer cells and cell uptake.  

In particular, the decoration of gold nanoparticles with a pH responsive polymer with 

a pKa in the physio-pathological range and the targeting agent Folate-PEG-SH yields a 

stimuli sensitive nanosystem that can be instructed to operate specific and sequential 

functions under temporal and spatial control. Folate targeted pH responsive GNPs 

have been tested in vitro with tumour cells overexpressing and non-expressing the 

Folate receptor. The cell uptake results confirmed that the hiding and reveal of 

targeting agents on GNPs surface modulated by sensitive polymers guarantees 

enhanced site-selectivity to cancer cells according to a cooperative exploitation of 

phenotypic and environmental  features of the tumour. 
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Another great application of gold nanoparticles is their use as sonosensitizers in the 

sonodynamic therapy (SDT). SDT is a newly developed physical approach for the 

treatment of cancer where ultrasound triggers by cavitation phenomenon the rapid 

tumour cell death without damaging the surrounding tissues. In virtue of their unique 

physicochemical properties, gold nanoparticles can be per se considered as 

therapeutic nanodevices since they can accelerate the cavitation phenomena and so 

enhance the SDT efficacy. Moreover, the combination of physical approaches to 

pharmacological treatment can reduce the required dose and the administration 

frequency of the treatment, limit the side effects and produce a selective and effective 

cell killing. In light of this, one of the aims of this thesis was the investigation of the 

Folate targeted gold nanoparticle exploitation as enhancer of the efficacy and 

selectivity of the sonodynamic therapy. KB cancer overexpressing Folate receptor 

cells showed a significant cell growth decrease after sonodynamic treatment with 

Folate targeted GNP incubation and continuous ultrasound exposure, whereas no 

cytotoxic effect was induced either by ultrasound or Folate decorated particles alone 

or by the combination of non-targeted particles and ultrasounds. Two additional 

control experiments lend further support for the uptake of Folate targeted GNPs via 

receptor-mediated endocytosis. MCF-7 cells, which lack the Folate receptor, were 

incapable of internalizing significant amounts of the Folate-functionalized 

nanoparticles. When Folate targeted GNPs were incubated with KB cells in culture 

medium augmented with free folate, KB cells did not internalize the GNPs. This result 

highlighted that the particle uptake is mediated by Folate receptor and the cytotoxic 

effect is ascribable to the peculiar sonosensitizing effect of endocytosed GNPs as 

consequence of the ultrasound induced acoustic cavitation. In conclusion, the present 

project thesis is proposed as proof-of-concept to show that by finely controlling the 

surface properties of nanosystems, site-selectivity can be significantly enhanced, thus 

reducing the disposition of drug nanocarriers in off-target tissues. These designed 

features can be adapted to a variety of colloidal carriers for the development of highly 

multifunctional platform for the multistrategic treatment of cancer. This platform is 

aimed for the delivery of anticancer drugs; thus, the carrier will be further developed 

by including a third component, a polymer bearing doxorubicin molecules conjugated 

through an endosomal cleavable bond (hydrazone). In such a case the “cocktail” 

application strategy, as the combination of a pharmacological (doxorubicin) and a 
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physical treatment (ultrasound) will exponentially increase the therapeutic effect, 

decrease the multi-drug resistance and improve the clinical outcomes. 
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