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Riassunto 

A partire dalla "Rivoluzione verde" sono state selezionate varietà di colture a taglia ridotta, ad 

esempio riso e sorgo. Molti sono i vantaggi derivanti: un maggior utilizzo di energia per la 

produzione della granella rispetto alla crescita vegetativa, la possibilità di aumentare la densità 

delle piante per superficie, la maggior resistenza ai danni da vento e la minor perdita di 

granella durante raccolta e trasporto.  

Molte linee mutanti nane sono caratterizzate da difetti in sintesi, metabolismo o trasporto di 

ormoni: brassinosteroidi e gibberelline soprattutto. Un difetto nel trasporto di auxina 

caratterizza le linee mutanti di mais br2 e di sorgo dw3. 

Test di allellismo condotti all'Università di Purdue (IN) incrociando la linea di mais NC238 a 

statura ridotta con altre piante a statura ridotta indicarono che la linea NC238 è un mutante di 

tipo brachytic 2.  

Nel 2003 è stato clonato il gene br2/pgp1/abcb1 responsabile del fenotipo a bassa statura 

dovuto alla riduzione della lunghezza degli internodi vicini alla base del fusto. Il gene abcb1 

codifica per la proteina ABCB1 che appartiene alla famiglia di trasportatori MDR (Multidrug 

Resistant), sottofamiglia B. Questa proteina è l'omologo della proteina trasportatrice di auxina 

di Arabidopsis ABCB1.  

L'ormone auxina svolge molti ruoli nella regolazione dello sviluppo della pianta, sintesi, 

degradazione e coniugazione contribuiscono a modulare i livelli di auxina. Le proteine ABCB, 

assieme a PIN, PILS e AUX/LAX creano una flusso direzionale di auxina dai siti di sintesi 

(aree meristematiche, giovani tessuti) alle zone dove è necessaria. L'auxina svolge ruoli nello 

sviluppo embrionale, mantenimento delle cellule indifferenziate, architettura del fusto, risposta 

tropica, sviluppo e tropismo delle radici. La maggior parte di queste funzioni sono state 

studiate in Arabidopsis. 

Questa tesi si focalizza sull'analisi fenotipica e morfologica della linea br2:NC2382. Una 

pianta alta era stata isolata in una popolazione di NC238. La mutazione infatti è dovuta a 

un'inserzione di un trasposone e a seguito di un fenomeno di reversione, in cui il trasposone si 

è reinserito in un altro lucus del genoma, si era originato un revertente. Questa pianta 

revertente è stata auto-fecondata per ottenere una progenie da usare negli esperimenti come 

linea di riferimento wild type.  

In parallelo, l'allele mutante br2 di NC238 è stato introgresso nella linea di riferimento B73.  
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La presente tesi si suddivide in quattro parti.  

Nel primo capitolo sono state introdotte la biologia, morfologia e genetica del mais (Zea 

Maize). Sono stati descritti la sintesi, il metabolismo e i ruoli dell'ormone auxina. In questa 

sezione è stata inserita la review dal titolo "The role of auxin transporters in monocot 

development" ("Il ruolo dei trasportatori di auxina nello sviluppo delle monocotiledoni") 

scritta durante il periodo all'estero presso il laboratorio del prof. Johal (Università di Purdue, 

IN). La review descrive le funzioni dei diversi trasportatori di auxina nelle monocotiledoni: 

mais, riso sorgo e brachipodio, comparandole con i rispettivi ruoli in Arabidopsis, quando 

trasportatori omologhi esistono. Inoltre una descrizione della struttura e classificazione degli 

elementi trasponibili delle piante è stata fatta. 

Nel secondo capitolo viene descritta l'analisi dei tratti fenotipici. Le pubblicazioni che 

studiano e caratterizzano i mutanti br2 descrivono difetti nell'allungamento del fusto dovuti 

alla ridotta lunghezza degli internodi alla base del fusto. Inoltre, difetti nella struttura dei vasi 

del fusto di br2 sono stati osservati. In un altro caso alterazioni nelle cellule delle foglie e 

nell'angolo fogliare sono stati descritti. Nessun articolo descrive in dettaglio il sistema radicale 

di br2. La caratterizzazione della linea br2:NC238 è stata fatta misurando i tratti dell'apparato 

radicale di piante allo stadio di una settimana. Inoltre sono state eseguite misure fenotipiche su 

piante in fioritura, coltivate in campo all'azienda agraria sperimentale dell'Università di 

Padova "L.Toniolo", per identificare eventuali alterazioni dei tratti della pianta. Sono state 

misurate: la statura delle piante, le distanze, i diametri e il numero dei nodi, l'altezza della 

spiga più alta, le ramificazioni del pennacchio. Inoltre, è stata fatta una analisi dell'apparato 

radicale fino a un metro di profondità di suolo. Le radici sono state estratte attraverso 

carotaggi del terreno alla base del fusto, lavate, scannerizzate e i dati elaborati con un software 

apposito. Inoltre l'anatomia delle cellule del fusto di br2:NC238 e la loro localizzazione di 

auxina sono state osservate. 

Il terzo capitolo riguarda la caratterizzazione della mutazione a livello genetico. Sono stati 

amplificati e sequenziati il clone genomico e il trascritto, delle linee br2:NC238 e il suo 

revertente.  

E' stato fatto lo studio dell'inserzione che causa la mutazione in br2:NC238. E' stata analizzata 

la struttura della sequenza e sono state interrogate banche dati di sequenze genomiche, 
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sequenze ripetute e elementi trasponibili. Inoltre, è stata fatta un'analisi di espressione dei geni 

codificanti trasportatori di auxina.  

Il quarto capitolo riguarda lo studio della linea B73 nella quale l'allele mutato di NC238 è stato 

inserito. Il clone genomico di abcb1 e il trascritto sono stati amplificati e sequenziati per 

confermare la mutazione e l'alterazione della trascrizione del gene. Sono state fatte le analisi 

fenotipiche per confermare che l'allele conferisce le caratteristiche morfologiche anche in linee 

genotipiche diversi.  

In conclusione, le analisi hanno mostrato che il fenotipo di br2:NC238 appare quando le 

piante hanno 7 foglie. Negli stadi precedenti, br2:NC238 e il revertente sono indistinguibili. 

Allo stadio di fioritura, br2:NC238 è caratterizzato da ridotta lunghezza degli internodi alla 

base del fusto e maggior diametro dei nodi bassi. Il resto della pianta è normale. 

La mutazione br2 nella linea NC238 è dovuta a un'inserzione di un trasposone in una regione 

intronica del gene. Il trasposone è caratterizzato da due regioni invertite terminali (TIR) ed è 

fiancheggiato da due sequenze target dirette duplicate (TSD) che sono presenti anche nelle 

sequenza genica del revertente. Nonostante la similarità con diversi elementi trasponibili, il 

trasposone non può essere allocato in nessuna delle famiglie trasposoniche note. A livello 

trascrizionale, il trasposone altera lo splicing del gene. L'analisi di espressione dei trasportatori 

di auxina nel fusto allo stadio di 3 e 7 foglie mostra alterazione nei profili di trascrizione. 

Inoltre, un aumento di espressione della forma di splicing predetta dal Maize Genome 

Database (T02) è stato osservato. 

La presenza dell'allele abcb1 mutato nella linea di riferimento B73 causa l'insorgenza del 

fenotipo tipico dei mutanti br2. Il risultato indica che l'introgressione dell'allele abcb1 di 

br2:NC238 in un'altra linea genetica produce una linea di altezza ridotta senza alterare gli altri 

tratti della pianta e suggerisce la possibilità di introdurre la linea NC238 nei programmi di 

breeding. 
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Summary 

Starting from the Green Revolution era, cereals have been bred for dwarf or semi-dwarf 

phenotype for many advantages, such as increased allocation of energy to seed rather than 

stem, denser growth, increased resistance to storm damages and reduced loss during 

harvesting.  

Many dwarf mutants are characterized by alteration in hormones biosynthesis and signaling, 

as brassinosteroids (BR) and gibberellins (GA) pathways, while a defect in polar auxin 

transport (PAT) causes the sorghum mutant dwarf3 (dw3) and the maize brachytic2 (br2) 

mutations. Many br2 alleles have been isolated in maize. At Purdue University (Indiana USA), 

allelic tests conducted on the dwarf NC238 inbred line indicated that the NC238 dwarf 

phenotype is due to a new br2 allele. The isolation of a tall NC238 plant indicated the 

mutation is due to a transposon insertion that originated the tall revertant plant in a 

transposition event. Both dw3 and br2 are mutations affecting the gene orthologue of 

 Arabidopsis thaliana ABCB1, which functions in auxin PAT.   

Auxin is a key regulator of plant growth: local biosynthesis, degradation and conjugation 

contribute to the modulation of IAA homeostasis at the cellular level. ABCBs, together with 

the PIN FORMED, the AUX1/LAX and the PILS auxin transporters, create a directional auxin 

flux from the site of synthesis - young tissues - to the site of action. Auxin transport, with local 

biosynthesis and conjugation, allows the establishment of an auxin gradient, and the local 

auxin maxima regulates many aspects of the embryonic development, stem cell maintenance, 

shoot architecture, and tropic growth responses, root development and gravitropism. To date, 

the majority of the studies on auxin PAT have been focused on Arabidopsis, while less is 

known in other species, such as maize. This thesis focuses on the characterization of 

br2:NC238 brachytic maize inbred line. In order to better characterize this maize mutant line, 

both a phenotypic and genotypic analysis of the NC238 dwarf plants were performed. In 

parallel, the brachytic 2 allele was introgressed in the B73 maize reference inbred line 

background.  

The present thesis is composed of four chapters.The first chapter is an introduction on Maize 

biology and genetics and auxin synthesis, metabolism and roles. This section comprises the 

review I wrote when I was visiting scholar at Prof. Johal lab at Purdue University: "The role of 

auxin transporters in monocot development". The review describes the roles of auxin 
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transporters in monocot development: maize, rice, sorghum and brachypodium, making 

comparison with Arabidopsis auxin carriers, when possible. Moreover, a section describing 

the plant transposable elements structure and classification is present. 

The second chapter describes the morphological characteristics of NC238 line. It was 

previously reported alterations in stem vasculature in br2. Other paper described alteration in 

leaf cell size and leaf angle. Literature lacks a root system characterization. The develop stage 

when the br2:NC238 phenotype arise was identify. Seedlings' root system, and stem traits on 

field grown plants at anthesis (University of Padova farm "L.Toniolo") were measured. The 

internode length, node diameter, number of nodes, tassel branches and ear position along the 

stem were recorded. Moreover, 1m deep soil coring at the base of the stem were made, in 

order to study the root system profile. In addition the anatomy of the stem and auxin 

localization in stem tissues were observed. 

The third chapter regards the genetic characterization of the mutation. Genomic clones and 

transcripts sequences from both br2:NC238 and the revertant plants were amplified and 

sequenced. A study on the nature of the br2:NC238 insertion was performed through analyses 

of the sequence and interrogation against genes, repeats and transposons databases. Moreover, 

expression analyses of auxin transporters encoding genes were performed.  

Chapter four describes the genetic and phenotypic characterization of the br2:B73 line 

obtained by introgression of the br2:NC238 abcb1mutant allele in the B73 reference line.  

In conclusion, br2:NC238 short phenotype is due to the shortening and thickness of the lower 

internodes. The other parts of the plant are normal. Phenotype appeared when plants were 7-

leaf-old. br2:NC238 and the revertant plants were indistinguishable in the early stages of 

development.  

The br2:NC238 mutation is caused by a insertion in a intronic region of abcb1 gene. The 

insertion is characterized by terminal Inverted repeats (TIRs) and Target Site Duplication 

(TSD) that are also present twice in the revert line. Despite the similarities with many known 

transposable elements, it was not possible to find the family the br2:NC238 insertion sequence 

belongs to. The insertion caused alteration in the gene transcription and alteration in the 

expression analyses of auxin transporters encoding genes at 3- and 7-leaf-old plant stem 

tissues were observed. Moreover, an increase in T02 Maize GDB predicted splicing form was 

observed. 
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The introgression of br2:NC238 abcb1 mutant allele in B73 reference line genome originated 

a short stature plant, br2 type. The result indicates the abcb1 mutant allele was responsible for 

the br2:NC238 phenotype and suggests the allele may be used in breeding programs to obtain 

lines with reduced height. 
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Chapter I 

General introduction 

 

1.1 Zea mays is both a model organism for plant research and an important crop species 

 

Maize (Zea mays L. spp. mays, commonly called "corn" in the USA) is one of the world's most 

important crops, together with rice (Oryza sativa), sorghum (Sorghum bicolor), and wheat 

(Triticum spp.). It belongs to the grass tribe andropogoneae of the family Graminaceae (Poaceae).  

The name Zea derived from Greek zea that means cereal or grain. Its closest wild relatives are the 

teosintes, annual perennial grasses of the genus Zea, indigenous to Mexico and Central America. 

Genetic studies identified Zea mays spp. parviglumis as the direct ancestor of modern maize and 

it is estimated that maize diverged from the teosintes ancestor between 6000 and 9000 years ago 

(Matsuoka et al., 2002; Strable and Scanlon, 2009). For western civilization, the story of maize 

began in 1492 when Columbus's men discovered this new grain in Cuba and exported it to 

Europe.  

Maize is an annual monocot plant producing large, narrow, opposing leaves, borne alternately 

along the length of a segmented stem. Maize is a monoecious plant with a male inflorescence, the 

tassel, and a female inflorescence, the ear. The apex of the stem ends in the tassel, and at the 

midpoint of the stem the ears born at the apex of condensed, lateral branches known as shanks 

protruding from leaf axils. The tassel produces pairs of free spikelets each enclosing a fertile and 

a sterile floret. The ear, a spike, produces pairs of spikelets on the surface of a highly condensed 

rachis (central axis, or cob). The female flower is tightly covered over by several layers of leaves 

until emergence of the pale yellow silks - made from the stylus and stigma - from the leaf whorl 

at the end of the ear. Each of the female spikelets encloses two fertile florets, one of whose 

ovaries will mature into a maize kernel once sexually fertilized by wind-blown pollen. The maize 

tassel and ear, despite their differences, share a common developmental origin and become 

distinct through the formation of long branch primordia and the abortion of female floral organs 

in the tassel, and through the abortion of male floral organs in the ear. Each female flower has a 

single functional ovary that ends with silk and each silk can accept one pollen grain. After the 

germination of the pollen grain on silk, pollen tube moves downwards, carrying three haploid 

nuclei: a vegetative one, and two generative (sperms). In the embryo sac eight nuclei are present, 

three at one pole (egg and two synergids) two at the centre (polar nuclei), and three at the 
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opposite pole (antipodal). Fecundation consists in the fusion of a generative nucleus with the egg 

to form a zygote from which the diploid embryo generates, and in the fusion of the second 

generative nucleus with the two polar nuclei to give origin to a triploid cell that, by continuous 

mitosis, produces the endosperm in the process called double fecundation. Although it can happen 

that the pollen from a tassel fertilizes the silk on the same plant (self-pollination), in maize this is 

less likely than cross-pollination between different plants. This physical separation of the flowers 

also facilitates breeder pollinations. Ears can be covered and pollen collected from tassels to make 

the desire cross. The mature seed is attached to the cob, the entire ear is protected by modified 

leaves called bracts. Maize does not have effective systems for the dispersal of seeds. The 

indehiscent dry fruit, is called caryopsis. 

 
Figure 1.1. Maize adult plant. The male inflorescence, the tassel, is at the top of the stem while female flowers are 

located in the ear (1). Tassel branches bear small flowering producing branches called spikelets (2). At anthesis, 

anthers shed pollen. One floret per ear spikelet develops to maturity. The mature ear floret contains a single ovary 

that end in the silk where pollen germinates and grows to the ovary. After fertilization the ovary produces the kernel 

(3). Adapted from www.efloras.org 
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Figure 1.2.  Life cycle of maize. The vegetative plant represents the diploid sporophyte generation. Meiosis occurs in 

the male and female flowers, represented by the tassels and ears, respectively. The haploid microspores (male spores) 

develop into pollen grains, and the single surviving haploid megaspore (female spore) divides mitotically to form the 

embryo sac (megagametophyte). The egg forms in the embryo sac. Pollination leads to the formation of a pollen tube 

containing two sperm cells (the microgametophyte). Finally, double fertilization results in the formation of the 

diploid zygote, the first stage of the new sporophyte generation, and the triploid endosperm cell. Adapted from 

http://www.sinauer.com/plant-physiology-and-development.html. 

Maize is often classified as dent corn, flint corn, flour corn, popcorn, sweet corn, and waxy corn. 

It is not only an important human nutrient, but also a basic element of animal feed and raw 

material for manufacture of many industrial products. The products include corn starch, 

maltodextrins, corn oil, corn syrup and products of fermentation and distillation industries. It is 

also being used as biofuel. 

In addition to its agronomic importance, maize has been a keystone model organism for basic 

research for nearly a century. Within the cereals, which include other plant model species such as 

rice (Oryza sativa), sorghum (Sorghum bicolor), wheat (Triticum spp.), and barley (Hordeum 

vulgare), maize is the most thoroughly researched genetic system. The use of maize as model 
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organism started in 1869 with Gregor Mendel's breeding experiments after his pea (Pisum) 

genetic researches. However, Correns and de Vrie are considered the pioneers of maize genetics 

research with their studies on xenia: the dominant influence exerted by the pollent parent on the 

phenotype of the endosperm. Emerson and East are considered the fathers of the modern maize 

genetics and Emerson was remembered as Beadle, Burnham, Rhoades and Mc Clintock's mentor.  

In maize, the genetic variation is represented by its inbred lines. Traditional maize inbred line 

development consists of rapid inbreeding through self-pollination with the primary selection 

criterion being grain yield in a process referred to as the pure-line method (Shull 1909, Bauman 

1981). The aim during the development of inbred lines is to achieve homozygosis while ensuring 

plant vigor and performance, which usually decreases with the level of homozygosis. Historically, 

at least seven self-pollinations are needed to obtain a new inbred line. The inbreeding depression 

is the loss of performance of the inbreds due to the effect of inbreeding. It increases the 

homozygous recessive alleles leading to plants that are weaker and smaller and having other less 

desirable traits (reviewed in Charlesworth and Willis, 2009). Shool (1908) reported that inbred 

lines of maize showed general deterioration in yield and vigor. However, hybrids between two 

inbreds immediately and completely recovered; in many cases their yield exceeded that of the 

varieties from which the inbreds were derived. Furthermore, they had a highly desirable 

uniformity (reviewed in Crow, 1998). Thus, the word “heterosis” was introduced by Shull (1914) 

as shorthand for "stimulation of heterozygosis". Hundreds of maize inbred lines are described. 

B73, Mo17, W22 are the most widely used in the research studies, also thanks to the genome 

sequencing of B73 and Mo17. B73 is considered the wild type reference inbred line (Schnable et 

al., 2009). In many studies, the source of variation represented by inbred lines were used to 

evaluate differences in stress tolerance. Chen (2012) evaluated a selection of maize inbred lines 

for drought and heat stress tolerance under field conditions, and identified several inbred lines 

that showed high tolerance to drought. 

Besides inbred line studies,, maize research has benefited from a vast collection of genetic 

mutants (Neuffer et al. 1997). Moreover, several mutants have been obtained thanks to TILLING 

project, as well as the use of Ac/Dc transposons for targeted mutagenesis (Bai et al. 2007) 

(Pohlman et al. 1984), the Mu Element (Slotkin et al. 2003, May et al. 2003), and the EMS 

mutagenesis. CIMMYT (International Maize and Wheat Improvement Centre) has taken the lead 

in preserving maize germplasm. It has the world’s largest collection of maize accessions. The 

Maize Genetics Cooperation Stock Center (MGCSC) located at the University of Illinois in 

Urbana Champaign is the primary source for maize mutant stock for the research labs.  
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 1.2 The maize stem development 

Plant height and the height of the main ear are very important characteristic for breeding. The 

higher is the ear, the more ears can develop from the nodes below. However, if it is too high the 

weight of the ear may bend the stalk or even break it. Height adaptations are essential to plant 

fitness and agricultural performance. Most of the success of the Green revolution is due to the 

introduction of “semi dwarf” crop as wheat and rice (Multani et al., 2003) (a mano David and 

Keijiro Otsuka, 1994). These lines were able to support the heavy grain of the high yielding 

varieties. Over 40 maize genes at which mutations have large effects on plant height have been 

identified (Multani et al., 2003). These are involved in hormone synthesis, transport, and 

signaling. In addition to brachytic 2 (Multani et al., 2003), maize height genes include brachytic1 

(Avila Bolivar, 2015) and brachytic 3 (Cassani et al., 2010); dwarf 3 mediating gibberellin 

synthesis (Winkler, 1995); dwarf 8 and dwarf 9 regulating DELLA proteins of gibberellin signal 

transduction pathways (Winkler and Freeling, 1994); and nana plant 1 impacting brassinosteroid 

synthesis (Hartwig et al., 2011).  

The generalized grass shoot consists of a superposition of elementary units, the phytomers, each 

consisting of a leaf (sheath and blade), the internode below it, and the node and the axillary 

branch at the base of the internode. In most grasses, the lower internodes remain short. In maize, 

internode cell elongation occurs only after reproductive development has started (Siemer et al., 

1969), and the lower internodes may remain short because they have already lost their ability to 

elongate by the time that reproductive development begins. The maize embryonic stem consists 

of a meristematic cone bearing five to seven leaf primordia, showing no differentiation of distinct 

internodes (Martin, 1988). The first internode forms below the coleoptile and elongates rapidly, 

leading the plant to emerge, before a light signal stops its extension (Kiesselbach, 1949). Higher 

internodes originate from intercalary meristems (Sharman, 1942). According to Martin (1988), 

intercalary growth occurs only after the transition of the apex to the reproductive phase. Before 

this transition, the whole stem (apical cone) elongates as a single entity, and at a very slow rate 

(Kiesselbach, 1949; Siemer et al., 1969). After tassel initiation, the stem elongates at a slightly 

higher rate (Siemer et al., 1969) and from ear initiation onwards, it elongates rapidly, up to 

anthesis and silking (Siemer et al., 1969). During the period of rapid elongation, plant height is 

linearly related to the phyllochron (the rate of leaf emergence from the apical bud) (Robertson et 

al., 1994). 
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Elongation of internodes is completed in four phases. In the first phase, division occurs at a 

constant cell size, and this `stationary regime' results in an exponential rate of elongation, which 

is homogeneous over the internode. In the second phase, a gradient of cell length develop at the 

distal end of the internode, and there is an increase in the rate of internode elongation. Thirdly, 

the most distal cells matured, so that the region with a gradient of cell lengths move downwards, 

whereas the region of non-elongated cells, at the base of the internode, remains constant in length. 

This is a new `stationary regime' of linear internode elongation, in which the production of new 

cells compensates for the maturation of older cells. In the fourth phase, the region of non-

elongated cells at the base of the internode decreases in length, resulting finally in the cessation of 

elongation (Sachs et al., 1965, Martin et al., 1988, Morrison et al., 1994, reviewed in Fournier, 

2000). 

In the internodes, the course of the bundles is vertical, but at the level of the nodes they meet the 

horizontal strands and anastomose into elaborate plexus. The sap moves from the roots to the 

leaves passing through these complex plexuses. Despite the complexity of the bundles at the 

nodes, internodes vascular bundles are easily followed for their regular arrangement. For these 

reasons, transverse sections of internodes have been used as model of stem vascularization in 

most introductory texts (Shane, 2000). In fact, despite the lacking of node section images, 

literature is rich in maize internode section pictures. Evans (1928) defined nodes complexity as 

"to defy solution". Shane (2000) identify many node traits: axial bundles at nodes are 

anatomically different from those in internodes; about 3% of the hundreds of axial bundles in 

internodes are continuous though a node; special connecting elements join vessels within the axial 

bundles, and then join these connected vessels with vessels in the transverse bundles. In 

internodes,within axial bundles the large metaxylem vessels are always separated by 

parenchymatic cells. At plexuses these parenchyma cells are replaced by the connecting xylem 

elements, which join together the lumens of the large vessels (Shane, 2000). Tracers location 

experiments showed water and dye pass from the root vessels into the stem vascular bundles and 

along the vessels within axial bundles in internodes and upwards through plexuses for the length 

of the stem. The movements of the dye, that passes freely into almost all the bundles, and that of 

the water indicate the volume of the stem xylem is, for water, a continuous space. However, 

tracer assay showing small particles (20nm average diameter gold particles) do not enter the 

transverse bundles. The absence of particles from the vessels of all transverse bundles (except 

where a bifurcation of an axial vessel entered a transverse bundle) indicates the presence of vessel 

end walls that separated the vessels in axial bundles from the vessels in transverse bundles, and 
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the absence of particles from connecting elements within bundles indicates end walls also 

separate axial vessels from connecting elements (Shane, 2000). 

 

 

 
Figure 1.3. The maize stem. A) Series of 12 images of magnetic resonance imaging cross-sections through a node (the 
node below the main ear insertion) from field-grown maize stem (Odyssey sweet corn). Adapted from 
www.agron.missouri.edu_maize.node. B) Partial overview of the cross section of a elongated internode, vascular 
bundles are distinguishable and regularly distributed in the internode section. Bar=500mm, par=parenchyma, 
scl=sclerenchyma. Adapted from Jung & Casler, 2006. C) Optical microscopy image of the maize stem bisected 
longitudinally. The direction of the axial bundles that pass through the node may be slightly altered within the node. 
Axial bundles (AB) are enlarged at the base of each plexus and distorted where each is joined to transverse bundles 
(TB). Adapted from  Shane, 2000. D) Nodal plexuses of maize stems during dye staining assay. Longitudinal sections 
through the first node above the cut surface, and portions of the adjoining internode.. The same number of axial 
bundles is highlighted by the dye above and below the node. Adapted from Shane, 2000. E) Tracer assay showing 
small particles (20nm average diameter gold particles) do not enter the transverse bundles. Adapted from Shane, 2000. 
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The maize plant initiates an axillary bud at each of the lower nodes in acropetal succession. 

During reproductive development, Axillary Meristems (AMs) give rise to flowering branches or 

to flowers. Once floral meristems are initiated on the flanks of the inflorescence, the final stages 

of reproductive development ensue and the floral organs are formed. Maize forms two distinct 

types of inflorescences after the transition to flowering. The shoot apical meristem gives rise to 

the terminal tassel, which has long branches and develops the male flowers. Bud initiation is 

stopped when the apical meristem starts to elongate and differentiate into a tassel. Ears derived 

from the axillary buds already formed at the lower nodes, have a prominent axis with no long 

branches, and develop the female flowers. By the time the tassel emerges from the top of the 

plant, usually only the topmost earshoot in non-prolific genotypes becomes functional. In the 

prolific genotypes, two or more earshoots at the top nodes can be functional. In either prolific or 

non-prolific genotypes, the topmost earshoot exhibits dominance over the ones at the lower 

nodes. 

The inflorescence meristems (IMs) of the tassel and the ear each produce spikelet pair meristems 

(SPMs). Each SPM forms a short branch, bearing two SMs, which in turn produce a pair of floral 

meristems (FMs), though in the ear only one of these develops into a fertile flower reviewed in 

(Woodward and Bartel, 2005; Bommert, 2005). 

Multiple and redundant genetic mechanisms contribute to SAM initiation, growth, and function. 

These include the CLAVATA/WUSCHEL pathway (Schoof et al., 2000) and the Knotted-1-like 

homeobox (KNOX) genes (Tsuda et al., 2011; Hay and Tsiantis, 2010), plant hormones (Murray 

et al., 2012) and chromatin remodeling factors (Shen and Xu, 2009). 

Auxin biosynthesis, transport, and signaling are all required for axillary meristem initiation 

(Domagalska and Leyser, 2011). Connections between auxin transport and all branching events of 

maize shoot development have been observed. Auxin minimum is established at each leaf axil, 

where an AM will later initiate, and the cells within an auxin minimum have increased potential 

to form an AM (Wang et al., 2014). PIN1 localization experiments suggest that in axillary 

meristem the auxin minimum depends on auxin transport  (Wang et al., 2014). Disruption of the 

auxin minimum, either by ectopic expression of an auxin biosynthetic gene or by local auxin 

application, compromised AM initiation (Wang et al., 2014). 

Treating maize plants at the transition to the reproductive phase with the auxin transport inhibitor 

N-1-aphtylphthalamic acid (NPA) abolished the ability of the IM to form any axillary meristem. 

Moreover, the dynamic gradients of auxin, established by the activity of polar auxin transporters, 

are likely responsible for the formation of all vegetative and reproductive axillary meristems and 
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organs during maize development (Gallavotti et al., 2008). Auxin is also responsible for the apical 

dominance when travels basipetally from the shoot apex and suppresses the outgrowth of axillary 

buds (Thimann and Skoog, 1933; Leyser, 2003). Many auxin-related mutations have been 

identified. The maize BARREN INFLORESCENCE2 (BIF2) and BARREN STALK1 (BA1) 

control early developmental switches involved in the initiation of axillary meristems. bif2 mutant 

tassels make fewer or no branches and spikelets, and the ears have fewer or no spikelets (McSteen 

and Hake 2001). Since the BMs, SPMs, SMs and FMs in weak bif2 mutants are all defective, it 

appears that BIF2 is required for initiation and maintenance of all types of axillary meristems. ba1 

mutants lack vegetative branches and ears and have unbranched tassels also lacking spikelets 

(Gallavotti et al. 2004). The sparse inflorescence1 (spi1) mutant of maize has fewer branches and 

spikelets due to the absence of axillary meristems: SPI1 encodes a monocot-specific YUC gene 

family member required for localized auxin biosynthesis.  

If auxin is required for axillary meristem initiation, then axillary meristem outgrowth required a 

complex interaction among auxin and other hormones (Domagalska and Leyser, 2011). 

Beside auxin, many other hormones regulate the stem branching and the internodes elongation as 

well as the floral development. Cytokinins (CKs) play critical roles in cell proliferation and new 

organ creation and interact with auxin. CKs promote branching and increase spikelet numbers in 

rice. In the SAM, the CKs promote the proliferation of the stem cells and suppress the stem cell 

differentiation, whereas auxin plays a role in organ primordium initiation via the inhibition of the 

CK biosynthesis (Aloni et al., 2006; Naseem et al., 2015).  

It is well known that applications of gibberellins (GAs) induce the plant stem to elongate, 

however GAs have also effects on inflorescences and ear development. In maize, GA application 

causes stem elongation and this elongation is reflected by longer internodes (Cherry et al. 1960). 

GA affects sex determination in maize flowers: higher GA concentrations favor the stamen 

abortion and thus feminization of flowers, while lack of GA causes masculinization of ears 

(Dellaporta, 1994, Irish, 2005). Higher GA concentrations inhibit the growth of early stage ears 

but slightly stimulated the growth of later stage ears in tissue culture (Bommineni and Greyson 

1990). GA treatments promote internode elongation in both prolific and non-prolific genotypes, 

but also decrease ear development (Xu et al., 2004). Internode length is negatively correlated to 

ear number for a broad spectrum of corn germplasm, but plant height and ear number did not 

show this correlation (Xu et al., 2004). According to Ross and O'Neill model (2001) auxin 

promotes gibberellins biosynthesis. In tobacco and in pea, auxin from the shoot is required for 

normal GA biosynthesis (Ross et al., 2001). Auxin was shown to induce the expression of the GA 
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biosynthetic gene GA20ox in tobacco and Arabidopsis, whereas in pea, the hormone induced the 

expression of GA3ox and suppressed the expression of GA2ox, which is involved in GA 

deactivation (O'Neill and Ross, 2002; Frigerio et al., 2006). Moreover, loss of the auxin receptor 

TIR1, that mediates Aux/IAA degradation and the consequent ARF activation, suppresses auxin 

regulation of GA biosynthetic gene expression (Frigerio et al., 2006).  

Auxin and strigolactone have the capacity to modulate each other's levels and distribution in a 

dynamic feedback loop required for the coordinated control of axillary branching. Agusti et al. 

(2011) showed that SL signaling interacts with auxin to stimulate the activity of vascular 

cambium in Arabidopsis and pea. In grasses, elongation and thickening of the stem is primarily 

due to activity of intercalary meristems located in nodes of the culm. The knockout mutation in an 

essential strigolactone (SL) biosynthetic gene that encodes CAROTENOID CLEAVAGE 

DIOXYGENASE8 (CCD8) originates short stature plant, similar to br2 mutant, characterized by  

reduction in stem diameter and reduced elongation of internodes (Guan et al., 2012; Hayward et 

al., 2009).  

Brassinosteroids (BRs) control sex determination in maize (Hartwig et al., 2011). BRs are also 

involved in internodes elongation, as the maize BR-deficient mutant, brd1, exhibits severe 

dwarfism (Makarevitch et al., 2012). BRs treatment increases sensitivity to exogenous auxin and 

enhances auxin-induced hypocotyl elongation (Vert et al., 2008). 

 

1.2 The Maize root system 

Root architecture is another plant morphological trait, frequently under estimated, mainly due to 

difficulties in its observation and measuring. However, root plasticity is crucial for plant 

acclimation under environmental stresses as low nitrogen stress (Gao et al., 2015), drought 

(Comas et al., 2013) and flooding (Justin, 1987). 

Root architecture has traditionally been largely ignored by plant breeders in terms of potential 

yield increases, and was not a major selection criterion in the crop development programs of the 

Green revolution of the 1960s and 1970s that was carried out for the increasing food demands of 

a rapidly growing global population. The use of modern varieties as dwarfed cereal cultivars, 

fertilizers and pesticides, and a better irrigation were the basics of the Green revolution. However, 

for many aspects this first Green revolution was not a total success (S. Hallet, 2011). Food 

production was not enough for the increasing population and drop in food prices failure in 

increasing local people  standards of life. Moreover, agricultural techniques caused the reduction 

of natural soil fertility and the lost of crop diversity. Many experts think root architecture will be 
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considered in the Second Green Revolution that is expected to consist of crop genotypes with 

superior yield at low soil fertility (Smith and De Smet, 2012). In fact, root system exploitation 

and modification in crops may enable plants to make more efficient use of existing soil nutrients 

and increase stress tolerance, improving yields while decreasing the need for heavy fertilizer 

application. Root branching is essential to increase the surface area of the root system, enabling 

the plant to tap more distant reserves of water and nutrients and improve soil anchorage 

(Hochholdinger and Tuberosa, 2009). For this reason, studies regarding crop yield and 

environmental responses more and more frequently include the root system physiology analyses 

(Lux and Rost, 2012; Maeght et al., 2013). 

Arabidopsis has been the main plant model for the root system studies (States, 1994; Benfey and 

Schiefelbein, 1994; Smith and De Smet, 2012). However, crop species are mainly monocots and 

the root system varied from that of the dicot Arabidopsis (Smith and De Smet, 2012). Monocots 

root architecture is more complex, forming a ‘fibrous’ root system of many types of branched 

root. In cereals, shoot-borne ‘crown and brace’ roots, sometimes together with ‘seminal’ roots, 

constitute the majority of the monocot root system. In maize, the root system consists of roots that 

are spatially and temporary distinguishable, formed during embryogenesis and during post-

embryogenic development. The embryonic root system emerges a few days after germination and 

consists of a primary root that is formed at the basal pole of the embryo and variable number of 

seminal roots that emerge one week after germination and are laid down at the scutellar node. The 

post embryonic root system is composed of shoot-borne crown roots that form from consecutive 

underground nodes, brace roots that emerge late in development from aboveground nodes of the 

shoot, and lateral roots (LRs). Pericycle is the tissue layer located between the central vascular 

cylinder and the endodermis and represents the initiation site for LR branching. The pericycle 

cells adjacent to the xylem pole represent the precursors to LR founder cells. Lateral roots are 

highly branched, thus increasing enormously the absorbing surface of the root system. LRs are 

the main responsible of water and nutrient uptake. Brace and crown roots contribute to root 

lodging resistance and together with their lateral roots are responsible for most of the water 

uptake.  

Central in root system development is auxin: auxin plays an important role in LR development.  

Two separate sources provide auxin in specific stages of LR development: the root tip localized-

auxin is important for primordia initiation, while the leaf derived-auxin is critical for primordial 

outgrowth. Following seed germination, free IAA is formed in a process that is regulated by light. 

Later on in development, auxin synthesis is initiated in the first developing true leaves and this 
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auxin is required for the first emergence of LR primordia. In fact, removal of cotyledons has only 

a minor effect on LR primordium emergence in contrast to removal of the leaves. As the root 

system becomes more developed, the amount of local synthesized auxin increases and the 

emergence of the latter primordia is less dependent on leaf-derived auxin. An increase in auxin 

levels in Arabidopsis roots at about 5±7 DAG has been detected, which coincides with the 

emergence of LRs. The root system gradually reduces the dependence on apical tissue-derived 

auxin as evidenced by a major enhancement of its capacity to synthesize auxin by 10 DAG 

(Bhalerao et al., 2002). The fundamental role of localized auxin biosynthesis in roots has been 

demonstrated by the simultaneous inactivation of the Arabidopsis auxin biosynthesis genes 

YUCCA (YUC) that lead to short and agravitropic roots, while their over-expression cannot 

rescue auxin deficiencies in roots. Auxin synthesized in roots is required for normal root 

development and the auxin transported from shoots is not sufficient for supporting root elongation 

and root gravitropic responses (Chen et al., 2014). 

Many types of LR mutants have been isolated in Arabidopsis, including excess of lateral roots 

production (King et al., 1995, Boerjan et al., 1995, Celenza et al., 1995) and defective in LR 

development. These mutants allowed proposing a fine model of LR development. Screening 

mutagenized Arabidopsis plants Celenza (1995) isolated three mutants: the alf1-1 mutation causes 

hyperproliferation of lateral roots, alf4-1 prevents initiation of lateral roots, and alf3-1 is defective 

in the maturation of lateral roots. The alf3-1 mutant could be rescued by IAA while the alf4-1 

mutant could not. These mutants allowed suggesting a model for LR development in which IAA 

is required to initiate cell division in the pericycle and both to promote cell division and maintain 

cell viability in the developing lateral root. In fact, auxin was originally defined as the "root 

forming hormones of plants" (Went, 1926). The ALF1 gene product is believed to modulate the 

level of free, active auxin and therefore the number of LR.  ALF4 is directly involved in LR 

initiation by sensing or responding to indole-3-acetic acid (IAA), implied by the IAA resistant 

phenotype of the alf4 mutant. In a second step the primordia require the ALF3 gene product, 

which locally elevates the level of IAA necessary for cell division and subsequent maintenance of 

the LR meristem leading to LR elongation (Celenza et al., 1995). 
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1.2  The role of auxin in plant development 

Auxins are a structurally diverse group of phytohormones involved in a large number of plant 

developmental processes. The term “auxin” is derived from the Greek word “auxein” meaning “to 

grow”. Its local accumulation triggers organ initiation and its dynamic and uneven distribution, 

so-called auxin gradients, within plant organs provide spatial information that is a major 

determinant of tissue patterning (Benková et al., 2003). Local biosynthesis, degradation and 

conjugation contribute to the modulation of IAA homeostasis at the cellular level. Availability of 

free IAA inside the cell is also controlled by auxin transport. Auxin influx and efflux carriers 

presence and their position at the cell membrane mediate the establishment of a polar auxin 

transport (PAT). Maintaining auxin homeostasis is crucial for normal plant growth and 

development.  

 

 1.2.1  Auxin biosynthesis and conjugation 

Auxin biosynthesis in plants is fairly complex and plays an essential role in many developmental 

processes. Auxin is synthesized in the young parts of the plant, the shoot and root apices, and in 

the leaves, before being transported towards the sites it is needed. 

Plants contain many natural auxins and generally three are the active auxins: Indole-3-acetic acid  

(IAA), 4-chloroindole-3- acetic acid (4-Cl-IAA), and phenylacetic acid (PAA) (Enders and 

Strader 2015; Simon and Petrasek 2011). Of these, IAA is the most abundant and the most 

studied natural auxin (Simon and Petrasek 2011).  

Multiple pathways have been postulated that contribute to de novo IAA biosynthesis. Two major 

pathways for IAA biosynthesis have been proposed in plants: the tryptophan (Trp)-independent 

and Trp dependent pathways.  

Little is known about the Trp-independet pathway that remains to be substantiated from genetic, 

biochemical, and functional studies. It was proposed two decades ago based on results from 

feeding plants with labeled Trp and Trp-biosynthetic intermediates: when the Arabidopsis and 

maize seedlings were fed with isotope-labeled precursor, IAA was more enriched than Trp, and 

the incorporation of label into IAA from Trp is low, suggesting that IAA can be produced de 

novo without Trp as an intermediate (Ouyang et al., 2000; Zhang et al., 2008). Only recently, 

Wang and colleagues gave evidence that the indole synthase (INS) is a key component in the long 

predicted Trp-independent auxin biosynthetic pathway and is critical for apical–basal pattern 

formation during early embryogenesis in Arabidopsis. INS shows cytosol-localized 
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spatiotemporal expression patterns during embryogenesis, and contributes to the establishment of 

an auxin gradient during embryogenesis. It is probable that local auxin biosynthesis through the  

The tryptophan-dependent pathways include the indole-3-acetamide (IAM), the indole-3-pyruvic 

acid (IPyA), the tryptamine (TAM), and the indole-3-acetaldoxime (IAOx) pathways. Plant cells 

synthesize Trp from chorismate via indole-3-glycerol phosphate (IGP) in the chloroplast 

(Radwanski and Last 1995) and produce a large number of Trp metabolic intermediates as IAM, 

IPA, TAM, and IAOx. 

The IPyA pathway is considered the main auxin biosynthesis pathways. IPyA has been isolated 

from a range of species. The Tryptophan Aminotransferase of Arabidopsis (TAA) family of 

enzymes converts tryptophan to IPyA and the YUCCA (YUC) family of enzymes converts IPyA 

to IAA creating a simple, two-step conversion of Trp to IAA (Cheng et al., 2006; Phillips et al., 

2011). Mutations in TAA1, the founding member of a large Trp-independent and Trp-dependent 

pathways coordinately regulates the auxin gradient and orchestrates critical formative steps in the 

creation of apical–basal pattern during embryogenesis (Wang et al., 2015). The first YUC gene 

was identified as a key auxin biosynthesis gene a decade ago from an activation-tagging screen 

for long hypocotyl mutants in Arabidopsis. Overexpression of any of the YUC family members 

leads to auxin overproduction phenotypes in Arabidopsis. The dominant yucca (later renamed as 

yuc1D) mutant was caused by the insertion of four copies of the CaMV 35S transcriptional 

enhancer downstream of the YUC gene. yuc1D is an auxin overproduction mutant showing 

dramatic developmental defects (Zhao et al., 2001). AtYUC was later found to be a member of a 

gene family with 11 genes and its orthologous genes have been found in other plants, as the spil 

gene in maize (Cheng et al., 2006; Gallavotti, Yang, Schmidt, & Jackson, 2008; Zhao et al., 

2001). 

IAM has been identified as an endogenous auxin precursor in many species throughout the plant 

kingdom (reviewed by Korasick et al., 2013). The IAA biosynthetic pathway via IAM was 

initially thought to be a bacteria-specific pathway IAM is the key intermediate in the bacterial 

auxin biosynthesis pathway characterized in Agrobacterium and Pseudomonas: Trp is oxidized by 

the enzyme tryptophan-2-monooxygenase encoded by the aux1/iaaM/tms1 gene. Then, IAM is 

converted toIAA by indole-3-acetamide hydrolase encoded by the aux2/iaaH/tms2 gene to 

produce IAA. IAM have been detected also in plants, as Arabidopsis and maize, and have been 

shown to be involved in auxin pathway. The presence of IAM in growth media induces 

lightgrown Arabidopsis seedlings to have long hypocotyls and epinastic cotyledons. The IAM-

induced phenotypes are identical to those observed in auxin overproduction mutants (Sugawara et 
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al. 2009, Yamada et al. 1985; Romano et al. 1995). Unlike the bacterial IAM pathway, the genes 

and enzymes responsible for producing IAM in plants have not been identified. Although IAM 

has been detected in Arabidopsis, tobacco, and maize in the model legume plant pea (Pisum 

sativum L.) tissues IAM was not detected and plants treated with IAM did not exhibit high-IAA 

phenotypes, and did not accumulate IAA indicating this pathway may not be universally used 

(Quittenden et al., 2014) . 

In Arabidopsis, there is evidence that IAM is mainly generated from IAOx. The conversion of 

triptophan to IAOx is catalyzed by the cytochrome p450 enzymes CYP79B2 and CYP79B3. 

Some studies showed that IAO participated in the conversion of indole-3-acetaldehyde (IAD) to 

IAA in Arabidopsis and pea, however, rice, maize, and tobacco lack the CYP79B2/3 homologs 

and do not have detectable levels of IAOx (Mashiguchi et al., 2011; Seo et al., 1998; Zdunek-

Zastocka, 2008). 

The TAM pathway was first proposed in 1966 after observations of its auxin-like activity in 

Avena coleoptile elongation assays (Sirois, 1966). TAM pathway has also been found in tomato 

(Solanum lycopersicum L.), rice, Arabidopsis, barley (Hordeum vulgare L.), and pea. TAM was a 

proposed substrate for the YUC flavin monooxygenases. YUCs catalyze a rate-limiting step in the 

TAM pathway, the N-hydroxylation of TAM to produce N-Hydroxytryptamine (NHT) (Zhao et 

al., 2001).   

Indole-3-pyruvic acid (IPyA) has been isolated from a range of species. the tryptophan 

aminotransferase TAA1 and its close homologues TAR1 and TAR2 convert L-Trp to IPyA and 

the YUC enzymes subsequently synthesize IAA from IPyA.  

The regulation of auxin levels by de novo synthesis is one important homeostatic mechanism 

operating in plant cells, but the levels of IAA can also be modified by conjugation to molecules, 

as sugars, and degradation. While algae and fungi regulate free auxin concentration by its de 

novo synthesis and degradation, plants with elaborated vascular systems deposit excessive auxin 

in the form of IAA conjugates that are inactive storage auxin species and, when required, their 

hydrolysis provides plants with a potentially faster way to modulate free IAA levels than de novo 

biosynthesis (Cooke et al.,  2002). For example, in the germinating seeds, large amount of IAA is 

released from the endosperm from its ester form to support the growth of developing seedlings 

and IAA conjugates that accumulate in large amounts in cotyledons of mature seeds may be 

considered to be only one of the possible sources of IAA required for the growth of bean 

seedlings (Bialek et al., 1992). More than 98% of total IAA in Arabidopsis is estimated to be 

present as conjugated forms, IAA esters or amide compounds. Conjugates are usually classified 
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according to the type of the attached molecule: ester conjugates (IAA–glucose, IAA–

myoinositol), high-molecular-weight IAA–glycans, and amido conjugates (IAA–amino acid, 

IAA–peptide, or IAA–protein) (reviewed in Korasick, Enders, & Strader, 2013).  

 

1.2.2 Auxin signaling  

Auxin signaling involves thousands of auxin response genes. These include the Auxin/Indole-3-

Acetic Acid family proteins (Aux/IAA), the Auxin-Response Factors (ARF) transcriptional 

factors and many other as SAUR, Gretchen Hagen3 (GH3) and ARG gene families  (reviewed in 

Abel & Theologis, 1996). 

Auxin signals can be perceived by two types of receptors, AUXIN BINDING PROTEIN1 

(ABP1), localized in the endoplasmic reticulum and the cell surface; and TRANSPORT 

INHIBITOR RESPONSE 1/AUXIN SIGNALLING F-BOX (TIR1/AFB) nuclear F-box proteins.  

The best-characterized auxin binding protein is ABP1, which was first described in maize. ABP1 

may sense changes in auxin levels at the cell surface and mediate rapid cellular responses   

(Napier et al., 2002; Robert et al., 2010; Xu et al., 2010), while TIR1/AFB proteins induce 

auxin-dependent transcriptional cascades (Ruegger et al., 1998; Dharmasiri et al., 2005).  

ARF and Aux/IAA proteins contain a similar PB1 (Phox and Bem1) protein-protein interaction 

domain in their C-termini that facilitates the formation of ARF-ARF, ARF-Aux/IAA, and 

Aux/IAA-Aux/IAA homo- and hetero-oligomers (Guilfoyle, 2015, Han et al., 2014). Aux/IAA 

proteins function as active repressors by dimerizing with auxin response factors bound to auxin 

response elements (Tiwari et al., 2013). Aux/IAA are generally, Aux/IAA are nucleus-localized 

short lived proteins and auxin promotes their rapid degradation in proteasome-dependent way, by 

enhancing the interaction between the ubiquitin-ligase SCFTIR1 complex and the Aux/IAA 

proteins (Zenser et al., 2001). Tiwari's work indicate that auxin plays a dose-dependent role in 

modulating the lifetimes of Aux/IAA proteins and thus their capacity to repress early auxin 

response genes (Tiwari et al., 2013).  In fact, the degradation of Aux/IAA directly or indirectly 

changes the transcription of thousands of early/primary auxin response genes (Zenser et al., 2001; 

Tiwari et al., 2013; Hayashi, 2012).   

Different ARFs are involved in various developmental processes ranging from embryogenesis to 

floral development (Guilfoyle and Hagen, 2007). ARFs bind to the TGTCTC sequence on DNA 

sequences called Auxin Response Elements (AuxREs) in promoters of auxin response genes. 

(Guilfoyle and Hagen, 2007). Each ARF functions as a transcriptional activator or repressor. In 
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the absence of auxin, ARFs are bound to Aux/IAA repressor proteins. In Arabidopsis, there are 

23 ARF and 29 Aux/IAA proteins (Quint and Gray, 2006).  

SAUR and GH3 are two families of auxin-inducible genes. SAURs are a class of small, auxin 

induced RNAs. The function is still unknown, however they may play some role in an auxin 

signal transduction pathway that involves calcium and calmodulin (Yang and Poovaiah, 2000).  

GH3 gene family maintains hormonal homeostasis by conjugating excess IAA, salicylic acid 

(SA), and jasmonic acids (JAs) to amino acids during hormone-and stress-related signaling 

pathways. Exogenous auxin application induces GH3 expression in soybean plant (Guilfoyle, 

1999). 

 

1.2.3 Polar Auxin Transport (PAT) 

Compared with other plant hormones, auxin exhibits a unique property, as it is transported in a 

directional-polar flux from the sites of synthesis to the sites where it is needed. The localization of 

the auxin carriers leads the direction of the flux.  

The dicotyledon plant Arabidopsis has been the most used model organism for auxin transport 

studies. A combination of phylogenetic and domain structural analyses showed that PIN and 

ABCB carriers functions were conserved between dicots and monocots (Yue et al., 2015). 

However, many different traits characterized monocots and dicots. Auxinic herbicides have been 

used for decades to control dicot weeds. Monocots have single cotyledons, whereas dicots have 

two, The vasculature in leaves of dicots is reticulate, whereas the vasculature in monocots is 

parallel. Dicots often produce a primary root that produces lateral roots, whereas, in monocots, 

shoot-borne adventitious roots are the main component of the root system. All these traits are 

regulated by auxin.  

During my visiting at Purdue University, I have summarized the role of auxin transporters in 

monocot plant development in a review as part of my thesis. 
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Abstract 

Auxin is a key regulator of plant growth and development, orchestrating cell division, elongation 

and differentiation, embryonic development, root and stem tropisms, apical dominance, and 

transition to flowering. Auxin levels are higher in undifferentiated cell populations and decrease 

following organ initiation and tissue differentiation. This differential auxin distribution is 

achieved by polar auxin transport (PAT) mediated by auxin transport proteins. There are four 

major families of auxin transporters in plants: PIN-FORMED (PIN), ATP-binding cassette family 

B (ABCB), AUXIN1/LIKE-AUX1s, and PIN-LIKES. These families include proteins located at 

the plasma membrane or at the endoplasmic reticulum (ER), which participate in auxin influx, 

efflux or both, from the apoplast into the cell or from the cytosol into the ER compartment. Auxin 

transporters have been largely studied in the dicotyledon model species Arabidopsis, but there is 

increasing evidence of their role in auxin regulated development in monocotyledon species. In 

monocots, families of auxin transporters are enlarged and often include duplicated genes and 

proteins with high sequence similarity. Some of these proteins underwent sub- and neo-

functionalization with substantial modification to their structure and expression in organs such as 

adventitious roots, panicles, tassels, and ears. Most of the present information on monocot auxin 

transporters function derives from studies conducted in rice, maize, sorghum, and Brachypodium, 

using pharmacological applications (PAT inhibitors) or down-/up-regulation (over-expression and 

RNA interference) of candidate genes. Gene expression studies and comparison of predicted 

protein structures have also increased our knowledge of the role of PAT in monocots. However, 

knockout mutants and functional characterization of single genes are still scarce and the future 
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availability of such resources will prove crucial to elucidate the role of auxin transporters in 

monocots development. 

Keywords: IAA, PIN, ABCB, AUX/LAX, PILS, PAT 

 

INTRODUCTION 

Plants exhibit an astonishing variety of shapes and develop multicellular bodies able to live for 

hundreds of years and reach considerable size. They rely on continuous growth and are able to 

regenerate organs from undifferentiated meristematic cells populations. Plant growth and organ 

differentiation, as well as response to environmental stimuli, are regulated, among other factors, 

by endogenous compounds called phytohormones. They control the plant developmental program 

by regulating cell division and expansion, tissue differentiation, and senescence. Phytohormones 

can act within the cell of origin or move to other sites in the plant, where they are perceived as a 

signal by hormone receptors (Davies, 2004). 

The plant hormone auxin was first isolated as Indol-3-acetic acid (IAA) by Went (1926), as he 

studied the tropic response of Avena sativa coleoptiles. Subsequently, during the first half of the 

twentieth century, other four phytohormones were identified, including abscisic acid, cytokinins, 

gibberellins, and ethylene (Kende and Zeevaart, 1997). More recently, several additional 

compounds have been recognized as hormones including brassinosteroids (BR), jasmonate (JA), 

salicylic acid (SA), nitric oxide (NO), and strigolactones (SLs) (Tarkowská et al., 2014). Auxin is 

a regulator of many aspects of plant development, including cell division, elongation, 

differentiation, embryonic development, root and stem tropisms, apical dominance, and flower 

formation (Young et al., 1990; Woodward and Bartel, 2005; Tanaka et al., 2006; Möller and 

Weijers, 2009; Leyser, 2010; Müller and Leyser, 2011; Christie and Murphy, 2013; Gallavotti, 

2013; Geisler et al., 2014). Besides IAA, which is the most abundant natural form of auxin, 

several auxin-like molecules have been identified. While 4-chloroindole-3-acetic acid (4-Cl-

IAA), indole-3-butyric acid (IBA), and phenylacetic acid (PAA) are all found in plants, 2,4-

dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are synthetic 

compounds that have biological activity similar to IAA (Bertoni, 2011;Simon and Petrášek, 

2011). 

Local biosynthesis, degradation and conjugation contribute to the modulation of IAA homeostasis 

at the cellular level. Availability of free IAA inside the cell is also controlled by auxin transport, 

which occurs in two distinct pathways: a passive diffusion through the plasma membrane (PM) 

and an active cell-to-cell transport, depending on the protonation state of IAA. IAA is a weak acid 
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with a dissociation constant of pK= 4.8. In a neutral or basic environment IAA- will be the most 

abundant form (99.4% ionized at pH = 7.0), whereas in the acidic extracellular space IAAH is 

predominant (about 20% protonated at pH = 5.5) (Delbarre et al., 1996; Estelle, 1998; Kramer 

and Bennett, 2006). IAAH can enter into the cell through the PM by passive diffusion or active 

transport by PM importers. Once inside the cytoplasm, which has a neutral pH, IAA- becomes the 

predominant form and it cannot freely move out of the cell unless actively transported by efflux 

carrier proteins (Figure 1). The differential localization of transporters at specific sites on the PM 

creates a directional auxin flow that eventually establishes a polar auxin transport (PAT) stream 

through adjacent cells. Four classes of auxin transporters have been identified: the PIN-FORMED 

(PIN) exporters, the ATP-binding cassette (ABC)-B/multi-drug resistance/P-glycoprotein 

(ABCB/MDR/PGP) subfamily of ABC transporters, the AUXIN1/LIKE-AUX1 (AUX/LAX) 

importers, and the newly described PIN-LIKES (PILS) proteins. 

 

FIGURE 1. Auxin transport proteins regulate intracellular and cell to cell auxin fluxes. Auxin 

(IAA) crosses the plasma membrane through passive diffusion, as protonated form, or through 

PM transporters, as deprotonated form. PINs are efflux carriers located at the PM and ER and can 

be re-inserted in the lipid bilayer by recycling via the endocytic pathway. AUX/LAXs and PILs 

are influx carriers located at PM and ER, respectively. ABCBs are located at the PM and use 

energy from ATP to traslocate IAA. The coordinated localization of the different transporters 

determines the overall directionality of the auxin flux and contributes to the regulation of 

intracellular auxin levels.  
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Despite the fact that auxin was first isolated and studied in the monocot A. sativa, characterization 

of auxin transport proteins derives mostly from forward genetic studies of mutants with defects in 

development, organ morphogenesis, and gravitropism in the dicot Arabidopsis thaliana. In recent 

years, the number of studies on the biological role of PAT in monocots has increased. This has 

been facilitated by the lower cost of deep sequencing of whole plant genomes and transcriptomes 

and by the availability of tools such as transgenic lines carrying proteins with fluorescent tags, 

which are used in subcellular localization studies and PAT fluxes modeling (Mohanty et al., 

2009; Egan et al., 2012; Yu et al., 2012). In this work, we present a comprehensive description of 

monocots auxin transporters and provide, where possible, functional comparison between 

monocot and Arabidopsis proteins.  

 

MATERIALS AND METHODS 

PIN and PILS protein sequences of Arabidopsis, rice, maize sorghum, and Brachypodium (gene 

accession numbers are listed in Table S1) were aligned using the CustalW 2.0 software (Larkin et 

al., 2007). The alignment file was used to generate an unrooted tree with MEGA 6.0 (Tamura et 

al., 2013), applying the Neighbor-joining method, the Poisson model and 500 bootstrap 

replications. Bootstrap analysis values >60 are indicated at each node. 

  

PINs  

PINs are the most studied family of auxin transporters in plants. PIN genes are present in eight 

copies inArabidopsis and encode integral membrane proteins with two conserved domains formed 

by transmembrane helices, typically five at both the N and C termini, and a less conserved central 

hydrophilic loop of variable length (Křeček et al., 2009; Ganguly et al., 2012). Their subcellular 

localization has been correlated with the length of the hydrophilic domain. In Arabidopsis, PIN1, 

-2, -3, -4, and -7 have a longer loop (ranging in size from 298 to 377 amino acid residues), PIN5 

and -8 have a shorter loop (27–46 residues) and PIN6 contains an intermediate form (Křeček et 

al., 2009; Ganguly et al., 2010; Viaene et al., 2013). “Long” PINs are generally inserted into the 

PM while “short” PINs are located in the endoplasmic reticulum (ER) and they are thought to 

contribute to intracellular auxin homeostasis (Mravec et al., 2009; Ding et al., 2012; Cazzonelli et 

al., 2013). More recently, it has been demonstrated that PIN5 is also PM localized, depending on 

the cell type and developmental stage, and that PIN5, -6, and -8 function in polar cell-to-cell 

transport of auxin by regulating coordinated influx and efflux of IAA into and out of the ER 

(Bender et al., 2013; Sawchuk et al., 2013; Ganguly et al., 2014).  
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Several auxin transporters show polar localization in the cell, but it is only in the case of PIN 

proteins that polar targeting occurs more frequently (Figure 1). Shifting PIN polarity results in 

the alteration of PAT which leads to developmental defects in Arabidopsis (Löfke et al., 2013). 

The polar localization of PIN proteins is established by cycling between the PM and endosomal 

compartments such as the trans-Golgi network/early endosomes (TGN/EE). PIN recycling can 

take place via endocytosis of clathrin-coated vesicles and depends on phosphorylation and 

ubiquitination (Robert et al., 2010; Kleine-Vehn et al., 2011;Löfke et al., 2013). 

Unphosphorylated PINs, or those dephosphorylated by the PP2A/PP6 phosphatase, are recycled 

to the PM by the brefeldin A (BFA)-sensitive ADP-ribosylation factor-guanine nucleotide 

exchange factor (ARF-GEF) GNOM. Phosphorylation of PIN proteins by the protein kinase 

PINOID (PID) results in their GNOM-independent recycling to the PM on the opposite side of 

the cell (Friml et al., 2004; Dhonukshe et al., 2010). Monoubiquitination and subsequent 

polyubiquitination of PIN proteins induce their endocytosis, followed by trafficking from the 

TGN/EE to late endosomes, from where the SNX1/BLOC-1 complex mediates transfer to 

multivesicular bodies (MVBs) for vacuolar degradation (Habets and Offringa, 2014). Recently, 

another Arabidopsis kinase, D6 PROTEIN KINASE (D6PK), has been demonstrated to regulate 

PIN phosphorylation and, together with PID, D6PK promotes PINs-mediated auxin transport at 

the PM by maintaining their phosphorylation status. D6PK PM localization is essential to 

establish and maintain PIN phosphorylation, and d6pk mutants have defects in both negative 

gravitropism and phototropism due to impaired auxin transport (Zourelidou et al., 2009; Willige 

et al., 2013; Barbosa et al., 2014). 

Phylogenetic studies on the origin and evolution of PIN proteins have demonstrated that their 

general structure is highly conserved across the plant kingdom and suggest that the last common 

ancestor of land plants had at least one “long” (canonical) PIN protein (Carraro et al., 

2012; Bennett et al., 2014). Strong selective pressure maintained PINs function as auxin carriers 

while they underwent sub- and neo-functionalization with substantial modification to protein 

structure, possibly due to selective loss of phosphorylation sites in their central loop (Dhonukshe 

et al., 2010; Fozard et al., 2013; Bennett et al., 2014). This generated several clades of non-

canonical proteins with shorter and divergent structure, leading to altered localization and 

biological function. Monocot PIN families are often enlarged due to whole genome duplications 

and the retention of multiple copies of similar proteins. Both Oryza sativa and Zea mays contain 

four PIN1 copies and present at least one monocot-specific gene, PIN9, which is divergent in 

sequence and expression pattern from the closest dicot PINs (Xu et al., 2005; Forestan et al., 
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2012; Bennett et al., 2014;Clouse and Carraro, 2014). The PIN9 protein profile prediction shows 

an intermediate hydropathic profile in between the “long” and the “short” PINs. 

AtPIN1 is expressed early during embryonic development and later both in the primary root and 

in the inflorescence stem. Disruption of AtPIN1 expression leads to the formation of naked, pin-

shaped inflorescences and abnormalities in the number, size, shape, and position of lateral organs 

(Okada et al., 1991; Gälweiler et al., 1998). As suggested by the pin1 phenotype, PIN1 plays an 

important role in establishing the plant developmental plan and is involved in floral bud 

formation, phyllotaxis (the arrangement of leaves and flowers around the stem), vascular 

development, vein formation, embryogenesis, lateral organ formation, anther development, and 

root negative phototropism (Gälweiler et al., 1998;Benková et al., 2003; Reinhardt et al., 

2003; Weijers et al., 2005; Feng et al., 2006; Scarpella et al., 2006;Lampugnani et al., 

2013; Zhang et al., 2014). Arabidopsis pin2 was the first pin mutant identified in a screen for 

agravitropic seedlings by Bell and Maher (1990). Initially, it was called agr1, and the gene 

responsible for the phenotype was cloned independently by four research groups and 

named AGR1/EIR1/PIN2/WAV6(Chen et al., 1998; Luschnig et al., 1998; Müller et al., 

1998; Utsuno et al., 1998). AtPIN2 functions in auxin-regulated root gravitropic response and its 

expression levels and polar cellular localization are altered by salt stress (Abas et al., 2006; Sun et 

al., 2008). AtPIN3 is expressed during embryo development and theAtpin3 mutant shows reduced 

growth, and decreased apical hook formation (Friml et al., 2002b; Zádníková et al., 2010). It has 

been shown that AtPIN3 plays an important role in root gravitropism, as in vertically grown 

seedlings AtPIN3 is positioned symmetrically at the PM in the columella cells, but rapidly re-

localizes laterally to the lower PM of the statocytes following gravistimulation. AtPIN3 

relocalization determines the direction of the auxin flux, which leads to asymmetric auxin 

accumulation and subsequent differential cell growth (Friml et al., 2002b). AtPIN3 is also 

involved in root negative phototropic response, as blue-light induced AtPIN3 polarization is 

needed for asymmetric auxin distribution (Zhang et al., 2013). 

AtPIN4, as well as AtPIN7, are involved in auxin controlled embryo, primary root, and apical 

hook development (Friml et al., 2002a, 2003; Vieten et al., 2005; Kleine-vehn et al., 

2010; Zádníková et al., 2010). AtPIN7 also undergoes relocalization similar to AtPIN3 in 

response to gravistimulation in a subgroup of the columella cells (Rosquete et al., 2013). AtPIN5 

is involved in auxin homeostasis, and it has been demonstrated that it can export auxin from yeast 

cell (Mravec et al., 2009). AtPIN6 is involved in stamen development, and microarray and 

reporter assays have demonstrated that it is necessary for nectaries development (Bender et al., 
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2013). Expression analysis of pPIN6::PIN6-GFP lines during leaf development has demonstrated 

that AtPIN6 localizes to the ER and expression is initiated in broad sub-epidermal domains that 

later on narrow to sites of vein formation (Bender et al., 2013; Sawchuk et al., 2013). Moreover, 

AtPIN6 is implicated in processes such as shoot apical dominance, lateral root primordia 

development, adventitious root formation, root hair outgrowth, and root waving where it regulates 

auxin homeostasis (Cazzonelli et al., 2013). AtPIN8 is expressed in the male gametophyte, and 

has a crucial role in pollen development and functionality (Ding et al., 2012). AtPIN8, together 

with AtPIN5 and AtPIN6, also take part into leaf vein network patterning by regulating 

intracellular auxin transport between the cytoplasm and the ER lumen. Their action is exerted 

coordinately with AtPIN1, in order to modulate intracellular auxin levels in extending veins 

(Sawchuk et al., 2013). 

PINs IN Oryza sativa 

Rice has 12 PINs (Table S1) and OsPIN1 was first described by Xu et al. (2005). Transmembrane 

motif analysis of the deduced amino acid sequence shows that OsPIN1 is a “long” (canonical) 

PIN protein, which harbors a long hydrophilic loop and two transmembrane regions composed of 

five helices each. Protein structure, phylogenetic, and functional analysis identify OsPIN1 as the 

closest ortholog of AtPIN1 (Xu et al., 2005; Carraro et al., 2012; Wang et al., 2014). The 

three OsPIN1s, -a, -b, and -c are expressed in roots, stem base, stem and, at a lower level, in 

leaves and young panicles. In these last two organs, OsPIN1cexpression is lower than in the other 

tissues (Xu et al., 2005; Wang et al., 2009). Over-expression 

of OsPIN1in 35S::OsPIN1 transgenic plants increases primary root length and lateral root 

number. Suppression ofOsPIN1 expression obtained by RNA interference (RNAi) reduces the 

number of adventitious roots and increases the number of tillers and the tiller angle. Thus, 

OsPIN1 is involved in auxin transport in primary and adventitious roots, which are more 

abundant in rice compared to Arabidopsis. The role of OsPIN1 in PAT was confirmed by treating 

wild type plants collars with 1-N-Naphthylphthalamic acid (NPA), which blocks initiation and 

growth of adventitious and lateral roots, while application of the auxin NAA rescues the RNAi-

induced phenotype (Xu et al., 2005). OsPIN2 is the most recently characterized PIN gene of rice 

and shows a different expression pattern compared to OsPIN1 (Chen et al., 2012). Wang et al. 

reported thatOsPIN2 is highly expressed in roots and at the base of the stem, less in young 

panicles and exhibits no expression in adult stem and leaves (Wang et al., 2009). Over-expression 

of OsPIN2 results in a larger tiller angle, reduced plant height and an increase in tillers number 

compared to wild type. OsPIN2 over-expression increases auxin transport from the shoot to the 
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root–shoot junction and transgenic plants are less sensitive to root growth inhibition by NPA 

(Chen et al., 2012). Overall, the results indicate that OsPIN2 acts in a specific auxin-dependent 

pathway which includes OsPIN1b and OsTAC1 (TILLER ANGLE CONTROL 1), and controls 

rice shoot rather than root architecture (Chen et al., 2012). Three OsPIN5 homologs are present 

on chromosomes 1, 8, and 9 of rice. The expression patterns of OsPIN5a and OsPIN5c are very 

similar: while only weakly expressed in roots, they show very high expression levels in leaves, 

shoot apex, and panicle. Small amounts of OsPIN5b transcript are detected in the shoot apex, 

roots of 6-week-old plants and 4-week-old callus tissue (Wang et al., 2009; Miyashita et al., 

2010). One AtPIN8 homolog has been identified in rice but it has not been characterized yet 

(Miyashita et al., 2010). OsPIN9 is highly expressed in adventitious root primordia and pericycle 

cells at the base of the stem (Wang et al., 2009). OsPIN9 expression levels in roots are decreased 

by IAA and increased by cytokinin [6-benzylaminopurine (6-BA)] application (Wang et al., 

2009; Shen et al., 2010). Expression analysis shows that OsPIN10a is present in the stem, leaves, 

and young panicle, but not in the roots. OsPIN10b is mainly expressed in leaves but also at the 

stem base and in lateral root primordia and both genes are up-regulated by IAA, 6-BA, and JA 

treatments (Wang et al., 2009). 

PINs IN Zea mays 

The PIN family in maize includes 12 members characterized by often overlapping but sometimes 

organ-specific expression domains (Forestan et al., 2010). ZmPINs consist of both “long” 

(ZmPIN1a, -b, -c, -d, ZmPIN2, ZmPIN10a, -b) and “short” forms (ZmPIN5a, -b, -c, ZmPIN8), 

with ZmPIN9 having a protein structure in between the two classes (Forestan et al., 2012; 

Table S1). The ZmPIN1 homologs were among the first identified in maize and are expressed at 

the PM, supposedly functioning in PAT at different stages of plant development. The ZmPIN1a, -

b, and -c loci are located in duplicated regions on chromosomes 9, 5, and 4, respectively, and, 

along with ZmPIN1d, are characterized by a six exons/five introns gene structure. This gene 

organization is similar to that of AtPIN1 and OsPIN1. The proteins encoded by ZmPIN1a, -b, -c, 

and -dpresent higher sequence similarity to AtPIN1 than other PINs from Arabidopsis and they 

should be considered as different orthologs of AtPIN1. In monocot species such as maize, the 

presence of paralogs encoding protein isoforms derived from duplication and neo-

functionalization cannot be ruled out, but so far there is no conclusive evidence in the case 

of ZmPINs. ZmPIN1a, -b, -c are ubiquitously expressed but differentially modulated in maize 

vegetative and reproductive tissues and during kernel development. ZmPIN1 plays an important 

role during embryogenesis, where detectable hormone activity inside the developing maize 



38 

 

embryo appears much later than in Arabidopsis (Forestan et al., 2010; Chen et al., 2014).In 

situ hybridization showed that ZmPIN1a localizes in the root apical meristem (RAM) and the 

calyptrogen, which is a specialized layer of meristematic cells that continuously generate 

replacements for the root cap cells that die during primary root growth. Immunolocalization 

experiments locate ZmPIN1 in the central cylinder, vasculature, and cortex of the primary root 

(Carraro et al., 2006; Forestan et al., 2012). NAA application to a ZmPIN1a-YFP reporter line 

causes a more diffuse localization of ZmPIN1a and leads to changes in root anatomy, reducing 

the size of both root cap and meristem and developing of a pluristratified epidermis (Forestan et 

al., 2012). ZmPIN1a also interacts with KNOTTED1 (KN1) in shaping leaves and leaf veins 

patterns and regulates PAT during ear, tassel, and spikelet differentiation (Carraro et al., 

2006;Gallavotti et al., 2008; McSteen, 2010; Bolduc et al., 2012). ZmPIN1a was shown to rescue 

the Atpin1phenotype and the application of NPA to plants at different stages of development 

leads to PAT disruption related defects (Gallavotti et al., 2008; Gallavotti, 2013). ZmPIN1b is 

mainly expressed in the epidermis, root cap, and vasculature. ZmPIN1c localizes in the epidermis 

and vasculature of the root central cylinder, whileZmPIN1d is specifically expressed in the tassel, 

ear, and in the fifth node of adult plants. ZmPIN1d is also expressed in the L1 layer of the shoot 

apical meristem (SAM) and inflorescence meristem during the transition to flowering (Forestan et 

al., 2012). ZmPIN2 is expressed in the root tip, male and female inflorescences and is involved in 

kernel development (Forestan et al., 2012). Interestingly, ZmPIN2 is up-regulated in the roots of 

the brachytic2 mutant, which is characterized by reduced shoot-ward auxin transport at the root 

apex and reduced root gravitropic growth (McLamore et al., 2010). ZmPIN5a is highly expressed 

in roots and ZmPIN5b is expressed in the 5th node of the stalk. ZmPIN8 is up-regulated during 

the early phase of kernel development and in the 7th and 8th internodes. ZmPIN9 is expressed in 

the root epidermis and pericycle and NAA treatment increases its transcript levels in the root 

segment just before the root apex. There are two PIN10 homologs in 

maize, ZmPIN10a and ZmPIN10b. Both genes are expressed in the male inflorescence, 

with ZmPIN10a also up-regulated during the early phases of kernel development (Forestan et al., 

2012). 

PINs IN Sorghum bicolor 

In Sorghum bicolor, PINs have been identified and their expression pattern described, but results 

from functional analysis are still missing (Shen et al., 2010; Wang et al., 2011). The nomenclature 

for sorghumPIN genes does not match the one followed for Arabidopsis, rice, and maize 

therefore, we include the gene identifier together with the common name (Table S1). In sorghum, 
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“long” PIN proteins have a conserved canonical architecture, with two hydrophobic domains 

divided by a hydrophilic loop (Zazímalová et al., 2007; Shen et al., 2010). Their chromosomal 

distribution, expression profile and up- or down-regulation following treatment with auxin 

transport inhibitors [NPA, 1-naphthoxyacetic acid (1-NOA) and 2,3,5-triiodobenzoic acid 

(TIBA)] have been described (Shen et al., 2010). The SbPIN1 (Sb02g029210) transcript, similar 

to ZmPIN5c, is predicted to localize to the tonoplast and to be constitutively expressed in all 

tissues (Shen et al., 2010). SbPIN2 (Sb03g029320), one of the sorghum proteins predicted to be 

located at the PM, shows high sequence similarity to ZmPIN10a. SbPIN3 (Sb03g032850), similar 

to At/Os/ZmPIN8, is highly expressed in flowers (Shen et al., 2010). SbPIN4 (Sb03g037350) is 

the sorghum gene that shares most similarity with ZmPIN9 and it is also highly expressed in 

roots, although not exclusively (Shen et al., 2010). However, its expression is down-regulated by 

IAA application and increased by BR, while ZmPIN9 is up-regulated by auxin treatments (Shen 

et al., 2010; Forestan et al., 2012). SbPIN5 (Sb03g043960), similar toZm/OsPIN5a, is expressed 

at low levels in untreated plants while IAA treatment suppresses expression in leaves and roots 

(Shen et al., 2010). The gene named SbPIN6 (Sb04g028170) encodes a “long” form similar to 

PIN1 proteins (Wang et al., 2011). The gene named SbPIN8 (Sb07g026370) is the most similar 

toZmPIN5b having a predicted protein structure of a “short” PIN (Shen et al., 2010). Protein 

sequence alignment and expression pattern of SbPIN9 (Sb10g004430) suggest homology 

to ZmPIN10b. The SbPIN11(Sb10g026300) sequence is orthologous to Zm/OsPIN2 and is more 

expressed in roots and seedling shoots. 

PINs IN Brachypodium distachyon 

In the genome of the grass Brachypodium distachyon there are both “long” and 

“short”/“intermediate” PIN forms (Bennett et al., 2014; O’Connor et al., 2014; Wang et al., 

2014a). Two PIN1 paralogs have been identified: BdPIN1a (Genebank ID XM_003563990.1) 

and BdPIN1b (Genebank ID XM_003570618.1).BdPIN1a and BdPIN1b are highly expressed in 

internal tissues, with BdPIN1b spanning a broader domain. Transgenic Brachypodium lines 

carrying pPIN1a:PIN1a-YFP and pPIN1b:PIN1b-YFP constructs show expression in developing 

spikelets, suggesting a role in vascular patterning (O’Connor et al., 2014). The newly identified 

“Sister-of-PIN1” (SoPIN1)/PIN11 clade contains Brachypodium genes that are divergent in 

sequence from BdPIN1s and have no representatives in Brassicaceae. SoPIN1 is highly expressed 

in the stem epidermis and is consistently polarized toward regions of high expression of the DR5 

auxin-signaling reporter, which suggests a role in the localization of new primordia (O’Connor et 

al., 2014). 



40 

 

ABCBs 

The ABC superfamily of membrane proteins includes more than a hundred different members in 

plants (Kang et al., 2011). The subfamily B (ABCB) includes homologs of the mammalian 

MDRs/PGPs, several of which are involved in auxin transport (Geisler and Murphy, 2006; Cho 

and Cho, 2013). ABCB transporters are integral membrane proteins that actively transport 

chemically diverse substrates across the lipid bilayers of cellular membranes (Figure1). The core 

unit of a functional ABC transporter consists of four domains: two nucleotide-binding domains 

(NBDs) and two transmembrane domains (TMDs). The two NBDs unite to bind and hydrolyze 

ATP, providing the driving force for transport, while the TMDs are involved in substrate 

recognition and translocation across the membrane (Jasinski et al., 2003; Higgins and Linton, 

2004; Bailly et al., 2011). Arabidopsis has 22 ABCBs and the first ABCBs characterized as 

functioning in IAA traslocation were identified in seedlings (Sidler et al., 1998; Noh et al., 2001). 

ABCB1, ABCB4, ABCB14, ABCB15, ABCB19, and ABCB21 are associated with auxin 

transport, although not exclusively (Geisler and Murphy, 2006; Titapiwatanakun and Murphy, 

2009; Kaneda et al., 2011; Kamimoto et al., 2012; Cho and Cho, 2013). To date, the best-

characterized ABCBs are AtABCB1, AtABCB4, and AtABCB19. They all function in auxin 

driven root development and require the activity of the immunophilin TWISTED DWARF1 

(TWD1)/FKBP42 to be correctly inserted at the PM (Wu et al., 2010). AtABCB1/PGP1 was the 

first plant MDR-like gene cloned from Arabidopsis and it is localized at the PM in the root and 

the shoot apex of seedlings (Dudlers and Hertig, 1992; Noh et al., 2001). The Atpgp1 original 

mutant exhibits only a subtle phenotype compared to wild type plants, but a new allele designated 

as atpgp1-2, shows a shorter hypocotyl and dwarf phenotype under long-day conditions (Geisler 

et al., 2005; Ye et al., 2013). Disruption ofAtABCB19/AtMDR1 expression results in partial 

dwarfism and reduced PAT in hypocotyls and inflorescences (Noh et al., 2001). AtABCB19 

functions together with AtABCB1 in long distance transport of auxin along the plant main axis in 

coordination with AtPIN1, and regulates root and cotyledon development and tropic bending 

response (Lin and Wang, 2005; Bandyopadhyay et al., 2007; Rojas-Pierce et al., 

2007; Nagashima et al., 2008; Lewis et al., 2009; Christie et al., 2011). AtABCB4 is a root-

specific transporter involved in auxin transport during root gravitropic bending, root elongation, 

and lateral root formation (Santelia et al., 2005; Terasaka et al., 2005; Kubeš et al., 2011; Cho et 

al., 2012). This transporter is substrate-activated and functions as an auxin importer at low 

substrate concentration, switching to auxin export as the availability of auxin increases (Yang and 

Murphy, 2009; Kubeš et al., 2011). AtABCB21encodes a protein that is the closest homolog to 
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AtABCB4 and is expressed in the aerial parts of the seedling and in the root pericycle cells. Just 

like AtABCB4, AtABCB21 functions as a facultative importer/exporter that controls cellular 

auxin levels (Kamimoto et al., 2012). AtABCB14 was first described as a malate importer that 

functions in the control of stomata aperture according to CO2 levels (Lee et al., 2008). More 

recently, AtABCB14 and 15 have been shown to be active in the vascular tissue of the primary 

stem, which shows anatomical alterations in abcb14 and abcb15 mutants. Since IAA transport 

along the inflorescence is reduced in both mutants, it was proposed that AtABCB14 as well as 

AtABCB15 participate in auxin transport (Kaneda et al., 2011).  

ABCBs IN Oryza sativa 

Homologs of ABCBs have been described in monocots. In rice, Garcia et al. identified 24 

putative ABCB sequences, with OsABCB22 and OsABCB14/16 being homologs 

of AtABCB19 and AtABCB1, respectively (Garcia et al., 2004; Knöller et al., 

2010). OsABCB14 is expressed in all plant organs, including roots, stem, leaves, nodes, root-stem 

transition region, filling seeds, panicle, and flowers (Xu et al., 2014). Spatial expression analysis 

shows that OsABCB14 expression is higher in root tips than in the basal root zone. Knockout 

mutants of OsABCB14 have decreased PAT rates, conferring insensitivity to 2,4-D and IAA. A 

role for OsABCB14 in auxin uptake and iron (Fe) homeostasis has been demonstrated. Acropetal 

auxin transport in rice abcb14 plants root system is significantly lower than in wild type. The iron 

concentrations in shoots, roots, and seeds are significantly enhanced, and the expression level of 

iron deficiency-responsive genes was significantly upregulated in rice abcb14 mutants (Xu et al., 

2014). Recent evidence also suggests that N-glycosylation of ABCB proteins in rice might be 

important for root development. In an EMS-generated mutant line for OsMOGS, which encodes a 

mannosyl-oligosaccharide glucosidase, root PAT is altered due to under-glycosylation of 

OsABCB2 and OsABCB14 (Wang et al., 2014b).  

ABCBs IN Zea mays AND Sorghum bicolor 

In maize and sorghum, loss-of-function mutations in the AtABCB1 orthologous 

genes ZmABCB1 andSbABCB1 result in short stature plants designated as brachytic2 

(br2) and dwarf3 (dw3), respectively (Multani et al., 2003). br2 and dw3 are characterized by 

reduced basipetal auxin transport and greatly reduced stalk height (Multani et al., 2003). BR2 is 

expressed in nodal meristems, and analyses of auxin transport and content indicate that BR2 

function in monocot-specific meristems is the same as that of AtABCB1, which is an auxin 

transporter. Thus ABCB1/BR2 auxin transport ability is conserved between dicots and monocots, 

but should be considered in the context of distinct architectures of monocot versus dicot plants, 
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which have unsegmented (Arabidopsis) and segmented stems (maize, rice, 

sorghum, Brachypodium) (Figure 2; Multani et al., 2003; Knöller et al., 2010). The dwarfing 

phenotype of dw3 is very similar to that of br2 and it is the result of a 882-bp tandem duplication 

in exon 5 that disrupts protein function and the plant’s ability to establish an auxin flux in the 

intermediate internodes (Multani et al., 2003). These mutants are of particular interest because of 

the agronomic importance in terms of their ability to resist to lodging and to dramatically enhance 

the harvest index of the plant. Thus dwarfing traits are important due to the potential distribution 

of nutrients and energy to grain production rather than vegetative growth. Given that br2, which 

has a defect in ZmABCB1, causes the stunting of lower internodes mostly, it raises the possibility 

that otherbrachytic mutants may arise from defects in other ABCB transporters. In maize, there 

are three putative AtABCB19 homologs: ZmABCB10-1 (GRMZM2G125424) and ZmABCB2-

1 (GRMZM2G072850), present closest sequence similarity to OsABCB16, while ZmABCB10-

2 (GRMZM2G085236), is more similar to the true auxin transporter OsABCB14 (Knöller et al., 

2010). ZmABCB10-1 (GRMZM2G125424) is expressed in actively growing tissues, especially in 

pre-pollination ears at the flowering stage (Pang et al., 2013). In 

sorghum, SbABCB16 (Sb06g018860) and SbABCB18 (Sb06g030350) present the closest protein 

sequence similarity to ABCB19 from Arabidopsis. SbABCB16 expression is highest in the roots 

and is not responsive to IAA and 1-NOA treatments, while SbABCB18 is mostly expressed in 

leaves and is up-regulated by IAA, 1-NOA, and BR applications (Shen et al., 2010). 

 

 

FIGURE 2. The br2 maize mutant shows dramatically impacted stalk architecture. The br2 adult 

plant shows altered stalk height due to reduction in internode length, which is caused by the 
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disruption of IAA transport mediated by ZmABCB1. The same phenotype is present in the 

sorghum dw3 mutant, which carries a tandem duplication in the SbABCB1/Dw3 gene. 

 

 AUX/LAXs  

The existence of auxin importers in plants was first demonstrated studying the Arabidopsis auxin 

insensitive 1 (aux1) mutant, which carries defects in roots gravitropic response. AtAUX1 belongs 

to a small gene family composed of four highly conserved proteins that share similarities with 

amino acid transporters: AtAUX1,AtLAX1, -2, and -3 (Péret et al., 2012). AtAUX1 encodes a 

protein similar to fungal amino acid permeases and is expressed in columella, lateral root cap, 

epidermis, and stele tissues of the primary root where it acts as an auxin importer (Bennett et al., 

1996; Swarup et al., 2001, 2004; Carrier et al., 2008). AtAUX1 is involved in auxin-regulated 

root gravitropic response together with the auxin exporter AtPIN2. The coordinated action of 

these two proteins forms a lateral auxin gradient which inhibits the expansion of epidermal cells 

on the lower side of the root relative to the upper side, eventually causing the downward root 

curvature (Swarup et al., 2005). aux1, as well as pin2 Arabidopsis mutants are agravitropic 

and aux1 also presents a decreased number of lateral roots due to defects in lateral root initiation 

(Marchant et al., 2002). AtAUX1 and AtLAX1,act redundantly in regulating the phyllotactic 

pattern in Arabidopsis although AtLAX2 is not expressed in the SAM L1 layer. Since AtLAX2 is 

expressed in the forming primordium vasculature, one hypothesis is that AtLAX2 enhances the 

strength of the primordium as an auxin sink by pulling IAA from the L1 layer of the SAM 

(Bainbridge et al., 2008; Kierzkowski et al., 2013). AtLAX2 is involved in vascular development 

in cotyledons and it is also expressed in young vascular tissues, the quiescent center and 

columella cells in the primary root (Péret et al., 2012). AtLAX3 is expressed in the columella and 

stele of the primary root and it is involved in lateral root development, as Arabidopsis 

lax3 mutants show delayed lateral root emergence (Swarup et al., 2008). No root growth–related 

defects or lateral root–related defects are observed in eitherlax1 or lax2 single mutants 

while aux1lax3 double mutant shows a severe reduction in the number of emerged lateral roots 

(Swarup et al., 2008). Auxin binding and import activity of AUX/LAX proteins has been 

demonstrated using an oocyte expression system for AtAUX1 (Yang et al., 2006), AtLAX3, and 

AtLAX1 or a yeast-based heterologous expression system in the case of AtLAX2 (Yang et al., 

2006; Carrier et al., 2008; Péret et al., 2012). 

 AUX/LAXs IN MONOCOTS 
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Recently, the expression profile of a putative AUX1 homolog in rice (OsAUX1, Genebank 

ID AK068536) has been published (Song et al., 2013). The study investigates lateral roots 

developmental pattern, auxin distribution, PAT and expression of auxin transporter genes in the 

rice cultivars “Nanguang” and “Elio,” under different nitrogen availability. Expression 

of OsAUX1 results higher in the lateral root initiation and emergence zone of “Nanguang” roots 

in response to partial NO3
- nutrition rather than to NH4

+ alone.OsAUX1 is up-regulated in the 

lateral root elongation zone in the roots of both cultivars in response to phosphorus–nitrogen–

nitrogen (PNN) compared to NH4
+ alone (Song et al., 2013). 

ZmAUX1, the closest maize homolog of AtAUX1, has 7–10 predicted TMDs and it’s 73% 

identical to AtAUX1 (Hochholdinger et al., 2000). Northern blot experiments show expression in 

the tips of primary, lateral, seminal, and crown roots. In situ hybridization shows 

that ZmAUX1 expression is tissue-specific and confined to the endodermal and pericycle cell 

layers of the primary root, as well as to the epidermal cell layer (Hochholdinger et al., 2000). 

ZmAUX1 and AtAUX1 exhibit a preference for IAA and 2,4-D over NAA as substrate and are 

subject to differential transport inhibition by hexyloxy and benzyloxy derivatives of IAA (Parry et 

al., 2001; Tsuda et al., 2011). Transcriptome analysis indicates a role for ZmAUX1 in leaf 

primordia differentiation, although evidence is still not conclusive (Brooks et al., 2009). 

Five LAX genes, named SbLAX1-5, have been identified in sorghum. The corresponding 

proteins present a highly conserved core region with 10 predicted transmembrane helices and 

their transcript levels are higher in leaves and stems rather than in roots and inflorescence tissues 

(Shen et al., 2010). Expression analysis of 3-weeks-old sorghum seedlings indicates that IAA 

treatment induces SbLAX2 and SbLAX3, but it inhibitsSbLAX1 and SbLAX4 expression in 

leaves and roots, as well as it down-regulates SbLAX5 expression in leaves. BR treatment 

induces the expression of all five SbLAX genes in roots while it down-regulatesSbLAX1 and -

4 in leaves. ABA, salt, and drought treatments alter the expression profile of all SbLAXs (Shen et 

al., 2010; Wang et al., 2011). 

PILS 

PIN-LIKES represent the most recently characterized family of plant auxin transport proteins and 

include seven members in Arabidopsis. PILS show low (10–18%) sequence identity with PINs 

and they are all capable of transporting auxin across the PM in heterologous systems (Barbez et 

al., 2012). PILS regulate intracellular auxin accumulation at the ER and thus reduce the 

availability for free auxin that can reach the nucleus, possibly exerting a role in auxin signaling 

that is comparable to that of AtPIN5 (Barbez et al., 2012;Barbez and Kleine-Vehn, 2013). 
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The PILS family is conserved throughout the plant lineage, having representatives in several taxa 

including unicellular algae, where PINs have not been found yet. This indicates that PILS could 

be evolutionarily older than PINs (Feraru et al., 2012; Viaene et al., 2013). SixPILS have been 

identified in rice, 10 in maize, 7 in sorghum, and 8 in Brachypodium (Figure 3; Feraru et al., 

2012). Forestan et al. (2012) identified two maize proteins that in sequence comparison analysis 

do not cluster with Arabidopsis PINs: ZmPINX and ZmPINY. Our sequence comparison verified 

that the two proteins are more similar to PILS rather than PINs, as previously hypothesized 

(Figure 3). Expression analysis for these genes shows that they are ubiquitously expressed and 

differentially up-regulated in maize organs. In detail, ZmPINX is up-regulated in root apex and 

male and female inflorescences, while ZmPINY is highly expressed during kernel development 

(Forestan et al., 2012).  
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FIGURE 3 Neighbor-joining sequence 

similarity analysis of the PIN and PILS 

proteins from Arabidopsis, rice, maize, 

sorghum, andBrachypodium. The unrooted 

tree shows the degree of sequence similarity 

among PIN and PILS proteins 

from Arabidopsis, rice, maize, sorghum, 

and Brachypodium. ZmPINX and ZmPINY 

present higher overall similarity to PILS 

rather than PIN proteins. Bootstrap values 

higher than 60 are indicated at each node.  
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CONCLUSION  

Auxin has a fundamental role in plant organs formation and its polar transport across cellular 

membranes is crucial for the correct development and response to external stimuli. Master 

regulators of PAT are auxin transport proteins, which have been extensively studied 

in Arabidopsis but not in other species, mainly due to the difficulty to obtain loss-of-function 

mutants. In monocots, only a few of these transporters have been characterized, mainly in rice 

and maize and most of the information available has been obtained by expression analyses 

without functional characterization. There are substantial divergences in development and plant 

structure between monocots and dicots. Differences are present in seed, vascular system, and leaf 

developmental programs (Tsiantis, 1999; Scarpella and Meijer, 2004; Coudert et al., 

2010; Sreenivasulu and Wobus, 2013). The monocot root system architecture and cellular 

organization also differ considerably from those of dicots (Hochholdinger et al., 2004; Smith and 

De Smet, 2012). In addition, monocots have a segmented stem as opposed to the unsegmented 

stem of dicots. Auxin transporter families are larger in monocots allowing for the possibility of 

functional redundancy, but also for neo- and sub-functionalization of specific proteins. Monocot-

specific and organ-specific proteins exist and they have a distinct role in regulating auxin driven 

organ development (PIN9). In some cases, alterations in PAT result in interesting new traits, such 

as dwarfism in maize and sorghum br2 and dw3 mutants respectively, which can be exploited to 

generate more productive lines through breeding programs. Moreover, many more short-statured 

mutants exist in maize that may have defects in auxin transport, although none of these mutants 

have been characterized in any detail. Interestingly, quite a few of these mutants exhibit dominant 

inheritance (Johal, unpublished) that makes them interesting in at least two ways. First, they can 

help side step gene redundancy problems and allow the functional exploration of additional 

genes. Second, they can be used in MAGIC (mutant-assisted gene identification and 

characterization)-based enhancer suppressor screens to unveil natural variation in a trait of 

interest (Johal et al., 2008). Even transgenic reporters for auxin activity can be used in 

lieu of bona fide dominant mutants for such MAGIC screens. The traditional enhancer/suppressor 

screens based on mutagenesis can also be employed to identify additional genes that encode auxin 

transporters. One such resource already exists in sorghum, where a line carrying a dw3 mutation 

in SbABCB1 was EMS mutagenized to produce and sequence M2 populations for both forward 

and reverse genetics (Krothapalli et al., 2013). These M2 populations can be screened to identify 
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other genes in the network with the ability to suppress or enhance the dw3 phenotype. Finally, 

there is the exciting possibility of using new genome editing and reverse genetics tools such as 

CRISPR/Cas9, which has been shown to work in rice and maize (Miao et al., 2013; Liang et al., 

2014). Technologies like this can be used to alter the expression and function of genes encoding 

auxin transporters in monocots and this may lead to important new breakthroughs in our 

understanding of their roles in development and response to the environment. 
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1.3 Plant transposable element  

Transposable elements (TEs) are defined as DNA fragments able to translocate into other 

positions in the genome causing effects on genome structure and gene function. 

Plant TEs were first discovered in maize by Barbara McClintock who originally named the maize 

transposons "jumping genes" or "controlling elements" because of their ability to alter the 

expression of genes near or at the site of TE insertion (Comfort, 2001; Bennetzen, 2000; 

McCLINTOCK, 1950).  

Later in the 70s, measuring the reannealing kinetics of denaturated DNA fragments Flavell et al. 

(1974) demonstrated a large portion of the genome of several plant species, such as Triticum 

aestivum and Zea mays, was made of repetitive sequences. This genome fraction was initially 

proposed to be genes spacers and was called "junk DNA" (Ohno, 1972). In the 80s, Doolittle and 

Sapienza (1980) renamed it "selfish DNA" due to the abasence of evident function. We now 

know that they represent an important, or even the major, evolutionary force in shaping the 

genomes. In fact, TEs can promote transposition, insertion, excision, chromosome breakage, and 

ectopic recombination. A TE does not need to be inserted in a coding sequence to affect the 

function of the gene. Modified gene expression can also occur if TEs are incorporated into a cis-

regulatory region.  

The term TE refers to various genomic transposable elements. The first TE classification system 

was proposed by Finnegan (1989, 1982) and has been updated in the following decades. 

According to Finnegan, TEs are classified based on their transposition intermediate: RNA (class I 

retroelements) or DNA (class II transposons). The transposition method of class I is commonly 

called "copy-and-paste", and that of class II, "cut-and-paste" (Finnegan, 1989). 

After the Finnegan proposal, Repbase and the Wicker classifications were proposed based both 

on DNA and amino acid sequence features. Both classifications divide all TEs into two groups, 

the retrotransposons and the DNA transposons. Each group is divided in levels, called "type" for 

the Repbase and "class" for the Wicker, and each level is divided in classes or orders, for Repbase 

or Wicker respectively (Wicker et al., 2007; Jurka et al., 2005; Piégu et al., 2015) 

With rare exceptions, transposons are found in virtually all genomes and they are often the largest 

component of non-coding sequence; in some large-genome plants, mobile DNAs make up the 

majority of the nuclear genome. In many grasses with genomes >2000 Mb, most genes exist as 

single-gene islands that are surrounded by TEs (Sanmiguel and Bennetzen, 1998). Among the 

completed eukaryotic genome sequences, TE content ranges from 0% in Plasmodium falciparum 

to 85% in maize (Gardner et al., 2002; Schnable et al., 2009) where it was estimated TEs have 
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increased the maize genome two - to five - fold (Sanmiguel and Bennetzen, 1998). Despite a 

significant range in genome sizes, land plants displayed much lower overall variability in TE 

diversity as compared to animals. However, fungi and protists have the lowest average TE 

diversity and the smallest total genome sizes. (Elliott and Gregory, 2015; Thon et al., 2006). 

According to a recent study that compared the TE content and the genome size, no simple 

relationship was found between TE diversity and genome size. Differences in genome size are 

thought to arise primarily through accumulation of TEs, but beyond a certain point (~500 Mbp), 

TE diversity does not increase with genome size. Maximum TE diversity (39 superfamilies 

present) occurs in genomes around 500Mbp in size, for both Class I (retrotransposons) and Class 

II (DNA transposons) TEs (Elliott and Gregory, 2015) (figure 1.4). These content variations 

correspond, in part, to the disparate histories of TE invasion experienced by different plant 

lineages, in addition to how an organism copes with these invasions, which is greatly influenced 

by host biology (Barker et al., 2012).  

An in-silico analysis revealed GC-rich class I TEs is the predominant class of TEs in animal, but 

the AT-rich class II TEs is prevalent in plants. The GC-rich class I TEs appears to be evolved 

within the animals. On contrary, the preserved in AT-rich in class II TEs is believed to be 

contributed in host defence systems (Huang et al., 2014).  

 

 
Figure 1.4. TE classification in class I and class according to the transposition mechanism: RNA or DNA 

intermediate (De Lima Favaro, 2005).  

 

 

 

 

1.3.1 The class I RNA retrotransposon  
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All retroelements transpose through reverse-transcription of an RNA intermediate. 

Retrotransposons have two open reading frames (ORFs) in common with retroviruses: the group 

specific antigen (GAG) and the functional polyprotein (POL). GAG gene encodes structural 

proteins that form the virus-like particle (VLP), inside which reverse transcription takes place 

(Schmidt, 1999; Casacuberta and Santiago, 2003; Havecker et al., 2004; Irwin and Voytas, 2001). 

Pol is a polyprotein and is auto-processed by its aspartatic proteinase (AP) domain. It contains 

reverse transcriptase (RT) and RNAse H, a bifunctional polypeptide carrying out reverse 

transcription and integrase (INT), which inserts the new LTR retrotransposon copy into the 

genome (Suoniemi et al., 1998). A retrotransposon’s RNA template is first transcribed by the 

cellular encoded RNA polymerase II from the 5' LTR. The RNA is then translated to the proteins 

that form a virus-like particle (VLP) analogous to the retroviral virion core. VLPs encapsulate the 

RNA template, the reverse transcriptase responsible for producing the double-stranded DNA 

copy, and the integrase involved in the transfer of the linear DNA copy to the nucleus and its 

insertion into the genome. 

According to Wicker's proposition, retrotransposons can be divided into four classes: long 

terminal repeat (LTR), DIRS, Penelope, long interspersed nuclear elements (LINEs) and short 

interspersed elements (SINEs). 

LTR-retrotransposons are the major components of the plant genome and they are more prevalent 

than non-LTR. LTR-retrotransposons occupy mainly the constitutive heterochromatic regions, 

such as pericentromeric regions, knobs, and subtelomeres  (Miller et al. 1998; Lippman et al. 

2004; Kejnovsky et al. 2006). Despite they are present in all eukaryotic genomes, their recent 

activity seems higher in plant kingdom. Many plants LTR retrotransposons insertions have 

occurred within the past few million years. (Pereira, 2004). The characteristics of LTR 

retrotransposons make them a useful tool to analyze genomes. The LTRs from each element are 

identical at the time of insertion. After insertion, both LTRs accumulate mutations independently 

and by comparing the two LTRs of a given element, the insertion time can be estimated 

(Sanmiguel and Bennetzen, 1998). 

In maize in particular, LTR constitute 60% of the genome, that would be 2-fold or more smaller 

without LTR retrotransposon amplifications over the last 2–3 million years (Sanmiguel and 

Bennetzen, 1998). Most LTR retrotransposons families exist in low copy numbers (Sanmiguel 

and Bennetzen, 1998). 

LTR range from a few hundred base pairs to several kilo bases (5–7 kb long) and known LTRs 

start with nucleotides of 5'-TG-3' and end with 5'-CA-3'. Because the LTR retrotransposons 
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integrate into 4- to 6-bp staggered cut sites, they produce 4- to 6-bp target site duplication (TSD) 

upon integration.  

According to GAG and POL position retrotransposon are divided in two superfamilies, Ty1-

copia and Ty3-gypsy.  

LTR-retrotransposons were classified as intact when they possessed two LTRs flanked by TSDs, 

a recognizable primer binding site, and a polypurine tract. Intact elements were additionally 

classified as autonomous if they contained intact Gag and Pol ORFs. Intact elements lacking 

complete Gag and Pol ORFs were classified as nonautonomous. 

Some eukaryotic LTR retrotransposons do not encode the proteins necessary for transposition, 

they lack all coding capacity but have retained LTRs (Feschotte and Wessler, 2002). LTRs 

contain the promoter needed to produce a template RNA and the primer binding site and the 

polypurine tract needed to prime reverse transcription (Schulman, 2013; Havecker et al., 2004). 

For most non-autonomous retrotransposons, it is unclear which autonomous element is involved 

in mobilization. Large non autonomous elements like Dasheng have now been named ‘large 

retrotransposon derivatives’ (LARDS). The LARDs identified in barley and other members of the 

Triticeae have LTRs of 4.5 kb and an internal domain of 3.5 kb. The internal domain of the 

LARDs contains conserved non coding DNA that may provide important secondary structure to 

the mRNA. LARDs appear to be members of the gypsy class of LTR retrotransposons. Although 

apparently non autonomous, LARDs appear to be transcribed (Kalendar et al., 2004).  

LTR retrotransposons commonly mutate to solo LTRs by unequal recombination, especially in 

regions where homologous recombination is a frequent process.(Ma and Bennetzen, 2006) 

Another class of non-autonomous LTR retrotransposons has been identified in plants, called 

‘terminal-repeat retrotransposons in miniature’ (TRIMs). TRIMs are short in size (mostly ≈350 

bp), have terminal direct repeats (TDRs) of 100–250 bp (on average <140 bp) and contain a 

primer binding site (PBS) and a polypurine tract (PPT) within the region between the repeats. 

TRIMs internal domain lack coding capacity and probably require the help of mobility-related 

proteins encoded by other retrotransposons. There are TRIMs in both monocotyledonous and 

dicotyledonous plants, but no autonomous partner has been found or proposed. TRIM elements 

seem to be involved actively in the restructuring of plant genomes, affecting the promoter, coding 

region and intron-exon structure of genes. In solanaceous species and maize, TRIM elements 

provided target sites for further retrotransposon insertions. In Arabidopsis, evidence is provided 

that the TRIM element also can be involved in the transduction of host genes (Witte et al., 2001). 
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Unlike LTR, non-LTR retrotrasposons have no terminal repeats. Non-LTR retrotransposons are 

very variable in structure. Non-LTR were originally discovered in mammalian genomes 

(Schmidt, 1999), but non-LTR retrotransposons has been also isolated in plants  (Schmidt, 1999; 

Noma et al., 1999; Wright et al., 1996).  

Central to retrotransposon mobilization is reverse transcriptase (RT) activity, and thus all 

autonomous non-LTR retrotransposons contain an RT domain. The reverse transcriptase (RT) 

domain is the only common structure among all non-LTR retrotransposons. The 5' and 3' 

untranslated regions (UTRs) of non-LTR retrotransposons are quite variable.  

LINEs, also designated L1 or LINE-like sequences, possess a poly(A) tail which defines the 

terminus of the element. LINEs are several kilobases long and contain two ORFs encoding a gag 

protein (ORF1), and endonuclease and reverse transcriptase domains (ORF2) together conferring 

the element’s ability for autonomous retrotransposition. In many LINEs, both ORFs contain 

cystein-rich, zinc-finger-like regions which are considered as putative nucleic acid-binding 

domains. In general, sequence divergence and extreme heterogeneity is a typical feature of plant 

LINEs (Schmidt, 1999). 

L1 retrotransposons comprises about 17% of the human genome. In general, L1 retrotransposons 

carry two ORFs: the protein encoded by ORF1 (ORF1p) usually contains an RNA recognition 

motif (RRM) while ORF2 encodes a polyprotein (ORF2p) that exhibits apurinic/apyrimidinic 

endonuclease (APE) and reverse transcriptase (RT) activities. In some plant L1 retrotransposons, 

an additional domain can also be found within ORF2p that is homologous to ribonuclease H 

(RNH). It has been speculated that retrotransposons may play a role in the horizontal transfer of 

RNH between plants,Archaea, and bacteria, as L1s carry an active Archaea-like ribonuclease H 

(RNH) domain. L1- encoded proteins are also thought to be responsible for the transposition of 

other repetitive elements and processed pseudogenes. Pseudogenes are sequences present in 

essentially all animal genomes that have many characteristics of genes, but are defective for 

production of protein. Processed pseudogenes generally lack introns, end in a 3’ poly A, and are 

flanked by target site duplications. Copies of the Alu and SVA transposable elements and 

processed pseudogenes are also believed to have inserted into the genome by borrowing the 

endonuclease and reverse transcriptase proteins encoded by L1 (Szak et al., 2003; Kazazian, 

2014). 

A second type of non-LTR retrotransposons are SINEs. SINEs are a moderately to highly 

amplified sequence class of eukaryotes which have been most extensively studied in mammalian 

species. SINEs are up to several hundred base pairs in length and have a composite structure. 
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SINEs are terminated by a poly(A) tract, or A- or T-rich sequences. The 5' region of SINE is 

similar to tRNA and contains two sequences, called box A and box B, that serve as an internal 

promotor for the element transcription by RNA polymerase III. SINEs do not encode their own 

reverse transcriptase and are not autonomous.However, similar to LINEs, they move by 

retrotransposition and generate short target site duplications upon reintegration (reviewed in 

Schmidt, 1999).  

The predominant SINEs in humans and other primates are known as Alu elements because they 

contain a site for the restriction enzyme AluI. They are made up of two 7SL RNA related 

sequences, the first of which contains a Pol III promoter, and a 3´ poly(A) sequence. SVA 

elements form a further family of non-autonomous retroelements in humans and non-human 

primates present at a relatively low copy number of a few thousand per genome (Wang et al., 

2005). MIR elements in mammals, have a 5´ sequence derived from a tRNA gene and a 3´ 

sequence similar to the 3´ end of a LINE element (Finnegan, 2012). 

Part of the success of retrotransposons is due to their replicative mode of transposition, where in 

principle, a small number of copies can produce hundreds or thousands of daughter copies during 

a single amplification event. 

 

 

1.3.2 The class II DNA transposons 

The class II elements group includes autonomous, non autonomous, MITEs, and other 

unclassified elements as foldback and helitrons. Most DNA transposons, and MITEs especially, 

are found at higher density in euchromatic regions where they often reside within or in close 

proximity to genes (Bureau and Wessler, 1992). 

Autonomous class II TEs transpose through a DNA intermediate with the majority excising from 

the chromosome using the transposase enzyme and then integrating elsewhere in the genome by 

the action of this same transposase. Autonomous class II TE have fully intact copies that encode 

all of the element specific activities, such as transposase for cut and paste elements, 

replicase/helicase for Helitrons and GAG packaging proteins and reverse transcriptase for 

retroelements (Feschotte et al., 2002).  

Wicker (2007) classified class II TEs in superfamilies as CACTA, Mutator,  PIF/Harbinger, 

 hAT, Tc1/mariner, Merlin, Transib, P, PiggyBac, and Crypton (Wicker et al., 2007). 

PIF/Harbinger, ISL2EU, and Spy were classified into the same superfamily that is designated as 

“PHIS”. The PHIS transposon superfamily is high polymorphism in the target sequences, coding 
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capacity, and conserved motifs of transposase. Recently, three new types of PHIS transposons 

distinct from the previous PHIS transposons in TSDs, called Pangu, NuwaI, and NuwaII, have 

been found and a total of 380 families of PHIS superfamily were identified in 112 sequenced 

eukaryotic genomes (Han et al., 2015). 

The maize element Activator (Ac), the Drosophila melanogaster element hobo, and the A. majus 

Tam3 elements form a superfamily of eukaryotic TEs referred to as the hAT (hobo-Ac-Tam3) 

superfamily. This family is widely distributed in all eukaryotic kingdoms. Members of the family 

are characterized by a 50 nucleotides conserved C-terminus domain, short TIRs and 8-bp host 

duplication upon insertion (Kempken and Windhofer, 2001). hAT transposable elements are 

ancient in their origin. They are widespread across the plant and animal kingdoms and are found 

in all eukaryotes except ciliates, diatoms, and the protozoan Trichomonas. They are the most 

abundant human superfamily of class II transposons found but represent only the 0.46% of the 

monocotyledon genomes (representing 8.2% of the total genomic DNA transposons) (Muehlbauer 

et al., 2006; Moreno-Vázquez et al., 2005; Holyoake and Kidwell, 2003).   

 

1.3.3 The Miniature Inverted-repeat Transposable Elements (MITEs) 

The most numerous class 2 elements in characterized plant genomes and in several animal species 

are miniature inverted-repeat transposable elements (MITEs).  

The majority of reported MITEs are either Stowaway or Tourist elements that belong to  

the Tc1/mariner and PIF/Harbinger superfamilies, respectively.  

MITEs are defined as small size elements, non-coding, carrying TIR and DR signals sequence, of 

potential to form a stable RNA secondary structure, and tendency to insert into A+T-rich regions. 

However, exceptions of these features have been reported.  

MITEs are short, less than 600 pb. One of the shorter MITEs, Nezha, identified in in 

cyanobacteria Anabaena variabilis, is 135 base pairs long (Zhou et al., 2008). MITEs are present 

in high copy numbers in many eukaryotic genomes. There is no discernible positive correlation 

between the percentage of TEs and MITEs. In maize, they contribute only for the 0.3% of the 

genome (Schnable et al., 2009). However, some MITEs families are present in moderate copy 

number as Vege in D. willistoni (Holyoake and Kidwell, 2003).  

MITEs are mainly distributed on chromosome arms and are highly associated with plant genes 

(Kuang et al., 2009). Cases of MITE insertions in exon, intron, promoter and near the 5' or 3' ends 

of genes have been reported. In a few cases, they have been suggested to supply cis-acting 

domains involved in gene expression (Bureau et al., 1996). Studying the location of the matrix 



65 

 

attachment region (MARs) in rice and sorghum, brought to the discover that most of them co-

localize with MITEs, suggesting that MITEs preferentially insert near MARs and/or that they can 

serve as MARs isolating their neighbouring genes (Tikhonov et al., 2000). 

MITEs are characterized by terminal inverted repeats (TIRs) that can be 10–30 bp long. TIRs are 

almost perfectly reverse complementary to each other and they are highly conserved among 

multiple copies of the same MITE family. Thanks to the TIRs, MITEs usually have the potential 

to form a hairpin-like secondary structure. Typically the region between the TIRs is A+T rich, but 

not in all cases. The TIR signals may play an important role in the maintenance and proliferation 

of a MITE (Feschotte et al., 1870; Tu, 1997; Petersen and Seberg, 1999). A MITE insertion into 

the potato flavonoid 3'-5' hydroxylase gene first exon causes its gain of function and produce 

purple skin. The function of the gene was restored by transposition of the MITE after activation in 

protoplast culture (Kuang et al., 2009). The insertion of a MITE into ahFAD2A gene in two 

different insertion sites causes a high-oleate phenotype in two peanut mutants (Patel et al., 2004). 

MITEs show target site preference and TIRs are flanked by small direct repeats (target site 

duplication, TSD). Nezha MITE in cyanobacteria Anabaena variabilis generates a pair of 2-10 bp 

direct repeats signals when inserting into the target site. Together with Glider with 6–11-bp direct 

repeats in Xenopus laevis, Nezha generates the longest DR signals out of all the known MITEs. 

Based on shared TIRs and TSD sequences, that could be TA or TAA respectively, MITEs are 

classified in two main subfamilies, Stowaway and Tourist but MITEs have also been reported 

from the hAT and MULE superfamilies (Kuang et al.) and other minor families that are typically 

taxa specific.  

MITEs lack coding capacity and rely on DNA transposons that code for a transposase. Their TIR 

sequences sometimes resemble those of DNA transposons (Morgan 1995; Unsal and Morgan 

1995; Yeadon and Catcheside 1995). Through homology searches, some MITEs have been 

proposed to be truncated derivatives of autonomous larger DNA transposons. The only sequence 

shared between described MITEs and their related autonomous transposable elements is the TIRs; 

the core region of known MITEs has no similarity to known TEs (Feschotte et al., 2002). Fechotte 

proposed a model in which MITEs are seen as non-autonomous elements that originated from 

autonomous DNA TE in two steps process: first, production of various internally deleted non 

autonomous derivatives after DNA transposition, and second, amplification of the derivatives 

copy numbers (Feschotte et al., 1870, 2002). According to this theory, Stowaway and Tourist 

families probably arose from the activity of related, but distinct, mariner-like and PIF-like 

autonomous elements, respectively (Feschotte and Wessler, 2002; Zhang et al., 2001; Grzebelus 
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et al., 2007; Momose et al., 2010). However, the origins of many are unknown as the vast 

majority of characterized MITEs are not deletion-derivatives of existing autonomous TE and 

borrow the transposase of distantly related elements by cross mobilization. 

 

 
Figure 1.5. Hypothesis of origin of MITEs families from a common autonomous TE ancestor, through accumulation 

of internal deletions (Feschotte, 2002) 

 

After the publication of draft sequences for the two subspecies of Oryza sativa, japonica (cv. 

Nipponbare) and indica (cv. 93-11) the first active DNA transposons from rice and the first active 

miniature inverted-repeat transposable element mPING from any organism were identified.  

Searching for repeat families with the structural features of MITEs and with very low intrafamily 

sequence divergence brought to the identification of the MITE mPing. The 430 bp lenght, the 

TSDs (the trinucleotide TAA or TTA) and TIRs of mPing indicated that it is a Tourist-like MITE. 

mPING is the first identified mobile MITE: its movement was activated during long-term cell 

culture  (Jiang et al., 2003) and by anther culture (Kikuchi et al., 2003). When mPing was inserted 

into the gene for rice ubiquitin-related modifier-1 (Rurm1), its excision resulted in reversion of 

the mutation. Ping transposon was identified using mPing as query in rice genomic Nipponbare. 

Ping is 5,341 bp and shares 253 bp and 177 bp, respectively, of its terminal sequences with 

mPing, suggesting that mPing arose very recently from Ping by internal deletion and it is an 

autonomous element responsible for its mobilization. Further BLAST searches using Ping as the 
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query led to the identification of Pong (5.166 bp), with identical 15-bp TIRs and similar 

subterminal regions to those of mPing and Ping. At least five copies of Pong were found in the 

cultivar Nipponbare while three were found in the cultivar 93-11 (Jiang et al., 2003; Yang et al., 

2007). The Mariner-like autonomous element Osmar that shares TIRs and TDS with rice 

Stowaway MITEs, was identified as the Stowaway MITEs transposition catalyst (Yang et al., 

2009). 

Helitrons are another category of class II DNA TE. They are presumed to transpose as a rolling 

circle replicon, similar to some known prokaryotic rolling circle transposons. Helitrons were 

discovered by computational analysis of genomic sequences from Arabidopsis, rice, 

and Caenorhabditis elegans. They constitute over 2% of the maize genome. Helitron-like 

transposons have conservative 5'-TC and CTRR-3' termini and do not have terminal inverted 

repeats. They contain 16- to 20-bp hairpins separated by 10–12 nucleotides from the 3'-end and 

transpose precisely between the 5'-A and T-3', with no modifications of the AT target 

sites (Kapitonov and Jurka, 2001).  

TRIM elements are similar to SINEs and MITEs in their short size as they typically possess short 

overall length which consists of two 100 to 250 bp terminal direct repeats (TDRs) or LTRs and an 

internal domain of 100 to 300 bp. It has been reported that TRIMs also seem to be involved 

actively in altering gene structure, regulating gene expressing, reshaping genomes, and mediating 

horizontal transfer of DNA (Witte et al., 2001; Yang et al., 2007). 

 

1.3.4 Transposon activity  

Both class 1 and class 2 TEs can be either autonomous or non-autonomous. Autonomous TEs can 

move on their own, while non-autonomous elements require the presence of other TEs in order to 

move. This is because non-autonomous elements lack the gene for the transposase or reverse 

transcriptase that is needed for their transposition, so they must "borrow" these proteins from 

another element in order to move (Huang et al., 2012; Jiang et al., 2003). Non-autonomous 

elements can arise from premature stop codons, frame shifts or partial deletions of the coding 

sequence (CDS). 

In general, transposon activity can be detected in two ways. First, identifying the novo insertions 

in offspring but not present in parents. Second, identifying polymorphic insertions between two 

individuals (transposon insertion polymorphisms (TIPs)) presumed to reflect insertions occurring 

after divergence from a common ancestor. The presence of polymorphic insertions between 

closely related species or individuals suggests that the element has been recently active and is 
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most likely currently active. In order to estimate the transposition frequency, the number of 

polymorphic elements in combination with the time from the common ancestor can be used. 

(Lisch, 2013; Huang et al., 2012). Transposition assays using cell lines are another method for 

proving and quantifying current retrotransposon activity. They use a reporter cassette added to a 

recombinant transposable element construct; this cassette is in antisense orientation with respect 

to the transposon and is interrupted by a sense-oriented intron. The intron is spliced out of the 

transposon transcript, and the presence of daughter integrants is detected by expression of the 

now uninterrupted reporter from genomic DNA (Huang et al., 2012).  

Insertion of TEs usually originates a target site duplication (TSD) at the insertion site and occurs 

in both classes of TEs. TE insertion causes a double strand breakage at the insertion site caused 

by the transposase. Upon TE insertion, the complementary sequence is completed and thereby 

duplicated. This creates a copy of the target site on both sides of the element. The size of the TSD 

can range from 2 bps up to 16 or more bp. TE superfamilies are characterized by similarity in the 

TSD. For example, Mariner elements TSD is the dinucleotide TA while the TSD for Mutator 

elements is between 9–12 bp long and starts with GC (reviewed by Wicker et al. 2007).  

Some exception have been found: TEs of the order DIR (Class I), Crypton and Helitron (both 

Class II) do not originate TSD after insertion. Moreover, recently, a new group of evolutionarily 

related DNA transposons, called Spy, have been reported in 21 invertebrate species. These 

include TIRs and DDE motif containing transposase but surprisingly do not create TSDs upon 

insertion. Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host 

nucleotides, without duplication or modification of the AAATTT target sites (Han et al., 2014). 

The chromosomal distribution of TEs is often governed by the status of chromatin compaction 

and rates of recombination of particular genomic regions. In general, regions with suppressed or 

no recombination tend to accumulate repetitive DNA sequences. Most cereal LTR 

retrotransposon copies are inserted into intergenic islands (Sanmiguel and Bennetzen, 1998) and 

maize knob DNA is characterized by high density of retrotransposons (Ananiev et al., 1998). 

Yeast retroelements (Tys) are preferentially distributed into "silent" chromosomal regions (Boeke 

and Devine, 1998). A Chlorella LINE family is inserted in telomeric regions (Higashiyama et al., 

1997). The Drosophila telomere is composed of one or more LINE (long interspersed DNA 

element)-like retrotransposable elements. In contrast, the small, non-autonomous Miniature 

Inverted Repeat Transposable Element (MITE) transposons prefer to insert into genes and gene-

rich regions  (Bureau and Wessler, 1994). 
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Chapter II 

 

Morphological characterization of the br2:NC238 line 

 

1. Introduction 

 

Maize (Zea mays L. spp. mays) is one of the world's most important grain crops, together with 

rice (Oryza sativa), wheat (Triticum spp.) and sorghum (Sorghum bicolor). Starting from the 

Green Revolution era, cereals have been bred for dwarf or semi-dwarf phenotype for many 

advantages. Plant stems act as sinks for assimilates and nutrients and may serve as reserves for 

grain filling. Stem growth and extension may compete with that of leaves, but their growth and 

extension determine, to a large extent, the ability of plants to compete for light, as well as the 

relationships between vegetative and reproductive growth. Stem dimensions are also closely 

related to resistance to lodging, which can be an important factor in determining yield.  

Thus, manipulating plant height, through selection or the use of growth regulators, is of 

economic importance.  

Many maize dwarf mutants have been isolated. The brachytic mutants (br) are characterized by 

the shortening of specific internodes. Ad instance, br5 has short internodes just below the 

uppermost internode and normal internode length in the rest of the stem. In br2, the shortening 

of the stem length regards only the internodes at the base of the stem (figure 2.1). 

 

Allelic tests performed crossing NC238 inbred line with brachytic mutants indicated NC238 line 

is a br2 mutant (Johal, unpublished). br2/pgp1/abcb1 encodes for an auxin transporter gene of 

the multidrug resistance/p-glycoproteins (MDRs/PGPs) subfamily B (Multani et al., 2003). It 

has been reported br2 mutants are characterized by short stature due to shortening of the lower 

internodes (Multani et al., 2003; Pilu et al., 2007). Moreover, alteration in stem vasculature was 

eventually observed (Multani et al., 2003). Alteration in length and width of leaf epidermal cells 

were reported (Pilu et al., 2007). Moreover, leaves appeared to be more erectile in the br2 

mutant (Pilu et al., 2007). Literature lack a characterization of the root system. 
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Figure 2.1. Comparison between the different brachytic lines stem structure. brachytic 2 mutant are characterized by 

the shortening of the lower internodes (Johal, unpublished) 

 

Figure 2.2. Wild type (left) and brachytic 2 (right) lines before (A) and after leaves removal (B, C) (Multani, 2003) 

 
Figure 2.3. Wild type (left) and brachytic 2 (right) lines before (A) and after leaves removal (B) Pilu (2007) 
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Figure 2.4. Alteration in the br2 vasculature: br2 stem is characterized by smaller cells (E) and 10 cell layers below 

the epidermis more than the revertant line (D, F) Adapted from Multani (2003). 

 

A spontaneous tall plant was isolated in a NC238 population field, indicating the mutation was 

due to a transposable element in abcb1 gene (Johal, unpublished). This tall revertant line was 

used as reference line.  

Morphological traits measurements were performed ad seedling stage, focusing on the root 

system. In fact, auxin plays important roles in root development and gravitropic response 

(Bhalerao et al., 2002; Müller et al., 1998; Peer et al., 2011). The root trait measurements of 

br2:NC238 and the revertant lines were performed at optimal growth conditions using a 

aeroponic growth chamber. Moreover, the response of the two lines after treatments with auxin 

analog and auxin transport and action inhibitor were tested.  

The developmental stage when the br2 phenotype arise was identify.  

Morphological trait measurements of plants at adult stage were performed in order to verify 

possible alterations in other plant traits in addition to the shortening of the internodes.  
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2.2. Materials and methods 

 

Plant material and growth conditions 

The present study uses the following maize lines provided by Prof. Johal (Purdue University): 

the NC238 inbred line and a revertant NC238 line isolated in a NC238 field at Purdue 

University, the Maize Genetics Cooperation Stock center and propagated by prof. Varotto's lab 

group. 

For root traits measurements at seedling stage, an aeroponic growth system was set up at the 

greenhouse at the Botany and Plant Pathology Department at Purdue University. The system 

consisted of 24 tanks with 8 seedlings placed on the tank cover. From the bottom of the tank a 

nutrition medium (Hoagland Solution) was automatically sprayed toward the roots for 3 seconds 

every 10 minutes. Seeds were pre-germinated in paper rolls before transferring the seedlings in 

the growth chambers. Seedling were grown for one week in the system.  

For histological observation and auxin immunolocalization analyses, plants were grown in pots 

(1:2 sand and general soil) in the University of Padua greenhouse until 7-leaf-old stage. 

For morphological trait measurement of NC238 line, plants were growth at the "L. Toniolo" 

experimental farm of the University of Padova in Legnaro (PD) during Summer 2015.  

 

Tests with auxin analogs and inhibitors 

Seeds were germinated in wet paper rolls. The day the primary roots were 2-5cm long, seedlings 

were transferred to paper roll embedded with solutions containing auxin analog or auxin 

action/transport inhibitors. 1-naphthaleneacetic acid (NAA, Sigma Aldrich) was used as auxin 

analog, p-chlorophenoxyisobutyric acid (PCIB, Sigma Aldrich) as auxin action inhibitor, 1-N-

naphthylphthalamicacid (NPA, Sigma Aldrich) and (2-[4-(diethylamino)-2-hydroxybenzoyl] 

benzoic acid (BUM, Sigma Aldrich) as auxin transport inhibitors. Treatments lasted one week. 

Pictures of roots were taken daily with digital camera (Olympus). Picture measurements were 

elaborated using ImageJ® open source software. Doses are listed in the following table. 

 

 

Compound  NAA NPA PCIB BUM 

Concentrations  10µM 0.5µM, 50µM, 100µM 10µM, 50µM, 100µM 0.5µM, 10µM 

 

Table 2.1. Compound and concentrations used in the auxin analog and auxin inhibitors treatments. 
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Statistical analyses 

Statistical analyses were performed using R® open source software. Data distribution was tested 

with the function shapiro.test, variances of two samples were tested using var.test function. The 

Student test (t.test) was used as parametric test, while Wilconox test (wilcox.test) was used as 

non-parametric test. Null hypothesis referred to lack of difference, p-value>0.05 suggested data 

were likely with a true null, p-value<0.05 suggested to reject the null hypothesis. 

 

Analyses of the root system of field growth plants 

Plants were grown at the University of Padova farm in Legnaro (PD) during plant season 2015. 

Soil coring 100x7cm size was made at the base of the plant stem at flowering stage (figure 2.7, 

A, B). 6 plants per line were analyzed. Soil core was cut into 10cm long cylinders, 

corresponding to the soil horizons. Roots were separated from soil particle by centrifugation: 

soil cylinder was put into tanks filled with continuous flowing tap water, centrifugation force 

allowed roots to float and fall through the hole in the middle of the tank onto filters above the 

tank (figure 2.7, D). Washed roots were then cleaned (figure 2.7 E) and stored in ethanol 15% at 

4°C until data analyses. Roots were scanned (EPSON Expression 11000XL PRO) and scans 

analyzed with Zeiss® software (figure 2.8). Objects with <20 pixel length and <30 

perimeter/area rate were excluded from the analyses. Root surface and length have been 

expressed as the projected area and projected length of the root during the scanning. Data from 

the analyses were used to calculated root traits: the root diameters, the RLD (Root Length 

Density) expressed as projected length of the root per volume of soil, the RSD (Root Surface 

Density) expressed as the projected area of the root per volume of soil, and the RAI (Root Area 

Index) expressed as the root area within the soil horizon surface.  

 

Analyses of the morphological traits of field growth plants 

br2:NC238 and revertant plants were grown at the University of Padova farm in Legnaro (PD) 

during plant season 2015. Before analyses, plants were checked by genotyping with primers 

4BS (table 3.1). At anthesis, plant stature measurement - from the base of the stem to the 

uppermost stem node - was recorded. After cutting the plant at the base of the stem, leaves were 

removed from the stem (figure 2.6). The following traits were measured: length of internodes, 

diameter of nodes, number of tassel branches, number of ears, length of tassel and length of the 

uppermost ear, position of the node where the ear was inserted. Two replicates (in two fields) 

during Summer 2015 were performed. 25 plants per line/per replica were measured. 
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IAA-immunolocalization and histological observations  

Tissues from 7-leaf-old br2:NC238 and revertant plant were collected, prefixed 1 hour at 4°C in 

3% EDAC (N-Ethyl-N′-(3- dimethylaminopropyl) carbodiimide hydrochloride, Sigma Aldrich) 

in 1x PBS (137mM NaCl, 2.7mM KCl10mM Na2HPO4, 2mM KHPO4, pH 7.4), and postfixed 

in 4% paraformaldehyde (Sigma Aldrich) in 1x PBS. Tissues were dehydrated at 4°C at 

ascending ethanol in 1x PBS series. Tissues were then transferred into glass tubes and 4 room 

temperature xylene washes 60' long were performed: ethanol:xylene 3:1, ethanol:xylene 1:1, 

ethanol:xylene 1:3, xylene 100%. Tissues were incubated overnight at room temperature with 

1/4 volume of Paraplast chips (Sigma Aldrich) per tube. The following day, every 3 hours, 1/4 

tube volume of Paraplast chips were added and the same volume of solution was discarded 

while increasing temperature from 37 to 47°C by the end of the day. The second day 1/4 tube 

volume of fresh melted Paraplast was added and same volume of solution discarded while 

increasing temperature from 47 to 57°C by the end of the day. Tissues were then transferred into 

Petri dishes containing melted Paraplast and every three hours, for two days, 1/4 tube volume of 

fresh melted Paraplast was added and same volume of solution discarded. The following day the 

dishes were moved at room temperature. Sectioning of the embedded tissues were performed 

with a Leica RM2135 microtome in 8-10µm slices. Slices were arranged on pre-warmed 

Polysine® slides (Menzel-Gläser) with a few drops of distilled water. Slides were de-waxed by 

two washes at room temperature in xylene 100%, and rehydrated through room temperature 

ethanol series at: 2x 20' in 100% ethanol, 20' in 90% ethanol in 1x PBS, 20' in 50% ethanol in 

1x PBS, 2x 5' in 1x PBS.  

• For auxin immunolocalization, slides were then covered with 400µL of blocking solution 

(0.1% Tween 20, 1.5% glycine, 5% Bovine Serum Albumin (BSA), in 1x PBS, pH 7) for 1 

hour. Slides were washed 5' with Regular Rince Solution (0.88 NaCl, 0.1% Tween 20, 0.8% 

BSA, in PBS) and 5' 0.8% BSA in 1x PBS. Slides were then incubated with a mouse 

monoclonal anti-IAA primary antibody (Biofords-Agdia, France - PMD09346/0096) used at a 

concentration of 0.05 mg mL−1, for 5 hours, in humid chambers for slides at room temperature. 

Slides were washed 2x 10' in High Salt Rinse solution (2.9% NaCl, 0.1% Tween 20, 0.1% BSA 

in 1x PBS) and again 10' in Regular Rinse Solution. Slides were incubated overnight at 4°C in 

0.8% BSA in 1x PBS. The following day slides were incubated 3 hours in humid chambers with 

100µl/ slide of the secondary antibody: a donkey anti-mouse alkaline phosphatase conjugated 

secondary antibody (IgG-AP-SC2097 (Santa Cruz Biotechnology) used at a 1:250 dilution. 
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Slides were washed 2x 15' in Regular Rinse Solution, 15' in H20, and 5' in in-situ buffer (1M 

Tris pH 9.5, 5M NaCl, 1M MgCl2, in H20) before signal detection. Coloring reaction was made 

15-20' in in-situ buffer containing 2µl/ml of NBT (Nitro blue tetrazolium chloride in 70% 

formamide, stock 75mg/ml) and 1.5µl/ml of BCIP (5-Bromo-4-Chloro-3-indolyl-phosphate, 4-

toluidine salt, stock 50mg/ml). Reaction was stopped in H2O. Slides were mounted applying two 

drops of DPX (Distyrene-Plasticizer-Xylene, Fluka Biochemika) mounting medium and placing 

the coverslips.  

• For histological observations, slides were stained 5' in 0.01% Calcofluor (Fluorescent 

Brightener - SIGMA) in tap water and mounted with DPX and coverslips. 

 

Microscopy observations 

Histological analysis and anti-IAA immunolocalization images were observed and taken with a 

Leica DM4000B Digital microscope, equipped with a Leica DC300F Camera and Leica Image 

Manager 50 software (Leica Microsystems - England). 

 

 

Figure 2.5. The aeroponic growth system. A) seedling growth in the chambers; B) particular of the seedling roots 

located on the cover of the chamber; C) paper rolls for seeds germination. 

 

 

Figure 2.6. Adult plant stem structure after leaves removal: node (n) and internodes (i) are indicated. 
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Figure 2.7. Study of the root system of field grown plants at adult stage. After soil coring (A, B), soil core was cut 

in 10cm long small soil cylinders (C). Roots were separated from soil particle by centrifugation: soil cylinder was 

put into tanks filled with continuous flowing tap water, centrifugation force allowed roots to float and fall through 

the hole in the middle of the tank onto filters above the tank (D). Washed roots were handmade pincer cleaned from 

small retained soil particles (E), and stored in ethanol 15% solution at 4°C until scanning. 

 

 

 

Figure 2.8. Example of the file from scanning of 

the roots from soil coring. Scans were analyzed 

with Zeiss® software. Objects with <20 pixel 

length and <30 perimeter/area rate were consider to 

be retained soil particles and indeed were excluded 

from the analyses. The software was used to 

calculate the total roots length, diameter, RLD, 

RSD, and RAI. 
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2.3 Results 
 

2.3.1 The  br: NC238 root system at seedling stage 

 

Previous works of characterization of br2 mutants described the stem traits (Multani et al., 2003; 

Pilu et al., 2007; Cassani et al., 2010; Knöller et al., 2010) but lacked a detailed characterization 

of the root system. Auxin plays a major role in root development (Rahman et al., 2007; Swarup 

et al., 2008; Rahman et al., 2010; Kitomi et al., 2012). Thus, a detailed study of br2:NC238 root 

system was performed on the roots of seedlings and adult field grown-plants. 

 

At seedling stage, maize is characterized by the seminal root system composed of the primary 

root, the seminal and the lateral roots and the root hairs (Hochholdinger and Tuberosa, 2009).  

Using the aeroponic growth system at Purdue University campus, maize seedlings were grown 

for one week before taking pictures and measuring root traits. At this stage plants are not 

distinguishable (figure 2.9). Primary root length, number of seminal roots and length of seminal 

roots in respect of the primary root length are listed in table 2.1. The measurements showed no 

difference between br2:NC238 and the revertant NC238 plants roots for the measured traits.  

 

 

 
Figure 2.9. At seedling stage, the two lines are indistinguishable. A) 3-days-old paper roll-grown seedlings of 

revertant plant (left) and br2:NC238 (right); B) One-week-old paper roll-grown seedlings of revertant plant (left) 

and br2:NC238 (right). 

 

 

 

 

 

B 

A 
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Trait br2:NC238 revertant NC238 

primary root length (cm) 12,68±3,32 a 13,52±4,52 a 

seminal roots number 2,33±0,97 a 2,53±0,74 a 

seminal roots length/primary root length (%) 51,18±26,30 a 54,01±20,81 a 
 

Table 2.2. Root traits measurements: at seedling stage, no differences were observed between the br2:NC238 and the 

revertant NC238 lines (same letter indicates similarity of the groups, statistical tests p-value>0.05) at least 14 plants 

per line/per replica have been measured, three replicated have been measured, table refers to one of the tree 

replicates. 

 

The gravitropic response of br2:NC238 and revertant line primary root was also investigated. 

Pictures were taken before and after 4 hours of 90° rotation. No alteration in the gravity vector 

direction root growth was observed for both the lines (figure 2.10).  

 

 

Figure 2.10. br2:NC238 (up) and the revertant line (bottom) seedlings after 90° rotation. No differences were 

observed in the gravitropic response of br2:NC238. 

 

Alteration in the expression levels of PIN mRNAs was already observed in br2 mutant roots 

(Forestan et al., 2012). Moreover, it was previously demonstrated that IAA treatment alters auxin 

transporter expression, increasing many PIN encoding genes expression levels in maize shoot 

while reducing the expression of other PINs, LAXex and ABCBs (Yue et al., 2015). Thus, the 

expression of auxin transporter encoding genes in the root tip were verified before and after the 

seedling rotation. Four genes were selected. Forestan (2012) reported PIN2 was strongly 



 

expressed in the root apex, PIN1a and PIN9 were expressed in root apex and root elongation 

zone, while PIN8 expression was not detected in roots 

similar transcript expression profiles in the two lines.

To examine if alteration in auxin accumulation induces different effects in 

compared to the NC238 revertant line, paper rolls grown seedlings were treated with auxin analog 

(NAA) and auxin transport or action inhibitors (NPA, PCIB, BUM). Treatments induced the same 

response in the two lines. NAA (10uM) reduced the primary root growth and increases 

number of root hair in both the lines.  Moreover, it caused defect in the gravitropic respons

the primary root (figure 2.12). NPA 0.5 µM induced slightly agravitropic growth of both the 

primary and the seminal roots. Higher doses of NPA treatments 

root growth and caused severe gravitropic d

at concentrations from 10 µM up to 100µM did not induce any visible effect on the two lines. 

BUM - an ABCBs inhibitor - has lethal 

 

Figure 2.12. NAA (10 µM ) effects on revertant (left) and 

short primary root was visible in the two lines.
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expressed in the root apex, PIN1a and PIN9 were expressed in root apex and root elongation 

zone, while PIN8 expression was not detected in roots (Forestan et al., 2012)

similar transcript expression profiles in the two lines. 

 

To examine if alteration in auxin accumulation induces different effects in 

238 revertant line, paper rolls grown seedlings were treated with auxin analog 

(NAA) and auxin transport or action inhibitors (NPA, PCIB, BUM). Treatments induced the same 

response in the two lines. NAA (10uM) reduced the primary root growth and increases 

number of root hair in both the lines.  Moreover, it caused defect in the gravitropic respons

). NPA 0.5 µM induced slightly agravitropic growth of both the 

primary and the seminal roots. Higher doses of NPA treatments (>50µM) reduced the primary 

root growth and caused severe gravitropic defect in seminal roots (figure 2.13

at concentrations from 10 µM up to 100µM did not induce any visible effect on the two lines. 

has lethal effect at the low concentration of 0.5 µM.

. NAA (10 µM ) effects on revertant (left) and br2:NC238 (right) seedling. Long and thick root hair and 

short primary root was visible in the two lines. 

Figure 2.11. Expression profile of PINs in 

and the revertant tall (WT) NC238 root apex before (I) and 

after (II) rotation. 

expressed in the root apex, PIN1a and PIN9 were expressed in root apex and root elongation 

(Forestan et al., 2012). Results indicated 

To examine if alteration in auxin accumulation induces different effects in br2:NC238 roots 

238 revertant line, paper rolls grown seedlings were treated with auxin analog 

(NAA) and auxin transport or action inhibitors (NPA, PCIB, BUM). Treatments induced the same 

response in the two lines. NAA (10uM) reduced the primary root growth and increases the 

number of root hair in both the lines.  Moreover, it caused defect in the gravitropic response of 

). NPA 0.5 µM induced slightly agravitropic growth of both the 

(>50µM) reduced the primary 

ect in seminal roots (figure 2.13). PCIB treatments 

at concentrations from 10 µM up to 100µM did not induce any visible effect on the two lines. 

effect at the low concentration of 0.5 µM. 

 

(right) seedling. Long and thick root hair and 

. Expression profile of PINs in br2:NC238 (br2) 

and the revertant tall (WT) NC238 root apex before (I) and 
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Figure 2.13. NPA (50 µM ) effects on revertant NC238 (left) and br2:NC238 (right) seedlings. Severe gravitropic 

defects of the seminal roots are visible in the two lines.    

 

                         .  

2.3.2 The  br2:NC238 root system at flowering stage 

 

Our results showed no alteration in br2:NC238 plant root system at seedling stage. However, 

auxin plays important roles in root development (McSteen, 2010; Swarup et al., 2008; 

Hochholdinger et al., 2000; Müller et al., 1998). Thus, in order to assess any alterations in  root 

traits - in a later stage of the plant development - a depth study of the root system was performed 

on adult plants at anthesis stage. Soil coring was made at the base of the stem, 10 cm depth soil 

horizons were separated and roots were isolated and scanned (figure 2.7 and figure 2.8). Scans 

were elaborated to obtained root length and root surface at each soil horizon as well as the 

average root diameter, the Root Length Density (RLD), the Root Surface Density (RSD) and the 

Root Area Index (RAI).  

 

Analyses of the average RLD at each soil horizon indicated high difference in RLD along the first 

soil horizons for both the lines. 

RLD in the first horizon was 9.21±4.01,in br2:NC238 line and 12.26±3.97 in the revertant line. 

RLDs decreased to 3.47±0.5 and 4.08±1.86 in the second horizon,  to 2.15±1.07  and 1.86±0.78 

in the third one, and to 1.54±0.78 and 1.37±0.71 for br2:NC238 line and revertant line 

respectively. Then, RLD was lower than 1 cm2/cm3 for all the rest of the horizons (2.14). On 

average, the br2:NC238 plant RLD was 1.88±0.38 cm2/cm3, while the revertant plant RLD was 

2.34±0.54 cm2/cm3 . On average, the br2:NC238 plant RLD was 20% lower than the revertant 

plant one (figure 2.15). Statistical analyses in order to test whether there was a difference 

between population means were performed. Data was not normally distributed (Shapiro-Wilk test, 

p-value<0.05) and thus a non parametric test was applied (Wilcoxon test). Results indicated that 
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RLD values of br2:NC238 and the revertant lines were not statistically significantly different, for 

each soil horizon measurements (p-value>0.05). 

 

 
Figure 2.14. RLD profile of the br2:NC238 (br2 in the graph) and the revertant line (rev) in the ten horizons. For both 

the lines, RLD profile was visible higher in the first horizons (ground to 40cm depth) and then it formed a plateau. 

 

 
Figure 2.15. Total average RLD from the ten horizons of the br2:NC238 (br2) and the revertant line (rev). Same 

letters refers to similarity of data, p-value 0.05). 

The root diameter was also calculated. Root diameter is an important root trait: thinner roots 

contribute to higher surface area values and form the exchange site between plant and soil for 

water and nutrient absorption. Measurements indicated a general decreased in root diameter from 

the first to the deepest horizon for both lines (figure 2.16). However, the average root diameter 

profiles were similar in the two lines,  as the statistical analyses confirmed (Wilkoxon test, p-

valued >0.05 at each horizon).  
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Figure 2.16. The profile of the root diameters at each horizon in br2:NC238 (br2 in the graph) and the revertant line 

(rev) the two lines. Roots were thinner in the deeper horizons. Bars represent standard errors. 

The RSD (Root Surface Density) represents the projected area of the root per volume of soil. The 

average RSD of br2:NC238 was lower than that of  the revertant line. As for RLD, for both the 

lines, RSD profile was visible higher in the first horizons (ground to 40cm depth) and then it 

reached a plateau (figure 2.17). Average RSD was 0.09 cm2/cm3 for the br2:NC238 and 0.12 

cm2/cm3 for the revertant line. Statistical analyses to test differences between population means 

(Wilkoxon test) indicated there was no statistically significantly difference between br2:NC238 

and the revertant line RSD at each horizon (p-values >0.05). 

 
Figure 2.17. RSD profile of the br2:NC238 (br2 in the graph) and the revertant line (rev) along the ten horizons. RSD 

profiles were similar to those of the RLD, decreasing in the first 40cm and then forming a plateau. Bars represent 

standard deviation. 
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The RAI (Root Area Index) represents the relative root surface. RAI is a measure of rooting 

density in a soil. Local soil and climate strong influence this plant parameter (Bischetti, 2005). 

Average RAI of br2:NC238 was lower than that of the revertant line at each horizon. In deepest 

horizons, average RAI of br2:NC238 were similar while the average RAI of the revertant plant 

slightly increased up to 100cm depth (figure 2.18). The average RAI of the two lines did not 

statistically differ as indicated by the statistical analyses to test differences between population 

means (Wilcoxon test, p-value>0.05 for each horizon).  

 

 
 

Figure 2.18. The average RAI of br2:NC238 (br2 in the graph) and the revertant line (rev) along ten soil horizons.  

 

In conclusion, root system analyses indicated both the br2:NC238 and the revertant line root 

systems are mainly distributed in the first 40cm of soil depth and roots were thinner in the deeper 

horizons. The plant total length, RLD and RAD were not statistically different than those of the 

revertant plant.  

Altogether these data indicate that there are not important differences in the root system of 

br2:NC238 and revertant line. 
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2.3.3 The stem of br2:NC238 at flowering stage 

 

Literature lacks a description of the short NC238 inbred line. Allelic tests at Purdue University 

indicated NC238 is a br2 mutant allele. br2 gene encodes a auxin carrier protein. In 2003, 

phenotypic analyses on br2 plant obtained with Mu-transposon tagging were performed 

(Multani et al., 2003). In 2007, a novel br2 allele was isolated in a B73 wild type population 

(Pilu et al., 2007). These br2 mutant lines are characterized by short stature due to the 

shortening of the internodes. Moreover, alterations in vascular bundle structure were observed 

(Multani et al., 2003). Alterations in the leaf epidermal size and leaf angle were also reported 

(Pilu et al., 2007).  

The root system analyses performed in the present theses indicated root systems of  br2:NC238 

and the revertant line at seedling stage were indistinguishable. Also at adult stage, the root 

systems of the two lines did not show statistically significant differences.  

 

With the aim to elucidate if the br2 mutation determines specific morphological/structural stem 

alterations, which might be responsible for shorter lower internodes, a characterization of plant 

stems  structure  both at phenotypic and cytological level was performed. Cross and longitudinal 

sections of plant stem were use to immunolocalize auxin, to assess its distribution along the 

stem. 

 

At seedling stage, br2:NC238 and the revertant plants are indistinguishable. 20 days after 

sowing the two lines were still similar in stature and leaf number: 100% of the br2:NC238 

plants and 100% of the revertant plants had 3 collared leaves (figure 2.20). Phenotype arose 

when plants had 6-7 collared leaves. At this stage, br2:NC238 plants stature was reduced 

compared to the revertant plants, and after leaves removal br2:NC238 5th, 6th and 7th internodes 

were visible shorter than the revertant plants internodes (figure 2.19, 2.20). 
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Figure 2.19. br2NC238 (left) and the revertant plant (right) stems at 7-leaf-old stage after leaves removal. 

 

  

Figure 2.20. A) At 3-leaf-old stage br2:NC238 (right) and the revertant line (left) plants were indistinguishable. B) 

Phenotype of the revertant plant (left) and the br2:NC238 line (right) at adult stage at the University of Padova 

"L.Toniolo" farm.  

 

 

A 

B 
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The morphological characteristics of br2:NC238 and its revertant line were measured and 

compared at anthesis stage. After stature measurement plants were cut and all the leaves 

removed from stem before measurements.  

Tassel and ears became visible in the two lines simultaneously, and plant reach anthesis at the 

same time (table 2.3). Number of ears per plant and tassel ramifications were similar in the two 

lines (T-test, p-value>0.05). Results indicated br2:NC238 short stature was not due to a 

reduction of the plant life cycle length. 

 

 
Days to flowering* Ears per plant** Tassel branches 

br2:NC238 99.75±1.67 a 4.39±0.96 a 29.79±5.55 a 

Revertant NC238 99.87±1.87 a 4.25±0.90 a 29.83±5.01 a 

 

Table 2.3. Morphological trait related to reproduction measurements (* days to anthesis, ** including young ears 

with no silks emerged). 

 

On average, br2:NC238 stature was 36% shorter than the revertant plant.  

The number of nodes of the two lines did not differ significantly (T-test, p-value=0.01), thus the 

short stature was due to the shortening of the internodes, rather than the number of leaves.  
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Figure 2.21. On average, br2:NC238 stature was 36% shorter than the revertant plant. 

 

 

 
Figure 2.22. The number of nodes of the two lines did not differ significantly. 

 

The length of the 1st and 2nd internode above the brace root node and the first internode above 

the uppermost ear are statistically different between the two lines, with br2:NC238 internodes 

shorter than the revertant ones. However, the length of the lower internodes is the trait that is 

mostly affected in the br2 semi-dwarf line. In monocots, the internode elongation is attributed to 

the development of intercalary meristems at the base of the growing internode, which are 

capable of cell division and cell elongation (Sauter and Kende, 1992). The reason why br2 

mutant is characterized by severe shortening of the lower internodes in particular is still 

unknown. Knoller (2010) observed abcb1 expression in br2 nodes and reduced free [3H]-IAA 
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levels in br2 internodes compared to the wild type B73 suggesting a reduced amount of auxin 

due to the defect in transport from the sites of synthesis - young tissues and leaves - to the lower 

internodes at the base of the stem (Knöller et al., 2010). 

 

 

 

Figure 2.23. Comparison between internode lengths of br2:NC238 and the revertant plant. Length of the lower 

internodes is the trait that mostly affects br2 stature. 

 

Shortening of the lower internodes caused the br2:NC238 crown root nodes to be very close 

each other, near to the ground or even inside the soil, while two or three brace root nodes of the 

revertant plants are visible above the ground (figure 2.25). In wild type plants at optimal growth 

condition, brace roots emerge from above-ground stem nodes approximately 6 weeks after 

germination (Hochholdinger et al., 2004). Brace roots, together with the shoot-borne roots 

grown from nodes under the soil line - the crown roots - provide stability and support to plants, 

while lateral roots provide the major surface water and nutrient uptake. The br2NC238 dwarf 

stature and the short distance between brace roots and soil surface could be an advantage during 

windy weather increasing the anchoring of the plant to the soil. Moreover, brace roots that enter 

the ground can take up water and nutrients improving yields while decreasing the need for 

heavy fertilizer application (Hoppe, 1986). 

 

Also the diameter of the node above the uppermost brace root node differs between the two 

lines: the br2 plant node is slightly thicker (p-value lower than 0.05). Instead, the diameter of 
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the node above the uppermost ear node in br2 was no significantly thicker than the revertant 

line.  

 
Figure 2.24. Comparison between  node diameters of br2:NC238 and the revertant plant. Lower nodes are thicker 

in br2 stem. No difference was reported in the uppermost nodes. Different letters refer to statistically significant 

difference. 

 

 
Figure 2.25. Phenotype of the br2:NC238 (A, B, E) and the revertant line (C, D, F). br2:NC238 crown root nodes 

are very close each other, near to the ground or even inside the soil, while two or three brace root nodes of the 

revertant plants are visible above the ground (B, D). 
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Reduced stem dimensions are an advantage for the plant in terms of energy allocation. 

Moreover, br2:NC238 is characterized by thick lower nodes. Nodes thickness could increase 

plant resistance to lodging during windy weather and storms and can be an advantage in 

determining yield.  

 

2.3.4 Internode anatomy and auxin accumulation in 

As reported above, the length of the lower internodes is the trait that mostly affect

stature. Length of the internodes depends both on the number and size of the cells in the stem 

tissues. Alterations both in stem parenchyma and vasculature

in br2 plants (Multani et al., 2003)

Monocot stem is characterized by 

vascular bundles occurring nearer the rind of the stem

(Heckwolf et al., 2015). Vascular bundles comprise the xylem vessels 

dissolved ions from the root system to the stem

(sieve tubes and companion cells), that 

parts of the plant (Shane, 2000)

 

figure 2.26. The monocot stem tissues organization (a) and pa

 

Cross sections of br2:NC238

performed at 7-leaf-old stage, when 
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Reduced stem dimensions are an advantage for the plant in terms of energy allocation. 

is characterized by thick lower nodes. Nodes thickness could increase 

plant resistance to lodging during windy weather and storms and can be an advantage in 

Internode anatomy and auxin accumulation in br2:NC238 plants

As reported above, the length of the lower internodes is the trait that mostly affect

stature. Length of the internodes depends both on the number and size of the cells in the stem 

tissues. Alterations both in stem parenchyma and vasculature bundles were previously observed 

(Multani et al., 2003).  

Monocot stem is characterized by vascular bundles scattered throughout the ground tissue

occurring nearer the rind of the stem are smaller and are

. Vascular bundles comprise the xylem vessels - that

from the root system to the stem - and the phloem, composed of thin

(sieve tubes and companion cells), that transports organic molecules from the leaves to other 

(Shane, 2000). 

. The monocot stem tissues organization (a) and particular of the vascular bundles (b) (from 

www.studyblue.com) 

br2:NC238 and the revertant line stems were analyzed. Sampling were 

old stage, when br2:NC238 plants became visible different from the 

Reduced stem dimensions are an advantage for the plant in terms of energy allocation. 

is characterized by thick lower nodes. Nodes thickness could increase 

plant resistance to lodging during windy weather and storms and can be an advantage in 

plants 

As reported above, the length of the lower internodes is the trait that mostly affects the br2 short 

stature. Length of the internodes depends both on the number and size of the cells in the stem 

bundles were previously observed 

throughout the ground tissue. The 

are smaller and are closer to one another 

that transports water and 

phloem, composed of thin-walled cells 

molecules from the leaves to other 

 

rticular of the vascular bundles (b) (from 

and the revertant line stems were analyzed. Sampling were 

plants became visible different from the 
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revertant line plants. Stems were cut in 0.5cm height cylinders. Tissues were ethanol dehydrated 

and Paraplast embedded before cutting into 8-10 µm slides by microtome. After Paraplast 

removing and slides rehydration, slides were mounted and directly observed by microscopy or 

treated with Calcofluor® to increase the cell wall signal intensity before microscopy 

observation.  

Histological observations of cross sections of the 6th internodes indicated no differences in the 

sub-epidermal cell layers or vascular bundles distribution and size (figure 2.29 A and B). 

br2:NC238 and the revertant line internodes are similar to the typical monocot stem 

organization described in literature with the vascular bundles regularly arranged. In the 

internodes, the course of the bundles is vertical. On the contrary at the level of the nodes they 

meet the horizontal strands and anastomose into elaborate plexus (Shane, 2000) (figure 2.27, C).   

 

 
Figure 2.29. Cross section of br2:NC238 (A) and revertant (B) 6th internode from 7-leaf-old plants. C) Cross section 

of 7th node of revertant plant 7-leaf-old. D) Particular of the cross section revertant 6th internode from 7-leaf-old 

plants. Scale bar=100µm. 
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In order to verify if the shortening of the internodes of br2:NC238 plants is due to an auxin 

over- or under-accumulation for a defective auxin transport, auxin localization at tissue level 

was observed using a anti-IAA antibody staining. Preliminary experiments of IAA immuno-

localizations on longitudinal sections of young internodes of the wild type revertant plant 

indicate higher accumulation of auxin at the vascular bundles. Most auxin is probably 

transported away from the source tissues (young leaves and flowers) by an unregulated bulk 

flow in the mature phloem to the site where it is necessary (Petrásek and Friml, 2009). IAA 

accumulation at the vascular bundles might be due to the long-distance polar transport process. 

A reduction of auxin accumulation in br2:NC238 tissues compared to its revertant was 

detectable.   

 

 
Figure 2.28. IAA-immunolocalization of transversal and longitudinal sections of 6th internodes of br2:NC238 and 

revertant plants. Control refers to slides without primary antibody incubation. Bar scale=100µm. 
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2.4. Discussion 

 

A few maize brachytic2 mutants have been isolated. The literature describes the br2 lines as 

altered in the lower internodes elongation (Multani et al., 2003; Pilu et al., 2007; Cassani et al., 

2010), in the size of the leaf epidermal cells (Pilu et al., 2007; Cassani et al., 2010) in their width 

(Knöller et al., 2010), and in the stem vasculature (Knöller et al., 2010; Multani et al., 2003).  

 

Auxin plays a major role in root development. Many works indicate the involvement of auxin in 

the regulation of root elongation and growing root tips of intact plants contain high IAA 

concentrations. The typical response of roots to exogenous auxin is inhibited elongation while 

low auxin concentrations applied to the growth solution may stimulate elongation growth 

(Aberg, 1978). Arabidopsis pdx1 mutants are unable to produce pyridoxal phosphate, which 

impairs the capacity of these plants to convert tryptophan to IAA. These plants have a short 

primary root with a reduced root meristem size (Chen and Xiong, 2005). Overexpression of 

Arabidopsis microRNA160, which targets Auxin Response Factor 10, 16, and 17 leads to a 

reduction in primary root growth (Mallory et al., 2005). While the primary root arises from 

embryo, lateral roots development is post embryonic and derived from the pericycle. The role of 

auxin in lateral root is well known from the '50s. In particular, auxin promotes lateral roots 

initiation and emergence (Casimiro et al., 2001; Swarup et al., 2008). In the root, auxin derived 

from local synthesis at the root apex and transport from the shoot tissues and local auxin 

biosynthesis is required for the correct root development (Chen et al., 2014). In Arabidopsis, 

inactivation of auxin biosynthesis genes (YUC) that show tissue-specific expression in roots 

lead to very short and agravitropic primary roots. Over-expression of YUC genes localized at 

the shoot of the seedling increases auxin synthesis but does not rescue the root phenotype. 

Instead, the phenotype is rescued by adding IAA or over-expressing YUC in the roots (Chen et 

al., 2014).  

Auxin is involved in many functions in several organs and tissues, not only roots, and a complex 

network of carriers guarantees its transport and presence when auxin is needed. Thus, auxin 

transport is a robust and redundant system. In monocots, many ABCBs and PINs are involved in 

auxin transport in roots and in particular ABCB1 is consider a long distance auxin transporter 

protein. On the contrary, PINs proteins are thought to be responsible of the fast response to 

environmental stimuli. In Arabidopsis, ABCB1 and ABCB19 have been shown to be 

responsible for the majority of rootward auxin transport, but residual fluxes to the root tip in 
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Arabidopsis abcb1 abcb19 double mutants implies the involvement of at least one additional 

auxin transporter in this process (Yang and Murphy, 2009).  

The br2:NC238 and the revertant NC238 line seedlings are phenotypically indistinguishable. 

The similarity of the two lines was confirmed by treating br2:NC238 and the NC238 revertant 

line seedlings with auxin analog (NAA) and auxin transport or action inhibitors (NPA, PCIB, 

BUM) induced the same response in the two lines during all the different treatments. NAA 

application on br2:NC238 and revertant line seedlings reduced the primary root growth and 

increased the root hair density. Moreover, NAA applications induced gravitropic defects on the 

primary roots of the two lines. It was previously reported root length reduction in Arabidopsis 

treated with NAA, where maximum inhibition of primary root elongation was obtained at 

500nM NAA applications (Simon et al., 2013). NAA inhibits Arabidopsis root growth primarily 

through reducing the length of the growth zone rather than the maximal rate of elemental 

elongation and it does not reduce cell production rate (Rahman et al., 2007).  

 p-Chlorophenoxyisobutyric acid (PCIB), also called α-(4-chlorophenoxy) isobutyric acid, 2-(p-

chlorophenoxy)-2-methylpropionic acid, or clofibric acid, has been most widely used to inhibit 

auxin action. In br2:NC238 and revertant line seedlings, PCIB treatments from 10 to 100uM did 

not produce any effect on maize plants. In literature little is present about the effect of PCIB in 

maize plant. This compound could be less effective in maize and we cannot exclude higher 

concentrations are necessary to produce any effect. Many paper demonstrated PCIB inhibits 

auxin regulated gene expression (Okamoto et al., 1995; Klotz and Lagrimini, 1996, Oono et al., 

2003). In Arabidopsis roots, PCIB impairs auxin-signaling pathway by regulating Aux/IAA 

protein stability and affecting the auxin-regulated root physiology, inhibiting lateral root 

production, gravitropic response of roots, and growth of primary roots (Oono et al., 2003).  

1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks 

carrier mediated auxin efflux from plant cells (Zettl et al., 1992). The compound caused reduced 

primary root length and root gravitropic defects in both br2:NC238 and the revertant lines. 

Effects of NPA on maize seedlings were visible starting from 0.5uM concentration. In 

Arabidopsis, NPA causes the inhibition of root growth primarily by reducing cell production 

rate (Rahman et al., 2007).  

The auxin transport inhibitor 2-[4-(diethylamino)-2-hydroxybenzoyl] benzoic acid (BUM), 

efficiently blocks auxin-regulated plant physiology and development. Treating the maize 

seedlings with 0.5uM did not show any effect. On the contrary, increasing the concentration to 

10uM had lethal effect on the plants, for both the lines. The lethal effect on maize seedling 
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could have been increased by the use of DMSO to dilute BUM before doing the serial dilutions 

in water. In literature, physiological analysis and binding assays in Arabidopsis or yeast 

microsomes identified ABCBs, primarily ABCB1, as key targets of BUM and NPA, whereas 

PIN proteins are apparently not directly affected. BUM is complementary to NPA by having 

distinct ABCB target spectra and impacts on basipetal polar auxin transport in the shoot and root 

(Kim et al., 2010).  

Also the main role of auxin in gravity response is well assured (Perrin et al., 2005; Hashiguchi 

et al., 2013; Morita and Tasaka, 2004; Band et al., 2012). The Cholodny-Went theory proposes 

auxin is transported laterally after the gravistimulus inducing the organ to curve. Defect in auxin 

transport generally causes defective gravitropic response (Chen et al., 1998; Friml et al., 2002). 

Similarity of the two maize lines were confirmed when no difference and no defect in 

br2:NC238 and revertant line gravitropic response was observed. In addition, the expression 

profile of the auxin transporter encoding genes before and after 90°-rotation indicated similar 

transcriptional profile in the two lines.  

The lack of a phenotype during the first developmental stages of the br2:NC238 mutant might 

be due to the presence of the necessary amount of auxin, despite its defective transport due to 

the mutant ABCB1. Indeed, auxin might be transported by other carriers into the tissues. 

Together with passive diffusion, auxin can move through many other carriers (ABCBs, PINs, 

PIN-LIKEs and AUX/LAXes carrier types). In fact in the mutant line, an alteration of other 

auxin transporters expression, compared to the revertant plant tissues, was observed (figure x ). 

Moreover, in young plant stem, auxin derives from nearby auxin biosynthetic sites. Auxin 

biosynthesis happens in young tissues, such as shoot apical meristem, young leaves and root 

apical meristem. During the first stages of stem development and elongation, young internodes 

are close to these sites of auxin biosynthesis. Thus, auxin transport from the uppermost part of 

the plant to the base of the young stem is not as long as it is in the later stages of the stem 

elongation process. 

Roots are important to plants for a wide variety of processes, including nutrient and water 

uptake, anchoring and mechanical support, storage functions. Root system architecture may 

affect the ability to use soil nutrients more efficiently and increases stress tolerance, improving 

yields while decreasing the need for heavy fertilizer application. No statistically significant 

differences between br2:NC238 and revertant lines root system traits were observed in  plants 

grown in the field at anthesis stage. The br2:NC238 and the revertant line root systems are 

mainly distributed in the first 40cm of soil depth and roots were thinner in the deeper horizons. 
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The plant total length, Root Lenght Density (RLD) and Root surface Density (RAD) were not 

statistically different than those of the revertant plant and high variability between data was 

observed. In fact, many factors can influence the root system development in the field: 

distribution of water and nutrients, oxygen diffusion to the roots, soil physical conditions such 

as soil strength (Bengough, 2005). 

Results of the morphological traits measurements on adult plants indicated br2:NC238 and its 

revertant line do not show differences in the reproductive development. The two lines reached 

anthesis at the same time. The number of ears per plant and the number of tassel ramification 

were similar in the two lines. 

br2:NC238 is a semi-dwarf line. The revertant plants that do not carry the transposon insertion 

in ABCB1 gene shows higher stature. The shorter length and the thicker diameter of the lower 

internodes is the trait that mostly affects the br2:NC238 short stature.  

Plant dwarfism can be due to a reduction in leaf number. Ad instance, the maize vanishing tassel 

2 (vt2) mutant exhibits a semidwarf vegetative phenotype due to the production of fewer leaves. 

VT2 is a co-ortholog of Arabidopsis TAA1 and encodes a grass-specific tryptophan 

aminotransferase that converts Trp to indole-3-pyruvic acid through a Trp-dependent auxin 

biosynthesis pathway (Phillips et al. 2011). The maize vanishing tassel 2 (vt2) mutant exhibits a 

semidwarf vegetative phenotype due to the production of fewer leaves. VT2 is a co-ortholog of 

Arabidopsis TAA1 and encodes a grass-specific tryptophan aminotransferase that converts Trp 

to indole-3-pyruvic acid through a Trp-dependent auxin biosynthesis pathway (Phillips et al. 

2011).  

Like br2, several other dwarf mutants are characterized by the shortening of the internode length 

rather than a reduction in the number of nodes. Many maize brachytic mutants are 

distinguishable by the length of certain internodes along the stem. For instance, br1 internodes 

are all short and similar in length, while br5 has altered length of the higher internodes while the 

other internodes length is normal (Johal, unpublished). A maize dwarf mutant, nana, exhibited 

dwarfism even at the seedling stage by its reduced growth of the mesocotyl. Dwarfism in nana 

plants is due to a reduction in internodes length. It has been observed nana produced less auxin 

than wild type maize plants (Van Overbeek, 1938). In monocots, the internode elongation is 

attributed to the development of intercalary meristems at the base of the growing internode, 

which are capable of cell division and cell elongation (Sauter and Kende 1992; Van der Knaap 

et al. 2000). The reason why br2 mutant is characterized by severe shortening of the lower 

internodes in particular is still unknown. Knoller (2010) observed abcb1 expression in br2 nodes 
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and reduced free [3H]-IAA levels in br2 internodes compared to the wild type B73 suggesting a 

reduced amount of auxin due to the defect in transport from the sites of synthesis - young tissues 

and leaves - to the lower internodes at the base of the stem (Knöller et al., 2010). 

Moreover, the br2:NC238 lower nodes are thicker than those of the revertant plant. Literature 

lacks description of mutants with altered node diameter. This may be an important advantage for 

the line increasing resistance to lodging during storms and windy weather.  

The br2:NC238 lower brace roots nodes are close to the ground or even inside the soil, while 

two or three brace root nodes of the revertant plants are visible above the ground. In wild type 

plants at optimal growth condition, brace roots emerge from above-ground stem nodes 

approximately 6 weeks after germination (Hochholdinger et al., 2004). Brace roots, together 

with the shoot-borne roots grown from nodes under the soil line - the crown roots - provide 

stability and support to plants, while lateral roots provide the major surface water and nutrient 

uptake. The br2:NC238 dwarf stature and the short distance between brace roots and soil 

surface could be an advantage during windy weather increasing the anchoring of the plant to the 

soil. Moreover, brace roots that enter the ground can take up water and nutrients improving 

yields while decreasing the need for heavy fertilizer application.  

Histological observations of br2:NC238 and revertant plant stems at 7-leaf-old stage indicated 

no differences in the structure of the tissues: no differences in the sub-epidermal cell layers or in 

the vessels size or in the bundle distribution were observed. Multani (2003) observed a 

reduction in stalk cell size, and increase in number of sub-epidermal parenchyma cells and an 

alteration in vascular bundle distribution in br2 plants. Instead, Pilu (2007) observed larger 

vessel elements in br2.  

br2 nodes are very close each other (Multani et al., 2003; Pilu et al., 2007, the present thesis). 

Thus, it was difficult to handmade separate internodes from nodes and sampling only internodes 

tissues.  

Differences in number or size of the cells or size and distribution of the vessels are visible 

between nodes and internodes of the stalk. Internodes vascular bundles are regular arranged, 

while at nodes vertical bundles meet the horizontal, and axial bundles at nodes are anatomically 

different from those in internodes (Shane, 2000). Literature lacks images of nodes cross sections 

in literature, mainly because of the difficulty in wax inclusion and sectioning due to the 

thickness and complexity of the tissue. It cannot be excluded the differences in br2 internodes 
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structure described by Multani (2003) and Pilu (2007) were due to the sampling in vicinity of 

the nodes and thus an observation of the beginning of the node rather than the internode.  
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Chapter III 

 

Genetic characterization of the br2:NC238 line mutation 

 

3.1. Introduction 

 

The ATP-binding cassette superfamily (ABC) of membrane proteins comprises hundreds of 

different members in plants (Kang et al., 2011). The core unit of a functional ABC 

transporter consists of 4 domains: two NBDs (nucleotide-binding domains) and two TMDs 

(transmembrane domains), each with six transmembrane segments (Ambudkar et al., 2003). 

The two NBDs unite to bind and hydrolyze ATP, providing the driving force for transport, 

while the TMDs are involved in substrate recognition and translocation across the membrane 

(Jasinski et al., 2003; Higgins and Linton, 2004; Bailly et al., 2011).  

Subfamily B (ABCB) includes homologs of the mammalian multidrug resistance/p-

glycoproteins (MDRs/PGPs), several of which are involved in auxin transport (Geisler and 

Murphy, 2006; Cho and Cho, 2013). MDR/PGPs were first identified in mammalian cancer 

lines because their over-expression confers multidrug resistance to chemotherapeutic cancer 

treatments (Ambudkar et al., 2003). Structural characteristics of mammalian MDR/PGPs are 

well conserved in plant homologs except in the predicted pore-facing helical domains 

thought to confer substrate specificity (Ambudkar et al., 2003). 

ABCB transporters actively transport chemically diverse substrates across the lipid bilayers 

of cellular membranes (figure 3.1). The first ABCBs involved in auxin transport were 

characterized as functioning in IAA translocation in Arabidopsis seedlings (Sidler et al., 

1998; Noh et al., 2001). 

br2 gene, ID GRMZM2G315375, has also been called Hahn 6 dwarf (Leng, ER), mi1, Oakes 

dwarf (Leng, ER), pgp1 (Multani, DS), R4 dwarf (Leng, ER), ZmPGP1. A recent debate on 

ABC protein nomenclature proposed a unified named system base on species identifier based 

on the Latin binomial, the ABC family, one of the eight subgroups (A to H) and the number 

of the subfamily member (Verrier et al., 2008). According to this nomenclature, maize BR2 

most correct name is ZmABCB1.  
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Based on the B73 reference genome - version 3, abcb1 locus is located on Chromosome 1: 

202,334,824-202,342,008,  forward strand. abcb1 gene has 2 transcripts (splice variants), 42 

orthologues and 16 paralogues. T01 transcript is 4672 bp, has 5 exons and 4 introns, and 

encodes for a 1379 amino acids protein. According to NCBI domain search web tool, 

ABCB1 protein is characterize by two ATP-binding cassette domains, two ABC transporter 

transmembrane regions, and a general multidrug resistance protein (mdr1) domain (figure 

3.2). T02 is a truncated version of T01, is 2061 bp, has 4 exons and 3 introns, and encodes a 

598 amino acids long protein.  

ABCB1 is expressed in nodal meristems, and analyses of auxin transport and content 

indicate that ABCB1 function in monocot-specific meristems is the same as AtABCB1 

function as auxin transporter in Arabidopsis (Knöller, Blakeslee, Richards, Peer, & Murphy, 

2010; Multani et al., 2003).  

 

 

Figure 3.1. 

A) MmABCB1 (Aller et 

al., 2009).  

B) Sav1866 (Dawson 

and Locher, 2006). 

C) Maltose transporter: 

left, retranslocation 

intermediate state 

(Oldham and Chen, 

2011a), right, 

translocation 

intermediate state 

(Oldham et al., 2007). 

 D) Arabidopsis ABCB 

structural models based 

on MmABCB1.  

E) ABCB models based 

on Sav1866 including 

AtABCB19 and 

AtABCB4 models (Yang 

and Murphy, 2009).  

Adapted from Bailly 

(2012). 
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Figure 3.2. A) Intron/exon structure of abcb1 gene (7.18Kb long) (from Gramene Data Base); B) Transmembrane 

structure of the ABCB1 protein (obtained from the TMHMM Server); C) Domains of the proteins (obtained from 

Expasy prosite Web Tool). 

 
 
In addition to ABCB1, there are three putative AtABCB19 homologs: ZmABCB10-1 

(GRMZM2G125424) and ZmABCB2-1 (GRMZM2G072850), present closest sequence 

similarity to OsABCB16, while ZmABCB10-2 (GRMZM2G085236), is more similar to the 

true auxin transporter OsABCB14 (Knöller et al., 2010). ZmABCB10-1 (GRMZM2G125424) 

is expressed in actively growing tissues, especially in pre-pollination ears at the flowering 

stage (Pang et al., 2013). Recently, using Arabidopsis ABCB proteins as BLAST query to 

search the maize genomic database, and using the hidden Markov model (HMM) profiles, 29 

new ZmABCB genes were identified. Their sizes range from 388 to 1540 amino acids (Yue et 

al., 2015). 

A 

B
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Several brachytic mutants, characterized by shortening of specific internodes along the stem - 

and between these, many br2 mutants - have been isolated and characterized (Multani et al., 

2003; Pilu et al., 2007; Knöller et al., 2010; McLamore et al., 2010; Cassani et al., 2010).  

Allelic tests performed crossing NC238 inbred line with other brachytic mutants indicated 

NC238 line is a br2 mutant (Johal, unpublished). Moreover, preliminary analyses indicated the 

mutation was due to an insertion in the central region of abcb1 gene (Johal, unpublished).  

One of the aims of the present thesis was to study the nature of the mutation in abcb1 gene in 

NC238 inbred line. To do that, amplification and sequencing of the abcb1 gene and transcripts 

of NC238 were performed. Moreover, a study on the nature of the insertion responsible for the 

mutation in abcb1 was performed.  
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3.2 Materials and methods 

 

Plant material and growth conditions 

The present study uses the following maize lines provided by Prof. Johal (Purdue University): 

the NC238 inbred line and a revertant NC238 line isolated in a NC238 field at Purdue 

University.  

For gene and transcript sequencing, and expression analyses, seeds were pre-germinated in 

cigar-shaped rolled wet paper and grown for 3 days until DNA and RNA extraction.  

For gene expression analyses plants were grown in pots (1:2 sand and general soil) in the 

greenhouse until 3-leaf-old stage and 7-leaf-old stage. 

 

Genomic DNA extraction from plant tissues 

1-2 g of fresh leaf was used for each preparation. Tissues were ground to a fine powder in 

liquid nitrogen using a mortar and pestle and resuspended in 500µl extraction buffer (NaCl 

0.2M, EDTA 25mM, TRIS pH 7.5 50 mM, SDS 0.5%). The mixture was heat 10' at 56°C and 

centrifuged (10', 12000 rpm) using a bench centrifuge. The aqueous layer was carefully 

transferred to a new tube containing 400µl isopropanol. Tubes were inverted a few times and 

centrifuged. After centrifugation, supernatant was removed and pellet was washed with 300µl 

of ethanol 70%. After centrifugation, supernatant was removed. The excess liquid was drained 

off and the pellet was dissolved in 100µl distilled water. DNA quantity and quality was 

assessed through NanoDrop® spectrophotometer (NanoDrop Technologies). 

 

Gene amplification for DNA sequencing and plant genotyping 

Gene amplification for DNA sequencing and genotyping was performed by polymerase chain 

reaction (PCR) using Taq Polymerase (Invitrogen) according to the manufacturer’s 

instructions. PCR mix: 10x Taq Polymerase buffer 10x (Invitrogen), MgCl2 (Invitrogen), 

10µM primer forward, 10µM primer reverse, 10mM dNTPs mix (Invitrogen), 5 U/µl Taq 

Polymerase (Invitrogen), 5x BIOSTAB PCR Optimizer (Sigma Aldrich), 50-100ng DNA 

template, and sterile distilled water to 25µl of reaction volume. Elongation was performed at 

72°C. Primers annealing temperature, elongation time and number of cycles were adjusted 

according to the gene target. Primers are listed in table 3.1. 
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Electrophoresis gel run 

PCR product was run on 1% agarose gel prepared by melting agarose in TEA buffer (Tris 

base, Acetic acid, EDTA pH 8.3). Electrophoresis was performed in 1x TAE, at 100 volts for 

one hour. DNA was visualized under UV light on a trans-illuminator and digitally 

photographed. 

 

DNA sequencing 

After amplification and electrophoresis gel run, the appropriately sized DNA fragment was 

excised from the gel using a clean scalpel. The gel slice was weighed in a 1.5ml tube. 

Purification proceeded using the gel extraction kit (QIAGEN) in accordance with the 

manufacturer’s instructions. DNA was quantified by NanoDrop spectrophotometer (NanoDrop 

Technologies). DNA (200ng/100bp sequence) was sequenced with Sanger technique at BMR 

Genomics Centre (Padova). Resulting chromatograms were aligned using Geneous® software. 

 

RNA extraction and cDNA synthesis 

After sampling, fresh tissues were liquid nitrogen frozen and stored at -80°C in 2ml tubes until 

RNA extraction. Total RNA was extracted according to the RNeasy Plant Mini Kit (Qiagen) 

and subjected to on-column DNase treatment. RNA quantity and quality were assessed using 

Nanodrop 2000® spectrophotometer (Thermo Scientific). 

cDNA synthesis was performed using the SuperScript III reverse transcriptase kit (Invitrogen), 

according to the manufacturer’s instructions. One microgram of total RNA were used as 

template with 1µL of oligo(dT)18 (0.5 µg/µL).  

 

Expression analyses 

Expression analyses were performed through RT-PCRs. Primers annealing temperature and 

number of cycles were adjusted, according to the target. Different numbers of cycles were 

tested. Three replicates were performed. Primers are listed in table x. The constitutively 

expressed housekeeping GAPC2 gene was used as the internal control. PCR product was run 

on 1% agarose gel. Electrophoresis was performed in 1x TAE, at 100 volts for one hour. DNA 

was visualized under UV light on a trans-illuminator and digitally photographed. 
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Computational analysis 

BLAST (Basic Local Alignment Search Tool) developed by Altschul et al. (1990) was used to 

find short fragment of a query sequence that aligns perfectly with a fragment of a subject 

sequence found in a database. Interrogations were made at personalized parameters: somewhat 

similar sequences, no filter, no mask. 

NCBI Conserved Domain tool: it was used to search for  conserved domains within a 

protein or coding nucleotide sequence (Marchler-Bauer et al., 2015). Searches were made 

through the web interface uploading the FASTA format of the sequence of interest. Default 

parameters were used. 

Maize GDB (Maize Genetics and Genomics Database) was used for gene sequences and 

data download. Maize GDB is the collection of Maize B73 genome sequences, gene 

annotations, stock, phenotype, genotypic and karyotypic variation, and chromosomal mapping 

data (Andorf et al., 2015). Searches were made through the web interface. 

BLAT (BLAST Like Alignment Tool). The program was used to rapidly scan for relatively 

short matches (hits) to find regions in the genome likely to be homologous to the query 

sequence. BLAT performs an alignment between homologous regions and stitches together 

these aligned regions (often exons) into larger alignments (typically genes) (Kent, 

2002). Searches were made through the web interface. Default parameters were used.  

TIGR Plant Repeat Database (version 3.0) was used for transposon searches. Is a collection 

of repetitive DNA sequences of 12 plant genera from GenBank and other published records 

based on their annotation (Ouyang, 2004). Searches were made through the web interface 

uploading the sequence of interest. Default parameters were used. 

CLUSTAL was used for multiple sequence alignment program. Searches were made 

through the web interface uploading the FASTA format of the sequences to align. Default 

parameters were used. 

P-MITEs DB was used for transposon searches. The database contains MITE-related 

sequences of 3,527 MITE families, identified from 41 sequenced plant genomes. Search was 

performed through the uploading of the sequence of interest in FASTA format on the web 

interface. Search was also made by BLAST alignment of the sequence of interest to the P-

MITE maize database downloaded from the P-MITE web site. 
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Oligo 
Name Target Strand Sequence 5' to 3' 

1F abcb1cDNA forward CTCACACACACAGTCACACT 
1R abcb1cDNA reverse AGAAGGAGGAGGAGGAGCAG 
2F abcb1cDNA forward CTTTGCTCTGCCACTCTGCT 
2R abcb1cDNA reverse GTAGTGGATGAGGTTGCCCA 
3F abcb1cDNA forward CTCTTGCTGGATGTGGACCG 
3R abcb1cDNA reverse TCCAGCAGGATTTGCCCTG 
4F abcb1cDNA forward ATCTTCCGCATCATCGACCA 
4R abcb1cDNA reverse GTAGTAGACGCTGAGCACGG 
5F abcb1cDNA forward CAGCGCCATCTTCGCCTACA 
5R abcb1cDNA reverse ACGGGTACGAGAAGTCCACG 
6F abcb1cDNA forward TGCAGAAGATGTTCATGAAGGG 
6R abcb1cDNA reverse CCGACTCAAACAGATCGTCAA 
8F abcb1 T02 cDNA forward GACGAGCATCAGGGAGAACC 
8R abcb1 T02 cDNA reverse GATGTGGAGCAGCTAGGCAA 

4BSF abcb1 DNA forward GCACATGCCTGCCATTGACC 
4BSR abcb1 DNA reverse ACAGGCGCCTAACAATTGCC 
PIN9 pin9 cDNA forward CACCGTCGCCTCGCTCTCCATGCTCC 
PIN9 pin9 cDNA reverse AAGGCCCAACAGTATGTAGTAGACAATCG 

AUX1 aux1 cDNA forward CCCGGGACATCGCCTCTC 
AUX1 aux1 cDNA reverse GCCGCCATTAATCCCTCAGA 
PIN2 pin2 cDNA forward AGGTGGCCAACAAGTTCGCGTCTGGG 
PIN2 pin2 cDNA reverse CCTTCTTGCGCGGGGCCACGTACG 
PIN8 pin8 cDNA forward ATGATCTCTTGGCCAACCATCTACCATG 
PIN8 pin8 cDNA reverse GCACCATAACATCTTGCCGAGACTCCT 

GAPC GAPC cDNA forward AATGGCAAGCTCACTGGC 
GAPC GAPC cDNA reverse CTGTCACCGGTGAAGTCG 

table 3.1. List of the primers used for expression analyses, DNA sequencing and in situ hybridization probe 

preparation: name, target to amplify, strand and sequence. 

 

 

Figure 3.3. Plants at 7-leaf-old stage before (left) and after (right) leaves removal: nodes (n) and internodes (i) 

are labeled with their position along the stem. 
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3.3 Results 

 

3.3.1 Genetic characterization of br2:NC238 mutation 

NC238 inbred line is a short stature line. Allelic tests performed crossing NC238 line with 

other short stature mutant lines (Prof.Johal lab mutant collection, Purdue University) 

indicated the NC238 line is a br2 mutant (Johal, unpublished). br2 gene was cloned by 

transposon tagging: it encodes for BR2/PGP1/ABCB1 protein, an ABC (ATP-binding 

cassette) transporter which belongs to the MDR (multi-drug resistant) class of P-glycoprotein 

homolog of Arabidopsis ABCB1 (Multani et al., 2003). A tall plant in NC238 population 

was isolated and self-crossed for propagation (Johal, unpublished). The isolation of the tall 

plant indicated the br2 mutation in NC238 line could be due to a mobile element insertion 

that originated a tall revertant plant after a transposition event. 

The study and characterization of br2:NC238 mutation was performed by amplification and 

sequencing of the abcb1 genomic DNA clones, both of the br2:NC238 and its revertant line.  

B73 reference genome abcb1 gene is 7kb long, composed of five exons and four introns 

(figure 3.3 A). The long length of the gene and its complex structure did not allowed the 

amplification of a full length clone. However, preliminary analyses indicated the mutation 

was in the central region of the gene (Johal, unpublished), thus analyses were focused on the 

region between exon III and the beginning of exon V (figure 3.3 A). Short sequences of the 

gene were amplified and sequenced. Sequence alignments between the abcb1 sequences of 

br2:NC238, the revertant line and the B73 reference genome were performed. 

Comparison of the revertant line abcb1 gene region spanning from exon III to intron IV 

(from G2422 to T3511, figure 3.3) with that of the wild type B73 line corresponding gene 

region showed the revertant line had a 6bp long insertion (GTCGCG) in intron IV, after 

C3293. The 6bp long sequence in the revertant line abcb1 gene flanked an identical sequence, 

thus it was a repetition (5'-GTCGCGGTCGCG-3').  

The abcb1 region (from G2422 to T3511) in br2:NC238 differed from the revertant line abcb1 

corresponding region for an insertion of 572bp in intron IV. This insertion was flanked at 5' 

side and 3' side by the GTCGCG sequence found in the revertant line (figure 3.4).  
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Figure 3.4. Comparison between the B73 wild type, the revertant NC238 and br2:NC238  mutant line abcb1 

gene sequences. A) The wild type abcb1 gene is characterized by 5 exons (boxes) and 4 introns (lines). B) The 

revertant line differs for 6 bases (triangle) from the wild type reference line gene in intron IV. C) The 

br2:NC238 differs for 572 bases insertion (triangle) from its revertant line.  

 

GTCGCG sequence is present in the B73 abcb1 sequence from G3294 to G3299. This result 

indicated GTCGCG is a Target Site Duplication (TSD) and the insertion in br2:NC238 is a 

transposable element. TSD are characteristic traits of transposable elements which occurs 

upon TE integration as a result of staggered double-strand breaks at the target site (Craig, 

2002).  TSD are also called the transposon "footprint" as they are retained after transposition 

of the element. 

 

 

Figure 3.5. Class I transposons 

(left) transpose through a copy 

and paste mechanism that causes 

duplication of the transposon 

sequence; class II transposons 

transpose by excision of their 

sequence and integration in other 

locus of the genome.  
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Figure 3.6. Class II transposons recognize specific target sequences of the genome. Their insertion causes the 

duplication of the target sequence (called Target Site Duplication, TSD). When the transposon jumped out the 

locus and move toward another region, TSD are retained. TSD are also called the transposon "footprint".   

 

The insertion sequence contained in br2:NC238 abcb1 gene is characterized by 11 imperfect 

terminal inverted repeats (TIRs). TIRs are typical traits of many transposable elements 

groups (Feschotte et al., 2002). The GC content of the insertion sequence is 46.9%. 

 

Figure 3.7. Scheme of the br2:NC238 mutation that highlights the differences and similarities with the B73 

wild type reference gene and the NC238 revertant line: br2:NC238 is characterized by an insertion with 

terminal inverted repeats (TIRs, black arrows) and it is flanked by short direct repeats (grey boxes). The 

sequence of the direct repeat is present once in the wild type B73 abcb1 gene while twice in the revertant line. 

In fact, the transposon insertion mechanism originates the duplication of the site that is retained after the 

transposon moving.  
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3.3.2 Study of the br2:NC238 insertion 

 

The isolation of a revertant line, together with the presence of the Target Site Duplication 

(TSD) in the br2:NC238 and revertant line abcb1 gene, and the presence of the TIRs in 

br2:NC238 insertion (figure 3.7) indicated the br2:NC238 insertion is a transposable 

element.  

In order to identify which class and family the br2:NC238 transposon belong to, the 

interrogation of the DNA and protein domains, maize genome, and transposable elements 

databases were performed. 

The search of homologies of the br2:NC238 insertion to DNA domains was performed using 

NCBI Conserved Domain tool. No significant similarities with known DNA domains were 

found. Also the interrogation of the protein database using the Basic Local Aligment Search 

Tool (BLASTx) did not find significant similarities with known domains.  

Maize GDB (Maize Genetics and Genomics Database) is the collection of Maize B73 

genome sequences, gene annotations, stock, phenotype, genotypic and karyotypic variation, 

and chromosomal mapping data (Andorf et al., 2015). Interrogation of Maize GDB - version 

3 using the web BLAST tool showed that the transposon has similarities with many regions 

in the maize genome. Position, e-value, query identity and number of target matches are 

summarized in table. 
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Target Chromosome position identity strands 

1 2 88823490-88824060 566/571 (0.9912%) Plus minus 

2 2 19875381-19874901 475/481 (0.9875%) Plus minus 

3 2 153861077-153860597 475/481 (0.9875%) Plus minus 

4 2 19874623-19874715 93/93 (1.0000%) Plus minus 

5 8 22606558- 22606996 434/439 (0.9886%) Plus plus 

6 8 22607208- 22607300 93/93 (1.0000%) Plus plus 

7 8 22607016- 22607077 62/62 (1.0000%) Plus plus 

8 4 207839332 -207839377 42/46 (0.9130%) Plus minus 

9 7 93396477- 93396518 38/42 (0.9048%) Plus plus 

 

Table 3.2. Summary of the search of similarities of the br2:NC238 insertion against the Maize GDB - version 3 

sequence collection. Many matches in different chromosomes were found.  

   

The first match (table 3.2) was in a region where there is no annotation of any gene or 

transposable element. The second sequence aligned in plus/minus strands to a region where a 

low confidence gene (GRMZM2G580168_T01) was present. Its 

locus GRMZM2G580168_T01 was between 19,250,511 and 19,251,386 on chromosome 2, 

 has not been physically mapped, was not associated with physically mapped probes, and 

was not genetically mapped. The 3rd result was a region where there was no annotation of 

any gene or transposable element. The 4th result aligned to another region of the previously 

mentioned locus GRMZM2G580168_T01. In that case, the 3'-end of the br2:NC238 

transposon aligned to the locus. The 3' of the transposon included the TIRs of the  

transposon. Three matches were located on chr8, one in chr4, and one in chr7 and are in 

regions where no genes or transposable elements have been annotated. 

 

In order to map the transposon sequence to the maize genome, the BLAST Like Alignment 

Tool (BLAT) was chosen as an alternative to the BLAST tool to identify loci of the maize 

genome with some similarities with the query.  

Many matches were found. These matches refer to position in the maize genome - version 2. 

Positions in the maize genome are listed in the table screen shot of the BLAT output.  
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Figure 3.8. Summary of the search of similarities of the br2:NC238 insertion in the Maize GDB collection 

using BLAT tool. The search output indicating the insertion sequence aligns to many regions of the B73 

reference genome - version 2. 

 

The third match showed that the 5' and 3' ends of the br2:NC238 insertion aligned to the 
ends of class I LTR elements (figure 3.9).   
 

 
 
Figure 3.9. Screen shot of the output of the BLAT search: the br2:NC238 insertion sequence (black/dotted box 

called gDNA) aligned with its ends to the ends of many class I transposable elements (red boxes). 
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The fifth match show an imperfect alignment to a class II transposable element (fig.3.10). 

  

 

 
Figure 3.10. Screen shot of the output of the BLAT search: the br2:NC238 insertion sequence (black/dotted box 

called gDNA) aligned with low similarity to a class II transposable element (blue box). 

 
 
The other matches were in regions where no genes or transposable elements are annotated.   

 

The interrogation of the DNA collections did not find significant alignments of the 

br2:NC238 insertion with the Maize genome sequences. Thus a search in the databases 

collecting repeats and transposable element sequences was performed. 

TIGR Plant Repeat Database is a collection of repetitive DNA sequences of 12 plant genera 

(Arabidopsis, Brassica, Glycine, Hordeum, Lotus, Lycopersicon, Medicago, Oryza, 

Solanum, Sorghum, Triticum and Zea) from GenBank and other published records based on 

their annotation (Ouyang, 2004). Interrogation of TIGR Zea Repeats DB through the Web 

BLAST Server - on default settings - indicated a similarity of the transposon with a Maize 

mPIF364 MITE element (figure 3.11). The similarity was 116/197 bases and regarded the 3' 



 

half of the br2:NC238 transposon. mPIF364 is 370 bp long, and belongs to the maize 

Tourist-like MITE family called miniature PIF (mPIF). 

 

 

 

Figure 3.11. Result of the interrogation of the TIGR 

with a mPIF element.  

 

The search against the TIGR Zea Repeats TEs DB using the BLASTn two sequences 

alignment tool - at personalized parameters to find weak similarities 

HITS. Most of these were mPIF elements and sequences of 

some cases the query aligned many times to the transposable element sequence. All the 

aligments of the transposon to the genome were short partial sequences of TE, mainly 11 or 
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transposon. mPIF364 is 370 bp long, and belongs to the maize 

like MITE family called miniature PIF (mPIF).  

. Result of the interrogation of the TIGR DB that indicated the similarity of 

The search against the TIGR Zea Repeats TEs DB using the BLASTn two sequences 

at personalized parameters to find weak similarities - produced 187 BLAST 

st of these were mPIF elements and sequences of copia-like retrotransposon

some cases the query aligned many times to the transposable element sequence. All the 

aligments of the transposon to the genome were short partial sequences of TE, mainly 11 or 

transposon. mPIF364 is 370 bp long, and belongs to the maize 

 

DB that indicated the similarity of br2:NC238 insertion 

The search against the TIGR Zea Repeats TEs DB using the BLASTn two sequences 

produced 187 BLAST 

like retrotransposon. In 

some cases the query aligned many times to the transposable element sequence. All the 

aligments of the transposon to the genome were short partial sequences of TE, mainly 11 or 
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13 bp length. Most of the matches were AT-rich regions. Considering the richness in 

repetitive sequences of the maize genome the information obtained from this alignment may 

not be significantly relevant. 

 

 
Figure 3.12. Output of the  alignment against the TE sequence collection using BLASTn tool. The br2:NC238 

insertion sequence aligned with many transposons of the Zea collection. 

 

Sequence Transposable element type Number of matches 

TATATAAATATA  pPIF MITE 23 

AAGTTTATGTT copia-like retrotransposon 23 

CATATACACGT 
Ty1-copia type retrotransposon reverse 

transcriptase gene 
6 

AAGTTTATGTT copia-like retrotransposon 20 

 

Table 3.3. List of the most frequent TEs sequences that align to the br2:NC238 insertion, their family and 

number of matches. 

 

The first BLASTn output sequence was the ZRSiTEMT05700002 gi|13375369|nt96-280 Zea 

mays transposon Heart healer, a MITE transposable elements. Heart healer matched twice 
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along the transposon sequences: 449-AAACTAAAGTTTAT-462 and 452-

CTAAAGTTTAT-462, 13/14(93%) and 11/11 (100%) identities, respectively. 

A CLUSTAL alignment showed sequence similarities between the 3' end of the br2 

transposon and Heart healer and respectively in the alignment below). 

 

 

Figure 3.13. Alignment between the br2:NC238 insertion sequence (called br2NC238_gDNA_insertion in the 

figure) and the Heart Healer transposon (called Query_51378 ) sequence. 
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Considering the other matches, 21 were other MITEs, 20 of these are mPIF type. Many 

matches were retrotransposons regions. TE families are often characterized by similarities in 

TIRs. However, in our cases none of the matches aligned with the TIRs of the transposon. 

Twenty hits were copia-like retrotransposon leader regions. These alignments were mainly 

located at the 3'-end of the sequence.   

One hit was a copia-like retrotransposon reverse transcriptase gene-3'end that matches the 

two sequences TACTTGGCCTCCA and CGACGCCGATC; five results were Ty1-copia 

type retrotransposon reverse transcriptase gene that aligned to the sequence 

CATATACACGT. 

Two hits were Ty1-copia type retrotransposon. 

8 hits were LTR retrotransposon regions. Seven of these were 11 nucleotides long, 100% 

similar to the transposon sequence, the other one was 26/34 - 76% similar. 

Five hits were transposase/putative transposase: 

• ZRSiTETN00300014 gi|7673676|gb|AF247646.1|AF247646 Zea mays transposon Jittery 

transposase gene, complete cds ||Mu-like,  

• ZRSiTETN00400004 gi|18419549|gb|AF432586.1| Zea diploperennis clone Zd132 

transposon mariner-like transposase pseudogene, partial sequence,  

• ZRSiTERTOOT00134 (gi|18568260) Zea mays clone ZMMBBb_Z195D10 putative 

transposase,  

• ZRSiTETNOOT00019 gi|10441443:1-864 Zea mays transposon Doppia transposase DOPD 

and transposase DOPA mRNA, complete cds,  

• ZRSiTETN00300014 gi|7673676|gb|AF247646.1|AF247646 Zea mays transposon Jittery 

transposase gene, complete cds ||Mu-like.   

A hit was a 11 nucleotides long gag/pol region: ZRSiTERTOOT00328 

gi|17082476|nt151800-150927 Zea mays Huck1a gag/pol. 

 

The search against the Zea maize MITEs DB in particular, aligning the transposon sequence 

and the Zea MITE DB from the Plant Repeat DB using BLASTn web tool, showed that 

MITE sequences aligned mostly at the 3' side of the transposon in a AT-rich region. In fact, 

30 matches were or did contain the sequence "TATATAAATATA" while the sequence 

"AAACTAAAGTTTAT" aligned tree times. 
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Figure 3.14. BLAST  output of the search against the Zea maize MITEs DB indicated similarities of the 3' end 

of the br2:NC238 insertion with many MITE elements. 

 

The alignments with the Maize TE database found 172 similar regions. These are short 

regions with  a maximum query coverage of 12%. The BLAST results showed similarities of 

many regions of the transposon, especially at the 3' end, with several transposable elements.  

 

 
Figure 3.15. Output of the alignment of the br2:NC238 insertion with the Maize TE database showed several 

matches with the TEs. In several cases, the insertion sequence aligned with many inner regions of the TE.  
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Results of the alignment were both DNA transposons and retrotransposons orders and 

superfamilies. Most of these alignments were AT-rich regions. Most of the results were hAT 

superfamily DNA transposons. A summary of the result is listed below (table 3.4). 

 

Code Class Order Superfamily 
Number of 

matches 

DTM DNA TIR Mutator 12 

DHH DNA Helitron Helitron 5 

DTH DNA TIR Harbinger 25 

RST RNA Non-LTR SINE tRNA 18 

RIL RNA Non-LTR L1 2 

DTA DNA TIR hAT 53 

DTC DNA TIR Cacta 7 

RLG RNA LTR Gypsy 3 

RLX RNA LTR unknown 5 

RLC RNA LTR Copia 1 

 

Table 3.4. Summary of the alignment of the br2:NC238 insertion with the TEs database collection indicating 

the transposons classifications and the frequencies of matching.  
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p-MITE database contains more than 2 million MITE-related sequences of 3,527 MITE 

families, identified from 41 sequenced plant genomes. The interrogation of the p-MITE DB 

using the BLAST tool indicated 6 matches with 6 different MITE trasposable elements of 

Setaria italica.  

 

 
Figure 3.16. Screen shot of the output of the Plant MITE DB interrogation. 

 

These MITE belonged all to the hAT superfamily of the TIR order. This result confirmed the 

previous output of the Maize TE DB search indicating similarities with many hAT MITE 

sequences. The first hit aligned to the 5' of the transposon, however it did not include the first 

six nucleotides of the TIR. The other five sequences aligned to the 3' ends of the transposon, 

spanning part of the central region and including the entire TIRs sequences of the transposon. 

However, no similarities were found between the 5'-TIRs of these elements and the 

transposon’s ones.  
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Table 3.5. Summary of the BLAST HITS of the P-MITE database search indicating positions, length and 

similarities of the TEs and their classification. 

 

In conclusion, interrogation of DBs showed the br2:NC238 insertion sequence aligned with 

many transposable element sequences. These where both class I and class II elements, from 

many plant species. However, none of these alignment was significant. Perfect matches 

were mainly short sequences 11 or 13 nucleotides long and most of the sequences were 

repeats. Thus, it was not possible to assign br2:NC238 insertion to a known TE family. 

However, the structural traits of the br2:NC238 insertion indicated it belongs to a MITE 

family: the presence of TIRs and TSD, the short length, the isolation of a revertant plant 

that retained the TSD.  

Hit 
Query 

position 

Subject 

position 

Subject 

length 
Similarity Strands 

Transposon 

class/order/superfamily 
Specie 

1 6-53 5-52 63 
43/48 

(89%) 

Plus 

plus 

MITE family 

DTA_Sei20, 

SuperFamily hAT 

Setaria 

italica 

2 
510-

571 
51-112 114 

53/62 

(85%) 

Plus 

plus 

MITE family 

DTA_Sei20,  

SuperFamily hAT 

Setaria 

italica 

3 
510-

571 
55-115 117 

54/62 

(87%) 

Plus 

plus 

MITE family 

DTA_Sei20, 

SuperFamily hAT 

Setaria 

italica 

4 
510-

571 
61-121 122 

54/62 

(87%) 

Plus 

plus 

MITE family 

DTA_Sei20, 

SuperFamily hAT 

Setaria 

italica 

5 
510-

546 
60-95 121 

35/37 

(94%) 

Plus 

plus 

MITE family 

DTA_Sei20, 

SuperFamily hAT 

Setaria 

italica 

6 
510-

546 
68-103 106 

35/37 

(94%) 

Plus 

plus 

MITE family 

DTA_Sei20, 

SuperFamily hAT 

Setaria 

italica 



 

3.3.3 Analyses of br2:NC238

 

The transposon that characterized the 

3.4). The RNA splicing removes the introns to produce the mature transcript that will be 

transcribed into protein. In order to verify if the transposon insertion causes alterations in 

gene transcription, the sequencing of abcb1 cDNA from 

seedlings coleoptile and roots was performed

The gene structure made the amplifi

difficult . First, the length of T01 transcript  

cloning of the full-length cDNA. 

specific primers for the amplification of the abcb1 cDNA prevented the amplification of the 

desired regions of the gene. In fact, the similarities of the functional transcript form T01 with 
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Figure 3.19. Clone of the splicing form characterized by a insertion 190bp long. The insertion aligned to the 
central part of the br2:NC238 intronic insertion. Numbers indicate the position of the squared nucleotide.  

 

 
Figure 3.20. Clone characterized by the retaining of part of the intron (box A) and a insertion (box B) that 
aligned to the central region of the br2:NC238 intronic insertion 

A 

B 
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Figure 3.21. Clone characterized by an insertion that aligned to the central region of the br2:NC238 intronic 

insertion 

 

 

A 

B 
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Figure 3.22. Clone that ratained part of intron IV (box B, box C) and had a insertion that partially aligned to the 

br2:NC238 intronic insertion (box D). 

 

 

 

D 

C 



128 

 

Amplification of the 3'-end of abcb1 transcript of the br2:NC238 (primers 5for plus 5rev 

from C5113 to  T6076,  and 6for plus 6rev from T5556 to G6995, figure 3.17) produced two 

different sequences: the wild type 3'-end sequence and a sequence that lacks 860 bases.  

Also amplification of the 3'-end of abcb1 transcript of the revertant plant produced two 

different sequences: the wild type 3'-end sequence and a sequence characterized by a 967 

base long gap.  

In order to exclude a tissue-specific splicing form localization, RT-PCR were repeated on 

both roots and aerial part of seedlings. The same DNA forms were obtained.  

 

GRAMENE maize sequence database annotated a putative ABCB1 splicing variant sequence 

(figure 3.23). This transcript is a truncated version of ABCB1 that contains only four out of 

five exons and its last exon is 230 bp longer than the canonical ABCB1 transcript (figure 

3.23, B). Amplification using gene-specific primers (for8 plus rev8, figure 3.17) of the 

cDNA from seedling coleoptile and root RNA, and sequencing of the amplicons, confirmed 

the presence of the splicing form in br2:NC238 tissues.  

 

 

 

 

Figure 3.23. The abcb1 T01 and the predicted splicing variant T02. A) Data from Gramene DB. B) Comparison 

between the intron/exon structure of abcb1 T01 (top) and its splicing variant T02 (bottom). 
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3.3.4 Expression analyses of abcb1 and other auxin transporter encoding genes 

 

br2:NC238 mutant is characterized by the shortening of the lower internodes of the stem. The 

mutation is due to a transposon insertion in abcb1 gene that led to alter its transcription 

producing several splicing forms that include or not intron IV and/or part of the transposon 

sequence. A predicted splicing variant, abcb1 T02, is annotated in the Maize Genome 

Database. 

Expression analyses of abcb1 and other auxin transporter encoding genes were performed in 

order to: 

1. identify the tissues and the stages of abcb1 expression, as well as its T02 splicing form 

expression; 

2. verify alterations in auxin transporter expression profiles in the br2:NC238 plant. 

 

RT-PCR on 7-leaf-old revertant plant tissues indicated abcb1 mRNA was highly expressed at 

nodal tissues compared to internode, shoot apical meristem, and leaf (figure 3.24). This result 

suggests a function of the ABCB1 protein in exporting auxin from the upper internode to the 

lower one, as previously suggested by Knöller (Knöller et al., 2010).  

 

 
Figure 3.24. Expressione analyses of abcb1 transcript at 7-leaf-old stage. 

 

 

abcb1 transcript was also detect at 3-leaf-old stage, suggesting a role of ABCB1 protein 

starting from the early stages of the stem development (figure 3.25).  
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Figure 3.25. Expressione analyses of abcb1 transcript at 3-leaf-old stage. 

 

The mutant phenotype was not visible until the br2 plants were 7-leaf-old. Thus, the mutant 

phenotype was evident at a much more later development stage than the stage the  mutated 

gene transcript was detectable.  

The lack of a phenotype during the first developmental stages of the br2:NC238 mutant might 

be due to the presence of the necessary amount of auxin, despite its defective transport due to 

the mutant ABCB1. Indeed, auxin might also be transported by other carriers in the tissues. 

Together with passive diffusion, auxin can move through many other carriers: ABCBs, PINs, 

PIN-LIKEs and AUX/LAXes carrier types. In fact, in the mutant line, an alteration of other 

auxin transporters expression profiles, compared to the revertant plant tissues, was observed. 

A general increased in the transcription levels of AUX1, PIN1a, -2, -8 and -9 was observed 

(figure 3.26).     

Alteration in the expression levels of PIN mRNAs was already observed in br2 mutant roots 

(Forestan et al., 2012). Moreover, it was previously demonstrated that IAA treatment alters 

auxin transporter expression, increasing many PIN genes expression levels in maize shoot, 

while reducing the expression of other PINs, LAXex and ABCBs (Yue et al., 2015). Higher 

AUX1 expression levels, especially in the 6th internode, were recorded in br2 plants. Little is 

known about AUX/LAX carriers. Five AUX/LAX have been recently identified in maize (Yue 

et al., 2015). In Arabidopsis thaliana, AUX1 belongs to a small multigene family comprising 

four highly conserved genes that have all auxin uptake functions, but regulate distinct auxin 

dependent developmental processes (Péret et al., 2012). AUX1 is the most characterized 

AUX/LAX gene in plant. In Arabidopsis, mutations within the AUX1 gene confer an auxin-

resistant root growth phenotype and abolish root gravitropic curvature (Bennett et al., 1996). 
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AUX1 transcript is expressed in Arabidopsis root epidermal cells and thus it is supposed to be 

associated to the basipetal auxin transport (Bennett et al., 1996). The transcript of PIN9, a 

monocot specific gene, was more expressed in the br2:NC238 6th internode compared to the 

revertant line tissue. Previous expression analyses showed PIN9 was typically expressed in  in 

maize roots and nodes and transcript localization experiments showed it is expressed in the 

endodermis, pericycle, and in phloem of the central cylinder. Moreover, treating br2 seedling 

with the auxin analog NAA resulted in the up-regulation of PIN9 in the root apex (Forestan et 

al., 2012).  

  
Figure 3.26. Expressione analyses of auxin transporters transcript at 7-leaf-old stage. 

 

 

On the contrary, at 3-leaf-old stage, similar expression profiles of auxin transporters genes 

were observed in br2:NC238 and the revertant line tissues (figure 3.27). This is consistent 

with the normal phenotype of the br2:NC238 plants at this stage. 



132 

 

 

Figure 3.27. Expressione analyses of auxin transporters transcript at 3-lef-old stage. 

 

Moreover, in young plants stem, auxin derives from nearby auxin biosynthetic sites. Auxin 

biosynthesis happens in young tissues, such as shoot apical meristem, young leaves and root 

apical meristem. During the first stages of stem development and elongation, young internodes 

are close to these sites of auxin biosynthesis. Thus, auxin transport from the uppermost part of 

the plant to the base of the young stem is not as long as it is in the later stages of the stem 

elongation process.  ABCBs are thought to be responsible for the long-distance auxin transport 

and PINs, as well as AUX/LAX, are thought to be involved in short distance transport and 

rapid auxin flux redirection, as during the gravitropic response. It is thought that the generally 

apolar localization of ABCBs is not compatible with the plasticity and the complexity of the 

terrestrial plants that required dynamic redirection of auxin fluxes. ABCBs transport system is 

more ancient than PINs one, as shown by phylogenetic analyses that also indicated PINs arose 

with vascular plants (reviewed in Zazímalová, Murphy, Yang, Hoyerová, & Hosek, 2010).  

About the predicted abcb1 splicing variant T02, it was detected in br2:NC238 plant tissues at 

both 3-and 7-leaf-old stages. The strong expression of T02 in br2:NC238 tissues and its low 

expression in the revertant tissues suggests its increased transcription was an effect of the 

presence of the mutation in br2:NC238 line that prevents the normal maturation of the primary 

transcript.  
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Altogheter the present results suggest:  

1. ABCB1 is expressed from the early stages of the stem development, particularly at node 

level. A minor role of ABCB1 in the first steps of the elongation of the stem is suggested, 

as plants younger than 6-7-leaf-old showed normal internode length, despite the early 

transcription of abcb1 gene in the wild type plant. Expression analyses indicated high levels 

of the predicted Maize GDB splicing form T02 in br2:NC238 tissues, rather than the 

revertant line tissues. 

2. Altered expression profiles of other auxin carriers were observed, suggesting other proteins 

might become (more) involved in auxin transport when the transport through ABCB1 is 

defective and auxin over or down accumulates. 

 

 

 

3.4 Discussion 

 

Allelic tests performed crossing NC238 inbred line with brachytic mutants indicated NC238 

line is a br2 mutant (Johal, unpublished). Moreover, preliminary analyses indicated the 

mutation was due to an insertion in the central region of abcb1 gene (Johal, unpublished). One 

of the aims of the present thesis was to study the nature of the mutation in abcb1 gene in 

NC238 inbred line.  

The characterization of the mutation was performed by amplification and sequencing of the 

abcb1 genomic DNA from br2:NC238 plants and aligning it with the abcb1 genes of the 

revertant NC238 line and the wt B73 line reference genome. 

The revertant line abcb1 gene is characterized by a 6bp long insertion (GTCGCG) in intron IV 

that creates a direct repeat with an adjacent similar existing region. These sequences are also 

both present twice in br2:NC238, where they flank a 572bp inner sequence. The inner 

sequence corresponds to the duplicated target site (target site duplication, TSD) of the 

transposon. This region was presumably duplicated in the insertion event and retained after the 

transposon excision. The length and/or the sequence of the TSDs reflect the enzymatic 

cleavage properties of transposases and can be used to classify cut-and-paste transposons into 

different superfamilies. For instance, the Tc1/Mariner superfamily is characterized by 5′-TA-
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3′ TSD (Shao and Tu 2001), and the piggyBac superfamily by 5′-TTAA-3′ (Sarkar et al. 

2003; Mitra et al. 2008). Many hAT elements are characterized by the generation of 8bp 

target-site duplications after the transposition event, 3bp in the PIF/Harbinger superfamily 

(Zhang et al. 2001), whereas the Mutator/MuDR superfamily is associated with TSD ranging 

in size from 9 to 12bp (Lisch 2002; Marquez and Pritham 2010). However, the class I - 

transposons of the Spy family posses TIRs and encode for a transposase, but do not generate 

TSD. 

The insertion sequence is also characterized by 11bp of imperfect terminal inverted repeats 

(TIRs).  

The presence of 10-30bp TIRs, the TSD, and the short length of the sequence suggested the 

insertion was a Miniature inverted-repeat transposable element (MITE).  

The presence of the insertion and the isolation of its revertant line confirm the capacity of this 

insertion of moving to other location in the genome, in a way that is typical of the class II 

transposable elements. 

The sequence analysis on NCBI domain database indicated the lacking of known DNA 

domains. In particular, the  lacking of transposase coding sequence, indicates the element is 

non-autonomous and relies on an autonomous longer transposon for its transposition, 

reinforcing the hypothesis that the transposon is a MITEs. In fact, MITEs are believed to be 

"deletion derivatives" of DNA transposons. The best characterized deletion derivative of an 

autonomous element is the MITE element mPing, a rice Tourist-like MITE, deletion 

derivative of the autonomous Ping element (Kikuchi et al., 2003; Yang et al., 2007). MITEs 

are often located in gene-rich euchromatic regions and are associated with genes (Tu, 1997; 

Han and Wessler, 2010). When close to genes, MITEs can affect their expression. For 

instance, MITE Kiddo in rice was shown to up-regulate the expression of Ubiquitin2 when 

inserted in its promoter region (Yang et al., 2005).  

 

Interrogation of the br2:NC238 transposon sequence against the Maize GDB version 3 by the 

BLAST tool showed the transposon has similarities with many sequences in the maize 

genome. These matches are short sequences that do not span any TE and are located in 

chromosome 2, 8, 4 and 7. One of these output sequence is a locus where a low confidence 

gene (GRMZM2G580168_T01) is present.  
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The transposon BLAT search identified many sequences with some similarities of the query in 

the maize genome database - version 2. 

Interrogation of the Zea repeats collection of the TIGR Plant Repeat Database 

(TIGR_Zea_Repeats.v3.0) through the Web BLAST Server on default settings indicated a 

similarity of the transposon with a Maize mPIF364 MITE element that belong to the maize 

Tourist-like MITE family called miniature PIF (mPIF).  

Searching against the TIGR Zea Repeats TEs DB using the BLASTn two sequences alignment 

tool - at personalized parameters to find weak similarities - indicated, also in this search, many 

similarities with mPIFs. Moreover similarities with copia-like retrotransposon and copia-like 

reverse transcriptase gene were found. Copia-like or copia elements, together with gypsy, are 

one of the major subclasses of LTR retrotransposons. Differently from DNA - copy and paste - 

TEs, LTR TEs propagate through RNA intermediate, they are transcribed and reverse 

transcribed into a new location by their own encoded reverse transcriptase. They are 

characterize by terminal inverted repeats but these are much longer than MITEs ranging in 

size from a few hundred bp to almost 5 kb, depending on the repeat family.  

The most significant TIGR Zea Repeats TEs DB output sequence was a Heart healer 

transposon. Heart healer is classified as MITE transposable elements. Little is known about 

this transposon in the literature. Investigation on Maize transposon transcription patterns 

showed Heart healers were expressed in the leaf, flower, shoot apical meristem and 

endosperm, while no expression was observed in the embryo, ovary, pericarp, root and cell 

culture (Vicient, 2010). 

Similarities with transposase/putative transposases were found: two are Zea mays transposon 

Jittery transposase gene, Zea diploperennis clone Zd132 transposon mariner-like transposase 

pseudogene, Zea mays clone ZMMBBb_Z195D10 putative transposase, Zea mays transposon 

Doppia transposase DOPD and transposase DOPA. One match aligns to the Zea mays Huck1a 

gag/pol region. 

The search against the Zea maize MITEs DB indicated many similarities with the transposon 

3'-side, in a AT-rich region. Several matches regard the "TATATAAATATA" and 

"AAACTAAAGTTTAT" regions. No literature information is present about these sequences. 

Alignment with the Maize TE database showed 172 similar regions of both DNA transposons 

and retrotransposons orders and super families. Most of these alignments were AT-rich 
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regions. Many results were hAT superfamily DNA transposons. DNA transposons in 

the hAT superfamily are widespread in plants and animals and include a number of active, 

well-studied elements such as the Ac transposon of Zea mays, the hobo transposon 

of Drosophila melanogaster, the Hermes transposon of the housefly Musca domestica, 

and the Tol2 transposon of the Japanese Medaka fish, Oryzias latipes (Mc Clintock, 1950, 

Blackman 1989, Kawakami and Shima 1999) hAT transposons are also found in 

mammalian genomes including humans where they are the most abundant DNA transposons 

and comprise 1.55% (195 Mb) of the total genome (Lander, 2001). hAT elements in plants, 

animals, and fungi are characterized by six con served blocks of amino acids and by a weak 

consensus for TIRs (Rubin et al., 2001). 

Interrogating the p-MITE database using the BLAST on.line tool indicated 6 matches with 6 

different MITE trasposable elements Setaria italica specie, all belonging to the hAT 

superfamily of the TIR order.  

 

br2:NC238 abcb1 cDNA sequencing 

Amplification and sequencing of the 5'-side of the transcript produced a single band, which 

sequence was 100% similar to the wild type B73, for both the revertant and the br2:NC238 

transcript.  

Amplification of the 3'-side of abcb1 transcript of the revertant plant produced two different 

sequences: the wild type sequence and a sequence characterized by a 967 base long gap. This 

isoform is not annotated in B73 genome database and could be a region amplified from 

another abc superfamily member that is similar to abcb1 in its 3'-side. Also, this splicing form 

could be a typical isoform of NC238 genetic background.  

Amplification of the 3'-side of abcb1 transcript of the br2:NC238 produced two different 

sequences: the wild type 3'-side sequence and a splicing form that lacks 860 bases, in both 

roots and aerial part of seedlings. The shorter isoform the gap could be the 3'-side of one of the 

splicing variant caused by the transposon. RT-PCR of the central region of abcb1 br2:NC238 

transcript produced several bands corresponding to different splice variants as consequence of 

the presence of the transposon in abcb1 intron IV causes several. It is well known that 

transposons play a role in alternative splicing creation. Splicing is the mechanism of removing 

intronic sequences defined by short conserved sequence motifs at the 5′ and 3′ of the introns to 
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join the neighboring exons and generate an uninterrupted open reading frame (ORF) for 

translation. This is catalyzed by the spliceosome, a high molecular weight complex that is 

assembled at every intron. The cis sequences in the pre-mRNA include splice sites, branch 

point, polypyrimidine tract, enhancer, and suppressor sequences. In addition, in plants UA-

richness of introns contributes to their recognition and is essential for efficient splicing. It has 

been reported transposon insertion in introns can create alternative splicing forms of the gene. 

In contrast, transposon insertion in exons can function as new introns and be removed by 

splicing (Varagona et al., 1992). 

Alternative splicing can be caused by single base mutation, as in the case of Waxy (Wx) gene 

of rice (Oryza sativa) that encodes a granule-bound starch synthase that controls grain 

amylose content. The wx mutant (wxb) has a guanosine to uridine mutation at the 5′ splice site 

of intron 1, activates two cryptic splice sites in exon 1 and reduces splicing efficiency resulting 

in lower levels of amylose to generate “sticky” rice (Cai et al., 1998; Isshiki et al., 1998).  

Through alternative splicing different transcript variants with different stabilities and different 

regulatory motifs can be generated, leading to variation in the transcriptome. The importance 

of alternative splicing in plants has been increasingly recognized in the last decade. Recently, 

high-throughput RNA-seq has allowed the identification of previously unknown transcript 

isoforms (Alamancos et a., 2014).  

An alternative splicing variant of abcb1 gene was already annotated in the Maize Genome 

database (GRMZM2G315375-T02). Domain analyses indicate this form encodes a truncated 

version of the protein with one of the two ATP-binding cassettes and one of the two 

transmembrane regions. 

This form is present in both br2NC238 and the revertant plant at 7-leaf-old stage in stem 

tissues. A higher expression of the transcript was observed in br2NC238 line.  

This transcript is not related to the transcripts originated by the transposon insertion in 

br2NC238 abcb1 intron IV, and its over expression in the mutant may derived by lacking of 

the normal T01 transcript that is replaced by many other abnormal transcripts, and eventually 

proteins. 
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In conclusion, the br2:NC238 insertion share many structural characteristics with MITE TEs: 

short sequence, presence of Terminal Inverted Repeats (TIRs), flanked by short direct Target 

Site Duplication (TSD), and the isolation of a revertant plant that retained the extra copy of a 

TSD. 

However, the databases interrogations did not allow the assignment of the sequence to any 

known TE family or superfamily. Searches outputs showed several similarities with both DNA 

and RNA transposable elements as well as similarities with transposases or putative 

transposases regions. Many of these outputs are MITEs. However, all these matches are short 

sequences, mainly consisting of 11 or 13 nucleotides, and considering the richness in 

repetitive sequences of the maize genome this information may not be significantly relevant. 

Moreover, the majority of MITEs were classified into five superfamilies, including 

Tc1/Mariner, PIF/Harbinger, CACTA, hAT and Mutator. MITE families were assigned into 

superfamilies based on their TIR and TSD sequences. None of the results align with the TIRs 

of the transposon. However, alignments mainly localized at the 3'-end of the sequence.   

RT-PCRs indicated abcb1 is expressed from early stages of stem development, however, a 

minor role of ABCB1 protein in the first steps of the elongation of the stem is suggested, as 

plants younger than 6-7-leaf-old showed normal internode length. The presence of the 

insertion in abcb1 gene in br2:NC238 was associated with high levels of the predicted Maize 

GDB splicing form T02. Moreover, alteration in the profile of other auxin transporters 

encoding genes was observed. Results indicated other proteins might become (more) involved 

in auxin transport, when the transport through ABCB1 is defective, and auxin over or down 

accumulates. 
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Chapter IV 

 

The br2NC238:B73 line 

 

4.1 Introduction 

 

Little is known about the NC238 inbred line in the literature. Allelic tests indicated the 

inbred line is a brachytic 2 type mutant (Johal, unpublished): the mutation is due to a 

transposon insertion in abcb1 intronic region. BR2/ABCB1 was clone by transposon 

tagging: it encodes for a auxin transporter protein (Multani et al., 2003; Knöller et al., 

2010). Other br2 alleles have been later isolated (Pilu et al., 2007). br2 lines were described 

as altered in the lower internodes elongation (Multani et al., 2003; Pilu et al., 2007; Cassani 

et al., 2010), in the size of the leaf epidermal cell (Pilu et al., 2007; Cassani et al., 2010) and 

leaf cells width (Knöller et al., 2010), and in the stem vasculature (Knöller et al., 2010; 

Multani et al., 2003). 

NC238 inbred line measurements indicated it is characterized by the shortening and 

thickeness of the lower internodes. The phenotype arise when plants were 6-7 collared 

leaves. The other stem traits (number of nodes per plant, days to anthesis, tassel length, ears 

per plant) did not differ from the tall revertant plant traits (present thesis results). 

In order to verify the transpon insertion was the true cause of the short stature of the NC238 

plant, the NC238 abcb1 mutant allele was introgressed in the B73 line - the maize reference 

genome (figure 4.1) (Schnable et al., 2009). br2NC238 short line is homozygous for the the 

abcb1 mutant recessive allele (abcb1 abcb1). The br2NC238 line was crossed with the B73 

line. The heterozygous F1 progeny (Abcb1 abcb1) was backcrossed 5 times. The obtained 

line was self-crossed to obtained a progeny composed by 50% short homozygous plants. 

This short br2NC238:B73 line carrying the mutant allele br2/abcb1 was used in the 

experiments. 

 

Amplification and sequencing of abcb1 gene in the new line were made in order to confirm 

the presence of the allele in the line. RT-PCR was performed in order to verify the 
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transcription of the gene in this line. Finally, the morphological traits measurements were 

made to confirm the allele confers the br2 type phenotype. 

 

 

 

 

Figure 4.1. br2NC238 was homozygous for the the abcb1 mutant allele (abcb1 abcb1). The abcb1 allele was 

introgressed in the wild type B73 reference genome line (Abcb1 Abcb1). After 5 cycles of crossing the line 

carrying the br2NC238 abcb1 allele with the wild type B73, a selfed crossing of the resulting line (Abcb1 

abcb1) allowed to obtained a progeny 50% homozygous plant (abcb1 abcb1, red squared in the figure). This 

br2NC238:B73 line carrying the mutant allele abcb1 abcb1 was used in the experiments. 
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4.2 Materials and methods 

 

Plant material 

br2:B73 was provided by prof.Johal (Purdue University). B73 wild type line was available 

at Prof.Varotto lab, originally obtained from the Maize Stock Centre and propagated at the 

"L.Toniolo" farm of the University of Padua. The two lines were grown in pots in the 

greenhouse of the University of Padua until anthesis stage. 

 

Molecular biology techniques and statistical analyses 

DNA and RNA extraction, gene amplification, DNA sequencing, gene expression analyses 

and statistical analyses were performed as described in Chapters II and III "Materials and 

methods" sections. 

 

 

4.3. Results 

 

4.3.1 Genetic analyses of the br2NC238:B73 line 

 

After an introgression of br2NC238 abcb1 allele in the wild type B73 that consisted in 

multiple cycles of crossing of br2NC238 with B73, self crossing of the resulting line and 

selection of the short plant ( homozygous abcb1 abcb1) a B73 genetic background line 

carrying the mutant allele br2/abcb1 was obtained (figure 4.1).  

Amplification and sequencing of the genomic clone of br2NC238:B73 line using primers 

4BS (see Chapter III figure 3.17) confirmed the presence of the NC238 insertion and the 

homozygousity of the line. RT-PCRs on seedling coleoptile using primers 4 forward plus 4 

reverse (see Chapter III figure 3.17, from A1476 up to C2648 and 11 forward plus 5 reverse 

(see Chapter III figure 3.17, from A1855 to T3564) to amplify the central region of the 

transcript, produced multiple bands confirming the presence of the insertion causes an 

alteration of the transcription of the gene. Amplification was performed on two plants 

(plant 1 and plant 2 in figure 4.2).  

 



142 

 

 
Figure 4.2. Gel of the RT-PCR on two seedlings of the br2NC238:B73 line (named 1 and 2) using primers 

4forward plus 4reverse and 11forward plus 5reverse. 

 

 

 

4.3.2 Morphological traits measurements 

 

br2NC238:B73 and wild type B73 plants were grown in pots in greenhouse at controlled 

temperature and lightening. Measurements were performed at anthesis. 19 B73 plants and 

18 br2NC238:B73 plants were measured. Plant stature was measured from soil level to the 

uppermost node. Position of the node carrying the uppermost ear was counted. Number of 

tassel branches and number of leaves per plant were counted. Internode lenght and node 

diameters were recorded.  

In br2NC238:B73 line, the typical phenotype arise when plants had 5-6 collared leaves 

(figure 4.3). Previous observation of br2NC238 line indicated the br2 phenotype arise when 

plants were 6-7 collared leaves. 
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Figure 4.4. B73 wt (A, D) and br2NC238:B73 (B, C) at anthesis after leaves removal, plant stems (A, B) and 

particular of the lower internodes (C, D). 

Figure 4.3. br2NC238:B73 (left) and B73 plants (right) were visible different starting from the 

stage plants had 5-6 collared leaves.  
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At anthesis, on average, br2NC238:B73 plants stature was 70cm tall - 31% lower than B73 

stature. Short stature was due to the shortening of the lower internodes. The first and the 

second internodes above the uppermost crown root node were visible different (figure 4.4). 

Number of leaves per plant did not differ in the two lines (p-value>0.01). 

 

 

 

Figure 4.5. Stature of B73 and the br2NC238:B73 plants. 

 

 

 

 

Figure 4.6. Internode lengths: br2 lower internodes were shorter than the B73 line 
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Figure 4.7. Number of leaves per plant of B73 and the br2NC238:B73 are similar. Short stature was due to the 

shortening of the lower internodes. 

In order to detect differences in the reproductive growth, the number of tassel branches was 

observed. Differences in the number of tassel branches were observed in the two lines: the 

average number of branches of br2NC238:B73 tassel was slightly higher than those of the 

B73 line (Figure 4.8, T-test p-value<0.01). The position of the uppermost ear along the 

stem was recorded: no statistically significant difference was observed between the two 

lines (figure 4.10).  

 
Figure 4.9. Number of tassel branches of the br2NC238:B73 plants were slightly higher than those of B73 

plant. 
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Figure 4.10. Position of the node with the uppermost ear of the br2NC238:B73 and the B73 plant. 

 

 
Figure 4.11. Node diameters of B73 and br2NC238:B73 line (named br2 in the figure). Only the second node 

above the uppermost ear node differed in the two lines: br2 node was thicker than B73 node. 
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The shortening of the lower internodes caused the crown root nodes to be close to the 

ground leaves or even inside (figure 4.12). This characteristic could influence the plant 

anchoring to the soil. However, differently from br2:NC238, in B73 mutants the lower 

internodes diameters were not thicker than the wild type B73. This observation suggest that 

the  genetic background affects  the phenotype of the mutant.  

 

 
Figure 4.12. The shortening of the lower internodes of br2NC238:B73 (right) caused the crown roots node to 

be close to the soil, while the wild type plants (right) are characterized by the two or three crown root 

nodes. 

 

In conclusion, introgression of the NC238 br2 mutant allele in the reference genome B73 

caused the typical phenotype characterized by the shortening of the lower internodes. 

However, other traits observed in br2:NC238 line were not present in B73: the lower node 

diameters were similar between br2 and B73 lines. Moreover, differently from br2:NC238, 

br2 in B73 caused an increased in tassel branches. These traits appear to be related to the 

genetic background.  

However, results indicate the abcb1 mutant allele derived from br2:NC238 line was 

responsible for the shortening of the stature in B73 mutant and suggest that the allele might 

be used in breeding programs to obtain lines with reduced height. 
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4.4 Discussion 
 

NC238 inbred line measurements indicated it is characterized by the shortening and 

thickeness of the lower internodes while no differences in the other stem traits (number of 

nodes per plant, days to anthesis, tassel length, ears per plant) compared to the tall revertant 

plant were observed (present thesis results). 

Introgression of br2:NC238 abcb1  mutant allele in B73 line allowed to verify the effects of 

the br2:NC238 abcb1 mutation in another genetic background. B73 line was choses as as it 

represented the maize reference line (Strable and Scanlon, 2009). Morphological traits 

measurements indicated the mutation in B73 caused the shortening of the lower internodes.  

This trait was observed also in all the other br2 line previously characterized.  

However, the br2:NC238 abcb1 mutation had some different effects in B73 compared to 

the br2:NC238 line. These two differences may be due to the differences in the genetic 

background. 

First, the increased thickness of the lower nodes observed in br2:NC238 was not observed 

in br2NC238:B73. The thickness of the stem base is an important trait as it could confer 

resistance to lodging during storms and windy weather.  

Second, br2:NC238:B73 is characterized by an increased number of tassel branches. Tassel 

branches development is regulated by auxin, thus the alteration in tassel branches number 

in br2 was consistent with an alteration of auxin transport. The inflorescence meristem (IM) 

first produces a series of axillary meristems, named branch meristems (BMs), that will 

make the long basal branches of the mature tassel. Auxin starts to accumulate from the stem 

epidermis at the site of primordium initiation. Once the primordium starts to grow out, 

auxin is depleted from the surrounding area and a new auxin sink forms at the site of the 

next primordium (Reinhardt et al., 2003; Heisler et al., 2005).  

RT-PCRs on seedling coleoptile to amplify the central region of the transcript, produced 

multiple bands confirming the presence of the insertion caused an alteration of the 

transcription of the gene.   

Results indicate the abcb1 mutant allele derived from br2:NC238 line was responsible for 

the shortening of the stature in B73 mutant and suggest that the allele might be used in 

breeding programs to obtain lines with reduced height. 
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5. General discussion and conclusions 

 

Dwarfism or semi-dwarfism confers many advantages to crop species, such as increased 

allocation of energy to seed rather than stem, denser growth, increased resistance to storm 

damages and reduced loss during harvesting. A defect in polar auxin transport (PAT) 

causes the sorghum mutant dwarf3 (dw3) and the maize brachytic2 (br2) mutations 

(Multani et al., 2003). Both dw3 and br2 are mutations affecting the gene orthologue of  A. 

thaliana ABCB1, which functions in auxin PAT.   

Auxin is a key regulator of plant growth: local biosynthesis, degradation and conjugation 

contribute to the modulation of IAA homeostasis at the cellular level. ABCBs, together 

with the PIN FORMED, the AUX1/LAX and the PILS auxin transporters, create a 

directional auxin flux from the site of synthesis - young tissues - to the site of action 

(Zazímalová et al., 2010b; Smith, 2008; Xu et al., 2006; Cho and Cho, 2012; Balzan et al., 

2014). Indeed, auxin transport, with local biosynthesis and conjugation, allows the 

establishment of an auxin gradient, and the local auxin maxima regulates many aspects of 

the embryonic development, stem cell maintenance, shoot architecture, and tropic growth 

responses, root development and gravitropism (Peer et al., 2011; Gallavotti et al., 2008; 

Gallavotti, 2013; Müller et al., 1998; Zhao, 2010; Kuhlemeier, 2007; Marchant et al., 2002; 

Debi et al., 2003; Blilou et al., 2005; Kramer and Bennett, 2006; Rojas-Pierce et al., 2007; 

Terasaka et al., 2010; Barbez et al., 2012; Wang and Ruan, 2013). 

The NC238 inbred line is a br2 mutant line, characterized by both a reduced stature and 

wider lower nodes diameter. No other altered phenotypic traits, included root system traits, 

were detected in the present study.  

Many brachytic mutants (br) were previously isolated: these br lines appear to differ for the 

position of the inode/nternodes affected by the mutation. In the case of br2:NC238 the 

shortening of the internodes regarded mainly the base of the stem. Importantly, the lower 

nodes are those where ear primordia initiate, but the mutation does not affect the ear 

differentiation and development.  

In our work, the mutant allele was introgressed  in the B73 line. In this reference inbred line 

floral transition is usually observed at V4-V5 stage (Meng et al., 2011). In the first stages of 

development, br2 and the revertant plants were indistinguishable and the mutant phenotype 
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became visible when plants were 6/7-collared-leaves, thus after floral transition, suggesting 

that the mutation does not affect the differentiation of the inflorescence meristem.  

In addition, the introgression of the br2:NC238 abcb1mutant allele in the B73 genetic 

background confirmed the mutation in abcb1 was the cause of the short stature phenotype. 

However, in this genetic background no thickness of the lower nodes was observed. 

Moreover, an alteration in tassel branches number was recorded. This is the first time that 

an alteration in tassel branch number is observed in a br2 line. It is well known that in 

plants, the genetic background influences the penetrance (whether or not a mutant 

phenotype is detected) and expressivity (the intensity of the mutant phenotype) of 

mutations. The br2:NC238 abcb1mutant allele may induce other (minor) effects - in 

addition to the severe shortening of the lower plant internodes - when expressed in other 

genetic backgrounds. 

An intronic insertion characterized the br2:NC238 abcb1 mutant allele. abcb1 gene is 

expressed from the early stages of the stem development, particularly at nodes level. A 

minor role of ABCB1 in the first steps of the elongation of the stem is suggested, as br2 

plants younger than 6-7-leaf-old showed normal internode length. The br2:NC238 abcb1 

insertion sequence aligned to many transposable elements of both class I and class II, but  

all  matches were short sequences. However, the analyses could not been significant as 

most of the maize genome is composed of repeats and transposons. Though, many 

structural traits suggested the insertion was a MITE type DNA transposon. The presence of 

the insertion in an intronic region in br2:NC238 caused alteration in the splicing of the pre-

RNA of the gene: several splicing forms were consequently produced. Moreover, 

expression analyses indicated high levels of the Maize GDB annotated predicted splicing 

form T02 and altered expression profiles of other auxin carriers, mainly up-regulated, in 

br2:NC238 tissues. Alterations in the expression of auxin transporters and the abcb1 T02 

splicing variant  in br2 mutant might suggest the presence of a compensatory mechanism 

aims at restoring the defective auxin transport. However, this compensatory mechanism is 

not completely successfully considering the br2 severe phenotype. 

In conclusion, NC238br2 allele could be useful for breeding programs aiming at obtaining 

lines with reduced height.  
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Further analyses have to be performed in order to study the nature and the transposition 

mechanism, and particularly to determine the stability of the br2:NC238 insertion element 

in the genome. Moreover, the effects of the br2:NC238 abcb1 allele on the plant yield need 

to be evaluated as well as the effect of the variation in the numbers tassel branches in pollen 

production. 
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