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SUMMARY 

Natural archives, and tree-rings in particular, are fundamental tools to investigate on pre-

instrumental climate variability. Tree-ring research, indeed, covers a wide field of 

applications, however several woody species are still overlooked and investigating just at 

yearly resolution, we might miss important intra-annual information. To fill these gaps, the 

main objective of this thesis is to undertake new lines in tree-ring research testing i) the 

dendrochronological potential of a marginal species to detect different climatic signal respect 

the usual tree species and ii) a quantitative wood anatomy approach to investigate whether 

with multiple cell traits is possible to extract information not visible at annual level in tree-

ring series. With the new species, the common juniper (Juniperus communis, L.), I found a 

clear winter precipitation signal in ring-width series in the Alps, and a decoupling in the tree-

ring to climate responses and growth between trees and shrubs across all the biomes 

investigated (Mediterranean, Alpine and Polar). With wood anatomy, I assessed the 

importance to use several related proxies as a diagnostic tool to detect hydraulic 

deterioration and mortality due to drought stress in Scots pine (Pinus sylvestris L.) and Silver 

fir (Abies alba) in Spain. In addition, at high latitudes, still on Scots pine I was built a 1000-

year long chronology with anatomical parameters which could permit to investigate long-

term temperature fluctuations. This work highlights the importance to use different species 

and different approaches to extract new information out of the tree-ring series. These first 

analysis show the possibility to reconstruct winter precipitation in the Alps and to adopt 

anatomical data as a surrogate of densitometric measurements or as a valid diagnostic tool 

for a retrospective assessment of trees health. Prediction on the future status of our forests 

would benefit from such an information. 
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RIASSUNTO 

Archivi naturali, in particolare gli anelli legnosi, sono strumenti fondamentali per studiare la 

variabilità climatica antecedente la strumentazione meteorologica. La ricerca sugli anelli 

legnosi copre un ampio campo di applicazioni, ciononostante molte specie vegetali non sono 

ancora state esplorate dal punto di vista dendrocronologico, e in aggiunta l’analisi solo a 

livello annuale, potrebbe non evidenziare diverse importanti informazioni intra-annuali. Per 

colmare queste mancanze, l’obiettivo principale di questa tesi è di intraprendere nuove linee 

di ricerca dendrocronologica testando i) il potenziale di una specie marginale per individuare 

un segnale climatico differente e non identificato in altre specie arboree e ii) un approccio di 

dendro-anatomia quantitativa per verificare se attraverso molteplici tratti cellulari è possibile 

estrarre informazioni non visibili a livello annuale nelle serie di anelli legnosi. Con l’utilizzo 

di una nuova specie in dendrocronologia, il ginepro comune (Juniperus communis, L.), ho 

identificato un chiaro segnale di precipitazione invernale nelle serie anulari nella regione 

Alpina, e un disaccoppiamento negli incrementi sulla risposta clima-accrescimento tra alberi 

e arbusti in diversi biomi (Mediterraneo, Alpino e Polare). Attraverso l’anatomia del legno, 

ho definito l’importanza di utilizzare diversi “proxy” relativi a queste misure come strumenti 

diagnostici per individuare la deteriorazione idraulica e mortalità a causa di stress idrico e 

siccità su pino silvestre (Pinus sylvestris L.) e abete bianco (Abies alba) in Spagna. In 

aggiunta, ad elevate latitudini, sempre su pino silvestre ho costruito una cronologia lunga 

1000 anni con parametri anatomici che potrebbero permettere di studiare fluttuazioni di 

lungo termine. Questo lavoro evidenzia l’importanza di utilizzare diverse specie in 

dendrocronologia e differenti approcci per estrarre nuove informazioni da serie di anelli 

legnosi. Queste prime analisi dimostrano la possibilità di ricostruire la precipitazione nevosa 

sulle Alpi e di adottare dati anatomici come sostituti di misure densitometriche o come validi 

strumenti diagnostici per un’analisi retrospettiva della salute degli alberi. Queste nuove 

informazioni possono essere di beneficio per comprendere il futuro status delle nostre 

foreste. 

Applicazione di nuove linee di ricerca dendrocronologiche
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GENERAL INTRODUCTION 

Dendrochronology and new frontiers in tree-ring research 

The growing interest on recent global warming (IPCC, 2014) rises the emergent demand to 

investigate on past climate to model future trends. It is well-known that natural archives such 

as ice cores, pollens, ocean sediments, corals, and tree rings, store a huge amount of 

information about pre-instrumental climate and environmental variability, and thanks to 

them it is possible to reconstruct long-term climatic fluctuations (Bradley, 2014). 

Tree ring in particular, is by far one of the most common and used proxy record to 

reconstruct past climate variation (Fritts, 1976; Jones et al., 2009; IPCC, 2014). 

Dendrochronology is properly the science used to date tree rings through crossdating and 

thanks to this method, also considered a basic principle within this discipline, it is possible to 

move one step ahead the normal ring counting. In fact, with crossdating it is feasible to 

objectively compare different records with the possibility to absolutely date relic or historical 

wood material and to extend back the time frame of the analysis. These chances turn the 

tree-ring sequences one of the most accurate and precise paleorecord available. 

Collecting samples from both living trees and death wood material it is clear the potential to 

build reliable centuries to millennia long chronologies. In fact, although some living trees 

(Pinus Longeva) can reach up to 5000 years (Brown, 1996), also processing dead individuals 

like snags and logs or wood samples submerged in lakes, in peat bogs or from ancient 

buildings, it is possible to create very long chronologies (Esper et al., 2002; Guiot et al., 

2005; Büntgen et al., 2008a; Jones et al., 2009). Wisely distilling the target information out 

of this kind of datasets, many researches and climatologist were able to reconstruct 

millennia-scale climate variability in temperature- or water-limited environments (Büntgen 

et al., 2005, 2006, 2008a; Corona et al., 2010), especially at high latitudes or altitudes 

around the globe (Esper et al., 2002, 2007, 2014; Büntgen et al., 2008b; Zhu et al., 2008). 

Together with the most widely and classically adopted ring width there are several other 

parameters that can be extracted from the same wood sample which, in the last decades, 

proved to be very valuable proxies: stable isotopes and wood density. Stable isotopes in tree 

rings, are used to infer plants physiological responses to environmental variability 

(McCarroll & Loader, 2004a; Loader et al., 2007) according to parallel variation in Carbon 

and Oxygen isotopes concentration in wood cellulose. From them it is possible to derive 

changes in plant water use efficiency or soil moisture deficit, and they have been efficiently 

adopted to build long term precipitation reconstructions (Treydte et al., 2006, 2014; Rinne et 
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al., 2013; Sidorova et al., 2013). Furthermore, high resolution density profiles can be 

extracted by x-ray densitometry (Schweingruber et al., 1978). Among the various parameters 

that can be extracted, maximum latewood density has been found highly conditioned by 

summer temperatures, and due to this association the densitometric approach is preferred 

respect to tree-ring measurements in many climate reconstruction studies especially at high 

latitudes (Esper et al., 2010, 2014; Linderholm et al., 2014). 

Nonetheless, despite the widespread use and the high potential there are still several 

drawbacks and possibilities to improve the type and quality of the information extracted 

from wood samples. For example, i) trees are active just during the growing season, 

implying a lack of information related to the winter or dormancy period; ii) tree rings have 

an inherent yearly resolution which, usually, hampers the possibility of a detailed analysis at 

intra annual level; iii) isotopes and densitometric measurements still lack shared protocols 

with the negative result that data are not or hardly comparable among different laboratories. 

Further, these approaches are rather expensive and time consuming (Mannes et al., 2007; 

Michener & Lajtha, 2007)(McCarroll & Loader, 2004b) usually limiting sample replication.  

Starting from these weaknesses and with the constant need to improve the research through 

more exhaustive data, emerges the need to associate the classical dendrochronological 

method with new research lines, including the use of different species or a different approach 

in samples measuring. 

Testing the potential of an underrepresented species in tree-ring research 

Tree-ring analysis and dendrochronology has been widely applied to many shrub and tree 

species distributed all over the world (Grissino-Mayer, 1993) however, some species are 

well known for the critical crossdating and for this reason they are not or poorly adopted. For 

example, common juniper (Juniperus communis, L.), even though it has the largest 

geographical range of any woody plant, is considered rather challenging to work with, and 

for this reason until now it has not been thoroughly considered for dendrochronological 

studies. Nonetheless, being a shrub, it might potentially be sensitive to different climatic 

drivers respect the coexisting tree species. 

In this work I aimed to apply the classical dendrochronological approach to common juniper 

which, as already mentioned, has a marginal role in dendrochronology due to the 

complexities in crossdating derived from the irregular and lobate growth form, for the 

frequent presence of wedging and missing rings and for the reduce growth rates (Hantemirov 

et al., 2011; Wilmking et al., 2012; Myers-Smith et al., 2014).  
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The Alps are one of the most studied area for dendrochronological investigations and tree-

rings climate reconstructions (Carrer & Urbinati, 2001; Frank & Esper, 2005; Corona et al., 

2010). Here conifers are dominant and represent the target species for investigations 

considering also that they are usually long-lived and with a marked temperature signal. 

Nonetheless, coexisting shrub species have not been thoroughly explored in this region. 

Indeed, just few studies involved common juniper, and more in general the genus Juniperus 

worldwide (Esper, 2000; Hantemirov et al., 2000, 2011; Esper et al., 2007; Hallinger et al., 

2010; Liang et al., 2011). To fill this gap, I tried to explore the dendrochronological potential 

of common juniper first in the Alpine range, and then extending the analysis at national and 

European level. In addition, considering that a potential decoupling should be present in 

climate sensitivity between shrubs and trees living at the treeline (Körner, 2012), I 

hypothesise that trees, having an erected growth form should be sensitive to temperatures 

being more coupled with atmospheric air, in contrast to shrubs, characterized by prostrate 

growth form which should be influenced by different climate drivers. This dichotomy 

between erected and prostrate growth form could assume an important role in a climate 

warming scenario. 

Testing the informative and diagnostic potential of quantitative wood anatomical 

parameters 

Analysis on the recent climate warming demonstrate that the global air temperature over the 

period of 1880-2012 has increased of an average of 0.85 [0.65 to 1.06] °C and the last 30 

years was the warmest period over the last 1400 years in the northern hemisphere (IPCC, 

2014). In particular the effect of rising temperatures in Mediterranean biome, can be 

detrimental for plant growth (Linares & Camarero, 2012; Vicente-Serrano et al., 2015) 

especially in the drought-prone areas. Further, in this region the presence of extreme drought 

events has been projected to increase (Allen, 2009; Allen et al., 2010). Two ecophysiological 

mechanisms are assumed to play a key role in drought-induced forest dieback: i) carbon 

starvation, due to stomata closure to avoid evapotranspiration (typical to isohydric species), 

but at the cost of reducing carbon uptake or ii) hydraulic failure, related to the very high 

evapotranspiration rate coupled with water shortage. This can induce vessel cavitation or a 

general deterioration in the hydraulic performances especially in the anisohydric species 

(McDowell, 2011). Within this framework, I tried to test the diagnostic skills of 

dendroanatomy in growth declining and tree dieback phenomena. 
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As previously mentioned, the classical dendrochronological approach usually does not 

permit to go beyond the typical annual resolution, though I must underline that it is almost 

the only natural archive that always reach such a high time definition. With dendroanatomy, 

i.e. the application of dendrochronological techniques to wood anatomical time series, it 

could be possible to concurrently i) increase the time resolution of the inferences, ii) benefit 

from the wealth of data and parameters (e.g. lumen area, cell wall thickness, hydraulic 

conductivity, etc.) that it is possible to retrieve out of the same sample and iii) have a better 

understanding of the underlying physiological processes related to the tree growth (Fonti et 

al., 2010; Carrer et al., 2015). Recently tree-ring anatomy has much improved, and thanks to 

new techniques (von Arx et al., 2016) and image analysis software (von Arx & Carrer, 2014) 

now the time spent to obtain the data has been significantly reduced. 

Zooming at anatomical and the intra-annual level can permit to assess the change in tree 

sensitivity to climate along the growing season and therefore to disentangle the role of 

earlywood cells, usually larger with the highest hydraulic conductivity, from the latewood 

ones characterized by thicker cell walls with the usual imprint of the plant C-sink activity 

throughout the growing season. This explains why latewood density, has been proved to be 

one of the most powerful tool to reconstruct past summer temperatures at temperature-

limited environments (Tuovinen, 2005; Büntgen et al., 2006; Helama et al., 2008; Esper et 

al., 2010, 2012; Chen et al., 2012). With dendroanatomy I also tried to use cell-wall 

thickness as a potential surrogate for wood density measurement and in particular latewood 

cell-wall thickness as an objective and standard measure for maximum density.  

AIMS OF THE THESIS 

Starting from the classical dendrochronological approaches and with the general target to 

increase the type and quality of the information that we can extract from tree rings, in this 

thesis work I aimed to come along two new research lines: i) investigating the potential of a 

new species but still adopting the classical approach (1-2) and ii) to fully exploit and assess 

the new improvements and potentials of tree-ring anatomy (3-4). 

1. I apply the classical dendrochronological approach to a new (or very

underrepresented) species: the common juniper (Juniperus communis, L.). I aimed to

test first of all the potential of this species to encode a different climatic signal

respect the coexisting conifer trees. Firstly I performed a pilot study with a regional

network in North-Eastern Alps and then, after the confirm of the initial hypothesis, I

enlarged the investigation throughout the whole Alpine region.
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2. Considering the widespread distribution of common juniper (Farjon, 2013), I also

aimed to verify the climate response of this species through a 5000 km latitudinal

transect, including different biomes, Polar, Alpine and Mediterranean across the

European continent. Even in this second step I still targeted to investigate whether

divergent responses are present between prostrate and erected (Larix spp. and Pinus

spp.) growth forms in a much wider context.

3. I tested the potential of dendrochronological techniques applied to wood anatomical

traits in two contrasting environments and two species, Scots pine (Pinus sylvestris,

L.) and Silver fir (Abies alba). In particular, in the Iberian Peninsula, in stands where

water is the key limiting factor and evident processes of drought-induced forest

dieback are ongoing, I verified the two main hypothesis related to tree mortality: the

hydraulic failure and the carbon starvation.

4. Still on Scots pine but in a temperature-limited area at high latitudes I tried to build a

millennium-long chronology using anatomical features. To date the maximum length

of wood anatomical time series is few decades or centuries. Lengthening this time

frame would allow a wider perspective to better explore long-term climatic

fluctuation. In addition, I tried to extract a surrogate of maximum latewood density

from wood anatomical data.
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rising temperatures. 

Chapter III 

Pellizzari E, Camarero JJ, Gazol A, Sangüesa-Barreda G, Carrer M, 2016. Wood anatomy 
and carbon-isotope discrimination support long-term hydraulic deterioration as a 
major cause of drought-induced dieback.  
Global Change Biology, 22, 2125–2137  
Rising temperatures and reduced water availability has become increasingly important in 
Mediterranean region, where drought-induced forest mortality is getting more and more 
frequent. Using quantitative wood anatomy here we tested, in two Scots pine (Pinus 
sulvestris, L) and Silver fir (Abies alba) stands , , whether the main cause of tree mortality is 
linked to hydraulic failure or carbon starvation. Our results suggest that hydraulic 
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deterioration is the most important cause of drought-induced dieback since dead trees 
presented significant smaller vessels respect to living ones. 

Chapter IV 

Pellizzari E, Esper J. Carrer M….. Comparing MXD and millennium-long cell-
chronology in northern Finland.  
In preparation 
In this work I tried to build one of the longest chronology using anatomical parameters 
processing both living and sub-fossil Scots pine (Pinus sylvestris L) samples from northern 
Finland. Out of more than 40 samples I built a multi-trait chronology spanning over 1000 
years. Radial cell wall thickness has been proved to be the most sensitive anatomical 
parameter to summer temperatures, and a valuable surrogate of maximum latewood density 
data. 
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Abstract
Common juniper (Juniperus communis L.) is by far the most widespread conifer in the world.
However, tree-ring research dealing with this species is still scarce, mainly due to the difficulty
in crossdating associated with the irregular stem shape with strip-bark growth form in older
individuals and the high number of missing and wedging rings. Given that many different
species of the same genus have been successfully used in tree-ring investigations and proved to
be reliable climate proxies, this study aims to (i) test the possibility to successfully apply
dendrochronological techniques on common juniper growing above the treeline and (ii) verify
the climate sensitivity of the species with special regard to winter precipitation, a climatic factor
that generally does not affect tree-ring growth in all Alpine high-elevation tree species. Almost
90 samples have been collected in three sites in the central and eastern Alps, all between 2100
and 2400 m in elevation. Despite cross-dating difficulties, we were able to build a reliable
chronology for each site, each spanning over 200 years. Climate-growth relationships computed
over the last century highlight that juniper growth is mainly controlled by the amount of winter
precipitation. The high variability of the climate-growth associations among sites, corresponds
well to the low spatial dependence of this meteorological factor. Fairly long chronologies and the
presence of a significant precipitation signal open up the possibility to reconstruct past winter
precipitation.

S Online supplementary data available from stacks.iop.org/ERL/9/104021/mmedia

Keywords: Juniperus communis, tree-ring, climate-growth response, winter precipitation, snow
cover

1. Introduction

Trees growing at their uppermost or northernmost limits have
long attracted scientists. Indeed, these areas usually offer a
clear representation of the activity of an environmental driver,
namely temperature, which is able to set a limit to growth and

distribution of the tree life form. This feature, together with
other peculiarities such as the presence of a relatively
undisturbed area with respect to sites at lower elevation the
presence of more long-lived individuals, contributes to tree-
line being a key topic with a very rich literature and long-
standing research history in plant ecology (Körner 2012). In
the last decades, the discussion on global change has further
increased the attention of the scientific community on these
temperature-limited ecosystems. Indeed, they are highly
sensitive to even minor temperature variation related, for
example, to climate variability (Körner 2012) or
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microtopographical settings (Bunn et al 2011, Bunn
et al 2005, Carrer and Urbinati 2001) and play a major role in
various feedback mechanisms within the climate system with
significant effects at global scale e.g. the treeline advance
(Grace et al 2002, Devi et al 2008, Harsch et al 2009) or the
change in the terrestrial albedo (Bonan et al 1995).

The Alps are one of the most studied areas for high
elevation forests and their relationships with climate (Holt-
meier 2009, Tranquillini 1979); the most investigated species
are conifer trees (Larix decidua, Pinus cembra, Picea abies,
Pinus sylvestris, Abies alba). In this area tree species usually
have the typical erect life form, once they reach 2–4 m in
height they become closely coupled to prevailing atmospheric
conditions and for this reason temperature is generally the key
limiting factor for tree growth (Carrer and Urbinati 2004,
Büntgen et al 2005, Frank and Esper 2005, Carrer and
Urbinati 2006). In the Alps, as in most of the high-latitude
regions (St George 2014), precipitation, and specifically
winter precipitation, is rarely a limiting factor for tree growth
if we exclude some special cases where a mechanical action,
linked to avalanches or slow mass movement, is involved
(Holtmeier and Broll 2010, Smith et al 2003, Casteller
et al 2007). This is why in the Alps almost no investigations
found the clear presence of a tree growth sensitivity to pre-
cipitation or, within a long-term perspective, no clear pre-
cipitation signal has ever been detected in high elevation tree-
ring sequences (Büntgen et al 2008, Carrer et al 2007, Frank
and Esper 2005). Nonetheless, in many regions snow cover
emerged as an important driver of tree and shrub growth by
providing a constant cover and protection against frosts dur-
ing the early growing season (Wipf et al 2009, Rixen
et al 2010), and increasing the nutrient supply (Hallinger
et al 2010). In contrast, massive snowpack could delay the
onset of the growing season (Kirdyanov et al 2003, Schmidt
et al 2006, Vaganov et al 1999), reducing the duration of
cambial activity.

The absence of a precipitation signal in the Alps with the
consequent impossibility to adopt tree-ring sequences as a
proxy to infer past precipitation conditions still represents a
gap in our knowledge. Indeed, short- and long-term water
cycle dynamics in a densely populated mountain area such as
the Alps could have major social and environmental effects,
from the collapse of the glaciers mass balance (Haeberli and
Beniston 1998, Beniston 2012), to freshwater resource man-
agement (Viviroli et al 2011) or the permanence of a winter
snow pack fundamental for many alpine plant species but also
for winter tourism and related activities (Elsasser and
Burki 2002, Morrison and Pickering 2013). To fill this gap,
we directed our attention on a different species that grows at
the same elevation as or higher than the other conifer species,
but which could be sensitive to winter precipitation: common
juniper (Juniperus communis L.).

The species has a wide distribution in the Alps, as in the
whole northern hemisphere, and its slow growth, associated
with high longevity, are the main reasons for considering the
possibility of applying dendrochronological techniques to find
a reliable climatic signal within ring-width sequences.

Our underlying hypothesis refers to the height of the
species at high elevation, no taller than 0.5 meters, and
therefore usually beneath the snow cover during wintertime.
Since juniper does not start growing until it is free of the
snowpack (Hantemirov et al 2000), we will test the hypoth-
esis that shrub growth is linked to winter precipitation, based
in snowpack depth. The objectives of the study are twofold:
(i) to assess the possibility of building reliable juniper ring
width chronologies in the Alps; (ii) verify the sensitivity of
the species to precipitation, and especially to winter
snowfalls.

2. Material and methods

2.1. Study area

Juniper ring chronologies were built for three sites in the
central and eastern Alps (figure 1). The study areas were:
Ventina (VEN, 46° 18’N, 9° 46’E, 2200 m a.s.l.), Vinschgau-
Val Venosta (VIN, 46° 38’N, 10° 31’E, 2300 m a.s.l.) and
Croda da Lago (CDL, 46° 28’N, 12° 07’E, 2150 m a.s.l.). The
substrate differs at the sites, with dolomite and limestone with
shallow rendzic leptosols at CDL, and igneous, volcanic and
metamorphic silicates (i.e. granite, porphyry, gneiss and
phyllite) with spodosols and podzols at VEN and VIN.
Annual (and winter) precipitation also varies, with 608 (327)
mm in Vinschgau, 1068 (615) mm in Croda da Lago and
1196 (681) mm in Ventina (figure S1). In our study winter
was defined as the period from October through May, when
precipitation normally falls as snow at our research sites.

2.2. Ring width measurements and crossdating

Most samples were collected above the treeline, between
2100 and 2400 m a.s.l., by randomly selecting the shrubs

Figure 1. Location of the study sites. CDL: Croda da Lago; VIN:
Vinschgau-Val Venosta; VEN: Ventina.
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(figure 2) and saw-cutting one of the main stems that depart
from the root collar to obtain a disk. During summer 2012 we
collected and measured a total of 91 samples both dead and
alive, at the three sites: 22 in VIN, 27 in CDL and 42 in VEN.
At the same sites we also collected cores from larch (L.
decidua) at the timberline-treeline belt (2000–2200 m) to
compare juniper growth to that of a typical high elevation tree
species often used in dendroecological investigation. We
sampled 121 larches, 23 in VIN, 70 in CDL and 28 in VEN,
collecting two cores per tree.

At the lab, disks and cores were sanded with progres-
sively finer gridded sandpaper for a clear visualization of the
rings and measured to the nearest 0.01 mm using a sliding
stage micrometer interfaced with a personal computer
(Aniol 1987). Juniper stems have a typical lobate form
resulting from irregular growth. For this reason, to obtain a
more reliable representation of ring width, we measured two
to four radii per disk. In some cases, to enhance the visibility
of the ring -width sequences, we applied microscopic sample
preparation through (i) cutting the disks into small pieces
(3–5 cm); (ii) cutting thin sections (ca. 20 nm) with a micro-
tome; (iii) staining them with safranin and permanently fixing
with balsam (Gärtner and Schweingruber 2013). We then
measured the rings as for the normal samples.

Crossdating was accomplished following the standard
procedure (Stokes and Smiley 1968): first by visual com-
parison of the 2–4 radii within each sample, then comparing
radii from different samples. In this phase the presence of
event rings, i.e. rings with a conspicuous feature within a
limited section of the radius (Kaennel and Schwein-
gruber 1995) assisted in finding the correct match among the
series. Lastly, after computing the individual mean growth
curve, dating and measurement errors were checked using the
COFECHA program (Holmes 1983). Ring-width site chron-
ologies were obtained from the crossdated ring-width series
using the ARSTAN program (Cook and Holmes 1997) that
was specifically developed to remove any biologically
induced age-trends and transient disturbance pulses present in
raw tree-ring series and to enhance the high-frequency year to
year variability often associated to climate. In both species we
applied a rather conservative detrending using a spline func-
tion with 50% frequency cut-off at 100 years. Individual
series were therefore standardized by fitting the spline func-
tion to measured data series and dividing observed by

expected values. Several statistical parameters were calcu-
lated to compare the chronologies: (i) mean sensitivity (MS),
a measure of the relative difference in ring width between
consecutive years, adopted to assess the high frequency
variability of the series, (ii) first order autocorrelation (ac), a
measure of the influence of previous year’s condition on ring
formation (Fritts 1976), (iii) the variance explained by the first
principal component (PC1), and (iv) the mean correlation
between samples (rbar) and the ‘expressed population signal’
(EPS) (Wigley et al 1984) to estimate the level of year-by-
year growth variations shared by samples in the same site.
Higher values of PC1 and rbar indicate higher synchroniza-
tion in the annual growth patterns among samples and better
common signal strength in the mean growth chronologies,
while EPS is commonly adopted as a criterion for assessing
mean chronology reliability.

2.3. Climate—growth association

Rather than take records from the closest weather stations,
which may not be totally representative in a mountain area,
we used the HISTALP gridded dataset (Auer et al 2007). This
dataset, valid for the Greater Alpine Region, is based on
precipitation and temperature data from hundreds of weather
stations firstly subjected to homogeneity tests and relative
adjustments regarding elevation and changes of instrument
position and type, then gridded on a 1° × 1° network and
finally expressed as anomalies with respect to the 20th cen-
tury mean (Auer et al 2005, Böhm et al 2001). We selected
the climate data from the closest grid points to each study site
and computed the growth/climate analyses over the
1876–2005 period. We investigated climate-growth associa-
tions by correlating each site chronology with monthly pre-
cipitation and temperature data from June of the previous year
(t-1) to September of the current year (t). Seasonal data were
also taken into account by considering the period from
October to May (POM, TOM) when, at this elevation, pre-
cipitation mainly occurs as snow and the months from June to
September (PJS, TJS) considered as the growing season. The
bootstrap approach (Efron 1979) was applied to test the sta-
bility and significance of the outcomes. After 100 000 repli-
cations, each correlation was deemed significant at the 95%
level if the ratio between the correlation coefficient (r) and the
standard deviation of the bootstrap replications (s) was higher

Figure 2. The typical prostrate growth form of common juniper at high elevation.
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than |2| (Guiot 1991). Analyses were performed on the
complete 130-year period as well as on two 65-year sub-
periods (1876–1940 and 1941–2005).

3. Results

3.1. Ring-width measurements and crossdating

The irregular and lobate growth form of juniper stems fre-
quently induces the presence of wedging (figure 3) and
missing rings (i.e. rings that are absent in a sample due to
failure of cambial activity Kaennel and Schweingruber 1995).
To reduce the crossdating complexity we usually selected the
least problematic and most representative radii, where the
rings did not wedge out. Nonetheless, almost half of the
samples collected (45 samples) could not be successfully
crossdated. On the 46 dated disks (17 for VEN, 14 for VIN
and 15 for CDL), we selected and measured an average of 2.4
radii per disk, for a total of 210 radii and 7146 rings. Within
these samples we detected 142 frost rings (i.e. distorted xylem
tissue damaged by freezing in the growing season Kaennel
and Schweingruber 1995) corresponding to 0.77% in CDL,
1.14% in VEN and 5.44% in VIN and 36 missing rings,
which correspond to ca. 0.73%, 0.48% and 0.18% for CDL,
VEN and VIN respectively. Chronology length is 402 years
for VEN (from 1611 to 2012), 247 years for VIN (from 1765

to 2012), and 263 years for CDL (1749-2012) (table 1, figure
S2). The larch chronologies were all longer, reaching up to
557 years for CLD, with the typical high mean sensitivity and
common signal statistics of the species (Carrer and Urbi-
nati 2006). The PC1 and rbar values of the juniper chron-
ologies are lower than those of the larch. In juniper the
expressed population signal often results as lower than the
threshold level of 0.85 (figure 4).

3.2. Climate-growth association

Two of the stations, VEN and CDL, show significant negative
correlations between precipitation and ring growth with r/s
coefficients lower than −2. Winter months, from September to
January in VEN and from November to January in CDL show
the most significant correlations. With winter precipitation
(POM), we obtained a much higher and significant associa-
tion (figures 5, 6). Splitting the time period in two, pre-
cipitation and especially the winter seasonal sum, confirmed
the previous outcomes, being always significant although
with less variability (figure S3). At the third site, VIN, juniper
ring widths were not related to either precipitation or tem-
perature. We found that temperature is not a key factor for
juniper growth; indeed it shows no significant coherent cor-
relation with growth apart from for a few isolated months,
corresponding to the late previous and current growing sea-
son. We found the opposite for larch, where precipitation

Figure 3. (A) and (B) Samples of common juniper having 401 and 180 rings respectively. (C) Microscopic image of a microtome slice taken
at 40× showing many wedging rings induced by uneven cambial activity.

Table 1. Site location and chronology statistics for Juniperus communis and Larix decidua (shaded).

Site Lat Long Period

Series length
(years) (max-
mean-min) N MS AC (Indexed) PC1

Rbar
(Indexed)

Missing
rings (%)

Frost
rings (%)

CDL–JC 46.28 12.07 1749-2012 263-177-75 15 0.32 0.59 (0.45) 0.36 0.16 (0.18) 19 (0.73) 20 (0.77)
VEN–JC 46.18 9.46 1611-2012 402-167-94 17 0.28 0.69 (0.51) 0.33 0.19 (0.19) 14 (0.48) 33 (1.14)
VIN–JC 46.38 10.31 1765-2012 232-115-43 14 0.32 0.64 (0.49) 0.32 0.17 (0.15) 3 (0.18) 89 (5.45)
CDL–LD 46.29 12.06 1452-2009 557-270-84 70 0.39 0.66 (0.36) 0.66 0.59 (0.64) 86 (0.22) n.d.
VEN–LD 46.18 9.46 1496-2012 514-360-234 28 0.35 0.71 (0.50) 0.57 0.41 (0.55) 29 (0.22) n.d.
VIN–LD 46.43 10.38 1668-2004 403-220-36 23 0.34 0.73 (0.46) 0.78 0.76 (0.76) 39 (0.39) n.d.

Note: chronology statistics include mean ring width (MRW), mean sensitivity (MS) and first-order serial autocorrelation (ac) computed on the raw (indexed)
ring-width series, the variance explained by the first principal component (PC1) and the mean interseries correlation (Rbar) computed on the raw (indexed)
ring-width series. Site codes CDL, VEN, VIN correspond respectively to Croda da Lago, Ventina, and Vinschgau-Val Venosta respectively.

4

Environ. Res. Lett. 9 (2014) 104021 E Pellizzari et al

26



seems to play a negligible role both at monthly and seasonal
level, whereas temperature has a highly significant effect that
is clearly homogeneous among sites (figure 5).

4. Discussion

High elevation and high latitude are considered to be the areas
most sensitive to climate change (IPCC 2007, 2013). Indeed,
climate is the major environmental driver of conifer growth at
high altitude, where the limiting effect of temperature on tree
growth is reflected in the prevailing significant correlation
between tree-ring parameters and summer temperatures
(Carrer and Urbinati 2004, Büntgen et al 2005, Frank and
Esper 2005, Carrer and Urbinati 2006). At high altitude in the
Alps tree growth seems not to be sensitive to precipitation,
however, our study demonstrates that growth of a shrub
conifer, J. communis, growing at the same or higher elevation,
is influenced by winter precipitation. Many researchers
investigated other species of the same genus (Juniperus
thurifera, J. excelsa, J. occidentalis, etc) and the most com-
mon outcomes were a positive correlation between juniper
growth and summer temperatures or precipitation when the
species grew in temperature- (e.g. Tibetan plateau, Northern
Scandinavia) or water- (e.g. Ethiopia and Oregon) limited
environments (Sass-Klaassen et al 2008, Liang et al 2012,
Knapp et al 2004, Hallinger et al 2010). Hallinger et al (2010)
reported a positive effect of snow cover on J. nana at high
latitude. In these regions (Northern Scandinavia), in contrast
to our sites, higher snow accumulation would increase the
insulation with warmer soil temperature promoting microbial
activity. Shrub growth would benefit from a resulting increase
in nutrient supply. Given the growing interest in the water
cycle and the consequent effects at environmental level
(Haeberli and Beniston 1998, Beniston 2012), this study adds
a valuable contribution, by providing the first example at mid-
latitude across Eurasia (St George 2014) of a long-living plant
limited in growth by winter precipitation. We highlight a

potential new proxy that could be useful in the Alps, an area
where summer temperature has so far been the only climate
signal detected in tree-ring chronologies.

4.1. Ring-width chronologies characteristics

The genus Juniper includes many long-living species
(Brown 1996) in which ring-width chronologies have been
shown to contain strong climatic signals (Treydte et al 2006,
Knapp et al 2001, DeSoto et al 2012). As the other species of
the same genus, J. communis in the Alps has proved to reg-
ister a climatic signal at least in two sites out of three. We
detected the presence of frost rings in the ring-width
sequences. Juniper is considered rather vulnerable to frost
damage due to its thin bark, yet the presence of frost rings
does not decrease with age (Hantemirov et al 2000, 2004) as
observed in other tree species. The total number of these
event rings we recorded is low, probably because the sig-
nificant snow cover and late melting at high elevation delay
the onset of cambial growth reducing the chance of being
injured by an abrupt freeze (Hantemirov et al 2000). This is
likely why the highest number of frost rings are observed at
VIN. This site has the lowest amount of winter precipitation,
which implies a shallower snow cover that melts faster in
spring increasing the chance of late frost damage. Further-
more, VIN sampling area is subjected to constant strong
winds that blow away the snow cover (Whiteman and Drei-
seitl 1984), in some cases leaving the shrubs with a higher
probability of being exposed to frosts (Bokhorst et al 2009).
As reported by other authors, although not always confirmed
(Bär et al 2008), shrub growth is largely influenced by
microenvironmental variability or local topography (Kivinen
et al 2012, Hantemirov et al 2000, 2004) that can differ
between and within the same sites, inducing a corresponding
variability between individual ring-width chronologies. Some
of the chronology statistics, namely rbar and to a lesser extent
EPS, mirror this ring-width variability dominated by indivi-
dual rather than population variability. However, the fairly
low values of these statistics are likely not species- or site-
specific as similar values have been reported by many authors
working on the same genus (Liang et al 2012, Hallinger
et al 2010, Sass-Klaassen et al 2008, Zhu et al 2008). Still,
despite the difficulties in crossdating and the high individual
variability (figure S2), the three site chronologies we built
allowed us to compute reliable climate-growth associations.
This represents a fundamental step for investigating how
juniper reacts to winter precipitation.

4.2. Climate—growth association

The VEN and CDL sites demonstrate a significant negative
correlation between accumulated winter precipitation and
juniper ring width together with a weaker correlation with
monthly precipitation. There are several reasons for the
importance of using a seasonal correlation along with exam-
ining correlations with monthly data. We are dealing with a
meteorological parameter, precipitation, which tends to
accumulate over the winter months. Once juniper is covered

Figure 4. Raw and indexed ring-width chronologies. Smoothed lines
are 20-year low-pass filter. Top-inset graph represents the 30-year
running EPS with the 0.85 threshold highlighted.
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by the first snowfalls in October/November, there is no direct
effect from the amount of precipitation during the winter rest
period. The negative correlation indicates that the higher the
amount of winter precipitation is, the thicker the snowpack is
and the narrower the rings are in the following growing
season. This is supported by the fact that cambial activity
does not start until after snowmelt (Hantemirov et al 2000). In
fact, a thicker snowpack usually takes longer to melt thus
delaying the onset of cambial activity and shortening the

growing season, with the resulting narrower ring formation.
Late-persisting snow could also have a detrimental effect on
growth through cooler soil temperature which can delay the
onset or slow down the first phases of the growing season
(Schmidt et al 2006, Kirdyanov et al 2003, Vaganov
et al 1999, Peterson and Peterson 1994). In our study larch
trees did not show any sign of this negative effect. This is
further confirmation that the most plausible reason for the
negative precipitation correlation in juniper is the physical
effect of the snow cover that filters the incoming solar
radiation blocking photosynthesis, rather than the collateral
reduction in soil temperature. The only area with no sig-
nificant growth-climate correlation for either precipitation or
temperatures is VIN. The possible reason is the rather low
quality of the common signal among the ring-width series
highlighted by the low EPS value of the chronology. The VIN
site is a zone exposed to strong wind, as is most of the high
Vinshaug valley (Whiteman and Dreiseitl 1984) and due to
this, the snow falling during winter is blown away, leaving
the ground almost bare. A lack of snow cover implies a
potential earlier start of cambial activity, with the con-
sequence of no correlation with winter precipitation. The
higher presence of frost rings due to late frosts could also be
evidence of an earlier onset of cambial activity: the prob-
ability of freezing injuries is higher with an earlier start to the
growing season. Temperature did not affect ring-width for-
mation at any of our sites, which confirms, although sur-
prisingly, the weak influence of this factor on juniper growth.
Indeed, it is well-known that temperature is the key limiting
factor for tree growth at high elevation, as confirmed by our
comparison with larch growing in the same areas. This is

Figure 5. Climate-growth associations between the three ring-width site chronologies and total monthly precipitation and mean monthly
temperatures for the previous (June–December) and current (January–September) year plus the seasonal precipitation sum and temperature
mean from previous October to current May and from current June to September. Standardized coefficients were obtained by dividing the
mean correlations by their standard deviations after the bootstrap replications. They express the significance of monthly parameters. Values
above |2| are significant at p < 0.05.

Figure 6. Comparison between the cumulative winter precipitation
from October to May (blue lines) and ring-width indexed
chronologies of Croda da Lago (CDL) and Ventina (VEN), the two
sites that show a significant association with this precipitation
parameter. The second Y axis related to precipitation sum has been
reversed for a better visualization. Pearson correlation coefficients (r)
are also shown, both are significant at P< 0.001.
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likely due to the fact that trees are more closely coupled to air
temperature. A similar result, has been recorded on another
prostrate shrub, Salix arctica, in Greenland (Schmidt
et al 2006). Even if other investigations at high-latitudes
report that temperature, and especially summer temperature,
is the key environmental factor driving shrub growth (Bär
et al 2008, Buchwal et al 2013, Weijers et al 2013, Buras
et al 2012, Hallinger and Wilmking 2011), at mid-latitude, at
least in the Alps, common juniper is seemingly less affected
than trees by air temperature. Indeed, with its prostrate growth
form juniper grows within the boundary layer and is likely
more influenced by soil temperature. Furthermore, the topo-
graphy, aspect and landscape heterogeneity influence the
persistence of snow at local level (Kivinen et al 2012) and
this also explains to some extent the high variability between
samples. However, despite this high individual and spatial
variability the winter precipitation signal seems to be fairly
stable in time as it is significant for both the subperiods
analyzed (figure S3). The increasing or decreasing of this
winter precipitation signal could likely be connected with the
not uniform climate data quality and with the corresponding
variability in time of the common signal as shown by the
running EPS values (figure 4).

5. Conclusion

We demonstrated that, despite the challenging crossdating, it
is possible to built centuries-long chronologies with common
juniper. In addition, we found a significant winter precipita-
tion signal in the ring-width chronologies of two of our three
research sites. As a prostrate shrub J. communis seems better
coupled with the soil surface rather than the air temperature.
This is probably one of the reasons why the influence of air
temperature on ring-width formation seems less significant.
This study is just a pilot investigation. Future research will be
directed to (i) enlarging the sample size, paying attention to
collecting more sections along the stem to obtain a more
reliable representation of plant growth and to reduce the risk
of losing any information due to missing rings (Wilmking
et al 2012); (ii) extending back in time the ring-width series,
considering the high potential to generate longer chronologies
than these with additional collections including also dry dead
wood remains; and (iii) extending the sites network across the
Alps. If the climatic signal we detected is confirmed, this will
provide a baseline for a possible reconstruction of past winter
precipitation variability in the region. Our results suggest that
J. communis ring width chronologies may serve as a winter
precipitation proxy in the Alps.
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Supplementary material 

Figure S1: Climatic diagrams for the three sites. Whether records come from the closest meteorological stations: 
VEN (Lanzada, 46°3’N 9°85’E, 1983 m a.s.l., 1921-1990 for precipitation and from 1926-1990 for temperature), CDL 

(Cortina d’Ampezzo, 46°19’N 12°48’E, 1275 m a.s.l., 1925-2010 both for precipitation and temperature), VIN 
(Tubre/Rivaira, 46°64’N 10°46’E, 1119m a.s.l., 1922-2010 for precipitation and 1935-2010 for temperature). 

Figure S2: Raw individual ring-width series for all the samples crossdated at each site. 
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Figure S3: Climate-growth associations between the three ring-width site chronologies and total monthly precipitation 
and mean monthly temperatures for the previous (June to December) and current (January to September) growth year 

plus the seasonal precipitation sum and temperature mean from previous October to current May and from current June 
to September, computed splitting the meteorological record into two 65-year subperiods (1: 1876-1940 and 2: 1941-

2005).  Standardized coefficients were obtained by dividing the mean correlations by their standard deviations after the 
bootstrap replications. They express the significance of monthly parameters. Values above |2| are significant at p < 0.05. 
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Abstract 

Climate warming is expected to enhance productivity and growth of woody plants, 

particularly in temperature-limited environments at the northernmost or uppermost limits of 

their distribution. However, this warming is spatially uneven and temporally variable, and 

the rise in temperatures differently affects biomes and growth forms. Here, applying a 

dendroecological approach with generalized additive mixed models, we analysed how the 

growth of shrubby junipers and coexisting trees (larch and pine species) responds to rising 

temperatures along a 5000-km latitudinal range including sites from the Polar, Alpine to the 

Mediterranean biomes. We hypothesize that, being more coupled to ground microclimate, 

junipers will be less influenced by atmospheric conditions and will less respond to the post-

1950 climate warming than coexisting standing trees. Unexpectedly, shrub and tree growth 

forms revealed divergent growth trends in all the three biomes, with juniper performing 

better than trees at Mediterranean than at Polar and Alpine sites. The post-1980s decline of 

tree growth in Mediterranean sites might be induced by drought stress amplified by climate 

warming and did not affect junipers. We conclude that different but coexisting long-living 

growth forms can respond differently to the same climate factor and that, even in 

temperature-limited area, other drivers, like the duration of snow cover might locally play a 

fundamental role on woody plants growth across Europe. 
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Introduction 

Climate warming is unequivocal and since the 1950s the rapid rise of air temperatures due to 

increasing atmospheric CO2 concentrations is unprecedented over millennia in many regions 

(IPCC, 2014b). This is the case of Europe, where the average land temperature of the 2004–

2013 period is 1.3 °C above the pre-industrial level, which makes it the warmest decade on 

record (Rohde et al., 2013). Interestingly, this warming is seasonally heterogeneous and 

spatially variable with highest rates observed in peripheral European regions such as E. 

Spain (40º N) and NW. Russia (65º N) (Vautard et al., 2014). Furthermore, European 

temperatures are projected to continue increasing by 2.4 to 4.1 ºC during the 21st century, i.e. 

more than global averages (Kjellström et al., 2011). Here, we explore if different seasonal 

warming trends observed across European biomes (Polar, Alpine and Mediterranean biomes) 

translate into different growth patterns in prostrate vs. arborescent conifer growth-forms. We 

discuss how the shrub vs. tree dichotomy determines growth reactions to climate warming 

and could influence future changes in productivity of woody European biomes. 

Rapid climate warming is expected to impact woody plants in the Polar biome more 

intensely and rapidly than elsewhere leading to enhanced growth in the species’ 

northernmost limits of distribution, and promoting tree shifts and shrub encroachment 

northwards as has been already observed in boreal forests and the arctic tundra (Suarez et al., 

1999; Sturm et al., 2001; Danby & Hik, 2007; MacDonald et al., 2008; Harsch et al., 2009; 

Hallinger et al., 2010b; Myers-Smith et al., 2011, 2015). Such treeline shifts and shrub 

encroachment phenomena are the result of warming-enhanced productivity success of these 

woody communities (Esper et al., 2010; Forbes et al., 2010; Hallinger & Wilmking, 2011), 

albeit warming-related drought stress has also been detected at some boreal forests (Barber 

et al., 2000; Trahan & Schubert, 2016). 

In the Alpine biome, where trees and shrubs reach their uppermost distribution limits, 

growth of woody plants is mainly constrained by decreasing temperatures upwards (Körner, 

2012b), and for this reason, enhanced tree and shrub growth by climate warming is expected 

at high elevations in these mountain regions (Büntgen et al., 2008a; Salzer et al., 2009; Lu et 

al., 2016). However, such environments illustrate at small spatial scales a fundamental 

dichotomy between arborescent (tree) and prostrate (shrub) growth forms and their expected 

responses to climate warming. Due to the erect growth and tall stature of trees, meristems are 

well coupled with free atmospheric conditions which enforce convective air exchange 

(Wilson et al., 1987; Grace et al., 1989). For this reason trees are usually more sensitive to 
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thermal air limitations than shrubs (Körner, 2012b). Contrastingly, in low-stature and 

prostrate shrubs meristems are more coupled to ground microclimate conditions, which are 

usually warmer with respect to free atmospheric conditions due to the reduction of heat 

exchange (Körner, 2012a). This more favorable microclimate allows shrub growth to be 

partially decoupled from atmospheric thermal states which explains their existence above the 

treeline (Körner, 2012a). In addition, during winter shrub meristems are often covered and 

protected by snow, limiting the risk of freezing and mechanical damages as compared to tree 

buds (Bokhorst et al., 2009; Rixen et al., 2010). However, the insulating benefits of 

snowpack to shrub meristems may also be detrimental if the snowpack is so thick or dense to 

induce a delayed snow melting and a shortening of the growing season (Pellizzari et al., 

2014). 

Lastly, in the Mediterranean biome shrub and tree growth is mainly constrained by 

seasonal drought (Gazol & Camarero, 2012), even at high-elevation sites (Garcia-Cervigón 

Morales et al., 2012). Therefore, warmer conditions could amplify drought stress in this 

biome, and the aridification trend already observed in southern Europe (Vicente-Serrano et 

al., 2014) may lead to slower growth of woody plants if precipitation is assumed not to 

change (Matías & Jump, 2015). Moreover, warmer growing-season conditions have already 

induced moisture limitation and reduced juniper growth in temperate mountains such as the 

Tibetan Plateau (Liang et al., 2011); so warming-related drought constrains should be fully 

considered not just for the Mediterranean but also for similar dry biomes. 

We aim to quantify the radial-growth responses to rising temperatures of junipers and 

co-occurring trees (larch and pine species) across a NE-SW European transect including sites 

located in Polar, Alpine and Mediterranean biomes. By assuming the decoupling between air 

temperature and shrubs growth, we hypothesize that erect trees will be more sensitive to 

recent climate warming than shrubby junipers, particularly in the case of the most cold-

limited sites (Polar and Alpine biomes). We also expect to detect drought-related growth 

limitations in Mediterranean sites, chiefly affecting trees because they are more responsive 

to drought amplification by climate warming (Williams et al., 2013) 

 

Material and methods 

Study species and sample collection 

Common juniper (Juniperus communis L.) is a shrubby gymnosperm considered to be the 

most widespread conifer over the northern hemisphere (Farjon, 2005). We selected 10 sites 
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located in three contrasted biomes on the European continent going from the Russian Polar 

Urals to eastern Spain. In these biomes, Polar (Polar Urals), Alpine (Italian Alps) and 

Mediterranean (Spanish Iberian System, Apennines in S. Italy) the species grows at the 

northern, uppermost and southern limits of its distribution (Table 1, Fig. 1) . 

Figure 1. Juniper-tree sample sites. Colour boxes correspond to the three regions: blue for 
Polar sites (Russian Polar Urals), green for Alpine sites (N. Italy) and red for Mediterranean 

sites (E Spain, S. Italy). In the case of the NU site only junipers were sampled. See sites’ 
characteristics in Table 1. Map colours correspond to the annual mean temperature (MAT). 

Table 1. Description of the study sites and number of sampled junipers and trees. 

Region Site (code) Latitude 
(N) 

Longitude 
(W/E) 

Elevati
on (m 
a.s.l.) 

Tree species 
No. 
junipers / 
trees 

Polar 

Polar Urals - treeline 
(URT) 66° 51’ 65° 35’ E 320 Larix sibirica 24 / 13

Polar Urals - forest 
limit (URF) 66° 50’ 65° 35’ E 230 Larix sibirica 23 / 20

Polar Urals (PU) 
Northern Urals (NU) 

66° 48’ 
61° 18’ 

65° 33’ E 
59° 14’ E 

220 
750 

Larix sibirica
Larix sibirica 20 / 24

24 / − 

Alpine 

Devero (DEV) 46° 19' 8° 16’ E 2100 Larix decidua 12 / 18 

Ventina (VEN) 46° 18’ 9° 46’ E 2300 Larix decidua 17 / 34 

Sella Nevea (SEL) 46° 22’ 13° 27’ E 1800 Larix decidua 24 / 17

Mediterranean 
Pollino (POL) 39° 09’ 16° 12’ E 2100 Pinus 

heldreichii 16 / 14

Peñarroya (PEN) 40º 23’ 0º 40’ W 2020 Pinus uncinata 13 / 41 
Villarroya de los 
Pinares (VIL) 40º 34’ 0º 40’ W 1350 Pinus sylvestris 12 / 20
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In the Polar and northern Urals sites sampling took place near the undisturbed  

treeline ecotone which is situated between 270 m to 450 m a.s.l. and includes larch (Larix 

sibirica Ledeb.) and birch stands (Betula tortuosa Ledeb.), shrubs (junipers, Salix spp.), and 

alpine moss-grass-lichen communities. In these remote sites (URT, URF, PU; see Table 1), 

vegetation has not been heavily disturbed during the last centuries (Shiyatov et al., 2005). 

Climatic data of the Salekhard meteorological station (66.5° N, 66.7° E, 137 m a.s.l., 55 km 

south-east of the URF and URT study sites) show a mean annual temperature of −6.4 ºC 

with January (−24.4 ºC) and July (+13.8 ºC) as the coldest and warmest months, 

respectively. According to climate-growth relationships and based on phenological field 

observations (needle and shoot elongation, stem wood formation) the growing season lasts 

from early June to mid August (J.J. Camarero pers. observ.; Devi et al., 2008). Mean annual 

precipitation is 415 mm, with 50% falling as snow. Maximum snow depth is 200-250 cm 

(Hagedorn et al., 2014). Soils develop on ultramafic rocks.  

In the Italian Alps, the treeline is located between 1800 and 2200 m a.s.l., and 

vegetation is dominated by larch (Larix deciduas Mill.), spruce (Picea abies Karst) and stone 

pine (Pinus cembra L.) forests and shrubby (Juniperus communis L., Rhododendron spp., 

Salix spp.) communities (Pellizzari et al., 2014). Climate is characterized by dry winters, 

with most of the precipitation occurring from late spring to early autumn; the mean annual 

temperature is 2.5 ºC (coldest and warmest months are usually January and July) and the 

total annual precipitation is ca. 1800 mm, while the growing period lasts from June to early 

September (Carrer & Urbinati, 2006a). Maximum snow depth is usually 250-600 cm. Soils 

are shallow rendzic leptosols formed over dolomite and limestone to spodosol over 

crystalline bedrocks. In this region, logging and livestock grazing decreased significantly 

during the past century and especially after World War II.  

In the Mediterranean region, we selected a site (POL) located in southern Italy 

subjected to wetter conditions than the other two dryer sites (VIL, PEN) situated in eastern 

Spain (Camarero et al., 2015a). In POL, forests are dominated by pine (Pinus heldreichii) 

accompanied by junipers and Mediterranean shrubs and grasslands (Todaro et al., 2007). 

Climate is Mediterranean, humid type, with warm and fairly dry summers and the annual 

mean temperature is ca. 5.0 ºC whilst the precipitation is around 1570 mm mainly 

concentrated in autumn and winter. Snow cover lasts from November to late May and its 

maximum depth is 50-150 cm. Soils are shallow and formed over large outcropping rocks 

(limestome, dolomites). In the VIL and PEN sites located in Spain, forests are dominated by 
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Scots (Pinus sylvestris L.) and mountain pine (Pinus uncinata Ram.), whilst shrubby 

communities are formed by junipers (J. communis, J. sabina L.) and barberry (Berberis 

vulgaris L.) (Camarero et al., 2015a). Climate is Mediterranean continental with a mean 

annual temperature of +4.0-9.0 ºC and annual precipitation of 510-900 mm. In the low-

elevation VIL site, water deficit occurs in July and drought-induced dieback has been 

observed in some juniper stands (J.J. Camarero, pers. observ.). In the high-elevation PEN 

site snow cover lasts from November until March. Soils are shallow and derived from 

underlying limestone bedrock. The VIL and PEN sites have experienced low land-use 

pressures (logging, grazing) since the 1950s. Here the growing season usually starts from 

early May to early June and ends from late September to late October (Deslauriers et al., 

2008). Where the typical Mediterranean summer drought is present it is possible to observe a 

resting period within the growing season (Camarero et al., 2010). 

Juniper shrubs and trees were usually sampled near the treeline ecotone except at one 

Mediterranean site (VIL). We collected 350 junipers distributed over the ten study sites and 

250 trees, from six different conifer species (Table 1), located at nine of these sites (there 

were no trees at the Polar NU site, while the PU tree-ring chronology was retrieved from the 

International Tree-Ring Data Bank (https://www.ncdc.noaa.gov/paleo/study/15341). In the 

field we measured the stem diameter of junipers (near the base as close as possible to the 

root collar) and trees (diameter at breast height measured at 1.3 m). We cut basal disks from 

the major juniper stems since most of the junipers were multi-stemmed and prostrate (height 

< 0.5 m) while for trees we collected two perpendicular cores at 1.3 m. 

Dendrochronological methods 

We sanded juniper disks and tree cores with progressively finer sandpapers to better analyse 

the annual rings. Junipers often present eccentric stems and a high number of wedging rings 

due to the irregular growth form (Supporting Information, Fig. S1). For this reason we 

measured 2 to 4 radii in each disk. The pronounced eccentricity prevented converting radial 

measurements to area increments (Buras & Wilmking, 2014; Myers-Smith et al., 2014). In 

trees, 2 radii per individual were measured. Rings were measured to the nearest 0.01 mm 

using a LINTAB-TSAP (Rinn, Heidelberg, Germany) sliding stage micrometer system and 

then dated. 

We used the COFECHA software (Holmes, 1983) to check the cross-dating. We 

successfully cross-dated 185 junipers (53% of the samples); in the other cases irregular 
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growth, wedging and missing rings, especially at the outer part of the cross-sections made 

the cross-dating of old individuals challenging (Supporting Information, Fig. S1). In 

junipers, the age was obtained by counting the rings from the bark to the pith, whilst in trees 

age was estimated (at 1.3 m) by fitting a geometric pith locator to the innermost rings in the 

case of cores without pith. Then, tree age was estimated by counting the rings in the oldest 

core of each tree and adding the estimate length of core missing up to the predicted pith. 

To compare ring growth with climate variables, we standardized and detrended the 

juniper and tree ring-width series using the dplR (Bunn, 2010) package in the R statistical 

environment (R Core Team, 2015). In the case of junipers, we chose a spline function with a 

50% frequency cut off at 100-years, in this way we removed the long-term biological growth 

trend, maintaining high- (annual) to mid-frequency (multidecadal) growth variability 

resulting in dimensionless ring-width indices (Helama et al., 2004). Tree chronologies were 

similarly detrended to remove the typical age-related trend of declining ring-width (often 

absent in junipers; see Pellizzari et al. 2014) using firstly a negative exponential curve and 

then applying a 100-years long spline. Finally, with both growth forms, junipers and trees, 

the first-order autocorrelation of the standardized ring-width indices was removed through 

autoregressive modelling. The residual indices were averaged at the individual and site 

levels using a biweight robust mean to obtain residual individual and site chronologies. 

Statistical descriptive parameters (Fritts, 2001), including the mean, standard deviation, first-

order autocorrelation of raw series, the mean sensitivity (a measure of the year to year 

variability) and the mean correlation between individual series of residual ring-width indices 

were also calculated for each site chronology considering the common 1950-2013 period. 

Climate data 

To analyse climate trends in the three regions we used the 0.5°-gridded CRU climate dataset 

considering monthly data (mean, maximum and minimum temperatures; total precipitation) 

for the 1901-2013 period (Harris et al., 2014), and also the European-wide E-OBS v12 

gridded dataset at 0.25º resolution for the 1950-2013 period (Haylock et al., 2008; Van Den 

Besselaar et al., 2011). We further investigated seasonal values (means in the case of 

temperatures, totals in the case of precipitation), considering previous year summer, autumn 

and winter (June to August, September to November and December to current February 

respectively) and current spring and summer (March to May and June to August 

respectively). Indeed we also analysed the sum of previous winter and current spring 
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precipitation, considering that snow is present during this period and could affect juniper 

growth in many sites (Pellizzari et al., 2014). Linear trends of temperature anomalies with 

respect to the 1981-2010 period were calculated after 1950 considering either the CRU or the 

E-OBS climate datasets. 

Due to a decreasing number of instrumental station records together with an 

increasing amount of uncertainty associated with climate data before the 1950s (Jones, 

2016), and particularly across Mediterranean mountains (e.g. the greater Pyrenees region, cf. 

Büntgen et al., 2008b), the statistical analyses (climate-growth correlations, models) were 

restricted to the 1950-2013 period.  

Statistical analyses  

Climatic drivers of the year-to-year growth variability 

All statistical analyses were performed in R environment (R Core Team, 2015). First, to 

summarize the relationships among juniper and tree chronologies we calculated Pearson 

correlations and plotted them as a function of site-to-site distances. We also calculated a 

Principal Component Analysis (PCA) using the covariance matrices obtained by relating the 

residual chronologies. Second, we used Pearson correlations and Linear Mixed-Effects 

Models (LMEs; Pinheiro & Bates, 2000) to quantify the associations between climatic 

variables and ring-width indices at site and individual scales, respectively. In the correlation 

analyses, we considered monthly (from April to September) and seasonal climatic variables 

of the common 1950-2013 period. Moving correlations (25-year long intervals) were also 

calculated between growing-season mean temperatures (May to August) and juniper and tree 

site chronologies. Despite that growing-season length may differ between regions due to the 

broad latitudinal difference, parallel elevation variability can counteract this trend. 

Therefore, having in mind this consideration and looking at the results from the monthly 

climate/growth associations, we set the common May to August period as the time span 

expected to cover most of the potential growing season in all regions. 

LMEs were fitted for all regions considering regions and individual trees or shrubs 

nested within sites as random factors, and also separately for each region considering again 

trees or shrubs as random factors. Seasonal and monthly climate variables were considered 

fixed factors (interactions between climate variables were also considered). The LMEs have 

the following form: 

RWi = Xiß + Zibi+ εi (1), 
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where RWi represents the shrubs’ or trees’ ring-width indices of any individual i, β is the 

vector of fixed effects (climate variables), bi is the vector of random effects (site or 

tree/shrub identity), Xi and Zi are, respectively, fixed and random effects regressor matrices, 

and εi is the within-group error vector. We ranked all the potential models that could be 

generated with the different explanatory variables according to the Akaike Information 

Criterion (AIC). We selected those most parsimonious models, i.e. the ones with the lowest 

AIC (Burnham & Anderson, 2002); these models were identified using the MuMIn package 

(Barton, 2013). In addition, we used the Akaike weights (Wi) of each model to measure the 

conditional probability of the candidate model assuming it was the best model. Finally, we 

evaluated the fit of the models by graphical examination of the residual and fitted values 

(Zuur et al., 2009). The “lme” function of the nlme package was used to fit the LMEs 

(Pinheiro et al., 2015).  

 

Growth trends in junipers and trees 

To analyse spatio-temporal patterns in juniper and tree ring-width data we used generalized 

additive mixed models (GAMMs; Wood, 2006). GAMM is a flexible semi-parametric 

method used to characterize nonlinear patterns observed between a ‘response’ variable as a 

function of ‘explanatory’ variables (Wood, 2006). The final GAMM we used was in the 

form: 

RWi = s (yeari * regioni) + s (agei) + s (sizei) + ZiBi + εi  (2) 

In this model, the ring widths (RW) of tree i were modeled as a function of calendar year, 

age and stem basal area (size). An interaction term between year and region was included to 

account for different growth trends between regions. Thin plate regression splines (s) are 

used to represent all the smooth terms. The degree of smoothing is determined by internal 

cross validation (Wood, 2006). In addition, as RW represents multiple measurements 

performed on different trees from each site, tree identity (ZiBi) was regarded as a random 

effect. An error term (εi) with an AR1 (p = 1) correlation structure was also included in the 

model. GAMMs were fitted using the mgcv library (Wood, 2006). 
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Results 

Climate trends 

Unexpectedly, warming trends during the 1901-2013 and 1950-2013 periods were stronger 

in the Mediterranean and Alpine sites than in the Polar sites (Table S1; Supporting 

Information, Fig. S2). Seasonally, the warming was more intense in summer across 

Mediterranean sites, particularly in Spain, followed by spring minimum temperatures in the 

Polar and Alpine sites, particularly in the Polar Urals (Supporting Information, Table S1). 

Few significant trends were detected for seasonal precipitation. 

Growth patterns and trends 

Junipers were youngest at the Polar and grew more in Mediterranean sites, whereas the 

oldest individuals (ca. 400- and 1000-years old junipers and larches, respectively) were 

sampled in the Alpine sites (Supporting Information, Fig. S3). For junipers and trees 

younger than 200 years, the mean growth rate was always lowest at the Polar region, whilst 

growth was highest in the Alpine sites. The mean ring-widths of junipers (0.30 mm) was 

significantly lower (t = -4.41, P = 0.001) than that (0.90 mm) of trees (Table 2). However, 

neither the first-order autocorrelation nor the mean sensitivity differed between juniper and 

trees chronologies.  

The mean correlation between individuals was also significantly lower (t = -5.56, P = 

0.0002) in junipers (0.26) than in trees (0.54). This also explains why the correlation 

between trees’ chronologies was much stronger than between junipers’ chronologies within 

each biome (Supporting Information, Table S2, Fig. S4). Accordingly, the first axis of the 

PCA accounted for 45% and 32% of the total variance of ring-width indices in the case of 

tree and juniper sites, respectively (Supporting Information, Fig. S5). The PCA allowed 

grouping sites geographically, i.e. within each biome, but in the case of the Mediterranean 

sites, the humid Italian POL site clearly diverged from the dry Spanish PEN and VIL sites. 

Lastly, positive and significant (P < 0.05) correlations between juniper and tree chronologies 

within each site were found in the Polar and Mediterranean biomes, but not in the Alpine one 

(Table S2). 
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Table 2. Tree-ring series length and descriptive statistics for the juniper (J) and trees (T) 
computed over the common period 1950-2013. Values are means except for age data. 

Ring widths Residual indices 

Region Site Age
(years) 

Mean 
(mm) 

Standard 
deviation 
(mm) 

First-order 
autocorrel
ation 

Mean 
sensitivity 

Correlatio
n between 
individual 
series 

J T J T J T J T J T J T 

Polar 

URT 85 210 0.22 0.71 0.11 0.31 0.61 0.54 0.32 0.41 0.27 0.67 
URF 74 331 0.27 0.38 0.17 0.24 0.72 0.63 0.30 0.45 0.30 0.64 
PU 164 162 0.17 0.69 0.09 0.36 0.86 0.72 0.22 0.34 0.27 0.63 
NU 99 − 0.20 − 0.07 − 0.54 − 0.21 − 0.20  − 

Alpine 
DEV 103 564 0.27 0.77 0.14 0.42 0.59 0.35 0.36 0.32 0.16 0.59 
VEN 171 1000 0.25 0.66 0.11 0.39 0.68 0.72 0.27 0.33 0.23 0.56 
SEL 85 405 0.28 1.17 0.13 0.56 0.60 0.67 0.32 0.27 0.29 0.65 

Mediterranea
n 

POL 182 574 0.26 0.83 0.12 0.46 0.65 0.90 0.32 0.16 0.36 0.40 
PEN 95 256 0.57 1.59 0.30 0.70 0.49 0.81 0.38 0.23 0.21 0.33 
VIL 103 123 0.52 1.26 0.28 0.48 0.61 0.75 0.36 0.20 0.29 0.36 

The GAMMs demonstrated a long-term growth increase of Polar junipers since the 

1950s, which boosted after the 1980s when climate warming intensified (Supporting 

Information, Fig. S2), closely followed by Mediterranean junipers (Fig. 2). In contrast, 

Mediterranean trees showed a rapid declining in growth since the 1980s, whereas Alpine 

trees followed by Polar ones featured growth acceleration.  
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Figure 2. Ring-width growth (RW, ring-width; values are means ± SE) based on the 
generalized additive mixed models (GAMM) for (a) junipers and (b) trees in each region 

(blue, green and red lines refer to the Polar, Alpine and Mediterranean sites, respectively). 
Trends were assumed for a theoretical individual with mean age and basal area across all the 

study sites. 

Growth associations with climate 

Warm summer conditions enhanced growth in cold regions (Polar and Alpine biomes) with 

stronger temperature-growth correlations in trees than in junipers (Fig. 3).  

Specifically, higher June to July maximum temperatures were related to wider ring widths, 

particularly in treeline trees at the Polar sites. Wet September conditions enhanced juniper 

and tree growth at several Polar sites. Winter-to-spring wet conditions were negatively 

associated to Alpine juniper growth. In contrast, cool and wet spring and early-summer 
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conditions favoured growth of junipers and trees in the PEN and VIL dry Mediterranean 

sites, whereas warm spring and summer conditions enhanced tree and juniper growth in the 

wet POL Mediterranean site (Fig. 3). In the two dry Mediterranean sites the growth of 

junipers and trees was enhanced by wet conditions in May-June and June-July, respectively. 

Previous summer temperatures influence positively juniper growth at Polar Urals and tree 

growth at some Polar and Alpine sites. These associations at the site level were also reflected 

by the LMEs fitted at individual level which showed: i) the dominant role played by summer 

maximum temperatures for Polar juniper and tree growth; ii) the negative influence of high 

winter-to-spring precipitation for Alpine juniper growth and iii) the relevance of cool and 

wet spring and summer conditions to Mediterranean growth (Table 3; see also Supporting 

Information, Table S3).  

Figure 3. Site-level climate-growth relationships for the juniper and trees. Bars are Pearson 
correlation coefficients obtained by relating seasonal or monthly mean minimum (Tmin) or 
maximum (Tmax) temperatures and precipitation (Pr) with site chronologies of ring-width 
indices for the common period 1950-2013. Grey boxes indicate non-significant values. The 
temporal window includes monthly climate values from April to September and seasons are 
indicated by three-letter codes (w-s is the previous winter to spring season). Previous year 

summer (su-1), autumn (au-1) and winter (wi-1) have also been considered. 
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Table 3. Summary of the linear mixed-effects models of juniper and tree growth (ring-width 
indices) as a function of region and climate variables (mean temperatures, total 
precipitation). Note that the models’ intercepts are not presented for simplicity. 
Abbreviations: aut, autumn; Pr, precipitation; spr, spring; sum, summer; Tn, mean minimum 
temperatures; Tx, mean maximum temperatures; win, winter; Wi, Akaike weights; WS, 
winter to spring. Numbers after climate variables indicate months, whereas the subscript “t-
1” indicates the previous year. 

Growing-season temperatures were significantly (P < 0.05) and positively related to 

Polar tree growth during most of the 1950-2013 period, but in the case of Polar junipers such 

association decreased to not significant values after the 1990s (Fig. 4). In the case of Alpine 

trees, temperatures were playing a more important role by enhancing growth since 1970 and 

turning significant after 1982. In Alpine junipers, positive and significant temperature-

growth relationships occurred only during the mid 1960s, following afterwards a reverse 

trend to that described for coexisting trees. Growth of Mediterranean trees and shrubs did not 

show significant correlations with temperature. 

Dataset or 

region 

Junipers Trees 

Parameters Wi Parameters Wi 

All regions 
+0.022 Txautt-1 +0.012Txsum + 

0.001Tnspr − 0.002 PrWS t-1  
0.88 

+0.072 Txsum + 0.014  

Txautt-1 + 0.001  Prwin t-1 
0.86 

Polar + 0.048 Tm67 − 0.001 PrWS t-1 0.97 + 0.077 Tx7 + 0.041 Tm6 0.89 

Alpine + 0.013 Tm5 − 0.003 PrWS t-1 0.56 + 0.118 Txsum + 0.021 Tx5  0.97 

Mediterranean − 0.020 Txsum + 0.001 Pr5 0.77 − 0.029 Txsum + 0.001 Pspr 0.83 
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Figure 4. Moving Pearson’s correlations (25-year long intervals, 1950-2013 period) 
calculated between growing-season mean temperatures (May to August) and the mean (± 

SE) site chronologies of ring-width indices for (a) junipers and (b) trees. The symbols 
correspond to the mid year of each 25-year long interval of . Values located outside the grey 

boxes are significant at the 0.05 level. 

Discussion 

The growth of the two plant forms (shrub and tree), despite featuring even opposite trends, 

clearly diverges in all the three biomes. This outcome is also corroborated by the 

climate/growth associations which highlight general higher tree sensitivity to temperature. 

As assumed, shrubby junipers were less coupled to air temperature and related atmospheric 

patterns than coexisting tree species across the three biomes in Europe. Unexpectedly, 

juniper showed enhanced growth at the extreme latitudinal Polar and Mediterranean sites, 

whereas trees increased their growth rates in Alpine and Polar regions (Fig. 2) and mostly 

declined in Mediterranean sites. We discuss how this tree-shrub dichotomy could explain 

these findings by analysing, in space and time, the contrasting macro- and micro-climatic 

influences to which these two growth forms are exposed in different biomes. 
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The Arctic is rapidly warming because of the climate-albedo feedbacks related to 

snow dynamics (IPCC, 2014b). The effect on plants life is a stronger warming-triggered 

boosting of growth and productivity at the Polar biome with a widespread shrub expansion 

and a rapid shift from low to tall shrubs (Arctic “greening”) observed in many tundra 

ecosystems (Tape et al., 2006; Devi et al., 2008; Macias-Fauria et al., 2012; Myers-Smith et 

al., 2015). Our results are in line with this picture with tree-ring growth of Polar junipers and 

trees (Fig. 2) mainly constrained by the short growing season and cold summer conditions 

(Fig. 3). However, at the study sites warming trends after 1950 were more pronounced in the 

Mediterranean and Alpine biomes due to the contribution of increasingly warmer summer 

conditions (Table S1). This highlights that the typical representation featuring a straight 

northward or upward growth enhancement and a growth reduction at the southernmost 

species’ distribution limit (as e.g. in Matías & Jump (2015) for juniper and Scots pine), is 

more complex, with the role of precipitation that should not be overlooked. 

In our case, the significant positive correlations at Polar treeline sites recorded on 

both the growth forms for September precipitation (Fig. 3), even though in the region 

according to current knowledge the vegetative period is almost if not fully ended, could 

indicate a positive effect of wet conditions in late summer and early autumn. This would 

suggest a longer growing season than that previously described (Devi et al., 2008) or even a 

potential late-summer drought stress induced by warmer conditions, since many junipers 

establish on rocky substrates and shallow sandy soils, which intensify water deficit. In 

addition, at the Polar biome, beside the key role of summer temperature, the expansion of 

shrubs and trees might be also related to the snow amount and cover (Frost & Epstein, 

2014). Previous investigations across the Siberian subarctic, including some of our Polar 

study sites, detected a post-1960s divergence between tree growth and summer temperatures 

which was explained by a delayed snow melt due to increasing winter precipitation 

(Vaganov et al., 1999). Late snow melting could have postponed the onset of cambial 

activity, thus leading to slower growth and a loss of growth sensitivity to summer 

temperatures (Kirdyanov et al., 2003). Similar detrimental effect of snowpack duration on 

growth has been described for prostrate junipers in the Alps (Pellizzari et al., 2014). In this 

mountain region, the amount of winter precipitation is at least double compared to the other 

biomes and could lead to a short growing season due to late snow melt (Fig. 3, Table 3). 

However, in most northern Russia, consistently with the trend observed across the Northern 

hemisphere (Kunkel et al., 2016), the extent and duration of snow cover tends to be shorter 
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because the first snowfall occurs later and spring snowmelt arrives earlier due to rising 

temperatures (Table S1) even if the amount of fallen snow increases (Bulygina et al., 2009). 

Such widespread reduction in snow cover could lead to a longer growing season through an 

earlier snow melt together with the abovementioned relaxation of September conditions and 

this can explain the rise of Polar juniper growth. 

Unsurprisingly, tree growth at cold sites from the Polar and Alpine biomes responded 

more to temperature than coexisting junipers, and this response has been stable (Polar sites) 

or got stronger (Alpine sites) after the 1980s when temperatures started rising rapidly (Figs. 

3 and 4). Juniper growth at these temperature-limited sites is getting uncoupled from warmer 

conditions even though temperatures have kept rising. This suggests an overwhelming role 

played by local factors or other indirect effects of climate warming rather than the 

temperature rise per se, such as, as mentioned, a reduced snow cover period or a longer 

growing season. Other drivers such as changes in light availability (Stine & Huybers, 2013), 

nitrogen deposition and rising CO2, biotic interactions, disturbance regime and local 

adaptations could also affect Polar juniper and tree growth but their roles have to be further 

explored (Matías & Jump, 2015). 

Our findings, supporting the hypothesis that trees were more coupled with 

atmospheric conditions and better responded to climate warming than junipers, could also 

explain why Mediterranean trees showed a decreasing growth trend in the dry Spanish sites 

(Fig. 2). Here, the warming-induced drought stress (Galván et al., 2015; Gazol et al., 2015) 

may drive trees to be more responsive to wet spring conditions than junipers (Fig. 3) which, 

being less exposed to extreme warm temperatures, likely experience lower 

evapotranspiration rates. In drought-prone areas as the SW of USA and the Mediterranean 

Basin warming-induced aridification has been predicted to trigger forest die-off and the 

replacement of drought-sensitive pine species by junipers (Williams et al., 2013; Camarero 

et al., 2015b). Nevertheless, cold spells could also cause the die-off of junipers in dry and 

continental areas (Soulé & Knapp, 2007). It should also be noted the strong differences in 

climate conditions between POL and the other two more dry and continental Mediterranean 

PEN and VIL sites which causes a variable growth response to temperature in the case of 

trees (Fig. 4). This confirms that warming would mainly amplify drought stress in 

continental Mediterranean sites whilst wetter sites may buffer this aridification trend (Macias 

et al., 2006). Note also that the climate-growth associations in the dry sites from the 

Mediterranean biome indicated an earlier onset of xylogenesis in junipers than in trees (see 
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also Garcia-Cervigón Morales et al., 2012), which suggests that drier summer conditions 

would be less detrimental to early-growing junipers than to late-growing trees. These results 

not agreeing with other studies that predicted a reduced performance of common juniper in 

the southernmost distribution limit (Matías & Jump, 2015), highlight the importance of 

considering multiple proxies of performance and long-term perspectives to understand 

species range shifts in response to climate warming. 

To conclude, tree growth seems more coupled to temperature than juniper growth in 

cold-limited regions such as the Polar and Alpine biomes. In the Polar and Mediterranean 

biomes junipers grow more since the 1950s, and this growth enhancement accelerated in the 

1980s. Contrastingly, in the Mediterranean biome, tree growth was negatively associated to 

climate warming suggesting an increasing importance of drought stress which would explain 

the observed long-term growth decline. The increased growth observed in cold-limited sites 

(Polar junipers and Alpine trees) is coherent with an influence of climate warming, but local 

factors such an extended snow-free period or wetter conditions could also explain the 

acceleration of growth rates in other places (e.g. Mediterranean junipers). 

This contrasting behaviour and sensitivity to climate between different growth forms 

should be also considered when forecasting current and future vegetation responses to 

climate change. This study can contribute to improved understanding of carbon sink 

dynamics of woody communities and improve dynamic global vegetation models which 

currently do not fully account for the different responses of the shrub and tree growth forms 

to projected climates. 
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Supporting Information 

Figure S1. (a) Shrubby juniper sampled at a mountain site located in the Italian Alps 

and (b) typical wedging rings in a juniper cross-section.

(a) (b) 
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Figure S3. Mean ring-width (mrw) of (a) junipers and (b) tree species averaged for 20-

years age classes. Data are plotted considering the three regions: Mediterranean (MED), 

Alpine (ALP) and Polar (POL). In the case of trees older than 500 years, age classes are 

presented using wider intervals.  

(a) 

(b) 
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Figure S4. Changes in correlation coefficients (Pearson r) calculated between site ring-

width residual chronologies for junipers (filled circles) and trees (empty triangles) as a 

function of the distance between sites. Two significance thresholds (P > 0.05, P > 0.01) 

are displayed with different fills. Correlations have been calculated between samples of 

the same growth form (junipers with junipers and trees with trees). 
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Figure S5. Triplots showing the first three axes (PC1, PC2 and PC3) of a Principal 

Component Analysis calculated on the variance-covariance matrix of the juniper and 

trees ring-width site chronologies. 
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Table S1. Seasonal climatic values (means for temperatures and totals for precipitation) 

and trends calculated for the study sites considering the three study biomes. Climatic 

means and trends were calculated for the 1950-2013 period considering the 0.5°-gridded 

CRU climate dataset. Seasons’ abbreviations: Sp, spring; Su, summer; Au, autumn; Wi, 

winter. Significant (P < 0.05) trends are indicated with bold values. 

Mean values (ºC or mm) 

Region Site 
Mean maximum temperature Mean minimum temperature Precipitation 

Sp Su Au Wi Sp Su Au Wi Sp Su Au Wi 

Polar 

Urt 
-2.8 16.6 -0.7 -16.5 -8.7 11.6 -4.7 -22.6 85 182 127 69 

Urf 
PU -4.2 14.0 -2.5 -4.8 -12.0 6.6 -7.9 -25.7 82 179 128 65 
NU 2.9 18.0 0.4 -14.7 -8.8 5.8 -7.3 -24.6 133 243 166 88 

Alpine 

Dev 5.1 13.8 6.8 -1.2 -1.7 6.6 1.0 -6.9 486 628 465 423 

Ven 8.6 18.2 10.4 1.4 2.4 10.9 4.6 -3.5 371 485 442 196 

Sel 14.7 24.5 15.2 4.7 7.6 16.8 9.2 -0.4 470 471 577 363 

Mediterranean 

Pol 4.4 15.0 7.9 -0.7 0.9 10.7 4.6 -3.5 347 212 523 481 

Pen 
17.3 26.3 19.8 12.0 5.7 16.2 8.5 0.5 175 114 158 116 

Vil 

Trends (ºC yr-1 or mm yr-1) 
Region Site Sp Su Au Wi Sp Su Au Wi Sp Su Au Wi 

Polar 

Urt 
0.04 0.02 0.04 0.02 0.05 0.01 0.04 0.04 0.48 0.86 -0.24 1.32 

Urf 

PU 0.03 0.01 0.02 0.01 0.04 0.02 0.03 0.01 -0.04 -0.12 -0.38 -0.20 

NU 0.02 0.00 0.02 0.01 0.03 0.02 0.04 0.02 0.62 0.09 0.26 0.04 

Alpine 

Dev 0.02 0.03 0.02 0.02 0.04 0.04 0.04 0.03 0.80 0.08 -0.35 -0.51 

Ven 0.01 0.01 0.00 0.02 0.02 0.02 0.01 0.01 0.36 0.49 0.05 0.97 

Sel 0.03 0.02 0.01 0.02 0.01 0.01 0.01 0.01 -0.77 -0.76 -0.82 -0.60 

Mediterranean 

Pol 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 1.14 1.22 1.18 2.11 

Pen 0.02 0.04 0.01 0.00 0.02 0.03 0.02 0.02 0.94 0.81 -0.11 1.56 
Vil 
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Table S2. Correlation values (Pearson correlation coefficients) calculated of the 

residual ring-width chronologies (a) between the study sites and (b) between junipers 

and trees within each site considering the common 1950-2013 period. Significant (P < 

0.05) correlations are indicated with bold values. 

(a) Polar sites Alpine sites Mediterranean sites 
Urt Pu Nu Ven Sel Pen Vil 

Junipers Urf 0.685 0.251 0.618 Dev 0.242 0.178 Pol 0.222 0.018 
Urt 0.293 0.767 Ven 0.219 Pen 0.338 
Pu 0.485 

Trees Urf 0.889 0.766 −−− Dev 0.692 0.568 Pol 0.064 -0.05 
Urt 0.845 −−− Ven 0.607 Pen 0.592 

(b) Polar sites Alpine sites Mediterranean sites 

Junipers-
trees 

Urt Urf Pu Nu Dev Ven Sel Pen Vil Pol 
0.254 0.352 0.532 −−− -0.182 0.079 0.115 0.119 0.417 0.293 
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Table S3. Summary of the statistics of the most parsimonious linear mixed-effects 

models fitted to ring-width indices of junipers and trees as a function of monthly and 

seasonal climate variables for the 1950-2013 period. Abbreviations: AIC, Akaike 

Information Criterion; Pr, precipitation; spr, spring; sum, summer; Tn, mean minimum 

temperatures; Tx, mean maximum temperatures; win, winter; Wi, Akaike weights; WS, 

winter to spring. Numbers after climate variables indicate months and the symbol “:” 

indicates interactions between climate variables. See sites’ codes in Table 1. 

Region Site Junipers Trees 
Model parameters AIC Wi Model parameters AIC Wi 

PO
LA

R
 

URF 
0.449 +0.049Tm67−0.001PWS 1173 0.42 −1.146 +0.146 Tm67 

−0.048Tnspr 519 0.72 

0.384+0.049Tm67+0.001Pspr 1174 0.31 −1.163 +0.147Tm67 
−0.049Tnspr+0.001P5 521 0.28 

URT 
−0.165−0.021Tnspr+0.068Tns
um−0.010Tnwin+ 0.008Tnaut 893 0.69 −0.460 + 0.112 Tm67 + 0.002 P9 451 0.89 

0.170+0.055Tm67−0.021Tnspr 895 0.31 −0.832 +0.133 Tm67−0.029Tnspr 455 0.11 

PU 
0.675+0.068 Tm67−0.002Pspr 1316 0.75 −0.460 + 0.112 Tm67 + 0.002 P9 1529 0.66 

0.672 + 0.068Tnsum − 
0.002P9 1319 0.20 

−0.135−0.001Tnspr:PWS+0.143T
m67+0.002P9 1530 0.34 

NU 

0.441 +0.002Txspr 
+0.54Txsum +0.029Txwin 1918 0.98 

−−− 

1.075 −0.015Tnspr 
+0.074Tnsum +0.026Tnwin 1926 0.01 

A
LP

IN
E 

DEV 

1.052 −0.001Pwin:Tm6+ 0.001 
P5:Tm5 633 0.71 −0.33 + 0.139 Txsum 

−0.035Txspr−0.039Tx9 89 0.65 

1.18−0.001PWS:Tx6 + 0.001 
PWS:Tx5 636 0.15 −0.103 + 0.112 Txsum−0.001P6 

− 0.034Tx9 91 0.34 

VEN 

1.131 −0.001PWS:Tx6 + 
0.001PWS:Tx5 836 0.55 −0.653+0.129Txsum −0.001 P5 

−0.039Tx9 1686 0.91 

1.069 −0.001PWS − 0.011Tx6 
+ 0.019Tx5 839 0.17 −0.993+0.117 Txsum+  0.029Tx5  

−0.035Tx9 1691 0.08 

SEL 
1.576−0.001Pspr−0.001Psum−

0.001Pwin 924 0.84 −1.317 +0.150Txsum 
−0.045Txspr−0.032 Tx9 593 0.92 

1.367− 0.001PWS:Tm6 928 0.15 −3.11+0.159Txsum+0.001Psum 599 0.05 

M
ED

IT
ER

R
A

N
EA

N
 

POL 

0.770+0.032Tnsum−0.001PW
S+0.002Psum 869 0.56 −0.952 + 0.147Txsum + 

H150.001Txwin:PWS 681 0.83 

1.029 −0.001Pspr:Txspr + 
0.001Psum:Txsum + 

0.001Pwin:Txwin 
870 0.26 −1.011+0.006Txspr+0.133Txsum

+0.130Txwin 684 0.17 

PEN 

1.346 −0.016Txsum −0.001 
P5:Tx5 + 0.001P6 830 0.48 1.409 −0.024Txsum 

+0.001Pspr+0.002Psum 584 0.50 

1.270 −0.013Txsum + 
0.001P5:Tx5 −0.001 P6:Tx6 831 0.34 1.412−0.024Txsum+0.001P5:Tx5

+0.002Psum 585 0.47 

VIL 

2.116 −0.052Txsum 
+0.001PWS:Tnspr+ 

0.001Psum 
503 0.83 

1.741 − 
0.031Txsum−0.001P5:Tx5+0.001

Psum 
1118 0.51 

1.956 −0.041Txsum + 
0.002P5:Tx5 + 0.001P6 507 0.14 1.746−0.031Txsum−0.001Pspr+0.

001Psum 1119 0.49 
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Supporting Information 

Fig. S1. Changes in lumen area along the five sectors forming a tree ring and used to 

differentiate, according to the PCA results presented in Fig. S2, earlywood (sectors 1, 2 

and 3), transition wood (sectors 4) and latewood (sector 5) in Scots pine and silver fir. 

Data are separately shown for non-declining and declining trees. Note that lumen area 

was consistently smaller in declining than in non-declining trees in the three first sectors 

where lumen areas were big, i.e. those tracheids accounting for most of the tree-ring 

hydraulic conductivity. Data correspond to the 1950-2012 period. 
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Fig. S2. Scatter plots of the weighting coefficients for the first (PC1) and second (PC2) 

components of the Principal Component Analysis computed with the lumen-area time 

series (1950-2012 period.) separated in five sectors (see Fig. S1). The variance 

percentage accounted for by each component is indicated. 
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Fig. S3. Changes in earlywood cell-wall thickness observed in non-declining (ND) and 

declining (D) Scots pine and silver fir trees. Values are means ± SE. 
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Fig. S4. Non-declining and declining Scots pine (a, b) and silver fir (c, d) correlations 

profiles calculated separately for earlywood and latewood, relating mean annual values 

of lumen area (a, c) or cell-wall thickness (b, d) to monthly or seasonal climatic 

variables (Tx and Ti, mean maximum and minimum temperatures, respectively; P, 

precipitation; and P-PET, water balance or difference between P and potential 

evapotranspiration, PET). Months are indicated with numbers, whilst seasons are 

abbreviated with letter codes. The dashed lines indicate the significance level (P < 

0.05). 

Month / Season 
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Scots pine Silver fir

Dry spring       Dry summer    

Wet spring Wet summer  

Scots pine Silver fir

Dry spring       Dry summer    

Wet spring Wet summer  

Fig. S5. Box plots showing the differences in earlywood (the first three sectors of  each 

tree ring; see Fig. S1) lumen area of declining and non-declining Scots pine and silver 

fir trees during years with contrasting water availability. We plotted the three years with 

lowest or highest spring and summer water balances in the case of Scots pine and silver 

fir, respectively. In the Scots pine site the driest (wettest) springs were recorded in 1961, 

1983 and 2005 (1962, 1971 and 2007). In the silver fir site the driest (wettest) summers 

were recorded in 1967, 1986 and 2012 (1963, 1977 and 1997). 
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Table S1. Selection of best-fitted generalized additive models of earlywood lumen area considering 

long- (between years) and short-term (within years) trends of this variable as related to tree vigour 

(declining vs. non-declining trees) and spring (Scots pine) or summer (Silver fir) water balance for 

the two tree species.  

Short-
term 
trend 

Long-
term 
trend 

Vigour Water 
balance 

Long-
term 

trend * 
vigour 

Short-
term 

trend * 
vigour 

Water 
balance 

* 
vigour 

edf AICc Relative 
weight 

Scots 
pine 

         

  + + + + + 40.83 0.1 1.00 
+  + + +  + 31.92 26 0.00 
 + + +  + + 31.87 290 0.00 

+ + + +   + 22.96 315 0.00 
+ + + +    21.96 337 0.00 
   + + +  38.82 521 0.00 

+   + +   29.91 545 0.00 
 +  +  +  29.86 817 0.00 

+ +  +    20.95 839 0.00 
+ + +     20.95 1850 0.00 
+ +      19.93 147208 0.00 

Silver 
fir 

         

  + + + + + 40.45 0.1 1.00 
+  + + +  + 31.50 394 0.00 
 + + +  + + 31.75 1084 0.00 

+ + + +   + 22.81 1445 0.00 
+ + + +    21.81 1475 0.00 
+ + +     20.79 1526 0.00 
   + + +  38.22 4754 0.00 

+   + +   29.31 5021 0.00 
 +  +  +  29.63 5512 0.00 

+ +  +    20.72 5763 0.00 
+ +      19.64 162586 0.00 

 

Note: For each species, the variables included in each of the models selected and associated degrees of freedom (edf), 

increase in the second-order Akaike Information Criterion (AICc), and the relative weight of the model are shown. 

The symbols “+” indicate variables entering each evaluated model. 
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Introduction 

Tree-rings are by far one of the most accurate and valuable proxy indicator of pre-

instrumental climate variability (Fritts, 1976; Carrer & Urbinati, 2006). In particular, boreal 

forests in Fennoscandia, being at their limits of distribution are highly sensitive to climate 

variation, especially temperature. For this reason they have attracted an increasing number of 

dendrochronological studies aimed to reconstruct centuries- or even millennia- climate 

conditions (Lindholm & Eronen, 2000; Hughes, 2002; Esper et al., 2004; Jones et al., 2009; 

Linderholm et al., 2014).  

Tree ring-width represents only one and the easiest of the multiple parameters that can be 

extracted out of a wood sample for dendrochronological analysis indeed, other techniques in 

paleoclimatology have been proved to be very efficient to obtain high resolution data. 

Maximum latewood density (MXD), extracted from tree rings through high precision 

densitometry (Schweingruber et al., 1978), for example, allows the analysis of detailed 

information retained in the latewood, the part of the ring formed at the end of the growing 

season (Fonti et al., 2013). Being latewood cells influenced by the climatic conditions 

throughout the whole growing season, MXD has been proved to be a better proxy of summer 

temperatures respect to TRW (tree-ring width) at temperature-limited environments (Grudd, 

2008; Esper et al., 2012; McCarroll et al., 2013). In northern Finland recent investigations 

on this parameter were directed to build multi-millennia MXD-chronologies, by combining 

both relict preserved sub-fossil material (Eronen et al., 2002) and living trees. To date, the 

most well-replicated MXD chronology is the N-Scan (Esper et al., 2012) which has been 

used to investigate on orbital forcing and to reconstruct over 2000 years of summer 

temperature variability in northern Europe (N-Eur, see Esper et al., 2014). However, despite 

the great potential of this parameter to extract high resolution paleoclimate data, the 

procedure for the measurements are still challenging, time consuming (Schweingruber et al., 

1978; Sheppard et al., 1996), and not always comparable among different laboratories. 
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Taking into account those limitations, in this work we considered other tree-ring parameters, 

able to provide even higher resolution information at intra-annual level. Dendroanatomy 

analyses cell features to extract valuable/climatic information, starting from the assumption 

that variation in anatomical structures is strongly linked to climate during their formation 

(Panyushkina et al., 2003; Eilmann et al., 2006; Schweingruber, 2007; Fonti et al., 2010; 

Seo et al., 2011; Gurskaya et al., 2012; Bryukhanova & Fonti, 2013; Liang et al., 2013). The 

latest improved techniques in dendroanatomy (von Arx et al., 2016) allow to extract huge 

amount of data from a single measurement and thus reducing significantly the time needed 

for sample preparation and analysis. These new improvements are permitting to really 

consider dendroanatomy as a valid alternative to the classical approaches in building long 

chronologies of cell-related features to study long-term climatic fluctuations. 

 In detail in this research we aim to i) build a millennium-long cell-chronology using 

multiple cell parameters; ii) test whether anatomical features, as cell wall thickness can be a 

valuable surrogate of maximum latewood density measurements and iii) test the quality of 

the climatic imprint in cell-chronology. 

Materials and methods 

Data collection  

Sub-fossil wood material used for the anatomical analysis are part of the samples considered 

for the N-Scan TRW (tree-ring width) and MXD chronologies (Esper et al., 2012, 2014). 

Scots pine (Pinus sylvestris L.) disks of relict material have been collected from lakes 

(Eronen et al., 2002), whereas living trees have been cored at dbh next to the lakeshores 

(Düthorn et al., 2013). Sampling area was in northern Finland at 68.45°-69.52° N, 27.30°-

28.55°E (Fig. 1); here the mean annual temperature is -0.9°C and the coldest and warmest 

months are January ( -13.7°C) and July (+14.6°C) respectively, and annual precipitation is 

around 530 mm, with the highest amount occurring mainly during summer.  
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Figure 1: Study area (black rectangle) and Scots pine distribution map (EUFORGEN 
Networks). 

Tree-ring anatomy 

We extracted 0.5-1 cm wide sections from the sub-fossil disks and divided both, the cores 

from living tree and the disk sections in 3-5 cm long blocks which were boiled in water to 

soften them and remove resin. From each piece, using a rotary microtome (Leica RM 2255; 

Leica Microsystems, Germany), we cut transverse 15 µm thick slices that we prepared 

following the standard protocol (von Arx et al., 2016) staining the samples with saphranine 

at 1% and astra blue 0.5% and permanently fixing the slices with Eukitt®. Digital images at 

100x of magnification have been captured using a microscope with a mounted digital camera 

with a green filter to better visualize also the smallest cells of the latewood. Panoramas were 

created using PTGui software stitching together the pictures collected in order to obtain high 

resolution image of the entire section. Tracheid anatomy was measured for each sample 

using ROXAS (von Arx & Carrer, 2014), a software developed to measure long time-series 

of wood anatomical traits, considering not just few cell rows, but all the cells in a section 

(Fig. 2). For each cell we analysed several anatomical features, including lumen area (as the 

internal tracheid size), the tangential and radial cell wall thickness (Vysotskaya & Vaganov, 

1989), and the Mork’s index (Denne, 1988).  

TRW chronology has been used to check the cross-dating of tree rings for the anatomical 

analysis. 
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Figure 2 : Cell analysis with ROXAS allow to measure all the cells in a section. 

 

Once obtained the yearly measurements of anatomical traits, intra-annual profiles at 10µm 

step have been also calculated using R (R Core Team, 2015). This resolution could permit to 

directly compare different anatomical parameters, and in particular minimum Lumen area 

(mLA), maximum value of Mork’s index and radial and tangential cell wall thickness 

(MXW), with MXD data which are usually collected at this step. Descriptive descriptive 

statistics as the Mean sensitivity (MS), autocorrelation (AC), rbar and Expressed Population 

Signal (EPS) have been calculated for different anatomical and tree ring parameter for the 

whole period considered (900-2011). 

 

Standardization and comparison with MXD reconstruction 

Previous researches detected an age-related trend in cell chronologies, especially for what 

concerns vessel size (Carrer et al., 2015), but also in MXD chronologies in Fennoscandia 

(Konter et al., 2016). In this latter work significant trends characterized by increasing values 

for the first 30 years, followed by a decreasing trend during the maturation has been detected 

For this reason, all the time series have been standardized to remove this non climatic signal. 

We opted for the Regional curve standardization (RCS), which has been proved to be the 

most efficient and most suitable method to remove the non-climatic noise in boreal 

environments (Esper et al., 2003, 2009; Helama et al., 2004) being able to preserve climatic 

information also in the low-frequencies domain. TRW chronology, however, considering the 

different age-related trend, has been standardized using negative exponential curves. N-Scan 

MXD data has been compared and correlated with different anatomical parameters, both at 

annual (Lumen area and Cell wall thickness) and intra-annual resolution. We focused in 

particular to the latewood part considering mLA, MXWtan, Mork’s index and MXWrad, to 
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find within these wood anatomical traits any parameter that could perform as a surrogate of 

maximum latewood density. 

 

Climate data 

Climate-growth associations have been computed to verify the quality of the climatic signal 

encoded in the wood-anatomical chronologies. Regional temperature anomalies, spanning 

from 1875 to 2011, from the CRUTEM4 (Jones et al., 2012) gridded dataset have been 

considered. Mean monthly and summer temperature anomalies (the mean of June, July and 

August (JJA)) have been correlated (Pearson’s correlation) with latewood anatomical 

parameters: mLA, Mork’s index, and maximum radial cell wall thickness (MXWrad). We 

selected these latewood parameters since this is the same ring portion considered in the 

MXD measurements. 

 

 

 

Results 

Chronologies of anatomical features 

We were able to build a millennium-long chronology using cell features (Fig. 3). We 

measured a total of 45 samples, 8 living and 37 relic trees and more than 8 million cells. 

Adopting as reference the crossdated tree-ring width series, we dated each ring and cell 

feature. The final chronologies span over 1000 years (900-2011), with a sample replication 

of at least 5 measurements per year. To date this represents the longest chronologies 

assemblage built with anatomical traits. 
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Figure 3: a) Raw lumen area and cell wall thickness chronologies. b) Sample depth (red 
line) and distribution over time (black segments). 

Comparison with MXD chronology 

Considering all the anatomical features, the highest correlation value is between detrended 

N-Scan MXD and MXWrad chronologies: r = 0.70 over 1106 years (900-2006) (Table 1). In 

general, annual resolution parameters as Lumen area (LA), tree ring width (TRW) and cell 

wall thickness (CWT) were the less correlated with the others or with the MXD chronology. 

On the other side intra-annual resolution parameters, related to the latewood and considering 

the 10 µm step, have been proved to be highly correlated with d N-Scan MXD chronology. 

N-Scan is negatively correlated with latewood minimum lumen area (mLA) and positively 

(a) 

(b) 
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with Mork’s index while MXWtan strongly affect the mean CWT. In addition, considering 

the same samples, the correlations slightly increased respect when consider the whole N-

Scan chornology (Tab. 1). 

Table 1 : Correlation values (Pearson’s) among various tree-ring parameters  detrended over the 
period 900-2006. N-Scan is the complete chronology for maximum cell wall thickness, whereas 
MXD (900-1900) is related only to the same samples used for the anatomical analysis. Anatomical 
parameters are: mean lumen area (LA) and cell wall thickness (CWT) of the whole ring, maximum 
Mork’s index, minimum lumen area (mLA), and maximum radial and tangential cell wall thickness 
(MXWrad and MXWtan).  

 

 

N-Scan MXD LA CWT TRW Mork’s
index mLA MXWrad 

Annual 
resolution 

LA -0.076 -0.10       

CWT 0.585 0.63 -0.107      

TRW 0.446 0.407 0.276 0.466     

Intra-
annual 
resoultion 

Mork’s 
index 0.568 0.570 -0.020 0.577 0.320    

mLA -0.531 -0.54 0.112 -0.466 -0.243 -0.763   

MXWrad 0.700 0.747 -0.011 0.726 0.504 0.690 -0.579  

MXWtan 0.646 0.65 0.062 0.796 0.568 0.542 -0.417 0.705 

Anatomical descriptive statistics (Table 2) show an EPS value under the fixed threshold 

(0.85) for all cell features and even for tree-ring width. Mean sensitivity is also very low, 

indicating that series are complacent, however this is consistent to other studies at high 

latitudes (Pritzkow et al., 2014).. 

Table 2: Descriptive statistics of the anatomical features and TRW at annual and intra-annual resolution. Sd, 
MS, AC and EPS correspond to standard deviation, mean sensitivity and Expressed Population Signal, 
respectively. The period considered is 900-2011. 

   mean sd MS AC rbar EPS 

Annual 
resolution 

TRW (mm) 0.473 0.211 0.186 0.861 0.312 0.808 
LA (µm2) 399.17 52.69 0.091 0.605 0.225 0.705 

CWT (µm) 3.683 0.316 0.051 0.684 0.249 0.738 

Intra-annual 
resoultion 

mLA(µm2) 45.09 11.271 0.204 0.413 0.103 0.730 
Mork’s index 

(µm) 3.614 0.791 0.146 0.579 0.130 0.721 

MXWtan(µm) 4.424 0.712 0.094 0.685 0.216 0.752 

MXWrad(µm) 5.781 0.749 0.088 0.630 0.304 0.766 
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The most well correlated anatomical feature with N-Scan MXD chronology is MXWrad, 

henceforward MXW. It shows even a stronger correlation (r = 0.84) over the period 1875 to 

2006 therefore, it could be considered a valuable surrogate for maximum density in this 

region.  

Comparing N-Scan MXD and MXW chronologies (Fig. 4) in the low-frequencies, we 

detected similar long-term fluctuations that are connected to long-term climatic variation, as 

the Medieval warm period or the Little ice age. For what concern the high frequency, and the 

year-to-year variability, we were able to detect several pointer years for both MXD and 

MXW in 1363, 1453, 1757, 1607 and in 1902.  

To better assess the consistency of the connection between MXD and MXW over the whole 

millennium we performed the 100-years running correlation (Fig. 4) . These correlation 

values are relatively strong (r > 0.8) especially in correspondence of higher sample depth, 

e.g. from 1250 to 1450, however are weaker (r < 0.6), but still highly significant (p<0.01) for 

period with less sample replication (1700-1800) or when most of the living trees entered in 

the chronology (1720-2011).  

 

Figure 4: Comparison between detrended N-Scan (blue line) and MXWrad chronologies 
(red line). Black line corresponds to the 100-years running correlation between the two 
chronologies while the straight line refers to the mean correlation value over the entire 
period 900-2006. Grey area plot correspond to the sample depth. 
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Climate correlation 

Monthly climate data have been correlated with intra-annual resolution cell parameters 

connected to latewood: mLA, Mork’s index and MXW (Fig. 5). Mork’s index shows higher 

monthly temperatures correlation during the early growing season, in May-June, respect to 

MXW. The highest correlations, however are related to the summer temperatures, in 

particular July and August and are positive for MXW and Mork’s index, and negative for 

mLA. JJA seasonal temperature shows the highest correlation, with cell-wall thickness (r = 

0.72), having a value similar to that obtained with MXD measurements (around r = 0.77) 

(Esper et al., 2012). The comparison of JJA temperature with this anatomical parameter 

show a consistence of the signal, both at high and medium frequency, throughout the whole 

period (1875-2011). In addition, the spatial correlation map between MXW and JJA 

temperatures over the same period (Fig. 6) indicates a weaker but still significant (p<0.01) 

correlation respect to N-Scan MXD measurements with similar spatial coherence of the 

signal extended throughout the whole northern Fennoscandia region. 
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latewood area of the thickest cell wall thickness and as consequence, also to the minimum 

cell area (Esper et al., 2014), we hypothesised that maximum latewood cell wall thickness or 

minimum lumen area could be the most suitable parameters to replace MXD measurements. 

However not all the cell walls behave the same. We also found that the radial side of 

maximum cell wall thickness, that is the portion of the cell wall regarding the pith-to-bark 

direction, presents the highest correlation with maximum latewood density over the entire 

chronology. In particular, one of the clearest evidences of this common signal regards the 

period from 1453 to 1457, when both MXW and MXD chronologies presented parallel very 

low values. This time span coincide to a strong cooling event and likely related to the effect 

of a large eruption of Kuwae volcano in 1452 (Briffa et al., 1998; Gao et al., 2006). Other 

common pointer years are also related to volcanic cooling, as in 1902 (Fig.5) with the Santa 

Maria (Guatemala) eruption (Esper et al., 2013). Running correlations between MXW and 

MXD chronologies are high and significant over the whole millennium however, in 

correspondence to lower sample replication (Esper et al., 2014) in the MXW chronology, we 

observed a decrease. The low correlation values between the two chronologies over the 

period 1850-1900 can be also related to the inclusion of living samples in the MXW 

chronology in correspondence to the mature stage of several dead wood. Considering that 

tracheids face an ontogenetic change in size according the cambial age (Carrer et al., 2015), 

featuring smaller cells during the first life stage and a progressively widening with the tree 

size increase, the inclusion of a group of series coming from young trees might introduce a 

certain amount of noise that the RCS standardization was not able to fully remove. 

MXD is well-known as a more efficient parameter to investigate on past climate respect to 

tree-ring width in northern Fennoscandia (Esper et al., 2010; Konter et al., 2016), and for 

this reason, it is the most used tree-ring parameter to reconstruct past summer temperatures, 

at least at high latitudes (Briffa et al., 2001; Esper et al., 2014). Climatic influence on cells at 

intra-annual level has been broadly investigated (Seo et al., 2011; Pritzkow et al., 2014; 

Ziaco et al., 2014; Castagneri et al., 2015; Carrer et al., 2016), moreover similarly to MXD 

measurements it is influenced by JJA temperatures (Panyushkina et al., 2003; Rossi et al., 

2006; Fonti et al., 2013). The wide spatial correlation pattern with summer temperature 

emphasize the high coherence of the MXW climate signal over a large region, suggesting the 

potential of this anatomical parameter to reconstruct summer temperature over northern 

Europe. 

In conclusion we tested whether anatomical features could be considered valid surrogate of 

MXD. MXD measurements have indeed several caveats: they can be influenced by specific 
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laboratory protocols which prevent a straightforward comparison among data produced; then 

due to the costly facilities needed, that are not accessible for all the labs and finally, sample 

preparation and data extraction are time consuming (Schweingruber et al., 1978; Sheppard et 

al., 1996; Schinker et al., 2003). For this reasons we hypothesize that a more standardize but 

still efficient approach using dendroanatomy, could be applied for future analysis in the same 

way of MXD measurements. 

Due to the high correlation with MXD measurements and due to the broad spatial correlation 

with summer temperatures, we think that MXW can be considered a valid proxy candidate 

for future wood-anatomical based climate reconstruction. 
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GENERAL CONCLUSIONS 

Despite the relevant position among the natural archives, tree rings feature several 

limitations mostly related to the temporal scale of analysis and the quantity and quality of 

data obtained. In particular, current research protocols allow to work mainly at annual 

resolution, without considering the intra-annual level, and keep less importance to 

anatomical features which are actually the basis of physiological processes influenced by 

climate (Fonti et al., 2010). 

In this thesis I aimed to move a step ahead to fill those gaps by applying two novel 

approaches: i) using an underrepresented species to detect different climatic information and 

ii) using dendroanatomy to obtain multi-proxy records with improved time resolution.

Despite it is still a challenging species, common juniper has proved to have high potential. I 

was successful in building century-long chronologies and to detect a divergent signal across 

Europe respect coexisting trees. Juniper represent therefore a promising proxy record for 

snow accumulation at least in the Alps and a species to consider when modelling vegetation 

responses to climate warming. Forecasts on global carbon uptake, albedo changes in polar 

biomes or forest dynamics would likely benefit when considering even this widely 

distributed prostrate/shrubby taxon. 

With dendroanatomy I was able to obtain in-depth information at ecophysiological level not 

detectable with just tree-ring width. These dendroanatomical skills permitted me to explore 

the mechanisms of forest mortality due to drought and defined that tree death in drought-

prone areas is likely due to hydraulic deterioration rather than carbon starvation. The 

possibility to appreciate subtle changes in anatomical attributed, even without any external 

evidence, makes this approach a valuable diagnostic tool to forecast forest vulnerability and 

in face of new climatic scenarios. 

Lastly, building a millennium-long chronology and verifying the dendroclimatic potential of 

some anatomical traits, I highlighted that it is possible to use a surrogate of wood-density. In 

this sense quantitative anatomy may reduce the time needed for data collection with the 

added value that we are speaking about a multi-proxy archive. A reconstruction of past 

climate conditions with wood anatomical parameters even considering an intra-annual 

resolution, is now possible. This would help to correctly place the actual warming in a 

longer-term context and assess whether Anthropocene can be considered really 

unprecedented or just a warming pulse within the normal range of natural climatic 

variability. 
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