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Abstract

It is now well established that a large percentage of the energy density of the universe is in the form of

non-baryonic dark matter, a still unidentified type of matter that does not emit or interact with elec-

tromagnetic radiation. At the present time, most of the dark matter is virialized in large structures

called ‘halos’ which formed via hierarchical clustering, a series of subsequent mergers of smaller ha-

los originating from the growth of the perturbations of the density field of the early universe. The

study of this tree of mergers, and of its main branch, is of primary importance in understanding the

properties of halos at the present time.

The primary tools for the study of the evolution of structures in the non-linear regime are large

numerical simulations, that evolve some suitable initial conditions by numerical integration of the

gravity equations. We will present our set of simulations, partly developed in the context of this work.

By exploiting the large statistic and dynamical range provided, we will present our refinement and

expansion of a previous model for the mass accretion history of the halos, greatly expanding its appli-

cability. In particular, our model will allow us to characterize both the median mass accretion history

as well as the full halo-to-halo distribution, and we will discuss some applications. Studying the scat-

ter of the distribution, we will present a preliminary analysis of the percentile distributions of mass

accretion histories. Despite non-conclusive results, we will provide a characterization that can be

useful in checking the validity of methods to generate synthetic merger trees.

We will argue for the universality of the model, which allows us to apply our results to massive

neutrino cosmologies. Multiple experiments in recent years confirmed the existence of flavor oscilla-

tions in the propagation of neutrino fluxes, a phenomenon usually interpreted as the effect of a non-

zero mass for the neutrinos together with a mixing of the flavor and mass eigenstates. The presence

of non-zero neutrino masses has severe cosmological implications, causing in particular a slowdown

in the growth and evolution of the structures on small scales. We will illustrate how to modify our

model to account for these effects.
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Sommario

È ormai ben accettato che una grande percentuale della densità di energia dell’universo è sotto forma

di materia oscura non barionica, un tipo ancora identificato di materia che non emette o inter-

agisce con la radiazione elettromagnetica. Attualmente, la maggior parte della materia oscura è

virializzata in grandi strutture chiamate ‘aloni’ formatisi tramite clustering gerarchico, una serie di

fusioni successive di aloni più piccoli originatisi dalla crescita delle perturbazioni del campo di den-

sità dell’universo primordiale. Lo studio di questo albero di fusioni, e del suo ramo principale, è di

primaria importanza per la comprensione delle proprietà degli aloni al tempo attuale.

Gli strumenti principali per lo studio dell’evoluzione delle strutture in regime non lineare sono

grandi simulazioni numeriche, che evolvono opportune condizioni iniziali per integrazione numer-

ica delle equazioni della gravità. Presenteremo il nostro set di simulazioni, in parte sviluppate nel

contesto di questo lavoro. Sfruttando l’ampia statistica e gamma dinamica fornita, presenteremo il

nostro raffinamento ed espansione di un modello precedente per la storia di accrescimento di massa

degli aloni, ampliando notevolmente la sua applicabilità. In particolare, il nostro modello ci perme-

tte di caratterizzare sia la storia di formazione mediana sia la distribuzione completa degli aloni, e ne

discuteremo qualche applicazione. Studiando lo scatter della distribuzione, presenteremo un’analisi

preliminare delle distribuzioni percentili delle storie di accrescimento di massa. Nonostante i risul-

tati non siano conclusivi, forniremo una caratterizzazione che può risultare utile per controllare la

validità di metodi per generare alberi di fusioni sintetici.

Discuteremo dell’universalità del modello, che ci permette di applicare i nostri risultati a cos-

mologie di neutrini massivi. Diversi esperimenti negli ultimi anni hanno confermato l’esistenza di

oscillazioni di sapore nella propagazione di flussi di neutrini, un fenomeno di solito interpretato

come l’effetto di una massa non nulla per i neutrini insieme ad un mixing degli autostati di sapore e

di massa. La presenza di masse non nulle dei neutrini ha grandi implicazioni cosmologiche, provo-

cando in particolare un rallentamento della crescita e dell’evoluzione delle strutture su piccola scala.

Illustreremo come modificare il nostro modello per tenere conto di questi effetti.
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Introduction 1
In the standard cosmological model the Universe is assumed to be highly homogeneous at early

times, with very small perturbations originating from quantum fluctuations in the inflaton quan-

tum field. The structures we see today are the results of the evolution of these perturbations in the

expanding universe, via the mechanism known as gravitational instability. In this chapter we will

present the Newtonian perturbation theory in the linear regime for a static universe, which we will

then expand to include relativistic effects and the metric expansions of the universe. We will discuss

the non-linear evolution in following sections.

1.1 The Linear growth of perturbations

Let us consider a non-relativistic ideal fluid with density ρ (~r ) and velocity ~u (~r ) under the influence

of a gravitational field with potential φ (~r ). The time evolution of the fluid is given by the continuity

equation, the Euler equation and the Poisson equation, together with the equation of state of the

fluid:
Dρ

D t
+ρ~∇·~u = 0 (1.1)

D~u

D t
=− 1

ρ
~∇p −~∇φ (1.2)

∇2φ= 4πGρ (1.3)

p = p
(
ρ,S

)
(1.4)

where p (~r ) is the isotropic pressure, S is the specific entropy and

D

D t
= ∂

∂t
+~u ·∇ (1.5)

is the convective (lagrangian) time derivative. This description of a single non-relativistic fluid can be

expanded to include a smooth background of relativistic particles or vacuum energy by adding new

5



6 Toward a Universal Model for the MAH of DM halos

density terms in the Poisson equation. In the standard scenario of adiabatic and isoentropic systems

dS

d t
= 0 (1.6)

and we are only left with the equation of state to specify for having a complete description of the fluid.

The unperturbed solution of the above equations is a static, homogeneous and isotropic universe:

ρ = ρb = const

p = pb = const

~u = 0

φ=φb = const

S = const

(1.7)

This solution, despite being inconsistent (a constant potentialφb implies∇2φ= 0, which is in contrast

with ρ 6= 0) is a useful starting point for introducing small perturbations in the system:

ρ = ρb +δρ = ρb (1+δ)

p = pb +δp

~u = δ~u
φ=φb +δφ

(1.8)

Inserting these solutions in the continuity+Euler+Poisson system, linearizing and removing the un-

perturbed solutions we obtain:
∂δρ

∂t
+ρb~∇·δ~v = 0 (1.9)

∂δ~v

∂t
=− c2

s

ρb

~∇δρ−~∇δφ (1.10)

∇2δφ= 4πGδρ (1.11)

where cs is the adiabatic sound speed:

c2
s =

(
∂p

∂ρ

)
S

(1.12)

In the Fourier representation, if we look for plain wave solutions with the form

δ f = δ f exp
(
i~k ·~r + iωt

)
(1.13)

we can rewrite the system as

ωδk +~k ·~uk = 0 (1.14)

ωδ~uk =−~k (
c2

s δk +δφk
)

(1.15)

δφk =−4φGδkρb

k2 (1.16)
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which can be combined in a single equation for ω:

ω2 = k2c2
s −4πGρb (1.17)

This defines a characteristic length, called Jeans length:

λJ = 2π

k J
= cs

√
π

Gρb
(1.18)

which expresses the distance a sound wave can travel in a gravitational free-fall time tff '
(
Gρ

)−1/2.

Rewriting Equation 1.17 with the definition Equation 1.18 we obtain

ω2 = k2c2
s

[
1−

(
λ

λJ

)2]
(1.19)

and we can distinguish two regimes, λ<λJ for which ω2 > 0 and the solution is a propagating acous-

tic wave, and λ > λJ for which ω2 < 0 and the solution is a stationary wave with an amplitude that

either increases (growing mode) or decreases (decaying mode) with time exponentially. The growing

mode reflects the gravitational instability that allows the density perturbations in the early universe

to become the structures we see today.

1.1.1 Solutions for an expanding Universe

To discuss the time evolution of the perturbations in an expanding universe, it is better to use the

comoving coordinates~x defined as

~r = a (t )~x (1.20)

where a (t ) is the scale factor and the~r are the proper coordinates. The proper velocity can then be

written as

~u ≡~̇r = ȧ~x +a~̇x = H~r +~v (1.21)

where ~v = a~̇x is the peculiar (intrinsic) velocity and H~r is the Hubble drag, with

H = ȧ

a
(1.22)

being the Hubble parameter. In the comoving reference frame, the perturbation equations can be

written as
∂δ

∂t
+ 1

a
~∇·~v +3Hδ= 0 (1.23)

∂~v

∂t
+H~v =−c2

s

a
~∇δ− 1

a
~∇φ (1.24)

∇2φ= 4πGρb a2δ (1.25)
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Switching to Fourier space and combining them in a single equation, we find

δ̈k +2H δ̇k +δk

(
k2

c c2
s

a2 −4πGρb

)
= 0 (1.26)

where we used the comoving wavenumber kc = ak. Again, this equation defines two regimes for the

solutions separated by the Jeans scale λJ . However, the growing mode (which we are interested in)

is not exponential any more, because of the gravitational collapse being slowed down by the Hubble

expansion. We find

δ− ∝ H (t ) (1.27)

for the decaying mode and

δ+ ∝ H (t )
∫ t

0

d t ′

a2 (t ′) H 2 (t ′)
∝ H (z)

∫ ∞

z

1+ z ′

E 3 (z ′)
d z ′ (1.28)

for the growing mode, where

E (z) = [
ΩΛ+ (1+Ω0) (1+ z)2 +Ωm (1+ z)3 +Ωr (1+ z)4]1/2

(1.29)

andΩX is the fractional density of the specie X at the current time. For an Einstein-de Sitter universe,

or at sufficiently high redshift such that EdS is a good approximation:

δ− ∝ t−1; δ+ ∝ t 2/3 (1.30)

In general, the growing mode can be obtained from Equation 1.28 numerically, but a good approxi-

mation exists (Lahav and Suto, 2004):

δ+ (z) = g (z)

1+ z
(1.31)

where

g (z) ≈ 5

2

Ωm (z)

Ω4/7
m (z)−ΩΛ (z)+

[
1+ Ωm (z)

2

][
1+ ΩΛ(z)

70

] (1.32)

and

Ωm (z) = Ωm (1+ z)3

E 2 (z)
(1.33)

ΩΛ (z) = ΩΛ

E 2 (z)
(1.34)

1.1.2 Relativistic effects

So far we assumed the cosmic fluid to be composed of non-relativistic matter. For a universe domi-

nated by radiation, Equation 1.26 is slightly modified:

δ̈k +2H δ̇k +δk

(
k2

c c2
s

a2 − 32

3
πGρb

)
= 0 (1.35)
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Figure 1.1: Growth of perturbations in matter-dominated universes for different values ofΩ. The solid
green line represents theΩ= 1 solution, the dashed blue lines theΩ< 1 solutions and the dotted red
lines theΩ> 1.
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where the different coefficient in front of the gravitational term is due to the contribution of pressure

to gravity, which is negligible in the non-relativistic case. Since the radiation pressure is p = 1
3ρc2, the

sound speed (Equation 1.12) is close to the speed of light:

cs = cp
3

(1.36)

Considering the standard background solutions ρ (t ) = 3
32πGt 2

a ∝ t 1/2
(1.37)

and looking for a power law solution δk (t ) ∼ tα we find:

α2 = 1−
(
λJ

λ

)2

(1.38)

where in this case the Jeans length is

λJ (t ) = 2π

k J
= cs

√
3π

8Gρb (t )
(1.39)

If λ¿λJ the solution is imaginary and the wave is an acoustic oscillation, while if λÀλJ the growing

solution of Equation 1.35 is

α= 1 ⇒ δk (t ) ∝ t ∝ a2 (1.40)

It is useful to write the temporal dependency of the Jeans length explicitly. From Equation 1.39, Equa-

tion 1.37 and Equation 1.36:

λJ = 2πcs t = 2ct
πp

3
(1.41)

We remind the reader that in an expanding universe the cosmological horizon is defined as

RH (t ) = a (t )
∫ t

0

c d t ′

a (t ′)
= a (t )

∫ t

0
cdτ (1.42)

that corresponds to the scale above which there is no causal contact and only gravity acts. Before the

epoch of the equivalence a ∝ t 1/2 and we obtain:

RH
(
t < teq

)= 2ct (1.43)

which is smaller than the Jeans length of the radiation. This means that before the equivalence no

perturbation can grow inside the horizon for the radiation field.
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1.1.3 Stagnation effect

Let us now consider the evolution of perturbations in a system composed by two fluids. We are in-

terested in particular in the perturbations of the dark matter fluid before the equivalence, when the

universe is dominated by radiation. The equation describing the evolution of the perturbations is

similar to Equation 1.26, but with both the density contributions in the source term:

δ̈k;m +2H δ̇k;m +k2c2
s,m −

(
4πGρmδk;m + 32π

3
Gρrδk;r

)
= 0 (1.44)

where we used the subscript m for the dark matter and r for the radiation. Inside the horizon, as we

have seen in the previous paragraph, the radiation perturbations can be neglected. Similarly, if we

only consider scales above the Jeans length for dark matter (which is very small), we can also neglect

the dark matter pressure term. Equation 1.44 then becomes:

δ̈k;m +2H δ̇k;m −4πGρmδk;m = 0 (1.45)

where, however, we must remember that the evolution of H = ȧ/a is driven by the radiation. It is

convenient to rewrite this equation in terms of the new variable x = a/aeq. The time derivatives

become:
d

d t
= d x

d t

d

d x
= ȧ

aeq

d

d x
(1.46)

d 2

d t 2 = d

d t

(
(

ȧ

aeq

d

d x

)
= ä

aeq

d

d x
+ ȧ

aeq

d

d t

(
d

d x

)
= ä

aeq

d

d x
+

(
ȧ

aeq

)2 d 2

d x2 (1.47)

Indicating with a ′ the derivatives with respect to x, Equation 1.45 can be written:

ä

aeq
δ′k +

(
ȧ

aeq

)2

δ′′k +2
ȧ

a

ȧ

aeq
δ′k −4πGρmδk = 0 (1.48)

Expressing the density with the new variable x, we first notice that by definition at the equivalence the

radiation and dark matter density are equal, ρm
(
aeq

)= ρr
(
aeq

)
. Knowing that ρm ∼ a−3 and ρr ∼ a−4,

it means that
ρm (a)

ρr (a)
= a

aeq
≡ x (1.49)

Using the first Friedmann equation forΩ= 1, which is a good approximation before the equivalence:(
ȧ

a

)2

= H 2 = 8πG

3

(
ρm +ρr

)= 8πG

3
ρm

(
x +1

x

)
(1.50)

which leads us to

ρm = 3H 2x

8πG (x +1)
(1.51)

Moreover:
ȧ

aeq
= ȧ

a

a

aeq
= H x (1.52)
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Using the second Friedmann equation:

ä

aeq
=−4piG

3

a

aeq

(
ρ+ 3p

c2

)
=−4πG

3

a

aeq

(
ρm +2ρr

)=−4πG

3
xρm

(
x +2

x

)
=−H 2x (x +2)

2(x +1)
(1.53)

where we substituted the radiation pressure p = 1
3ρc2 and Equation 1.51 for the density. Inserting

Equation 1.51, Equation 1.52 and Equation 1.53 into Equation 1.48, we obtain:

δ′′k +
2+3x

2x + (1+x)
δ′k −

3

2x + (1+x)
δ′k = 0 (1.54)

Equation 1.54 is a hypergeometric equation which has a growing solution (Meszaros, 1974):

δk;m+ = 1+ 3

2
x (1.55)

Therefore, from the moment at which the perturbations enter the horizon aH up to the equivalence,

they can only grow by a factor
δk

(
aeq

)
δk (aH )

= 1+3/2

1+3aH /2aeq
≤ 5

2
(1.56)

This result shows that dark matter perturbations almost don’t grow inside the horizon before the

equivalence, and is called the stagnation effect. Outside the horizon, radiation perturbations above

the Jeans length drive the evolution, and dark matter perturbations can grow. The overall effect is a

small-scale depression in the power spectrum of the perturbations, from an initial scale-free power

spectrum Pin (k) ∼ kns , with ns ≈ 0.96 (Planck Collaboration, 2014), to a peaked power spectrum with

negative logarithmic slope at scales smaller than the scale of the horizon at the equivalence.

1.2 Spherical collapse

The evolution of perturbations presented in the previous section only covers the linear regime, where

δ ¿ 1. However, most of the large scale structures today are in the highly non-linear regime, like

galaxies and dark matter halos. The spherical collapse model addresses the gravitational collapse and

virialization of isolated overdensities in the non-linear regime for collisionless systems with spherical

symmetry.

1.2.1 Solution for the perturbation

Let us consider an Einstein-de Sitter universe, where Ωm = 1 and ΩΛ = 0. An initially comoving top-

hat spherical perturbation can be considered as an universe withΩ> 1 embedded in the background

flat universe, and we can use the Friedmann equations to derive the solutions for the perturbation

and the background. Defining the variable η such that

d t = dη
R (t )

c
(1.57)
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Figure 1.2: Initial and present-day power spectrum of density perturbations. The initial power spec-
trum is a power law with logarithmic slope ns ≈ 0.96. The present-day power spectrum is depressed
at small scales by the stagnation effect. Other effects, like the Baryonic Acoustic Oscillations, are also
visible. The red dashed line is the extension of the non-suppressed large scale part of the spectrum.

where R (t ) is the radius of the spherical perturbation, the first Friedmann equation can be written as:[
dR

dη

]2

=
[

R (t )

c

]2 [
8πG

3c2 ρR2 −k

]
= 8πG

3c2 ρR4 −kR2 (1.58)

If we assume that there is no shell-crossing, the mass conservation is:

ρ (t ) = ρ0

(
R0

R

)2

(1.59)

Defining

R∗ = G

c2

4π

3
ρ0R3

0 = GM0

c2 (1.60)

and plugging in the mass conservation equation, the Friedmann equation becomes:[
d

dη

(
R

R∗

)]2

= 2
R

R∗
−k

(
R

R∗

)2

(1.61)

For the perturbation k = 1 and the solution is

R
(
η
)

R∗
= 1−cosη (1.62)

which we can use to derive t
(
η
)
:

t
(
η
)= ∫ η

0
dη′

R
(
η′

)
c

= R∗
c

∫ η

0
dη′

(
1−cosη′

)= R∗
c

(
η− sinη

)
(1.63)
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The combined solutions for R
(
η
)

and t
(
η
)

give R (t ) in the form of the parametric equation for the

cycloid. Considering only one period, the radius of the perturbation initially grows up until it reaches

a maximum (called turn-around point) for ηTA = π, tTA = πR∗
c and RTA = 2R∗. The perturbation then

collapses and the radius becomes zero at ηcoll = 2π, tcoll = 2ππR∗
c = 2tTA.

1.2.2 Solution for the density contrast

For the background, the Friedmann equation is simply

ȧ2 (t ) = 8πG

3
ρb a2 (1.64)

which has the classic solution

a ∝ t 2/3 (1.65)

ρb = 1

6πGt 2 (1.66)

Combining the solutions for the perturbation and for the background, we obtain the evolution of the

density contrast:

1+δ(
η
)= ρ

(
η
)

ρb
(
η
) = 3M0

4πR3
(
η
)6πGt 2 (

η
)= GM0

c2R∗
9

2

(
η− sinη

)2(
1−cosη

)3 = 9

2

(
η− sinη

)2(
1−cosη

)3 (1.67)

To recover the linear solution, we can expand the terms
(
η− sinη

)2 and
(
1−cosη

)3 for η¿ 1 with a

third order Taylor expansion:

(
η− sinη

)2 '
[
η−

(
η− η3

3!
+ η5

5!
− . . .

)]2

(1.68)

(
1−cosη

)3 '
[

1−
(
1− η2

2!
+ η4

4!
− . . .

)]3

(1.69)

Then substituting in Equation 1.67:

1+δlin
(
η
)' 9

2

(
η3

6 − η5

120

)2

(
η2

2 − η4

24

)3 ' 9

2

η6

36

(
1− η2

10

)
η6

8

(
1− η2

4

) '
(
1− η2

10

)(
1+ η2

4

)
= 1+ 3

20
η2 (1.70)

where we linearized to leading orders and used the fact that (1−x)−1 ' (1+x) for x ¿ 1. Similarly,

expanding Equation 1.63:

t
(
η
)= R∗

c

(
η− sinη

)' R∗
c

η3

6
(1.71)

which combined with the previous equation gives

δlin (t ) ' 3

20

(
6ct

R∗

)2/3

(1.72)
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This important result can be used to establish a correspondence between the prediction of the linear

theory and the actual value of the density contrast in the non-linear regime. For example, at the turn-

around, that is for η=π and t =πR∗/c, we have:

1+δTA = 9

2

π2

8
= 5.552 (1.73)

δlin = 3

20
(6π)2/3 = 1.062 (1.74)

that shows that the non-linearities cause the perturbation to grow faster than the linear solution. A

more useful value is the prediction of the linear theory at collapse:

δlin = 3

20
(12π)2/3 = 1.68647 (1.75)

which is also called the Press-Schechter threshold or the critical value for collapse δc , and is the basis

of the model presented in section 1.3.

1.2.3 Virialization

So far we defined the collapse as the moment at which the density diverges. However, this does not

happen in practice, as the no shell-crossing constrain fails before the collapse. Instead, the pertur-

bation undergoes violent relaxation, the mass shells cross and oscillate around an equilibrium and

the perturbation virializes. At the turn-around, since we are considering a self gravitating system, the

total energy is

Et (tTA) =UTA =−αGM0

RTA
(1.76)

where α is a parameter that depends on the mass distribution. For the conservation of energy, the

total energy of the system at the turn-around is equal to the total energy at collapse:

Et (tcoll) = Et (tvir) = Tvir +Uvir =−αGM0

RTA
(1.77)

Assuming α to remain constant, and using the virial theorem 2T +U = 0:

Evir = Tvir +Uvir = Uvir

2
=−αGM0

2Rvir
=−αGM0

RTA
(1.78)

from which we obtain

Rvir = 1

2
RTA (1.79)

The density contrast at the time at which R
(
η
)= RTA/2 is:

1+δ (tvir) = ρ (tvir)

ρb (tvir)
= ρ (tvir)

ρ (tTA)

ρb (tTA)

ρb (tvir)

ρ (tTA)

ρb (tTA)
=

[
Rvir

RTA

]−3 [
tTA

tvir

]−2

[1+δ (tTA)] (1.80)
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Using the fact that Rvir = RTA/2, tvir = 2tTA and 1+δ (tTA) = 9/16π2, we finally obtain:

∆vir ≡ 1+δ (tvir) = 18π2 ' 178 (1.81)

which is the exact value of the non-linear overdensity for spherical virialized structures in an Einstein-

de Sitter universe.

1.2.4 Solutions in a flat LCDM universe

The values δc = 1.686 and ∆vir = 178, albeit frequently used in literature, are only valid for a universe

with Ωm = 1, ΩΛ = 0, or at very high redshift. If the cosmological constant is non-zero, there is an

additional term Λ
3 R in Equation 1.58 that greatly complicates the computation. An useful approxi-

mation for the linear critical overdensity for collapse is given by (Lacey and Cole, 1993):

δc = 3

20
(12π)2/3 [Ωm]0.0055 ≈ 1.686[Ωm]0.0055 (1.82)

which is accurate to better than 1%, and shows that the dependence on cosmology is very weak. For

the non-linear overdensity, a commonly used approximation (Bryan and Norman, 1998) is:

∆vir (z) = 18π2 +82x −39x2

1+x
(1.83)

where x =Ωm (z)−1 and

Ωm (z) = Ωm (1+ z)3

E 2 (z)
(1.84)

E (z) = [
ΩΛ+ (1+Ω0) (1+ z)2 +Ωm (1+ z)3 +Ωr (1+ z)4]1/2

(1.85)

ForΩm = 0.3,ΩΛ = 0.7, we have:

δc = 1.675; ∆vir (z = 0) = 337 (1.86)

We remind the reader that we defined ∆vir as the overdensity with respect to the background density

ρb = ρcΩm . However, and quite confusingly, the use of the overdensity with respect to the critical

density is also common in the literature, in which case the value ∆c
vir (z = 0) = 101 should be used

instead.

1.3 Excursion sets and mass function

We have seen in the previous sections that small perturbations on scales larger than the Jeans scale

grow following a function δ+ defined by Equation 1.31 and Equation 1.32. The linear theory holds

until δ ∼ 1, but following the exact evolution of a perturbation in the non-linear regime is difficult.
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We need a statistical way to characterize the collapsed objects population without following the non-

linear dynamics in detail, in particular we need a method to partition the density field at some early

time into a set of disjoint patches, each of which will form a single collapsed object at some later time.

Then we can calculate the statistical properties of this partition. In order to do this, we can exploit the

correspondence we found between the prediction of the linear theory in the non-linear regime and

the non-linear solution obtained with the spherical collapse model, namely the value of δc ' 1.686 for

a virialized object. This correspondence allows us to use the linear theory only throughout the entire

evolution of the perturbations, and consider δc as a threshold for the collapse:

δ (~x, tcoll) = δ (~x)
δ+ (tcoll)

δ+ (t0)
= δc (1.87)

Sometimes it is useful to consider the growth of perturbations from a different point of view. Instead

of thinking of an evolving field δ (~x, t ) and a static threshold δc , we can transfer the temporal depen-

dence to the threshold by multiplying Equation 1.87 by δ+ (t )/δ+ (t0). This approach is equivalent to

considering the linear fluctuations field δ (~x) rescaled at the time t0, and a “moving barrier”

δc (t ) = δc
δ+ (t0)

δ+ (t )
(1.88)

that is decreasing with time. In this context, let us define the collapse with an idea first proposed by

Press and Schechter (1974): the infinitesimal mass element in~x is part of a halo of mass M or greater at

the time t if the linear fluctuation δ f (~x;R) centered in~x and filtered on a sphere with radius R ∝ M 1/3

has a value greater or equal than the required threshold:

~x ∈ M =⇒ δ f (~x;R) ≥ δc (t ) (1.89)

1.3.1 Brownian paths

The filtered density field δ f (~x;R) is the convolution of the pointwise field δ (~x) with a suitable window

function W (~x,R) of typical amplitude R:

δ f (~x;R) = 1

(2π)3

∫
d 3kδ̂ (k)Ŵ (kR) = 1

2π2

∫ ∞

0
dkk2δ̂ (k)Ŵ (kR) ≈ 1

2π2

∫ k f

0
dkk2δ̂ (k) ≡ δ f

(
~x;k f

)
(1.90)

where k = π/R is the wavenumber corresponding to the filtering radius R. In the same way, we can

also define the mass variance as the variance of the filtered density field:

σ2
R = 〈

δ2 (~x;R)
〉= 1

2π2

∫ ∞

0
dkk2P (k)Ŵ 2 (kR) ≈ 1

2π2

∫ k f

0
dkk2P (k) ≡ S

(
k f

)
(1.91)

S
(
k f

)
is a monotonically increasing function of k f , such that S

(
k f = 0

) = 0 and S (ks →+∞) →+∞.

We can then construct for every point~x the path in the bidimensional space
(
S

(
k f

)
,δ f

(
~x;k f

))
of the
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perturbation δ f centered in~x and filtered on the scale k f . Every path will begin in
(
S,δ f

)= (0,0) for a

null fluctuation and an infinite filtering radius, and it will depart from the origin point stochastically,

depending on the mass distribution around ~x. If we choose a top-hat window function in Fourier

space, every step in the path will be uncorrelated. The trajectory of δ f is then a brownian motion,

described by the diffusion equation
∂Q

∂S
= 1

2

∂2Q

∂δ2
f

(1.92)

where Q
(
δ f ,S

)
is the probability distribution in the stochastic variable δ f for the trajectories with a

given value ofσ2 (ks) = S. For a free brownian path the solution to the diffusion equation is a gaussian

probability distribution:

Q
(
δ f ,S

)= 1p
2πS

exp

(
−
δ2

f

2S

)
(1.93)

Figure 1.3: Trajectories of the filtered density field as a function of the filter scale R f , for five different
positions and a gaussian (left panel) and top-hat (right panel) window function. With a gaussian
filtering the trajectories are correlated in k, while for a top-hat they are not and the motion is a true
random walk. From Bond et al. (1991).

1.3.2 The excursion sets model

Using the brownian paths we can construct a model, called excursion sets model, first proposed by

Bond et al. (1991). The fundamental idea is the following: trajectories that, starting from the origin

and with increasing S, reach for the first time the moving barrier δ f (S) = δc (t ) in correspondence

to a given S are related to fluid elements which at the time t belong to collapsed objects with radius

R (S) and mass M = 4π
3 ρbR (S)3. If a trajectory does not cross the barrier, the corresponding mass

element in ~x does not belong yet to a collapsed object. With the passing of time the barrier lowers
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and new trajectories will cross it. To compute the mass function of the collapsed objects, which is

the mass distribution of the virialized structures at each time, we need to be able to count the types

of trajectories with respect to the value of δc (t ). Let us consider, at a time t , a critical scale k0 and a

corresponding mass variance S0. There are three kinds of trajectories:

1. trajectories that reached the barrier for some value k f < k0 and are still over the barrier:

δ f (k0) ≥ δc (t ) (1.94)

2. trajectories that are under the barrier at k f = k0, but that have reached the barrier for some

lower value of k f :

δ f (k0) < δc (t ) but ∃ k f < k0 such that δ f
(
k f

)≥ δc (t ) (1.95)

3. trajectories that have always been under the barrier:

δ f
(
k f

)< δc (t ) ∀k f < k0 (1.96)

In particular, we want to count the third kind of trajectories, as the total number of trajectories that are

under the barrier at k f = k0, given by Equation 1.93, minus the trajectories of the second kind. Since

the path of the trajectories is determined by the addition of independent Fourier modes (thanks to

the choice of the top-hat window function in Fourier space), at every step a trajectory has equal prob-

ability of moving up or down. This means that for every trajectory of the second kind there is another,

virtual, with an equal probability that reaches the threshold in the same point (S,δc (t )) coming from

above instead of from below, obtained by reflecting about the δc (t ) axis the part of the trajectory be-

fore the first crossing of the threshold. This virtual trajectory corresponds to a brownian path that

begins in
(
S,δ f

) = (0,2δc (t )), and satisfies the same diffusion equation with solution Equation 1.93

but translated by 2δc (t ). The probability associated to the second kind of trajectories is then

Q2
(
δ f ,S,δc (t )

)
dδ f =

1p
2πS

exp

[
−

(
δ f −2δc (t )

)2

2S

]
dδ f (1.97)

The probability associated to the trajectories of the third kind is then given by the difference

Q3
(
δ f ,S,δc (t )

)
dδ f =

[
Q

(
δ f ,S

)−Q2
(
δ f ,S,δc (t )

)]
dδ f

= 1p
2πS

{
exp

(
−
δ2

f

2S

)
−exp

[
−

(
δ f −2δc (t )

)2

2S

]} (1.98)

The fraction of trajectories that did not reach the threshold δc (t ) within a time t is the cumulative

probability of the previous expression:

P3 (S,δc (t )) =
∫ δc (t )

−∞
Q3

(
δ f ,S,δc (t )

)
dδ f (1.99)
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Figure 1.4: Schematic representation of random walk trajectories in
(
S,δ f

)
space. Each trajectory cor-

responds to a mass element in the initial density field, and δ f is the overdensity at the location of that
mass element when the initial density field, linearly extrapolated to the present time, is smoothed
with a top-hat filter in Fourier space of mass M = 4/3πρbR3 given by S = σ2 (R). The horizontal
dashed lines indicates the critical density for spherical collapse, δ f = δc . Trajectory B ′ is obtained
by mirroring trajectory B in δ f = δc for S ≥ S2, and, since the trajectories are Markovian, is equally
likely as trajectory B.

the complement of which is the fraction of trajectories that have already reached the barrier at an

earlier time t :

P3 (S,δc (t )) = 1−P3 (S,δc (t )) (1.100)

The last expression represents the numerical fraction of fluid elements that at the time t belong to

collapsed object of mass M associated to a variance < S, that is the mass fraction that at the time t is

in objects with variance < S. This is exactly the definition of cumulative mass function at the time t ,

expressed in the variable S:

P3 (S,δc (t )) = P (< S, t ) (1.101)

1.3.3 Mass function

The differential mass function, that is the probability that at the time t a fluid element belongs to a

collapsed object with mass between M and M +d M , is the probability distribution of the trajectories

that reach the barrier for the first time at time t and variance S, and it is obtained differentiating the
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cumulative distribution Equation 1.101 with respect to S:

p (S,δc (t )) ≡ ∂P3 (S,δc (t ))

∂S
=−P3 (S,δc (t ))

∂S
=− ∂

∂S

∫ δc (t )

−∞
Q3

(
δ f ,S,δc (t )

)
dδ f (1.102)

Differentiating under the integral sign and using Equation 1.93 to substitute the derivative with re-

spect to S with the derivative with respect to δ f , we obtain

p (S,δc (t )) =−1

2

∫ δc (t )

−∞
∂2Q3

∂δ2
f

dδ f =−1

2

∂Q3

∂δ f

∣∣∣∣δc (t )

−∞
(1.103)

and using Equation 1.98 for Q3:

∂Q3

∂δ f
= 1p

2πS

{
−δ f

S
exp

[
−
δ2

f

2S

]
+

(
δ f −2δc (t )

)
S

exp

[
−

(
δ f −2δc (t )

)2

2S

]}
(1.104)

This function in −∞ is vanishing because it is dominated by the negative exponentials, therefore we

only need to evaluate it in δ f :

p (S,δc (t )) ≡ d f (S)

dS
=−1

2

∂Q3

∂δ f

∣∣∣∣δc (t )

= −1

2
p

2πS

(−2δc (t ))

S
exp

[
−δ

2
c (t )

2S

]
= δc (t )p

2πS3
exp

[
−δ

2
c (t )

2S

] (1.105)

This expression gives the mass fraction in structures with variance S. If we want to express it in terms

of the variable M , we can use the conservation of probability law

d f (M)

d M
= d f (S)

dS

∣∣∣∣ dS

d M

∣∣∣∣ (1.106)

Given that ∣∣∣∣ dS

d M

∣∣∣∣= S

M

∣∣∣∣ d lnS

d ln M

∣∣∣∣= 2S

M

∣∣∣∣ d lnσ

d ln M

∣∣∣∣ (1.107)

there follows
d f (M)

d M
=

√
2

π

δc (t )

Mσ (M)

∣∣∣∣ d lnσ

d ln M

∣∣∣∣exp

[
− δ2

c (t )

2σ2 (M)

]
(1.108)

The number density of objects with mass M in a volume V containing a total mass MV is

dn (M)

d M
= 1

V

d f (M)

d M

MV

M
=

√
2

π

ρb

M 2

δc (t )

σ (M)

∣∣∣∣ d lnσ

d ln M

∣∣∣∣exp

[
− δ2

c (t )

2σ2 (M)

∣∣∣∣ (1.109)

This is the classic Press-Schechter mass function (Press and Schechter, 1974), but obtained with the

excursion sets formalism. It is notable that it is possible to rewrite Equation 1.109 in a way that is

independent of the perturbation spectrum, using the variable ν= δc (t )/σ (M):

d f

d lnν
=

√
2

π
νexp

(
−ν

2

2

)
(1.110)
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Figure 1.5: Universality of the mass function. Symbols show measurements from several simulations
with different cosmologies at four redshifts: z = 0, 1, 2, 5. From Despali et al. (2016).
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1.4 Dark matter halos

In this chapter we presented the evolution of the primordial perturbations in the density field, first

in the linear regime when δk ¿ 1 and then in the non-linear regime δ & 1, up until the collapse

and virialization. Such virialized objects are commonly called ”halos“, and represent the building

blocks of the large scale structures in the universe. It can be shown that in a universe with a power-

law primordial power spectrum P (k) ∝ kn with index n > −3 the halo formation is hierarchical, i.e.

smaller halos form first and larger halos form by subsequent mergers of the smaller ones. At each

time, there is a characteristic non-linear mass M∗ such that most of the halos that have formed have

mass M . M∗. It is easy to see that

σ2 (
M∗ (t )

)= δ2
c (t ) = δ2

c

[
δ+ (t0)

δ+ (t )

]2

(1.111)

which means that for our universe M∗ ≈ 4.944×1012 M¯ h-1 at the present time.

As a first approximation, dark matter halos are mostly spherical, and they are found in numerical

simulations to have an equilibrium density profile well described by the simple form (Navarro et al.,

1997)
ρ(r )

ρb
= δ0

(r /rs) (1+ r /rs)2 (1.112)

which is called NFW profile. In this formula ρb is the background density of the universe and δ0 and

rs two parameters, called characteristic overdensity (related to the total mass of the halo) and scale

radius. Using the spherical overdensity model, the virial radius of the halo is defined as the radius

within which the mean density is ∆vir times that of the background. The enclosed mass of the profile

is then

M (r ) = 4πρbδ0r 3
[

ln(1+ cx)− cx

1+ cx

]
(1.113)

where x = r /Rvir, and

c = Rvir

rs
(1.114)

is called concentration. From Equation 1.113 evaluated at Rvir we obtain a relation between the char-

acteristic overdensity and the concentration:

δ0 = ∆vir

3

c3

ln(1+ c)− c/(1+ c)
(1.115)

Thus, for a given cosmology, the NFW profile is completely characterized by its mass M and its con-

centration c, or equivalently by rs and δ0. Moreover, there exists a natural relation between the mass

and the concentration, which is found in both simulations and galaxy clusters, for which more mas-

sive halos statistically have lower concentrations, albeit with significant scatter. Since smaller halos

form earlier, when the universe was denser, this relation is thought to derive from the fact that the in-

ner regions of dark matter halos retain an imprinting of the density of the universe at the time of their
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formation, with denser cores leading to higher concentrations. Why the equilibrium density profile of

dark matter halos is universal, what are the mechanisms that lead to its formation and how precisely

the initial conditions and the assembly history influence its parameters are fundamental questions

in the current cosmological research.



Cosmological simulations 2
Although the physics behind gravitational collapse is simple, in the sense that only gravitational in-

teractions are involved, the evolution of the cosmic density field is in general complicated. This com-

plexity arises because the initial density field contains perturbations over a wide range of scales, and

non-linear evolution couples structures of different scale, as can be seen with a higher order pertur-

bation theory. Thus, to follow the evolution of the cosmic density field in detail, we need to resort to

numerical simulations. Despite the name, numerical (N -body) simulations are not simulations but

rather integrations of the gravitational forces acting on a discretization of the density field inside a pe-

riodic box, represented by N point-like clumps of mass (particles). Currently, the larger simulations

have hundreds of billions of particles, within boxes 100-1000 Mpc h-1 on a side.

2.1 GIF2

The GIF2 simulation (Gao et al., 2004) follows the evolution of 4003 dark matter particles in a periodic

cube of side 110Mpc h-1 from an initial redshift z = 49 to the present time. The cosmological param-

eters adopted are Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.9 and h = 0.7. The simulation was run in two step, from

the initial redshift up to z = 2.2 with the parallel SHMEM version of the HYDRA code (MacFarland et al.,

1998) and then completed with GADGET (Springel et al., 2001) which has better performances in the

heavily clustered regime. The GIF2 simulation, processed with the codes described in section 2.3, is

the main datased used by Giocoli et al. (2012), which is the basis of our work.

2.2 Le SBARBINE

Our main dataset consist in a set of 6 simulations ran between 2013 and 2014 by our group in Padova

using the publicly available code GADGET-2 (Springel, 2005), and are summarized in Table 2.1. The

adopted cosmology was chosen from the 2013 Planck results (Planck Collaboration XVI):Ωm = 0.30711,

25
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name box [Mpc h-1] zi mp [M¯ h-1] soft [kpc h-1] Nh−tot Nh>1000

Ada 62.5 124 1.94×107 1.5 2264847 36532
Bice 125 99 1.55×108 3 2750411 44833
Cloe 250 99 1.24×109 6 3300880 54421
Dora 500 99 9.92×109 12 3997898 58193
Emma 1000 99 7.94×1010 24 4739379 38574
Flora 2000 99 6.35×1011 48 5046663 5285

Table 2.1: Main features of Le SBARBINE simulations: name, box size, initial redshift, particle mass,
softening length and number of halos (total and of the subset of halos with more than 1000 particles)
identified by the halo finder (subsection 2.3.1) at redshift z = 0.

ΩΛ = 0.69289,Ωb = 0.04825, h0 = 0.6777, s8 = 0.8288. They are collectively named Le SBARBINE sim-

ulations and were first presented in Despali et al. (2016).

Each simulation is Dark-Matter only and follows the evolution of 10243 particles, with increasing

box sizes (from 62.5 Mpc h-1 to 2000 Mpc h-1) in order to probe a large dynamical range, with both

significant statistic and resolution at the low as well as the high end of the mass function, without

the technical limitations of a single extremely large simulations (mainly the need for enormous pro-

cessing power and storage space). Overall, the simulations contain close to 22 million halos, around

240000 of which have more than 1000 particles, with masses ranging from 2×1010 to 4×1015 M¯ h-1.

For all simulations initial conditions were generated by the public code N-GenIC (Springel, 2003),

starting from a standard glass distribution (Springel, 2005; White, 1994) and a suitable power spec-

trum generated with the public code CAMB (Lewis et al., 2000b). The random seed for each simulation

was chosen carefully, to obtain independent realization and to follow the initial power spectrum even

at large scales.

All runs (except for Ada, see subsection 2.2.2) and the post-processing were performed in Padova

on the cluster ‘Nemo’: a SuperServer Twin 2U Dual Xeon Sandy Bridge composed by four independent

node servers each equipped with two Xeon Sandy Bridge 8 Core E5-2670 and 128 GB of RAM, for a

total of 64 cores or 128 CPU-threads and 512 GB of RAM.

2.2.1 COSMO

To complement the primary set of 6 simulations described in the previous paragraph, a secondary

set was run by Despali et al. (2016) with different cosmological parameters, to test the universality

of the halo mass function with respect to the cosmological model. Each of these simulations (col-

lectively called COSMO hereafter) has 5123 dark matter particles and was run twice, with a box size

of 150 and 1000 Mpc h-1 (with a corresponding softening length of 7.2 and 48 kpc h-1 respectively)

to ensure good resolution both for intermediate and high-mass halos. The cosmological parameters

used are summarized in Table 2.2. In this work, we applied the same post-processing pipeline we
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name Ωm ΩΛ σ8 box [Mpc h-1] mp [M¯ h-1]
Tea 0.2 0.8 0.7 150 1.396×109

Tea-big 0.2 0.8 0.7 1000 4.135×1011

Tina 0.2 0.8 0.9 150 1.396×109

Tina-big 0.2 0.8 0.9 1000 4.135×1011

Vera 0.4 0.6 0.7 150 2.791×109

Vera-big 0.4 0.6 0.7 1000 8.271×1011

Viola 0.4 0.6 0.9 150 2.791×109

Viola-big 0.4 0.6 0.9 1000 8.271×1011

Wanda (wmap7) 0.272 0.728 0.81 150 1.898×109

Wanda-big (wmap7) 0.272 0.728 0.81 1000 5.624×1011

Table 2.2: Details of the secondary set of simulations COSMO. Each contains 5123 dark matter parti-
cles with initial conditions generated at redshift z = 99. For all simulations the Hubble parameter is
h = 0.6777, apart from the WMAP7 cosmology for which h = 0.704.

will describe for Le SBARBINE in section 2.3 to the COSMO simulations, and we will apply the same

analysis to check the dependence on cosmology of our model for the MAH, as it will be presented in

subsection 3.2.2.

2.2.2 Ada

In the context of this work, we followed the evolution of the simulation with the smallest box size,

named Ada. Given the small scale, for which we expected stronger non linear effects, we choose to

start the simulation at higher redshifts. Moreover, for the same reason, the time-step used in the

integration of the equation of motion performed by GADGET is expected to be smaller. Due to the

increased computational resources needed, we ran this simulation on a different system, an IBM

Power7 computing cluster with 48 cores (each with a 4 way SMT) and 640 GB of RAM, with a peak

performance of 1190.4 GFlops.

To assess the computational resources needed for the run, we conducted an analysis of the per-

formance scaling of GADGET in terms of total CPU-time and memory consumption, with a set of

28 low-resolution simulations, named HyperCube. Firstly, we defined a baseline reference simula-

tion with 2563 particles, 200 Mpc h-1 box size, 32 processors and an appropriate softening length (of

∼ 20kpc h-1) defined by the relation (commonly used in the literature):

log
(
ε

[
kpc h-1])=−2.253+ 1

3
log

(
mp [Mpc h-1]

)
(2.1)

where ε is the softening and the mass resolution mp is derived from the number of particles, the box

size and the adopted cosmology (which for these simulations is the same as for Le SBARBINE):

mp =
(

box

N

)3

×Ωm ×ρc (2.2)
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where N 3 is the number of particles. Given this reference simulation, we ran several others changing

one of the parameters and keeping the other fixed to asses the performance scaling for that parameter,

plus some other simulations with multiple parameter changed to check our findings. We used 50, 100,

200 and 400 Mpc h-1 for the box size, 1283, 2563 and 5123 particles, 2, 3, 5, 10, 20 and 40 kpc h-1 for

the softening length and 8, 16 and 32 processor cores. We also tested different versions of GADGET-3

(non public) and of the compiler, but we decided for a standard implementation of GADGET-2 with

gcc and openmpi compilers, which proved faster than the other versions, while however lacking the

on-the-fly post-processing capabilities of GADGET-3. We found a scaling for the total CPU-time:

T ∼ N 3.46ε−0.54L0 = N 4L−0.54 (2.3)

where L is the box size and we used the scaling for the softening

ε∼ N−1L (2.4)

The scaling with the box size, besides the contribution from Equation 2.4, is actually small but non-

zero. However, it doesn’t appear to be neither power-law nor even monotonic, so we choose to set

it to zero and to use a constant box size for future comparisons. The resulting formula is included

in a Google Spreadsheet (Baso, 2014), which we used to plan the run for Ada. The predicted time

slightly underestimated the actual time it took to run the simulation, probably due to bottlenecks in

the messaging protocol for the parallel processors, but resulted in a decent forecast nonetheless.

2.3 Post-processing pipeline

The output of GADGET-2 consists in a series of ‘snapshots’ which contain the position, velocities and

potential of each particle at the time corresponding to the snapshot, as well as an unique ID for

each particle. We chose to save 56 snapshots, as a compromise between time resolution and use

of computational resources, equally spaced in log(1+ z) starting from z = 99 to z = 0, except for Ada

which started at z = 124 and has an additional snapshot. See Table 2.3 for the full list, as well as the

corresponding redshifts. From the snapshots we need to identify the halos and follow their evolu-

tion through the simulation, which is done with a pipeline of specialized codes both preexisting and

specifically developed in this work.

2.3.1 Halo finder

The first code in the post-processing pipeline is the spherical overdensity halo finder Denhf (Tormen

et al., 2004). Since halos are overdense regions, we start by computing the local density at each parti-

cles as the cube of the inverse of the distance to the tenth closest neighboring particle. We then grow
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# snap z
0 99
1 50
2 35
3 20
4 18.81
5 17.68
6 16.62
7 15.62
8 14.67
9 13.78

10 12.94
11 12.15
12 11.40
13 10.69

# snap z
14 10.30
15 9.401
16 8.810
17 8.252
18 7.726
19 7.230
20 6.762
21 6.320
22 5.904
23 5.511
24 5.141
25 4.792
26 4.463
27 4.152

# snap z
28 3.859
29 3.583
30 3.322
31 3.076
32 2.844
33 2.626
34 2.420
35 2.225
36 2.042
37 1.869
38 1.706
39 1.552
40 1.407
41 1.270

# snap z
42 1.141
43 1.019
44 0.9041
45 0.7959
46 0.6937
47 0.5974
48 0.5065
49 0.4209
50 0.3401
51 0.2639
52 0.1920
53 0.1242
54 0.0603
55 0

Table 2.3: List of the simulation snapshots and corresponding redshifts. Except for the initial 4 snap-
shots, they are logarithmically equally spaced in redshift.

a sphere around the particle with the highest density, until it encloses a mean density of ∆ (z) times

the background density, where ∆ is the virial overdensity for the spherical collapse in a Λ CDM cos-

mology (Eke et al., 1996) and has a value of ∆ (z = 0) ≈ 319 at redshift zero in our cosmology. Having

identified the first halo, we remove all its particles from the list, find the next particle with the higher

local density and proceed in the same fashion until all halos have been identified, with the additional

caveat that an halo must have at least 10 particles to be considered. For every halo identified this way,

the code also computes which of the particles are self-bound, save a full list of their IDs, and also save

some information like the full number of particles, the number of bound particles, the virial radius,

the average peculiar velocity, the velocity dispersion, the total energy, the position of the center of

mass and the index of the most bound particle. This catalog is constructed for every snapshot.

2.3.2 Merger trees

In a hierarchical clustering scenario, halos grow by a mechanism where two or more smaller halos

(called ‘progenitors’) merge to form a bigger one, with the addition of a contribution from smooth

accretion from the field. The same process happens again many times, resulting in a ‘tree’ of pro-

genitors for every final halo. The progenitor providing the largest mass contribution to the parent

halo is termed the main progenitor. Starting from a host halo at z = z0, we iterate this procedure

back in time, thus obtaining a complete merger tree down to the mass resolution of 10 particles per

halo. The main branch of a merger tree is defined as the branch tracing the main progenitor of the

main progenitor, etc. We also define as ‘satellites’ those progenitors who merge directly into the main
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branch. A schematic representation of the merger tree is illustrated in Figure 2.1 (Giocoli et al., 2008).

For simplicity, we will call the set of halos in the main branch at different snapshots with the name

‘main progenitor’, identifying them with a single halo whose mass increases from snapshot to snap-

shot while accreting the satellites. We will use mMP (z) to denote its mass as a function of redshift, M0

to denote the final mass, and we will refer to the normalized value mMP (z)/M0 as the ‘mass accretion

history’ (hereafter MAH) of the halo.

Figure 2.1: Schematic representation of the merger tree of a halo. Light gray circles represent the main
branch, dark grey circles indicate satellites. Taken from Giocoli et al. (2008).

Operationally, we define as progenitors only halos that donate at least half of their mass during

the merger, as it is done in Tormen et al. (2004) with the code Mergertree. However, in this work we

rewrote the code from scratch to improve its performance and to include a new intermediary step in

the construction of the merger tree, the particle history: from the halo catalogs, the code extracts the

particles’ membership at every snapshot, i.e. the ID of the halo each particle is contained in. From

the particles’ membership it is then trivial to construct the full merger tree and the main branch.

While not used elsewhere in the remaining of this work, the particle history is an information that is

‘orthogonal’ to the particle list in the halo catalogs, and it can be especially useful in the study of the

internal structure of halos. Caching this information represents the foundation of new efficient codes

in future works.
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The procedure to derive the MAH that we illustrated, however, suffers from a resolution issue that

needs to be discussed. If we had an infinitely small time-step the MAH would be perfectly recon-

structed, up to the mass resolution of the simulations. In practice, not only we use a finite time-step

for the gravitational evolution of the particles in the simulation, but we also save the position and

velocity of the particles for very few of such steps. In particular, in our simulations we only have 56

snapshots at our disposal, in which we can identify halos, thus we are limited to reconstruct the MAH

in these time jumps, and we run the risk of missing important details of the mergers. This could

potentially lead to a misidentification of the main branch and therefore to a bias in the MAH. Unfor-

tunately, saving lots of snapshots is normally not feasible from a computational standpoint, so one is

forced to accept a compromise.

2.3.3 Density profiles

The next step in our pipeline is to compute density profiles for every halo, which can be fitted with

Equation 1.112 to derive the concentration. From the center of mass, the code computes the mean

density inside a sphere with increasing radius at ∼ 30 logarithmically equally spaced intervals in units

of the virial radius, which is then converted to a radial profile. This procedure is however quite sen-

sitive to the particle resolution of the innermost regions, especially for low-mass halos. Therefore we

only computed the profile for halos with at least 1000 particles within the virial radius, a limit that

also guarantees a reliably accurate estimation for the mass of the halos.

2.3.4 Formation redshift

The formation time of a halo is usually defined as the earliest time at which the main progenitor has

a mass that exceeds a fraction f of the final mass. Widely used values are f = 0.5 (Lacey and Cole,

1994) and f = 0.04 (Zhao et al., 2009). In this work we computed the formation redshift of all halos for

several values of f , namely 0.01, 0.02, 0.04, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9, for five

different identification redshifts z0, namely 0, 0.506, 1.019, 2.041 and 4.152. We will use these as the

basis for the calibration of the model presented in section 3.1.

The formation redshifts thus defined, however, can only assume the discrete values listed in Ta-

ble 2.3, which also underestimate the actual redshift which is usually somewhere in the middle of

two snapshots, when the main progenitor crosses the mass threshold. To obtain a more accurate es-

timation, we linearly interpolated the MAH to the logarithm of 1+ z, and defined the error on this

estimate as the error of a uniform distribution in the interval of z between the two corresponding

snapshots, ∆z = zi+1−zip
12

. The choice of a uniform distribution is motivated by the fact that we have no

prior information as to when a merging can happen in the considered interval.
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2.4 Halo selection

Figure 2.2: Mass accretion histories of two halos excluded by our relaxation criteria. The left panel
shows a halo which accretes most of its mass in the last three snapshots; the right panel shows a halo
with a prominent gap in its MAH.

The process of halo formation, described in subsection 2.3.2, has as a consequence that the in-

ternal structure of dark matter halos is often disturbed and far from equilibrium, which can lead to

biased estimates of their mean structural properties (Neto et al., 2007; Macciò et al., 2008). Similarly,

the mass accretion histories of such transient halos are far outliers in their distribution and escape

modelization, a problem that we will address in subsection 3.2.1. We restricted our analysis to a sub-

set of relaxed halos with the following criteria:

1. the total energy of the halo must be negative

2. the mass of the main progenitor mMP (z) must not exceed by more than 10% the final mass of

the halo

3. the distance of the center of mass from the potential minimum must be smaller than 5% of the

virial radius

4. the main progenitor must not lose more than 10% of its mass between two consecutive snap-

shots

5. the halo must have accreted at least 10−1.5 ' 3.2% of its final mass 4 snapshots before the snap-

shot of identification
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Figure 2.3: Mass-concentration relation for halos in Le SBARBINE simulations. Left panel: all halos
with more than 1000 particles at z = 0. Right panel: halos that pass all relaxation criteria. Colors from
green to orange represent the different simulations, from Ada to Flora, in ascending order of mass.
Black points connected by dashed lines represent the median concentration at fixed mass for each
simulation, with errorbars representing the 1st and 3rd quartiles.

in addition to the stated minimum of 1000 particles per halo. Two examples of halos excluded by the

last two criteria are shown in Figure 2.2. Across all simulations, 128646 halos pass all five criteria at

redshift z = 0, slightly more than 54%. At higher redshifts the percentage of relaxed halos is similar,

with 46% at z = 0.506, 56% at z = 1.019, 59% at z = 2.041 and 64% at z = 4.152.

We can check the validity of our relaxation criteria with the median mass-concentration relation

for each simulation in Le SBARBINE. As we presented in section 1.4 the concentration is the main

parameter, along with the mass, that specifies the density profile of dark matter halos:

ρ(r )

ρb
= δ0

(r /rs) (1+ r /rs)2 (1.112)

where rs is the scale radius and c = Rvir/rs . Ideally, the same relation should hold in the regions where

the mass range of multiple simulations overlap. However, this is not the case if we include non-relaxed

halos, as can be seen in Figure 2.3 (left panel), where there is considerable spread between the median

concentrations at fixed mass for different simulations. A much tighter agreement can be obtained

using only halos that passes all of our relaxation criteria (right panel).





Modeling the distribution of

the mass accretion histories 3
We saw at the end of section 1.4 that the origin of the equilibrium density profile of dark matter halos

is still an open question. The relations between mass and concentration seem to indicate that the

assembly history of halos may play a role in the determination of the final profile (Navarro et al.,

1996; Tormen, 1998; Giocoli et al., 2010), and indeed many authors have linked the concentration to

the formation redshift (Bullock et al., 2001; Wechsler et al., 2002; Zhao et al., 2009; Correa et al., 2015)

or to the full assembly history (Lu et al., 2006; Ludlow et al., 2013). For example, Zhao et al. (2009)

proposed the relation

c = 4

[
1+

(
t

3.75t0.04

)8.4]1/8

(3.1)

where t0.04 is the time at which the main progenitor first accretes the 0.04% of its final mass. Moreover,

the rate at which the dark matter halos grow in mass sets, amongst others, the rate at which baryons

can cool to form luminous objects. It is then clear that accurately modeling the mass accretion his-

tory of dark matter halos is paramount in our efforts of understanding the properties of large scale

structures. Many models exist in the literature, either as empirical formulas (Wechsler et al., 2002;

Zhao et al., 2009; Giocoli et al., 2012; van den Bosch et al., 2014) or based on the Press-Schechter for-

malism (van den Bosch, 2002; Giocoli et al., 2007). However, all of these models either only describe

the mean or median MAH, or they are very poor fit of the tails of the distribution of the halo-to-halo

MAHs (subsection 3.2.1).

The main goal of this work is to present a reliable, universal model that provides a good description

of both the median as well as the full halo-to-halo distribution.

35
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3.1 Previous model

The fitting formula for the MAH proposed by Giocoli et al. (2012, hereafter G12) is based on the defi-

nition of a scaled variable for the formation redshift:

ωf =
δc (zf)−δc (z0)√
σ2

(
f M0

)−σ2 (M0)
(3.2)

where zf is the formation redshift corresponding to a mass fraction of f , z0 is the identification red-

shift, δc (z) is the initial overdensity required for spherical collapse in linear theory and σ2 (M) is the

variance of the linear fluctuation field when smoothed with a top-hat filter of scale R = (
3M/4πρb

)1/3,

where ρb is the comoving density of the background. This variable is intimately related to the “peak

height” variable ν presented in subsection 1.3.3:

ν= δc (z)

σ (M0)
(3.3)

that allowed us to write a universal mass function. Using this scaled variable, G12 showed that the

cumulative distribution p
(>ωf

∣∣ f , M0, z0
)

is very similar for all values of M0 and z0, a result that we

confirmed, albeit with small deviations for halos identified at z0 = 4.152. Figure 3.1 shows two exam-

ples of the distributions of ωf for f = 0.5 and f = 0.1 for different values of z0, for halos taken from all

simulations and with all masses. Orange open diamonds represent the overall distribution obtained

stacking halos from all of Le SBARBINE, with all masses and at all identification redshifts. Barring a

small deviation for z0 = 4.152, the distributions for fixed z0 are in close agreement with each other

and with the overall distribution, hence we will be using the overall distribution as our main dataset

throughout this work.

For the cumulative distribution of ωf, G12 proposed the the 1-parameter function

P (>ωf) =
αf

eω
2
f /2 +αf −1

(3.4)

with the parameter αf depending on f . Given several values of f , one can find the corresponding

values for αf, and derive an empirical relation αf
(

f
)

which we will call a ‘scaling relation’ for αf, that

G12 found to be:

αf = 0.815e−2 f 3
/ f 0.707 (3.5)

Combining Equation 3.5 with Equation 3.4 they obtained a model with no free parameters, which

provided a good description, at least around the peak, for the distribution of ωf for every choice of

f and every values of M0 and z0. We repeated the same procedure with the much bigger dataset

provided by Le SBARBINE simulations, and found:

αf = 1.259e−2 f 3
/ f 0.658 (3.6)
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Figure 3.1: Cumulative distribution of the scaled variableωf for f = 0.5 and f = 0.1 for different values
of the identification redshift z0. Halos are taken from Le SBARBINE and stacked, and halos whit all
masses are used. The green dot-dashed curve is the original fit of Equation 3.4 and Equation 3.5 from
G12. The red solid curve is the same equation but with our calibration.

Figure 3.2 shows the two calibrations. The left panel is the result from G12, with shaded regions

around the fit representing the 1 and 2σ contours of ∆χ2, where χ2 (αf) = Σi

(
Pi −P

(>ωi , f ,αf
)2

)
.

The right panel shows our new calibration, with a shaded region representing the 99.73% confidence

interval derived from a bootstrap with 10000 realizations.

From Equation 3.2 we can derive the median formation redshift at fixed f with

δc (zf) = δc (z0)+ω̃f

√
σ2

(
f M0

)−σ2 (M0) (3.7)

where ω̃f is the median of the distribution described by Equation 3.4:

ω̃f =
√

2ln(αf +1) (3.8)

Similarly, the median main progenitor mass at fixed z > z0 satisfies

σ2 (
f̃ M0

)=σ2 (M0)+ [δc (z)−δc (z0)]2

ω̃2
f

(3.9)

where, however, both σ2
(

f M0
)

and ω̃f depend on f , so the expression must be solved implicitly.

However, they both trace the same relation, so we will focus only on the distribution (and the median)

of zf at fixed f . Figure 3.3 shows the median relation from the model compared with the data at

M0 = M∗1 and z0 = 0, the original result by G12 with data from GIF2 and our new calibration with the
1M∗ is the typical non-linear mass at present time and it is defined as σ2 (

M∗) = δ2
c (z = 0). In our cosmology, M∗ ≈

4.944×1012 M¯ h-1
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Figure 3.2: Scaling relation for αf. The left panel is taken from G12, obtained with the GIF2 simula-
tion. The right panel is our new calibration, obtained with Le SBARBINE. The blue curve represent
Equation 3.6, with a green shaded region around representing the 99.73% confidence interval.

Le SBARBINE. Circles indicate the median z at fixed f , while the shaded region encloses 95% and 50%

(blue solid and dashed lines, respectively) of the MAHs of the halos. G12 also showed a comparison

with previous models (Zhao et al., 2009; van den Bosch, 2002).

3.2 Revised model

The combination of Equation 3.7, Equation 3.8 and Equation 3.6 provides a good description of the

median relation between the formation time z f and the mass fraction f required for the formation.

However, if one is interested in the full distribution of z f at fixed f , one would find that Equation 3.4

is actually a rather poor description of the tails of the distribution of ωf, as it is shown in Figure 3.4,

especially for low values of f . To describe the full differential distribution of ωf, G12 proposed a

second function of the form

p (ωf) = A0ω
0.63 f −2/3

f e−γfω
βf
f (3.10)

where

A0 =
βfγ

B0

f

Γ (B0)
(3.11)

is a normalization factor and

B0 = 1+0.63 f −2/3

βf
(3.12)
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Figure 3.3: Left panel: mass accretion history of halos in the GIF2 simulations, taken from G12. Open
circles show the median z at fixed f = mMP(z)/M0, blue solid curves enclose 95% of the data and blue
dot-dashed curves enclose 50% of the data. The green dot-dashed and magenta dashed curves show
the model of Zhao et al. (2009) and van den Bosch (2002), respectively. The red curve is the result
of Equation 3.7 combined with Equation 3.8 and Equation 3.5. Right panel: the same but with data
from Le SBARBINE simulations and Equation 3.6 for αf

(
f
)
. Black dotted curve shows the result from

Equation 3.5 for comparison.

For γf and βf, similarly to the procedure used for αf
(

f
)
, they found the scaling relations

γf = 0.12+ 1

290 f 1.4 +4.3
(

f −0.24
)2 (3.13)

βf = 3.05e−0.6γf + e3.2γf

3800
(3.14)

which are shown in Figure 3.5. As can be seen in the left and central panels, however, both γf
(

f
)

and

βf
(

f
)

are non-monotonic functions, therefore there is not an one-to-one correspondence between γf

and βf and Equation 3.14 can only be a rather crude approximation.

3.2.1 Calibration with Le SBARBINE

Given the relatively small size of the GIF2 simulation, the study of the tails of the distribution of ωf

made by G12 was restricted to about p (ωf)& 10−2 by the limited statistic available. The much bigger

dataset from Le SBARBINE provided a great opportunity to reach a much deeper level and improve

on these previous results. Figure 3.6 shows the distribution of the relaxed halos in Le SBARBINE,

compared to Equation 3.30 and our reparametrization of Equation 3.10 described in the following

(Equation 3.15). The adherence of the data to the latter is much better, as well as the difference with
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Figure 3.4: Differential distributions of ωf for f = 0.01, f = 0.1, f = 0.5 and f = 0.9, taken from G12.
The red solid curve is the fit of the differential of Equation 3.4, while the green dashed curve is the fit
of Equation 3.10.

respect to Equation 3.4 for low values of ωf. In this region, there are still some discrepancies in the

form of an excess for low values of f and a defect for high values, with f ' 0.25 being the threshold.

Such discrepancies are highly influenced by the relaxation criteria used, as can be seen in Figure 3.7,

where we show the distributions of all halos with more than 1000 particles and of the halos that pass

the first three relaxation criteria, related to the internal structure, but possibly not the last two MAH-

related criteria (section 2.4). It is clear that adding non-relaxed halos to the sample leads to strong

deviations from the distribution of relaxed halos, deviations that escape a simple modelization. In

particular, there appears to be a fairly large number of halos with large values of ωf that don’t pass the

internal structure relaxation criteria, and they would pollute the distribution if included. The same

can be said for very low values of ωf (possibly related to just-formed halos), with the addition that

some of them remains after the internal structure criteria are applied, and the full set of criteria is

needed to properly remove these outliers. A more detailed analysis of the distribution of non-relaxed

halos will be presented in a future work (Gambarotto et al., in preparation).
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Figure 3.5: Scaling relations for γf and βf. Bottom panels show the residuals of the fitted values with
respect to Equation 3.13 and Equation 3.14. Taken from G12.

Figure 3.6: Differential distributions of ωf for f = 0.1, and f = 0.7 from Le SBARBINE simulations
(open symbols). The red solid curve is the fit of the differential of Equation 3.4, while the blue dashed
curve is the fit of Equation 3.15.

As mentioned, we decided to change the parametrization of Equation 3.10 as to better fit the

results, in particular to avoid an excessive steepness in the scaling relations that can lead to an en-

hancement of the errors when computing derived parameters, such as the median, and to minimize

the covariance of the parameters. After some trial and error, we found

p (ωf) =
β

Γ (α)γ

(
ωf

γ

)αβ−1

e
−

(
ωf
γ

)β
(3.15)

where Γ (x) is the Euler Gamma function and where we explicitly freed the parameterαf in the power-
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Figure 3.7: Same as Figure 3.6, including non relaxed halos. Top panels: all halos; bottom panels:
subsample obtained applying only the first three relaxation criteria, related to the internal structure
of the halos.
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law component, to satisfy such requests. To simplify the notation, we dropped the explicit depen-

dence of the parameters on f , and we will consider it implicit hereafter. For the fitting we used the

orthogonal distance regression (ODR) procedure, as implemented by the python scipy.odr pack-

age (Jones et al., 2001–), which is an interface for the ODRPACK library (Brown et al., 1990). It uses

a modified trust-region Levenberg-Marquardt-type algorithm to estimate the function parameters

and, unlike a ordinary least square fit, it also accounts for errors in the independent variable. We re-

mind the reader that we introduced this kind of errors in subsection 2.3.4 on the estimate of z f (and

therefore in ωf) of each halo as a consequence of the interpolation between discrete snapshots. After

binning ωf, we used the weighted mean as the center of the bin and its standard error as the error

of the center. We also assigned a poissonian error to the counts in each bin, and normalized both

counts and errors to
∫ ∞

0 p (ω) dω = 1. Besides the best-fitting values of the parameters α, β and γ

the scipy.odr package also provides the standard errors, the 3-parameters covariance matrix, the

residual variance, the sum of square errors and several intermediate computations for the fit.

The results of the ODR fitting are shown in Figure 3.8 and Figure 3.9, with residuals in Figure 3.10.

Most of the distributions are very well fitted by Equation 3.15, with some deviations especially for

very low and high values of f . The estimated parameters are reported in Table 3.1, along with stan-

dard errors, and the covariance matrices are reported in Table 3.2. Note that the standard errors are

a factor from 1.5 to 5 (depending on f ) higher than the errors derived from the covariance matrices.

We interpret this to be due to Equation 3.15 being a very good approximation, but not the exact un-

derlying distribution of the data. To construct a confidence interval, represented with orange regions

in the figure, we performed a bootstrap on the data. Starting with our sample of 400000 halos, we

took 10000 resamplings and applied to each the fitting procedure, obtaining 10000 sets of parame-

ters. The envelope of 95% of the curves derived from these parameters is the confidence region, and

it is represented with a light blue shade in the figures, in particular in the insert in the f = 0.5 panel in

Figure 3.8 and in Figure 3.10.

A different estimation (not shown) can be made with a Monte Carlo simulation. In this case,

one would take the estimated parameters as if they were the ‘true’ values and then draw from the

corresponding distribution to construct a synthetic dataset. We took 100000 of such realizations,

each with the same number of data points as our original sample, and found similar results for the

confidence region. However, in this case the standard errors were very close to the errors derived from

the covariance matrix, which reinforces our supposition that Equation 3.15 is not the exact underlying

distribution of our data. For this reason we also disregarded the (substantially different, not shown)

confidence interval derived from the covariance matrix:

∆p (ω) =
[∑

i

∑
j

∂p (ω)

∂xi

∂p (ω)

∂x j
Ci j

] 1
2

(3.16)
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f αf βf γf σα σβ σγ
0.01 6.814859 0.869383 1.735133 0.829242 0.124273 0.110805
0.02 6.098033 0.902954 1.757322 0.156480 0.026239 0.023823
0.04 4.880313 1.012731 1.844040 0.121146 0.025790 0.024481
0.10 3.204840 1.216150 2.020827 0.058611 0.018817 0.020319
0.20 2.047594 1.415909 2.239350 0.029420 0.013841 0.018482
0.25 1.691647 1.497920 2.356822 0.025640 0.013951 0.021019
0.30 1.428261 1.561030 2.468992 0.021844 0.013351 0.022787
0.40 1.069415 1.643741 2.680843 0.016041 0.011693 0.025480
0.50 0.934892 1.608178 2.696833 0.020741 0.016146 0.038889
0.60 0.932266 1.485350 2.492989 0.025771 0.020060 0.044504
0.70 1.081704 1.250469 2.055180 0.043104 0.030737 0.051317
0.75 1.271615 1.055325 1.741658 0.058498 0.036932 0.048821
0.80 1.753582 0.720183 1.328632 0.110152 0.049325 0.048568
0.90 9.769217 0.003123 0.412727 1.911203 0.003246 0.041638

Table 3.1: Fitted parameters from the ODR fitting, with standard errors.

where C is the covariance matrix, xi=1,2,3 =α,β,γ are the parameters of the distribution and the par-

tial derivatives are:

1

p

∂p

∂α
=β log

(
ω

γ

)
(3.17)

1

p

∂p

∂β
=

(
α−

(
ω

γ

)β)
log

(
ω

γ

)
(3.18)

1

p

∂p

∂γ
= 1

γ

(
1−αβ+β

(
ω

γ

)β)
(3.19)

From the covariance matrices, it is apparent that there is a strong covariance between the param-

eters αf, βf and γf, quantified by the global correlation coefficient (James and Roos, 1975):

ρi =
√

1− (
Ci i C−1

i i
)−1 ' 0.977 – 0.999 (3.20)

where C is the covariance matrix and C−1 its inverse. To characterize the correlation, following Sheth

et al. (2003), we look at combination of these parameters, such as the mean ω and the most probable

value ω̂:

ω=
∫ ∞

0
ωp (ω)dω=

Γ
(
α+ 1

β

)
Γ (α)

γ (3.21)

dp (ω)

dω

∣∣∣∣
ω̂
= 0 ⇒ ω̂=

(
α− 1

β

) 1
β

γ (3.22)

Equating Equation 3.21 and Equation 3.22 to the measured values from the (unbinned) data, we ob-

tain a set of two equations from which we can derive two of the parameters given the third. For
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Figure 3.8: Distributions of ωf with fitting results for different values of f . Red points represent the
data, and the solid blue curve represents the best fit of Equation 3.15 obtained with the ODR proce-
dure. The insert in the f = 0.5 panel is a zoom-in of the region around the peak of the distribution
enclosed in the black rectangle. The insert also contains the 95% confidence region obtained with
a bootstrap, represented with a light blue shade, and 1σ error bars, as described in the main text.
Despite the magnification, errors in the independent variable are too small to be visible.
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Figure 3.9: Same as Figure 3.8, in the log-log plane.
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Figure 3.10: Residuals of the fit of Equation 3.15 to the distribution of ωf for different values of f .
Light blue regions are the 95% confidence region obtained with a bootstrap. Error bars represent 1σ
errors. For clarity, only half of the points are shown.
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f C11 C12 C13 C21 C22 C23 C31 C32 C33

0.01 2.974e-02 -4.451e-03 -3.956e-03 -4.451e-03 6.678e-04 5.948e-04 -3.956e-03 5.948e-04 5.309e-04
0.02 2.134e-02 -3.574e-03 -3.233e-03 -3.574e-03 6.001e-04 5.441e-04 -3.233e-03 5.441e-04 4.947e-04
0.04 1.088e-02 -2.313e-03 -2.186e-03 -2.313e-03 4.931e-04 4.672e-04 -2.186e-03 4.672e-04 4.444e-04
0.10 2.891e-03 -9.264e-04 -9.930e-04 -9.264e-04 2.980e-04 3.206e-04 -9.930e-04 3.206e-04 3.475e-04
0.20 7.598e-04 -3.564e-04 -4.707e-04 -3.564e-04 1.682e-04 2.228e-04 -4.707e-04 2.228e-04 2.999e-04
0.25 4.175e-04 -2.263e-04 -3.366e-04 -2.263e-04 1.236e-04 1.842e-04 -3.366e-04 1.842e-04 2.806e-04
0.30 2.633e-04 -1.601e-04 -2.696e-04 -1.601e-04 9.836e-05 1.655e-04 -2.696e-04 1.655e-04 2.865e-04
0.40 1.126e-04 -8.136e-05 -1.748e-04 -8.136e-05 5.983e-05 1.273e-04 -1.748e-04 1.273e-04 2.841e-04
0.50 7.789e-05 -5.993e-05 -1.425e-04 -5.993e-05 4.720e-05 1.103e-04 -1.425e-04 1.103e-04 2.738e-04
0.60 7.960e-05 -6.125e-05 -1.341e-04 -6.125e-05 4.823e-05 1.039e-04 -1.341e-04 1.039e-04 2.374e-04
0.70 1.303e-04 -9.217e-05 -1.517e-04 -9.217e-05 6.625e-05 1.082e-04 -1.517e-04 1.082e-04 1.847e-04
0.75 2.249e-04 -1.412e-04 -1.841e-04 -1.412e-04 8.963e-05 1.166e-04 -1.841e-04 1.166e-04 1.566e-04
0.80 6.321e-04 -2.822e-04 -2.747e-04 -2.822e-04 1.268e-04 1.237e-04 -2.747e-04 1.237e-04 1.229e-04
0.90 1.845e-01 -3.132e-04 -4.011e-03 -3.132e-04 5.322e-07 6.824e-06 -4.011e-03 6.824e-06 8.758e-05

Table 3.2: Covariance matrices of the ODR fitting.

example, given α, we can derive β from

Γ
(
α+ 1

β

)
Γ (α)

(
α− 1

β

) 1
β

= ω

ω̂
(3.23)

which must be solved implicitly, and γ from

γ= ω̂(
α− 1

β

) 1
β

(3.24)

The same equations can be used to derive α and γ given β, while β given γ can be derived from

Γ

[(
ω̂
γ

)β+ 2
β

]
Γ

[(
ω̂
γ

)β+ 1
β

] = ω

γ
(3.25)

and α from

α=
(
ω̂

γ

)β
+ 1

β
(3.26)

Such relations are very good descriptions of the correlations of the parameters derived from the

Monte Carlo simulation, as can be seen in Figure 3.11.

Other usable combinations of the parameters (not addressed in this work) are the higher mo-

ments:

µn = 〈
ωn〉= ∫ ∞

0
ωn p (ω)dω=

Γ
(
α+ n

β

)
Γ (α)

γn (3.27)
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Figure 3.11: Correlations between the fitted parameters in the Monte Carlo Simulation. Vertical and
horizontal lines represent the original value of the fit. Red lines represent the relations derived from
Equation 3.21 and Equation 3.22.
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or their central versions:

cn = 〈
(ω−〈ω〉)n〉= n∑

k=0
(−1)k

(
n

k

)〈
ωn−k

〉
〈ω〉k (3.28)

from which one can also compute the standardized moments. Note that theoretically one can also

use such combinations of parameters for fitting the distribution with the method-of-moments, where

one would derive the distribution’s parameters directly from the unbinned sample, exploiting the

constrains mentioned above in at least the same number as the parameters to derive, in our case

three of one’s choice. This kind of procedure could provide useful for example if one were to repeat

the same analysis but with much poorer data.

3.2.2 Scaling relations

Given the parameters αf, βf and γf and their standard errors, derived from the ODR fitting procedure,

we derived scaling relations as in G12 (Equation 3.13 and Equation 3.14). The choice of the functions

is somewhat arbitrary, and of course depends on the parametrization of Equation 3.15. We found the

followings to be good descriptions of the relations between the fitted parameters and f :

αf =−13.03+12.65 f −0.1083 +3.556 f 3.517 (3.29)

βf = 0.8998+3.386 f −4.210 f 2 +1.837 f 3 −2.486 f 4 (3.30)

γf = 1.720+3.679 f −11.57 f 2 +45.32 f 3 −76.88 f 4 +37.73 f 5 (3.31)

which we obtained with an ordinary least square procedure. The fitting results are shown in Fig-

ure 3.12. From the figure, it appears clear that the points corresponding to f = 0.01, f = 0.02 and

especially f = 0.9 are outliers and have much bigger errors than the other points, and any attempt to

include them (e.g. changing the fitting functions) proved unsuccessful or introduced significant dis-

tortions, worsening the results. Therefore, we decided to exclude f = 0.01, f = 0.02 and f = 0.9 from

the fit, and to restrict all our findings on the mass accretion histories to the interval 0.04 . f . 0.9.

From the covariance matrix we derived a confidence region (same as in Equation 3.16) corresponding

to 1σ, shown with an orange shade in the figure. The lower panels show the residuals in units of the

confidence interval at that point.

We used the scaling relations also to check for dependencies of our model from the adopted cos-

mology. Using the COSMO simulations (subsection 2.2.1), we constructed the stacked distribution

(in mass and identification redshift) in the same way as for Le SBARBINE, applied the same fitting

procedures and found the fitted parameters. As can be seen in Figure 3.12, these parameters (repre-

sented with empty red circles) are in remarkable agreement with the ones derived from Le SBARBINE

(full black squares), with only a small discrepancy for β and γ that amounts to a ∼ 5% difference in
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Figure 3.12: Scaling relations for αf, βf and γf. Black points represent the fitted parameters derived
from Le SBARBINE simulations used for the calibration. Purple crosses represent the points excluded
from the calibration, namely those corresponding to f = 0.01, f = 0.02 and f = 0.9. Red circles rep-
resent the fitted parameters derived from the COSMO simulations. Blue solid lines represent the best
fit of Equation 3.29, Equation 3.30 and Equation 3.31 for respectively the left, central and right panel.
The 1σ confidence intervals derived from the covariance matrices are represented with an orange
shade. Lower panels: residual difference of the black points from the best-fitting curve, in units of the
confidence interval at that point.

Figure 3.13: Same as Figure 3.12, with colored symbols representing the different COSMO simulations
fitted separately. Residuals are in units of the standard errors.

the distribution p (ω). We also plotted the parameters for the COSMO simulations fitted separately

in Figure 3.13, where we can see that in the validity range 0.04 < f < 0.9 the distributions from the

different simulations in the COSMO set are in good agreement with each other, despite having vastly

different cosmological parameters.

3.3 The median mass accretion history

From Equation 3.4 it is easy to derive the median value of the distribution ω̃ = √
2ln(αf +1) (Equa-

tion 3.8). Unfortunately, Equation 3.15 doesn’t have a closed form for the median, and one has to
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either use an estimator or compute it numerically. Since Equation 3.15 is a generalized gamma dis-

tribution (Stacy and Mihram, 1965), we used the estimator of the median of the gamma distribution

proposed by Banneheka and Ekanayake (2010), which we then converted to the median for the gen-

eralized gamma. In fact, using the change of variables

x =
(
ω

γ

)β
(3.32)

Equation 3.15 reduces simply to

p (x) = 1

Γ (α)
xα−1e−x (3.33)

If µ = α is the mean of Equation 3.33 and ν is its median (computed numerically) we find that for

α& 1 the linear relation
µ

µ−ν ' 0.21+3α (3.34)

holds almost perfectly. Making ν explicit, the proposed estimator is then:

νBE =α3α−0.79

3α+0.21
, α≥ 1 (3.35)

and the corresponding median for Equation 3.15 is:

ω̃= γ
(
α

3α−0.79

3α+0.21

) 1
β

(3.36)

Unfortunately, in the range 0.436 < f < 0.648 the value of α derived from Equation 3.29 falls indeed

under 1, with a relative error for νBE up to 2.68% for f = 0.543 (Figure 3.14, left panel). However,

when converted to ω̃, the errors reduces to . 0.35% in the full region 0.01 < f < 0.9 (Figure 3.14, right

panel), therefore we will utilize Equation 3.36 for the median in the rest of this work.

Figure 3.15 shows the median log
(

f
)− log(1+ z) relation derived from the model compared to

the distribution of MAHs for halos with M0 = M∗ and identified at z0 = 0. More plots, with masses

ranging from M∗/256 to 64M∗ and z0 = 0,0.506,1.019,2.041 and 4.152 are available in Appendix A.

The formal 1σ confidence region was computed as

σ2
ω̃ =

∣∣∣∣∂ω̃∂α
∣∣∣∣2

σ2
α+

∣∣∣∣∂ω̃∂β
∣∣∣∣2

σ2
β+

∣∣∣∣∂ω̃∂γ
∣∣∣∣2

σ2
γ (3.37)

where σα, σβ and σγ are the confidence intervals derived in subsection 3.2.2. Following van den

Bosch et al. (2014), we also plotted in Figure 3.16 the MAHs linearly as a function of the lookback time

to accentuate the late time behavior of the MAHs, which is generally of more interest for studying

galaxy formation. It is clear that the model is inadequate outside of the stated region 0.04 . f . 0.9.

At lower values, the model departs significantly from the data and start to overestimate the forma-

tion redshift. At higher values, the confidence interval starts to diverge, and so does the median (not

shown). In the central part, however, the model is in very good agreement with the data, of the same

order or better than the previous model (Equation 3.4).
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Figure 3.14: Left panel: relative error of the estimator for the median of a gamma distribution, as a
function of the parameter α. The vertical dashed line indicate the lowest value for α in our work.
Right panel: relative error of the estimator for the median of our generalized gamma distribution, as
a function of the parameter f . Open squares represent values obtained using the fitted parameters.
The red curve represent values obtained using the scaling relations.

3.4 Scatter in the mass accretion histories

In order to characterize the halo-to-halo scatter, we also performed a preliminary analysis of the per-

centile distribution of the MAH tracks, where we define as ‘track’ the trajectory of a halo in the f − z

plane. Our motivation is to understand how a track move in the distribution along its evolution. Does

a halo who is more massive than the median at the formation or at the first identification stay that

way at all redshifts? Or does it move randomly in the distribution?

3.4.1 Global scatter

To quantify the movement of a halo in the distribution, we defined the quantity ∆ (z) as the typical

scatter of tracks, as follows. First, we fixed the identification redshift z0 and the mass bin for the fi-

nal mass M0. For every halo in that bin, we computed the percentile of its track with respect to the

distribution at fixed z p
(

f |z)
for every z2, obtaining the percentile track pi (z). From the percentile

track we subtracted its median value, obtaining the residual track δpi (z) = pi (z)− p i which oscil-

lates around 0. After superimposing all δpi we computed the interquartile range of the distribution

p
(
δpi

∣∣z)
at fixed z, which we called ∆ (z). Figure 3.17 illustrates a sample of such distributions, high-

2We remind the reader that the MAH tracks are discrete in z, due to the discreteness of the snapshots of the simulations.
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Figure 3.15: Distribution of MAHs for halos with M0 = M∗ identified at z0 = 0. Open circles repre-
sent the median of the distribution. The dot-dashed green line represent the median z f obtained
with Equation 3.7 and Equation 3.8, while the solid red line represent the same, but obtained with
Equation 3.7 and Equation 3.36. The orange shade around the red line represents the 1σ confidence
region. Horizontal dashed lines represent the validity region 0.04 < f < 0.9.
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Figure 3.16: Same as Figure 3.15, but with f plotted linearly against the lookback time.
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lighting some of the δpi . Figure 3.18 shows ∆ (z) for different mass bins and identification redshifts.

Each curve has a pronounced minimum whose position and value depends on the mass of the final

halo, and it is shifted for different identification redshifts.

If we assume that tracks typically remain roughly in the same region of the percentile distribution

for the entirety of their evolutions, our interpretation of the shape of ∆ (z) is that there is a charac-

teristic redshift, possibly related to the formation redshift, at which a track is statistically closer in

percentile to its typical value. In other words, the mass of the halo at the characteristic redshift is

a better indication of its typical position in the distribution than the initial mass or the mass at low

redshift. If the previous assumption does not hold, however, no such conclusion can be reached.

3.4.2 Individual properties

To characterize the behavior of the MAH tracks in a more general way, we looked at properties of

individual tracks. For each track, we defined the followings:

• p: the already defined median percentile of the track

• ∆: interquartile range of the distribution of the percentiles of the track

• ε: maximum excursion of the distribution of the percentiles of the track

• χ: number of “crossings” of the track, i.e. the number of times the track crosses the value p=0.5

• ρ: Pearson’s correlation of the track

• dp: median of the differential of the percentile track

• δ: interquartile range of the distribution of the differential of the percentile track

• p1: percentile at the first identification

• pf: percentile at the formation redshift

For each of the above we computed the distribution, whose median and interquartile range are quoted

in Table 3.3, and the correlations between each properties and all others, shown in Figure 3.19 and

Figure 3.20. Note that almost every distribution is somewhat peaked, except for the distribution of

p1. This is mostly due to the mass resolution of the simulations, since the first identification cor-

respond by definition to the time at which the halo first has ∼10 particles. At fixed final mass, and

therefore number of particles, this correspond effectively to a threshold for f (corresponding, for the

simulation Ada and M = M∗, to fth = 4×10−5), which translate to a cut in the distribution at fixed z.
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log(1+z)

Figure 3.17: Residual tracks δpi = pi −p i . Black dots represent ∼100 tracks superimposed, 4 of which,
randomly chosen, are highlighted with colored curves.

From Figure 3.20, it is clear that there is no discernible correlation between any of the above prop-

erties, with the strongest linear correlation factor being r . 0.6. However, even if our results are not

conclusive, they may serve as a characterization of the percentile properties of MAH tracks of halos

in simulations. A similar analysis can be performed on synthetic MAHs, for example generated with

the algorithm proposed by Giocoli et al. (2009), and the results compared with our findings to check

the validity of the method.
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Figure 3.18: Percentile scatter ∆ (z) for different mass (left panel) and identification redshifts (right
panel). Colors are in ascending order of red, green, blue, cyan, magenta, yellow, orange and black,
corresponding to M = M ∗/256, M∗/64, M∗/16, M∗/4, M∗, 4M∗, 16M∗ and 64M∗, and z0 = 0, 0.506,
1.019, 2.041 and 4.152.

p ∆ ε χ ρ dp δ p1 pf

median 0.488 0.298 0.767 3 -0.121 -0.0103 0.0876 0.220 0.509
IQR 0.362 0.168 0.216 3 0.820 0.0148 0.0413 0.331 0.477

Table 3.3: Median value and interquartile range of the distribution of the properties of MAH tracks.

3.5 The full distributions of mass accretion histories

Distributions of z f at fixed f are shown in Figure 3.21, Figure 3.22, Figure 3.23 and in Appendix B for

the identification redshift z0 = 0. Data are taken from logarithmic slices of f , indicated in each panel,

around a central value fi , and are compared to the distribution extracted from the model

p
(
z f

)= p
[
ω

(
z f , fi , M0, z0

)] dω

dz f
(3.38)

where the derivative dω
dz f

is computed numerically for simplicity. The model is in general in very good

agreement with the histogram of the data, with only a very slight shift to higher values of z f , although

this could be an artifact of the binning. Significant deviations begin to appear in the outskirts of the

distribution, both in the far tails of p
(
z f

)
and for high/low values of fi , which, given the previous

discussions, is to be expected. Residuals, in term of the poissonian error of the data histograms, are

provided both for each distribution at various fi and as a color map for the full distribution. The color

scheme used for the map is the colorblind friendly, black-and-white friendly, perceptually uniform

colormap viridis (Smith and van der Walt, 2015).
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Figure 3.19: Probability distributions of the individual properties of MAH tracks described in the main
text for halos with M = M∗ and z0 = 0.
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Figure 3.20: Correlations of the individual properties of MAH tracks described in the main text for
halos with M = M∗ and z0 = 0. Red lines represent the main directions of the linear regression.
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Figure 3.20: Correlations of the individual properties of MAH tracks described in the main text for
halos with M = M∗ and z0 = 0. Red lines represent the main directions of the linear regression. (cont.)
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Figure 3.20: Correlations of the individual properties of MAH tracks described in the main text for
halos with M = M∗ and z0 = 0. Red lines represent the main directions of the linear regression. (cont.)
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We also show in Figure 3.24 a direct comparison of the distribution of the formation redshift z50

derived from the model to the one extracted from the data. The correspondence is remarkable, with

typical errors around 2%. The errors are more or less constant for all mass bins, from M∗/256 to

16M∗, with slightly larger errors for 64M∗, as shown in the figures in Appendix C. The bin width

barely influences these results, with similar errors for ∆ = 2 and somewhat larger errors for ∆ = 1.1:

the effect of the increased precision in the determination of the mass for the data is countered by the

much lowered statistics.

Finally, we show in Figure 3.25 the mean formation redshift z0.50 as a function of the final mass

at z0 = 0, derived from the distributions constructed with the model. At low masses our model over-

estimates the formation redshift by ∆ log(1+ z0.50) ≈ 0.01, or by about 2.4%, a similar error to pre-

vious model like the one presented by Giocoli et al. (2007). However, while their errors stay more

or less constant over five decades of mass, the errors of our model decrease steadily towards higher

masses. Similar conclusions can be drawn when comparing to other models, like the ones presented

by McBride et al. (2009) and Giocoli et al. (2012).
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Figure 3.21: Distribution of z f at fixed f for halos with M0 = M∗ and z0 = 0. The data are represented
with histograms, while the distribution derived from the model is represented as a red line, with an
orange shade representing the formal 1σ confidence region.
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Figure 3.23: Left panel: residuals between the model and the data, as in Figure 3.21, in units of 1σ
poissonian errors. Only the points inside the 3σ interval are shown. Right panel: color map of the
residuals for the full distribution. The color scale varies between−3σ (dark blue) and 3σ (light yellow).

Figure 3.24: Left panel: Comparison of the cumulative distributions of the formation redshift z50

derived from the data and the model, for M0 = M∗ and z0 = 0. Data are taken in a mass bin with a
multiplicative width ∆=p

2, i.e. the limits of the bin are M∗/
p

2 and
p

2M∗. The red line represents
the cumulative derived from the model as a function of the cumulative derived from the data, with
the blue line as a reference, representing perfect correspondence. Vertical and horizontal dashed lines
mark the lower, central and higher 5% percentiles. Right panel: difference of the two cumulatives.
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Figure 3.25: Left panel: mean formation redshift z0.50 as a function of the final mass at z0 = 0. Colored
points represent halos from Le SBARBINE, color-coded from green (Ada) to orange (Flora). Due to
their different box size, each simulation probes a different scale, while maintaining a good statistic in
the range 1010–1015 M¯ h-1. Open circles represent the mean at fixed mass from the data, with error-
bars representing the standard error of the mean. Black solid curves represent the 1σ halo-to-halo
variance. The red solid line represents the mean formation redshift derived from our model, com-
pared to the results of Giocoli et al. (2007) (blue dotted line), McBride et al. (2009) (purple dashed
line) and Giocoli et al. (2012) (dash-dotted green line). Right panel: corresponding logarithmic differ-
ence between the data and the models.





Applications 4
4.1 General applications

Many models exist for the median or mean halo properties that can be derived from the mass ac-

cretion histories, but the study of the full distribution, or just the scatter, is often still little explored.

Many astrophysical observables as well have median relations that are by now well characterized, but

show significant scatter. The star formation rate, color and fraction of star-forming galaxies in groups

are good examples of such observables (Poggianti et al., 2009). A question still without a clear answer

is if and how the scatter of these properties depends on the mass of the hosting halo, on the mass

of its progenitor at a previous significant redshift, like z f or z = 2, corresponding to the peak of the

star formation history (Madau and Dickinson, 2014), and on the scatter of the distribution at that

redshift. The latter is easily derived from our model. Having defined a cosmology and computed the

appropriate δc (z) and σ2 (M), the distribution of progenitor masses at fixed z is

p f
(

f
)= p (ωz )

dω

d f
(4.1)

with the derivative computed numerically or analytically from Equation 3.2. Given the distribution,

the scatter easily follows as

σ2
z =

∫ ∞

0
f 2pz

(
f
)

d f (4.2)

and can be computed for a desired range of masses. The resulting σz −M0 relation can then be com-

pared to similar relations for various galaxy properties, looking for correlations.

Another possible application of our results consists in the study of the properties of “extremal

halos”, defined as the halos whose main progenitor is extremal in the distribution at fixed redshift,

for example being more massive than 95% of all other halos. Given our model, one can compute

thresholds that can be used to select halos, of which it would be interesting to study the properties,

like the concentration, fraction of substructures, shape, and the various proxies for the relaxation

defined in section 2.4. We present here, as a proof-of-concept, the mass-concentration relation for

halos in the lower, central and higher 5% of the distribution of redshift at fixed mass fraction f = 0.5.
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Figure 4.1: Median concentration at fixed mass for halos of type 1 (red), 2 (black) and 3 (blue). Colored
points represent halos from Le SBARBINE. Halo are selected using the procedure described in the
main text for the model (left panel) and the data (right panel).

The idea is similar to the mentioned extremality with respect to the mass distribution at fixed redshift,

which however can be done not only fixing the redshift for all halos (for example z = 2) but also using

a different value for the redshift for each individual halo, for example their formation redshift z50.

Regardless, the prescription for the distribution at fixed mass fraction is is much easier to implement.

We proceed as follows. For every halo, we construct the cumulative distribution P
(< z; f = 0.5

)
relative to its final mass M0 and identification redshift z0, and determine the values of the 0.05, 0.475,

0.525 and 0.95 percentiles. We then define the halo as type 1 if its formation redshift z50, measured

from its MAH, is lower then the 0.05 percentile, type 2 if it is between the 0.475 and 0.525 percentile,

type 3 if it is higher than the 0.95 percentile, and type 0 otherwise. A similar selection can be done by

comparing the formation redshift of each halo to their actual distribution, computed from the data

inside a mass bin with a certain (preferably small) width. Halos are then categorized in type 1, 2, 3

and 0 in the same way.

It is worth noticing that defining the extremality with the data relies on having a large statistics

for the construction of the distribution of formation redshifts, to compute reasonably accurate per-

centiles. This is not always the case if one wants to keep the width of the mass bin as small as possible,

especially at large masses, and one is then forced to accept a compromise between noise and statisti-

cal significance. By contrast, using the procedure we described for our model each halo is compared

to its own theoretical distribution, which can be done regardless of statistics, with the only assump-

tion being the reliability of the model. This is possible because in the scaled variable ωf there is no
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dependence on mass in the distribution, so the model is built on the distribution of all halos. Using

our model is equivalent to comparing each halo to the distribution of all others, rescaled to eliminate

the mass dependence.

In Figure 4.1 we show the median concentration at fixed mass for halos of type 1, type 2 and type

3 separately, using the two selection procedures described. The results agree quite well, showing that

our model provide a good description of the distribution of the formation redshift (already seen in

Figure 3.24). On the other end, it also means that the increase in precision obtained by not binning

is either countered by the not perfect accuracy of the model or washed out by the large halo-to-halo

variance.

Lastly, taking advantage of the universality of the model discussed in subsection 3.2.2, in the rest

of this chapter we will focus on applications to mass accretion histories in non-standard cosmolo-

gies. In particular we will focus on cosmologies with a component of massive neutrinos, an area of

research that is rapidly growing in interest in the present day cosmological investigation.

4.2 Cosmological interest in massive neutrinos

It became clear in recent years that neutrinos experience flavor oscillations via a mechanism pro-

posed by Pontecorvo (1957), an intuition first confirmed by Cleveland et al. (1998) observing relative

abundances in the solar flux. Many experiments in the following years confirmed such results, e.g.

Fukuda et al. (1998), Ahmad et al. (2001), Abe et al. (2008), Smy (2013). Barring exotic effects due to

violations of equivalence principle (Gasperini, 1988), violations of the Lorentz group symmetry (Cole-

man and Glashow, 1997), torsion (de Sabbata and Gasperini, 1981) and others, the presence of flavor

oscillations is usually interpreted as an effect of the mixing of the mass and flavor eigenstates, which

in turn implies that neutrinos have non-vanishing masses. However, the Standard Model of particle

physics does not give any prediction for their masses, on the contrary neutrinos explicitly don’t cou-

ple to the Higgs field (Peskin and Schroeder, 1995). Oscillation experiments themselves don’t provide

measurements on the neutrino masses, but rather on the mass splits (Forero et al., 2012):

∆m2
21

(
10−5eV2)= 7.62+0.58

−0.50 ∆m2
31

(
10−3eV2)= 2.55+0.19

−0.24 (4.3)

Other kind of experiments, like observations of beta decays Drexlin et al. (2013) put an upper bound

to the mass of the lightest neutrino of m0 < 2.05−2.3 eV which, combined to the mass splits, restricts

the sum of the neutrino masses Mν =∑
i mi to the approximate range

0.06 eV. Mν. 6 eV (4.4)
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The value of Mν is also of cosmological interest in an universe where the neutrinos are massive.

From early universe physics we know that there is a cosmic background of relic neutrinos with a

number density per flavor nν = 3
11 nγ, where nγ is the photon number density, and an energy density

in the ultra-relativistic regime of

ρν = 7

8

(
4

11

)4/3

Neff (4.5)

where Neff = 3.046 is the effective number of neutrinos (Mangano et al., 2005). The cosmic neutrinos

decouple roughly when the universe has temperature Tdec ≈ 1 MeV, around 1 second after the Big

Bang (Lesgourgues and Pastor, 2006). Even if the neutrinos are massive, their mass is so small that

the decoupling happens in the ultra-relativistic regime, and they initially behave like radiation. If the

neutrinos are indeed massive, from the mass splits Equation 4.3 we see that at least two of the three

mass eigenstates are non-relativistic today, and contribute to the present matter energy density as

Ων =
∑

i mi

93.14h2 eV
(4.6)

with a corresponding matter fraction

fν = ρν

ρCDM +ρb +ρν
= Ων

Ωm
(4.7)

The corresponding bounds to the energy density from Equation 4.4 are

0.0013.Ων. 0.13 0.0043. fν. 0.43 (4.8)

where we assumed h ≈ 0.7 andΩm ≈ 0.3. More stringent upper bounds are imposed by cosmological

observations, in particular by the CMB power spectrum (Planck Collaboration et al., 2016):

Parameter TT TT+len TT+len+ext TT,TE,EE TT,TE,EE+len TT,TE,EE+len+ext∑
mν [eV] <0.715 <0.675 <0.234 <0.492 <0.589 <0.194

corresponding to:

Ων. 0.0043−0.0157 fν. 0.014−0.052 (4.9)

The non-relativistic transition happens at

1+ znr ≈ 1890
( m

1 eV

)
(4.10)

after which neutrinos start to behave like hot dark matter with a free-streaming wavenumber

kF S (t ) =
(

4πGρ (t ) a2 (t )

v2
th (t )

)1/2

= 0.8

√
ΩΛ+Ωm (1+ z)3

(1+ z)2

( m

1 eV

)
h Mpc−1 (4.11)
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where vth = 〈p〉
m is the thermal velocity and the last equality is valid during matter or Λ domination.

Since the comoving free-streaming length λF S/a decreases like
(
a2H

)−1 ∝ t−1/3, the comoving free-

streaming wavenumber has a minimum at the non-relativistic transition:

knr ' 0.018Ω1/2
m

( m

1 eV

)
h Mpc−1 (4.12)

4.3 Effects of neutrinos on the evolution of perturbations

The net effect of the neutrino free-streaming is to damp the matter perturbation at small scales, slow-

ing the growth of structures and reducing the matter power spectrum at k > knr . Therefore, this could

have consequences for the formation of halos and their history, leading in particular to delayed for-

mation times. A comparison of the matter power spectra forΛCDM andΛMDM (ΛMixed Dark Mat-

ter) models is shown in Figure 4.2. We computed the power spectra with the public code CAMB (Lewis

et al., 2000a), version 0.1.2 – May 2016. The ΛMDM power spectrum shows a clear suppression at

scales smaller than ∼ 100 Mpc/h. The suppression at small scales can be quantified as (Lesgourgues

and Pastor, 2006):

∆P (k)

P (k)
= P

(
k; fν

)−P
(
k; fν = 0

)
P

(
k; fν = 0

) ≈−8 fν (4.13)

although this approximation can be rather crude for large values of fν (Kiakotou et al., 2008).

Figure 4.2: Comparison between the matter power spectra for a ΛCDM and a ΛMDM model, at red-
shift z = 0. ΩΛ = 0.7,Ωm = 0.3, h = 0.7,Ων = 0 and 0.013 ( fν = 0.0433).
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In the k >> knr regime the linear growth of perturbation is described by

δ̈+2
ȧ

a
δ̇−4πGρ0

(
1− fν

)
δ= 0 (4.14)

whose growing solution can be approximated as

δ+ (a) ' [
ag (a)

]1− 3
5 fν (4.15)

which is a suppression of theΛCDM solution (Equation 1.31), reducing the power-law index by −3
5 fν.

In the limit k << knr the growth factor is unsuppressed, but in the intermediate regime one needs to

rely on semi-empirical approximations (e.g. Kiakotou et al., 2008) or compute the solution numeri-

cally. The main difficulty here is that in a ΛMDM model the description of the growth of structures

can’t be separated in a scale and in a time component, because the time evolution depends on k as

well.

4.4 Numerical computations

In order to apply our model to aΛMDM universe, we first need to compute the fundamental ingredi-

ents of the rescaled variable

ωf =
δc (zf)−δc (z0)√
σ2

(
f M0

)−σ2 (M0)
(3.2)

Namely, the mass variance σ2 (M), and thus the power spectrum P
(
k; fν

)
:

σ2
R = 〈

δ2 (~x;R)
〉= 1

2π2

∫ ∞

0
dkk2P (k)Ŵ 2 (kR) ≈ 1

2π2

∫ k f

0
dkk2P (k) ≡ S

(
k f

)
(1.91)

and the growth factor δ+ (a,k), which is used to compute the time-dependent critical overdensity:

δc (t ) = δc
δ+ (t0)

δ+ (t )
(1.88)

We used CAMB to compute both the power spectrum up to kmax = 100 Mpc/h and the growth factor

for 5 sets of cosmological parameters with different values of fν, detailed in Table 4.1. If the option

“get_transfer” is enabled, CAMB produces the matterδ (k)/k2 in the synchronous gauge at the desired

redshift, as well as the individual contributions from CDM, baryons, photon and massive neutrinos.

Running CAMB for multiple redshifts in the range 0 – 20 (with step 0.01) we obtained a table of δ (k, z)

which we normalized dividing by δ (k, z = 0), obtaining the growth factor in the redshifts and scales of

interest. The time-dependent critical overdensity is then

δc (k, z) = δc
δ (k, z = 0)

δ (k, z)
(4.16)

where δc = 1.675 from Equation 1.82 for the chosen cosmological parameters. As a matter of fact,

the value of δc also depends on the neutrino masses because the spherical collapse is influenced by
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Figure 4.3: Ratios of the matter overdensity at z = 0 and at z = 2 in ΛMDM models, in the scale range
10−3 h/Mpc < k < 10 h/Mpc. The gray dashed curve represents the model with fν = 0. The dark
green horizontal line represents the small scale approximation Equation 4.15. The orange vertical
line represents the scale of the non-relativistic transition knr .
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Figure 4.4: Growth factors in ΛMDM models. Red, orange and blue curves represent the ratio of the
growth factors at the stated scales and the ΛCDM approximation. The dark green curve represents
the small scales approximation Equation 4.15.
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name
∑

mν [eV] Ων fν M∗ [M¯ h-1]
Manuela 0.5933 0.0130 0.0433 3.054×1012

Micaela 0.0593 0.0013 0.0043 3.868×1012

Martina 0.2328 0.0051 0.0170 3.675×1012

Marcela 1.0680 0.0234 0.0780 2.171×1012

Manola 0 0 0 3.902×1012

Table 4.1: Sets of parameters used in CAMB. For every setΩΛ = 0.7,Ωm = 0.3,Ωb = 0.048, h = 0.7 and
σ8 = 0.8.

the presence of massive neutrinos. However, the difference is only . 0.5-1% (LoVerde, 2014), so we

decided to use theΛCDM value (Equation 1.82) for simplicity.

Figure 4.3 shows the ratio of the matter overdensities δ (k,0)/δ (k, z) for z = 2. More plots for var-

ious z are available in Appendix D. The scale of the non-relativistic transition knr is shown with a

vertical orange line, and marks the beginning of the intermediate scales. The growth factor at knr , as

well as at large (k = 10−3 h/Mpc) and small (k = 10 h/Mpc) scales, divided by the ΛCDM approxi-

mation Equation 1.31 (Lahav and Suto, 2004) is shown in Figure 4.4. The agreement of the numerical

results with both the small and large scale approximations is remarkable, but the numerical approach

also works in the intermediate regime. This same regime is also relevant for the mass variance, corre-

sponding to the peak of the power spectrum (Figure 4.2) and to the mass range

Mk = 4π

3
ρbR3

k = 4π

3
ρb

(π
k

)3
≈ 1013 −1019 M¯ h-1 (4.17)

Including the scale (mass) dependence of the critical overdensity in the definition of ω:

ων = δc (z,k (M0))−δc (z0,k (M0))√
σ2

(
f M0

)−σ2 (M0)
(4.18)

we can apply our model as usual. Note that there is no guarantee that the universality of the model

holds forΛMDM models, since we only verified it withΛCDM simulations. However, given the small-

ness of the fν parameter, deviations from universality (if any) are expected to be small, with negligible

effects on the results.

Figure 4.5 shows the mean formation redshift – mass relations for ΛMDM cosmologies derived

from our model, multiplied by by an arbitrary factor of M−0.05
0 to enhance readability. As expected,

the effect of the neutrinos is more pronounced at smaller halo masses, with predicted differences

in the formation redshift up to 9.4% for M0 = 10−2M∗ in the case of neutrino masses of order unity,

with respect to the
∑

mν = 0 model. For smaller neutrino masses, the difference decreases to 3.2% and

0.3% for
∑

mν ' 0.6 and 0.23 eV, respectively. For neutrino masses smaller than ∼ 0.1 eV the difference

in the formation redshift is negligible (. 0.1%) even at small halo masses. At M0 = M∗ the differences

decrease to 7.8%, 2.6% and 0.2%, and become negligible around 102M∗.
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Figure 4.5: Mean z0.50 −M0 relation for ΛMDM models. fν = 0.0043 is too close to fν = 0 to be distin-
guishable and it is not shown.



CHAPTER 4. APPLICATIONS 79

The natural next step in this analysis would be a direct comparison with N-body simulations with

ΛMDM cosmologies. However, despite a few cosmological simulations exist (although not public),

these are either low resolution (Viel et al., 2010; Brandbyge et al., 2010) or are not suitable for a com-

parison with our model. This is the case, for example, for the DEMNUni simulations (Castorina et al.,

2015), a set of 4 large scale simulations with
∑

mν = 0.00, 0.17, 0.30, 0.53 characterized by a comoving

volume of 20003 h−3 Mpc3 filled with 20483 dark matter and, where present, 20483 neutrino particles.

The corresponding mass resolution of 8×1010 M¯ h-1 means that resolved halos, i.e. those with more

than 1000 particles, would be in the mass range & 16M∗, where the effects of the presence of massive

neutrinos on the growth of structure are starting to become negligible. Given the growing interest of

the scientific community in massive neutrinos, however, we expect that more large scale simulations

with a massive neutrino component will arise in the near future. Until then, we hope to provide to

the interested reader a useful tool to forecast the effects of neutrinos on the growth of structures.





Conclusion 5
The mass accretion history of dark matter halos is considered one of the main processes that influ-

ence the shape of their present day internal structure (Navarro et al., 1996; Tormen, 1998; Zhao et al.,

2009; Giocoli et al., 2010), as well as one of the main driver of the formation and evolution of galaxies.

It is then clear that accurately modeling the mass accretion history of dark matter halos is of primary

importance in our efforts of understanding the properties of large scale structures. While many mod-

els for the mass accretion history already exist in the literature (Wechsler et al., 2002; van den Bosch,

2002; Giocoli et al., 2007; Zhao et al., 2009; Giocoli et al., 2012; van den Bosch et al., 2014), they ei-

ther describe only the mean or median MAH, or they are very poor fit of the tails of the halo-to-halo

distribution of the MAHs. Our main goal is to compensate for this shortcoming.

In this work, we presented the cosmological framework of the formation and linear and non-

linear evolution of large scale structures, and the primary tools used to study the non-linear evo-

lution of the density perturbations, namely cosmological simulations. We detailed our own set of

simulations, partly developed in the context of this work, and the post-processing algorithm used to

construct halo catalogs and merger trees. We exploited the large statistic and dynamical range of this

sample and, starting from the model for the mass accretion history proposed by Giocoli et al. (2012),

we presented a revised model that accurately describe both the median as well as the tails of the dis-

tribution. For the median, we implemented the estimator proposed by Banneheka and Ekanayake

(2010) and tested the accuracy over full range of our parameters, finding a maximum error of about

0.35%. For the tails, we illustrated the deviations introduced by the presence non-relaxed halos and

we accurately defined relaxation criteria to eliminate such deviations, as well as to obtain consistent

properties across all simulations. A more detailed analysis of the distribution of non-relaxed halos

will be presented in a future work (Gambarotto et al., in preparation).

For the calibration of the model we applied a robust fitting procedure with a careful considera-

tion of the errors, on both the data and the fitted parameters. The results suggest that our choice of

the distribution and its parametrization provides a good approximation, but not the exact underlying
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distribution of the data. This finding is supported by the outcome of bootstrap and Monte Carlo sim-

ulations. We used the calibration to check the dependence of the model on the adopted cosmology,

applying the same analysis on a secondary set of simulations with different cosmological parameters.

We found good agreement between the fitted parameters of the main and secondary simulations,

confirming the universality of the model.

Studying the scatter of the distribution, we performed a preliminary analysis of the percentile

distributions of the MAH tracks. We found that, in the assumption that a halo remains mostly in

the same region of the percentile distribution during all of its evolution, there exists a characteristic

redshift at which the mass of the halo is statistically closer to its typical value in the percentile distri-

bution. We make no claim on the validity of such assumption. From the percentile distributions we

also defined and extracted several properties of the individual halos, in an attempt to characterize the

behavior of their mass evolution. Despite not founding significant correlations between such proper-

ties, they may serve as a characterization that can be useful when checking the validity of algorithms

to construct synthetic merger trees.

From the model we extracted conditional distributions for the formation redshift at fixed mass

fraction f , and we found an overall good agreement with the data in the restricted range 0.04 . f .

0.9, with only a slight overestimation of the formation redshift. Outside of this range, the model signif-

icantly departs from the data and it is not viable. We believe that the wide applicability of our model,

for every mass, identification redshift, formation redshift, fraction and cosmology, together with the

ability to describe the full distribution of the MAHs, more than compensate these minor drawbacks.

We discussed possible applications of our model, presenting as an example a proof-of-concept

procedure to select halos that are outliers in their distribution, of which one can study properties

like the mass-concentration relation and how they differ from those for halos in the central region of

their distribution. Motivated by the universality of the model, we then focused to the applicability to

Λ Mixed Dark Matter cosmologies. We outlined the main cosmological effects of massive neutrinos

on the evolution of matter density perturbations and shown how to include appropriate modifica-

tions in our model. We found that at small halo masses, the formation redshift can be lowered by up

to 10% for neutrino masses of around 1 eV, the current weaker upper limit from cosmological observa-

tions (Planck Collaboration et al., 2016). This effect is less pronounced at larger masses, and becomes

negligible at around 1015 M¯ h-1. Given the still early stage of the present day research on massive

neutrinos, the complications in the implementation of the related scale-dependent physics in sim-

ulations and the large computational resources needed, we could not compare our results against

existing simulations, although we expect that such comparison will become possible in the near fu-

ture. We therefore propose our findings as an useful tool to forecast the effects of neutrinos on the

growth of structures.
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Figure A.1: Same as Figure 3.15, but with different masses.
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Figure A.2: Same as Figure 3.16, but with different masses.
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Figure A.3: Same as Figure 3.15, but with different masses and z0 = 0.506.
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Figure A.4: Same as Figure 3.16, but with different masses and z0 = 0.506.
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Figure A.5: Same as Figure 3.15, but with different masses and z0 = 1.019.
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Figure A.6: Same as Figure 3.16, but with different masses and z0 = 1.019.
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Figure A.7: Same as Figure 3.15, but with different masses and z0 = 2.041.
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Figure A.8: Same as Figure 3.16, but with different masses and z0 = 2.041.
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Figure A.9: Same as Figure 3.15, but with different masses and z0 = 4.152.
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Figure A.10: Same as Figure 3.16, but with different masses and z0 = 4.152.





Redshift distributions B

Figure B.1: Same as Figure 3.21, with M0 = M∗/256.
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Figure B.2: Same as Figure 3.21, with M0 = M∗/64.
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Figure B.3: Same as Figure 3.21, with M0 = M∗/16.
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Figure B.4: Same as Figure 3.21, with M0 = M∗/4.
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Figure B.5: Same as Figure 3.21, with M0 = 4M∗.
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Figure B.6: Same as Figure 3.21, with M0 = 16M∗.
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Figure B.7: Same as Figure 3.21, with M0 = 64M∗.





Cumulative distributions C

Figure C.1: Same as Figure 3.24, for ∆= 2 and different masses.
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Figure C.1: Same as Figure 3.24, for ∆= 2 and different masses. (cont.)
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Figure C.1: Same as Figure 3.24, for ∆= 2 and different masses. (cont.)
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Figure C.1: Same as Figure 3.24, for ∆= 2 and different masses. (cont.)
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Figure C.2: Same as Figure 3.24, for ∆=p
2 and different masses.
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Figure C.2: Same as Figure 3.24, for ∆=p
2 and different masses. (cont.)



APPENDIX C. CUMULATIVE DISTRIBUTIONS 109

Figure C.2: Same as Figure 3.24, for ∆=p
2 and different masses. (cont.)
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Figure C.2: Same as Figure 3.24, for ∆=p
2 and different masses. (cont.)
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Figure C.3: Same as Figure 3.24, for ∆= 1.1 and different masses.
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Figure C.3: Same as Figure 3.24, for ∆= 1.1 and different masses. (cont.)
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Figure C.3: Same as Figure 3.24, for ∆= 1.1 and different masses. (cont.)
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Figure C.3: Same as Figure 3.24, for ∆= 1.1 and different masses. (cont.)



Growth factor D

Figure D.1: Same as Figure 4.3, for z = 1.

115



116 Toward a Universal Model for the MAH of DM halos

Figure D.2: Same as Figure 4.3, for z = 4.
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Figure D.3: Same as Figure 4.3, for z = 6.
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Figure D.4: Same as Figure 4.3, for z = 10.
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