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ABSTRACT	
 
BACKGROUND	

Cancer	 cachexia	 is	 a	 devastating	 metabolic	 syndrome	 characterized	 by	

systemic	inflammation	and	massive	muscle	and	adipose	tissue	wasting.	Although	

cancer	 cachexia	 is	 responsible	 for	 about	 25%	 of	 cancer	 deaths,	 no	 effective	

therapies	 are	 available,	 and	 the	 underlying	 mechanisms	 have	 not	 been	 fully	

elucidated.	

Its	 occurrence	 complicates	 patients’	management,	 reduces	 tolerance	 to	

treatments	and	negatively	affects	patient	quality	of	life.	Muscle	wasting,	mainly	

due	to	increased	protein	breakdown	rates,	is	one	of	the	most	prominent	features	

of	 cachexia.	 Blocking	 muscle	 loss	 in	 cachexia	 mouse	 models	 dramatically	

prolongs	survival	even	of	animals	in	which	tumor	growth	is	not	inhibited.		

Recent	 observations	 showed	 that	 bone	 morphogenetic	 protein	 (BMP)	

signaling,	 acting	 through	 Smad1,	 Smad5	 and	 Smad8	 (Smad1/5/8),	 is	 a	 master	

regulator	 of	 muscle	 homeostasis.	 BMP-Smad1/5/8	 axis	 negatively	 regulates	 a	

novel	ubiquitin	ligase	(MUSA1)	required	for	muscle	loss	induced	by	denervation.	

	

MATERIALS	AND	METHODS	

First	aim	of	the	present	work	was	to	test	if	alterations	of	the	BMP	signaling	

pathway	occur	in	cancer-induced	muscle	wasting	in	patients.	For	this	purpose	we	

checked	 the	 state	 of	 activation	 of	 the	 BMP	 pathway	 in	 muscle	 of	 cachectic	 vs	

non–cachectic	patients	affected	by	colon,	pancreatic	and	esophagus	cancer	and	in	

control	 subjects.	 We	 checked	 by	 Western	 Blot	 the	 phosphorylation	 levels	 of	

Smad1/5/8	 and	 of	 Smad3	 and	 by	 quantitative	 Real-Time	 PCR	 (qRT-PCR)	 the	

expression	 levels	 of	 different	 atrophy-related	 genes	 The	 second	 aim	 was	 to	

evaluate	 the	 degree	 of	 muscle	 atrophy	 and	 distribution	 of	 muscle	 fibers	 in	

patients	 and	 control	 subjects	 using	 morphometric	 and	 immunohistochemical	
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analyses.	We	 also	 performed	 analysis	 on	 distribution	 of	 NCAM	 positive	muscle	

fibers	to	assess	the	effect	of	denervation	on	muscle	tropism.	

RESULTS	

	 From	December	2014	we	collected	95	rectus	abdominis	muscle	biopsies	

of	 cancer	 patients	 and	 11	 from	 control	 subjects.	 In	 line	 with	 the	 results	 we	

obtained	 in	 C26	 mice	 model	 (a	 well-established	 cancer	 cachexia	 experimental	

model)	 Smad1/5/8	 phosphorylation,	 readout	 of	 the	 state	 of	 activation	 of	 the	

BMP	 pathway,	 was	 nearly	 completely	 abrogated	 in	 the	 muscles	 of	 cancer	

cachectic	 patients	 compared	 to	 cancer	 non-cachectic	 ones.	 Interestingly,	 the	

level	 of	 phosphorylation	 of	 Smad3	 was	 not	 significantly	 affected	 suggesting	

specific	 effects	 of	 cancer	 growth	 on	 BMP	 pathway.	 The	 expression	 levels	 of	

different	atrophy-related	genes	 including	MUSA1	were	induced	in	the	cachectic	

muscles.	 Interestingly,	 several	 BMP	 related	 genes	 are	 also	 changing	 the	

expression	 during	 cancer	 growth.	 We	 also	 found	 a	 correlation	 between	

suppression	of	BMP		pathway,	expression	of	atrophy	related	genes	and	Noggin,	

known	to	block	BMP	pathway.		

	 Morphometric	 analysis	 shown	 that	 patients	 with	 cancer	 cachexia	 have	

smaller	myofiber	diameter	 (in	particular	 fast	 type	 fibers)	 in	comparison	 to	age-

matched	 controls.	 In	 skeletal	muscle	 from	 cancer	 patients	 (either	 cachectic	 or	

non-cachectic)	we	detected	a	prevalence	of	flat	shaped,	angulated	and	severely	

atrophic	 myofibers	 (i.e.	 morphological	 features	 of	 denervated	 myofibers),	 big	

fiber-type	 grouping	 (i.e.	 typical	 hallmark	 of	 denervation/reinnervation	 events)	

and	numerous	NCAM	positive	myofibers	(i.e.	specific	marker	of	denervation).	

CONCLUSIONS	

	 These	 findings	are	consistent	with	 the	hypothesis	 that	BMP	 inhibition	 is	

permissive	 to	 cachexia	 onset.	 Since	 the	 reactivation	 of	 the	 BMP-dependent	

signaling	 and	 MUSA1	 suppression	 was	 sufficient	 to	 prevent	 tumor-induced	

muscle	 atrophy	 in	 our	 C26	 mouse	 model	 (data	 not	 shown),	 the	 present	 data	
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suggest	that	the	BMP	axis	can	be	an	effective	target	for	therapeutic	approaches	

to	counteract	cachexia	also	in	cancer	patients. 

The	results	of	morphometric	and	immunohistochemical	studies	collected	

till	now	may	suggest	that	denervation	contributes	to	myofiber	atrophy	in	cancer	

cachexia. 

	





 

	

	

AIM	OF	THE	STUDY	
	

The	 aim	 of	 this	 study	 is	 to	 investigate	 the	 role	 of	 the	 BMP	 axis	 and	 its	

target	 gene	 MUSA1	 in	 cancer	 cachexia	 in	 human	 cancer	 patients	 in	 order	 to	

understand	 if	 regulation	 of	 this	 pathway	 in	 muscle	 should	 be	 a	 rationale	 to	

prevent	/	counteract	the	loss	of	muscle	tissue	in	cancer	cachexia.	

	

Secondary	objectives	are	listed	below:	

-	 to	 assess	 the	 state	 of	 activation	 of	 the	 BMP	 pathway	 (level	 of	

phosphorylation	 of	 Smad1/5/8)	 and	 TGFb/myostatin	 pathway	 (level	 of	

phosphorylation	 of	 Smad3)	 in	 muscle	 biopsies	 from	 control	 patients,	 non-

cachectic	and	cachectic	cancer	patients;	

-	 to	 evaluate	 the	 expression	 of	 BMP	 dependent	 E3-ubiquitin	 ligase	

MUSA1	 in	 muscle	 biopsies	 from	 control	 patients,	 non-cachectic	 and	 cachectic	

cancer	 patients	 and	 compare	 it	 with	 that	 of	 other	 ubiquitin	 ligases	 such	 as	

Atrogin1,	MuRF1;	

-	to	evaluate	muscle	morphology	in	the	biopsies	of	control	patients,	pre-

cachectic	and	cachectic	cancer	patients.	

	





 

	
	

chapter	1	
	

INTRODUCTION	
	
	

1.1	CANCER	CACHEXIA	
	

1.1.1	DEFINITION	

	

One	in	four	of	the	general	population	will	die	from	cancer,	and	cachexia	

affects	the	majority	with	advanced	disease.	The	syndrome	of	cancer	cachexia	is	

multifactorial	and	cannot	be	fully	reversed	by	traditional	nutritional	support.	It	is	

caused	 by	 a	 combination	 of	 reduced	 food	 intake	 and	 abnormal	 metabolism,	

seemingly	induced	by	tumor-	and	host-derived	factors.	It	is	not	known	precisely	

how	or	why	cancer	so	frequently	develops	in	such	a	way	as	to	induce	cachexia.		

Cachexia	 has	 commonly	 been	 considered	 a	 paraneoplastic	 syndrome	 in	

which	tumor-derived	factors	induce	widespread	alterations	in	gene	expression	or	

metabolic	flux	that	may	function	to	release	intermediate	metabolites,	which	can	

then	be	used	by	 the	 tumor	 for	growth	and	expansion1.	 In	 this	model,	 cachexia	

can	be	considered	a	state	of	 ‘‘autocannibalism’’	 in	which	the	tumor	survives	at	

the	expense	of	the	host.	In	contrast,	many	of	the	metabolic	changes	in	cachexia	

are	 the	 result	 of	 activated	 immune	 and	 neuroendocrine	 responses	 that	 are	

common	 to	 trauma	 or	 sepsis	 and	 are	 thus	 more	 likely	 related	 to	 a	 generic	
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response	to	injury.	In	this	model,	cachexia	may	be	regarded	as	the	downside	of	a	

double-edged	sword	designed	to	respond	to	tumor-related	noxious	stimuli	such	

as	pain	or	tissue	necrosis.	However,	the	existence	of	tumors	with	similar	growth	

patterns	 and	 identical	 origins,	 one	 of	 which	 induces	 cachexia	 while	 the	 other	

does	not2,	implies	that	differences	in	a	limited	number	of	genetic	events	or	gene	

expression	may	underlie	the	tumor	phenotype	associated	with	cachexia.		

 

1.1.2	CLASSIFICATION	AND	STAGING 	

	

Cancer	 cachexia	 is	 a	 continuum	 (with	 three	 stages	 of	 clinical	 relevance:	

precachexia,	cachexia,	and	refractory	cachexia3.	

	

		

	

	

	

Not	all	patients	traverse	the	entire	spectrum.	In	precachexia,	early	clinical	

and	metabolic	signs	(e.g.,	anorexia	and	impaired	glucose	tolerance)	can	precede	

substantial	involuntary	weight	loss	(i.e.,	≤5%).	The	risk	of	progression	varies	and	

depends	 on	 factors	 such	 as	 cancer	 type	 and	 stage,	 the	 presence	 of	 systemic	

inflammation,	 low	 food	 intake	 and	 lack	 of	 response	 to	 anticancer	 therapy.	

Patients	 who	 have	 more	 than	 5%	 loss	 of	 stable	 body	 weight	 over	 the	 past	 6	

months,	or	a	body-	mass	index	(BMI)	less	than	20	kg/m2	and	ongoing	weight	loss	

of	more	than	2%,	or	sarcopenia	and	ongoing	weight	 loss	of	more	than	2%,	but	

have	 not	 entered	 the	 refractory	 stage,	 are	 classified	 as	 having	 cachexia.	 In	

refractory	 cachexia,	 the	 cachexia	 can	be	 clinically	 refractory	 as	 a	 result	 of	 very	

Figure	1	Stages	of	cancer	cachexia	
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advanced	 cancer	 (preterminal)	 or	 the	 presence	 of	 rapidly	 progressive	 cancer	

unresponsive	 to	 anticancer	 therapy.	 This	 stage	 is	 associated	 with	 active	

catabolism	or	the	presence	of	factors	that	render	active	management	of	weight-

loss	no	longer	possible	or	appropriate.	Refractory	cachexia	is	characterized	by	a	

low	performance	status	(WHO	score	3	or	4)	and	a	life	expectancy	of	less	than	3	

months.	 The	 burden	 and	 risks	 of	 artificial	 nutritional	 support	 are	 likely	 to	

outweigh	 any	 potential	 benefit.	 Therapeutic	 interventions	 focus	 typically	 on	

alleviating	the	consequences	and	complications	of	cachexia	as	symptom	control	

(appetite	 stimulation,	 management	 of	 nausea	 or	 eating-related	 distress	 of	

patients	and	families).	

The	 severity	 of	 depletion	 can	 be	 classified	 according	 to	 the	 rate	 of	

ongoing	loss	of	weight	in	combination	with	the	concurrent	degree	of	depletion	of	

energy	stores	and	body	protein	mass	(which	can	be	compounded	by	a	low	initial	

reserve).	Thus,	a	fall	of	5	kg/m2	in	BMI	from	an	initial	value	of	22	has	more	severe	

implications	 than	 the	 same	 loss	 from	 an	 initial	 value	 of	 35.	 Furthermore,	 a	

patient	with	 a	BMI	of	 30	 and	a	history	of	weight	 loss	 is	more	 at	 risk	 if	muscle	

wasting	 has	 led	 to	 sarcopenia,	 and	 less	 at	 risk	 if	muscle	 protein	mass	 remains	

intact.	

	

1.1.3	CLINICAL	PRESENTATION	OF	CACHEXIA 

	

Cancer	 cachexia	 can	 vary	 according	 to	 tumor	 type,	 site,	 and	mass4.	 The	

anatomical	 position	 of	 a	 tumor	 in	 the	 upper	 gastrointestinal	 tract	may	 lead	 to	

obstruction	and	reduce	food	 intake	directly.	The	relationship	between	cachexia	

and	tumor	mass	is	complex.	In	many	animal	models	the	tumor	grows	quickly	and	

reaches	>10%	of	body	mass	acting	as	a	 ‘‘nitrogen	 trap’’5.	 In	humans,	however,	

tumor	burden	is	often	<1%	when	there	is	profound	cachexia,	suggesting	that	the	

metabolic	 demands	 of	 the	 tumor	 are	 less	 important	 than	 distant	 metabolic	

effects	 induced	by	the	tumor	upon	the	host.	For	example,	 in	pancreatic	cancer,	
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high	 tumor	 IL-6	 production	 has	 been	 associated	with	 cachexia6,	 and	 increased	

levels	 of	 tumor-derived,	 or	 tumor-	 induced	 but	 host-derived,	 proinflammatory	

cytokines	 is	 perhaps	 the	 most	 common	 correlation	 between	 cancer	 and	 the	

prevalence	of	cachexia.		

Even	with	the	same	tumor	type	and	burden,	one	individual	may	become	

cachectic	whereas	another	will	not.	Such	variation	may	relate	to	host	genotype.	

Genetic	 variation	 in	 immunity	 and	 associated	 signaling	 pathways	 is	 known	 to	

relate	to	outcomes	in	major	sepsis7,	and	recent	findings	suggest	a	similar	pattern	

in	 cancer	 cachexia.	 Single-nucleotide	polymorphisms	 in	 the	 IL-1,	 IL-6,	 and	 IL-10	

genes	 that	 are	 linked	 to	 production	 rates	 of	 these	 cytokines	 have	 been	

associated	with	 the	prevalence	of	cachexia	 in	gastric	or	pancreatic	cancer8.	For	

example,	 the	 1082G	 allele	 in	 the	 IL-10	 promoter	 has	 been	 validated	 as	 a	

procachectic	 genotype	 in	 an	 independent	 cohort9.	 IL-10	has	been	 shown	 to	be	

elevated	in	a	Myc/mTOR-driven	murine	model	of	cancer	cachexia	(Robert	et	al.,	

2012),	 as	 well	 as	 in	 cachectic	 patients	 with	 colorectal	 cancer	 (Shibata	 et	 al.,	

1996).	Likewise,	 the	C	allele	of	 the	rs6136	polymorphism	in	the	P-selectin	gene	

has	recently	been	associated	with	weight	loss	in	a	large	heterogeneous	group	of	

cancer	patients	and	validated	in	an	independent	cohort	(Tan	et	al.,	2012).	Taken	

together,	these	findings	are	consistent	with	a	key	role	for	the	immune	system	in	

the	 variable	 presentation	 of	 cachexia.	 However,	 currently	 no	 genome-	 wide	

studies	in	either	animal	models	or	patients	have	been	performed.		

The	classical	presentation	of	cachexia	is	of	an	extremely	thin	and	wasted	

individual.	However,	heterogeneity	 in	 this	clinical	presentation	 is	 introduced	by	

the	 current	 epidemic	 of	 obesity.	 When	 healthy	 individuals	 develop	 a	 chronic	

disease,	the	higher	risk	associated	with	obesity	is	reversed	and	obesity	becomes	

‘‘protective,’’	perhaps	due	to	increased	adipose	and	lean	tissue	reserves.	This	is	

known	 as	 the	 obesity	 paradox.	Mean	 BMI	 of	 advanced	 cancer	 patients	 is	 now	

commonly	measured	at	>25.	There	is,	however,	a	subgroup	of	these	overweight	

patients	 who	 hide	 gross	 muscle	 wasting	 under	 a	 mantle	 of	 adipose	 tissue.	

Approximately	 40%	 of	 overweight	 or	 obese	 patients	with	 advanced	 pancreatic	
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cancer	have	significant	skeletal	muscle	wasting	and	this	‘‘myopenic	or	sarcopenic	

obesity’’	is	an	independent	risk	factor	for	accelerated	demise10.		

As	skeletal	muscle	is	a	key	target	in	cachexia,	it	is	also	relevant	to	consider	

heterogeneity	as	a	result	of	sexual	dimorphism.	Men	have	greater	muscle	mass	

than	 women	 and	 one	 might	 assume	 that	 this	 greater	 ‘‘reserve’’	 would	 be	

protective.	 However,	 weight	 loss	 and	 loss	 of	muscle	mass	 are	 greater	 in	male	

than	female	cancer	patients11,	and	this	may	further	relate	to	a	high	prevalence	of	

hypogonadism	in	males12.	In	fact,	male	lung	cancer	patients	have	shorter	survival	

than	women13.	

	

1.2	 MUSCLE	 ATROPHY	 IN	 CANCER	
CACHEXIA	
 

Loss	 of	 skeletal	 muscle	 mass	 in	 cancer	 cachexia	 is	 generally	 due	 to	

reduced	protein	synthesis,	increased	degradation,	or	a	relative	imbalance	of	the	

two14.	 The	 signaling	 pathways	 that	 are	 thought	 to	 control	 these	 processes	 are	

shown	in	figure	below.		

	

	

	

	

	

	

	

Figura	 1	 Atrophy	 and	 hypertrophy	 pathways	 in	 skeletal	
muscle	skeletal	 muscle	 mass	 is	 controlled	 by	 the	 balance	
between	atrophy	and	hypertrophy	pathways.	
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One	prominent	subset	of	the	procachectic	molecular	mechanisms	can	be	

traced	as	follows:	proinflammatory	cytokines	such	as	TNFa,	TWEAK,	or	IL-1	signal	

into	 two	 established	 pathways,	 the	 NF-kB	 pathway	 (weakly	 in	 the	 case	 of	

TWEAK)	 and	 p38	 MAP	 kinase.	 These	 two	 signaling	 mediators	 are	 required	 to	

upregulate	 the	expression	of	 the	key	E3	 ligases	 (muscle	RING	 finger-containing	

protein	1,	MURF1,	and	muscle	atrophy	F	box	protein,	MAFbx,	otherwise	known	

as	 Atrogin-1),	 which	 mediate	 sarcomeric	 breakdown	 and	 inhibition	 of	 protein	

synthesis14.	MuRF1	 is	upregulated	 in	multiple	settings	of	muscle	atrophy15.	This	

E3	 ubiquitin	 ligase	 is	 responsible	 for	mediating	 the	 ubiquitination	 of	 the	 thick	

filament	of	the	sarcomere—MyHC16,	and	other	thick	filament	components17.	The	

cytokine	TWEAK,	 in	particular,	 induces	MuRF1	upregulation	via	NF-kB,	resulting	

in	MyHC	loss18.	Inhibition	of	classical	NF-kB	is	sufficient	to	significantly	decrease	

tumor-induced	 muscle	 loss,	 at	 least	 in	 mice,	 in	 part,	 by	 inhibiting	 the	

upregulation	of	MuRF119.		

The	RING	finger	 in	MuRF1	binds	zinc,	which	 is	required	for	 its	activity,	as	 is	the	

case	with	all	RING	 finger-containing	E3s20.	One	 recent	 study	demonstrates	 that	

zinc	 accumulates	 during	 cachexia,	 speculating	 that	 this	 may	 help	 induce	

ubiquitination	by	zinc-dependent	E3s21.	MAFbx/Atrogin-1	also	 serves	as	a	high-

fidelity	marker	of	acute	muscle	atrophy,	being	upregulated	in	multiple	settings	of	

cachexia22,	 in	 addition	 to	 immobilization,	 denervation,	 and	 glucocorticoid	

excess23.	MAFbx	up-	regulation	occurs	via	p38	activation	(Li	et	al.,	2005)	and	by	

the	induction	of	the	C/EBPb	transcription	factor,	which	itself	is	activated	through	

p38	 phosphorylation24.	MAFbx	 induces	 the	 ubiquitination	 of	 an	 eIF3f,	which	 is	

part	 of	 the	 protein	 translation	 machinery25.	 However,	 it	 is	 not	 clear	 if	 this	 is	

sufficient	to	decrease	protein	synthesis.	Some	studies	in	cachectic	tumor-bearing	

rats	 indicate	 that	 if	 amino	 acids	 are	 provided	 there	 is	 an	 increase	 in	 protein	

synthesis,	but	the	breakdown	of	proteins	outpaces	this	increase26.	If	the	tumor-

bearing	rats	were	nutrition-	ally	deprived	of	amino	acids,	a	concomitant	decrease	

in	protein	synthesis	and	an	increase	in	protein	turnover	would	be	observed.	The	

demonstration	 that	 both	 MuRF1	 and	 MAFbx	 contribute	 to	 skeletal	 muscle	

atrophy	was	provided	by	studies	of	knockout	animals—in	the	absence	of	either	
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MuRF1	or	MAFbx,	rates	of	atrophy	are	diminished.	Thus,	inflammatory	cytokines	

secreted	by	tumors	directly	 induce	signaling	pathways	that	upregulate	enzymes	

that	induce	skeletal	muscle	protein	turnover.		

The	 E3	 ligase	 Fbxo40	may	be	 able	 to	 contribute	 to	 atrophy	by	 inducing	

the	 ubiquitination	 of	 IRS1	 and	 thereby	 short-circuiting	 the	 IGF1/IGF1R/IRS1	

pathways	and	downstream	protein	synthesis	activation27.	Fbxo40	is	able	to	cause	

IRS1	 to	 be	 degraded	 upon	 its	 phosphorylation	 by	 the	 IGF1R.	 Under	 settings	

where	 protein	 synthesis	 is	 ongoing,	 this	 would	 not	 be	 expected	 to	 decrease	

signaling	 in	a	sustained	fashion,	because	the	degraded	IRS1	could	simply	be	re-

synthesized,	 and	 signaling	 could	 thereby	 continue.	 However,	 under	 conditions	

where	 protein	 synthesis	 is	 blocked,	 IRS1	 would	 not	 be	 replenished,	 and	 IGF1	

signaling	would	 thereby	be	silenced.	Some	 indication	 that	 this	might	happen	 is	

supported	 by	 a	 recent	 study	 suggesting	 that	 Fbxo40	 is	 upregulated	 upon	

denervation.	It	remains	to	be	determined	whether	this	happens	in	other	settings	

of	 muscle	 atrophy28.	 Hypertrophy	 Signaling	 and	 Links	 with	 Atrophy	 Pathways	

Opposing	 skeletal	 muscle	 atrophy	 are	 those	 pathways	 that	 induce	 muscle	

hypertrophy.	 One	 of	 the	 best-characterized	 mechanisms	 for	 inducing	

hypertrophy	 is	 through	 IGF1	 (insulin-	 like	 growth	 factor	 1)	 signaling.	 IGF1	 is	

upregulated	 in	skeletal	muscle	normally	during	resistance	exercise29,	helping	to	

explain	why	there	is	asymmetric	hypertrophy	of	particular	muscles	depending	on	

work	 and	 resistance.	 The	 pathway	 that	 mediates	 hypertrophy	 downstream	 of	

IGF1	 activation	 is	 IRS1/PI3K/Ak30.	 Under	 atrophy	 conditions,	 autophagy	 is	

induced	 in	addition	 to	ubiquitin-mediated	proteolysis.	However	while	blockade	

of	ubiquitin	 signaling,	 for	example	using	 the	proteasome	 inhibitor	Velcade,	has	

been	 demonstrated	 to	 result	 in	 healthy	 preserved	 muscle31,	 developmental	

blockade	 of	 autophagy	 results	 in	 pathologic	muscle32.	 In	 addition	 to	 activating	

TORC1	 signaling,	 Akt	 also	 phosphorylates	 the	 Foxo	 (or	 Forkhead)	 family	 of	

transcription	factors.	Foxo1	and	Foxo3	play	a	key	role	in	inducing	transcriptional	

upregulation	of	MuRF1	and	MAFbx33.	Apparently	these	transcription	factors	are	

required,	 since	 IGF1/Akt	 mediated	 Foxo	 phosphorylation	 and	 subsequent	

inhibition	of	Foxo	transport	to	the	nucleus	is	sufficient	to	block	the	upregulation	
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of	 the	 E3	 ligases.	 In	 addition,	 transgenic	 overexpression	 of	 Foxo3	 in	 skeletal	

muscle	 is	 sufficient	 to	 induce	 dramatic	 skeletal	muscle	wasting34,	 while	 recent	

evidence	supports	that	inhibition	of	Foxo	spares	muscle	loss	in	a	mouse	model	of	

cancer	cachexia35.		

Links	with	Protein	Synthesis	and	Degradation		

The	mass	of	protein	within	a	muscle	 is	 regulated	by	 the	net	 interplay	between	

protein	synthesis	and	degradation.	In	rodent	models	of	cancer-associated	muscle	

wasting,	 both	 decreased	 synthesis	 and	 increased	 degradation	 have	 been	

described36.	 There	 have	 only	 been	 a	 few	 direct	 measurements	 of	 protein	

synthesis	 in	humans	with	cancer	cachexia.	Protein	synthesis	has	been	shown	to	

be	 decreased37	 with	 only	 indirect	 evidence	 available	 on	 the	 issue	 of	 protein	

degradation.		

Transcriptional	 activation	 of	 ubiquitin	 proteasome	 pathway	 (UPP)	

components	has	been	found	in	the	skeletal	muscle	of	both	rodent	models38	and	

patients	with	 pancreatic,	 upper	 gastrointestinal	 (UGI),	 or	 liver	 cancer,	 and	 this	

was	associated	with	increased	protein	or	proteolytic	activity	in	vitro39.	It	has	also	

been	reported	that	skeletal	muscle	calpain,	MAFbx,	and	MuRF1	mRNA	remained	

unchanged	in	the	skeletal	muscle	of	gastric	cancer	patients,	while	calpain	activity	

was	elevated	even	in	the	absence	of	weight	loss40.	In	lung	cancer	patients,	while	

UPP	genes	 in	skeletal	muscle	are	not	 increased,	elevation	of	cathepsin	B	mRNA	

has	been	observed41.		

Using	 genome-wide	 transcript	 analysis	 of	 sequential	 quadriceps	muscle	

biopsies	 in	patients	before	and	after	curative	surgery	 for	upper	gastrointestinal	

cancer,	 a	 recent	 study	 has	 shown	 that	 1,868	 genes	 were	 regulated	 in	 the	

cachectic	 state.	 Ontology	 analysis	 demonstrated	 that	 these	 gene	 products	 be-	

longed	 to	 both	 anabolic	 and	 catabolic	 biological	 processes,	 which	 were	

overwhelmingly	 downregulated	 in	 the	 cachectic	 state.	 No	 literature-derived	

genes	from	preclinical	cancer	cachexia	models	(e.g.,	atrogenes)	were	found	to	be	

elevated	in	cachectic	muscle42.	These	findings	are	consistent	with	the	notion	of	a	
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predominant	 decrease	 in	 synthesis	 in	 the	 early	 phase	 of	 cancer	 cachexia.	

Interestingly,	 it	 has	 been	 suggested	 that	MAFbx	 expression	 is	 a	 poor	 index	 of	

muscle	 proteolysis	 and	 may	 instead	 be	 predominantly	 linked	 with	 controlling	

protein	synthesis43.		

In	addition	to	regulating	UPP,	Foxo	transcription	factors	directly	regulate	genes	

coding	 for	 the	 autophagy	 pathway,	 which	 like	 the	 ubiquitin	 system	 also	

contributes	 to	 the	 degradation	 of	 muscle	 proteins	 to	 promote	 atrophy.	 In	

autophagy,	 organelles	 are	 sequestered	 in	 autophagosome	 vacuoles	 that	 fuse	

with	lysosomes	and	become	digested	by	lysosomal	enzymes44.	Autophagy	genes	

and	 the	 lysosomal	 proteolytic	 system	 are	 activated	 during	 denervation	 and	

cancer,	and	 in	both	cases	contribute	 to	atrophy	through	the	activity	of	Foxo.	A	

unique	finding	determined	that	analogous	to	Akt,	Foxo3	 is	negatively	regulated	

by	PGC-1a45.	PGC-1a	is	itself	downregulated	in	muscles	from	tumor-bearing	mice	

and	 other	 wasting	 conditions,	 and	 trans-	 genic	 expression	 of	 PGC-1a	 rescues	

muscle	loss	in	part	by	inhibiting	Foxo3	and	through	the	production	of	metabolic	

products.	PGC-1a	is	highly	induced	during	exercise,	and	one	of	the	primary	roles	

of	 this	 factor	 is	 to	 regulate	 mitochondrial	 biogenesis	 and	 oxidative	

phosphorylation	 in	 myofibers,	 characteristic	 of	 type	 I,	 fatigue-resistant,	

muscles46.	Interestingly,	in	cancer	cachexia,	muscle	atrophy	is	selective	to	type	II	

fast	twitch	myofibers,	while	type	I	oxidative	fibers	are	relatively	spared	of	similar	

catabolic	effects47.	 Therefore,	 it	 is	possible	 that	 this	 sparing	effect	 results	 from	

PGC-1a	 inhibition	 of	 Foxo3	 activity	 in	 type	 I	myofibers.	 Attempts	 to	 screen	 for	

PGC-1a	activators	represents	a	promising	therapeutic	avenue	to	prevent	muscle	

atrophy	in	cancer	or	other	catabolic	conditions.		

Since	 even	 in	 cachectic	 patients	 there	 is	 the	 experience	 of	 both	 a	

decrease	 in	 lean	body	mass	 (atrophy)	 and	muscle	weakness	 (loss	of	 strength	 /	

functional	 parameters),	 we	 decided	 to	 investigate	 whether	 also	 in	 cachectic	

patients	 there	 is	 an	 involvement	 of	 the	 nerve	 or	 denervation	 phenomena	 that	

can	contribute	to	muscle	wasting	that	characterizes	these	patients.	
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1.3	BMP	AXIS	IN	CANCER	CACHEXIA	
 

Skeletal	 muscle	 is	 a	 major	 site	 of	 metabolic	 activity	 and	 is	 the	 most	

abundant	tissue	in	the	human	body.	During	development,	the	growth	of	skeletal	

muscle	mass	depends	on	protein	and	cellular	 turnover48.	 In	adulthood,	skeletal	

muscle	adapts	 its	 size	and	 function	 to	different	physiological	 requirements	and	

pathophysiological	conditions,	primarily	by	affecting	pathways	regulating	protein	

turnover.	 In	particular,	 the	size	of	post-mitotic	cells	 is	determined	by	a	balance	

between	new	protein	 accumulation	 and	 the	degradation	of	 existing	proteins49.	

Few	pathways	have	been	 identified	 that	 regulate	muscle	 growth	 in	 adulthood,	

and,	 among	 these,	 myostatin,	 a	 transforming	 growth	 factor	 (TGF)-β	 family	

member	 has	 a	 key	 role	 as	 a	 negative	 regulator50,51.	 Myostatin	 signals	 via	 the	

activin	type	II	receptors	(ActRIIA	and	ActRIIB)	and	activin	type	I	receptors	(ALK4	

and	 ALK5)	 to	 phosphorylate	 responsive	 Smad	 proteins	 (Smad2	 and	 Smad3,	

Smad2/3),	which	 enables	 the	 Smad	proteins	 to	 form	 a	 transcriptional	 complex	

with	Smad4	to	transcribe	target	genes.	Several	genetic	and	biochemical	studies	

have	 shown	 that	 inhibition	 of	 the	 myostatin-ActRIIB-ALK4/	 ALK5-Smad2/3	

pathway	 promotes	 muscle	 hypertrophy	 in	 adulthood52,53.	 However,	 the	 target	

genes	and	mechanisms	that	drive	muscle	hypertrophy	downstream	of	myostatin	

inhibition	remain	unclear.		

BMPs	are	cytokines	of	the	TGF-β	superfamily	that	bind	to	dedicated	BMP	

receptors	(for	example,	ALK3)	that	in	turn	phosphorylate	BMP-responsive	Smad	

proteins	 (Smad1/5/8)54.	 Similar	 to	 Smad2	 and	 Smad3,	 BMP-dependent	 Smad	

proteins	also	form	a	transcriptional	complex	with	Smad4	that	translocates	to	the	

nucleus	and	regulates	the	transcription	of	target	genes,	including	the	inhibitor	of	

DNA	binding	(ID)	gene	family.	ID	proteins	(ID1,	ID2,	ID3	and	ID4)	belong	to	the	E-

protein	 family	 and	 control	 cell	 growth	 and	 differentiation55.	 BMP	 signaling	 is	

mostly	 known	 for	 its	 roles	 in	 embryonic	 development	 and	 in	 bone/cartilage	

formation54.	 In	 adult	 skeletal	 muscle,	 activation	 of	 BMPs	 has	 been	 associated	

with	 ectopic	 bone	 and	 cartilage	 formation	 and	 with	 diseases	 such	 as	
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fibrodysplasia	ossificans	progressiva56.	The	role	of	endogenous	BMP	signaling	in	

the	 homeostasis	 of	 adult	 tissues	 and	 its	 relationship	 with	 myostatin	 signaling	

remain	largely	unknown.		

The	study	published	by	Sartori	et	al.	in	2013	provides	several	new	insights	

into	 signaling	 by	 TGF-β	 pathways	 and	 their	 contribution	 to	 the	 regulation	 of	

muscle	 mass	 in	 adulthood.	 BMP	 signaling	 resulted	 as	 the	 dominant	 pathway	

controlling	 muscle	 mass,	 even	 more	 so	 than	 myostatin.	 In	 particular,	 the	

hypertrophic	 phenotype	 caused	 by	 myostatin	 inhibition	 in	 fact	 results	 from	

unrestrained	 BMP	 signaling.	 This	 fits	 with	 a	model	 in	 which	 a	 decrease	 in	 the	

levels	 of	 phosphorylated	 Smad2/3	 leads	 to	 the	 release	 of	 Smad4,	 which	 is	

recruited	 into	 BMP	 signaling	 to	 promote	 hypertrophy	 and	 counteract	 atrophy.	

Conversely,	 when	 the	 BMP	 pathway	 is	 blocked	 or	 myostatin	 expression	 is	

increased,	more	Smad4	 is	available	 for	phosphorylated	Smad2/3,	 leading	 to	an	

atrophy	 response.	 Therefore,	 under	 normal	 circumstances,	 a	 balance	 between	

these	 competing	 pathways	 is	 required	 to	maintain	muscle	mass.	 The	 dramatic	

loss	 of	 muscle	mass	 after	 denervation	 in	 Smad4	 knockout	mice	 and	 following	

overexpression	of	noggin,	that	inhibits	BMP	pathway,	strongly	suggests	that	BMP	

signaling	 is	 also	 required	 to	 prevent	 excessive	 muscle	 loss	 under	 pathological	

conditions.	Similar	conclusions	have	been	reached	by	an	 independent	study	on	

BMP	 signaling	 in	 skeletal	 muscle57.	 The	 molecular	 mechanism	 underlying	 the	

anti-atrophic	action	of	the	BMP	pathway	relies	on	the	negative	effect	it	exerts	on	

the	expression	of	a	newly	characterized	ubiquitin	ligase,	named	MUSA1.	This	E3	

ligase	is	not	only	required	for	protein	breakdown	in	atrophying	muscles	but	also	

exacerbates	muscle	atrophy	in	Smad4-deficient	mice.	Similar	to	other	E3	ligases,	

MUSA1	 undergoes	 autoubiquitination.	 Thus,	 it	 is	 reasonable	 to	 suggest	 that	

increased	 ligase	 activity	 of	 MUSA1	 during	 denervation	 would	 amplify	 its	

autoubiquitination	 activity,	 resulting	 in	 increased	 proteasome-dependent	

degradation.	 Therefore,	 transcriptional	 upregulation	 is	 particularly	 important,	

mostly	to	replenish	the	loss	of	MUSA1	protein	that	occurs	in	denervated	muscles	

as	a	consequence	of	increased	MUSA1	activity.	BMP	signaling	is	indispensable	for	

the	 regulation	 of	 adult	 muscle	 mass	 in	 normal	 and	 pathological	 situations,	
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highlighting	its	importance	in	developing	new	strategies	for	control.		

	

	

	

	

	

	

	

	

	

 

	

1.4	 ROLE	 OF	 DENERVATION	 IN	
MUSCULAR	ATROPHY	
 

Many	 of	 publications	 on	 relation	 between	 denervation	 and	 muscular	

atrophy	 are	 about	 denervation	 in	 aging.	 Aging	 is	 characterized	 by	 a	 gradual	

decline	that	 impairs	cell	homeostasis	and	functional	reserves.	Histologic	studies	

of	 skeletal	 muscle	 have	 shown	 that	 denervation	 is	 among	 the	 numerous	

mechanisms	that	contribute	 to	 tissue	atrophy	and	degeneration	 in	aging58.	The	

term	‘‘disseminated	neurogenic	atrophy’’	was	coined	to	describe	the	progressive	

accumulation	 and	 clustering	 of	 small	 angulated	 fibers	 with	 aging;	 this	

phenomenon	 is	 associated	 with	 progressive	 loss	 of	 alpha	 motoneurons59.	

Electrophysiologic	studies	have	confirmed	that	there	is	a	decrease	in	the	number	

Figure	2	BMP	pathway	
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of	motor	units	with	a	concomitant	 increase	 in	their	size	with	age.	These	results	

suggest	 that	 some	 reinnervation	 events	 follow	 muscle	 fiber	 denervation60.	

Further	 evidence	 supporting	 the	 occurrence	 of	 rounds	 of	 denervation	 and	

reinnervation	 includes	 the	 increased	 clustering	 of	myofiber	 types	 in	 the	motor	

units	 of	 rodents	 and	 other	 mammals	 as	 they	 age61.	 In	 adult	 humans,	 the	

incomplete	 reinnervation	of	 fibers	by	 surviving	motor	neurons,	may	 contribute	

to	 loss	 of	 muscle	 strength	 and	 mass	 as	 people	 grow	 older62.	 These	

rearrangement	processes	are	generally	accompanied	by	a	progressive	increase	in	

the	 proportion	 of	 slow	muscle	 fibers,	 although	 there	 is	 some	 evidence	 to	 the	

contrary63.	 Some	 of	 the	 discrepancies	 have	 been	 dispelled	 by	 comparisons	 of	

muscle	from	normally	active	and	immobile	older	patients	that	show	that	muscle	

wasting	 in	 ‘‘normally	 active’’	 seniors	 is	 accompanied	 by	 a	 shift	 toward	 a	 slow-

twitch	 phenotype,	 whereas	 inactive	 seniors	 demonstrates	 a	 shift	 toward	 fast-

twitch	 isoform	 expression.	 This	 latter	 case	 is	 common	 in	 ‘‘unloaded’’	 muscle	

undergoing	 atrophy,	 for	 example,	 during	 limb	 suspension,	 immobilization,	

paralysis,	 and	 spaceflight64.	 To	 complicate	 the	 situation	 further,	 conflicting	

results	 regarding	 fast	 to	 slow	 myosin	 transition	 arise	 in	 endurance	 training	

studies	 using	 animal	 models	 and	 in	 clinical	 trials	 of	 humans	 involving	 either	

voluntary	 exercise	 or	 electrical	 stimulation	 both	 directly	 to	 denervated	muscle	

and	 indirectly	 to	muscle	 through	nerve	stimulation65,66.	 Furthermore,	 increased	

exercise	that	is	sustained	for	decades	protects	against	age-related	loss	of	motor	

units	 and,	 thereby,	 of	 lean	 muscle	 mass67.	 However,	 the	 degree	 to	 which	

denervation	causes	loss	of	myofibers	is	an	open	question	because	reinnervation	

events	may	compensate	for	motor	neuron	loss	during	aging	as	well	as	with	spinal	

cord	injury	and/or	axonal	abnormalities	of	peripheral	nerves.	Whether	the	aging-

related	 shifts	 are	 under	 neural	 control	 or	 the	 result	 of	 the	 direct	 influence	 of	

use/disuse	on	myogenic	processes	 remains	 to	be	clarified.	Histologic	 studies	of	

skeletal	 muscle	 have	 shown	 that	 denervation	 is	 among	 the	 numerous	

mechanisms	that	contribute	to	tissue	atrophy	and	degeneration	in	aging.	
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chapter	2	

	

METHODS	
	

2.1	STUDY	DESIGN	AND	SELECTION	OF	
PATIENTS	
	

This	 is	a	spontaneous	pathophysiological	and	observational	single	center	

study,	on	hospitalized	patients	with	esophageal,	colorectal	and	pancreatic	cancer	

and	control	patients.	The	study	enrolls	patients	with	colorectal,	esophago-gastric	

and	pancreatic	cancer	surgically	treated	at	3rd	Surgical	Clinic	of	Padua	University	

Hospital.		

All	 patients	 join	 the	 project	 according	 to	 the	 guidelines	 of	 the	

"Declaration	of	Helsinki"	and	the	research	project	has	been	approved	by	Ethical	

Committee	for	Clinical	Experimentation	of	Provincia	di	Padova	(protocol	number	

3674/AO/15).		

The	patients	has	been	divided	into	cachectic	and	non-cachectic	according	

to	the	definition	of	Fearon	et	al.68	.:	unintentional	weight	loss	of	greater	than	5%	

of	the	weight	over	a	period	of	6	months	or	a	weight	loss	of>	2%	in	the	case	of	a	

patient	with	 BMI	 <20	 or	 with	 a	 diagnosis	 of	 sarcopenia.	 For	 each	 patient,	 the	

nutritional	 status	 is	 detected	 by	 calculating	 BMI,	 weight	 loss,	 food	 intake	

assessment,	 the	 dosage	 of	 inflammatory	 markers	 and	 biohumoral	 markers	 of	

protein	 turnover.	 For	 each	 patient	 it	 will	 also	 be	 recorded	 the	 administered	

cytoreductive	therapy	and	home	therapy.	
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The	 project	 includes	 the	 collection	 of	 a	 blood	 sample	 and	 one	 muscle	

biopsies	 (rectus	 abdominis).	 Blood	 and	 muscle	 tissue	 sampling	 is	 taken	

simultaneously	at	surgery.	

All	patients	will	 then	be	 inserted	 in	a	clinical	and	 instrumental	follow-up	

program	 of	 at	 least	 60	 months	 with	 recording	 data	 related	 to	 disease-free	

survival,	overall	survival	and	response	to	therapy.	

The	inclusion	and	exclusion	criteria	are	listed	in	tables	below:		

	

Table	1	Selection	criteria	
SELECTION	CRITERIA	

-	Males	and	female	gender,	older	than	18	year,	who	have	given	their	informed	

consent	to	the	study	

-	 Patients	 with	 esophageal,	 colorectal	 or	 pancreatic	 cancer	 at	 any	 stage	

according	to	TNM	classification	7th		

-	 -	 Patients	 undergoing	 exploratory	 surgery	 or	 resective	 surgery	 via	 midline	

laparotomy	or	thoracotomy	

-	The	control	subjects	were	patients	of	both	genders,	almost	aged	18,	suffering	

from	non-neoplastic	and	non-inflammatory	diseases	candidates	 for	surgery	by	

median	laparotomy	or	thoracotomy	

	

	

Table	2	Exclusion	criteria	
EXCLUSION	CRITERIA	

-	Patients	younger	than	18	years	

-	 Patients	 with	 pancreatic,	 esophageal	 or	 colorectal	 cancer	 who	 are	 not	

candidates	for	surgery	(e.g.	High	anesthetic	risk)	

-	Patients	affected	by	chronic	inflammatory	diseases	or	myopathies	

-	Patients	affected	by	hemorrhagic	diathesis	and	coagulation	disorders	

-	Patients	affected	by	severe	cardiovascular	diseases	or	diabetes	
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The	 study	 also	 enrolls	 control	 healthy	 donors	 undergoing	 elective	

laparotomy	for	non-neoplastic	and	non-inflammatory	diseases,	matched	by	age	

and	gender	to	the	cancer	patients.		

	

 

2.2	EXECUTION	OF	MUSCLE	BIOPSIES	
AND	SAMPLE	CONSERVATION	

	

The	biopsies	were	performed	during	elective	surgery	by	cold	section	of	a	

rectus	abdominal	 fragment	of	about	1x0.5	cm.	Each	fragment	was	 immediately	

split	in	two	pieces.		One	was	immediately	frozen	and	conserved	in	liquid	nitrogen	

for	 biochemical	 and	 molecular	 and	 gene	 expression	 analysis,	 the	 other	 was	

frozen	 in	 isopentane	 cooled	 in	 liquid	 nitrogen	 and	 stored	 at	 -80C	 until	 use	 for	

morphological	and	histological	analyses.		

 

2.3	EVALUATION	OF	ATROGENES	
EXPRESSION	
	

2.2.1	GENE	EXPRESSION	ANALYSIS	

Total	 RNA	 was	 prepared	 from	 skeletal	 muscles	 using	 Promega	 SV	 Total	 RNA	

Isolation	 kit.	 Complementary	 DNA	 generated	 with	 Invitrogen	 SuperScript	 III	

Reverse	Transcriptase	was	analyzed	by	quantitative	real-time	RT-PCR	using	SYBR	

Green		chemistry	(Applied	Biosystems).	The	internal	gene	reference	used	in	our	

real	time	PCR	was	alpha1	skeletal	muscle	actin,	whose	abundance	did	not	change	

under	the	experimental	conditions.	

	

	



 

26 
 

	 A	 relative	 quantification	method	was	 used	 to	 evaluate	 the	 differences	 in	

gene	expression,	as	described	by	Pfaffl	(Pfaffl,	2001).		

Gene-specific	 primer	 pairs	 were	 selected	 with	 Primer3	 software	

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi);	 sequences	 of	

distinct	exons	were	chosen	to	avoid	amplifying	contaminant	genomic	DNA.	

	

	
	

2.4	EVALUATION	OF	BMP	PATHWAY	
ACTIVATION		
	

Western	blot	
A	small	piece	of	muscle	for	every	biopsies	was	powdered	by	tissue	lyser	in	

100	µl	of	the	following	lysis	buffer:	
	

• 50	mM	Tris,	pH	7.5		

• 150	mM	NaCl		

• 5	mM	MgCl2		

• 1	mM	DTT		

• 10%	Glycerol	(Sigma	-	Aldrich)	

• 1	%	Triton	(Sigma	-	Aldrich)	

• 1%	SDS	

• 1x	Complete	Protease	Inhibitor	Cocktail	(Roche)		

• 1	mM	PMSF	(Phenylmethanesulfonyl	fluoride)	

• 1	mM	Na3VO4	

• 5	mM	NaF	

• 3	mM	beta-glycerophosphate	

	
Then	 the	 solution	 was	 incubated	 at	 1200	 rpm	 for	 10	 min	 at	 +70°C.	 After	

centrifugation	 at	 13,000	 rpm	 for	 10	 min	 at	 +4°C,	 we	 measured	 the	 protein	

concentration	of	 the	surnatant	using	BCA™	Protein	Assay	kit	 (PIERCE)	 following	
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the	manufacture	protocol.	50	ug	of	the	extracted	proteins	from	rectus	abdominis	

patients	muscle	were	solubilized	in	20	µl	of	LDS	Sample	Buffer	1X	(NuPAGE®	Life	

Techologies)	 and	 50mM	 DTT.	 The	 samples	 were	 denaturated	 at	 95°C	 for	 5	

minutes	 at	 1250	 rpm	 and	 loaded	 on	 SDS	 4-12	 %	 precast	 polyacrylamide	 gels	

(NuPAGE®	 Novex-Bis-Tris	 gels)	 (Invitrogen).	 The	 electrophoresis	 was	 run	 in	 1x	

MOPS	Running	buffer	(Invitrogen)	for	1hour	and	30	minutes	at	150	V	constant	at	

r.t.	

	

	 After	electrophoretic	run,	proteins	were	transferred	from	gels	to	

nitrocellulose	membranes.	The	transfer	was	obtained	by	applying	a	current	of	

400mA	for	1	hour	and	30	minutes	at	+4°C.	The following primary antibodies were 

used: 

	 Anti	 phospho-Smad1	 (Ser463/465)/	 Smad5	 (Ser463/465)/	 Smad9	

(Ser465/467)	 (D5B10)	 Rabbit	 mAb	#13820	 by	 Cell	 Signaling	 Technology,	 anti	

phospho-Smad3	(Ser423	+	Ser425)	Rabbit	mAb	[EP823Y]	(ab52903)	by	Epitomics	

and	anti	GAPDH	mouse	monoclonal	(ab8245)	by	Abcam.	

	 Immunoreaction	 was	 revealed	 by	 enhanced	 chemiluminescent	 method	

(SuperSignal®	 West	 Pico	 Chemiluminescent	 Substrate,	 Pierce).	 Blots	 were	

stripped	using	RestoreTM	Western	Blot	Stripping	Buffer		(Pierce)	for	10	minutes	at	

r.t.	and	reprobed	if	necessary.	

	

2.5	MORPHOLOGICAL	AND	IMMUNO-
HISTOCHEMICAL	ANALYSIS		
	

Serial	 cross-sections	 (8	um	 thickness)	 from	 frozen	muscle	biopsies	were	

mounted	 on	 polysine	 glass	 slides,	 air-dried	 and	 used	 for	 further	 analyses.	 For	

morphometric	analysis,	the	mean	muscle	fiber	diameter	was	evaluated	 in	H&E-

stained	cross-sections	in	accordance	to	Refs.8	and	9	using	Scion	Image	software	

for	 Windows,	 version	 Beta	 4.	 0.2	 (2000,	 Scion	 Corporation,	 Inc.;	

http://www.scioncorp.com).	 Slides	 images	 were	 acquired	 using	 a	 Zeiss	

microscope	connected	to	a	Leica	DC	300F	camera	at	low	magnification;	identical	
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conditions	were	used	to	acquire	reference	ruler	images.	On	the	acquired	images,	

nuclei	 were	 counted	 and	 categorized	 as	 located	 inside	 or	 outside	 the	 muscle	

fiber,	within	the	extracellular	matrix.		

To	 give	 an	 expression	 of	 the	 number	 of	 very	 small	 fibers,	 the	 atrophy	

factor	was	calculated	in	muscle	biopsies	as	described	by	Dubowitz	(1985).	To	put	

the	 results	 in	 a	 proportional	 basis,	 the	 total	 number	 of	 fibers	 having	 diameter	

between	40	and	30	um,	30	and	20	um,	20	and	10	um,	and	less	than	10	um	was	

counted	and	multiplied	by	one,	two,	three,	and	four,	respectively.	The	products	

were	 then	 added	 together	 and	 normalized	 to	 the	 total	 number	 of	 analyzed	

myofibers.	

To	evaluate	muscle	fiber	type	distribution,	conventional	techniques	were	

used	to	stain	serial	cross-sections	for	myofibrillar	ATPases	as	described69.	Slow-

twitch	muscle	fibers	are	visualized	as	dark	after	pre-incubation	at	pH	4.	35,	while	

light	fibers	are	of	fast	type.		

For	 immunofluorescence	analyses,	unfixed	muscle	sections	were	 labeled	

for	1	hour	at	room	temperature	using	rabbit	polyclonal	antibody	directed	against	

neural	cell	adhesion	molecule	(N-CAM)	(Chemicon,	Millipore,	Milan,	Italy),	1:200	

diluted	in	phosphatebuffered	saline	(PBS)	as	described9	.	Sections	were	rinsed	3	

X	 5	minutes	 in	 PBS,	 and	 then	 incubated	 for	 1	 hour	 at	 room	 temperature	with	

Cy3-labeled	conjugates	directed	against	rabbit	IgG	(SigmaAldrich)	1	:	200	diluted	

in	 10%	 goat	 serum/	 PBS.	 Negative	 controls	 were	 performed	 by	 omitting	 the	

primary	antibodies	on	samples. Coverslips	were	mounted	onto	glass	slides	using	

ProLong	 Gold	 anti-fade	 reagent	 with	 DAPI	 to	 counterstain	 nuclei	 (Life	

Technologies)	 and	 observed	 under	 the	 fluorescent	 microscope.	 Images	 were	

acquired	as	described	above,	and	the	number	of	N-CAM-positive	myofibers	were	

counted	and	expressed	as	 the	percentage	of	 positive	myofibers	 relative	 to	 the	

total	number	of	fibers	within	the	analyzed	section.	
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2.6	DATA	COLLECTION	AND	STATISTICAL	
ANALYSIS	

	

The	 statistical	 significance	 of	 data	 collected	 was	 determined	 using	 a	

Student’s	t	test	(Microcal		Origin_	6.0;	Microcal	Software,	Inc.)	and	a	chi-squared	

test	(Microsoft_	Office	Excel_	2007;	Microsoft	Corporation).	Statistical	analysis	of	

morphometric	 datasets	 was	 performed	 with	 GraphPad	 Prism	 v5.0	 software;	

statistical	 significance	 of	 average	 numbers	 was	 determined	 using	 Wilcoxon	

matched	pairs	test.	Values	of	P	<	0.05	were	considered	significant.		

Statistical	 analysis	 of	 densitometric	 and	 gene	 expression	 datasets	 was	

performed	with	GraphPad	Prism	v6.0	software.	Data	were	analyzed	by	two-tailed	

Student’s	 t	 test	 or	 one-way	 ANOVA	 and	were	 applied	 upon	 verification	 of	 the	

test	assumptions.	For	all	graphs,	data	are	represented	as	mean	+-	SD.	
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chapter	3	
	

RESULTS	
	
3.1	STUDY	POPULATION	
 

From	 December	 2014	 to	 2016	 we	 collected	 rectus	 abdominis	 muscle	

biopsies	from	93	patients	suffering	from	gastro-enteric	neoplasms,	treated	at	3rd	

Surgical	 clinic	 of	 University	 of	 Padua.	 They	 underwent	 median	 laparotomy	

surgery.	 In	 the	same	period	we	collected	biopsies	 from	11	control	 subjects	who	

underwent	laparotomy	for	non-neoplastic	and	non-inflammatory	diseases.	

The	 average	 age	 of	 patients	was	 67.8	 years,	 56	 (60.2	%)	 of	 theme	were	

men	and	37	(39.8	%)	were	women.	The	average	age	of	control	subjects	was	67.4	

years.	

Twenty-five	(26.9	%)	of	them	were	affected	by	colorectal	cancer,	34	(36.6	

%)	of	 them	by	pancreatic	cancer,	27	of	 them	were	affected	by	esophago-gastric	

cancer	(29.03	%)	and	7	(7.5	%)	by	other	cancer	type.	

	

Table	3	Study	population	–	demographic	features		

CANCER	PATIENTS	(tot	93)	
	

	
n	 %	

	Colo-rectal	 25	 26,9	
	Pancreatic	 34	 36,6	
	Esophago-gastric	 27	 29	
	Other	 7	 7,5	
		 	 	 	MALE	 56	 60,2	
	FEMALE	 37	 39,7	
		 	 	 	

AGE	(mean)	 67,8	
	 		

	 Mean	BMI	was	24.1	kg/m2	(15.2	–	32.1)	and	16	patients	has	a	BMI	lower	

than	20.	The	average	loss	of	weight	in	the	6	months	before	observation	was	6.5	
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%.	Thirty-two	patients	(34.4	%)	didn’t	lose	weight	during	observation.	According	

to	Fearon	definition	of	cancer	cachexia,	39	patients	 (41,9%)	were	cachectic,	38	

patients	 (40,9%)	were	non-cachectic.	Twenty-five	percent	of	colorectal	patients	

were	 cachectic,	 versus	 58,8%	 of	 pancreatic	 cancer	 patients	 and	 60%	 of	 other	

cancer	type	patients	(p	n.s.).	

At	 the	beginning	of	 the	study	we	performed	comprehensive	preliminary	

analysis	 of	 all	 patients,	 however,	 we	 immediately	 found,	 among	 patients	 with	

gastric	and	esophageal	cancer,	a	high	variability	and	heterogeneity	in	the	results	

obtained	possibly	due	to	the	presence	of	severe	dysphagia	and	the	presence	of	

nutritional	 support,	 as	 like	 as	naso-gastric	 tube.	We	have	 therefore	decided	 to	

consider	the	data	of	these	patients	as	a	possible	source	of	BIAS	for	the	study	and	

therefore	 to	 exclude	 them	 from	 the	 study	 including	 in	 the	 final	 data	 analysis,	

only	 colorectal	 and	 pancreatic	 cancer	 patients,	 (59	 patients	 overall)	 two	

malignancies	 in	 which	 cachexia	 reaches	 80%	 incidence.	 The	 analysis	 of	 all	

biopsies	 collected	 is	 still	 in	 progress	 and	 the	 results	 obtained	 by	 the	 samples	

analyzed	so	far	are	shown.	

	

3.2	BMP	PATHWAY	ACTIVATION	
ANALYSIS	
 

	

Since	 inhibition	 or	 reduction	 of	 BMP	 signaling	 in	 mice	 induces	 an	

exacerbated	muscle	loss	that	mimics	cachexia,	in	the	first	phase	of	the	study	we	

monitored	the	status	of	activation	of	BMP	pathway	in	muscles	of	cancer	patients	

by	 examining	 the	 phosphorylation	 levels	 of	 Smad1/5/8,	 the	 downstream	

effectors	 of	 BMP.	 	 Very	 preliminary	 results	 indicate	 that	 the	 BMP	 pathway	 is	

downregulated	 in	muscles	of	 cachectic	patients	 compared	 to	age-matched	non	

cachectic	ones	in	both	colorectal	and	pancreatic	patients.	

The	suppression	of	BMP	pathway	 is	 in	 line	with	the	hypothesis	 that	 this	

pathway	 is	 required	 to	 prevent	 excessive	muscle	 loss	 and	 to	maintain	muscle	

mass.	
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On	 the	 contrary,	 we	 didn’t	 find	 any	 significant	 changes	 of	 pSmad3	

(downstream	effector	of	Myostatin/TGFb	pathway)	levels	between	cachectic	and	

non-cachectic	patients.	
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Figure	 3	 Activation	 of	 BMP	 pathway	 in	 colorectal	 and	 pancreatic	 cancer	 patients	
Densitometric	quantification	(above)	and	western	blot	(below)	of	phoshorylation	levels	of	
Smad1/5/8	(BMP’s	downstream	targets)	in	rectus	abdominis	muscle	of	non-cachectic	(NC)	
and	cachectic	(C)	cancer	patients	(very	preliminary	results).		

Figure	4	Activation	of	Myostatin/TGFb		pathway	in		colorectal	and	pancreatic	cancer	patients.	Densitrometric	
quantification	(above)	and	western	blot	(below)	of	phoshorylation	levels	of	Smad	3(Myostatin/TGFb	
downstream	targets)	in	rectus	abdominis	muscle	of	non-cachectic	(NC)	and	cachectic	(C)	cancer	patients	(very	
preliminary	results).	
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We	 need	 to	 stress	 the	 fact	 that	 these	 are	 very	 preliminary	 results,	 we	

need	 to	 increase	 both	 the	 number	 of	 cancer	 patients	 and	 of	 control	 patients	

analyzed	 in	Western	Blot	analysis.	We	had	 little	material	 from	control	patients,	

that	we	used	for	real	time	PCR	only	and	we	are	collecting	other	control	patients’	

byopsies.	

 

3.3	NOGGIN	AND	ATROGENES	
EXPRESSION	
	

To	 explain	 why	 Smad1/5/8	 are	 inhibited	 we	 monitored	 the	 expression	

levels	 of	 Noggin,	 a	 well-known	 inhibitor	 of	 BMP	 pathway.	 Noggin	 is	 an	

extracellular	antagonist	of	BMP	ligands	preventing	their	binding	to	the	receptors.	

The	expression	of	Noggin	was	highly	 increased	 in	muscles	of	cachectic	patients	

compared	 to	 non-cachectic	 and	 control	 ones	 thus	 potentially	 explaining	 why	

BMP	pathway	is	blocked	during	cancer	progression.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Interestingly,	 there	 is	 a	 significant	 positive	 correlation	 between	 the	

expression	of	Noggin	in	muscle	tissue	and	the	percentage	of	body	weight	loss	in	

the	patients	analyzed.	

Figure	7	Real	time	PCR	analysis	of	Noggin	expression	levels	in	rectus	abdominis	muscles	of	
healthy	control	individuals,	non-cachectic	(NC)	and	cachectic	(C)	colorectal	and	pancreatic	
cancer	patients.	n=7,	20	and	17	respectively,	**p<0.01	
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Since	 we	 have	 shown	 that	 the	 BMP	 pathway	 negatively	 regulates	 the	

expression	of	a	novel	ubiquitin	 ligase	(MUSA1),	we	tested	whether	MUSA1	was	

also	 induced	 in	 cancer	 cachexia	 and	 we	 compared	 its	 expression	 with	 the	

expression	 of	 the	 well-known	 atrophy-related	 muscle-specific	 ubiquitin	 ligases	

atrogin1	and	MuRF1.	While	we	could	not	detect	any	significant	difference	in	the	

expression	of	atrogin1,	both	MuRF1	and	MUSA1	were	significantly	up-regulated	

in	 the	 muscles	 of	 cachectic	 patients	 compared	 to	 non-cachectic	 ones	 and	 to	

control	subjects.		

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	9	Atrogin-1	expression	revealed	by	qRT-PCR	in	muscles	of	helathy	control	subjects,	non	
cachectic	(NC)	and	cachectic	(C)	colorectal	and	pancreatic	cancer	patients.	n=7,	20	and	17	
respectively.	

Figure	8	Noggin	expression	and	percentage	of	body	weight	loss	correlation	
study.	
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These	 results	 have	 statistically	 significance	 especially	 in	 the	 case	 of	

MUSA1,	whose	up-regulation	is	in	line	with	the	observation	that	BMP	pathway	is	

inhibited	 during	 cancer	 progression.	 Moreover,	 the	 analysis	 of	 correlation	

between	 the	 percentage	 of	 body	 weight	 loss	 and	 the	 atrogenes	 expression	

demonstrates	a	significant	positive	correlation	between	the	expression	levels	of	

MUSA-1	and	the	percentage	of	body	weight	loss.	On	the	contrary,	no	significant	

correlation	 was	 found	 between	 the	 percentage	 of	 body	 weight	 loss	 and	 the	

expression	of	the	other	examined	atrogenes,	namely	Atrogin1	and	MuRF1.	

	

	

Figure	10	MuRF-1	expression	revealed	by	qRT-PCR	in	muscles	of	helathy	control	subjects,	
non	cachectic	(NC)	and	cachectic	(C)	colorectal	and	pancreatic	cancer	patients.	n=7,	20	and	
17	respectively.	*p<0.05	

Figure	11	MUSA-1	expression	revealed	by	qRT-PCR	in	muscles	of	helathy	control	subjects,	
non	cachectic	(NC)	and	cachectic	(C)	colorectal	and	pancreatic	cancer	patients.	n=7,	20	and	
17	respectively.	*p<0.05,	**p<0.01	
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Interestingly,	there	is	also	a	significant	positive	correlation	between	

Noggin	and	MUSA1	expression	in	the	muscles	of	the	patients	analyzed.	

	

Figure	12 MUSA-1	expression	and	%	of	body	
weight	loss	correlation	

Figure	13	MuRF-1	expression	and	%	of	body	
weight		loss	correlation	

Figure	14	MuRF-1	expression	and	%	of	body	
weight		loss	correlation	
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3.4	MORPHOMETRIC	 AND	 IMMUNO-
HISTOCHEMICAL	ANALYSIS	

 
	

Histological	 analyses	 of	 muscle	 biopsies	 from	 cancer	 patients	 showed	

numerous	severely	atrophic,	flat	shaped	and	angulated	fibers,	as	typical	signs	of	

denervation.	These	morphological	aspects	were	only	seldom	detected	in	muscle	

biopsies	 from	 control	 subjects,	 indicating	 that	 denervation	 events	 were	 less	

frequent.	

	

	

	

	

	

	

	

	

	

	

	

Figure	16		H&E	stainig	of	muscle	biopsy	in	
control	subjects	

Figure	15 Correlation	between	Noggin	and	MUSA1	
expression		
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The	calculation	of	the	mean	myofiber	diameter	showed	a	general	shift	to	

smaller	 values	 in	 muscle	 biopsies	 from	 cancer	 patients	 in	 comparison	 to	 age	

matched	controls,	as	indicated	by	the	myofiber	diameter	distribution	reported	in	

the	 graph	 here	 below.	 This	 shift	 is	 particularly	 evident	 in	 cachectic	 patients	 as	

revealed	 by	 the	 atrophy	 index.	 Cachectic	 patients	 are	 characterized	 by	 higher	

atrophy	index	compared	to	non-cachectic	and	age	matched	control	subjects. 

	

	

	

	

	

	

	

	

	

	

	

	

 

Figure	17	H&E	staining	in	muscles	of	cancer	patients	reveals	the	presence	of		flat	shaped,	
angulated	and	severely	atrophic	myofibers	as	indicated	by	arrows.	
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Figure	18	Frequency	histograms	showing	the	distribution	of	myofiber	diameter	in	control,	non	
cachectic	(NC)	and	cachectic	(C)	cancer	patients.	The	respective	atrophy	index	values	are	also	
reported.	
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In	cancer	patients	the	mean	myofiber	diameter	was	significantly	smaller	

in	 comparison	 to	 control	 subjects	 and	 cachectic	 patients	 had	 the	 smallest	

myofiber	diameters	when	compared	to	non-cachectic	ones.	

	

	

	

	

	

	

	

Histochemical	analyses	testing	for	the	activity	of	the	myofibrillar	ATPase	

revealed	 numerous	 fiber	 type	 grouping	 identified	 on	 the	 basis	 that	 at	 least	 1	

muscle	 fiber	 is	 completely	 surrounded	by	 fibers	of	 the	 same	phenotype.	 Fiber-

type	 groupings	 are	 typical	 hallmark	 of	 denervation/reinnervation	 events	 of	

surviving	muscle	fibers	by	the	neighbours	motor	neurons.		

The	 ATPase	 histochemistry	 here	 below	 show	 the	 slow	 type	 fibers	 dark	

stained:	 slow	 type	groupings	were	predominantly	detected	 in	muscles	biopsies	

from	cancer	patients	in	comparison	to	control	subjects.	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	19	Mean	myofiber	diameter	evaluation.	

Figure	20	ATPase	staining	revealed	the	presence	of	slow	fiber	type	grouping	in	
muscles	of	cancer	patients.	

control						non-cachectic		cachectic	
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To	confirm	the	presence	of	denervated	myofibers,	we	then	checked	the	

expression	of	specific	marker	of	denervation.	The	neural	cell	adhesion	molecule	

(N-CAM)	 is	 normally	 enriched	 in	 the	 post-synaptic	 membranes	 of	 the	

neuromuscular	junction,	but	it	is	largely	absent	in	adult	myofibers.	However,	N-

CAM	is	re-expressed	along	the	entire	muscle	fiber	after	the	 loss	of	 innervation,	

thus	denervated	fibers	express	N-CAM	along	the	sarcolemma	and/or	 inside	the	

sarcoplasmImmunofluorescence	 analyses	 revealed	 the	 presence	 of	 several	 N-

CAM	positive	fibers,	particularly	in	the	muscle	of	cancer	patients.	

The	 percentage	 of	 N-CAM	 expressing	 myofibers	 was	 significantly	

increased	 in	 muscles	 biopsies	 of	 cachectic	 patients	 in	 comparison	 to	 non-

cachectic	and	age	matched	control	ones	as	shown	in	the	images	and	charts	here	

below.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

CANCER	PATIENTS	

CONTROL	PATIENTS	

Figure	21	Immunofluorescence	observatios	of	NCAM	positive	fibers	in	muscle	of	control	anc	
cancer	patients	
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We	also	checked	by	real	 time	PCR	the	expression	 in	 the	muscles	of	 two	

other	marker	of	denervation	 (MuSK	and	AchRg).	Even	 if	 the	result	presented	 is	

still	not	statistically	significant	due	to	the	high	heterogeneity	of	values	obtained,	

there	is	an	interesting	trend	toward	higher	levels	of	expression	of	both	markers	

in	the	muscles	of	cancer	patients	compared	to	control	subjects.	

The	 Increase	 of	 AChRg	 and	 MuSK	 transcripts	 suggests	 an	 ongoing	

degeneration	of	the	neuromuscular	junction	in	the	muscles	of	cancer	patients.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Control:	healthy	patients	
NC:	non	cachectic	cancer	patients	
C:	cachectic	cancer	patients	

Figure	 22	Percentage	of	NCAM	positive	 fibers	 (below)	 in	muscle	 of	 control,	non-cachectic	
and	cachectic	patientes.	

Figure	23	Expression	levels	of	AchR	and	Musk	

control											non-cachectic						cachectic	



 

43 
 

The	results	collected	till	now	may	suggest	that	denervation	contributes	to	

myofiber	 atrophy	 in	 cancer	 cachexia.	 This	 is	 completely	 new	 pathogenetic	

mechanism	 underlying	 muscle	 atrophy	 during	 cancer	 progression	 that	 we	 are	

analyzing	 in	more	detail.	 To	do	 that,	we	are	 increasing	 the	number	of	patients	

analyzed	 for	 markers	 of	 denervation	 (MuSK	 and	 AchRg)	 and	 we	 are	 analyzing	

other	 transcriptional	 markers	 of	 denervation	 (myogenin,	 NCAM,	 Runx1)	 and	

circulating	 markers	 of	 denervation	 (CAF).	 We	 should	 also	 carry	 on	 studies	 on	

functional	parameters	as	strength	tests	and	electromyography.	

	





  

	
	

chapter	4	
	

DISCUSSION	
	
	
	
	

Cancer	 cachexia	 affects	 80%	 of	 cancer	 patients.	 It	 is	 an	 independent	

prognostic	 factor	 and	 it’s	 directly	 responsible	 for	 death	 in	 20-30%	 of	 cancer	

patients.	 Clinical	 and	 animal	 studies	 using	 mice	 models	 of	 cancer	 cachexia	

demonstrated	that	reverting	the	muscle	mass	 loss	phenotype	increase	life-span	

in	mice	models	and	 improve	outcome	 in	terms	of	prognosis	of	cancer	patients,	

independently	from	tumor	growth.	

Muscle	 loss	 is	 mainly	 consequent	 to	 hyper-activation	 of	 protein	

breakdown	and/or	inhibition	of	protein	synthesis.	Therefore,	to	prevent	cachexia	

scientists	are	developing	drugs	 that	promote	protein	synthesis	or	block	protein	

degradation.	Proteolysis	in	muscle	is	controlled	by	the	ubiquitin	proteasome	and	

autophagy	 lysosome	 systems.	 Enhancement	 of	 protein	 breakdown	 requires	 a	

transcriptional	 dependent	 program	 that	 induces	 the	 expression	 of	 a	 subset	 of	

genes,	 the	 atrophy-related	 genes	 that	 encode	 rate	 limiting	 enzymes	 of	 the	

degradation	systems.	Few	pathways	have	been	found	to	simultaneously	regulate	

atrophy	program	and	protein	synthesis.	Among	these,	Myostatin/TGFb	signaling	

is	emerging	as	a	critical	pathway	and	therefore,	 is	a	promising	pharmacological	

target	of	cachexia.	Indeed,	inhibition	of	myostatin	dramatically	prolongs	survival,	
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even	 of	 animals	 in	 which	 tumor	 growth	 is	 not	 inhibited	 and	 fat	 loss	 and	

production	of	proinflammatory	cytokines	are	not	reduced70.	However,	myostatin	

inhibitors	display	important	side	effects	when	tested	in	humans71.	Therefore,	it	is	

mandatory	to	search	for	more	specific	targets	of	TGFb	superfamily.	

Sartori	et	al.	has	cleared	 that	 the	BMP	pathway	has	a	 fundamental	 role	

limiting	 protein	 degradation	 in	 mice	 models	 of	 muscle	 atrophy	 through	 the	

inhibition	of	the	synthesis	of	a	newly	detected	E3	ubiquitin	ligase,	MUSA-1,	and	

that	 its	 inhibition	 is	 a	 necessary	 condition	 for	 the	 onset	 of	 muscle	 atrophy,	

regardless	 of	 the	 state	 of	 activation	 of	 myostatin	 pathway.	 Inhibition	 of	 BMP	

pathway	 induces	 an	 excessive	 muscle	 loss	 and	 tremendous	 weakness	 during	

catabolic	 conditions	 such	 as	 absence	 of	 nutrients	 or	 denervation,	well	 copying	

the	cachexia	phenotype.	

The	 preliminary	 results	 of	 our	 study	 confirm	 that	 BMP	 pathway	 is	

downregulated	 in	 muscles	 of	 cachectic	 cancer	 patients	 compared	 to	 non-

cachectic	ones.	On	 the	contrary	we	didn’t	detect	any	difference	 in	 the	state	of	

activation	 of	 the	 myostatin/TGFb	 pathway.	 These	 observations	 support	 the	

hypothesis	that	a	decrease	of	BMP	signal	is	a	permissive	condition	for	the	onset	

of	muscle	 loss	 and	of	 cachexia	 syndrome	 in	 cancer	 patients.	Moreover,	 the	 E3	

ubiquitin	 ligases	MuRF1	and	MUSA1	are	significantly	upregulated	 in	muscles	of	

human	cachectic	patients	 compared	 to	age-matched	non	cachectic	and	control	

ones.	 To	explain	why	 Smad1/5/8	are	 inhibited	and,	 consistently,	MUSA1	 is	 up-

regulated,	we	monitored	the	expression	levels	of	Noggin,	a	well-known	inhibitor	

of	BMP	pathway.	We	found	that	the	expression	of	Noggin	was	highly	increased	in	

muscles	of	cachectic	patients	compared	to	non-cachectic	and	control	ones	thus	

potentially	 explaining	why	 BMP	pathway	 is	 blocked	 during	 cancer	 progression.	

Interestingly,	 there	 is	 positive	 correlation	 between	 the	 muscle	 expression	 of	

MUSA1	 (but	not	Atrogin1	and	MuRF1)	and	Noggin	and	the	percentage	of	body	

weight	loss	in	the	patients.	

Previous	 studies	 (Sartori	et	al)	demonstrated	 that	 the	overexpression	of	

Noggin	was	 sufficient	 to	 induce	muscle	 atrophy	 and	 to	 exacerbate	muscle	 loss	

during	denervation.	
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Numerous	 myofibers	 with	 typical	 features	 of	 denervation	 were	

predominantly	 detected	 in	 skeletal	 muscle	 biopsies	 from	 (either	 cachectic	 or	

non-cachectic)	toghether	with	a	higher	prevalence	of	N-CAM	positive	myofibers	

(i.e.	 denervated	 myofibers)	 and	 several	 fiber	 type	 grouping	 (i.e.	 features	 of	

denervation/reinnervation	events).		

Moreover,	 cancer	 patients,	 in	 particular	 cachetic	 ones,	 showed	

the		smallest	myofiber	diameter	and	the	highest	atrophy	index	when	compared	

to	 non-cachetic	 and	 control	 subjects,	 indicating	 that	 muscle	 atrophy	 was	 a	

predominant	feature	in	cachetic	patients.	

These	 results	 suggest	 that	 denervation	 may	 contribute	 to	 myofiber	

atrophy	 in	 cancer	 cachexia.	 To	 better	 clarify	 this	 point	 we	 also	 checked	 the	

expression	in	the	muscles	of	two	other	marker	of	denervation	(MuSK	and	AchRg)	

and,	 even	 if	 the	 result	 presented	 is	 still	 not	 statistically	 significant,	 there	 is	 an	

interesting	 trend	 toward	 higher	 levels	 of	 expression	 of	 both	 markers	 in	 the	

muscles	of	cancer	patients	compared	to	control	subjects	suggesting	an	ongoing	

degeneration	of	 the	neuromuscular	 junction	 in	 the	muscles	of	 cancer	patients.	

This	 result	 is	 the	 more	 interesting	 because	 so	 far	 no	 one	 has	 identified	

denervation	as	a	pathogenetic	mechanism	underlying	muscle	atrophy	 in	cancer	

patients.	 Serological	 testing	 for	 NMJ	 degeneration/denervation	 biomarkers	 in	

the	different	groups	of	patients	(control	and	cancer,	cachectic	and	non-cachectic,	

colorectal	 and	 pancreatic)	 are	 ongoing	 analyses	 that	 will	 further	 sustain	 this	

hypothesis.	

Moreover,	data	obtained	in	this	study	will	be	integrated	by	increasing	the	

number	of	patients	and	of	control	subjects	analyzed.	They	will	be	then	correlated	

with	 the	 clinical	 characteristics	 of	 the	 study	 population	 trying	 to	 figure	 out	 if	

there	 is	 a	 prognostic	 value	 associated	 with	 the	 activation	 of	 the	 different	

pathways	and	identify	if,	in	precachectic	cancer	patients,	the	activation	profile	of	

the	BMP	pathway	and	the	ubiquitin	ligase	is	different,	to	understand	what	is	the	

timing	 adjustment	 of	 BMP.	 The	 expression	 levels	 of	 different	 BMP	

ligands/receptors	will	be	evaluated	in	the	muscles	of	cancer	patients	at	different	

stages	of	cachexia.	
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The	 ultimate	 goal	 of	 this	 research	 project	 is	 the	 development	 of	 a	

therapeutic	 strategy	 aimed	 to	 counteract	 the	 occurrence	 and	 to	 limit	 the	

progression	of	muscle	atrophy	in	cancer	patients.	Preliminary	results	obtained	in	

preclinical	 studies	 (data	 not	 shown)	 demonstrated	 that	 the	 reactivation	 of	 the	

BMP	pathway	by	 the	overexpression	of	a	constitutive	active	 form	of	 the	 type	 I	

BMP	receptor	is	able	to	prevent	atrophy	in	tumor	bearing	mice.	However,	these	

results	do	not	discriminate	which	BMP	ligand	is	involved	in	this	beneficial	effects	

on	 muscle	 mass.	 The	 identification	 of	 the	 critical	 BMP	 or	 of	 the	 critical	

combination	 of	 BMPs	 would	 have	 important	 consequences	 in	 terms	 of	

therapeutic	 approach	 for	 cancer	 patients.	 For	 this	 reason	 we	 are	 screening	

different	 BMP	 ligand	 in	 order	 to	 determine	which	one	 is	 important	 to	 prevent	

muscle	 loss.	The	critical	one	will	be	systemically	administered	 in	 tumor	bearing	

animals	 and	 the	 effects	 on	 animal	 survival	 and	 cachexia	 syndrome	 will	 be	

monitored.	Preliminary	results	point	to	BMP7	as	a	very	interesting	candidate.	

Moreover,	we	are	developing,	in	collaboration	with	a	drug	designer	team,	

a	 peptide	 able	 to	 competitively	 inhibit	 the	 binding	 of	 Noggin	 with	 BMP7.	

Synthesizing	a	peptide	of	this	type,	however,	 is	technically	complex,	because	of	

chemical	instability	of	the	peptides	obtained,	and	it	is	economically	onerous.	For	

this	 reason,	 at	 the	 same	 time	we	are	 trying	 to	develop	a	monoclonal	 antibody	

against	Noggin.	
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chapter	5	

	

CONCLUSIONS	
	
	
	

	 The	 results	 obtained	 in	 this	 study	 will	 clarify	 the	 role	 played	 by	

Noggin/BMP/MUSA1	 axis	 in	 cancer-induced	 muscle	 loss	 and	 its	 potential	

implication	 as	 a	 therapeutic	 approach	 to	 counteract	 cachexia	 syndrome	 and	

improve	 survival.	 Moreover	 we	 have	 identified	 denervation	 as	 a	 new	

pathogenetic	 trait	underlying	muscle	atrophy	 in	 cancer	patients.	 The	 impact	of	

preventing	 cachexia	 is	 an	 important	 aspect	 for	 patient	 treatment	 and	 survival.	

Our	data	will	identify	BMPs	as	biomarkers	suitable	to	identify	patients	at	risk	to	

develop	 cachexia	 syndrome	 improving	 patient	management	 and	 the	 quality	 of	

life.		

 





  

BIBLIOGRAPHY	
 
                                                
1	Theologides,	A.	(1979).	Cancer	cachexia.	Cancer	43	(5,	Suppl),	2004–2012	
	
2	Monitto,	C.L.,	Berkowitz,	D.,	Lee,	K.M.,	Pin,	S.,	Li,	D.,	Breslow,	M.,	O’Malley,	B.,	and	Schiller,	M.	
(2001).	 Differential	 gene	 expression	 in	 a	 murine	 model	 of	 cancer	 cachexia.	 Am.	 J.	 Physiol.	
Endocrinol.	Metab.	281,	E289–E297.	
	
3	 Fearon	 K,	 Strasser	 F,	 Anker	 SD,	 Bosaeus	 I,	 Bruera	 E,	 Fainsinger	 RL,	 Jatoi	 A,	 Loprinzi	 C,	
MacDonald	N,	Mantovani	G,	Davis	M,	Muscaritoli	M,	Ottery	F,	Radbruch	L,	Ravasco	P,	Walsh	D,	
Wilcock	A,	Kaasa	S,	Baracos	VE.	Definition	and	classification	of	cancer	cachexia:	an	international	
consensus.	Lancet	Oncol.	2011	May;12(5):489-95.	doi:	10.1016/S1470-2045(10)70218-7.	Review.	
	
4	 Dewys	WD,	 Begg	 C,	 Lavin	 PT,	 Band	 PR,	 Bennett	 JM,	 Bertino	 JR,	 Cohen	MH,	 Douglass	 HO	 Jr,	
Engstrom	PF,	 Ezdinli	 EZ,	Horton	 J,	 Johnson	GJ,	Moertel	 CG,	Oken	MM,	Perlia	 C,	 Rosenbaum	C,	
Silverstein	 MN,	 Skeel	 RT,	 Sponzo	 RW,	 Tormey	 DC.	 Prognostic	 effect	 of	 weight	 loss	 prior	 to	
chemotherapy	in	cancer	patients.	Eastern	Cooperative	Oncology	Group.	
Am	J	Med.	1980	Oct;69(4):491-7.	
	
5	Carrascosa	JM,	Martínez	P,	Núñez	de	Castro	I.Nitrogen	movement	between	host	and	tumor	in	
mice	inoculated	with	Ehrlich	ascitic	tumor	cells.	Cancer	Res.	1984	Sep;44(9):3831-5.	
	
6	 Bachmann	 J1,	Heiligensetzer	M,	 Krakowski-Roosen	H,	 Büchler	MW,	 Friess	H,	Martignoni	ME.	
Cachexia	 worsens	 prognosis	 in	 patients	 with	 resectable	 pancreatic	 cancer.	 Gastrointest	 Surg.	
2008	Jul;12(7):1193-201.	doi:	10.1007/s11605-008-0505-z.	Epub	2008	Mar	18.	
	
7	Thair,	S.A.,	Walley,	K.R.,	Nakada,	T.A.,	McConechy,	M.K.,	Boyd,	J.H.,	Wellman,	H.,	and	Russell,	
J.A.	(2011).	A	single	nucleotide	polymorphism	in	NFkB	inducing	kinase	is	associated	with	mortality	
in	septic	shock.	J.	Immunol.	186,	2321–2328.	
	
8	 Tan,	 B.H.L.,	 and	 Fearon,	 K.C.H.	 (2010).	 Cytokine	 gene	 polymorphisms	 and	 susceptibility	 to	
cachexia.	Curr.	Opin.	Support.	Palliat.	Care	4,	243–248.	
	
9	Deans,	D.A.,	Tan,	B.H.,	Ross,	 J.A.,	Rose-Zerilli,	M.,	Wigmore,	S.J.,	Howell,	W.M.,	Grimble,	R.F.,	
and	 Fearon,	 K.C.	 (2009).	 Cancer	 cachexia	 is	 associated	 with	 the	 IL10	 -1082	 gene	 promoter	
polymorphism	in	patients	with	gastroesophageal	malignancy.	Am.	J.	Clin.	Nutr.	89,	1164–1172.	
	
10	Tan,	B.H.L.,	 Fladvad,	T.,	Braun,	T.P.,	Vigano,	A.,	 Strasser,	 F.,	Deans,	D.A.C.,	 Skipworth,	R.J.E.,	
Solheim,	 T.S.,	 Damaraju,	 S.,	 Ross,	 J.A.,	 et	 al;	 European	 Palliative	 Care	 Research	 Collaborative.	
(2012).	 P-selectin	 genotype	 is	 associated	with	 the	development	of	 cancer	 cachexia.	 EMBO	Mol	
Med	4,	462–471.	
	
11	 Baracos,	 V.E.,	 Reiman,	 T.,	 Mourtzakis,	 M.,	 Gioulbasanis,	 I.,	 and	 Antoun,	 S.	 (2010).	 Body	
composition	in	patients	with	non-small	cell	lung	cancer:	a	contemporary	view	of	cancer	cachexia	
with	the	use	of	computed	tomography	image	analysis.	Am.	J.	Clin.	Nutr.	91,	1133S–1137S.	
	
12	Skipworth,	R.J.,	Moses,	A.G.,	Sangster,	K.,	Sturgeon,	C.M.,	Voss,	A.C.,	Fallon,	M.T.,	Anderson,	
R.A.,	Ross,	J.A.,	and	Fearon,	K.C.	(2011).	Interaction	of	gonadal	status	with	systemic	inflammation	
and	 opioid	 use	 in	 determining	 nutritional	 status	 and	 prognosis	 in	 advanced	 pancreatic	 cancer.	
Support.	Care	Cancer	19,	391–401.	
	



            Bibliography 

52 
 

52 

                                                                                                                                 
13	 Palomares,	 M.R.,	 Sayre,	 J.W.,	 Shekar,	 K.C.,	 Lillington,	 L.M.,	 and	 Chlebowski,	 R.T.	 (1996).	
Gender	 influence	on	weight-loss	pattern	and	 survival	of	nonsmall	 cell	 lung	 carcinoma	patients.	
Cancer	78,	2119–2126.	
	
14	Glass,	D.J.	 (2010).	Signaling	pathways	perturbing	muscle	mass.	Curr.	Opin.Clin.	Nutr.	Metab.	
Care	13,	225–229.	
	
15	Bodine,	 S.C.,	 Latres,	 E.,	 Baumhueter,	 S.,	 Lai,	 V.K.,	Nunez,	 L.,	 Clarke,	 B.A.,	 Poueymirou,	W.T.,	
Panaro,	F.J.,	Na,	E.,	Dharmarajan,	K.,	et	al.	(2001a).	Identification	of	ubiquitin	ligases	required	for	
skeletal	muscle	atrophy.	Science	294,	1704–1708.	
	
16	Clarke,	B.A.,	Drujan,	D.,	Willis,	M.S.,	Murphy,	L.O.,	Corpina,	R.A.,	Burova,	E.,	Rakhilin,	S.V.,	Stitt,	
T.N.,	Patterson,	C.,	Latres,	E.,	and	Glass,	D.J.	(2007).	The	E3	Ligase	MuRF1	degrades	myosin	heavy	
chain	protein	in	dexamethasonetreated	skeletal	muscle.	Cell	Metab.	6,	376–385.	
	
17	 Cohen,	 S.,	 Brault,	 J.J.,	 Gygi,	 S.P.,	 Glass,	 D.J.,	 Valenzuela,	 D.M.,	 Gartner,	 C.,	 Latres,	 E.,	 and	
Goldberg,	 A.L.	 (2009).	 During	 muscle	 atrophy,	 thick,	 but	 not	 thin,	 filament	 components	 are	
degraded	by	MuRF1-dependent	ubiquitylation.	J.	Cell	Biol.	185,	1083–1095.	
	
18	Mittal,	 A.,	 Bhatnagar,	 S.,	 Kumar,	 A.,	 Lach-Trifilieff,	 E.,	Wauters,	 S.,	 Li,	 H.,	Makonchuk,	 D.Y.,	
Glass,	D.J.,	and	Kumar,	A.	(2010).	The	TWEAK-Fn14	system	is	a	critical	regulator	of	denervation-
induced	skeletal	muscle	atrophy	in	mice.	J.	Cell	Biol.	188,	833–849.	
	
19	 Cai,	 D.,	 Frantz,	 J.D.,	 Tawa,	 N.E.,	 Jr.,	Melendez,	 P.A.,	 Oh,	 B.C.,	 Lidov,	 H.G.,	 Hasselgren,	 P.O.,	
Frontera,	W.R.,	Lee,	J.,	Glass,	D.J.,	and	Shoelson,	S.E.	(2004).	IKKbeta/NF-kappaB	activation	causes	
severe	muscle	wasting	in	mice.	Cell	119,	285–298.	
	
20	 Borden,	 K.L.,	 and	 Freemont,	 P.S.	 (1996).	 The	 RING	 finger	 domain:	 a	 recent	 example	 of	 a	
sequence-structure	family.	Curr.	Opin.	Struct.	Biol.	6,	395–401	
	
21	 Russell,	 S.T.,	 Siren,	 P.M.,	 Siren,	M.J.,	 and	 Tisdale,	M.J.	 (2010).	 The	 role	 of	 zinc	 in	 the	 anti-
tumour	and	anti-cachectic	activity	of	D-myo-inositol	1,2,6-triphosphate.	Br.	 J.	Cancer	102,	833–
836.	
	
22	 Gomes,	 M.D.,	 Lecker,	 S.H.,	 Jagoe,	 R.T.,	 Navon,	 A.,	 and	 Goldberg,	 A.L.	 (2001).Atrogin-1,	 a	
muscle-specific	F-box	protein	highly	expressed	during	muscle	atrophy.	Proc.	Natl.	Acad.	Sci.	USA	
98,	14440–14445.	
	
23	Bodine,	 S.C.,	 Latres,	 E.,	 Baumhueter,	 S.,	 Lai,	 V.K.,	Nunez,	 L.,	 Clarke,	B.A.,	 Poueymirou,	W.T.,	
Panaro,	F.J.,	Na,	E.,	Dharmarajan,	K.,	et	al.	(2001a).	Identification	of	ubiquitin	ligases	required	for	
skeletal	muscle	atrophy.	Science	294,	1704–1708.	
	
24	Ye,	J.,	Zhang,	Y.,	Xu,	J.,	Zhang,	Q.,	and	Zhu,	D.	(2007).	FBXO40,	a	gene	encoding	a	novel	muscle-
specific	F-box	protein,	is	upregulated	in	denervationrelated	muscle	atrophy.	Gene	404,	53–60.	
	
25	 Csibi,	 A.,	 Leibovitch,	 M.-P.,	 Cornille,	 K.,	 Tintignac,	 L.A.,	 and	 Leibovitch,	 S.A.	 (2009).	
MAFbx/Atrogin-1	controls	the	activity	of	the	initiation	factor	eIF3-f	in	skeletal	muscle	atrophy	by	
targeting	multiple	C-terminal	lysines.	J.	Biol.	Chem.	284,	4413–4421.	
	
26	Temparis,	S.,	Asensi,	M.,	Taillandier,	D.,	Aurousseau,	E.,	 Larbaud,	D.,	Obled,	A.,	Be´	chet,	D.,	
Ferrara,	M.,	Estrela,	J.M.,	and	Attaix,	D.	(1994).	Increased	ATP-ubiquitin-dependent	proteolysis	in	
skeletal	muscles	of	tumor-bearing	rats.	Cancer	Res.	54,	5568–5573.	
	
27	Shi,	J.,	Luo,	L.,	Eash,	J.,	 Ibebunjo,	C.,	and	Glass,	D.J.	(2011).	The	SCF-Fbxo40	complex	induces	
IRS1	ubiquitination	in	skeletal	muscle,	limiting	IGF1	signaling.	Dev.	Cell	21,	835–847.	



Bibliography 

53 
 

53 

                                                                                                                                 
	
28	Ye,	J.,	Zhang,	Y.,	Xu,	J.,	Zhang,	Q.,	and	Zhu,	D.	(2007).	FBXO40,	a	gene	encoding	a	novel	muscle-
specific	F-box	protein,	is	upregulated	in	denervationrelated	muscle	atrophy.	Gene	404,	53–60.	
	
29	 Singh,	M.A.,	Ding,	W.,	Manfredi,	 T.J.,	 Solares,	G.S.,	O’Neill,	 E.F.,	 Clements,	 K.M.,	Ryan,	N.D.,	
Kehayias,	J.J.,	Fielding,	R.A.,	and	Evans,	W.J.	(1999).	Insulin-like	growth	factor	I	in	skeletal	muscle	
after	weight-lifting	exercise	in	frail	elders.	Am.	J.	Physiol.	277,	E135–E143.	
	
30	Rommel,	C.,	Bodine,	S.C.,	Clarke,	B.A.,	Rossman,	R.,	Nunez,	L.,	Stitt,	T.N.,	Yancopoulos,	G.D.,	
and	 Glass,	 D.J.	 (2001).	 Mediation	 of	 IGF-1-induced	 skeletal	 myotube	 hypertrophy	 by	
PI(3)K/Akt/mTOR	and	PI(3)K/Akt/GSK3	pathways.	Nat.	Cell	Biol.	3,	1009–1013.	
	
31	 Krawiec,	 B.J.,	 Frost,	 R.A.,	 Vary,	 T.C.,	 Jefferson,	 L.S.,	 and	 Lang,	 C.H.	 (2005).	 Hindlimb	 casting	
decreases	muscle	mass	in	part	by	proteasome-dependent	proteolysis	but	independent	of	protein	
synthesis.	Am.	J.	Physiol.	Endocrinol.	Metab.	289,	E969–E980.	
	
32	Mammucari,	C.,	Milan,	G.,	Romanello,	V.,	Masiero,	E.,	Rudolf,	R.,	Del	Piccolo,	P.,	Burden,	S.J.,	
Di	Lisi,	R.,	Sandri,	C.,	Zhao,	J.,	et	al.	(2007).	FoxO3	controls	autophagy	in	skeletal	muscle	in	vivo.	
Cell	Metab.	6,	458–471.	
	
33	 Sandri,	 M.,	 Lin,	 J.,	 Handschin,	 C.,	 Yang,	 W.,	 Arany,	 Z.P.,	 Lecker,	 S.H.,	 Goldberg,	 A.L.,	 and	
Spiegelman,	 B.M.	 (2006).	 PGC-1alpha	 protects	 skeletal	 muscle	 from	 atrophy	 by	 suppressing	
FoxO3	 action	 and	 atrophy-specific	 gene	 transcription.	 Proc.	 Natl.	 Acad.	 Sci.	 USA	 103,	 16260–
16265.	
	
34	 Kamei,	 Y.,	 Miura,	 S.,	 Suzuki,	 M.,	 Kai,	 Y.,	 Mizukami,	 J.,	 Taniguchi,	 T.,	 Mochida,	 K.,	 Hata,	 T.,	
Matsuda,	J.,	Aburatani,	H.,	et	al.	(2004).	Skeletal	muscle	FOXO1	(FKHR)	transgenic	mice	have	less	
skeletal	muscle	mass,	down-regulated	Type	I	(slow	twitch/red	muscle)	fiber	genes,	and	impaired	
glycemic	control.	J.	Biol.	Chem.	279,	41114–41123	
	
35	 Reed,	 S.A.,	 Sandesara,	 P.B.,	 Senf,	 S.M.,	 and	 Judge,	 A.R.	 (2012).	 Inhibition	 of	 FoxO	
transcriptional	activity	prevents	muscle	 fiber	atrophy	during	cachexia	and	 induces	hypertrophy.	
FASEB	J.	26,	987–1000.	
	
36	Samuels,	S.E.,	Knowles,	A.L.,	Tilignac,	T.,	Debiton,	E.,	Madelmont,	 J.C.,	and	Attaix,	D.	 (2001).	
Higher	skeletal	muscle	protein	synthesis	and	 lower	breakdown	after	chemotherapy	 in	cachectic	
mice.	Am.	J.	Physiol.	Regul.	Integr.	Comp.	Physiol.	281,	R133–R139.	
	
37	 Emery,	 P.W.,	 Edwards,	 R.H.,	 Rennie,	 M.J.,	 Souhami,	 R.L.,	 and	 Halliday,	 D.	 (1984).	 Protein	
synthesis	in	muscle	measured	in	vivo	in	cachectic	patients	with	cancer.	Br.	Med.	J.	(Clin.	Res.	Ed.)	
289,	584–586.	
	
38	Lecker,	S.H.,	Jagoe,	R.T.,	Gilbert,	A.,	Gomes,	M.,	Baracos,	V.,	Bailey,	J.,	Price,	S.R.,	Mitch,	W.E.,	
and	Goldberg,	A.L.	(2004).	Multiple	types	of	skeletal	muscle	atrophy	involve	a	common	program	
of	changes	in	gene	expression.	FASEB	J.	18,	39–51.	
	
39	 Bossola,	 M.,	 Muscaritoli,	 M.,	 Costelli,	 P.,	 Grieco,	 G.,	 Bonelli,	 G.,	 Pacelli,	 F.,	 Rossi	 Fanelli,	 F.,	
Doglietto,	G.B.,	and	Baccino,	F.M.	 (2003).	 Increased	muscle	proteasome	activity	correlates	with	
disease	severity	in	gastric	cancer	patients.	Ann.	Surg.	237,	384–389.	
	
40	 Smith,	 K.L.,	 and	 Tisdale,	 M.J.	 (1993).	 Increased	 protein	 degradation	 and	 decreased	 protein	
synthesis	in	skeletal	muscle	during	cancer	cachexia.	Br.	J.	Cancer	67,	680–685.	
	



            Bibliography 

54 
 

54 

                                                                                                                                 
41	 Jagoe,	 R.T.,	 Redfern,	 C.P.F.,	 Roberts,	 R.G.,	 Gibson,	G.J.,	 and	Goodship,	 T.H.J.	 (2002).	 Skeletal	
muscle	mRNA	levels	for	cathepsin	B,	but	not	components	of	the	ubiquitin-proteasome	pathway,	
are	increased	in	patients	with	lung	cancer	referred	for	thoracotomy.	Clin.	Sci.	102,	353–361.	
	
42	Gallagher,	I.J.,	Stephens,	N.A.,	Macdonald,	A.J.,	Skipworth,	R.J.E.,	Husi,	H.,	Greig,	C.A.,	Ross,	J.A.,	
Timmons,	 J.A.,	 and	 Fearon,	 K.C.H.	 (2012).	 Suppression	 of	 skeletal	 muscle	 turnover	 in	 cancer	
cachexia:	 evidence	 from	 the	 transcriptome	 in	 sequential	 human	muscle	 biopsies.	 Clin.	 Cancer	
Res.	18,	2817–	2827.	
	
43	 Attaix,	 D.,	 and	 Baracos,	 V.E.	 (2010).	 MAFbx/Atrogin-1	 expression	 is	 a	 poor	 index	 of	 muscle	
proteolysis.	Curr.	Opin.	Clin.	Nutr.	Metab.	Care	13,	223–224.	
	
44	Lum,	J.J.,	DeBerardinis,	R.J.,	and	Thompson,	C.B.	(2005).	Autophagy	in	metazoans:	cell	survival	
in	the	land	of	plenty.	Nat.	Rev.	Mol.	Cell	Biol.	6,	439–448.	
	
45	 Sandri,	M.,	 Sandri,	 C.,	 Gilbert,	 A.,	 Skurk,	 C.,	 Calabria,	 E.,	 Picard,	 A.,	Walsh,	 K.,	 Schiaffino,	 S.,	
Lecker,	 S.H.,	 and	 Goldberg,	 A.L.	 (2004).	 Foxo	 transcription	 factors	 induce	 the	 atrophy-related	
ubiquitin	ligase	atrogin-1	and	cause	skeletal	muscle	atrophy.	Cell	117,	399–412.	
	
46	Lin,	J.,	Wu,	H.,	Tarr,	P.T.,	Zhang,	C.Y.,	Wu,	Z.,	Boss,	O.,	Michael,	L.F.,	Puigserver,	
P.,	Isotani,	E.,	Olson,	E.N.,	et	al.	(2002).	Transcriptional	co-activator	
PGC-1	alpha	drives	the	formation	of	slow-twitch	muscle	fibres.	Nature	418,	
797–801.	
	
47	 Mendell,	 J.R.,	 and	 Engel,	 W.K.	 (1971).	 The	 fine	 structure	 of	 type	 II	 muscle	 fiber	 atrophy.	
Neurology	21,	358–365.	
	
48	Sartorelli,	V.	&	Fulco,	M.	Molecular	and	cellular	determinants	of	skeletal	muscle	atrophy	and	
hypertrophy.	Sci.	STKE	2004,	re11	(2004).	
	
49	Sandri,	M.	Signaling	 in	muscle	atrophy	and	hypertrophy.	Physiology	 (Bethesda)	23,	160–170	
(2008).	
	
50	 Lee,	 S.J.	&	McPherron,	A.C.	Regulation	of	myostatin	 activity	 and	muscle	 growth.	 Proc.	Natl.	
Acad.	Sci.	USA	98,	9306–9311	(2001).	
	
51	Lee,	S.J.	et	al.	Regulation	of	muscle	growth	by	multiple	ligands	signaling	through	activin	type	II	
receptors.	Proc.	Natl.	Acad.	Sci.	USA	102,	18117–18122	(2005).	
	
52	Sartori,	R.	et	al.	Smad2	and	3	transcription	factors	control	muscle	mass	 in	adulthood.	Am.	J.	
Physiol.	Cell	Physiol.	296,	C1248–C1257	(2009).	
	
53	Trendelenburg,	A.U.	et	al.	Myostatin	reduces	Akt/TORC1/p70S6K	signaling,	inhibiting	myoblast	
differentiation	and	myotube	size.	Am.	J.	Physiol.	Cell	Physiol.	296,	C1258–C1270	(2009).	
	
54	Walsh,	D.W.,	Godson,	C.,	Brazil,	D.P.	&	Martin,	F.	Extracellular	BMP-antagonist	 regulation	 in	
development	and	disease:	tied	up	in	knots.	Trends	Cell	Biol.	20,	244–256	(2010).	
	
55	Miyazono,	K.	&	Miyazawa,	K.	Id:	a	target	of	BMP	signaling.	Sci.	STKE	2002,	pe40	(2002).	
	
56	Yu,	P.B.	et	al.	BMP	type	 I	 receptor	 inhibition	reduces	heterotopic	ossification.	Nat.	Med.	14,	
1363–1369	(2008).	
	
57	Winbanks,	 C.E.	 et	 al.	 The	Bone	Morphogenetic	 Protein	 (BMP)	 axis	 is	 a	 positive	 regulator	 of	
skeletal	muscle	mass.	J.	Cell	Biol.	(in	the	press).	



Bibliography 

55 
 

55 

                                                                                                                                 
	
58	Aagaard	P,	Suetta	C,	Caserotti	P,	et	al.	Role	of	the	nervous	system	in	sarcopenia	and	muscle	
atrophy	 with	 aging:	 Strength	 training	 as	 a	 countermeasure.	 Scand	 J	 Med	 Sci	 Sports	
2010;20:49Y64	
	
59	 Rowan	 SL,	 Rygiel	 K,	 Purves-Smith	 FM,	 et	 al.	 Denervation	 causes	 fiber	 atrophy	 and	 myosin	
heavy	chain	co-expression	in	senescent	skeletal	muscle.	PLoS	ONE	2012;7:e29082	
	
60	Doherty	TJ,	Vandervoort	AA,	Taylor	AW,	et	al.	Effects	of	motor	unit	losses	on	strength	in	older	
men	and	women.	J	Appl	Physiol	1993;74:	868Y74	
	
61	 Larsson	 LX.	 Motor	 units:	 Remodeling	 in	 aged	 animals.	 J	 Gerontol	 A	 Biol	 Sci	 Med	 Sci	
1993;50:91Y95	
	
62	 Luff	 AR.	 Age-associated	 changes	 in	 the	 innervation	 of	 muscle	 fibers	 and	 changes	 in	 the	
mechanical	properties	of	motor	units.	Ann	N	Y	Acad	Sci	1998;854:92Y101	
	
63	Mitchell	WK,	Williams	J,	Atherton	P,	et	al.	Sarcopenia,	dynapenia,	and	the	impact	of	advancing	
age	on	human	skeletal	muscle	size	and	strength:	A	quantitative	review.	Front	Physiol	2012;3:260	
	
64	 Zhou	MY,	 Klitgaard	 H,	 Saltin	 B,	 et	 al.	Myosin	 heavy	 chain	 isoforms	 of	 human	muscle	 after	
short-term	spaceflight.	J	Appl	Physiol	1995;78:	1740Y44	
	
65	 Kern	 H,	 Carraro	 U,	 Adami	 N,	 et	 al.	 Home-based	 functional	 electrical	 stimulation	 rescues	
permanently	 denervated	 muscles	 in	 paraplegic	 patients	 with	 complete	 lower	 motor	 neuron	
lesion.	Neurorehabil	Neural	Repair	2010;24:709Y21	
	
66	 Schiaffino	 S,	 Reggiani	 C.	 Fiber	 types	 in	 mammalian	 skeletal	 muscles.	 Physiol	 Rev	
2011;91:1447Y531	
	
67	Wroblewski	 AP,	 Amati	 F,	 Smiley	MA,	 et	 al.	 Chronic	 exercise	 preserves	 lean	muscle	mass	 in	
masters	athletes.	Phys	Sportsmed	2011;39:172Y78	
	
68	Lancet	Oncol.	2011	May;12(5):489-95.	doi:	10.1016/S1470-2045(10)70218-7.	Epub	2011	Feb	4.	
Definition	and	classification	of	cancer	cachexia:	an	international	consensus.	Fearon	K1,	Strasser	F,	
Anker	 SD,	 Bosaeus	 I,	 Bruera	 E,	 Fainsinger	 RL,	 Jatoi	 A,	 Loprinzi	 C,	MacDonald	 N,	Mantovani	 G,	
Davis	M,	Muscaritoli	M,	Ottery	F,	Radbruch	L,	Ravasco	P,	Walsh	D,	Wilcock	A,	Kaasa	S,	Baracos	
VE.	
	
69	Carraro	U,	Morale	D,	Mussini	I,	et	al.	Chronic	denervation	of	rat	hemidiaphragm:	Maintenance	
of	fiber	heterogeneity	with	associated	increasing	uniformity	of	myosin	isoforms.	J	Cell	Biol	1985;	
100:	161–74	
	
70	Zhou	X,	Wang	 JL,	 Lu	 J,	 Song	Y,	Kwak	KS,	 Jiao	Q,	Rosenfeld	R,	Chen	Q,	Boone	T,	Simonet	WS,	
Lacey	 DL,	 Goldberg	 AL,	 Han	 HQ.Reversal	 of	 cancer	 cachexia	 and	 muscle	 wasting	 by	 ActRIIB	
antagonism	 leads	 to	 prolonged	 survival.	 Cell.	 2010	 Aug	 20;142(4):531-43.	 doi:	
10.1016/j.cell.2010.07.011.	
	
71	 Wagner	 KR1,	 Fleckenstein	 JL,	 Amato	 AA,	 Barohn	 RJ,	 Bushby	 K,	 Escolar	 DM,	 Flanigan	 KM,	
Pestronk	A,	 Tawil	 R,	Wolfe	GI,	 Eagle	M,	 Florence	 JM,	 King	WM,	 Pandya	 S,	 Straub	V,	 Juneau	P,	
Meyers	K,	Csimma	C,	Araujo	T,	Allen	R,	Parsons	SA,	Wozney	JM,	Lavallie	ER,	Mendell	JR.	A	phase	
I/IItrial	of	MYO-029	in	adult	subjects	with	muscular	dystrophy.	Ann	Neurol.	2008	May;63(5):561-
71.	


