




Abstract

In this thesis we study the higher-order statistics of Large Scale Structures (LSS). In

particular, we examine the potential of the bispectrum (Fourier transform of the three-

point correlator) of galaxies for both probing the non-linear regime of structure growth

and setting constraints on primordial non-Gaussianity.

The starting step is to construct accurate models for the power spectrum (Fourier

transform of the two-point correlator) and bispectrum of galaxies by using the predictions

of perturbation methods. In addition, the recent developments on the relation between

dark matter and galaxy distributions (i.e. bias) are discussed and incorporated into the

modelling, in order to have an accurate theoretical formalism on the galaxy formation.

In order to build models that are as realistic as possible, we take into account additional

non-linear effects, such as redshift space distortions. The analysis is mainly restricted to

the large and intermediate scales.

Furthermore, we investigate forecasted constraints on primordial non-Gaussianity and

bias parameters from measurements of galaxy power spectrum and bispectrum in fu-

ture radio continuum (EMU and SKA) and optical surveys (Euclid, DESI, LSST and

SPHEREx). In the galaxy bispectrum modelling, we consider the bias expansion for non-

Gaussian initial conditions up to second order, including trispectrum (Fourier transform

of the four-point correlator) scale-dependant contributions, originating from the galaxy

bias expansion, where for the first time we extend such correction to redshift space. We

study the impact of uncertainties in the theoretical modelling of the bispectrum expansion
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and of redshift space distortions (theoretical errors), showing that they can all affect the

final predicted bounds.

We find that the bispectrum generally has a strong constraining power and can lead to

improvements up to a factor ∼ 5 over bounds based on the power spectrum alone. Our re-

sults show that constraints for local-type PNG can be significantly improved compared to

current limits: future radio (e.g. SKA) and photometric surveys could obtain a measure-

ment error on f loc
NL, σ(f loc

NL)≈ 0.2−0.3. More specifically, near future optical spectroscopic

surveys, such as Euclid, will also improve over Planck by a factor of a few, while LSST

will provide competitive constraints to radio continuum. In the case of equilateral PNG,

galaxy bispectrum constraints are very weak, and current constraints could be tightened

only if significant improvements in the redshift determinations of large volume surveys

could be achieved. For orthogonal non-Gaussianity, expected constraints are comparable

to the ones from Planck, e.g. σ(forth
NL )≈ 18 for radio surveys.

In the last part of the thesis we development a pipeline that measures the bispectrum

from N -body simulations or galaxy surveys, which is based on the modal estimation

formalism. This computationally demanding task is reduced from O(N6) operations to

O(N3), where N is the number of modes per dimension inside the said simulation box or

survey. The main idea of the modal estimator is to construct a suitable basis (“modes”) on

the domain defined by the triangle condition and decompose on it the desired theoretical

or observational bispectrum. This allows for massive data compression, making it an

extremely useful tool for future LSS surveys. We show the results of tests performed to

improve the performance of the pipeline and the convergence of the modal expansion. In

addition, we present the measured bispectrum from a set of simulations with Gaussian

initial condition, where the small amount of modes needed to accurately reconstruct the

matter bispectrum shows the power of the modal expansion. The effective fNL value,

corresponding to the bispectrum of the non-linear gravitational evolution, comes at no

computational cost. In order to further test the pipeline, we proceed in measuring the
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bispectrum of a few realisations with non-Gaussian initial conditions of the local type.

We show that the modal decomposition can accurately separate the primordial signal,

from the late-time non-Gaussianity, and put tight constraints on its amplitude.
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Chapter 1
Introduction

One of the biggest challenges of cosmology is to explain the origin of the observable

structures in the Universe, namely galaxies, galaxy clusters, filament structures and voids.

The current picture suggests that their source can be traced back to small primordial

density perturbations over a homogeneous and isotropic background. The gravitational

evolution of these initial fluctuations subsequently produces today’s observed structures.

The Hot Big Bang model (HBB) is the theoretical framework of standard cosmology. It

successfully describes the evolution of the Universe from a hot, dense, radiation dominated

initial state (∼ 14 billion year ago), to a cool, low-density, non-relativistic dominated

present state. The most notable success of HBB is the prediction of a relic radiation,

called the Cosmic Microwave Background (CMB). Its discovery by Penzias and Wilson

(1965) lead to the direct observational confirmation of the validity of the HBB scenario.

The observed temperature anisotropies of the CMB provided compelling evidence that

primordial inhomogeneities are not just a theoretical construction used to describe the

origin of structures, but they are the actual seeds of all observed structures in the Universe.

An other success of HBB, besides the CMB, is its the prediction of the abundance of light

elements (e.g. Deuterium, Helium and Lithium) that are created during the first few

minutes after the HBB through the framework of the Big-Bang Nucleosynthesis (BBN)

(Gamow, 1946).

Besides its success, the standard HBB model cannot provide a fully sufficient descrip-

tion of the early Universe, or explain the origin of the primordial inhomogeneities that

seed the observed structures. The inflationary paradigm came as a supplement to the

HBB model and elegantly solved its major problems (Sec. 2.4). Inflation is an era in

the early history of the universe that provides a mechanism for driving an exponentially

1
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accelerated expansion. The first model of cosmological inflation was introduced by Guth

in 1981 (Guth, 1981) as a solution to the horizon and flatness problems, which arose

from the standard cosmological model. Moreover, an improved inflationary model, called

“new” inflation, was introduced soon after (Linde, 1982; Albrecht and Steinhardt, 1982).

The greatest success of inflation, besides solving the major cosmological problems, such as

the horizon and the flatness problems (see Sec. 2.4.3), was to provide an explanation for

the production of the primordial density fluctuations. In this picture, during the inflation

epoch, the universe is dominated by one or more scalar fields and their self-interaction

potential. Primordial perturbations can be created by quantum fluctuations of the scalar

fields that drive the accelerated expansion. These fluctuations are stretched then during

inflation from Planckian size to cosmological scales, maintaining their initial amplitudes

nearly unchanged.

A vast landscape of different inflationary scenarios exists (see e.g. (Martin et al,

2014) and references therein). Depending on the specific inflationary scenario (i.e. single

or multifield, different interaction potentials, canonical or non-canonical kinetic terms,

vacuum initial state), the statistical distribution of the primordial perturbation follows

a Gaussian or a non-Gaussian description (see Sec. 2.4.4 for details). The latter is in

particular an important and general prediction of inflationary theories. It is a direct

product of any kind of non-linear interaction occurring during the inflationary or reheating

stage. Maps of temperature and polarization CMB anisotropies, as measured by ESA’s

Planck survey (Planck Collaboration et al, 2016a), provided the tightest constraints on the

amount of deviation from Gaussianity. In this way, Planck probed directly the distribution

of the primordial perturbation field.

In alternative to the CMB, inflationary non-Gaussianity can also be probed by ex-

ploiting observations of Large-Scale Structures (LSS): for example gravitational lensing

or galaxy distribution measurements. LSS data have can have indeed great potential,

based on the fact that 3D LSS surveys, covering large volumes and probing a wide range
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of scales, have in principle access to a much larger amount of modes, with respect to

2D CMB maps. Up to now, LSS surveys have mainly relied on the two-point correla-

tion function (see Sec. 3.5.2) to retrieve cosmological information. However, additional

information can be extracted from higher-order correlation functions, such as the three-

point correlation function (see Sec. 3.5.3) and in particular its Fourier transformation the

bispectrum. This is in general the most important statistic to consider when studying

inflationary non-Gaussianity, as explained in detail in Chapters 2 and 5 of the thesis.

The bispectrum of the primordial curvature perturbation field, arising from interac-

tions during inflation, is characterized by a dimensionless, amplitude parameter, fNL,

and by a shape function F (k1,k2,k3). While fNL defines the strength of the primordial

non-Gaussianity (NG) signal, the shape describes the functional dependence of the bis-

pectrum on different Fourier space triangles. Both of them are strongly model dependent

and provide significant information on the physical mechanisms at work during inflation.

As promising as it looks, measuring primordial non-Gaussianity from LSS surveys,

via bispectrum studies, will be very challenging. The gravitational non-Gaussian signal,

originating from a LSS dataset, is far larger (orders of magnitude) than the primordial

component. Therefore, these late-time, non-linear contributions need to be understood

and subtracted with exquisite accuracy.

The potential of the LSS bispectrum for both probing the non-linear regime of struc-

ture growth and setting constraints on primordial non-Gaussianity is the main topic of

this thesis. The steps we will take to this purpose are the following: we start by con-

structing an accurate model for the power spectrum and bispectrum of galaxies by using

perturbation methods for the dark matter correlators. In addition, account for recent

developments on galaxy bias (see Sec. 4.3.2 for a discussion) in order to have a theoretical

formalism that links dark matter distribution to the actual galaxy statistics measured

by a LSS survey. Our analysis is restricted to the large and intermediate scales, where

the available perturbation theories have been heavily tested and give predictions that are
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in agreement with simulation and past LSS surveys. Constructing accurate models for

the non-linear evolution of galaxies, as sourced by gravitational interactions, is crucial in

order to distinguish the primordial non-Gaussian signal from the late time non-linearities.

We then produce accurate Fisher forecasts (see Sec. 5.3 for a review on the formalism)

on the amplitude of primordial non-Gaussianity coming from future LSS surveys. Using

the previously discussed formalism, we choose two future radio continuum surveys (i.e.

SKA and EMU) due to their appealing features for this kind of measurements, i.e. very

large volumes and high redshift estimation, where a larger amount of modes are in the

linear regime. In addition, we choose future or proposed optical galaxy surveys, such as

Euclid, DESI, SPHEREx and LSST, in order to have a more complete picture on the

future and potential improvements on current fNL constraints from LSS surveys. We pay

particular attention in testing many effects that can affect the Fisher matrix predictions,

as well as consistently include all the important elements and produce as complete and

realistic as possible primordial NG forecasts, combining power spectrum and bispectrum

constraints. After this extensive analysis, we move on from forecasting to the problem of

actually producing accurate statistical estimate of non-Gaussian parameters from actual

datasets.

Measuring the actual bispectrum from N -body simulations or galaxy surveys presents

peculiar challenges and is computationally very demanding. The full bispectrum of a

dataset contains a large number of Fourier space triangles, formed by all the modes

inside a survey or a simulation. The larger the volume of the said dataset, the more

the triangles one can build up to the chosen small scale limit. For large volume surveys

this can increase tremendously the computational effort of the bispectrum measurements.

More precisely, the numerical measurement of the bispectrum needs O(N6) operations,

where N is the number of modes per dimension inside a simulation box or a LSS survey.

Future LSS surveys will have a growing size in their volume (e.g. Euclid). This makes

the development of a fast, efficient, optimal, bispectrum pipeline for forthcoming LSS
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datasets a crucial task.

Therefore, the final step we take in this thesis is the development of such a pipeline.

Our approach is based on the modal estimation formalism, proposed initially for the

measurement of the CMB bispectrum (Fergusson and Shellard, 2009; Fergusson et al,

2010a,b). The modal estimator was actually used to measure the non-Gaussian amplitude

from Planck CMB temperature and polarization maps (Planck Collaboration et al, 2016a).

The advantages of this approach are that it reduced the computational cost to O(N3)

operations, which makes the measurement of the bispectrum a manageable task. In

addition, it gives directly the best fit value of the fNL parameter, besides allowing for

full bispectrum reconstruction. The main idea of modal estimation consists of finding

a suitable basis of bispectrum templates and write higher order correlations as a linear

combination of such templates (“modes”). By properly choosing the templates it is always

possible to achieve fast convergence. Although the modal estimator was developed for

measuring primordial fNL parameters, its appealing features make it ideal to measure

any kind of galaxy bispectrum. The modal decomposition applies both to the theoretical

prediction and to the bispectrum extracted from the dataset. Expanding both on the

same basis we can achieve a fast, efficient comparison by only comparing the coefficient

of the expansion instead of comparing all the triangles. This allows for massive data

compression (from billions of triangles to hundred/thousand coefficients), making it an

extremely useful tool for future LSS surveys, such as Euclid and SKA.

This thesis is structured as follows: in Chapter 2 we present the standard cosmological

model and the dynamics of the expanding background. Furthermore, we review the

inflationary scenario by describing the field interactions and dynamics during that era and

showing the non-Gaussian predictions from different inflationary theories. In Chapter 3

we review different perturbation theories and their statistical predictions for the two, three

and four-point correlators. For Chapter 4 we discuss structure formation, from primordial

density fluctuations to the formation of galaxies. In addition, we review the details on the
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relationship between matter and galaxy statistics (i.e. bias expansion),presenting recent

developments in this field. In Chapter 5 we obtain expressions for galaxy power spectra

and bispectra considering all the relevant effects discussed in the previous chapters (e.g.

redshift space distortions, redshift uncertainties, trispectrum corrections). We then define

Fisher matrix forecasts several LSS surveys, both optical and radio (Euclid, DESI, LSST,

SPHEREx, SKA and EMU). One of the main goals of this chapter, is explaining how to

account for theoretical errors in the forecasts. In Chapter 6 we review the modal estimator

formalism and we discuss the details and technicalities of the pipeline. We present tests

performed to improve the performance of the pipeline and the convergence of the modal

expansion. In addition, we show the measured bispectrum for a set of N -body simulations,

by reconstructing modal coefficients, which hold the compressed information about the

three-point correlator. Furthermore, we show both the measured primordial non-Gaussian

amplitude and the effective fNL value from non-linear gravitational evolution, for a set of

N -body realisations with non-Gaussian initial conditions. In this way we show the power

of the modal estimator in separating these two contributions, cleaning in this way the

primordial signal from the late-time non-Gaussianity. Finally, we summarize the main

conclusions of this thesis in Chapter 7.



Chapter 2
The Standard

Cosmological Model

2.1 The Cosmological Principle

The main pillar of cosmology is the “Cosmological Principle”. It states that on suffi-

ciently large scales, larger than those probed by LSS, the Universe is statistically homo-

geneous and isotropic. This assumption was introduced by the early cosmologists, in the

absence of data, in order to construct simplified models that could describe the Universe.

The property of homogeneity means that the Universe is identical in different spatial

locations, in an average sense, when one looks at a large patch. Isotropy, on the other

hand, is the feature of the Universe to look the same in every direction. There are

observational evidence supporting the latter, coming from the radiation of the CMB, which

has been proved to be near-isotropic with small temperature variations between different

directions of the order ∆T/T ∼ 10−5. Nevertheless the evident near-isotropy cannot

alone imply homogeneity without invoking the additional assumption of the “Copernican

Principle” (Coles and Lucchin, 2002), which states that the observer does not occupy a

special place in the Universe.

The presence of planets, stars, galaxies, clusters, etc. indicate that the validity of cos-

mological principle breaks down on small scales, since they shouldn’t exist in a perfectly

homogeneous scenario. Nonetheless, galaxy statistics have shown that on scales larger

than 70-80 Mpc/h (i.e. homogeneity scale) (Hogg et al, 2005; Sarkar et al, 2009; Scrim-

geour et al, 2012) the Universe becomes smooth and a fractal distribution is excluded,

7
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i.e. statistically on large scales cosmological principle is valid. An opposite argument

to the claimed homogeneity also exists in the work of (Labini et al, 2009; Labini, 2010;

Maartens, 2011), where they claim that homogeneity is inconsistent1 with their findings

for scales smaller than 100 Mpc/h. We will discuss shortly the statistical argument they

used in Sec. 3.5.

In this chapter we will provide a short introduction to the standard cosmological model

and the formalism behind it. In addition we will also introduce useful notation that we

will use in the main body of this thesis. The reader is advised to a series of books and

reviews (Peebles, 1993; Coles and Lucchin, 2002; Mukhanov, 2005; Linde, 2005; Liddle

and Lyth, 2000; Martin et al, 2014), that provide a deep analysis on the topics that we

will discuss shortly in this chapter.

2.2 The expanding Universe

2.2.1 FLRW metric

The assumption of statistical homogeneity and isotropy, leads to a non-static Universe

(i.e. contracting or expanding). The Friedmann–Lemâıtre–Robertson–Walker (FLRW )

metric was developed independently by (Friedmann, 1922; Lemâıtre, 1927; Robertson,

1935; Walker, 1937) and is an exact elegant solution of the Einstein field equations under

the assumptions of the cosmological principle. The dynamics of the expanding Universe

are incorporated in the Einstein equations after plugging in the FLRW metric and solving

for the scale factor a(t) (also referred as Robertson-Walker scale factor), as we will see in

Sec. 2.3. It is convenient to use a coordinate system that is comoving with the Hubble

expansion. The comoving observers will be free-falling and will see the Universe isotropic

and homogeneous, where their spatial coordinates will be constant in time. In other words

1However they point out (Labini, 2010) that the inhomogeneous structures can be compatible with
isotropy and homogeneity for a relaxed version of the cosmological principle.
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in the comoving frame the uniform expansion of the Universe is factored out and the

distance between two spatial points is constant over time, independently of the expansion

rate.

In differential geometry the space-time infinitesimal interval between two point xi and

xi +dxi is given by:

ds2 = gµν(x)dxµdxν , (2.1)

where µ,ν = 0,1,2,3 and the Einstein index convention is used as usual. The metric gµν ,

determines how the distance are measured in the considered manifold. The most general

metric in a Universe that obeys the cosmological principle is the FLRW metric (Weinberg,

2008), where the line element is given by:

ds2 = (cdt)2−a2(t)

(
dr2

1−Kr2
+ r2(dθ2 +sin2 θdφ2)

)
, (2.2)

where the metric is diagonal with each element being:

g00 = c, grr =− a2(t)

1−Kr2
, gθθ =−a2(t)r2, gφφ =−a2(t)r2 sin2 θ, (2.3)

where c is the speed of light, r, θ, and φ are the spherical polar coordinates in a comoving

frame, t is the proper time and the constant K is the curvature parameter. It can take

the following values, depending on the spatial geometry of the Universe:

K =





< 0 Open (Hyperbolic)

0 Flat (Euclidean)

> 0 Closed (Spherical)

(2.4)

The value of K in FLRW is a free parameter to be measured by an experiment. The

recent results of Planck Collaboration et al (2016b) indicate that the spatial curvature of

the Universe is very close to flat, where the presence of errors in the measured parameter
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prevent an absolute claim on the exact geometrical properties of the Universe. For the

rest of the thesis we will assume a spatial Euclidean geometry.

Under the assumptions provided by the cosmological principle, one can define a proper

time such that the spatial part of ds2, dl2 = γijdxidxj with i, j = 1,2,3, defines a spatial

interval that is the same at all directions and places. The interval dl2 can be seen as a

comoving distance. The proper distance dp(t) at a constant time t (dt = 0) can be defined

as the distance from the origin, which can be chosen at r0 = 0 due to the homogeneity of

space, to an object with spherical coordinates2 (r,0,0) as:

dp(t) = a(t)
∫ r

0

dr√
1−Kr2

= a(t)dc, (2.5)

where dc = sinhr, r or sinr for K < 0, K = 0, K > 0 respectively and is calculated at some

reference time t0. The proper distance between two points at t can now be understood as

their separation at that particular time (Hogg, 1999). However, it is of little operational

significance, since one cannot measure simultaneously the coordinates separating the two

points (Coles and Lucchin, 2002). One can see now that the dimensionless cosmic scale

factor parametrises the relative expansion of the Universe and by construction becomes

unity at the reference time (i.e. a(t0) = a0 = 1), which is set to present. Taking the time

derivative of Eq. (2.5) we can get the radial velocity of an object with respect to the origin

as:

ur = ȧ(t)dc =
ȧ

a
dp. (2.6)

It will be useful, for the following chapters, to define here the conformal time as:

τ =
∫ dt

a(t)
, (2.7)

2Geodesics that pass through r0 = 0 are lines of constant θ and φ and therefore dθ = 0, dφ = 0. Note
here that, objects do not only recede radially from an observer, but they also move in the other two
spatial directions (i.e. peculiar motion).
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where we have used the units c = 1.

2.2.2 Hubble flow and redshift

The first observational indication for an expanding Universe came from the work of

(Slipher, 1914, 1915) and was independently confirmed by (Hubble, 1929). Hubble found

that there is a simple proportional relation between the radial velocity of galaxies and

their distance from an observer on Earth. The observation was encoded in the so called

Hubble’s law, which is simply given by

ur = H0r, (2.8)

where the proportionality constant at the present time, H(t0) = H0, is called the Hubble

constant. As we have shown in the previous section, one can end up to the same relation

just by considering the assumptions of the cosmological principle and by using the ap-

propriate metric (i.e. FLRW metric). Due to isotropy, the radial nature of the recession

velocity is ensured, while homogeneity provides the freedom of choosing the coordinates

of the origin and hence establish the proportional relation between the radial velocity and

comoving distance.

The observational results of Hubble showed that the constant H0 does not have an

arbitrary sign but it is a positive one, providing the proof of an expanding Universe. The

recession velocity must be understood not as the velocity of a galaxy that moves in space-

time away from us in the radial direction due to the effect of some force field, but rather

than as the velocity inherited to the galaxy due to the expansion of space-time itself.

In other words galaxies are objects at rest in an expanding Universe. The pedagogical

analogy between a raisin bread and the Universe, where raisins play role of galaxies, is

most intuitively.

The value of the expansion rate as incorporated in the Hubble constant at present

time, after parametrizing it by means of a pure number h, H0 = 100h km/s
Mpc ), can only be
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measured by experiments. The tightest constraint up to date was given by the Planck

CMB satellite (Planck Collaboration et al, 2016b):

h = 0.6774±0.0046, (2.9)

at 68% confidence level confidence level. This will be the fiducial value for the Hubble

constant used throughout this thesis. Comparing Eq. (2.6) with the Hubble’s law we can

derive a more general form for the Hubble flow, where the Hubble parameter is at any

given time

H(t) =
ȧ

a
, (2.10)

where the dot denotes a derivative with respect to the proper time. The Hubble time is

defined as the inverse of the Hubble parameter as:

tH =
1

H0
= 14.7Gyr, (2.11)

where it is a rough estimate of the age of the Universe, since it is the age it would have

if the expansion was linear and didn’t vary. However, this is not the case and the current

age of the Universe is, t0 = 13.799 ± 0.021Gyr (Planck Collaboration et al, 2016b). This

is derived after integrating dt = da/(aH(t)) [Eq. (2.10) ]. Nevertheless, the Hubble age is

a good proxy of the current age of the Universe.

Hubble flow will Doppler shift the radiation wavelength, λ0, of a luminous object

observed at present time with respect to the wavelength, λe, at emission time. The

observed shift will be towards the red part of the spectrum, due to the movement of the

source with the expansion of the Universe. This can be taken into account by defining a

new variable related to the scale factor, which is a direct observable. The redshift is given

by:
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z =
λ0−λe

λe
=

a0

a(t)
−1. (2.12)

From the definition of the scale factor, the redshift at present time is z = 0. After taking

into account the normalization of the scale factor, we can get the following simplified

relation, a(t) = 1/(1 + z). The expansion redshift can be measured directly from the

electromagnetic spectrum of a source that moves with the Hubble flow, rendering it a

very useful quantity, since it can be directly related to the comoving distance of the

object. Recent spectroscopic galaxy surveys, like 2DF (Colless et al, 2001), SDSS (York

et al, 2000) and BOSS (Dawson et al, 2013), have provided a plethora of accurate redshift

measurements, allowing us to gain a full 3D information on the distribution of luminous

matter.

2.2.3 Cosmic distances

In Sec. 2.2.1 we commented on our inability to measure the proper distances of objects,

since the emitted light takes a finite amount of time to reach to us and hence we cannot

know the proper time of the travelling light. However we can define other distances that,

in principle, can be related to observables. The light emitted by distant galaxies at a time

te < t0 is propagated along the null geodesic (ds2 = 0) in a space-time described by the

FLRW metric. After choosing appropriately the origin coordinates3 (dθ = 0, dφ = 0) we

can write Eq. (2.2) as:

c
∫ t0

te

dt

a(t)
=
∫ r

0

dr√
1−Kr2

= dc. (2.13)

The comoving distance does not change with time by definition, therefore two photons

that are emitted with a small time difference (te and te +dte) will cover the same comoving

distance. This means that the quantity dt/a(t) is conserved along the light cone. Using

3The isotropy of the Universe makes the choice of the origin coordinates (θ0,φ0) irrelevant.
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the relation between redshift and scale factor (i.e. dz = −da/a2), as well as Eq. (2.10),

we can derive a relation between the comoving distance and a measured variable (i.e.

redshift)

dc(z) = c
∫ z

0

dz

H(z)
=

c

H0

∫ z

0

dz

E(z)
, (2.14)

where E(z) = H(z)/H0 (Peebles, 1980). This relation show that the comoving distance of

an object depends on the expansion history of the Universe, as governed by H(z), between

the emission and observation time. Taylor expanding the integral
∫

dz/E(z) around z = 0

we can get a simplified relation between redshift and comoving distance for z≪ 1

dc ≃
c

H0
z. (2.15)

An other important distance in cosmology is the angular diameter distance, dA which

is defined as

dA =
∆x

∆θ
, (2.16)

where ∆x is the physical size of an object transverse to the line-of-sight and ∆θ is its

angular size measured in radians. In an FLRW space-time the object lies on the surface

of a sphere with the observer in the centre and a radius the size of comoving distance.

Therefore the size ∆x at time t is given by (Weinberg, 1972; Peebles, 1993)

∆x = a(t)fK(dc)∆θ⇒

dA =
fK(dc)

1+z
, (2.17)

where the function fK(x) is defined, after using the relation between proper and comoving

distance [Eq. (2.5) ], as:
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fK(x) =





1√
K

sin(
√

Kx) K > 0

x K = 0

1√
|K|

sin(
√
|K|x) K < 0

, (2.18)

where fK(dc) is denoted in the literature as the transverse comoving distance (Hogg,

1999).

2.2.4 Cosmological horizons

The Hubble radius can be defined as the distance light travels in a Hubble time, along

a straight line and inside a flat space-time. It is given by:

dH(t) =
c

H(t)
, (2.19)

where we have used the Hubble law at an arbitrary time t to derive it. It defines a

boundary between particles moving with a speed smaller than light’s and those with a

super-luminar motion. The latter can acquire such velocities due to the Hubble flow

without violating special relativity. An object outside the Hubble radius is not able to

interact with those that are inside, defining a sphere of causality. For a slow expansion,

an increasing number of regions will be able to be in causal contact, while in the case of

an accelerating expansion two regions that are separated with a distance larger than the

Hubble radius they will never be in a causal relation from now on. Due to the causal

nature of the Hubble radius, it is often referred as a horizon, without though being one

due to its comoving properties. A comoving horizon can be also defined by dividing dH

with the scale factor (i.e. dH,c = dH/a(t)).

The maximum comoving spatial distance travelled by a particle/photon from a time

tmin in the past till now defines the particle horizon
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dph = c
∫ t0

tmin

dt

a(t)
. (2.20)

Setting tmin to the time of the last scattering, which is the time the Universe became

transparent to light, the particle horizon represents the size of the visible Universe and

thus defines the furthest distance in the past from which we can acquire information.

The particle horizon defers from the Hubble horizon, since it is not simply the age of

the universe times the speed of light but the product between the speed of light and the

conformal time.

Finally the cosmic event horizon is the largest comoving distance a particle will travel

from the present time till it reaches an observer in the future and it is given by:

deh = c
∫ tmax

t0

dt

a(t)
. (2.21)

The particle and event horizons have the same integrands in their definitions, where the

integration limits are what differs between the two. This indicates that they correspond

to different conformal times, i.e. particle horizon resides in our past light cone while the

event horizon lies on our future one.

2.3 Dynamics of the expansion

The dynamics of the Universe is encoded in the equations of motion (EOM) of the

scale factor a(t). Its time evolution can be derived from the solution of the Einstein field

equations:

Rµν −
1

2
gµν R ≡ Gµν = 8π G Tµν +Λgµν , (2.22)

where G is Newton’s gravitational constant, Gµν is the Einstein tensor, Tµν is the total

energy-momentum tensor for all the components in the Universe (i.e. a sum over the
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energy-momentum tensors of baryons, photons, neutrinos, cold dark matter and dark

energy) and Λ is the cosmological constant. The form of the field equation are derived

assuming c = 1. For the rest of this section we will use these units. The left hand side

of the Einstein equations [Eq. (2.22) ] describes the geometry of the Universe, while the

right hand side the energy and momenta of the different species inside it.

The Ricci tensor Rµν is constructed by summing over repeated indices (i.e. contrac-

tion) of the four-rank Riemann tensor and is defined as:

Rµν =
∂Γα

µν

∂xα
− ∂Γα

µα

∂xν
+ Γα

βα Γβ
µν − Γα

βν Γβ
µα , (2.23)

where the affine connection is given by

Γµ
αβ =

gµν

2

(
∂gαν

∂xβ
+

∂gβν

∂xα
− ∂gαβ

∂xν

)
. (2.24)

The scalar curvature (i.e. Ricci scalar) is given by the contraction of the Ricci tensor as:

R = gµνRµν . (2.25)

For a isotropic and homogeneous Universe described by the FLRW metric in comoving

coordinates, the only non-zero components of the affine connection are:

Γ0
ij = aȧγij , Γi

0j = Γi
j0 = Hδi

j , Γ1
11 =

Kr

1−Kr2
, Γ1

22 =−r(1−Kr2), (2.26)

Γ1
33 =−r(1−Kr2)sin2 θ, Γ2

33 =−sinθ cosθ, (2.27)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 = cotθ. (2.28)

The non-zero component of the Ricci tensor and Ricci scalar are respectively

R00 =−3
ä

a
, R0i = Ri0 = 0, Rij = (aä+2aȧ2 +2K)γij , (2.29)

R =−6(
ä

a
+H2 +

K

a2
), (2.30)
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where δµ
ν is the Kronecker’s delta (δµ

ν = 1 for µ = ν and δµ
ν = 0 for µ 6= ν). The Latin

indexes i, j run from 1 to 3 while the Greek µ, ν from 0 to 3.

The total energy-momentum tensor must have a form dictated by the symmetries of

the FLRW metric. This means that Tµν must be diagonal in the rest frame of the fluid

(i.e. shearing terms, generated e.g. by viscosity, are zero). The isotropy of space-time

imposes the requirement that the spatial part of the tensor must be equal. The simplest

case satisfying these conditions is the energy-momentum tensor of a perfect fluid, given

by:

Tµν = (ρ+P )UµUν−Pgµν , (2.31)

where the energy density ρ and pressure P are time-dependent quantities in the rest-frame,

while Uµ is the four-velocity relative to the observer. Note that, an imperfect fluid would

also satisfy the symmetries imposed by the FLRW metric (Kolb and Turner, 1990). The

above relation can be reduced in the rest frame4 to T µ
ν = gµαTαν = diag(ρ,−P,−P,−P ),

which is valid for every reference frame because Eq. (2.31) is a tensor equation. The

equation of state (i.e. the pressure/density ratio) of a perfect fluid is characterized by a

dimensionless constant:

wi =
Pi

ρi
. (2.32)

The value of the parameter w depends on the type of fluid we consider. In the case of

“matter”, which consists of all non-relativistic species (|P | ≪ ρ) in the cosmic fluid, i.e.

baryonic matter and cold dark matter, w = 0 and hence P = 0. For relativistic components,

e.g. photons, neutrinos, etc., where the energy density is dominated by kinetic energy,

the equation of state is P = 1
3ρ (w = 1/3). Today, the Universe seems to be dominated by

a negative pressure component with P = −ρ (w = −1), called dark energy, which drives

the observed accelerated expansion.

4For a comoving observer the four-velocity is Uµ = (1,0,0,0).
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2.3.1 Friedmann equation

The time-time component of the Einstein equations [Eq. (2.22) ] is the only equation

needed to understand the time evolution of the scale factor. The Friedmann equation is

given by:

R00−
1

2
g00R = 8πGT00 +Λg00 ⇒

H2 =
8πG

3
ρ− K

a2
, (2.33)

where ρ is the total energy density (ρ =
∑

i ρi) of all the species in the Universe. The

spatial part of the Einstein equations will give the acceleration equation:

ä

a
=−4πG

3
(ρ+3P ), (2.34)

where P is again the total pressure coming from all the components in the Universe.

The cosmological constant term in the Friedmann equation [Eq. (2.33) ] has been

absorbed in the total energy density (ρΛ = Λ
8πG) considering it as a separate compo-

nent. This can be also done in the Einstein equations by breaking the total energy-

momentum tensor into a “matter” and Λ component, Tµν = T
(M)
µν +T

(Λ)
µν = T

(M)
µν +ρΛgµν .

The cosmological constant component behaves like a species with negative pressure (i.e.

PΛ = −ρΛ, wΛ = −1), therefore we can identify the nature of dark energy with that of

a cosmological constant. In the absence of matter, the vacuum energy (i.e. the energy

of empty space) can reproduce the effect of a cosmological constant, according to quan-

tum field theory. The vacuum energy cannot have a preferred direction and its energy-

momentum tensor must be Lorentz invariant, therefore it has a form, T vac
µν = ρvacgµν . The

energy-momentum tensor [Eq. (2.31) ] takes the form of a perfect fluid, since vacuum looks

like one, and hence the equation of state of vacuum is the same with that of a negative

pressure fluid, i.e. Pvac =−ρvac. The concept of cosmological constant is interchangeable

with the vacuum energy (ρvac = ρΛ = Λ
8πG). Unfortunately the predicted energy density
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of the vacuum, coming from quantum field theory, is completely off from the observed

density of a cosmological constant (ρvac/ρΛ = 10120). The dark energy sector is considered

throughout this thesis to be the cosmological constant with a fixed pressure/density ratio,

accepting the predictions of the Lambda Cold Dark Matter (ΛCDM) framework.

For a flat Universe (K = 0) we can define a critical density as

ρcrit(t) =
3H2

8πG
, (2.35)

The present time value of the critical density is

ρcrit,0 = 1.878h2×10−26 kg

m3
= 2.775h−1×1011 M⊙

(Mpc/h)3
, (2.36)

where the index ”0” denotes the value of the parameter in the present time t = t0. Note

that, in general the critical density depends on time. We can use the critical density to

define a dimensionless density parameter as

Ωα(t) =
ρα,(t)

ρcrit(t)
, (2.37)

where α denotes the different species. The sum of all density parameters for all species

at any time t is equal to

Ω(t)−1 =
K

a2H2
, (2.38)

where the contribution of the spatial curvature can be treated as a fictitious component

with an energy density ρK = − 3K
8πGa2 and a density parameter defined as, ΩK = − K

a2H2 .

For a flat Universe the total density parameter is equal to unity (i.e. Ωtot = 1), while for

K > 0 and K < 0 it is Ωtot > 1 and Ωtot < 1 respectively.

The Friedmann equation can be expressed with respect to the density parameters as:

H2(t) = H2
0

(
ΩR,0a−4 +Ωm,0a−3 +ΩK,0a−2 +ΩΛ,0

)
. (2.39)
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Writing this relation with respect to redshift we can get the expression for E(z) in Eq.

(2.14). In this thesis we will use the values for the density parameters as measured by

(Planck Collaboration et al, 2016b)

Ωb,0 h2 = 0.02230 ± 0.00014 , Ωc,0 h2 = 0.1188 ± 0.001 , (2.40)

where the subscripts c and b denotes cthe cold dark matter and baryons respectively.

In addition, we define the critical density of matter as the sum of the two, i.e. Ωm,0 =

Ωb,0 +Ωc,0. The critical density of dakr energy is then given by ΩΛ,0 = 1−ΩM,0 = 0,6925

with wΛ =−1, while we consider a perfectly flat Universe (ΩK = 0). Moreover, we ignore

the photon and neutrino contributions (i.e. Ωγ = 0, Ων = 0).

2.3.2 Continuity equation

The conservation laws demand that the covariant derivative (denoted with a semi-

column ;) of the energy-momentum tensor must be equal to zero:

T µ
ν;µ =

∂T µ
ν

∂xµ
+Γµ

αµT α
ν −Γα

νµT µ
α . (2.41)

Only the ν = 0 equation is meaningful, due to the isotropy of the Universe, giving the

continuity equation:

ρ̇ = 3
ȧ

a
(ρ+P ) = 0. (2.42)

The above can be derived also from the first law of thermodynamics. After rearranging

the continuity equation, substituting the equation of state for a general species and finally

integrating it, we yield:

ρi ∝ a−3(1+wi), (2.43)
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Component wi ρ(a) a(t)

Non-Relativistic/Matter 0 ∝ a−3 ∝ t2/3

Relativistic/Radiation 1/3 ∝ a−4 ∝ t1/2

Curvature -1/3 ∝ a−2 ∝ t
Cosmological constant -1 ∝ a0 ∝ expHt

Table 2.1 – The energy density and scale factor time evolution.

where we can immediately see that the energy density of cosmological constant/vacuum

is constant with respect to the scale factor. This indicates that it will come to dominate

the Universe at some late time. Using the Friedman equation, together with the above

result, we can get the time evolution of the scale factor:

a(t) = a∗[1+
3

2
(1+w)H∗(t− t∗)]

2
3 (1+wi), (2.44)

where the ”∗ ” subscript denotes the quantity at some initial time and H∗ =
√

8πG/3ρ∗.

The integration constant a∗ is not important and can be normalized to unity (a∗ = a0 = 1).

In the case of cosmological constant we can assume, w =−1+ ε and derive the limit:

lim
w→−1

a(t) = [1+
3

2
εH∗(t− t∗)]−

2
3

ε

= exp[H∗(t− t∗)]∝ eHt. (2.45)

The scale factor in this case is the de Sitter solution (vacuum energy solution of FLRW )

and provides, in the case of cosmological constant, a description for the observed recent

accelerating expansion. A summary of the results of the density and scale factor evolution

can be found in Table 2.1 for all the components.

We can identify immediately two important events during the history of the Universe,

the matter-radiation and the matter-Λ equality. The redshift and scale factor of the

matter-radiation equality can be found, after equating the energy density evolution of the
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two species, to be:

aEQ =
4.15×10−5

Ωmh2
, (2.46)

1+zEQ = 2.4×104Ωmh2. (2.47)

The time of equality can be pushed further to the past (higher redshifts) in the case

of an increasing Ωm, although it must be smaller that the redshift of CMB (z ∼ 1000).

The redshift of equality between matter and cosmological constant can be found to be,

zΛ = 1.26 ,for the values of Ωm,0 and ΩΛ,0 considered here. The event of the cosmological

constant dominance, and hence the accelerating expansion, is very recent in the history

of the Universe.

2.4 The inflationary paradigm

The HBB model besides its great successes (most notable e.g. the black body spectrum

of CMB and and the abundance of light nuclei), does not provide a description for the

initial conditions of the Universe. A set of problems arise from this, listed as follows:

Horizon problem: The observations of CMB temperature spectrum show that at the

time of recombination, the Universe was nearly homogeneous at an impressive precision

(a part over 105 independent of the direction). These inhomogeneities, as we will show in

the next Chapter, are gravitationally unstable and grow with time. This means that the

Universe must have been even more homogeneous in the past. However, at the redshift

of CMB, the size of the particle horizon was roughly one degree on the microwave sky.

How could causally disconnected parts on the sky came to create a CMB which has the

same temperature almost everywhere? Why do we live in a homogeneous Universe, even

though there was no time to create such a characteristic?

Flatness problem: The Universe as observed by CMB is very close to flat. Using Eq.

(2.38), one can see that in the standard HBB model the curvature component is dominated
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at late times, i.e. Ω(t) grows away from unity with time. The Ω = 1 point is an attractor

in the past, therefore in order to get Ω0 ≈ 1 the Universe must have been even more close

to flat in the past. This however, imposes a fine tuning. Thus, a problem arises when

one attempts to explain the near flat observations of present time only from within the

framework of HBB.

Structure problem: Both these problems show the deficiency on the predictability of

the HBB model. However, they can be overcome by assuming homogeneity and flatness

in the initial conditions without giving any explanations. The real problem arises when

one wishes to explain the origin of observable structures, as well as the small anisotropies

observed in the CMB. Naturally, initial density fluctuations can be assumed to be the

seeds for both cases. Nevertheless, their origin cannot be explained from the HBB model.

Cosmic inflation was introduced by Guth (1981) to solve the problems of the standard

HBB model. It is a period of exponential acceleration of the early Universe (∼ 10−34 sec),

before the radiation dominated era. During this epoch, the Universe is dominated by

a scalar field φ, called the inflaton, and its self-interaction potential V(φ) which can be

related to the vacuum energy density of the quantum field. The Universe undergoes a

phase transition while φ slowly rolls down V(φ) from an unstable false-vacuum state, with

high energy density, towards a stable vacuum state, represented by a local minimum at

V(φ0). The slope of the potential must be quite flat so inflation can last enough time to

solve the HBB model problems, without spoiling the successful predictions of the HBB. So

the inflationary era must smoothly reach to an end (graceful exit) and into a Friedmann

expansion stage. The number of inflationary models is large enough (see (Martin et al,

2014) for a review) to give inflation the character of a paradigm. Note that, up to now

there is really no viable alternative.

In this section we will review the main aspects of inflation and the generation of the

initial fluctuations. Details on the technicalities can be found in textbooks like (Kolb and

Turner, 1990; Mukhanov, 2005; Liddle and Lyth, 2000). Finally, we will present the main
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aspects on primordial non-Gausianity, generated from the different inflationary scenarios,

which is one of the most powerful tools to put constraints on the inflationary era.

2.4.1 Early accelerating expansion

A way to solve the horizon problem would be to assume that the different patches on

the sky separated by large distances, and hence unable to communicate, were at some

point in the past in causal contact, i.e. inside the comoving Hubble radius (dH,c = c/(aH)).

This means that, a brief time period in the early Universe, before the radiation domination

(BBN happens during this epoch), could be added in order to decrease sufficiently the

comoving Hubble radius. Following this assumption we get:

d(aH)

dt
= ä > 0 =⇒ ρ+3P < 0, (2.48)

which is nothing more than a de Sitter space. In such case, the singularity observed for

ordinary matter fields (ρ + 3P > 0⇒ ä < 0) in the HBB model does not exist, but it is

approached asymptotically for t→−∞. Therefore, when we state that inflation starts at

t∗, we really mean time t∗ after the HBB singularity. The equation of state of the fluid

that governs the inflationary epoch must have a negative pressure (from Eq. (2.48) we

get w < −1/3). This matches the case of the vacuum described in the previous section,

leading to a treatment similar to a cosmological constant dominated Universe. In fact,

using the second Friedmann equation [Eq. (2.34) ] together with Eq. (2.44) we can get:

H2 + Ḣ > 0, (2.49)

with the exact solutions being:

• Ḣ < 0 =⇒ Ḣ +H2 > 0 =⇒ w = const⇒ a∝ tα, α > 1

• Ḣ = 0 =⇒ H2 > 0 =⇒ w =−1⇒ a∝ eH(t−t∗)



2. The Standard Cosmological Model 26

• Ḣ > 0 =⇒ H2 + Ḣ > 0 =⇒ w <−1⇒ a∝ |t− t∗|−α, α > 0.

The second case is the pure de Sitter phase. For the inflationary models we have−1 < w <−1/3,

where in most of the cases w is close to −1, but never exactly. Therefore, inflation is a

phase close to de Sitter with H ≈ const.

The minimum requirement for solving the horizon problem is that the largest scales

that enter the horizon today must have been inside dH,c during inflation. In other words,

the comoving horizon during inflation must be larger than today. This means that inflation

has a minimum duration that must be satisfied, given by:

dH,c(ti)≥ dH,c(t0) ⇒ a0

ai
(aidH,c(ti))≥H−1

0 ⇒
af

ai

a0

af
H−1

I ≥H−1
0 , (2.50)

where subscripts i and f stand for the initial and final time of the inflationary epoch.

The ratio, N = ln(af /ai), defines the duration of inflation. In order to acquire a nearly

flat Universe today the number of e-folds must be N & 60.

The solution to the flatness problem comes for free. Inflation makes now Ω = 1 an

attractor in the future and therefore whatever is the initial value of K it will always make

the Universe flat after its end 5. This can be seen as follows from the ratio:

Ωf −1

Ωi−1
=

d2
H,c(tf )

d2
H,c(ti)

=
a2(ti)

a2(tf )
≃ e−2N (2.51)

The solution of inflation to the structure problem will be discussed in Sec. 2.4.3.

2.4.2 Dynamics of Inflation

The inflationary scenario solves the problems of standard HBB model by adding a

period of accelerating expansion (close to a de Sitter phase) in the very early Universe.

5Note that this does not mean that inflation changes the value of K, whatever there was before
inflation is still the same now. However, it makes the relative energy density of curvature very small with
respect to the other components.
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This indicates that the kind of fluid that drives inflation must have a negative pressure,

satisfying the equation of state P < ρ/3, and hence it cannot be regular matter or ra-

diation. This resembles the case of a cosmological constant. However, Λ is extremely

small during that period and therefore it cannot be the one driving inflation. Here we

will present the dynamics of the simplest case of the inflationary models, i.e. the single

field slow-roll inflation. The physical mechanism that produces the inflationary phase is

driven by a homogeneous and isotropic scalar quantum field φ, called inflaton, with a

“flat” potential. A scalar field, as we will see, can produce energy densities (e.g. vacuum

state) that mimic those required by the inflationary scenario.

In the simplest case (e.g. neglecting coupling terms with other fields) the dynamics of

a scalar field are governed by the classical Lagrangian, which is written as:

L =
1

2
∂µφ∂νφ−V (φ), (2.52)

where V (φ) is the potential, whose form is depicted in Figure 2.1. The energy-momentum

tensor of such a field is given by:

T φ
µν =−2(∂L/∂gµν)−gµνL ⇒ T φ

µν = φ,µφ,ν +gµν [−1

2
gαβφ,αφ,β−V (φ)]. (2.53)

In order to describe the dynamics of the scalar field, we split it into a homogeneous zero-

order part φ0, describing the background evolution, and a part that describes the first

order quantum fluctuations of the field around φ0

φ(t,x) = φ0(t)+ δφ(t,x). (2.54)

Considering only the background part and equating the energy-momentum tensor of the
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field φ with that of a perfect fluid [Eq. (2.31) ], we can derive:

T 0
0 =−ρφ =−

(
φ̇0

2

2
+V (φ)

)
(2.55)

T i
i = pφδi

j =

(
φ =

φ̇0
2

2
−V (φ)

)
δi

j , (2.56)

where ρφ and pφ are the density and pressure of the scalar field, interpreted as effective

quantities since φ is not a fluid. These equations are for a particle with a kinetic energy

term φ̇0
2
/2, moving in a potential V (φ) with a velocity φ̇, as shown in Figure 2.1. For a

scalar field with a dominating energy density over the kinetic part we get:

1

2
φ̇≪ V (φ) =⇒ pφ ≈−ρφ, (2.57)

where the latter is the desired quasi-de Sitter phase, required for an accelerating early

epoch. We could have reached to the inflationary regime even if we started from different

initial condition (e.g. 1
2 φ̇≫ V (φ)), if we waited long enough time (i.e. inflation is an

attractor). This condition is called the slow-roll and is essential to get an inflationary

mechanism from a scalar field. The Friedmann equation in a period dominated by φ can

be written as:

H2 =
1

3M2
P


 φ̇0

2

2
+V (φ)


 , (2.58)

where the Planck mass is MP = 1/
√

8πG. In the slow-roll case the potential must be flat

(i.e. V (φ) ≈ const.) and the Friedmann equation becomes H2 ≈ const. Combining the

above equation with the fluid equation we can get the EOM for the homogeneous part of

the field φ0

φ̈0 +3Hφ̇0 =−dV

dφ
. (2.59)

In the case of a flat potential the dependence of V and V ′ on φ are very mild and φ̈
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reheating

Figure 2.1 – The inflationary potential over which the scalar field slow-rolls. If it is flat
enough the scalar field satisfies the slow-roll condition and can be treated as a fluid with
negative energy. During this period the Universe is in the accelerating inflationary phase.
The potential must be sufficiently flat so that inflation will last for an adequate amount
of time, solving the problems of the standard model Inflation needs to stop at some point
therefore the field moves towards the local minima where it oscillates around it; this releases the
energy difference, heating the universe (reheating) and creating elementary particles. Source:
Baumann (2009)

is negligible (φ̈≪ 3Hφ̇ → 3Hφ̇ ≃ −V ′). This second condition must be also satisfied

to achieve a sufficient duration of the slow-roll condition. These two conditions give the

required information for the structure of the potential. They can be summarized in the

form of two undimensional slow-roll parameters, defined as:

ε =
M2

P

2

(
V ′

V

)2

≪ 1, (2.60)

η = M2
p

V ′′

V
≪ 1. (2.61)

The first shows the amount of deviation from the de Sitter phase, i.e. the level of “flatness”

of the potential. While the second indicates the point that we reach the attractor phase
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of inflation, where the kinetic term is smaller than the potential and the scalar field drives

inflation. Measuring the values of the slow roll parameters can determine the details of

the physical mechanism behind inflation.

The acceleration equation during the inflationary regime (i.e. ä = aH2(1− ε)) gives

that, the accelerating phase lasts as long as ä > 0←→ ε < 1. For ε = 1 we have the exact

definition for the end of inflation. At this point, the potential stops to be flat enough

and the de Sitter phase ends. Inflaton moves further towards the local minima of the

potential, where it oscillates. Coupling with other fields becomes import at this stage and

hence it decays into elementary particles (reheating). The Universe now moves into an

era of radiation domination and the HBB standard cosmological framework description.

2.4.3 Primordial fluctuations from inflation

Inflation after 35 years is still the most popular paradigm that describes the early

universe; not only does it solve major cosmological problems (Sec. 2.4.1), but it also

explains the production of the primordial density fluctuations that seed the LSS and the

temperature anisotropies we observe in the CMB spectrum. Initially, one of the problems

that inflation tried to solve is that of the unwanted relics of Grand Unified Theories

(GUT). According to the modern theories of Grand Unification, the Universe underwent

many phase transitions, during which spontaneous symmetry breaking occurred. As a

result, unwanted relics can be created. Nevertheless, the existence of an accelerated

expansion period can dilute every topological inhomogeneity.

Inflation, however, can produce perturbations in the primordial density field, through

the quantum fluctuations of the scalar field itself. Quantum fluctuations cannot be wiped

away because new ones will always be generated via Heisenberg’s uncertainty relation. The

cosmological horizon at the time of inflation was very small, therefore the wavelength of

the quantum fluctuations of the scalar field dominating the Universe will exceed it soon,

due to the inflationary expansion, and become classical. Quantum fluctuations will grow
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due to gravitational effects outside the horizon. These perturbations will re-enter the

horizon at later times giving rise to galaxies and the large structures we observe today in

the Universe.

During inflation, the energy density of the inflaton is the dominant one. Therefore,

a fluctuation δφ in the scalar field implies a perturbation in the energy density field.

Moreover, through Einstein’s field equations [Eq. (2.22) ] inflaton fluctuations are coupled

to metric perturbations. Thus, curvature perturbations can be generated and hence a

gravitational potential, which create fluctuations in the density field. To derive the EOM

for the full space-time scalar field of Eq. (2.54), we solve the Einstein equations with the

FLRW during inflation, where the scalar field is the dominant component, and we get:

φ̈+3Hφ̇−∇
2φ

a2
=−V ′(φ), (2.62)

which after substituting the EOM of the background part gives the equations for the

spatial fluctuations of the scalar field:

δ̈φ+3H ˙δφ+
k2

a2
δφ = 0. (2.63)

We can express the fluctuations in Fourier space by following the standard way of quanti-

zation of a scalar field, by promoting them to a rescaled operator (δ̂φ = aδφ) and decom-

posing them into creation and annihilation operators as

δ̂φ(x, τ) =
∫ d3k

(2π)3/2

(
uk(τ)akeikx +u∗

k(τ)a†
ke−ikx

)
, (2.64)

where uk(τ) is the mode function of the scalar fluctuations (i.e. uk(τ) = aδφk). The

annihilation and creation operators follow the commutator relations

[ak,ak′ ] = [a†
k,a†

k′ ] = 0, [ak,a†
k′ ] = δ(3)(k−k′). (2.65)

The EOM for the modes uk(τ), after using Eq. (2.63), are
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u′′
k(τ)+

(
k2− a′′

a
+

∂2V (φ)

∂φ2

)
uk(τ) = 0, (2.66)

where for simplicity we can assume a massless scalar field, i.e. m2
φ = V (φ)

φ = 0, and the

primes denote partial derivation with respect to τ . The size of the horizon is proportional

to the time t; thus, for t→ 0 the size will decrease very fast. Eventually the modes,

which depend on the scale factor, will have superhorizon size. Therefore, we can divide

the solutions of the above equation into two cases, superhorizon and subhorizon regimes.

The horizon crossing is for scales k = αH, which are simply the modes with a size of the

comoving horizon at that time. For subhorizon scales, k≫ aH ←→ k2≫ a′′/a, the mass

of the field is negligible; thus the fluctuations are described by ordinary plane waves. In

the case of superhorizon scales k2≪ a′′/a, we have a growing and decreasing solution with

respect to the scale factor. After matching the two at horizon crossing, we can get the

amplitude of the quantum fluctuations as:

|δφk|=
δ̂φ

a
=

H√
2k3

, (2.67)

which is a constant. For subhorizon scales, the amplitude of the fluctuations is oscillatory

and decreasing due to the presence of the scale factor, while for superhorizon scales, the

amplitude is constant (“frozen”). Knowing the amplitude of the fluctuations of the scalar

field on superhorizon scales, we can define their power spectrum (see Sec. 3.5.2) as

〈δφkδφ∗
k′〉=

|uk|2
a2

δ(3)(k−k′). (2.68)

During the quasi-de Sitter phase of inflation, the scalar fluctuations are related to the

energy density fluctuations of the field through the Friedmann equation (H2 = 8πG/3φφ≃
8πGV (φ)), as

δρφ ≃ V ′(φ)δφ =−3Hφ̇δφ. (2.69)
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Each patch of the Universe of size H−1 will expand during the acceleration phase of

inflation with a slightly different rate from one an other. This is due to the fact that,

quantum fluctuations of the scalar field affect H and therefore the friction term in the

EOM [Eq. (2.63) ]. This means that, each patch will go through the same history of

expansion but at different times. This time shift (δt =−δφ
φ̇

) can be linked to the difference

of the e-fold numbers through the Friedmann and continuity equations as:

δN ≡ ζ = Hδt =−H
δφ

φ̇0
=−Ψ−H

δρ

ρ̇
, (2.70)

where ζ is the curvature adiabatic perturbations 6 on a uniform energy density hypersur-

face and ρ is the energy density of the cosmic fluid. The last equality comes from the

perturbed FLRW metric, where the field Ψ is the scalar fluctuations of the spatial part.

In the absence of anisotropic stress it plays the role of the gravitational potential. Since ζ

is a gauge invariant quantity, we can always choose a gauge where the field Ψ disappears

(e.g. in the spatially flat gauge, Ψ = 0). The curvature perturbations follow the behaviour

of the inflaton fluctuations, meaning that they will be constant at superhorizon scales.

When they enter again inside the horizon, they keep memory from their inflationary pe-

riod, seeding the density fluctuations that will eventually create the observed LSS and the

CMB anisotropies. A proper derivation of the above equation would require to take into

account the perturbed cosmological geometry, since the scalar fluctuation must coexist

with the metric perturbations (see (Langlois, 2010) for a review).

The amplitude of the scalar fluctuations can be characterized in a statistical way

through their two point second moment (see Sec. 3.5.2 for a definition), which is defined

in Fourier space as:

〈δφk1
δφ∗

k2
〉= (2π)3|δφk1

|2δD (k1−k2) , (2.71)

6Adiabatic perturbations are induced by a common local time shift of all the background quantities
(Langlois, 2010).
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where the diagonal part of the correlator has the only non-zero terms, due to the anni-

hilation operators. The dimension-less power spectrum (i.e. Pφ(k) = Pφ(k)(k3/2π2)) of

the scalar perturbations will be given by:

Pφ(k) = |δφk|2 =
(

H

2π

)2

, (2.72)

which is a scale independent spectrum. Linking this result to the the curvature pertur-

bations, we can get their power spectrum at horizon exit as:

Pζ(k) =

(
H2

2πφ̇

)∣∣∣∣∣
tH(k)

. (2.73)

For a pure de Sitter phase (H = const.) this is again a scale invariant power spectrum.

Note that, during the acceleration phase of inflation, the Universe is in a quasi-de Sitter

phase which means that H is almost constant. Thus, the primordial curvature power

spectrum will exhibit a scale dependence originating from the time of horizon exit. We can

quantify the dimensionless curvature power spectrum in the following way to incorporate

this effect:

Pζ(k) = ∆2
ζ

(
k

kpiv

)ns−1

, (2.74)

where kpiv is a scale of reference called the pivot scale. In this thesis we consider kpiv =

0.002Mpc−1. Moreover, ∆2
ζ ≡ H2

2πφ̇
is the amplitude of the perturbations and its value, as

measured by (Planck Collaboration et al, 2016b), is:

109∆2
ζ = 2.142 ± 0.049, (2.75)

at 68% confidence level. The scalar spectral index ns is defined as:

ns−1 =
d lnPζ(k)

d lnk
. (2.76)
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The scale invariance of the power spectrum can be now translated into the case where

ns = 1 (the Harrison-Zeldovich power spectrum), which refers to a purely de Sitter phase.

Nevertheless, since during inflation we are close to de Sitter, we expect that the generated

power spectrum will have a spectral index close to unity, but not exact. The results from

Planck (Planck Collaboration et al, 2016b) on ns, which will be used here through out,

verify this prediction,

ns = 0.9667 ± 0.004, (2.77)

at 68% confidence level. The deviation from unity is due to the dynamical process of

inflation. Even if a kind of “symmetry” demanded ns = 1, due to the dynamical nature

the value would have deviated from unity at some point. The amount of departure from

unity can be related to the slow-roll parameters, and hence to the shape of the inflationary

potential, through (Bartolo et al, 2004a):

ns−1 = 2η−6ε. (2.78)

Therefore, measuring the scalar spectral index can give us information on the dynamical

details during the inflationary epoch.

2.4.4 Primordial non-Gaussianity

In the simplest inflationary scenarios, i.e. single field slow-roll inflation with canonic

kinetic terms and vacuum initial states, the predicted primordial curvature fluctuations

are Gaussian (or at least very close to that) because of the quadratic nature of the action.

To be more precise, the standard inflation predicts a small amount of primordial non-

Gaussianity (PNG) in order to be detectable (Acquaviva et al, 2003; Maldacena, 2003;

Creminelli, 2003). Violating at least one of the conditions of the standard inflationary

model, will generate a deviation from the Gaussian initial conditions (Komatsu et al,
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2009). The presence of primordial non-Gaussianity generates a non-zero initial bispectrum

(i.e. a three-point correlator, see Sec. 3.5.3), which has a maximum signal in a distinct

triangle configuration for a different violating condition.

Models that violate the single-field condition, e.g. multi-field inflation (Polarski and

Starobinsky, 1994; Mukhanov and Steinhardt, 1998) or the curvaton scenario (Lyth and

Wands, 2002), have been shown to generate large primordial non-Gaussinaity (Bartolo

et al, 2004b; Sasaki et al, 2006; Rigopoulos et al, 2006; Byrnes et al, 2008, 2009; Byrnes

and Tasinato, 2009; Byrnes and Choi, 2010). The generated bispectrum [Eq. (2.84) ]

takes a maximum value in the squeezed configuration (k3 ≪ k2 ≈ k1). Scenarios with

non-canonical kinetic terms (i.e. higher derivative kinetic terms) or additional field inter-

actions condition produce a significant amount of non-Gaussianity (Linde and Mukhanov,

1997; Zaldarriaga, 2004; Dvali et al, 2004; Chen et al, 2007). Primordial matter bispec-

trum, from these kind of inflationary models [Eq. (2.86) ], is maximized for wave vectors

of approximately the same scale (i.e. equilateral configurations k1 ≈ k2 ≈ k3). A detection

would imply enhancement of the field interactions at horizon exit.

In the standard inflation models, as long as field theory applies, the initial quantum

state of the scalar fields has to be specified, which will also be the initial state of their

perturbations. In quantum field theory in curved space-time these states on the the back-

ground de Sitter space are called Bunch-Davies vacuum. Besides the use of the adiabatic

Bunch-Davies ground state, other excitations can exist due to boundary conditions or

low scales of new physics. Violating this condition for the initial state of the quantum

fluctuations generated during inflation, can produce PNG (Alishahiha et al, 2004) and

a bispectrum with a maximum signal in the folded shapes (k3 ≈ k2 ≈ 2k3). A detection

would show that, the initial quantum state of the scalar field is not the vacuum state.

More complex shapes of PNG can be generated during inflation, if the slow-roll condi-

tion is not satisfied. Models like the ekpyrotic inflation (Khoury et al, 2001; Buchbinder

et al, 2008; Lehners and Steinhardt, 2008; Lehners and Steinhardt, 2008; Lehners, 2010)
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and vector field populated inflation (Yokoyama and Soda, 2008; Karciauskas et al, 2009;

Dimastrogiovanni et al, 2010) have been shown to also produce PNG. For a review on

the different inflationary models and the production of PNG from them, can be found in

(Martin et al, 2014) and (Bartolo et al, 2004a) respectively.

All these different types of inflation models violate one of the previous conditions

and generate large PNG. Therefore, in order to distinguish between all these different

mechanisms, we have to gain additional information encompassed in the non-Gaussian

part of the primordial perturbations. For a Gaussian random field (see Sec. 3.5.1), all the

information for the primordial density field is hold by the power spectrum. This is true

due to Wick’s theorem (Sec. 3.5.1), which states that all higher moments of a Gaussian

random field are just products of the two point correlator. This is not the case, though,

for a general random fields. In this thesis, we will manly focus on the first higher order

moment, the bispectrum, which is the Fourier transformation of the three point correlation

function, and is defined as:

〈ζk1ζk2ζk3 〉= (2π)3δD (k1 +k2 +k3)Bζ(k1,k2,k3), (2.79)

where the Dirac delta is present to ensure the conservation of momentum, coming from

the translation invariance. Bispectrum, therefore, correlates fluctuations at three points

in Fourier space forming a triangle with the three wavevector7. It is clear that, the amount

of information the bispectrum holds is far greater than that of the power spectrum, which

correlates only two points. The number of shapes for the forming triangle is large and the

different inflation models predict PNG that picks at different configurations. The Fourier

representation of the curvature fluctuations, in the above equation, follow the convention:

ζk =
∫ d3x

(2π)3
ζ(x)e−ikx, (2.80)

7Throughout this work we will use k3 ≤ k2 ≤ k1 between the modulus of modes in the triangle
condition.
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which will be the one used through out here. The curvature perturbations can be related

to the gravitational potential of the perturbed FLRW metric, for components with a

barotropic equation of state, as:

Φk =
3+3w

5+3w
ζk, (2.81)

where Φ is the Bardeen gravitational potential, which is a gauge-invariant quantity. The

Bardeen potential can be reduced to the usual Newtonian gravitational potential in the

conformal Newtonian gauge (i.e. absence of anisotropic stress) for sub-Hubble scales, up

to a minus sign. The choice of Newtonian gauge is ideal for the study of LSS, since it

is unique for perturbations decaying at spatial infinity. For a mode that re-enters the

horizon at matter domination era (w = 0), the above equation reduces to Φk = 3/5ζk. In

this case, the primordial gravitational potential power spectrum will be:

PΦ(k) =
9

25
2π2

∆2
ζ

k3

(
k

kpiv

)ns−1

, (2.82)

The most studied model of PNG is the local (Salopek and Bond, 1990; Gangui et al,

1994; Verde et al, 2000; Komatsu and Spergel, 2001), where as we discussed before has

a bispectrum with a maximum signal in the squeezed configurations. The importance

of this shape lies in the fact that, for a single field inflation, regardless of whether or

not the remaining conditions of standard inflation are satisfied, the predicted primordial

bispectrum is the one in the squeezed limit (Creminelli and Zaldarriaga, 2004; Chen et al,

2007; Cheung et al, 2008; Ganc and Komatsu, 2010). Therefore, a detection of a PNG

signal of this kind would rule out all single field models (Creminelli and Zaldarriaga,

2004). In the squeezed configuration we can write the primordial gravitational potential

in terms of an auxiliary Gaussian random field as a Taylor expansion in real space

Φ(x) = ΦG(x)+f local
NL (Φ2

G(x)−〈Φ2
G(x)〉)+ . . . , (2.83)



2. The Standard Cosmological Model 39

where ΦG is the Gaussian part and the dimensionless constant f loc
NL quantifies the amount

of departure from primordial Gaussianity at this first order. The one-point correlator

〈Φ2
G(x)〉 ensures a zero mean value for the field ΦG, as it is demanded by the relation

between curvature and potential. The series can be truncated at a finite order N , intro-

ducing additional terms of even momenta (odd moments vanish due to the Gaussianity

of ΦG) of the field ΦG.

The form of Eq. (2.83) implies that, the primordial potential Φ(x) random field obeys

non-Gaussian statistics for f loc
NL 6= 0, even if the primordial scalar fluctuations are Gaussian.

This can be seen by deriving its higher order correlators, which will be now non-zero

[e.g. Eq. (2.84) ]. The Fourier space version of Eq. (2.83) can be formulated as Φ(k) =

Φ(1)(k) + f loc
NLΦ(2)(k), where the first term is the Gaussian part of the field and Φ(2)(k)

is the second-order non-Gaussian part. The bispectrum of the primordial gravitational

potential can be written as

Bloc
Φ (k1,k2,k3) =2f loc

NL(PΦ(k1)PΦ(k2)+PΦ(k2)PΦ(k3)

+PΦ(k3)PΦ(k1)). (2.84)

Ref. (Creminelli and Zaldarriaga, 2004) proposed the so called consistency relation, which

gives the primordial bispectrum of the curvature perturbations of all single field inflation-

ary models in the squeezed limit, regardless of whether or not the rest of the conditions

are satisfied, as:

Bζ(k1,k2,k3→ 0)→ (1−ns)Pζ(k1)Pζ(k2). (2.85)

Taking into account the values of the spectral index shown in the previous section, we see

that the primordial non-Gaussian signal of the local type predicted by single field models

is very small. Any detection of this kind of bispectrum, larger than what is predicted

from the above, would rule out all single field inflationary models.
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The primordial bispectrum of the equilateral type, as produced by inflation, has the

form (Creminelli et al, 2006)

Bequil
Φ (k1,k2,k3) = 6f eq

NL(−(PΦ(k1)PΦ(k2)+2cyc.)

−2(PΦ(k1)PΦ(k2)PΦ(k3))2/3

+(P
1/3
Φ (k1)P

2/3
Φ (k2)PΦ(k3)+5perm)). (2.86)

It is easy to see that, the signal of Bequil
Φ is maximum for the equilateral template (i.e.

k1 ≈ k2 ≈ k3). An additional shape that we would like to test here is the one nearly

orthogonal to the local and equilateral cases. Its initial bispectrum is given by (Senatore

et al, 2010)

Borth
Φ (k1,k2,k3) = 6forth

NL (−3(PΦ(k1)PΦ(k2)+2cyc.)

−8(PΦ(k1)PΦ(k2)PΦ(k3))2/3

+3(P
1/3
Φ (k1)P

2/3
Φ (k2)PΦ(k3)+5perm)). (2.87)

Higher moments to the bispectrum can exist, in the case of PNG, although the com-

plexity of their numerical evaluation increases dramatically. The first one beyond the

three point correlator is the trispectrum, which correlates four points and its values de-

pends on the closed quadrilateral formed by the modes. For the gravitational potential it

is defined as follows:

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉= (2π)3δD(k1234)TΦ(k1,k2,k3,k4), (2.88)

In order to use non-Gaussianities as a probe of the early Universe, and more precisely

for the aspects of inflation, we need to measure the shape of the primordial bispectrum

and the magnitude of its signal (i.e. constraining the fNL parameter). Mainly, there are

two ways to get information about the perturbations in the early universe, from the CMB

anisotropies and from the abundance and clustering of the LSS. The tightest constraints
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up to now come from CMB, where Planck Collaboration et al (2016a) measured for the

three shapes considered here at 68% confidence level:

f loc
NL = 0.8 ± 5, (2.89)

f eq
NL =−4 ± 43, (2.90)

forth
NL =−26 ± 21, (2.91)

while for the higher order parameter in the local tripsectrum the 68% confidence level

constraints are:

gNL
loc = (−9 ± 7.7)×104. (2.92)

The constraints seem tight, especially in the local case, however they are far from excluding

PNG.

The importance of determining and measuring primordial non-Gaussianities is tremen-

dous. Inflation is the dominant theory that describes this period, but the variety of models

is quite large. The detection of non-Gaussianities can provide a way to distinguish be-

tween the different classes of inflationary models and eliminate those that don’t predict

such amount of deviation from the exact Gaussian distribution. Each inflationary model

leaves a unique imprint, determining the shape of the bispectrum and trispectrum. The

detection of a non-Gaussian signal through the CMB anisotropies, LSS clustering, gravita-

tional lensing, the abundance of galaxies and the Lyman-a forest can give the information

needed, in order to understand the physics of the early Universe.
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Chapter 3
Cosmological

Perturbation Theory

3.1 Introduction

One of the most important quests of cosmology is to understand the large scale struc-

tures seen in the Universe. The current prevailing explanation of their origin is that they

are created from small fluctuations of the density field, which in turn exhibit a growth in

amplitude due to gravitational instabilities. These initial perturbations can be generated

naturally, from within the framework of inflation (Sec. 2.4.3), from quantum fluctuations

that grow to super-horizon scales. On their re-entrance, they are induced in the dark

matter field, which dominates the Universe during the period of LSS formation. Regular

matter, i.e. baryons, is trapped inside the gravitational potential wells of the dark matter

density fluctuations. In turn due to gravitational instabilities, they collapse and cool in

order to form the observed galaxies.

Understanding the dynamical evolution of the density and velocity fields of matter

fluctuations, is the purpose of standard cosmological Perturbation Theory (PT). A per-

turbative approach is well suited to describe the dynamics of the gravitational instabilities

at large scales, where the density fluctuations are small enough. In the PT framework a

valid assumption is made, that gravity is the sole source of structure formation in the large

scale regime. This is no longer true at smaller scales, where non-gravitational effects can

affect the distribution of luminous matter. Furthermore, the non-linear nature of grav-

itational evolution will eventually bring an end to the predictive power of perturbation

43
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theory. In the small scale regime (kNL(z = 0) . 0.24h/Mpc for the reference cosmology),

where non-linearities are strong and non-perturbative effects dominate the dynamics, any

kind of perturbative approach would breaks down. There is though a regime, i.e. quasi

non-linear scales, where higher-order corrections to the linear PT can adequately describe

the non-linear evolution of matter. The main assumption under which PT operates are:

• In the regime of large scales (valid regime of PT) baryonic pressure is neglected, i.e.

matter is cold. Cold dark matter (CDM) and baryons are treated as a presureless

single field.

• The description is restrained in scales much smaller than Hubble radius (k≫ aH).

Since matter is non relativistic (υpec ≪ c), the Newtonian fluid equations can be

used to describe the evolution of the matter field.

In this chapter we will present the main results of Standard Perturbation Theory (SPT)

(Eulerian and Lagrangian framework), up to the scales it is valid, as well as outline the

predictions of Renormalized Perturbation theory (RPT) (Crocce and Scoccimarro, 2006b)

and in particular the MPTbreeze formalism (Bernardeau et al, 2008; Crocce et al, 2012).

For the SPT framework, the reader is referred to the classic review of (Bernardeau et al,

2002) and references within. In addition, we will describe the statistical tools needed to

match the theoretical description with observations, that swarm modern cosmology.

3.2 Eulerian Perturbation Theory

The dynamics of a single component Newtonian fluid, as is the one assumed in SPT,

can be characterized only by its over-density (δ ≡ ρ/ρ−1) and its peculiar velocity fields

(u = dx/dτ). It is just a matter of redefining these quantities to incorporate the expansion

of the Universe. The position of the particles will be set in the comoving coordinates

(r = a(t)x) and the evolution will be described with respect to the conformal time τ . In
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the pressureless fluid approximation the continuity, Euler1 and Poisson equations are in

comoving coordinates:

∂δ(x, τ)

∂τ
+∇[(1+ δ(x, τ))u] = 0, (3.1)

∂u(x, τ)

∂τ
+Hu +(u∇)u = ∇Φ, (3.2)

∇
2Φ = 4πa2ρ(τ)δ(x, τ), (3.3)

where the conformal Hubble rate is given as H = aH and Φ is the gravitational potential.

These equations are non-linear, since all the above quantities are non-linear fluctuations.

In addition, it is a closed system of equations, since we have used the perfect fluid approx-

imation. This implies that, the form of these equations is only valid in the ΛCDM model

or any other model that is build under the perfect fluid assumption. The price to pay for

this choice is that we assume perfect knowledge of the density and velocity fields. Never-

theless, the prefect fluid approximation breaks down on small scales and with it the SPT

description. Furthermore, we have made the assumption that the vorticity (i.e. ∇×u)

can be neglected. This is valid at linear scales, where expansion prevents irrotational

characteristics in the fluid, as long as the stress tensor σij ≈ 0. In general this does not

hold in small scales, where multi-streaming and shocks generate vorticity. Moreover, we

assume that the fluid is irrotational (i.e. spherical symmetry). By combining the above

equations and transforming the fields in Fourier space, we get the EOM for the gravita-

tional instability, which is characterised solely by the overdensity and velocity divergence

fields, as:

∂δ(k, τ)

∂τ
+θ(k, τ) =−

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δD(k−k12)α(k1,k2)θ(k1, τ)δ(k2, τ), (3.4)

∂θ(k, τ)

∂τ
+H(τ)θ(k, τ)+

3

2
H

2(τ)Ωm(τ)δ(k, τ) =−
∫

k1

∫

k2

(2π)3δD(k12−k)β(k1,k2)θ(k1, τ)θ(k2, τ),

(3.5)

1Continuity and Euler equation can be derived as the zero and first moments of the Vlasov equation.
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where kij··· ≡ ki + kj + · · · . The above are just the Euler and continuity equations in

Fourier space, while the field θ ≡∇u(x, τ) is the velocity divergence. The left hand side

of Eqs. (3.4) and (3.5) is the linear part, while the right hand side encodes the non-linear

evolution that generates mode couplings, imprinted in functions α(k1,k2) and β(k1,k2).

They are given by:

α(k1,k2) =
k12 ·k1

k2
1

, β(k1,k2) =
k2

12(k1 ·k2)

2k2
1k2

2

. (3.6)

In the SPT framework the solution of the Euler and continuity equations can be found

perturbatively with respect to the linear solution, under the assumption of small linear

fluctuations, as:

δ(k, τ) =
∞∑

n=1

δ(n)(k, τ), θ(k, τ) =
∞∑

n=1

θ(n)(k, τ), (3.7)

where the superscript (n) denoted the term of the Taylor expansion.

3.2.1 Linear solution

The first term of the expansion in Eq. (3.2) is the linear solution. At this first order, the

density and velocity fields are small enough, such that any non-linear couplings between

the modes can be neglected (i.e. each mode evolves independently). The Euler and

continuity equations [Eqs. (3.4) and (3.5)] will be now:

∂2δ(1)(k, τ)

∂τ2
+H(τ)

∂δ(1)(k, τ)

∂τ
− 3

2
Ωm(τ)H2(τ)δ(1)(k, τ) = 0. (3.8)

The second term is the friction term, coming from the Hubble flow, while the third is the

force term. To derive this equation, we have used the linear part of the continuity equation

(
∂δ

(1)
k

(τ)
∂τ = −θk(τ)). The solution of the density field is now a second-order differential
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without any mixing). Therefore, we define the linear growth factor as D(τ) ≡ D
(+)
1 (τ).

It describes the growth of the overdensity field from some reference time τ0 to some later

time τ , i.e. δk(τ)(1) = D(τ)δ
(1)
k (τ0). Usually, this time is taken to be the present, implying

a normalization of D(τ0) to unity (i.e. D(z) = D(z)/D(0)). One can easily see that during

matter domination era, which is the epoch SPT assumes LSS formation takes place, the

gravitational potential is constant. The linear velocity divergence field will be:

θ(1)(τ) =−fH(τ)δ(1)δ
(1)
k (τ), (3.11)

where f = d lnD(τ)/d lna is the linear growth rate. In the case of a Universe populated

by only matter and cosmological constant, the growth factor is given by:

D(a) = H(a)
5Ωm

2

∫ a

0

da

a3H(a)
. (3.12)

The growth factor and the growth rate, for the cosmology considered here, are plotted in

Figures 3.1 and 3.2 respectively.

From the Poisson equation [Eq. (3.3) ] we can relate the linear density contrast with

the linearly evolved Bardeen gravitational potential fluctuations, inside the horizon, as:

k2Φk(a) = 4πGρ(a)δ
(1)
k (a) =

3

2
H2

0Ωm(a)δ
(1)
k (a). (3.13)

Due to pressure, modes that enter during the radiation domination era are suppressed

with respect to those at superhorizon scales. The latter remain frozen, as we have already

shown in Sec. 2.4.3. In addition, the strong coupling of baryons with photons refrain the

former from contributing to the growth of matter fluctuations. This leads to a suppression

in the growth (logarithmic growth) of the gravitational potential for small wavelength

modes. In order to take into account this effect, the perturbed Einstein and Boltzmann

equations should be solved for a coupled baryon-photon fluid. This task is performed

numerically, by algorithms such as CAMB (Lewis et al, 2000), which is the one used
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3.2.2 Non-linear solution

Up to now, we have considered that we are on large enough scales, such that we can

safely neglect the mode coupling term of Eqs. (3.4) and (3.5). Including this part and

solving the EOM, we can acquire the non-linear solution for the density contrast and the

velocity gradient fields. Using the Taylor expansion of Eq. (3.2) and the linear solution of

the fields (Sec. 3.2.1), we can get the n-th order solution for the overdensity and velocity

divergence fields with respect to the linear density as:

δ(k, τ) =
∞∑

n=1

Dn(τ)

∫
d3k1

(2π)3
. . .

∫
d3kn

(2π)3
δD(k−k1...n)Fn(k1, . . . ,kn)δ

(1)
k1

. . . δ
(1)
kn

, (3.15)

θ(k, τ) =−fH
∞∑

n=1

Dn(τ)

∫
d3k1

(2π)3
. . .

∫
d3kn

(2π)3
δD(k−k1...n)Gn(k1, . . . ,kn)δ(1)(k1) . . . δ(1)(kn).

(3.16)

The kernels Fn and Gn incorporate the non-linear mode coupling induced by gravity. The

first order is just the linear solution and hence F1 = 1 and Gn = 1. In an EdS Universe

(f = 1), the n-th order growth factor is Dn = Dn
1 . The difference in the above equations

between ΛCDM and EdS cosmologies, is a factor of Ωm/f2. Luckily enough its value is

close to unity, since the growth rate in ΛCDM has been found to be f ≃Ω0.59
m . Therefore,

we can safely take all the higher order growth factors in ΛCDM to be Dn ≃Dn
1 and use

the kernel results of an EdS Universe. The higher order kernels can be found from the

following recursion relation (Goroff et al, 1986; Jain and Bertschinger, 1994):

Fn(q1, . . . ,qn) =
n−1∑

m=1

Gm(q1, . . . ,qm)

(2n+3)(n−1)

[
(2n+1)α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2β(k1,k2)Gn−m(qm+1, . . . ,qn)
]
, (3.17)

Gn(q1, . . . ,qn) =
n−1∑

m=1

Gm(q1, . . . ,qm)

(2n+3)(n−1)

[
3α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2nβ(k1,k2)Gn−m(qm+1, . . . ,qn)
]
, (3.18)
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where k1 ≡ q1 + . . . + qm, k2 ≡ qm+1 + . . . + qn, k ≡ k1 + k2. Up to third order, the

symmetrized kernels (i.e. sum of the n-th order kernels over all possible permutations of

the modes) for the density field are:

F1(k) = 1, (3.19)

F
(s)
2 (k1,k2) =

5

7
+

1

2

k1 ·k2

k1k2

(
k1

k2
+

k2

k1

)
+

2

7

(
k1 ·k2

k1k2

)2

, (3.20)

F
(s)
3 (k1,k2,k3) =

7

54

[
F

(s)
2 (k1,k2)α(k3,k12)+F

(s)
2 (k2,k3)α(k1,k23)+F

(s)
2 (k3,k1)α(k2,k31)

+G
(s)
2 (k1,k2)α(k12,k3)+G

(s)
2 (k2,k3)α(k23,k1)+G

(s)
2 (k3,k1)α(k31,k2)

]

+
2

27

[
G

(s)
2 (k1,k2)β(k12,k3)+G

(s)
2 (k2,k3)β(k23,k1)+G

(s)
2 (k3,k1)β(k31,k2)

]
, (3.21)

F
(s)
4 (k1,k2,k3,k4) =

1

792

[
2G

(s)
2 (k1,k4)

(18F
(s)
2 (k2,k3)α(k1 +k4,k2 +k3)+8G

(s)
2 (k2,k3)β(k2 +k3,k1 +k4))

+2G
(s)
2 (k1,k3)(18F

(s)
2 (k2,k4)α(k1 +k3,k2 +k4)+8G

(s)
2 (k2,k4)β(k1 +k3,k2 +k4))

+2G
(s)
2 (k1,k2)(18F

(s)
2 (k3,k4)α(k1 +k2,k3 +k4)+8G

(s)
2 (k3,k4)β(k1 +k2,k3 +k4))

+6G
(s)
3 (k1,k2,k3)(9α(k1 +k2 +k3,k4)+4β(k1 +k2 +k3,k4))

+6G
(s)
3 (k1,k2,k4)(9α(k1 +k2 +k4,k3)+4β(k3,k1 +k2 +k4))

+6G
(s)
3 (k1,k3,k4)(9α(k1 +k3 +k4,k2)+4β(k2,k1 +k3 +k4))

+6G
(s)
3 (k2,k3,k4)(9α(k2 +k3 +k4,k1)+4β(k1,k2 +k3 +k4))

+36F
(s)
2 (k1,k4)G

(s)
2 (k2,k3)α(k2 +k3,k1 +k4)

+36F
(s)
2 (k1,k3)G

(s)
2 (k2,k4)α(k2 +k4,k1 +k3)

+36F
(s)
2 (k1,k2)G

(s)
2 (k3,k4)α(k3 +k4,k1 +k2)

+54F
(s)
3 (k1,k2,k3)α(k4,k1 +k2 +k3)+54F

(s)
3 (k1,k2,k4)α(k3,k1 +k2 +k4)

+54F
(s)
3 (k1,k3,k4)α(k2,k1 +k3 +k4)+54F

(s)
3 (k2,k3,k4)α(k1,k2 +k3 +k4)

]
(3.22)
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while for the velocity divergence field they are:

G1(k) = 1, (3.23)

G
(s)
2 (k1,k2) =

3

7
+

1

2

k1 ·k2

k1k2

(
k1

k2
+

k2

k1

)
+

4

7

(
k1 ·k2

k1k2

)2

, (3.24)

G
(s)
3 (k1,k2,k3) =

1

18

[
F

(s)
2 (k1,k2)α(k3,k12)+F

(s)
2 (k2,k3)α(k1,k23)+F

(s)
2 (k3,k1)α(k2,k31)

+G
(s)
2 (k1,k2)α(k12,k3)+G

(s)
2 (k2,k3)α(k23,k1)+G

(s)
2 (k3,k1)α(k31,k2)

]

+
2

9

[
G

(s)
2 (k1,k2)β(k12,k3)+G

(s)
2 (k2,k3)β(k23,k1)+G

(s)
2 (k3,k1)β(k31,k2)

]
, (3.25)

G
(s)
4 (k1,k2,k3,k4) =

1

792

[
2G

(s)
2 (k1,k4)

(6F
(s)
2 (k2,k3)α(k1 +k4,k2 +k3)+32G

(s)
2 (k2,k3)β(k2 +k3,k1 +k4))

+2G
(s)
2 (k1,k3)(6F

(s)
2 (k2,k4)α(k1 +k3,k2 +k4)+32G

(s)
2 (k2,k4)β(k1 +k3,k2 +k4))

+2G
(s)
2 (k1,k2)(6F

(s)
2 (k3,k4)α(k1 +k2,k3 +k4)+32G

(s)
2 (k3,k4)β(k1 +k2,k3 +k4))

+6G
(s)
3 (k1,k2,k3)(3α(k1 +k2 +k3,k4)+16β(k1 +k2 +k3,k4))

+6G
(s)
3 (k1,k2,k4)(3α(k1 +k2 +k4,k3)+16β(k3,k1 +k2 +k4))

+6G
(s)
3 (k1,k3,k4)(3α(k1 +k3 +k4,k2)+16β(k2,k1 +k3 +k4))

+6G
(s)
3 (k2,k3,k4)(3α(k2 +k3 +k4,k1)+16β(k1,k2 +k3 +k4))

+12F
(s)
2 (k1,k4)G

(s)
2 (k2,k3)α(k2 +k3,k1 +k4)

+12F
(s)
2 (k1,k3)G

(s)
2 (k2,k4)α(k2 +k4,k1 +k3)

+12F
(s)
2 (k1,k2)G

(s)
2 (k3,k4)α(k3 +k4,k1 +k2)

+18F
(s)
3 (k1,k2,k3)α(k4,k1 +k2 +k3)+18F

(s)
3 (k1,k2,k4)α(k3,k1 +k2 +k4)

+18F
(s)
3 (k1,k3,k4)α(k2,k1 +k3 +k4)+18F

(s)
3 (k2,k3,k4)α(k1,k2 +k3 +k4)

]
(3.26)

The second order solution for the density and velocity fields in real space, can be
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derived after Fourier transforming Eqs. (3.15) and (3.16) respectively (Fry, 1984):

δ(2)(x, τ) =
17

21
[δ(1)(x, τ)]2 +

2

7
s2

ij(x, τ)− [Ψ(1)(x, τ)]i∂iδ
(1)(x, τ), (3.27)

θ(2)(x, τ) =−H(τ)f(τ)

[
13

21
[δ(1)(x, τ)]2 +

4

7
s2

ij(x, τ)− [Ψ(1)(x, τ)]i∂iδ
(1)(x, τ)

]
, (3.28)

where Ψ(1)(x, τ) = ∇
−1
q δ(1)(x, τ) [Eq. (3.39) ] is the linear solution of the displacement

field in Lagrangian formalism (see Sec. 3.3.1) and sij is the linear tidal field tensor [Eq.

(4.32) ]. The multiplication factors in front of the quadratic fields come from the monopole

(i.e. integration over all angles) of the kernels F
(s)
2 and G

(s)
2 , for the density and velocity

field respectively (Fosalba and Gaztanaga, 1998).

3.3 Lagrangian Perturbation theory

Eulerian perturbation theory (EPT) describes the evolution of the density and velocity

fields from a fixed comoving coordinate system. An other possibility is to formulate a non-

linear perturbation theory on a frame that follows the trajectories of the fluid elements,

the so called Lagrangian Perturbation Theory (LPT) (Zel’dovich, 1970; Buchert, 1989).

For a complete review the reader is advised on reading (Bouchet, 1996; Bernardeau et al,

2002). The main idea is that, instead of taking the Lagrangian of all the particles in the

cosmic fluid, we parametrise instead each particle with its position. The displacement field

Ψ(q) is the dynamical parameter in this formalism. It connects the initial Lagrangian

positions q of the fluid elements, with the final Eulerian positions x. It is defined as:

x(τ) = q +Ψ(q, τ), (3.29)

The equation of motion for the particle’s trajectory will be given by

d2x(τ)

dτ2
+H

dx

dτ
= ∇xΦ(x), (3.30)
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where again Φ is the gravitational potential fluctuations. The subscript in the gradient

denotes the Eulerian position. The divergence of the above equation will give

J(q, τ)∇x

[
d2Ψ

dτ2
+H

dΨ

dτ

]
=

3

2
ΩmH

2(J−1). (3.31)

To derive the above we have used the conservation of particles in an infinitesimal volume

between the two frames, i.e. ρd3q = ρ(x, τ)dx = ρ[1 + δ(x)]d3x, as well as the Poisson

equation [Eq. (3.3) ]. The Jacobian transformation that connects the two frames is then

Jd3q = d3x ⇒ J = det|∂xi

∂qi
|= det|δij +

∂Ψi

∂qj
|, (3.32)

which gives

1+ δ(x, τ) =
1

J(q, τ)
. (3.33)

Using the chain rule on the divergence in Eulerian space, i.e. ∂
∂xi

= ∂qi
∂xi

∂
∂qi

= (δij + ∂Ψi
∂qj

)−1 ∂
∂qj

,

we can get the final equation of the displacement field as

[δij +Ψi,j(q, τ)]−1

[
d2Ψi,j(q,τ)

dτ2
+H

dΨi,j(q, τ)

dτ

]
=

3

2
ΩmH

2 J(q, τ)−1

J(q, τ)
, (3.34)

where Ψi,j = ∂Ψi/∂Ψj . The approach described in the above equation breaks down at

shell crossing. This is due to the fact that, particles come very close to each other,

acquiring after enough time the same Eulerian coordinate x. This can happen even if

they started at different Lagrangian points q, due to the time relation between the two

[Eq. (3.29) ]. The Jacobian can be expanded as

J = det|δij +
∂Ψi

∂qi
|= 1+∇q ·Ψ(q, τ)

+
1

2
[(∇q ·Ψ(q, τ))2−

∑

i,j

Ψi,jΨj,i]+
1

6
[(∇q ·Ψ(q, τ))3−3∇q ·Ψ(q, τ)

∑

i,j

Ψi,jΨj,i
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+2
∑

i,l,k

Ψi,jΨj,kΨk,i]+ . . . , (3.35)

while the EOM of the fluid trajectory can be solved perturbatively as

Ψ(q, τ) = Ψ(1)(q, τ)+Ψ(2)(q, τ)+ . . . . (3.36)

3.3.1 Linear Solution

The linear part of the Jacobian, i.e. the first two terms of Eq. (3.35), are used in this

first approximation. The inverse of the Jacobian transformation matrix will be now

[δij +Ψi,j(q, τ)]−1 ≃ δij−Ψi,i, (3.37)

which is derived after using det(I + A) = 1 + tr(A) +O(A2)I. Using Eq. (3.33) and the

linear part of the Jacobian expansion, we can derive the linear solution as:

1+ δ(1)(x, τ) =
1

J(q, τ)
≃ 1−∇q ·Ψ(q, τ) ⇒

∇q ·Ψ(1)(q, τ) =−D(+)(τ)δ(1)(q), (3.38)

where here we have splitted, as in EPT, the time part from the spatial part in the growing

linear solution. The linear density field δ(1)(q) is the initial condition field, which evolves

with the linear growth factor under the divergence of the displacement field. The linear

growth factor in LPT is the same as in EPT. Therefore, at first order the position of the

particle in Eulerian space will be:

x(τ) = q−∇
−1
q δ(1)(x, τ), (3.39)

while the velocity field is given by
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u(τ)
dx

dτ
=−fH∇

−1
q δ(1)(x, τ), (3.40)

where f is the linear growth rate (same as in EPT). In the case of the Poisson equation, we

can relate the displacement field divergence with the gravitational potential in Lagrangian

space, under the assumption of an irrotational gravity field, as

∇q ·Ψ(1)(q, τ) =−∇2
qΦ(1)(q, τ) =−δ(1)(x, τ), (3.41)

which leads to Ψ(1)(q, τ) =−∇qΦ(q, τ). Using the linear solution Zel’dovich (1970), tried

to approximate (Zel’dovich approximation (ZA)) the dynamical equation by extrapolat-

ing it into the non-linear regime. This was done by exchanging the divergence of the

displacement field with the tidal tensor (traceless part). From Eq. (3.33) we get

ρ(x, τ) =
ρ(τ)

det|δij + ∂Ψi
∂qj
|

=
ρ

|(1−λ1D(τ))(1−λ2D(τ))(1−λ3D(τ))| , (3.42)

where the variables λi are the eigenvalues of the tidal tensor field Ψi,j . The power of

this result lies on the fact that, we can predict the future of a collapsing region (i.e.

(1−λD(τ)) = 0) and determine the structure this point belongs to. If the eigenvalues

are all positive, while one of them is larger than the rest (i.e. λ1 > λ2, λ3), we get a

pancake shape. This indicates that the element collapses in one direction. However, the

ZA breaks down before the point reaches the final steps of collapse. A spherical collapse

occurs in the case where all eigenvalues are positive, but now equal in size. If two of them

are positive and one negative (i.e. λ1, λ2 > 0, 0 < λ3), then the collapse happens in 2

dimensions and therefore the point belongs to a filament. In the case where two of them

are negative and only one is positive (i.e. λ1, λ2 < 0, λ3 > 0) the element belongs to a

wall. Finally, negative eigenvalues correspond to a growing mode, which indicates that

the point belong to a void.
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3.3.2 Second-order solution

A recursion relation does not exist in the formalism of LPT, in order to generate

the higher order terms of the perturbative expansion. The solution must be performed

order by order. The second-order Lagrangian PT (2LPT) can improve significantly the

predictions, for the density and velocity fields, over the linear solution (Buchert et al,

1994; Melott et al, 1995; Bouchet et al, 1995). Considering up to second order terms in

Eq. (3.35) and substituting them in the equation of motion [Eq. (3.34) ], we get

d2Ψ
(2)
i,i

dτ2
+H

dΨ
(2)
i,i

dτ
− 3

2
H

2ΩmΨ
(2)
i,i =−3

4

[
(Ψ

(2)
k,k)2−Ψ

(2)
i,j Ψ

(2)
j,i

]
, (3.43)

where the linear solution of the displacement field has be also used in the above derivation.

Separating, as before, the second order solution into a time and a spatial part, we get

Ψ
(2)
k,k(q, τ) =

D2(τ)

2D2
1(τ)

∑

i6=j

(
Ψ

(1)
i,i (q, τ)Ψ

(1)
j,j (q, τ)−Ψ

(1)
i,j (q, τ)Ψ

(1)
j,i (q, τ)

)
, (3.44)

where the time dependent part of Ψ(2) is denoted as D2(τ) (i.e. second order growth fac-

tor) and has been show to be in ΛCDM cosmology, approximately, D2(τ)≃−3D2
1(τ)Ω

−1/143
m /7

(Bouchet et al, 1995). The second-order result can be simplified, by using the Poisson

equation together with the displacement field relation at second order (i.e. Ψ(2)(q, τ) =

∇qΦ(2)(q, τ)), as

∇qΦ(2)(q, τ)≃−3

7
Ω−1/143

m

∑

i>j

(
Φ

(1)
,ii (q, τ)Φ

(1)
,jj (q, τ)− [Φ

(1)
,ij (q, τ)]2

)
. (3.45)

Expanding the linear results for the position and velocity of a fluid element we get

x(q, τ) = q−D1∇qΦ(1)(q, τ)+D2∇qΦ(2)(q, τ), (3.46)
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u(q, τ) =−f1H∇
−1
q Φ(1)(q, τ)+f2H∇

−1
q Φ(2)(q, τ), (3.47)

The second order growth rate is approximately, f2≈ 2Ω
6/11
m (Bouchet et al, 1995). Extend-

ing the solution to the third order, although describes better the behaviour of under-dense

regions (Bouchet et al, 1995), has a minimal improvement over 2LPT (Buchert et al, 1994;

Melott et al, 1995).

Lagrangian perturbation theory can be used to generate initial conditions for N -body

numerical simulations. One starts by generating random Gaussian density fluctuations in

Fourier space, by using the definition of power spectrum (i.e. δk =
√

P L
mAexp(iφ)) with

a random amplitude (i.e. fluctuation around
√

P L
m) and phase. Connecting that to the

linear part of the gravitational potential Φ1
k is an easy task [Eq. (3.41) ]. If one desires

to go to second order, Eq. (3.45) must be solved. These relations can be easily linked, in

Fourier space, to the displacement field at each order. The final step is to inverse-Fourier

transform these results, in order to get the linear and second order perturbative solutions

of the displacement field. We can use now these displacements [Eq. (3.46) ] to move the

particles from their starting grid points and assign to them an initial velocity [Eq. (3.47)

].

3.4 MPTbreeze

In this section we discuss briefly how the MPTbreeze formalism works. We start by

introducing a more general perturbation theory, the Renormalised Pertrubation Theory

(RPT) (Crocce and Scoccimarro, 2006a,b). By defining η = loga and then a vector

Ψ(k,η) = (δ (k,η) ,−θ (k,η)/H) , (3.48)
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the usual fluid equations for can be recast in matrix notation as

∂ηΨa (k,η)+Ωab (k,η) = γ
(s)
abc (k,k1,k2)Ψb (k1,η)Ψc (k,η) , (3.49)

where γ
(s)
abc is a symmetrised vertex matrix and:

Ωab =




0 −1/2

−3/2 1/2


 . (3.50)

The above equation has solutions

Ψa (k,η) = gab (η)φ(k)+
∫ η

0
dη′gab

(
η−η′

)
γ

(s)
bcd (k,k1,k2)Ψc

(
k1,η′

)
Ψd

(
k,η′

)
, (3.51)

where gab is the linear propagator, which is non-zero only for for positive η:

gab (η) =
eη

5




3 2

3 2


− e−3η/2

5



−2 −2

3 −3


 (3.52)

Analogously to SPT, Eq. (3.51) can be solved by a series expansion:

Ψa (k,η) =
∞∑

n=1

Ψ(n)
a (k,η) , (3.53)

where

Ψ(n)
a (k,η) =

∫
δD (k−k1···n)F (n)

aa1···an
(k1, · · · ,kn;η)φ(k1) · · ·φ(kn) (3.54)

where F (n) are kernels and k1···n = k1 + · · ·kn. Non-linearities modify both the propagator

and the vertex functions. The non-linear propagator is defined by

Gab (k,η)δD

(
k−k′

)
=

〈
δΨa(k,η)

δφb(k
′)

〉
(3.55)
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and it can be expressed as an infinite series using Eq. (3.53),

Gab (k,η) = gab (k,η)+
∞∑

n=2

〈
δΨ

(n)
a (k,η)

δφb(k
′)

〉
. (3.56)

The full vertex functions Γ are defined in terms of the fully non-linear propagator,

〈
δ2Ψa(k,η)

δφe(k1)δφf (k2)

〉
= 2

∫ η

0
ds
∫ s

0
ds1

∫ s

0
ds2Gab (η− s)×Γ

(s)
bcd (k, s;k1, s1;k2, s2)Gce(s1)Gdf (s2) .

(3.57)

By using the Feynman diagram formalism, one can see that the non-linear propagator

satisfies Dyson’s formula:

Gab (k,η) = gab (η)+
∫ η

0
ds1

∫ s1

0
ds2gac(η− s1)Σcd (k, s1, s2)Gdb

(
k, s2,η′

)
, (3.58)

where Σ represents the sum of the principal path irreducible diagrams.

With this formalism, one can calculate the n-point correlation function in RPT for

an arbitrary number of loops, but the actual computations are difficult because they

involve solving numerically a set of integro-differential equations Nevertheless, this method

provides a well-defined perturbative expansion in the non-linear regime, which is not the

case in SPT.

A simplification of this model,MPTbreeze, was developed in the work of (Bernardeau

et al, 2008; Crocce et al, 2012) that only requires the late-time propagator. Hence, in

this new theory no time integrations are required. First, the non-linear propagator is

generalised to an arbitrary number of points. By defining the (p + 1)-point propagator

Γ(p) as
1

p!

〈
δΨp

a (k,a)

δφb1
(k1) · · ·δφbp(kp)

〉
= δD (k−k1···p)Γ

(p)
ab1···bp

(k1, · · · ,kp,a) , (3.59)
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the power spectrum becomes

P (k,z) =
∑

r≥1

r!
∫

δD (k−q1···r)
[
Γ(r) (q1, · · · ,qr, z)

]2
P L

m(q1) · · ·P L
m(qr)d3q1 · · ·d3qr .

(3.60)

where the propagator takes the following simple form:

Γ
(n)
δ (k1, · · · ,kn;z) = Dn (z)F (s)

n (k1, · · · ,kn)exp
[
f(k)D2(z)

]
. (3.61)

where D(z) is the standard linear growth factor of SPT. The function f can be expressed

in terms of an integral over the power spectrum today

f (k) =

∫
d3q

(2π)3

P L
m (q,z = 0)

504k3q5

[
6k7q−79k5q3 +50q5k3−21kq7 +

3

4

(
k2− q2

)3(
2k2 +7q2

)
log
|k− q|2
|k + q|2

]
.

(3.62)

Up to one loop, the power spectrum and bispectrum take the form:

P MPTbreeze
linear (k,z) = exp

[
2f(k)D2(z)

]
P L

m (k) , (3.63)

P MPTbreeze
1-loop (k,z) = exp

[
2f(k)D2(z)

]
P SPT

22 (k)P L
m (|k−q|)P L

m (q) , (3.64)

BMPTbreeze
tree-level (k1,k2,k3,z) = BSPT

tree (k1,k2,k3,z)exp
[
(f(k1)+f(k2)+f(k3))D2(z)

]
, (3.65)

BMPTbreeze
1-loop (k1,k2,k3,z) =

(
B222 +BI

321

)
(k1,k2,k3,z)exp

[
(f(k1)+f(k2)+f(k3))D2(z)

]
,

(3.66)

where Eq. (97) from Ref. Bernardeau et al (2012) has been used for the expansion.

3.5 Statistical description of the cosmic fields

Density perturbation lack of direct observations, hence we have to rely on the statistics

of the observed objects, which have different characteristics and span across various time

scales, in order to test the various cosmological theories. The density perturbations can
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be described as a uniform mean field (i.e. background) with positive and negative fluctu-

ations superimposed on it. More specifically, we can consider them as spatial stochastic

or random fields, where the latter is just a generalization of a stochastic process. The

galaxy and CMBanisotropy distributions share the same characteristic. Therefore, the

entire observable Universe can be treated as a stochastic realization, coming from the

statistical ensemble (i.e. “virtual copies”) of all possible Universes.

The statistical tools available, to permit such a statistical analysis, are under the so

called theory of stationary stochastic processes. Density fluctuations are a subclass system,

described by these theories, with the additional characteristics of a continuous fluctuating

spatial signal and a constant spatial average, coming from its large volume. Depending

on the inflationary mechanism, the stochastic initial perturbations can have different

distributions (e.g. Gaussian, non-Gaussian), and as discussed in Sec. 2.4.4, this can give

valuable information on the physical processes that take place in the early Universe. The

subject of this section is to present the statistical formalism needed to describe the initial

density fluctuations and their time evolution.

3.5.1 Random fields

The density quantity ρ(x), as generated from inflation and evolves into matter domi-

nation, is the realisation of a random field ρ̂(x). The latter can be seen as a continuous

set of random numbers, where each of them is identified from its spatial coordinates. It

is completely characterized by its probability density function (PDF) P [ρ(x)], which de-

scribes the probability of having the realisation ρ(x) with a value ρ at a position x. In

other words, it is the joint probability of ρ̂(x) at every point. The average density in a

cell of volume ∆V around a point x is

ρ(x) =
1

∆V

∫

∆V (xi)
d3xρ(x), (3.67)

where the Universe is divided into cells of equal volume, with ∆V (xi) being the volume
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around position xi. The probability density p[ρ(x1),ρ(x2), . . .] is defined as the joint

probability of local density, for every cell. In the limit of ∆V → 0, it approached the

function P [ρ(x)]. In the case of a discrete stochastic process, like in the case of galaxies,

the mean density at position xi (i.e. ρ(xi)) can take values, either 1/∆V or 0, in the

i-th cell. Again, in the limit ∆V → 0, the point process for each realisation is completely

described by the joint probability p[ρ(x1),ρ(x2), . . .] over all cells.

The homogeneity and isotropy of the Universe, as assumed by the cosmological prin-

ciple, impose similar characteristic in the statistics of the density field. The random field

ρ(x) is statistically homogeneous and statistically isotropic. The first condition implies

that the probability density at a point x0, inside a volume V , does not depend on the

values of position x0. In other words, the probability of having N numbers of particles in

that specific volume, depends only on the size of V and its shape. The condition of statis-

tical isotropy dictates that P [ρ(x)] is independent under spatial rotations. The ensemble

average of the density stochastic field is defined as

〈 ρ̂(x)〉= ρ0. (3.68)

It is the average over all possible realizations (i.e. ensemble) of the random field, i.e. the

average over P [ρ(x)]. The framework of a continuous stochastic process, described here,

can be applied only for positive values (i.e. ρ0 > 0). In order to measure the average of a

quantity that depends on the density field, we need to invoke the ergodicity assumption.

This is due to the fact that, we only observe one realization of the Universe. It implies

that, the ensemble average of an observable B(ρ1,ρ2, . . .), where ρi = ρ(xi), over all the

realization is equal to the spatial average B

B = lim
V →∞

1

V

∫

V
B(ρ(x1 +x0),ρ(x2 +x0), . . .), (3.69)

where the integration is over all space V . The convergence of this integral over the

infinite volume is guaranteed in the case of a random field with a well defined average
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value (Birkhoff-Khinchin theorem). Due to the uniformity condition, the density average

must be well defined and satisfy, for every position x0, the following

lim
r→∞

1

|S3(r;x0)|
∫

S3(r;x0)
ρ(x)d3x = ρ0 > 0, (3.70)

where S3(r;x0) is the volume of a sphere around point x0. The final inequality originates

by the fact that the density field is a strictly positive field. The above implies that, in

the case of a limited volume (e.g. the observable Universe) we can define the homogeneity

scale λ0 as (Gabrielli and Sylos Labini, 2001):

∣∣∣∣∣
1

S3(r;x0)

∫

S3(r;x0)
ρ(x)d3x−ρ0

∣∣∣∣∣< ρ0. ∀ r > λ0. (3.71)

This scale quantifies the limit at which we can consider fluctuations to be small compared

to the average density of the observed volume, therefore it exhibits a dependence of the

size of the observed patch. Beyond these scales the perturbative approach described in the

previous section breaks down and fluctuations can be large with an irregular behaviour.

As was proposed in (Gaite et al, 1999; Gabrielli et al, 2000), in this regime we have to

use a different statistical framework than the one reviewed here, e.g. a fractal. For the

latter, the reader is advised to check (Gabrielli, 2005) for a detailed analysis on the argu-

ment. Nonetheless, for galaxy statistics it has been shown that λ0 ≃ 70−80Mpc/h (Hogg

et al, 2005; Sarkar et al, 2009; Scrimgeour et al, 2012) and hence a fractal distribution is

excluded beyond these scales. This implies that, the Universe becomes smooth and the

standard statistical tools are valid.

For a cosmic random field, such as matter density, the infinite volume condition of the

ergodic hypothesis is not satisfied, due to the limited size of the observable Universe. In

this case the integration in Eq. (3.69) is only over a finite sub-volume of the wholes space.

This means that, the ensemble average of any cosmological quantity will be an estimator

of its true value. The expectation value of the n-point correlation function (i.e. the nth

central moment for a multivariate joint probability density distribution) of the density
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field ρ(x) is defined as (Gnedenko, 1998)

〈(ρ(x1)−ρ0)(ρ(x2)−ρ0) . . .(ρ(xn)−ρ0)〉=

∫

V
(ρ(x1)−ρ0)(ρ(x2)−ρ0) . . .(ρ(xn)−ρ0)

×p[ρ(x1),ρ(x2), . . . ,ρ(xn)], (3.72)

where ρ is the expectation value of the average density field and the integration is over

the infinite volume. The Fourier transformation of the joint probability density function

is given by:

M(t) = 〈exp−tρ〉=
∫

p[ρ]etρdρ =
∞∑

n=0

tn

n!
〈ρn 〉, (3.73)

where ρ = ρ1,ρ2, . . . ,ρn is a vector, while M(t) is called the characteristic function. The

expectation value of 〈ρn 〉 is the raw moment, i.e. the expectation value for ρ0 = 0, and

it is related to the central moments through the binomial transformation. The logarithm

of Eq. (3.73) give the n-th cumulants as:

lnM(t) =
∑

n=1

tn

n!
〈ρn 〉c. (3.74)

Equating the two, after expanding the Maclaurin series of lnM(t), we can get the rela-

tionship between cumulants and central moments of the density random field. Here we

present only the one-point results for the first four:

〈ρ〉c = 〈ρ〉,

〈ρ2 〉c = 〈ρ2 〉−〈ρ〉2c ,

〈ρ3 〉c = 〈ρ3 〉−3〈ρ2 〉c〈ρ〉c−〈ρ〉3c , (3.75)

〈ρ4 〉c = 〈ρ4 〉−4〈ρ3 〉c〈ρ〉c−3〈ρ2 〉2c −6〈ρ2 〉c〈ρ〉2c −〈ρ〉4c ,

The relations for the overdensity field, δ(x), can be derived after dividing the above with

the average density. By construction, the first central moment of the random overdensity
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fluctuations is zero (i.e. 〈δ 〉= 0). This simplifies considerably the above relations. In the

case of a multipoint correlation function, one has to additionally take into account all the

permutations of the random field between the different position. The statistical quantity

of interest is the cumulants, because they represent a set of independent quantities that

characterize fully the PDF of the perturbations. Cumulants are also referred in the

literature as connected correlation function, a name that comes from quantum field theory

and the Feynman diagrams. The second, two-point, cumulant is also called covariance,

while the one-point is the variance (i.e. diagonal part).

Up to now we have made no assumption on the distribution of the density contrast

field. Most inflationary models predict a Gaussian distribution for the initial density

fluctuations (see for a discussion Sec. 2.4.4). In the multivariant case we have

p[δ(x1), δ(x2), . . . , δ(xn)] =
1√

2πdet(C)
exp

[
1

2
δiC

−1
ij δj

]
, (3.76)

where Cij = 〈δiδj 〉c is the covariance and δi ≡ δ(xi). Substituting the Gaussian PDF in

Eq. (3.73), all the odd cumulants vanish while the even are obtained by the sum of the

product of the ensemble averages of two point correlators, with all possible combinations

between the different positions. This is encoded in the Wick’s theorem of quantum and

classical field theories as

〈δ1δ2 . . .〉=
∑

pairings

∏

pairs (i,j)

〈δiδj 〉c. (3.77)

In the case of a non-Gaussian primordial perturbation field, even order cumulants will

be non-zero. This means that, the measurement of these higher order correlators is a

direct indication of the departure from Gaussianity. In the case of LSS, however, we

expect non-zero higher order cumulants due to the non-linear nature of gravity, which

induces couplings between different modes. Disentangling the primordial from the late

time evolution signal is a challenging task. On the other hand, CMBprobes fluctuations
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directly after the decoupling and hence it is clean from such non-linear contributions.

3.5.2 Two-point correlation function and power spectrum

The two point correlation function of the density field is the ensemble average of δ at

two different points. It is given by

〈δ(x1)δ(x2)〉= 〈δ(x1)δ(x2)〉c = ξ(r). (3.78)

Due to statistical isotropy, two point correlation function depends only in the modulus of

the distance between the two points (i.e. r = |x1−x2|) and is characterized by the spatial

memory of the fluctuations. Taking the Fourier transform of ξ(r) we get

δ(x) =
∫ d3k

(2π)3
δ(k)eik·x. (3.79)

Plugging the above in the definition of the two point correlators, we can define

〈
δ(k)δ(k′)

〉
c

= (2π)3δD

(
k−k′

)
P (k), (3.80)

where the quantity P (k) is the Fourier coefficient of the two point correlation function,

called the power spectrum. This quantity is strictly positive for a continuous random

field. To derive the above, the condition of δ(x) being a real quantity is used, which gives

δ(k) = δ∗(−k). As in the case of correlation function, power spectrum does not depend

either on the mode direction, i.e. it is non zero only for equal and opposite wavenumbers.

The relation between the real and Fourier space quantities is simply (Wiener-Khinchin

theorem)

ξ(r) =

∫
d3k

(2π)3
P (k)eik·x ⇒

ξ(r) = ξ(r) =

∫
dk

2π2
k2 sin(kr)

kr
P (k), P (k) = P (k) = 4π

∫
drr2 sin(kr)

kr
ξ(r). (3.81)
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top-hat window function. Hence, we can write a smoothed linear power spectrum PR(k) as

in Eq. (3.14), where now M(k,z) is replaced by MR(k,z) = WR(k)M(k,z). The smoothed

mass variance of the density field, at mass scale M , is defined as

σ2
R(z) =

〈
δ2

R(k)
〉

c
=

1

2π2

∫
k2PR(k,z)dk. (3.84)

The variance is plotted in Figure 3.3 as a function of the smoothing mass M . It is easy to

show that, for a density random field with a well defined average (ρ > 0) the mass variance

must go to zero for very large radii (i.e. limR→∞ σ2(R) = 0). A direct consequence of this

is that, the two-point correlation function must also go to zero for large separations (i.e.

ξ(r→∞)→ 0). This indicates that

∫
d3rξ(r) = 0, (3.85)

where the integral is over all space. A consequence of the above is that for some values

of r, we must have ξ(r) < 0. An other important property of the two-point correlation

function, originating from the ergodicity of the density random field, is that it has a

maximum at zero separation (i.e. ξ(0) > |ξ(r)|). Finally, from Eq. (3.85), one can define

the correlation length as

r2
c =

∫
drr2 |ξ(r)|
∫

dr |ξ(r)| , (3.86)

which characterizes the endurance of the correlations in the density fluctuation field. It

indicates, therefore, the region up to which a localised perturbation is felt in the system.

For a discrete stochastic density field, such as in the case of galaxies, each cell of

infinitesimal volume dV has a probability P = ngdV to be occupied with ng galaxies and

1−ngdV to be empty, where ng = M−1ρ(x)dV is the mean number of galaxies in dV

and M the mean mass. Here we have assumed a Poisson process, where the occupation

probability of each cell is independent from the rest. The probability of finding one galaxy
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at a point inside the volume dV1 and an other in volume dV2, separated by a distance r,

is

δP =
〈ρ(x)ρ(y)〉

m2
dV1dV2

= n2
g

〈(ρ(x)−ρ0)(ρ(y)−ρ0)〉
ρ2

0

dV1dV1

= n2
g(1+ 〈δ(x)δ(x +r)〉dV1dV2

= n2
g(1+ ξ(r))dV1dV2. (3.87)

Therefore, the correlation function of galaxies characterizes the amount of clustering,

where for ξ(r) > 0 we have clustering while for ξ(r) < 0 we have anti-correlated objects.

In the discrete density field the two-point correlation function is just, ξg(r) = 1 + ξ(r),

which gives for the variance

σ2
g(R) = σ2

P N +σ2(R). (3.88)

The subscript g denotes that we are considering a discrete random field (e.g. galaxies,

particles) and σ2
P N = 1/ng is the Poisson shot noise, with ng being the mean number

density of galaxies. In a Poisson distribution, as the one followed by galaxies (discrete

tracers of dark matter), the shot noise refers to the contribution in the statistics from the

self-correlation of the object.

3.5.2.1 Perturbative Expansion: up to one-loop

The density and velocity fields have a perturbative solution, depending on the PT

scheme, with respect to the first order (linear) fields. Using the linear part of such an

expansion, one can derive the linear matter power spectrum as:

〈
δ(1)

m (k1)δ(1)
m (k2)

〉
c

= M(k1,z)M(k2,z)〈Φ(k1)Φ(k2)〉c ⇒

P L
m(k,z) = M2(k,z)PΦ(k), (3.89)
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where Φ is the primordial Bardeen gravitational potential, with a power spectrum given

by Eq. (2.82), while the transition between the two equations uses the reality condition of

the density field in real space. Here we have used in the perturbative solution the transfer

function, incorporated through the Poisson relation of the linear density field with the

primordial gravitational potential [Eq. (3.14) ]. Since we are mainly interested in the

matter statistics in this chapter, we will drop the m subscript in the density field and we

will always denote with δ the matter density fluctuation field. The linear matter power

spectrum is derived throughout this thesis from the numerical Boltzmann solver CAMB

(Lewis et al, 2000).

One can proceed in deriving higher order corrections to the linear power spectrum,

from the perturbative solution of the matter and velocity fields. This is done by using the

perturbative expansion of a field and substituting it in the two-point correlation function

[Eq. (3.80) ]. Keeping only the non zero combinations, after taking into account the

cumulant relation, results in a series of terms with an increasing power of the linear field.

The terms that have power of the linear solution to the n-th order denote the nth-loop

correction to the linear order, which is also called tree-level order. The above process

leads to:

〈
X(k,z)X(k′,z)

〉
c =

〈
X

(1)
k (z)X

(1)
k′ (z)

〉
c
+2
〈

X
(1)
k (z)X

(2)
k′ (z)

〉
c

+
〈

X
(2)
k (z)X

(2)
k′ (z)

〉
c
+2
〈

X
(1)
k (z)X

(3)
k′ (z)

〉
c
+ . . . ⇒

P (k,z) = P (0)(k,z)+P (1)(k,z)+ . . . , (3.90)

where the zero loop term is just the linear power spectrum (i.e. P (0)(k,z) ≡ P L
m(k,z))

and P (1)(k,z) is the 1-loop correction. The field X denotes a quantity that can have a

perturbative solution, e.g. matter overdensity and velocity fields. In the case of Gaussian

initial conditions all the odd terms in each loop order are zero, due to Wick’s theorem.

In the Eulerian PT, the higher order perturbative terms are given in Eq. (3.15)eq:thetapt

for the density and velocity fields respectively. For the matter density field, assuming
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Gaussian initial conditions, the 1-loop results in SPT are

P (1)(k,z) = P22(k,z)+P13(k,z), (3.91)

where

P22(k,z)≡ 2

∫
[F

(s)
2 (k−q,q)]2P L

m(|k−q|,z)P L
m(q,z)d3q, (3.92)

P13(k,z)≡ 6P L
m(k,z)

∫
F

(s)
3 (k,q,−q)P L

m(q,z)d3q. (3.93)

One-loop corrections describe the primal effects of mode coupling and can give a quantita-

tive estimation on the break down scales of SPT. The first part of the 1-loop contribution

(i.e. P22(k,z)) is positive and describes the mode coupling between k−q and q, com-

ing from the presence of the second order SPT kernel. On the other hand, P13 term is

negative and does not exhibit any mode coupling, i.e. it is just a term proportional to

the linear power spectrum. However, due to terms of α(q−q,k) and β(q−q,k), in the

third order density kernel [Eq. (3.21) ], it becomes infinite. Note that, the nature of this

infinity is numerical and does not represent any fundamental pole divergence of the third

order kernel. In order to remove the infinities, we calculate the limit lim
p−>−q

F
(s)
3 (k,q,p),

which gives

F
(s)
3 (k,q,−q) =

1

54
(7α(q,k−q)F

(s)
2 (k,−q)+7α(−q,k +q)F

(s)
2 (k,q)

+7α(k−q,q)G
(s)
2 (k,−q)+7α(k +q,−q)G

(s)
2 (k,q)+4β(k−q,q)G

(s)
2 (k,−q)

+4β(−q,k +q)G
(s)
2 (k,q)). (3.94)

For completeness, the third order velocity kernel will be

G
(s)
3 (k,q,−q) =

1

18
(G

(s)
2 (k,−q)(α(k−q,q)+4β(k−q,q))

+G
(s)
2 (k,q)(α(k +q,−q)+4β(−q,k +q))

+α(q,k−q)F
(s)
2 (k,−q)+α(−q,k +q)F

(s)
2 (k,q)). (3.95)
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Note that, the expressions presented in (Makino et al, 1992; Jeong and Komatsu, 2006)

for P13(k,z), integrate also over the azimuthal angle of the dummy vector q, as well as

absorbing the square magnitude of the radial coordinate (i.e. q2 factor from d3q), while

they do not show the exact vector form of the F
(s)
3 (k,q,−q) kernel.

The 1-loop correction has been extensively studied and tested with simulations (Coles,

1990; Suto and Sasaki, 1991; Makino et al, 1992; Jain and Bertschinger, 1994; Scoccimarro,

1997; Jeong and Komatsu, 2006). As was shown in Jeong and Komatsu (2006), the power

spectrum up to 1-loop agrees, with better than 1% accuracy, with simulations in the range

of 1 < z < 6, and in the quasi non-linear scales. Beyond a scale, 1-loop corrections are

inadequate to describe the power spectrum of simulations and therefore we must reside

in higher loop corrections, e.g. 2-loop. A way to characterize the non-linear scales in rel

space, R0, is through the variance, after requiring σ2(R0) = 1. Additionally, one can use

the dimensionless power spectrum and define the non-linear scales kNL, as those where

∆2(kNL) = k3
NLP (kNL)/(2π2)∼ δρ/ρ = 1.

In the case of non-Gaussian initial conditions, an additional term appears in the sum

of the 1-loop corrections, which is given by

P13 = 2
∫

d3qF2(q,k−q)BI(k,q, |k−q|), (3.96)

where an analytical form was derived in (Taruya et al, 2008). The quantity BI is the

initial bispectrum linearly evolved to the present [Eq. (3.105) ]. This term is expected

to be a small correction, mainly due to the damping of the bispectrum from the second

order density kernel.

3.5.3 Three-point correlation function and bispectrum

The first and simplest higher order correlator, beyond the two-point correlation func-

tion, is the three-point correlation function. It is defined as
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〈δ(x1)δ(x2)δ(x3)〉= 〈δ(x1)δ(x2)δ(x3)〉c = ζ(x1,x2,x3). (3.97)

In an analogy to the power spectrum, we take the Fourier transformation of the three-

point correlator and we define a quantity called the bispectrum as

〈δ(k1)δ(k2)δ(k3)〉c = (2π)3δD (k1 +k2 +k3)B(k1,k2,k3), (3.98)

where the Dirac delta is imposed by the translation invariance dictated from the statistical

homogeneity. It ensures that the wavenumbers ki must be three sides of a closed triangle

in order to contribute to the bispectrum (i.e. k1 + k2 + k3 = 0). Both quantities, due to

statistical isotropy, depend only on the moduli of the vectors, i.e. ki = |ki| and rij = |rij |.
This quantity measures directly the non-linear evolution of the density and velocity fields

and therefore is rich on information from the non-linear regime. The relation between the

real and Fourier space three-point correlator is given by

ζ(x1,x2,x3) =
∫ d3k1

(2π)3

∫ d3k2

(2π)3

d3k3

(2π)3
δD (k1 +k2 +k3)B(k1,k2,k3)ei(k1·x1+k2·x2+k3·x3).

(3.99)

In the case of a galaxy field the probability of finding three objects inside infinitesimal

volumes dV1, dV2 and dV3 is given by (Peebles, 1980):

P (x1,x2,x3) = n3
g[1+ ξ(r12)+ ξ(r23)+ ξ(r31)+ ζ(r12, r23, r31)]dV1dV2dV3. (3.100)

After taking the perturbative expansion of the quantity X we get:

〈X(k1,z)X(k2,z)X(k3,z)〉c =
〈

X(1)(k1,z)X(1)(k2,z)X(1)(k3,z)
〉

c

+
〈

X(1)(k1,z)X(1)(k2,z)X(2)(k3,z)
〉

c
+
〈

X(1)(k1,z)X(2)(k2,z)X(1)(k3,z)
〉

c
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Figure 3.4 – Illustration of different triangle configurations for the bispectrum B(k1,k2,k3).
Source: modified from (Jeong and Komatsu, 2009).

+
〈

X(2)(k1,z)X(1)(k2,z)X(1)(k3,z)
〉

c
+ . . . ⇒ (3.101)

B(k1,k2,k3,z) = B111(k1,k2,k3,z)+B112(k1,k2,k3,z)+2 perm+ . . . . (3.102)

For a Gaussian random field, Wick’s theorem implies that the first term is zero. Sub-

stituting the solution for the second order density field, gives
〈

X(1)X(1)X(2)
〉

c
∝

〈
X(1)X(1)X(1)X(1)

〉
c
, which is a four-point correlator. For the Gaussian case, it is given

by pairs of the product of two-point correlators. Now we can write the tree-level bispec-

trum of matter field as :

BG(k1,k2,k3,z)≡B112 = 2[F2(k1,k2)P L
m(k1,z)P L

m(k2,z)+F2(k2,k3)P L
m(k2,z)P L

m(k3,z)

+F2(k3,k1)P L
m(k3,z)P L

m(k1,z)]. (3.103)

The configuration dependence of BG originates from the kernel F2, which has terms (i.e.

α(k1,k2)) that come from the gradient of the density with the velocity field (i.e. u∇δ
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1984). We plot the reduced bispectrum as a function of the angle 2 in Figure 3.5 between

k1 and k2, while we generate all the triangle configurations that have k2/k1 = 2 for

k1 = 0.02h/Mpc. It is easy to see that, for equilateral triangles (θ = −1/2) the reduce

bispectrum has a constant value. In the case of collapsed triangle configurations (k3 = k1 +

k2), which correspond to θ = 0, as well as for squeezed configurations (θ = π; k2≈ k2≫ k3),

we get the largest values. This is not the case though for equilateral triangles, where Q

takes the minimum value. Having in mind that the bispectrum is the Fourier coefficient

of the three-point correlation function, which in turn is linked to the probability of having

three galaxies in a triangle configuration, we can draw some additional conclusions from

the shape of bispectrum. The minimum of Q in the equilateral configurations show that

they are less probable to occur than squeezed or collapsed. This can be understood

from the filament nature of galaxy clustering, which in the end will favour these kind of

configurations. This implies that equilateral triangles should be less frequent, at least up

to the tree-level we consider here.

Lets consider now the case of primordial non-Gaussianity, where additional terms will

appear in the bispectrum already at tree-level. Bispectrum is the perfect candidate to

study PNG, since it is very sensitive to any kind of non-linearities. The drawback is though

in this statement; we need to carefully remove any contribution coming from gravity in

order to achieve any significant conclusions on the primordial Universe. The first non-zero

term will be B111, which is just the linearly extrapolated primordial bispectrum of the

gravitational potential, as generated by the models of inflation. It is given by

BI(k1,k2,k3, z)≡B111(k1,k2,k3, z) = M(k1, z)M(k2, z)M(k3, z)BΦ(k1,k2,k3). (3.105)

In the case of the local primordial non-Gaussianity, the primordial gravitational field

2The angle θ is not the internal angle of the triangle formed by k1, k2 and k3, but the angle that
satisfy the translation invariance condition k1 +k2 +k3 = 0.
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is written as a Taylor expansion around the Gaussian part, as in Eq. (2.83), where we

write it here again for convenience

Φ(x) = ΦG(x)+f local
NL (Φ2

G(x)−〈Φ2
G(x)〉)+ . . . . (3.106)

Plugging this expansion in Eq. (3.101), where now X = Φ, we get a similar expression to

that of the tree-level bispectrum. Note that the kernel F2 will not be present, due to the

primordial nature of Φ. taking into account the Poisson equation, as well as by using the

local expansion of Φ, we get up to second order:

δlin(k,z) = M(k,z)Φ(k)

= M(k,z)Φ(1)(k)+f loc
NLM(k,z)Φ(2)(k)

= M(k,z)ΦG(k)+M(k,z)f loc
NL

∫
d3q1

(2π)3

d3q2

(2π)3
δD(k−q12)ΦG(q1)ΦG(q2)

= δ
(1)
lin(k,z)+f loc

NLδ
(2)
lin(k,z). (3.107)

The first order results, which coincide with the Gaussian case, are given by δ(1)(k, z) ≡
δ

(1)
lin(k, z) = M(k,z)ΦG(k). Plugging this in B111, we get Eq. (2.84). The signal coming

from primordial bispectrum is much smaller than the tree-level gravitational bispectrum

(O(103); see (Sefusatti and Komatsu, 2007) for a quantitatively comparison).

3.5.3.1 One-loop matter bispectrum

The 1-loop corrections to the tree-level bispectrum is given in an analogous way to the

power spectrum (B = B(0) +B(1)), i.e. by adding higher order solutions of the density field

in the connected correlator and keeping terms up to some power of the linear density field.

For Gaussian initial conditions, we get four terms that constitute the bispectrum 1-loop,

involving up to fourth order perturbative solution, i.e. B(1) = B222 +BI
321 +BI

321 +B411.
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Each term is given as follows (Scoccimarro, 1997; Scoccimarro et al, 1998) :

B222 ≡ 8

∫
d3q

(2π)3
P L

m(q,z)F
(s)
2 (−q,q +k1)P L

m(|q +k1|,z)

×F
(s)
2 (−q−k1,q−k2)P L

m(|q−k2|,z)F
(s)
2 (k2−q,q), (3.108)

BI
321 ≡ 6P L

m(k3,z)

∫
d3q

(2π)3
P L

m(q,z)F
(s)
3 (−q,q−k2,−k3)P L

m(|q−k2|,z)

×F
(s)
2 (q,k2−q)+5 perm, (3.109)

BII
321 ≡ 6P L

m(k2,z)P L
m(k3,z)F

(s)
2 (k2,k3)

∫
d3q

(2π)3
P L

m(q,z)F
(s)
3 (k3,q,−q)

+5 perm, (3.110)

B411 ≡ 12P L
m(k2,z)P L

m(k3,z)

∫
d3q

(2π)3
P L

m(q,z)F
(s)
4 (q,−q,−k2,−k3)

+2 perm. (3.111)

The kernel F
(s)
3 (k3,q,−q) and F

(s)
4 (q,−q,−k2,−k3) will exhibit infinities for the same

reason as in 1-loop power spectrum (Sec. 3.5.2.1). The expression for the third order

density kernel is given in Eq. (3.94), while for the fourth order kernel we follow the same

procedure, described in Sec. 3.5.2.1, and we get

F
(s)
4 (q,−q,q1,q2) =

1

792

[
4G

(s)
2 (q1,q)(9F

(s)
2 (q2,−q)α(q1 +q,q2−q)+4G

(s)
2 (q2,−q)β(q2−q,q1 +q))

+4G
(s)
2 (q2,q)(9F

(s)
2 (q1,−q)α(q2 +q,q1−q)+4G

(s)
2 (q1,−q)β(q1−q,q2 +q))

+6G
(s)
3 (q1,q2,−q)(9α(q1 +q2−q,q)+4β(q1 +q2−q,q))

+6G
(s)
3 (q1,q2,q)(9α(q1 +q2 +q,−q)+4β(−q,q1 +q2 +q))

+6G
(s)
3 (q1,−q,q)(9α(q1,q2)+4β(q1,q2))+6G

(s)
3 (q2,−q,q)(9α(q2,q1)+4β(q1,q2))

+36F
(s)
2 (q2,q)G

(s)
2 (q1,−q)α(q1−q,q2 +q)+36F

(s)
2 (q1,q)G

(s)
2 (q2,−q)α(q2−q,q1 +q)

+54α(q,q1 +q2−q)F
(s)
3 (q1,q2,−q)+54α(−q,q1 +q2 +q)F

(s)
3 (q1,q2,q)
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+54α(q2,q1)F
(s)
3 (q1,−q,q)+54α(q1,q2)F

(s)
3 (q2,−q,q)

]
, (3.112)

while for completeness we present the result for the fourth order velocity kernel

G
(s)
4 (q,−q,q1,q2) =

1

396

[
G

(s)
2 (q1,q)(6F

(s)
2 (q2,−q)α(q1 +q,q2−q)+32G

(s)
2 (q2,−q)β(q2−q,q1 +q))

+G
(s)
2 (q2,q)(6F

(s)
2 (q1,−q)α(q2 +q,q1−q)+32G

(s)
2 (q1,−q)β(q1−q,q2 +q))

+3G
(s)
3 (q1,q2,−q)(3α(q1 +q2−q,q)+16β(q1 +q2−q,q))

+3G
(s)
3 (q1,q2,q)(3α(q1 +q2 +q,−q)+16β(−q,q1 +q2 +q))

+3G
(s)
3 (q1,−q,q)(3α(q1,q2)+16β(q1,q2))+3G

(s)
3 (q2,−q,q)(3α(q2,q1)+16β(q1,q2))

+6F
(s)
2 (q2,q)G

(s)
2 (q1,−q)α(q1−q,q2 +q)+6F

(s)
2 (q1,q)G

(s)
2 (q2,−q)α(q2−q,q1 +q)

+9α(q,q1 +q2−q)F
(s)
3 (q1,q2,−q)+9α(−q,q1 +q2 +q)F

(s)
3 (q1,q2,q)

+9α(q2,q1)F
(s)
3 (q1,−q,q)+9α(q1,q2)F

(s)
3 (q2,−q,q)

]
, (3.113)

where the dummy vectors q1 and q2 represent a side on the closed triangle, imposed by

the momentum conservation.

For non-Gaussian initial conditions there are additional terms introduced in the above,

contributing at each order with up to O(δ6). They are given by (Sefusatti, 2009):

B
(1)
NG = BII

112 +BI
122 +BII

122 +BI
113 +BII

113, (3.114)

The first non trivial term, involving up to second order solutions of the density field, is

BII
112 ≡ =

∫
d3q

(2π)3
F

(s)
2 (q,k3−q) TI(k1,k2,q,k3−q)+2 perm . (3.115)

This correction to the O(δ4) terms of the matter bispectrum [Eq. (3.102) ] is negligibly

small, as it was shown in Scoccimarro et al (2004), due to the kernel suppression. The
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remaining terms of the 1-loop correction are listed bellow (Sefusatti, 2009):

BI
122 = 2 P L

m(k1,z)

[
F

(s)
2 (k1,k3)

∫
d3q

(2π)3
F

(s)
2 (q,k3−q) BI(k3, q, |k3−q|)+(k3↔ k2)

]
+2 perm.

= F
(s)
2 (k1,k2)

[
P L

m(k1,z) P12(k2)+P L
m(k2,z) P12(k1)

]
+2 perm., (3.116)

BII
122 = 4

∫
d3q

(2π)3
F

(s)
2 (q,k2−q) F

(s)
2 (k1 +q,k2−q) BI(k1, q, |k1 +q|)

× P L
m(|k2−q|,z)+2 perm., (3.117)

BI
113 = 3BI(k1,k2,k3)

∫
d3q

(2π)3
F

(s)
3 (k3,q,−q)P L

m(q,z)+2 perm., (3.118)

BII
113 = 3P L

m(k1,z)

∫
d3q

(2π)3
F

(s)
3 (k1,q,k2−q)BI(k2, q, |k2−q|)+(k1↔ k2)+2 perm. . (3.119)

3.5.4 Tree-level trispectrum

Beyond bispectrum there is an increasing complexity, both in deriving the perturbative

corrections, as well as in the numerical calculations of the correlators. Here we will present

the results of the four-point correlation function, up to tree-level, since these results are

going to be used in Chapter 5. The four-point correlator is defined from Eq. (3.75) as:

〈δ(x1)δ(x2)δ(x3)δ(x1)〉= ξ(4)(x1,x2,x3,x4)+ ξ(r12)ξ(r34)+2 perm, (3.120)

where ξ(4)(x1,x2,x3,x4) is the four-point cumulant. The Fourier transformation of the

connected four-point correlator is called the trispectrum and is given by:

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c = (2π)3δD (k1 +k2 +k3 +k4)T (k1,k2,k3.k4). (3.121)

It quantifies the amount of correlation of the density fluctuation field between four points

forming a rectangular, where each side is a wavevector as its is ensured by the translation

invariance. This quantity depends on six variable, e.g. the magnitude of the four vectors
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forming the rectangular and of the two diagonals. For a discrete stochastic process, the

resulting probability of finding four galaxies inside four infinitesimal volumes, forming a

rectangular, is :

P (x1,x2,x3,x4) = n2
g[1+ξ(r12)+ perm+ζ(x1,x2,x3)+ξ(r12)ξ(r34)+ perm+ξ(4)(x1,x2,x3,x4)].

(3.122)

The tree-level results for the trispectrum are obtained after substituting the perturbative

expansion in the connected correlator. For a general quantity X we get as before:

〈X(k1,z)X(k2,z)X(k3,z)X(k4,z)〉c =
〈

X(1)(k1,z)X(1)(k2,z)X(1)(k3,z)X(1)(k4,z)
〉

c

+
〈

X(1)(k1,z)X(1)(k2,z)X(1)(k3,z)X(2)(k4,z)
〉

c
+3 perm

+
〈

X(1)(k1,z)X(1)(k2,z)X(2)(k3,z)X(2)(k4,z)
〉

c
+5 perm

〈
X(1)(k1,z)X(1)(k2,z)X(1)(k3,z)X(3)(k4,z)

〉
c
+3 perm+ . . . ⇒

T (k1,k2,k3,z) = T1111(k1,k2,k3,k4,z)+T1112(k1,k2,k3,k4,z)+3 perm

+T1122(k1,k2,k3,k4,z)+5 perm+T1113(k1,k2,k3,k4,z)+3 perm+ . . . . (3.123)

The tree-level results for Gaussian initial conditions are given by:

T1122(k1,k2,k3,k4) = 4F
(s)
2 (k13,−k1)F

(s)
2 (k13,k2)P L

m(k1)P L
m(k2)P L

m(k13)+11 perm (3.124)

T1113(k1,k2,k3,k4) = 6F
(s)
3 (k1,k2,k3)P L

m(k1)P L
m(k2)P L

m(k3)+3 perm. (3.125)

The primordial trispectrum term is non-zero only in the case of a non-Gaussian pri-

mordial field. For the local shape, it can be derived, by going to the next order in the

local expansion of the primordial potential [Eq. (3.106) ], as

Φ(x) = ΦG(x)+f loc
NL

[
Φ2

G(x)−〈Φ2
G(x)〉

]
+

9

25
gNLΦ3

G(x). (3.126)
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The parameter gNL measures the amplitude of this additional non-Gaussian term. The

term O(δ4) in Eq. (3.123) is the linearly evolved primordial trispectrum given by:

T1111(k1,k2,k3,k4, z)≡TI(k1,k2,k3,k4, z) = M(k1, z)M(k2, z)M(k3, z)M(k4, z)T loc
Φ (k1,k2,k3,k4),

(3.127)

where the primordial potential trispectrum is given for the local PNG by

T loc
Φ (k1,k2,k3,k4) = f2

NL (PΦ(k1)PΦ(k3)PΦ(k4)+11 perm)+

56

25
gNL (PΦ(k2)PΦ(k3)PΦ(k4)+3 perm) . (3.128)

The primordial trispectrum for the local type was found to have sub-dominant contribu-

tion compared to bispectrum (Verde and Matarrese, 2009).

Finally, for non-Gaussian initial conditions there is an additional term introduced

(O([δ(1)]5)) at the tree-level result, which is given by

T1112(k1,k2,k3,k4) = 2[BI(k1,k2,k12)F
(s)
2 (k12,k3)P L

m(k3)+BI(k2,k3,k23)F
(s)
2 (k23,k2)P L

m(k1)

+BI(k3,k1,k31)F
(s)
2 (k31,k2)P L

m(k2)]+3 perm, (3.129)

It is a linear term with respect to fNL and as it was shown in (Sefusatti, 2009; Jeong

and Komatsu, 2009) exhibits a scale dependence coming from the linearly extrapolated

bispectrum. Its importance, in improving PNG constraints of any type, will be extensively

discussed in Chapter 5.
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Chapter 4
Structure formation

and bias

4.1 Introduction

The distribution of LSS hold a rich amount of cosmological information and has been

one of the pillars of our understanding of the evolution of the Universe. A key ingredient

for extracting this wealth of information is to understand how the statistics of tracers

(e.g. galaxies, cluster of galaxies, Lyman-α forest, etc.) is related to the distribution of

the underlying matter. The connection between the two is incorporated in the concept

of bias. LSS surveys observe only the distribution of luminous objects, which are the

products of a highly non-linear and complex formation process. The task of quantifying

the relationship between the two distributions is very challenging and there is still progress

to be made.

Nevertheless, there is a well established picture on the formation of galaxies, or in gen-

eral any other dark matter tracer. The distribution of matter originates from the growth

of initial perturbations, generated during inflation (see Sec. 2.4.3) under gravitational

collapse. This process leads to massive, gravitationally bound, virialized objects called

halos, which form on the overdense regions of the initial matter density distribution. In

standard cosmology, dark matter density overweights by a large amount the density of

baryons. It makes up to almost 80% of the total matter in the Universe. Therefore, the

potential wells of the halos, which are dominated by dark matter, trap baryons which

later on cool and concentrate to create galaxies.

85



4. Structure formation and bias 86

In order to retrieve cosmological information from the distribution of LSS, one needs

to construct reliable models for each step of this formation process. The evolution of

matter perturbations, as it was reviewed in the previous chapter, can be described by a

perturbation theory. However, such an approach is destined to fail in the regime where the

perturbations are highly non-linear, i.e. the small scales. The size of this regime depends

on the time scale of the Universe, e.g. at low redshifts gravitational evolution makes the

Universe more non-linear than at large redshifts. Still, we can be confident enough on the

theoretical description provided by PT, up to the quasi non-linear regime. Down to these

scales, where the structure formation is governed only by gravity (corrections from astro-

physical and other effects is negligible), the relation between the distribution of luminous

objects and dark matter can be parametrized at each order in perturbation theory into

a finite set of bias parameters. On small scales, the description for the formation of LSS

and the clustering of halos must rely on simulations.

In this Chapter we will review shortly the methods used to describe the bias relation

between matter and halos, as well as some simple models for the population of halos by

galaxies. Further on, we will discuss the implications of a non-Gaussian distribution in

the initial conditions on the formation process of dark matter tracers. This can prove

to be an important tool for probing the initial perturbations through LSS. Here we will

mainly follow the notation of (Desjacques et al, 2016). The reader is advised to check

the reviews of (Zentner, 2007; Desjacques et al, 2016), for a detailed description on the

subjects of bias and excursion set formalism.

4.2 Mass function

Halos are assumed to form on the peaks of the smoothed underlying matter overdensity

field, when its value exceeds some threshold value δc. Therefore, the number of created

objects depend on the distribution of points that exceed such a threshold. In the early

work of (Press and Schechter, 1974), it was found that the mass function can be expressed
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in terms of the height of the peaks, by using the spherical collapse model. It states that

in a smoothed linear contrast field in Lagrangian space (δ
(1)
R (q)), a spherical region of

radius R with uniform density and enclosed mass M = (4π/3)ρmR3, where ρm is the

mean co-moving density at time t, will collapse to form a bound object when δ
(1)
R exceeds a

threshold δc (spherical collapse threshold). Assuming Gaussian statistics for the smoothed

overdensity field, one can write the probability of having a halo with mass greater than

M as a fraction of a Lagrangian volume by

pG(δ
(1)
R > δc) =

1√
2πσ(R)

∫ ∞

δc

dδ exp

[
−1

2

δ2

σ2(R)

]
, (4.1)

where σ(R) is the smoothed variance of the density field over a radius R [Eq. (3.84) ].

The Lagrangian volume fraction that encloses the halo with mass greater than M is given

by:

F (> M) =
1

ρm

∫ ∞

M
d lnM ′ M ′nh(M ′) = pG(δ

(1)
R > δc), (4.2)

where nh(M) is the co-moving number density of halos above mass M . Differentiating

over the halo mass M gives

f(M)≡−dF (> M)

dM
, (4.3)

which leads to the mass function of halos

dF

dM
=−nh(M)M =

1√
2πσ(R)

exp

[
−1

2

δ2

σ2(R)

]
d

dM

(
δc

σR

)
⇒

nh(M) =− 2ρm√
2π

δc

σ2
R

1

M

dσR

dM
exp

[
−1

2

δ2

σ2(R)

]
. (4.4)

The factor 2 in front of the mean density is introduced to recover the proper normal-

isation and to get the total mass after the integration over the whole range of M , i.e.
∫∞
0 dMMnh(M) = ρm/2. It is convenient to parametrize the mass function with a multi-
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plicity function f(ν) as:

nh(M,z) =
dN

dlnM
=

ρm

M
f(ν)

∣∣∣∣∣
dlnν

dlnM

∣∣∣∣∣, (4.5)

where ν(M,z) = δc/σR(M,z) is the height of the peak. In the Press-Schechter (PS)

formalism this function is simply:

fP S(ν) =

√
2

π
νe−ν2/2. (4.6)

The PS mass function has a dependence on redshift and cosmological parameters, as well

as on the primordial power spectrum, therefore it has a universal character (Sheth and

Tormen, 1999). The mass function shows that an increasing halo mass (decreasing σR; see

Figure 3.3), leads to high-peaks (ν≫ 1) and therefore to more rare objects. The opposite

happens for low mass halos, which seem to be a common case during the process of halo

formation. In the work of (Sheth and Tormen, 1999) (ST hereafter) a modified version of

the PS mass function is proposed to improve the agreement with simulations

fST (ν) = A

√
2q

π

(
1+

1

(qν2)p

)
νe−

qν2

2 , (4.7)

where A = 1/(1+2−pΓ(0.5−p)/
√

π)≈ 0.322184, q = 0.707 and p = 0.3.

Although, the PS formalism predictions on the form of the mass function is in agree-

ment with simulations, it does not treat properly the small overdensities that might exist

inside the Lagrangian radius. This is due to the fact that the PS formalism considers the

whole smoothed region as one halo. In other words, all the points inside the halo exceed

the threshold value, which is not generally true for realistic cases. This is known as the

cloud-in-cloud problem and excursion set formalism was introduced (Bond et al, 1991)

to solve it. The latter approach adds the first-crossing condition, where it states that a

region belongs to a bound structure only if the smoothing radius R has the maximum

value, in order for δ
(1)
R to reach the threshold δc.
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4.3 Large-Scale halo bias

The main idea of bias is to describe the relation between the statistics of halos and the

underlying dark matter with respect to a finite number of terms per perturbative order,

up to some minimum scale. This perturbative approach, however, is destined to collapse

towards the small scales (see Sec. 4.3.2 for a discussion). Throughout this section, we

will refer to halos, but the formalism can be applied to any kind of tracer. We start with

the spherical collapse approach, by taking δ
(1)
R at a radius R (R(M) = (3M/4πρm)1/3)

in Lagrangian space and at the initial time τ = 0, which is the formation time of halos.

During this early period the density field is close to uniform, hence we can assume that

halos correspond to the overdense regions, defined by the Lagrangian radius R(M), above

the threshold of collapse. The co-moving number density of halos, in the initial Lagrangian

frame, is given by

nL(q) = Θ(δ
(1)
R (q)− δc), (4.8)

where Θ is the Heaviside function. Following the previous section, we assume again that

the initial smoothed field is Gaussian and therefore described completely by the two-point

correlator ξL
R(r) [Eq. (3.78) ]. It is related to the probability of finding two halos at a

separation r [Eq. (3.87) ] as (Kaiser, 1984):

1+ξL
h (r) =

p2(q,q + r)

p2
1

=

√
2

π

[
erfc(ν/

√
2)
]−2

∫ ∞

ν
e−ν′2/2 erfc


 ν−ν ′ξ̂(r)√

2{1− ξ̂2(r)}


dν′ , (4.9)

where ξL
h (r) is the two-point correlation function of the initial density fluctuation field, in

Lagrangian space, extrapolated to the present time and ξ̂(r) = ξL
R(r)/σ2(R). Here we used

the expectation value of the number density one-point statistics, for a Gaussian PDF, (i.e.

〈nL(q)〉= erfc[ν/2]/2). Inside the regime of small fluctuations we can Taylor expand the
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extrapolated two point correlation function in terms of the initial two-point correlator, as

ξL
h (r) =

∞∑

N=1

1

N !
(bL

N )2
[
ξL

R(r)
]N

, (4.10)

where each coefficient is given by (Kaiser, 1984; Szalay, 1988):

bL
N =

√
2

π

[
erfc

(
ν√
2

)]−1
e−ν2/2

σN (R)
HN−1(ν) . (4.11)

These coefficients are the bias parameters. In the case of high-peaks (i.e. ν ≫ 1) they

reduce to

bL
N ≈

νN

σN (R)
. (4.12)

Since the two-point correlation function goes to zero for large separations (see Eq. (3.5.2)),

we need to take only the first few terms of the bias expansion into account, in the larger

scale regime. The first term gives the well known linear bias relation in Lagrangian space:

ξL
h (r) = (bL

1 )2ξL
R(r). (4.13)

This indicates that on large scales the statistics of halos are related to those of the

underlying matter field by just a multiplicative factor (Kaiser, 1984). This means that

high-mass peaks, which correspond to rare massive halos, will have larger bias parameter

[Eq. (4.12) ]. In other words on large scales, the distribution of galaxies is more responsive

to the rare regions than underlying matter, which leads to more biased and clustered

halos (Kaiser, 1984). This holds also for high redshifts, where the Universe is more dense,

leading to an increase in the background density by a factor of δ. This is equivalent to

a change in the threshold by, δc− δ. The occurrence of high peaks and massive halos

will increase this way, leading again to a high biased population and therefore to more

clustered objects [Eq. (4.13) ].

The expansion of Eq. (4.10) motivates us to write the overdensity field of halos as a
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local bias perturbative expansion over the linear field as (Fry and Gaztanaga, 1993):

δL
h (q) = bL

0 + bL
1 δ

(1)
R (q)+

bL
2

2!
[δ

(1)
R (q)]2 +

bL
3

3!
[δ

(1)
R (q)]3 + . . . , (4.14)

where the zero-order bias term is just a constant offset that guarantees 〈δh 〉 = 0. Here,

following (Desjacques et al, 2016), we will call it local-in-matter bias expansion to distin-

guish it from the general case discussed in Sec. 4.3.2. This expansion accurately describes

the effect of bias on large scales and converges to the correct result by using a minimum

set of free parameters. Since the analysis, up to now, is restricted to the spherical collapse

approximation, we don’t expect the local-in-matter relation to describe correctly the bias

of low mass objects (R→ 0 then ν→ 0), due to the cloud-in-cloud problem. In addition,

the convergence to the correct result is not guaranteed beyond the non-linear scales (i.e.

kNL), where higher order terms can be larger than the lower. This indicates the break

down of the expansion, not only for bias, but also for the perturbative approach of the

underlying matter field. Therefore, the restriction of the analysis up to the mildly non-

linear regime is necessary. In this chapter, from this point on, we drop the subscript R

denoting the smoothed density field over a Lagrangian radius and we implicitly assume

it.

The local-in-matter bias expansion, as we have already discussed, does not capture

sufficiently the complicated process of halo formation. Additional non-local terms (i.e.

terms that are not proportional to the linear matter density field) are expected to be

present due to the non-local nature of gravity. It was pointed out in (Fry and Gaztanaga,

1993) that there is no need to limit ourselves strictly on local terms, in order to make the

local-in-matter bias expansion efficient, as long as these non-local contributions become

important at small scales. The local-in-matter expansion is deterministic by construction.

However, this characteristic is not realistic, due to the presence of small scale fluctuations

and the discrete nature galaxies [Eq. (3.88) ]. Therefore, additional stochastic bias terms

must be introduced in the expansion (Sec. 4.3.2).
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4.3.1 Bias evolution

Now we proceed to describe the evolution of the bias relation from a Lagrangian

initial frame to an evolved Eulerian space. Following (Mo and White, 1996) we can write

a similar expansion for the overdensity field to Eq. (4.14) at a given redshift as:

δh(x, τ) = bE
1 (τ)δ(1)(x)+

bE
2 (τ)

2!
[δ(1)(x)]2 +

bE
3 (τ)

3!
[δ(1)(x)]3 + . . . . (4.15)

The superscript E denotes the bias parameters in the Eulerian framework. The bias

parameters between the two frames are related through the conservation of mass in each

cell. The following relation emerges (Catelan et al, 1998):

1+ δh(x, τ) = [1+ δ(x, τ)][1+ δL
h (q)] . (4.16)

This yields immediately the relation for the linear bias term between the two frames,i.e.

bE
1 = 1+bL

1 . This expression is non-local in general, but for a local approximation (i.e. x≡
q) we can derive a mapping between the initial linear Lagrangian density field δ(1) and the

non-linear evolved field δ(τ) in Eulerian frame. In the spherical collapse approximation,

after integrating over all angles (i.e. the monopole) of the second order density kernel in

Fourier space [Eq. (3.20) ], we get (Bernardeau, 1992; Fosalba and Gaztanaga, 1998)

δ(1) =
∞∑

i=1

aiδ
i = α1δ +α2δ2 +α3δ3 + . . . , (4.17)

where the first four coefficient are, α1 = 1, α2 = −17/21, α3 = 2815/3969 and α4 =

−590725/916839. The coefficients α3 and α4 in Eq. (4.17) are taken from Wagner et al

(2015), where they correct the results of Mo et al (1996). Finally the relations for the the

first four bias factors between the two frames are (Mo and White, 1996; Mo et al, 1996)

bE
1 = 1+ bL

1 , (4.18)

bE
2 = bL

2 +2(α1 +α2)bL
1 =

8

21
(bE

1 −1)+ bL
2 , (4.19)
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bE
3 = 6(α2 +α3)bL

1 +3(1+2α2)bL
2 + bL

3 =
20

198
(bE

1 −1)− 13

7
bE

2 + bL
3 , (4.20)

bE
4 = 24(α3 +α4)bL

1 +12(α2
2 +2(α2 +α3))bL

2 +4(1+3α2)bL
3 + bL

4

=
3680

43659
(bE

1 −1)− 6820

1323
bE

2 −
40

7
bE

3 + bL
4 . (4.21)

Having found the relation between the bias parameters in the two frames, we continue

the derivation of the gravitational evolution of bias by assuming that the number of

halos is conserved from the initial time τ = τ∗ to the evolved τ . Obviously this is an

approximation, since as they evolve small mass halos merge and form larger ones (i.e.

hierarchical clustering of galaxies). Additionally, we assume that halos form instantaneous

in the initial time τ∗. Up to now, we have used the spherical collapse model, which is

in fact the case with neglected tidal effects, therefore the evolved field will be a local

non-linear expansion of the initial field (Fosalba and Gaztanaga, 1998). Dropping this

assumption, introduces additional non-local terms originating from the non-local nature

of gravity. This means that even though we are in the Newtonian approximation, tidal

forces are present (Kofman and Pogosyan, 1995; Fosalba and Gaztanaga, 1998). A final

point to make is that there is no velocity bias. This can be justified by the fact that,

for a sufficiently large radius the peculiar velocity of halos is regulated by the physics

inside the patch (mainly of non-gravitational nature) and hence at large scales, where

non-gravitational forces are absent, all bodies free fall in an external gravitational field,

as dictated by the equivalence principle. Thus, we can safely consider halos to comove

with matter.

We start from a local expansion, similar to Eq. (4.15), at the initial time slice τ∗ and

we let it evolve under gravity, to a late time τ (i.e. passive evolution). Gravity will move

away the fluid element, which contains the halo, from the initial Lagrangian coordinate

q to a late-time Eulerian position x(τ) = q + s(q, τ), where s(q, τ) is the Lagrangian

displacement field. Here we use a different notation from the usual (see e.g. (Desjacques

et al, 2016)), in order to avoid confusion with the general quadratic potential field, defined
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in the next section. The displacement field is the same as in LPT [Eq. (3.29) ] and its

Lagrangian coordinate coincides with q = x(0). Following (Catelan et al, 1998; Tegmark

and Peebles, 1998), we write the continuity equation of halos [Eq. (3.1) ] in the following

form:

d

dτ
δh =−θ(1+ δh) , (4.22)

where

d/dτ =
∂

∂τ
+u ·∇ (4.23)

is the connective derivative. The continuity equation of matter will be :

d

dτ
δ =−θ(1+ δ) . (4.24)

Equating the two we get

1

1+ δh

d

dτ
δh =−θ =

1

1+ δ

d

dτ
δ , (4.25)

which leads, after integrating, to:

1+ δh(x, τ) =
1+ δ(x, τ)

1+ δ(x∗, τ∗)
(1+ δ(x∗, τ∗)) , (4.26)

where the Eulerian coordinates of the fluid element, at formation time, are given by

x∗ = x(τ∗). The above equation states that, conserved halos free fall with the same rate,

and along the same trajectory, as matter1. This solution is reduced to the one in Eq.

(4.16), if we take τ∗→ 0. If we take the solution of the fields up to second order, we can

get

1+ δ
(1)
h (x, τ)+ δ

(2)
h (x, τ) = 1+ δ(1)(x, τ)− δ(1)(x∗, τ∗)+ δ

(1)
h (x∗, τ∗)+ δ(2)(x, τ)− δ(2)(x∗, τ∗)

1This is also imposed by the equivalence principle.
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+ δ
(2)
h (x∗, τ∗)+ [δ(1)(x∗, τ∗)]2− δ(1)(x, τ)δ(1)(x∗, τ∗)+ δ(1)(x, τ)δ

(1)
h (x∗, τ∗)− δ(1)(x∗, τ∗)δ

(1)
h (x∗, τ∗) .

(4.27)

The next step is to take the bias expansion at the formation time slice. We use the the

most general expansion up to second order written as (Chan et al, 2012):

δh(x∗, τ∗) = b∗
1[δ(1)(x∗, τ∗)+ δ(2)(x∗, τ∗)]+ ε∗(x∗, τ∗)+

1

2
b∗
2[δ(1)(x∗, τ∗)]2 + b∗

s2 [sij(x∗, τ∗)]2,

(4.28)

where we have introduced the linear tidal field term [Eq. (4.32) ], following (Chan et al,

2012). In general there is no reason for the formation of galaxies not to depend on the

tidal field (Catelan et al, 1998; Heavens et al, 1998; Smith et al, 2007; McDonald and

Roy, 2009; Baldauf et al, 2012; Chan et al, 2012). The term ε is the stochastic term

at first order, which is assumed to capture the perturbations that are uncorrelated with

fluctuations at large scales (Mirbabayi et al, 2015). In the following section we will discuss

in greater detail the tidal and the stochastic terms. After using the above expansion in

Eq. (4.27) and rearranging the terms, we can get the final evolved bias relation up to

second order:

δh(x, τ) = bE
1 (τ)[δ(1)(x, τ)+ δ(2)(x, τ)]+ε(x∗, τ∗)+

1

2
bE

2 (τ)[δ(1)(x, τ)]2 + bE
s2(τ)s2

ij(x, τ)

− (D(τ∗)−1)ε(x∗, τ∗)δ(1)(x, τ)+ [D(τ∗)−1]si∂iε(x∗, τ∗). (4.29)

The quadratic bias parameters are (Sheth et al, 2013):

bE
2 (τ) = b2(τ∗)D2(τ∗)+

8

21
(1−D(τ∗)) [bE

1 (τ)−1]

bE
s2(τ) = bK2(τ∗)D2(τ∗)− 2

7
(1−D(τ∗)) [bE

1 (τ)−1] . (4.30)

Now, if we take τ → 0, while substituting the quantities Dn(τ∗)bn(τ∗) to the corre-

sponding Lagrangian biases, we can get the result for the Lagrangian initial frame. If we
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don’t consider a tidal field in the initial slice (bL
s2 = 0) and we follow the evolution of the

bias expansion, we notice that a tidal term appears in the evolved Eulerian frame. This

was first noticed by (Catelan et al, 1998, 2000), where they studied the difference of the

three-point correlation function in the two frames.

4.3.2 General bias expansion

In order to determine the set of bias terms needed for describing the statistics of LSS

tracers up to the scales of validity of PT, one needs to investigate the interplay of bias

with gravity. This can be done by defining a mapping for the tracer’s field, from an initial

formation time τ∗ to that of a later time τ > τ∗. Here we will expand the argument of

locality, reviewed in the previous section, to the more general and physically motivated

formalism of local expansion2. A complete set of terms was presented in (Senatore, 2015;

Mirbabayi et al, 2015), where they argue that the most general bias expansion is con-

structed out of all possible local gravitational observables along the fluid trajectory. The

general deterministic bias expansion for the halos is given by

δh(x, τ) =
∑

O

bO(τ)O(x, τ), (4.31)

where O(x, τ) is the set of all relevant operators in Eulerian co-moving coordinates x,

which describe the properties that can affect the density of halos, at a given order in PT.

The bias parameters can be seen as coefficients of such a basis, which for a fixed time they

are just numbers. The well known large-scale linear bias result can be easily derived for

O = δ and bO = b1. Such an expansion, is only useful if there is a finite set of parameters

at a given order in PT.

This set of operators contain all the leading local gravitational observables. From

the equivalence principle, they are constructed only from powers of the tensor ∂i∂jφ (the

derivatives here are over the spatial dimension), in the case of non-relativistic tracers

2Do not confuse this with the standard local bias expansion that is used in the literature.
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(Mirbabayi et al, 2015). The field φ is the gravitational potential of the time-time compo-

nent of the metric, in the conformal Newtonian gauge (i.e. absence of anisotropic stress),

and is equal to the Bardeen potential Φ up to a minus sign. This tensor can be decom-

posed into its trace (i.e. ∇2φ), which is equal to the non-linear density field through

Poisson equation, and its traceless part sij . The latter is defined as (Catelan et al, 2000):

sij(x, τ) = (
∂i∂j

∇2
− 1

3
δij)δ(x, τ)

=
2

3Ωm(τ)H2
∂i∂jφ− 1

3
δijδ(x, τ). (4.32)

This quantity, as we discussed before, is the tidal field and it was introduced in the bias

expansion (together with higher-order derivatives) in the work of (McDonald and Roy,

2009; Chan et al, 2012; Baldauf et al, 2012) in order to address the issue of non-equivalence

between Lagrangian and Eulerian bias at first order. Note that, since it is traceless (i.e.

sijδ
ij = 0) , it cannot appear at linear order in the bias expansion. In Fourier space the

tidal field is written as

sij(k, τ) =

(
kikj

k2
− 1

3
δij

)
δ(k, τ). (4.33)

The local bias coefficients, in this general bias expansion, will be all the terms constructed

from powers of the density and the tidal fields, as well as the combinations of the two,

along the fluid trajectory. Terms containing φ or its first derivative are not included in the

expansion, since they cannot be measured by a free-falling observer co-moving with the

trajectory of the fluid, due to the equivalence principle. Therefore, the operator O includes

only powers of the density and the tidal field. Note that, in this general bias formalism

the assumption of conserved tracers can be abandoned, since gravitational interactions on

large scales depend only on the local density and tidal fields. To acquire a complete basis,

one needs to consider also the connective time derivatives of the operators O [Eq. (4.23) ],

i.e. d(∂i∂jφ)/dτ . However, this would suggest that an infinite amount of time derivative



4. Structure formation and bias 98

terms is needed in the expansion, since the formation of galaxies occurs over a long time

range (Desjacques et al, 2016). Nevertheless, up to the fixed PT order, such terms are

finite. This is due to the fact that, up to the scales of validity of PT, the time evolution

of perturbations is governed by the linear growth factor, which is scale independent, and

hence the evolution will proceed at the same rate. Any deviation from the linear time

evolution should be observed at higher orders (Desjacques et al, 2016). In fact, already at

third order, connective time derivative terms appear (Mirbabayi et al, 2015). Such a third

order term cannot be expressed locally with respect to density and tidal fields, however

it can be included in the local operators basis, since it can be measured from an observer

co-moving with the fluid element, in the case of conserved tracers (Mirbabayi et al, 2015).

Higher-derivative bias terms include operators that have more than two spatial deriva-

tives on φ. Each operator O has higher-derivative terms of the form b∇2O∇2O, as well

as others (see (Desjacques et al, 2016) for an extensive discussion). They introduce a

spatial scale R∗, which is the characteristic dimension around a position x, denoting

the region from which matter, that forms halos, originates. At scales comparable to R∗

(k ∼ 1/R∗), higher-derivative terms become important, indicating the limit of validity of

the perturbative bias expansion (Desjacques et al, 2016). Such terms incorporate all the

non-gravitational contributions during the halo formation process (e.g. gas heating, feed-

back processes) and in fact indicate that halo formation is not a perfectly local process.

The contribution of these terms in the bias relation depend on the limiting scales R∗,

which in the case of dark matter halos is of the size of the Lagrangian radius R(M).

The bias relation of Eq. (4.31) is deterministic, since it does not take into account the

dependence of the halo formation process on small scale perturbations. These fluctuations

must be treated stochastically, since their initial conditions are uncorrelated with the

density perturbations. In order to take this effect into account, an introduction of a

leading stochastic field ε(x, τ) in the bias expansion is necessary (stochastic bias terms)

(Dekel and Lahav, 1999; Taruya and Soda, 1999; Matsubara, 1999). The stochastic field
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couples to the gravitational evolution, introducing additional stochastic terms εO, which

can be seen as a scatter in the deterministic bias coefficient bO, for each operator O.

These fields have zero mean and they are characterised fully by their one-point PDF,

since they are uncorrelated with large scale fluctuations (〈εOδ〉 = 0). Due to that, only

correlators between themselves survive (e.g. 〈εε〉, 〈εεδ 〉, etc.). They are expected to be

important at scalesof O(R∗). A consequence of this is the presence of higher-derivative

stochastic counterparts (Desjacques et al, 2016). Taking account this randomness, the

bias expansion at any given order in SPT will be

δh(x, τ) =
∑

O

[bO(τ)+ εO(x, τ)]O(x, τ)+ ε(x, τ). (4.34)

The results of the expansion up to second order in Eulerian coordinates and Gaussian

initial conditions are

δ
E,(G)
h (x, τ) = bE

1 (τ)δ(x, τ)+εE(x, τ)+
bE

2 (τ)

2
δ2(x, τ)+ bE

s2(τ)s2(x, τ)+εE
δ (x, τ)δ(x, τ), (4.35)

where s2 = sijs
ij is the simplest scalar that can be formed from the tidal field. A factor 1/2

in the tidal term has been absorbed here in the bias parameter. Following the definition

of (Baldauf et al, 2012) the second order tidal bias term in Eulerian frame is given by:

bE
s2(M,z) =−2

7
bL
1 (M,z) =−2

7
(bE

1 (M,z)−1), (4.36)

where the above is derived from Eq. (4.30), for τ∗ → 0. Although the subscript R is

missing from the fields in the bias expansion, they are all assumed smoothed at a radius

R∗. In the above expansion we have excluded one higher-derivative term of the form

b∇2δ∇2δ, where the coefficient is b∇2δ ∼ R2
∗ (Desjacques et al, 2016). If sufficiently large

scales (k≪ 1/R∗) are considered, the contribution of such term, in the bias relation, is

suppressed.



4. Structure formation and bias 100

4.3.3 Peak-background split

The main idea of the peak-background split formalism (Kaiser, 1984; Bardeen et al,

1986; Cole and Kaiser, 1989) is to give the bias parameters, in the general expansion [Eq.

(4.31) ], a physical interpretation, while providing a link to observables. The mapping

is achieved by identifying the change of the halo number density to the perturbations

induced by a long-wavelength mode. The density fluctuation field is decomposed into a

low-amplitude, long-wavelength, linear fluctuation and a noisy short-wavelength, as:

δh(x) = δh,l(x)+ δh,s(x). (4.37)

The short-wavelength fluctuations ride on top of the linear long-wavelength modes (i.e.

δl = δ(1)), where the matter perturbations are treated as a superposition of small and

long modes, separated by a cut-off wavenumber. The short-wavelength modes are the

source of the dark matter halos, while the long-wavelength modes increase or decrease

the background density in large patches of the sky. In other words, large modes act as a

modification of the background density, altering the threshold of collapse. In this picture,

the peaks of the small modes, that are located over peaks of long-wavelength modes,

will be more clustered than the average and they will be the first to collapse, forming

galaxy clusters. This explains why galaxy clusters are more clustered than the galaxies

themselves.

The presence of the long-wavelength mode will modulate the background density and

eventually alter the height of the peaks to an effective value, given by:

ν→ νeff =
δc− δl

σR
. (4.38)

To show the reasoning behind the PBS argument, we write the expression for the number
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of mass M halos, located inside a cell of volume V , in the Eulerian frame as

δE
h (M |M1,V ) =

N (M |M1,V,z)

nh(M,z)V
−1 , (4.39)

where N (M |M1,V,z) is the number of subhalos of mass M , corresponding to the short-

wavelength peaks, which are ready to collapse, on top of the long modes and above some

mass M1. The latter is defined by the “background” (i.e. long wavelength) mode, while

nh(M,z) is the mean number of halos above mass M (i.e. the halo mass function). Using

the relationship M/V = ρm(1 + δ)⇒ V0 = M/ρm = V (1 + δ), together with the mapping

between the Eulerian and Lagrangian frames in the case of conserved tracers [Eq. (4.16)

], we get the overdensity field in Lagrangian coordinates as (Mo and White, 1996):

δL
h (M |M1,V0) =

nh(M |M1,V0, z0)

nh(M1, z0)
−1, (4.40)

where now nh(M |M1,V0, z0) is a Lagrangian quantity. The Lagrangian bias can be identi-

fied from a matching between a Taylor expansion of the above equation and the Lagrangian

local-in-matter bias relation [Eq. (4.14) ] as:

δL
h =

∞∑

n=0

1

n!
bL

n(M)[δ(1)]n = bh
1(M)δ(1) +

bh
2(M)

2
[δ(1)]2 + . . .

=
1

nh(M,z)

∞∑

N=0

1

N !

∂N nh(M |M1,V0,z)

∂δN
l

∣∣∣∣
δl=0

δN
l , (4.41)

which gives eventually:

bL
N (M,z) =

1

nh(M,z)

∂Nnh(M,z)

∂δN
l

∣∣∣∣∣
δl=0

. (4.42)

Although,this approach was introduced to model the local-in-matter bias terms bL
N (Kaiser,

1984; Cole and Kaiser, 1989; Mo and White, 1996; Mo et al, 1996), we can use it to de-

rive the bias coefficients of the tidal field and the higher-derivative terms, as well as for

terms induced by primordial non-Gaussianity (see Sec. 4.4). Since we are interested in
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the statistics of the evolved halo field (Eulerian frame), a mapping between Lagrangian

and Eulerian bias can be build. For the local-in-matter bias terms one can assume spher-

ical symmetry (i.e. no tidal field term is induced in the late-time field) and derive an

exact relation between the two. Therefore, the knowledge of the bias parameters (exclud-

ing higher-derivative terms; for a discussion see (Desjacques et al, 2016)) in one frame

determines the set in the other, at each order in PT.

For a universal mass function, as the one in Eq. (4.5), the PBS argument [Eq. (4.42) ]

can become

bL
N (M,z) =

(−ν)N

δN
c f(ν)

dNf(ν)

dνN
. (4.43)

This result is general enough to derive the Lagrangian halo bias for any type of universal

mass function. Here we will present the Lagrangian bias in the case of ST mass function.

For the first four local-in-matter halo bias parameters we have (Mo and White, 1996; Mo

et al, 1996; Scoccimarro et al, 2001b)

bL
1 (M,z) =

qν2−1

δc
+

2p

δc(1+(qν2)p)
, (4.44)

bL
2 (M,z) =

qν2(qν2−3)

δ2
c

+

(
1+2p

δc
+

2(qν2−1)

δc

)
2p

δc(1+(qν2)p)
, (4.45)

bL
3 (M,z) =

qν2

δ3
c

(q2ν4−6qν2 +3)+


4(p2−1)+6pqν2

δ2
c

+3

(
qν2−1

δc

)2

 2p

δc(1+(qν2)p)
, (4.46)

bL
4 (M,z) =

(
qν2

δ2
c

)2

(q2ν4−10qν2 +15)+
2p

δc(1+(qν2)p)

[
2qν2

δ2
c

(
2

q2ν4

δc
−15

qν2−1

δc

)

+2
(1+p)

δ2
c

(
4(p2−1)+8(p−1)qν2 +3

δc
+6qν2 qν2−1

δc

)]
, (4.47)

where q = 0.707 and p = 0.3.

The halo density field in Eq. (4.41) needs to be transformed into the Eulerian frame,

in order to take into account the halos’ dynamics. Therefore, we use the transformation

rule, presented Eq. (4.18)-(4.21), to achieve the mapping between the two frames. The
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measured from

S3(M,z,fNL) =
(2π)3

σ4
R(M,z)

∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
δD(k123)

×MR(k1,z)MR(k2,z)MR(k3,z)BΦ(k1,k2,k3). (4.49)

Such 3D integral can be factorized into three 1D integrals, after expressing the Dirac

delta as a plane wave and taking advantage of the spherical symmetry. In the case

of a separable primordial bispectrum, such as those considered here, we can separate

the integrals by grouping the relevant terms with the same wave number, resulting in a

sequence of 1D integrals (see Appendix of LoVerde and Smith (2011), which can be easily

calculated numerically by using an FFT code.

A fitting function for σRS3, which depends weakly on the mass, is presented in

(LoVerde and Smith, 2011). Although the fitting function agrees with our results, it

is provided only for the local case. Since our interest lies also in additional shapes, we

will compute the skewness directly from Eq. (4.49). The results for σRS3, in the case of

the three shapes considered here, are plotted in Figure 4.2 as a function of the smoothing

mass M.

4.4.2 Non-Gaussian bias

In the presence of primordial non-Gaussianity of the local type [Eq. (2.84) ], and in

the spirit of PBS, long-wavelength fluctuations of the primordial gravitational potential

modulate the small scale initial perturbations, due to the induced coupling between the

two. This will lead to an analogous modulation in the abundance of halos and eventually

to a scale-dependant bias correction on large scales (Dalal et al, 2008; Slosar et al, 2008).

Following a different approach, (Matarrese and Verde, 2008; Afshordi and Tolley, 2008)

derived the same result. In the work of Verde and Matarrese (2009), the impact in two-

point statistics from a general three-point function was considered. A generalisation of
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the scale-dependent bias results in the local case was made by (Desjacques and Seljak,

2010; Schmidt and Kamionkowski, 2010; Desjacques et al, 2011b; Schmidt et al, 2013), in

order to derive the leading scale-dependent contribution in the squeezed-limit of a generic

quadratic primordial non-Gaussianity.

Following the general local bias philosophy [Eq. (4.31) ], additional operators involving

the primordial Bardeen potential Φ (without any derivatives) must be added, in order

to model the scale-dependent corrections (in the same spirit as in (McDonald, 2008;

Giannantonio and Porciani, 2010; Baldauf et al, 2011)). Due to the equivalence principle,

such operators are not local gravitational observables and cannot be included in the local

part of the expansion. The non-Gaussian set of terms that is introduced, up to linear order

in fNL and at lowest order in higher-derivatives, are all the combination between fNLΦ

and the Gaussian operators. These include terms proportional to Φδm, as introduced

in Giannantonio and Porciani (2010), as well as non-Gaussian counterparts of the tidal

terms (ΦsN
ij ) and higher-derivative terms (Assassi et al, 2015). Non-Gaussian corrections

to the stochastic bias terms are also expected to be present, due to their dependence on

small scale perturbations.

In the case of an arbitrary isotropic quadratic primordial non-Gaussianity, the full set

of operators was derived in (Assassi et al, 2015). Up to second-order in terms and linear

in fNL, we have in the Eulerian frame

δ
E,(NG)
h (x, τ) = bE

Ψ(τ)Ψ(q)+ bE
Ψδ(τ)Ψ(q)δ(x, τ)+εE

Ψ(x, τ)Ψ(q), (4.50)

where the field Ψ is a non-local transformation of the primordial Bardeen potential, defined

as:

Ψ(q) =
∫ d3k

(2π)3
kαΦG(k)eikq, (4.51)

where α can take real values, which depend on the shape of the primordial bispectrum.

This field originates from the generalization of the local ansatz [Eq. (2.83) ] in the case of
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general quadratic primordial non-Gaussianity, where a kernel is introduced in the Fourier

version of Eq. (2.83) in the convolved term (Schmidt and Kamionkowski, 2010; Scocci-

marro et al, 2012). Such kernel cannot be uniquely defined by the primordial bispectrum.

For the large scales considered here (k≪ 1/R∗), only the squeezed limit is relevant for the

bias expansion, which can be expressed as an expansion over the Legendre polynomials

(Schmidt and Hui, 2013; Assassi et al, 2015). Throughout this thesis we consider only

terms of O(fNL) in the bias expansion, since higher order non-Gaussian contributions

(e.g. O(f2
NL),O(gNL)) have an extremely small observable effect in the statistics of LSS

(Assassi et al, 2015).

The primordial non-local field Ψ is evaluated at the Lagrangian position q (initial

slice), which is related to the Eulerian coordinates through q = x(τ)− s(q, τ). The lat-

ter introduces additional terms, through couplings to other fields (starting from second-

order), in the bias expansion due to gravitational evolution. In the Gaussian case they

cancel out, since they generate a deviation from the fluid trajectory, which in fact is for-

bidden by the equivalence principle when non-gravitational forces are neglected. However,

this is not the case for primordial non-Gaussianity, where the coupling is not induced by

gravitational evolution, but is present in the initial conditions. Hence, the corresponding

Eulerian position of the primordial potential field is related to the Lagrangian, up to sec-

ond order, through ΦG(q) = ΦG(x)− si(x, τ)∂iΦG(x) (Giannantonio and Porciani, 2010;

Baldauf et al, 2011). Such an expansion must be taken into account when the statistics

of tracers is evaluated at observation time (Tellarini et al, 2015), since it introduces dis-

placement terms whose amplitude is regulated by the corresponding bias term4 (e.g. bΨ

for tree-level). Finally, higher-derivative terms, present already at the linear order of Eq.

(4.50) (i.e. b∇2Ψ∇2
qΨ(q) and b∇2Ψ ∼ R2

∗; see (Desjacques et al, 2016) for a discussion),

are excluded. This follows the same argument as in the Gaussian case (see Sec. 4.3.2).

The presence of primordial non-Gaussianity will affect the halo number density, as

4Up to second order a term of the form, −bL
Ψsi(x, τ)∂iΨ(x), is introduced for general non-Gaussianity

in Eq. (4.50).
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shown in Sec. 4.4.1. More specifically, for the non-Gaussian mass function considered here

(LV mass function), the fractional correction RNG will introduce a scale-independent offset

in the bias parameters originating from the partial derivative in Eq. (4.61). These terms

will depend on fNL, due to the presence of a non zero skewness S3 in the Edgeworth

expansion of the LV mass function. These corrections will be (Desjacques et al, 2009;

Sefusatti et al, 2012):

δbE
1,NG(fNL) = δbL

1,NG =− 1

δc

ν

RNG

∂RNG

∂ν
=− ν

6δc

f(ν,0)

f(ν,fNL)

(
3σRS3(ν2−1)− d2S3

d lnν2

(
1− 1

ν2

)

+
dS3

d lnν

(
ν2−4− 1

ν2

))
, (4.52)

and

δbE
2,NG(fNL) = δbL

2,NG +
8

21
δbE

1,NG =
ν2

δ2
c RNG

∂2RNG

∂ν2
+2ν(bE

1 −
17

21
)δbE

1,NG

=
ν2

6δc

f(ν,0)

f(ν,fNL)

(
6σRS3ν +

dS3

d lnν

(
5ν− 3

ν
+

2

ν3

)
+

d2S3

d lnν2

(
ν− 4

ν
− 3

ν3

)
− d3S3

d lnν3

(
1

ν
− 1

ν3

))

+2ν(bE
1 −

17

21
)δbE

1,NG. (4.53)

Throughout this thesis we will consider only first order fNL corrections, and therefore we

can set f(ν,0) = f(ν,fNL) in the above expressions. The Eulerian halo bias will be then:

bE
1 = bE

1,G +fNLδbE
1,NG, (4.54)

bE
2 = bE

2,G +fNLδbE
2,NG, (4.55)

where we have taken out from δbi,NG the fNL dependence introduced by σS3 for clarity.

These are the values we will use for the linear and quadratic bias parameters, in all

the expressions of this thesis, independently of the non-Gaussian shape. Similar scale-

independent corrections are expected for all the bias parameters, derived through the PBS

approach. However, for the non-Gaussian terms considered here in the bias expansion,

the corrections are of percent level (for a LV mass function) and hence can be neglected
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(Baldauf et al, 2011).

The peak-background split treatment of the halo bias should be generalized, in order

to consider the response of the number density sourced by non-Gaussian initial conditions.

What changes from the Gaussian case is that the long and short wavelength modes are cou-

pled to each other. For the local case, after splitting the Gaussian part of the primordial

gravitational potential into long and short wavelength fluctuations (i.e. ΦG = φl +φs) and

substituting it into the local expansion of the non-Gaussian potential field Φ [Eq. (2.83)

] we get (Giannantonio and Porciani, 2010; Baldauf et al, 2011)

Φ = φl +fNLφ2
l +(1+2fNLφl)φs +fNLφs. (4.56)

The most important term here is the coupling term, (1 + 2fNLφl)φs, between long and

short modes, since the long wavelength linear fluctuations will introduce a scale depen-

dence rescaling in the amplitude of the short modes. In the case of a general non-local

non-Gaussianity, this rescaling can be parametrized through (Desjacques et al, 2011b)

δl(k)→ [1+2ǫk−α]δl(k), (4.57)

where the ǫ is an infinitesimal parameter, which becomes ǫ = fNLφl for the local PNG.

The modulation in the primordial large wavelength density mode will affect the variance

of the small scale modes, introducing additional dependences in the number of collapsed

objects. The short wavelength variance will transform at the lowest order to

σR→ σR

[
1+2ǫ

σ2
R,−α

σ2
R

]
, (4.58)

where we define:

σ2
R,n =

1

2π2

∫
k2+nP L

R (k,z)dk. (4.59)

The Jacobian J ≡
∣∣∣ dlnν
dlnM

∣∣∣, for a universal mass function, will also be transformed into
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(Desjacques et al, 2011b,a)

J → J

[
1+4ǫ

σ2
R,−α

σ2
R

(
d lnσ2

R,−α

d lnσ2
R

−1

)]
. (4.60)

The PBS argument of Eq. (4.42) can be easily generalized now to

bL
ΨδN =

1

nh(M,z)

∂N+1nh(M,z)

∂δN
l ∂ǫ

∣∣∣∣∣
δl=0,ǫ=0

, (4.61)

where the average halo number density nh is given by Eq. (4.5), after substituting Eq.

(4.38), (4.58) and (4.60). The leading non-Gaussian bias bΨ can be derived from the above

relation, as a special case (i.e. N = 0):

bL
Ψ =

1

nh(M,z)

∂nh(M,z)

∂ǫ

∣∣∣∣
ǫ=0

. (4.62)

while the first higher order non-Gaussian bias parameter bΨδ can be derived through (i.e.

N = 1)

bL
Ψδ(M,z) =

1

nh(M,z)

∂2nh(M,z)

∂δl∂ǫ

∣∣∣∣
δl=0,ǫ=0

= AfX
NL

[
2δcb

L
2 + bL

1

(
4

d lnσ2
R,−α

d lnσ2
R

−6

)
σ2

R,−α

σ2
R

]
. (4.63)

Following the same steps as for the local-in-matter bias parameters, we relate La-

grangian bias to the desired Eulerian one through Eq. (4.17)), following (Giannantonio

and Porciani, 2010; Baldauf et al, 2011)

bE
Ψ = bL

Ψ, (4.64)

bE
Ψδ = bL

Ψδ + bL
Ψ. (4.65)

Combining the above equations with Eq. (4.63) and the Eulerian results for the local-in-

matter bias parameters, we can derive the non-Gaussian leading bias term in the squeezed
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limit , for a general non-local PNG, as (Desjacques et al, 2011b; Schmidt et al, 2013):

bE
Ψ(M,z) = AfX

NL

[
2δcb

L
1 +4

(
d lnσ2

R,−α

d lnσ2
R

−1

)]
σ2

R,−α

σ2
R

, (4.66)

where A = 1 for the local primordial non-Gaussianity. For the other types two types

considered throughout this thesis, the relevant parameters are α = 2, A = 3 for the equi-

lateral case and α = 1, A = −3 for the orthogonal type. In the case of the higher order

bias parameters, we have in the Eulerian framework

bE
Ψδ(M,z) = 2AfX

NL

[
δc

(
bE

2 +
13

21
(bE

1 −1)

)
+ bE

1

(
2

d lnσ2
R,−α

d lnσ2
R

−3

)
+1

]
σ2

R,−α

σ2
R

. (4.67)

The superscript X in fNL denotes one of the three non-Gaussian shape considered here.

The local non-Gaussian result can be calculated from the above for α = 0, where for

a mass function with a universal form like in Eq. (4.5), we get (Dalal et al, 2008; Slosar

et al, 2008; Giannantonio and Porciani, 2010):

bL
Φ(M,z) = bL

Ψ(α = 0) =
1

nh(M,z)

∂nh(M,z)

∂ǫ

∣∣∣∣
ǫ=0

=−2
ν

δcf(ν)

df(ν)

dν
= 2f loc

NLδcb
L
1 , (4.68)

which eventually results in the well-known formula for the scale-dependent bias of the

local case, derived by (Matarrese and Verde, 2008; Afshordi and Tolley, 2008; Matarrese

and Verde, 2008; Dalal et al, 2008; Slosar et al, 2008; Taruya et al, 2008; Schmidt and

Kamionkowski, 2010) using different frameworks. It is given by

∆b(k,fNL, z)≡ bΨkα

M(k,z)
local NG

=
2f loc

NLδc(b
E
1 −1)

M(k,z)
. (4.69)

The first higher order term reduces for the local case to the results of (Giannantonio and

Porciani, 2010)

bL
Φδ(M,z) = 2f loc

NL(δcb
L
2 − bL

1 ). (4.70)
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The scale-dependence of ∆b(k) on large scales (∝ kα−2), approaches a constant value

in the equilateral case and turns into a scale-independent one. Therefore, it becomes

degenerate with the linear bias parameter, excluding the possibility of constraining equi-

lateral non-Gaussianity through this formalism. On the other hand a scale dependence

is introduced towards the small scales (k & keq ≈ 0.01 h/Mpc), due to the presence of

the transfer function in M(k), which can break, in principle, such degeneracies. How-

ever on these scales, the transfer function is no longer constant, while for adiabatic

perturbations its inverse can be expanded as T −1(k) = 1 + t1(k/keq)2 + t2(k/keq)4 + . . .,

where factors ti are of O(1). Eventually, this leads to a scale dependence of the form,

∆b(k,f eq
NL) ∼ const + f eq

NLR2
∗(k2/k2

eq + k4/k4
eq + . . .). However, its amplitude is smaller

than the Gaussian higher-derivative terms (e.g. b∇2δk2δ ∝ R2
∗k2δ) and therefore degen-

erate with them (Assassi et al, 2015; Desjacques et al, 2016). Probing primordial non-

Gaussianity of the equilateral type through scale-dependent bias correction is not feasible,

except if f eq
NL & 103 (Assassi et al, 2015). In order to break this small scale degeneracy the

measurements of the bias scale dependence must be measured with sufficient precision

for k & keq (Desjacques et al, 2016). This is the reason why we will not use the scale

dependent bias corrections in the two and three-point statistics of the equilateral PNG

in our Fisher forecast analysis (Chapter 5). The only non-Gaussian terms present in the

galaxy bispectrum, will be the primordial bispectrum and the scale-dependent corrections,

originating from the trispectrum one loop bias (see Sec. 5.2).



Chapter 5
Fisher matrix

predictions from LSS

surveys

5.1 Introduction

So far, cosmological analyses of Large Scale Structure (LSS) surveys have relied nearly

exclusively on matter and galaxy power spectrum estimation. It is however well-known

that important extra-information can be extracted via higher-order correlation functions,

such as the matter and galaxy bispectrum (see Sec. 3.5.3 for details), which allow both

probing the non-linear regime of structure growth and setting constraints on primordial

non-Gaussianity (NG) (see e.g., Bernardeau et al (2002); Bartolo et al (2004a); Liguori

et al (2010) and references therein). Three very important shapes, encompassing a large

amount of scenarios, are the so called local shape, equilateral shape or folded shape (see

Sec. 2.4.4 for details).

Currently, the tightest experimental fNL bounds, including a large number of different

shapes, come from Planck CMB bispectrum measurements (Planck Collaboration et al,

2016a). Bispectrum measurements of LSS data have been already obtained (Scoccimarro

et al, 2001a; Feldman et al, 2001; Verde et al, 2002; Maŕın et al, 2013; Gil-Maŕın et al,

2014, 2017), but the current level of sensitivity is not enough to generate useful primordial

NG bounds (current LSS power spectrum constraints on local fNL are more interesting

(Padmanabhan et al, 2007; Slosar et al, 2008; Xia et al, 2010b, 2011; Nikoloudakis et al,

113
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2013; Agarwal et al, 2014; Karagiannis et al, 2014; Leistedt et al, 2014), albeit still not

competitive with the CMB). On the other hand, bispectrum estimates of fNL with future

LSS data do have in principle great potential to improve over CMB bounds, at least for

specific shapes. This is because 3D LSS surveys, covering large volumes and probing

a wide range of scales, have access to a much larger amount of modes, with respect to

2D CMB maps. However, LSS measurements will also be very challenging, due to late-

time non-linearities, expected to produce much larger NG signatures than the primordial

component. These contributions need therefore to be understood and subtracted with

exquisite accuracy.

The issue of theoretical modelling of non-linear effects and of higher order LSS corre-

lators has indeed been long debated in the literature (see Chapter 3 for a review) and the

interest in producing accurate and realistic LSS primordial bispectrum forecasts has been

steadily increasing in recent times. Important contributions in this direction include the

work of (Scoccimarro et al, 2004; Sefusatti and Komatsu, 2007) - where the bispectrum

of galaxies is used for the first time to forecast the constraining power of LSS surveys on

measuring the amplitude of primordial NG - and the study of Song et al (2015), where

information from power spectrum and bispectrum of galaxies is combined - also including

redshift space distortion effects (Scoccimarro et al, 1999) - in order to constrain growth

parameters and galaxy bias terms. Additional contributions were then made by Tellar-

ini et al (2016), who took into account the second order tidal bias term (McDonald and

Roy, 2009; Baldauf et al, 2012; Chan et al, 2012), as well as the bivariate bias expansion

(Giannantonio and Porciani, 2010) in the redshift space galaxy bispectrum, in order to

constrain the amplitude of primordial local NG. Finally, the authors of Baldauf et al

(2016) pointed out the importance of including uncertainties in the theoretical modelling

of the signal (theoretical errors) and properly propagating them into the final error bar

estimates.

Many more details on these issues - including a more detailed description of improve-
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ments and refinements in redshift space distortion modelling - will be provided in Sec.

5.2.2. Here we point out that many of the analysis ingredients mentioned above were

considered separately and independently in previous forecasts, with different works con-

sidering the importance of specific new terms, without accounting however for all of them

at once (for example, theoretical errors are studied in detail in the real space treatment

of Baldauf et al (2016), whereas redshift space distortions are accounted for in detail

in Tellarini et al (2016), without including theoretical errors). Here, for the first time,

we consistently include all these terms and produce as complete and realistic as pos-

sible primordial NG forecasts, in terms of fNL parameters, combining power spectrum

and bispectrum constraints. One advantage of using the bispectrum is that it opens the

possibility to explore the full range of primordial shapes, including the equilateral and

orthogonal ones. These shapes are very little explored in previous NG LSS studies. In

addition, we will also include – for the first time in an actual forecast – trispectrum con-

tributions to fNL arising from the bias expansion in the galaxy bispectrum, which were

originally pointed out as potentially important by (Sefusatti, 2009; Jeong and Komatsu,

2009). We note that such term could play a significant role in constraining the signal

from non-local shapes.

Another important issue in a LSS primordial NG analysis is of course that of estab-

lishing which survey design and which statistical probe provide the best fNL constraints

and can improve over current Planck CMB bounds. Clearly, adding modes by going to

smaller scales does in principle improve sensitivity. The obvious caveat is that such ap-

proach requires non-linear scales, where the non-primordial NG contribution gets very

large and hard to model. Moreover, late time non-linearities couple different modes. This

unavoidably produces a saturation of the available information. To estimate in detail

this effect, a full calculation of the bispectrum covariance is needed in the evaluation of

the signal-to-noise ratio for fNL. All these issues are still open, and they are currently

under a significant amount of scrutiny in the literature (Heavens et al, 1998; Crocce and
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Scoccimarro, 2006a,b; Pietroni, 2008; Bernardeau et al, 2008; Wagner et al, 2010; Crocce

et al, 2012; Baumann et al, 2012; Carrasco et al, 2012; Gil-Maŕın et al, 2012, 2014; Lazanu

et al, 2016; Lazanu et al, 2017).

In this chapter we consider the alternative approach: we look at galaxy clustering

statistics at high redshift, where non-linearities become important at much smaller scales.

Besides considering several forthcoming, future or proposed optical galaxy surveys – such

as Euclid (Laureijs et al, 2011), DESI (Levi et al, 2013), LSST (Ivezic et al, 2008; LSST

Science Collaboration et al, 2009), SPHEREx (Doré et al, 2014; Bock and SPHEREx

Science Team, 2016) – we will also devote particular attention to radio continuum data.

The latter seem ideally suited to this purpose and especially the forthcoming radio sur-

veys – such as EMU (Johnston et al, 2008; Norris et al, 2011) and SKA (Jarvis et al,

2015). Besides the obvious point of probing very large volumes, i.e. more modes, they

also allow estimation at high redshift, where a larger amount of modes is in the linear

regime. The drawback with radio continuum sources is the lack of a direct determination

of their redshifts. Our analysis therefore considers the possibility to extract redshift in-

formation via clustering-based estimation methods (Ménard et al, 2013). We follow the

implementation for forthcoming radio surveys developed in Kovetz et al (2016). While

the power spectrum of radio continuum has been already considered in the literature (Xia

et al, 2010a,c, 2011; Raccanelli et al, 2012; Camera et al, 2015; Raccanelli et al, 2017), the

bispectrum of radio continuum surveys has not been studied so far. We devote particular

attention to it in this chapter.

5.2 Galaxy statistics

The goal of this chapter is to predict the constraining power of future LSS surveys on

measuring the primordial non-Gaussian amplitude, as well as various bias parameters. In

order to achieve this, the statistics we will use are the two and three point correlation

functions in Fourier space (i.e. power spectrum and bispectrum). The halo bias expansion
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discussed in Chapter 4 is not restricted to halos and can be generalized for any kind of

dark matter tracer. In the case of galaxies, the bias expansion in the Eulerian framework

can be expressed up to second order in Fourier space, for non-Gaussian initial conditions,

by Eqs. (4.35) and (4.50) as:

δg(k) = δ(G)
g (k)+ δ(NG)

g (k)

= bE
1 δ(k)+ bE

ΨΨ(k)+εE(k)

+

∫
d3q1

(2π)3

d3q2

(2π)3
δD(k−q12)

[(
bE

2

2
+ bE

s2S2(q1,q2)

)
δ(q1)δ(q2)+

1

2

(
εE

δ (q1)δ(q2)+ δ(q1)εE
δ (q2)

)

+
1

2

(
(bE

Ψδ− bE
ΨN2(q2,q1))Ψ(q1)δ(q2)+(bE

Ψδ− bE
ΨN2(q1,q2))δ(q1)Ψ(q2)

+εE
Ψ(q1)Ψ(q2)+Ψ(q1)εE

Ψ(q2)

)]
, (5.1)

where we have included also all the stochastic bias terms up to the second order. The

kernel S2(k1,k2) is defined from the Fourier transform of the tidal field scalar s2 [Eq.

(4.35) ] and is given by (McDonald and Roy, 2009; Baldauf et al, 2012):

S2(k1,k2) =
(k1 ·k2)2

k2
1k2

2

− 1

3
. (5.2)

The kernel N2(k1,k2) originates from the Fourier transformation of the displacement

field connecting the Eulerian and Lagrangian frames. Since the primordial gravitational

potential field is defined at the initial Lagrangian frame, the two will still be coupled in

the late time Eulerian frame. The coupling is given by (Tellarini et al, 2015; Angulo et al,

2015):

N2(k1,k2) =
k1 ·k2

k2
1

. (5.3)

Henceforth, we drop the superscript E from the bias parameters, since we consider galaxy

statistics at the time of observation (Eulerian frame).

Before presenting the galaxy power spectrum and bispectrum model, we should note
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that we only consider up to linear terms in fNL, since we assume an fNL = 0 fiducial

cosmology.In addition we would like to stress that, as we discussed in the previous chapter,

the bias expansion of Eq. (5.1) is with respect to the smoothed non-linear matter field,

at a smoothing radius R > R∗, in order to truncate the bias expansion to a finite order

in a meaningful way. Here we will continue to assume an implicit smoothing, over a scale

R, of the Gaussian field δ(1) [Eq. (3.83) ] and we will not retain WR(k) factors in the

expressions. Following Heavens et al (1998), we can evolve the non-linear density field up

to the desired order, smooth it with a filter and then apply the general bias expansion

of Eq. (4.34). As long as we use modes with wavelengths larger than the smoothing

radius (kmax << 1/R) this is allowed. In addition at large scales, as those considered

in our analysis, the smoothing kernel goes to unity and does not affect the results, i.e.

WR(k≪ 1/R)→ 1. .

5.2.1 Real space

The derivation of the galaxy power spectrum and bispectrum follows the same princi-

ples as in the case of matter (see Sec. 3.5.2 and 3.5.3). For the power spectrum we start

by writing the correlation function as in Eq. (3.90) and substitute the galaxy overdensity

expansion of Eq. (5.1), while keeping up to n-th order correction terms.

For a Gaussian galaxy field, the tree-level term is the linear power spectrum multiplied

by the linear bias term

Pg(k,z) = b2
1P L

m(k,z)+Pε, (5.4)

where Pε is the stochastic contribution to the power spectrum, Pε = 〈ε(k)ε(k′)〉, which

for large scales is given by Poisson sampling, i.e. Pε = 1/ng with ng being the mean

number density of galaxies. To derive the 1-loop correction, terms up to third order are

needed in the bias expansion. If we consider only the local-in-matter terms in Eq. (4.15),
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then the 1-loop correction is written as P
(1)
g = Pg,22 +Pg,13, where each term is given by

Pg,22(k,z) =
b2

2

2

∫
d3q

(2π)3
P L

m(q,z) P L
m(|k−q|,z), (5.5)

Pg,13(k,z) = b1b3 P L
m(k,z)

∫
d3q

(2π)3
P L

m(q,z). (5.6)

If PNG is present, an additional terms appear (Smith et al, 2007; Taruya et al, 2008)

Pg,12(k,z) = b1b2

∫
d3q

(2π)3
BI(k,q, |k−q|,z), (5.7)

The importance of this term lies on the fact that, in the large scale limit, for local PNG,

it reduces to the scale dependent bias of Eq. (4.69), for the hight density peaks (ν≫ 1)

(Taruya et al, 2008). The complete expression for the 1-loop power spectrum, including

all terms in the general local bias expansion, is derived by (Assassi et al, 2014). For the

expressions with the explicit smoothing kernel see (Sefusatti, 2009).

The final result for the tree-level galaxy power spectrum with non-Gaussian initial con-

ditions is:

Pg(k,z) = (b1 +∆b(k,fNL, z))2P L
m(k,z)+Pε, (5.8)

where the non-Gaussian scale dependent bias term is given by

∆b(k,fNL, z)≡ bΨkα

M(k,z)
. (5.9)

Note that the scale dependent correction should not be used in order to measure

equilateral primordial non-Gaussianity (see Sec. 4.4.2 for an extensive discussion), as

pointed out by Assassi et al (2015), due to degeneracies with the higher-order derivative

bias terms. This is the reason why we will not use the scale dependent bias corrections

in the two and three-point statistics for the equilateral case.

In the case of the bispectrum, after assuming Gaussian initial conditions and consid-
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ering the general bias expansion [Eq. (4.34) ], we get for the tree-level expression

Btree,G
ggg (k1,k2,k3,z) = b3

1BG(k1,k2,k3,z)+Bε

+

[
2b1Pεεδ

P L
m(k1,z)+2b2

1

(
b2

2
+ bs2S2(k1,k2)

)
P L

m(k1,z)P L
m(k2,z)+2 perm

]
, (5.10)

where the gravity induced bispectrum (BG) is given by Eq. (3.103). For the leading

stochastic contributions at large scales (k ≪ 1/R), the fiducial values are predicted by

Poisson statistics and are given by (Schmidt, 2016; Desjacques et al, 2016):

Bε = lim
k,k′→0

〈ε(k)ε(k′)ε(k′′)〉=
1

n2
g

, (5.11)

Pεεδ
= lim

k→0
〈ε(k)εδ(k′)〉=

b1

2ng
, (5.12)

where Bε is the bispectrum of the leading stochastic field (i.e., ε(k)), Pεεδ
is the cross

power spectrum between ε and the next-to-leading order stochastic field (i.e., εδ(k)).

The tree-level Gaussian part of the galaxy bispectrum [Eq. (5.10) ] is plotted in Figure

5.1, for all the triangle configurations generated after keeping k1 fixed. The condition

k1 ≥ k2 ≥ k3 applies here. Three different values are chosen for k1, i.e. k1 = 0.01 h/Mpc,

k1 = 0.05 h/Mpc and k1 = 0.1 h/Mpc. In addition, the highest contributing terms to

Btree,G
ggg , are also shown in Figure 5.1. These include the tree-level gravity-induced matter

bispectrum (BG), the quadratic bias term (P L
m(k1, z)P L

m(k2, z) + 2 perm), denoted in the

plot as P 2, and the tidal bias term (S2(k1,k2)P L
m(k1)P L

m(k2) + 2 perm), denoted as BS2 .

In order to show the shape dependence on the triangle configurations, the amplitude of

each term is divided by the maximum value in each panel.

In the second row of Figure 5.1 the tree-level matter bispectrum signal is plotted, as

derived by SPT. We can see that this term peaks mainly at the elongated (k1 = k2 + k3)

and folded (k1 = 2k2 = 2k3) configurations, while for the squeezed triangles (k1 ≃ k2≫ k3)

its contribution vanishes. This is due to presence of the non-linear second order SPT

kernel F2(ki,kj) [Eq. (3.20) ] in BG, which disappears at the squeezed limit and has a
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maximum at the folded/elongated triangles (see (Sefusatti and Komatsu, 2007; Sefusatti,

2009; Jeong and Komatsu, 2009) for a discussion). As we approach large scales (first

column in Figure 5.1) we observe that the maximum signal of the matter bispectrum is

now at the equilateral triangles (k1 = k2 = k3). This is due to the fact that in this regime

the matter power spectrum increases as a function of k and therefore we can get an

excess in the signal of BG when all sides of the triangle are equally large (i.e. equilateral

configurations). The quadratic bias term (shown in the third row of Figure 5.1) follows a

similar behaviour, where the only difference from BG is the absence of the F2 kernel. This

leads to an enhancement at the squeezed limit and a suppression for the folded/elongated

triangles.

The tree-level galaxy bispectrum contribution, proportional to the tidal bias (i.e. BS2),

peaks on elongated configurations, as we can see from the last row of Figure 5.1. Note

that, due to the presence of the S2 kernel, BS2 can have an amplitude with a negative

sign. In order to avoid the saturation of the colour maps in Figure 5.1, we show the

absolute value of BS2 and we use a white dotted line to separate negative and positive

BS2 regions. For most of the configurations, BS2 is negative at small scales (right column

of Figure 5.1), while the occurrence of positive values increases on large scales. Note

here that, for all equilateral and for most isosceles triangles the tidal bispectrum term

is negative, independently of the scale. This behaviour can be explained by the nature

of the S2(ki,kj) kernel, which takes its maximum positive value (for simplicity ki = k1

and kj = k2) when k1 = ak2, where a > 1 (i.e. elongated and folded triangles), and

its maximum negative value for k1 = k2 (i.e. equilateral triangles). In the folded limit

we have, BS2 ∝ P 2
m(k) + 2Pm(2k)Pm(k), and since the matter power spectrum increases

towards the large scales, the peak of the signal moves towards this configuration. On

the other hand, for isosceles configurations (k1 > k2 = k3) the resulting tidal term can be

positive or negative depending on the relative size of k1 with respect to the other sides of

the triangle.
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Figure 5.1 – The shape of the galaxy bispectrum for Gaussian initial conditions, together
with its highest contributing terms. In each panel the bispectrum, normalized to its absolute
maximum value, is plotted as a function of k2/k1 and k3/k1 for all configurations in the
case of fixed k1. We consider the following three values: k1 = 0.01, 0.05, 0.1 h/Mpc, where
the triangle sides follow the relation k3 ≤ k2 ≤ k1. In the first row the Gaussian tree-level
galaxy bispectrum Btree,G

ggg is plotted [Eq. (5.10) ], in the second we plot the tree-level matter
bispectrum (BG) as predicted by SPT, in the third the quadratic bias term indicated as P 2

is plotted (i.e. Pm(k1)Pm(k2) + 2 perm) and finally in the last row we plot the tidal bias
term contribution (i.e. BS2 = S2(k1,k2)Pm(k1)Pm(k2)+2 perm). Note that for the latter the
absolute value is plotted, where a white dotted line shows the separation between the positive
(left side) and negative (right side) values. For a detailed explanation, see the main text (Sec.
5.2.1).
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The 1-loop Gaussian terms up to O([δ(1)]6) for the local-in-matter bias expansion, are

given by (McDonald, 2006; Smith et al, 2007; Taruya et al, 2008; Sefusatti, 2009)

BII
g,112 =

b2
1b2

2

∫
d3q

(2π)3
T (k1,k2,q,k3−q,z)+2 perm., (5.13)

BI
g,222 =

b3
2

2

∫
d3q

(2π)3
P L

m(q,z)P L
m(|k1 +q|)P L

m(|k2−q|,z), (5.14)

BI
g,123 =

b1b2b3

2
P L

m(k1,z)

∫
d3q

(2π)3
P L

m(q,z)+5 perm., (5.15)

BII
g,123 = b1b2b3P L

m(k1,z)P L
m(k2,z)

∫
d3q

(2π)3
P L

m(q,z)+2 perm., (5.16)

BI
g,114 =

b2
1b4

2
P L

m(k1,z)P L
m(k2,z)

∫
d3q

(2π)3
P L

m(q,z)+2 perm., (5.17)

On the other hand, non-Gaussian 1-loop corrections have no effect on the large scales

(Taruya et al, 2008; Sefusatti, 2009) and hence they will not be listed here. The terms

BII
g,123 and BI

g,114 can be considered as a kind of re-normalization of the bias parameters

(McDonald, 2006; Smith et al, 2007), while BI
g,123 and BI

g,222 exhibit the same functional

dependence with the P 2(k) term in Eq. (5.10) towards the large scales, hence they are

expected to be small compared to the tree-level terms at that regime (Sefusatti, 2009).

Moreover, the term BII
g,112 is O(δ4) and hence will be considered additionally to the Gaus-

sian tree-level terms of Eq. (5.10). The importance of this contribution in constraining

PNG was pointed out in (Sefusatti, 2009; Jeong and Komatsu, 2009), where it was shown

that in the local case it exhibits a scale dependence at large scales similar to the one

provided by the scale dependent bias term in the case of the power spectrum [Eq. (5.8) ].

The final galaxy bispectrum up to O(δ4) with all the relevant bias terms of the corre-

sponding order in PT will be for Gaussian initial conditions:

B(G)
ggg (k1,k2,k3,z) = Btree,G

ggg (k1,k2,k3,z)

+ b2
1

∫
d3q

(2π)3

(
b2

2
+ bs2S2(q,k3−q)

)
Tδ(k1,k2,q,k3−q,z)+2 perm. (5.18)

where Tδ(k1,k2,k3,k4, z) is the trispectrum of the non-linear matter overdensity (i.e., δ(k))



5. Fisher matrix predictions from LSS surveys 124

described in Sec. 3.5.4. The full result including non-Gaussian terms up to linear order

in fNL is given by

Bggg(k1,k2,k3,z) = B(G)
ggg (k1,k2,k3,z)+ b3

1BI(k1,k2,k3,z)

+ b1bΨ

(
kα

1

M(k1,z)
+

kα
2

M(k2,z)

)[
2

(
b1F2(k1,k2)+

b2

2
+ bs2S2(k1,k2)

)
P L

m(k1,z)P L
m(k2,z)

+

∫
d3q

(2π)3

(
b2

2
+ bs2S2(q,k3−q)

)
Tδ(1)δ(k1,k2,q,k3−q)

]

+ b2
1

[(
(bΨδ− bΨN2(k2,k1))kα

1

M(k1,z)
+

(bΨδ− bΨN2(k1,k2))kα
2

M(k2,z)

)
P L

m(k1,z)P L
m(k2,z)

+
1

2

∫
d3q

(2π)3

(
(bΨδ− bΨN2(k3−q,q))qα

M(q,z)
+

(bΨδ− bΨN2(q,k3−q))|k3−q|α
M(|k3−q|,z)

)
Tδ(1)δ(k1,k2,q,k3−q)

]

+2b1PεεΨ

P L
m(k1)kα

1

M(k1,z)
+2 perm, (5.19)

where the trispectrum term δD(
∑

i ki)Tδ(1)δ = 〈δ(1)(k1)δ(k2)δ(k3)δ(k4)〉, with δ(1) being

the Gaussian part of the density field (i.e. the Gaussian part of the primordial curvature

perturbation, linearly propagated via Poisson equation) originating from the gravitational

potential in the bias expansion [Eq. (5.1) ]. The cross power spectrum between ε and εΨ

will be (Desjacques et al, 2016)

PεεΨ
=

bΨ

2ng
, (5.20)

which can be written also as, b1PεεΨ
= bΨPεεδ

.

Let us now discuss in greater detail the trispectrum terms generated by the bias

expansion in the galaxy bispectrum. The importance of the non-linear bias term in Eq.

(5.18) was recognised in the work of (Sefusatti, 2009; Jeong and Komatsu, 2009) for

increasing the sensitivity of galaxy bispectrum to the non-Gaussian initial conditions.

The SPT tree-level results for the matter trispectrum Tδ include, as shown in Sec. 3.5.4,

three distinct parts. The primordial term T1111 [Eq. (3.127) ], which for the local case

depends on f2
NL and gNL and can therefore be neglected in the Fisher analysis performed

here. However, we should note that such term has a dominant large scale behaviour for
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the squeezed configurations and is larger than the non-Gaussian correction to the galaxy

power spectrum [Eq. (5.8) ]. The part generated by the non linear gravitational coupling

[Eqs. (3.124) and (3.125)] exhibits no fNL dependence up to tree-level and therefore it

can ignored in the linear regime considered here. Finally, the important contribution for

PNG constraints is a coupling term between a non-zero primordial bispectrum and the

tree-level gravitational contribution [Eq. (3.129) ], which is linear in fNL.

This fNL-dependent term [Eq. (3.129) ], generates on large scales a signal which dom-

inates over non-linear terms, for essentially all triangle configurations in the case of local

non-Gaussianity (Sefusatti, 2009; Jeong and Komatsu, 2009). Therefore, the constraints

on fNL can be significantly improved, as we will show in Sec. 5.7. When terms propor-

tional to the primordial field Ψ are also considered in the bias expansion, the corresponding

trispectrum corrections in Eq. (5.19) (i.e. Tδ(1)δ) exhibits one occurrence of δ(1) and there-

fore will be missing a permutation in Eq. (3.129). However, since we only consider T1112

in the tree level matter trispectrum, all the terms in Eq. (5.19) with Tδ(1)δ will be O(f2
NL)

and hence they can be ignored. The only remaining O(fNL) trispectrum contribution is

the one coming from the Tδ term of Eq. (5.18). Its amplitude is shown in the colour

maps of Figure 5.2, 5.3 and 5.4, for the three PNG types considered here. Moreover, the

non-Gaussian part of the galaxy bispectrum [Eq. (5.19) ] is also shown.

The colouring in the plots shows the shape of the non-Gaussian terms of the galaxy

bispectrum, as a function of k3/k1 and k2/k1, for three different fixed values of k1 =

0.01, 0.05, 0.1 h/Mpc. In the local case, both the primordial bispectrum and the trispec-

trum correction peak in the squeezed limit. A small difference between the two is orig-

inating from the presence of the tidal kernel S2. The PNG contribution can be easily

disentangled from the non-primordial part of the galaxy bispectrum, as already pointed

out earlier. On larger scales a small increase in the signal is also observed for all configu-

rations, due to the behaviour of the matter power spectrum and of the F2 kernel in this

regime (see Sec. 5.2.1 for a discussion).
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Figure 5.2 – The shape of the non-Gaussian part of the galaxy bispectrum (top panel) in

Eq. (5.19), i.e. BNG(k1,k2,k3,z) = Bggg(k1,k2,k3,z)−B
(G)
ggg (k1,k2,k3,z) (cf. Figure 5.1 for the

Gaussian part). The panels display the amplitude of the galaxy bispectrum, normalized to
the respective maximum value (note that this implies that a direct comparison of the color
scale between different panels is meaningless). The non-linear evolution of the matter field is
treated here with the MPTbreeze perturbation theory scheme (see Sec. 3.4). In the middle
panel the trispectrum loop quadratic bias correction (the b2 trispectrum term in Eq. (5.18),

i.e.
∫ d3q

(2π)3 T1112(k1,k2,q,k3−q,z)+2 perm), is plotted. Finally, in the bottom panel the tidal

bias term trispectrum correction (i.e.
∫ d3q

(2π)3 S2(q,k3−q)T1112(k1,k2,q,k3−q,z) + 2 perm)
is plotted. All the terms plotted here peak at the squeezed limit for this type of PNG.
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Figure 5.3 – Same as Figure 5.2 but for the equilateral type of PNG. For this type of PNG the
galaxy bispectrum is taken to be that of Eq. (5.18) (i.e. BNG is here the sum of the trispectrum
bias corrections), since any term proportional to the field Ψ in Eq. (5.19) (introduced to model
the scale dependent bias corrections) is excluded as we discuss in Sec. 4.4.2.



5. Fisher matrix predictions from LSS surveys 128

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

BNG

k1 = 0.01[h/Mpc]

squeezed

folded

BNG

k1 = 0.05[h/Mpc]

elon
g
ated

is
os
ce
le
s

BNG

k1 = 0.1[h/Mpc]

equil.

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

TMPT
1112 TMPT

1112 TMPT
1112

0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

S2T
MPT
1112

0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

S2T
MPT
1112

0.0 0.2 0.4 0.6 0.8 1.0

k3/k1

S2T
MPT
1112

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Figure 5.4 – Same as Figure 5.2 but for the orthogonal type of PNG. In this case the equations
used are the same as for the local PNG.
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In the equilateral case, the NG scale dependence is easily observed. The peak of the

signal moves towards large scales, for equilateral configurations. The PNG contribution

includes only trispectrum corrections and BI , since the additional NG scale dependence,

introduced by the terms proportional to Ψ [see Eq. (5.19) ] up to the order considered

here, is degenerate with bias parameters, and not included in the bias case. This explains

why the panels of Figure 5.3 display a similar behaviour. Note that the observed scale

dependence is stronger and more localized, in the equilateral configurations, with respect

to the non-primordial bispectrum signal (see first row in Figure 5.1), in the large scale

regime. This scale dependence can in principle provide a unique signature for measuring

f eq
NL. The same general scale dependent behaviour is observed also for orthogonal models

and it can improve the fNL constraints also in this case.

The trispectrum integrals present an ultraviolet divergence, which is automatically

cured by adding the smoothing filter with a finite value of R. Nevertheless, this introduces

a dependence on the smoothing scale in the integration of the trispectrum for the three

shapes we consider here1. This makes the results rely upon a non-fundamental quantity,

which is unsatisfactory. On large scales this dependence on the smoothing radius goes

like 1/σ2
R, as was also noted in Jeong and Komatsu (2009). In order to cancel it, σ2

R

is included explicitly in front of the trispectrum integral and later on is reabsorbed by

the bias parameters. The “new” bias coefficients so obtained can be then considered free

parameters in the Fisher matrix analysis.

An alternative approach it would be to use a perturbation theory that applies a renor-

malized technique, like renormalized perturbation theory (RPT) (Crocce and Scoccimarro,

2006a,b), time renormalized group model (Pietroni, 2008) and renormalization of bias

(McDonald, 2006; Schmidt et al, 2013; Assassi et al, 2014; Senatore, 2015; Mirbabayi

et al, 2015). Regardless of the approach taken, the final result for the statistics of galaxies

must be the same, therefore here we will use the MPTbreeze formalism (Bernardeau

1This was also observed in Jeong and Komatsu (2009) for the local case.
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et al, 2008; Crocce et al, 2012) which simplifies greatly the computational effort of RPT

(see Sec. 3.4). The reasoning behind this choice is the exponential cut-off that is gener-

ated within this formalism and removes the UV divergence of the trispectrum integral by

suppressing the small scales contribution. For the physical motivation and the details of

the MPTbreeze formalism we refer the reader to (Bernardeau et al, 2008; Crocce et al,

2012). On the other hand, a reduction in the signal originating from intermediate scales is

expected in this approach, due to the drop of the matter power spectrum and bispectrum

beyond these scales (k > 0.15 h/Mpc at z = 0). This is shown in Refs. (Lazanu et al,

2016; Lazanu et al, 2017), where a comparison between different perturbation theories is

performed using simulations. The resulting power spectrum and bispectrum in the case

of MPTbreeze are the same as those defined in Eqs. (5.8) and (5.19) respectively, but

multiplied by the exponent of the function f(k) [Eq. (3.62) ] (see Sec. 3.4 for a quick

review).

5.2.2 Redshift space

The power spectrum and bispectrum presented in the previous section, assumed per-

fect knowledge of the proper distances of galaxies. However, the distances measured in

galaxy surveys, come from the shift in the spectrum of luminous objects, due to their

motion with the Hubble flow (see Sec. 2.2.2). These measured velocities have additional

contribution, independent from the Hubble expansion, originating from the peculiar veloc-

ities of the objects, which in turn arise from their dynamical motion. The map of objects

generated from galaxy surveys is therefore distorted with respect to the real distribution

of galaxies. This effect is known as redshift space distortion (RSD) and the observed coor-

dinate system is called redshift space. The peculiar velocities of galaxies on large scales is

due to the gravitational force of clusters. If in-fall velocities are pointing in the opposite

direction from the observer, objects appear further away with respect to real space (i.e.

their velocities are added to the Hubble expansion). On the other hand, if the velocities
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point towards us the galaxies appear closer than they really are (i.e. their velocities are

subtracted from the Hubble flow). On sub-cluster scales the peculiar velocities originate

from the velocity dispersion of the objects, due to the process of virialization. In this case,

the structures in redshift space appear more elongated towards the observer with respect

to real space, this effect is called Finger of God effect (FOG).

The radial coordinate of a galaxy in redshift space, s, is derived from the object’s

velocity, i.e. the sum between the velocities coming from the Hubble flow and the peculiar

motion. Therefore we can define the mapping between the two spaces as:

s = x +(1+ z)
υr(x)

H(z)
r̂ (5.21)

where the position of the galaxy in real space is x and υr(x) is the projected part of its

peculiar velocity on the line-of-sight. Note that the redshift and the Hubble parameter

used in the above relation, correspond to their values after the subtraction of the peculiar

velocities. In order to simplify the analysis the plane parallel approximation is adopted,

where the objects are assumed to be far away and hence their radial directions are parallel

to the line-of-sight, ẑ. Direction ẑ is considered fixed and the mapping between the real

space x and the redshift space s coordinates is now given by (Scoccimarro et al, 1999)

s = x−fuz(x)ẑ, (5.22)

where u(x) =−υ(x) · ẑ/(fH) =−ikθk(τ)/(k2fH) and υ(x) is the peculiar velocity field.

The conservation of number density between the two frames will give the relation between

the overdensity field in redshift and real space (i.e. δs and δr respectively) as:

(1+ δs)d
3s = (1+ δ)d3x. (5.23)

The above is derived after using, d3s = J(x)d3x, where J(x) = 1−f∇zuz(x) is the Jaco-

bian of the mapping in the plane parallel approximation. The Fourier transformation of
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the galaxy density field in redshift space is (Scoccimarro et al, 1999)

δs
g(k) =

∫
d3xe−ik·xeifkzuz(x)(δ(x)+f∇zuz(x)). (5.24)

At this point a perturbative approach can be applied, by expanding the second expo-

nent in a power series, giving:

δs
g(ki) =

∞∑

n=1

∫
d3q1

(2π)3
. . .

∫
d3qn

(2π)3
δD(ki−q1...n)[δg(q1)+fµ2

1θ(q1)]
(fµq)n−1

(n−1)!

µ2

q2
θ(q2) . . .

µn

qn
θ(qn)

(5.25)

= δg(ki)+fµ2
i θ(ki)+

∫
d3q1

(2π)3

∫
d3q2

(2π)3
[δg(q1)+fµ2

1θ(q1)]fµ12q12
µ2

q2
θ(q2), (5.26)

where µi = ki · ẑ/ki is the cosine of the angle between the wavevector ki and the line-

of-sight ẑ, µij = (µiki + µjkj)/kij and k2
ij = (ki + kj)

2. In the linear regime we retrieve

the well known result of (Kaiser, 1987), δs
g(ki) = (1 + fµ2

i )δg(ki). In order to model the

statistics of galaxies in redshift space, the kernel formalism of SPT can be generalised to

include the redshift distortions and the bias terms [Eq. (5.1) ] (i.e. use the bias expansion

in Eq. (5.1) to substitute δg in Eq. (5.26)). The galaxy overdensity in redshift space can

be written as (Verde et al, 1998)

δs
g(k,z) =

∞∑

n=1

Dn(z)

∫
d3q1

(2π)3
. . .

d3qn

(2π)3
δD(k−q1 . . .−qn)Zn(q1, . . . ,qn)δ(1)(k1) . . . δ(1)(kn),

(5.27)

where Zn are the n-th order redshift space galaxy kernels. Since the analysis is restricted

to large scales, we only require up to the second order redshift kernel in order to derive

the linear power spectrum and tree-level bispectrum in redshift space. For the general,

non-local, primordial non-Gaussianity the results are:

P s
g (k,z) = DP

FOG(k)[Z2
1 (k)P L

m(k,z)+Pε], (5.28)
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Bs
g(k1,k2,k3,z) = DB

FOG(k1,k2,k3)

[
Z1(k1)Z1(k2)Z1(k3)BI(k1,k2,k3,z)

+

(
2Z1(k1)Z1(k2)Z2(k1,k2)P L

m(k1,z)P L
m(k2,z)+

∫
d3q

(2π)3
T RSD

1112 (k1,k2,q,k3−q)+2 perm

)

+2Pεεδ

(
Z1(k1)P L

m(k1)+2 perm
)
+Bε

]
, (5.29)

while the redshift kernels are given by

Z1(ki) = b1 +fµ2
i +

bΨkα
i

M(ki,z)
, (5.30)

Z2(ki,kj) = b1F2(ki,kj)+fµ2
ijG2(ki,kj)+

b2

2
+ bs2S2(ki,kj)+

fµijkij

2

[
µi

ki
Z1(kj)+

µj

kj
Z1(ki)

]

+
1

2

(
(bΨδ− bΨN2(kj ,ki))k

α
i

M(ki,z)
+

(bΨδ− bΨN2(ki,kj))kα
j

M(kj ,z)

)
, (5.31)

where G2(ki,kj) is the second order velocity kernel of SPT [Eq. (3.24) ]. Note that here,

all the O(f2
NL) terms in the Z2 kernel are excluded.

The term T1112 in redshift space, after excluding all O(f2
NL) contributions, derived

by using standard PT formalism, the bias expansion of Eq. (5.1) and RSD up to second

order, is given by

T RSD
1112 (k1,k2,k3,k4) = ZG

1 (k2)ZG,b
2 (k3,k4)[GP1µ2

1f + b1FP1 ]+ZG
1 (k1)ZG,b

2 (k3,k4)[GP2µ2
2f + b1FP2 ]

+ZG
1 (k1)ZG

1 (k2)

[(
b2

2
+S2(k3,k4)

)
FP3 +

fk34µ34

2

(
ZG

1 (k4)
µ3

k3
GP3 +

µ4

k4
(b1FP3 +µ2

3fGP3)

)]

+ZG
1 (k1)ZG

1 (k2)

[(
b2

2
+S2(k3,k4)

)
FP4 +

fk34µ34

2

(
ZG

1 (k3)
µ4

k4
GP4 +

µ3

k3
(b1FP4 +µ2

4fGP4)

)]

(5.32)

where ZG
1 (k) and ZG,b

2 (k1,k2) are the Gaussian parts of the redshift kernels Z1 and

Z2 respectively [Eqs. (5.30) and (5.31)], while for ZG,b
2 we exclude also the two SPT

kernel contributions. The terms denoted FPi
and GPi

are the ith permutation of Eq.

(3.129), where the letter F and G represent the SPT kernel used in the expression at

hand (e.g. GP4 = 〈δ(1)
k1

δ
(1)
k2

δ
(1)
k3

θ
(2)
k4
〉 = 2G2(k12,k3)BI(k1,k2,k12, z)P L

m(k3, z) + 2 perm). A
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redshift space model similar to the one in Eq. (5.29) was used in Tellarini et al (2016)

to put constraints on the primordial non-Gaussian amplitude for a list of future LSS

surveys. However, in this reference, only the local case without trispectrum contributions

and stochastic bias terms is considered. Besides these new terms, redshift uncertainties

are also included in our redshift model, as discussed in the next paragraph.

The FOG term models the damping effect of the clustering power induced by the Finger

Of God effect on linear scales. The two terms for the power spectrum and bispectrum are

(Peacock and Dodds, 1994; Ballinger et al, 1996; Scoccimarro et al, 1999)

DP
FOG(k) = e−(kµσP )2

, (5.33)

DB
FOG(k1,k2,k3) = e−(k2

1µ2
1+k2

2µ2
2+k2

3µ2
3)σ2

B . (5.34)

The amplitude of the effect is characterized by one free parameter σ, which in principle

is different for these two correlators. Here we treat it as being the same in both cases

and define its fiducial value as σP = σB = συ(z), with συ being the usual linear, one

dimensional velocity dispersion.

Besides the FOG effect, the redshift uncertainty of galaxy surveys must be also taken

into account. The redshift error, σz, can be translated into a position uncertainty along

the line of sight. The treatment of this effect is the same as in the case of FOG (see

e.g. (Seo and Eisenstein, 2003)), where the only difference is the fiducial value of the

σ parameter, which will be σr = cσz(z)/H(z). Considering both effects gives the final

form of the damping factors in Eqs. (5.28) and (5.29), with the σ parameters given by

σ2
v = σ2

υ + σ2
r . These multiplicative factors introduce a suppression of the signal for all

scales with a large component along the line of sight, affecting mostly small scales. In other

words, only modes k that have kµσv . 1 are not dominated by noise and can contribute

to the power spectrum and bispectrum measurements.

The redshift space bispectrum is characterized by five variables, three of them define

the triangle shape (i.e. the magnitude of the three wavenumbers, k1, k2, k3) and the
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remaining two the orientation of the triangle with the line of sight ẑ, which we consider

to be the polar angle µ = cosω of k1 with ẑ and the azimuthal angle φ. Therefore we can

define the vectors (Scoccimarro et al, 1999):

k1 = (0,0,k1), (5.35)

k2 = (0,k2 sinθ12,k2 cosθ12), (5.36)

k3 = (0,−k2 sinθ12,−k1−k2 cosθ12), (5.37)

ẑ = (sinω cosφ,sinω sinφ,cosω), (5.38)

where cosθ12 = k1 ·k2/(k1k2). The cosine of the angles µi will be now:

µ1 = k1 · ẑ = µ, (5.39)

µ2 = k2 · ẑ = cosθ12µ+sinθ12

√
1−µ2

1 sinφ, (5.40)

µ3 = k3 · ẑ =−µ12 =−k1

k3
µ1−

k2

k3
µ2. (5.41)

The bispectrum will now be Bs
g(k1,k2,k3) = Bs

g(k1,k2,k3,µ1,φ). Taking the spherical

average over all possible orientations of the triangles with respect to the line of sight (i.e.

the monopole term in the Legendre expansion) of Eq. (5.29), in a similar fashion as it

was done in (Kaiser, 1987) for the power spectrum, one can obtain (Sefusatti et al, 2006;

Gil-Maŕın et al, 2012):

P s
g (k,z) = αP (β)Pg(k,z), (5.42)

Bs
g(k1,k2,k3,z) = αB(β)Bggg(k1,k2,k3,z), (5.43)

where

αP (β) = 1+
2

3
β +

1

5
β2, (5.44)

αB(β) = 1+
2

3
β +

1

9
β2, (5.45)
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with β = f/b1. The terms Pg and Bggg are the real space galaxy power spectrum and

bispectrum, given by Eqs. (5.8) and (5.19) respectively. The redshift space bispectrum

presented above, as described in (Sefusatti et al, 2006), is derived after averaging over

θ12 = acos(k̂1k̂2) and dropping the dependence on the second-order PT velocity kernel

[Eq. (3.24) ] and the FOG effect (i.e. keep only Eq. (24) and (28) of (Scoccimarro et al,

1999)). This is a good approximation on large scales since these two partially cancel out.

In the cases of local and orthogonal primordial non-Gaussianity the galaxy power

spectrum and bispectrum will be described by the full model of Eqs. (5.8), (5.19) and

(5.28), (5.29) for real and redshift space respectively. In Eq. (5.29) we will keep only the

O(fNL) terms, while the full form was written down for completeness. For the equilateral

case, as we discussed before, the scale dependent bias contribution is degenerate and will

not be used. Nevertheless we will use the Gaussian power spectrum, excluding its signal

contribution from constraining fNL, and the bispectrum without the terms proportional

to the non-local primordial field Ψ. In this case, the trispectrum bias contribution can

compensate for the missing large scale signal and improve the constraints on the non-

Gaussian amplitude, as we will show in Sec. 5.7.

5.3 Fisher information matrix formalism

Suppose we have a random variable x with a probability that depends on a parameter

θ. We can define the conditional probability p(x;θ) as the probability of having x given

the parameter θ. If we make independent measurements of the parameter and obtain

x1, x2, x3, etc., then the joint probability, i.e. the probability of having a specific sequence

assuming independence of the measurements, is given by

L(x1,x2, . . . ;θ) =
∏

i

p(xi;θ) (5.46)

where L(x;θ) is the likelihood probability. In the case of many parameters we can write



5. Fisher matrix predictions from LSS surveys 137

this as L(x;θ), where θ = {θ1, θ2, . . .} is the parameter vector. The set of parameters θ

that maximize the joint probability L(x;θ), i.e. the set that makes the occurrence of our

data set the most probable, must solve

∂L(x;θ)

∂θα

∣∣∣∣
θα

= 0 α = 1, . . . ,m (5.47)

From this we can define the maximum likelihood estimator θ̂α as the value of the param-

eter θα that maximised the likelihood (see Sec. 6.2 for a discussion). The estimator of

the parameters is taken to be the mean, θ̂ =
∫

θP (θ;x)dθ, where P (θ,x) is the probability

distribution of the parameters given the data. An assumption about the distribution of

the data must be made, e.g. a Gaussian, in order to form the likelihood of the param-

eters. Once we have it though, we can derive the maximum likelihood estimator θ̂ by

sampling the likelihood at various points in a multi-dimensional parameter space. Such a

computation can be very demanding for a large number of parameters.

A faster approach, in order to avoid the parameter space sampling, is to assume that

the likelihood is a multivariate Gaussian function of the parameters

L≡− lnL(x;θ) =
1√

(2π)NdetC
exp

[
−1

2
(θα− θ̂α)Fαβ(θβ− θ̂β)

]
(5.48)

where Fαβ is the Fisher information matrix and it is the inverse of the covariance between

the parameters evaluated at the expected value of the estimator. In the case of an unbiased

estimator, like the maximum likelihood, the expected value equals the true, i.e. 〈 θ̂ 〉 =

θ0. The Gaussian assumption is reasonable near the peak of the likelihood distribution.

Therefore we can Taylor expand around the maximum likelihood value of the parameters

as derived from the estimator θ̂, i.e. θ0, to get

L(x;θ) = L(x;θ0)+
1

2
(θα− θ0α)

∂2L(x;θ)

∂θα∂θβ
(θα− θ0α)+ . . . (5.49)

This gives the Fisher matrix as
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Fαβ =

〈
∂2L(x0;θ)

∂θα∂θβ

〉∣∣∣∣∣∣
θ=θ0

(5.50)

where x0 is the dataset which corresponds to the maximum likelihood parameters. A di-

rect consequence of the fact that a maximum likelihood estimator saturates the minimum

bound in its variance, imposed by the Cramer-Rao inequality (see Sec. 6.2) in the case of

a large sample, is that the minimum error of a parameter is related to the Fisher matrix

[Eq. (6.9) ] as

σα =
√

F −1
αα (5.51)

Assuming that the likelihood follows a Gaussian distribution, we can write

2L = lndetC +(x−µ)C−1(x−µ)T (5.52)

where µ is the mean vector, i.e. the dataset that corresponds to the true values of the

parameters θ0 and hence depends on them, and C−1 = 〈(x−µ)(x−µ)T 〉. Using this in

Eq. (5.50) we get (see e.g. Heavens (2009))

Fαβ =
1

2
[C−1C,αC−1C,β +C−1(µ,αµT

,β +µ,βµT
,α)] (5.53)

This is a very powerful result since we can perform predictions by assuming a theoretical

model, which we treat as being the maximum likelihood dataset, without the use of any

data.

In the case of the galaxy power spectrum, the Fisher matrix is given by

F P s
αβ =

1∑

µ1=0

kmax∑

k=kmin

∂P s
g

∂pα

∂P s
g

∂pβ

1

∆P 2
(5.54)

while for the bispectrum we have (Scoccimarro et al, 2004)
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F Bs
αβ =

1∑

µ1=−1

π/2∑

φ=−π/2

∑

T

∂Bs
g

∂pα

∂Bs
g

∂pβ

1

∆B2
, (5.55)

where pα,β are the unknown parameters of interest and the derivatives are evaluated at

the fiducial value of the parameter vector. The sum over the triangle is written as

∑

T

≡
kmax∑

k1=kmin

kmax∑

k2=k1

k2∑

k3=k∗

(5.56)

where k modes are binned with a bin size of ∆k, which is some integer multiple of the

fundamental frequency of the survey kf = 2π/V 1/3 (here we consider ∆k = kf ), between

a minimum value kmin = kf (largest scales probed by survey) and kmax (smallest scales

considered). The mode ordering used here is k1 ≥ k2 ≥ k3 and k∗ = min(kmin,k1−k2).

The angular bin sizes are taken here to be ∆µ1 = 0.1 and ∆φ = π/25 throughout this

chapter. The sum over the angle φ is a half cycle due to the azimuthal symmetry of

Bs
g(k1,k2,k3,µ,φ), which is due to the fact that the functional dependence of the redshift

space bispectrum on the azimuthal angle is sinφ. Additionally a symmetry on µ1 is

observed in the case of the power spectrum, originating from the quadratic dependence

of P s
g on the angle µ1. Taking advantage of these symmetries significantly improves the

speed of the numerical calculations, especially in the case of the bispectrum. The lower

limit on the parameter of interest for a given survey, is found after marginalizing over all

the other unknown parameters by using Eq. (5.51).

Note that the Fisher matrix of the power spectrum [Eq. (5.54) ] is calculated from

the sum over k bins, rather than using an integral (see e.g. (Wang, 2006)). This choice

is due to the fact that the integral would assume a survey with infinite precision. Even

if it is done numerically, an arbitrarily small ∆k is used to achieve accurate results. For

a survey with a finite volume, a Fourier mode cannot be measured more accurately than

kf /2 due to the uncertainty principle. In other words, there is not enough room inside a

survey to tell apart two waves whose frequencies differ from each other by less than kf /2.
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The parameter vector considered here consists of the non-Gaussian amplitude, three

bias parameters, stochastic power spectrum and bispectrum contributions, the linear

growth rate and the velocity dispersion,

p = {fX
NL, b1, b2, bs2 ,Pε,Pεεδ

,Bε,f,συ}. (5.57)

where the superscript X in fNL denotes one of the three non-Gaussian types considered

here. The amplitudes of the stochastic bias terms are considered here nuisance parameters

and must be marginalized over at each redshift bin to acquire the subset of the parameters

of interest psub. This can be done by taking the inverse of the full Fisher matrix and keep

the sub-matrix that corresponds to the parameters of interest (i.e. {fX
NL, b1, b2, bs2 ,f,συ})

and then invert back to get F sub. To derive the constraints on the non-Gaussian am-

plitude we invert again the sub-matrix F sub, and we keep only the matrix element that

holds the information on fNL. Finally, we invert back to acquire the Fisher 1×1 matrix

for the amplitude of primordial non-Gaussianity. It is this matrix that is summed over

redshift bins that will give us the desired constraints on fNL. We aim for a complete and

conservative analysis, therefore we will stick to the linear regime, and exclude non-linear

scales. For the redshift evolution of kmax(z) we consider, kmax(z) = 0.1/D(z). kmax slowly

varies with redshift while in the linear and semi-linear regime, ensuring the validity of the

bias expansion, as well as SPT itself.

In our Fisher matrix analysis, only the diagonal part of the covariance matrix (i.e.

∆P 2 and ∆B2) is taken into consideration, neglecting all the cross-correlations between

different triangles (bispectrum) and k-bins (power spectrum). Using the estimators for the

power spectrum and bispectrum, as defined in (Scoccimarro et al, 1998), we can retrieve

the analytic results for the variance of the estimators as

∆P 2(k,z) = 2
Vf

VP
P 2

tot(k,z) =
4π2

Vsurveyk2∆k∆µ
P 2

tot(k,z), (5.58)

∆B2(k1,k2,k3,z) = s123
Vf

VB
Ptot(k1,z)Ptot(k2,z)Ptot(k3,z)
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= s123πk3
f

Ptot(k1,z)Ptot(k2,z)Ptot(k3,z)

k1k2k3∆k3∆µ∆φ
, (5.59)

where s123 = 6,2,1 for equilateral, isosceles and scalene triangle respectively. The vol-

ume of the fundamental shell in Fourier space is Vf = k3
f . In addition Ptot(k,z) =

P s
g (k,z)+1/ng, where the stochastic contribution is excluded from P s

g and the remaining

term accounts for the shot noise. Note that for the Fisher matrix in redshift space, the

normalization for the two angles, i.e. Nµ = µmax−µmin and Nφ = φmax−φmin, must be

applied. Finally, in the above expressions the normalization volumes are given by

VP =
∫

k1

d3q1

(2π)3

∫

k2

d3q2

(2π)3
δD(q1 +q2)≈ 4πk1k2∆k, (5.60)

VB =

∫

k1

d3q1

(2π)3

∫

k2

d3q2

(2π)3

∫

k3

d3q3

(2π)3
δD(q1 +q2 +q3)≈ 8π2k1k2k3∆k3. (5.61)

The full covariance of the two estimators is outlined in (Sefusatti et al, 2006), where the

off-diagonal elements are defined by higher than three point correlators. Although the

above results are for redshift space statistics, the reduction to real space is straightforward.

The real space Fisher matrix results are also used for the power spectrum and bispectrum

monopole approximation case [Eqs. (5.42) and (5.43)].

Recently, the authors of Ref. (Chan and Blot, 2017) used dark matter N -body sim-

ulations, including four halo samples with different number densities, in order to study

the full covariance of the power spectrum and bispectrum estimators. They focused on

extracting an integrated signal-to-noise ratio for all bins/triangles, checking how this gets

degraded when off-diagonal covariance elements and non-Gaussian contributions to the

variance are accounted for. While this does not include a specific study of the degrada-

tion of error bars for primordial NG or other cosmological parameters, their results can

provide useful guidelines to assess the validity of our diagonal covariance approximation

and the error on the parameter forecast we introduce by employing it.
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For the dark matter power spectrum, (Chan and Blot, 2017) show that the correlation

coefficient between different modes never exceeds ∼ 15% at z = 0, up to kj = 0.1 h/Mpc.

For z = 1, the correlation reaches at most ∼ 20% for (i.e. kj ∼ 0.15 h/Mpc for z = 1).

This is due to the fact that the Universe becomes more linear and hence the effect of

the non-Gaussian contributions to the covariance is less important. On the scale range

considered here, the non-Gaussian corrections to the diagonal part of the covariance is

negligible at z = 0, as well as for z = 1. For halos, these corrections can be up to ∼ 10%

for the same scale range, in the case of the small density halo samples, with the exact

value depending on the redshift. Furthermore, the results agree with the covariance model

predicted by PT up to k = 1 h/Mpc for the abundant halo sample. Therefore we conclude

that the exclusion of the off-diagonal part in the galaxy power spectrum covariance will

introduce an error of the order of few to 10−15% percent, for the scale range and redshifts

considered here, depending on the number density of the sample. In addition, the NG

corrections to the variance are negligible for the high density samples and scale range

considered here.

For the dark matter bispectrum, it is shown that the non-Gaussian corrections to the

diagonal Gaussian part (for equilateral configurations) is ∼ 8% at z = 0 and k = 0.1 h/Mpc

and that PT predictions agree with the numerical results up to k∼ 0.15 h/Mpc. For higher

redshifts (i.e. z = 0.5, 1) the corrections are at a few percent level, up to k ∼ 0.16 h/Mpc,

while the PT predictions are in good agreement with the results up to k ∼ 0.2 h/Mpc

and k ∼ 0.3 h/Mpc for z = 0.5 and z = 1 respectively. In addition, it is shown show that

the correlation coefficient, used to test couplings between different triangles, is consistent

with zero for the large scales and for the redshift slices considered. This means that, for

the chosen scale range and redshifts of this chapter, we are always in the low mode-mode

correlation regime.

When, instead of dark matter, we consider halos, triangle couplings and non-Gaussian

corrections strongly depend on the redshift and density of the sample. Corrections to
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the diagonal Gaussian part are negligible at z = 0 and k = 0.1 h/Mpc in the case of a

high density sample (n ∼ 10−3 [Mpc/h]−3). On the other hand, for a low density case

(n . 2× 10−5 [Mpc/h]−3) the correction is found to be between few percent and ∼ 10%

at low redshift, and increasing up to ∼ 90% at high redshifts.

Moreover, the S/N ratio is reported for both power spectrum and bispectrum in the

case of dark matter and the small abundant halo sample. For the dark matter, the

inclusion of the full covariance suppresses the bispectrum S/N almost two times at k =

0.1 h/Mpc and z = 0, while the power spectrum S/N is almost unchanged. The same

behaviour is observed also in the higher redshift bins. For rare halos, the effect is more

intense. The bispectrum S/N is suppressed 3-4 times at z = 0 and k = 0.1 h/Mpc, while at

z = 1 and k ∼ 0.15 h/Mpc an order of magnitude suppression is observed. These findings

are for the rare mass groups and therefore we expect the changes to be less aggressive for

more abundant samples.

The samples considered in this work have a high number density for the majority

of the redshift bins (except only for some high redshift slices, where non-linearities are

anyway less important), ng & 104 (h/Mpc)3 (see Table 5.1, 5.2, 5.3 and 5.4). Therefore

we do not expect the exclusion of the non-Gaussian part in the covariance to overestimate

much the S/N ratio and have a large impact on the final PNG constraints.

A final remark to make is that the S/N, after including the full non-Gaussian co-

variance, is always larger for the P (k) than the bispectrum case, throughout the whole

scale range (up to kmax ∼ 1 h/Mpc) and for all redshift bins considered in (Chan and

Blot, 2017). This indicates that the amount of information contained in the three-point

statistics is small compared to that derived from the two-point. However, note that the

general S/N analysis, performed in (Chan and Blot, 2017), reflects the capabilities of

the bispectrum in measuring cosmological parameters. On the other hand, three-point

statistics hold a rich amount of information to put tight constrains in the amplitude of

primordial non-Gaussianities. This will be shown extensively in this chapter.
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As explicitly shown in (Chan and Blot, 2017), on the large scales considered here the

full NG contribution can be well approximated by including perturbative corrections to

the power spectrum appearing in the bispectrum variance expression, obtaining:

∆B2
NL(k1,k2,k3,z) = ∆B2(k1,k2,k3,z)+

s123πVf

k1k2k3∆k3∆µ∆φ

×
(

Ptot(k1)Ptot(k2)(P NL
g (k3)−Pg(k3)+

1

ng
)+2 perm

)
(5.62)

where P NL
g (k3) is given by Eq. (5.8) after replacing the linear matter power spectrum

with the non-linear one, as predicted by the HALOFIT algorithm (Smith et al, 2003;

Takahashi et al, 2012). The reason that HALOFIT, instead of the PT one-loop matter

power spectrum, is used, lies in the fact that the latter leads to overestimating the actual

variance in the weakly non-linear regime. We will use this expression later on in our

analysis, in order to estimate more in detail the effect of neglecting NG corrections in our

forecasts.

The combined prediction coming from the power spectrum and bispectrum, neglecting

the cross covariance between the two, is given by

F P +B
αβ = F P

αβ +F B
αβ. (5.63)

Another aspect to consider is the covariance between the power spectrum and the bispec-

trum when the two are used jointly. This was provided, in the Gaussian case, in the work

of (Sefusatti et al, 2006) and used in (Song et al, 2015). In the work of (Chan and Blot,

2017), a comparison between the S/N ratios coming from N -body simulations is made

in order to test the effect of the PB cross-covariance. In the case of dark matter they

show that at z = 0 and kmax = 0.1 h/Mpc the effect of the cross covariance is negligible,

while for larger scales it can reduce the total S/N by ∼ 10%. On the other hand, at small

scales an enhancement of 15−40% is observed. This behaviour is less pronounced in the

case of higher redshifts: for z = 1 and kmax ∼ 0.15 h/Mpc (i.e. the one that matches our
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choice of kmax(z)) the cross covariance affects S/N by a negligible to ∼ 1% amount. For a

sample with higher abundance, like those we consider here, the effect of cross covariance

follows the behaviour of dark matter, i.e. a few percent effect for our chosen scale range.

This justifies neglecting the cross-covariance in our forecasts, as well as the value of the

adopted kmax limit.

5.4 Theoretical Errors

Theoretical errors quantify the uncertainties on the modelling of the matter pertur-

bations and the bias expansion in the statistics of galaxies. Perturbation theory can

provide an adequate description of the evolution of the density field up to the mildly

non-linear scales. In the non-linear regime, the predictability of PT loses power and we

are dominated by theoretical uncertainties. Even before reaching these scales, the effect

of theoretical errors arising from a finite loop expansion, should be taken into account

and this is especially true in the case of the Fisher matrix formalism, where a perfect

theoretical description is otherwise assumed.

Here we will follow and extend the treatment of (Baldauf et al, 2016), where the-

oretical errors e are defined as the difference between the true theory and the fiducial

theoretical prediction. This formalism considers the true theory to be the model which

takes into account at least one more perturbative order than the fiducial one. These

errors are bounded by an envelope E and their variation as a function of wavenumbers

is characterized by ∆k [Eq. (5.65) ]. The value of the correlation length ∆k is taken to

be that of the smallest coherence length of the total power spectrum, that is the scale of

the Baryon Acoustic Oscillations (BAO), ∆k = ∆BAO = 0.05 h/Mpc (see (Baldauf et al,

2016) for an extensive discussion). The error covariance matrix is written as:

Ce
ij = EiρijEj (5.64)
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where i, j are the indices of the different momentum configurations (i.e. number of bins

and triangles for the power spectrum and bispectrum respectively). The correlation coef-

ficient ρij accounts for the correlations between the momentum configurations, considered

to follow a Gaussian distribution, and given by

ρij =





exp(−(ki−kj)
2/2∆k2) P,

3∏

α=1

exp(−(ki,α−kj,α)2/2∆k2) B.
(5.65)

For a diagonal error covariance (i.e. ρii = 1 and ρij = 0 for i 6= j) and a fixed ∆k, the

envelope E(k) would be independent of the bin size, contrary to the statistical errors.

This means that, for uncorrelated bins, choosing a smaller bin size will reduce the effect

of the theoretical errors. The presence of an off-diagonal ρij ensures that this does not

happen and the relative impact of errors is independent from the size of the k bins. After

marginalising over the theoretical errors e, the final covariance that will be used in the

Fisher matrix analysis becomes just the sum of the variance of the power spectrum and

bispectrum estimators (Eqs. (5.58) and (5.59) respectively) with the theoretical error

covariance [Eq. (5.64) ].

One of the goals of this work is to test the effect of theoretical errors on the parameter

constraints coming from high redshift LSS surveys. The Universe is more linear at large

redshifts and hence, for the scales considered in this analysis, we would not expect to see

a significant impact on the constraints solely from the theoretical uncertainties attributed

to PT. As we discussed in Sec. 4.3.2, bias has its own limitation towards the small scales,

where the contribution of additional terms becomes important (see e.g. (Desjacques et al,

2016) and references therein for a discussion). In the formalism proposed by Baldauf

et al (2016), the envelope is fitted up to two-loops in matter perturbations for both power

spectrum and bispectrum while for the bias expansion they consider only the linear bias.

Here, we proceed in extending their approach to include the theoretical uncertainties

coming from the local-in-matter bias terms (i.e. b1, b2, b3, etc.) that appear up to the
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1-loop expression of the galaxy power spectrum and bispectrum. This set of terms has

been shown to provide an accurate description by comparing with simulations and galaxy

catalogues (see e.g. (Scoccimarro et al, 2001a; Feldman et al, 2001; Verde et al, 2002;

Maŕın et al, 2013; Gil-Maŕın et al, 2014)). Note that the inclusion of all the bias terms at

each order (e.g. including tidal terms and other operators, see (Desjacques et al, 2016) for

a review) is potentially important and we will consider their contribution in the theoretical

error formalism in the near future (see Sec. 5.7.1.1 for a discussion).

In order to quantify the theoretical uncertainties, we fit the galaxy power spectrum

and bispectrum envelope after including the local-in-matter bias terms up to 1-loop, in

addition to the 1-loop matter expressions originating from the description of PT, while

assuming Gaussian initial conditions. More precisely, for the galaxy power spectrum we

take into account all the terms originating from the bias expansion, that have a dependence

on b1, b2 and b3, up to 1-loop (i.e. Eqs. (5.4), (5.5) and (5.6)). For the galaxy bispectrum,

the bias terms considered are all those with a dependence on b1, b2, b3 and b4, up to 1-

loop, while we exclude those with a dependence on PNG initial conditions (i.e. Eqs.

(5.14) – (5.17)). For the matter expansion, we consider up to 1-loop terms for both power

spectrum and bispectrum in the cases of SPT (see e.g. (Bernardeau et al, 2002) for a

review) and MPTbreeze (see Sec. 3.4 for details). The SPT fits are presented here for

completeness, since, throughout this chapter the MPTbreeze description of the matter

perturbations will be used. The envelope for the power spectrum for the MPTbreeze

and the SPT schemes are:

EP (k,z) =





D2(z)P L
m(k,z)

[
b2
1(k/0.32)1.8 + b2

2(k/0.43)1.1 + b1b31.13
]

SPT,

D2(z)P L
m(k,z)

[
b2
1(k/0.16)2 + b2

2(k/0.43)1.1
]

MPTbreeze,

(5.66)

while the fitting results for the bispectrum are:



5. Fisher matrix predictions from LSS surveys 148

EB(k1,k2,k3, z) =





D2(z)BG(k1,k2,k3, z)
[
3b3

1(k̂/0.32)1.8 + b3
21.8k̂1.25

+b1b2b33.2+ b2
1b4

]
SPT,

D2(z)BG(k1,k2,k3, z)
[
3b3

1(k̂/0.15)1.7

+b3
21.8k̂1.25 + b1b2b33.2

]
MPTbreeze.

(5.67)

where k̂ = (k1 + k2 + k3)/3. Note that the values of the fitted free parameters in the

above envelopes exhibit a small dependence on the fiducial cosmology (a few percent).

The numerical values shown above correspond to the cosmological parameters considered

here.

A slightly different methodology to quantify the effect of theoretical errors was devel-

oped in Ref. (Audren et al, 2013). The procedure followed is similar to the one used here.

The main difference is that they define theoretical uncertainties by fitting a correction

function to the HALOFIT, instead of the desired loop order given by PT. Their tech-

nique is applied only to the power spectrum and the relative error to the non-linear P

is added to the diagonal part of the covariance matrix. The level of correction is quanti-

fied by the precision of HALOFIT, where only the linear bias is taken into account. In

order to quantify the difference between the two approaches, we tested this methodology

for the power spectrum, since the fitting function is provided only for this case, while a

generalisation to the halo bispectrum is not straightforward. To perform the comparison,

we adjusted the envelope function of Eq. (5.66) by removing the higher order bias contri-

butions, as well as by using only the diagonal part of the error covariance [Eq. (5.64) ].

In the case of local PNG the difference on the final fNL constraint turns out to be ∼ 2%,

while for orthogonal PNG is ∼ 8%. Therefore the two approaches produce very consistent

results, whenever a comparison is possible.

However, we note that the (Baldauf et al, 2016) technique used here is in a sense more

complete than the one provided by Audren et al (2013), despite the fact that the latter
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considers, for the description of the dark matter perturbations, a more precise model (i.e.

they use the HALOFIT model contrary to Baldauf et al (2016) that use the explicit

PT calculations up to 1-loop). This is due to the fact that theoretical errors, as defined

here, take also into account higher-order bias corrections, which are important for the

redshift range we consider. In addition, we have shown that using only the diagonal

part of the error covariance underestimates the effect of theoretical uncertainties at low

redshifts, when the Universe is more non-linear and the correlations between different

modes affect the final fNL constraints. At higher redshifts, the effect of the full error

covariance converges to the one given by only the diagonal part. Therefore, we expect

the difference between the two methodologies to be at the level of a few percent, in the

case where we consider only the linear bias terms for the galaxy power spectrum.

5.5 Galaxy Surveys

In this Section we describe the specifications of the radio continuum and optical galaxy

surveys we used in this chapter.

5.5.1 Future radio surveys

In this section we forecast measurements of the bispectrum for future radio surveys;

we focus on such experiments to investigate whether the high-redshift, full sky nature of

those datasets will provide better constraints on non-Gaussianity parameters, despite the

lower precision in redshift information.

We forecast results for two radio continuum surveys: the forthcoming Evolutionary

Map of the Universe (EMU (Johnston et al, 2008; Norris et al, 2011)) survey, that recently

started their early science survey, and a possible configuration of the full Square Kilometre

Array (SKA), assuming the specifications of (Jarvis et al, 2015). For the EMU case, we

use a 10µJy flux limit, while for the SKA we assume it will go down to 1µJy. In both cases
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we consider 30,000 deg2. Given that we want to forecast the advantages of having both

full sky and high-z data, we use radio continuum surveys, that are however plagued by the

fact that the sources’ redshift is in principle unknown. This would allow, in the standard

case, only the computation of an angular projected power spectrum and bispectrum.

The knowledge of the redshift distribution allows us to perform statistics in a three

dimensional space and improve significantly upon a 2D analysis. The advantage of radio

continuum surveys is that they cover large volumes, by mapping the sky on large angu-

lar separations and retrieving information from high redshifts. The combination of these

characteristics can increase the accessible scales, since large volumes increase the scale

resolution (kf = 2π/V 1/3) and hence the signal-to-noise ratio. At high redshifts the Uni-

verse is more linear, since gravity did not have enough time to heavily couple the modes,

increasing the scales up to which SPT can predict the evolution of matter (Jeong and

Komatsu, 2006). This indicates that we can push further into smaller scales and enhance

the bispectrum signal.

Recently, some techniques have been developed in order to provide such surveys with

statistical redshift information. Here we follow the Clustering-Based Redshift (CBR)

estimation, developed in the work of (Schneider et al, 2006; Newman, 2008; Ménard

et al, 2013), where the missing redshift information can be retrieved by using a technique

that cross-correlates the unknown distribution with a sample that has a well known red-

shift. This technique was studied for some cosmological applications, including the SKA

in (Kovetz et al, 2016). The main idea of this method is to perform the angular cross-

correlation of the unknown sample with redshift slices of the reference survey with known

redshift information. The cross-correlation amplitude is then related to the redshift dis-

tribution, as discussed in (Ménard et al, 2013), which is then inferred to the initial 2D

sample. A disadvantage of this method is that the provided redshift information can have

a large uncertainty. In fact it is safe to assume that the redshift error σz(z) is equal to

the width of the said bin.
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EMU (10µJy) SKA (1µJy)
z σz V ng z σz V ng

0.86 0.18 12.73 2.54 0.41 0.16 4.32 2.15
1.45 0.28 29.63 2.04 1.01 0.23 18.93 5.84
2.3 0.28 33.74 1.27 1.6 0.3 33.22 9.23
3.46 0.46 52.6 0.43 2.56 0.42 50.6 4.57
5.48 0.63 58.2 0.057 4.1 1.63 175.1 1.17

Table 5.1 – The basic numbers for the two surveys considered here for each redshift bin. The
shell volume is in units of (Gpc/h)3 and the mean number density in 10−4(h/Mpc)3. The
redshift uncertainty of an object takes the same value as the width of the bin it resides.

The resulting predicted redshift distribution and redshift errors for the radio surveys

used here are presented in Table 5.1. The volume of each redshift shell is calculated in

units of (Mpc/h)3 from

V = (r3
com(zmax)− r3

com(zmin))
(

π

180

)2 area

3
. (5.68)

The galaxy mean number density is derived from, ng = N ·area/V , where N is the number

of objects per square degree for each redshift bin.

In order to connect the prediction of the halo bias, as derived from the PBS formalism

(see Sec. 4.3.3), with he bias of galaxies, we adopt a halo model (Cooray and Sheth, 2002),

where a Halo Occupation Distribution (HOD) function is used to provide, 〈N〉M the mean

number density of galaxies per halo of a given mass M . The galaxy bias coefficients can

be obtained from a weighted average of the halo bias over the range of host halo masses

corresponding to the desired galaxy type as

bi(z) =

∫
Mmin(z) d lnMnh(M,z)bh

i (M,z)〈N(M,z)〉
ng(z)

, (5.69)

where 〈N(M,z)〉 is the mean number of galaxies per dark matter halo of mass M , given

by the HOD model, and Mmin is the minimum mass a halo must have to contain a central

galaxy. Finally ng(z) is the mean galaxy density given by
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2007)

〈N(M,z)〉=





1+
M

M1(z)
exp

(
−Mcut(z)

M

)
, if M ≥Mmin(z)

0, otherwise,

(5.71)

where M1 is the mass required for a halo to contain a second satellite galaxy. In Con-

roy et al (2006), a relationship between M1 and Mcut has been derived, log10(Mcut) =

0.76log10(M1) + 2.3, by fitting the HOD free parameters on N -body simulations at dif-

ferent redshifts and number densities. In addition, it has been shown that the ratio

log10(M1/Mmin) = 1.1 is almost redshift and mean number density independent. We will

use both relationships in order to simplify the HOD model, leaving Mmin as the only free

parameter. Finally, we set Mmin so that ng matches the expected mean galaxy number

density of the survey in each redshift bin. The resulting galaxy bias is plotted in Figure

5.5 as a function of redshift for the two radio survey examined here.

5.5.2 Future optical surveys

In the forthcoming years, a plethora of large scale structure surveys will provide ac-

curate information on the redshifts and positions of various galaxy types, spreading over

large volumes. Although this won’t be the primary goal, the large number of modes and

high redshifts probed by these surveys will give the possibility to produce tight constraints

on the amplitude of PNG. In this section we present the details of three spectroscopic

and one photometric catalogue, covering a variety of redshift ranges and volumes, namely

Euclid, DESI, SPHEREx and LSST.

5.5.2.1 Euclid

Euclid (Laureijs et al, 2011) is a space mission scheduled to launch in 2020, with a

primary goal of shedding light on the dark sector of the Universe and the nature of gravity.

This will be achieved by using the main observables of the survey, i.e. galaxy clustering
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z V ng

0.7 2.82 12.95
0.8 3.28 19.95
0.9 3.70 19.13
1.0 4.08 17.7
1.1 4.42 16.0
1.2 4.72 14.31
1.3 4.98 12.85
1.4 5.20 10.72
1.5 5.39 8.64
1.6 5.54 6.24
1.7 5.67 4.07
1.8 5.78 3.82
1.9 5.86 2.28
2.0 5.93 1.26

Table 5.2 – The basic numbers for the Euclid spectroscopic survey for each redshift bin. The
shell volume is in units of (Gpc/h)3 and the mean number density in 10−4(h/Mpc)3.

and weak gravitational lensing. The former dataset consists of a photometric sample of

billions of galaxies and a spectroscopic one composed of Hα emitters. The latter is the

dataset that we will use in this work, which covers a redshift range of 0.7 ≤ z ≤ 2 over

15,000 deg2. The redshift distribution is taken from the work of (Orsi et al, 2010) (see

also Font-Ribera et al (2014) and references therein), and in Table 5.2 we show the main

specifications for Euclid, as used in this work. The size of redshift bins is ∆z = 0.1, while

the spectroscopic redshift error is given by σz(z)≈ 0.001(1+z), as proposed in (Amendola

et al, 2013).

The galaxy sample is assumed to involve a single tracer, whose linear bias is given by

b1(z) = 0.76/D(z) as proposed in Refs. (Font-Ribera et al, 2014; Tellarini et al, 2016).

The higher order Eulerian bias coefficients are given from the halo bias predictions (see

Sec. 4.3.3), where ν is determined by b1(z) = bh
1(ν,z) [see Eq. (4.44) ]. The results for the

linear and quadratic cases can be seen in Figure 5.7.
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5.5.2.2 DESI

The Dark Energy Spectroscopic Survey (DESI) (Levi et al, 2013) is a ground-based

14,000 deg2 spectroscopic redshift survey, with the first light expected in 2019. The main

goal is to study dark energy and its effects on the expansion of the Universe. This will be

achieved by measuring the spectra of luminous red galaxies (LRGs), bright [OII ] emission

line galaxies (ELGs) and quasars (QSOs) over different redshift ranges and up to z < 2.1,

while a higher redshift (2.1 < z < 3.5) quasar sample will be used to measure the Lyman-α

forest absorption features in their spectra. In addition DESI will perform a magnitude-

limited Bright Galaxy Survey (BGS) at small redshifts (0.05≤ z≤ 0.4). The specifications

used here can be found in (DESI Collaboration et al, 2016) (see in particular Table 2.3 and

2.5), from where we take the baseline sample, composed by LRGs, ELGs, QSOs, as well as

the BGS to construct an effective population extending from redshift z = 0 up to z = 1.9.

As described in Ref. (Alonso and Ferreira, 2015), this approach approximates well the

multi-tracer technique to the limit where the tracers can be considered independent. The

size of the redshift bin is taken to be ∆z = 0.1, while the spectroscopic redshift error is

given by σz(z) = 0.001(1 + z) (DESI Collaboration et al, 2016). The main numbers for

DESI are shown in Table 5.3.

In order to derive the bias parameters we follow the work of (Alonso and Ferreira,

2015), who define an effective bias as the weighted average over the biases of all the

tracers considered in the effective sample, given by:

beff
1 (z) =

∑
X

nX(z)bX
1 (z)

∑
X

nX(z)
(5.72)

where X = {ELG,LRG,QSO,BGS} and the sum is over all the different populations

considered in the sample. The linear bias for each individual case is, bELG
1 = 0.84/D(z)

(Mostek et al, 2013), bLRG
1 = 1.7/D(z), bQSO

1 = 1.2/D(z) and bBGS
1 = 1.34/D(z) (DESI

Collaboration et al, 2016). Equating the effective linear bias with the predictions of the
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z V nELG nLRG nQSO nBGS

0.05 0.035 0 0 0 457.28
0.15 0.23 0 0 0 187.86
0.25 0.56 0 0 0 47.55
0.35 0.98 0 0 0 10.42
0.45 1.45 0 0 0 11.58
0.65 2.4 1.80 4.84 0.274 0
0.75 2.85 11.14 4.84 0.27 0
0.85 3.26 8.24 2.83 0.26 0
0.95 3.64 8.04 1.04 0.257 0
1.05 3.97 5.07 0.18 0.253 0
1.15 4.27 4.43 0.05 0.248 0
1.25 4.53 4.13 0 0.247 0
1.35 4.75 1.54 0 0.244 0
1.45 4.94 1.32 0 0.24 0
1.55 5.1 0.9 0 0.238 0
1.65 5.24 0.33 0 0.232 0
1.75 5.35 0 0 0.227 0
1.85 5.43 0 0 0.221 0

Table 5.3 – The basic numbers for DESI for each redshift bin. The shell volume is in units
of (Gpc/h)3 and the mean number density of each tracer in 10−4(h/Mpc)3.

PBS halo bias model (i.e. beff
1 (z) = bh

1(ν,z)), gives the peak height ν which is used to

derive the higher-order bias parameters. The results for the linear and quadratic bias

terms are plotted in Figure 5.7.

5.5.2.3 SPHEREx

The Spectro-Photometer for the History of the Universe, Epoch of Reionization, and

Ice Explorer (SPHEREx) (Bock and SPHEREx Science Team, 2016; Doré et al, 2014) is

a proposed satellite with a primary goal of providing a full-sky (∼ 40,000 deg2) spectro-

photometric survey in the near-infrared. One of the main scientific objectives of the

SPHEREx is to put tight constraints on PNG by using the spectroscopic galaxy sample,

which is the one used here in order to compare the constraints with the results coming from
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other large volume, deep redshift surveys (e.g. the radio continuum surveys of the previous

section). Two different configurations of SPHEREx with a different redshift range will be

used, one with a spectroscopic redshift error of σz(z) = 0.01(1+z) denoted ’SPHEREx1’

and another with σz(z) = 0.2(1+z) named ’SPHEREx2’. The number density of galaxies

for both cases can be found in (Doré et al, 2014) (in particular Fig. 10).

For the bias prescription we follow the work of (Doré et al, 2014), where the linear

bias is calculated from the halo bias prediction [Eqs. (4.44) and (4.18)] for a minimum

halo mass Mmin, i.e. b1(z) = bh
1(Mmin, z). The mass Mmin in each redshift bin is found by

equating the mean number of halos, as derived by the halo mass function, with the mean

number density of the sample. However, the number density of galaxies is not the same

as the halo number density, since the presence of satellite galaxies must be taken into

account. Therefore, we assume that only 80% of the galaxies in the sample are central

galaxies (Doré et al, 2014), matching the number predicted by the halo mass function,

i.e. nh(M > Mmin), z) = 0.8ng(z). Once the minimum halo mass is found, it is also used

to derive all the higher-order bias parameters. The results of the first two bias coefficients

for the two SPHEREx configurations are plotted in Figure 5.7.

5.5.2.4 LSST

The Large Synoptic Survey Telescope (LSST) (Ivezic et al, 2008; LSST Science Collab-

oration et al, 2009) is a ground-based facility, which is planned to receive first light around

2022. LSST is a photometric survey planed to scan an area 18,000 deg2 multiple times in

six bands, ugrizy. This deep-wide-fast multi-band survey will provide a variety of differ-

ent probes simultaneously, making it ideal for cosmological studies. In this work we are

interested in the galaxy clustering dataset of the survey, in order to test its capabilities in

constraining the amplitude of PNG. In order to derive the redshift distribution of galaxies

in LSST, we split the photometric galaxy sample in 8 equally spaced tomographic redshift

bins covering the range 0 ≤ zph ≤ 3 (LSST Science Collaboration et al, 2009), with zph
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Figure 5.6 – The overall true redshift distribution n(z) (solid black line) is plotted over the
redshift range considered for LSST. The redshift distribution for each tomographic bin, given
by Eq. (5.73), is also shown (dashed, dotted, etc. lines).

being the photometric redshift. The distribution of the true (or spectroscopic) redshifts

of galaxies inside each photometric bin i is given by (Ma et al, 2006; Zhan, 2006):

ni(z) = n(z)
∫ z

(i+1)
ph

z
(i)
ph

dzphP (zph|z), (5.73)

where the integration limits define the extent of the bin i. Following the work of (Ma

et al, 2006), we model the photometric redshift error at each redshift by a Gaussian, given

by:

P (zph|z) =
1√

2πσz
exp[−(z− zph− zbias)

2

2σ2
z

], (5.74)

where the photometric redshift bias zbias and the photometric rms error σz are functions

of the true redshift. The latter is chosen here to be σz(z) = 0.05(1 + z) (LSST Science
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z V ng

0.1875 1.95 166.64
0.5625 9.57 82.84
0.9375 17.24 39.62
1.3125 22.46 18.37
1.6875 25.41 8.26
2.0625 26.78 3.60
2.4375 27.14 1.53
2.8125 26.89 0.63

Table 5.4 – The basic numbers for the LSST photometric survey for each redshift bin. The
derivation of these values is described in Sec. 5.5.2.4. The shell volume is in units of (Gpc/h)3

and the mean number density in 10−3(h/Mpc)3.

Collaboration et al, 2009; Zhan and Tyson, 2017). The fiducial value of the redshift bias

is chosen to be zbias(z) = 0. Note that the above probability must be normalised with
∫∞
0 dzphP (zph|z) in order to ensure the positiveness on the photometric redshifts.

The overall galaxy true redshift distribution n(z) = d2N/dzdΩ is given by the following

functional form, n(z) ∝ zα exp[−(z/z0)β] (Wittman et al, 2000), where the adopted free

parameters are α = 2, β = 1 and z0 = 0.3125 (LSST Science Collaboration et al, 2009;

Zhan and Tyson, 2017). The normalization of the overall galaxy redshift distribution is

fixed by requiring the total number of galaxies per steradian (i.e. ntot =
∫∞
0 dzn(z)) to

be equal to the cumulative galaxy counts of the survey. Here we use the so called “gold”

sample of LSST, corresponding to the galaxies with i-band magnitude of iAB < 25.3 mag,

which has a surface number density of ntot = 40 gal/arcmin2 (see section 3.7 of LSST

Science Collaboration et al (2009) for details). The total number of galaxies per steradian

is given in each photometric bin by ntot,i =
∫∞
0 dzni(z). The overall normalized redshift

distribution n(z) is plotted together with the true redshift distribution in each photometric

bin in Figure 5.6. The final number densities for each photometric redshift bin are listed

in Table 5.4. The fiducial value for the linear bias is chosen to be b1(z) = 1/D(z) (LSST

Science Collaboration et al, 2009; Passaglia et al, 2017), where the derivation of the
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5.6 Summary of the analysis method

Here we summarize the modelling used for the galaxy power spectrum and bispectrum,

as well as all the steps followed in the next section in order to test the various effects that

have an effect on the fNL forecasts.

(i) For the matter power spectrum and bispectrum, the MPTbreeze tree-level de-

scription is used throughout. In order to cross-validate our results, we have also

considered the scenario of using SPT. The forecast results are in agreement between

SPT and MPTbreeze (see Sec. 5.7.1.1).

(ii) Non-Gaussian initial conditions are assumed and the bias expansion up to second

order is used [Eq. (5.1) ].

(iii) The forecasts are performed by following the Fisher matrix formalism (see Sec. 5.3),

where a diagonal covariance is used for both power spectrum and bispectrum as

described in Eqs. (5.58) and (5.59) respectively. The analysis is restricted up to

scales kmax = 0.1/D(z) h/Mpc.

(iv) We start by working in real space. Our model is in this case defined by equations

Eqs. (5.8) and (5.19) for the galaxy power spectrum and bispectrum. The monopole

approximation of Eqs. (5.42) and (5.43) is in this case used to approximate the

RSD effect. Note that, at this initial stage, the trispectrum term shown in Eq.

(5.19) is always excluded. We refer to this as the “monopole approximation” model,

throughout the rest of this work. The reason to start with this simplified scenario is

threefold. First, a non-trivial amount of previous literature includes only real space

forecasts, so that showing our monopole approximation results can facilitate com-

parisons. Second, by proceeding step-by-step we are able to better isolate the impact

of different effects, such as theoretical and redshift errors. Third, as explained more

in detail in the following, off-diagonal terms in the theoretical error covariance are
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often neglected in our full redshift space analysis, due to computational limitations.

On the other hand, they can be in most cases included in the monopole approxima-

tion forecast. The real space analysis therefore provides useful guidelines to assess

the accuracy of the diagonal covariance approximation, used for theoretical errors

in redshift space, at high z (we anticipate here that we find such approximation to

be quite good).

(v) The second step is to add the theoretical error covariance given in Eq. (5.64) to the

variance of Fisher matrix, in order to account for the uncertainties in the theoretical

model (see Sec. 5.4 for a discussion). Here we account only for the exclusion of

1-loop corrections in the matter perturbations for both power spectrum and bispec-

trum. For the bias expansion we only quantify the error in excluding the 1-loop

contributions that are related to the local-in-matter bias coefficients, i.e. b1, b2, b3,

etc.

(vi) The effect of the theoretical errors on forecasts is shown as a function of redshift in

Figure 5.8 for the two radio continuum surveys considered here. The effect on the

forecasts coming from the summed signal over all redshift bins is shown in Tables

5.5 and 5.9 for the radio and optical surveys respectively.

(vii) The third step is to move to redshift space and include the full RSD treatment up to

second order. The galaxy power spectrum and bispectrum model in redshift space

is given by Eqs. (5.28) and (5.29) respectively. Note that the trispectrum term in

Eq. (5.29) is still excluded for now. Only the diagonal part of the theoretical error

covariance is used in the redshift space models. As also mentioned just above, we

argue in Sec. 5.7.1.1 that the effect of the off-diagonal part on the final fNL forecasts

is small.

(viii) In addition to the RSD effect, we consider redshift uncertainties which are modelled

like Eqs. (5.33) and (5.34) for the power spectrum and bispectrum respectively
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(see Sec. 5.2.2 for a discussion). The effect of RSD, theoretical errors and redshift

uncertainties to the fNL forecasts is shown in Tables 5.6 and 5.11 for the radio and

optical surveys respectively.

(ix) Finally, we take into account the trispectrum term in the galaxy bispectrum for

both the monopole approximation and for the full RSD model (i.e. Eqs. (5.19)

and (5.29)). The effect of this trispectrum correction to the final PNG forecasts is

shown, for the monopole approximation model, in Tables 5.7 and 5.10 for the radio

and optical surveys respectively. For the RSD model, the fNL forecast are shown in

Tables 5.8 and 5.11 for the radio continuum and optical surveys respectively.

(x) We summarize our final forecast results on the amplitude of PNG coming from future

LSS surveys in Table 5.12.

5.7 Results

In this section we present the results of our forecasts for radio continuum and optical

surveys, obtained with the procedure summarized in Sec. 5.6. For the local and orthogonal

PNG, we consider the power spectrum and bispectrum model that was described in detail

in Sec. 5.2.1 and Sec. 5.2.2, for real and redshift spaces respectively [by Eqs. (5.8), (5.19),

(5.42) and (5.43)]. In the case of the equilateral type of non-Gaussianity, we use the same

expressions, but without the corrections from the primordial local gravitational potential

Ψ due to degeneracies with the bias parameters (see Sec. 4.4.2). The final constraints are

derived after marginalizing over the nuisance stochastic bias parameters (see Sec. 5.3).

The linear matter power spectrum is computed with CAMB (Lewis et al, 2000), while the

cosmological parameters are those determined by (Planck Collaboration et al, 2016b): h

= 0.6774, Ωch
2 = 0.1188, Ωbh

2 = 0.0223, ns = 0.9667, ∆2
ζ = 2.142×10−9, τ = 0.066.
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5.7.1 Radio continuum surveys forecasts

In this section we present the results of our forecasts for the parameter vector [Eq.

(5.57) ], considering the two high redshift radio continuum surveys, SKA and EMU. The

modelling used is described in the previous sections.

5.7.1.1 Theoretical errors effect

Our main goal at this stage will be quantifying the effect of theoretical errors, by testing

their impact on our “monopole model” forecasts. Due to the demanding computational

effort needed to perform the inversion of the bispectrum covariance matrix (a 106× 106

size matrix for the final redshift bins), which is no longer diagonal when the theoretical

errors are included [Eq. (5.64) ], we use the full covariance matrix only for the three

lowest redshift bins (that’s the largest computationally affordable amount; we choose the

lowest three redshifts because the effect of off-diagonal terms is largest there), while for

the rest we consider only the diagonal contribution. This means that cross-correlations

between modes are excluded. This can in principle affect the impact of the theoretical

errors. However, we performed tests to check the effects of these off-diagonal components,

up to the redshift bin allowed by the computational resources available, and we observed

that the effect of the off-diagonal terms becomes actually negligible at high-z. This is

reasonable: the Universe is more linear at higher redshifts, therefore the loop corrections,

up to the scales we consider, are expected to be suppressed. Our approximations work

therefore very well. Let us note that, in the case of the power spectrum, we always use

the full covariance matrix, since no computational issues arise in this case. Let us also

note here again that the theoretical modelling was performed using MPTbreeze, which

has an embedded cut-off function at high-k. This means that higher order contributions,

as well as the theoretical error effect will be suppressed on small scales. In order to check

whether this has a significant effect, we have performed a similar analysis using SPT. The

results were consistent with those presented here, throughout the range of scales chosen





5. Fisher matrix predictions from LSS surveys 166

SKA EMU

Monopole
approximation

Theoretical
errors

Monopole
approximation

Theoretical
errors

P(loc) 0.283 0.35 0.646 0.792
B(loc) 0.036 0.049 0.106 0.125

P+B(loc) 0.034 0.046 0.098 0.116
P(equil) - - - -
B(equil) 9.6 14.16 19.75 27.68

P+B(equil) 3.15 7.46 7.65 14.47
P(ortho) 6.81 19.91 15.73 29.93
B(ortho) 1.2 1.76 2.39 3.24

P+B(ortho) 1.08 1.7 2.2 3.12

Table 5.5 – The constraints on the non-Gaussian amplitude fNL for the three shapes (local,
equilateral and orthogonal) over all redshift bins, from the two surveys considered here (SKA –
left and EMU – right), in the monopole approximation case and the case including theoretical
errors. The constraints were derived from the power spectrum (P), bispectrum (B) and by
combining the two (P + B).

for our analysis.

The comparison is shown in Figure 5.8 and the forecasts for fNL are quantitatively

reported in Table 5.5. The latter are derived after summing the signal over all the available

redshift bins in each survey. A similar behaviour is observed for the two radio surveys. The

bias constraints are significantly affected by the presence of the theoretical systematics,

due to the fact that, for the envelope fitting, the one-loop bias corrections are here taken

into account. For the PNG amplitudes, we note that, for local PNG, the effect is modest

(as was also noted by (Baldauf et al, 2016)). This can be attributed to the fact that this

shape has very little correlation to the gravitational contribution. This is not the case,

though, for the equilateral and orthogonal shapes, which show a stronger dependence for

all redshift bins.

In addition, the ratio of the marginal 1σ error is presented for the two radio continuum

surveys in Figure 5.9, for the cases where theoretical errors are taken into account and

when they are omitted. Note that the effect of theoretical errors doesn’t get smaller at

high redshifts in all cases, as seen in Figure 5.8, and in particular this is evident for the
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power spectrum case. The argument of a more linear Universe at high redshifts, which

leads to a reduction in the contribution of the higher loop corrections, holds for the case

of matter and it is not generally true for the biased tracers. The reason is that at large

redshifts, and in the scale range considered here, galaxies become more biased, while the

matter loop corrections become less important. Hence, there is a trade off between the

two. This indicates that, depending on the redshift evolution of the bias parameters, the

depth of the survey and its volume, a different behaviour of the impact of the theoretical

errors can be observed, when bias loop corrections are taken into account in the envelope

fitting (see Sec. 5.4 for details). This shows the importance of extending the formalism

of (Baldauf et al, 2016), to include theoretical errors attributed to the bias expansion, as

we did.

At this stage of the analysis (i.e. before accounting for RSD and redshift errors, which

will be included in the next section), it seems that the combined information from the

power spectrum and bispectrum of galaxies can provide very tight constraints on the

amplitude of local PNG. For a SKA radio continuum survey, an error of σ(f loc
NL) < 0.13

can be achieved after using the total signal from all redshift bins. In the orthogonal case,

SKA can provide σ(forth
NL ) ∼ 3, while for the equilateral PNG, already at this stage the

constraints are weaker, compared to the other shapes, as we can see from Table 5.5. It is

important however to keep in mind that these constraints will deteriorate when considering

realistic redshift space measurements and accounting for errors in the determination of

the redshift of radio sources (see next section). At this point in the analysis, the most

important aspect is therefore not the absolute value of the constraint, but the assessment

of the effect of theoretical errors.

Real space constraints on bias parameters are shown in the left panels of Figure 5.8

for each of the surveys considered here. Again, rather than on quantitative assessments,

which will be refined in the redshift space section later on, it is useful at this level to

focus on qualitative behaviours. We see, as expected, that the power spectrum provides
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the main signal for constraining b1 (blue lines in Figure 5.8), while the contribution from

the bispectrum (green lines) is minimal as we can also see in the results coming from the

combination of the two (red lines). For the quadratic bias parameter, as well as the tidal

bias, the constraints are weaker. For both these bias coefficients, the constraining signal

originates solely from the bispectrum, since these terms appear in loop corrections of the

linear galaxy power spectrum, which we do not consider here, and therefore this reduction

in the constraining power is justified. In the combined power spectrum and bispectrum

case, an improvement is observed in the statistical error of b2 and bs2 , due to the tight

constraint on the linear bias provided by the power spectrum. In addition, the presence

of the tidal bias term breaks the degeneracy between the linear and quadratic terms,

improving the predicted errors on b2. For both bias parameters, radio continuum surveys

(mainly the high redshift bins) contribute enough signal in order to achieve a few per-

cent precision measurements. However the introduction of theoretical errors deteriorates

the constraints to a 10− 20% precision at high redshift, mainly due to the uncertainty

introduced by the exclusion of higher bias terms in the power spectrum and bispectrum

of galaxies.

5.7.1.2 Redshift Space Distortions and redshift uncertainties

Both the effect of RSD and of uncertainties in the determination of redshifts must

be fully taken into account in any realistic galaxy forecast, since galaxies are observed

in this coordinate system. In the second step of our analysis, we start by comparing

the monopole approximation model (see Sec. 5.2.2), which is always our starting analysis

step, with the results derived from including RSD, up to second order (i.e. for the galaxy

power spectrum and bispectrum we use Eqs. (5.28) and (5.29) respectively).

We consider separately the effect of adding RSD and theoretical errors, in order to

quantitatively check the impact of RSD alone. The final constraints use the signal coming

from the power spectrum, bispectrum and their combination. Results for bias and PNG
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SKA EMU

Monopole
approximation

RSD[σz(z) = 0]
RSD[σz(z) = 0]

+Theoretical errors
RSD

+Theoretical errors
Monopole

approximation
RSD[σz(z) = 0]

RSD[σz(z) = 0]
+Theoretical errors

RSD
+Theoretical errors

P(loc) 0.283 0.38 0.471 0.695 0.646 0.869 1.066 1.345
B(loc) 0.036 0.039 0.053 0.188 0.106 0.131 0.154 0.727

P+B(loc) 0.034 0.039 0.052 0.181 0.098 0.13 0.153 0.632
P(equil) - - - - - - - -
B(equil) 9.6 24.52 36.19 663.98 19.75 54.72 76.67 779.99

P+B(equil) 3.15 8.3 19.66 447.52 7.65 20.04 37.89 551.22
P(ortho) 6.81 7.82 22.85 49.09 15.73 20.61 39.2 60.85
B(ortho) 1.2 2.23 3.26 19.58 2.39 3.92 5.31 35.31

P+B(ortho) 1.08 2.03 3.2 18.08 2.2 3.8 5.38 29.78

Table 5.6 – The forecast results on the amplitude of PNG (fNL) in the case of three differ-
ent primordial shapes (local, equilateral and orthogonal), when considering respectively the
monopole approximation model, the model taking into account RSD and FOG effects and the
redshift space model with theoretical errors, for the two radio surveys: SKA (left half) and
EMU (right half). The redshift uncertainties are considered separately and added on top of
all the previous effects under the column denoted “RSD+Theoretical errors”. The constraints
on the bias parameters, up to quadratic order [Eq. (5.1) ], are also presented. The results are
derived after marginalising over the unknown parameters. Note that the observed improve-
ment in the P+B(equil) results, with respect to B(equil), originate from the tighter forecasts
on b1 provided by P(equil).

parameters, as a function of redshift, are displayed in Figure 5.10. The constraints on fNL,

coming from the summed signal over all redshift bins, are reported in Table 5.6 (column

marked by “RSD[σz(z) = 0]”).

The difference between the model including RSD and theoretical errors, and the

monopole approximation results is evident for the bias constraints, especially the bis-

pectrum derived ones. As we can see in Figure 5.10, the effect of RSD is instead overall

small for PNG, with the bispectrum again being affected the most.

As a further step, in addition to RSD, we include theoretical errors in order to test the

combined effect on the fNL constraints for the local, equilateral and orthogonal shapes.

A comparison of the 68% error bars on the non-Gaussian amplitude obtained from the

monopole approximation model, the RSD model only and the RSD + theoretical errors

model is displayed in Table 5.6. Here the off-diagonal part of the theoretical error covari-

ance matrix is ignored in the case of the bispectrum, due to the significant computational

cost of inverting this matrix; this task should now be undertaken for each orientation of

the triangles [see Eq. (5.55) ]. Excluding the off-diagonal terms underestimates the mode



5. Fisher matrix predictions from LSS surveys 172

coupling and the overall effect of theoretical errors. In order to quantify this effect, we

compare forecasts with and without off-diagonal terms, for the computationally afford-

able monopole approximation case. Since we do not consider any RSD corrections in the

theoretical error treatment, the effect of the off-diagonal terms in the constraints can be

truncated for the present forecasts. The marginal error provided by the bispectrum for

the PNG amplitude, in the local case, increases in this test by ∼ 1%, if we include the full

theoretical error covariance matrix for the initial redshift bins (see Sec. 5.7.1.1), instead of

only the diagonal part. For the equilateral and orthogonal cases, we observe ∼ 10% and

∼ 5% enhancement, respectively. Moreover, the predicted errors on the bias parameters

degrade by a factor of 1.5− 8, depending on the bias type (i.e. linear, quadratic, etc.)

and the redshift. Note that these quantitative results are valid only for the radio surveys

we consider here, since the effect of theoretical errors depends on redshift as well as the

fiducial values of the bias parameters. With these caveats in mind, we see that the effect

of theoretical errors follows a similar pattern to the one already discussed in the previous

section, as expected. In the case of local non-Gaussianity, the impact of theoretical errors

is small, while it is very large for the equilateral shape

Having considered RSD, we now include redshift uncertainties, modelled like in Eqs.

(5.33) and (5.34) with σ = σr(z). Before discussing the consequences on fNL and bias

constraints, we would like to mention some details on the redshift errors and galaxy

statistics modelling. Note that the dumping factor, containing the redshift uncertainties,

should be multiplied to the power spectrum and bispectrum as shown in Eqs. (5.28) and

(5.29) respectively, including the stochastic bias terms which at large scales resembles

the Poisson shot noise. This is important in the noise dominated regime, i.e. scales

with kµσv > 1, where the redshift error dumps the signal together with the shot noise

terms in the numerator of the Fisher matrix while the shot noise part of the denominator

is unaffected [Eqs. (5.58) and (5.59)]. In the case where this dumping is not applied

to the shot noise terms of the signal in the S/N ratio, we observed an improvement in
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the final constraints when we increased the redshift errors, which is unnatural. This

is due to the fact that the denominator of the Fisher matrix becomes larger than the

numerator in the noise dominated regime. This effect is stronger in the case where the

redshift errors are large, like in the radio continuum surveys considered here. Therefore

one should be careful and apply the dumping factor on every term of the power spectrum

and bispectrum, including the stochastic elements which should be considered part of the

signal.

The constraints on PNG amplitudes and bias, after including the redshift errors, are

presented as a function of redshift in Figure 5.10. The final 68% error bars on fNL are

displayed in Table 5.6 under the column named “RSD+Theoretical errors”. In the case

of local primordial non-Gaussianity the effect of redshift uncertainties is small and the

constraints from both radio surveys are still tighter than those originating from Planck ,

for more or less the whole redshift range. The final error on f loc
NL is degraded by a factor

of ∼ 1.5 for a SKA survey with respect to the case with a perfect redshift determination.

This shows that future radio surveys can tightly constrain PNG of the local type, even

with large redshift errors like those derived by the methodology used here. For the SKA

case an error of ∼ 0.18 can be achieved from the combined P + B signal, i.e. a ∼ 30

times improvement from the constraints of Planck . In the case of orthogonal PNG the

degradation due to redshift uncertainties is much larger, as seen in Figure 5.10. The final

power spectrum + bispectrum constraints on the orthogonal PNG amplitude, adding

contributions from all redshift bins, show a ∼ 7 times deterioration, compared to the case

with no z-errors, and is slightly worse than the current Planck constraint. The degradation

is even larger for PNG of the equilateral type. In this case, constraints provided by both

radio surveys are far weaker than those coming from Planck , for the whole redshift range

(dashed-dotted lines in Figure 5.10). The predictions on the f eq
NL parameter coming from

all redshifts and the combined P and B signal get degraded by a factor ∼ 29, as seen in

Table 5.6.
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Figure 5.11 – The dumping factor, in the case of bispectrum [Eq. (5.34) ] and for the SKA
survey, including the FOG effect and redshift errors as a function of k2/k1 and k3/k1 for three
constant values of k1. The results are not normalised to their individual maximum values for
each redshift bin, while we sum over all the positional angles of the triangles around the line
of sight and normalise with the angle’s bin size (see Sec. 5.2.1 for more details on these type
of plots and in the main text of this subsection).
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In order to study further the effect of the redshift uncertainties, we show the bispec-

trum dumping factor [Eq. (5.34) ] for the SKA survey (Figure 5.11) and for all triangles

formed after fixing one side (e.g. k1, see Sec. 5.2.1 for more details on the colour map

plots). The results are not normalised to their maximum value, since we are not interested

only in the shape dependence of the DFOG term, but also in its amplitude. Furthermore,

a sum over all angles around the line of sight (i.e. θ and φ) is performed, where the

final outcome is normalised over their bin size (see Sec. 5.2.2 for a discussion). An im-

mediate observation is that the dumping factor takes the smallest value, and hence has

the maximum effect on the galaxy bispectrum, in correspondence to equilateral config-

urations, for all redshift bins and scales. The reason behind this is the functional form

of the dumping factor, which takes a minimum value in the case where k1 ≈ k2 ≈ k3,

giving DFOG = exp−3(kµσv)2. On the other hand, the results peak on squeezed trian-

gles in the intermediate scales, while at large scales the maximum shifts towards folded

configurations. This means that these configurations will be affected the least from the

dumping factor over redshift bins and scale range considered. The redshift errors increase

towards the larger redshifts and, as seen in the last row of Figure 5.11, a growing number

of configurations is affected towards the equilateral limit. These results agree with the

observed behaviour of the fNL constraints discussed before.

Therefore we can conclude that radio continuum samples, in combination with clustering-

based redshift estimation, can provide tight constraints for the local PNG amplitude, with

an important contribution from bispectrum measurements. In order to achieve tight con-

straints for other shapes, though, the precision in the determination of redshift should at

least match the one achieved by photometric surveys (it is currently estimated to be about

an order of magnitude worse). Theoretical errors, as seen in Table 5.6, are less relevant

for the fNL predictions coming from surveys with large redshift uncertainties (e.g. SKA),

since the effect of the latter overshadows completely the impact of the former.

The power spectrum redshift space forecasts presented here (i.e. column under the
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name “RSD+Theoretical errors” in Table 5.6) for the two radio continuum surveys are

consistent with those presented in (Raccanelli et al, 2017), after taking into account the

different flux limits used in the latter. More precisely, here we use 10µJy and 1µJy flux

limits, while the optimistic forecasts of (Raccanelli et al, 2017) assume 50 µJy and 100 nJy.

The relative errors on bias parameters, shown in Figure 5.10, coming from joint power

spectrum and bispectrum estimation, increases by a factor of two when redshift errors

are included. For linear bias, the increase originates mainly from the deterioration of the

power spectrum results. For the two quadratic bias terms, the relative errors become

larger than unity, since the signal comes only from the bispectrum which is more affected

by redshift errors.

It is interesting to compare the power spectrum-only f loc
NL constraints presented in

Table 5.6 (in particular those under the column named “RSD+Theoretical errors”) with

the forecasts shown in Ref. (Camera et al, 2015). They use the HI galaxy sample of

SKA, which allows for a very accurate redshift measurements from the 21 cm line of

neutral hydrogen. Of course, this approach has also its drawbacks, such as the need

for sophisticated techniques for the identification of unresolved galaxies, as well as issues

arising from foreground cleaning and unknown systematics (see (Camera et al, 2013,

2015) and references therein for a discussion). Nevertheless, leaving such issues aside at

this stage, the precise redshift information provided by 21 cm intensity mapping can in

principle provide tight constraints on the PNG amplitude. The specifications for SKA

used in (Camera et al, 2015), that most closely match those presented here, consider a

redshift range of 0 < z <= 3 and a sensitivity of 3 µJy. For that case, (Camera et al, 2015)

obtain comparable forecasts to those achieved here using power spectrum information.

The bispectrum, in our study, improves the bounds on fNL by a factor ∼ 4 when redshift

errors are neglected. Therefore, measurements of the angular bispectrum of HI galaxies

might be able to achieve a similar enhancement of the PNG amplitude constraints. We

leave the study of this angular bispectrum signal for forthcoming work.
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SKA EMU

Monopole
approximation

Monopole
approximation

+
Trispectrum

Monopole
approximation

Monopole
approximation

+
Trispectrum

P(loc) 0.35 0.35 0.792 0.792
B(loc) 0.049 0.025 0.125 0.059

P+B(loc) 0.046 0.025 0.116 0.057
P(equil) - - - -
B(equil) 14.16 2.26 27.68 3.98

P+B(equil) 7.46 1.75 14.47 3.14
P(ortho) 18.79 18.79 29.93 29.93
B(ortho) 1.76 0.49 3.24 0.78

P+B(ortho) 1.7 0.45 3.12 0.71

Table 5.7 – Forecast 1σ results for the local, equilateral and orthogonal PNG. The modelling
used is for the power spectrum Eq. (5.8) and for the bispectrum is given by Eq. (5.19),
where for the latter the trispectrum bias term is taken into account. The full effect of the
theoretical errors is taken into account here. The calculations are performed by using the
approximated monopole [Eqs. (5.42) and (5.43)]. The monopole approximation model is shown
for comparison purposes.

here for the first time. The scale dependence induced in the galaxy bispectrum by the

quadratic bias trispectrum correction is analogous to the scale dependent bias of the power

spectrum. It can be calculated exactly for any type of PNG, without the need of using

any kind of squeezed limit approximation, and it goes like 1/M(k) ∝ k−2. Due to this,

the degeneracy of f eq
NL with the bias parameters on large scales can now be broken (see

the discussion in Sec. 4.4.2).

The results for the primordial non-Gaussianity amplitude, after including the trispec-

trum contribution, as well as theoretical errors, are presented in Figure 5.12, where we

compare them to the constraints coming from the monopole approximation model. An

improvement is observed for all PNG amplitudes and especially the constraints for the

equilateral shape show an impressive enhancement. We have checked that the theoreti-

cal errors do not affect significantly σ(f eq
NL) in this case, since the scale dependent signal

contribution compensates for the theoretical uncertainties. The bias constraints are un-
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affected, since the trispectrum correction disappears for chosen fNL = 0 fiducial value.

The final predicted errors on the PNG amplitudes for the three cases considered here

are presented in Table 5.7, after including the trispectrum term from the bias expansion.

We see that, in principle, the inclusion of trispectrum corrections allows for significant

improvements for all shapes, including equilateral.

One concern is that the two trispectrum corrections, i.e. T MP T
1112 and S2T MP T

1112 , depend

both on fNL and on bias parameters b1, b2 and bs2 . Therefore, they could generate

degeneracies between primordial NG and bias terms, which indeed is the case. However,

we explicitly checked that, for large volume surveys such as the SKA radio continuum

survey considered here, where very large scales are included, such degeneracies are broken.

The extension of this formalism to redshift space, by using the derived expression

in Eq. (5.29) with the trispectrum correction [Eq. (5.32) ], is performed here for the

SKA and EMU radio continuum surveys. The resulting forecasts of the PNG amplitude

are presented as a function of redshift in Figure 5.13. The forecast constraints from the

summed signal over the whole redshift range are presented in Table 5.8. The modelling for

both correlators is described in detail in Sec. 5.7.1.2 (i.e. Eqs. (5.28) and (5.29) for power

spectrum and bispectrum respectively), where the effects of redshift errors and FOG are

taken into account. Note that, only the diagonal part of theoretical error covariance is

used in these redshift space forecasts (see Sec. 5.7.1.2 for a discussion).

As seen in Figure 5.13 and Table 5.8, the improvement provided by the trispectrum

term in the forecasts of f loc
NL is negligible, while for the orthogonal PNG type the contribu-

tion is minimal. The constraining power of the trispectrum term reduces when the RSD

effect is taken into account, contrary to the monopole approximation modelling (Table

5.7). This can be mainly attributed to the presence of redshift errors included in the red-

shift space modelling, which damp the signal. On the other hand, the scale dependence

provided by the trispectrum term significantly improves the final forecast constraints for

the equilateral PNG type, in combination with clustering-based redshift estimation. More
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SKA EMU

RSD RSD + Trispectrum RSD RSD + Trispectrum

P(loc) 0.695 0.695 1.345 1.345
B(loc) 0.188 0.188 0.727 0.727

P+B(loc) 0.181 0.181 0.632 0.632
P(equil) - - - -
B(equil) 663.98 267.05 779.99 294.03

P+B(equil) 447.52 244.06 551.22 273.78
P(ortho) 49.09 49.09 60.85 60.85
B(ortho) 19.58 19.4 35.31 34.25

P+B(ortho) 18.08 17.94 29.78 29.11

Table 5.8 – Forecast 1σ results for the local, equilateral and orthogonal PNG in redshift
space. The modelling used is for the power spectrum Eq. (5.28) and for the bispectrum is
given by Eq. (5.29), where for the latter the trispectrum bias term [Eq. (5.32) ] is taken into
account. Only the diagonal part of theoretical error covariance is taken into account here.
In addition FOG effects and redshift errors are considered. The RSD model without the
trispectrum contribution (i.e. “RSD”) is shown for comparison purposes.

redshift uncertainties. If large volume surveys (either optical or radio) will allow accurate

redshift measurement at some stage, not only local models will be measured with high

sensitivity, but also all other shapes. This will be further discussed in the optical survey

forecasts to follow (Sec. 5.7.2).

5.7.1.4 Non-Gaussian corrections to the bispectrum variance.

In this work, as discussed in Sec. 5.3, only the diagonal part of the bispectrum co-

variance is used in the Fisher matrix formalism. In addition, for the variance we use the

predictions of PT up to tree-level. Therefore, at this point, we would like to test the effect

of excluding higher-order corrections. Using Eq. (5.62), we test the effect on the fNL con-

straints coming from the 1 µJy radio continuum, and in particular those originating from

the real-space model [Eq. (5.19) ] as well as the redshift space bispectrum [Eq. (5.29) ],

following the procedure outlined at the end of section Sec. 5.3. For local PNG, constraints

in real space deteriorate by ∼ 39%, while in redshift space the deterioration increases to

∼ 67%. For equilateral PNG, the effect seems to be smaller, a degradation of ∼ 12%
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and ∼ 17% is observed for the real and redshift space case, respectively. This should be

kept in mind when quoting final constraints. A full Fisher matrix analysis, including full

covariances, rather than the simplified estimates provided here, will be object of a future

study.

5.7.2 Optical surveys forecasts

In this section we show forecasts for five optical surveys, which are the following:

Euclid, DESI, LSST, SPHEREx1 and SPHEREx2 (see Sec. 5.5.2 for details on the spec-

ifications used). These will be ultimately compared with those originating from the two

radio continuum surveys (see Sec. 5.5.1), presented in the previous section. Additionally,

these surveys will allow us to test the full effect of theoretical uncertainties, mainly because

their smaller volumes reduces significantly the computational time. We will in particular

include off-diagonal theoretical error terms in real space (monopole approximation), up

to the highest redshift bins (for nearly all scenarios; few exceptions will be pointed out

case by case).

The optical survey analysis will broadly follow the same scheme as adopted in the

previous section, based on adding realistic features and higher order corrections step by

step, on top of the initial monopole approximation model, in order to check separately

their impact.

5.7.2.1 Monopole approximation

As usual, we start with the monopole approximation and show the effect of adding

theoretical errors. The full theoretical error covariance is used in the bispectrum Fisher

matrix for the total redshift range in the cases of Euclid, DESI and SPHEREx1 surveys.

For the rest, the full covariance is used up to the 6th bin for LSST and up to the 7th for

the SPHEREx2 configuration. For the remaining bins, only the diagonal contribution is

considered, since for the high redshift bins the off-diagonal terms have a minimum effect
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Monopole
approximation

Monopole
approximation

+
Theoretical

Errors

Euclid DESI LSST SPHEREx1 SPHEREx2 Euclid DESI LSST SPHEREx1 SPHEREx2
P(loc) 3.985 4.432 0.808 3.741 0.575 4.394 4.856 0.9 4.244 0.66
B(loc) 1.487 1.644 0.127 1.108 0.112 1.858 2.072 0.14 1.463 0.12

P+B(loc) 1.086 1.204 0.118 0.89 0.1 1.275 1.415 0.13 1.1 0.109
P(equil) - - - - - - - - - -
B(equil) 30.65 42.4 12.28 55.52 11.91 42.01 57.24 16.68 80.98 14.47

P+B(equil) 18.68 26.55 4.58 35.4 5.36 33.59 46.15 7.84 60.68 7.46
P(ortho) 128.36 249.01 42.91 75.15 19.41 146.82 275.5 73.72 101.64 29.64
B(ortho) 9.35 12.66 3.11 12.49 2.43 9.74 18.19 4.25 22.04 2.78

P+B(ortho) 6.28 9.58 2.26 10.4 2.06 6.82 15.62 3.61 17.75 2.48

Table 5.9 – Forecast 1σ results for the three PNG type considered here, originating from a
spectroscopic and a photometric survey. The monopole approximation model is as usual given
by Eqs. (5.42) and (5.43), and we show the full effect of including theoretical errors.

on the final PNG amplitude forecasts, as discussed extensively in Sec. 5.7.1.1. The full

theoretical error covariance will instead always be used over the whole redshift range for

the power spectrum, as done before. Besides discussing theoretical errors, we also show

the effect of the inclusion of trispectrum corrections. The marginalised fNL constraints

in both cases are shown as a function of redshift for Euclid and DESI surveys in Figure

5.14 and for the rest in Figure 5.15.

The effect of the full theoretical error covariance is presented in Table 5.9 for each

optical survey. As done also for the radio continuum surveys, the practicality of using

the monopole approximation lies in the fact that a quantification of the effect of the full

theoretical error covariance is needed in order to propagate it to the RSD treatment (next

section), where the computational effort is large. It is evident that the behaviour follows

the same pattern as in the case of radio continuum. A degradation in the final PNG

forecasts is observed ranging between 25− 50% depending on the PNG type, as well as

the size and redshift range of the survey (see Table 5.9), where for the equilateral case the

effect is maximum. Excluding the off-diagonal elements of the theoretical error covariance

introduces an almost negligible error for local PNG for all optical surveys, while for the

equilateral and orthogonal forecasts an underestimation of the theoretical uncertainties

by 9% and 4% is observed respectively.
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The Euclid survey has a slightly overall better performance that the DESI for all three

PNG types. This is more or less expected, since Euclid is designed to probe marginally

larger volume than DESI, as we can see in Table 5.2 and 5.3. Therefore a larger number

of modes is available to the first, which is what mainly matters for the forecasts coming

from the Fisher matrix formalism (see Sec. 5.3 for a discussion). Even thought theoretical

errors are treated in both surveys using the same methodology, they can have different

impact on the results. The reason for this can be tracked down to the different redshift

ranges of the two surveys. Despite the fact that DESI has a wider redshift range than

Euclid, half of its bins are in the low redshift regime. This means that the constraints

originating from them are highly affected by theoretical errors (as discussed in Sec. 5.7.1)

and therefore will have a minor contribution to the final constraints. These reasons can

mainly explain the observed difference in the forecasts coming from the two surveys.

An overall gain can be observed when considering LSST and SPHEREx can be ob-

served (Figure 5.15) with respect to Euclid and DESI, since they probe a larger part of

the sky and hence grant access to larger scale modes. More specifically, the forecasts of

the monopole approximation model in the case of local PNG are tighter than the Planck

measurements for the majority of the redshift bins (see Figure 5.15), which holds for

both power spectrum and bispectrum. For the SPHEREx1 configuration, the bispec-

trum results approach those of Planck only in the largest redshift bins. In the case of

equilateral-type PNG, the bispectrum constraints generally are worst than those of Planck

; however they approach the latter in large redshift bins for the LSST and SPHEREx2

cases. Moreover, the results for the orthogonal PNG type follow roughly the same trend

as for the equilateral case. Note that the improvement, after the inclusion of the power

spectrum signal to the bispectrum, is minimal for all PNG types.

Adding the trispectrum scale dependent bias corrections to the galaxy bispectrum pro-

duces an overall gain in the constraints provided by LSST and SPHEREx. As described

before, these surveys will probe a larger part of the sky and hence grant access to large
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scale modes. This fact will break the degeneracy of fNL with bias parameters, providing

the observed improvement over the results of the monopole approximation model. More

specifically, for the local-type PNG, the trispectrum corrections reduce the 1σ constraints

on f loc
NL originating from LSST beyond unity for the high redshift bins. While for the

two SPHEREx configurations, a significant improvement in the bispectrum forecasts is

observed for the whole redshift range. For the equilateral PNG case, a compelling im-

provement is observed for all surveys. Note that although SPHEREx has been proposed

with a primary goal of studying primordial non-Gaussianity, the second configuration

used here offers a clear advantage over the first in constraining all the three PNG type

considered here.

Here we would like to point out the importance of the bispectrum for the PNG ampli-

tude forecasts coming from LSS surveys. As we can see in Figure 5.14 and 5.15, the gain

in the final fNL constraints of the local type is small when the signal from the bispectrum

is added on top of the one generated by the power spectrum. However, this changes

dramatically for the equilateral and orthogonal types, where the bispectrum is the main

source of signal while it can improve up to an order of magnitude the forecasts originating

from the power spectrum.

After marginalising appropriately over the free parameters and sum the signal from

each redshift bin for each optical surveys considered here, we present the 1σ forecasts

for the PNG amplitude in Table 5.10. The forecasts of the monopole approximation

model coming from Euclid and DESI are tight enough in order to provide compelling

constraints. The addition of the trispectrum corrections in the galaxy bispectrum im-

proves approximately by a factor of two the local and orthogonal PNG forecasts, while

for the equilateral PNG type the enhancement of the forecasts can be up to a factor of

four (in the case of the large volume surveys). More precisely, for the local PNG type,

LSST and the SPHEREx2 configuration may give for the combined power spectrum and

bispectrum signal σ(f loc
NL) < 1, where the latter can have a better performance due to its
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Monopole
approximation

Monopole
approximation

+ trispectrum

Euclid DESI LSST SPHEREx1 SPHEREx2 Euclid DESI LSST SPHEREx1 SPHEREx2
P(loc) 4.394 4.856 0.9 4.244 0.66 4.394 4.856 0.9 4.244 0.66
B(loc) 1.858 2.072 0.14 1.463 0.12 0.847 1.837 0.09 0.674 0.061

P+B(loc) 1.275 1.415 0.13 1.1 0.109 0.759 1.328 0.087 0.622 0.059
P(equil) - - - - - - - - - -
B(equil) 42.01 57.24 16.68 80.98 14.47 55.27 82.87 7.56 34.42 3.86

P+B(equil) 33.59 46.15 7.84 60.68 7.46 51.08 70.55 4.54 32.57 2.74
P(ortho) 146.82 275.5 73.72 101.64 29.64 146.82 275.5 73.72 101.64 29.64
B(ortho) 9.74 18.19 4.25 22.04 2.78 6.72 12.63 1.53 7.12 0.76

P+B(ortho) 6.82 15.62 3.61 17.75 2.48 6.35 12.03 1.28 6.9 0.67

Table 5.10 – Forecast 1σ results for the three PNG type considered here, originating from
Euclid, DESI, LSST and SPHEREx. The monopole approximation model is given by the
approximating monopole in Eqs. (5.42) and (5.43), while the same model is used with the
additional trispectrum corrections whose results are under the column named “Monopole
approximation+trispectrum”. The full effect of the theoretical errors is taken into account
here.

larger volume.

All the previous results, assume a Gaussian and diagonal bispectrum covariance ma-

trix. By using Eq. (5.62), proposed in Ref. (Chan and Blot, 2017), we can effectively

resum the contributions to the diagonal coming from higher order terms. Doing so will

degrade the results presented in Table 5.10. In the case of Euclid, a ∼ 35% and ∼ 16%

increase is observed for the 1σ forecast errors in the case of local and equilateral PNG type

respectively. For the LSST the deterioration of the constraints on local and equilateral

PNG is ∼ 29% and ∼ 10% respectively, while for the SPHEREx2 configuration we observe

a ∼ 47% and ∼ 18% increase in the 1σ results. The same trend seen for the radio con-

tinuum surveys is also observed here, i.e. the local constraints are highly affected by the

higher order corrections in the bispectrum variance, while a minimum effect is observed

for the equilateral PNG case.

5.7.2.2 Redshift space effects

Our next step is to move to redshift space, considering RSD, redshift errors and the

FOG smearing effect. As usual, for the sake of comparison, we will use the bispectrum
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RSD model with and without the trispectrum bias term given in Eq. (5.32). Regarding

theoretical errors, only the diagonal part of the error covariance [Eq. (5.64) ] will be used

in redshift space, due to the high computational cost. The results are presented as a

function of redshift bins in Figure 5.17 for Euclid and DESI, while the rest are plotted in

Figure 5.18. We use the spectroscopic sample of these two surveys, therefore the effect of

the redshift uncertainties is small (see Secs. 5.5.2.1 and 5.5.2.2 for details). Qualitatively,

our real space monopole approximation results are confirmed. These surveys can produce

improvements on current Planck bounds for the local shape, but not for the other two,

mostly due to theoretical errors. Adding trispectrum corrections has a minimal effect

because such corrections need very large scales to be effective and, contrary to radio

surveys, the probed volumes are here too small to make a difference.

The situation changes for LSST and SPHEREx. These surveys probe much larger

volumes, but at the same time are affected by large photometric redshift errors. Due to

the latter, all PNG predicted constraints are now degraded (Figure 5.15) with respect

to the real space forecast. The full redshift space forecasts, coming from the integrated

signal over the entire redshift range, are presented in Table 5.11 for the galaxy power

spectrum, bispectrum and their combination. Both cases, with and without the trispec-

trum term, are shown. To better quantify the effect of redshift uncertainties on our final

fNL constraints, we present also the results of the RSD model, taking σz(z) = 0. For the

Euclid and DESI surveys, the spectroscopic redshift uncertainties only contribute a few

percent in the final RSD constraints on all three PNG types, both for the case of power

spectrum and bispectrum. This is not the case though, as we also discussed before, for

the photometric sample of LSST and the two configuration of SPHEREx. For both sur-

veys we consider larger redshift uncertainties than the spectroscopic samples and hence

the effect has a bigger impact on the final constraints. The forecasts coming from the

bispectrum are affected the most by redshift errors, especially for equilateral PNG.

In the case of the SPHEREx samples, the two configurations we consider have redshift
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RSD[σz(z) = 0] RSD RSD+trispectrum
Euclid DESI LSST SPHEREx1 SPHEREx2 Euclid DESI LSST SPHEREx1 SPHEREx2 Euclid DESI LSST SPHEREx1 SPHEREx2

P(loc) 5.588 6.209 1.161 5.441 1.01 5.602 6.226 1.301 5.715 1.441 5.601 6.225 1.301 5.715 1.441
B(loc) 1.214 1.957 0.082 1.66 0.164 1.349 2.147 0.322 4.448 0.563 1.337 2.111 0.322 4.376 0.563

P+B(loc) 1.186 1.865 0.081 1.586 0.162 1.311 2.027 0.312 3.469 0.523 1.3 1.998 0.312 3.435 0.523
P(equil) - - - - - - - - - - - - - - -
B(equil) 73.56 111.73 31.07 151.75 35.5 77.69 117.78 276.11 284.13 853.02 72.75 104.2 229.27 202.86 475.3

P+B(equil) 55.63 79.56 17.15 104.45 20.27 59.58 85.31 207.28 260.36 638.89 57.29 79.43 184.26 193.32 424.79
P(ortho) 172.92 339.48 87.38 118.33 38.92 173.39 340.67 124.42 133.73 72.1 173.36 340.63 124.42 133.73 72.1
B(ortho) 20.39 33.38 7.58 28.05 6.94 21.26 35.24 40.71 70.24 40.46 20.71 32.59 39.76 67.28 39.34

P+B(ortho) 17.77 29.49 6.94 26.08 6.59 18.62 31.0 38.42 59.63 34.82 18.24 29.31 37.63 57.35 34.07

Table 5.11 – Forecast marginalised 1σ results for the three PNG type considered here, orig-
inating from Euclid, DESI, LSST and SPHEREx. The full RSD model for both power spec-
trum and bispectrum is considered [Eqs. (5.28) and (5.29)]. Three different versions of the
model are examined here: without considering the redshift uncertainties (”RSD[σz(z) = 0]”),
including the redshift errors (“RSD”) and adding to the latter the trispectrum contribution
(”RSD+trispectrum”). Regarding the theoretical errors, only the diagonal part of the covari-
ance is used.

tion has a minimal impact on the bispectrum forecasts for the orthogonal and local types,

while it can have an overall improvement in the equilateral results of the large-volume

surveys. Still, large redshift errors make the trispectrum contribution far from enough to

improve over current bounds.

We remind again that, in the analysis of this section, we generally use only the diagonal

part of the theoretical error covariance. However, as we show in Sec. 5.7.2.1, the effect

is expected to be small for surveys with wide redshift range. In order to quantify the

effect of neglecting off-diagonal terms, we performed a full error covariance analysis for

Euclid. The survey volume size shrinks in this case the computational effort tremendously,

compared to radio continuum cases, and makes a full numerical analysis feasible. The

deterioration level in the final PNG constraints is consistent with what reported for radio

continuum. More specifically, we observe a < 1% and ∼ 7% degradation for local and

equilateral PNG cases respectively.

The results under “RSD+trispectrum” in Table 5.11 are considered as our final fore-

casts on the three PNG types originating from the optical surveys. Comparing these

results with those available in the literature, we see that our power spectrum Euclid con-

straints, after excluding the theoretical errors, are consistent with the forecasts in Ref.
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(Giannantonio et al, 2012) for the local and orthogonal PNG. On the other hand our

forecasts on the local type, coming from Euclid and DESI, are slightly worse than those

reported in (Tellarini et al, 2016). The difference originates from the fact that we take into

account the presence of theoretical errors, as well as the effect of redshift uncertainties.

The differences are slightly higher for redshift space bispectrum forecasts, owing to the

higher impact of theoretical errors and to the inclusion of redshift errors (small, but not

completely negligible also for spectroscopic surveys).

As done for the radio analysis, we also tested the effect of neglecting NG corrections

in the bispectrum variance, by using Eq. (5.62). In the case of Euclid, a degradation

of ∼ 42% and ∼ 20% is observed in the forecasts for the local and equilateral PNG

types respectively. For LSST we get a deterioration of ∼ 32% and ∼ 10%, while for

the SPHEREx2 configuration ∼ 57% and ∼ 21%, for the final constraints on local and

equilateral PNG respectively. Again these results agree with the trend observed before,

indicating that, in order to generate realistic forecast from future LSS surveys on the local

PNG amplitude, one has to take into account the higher order terms in the diagonal of

the bispectrum covariance matrix.

5.8 Conclusions

In this chapter we have investigated constraints on the amplitude of the non-Gaussian

parameters fNL for three types of PNG shapes – local, equilateral and orthogonal – and on

galaxy bias parameters, through galaxy power spectrum and bispectrum measurements

on large scales using a Fisher matrix approach. We thoroughly accounted for a large

number of effects in modelling the gravitational NG contributions, including a full second

order treatment of bias and RSD. We carefully investigated the propagation of theoretical

uncertainties, following the approach introduced in (Baldauf et al, 2016) and extending

it to bias loop-corrections. All these effects were to a various extent included in previous

literature, but never consistently accounted for at once in a single forecast analysis. The
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cross-correlation between power spectrum and bispectrum was ignored in this work, and

the bispectrum covariance approximated as diagonal. However, for the large scales con-

sidered here, we expect this to have small impact, based on recent results in the literature

(Chan and Blot, 2017). We also employed, as standardly done, a Gaussian approximation

for the bispectrum variance. We presented an explicit estimate of the effect of ignoring

NG contributions to the variance, by considering leading NG corrections, see Eq. (5.62).

We found that, in the worst case scenario, such corrections can degrade our constraints

by a factor ∼ 50%. A more detailed study of the bispectrum covariance, including NG

corrections, will be included in future work. Likewise, it will be important to account in

the future for the effect of relativistic corrections on the bispectrum, especially for large

volume surveys (see e.g. (Di Dio et al, 2016; Umeh et al, 2017; Bertacca et al, 2017)).

In addition to the previous ingredients, we improved the modelling of the galaxy

bispectrum by considering a complete second order bias expansion, which includes for

the first time the trispectrum term [Eq. (5.1) ]. We only consider the zeroth order (tree-

level) expansions in the matter fields, because we are only interested in the large-scale

contributions. For dark matter, we have used the MPTbreeze perturbation theory,

based on Renormalised Perturbation Theory, which provides a natural cut-off in the non-

linear regime, such that ultraviolet divergences are automatically removed. The final

bispectrum model used for our forecast is represented by Eqs. (5.19) and (5.29), in real

and redshift space respectively. These are the starting point of our numerical analysis.

Our constraints are based on radio surveys – with 10 µJy and 1 µJy flux limits,

and optical surveys – two spectroscopic and two photometric. For the radio surveys, we

considered radio continuum datasets and assumed that the redshift of radio sources would

be estimated via clustering based methods.

We have summarised our main results in Table 5.12, where we have reported the

constraints derived when considering RSD, redshift and theoretical errors for the three

non-Gaussian shapes, together with the Planck temperature and polarisation constraints
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Planck SKA EMU Euclid DESI LSST SPHEREx1 SPHEREx2
Local 5.0 0.181 0.632 1.3 1.998 0.312 3.435 0.523

Equilateral 43 244.06 273.78 57.29 79.43 184.26 193.32 424.79
Orthogonal 21 17.94 29.11 18.24 29.31 37.63 57.35 34.07

Table 5.12 – Summary of 1σ forecasts for the three PNG types considered (local, equilateral
and orthogonal), from radio (SKA and EMU) and galaxy surveys (Euclid, DESI, LSST and
SPHEREx) derived from combining the power spectrum and bispectrum and accounting for
RSD, redshift uncertainties, the trispectrum term and theoretical errors.

(Planck Collaboration et al, 2016a), for reference.

It is clear that for all surveys, important improvements over current CMB bounds are

possible for the local shape and that the bispectrum gives a very important contribution,

improving the expected f loc
NL bound by a factor ∼ 4-5 in most cases. On the other hand,

other shapes, especially equilateral, would be poorly constrained. It is interesting to

investigate this aspect more in detail. On one hand, it is well known that the power

spectrum cannot place constraints on equilateral NG, leaving the bispectrum as the only

useful statistic. For forthcoming optical surveys (spectroscopic and photometric), the

main limiting factors are provided by the relatively small number of modes available in

the linear regime and by theoretical errors, which peak in the equilateral limit, since

this is the most affected by late-time evolution. Including mildly non-linear scales in the

analysis of course addresses the former problem, but strongly exacerbates the latter and

it will require exquisitely accurate modelling of late-time non-linearities. This, at present,

is of course the object of a significant amount of scientific activity. Larger future optical

and radio surveys (e.g. LSS, SKA) will, on the other hand, provide access to much larger

volumes and higher redshifts.

Owing to this, it would be therefore natural to expect improvements in the bispectrum

forecasts, for all shapes, even in presence of significant theoretical errors. The trade-off

for these surveys is however represented by large errors in the determination of redshifts.

We find indeed that redshift errors massively degrade the final forecasts, especially for

equilateral scenarios (large wavenumbers in squeezed triangles are less affected). When we
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neglect them, in our monopole approximation model, we actually see that large improve-

ments (e.g. up to a factor ∼ 5 for SKA) with respect to Planck equilateral constraints

can be achieved. Notably, this constraining power mostly comes from very large scales

and trispectrum contributions, which display a ∼ k−2 scale-dependence in the equilateral

case. Such contributions therefore deserve further attention.

It is therefore clear that developing strategies for better determination of redshifts in

future photometric and radio surveys could be a powerful approach toward the goal of

significantly improving PNG bounds, beyond local models. Another possibility, which

will be explored in a forthcoming work, is to rely on intensity mapping.
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Chapter 6
The modal estimator

6.1 Introduction

The most stringent constrains on primordial non-Gaussianity comes from the measure-

ments of the CMB bispectrum (Planck Collaboration et al, 2016a). Future LSS surveys

promise to deliver big enough volumes to match the constraining power of the CMB, in

some case even surpass it (see Chapter 5). Measuring, however, the bispectrum of LSS is a

challenging and computationally demanding task, due to the three dimensional nature of

the dataset. In fact the measurements of a three-point correlator need O(N6) operations,

where N is the number of modes per dimension inside a simulation box or LSS survey.

The approach followed is based on the modal estimation formalism, which was developed

and applied extensively for both temperature and polarization CMB maps (Fergusson and

Shellard, 2009; Fergusson et al, 2010a,b; Regan et al, 2010; Fergusson et al, 2012). In a

nutshell, modal methods consist in finding a suitable basis of bispectrum templates and

write higher order correlations as a linear combination of such templates (“modes”). By

properly choosing the templates, it is always possible to work with separable bispectra

(see Sec. 6.2) and to achieve fast convergence. It was extended for LSS in (Fergusson

et al, 2012) and used to measure fNL from N -body simulations with non-Gaussian initial

conditions in (Schmittfull et al, 2013). In addition, it was used for measuring the bis-

pectrum of simulations and compare predictions from different perturbation theories in

(Lazanu et al, 2016).

The reduction of the numerical cost within this method is dramatic (O(nmaxN3)).

Although, the modal estimator was developed for measuring the primordial non-Gaussian

199
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amplitude, its appealing features make it ideal to extract any kind of galaxy bispectrum

(separable or not) from a simulation or LSS survey dataset, for each redshift slice of in-

terest. The modal decomposition applies both to the theoretical bispectra of interest, as

well as to the three-point function extracted from data or simulations. One can expand

both, using the same basis, and achieve a fast, efficient comparison by only compar-

ing the coefficient of the expansion, i.e. without the need of measuring all the Fourier

mode triangles. This allows for massive data compression (from billions of triangles to

hundred/thousand coefficients). In this chapter we will show results on the measured

gravitational bispectrum, reconstructed from the modal estimator, for simulations with

Gaussian initial conditions. Moreover, we will present measurements of the primordial

and the effective gravitational fNL parameters for a few realizations with non-Gaussian

initial conditions of the local type. This way we can show the power of the modal estima-

tor to separate these two contributions and clean the primordial signal from the late-time

gravitational non-Gaussianity . Finally, we will test the modal estimator for measure-

ments of the gravitational bispectrum of Gaussian simulations, when dark energy couples

to matter, providing us with an example of how it can be used in order to test dark energy

and modified gravity models.

We begin with an introduction to the statistical estimators and terminology that it

will be used later on (a detailed review on the subject can be found in any textbook for

statistics e.g. (Barlow, 1989)). We proceed with the review of the modal estimator itself.

Finally, we present details on the N-body simulations and the methodology used here to

extract the bispectrum of gravity, as well as PNG, in addition to the simulation bispectrum

and fNL results. The last part is dedicated to the work in progress and potential future

applications of the estimator in various LSS fields.
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6.2 Statitical estimator

A statistical estimator is a procedure used to measure a property from a data sample

or a parent distribution. All the statistical moments needed to describe the PDF of a field

or dataset are based on the ensemble average over all possible realizations of the system.

Practically this is not possible and therefore what we actual measure is the estimated

value of the quantity by applying the estimator on the sample. We saw this in Sec. 3.5.1,

where we discussed that the ergodic assumption can shift the problem of calculating the

ensemble of a stochastic process (e.g. primordial density fluctuations) from integrating

over infinite realisations to a spatial integration over all the infinite volume. Although,

due to the fact that we do not have an infinite volume in the Universe, what we actually

measure with the ensemble average of the density field is an estimation of its mean and

not the true value of the first moment.

We define α to be the parameter that we want to measure in a sample and α̂ is

a function of the data, which provides our statistical estimate of α. As we discussed

already, what we will measure will not be the true value (i.e. it will be the expected

value of the estimator), due to the statistical fluctuations. As N goes to infinity these

effects will be smaller and smaller, in the case of independent measurements, and the

expected value will approach the true. Hence, one of the characteristics of an estimator

is consistency, defined as:

lim
N→∞

〈 α̂−α 〉= 0. (6.1)

For a finite number of independent measurements, we cannot be sure if the expected

value of the estimator represents exactly the true value (it might be larger or smaller).

If this offset is somehow balanced around the true value, we can say that the estimator

is unbiased. In other words, for an unbiased estimator the expected value is equal to the

true, 〈 α̂ 〉= α. Although, by the law of large numbers, if an estimator is consistent, it will
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be bias free as we increase the number of trials and the expected value approaches more

and more the true. The variance of the estimator measures the spread of the estimated

value around the expected, which depends on the dataset at hand. Therefore, for a good

estimation of the true values we would like the estimator to have as small as possible

spread for each different realization. An estimator is efficient if its variance is small.

Lets say that we have a dataset {x1,x2, . . . ,xn}, where the probability of each indi-

vidual set is drawn from a PDF, given the true value of parameter α to be P (xi;α). The

probability density function of the whole dataset will be given by the joint probability

density function of all subset realization. The likelihood function of the full dataset is

defined as

L(x1,x2, . . . ,xn;α) = L(x;α) =
∏

i

P (xi;α). (6.2)

Now the expectation value of the one-point n-th moment is given as in Sec. 3.5.1, from:

〈 α̂n(x)〉=
∫

α̂n(x)L(x;α)dx. (6.3)

Assuming that the estimator at hand is unbiased we can write:

〈 α̂ 〉=
∫

α̂L(x;α)dx. (6.4)

Since the estimator depends only on the dataset, we can differentiate the above with

respect to the true value of the parameter and get

1 =
∫

α̂
dL(x;α)

dα
dx ⇒ 1 =

∫
α̂L(x;α)

d lnL(x;α)

dα
dx. (6.5)

The integral over the dataset of the likelihood must be equal to unity and therefore

differentiating it, like the above, we can get:
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∫
L(x;α)dx = 1 ⇒

∫ d lnL(x;α)

dα
L(x;α)dx =

〈
d lnL(x;α)

dα

〉
= 0. (6.6)

Multiplying the above with α, subtracting it from Eq. (6.5) and using the Schwartz

inequality we get:

(∫
(α̂−α)2L(x;α)dx

)

∫ [d lnL(x;α)

dα

]2

L(x;α)dx


≥ 1. (6.7)

The first part is the variance of the estimator and hence we can write the above as:

〈(α̂−α)2 〉
〈

d lnL(x;α)

dα

〉
≥ 1. (6.8)

If we differentiate Eq. (6.6) and substitute the result to the above, we can get the Cramer-

Rao inequality:

〈(α̂−α)2 〉 ≥ − 1〈
d2 lnL(x;α)

dα2

〉 . (6.9)

This states that an estimator has a lower bound in its accuracy. For any unbiased esti-

mator this inequality is always satisfied.

The maximum likelihood estimation method states that, we can determine the value

of a parameter α that maximizes lnL(x;α) and gives the highest probability of actually

obtaining the dataset x as high as possible, i.e. it makes our data the most likely. The

estimator that takes this value is called a maximum likelihood estimator

d lnL(x;α)

dα

∣∣∣
α=α̂

= 0. (6.10)

Given the likelihood for a sample we can solve, sometimes, the above and get an equation

for the maximum likelihood estimator of the parameter α. In the case we cannot achieve

that, a numerical derivation must be applied. For large samples the maximum likelihood

estimator, if consistent, saturates the Cramer-Rao bound and the inequality becomes
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equality. In addition, any unbiased estimator, whose variance has the exact lower bound,

is a maximum likelihood estimator.

6.3 Modal estimation formalism

The main idea of the modal estimator comes from the separability of some primordial

non-Gaussian shapes (e.g. local, equilateral, orthogonal) predicted by a class of infla-

tionary models. This characteristic, which can be written schematically as B(k1,k2,k3) =

X(k1)Y (k2)Z(k3), can reduce the operational cost from O(N6) to O(N3) as it was shown

in (Komatsu et al, 2005) (later on KSW). However, these shapes are not the only ones pre-

dicted by the plethora of inflationary models. A large amount of non-separable shapes are

considered in the literature, which should be measured in order to extend our constrain-

ing power to the whole inflationary landscape. The numerical task we need to undergo

is extremely demanding. To address this issue, in the work of (Fergusson and Shellard,

2009; Fergusson et al, 2010a,b) and (Fergusson et al, 2012; Regan et al, 2012; Schmitt-

full et al, 2013) for the CMB and LSS respectively, the idea of separability is extended

to an arbitrary primordial shape by proposing the modal estimator . This formalism is

based on an expansion of the bispectrum on a set of separable modes forming a basis.

The convergence of the expansion can be achieved with a small number of coefficients

(nmax ∼ O(50)), where now the information is compressed into them. The computa-

tional speed up for measuring the bispectrum from simulations or LSS surveys is reduced

tremendously (O(N3)). The modes are now used instead of the full bispectrum for all

the formed Fourier modes triangles. This way a massive data compression is achieved.

The expansion coefficients of the theoretical bispectrum can be compared against

those coming from simulations, in order to constrain the non-Gaussian amplitude in a

fast and accurate way. In the case which the full bispectrum in the standard form (i.e.

B(k1,k2,k3)) is the one desired, the translation between the two “languages” is a mere loop

over the triangles of interest. Within each iteration, a simple small matrix (nmax×nmax)



6. The modal estimator 205

multiplication with a vector of the same size takes place. Even though the modal estimator

was developed for measuring primordial non-Gaussianity, one can use it to extract in a

quick and simple way the bispectrum of simulations or even mock catalogues, by taking

advantage the quick convergence and the reduced computational requirements of the

modal decomposition. In addition, as it was shown in the work of (Regan et al, 2012), the

modal decomposition technique can be used to generate non-Gaussian initial conditions

for simulations for any shape desired. Finally, in the work of (Regan et al, 2010; Fergusson

et al, 2010b, 2012) the modal estimator was expanded to cover also the planar trispectrum

of CMB and LSS, i.e. the projection of the full trispectrum on the plane with four and

five degrees of freedom in the case of the single diagonal or non-diagonal respectively.

6.3.1 The modal estimator

We start by introducing the maximum likelihood estimator, for measuring the non-

Gaussian amplitude, with an optimal signal-to-noise weighting as (Fergusson et al, 2012;

Regan et al, 2012; Schmittfull et al, 2013):

f̂ th
NL = (2π)3

∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
(2π)3δD (k1 +k2 +k3)

Bth(k1,k2,k3)[δk1δk2δk3−3〈δk1δk2 〉δk3 ]

Pδ(k1)Pδ(k2)Pδ(k3)
,

(6.11)

where Pδ(k) = P (k)+1/ng is the matter power spectrum, predicted by perturbation the-

ory or measured by the simulation itself, with the absorbed Poisson shot noise term, while

δ(k) is the non-linear overdensity field coming from observations/simulations. In order to

improve the efficiency of the estimator towards the smaller non-linear scales in reconstruct-

ing the simulation bispectrum, as well as measuring the effective non-Gaussian amplitude

generated by the late-time gravitational evolution, we will use here the non-linear mat-

ter power spectrum predicted by the HALOFIT model. The theoretical bispectrum,

Bth(k1,k2,k3), is the one we wish to test upon the sample. Moreover, the linear term

〈δk1δk2 〉δk3 takes into account any kind of inhomogeneities coming from systematic effects
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in the dataset at hand. In the case of a homogeneous field (δk=0 = 0), as assumed for the

simulations used here, such term disappears. Furthermore, the signal-to-noise weighting

uses only the diagonal part of the bispectrum estimator covariance (i.e. P (k1)P (k2)P (k3)

term in the denominator). A brute force implementation of the bispectrum estimator, as

it appears in the above equation, is not very useful since it needs O(N6) operations. This

can be seen after applying the triangle condition, imposed by the translation invariance

of the three point correlator in a homogeneous and isotropic Universe.

The expected value of the estimator above, considering a large set of realizations of

the observed density field δ(k), is given by:

〈 f̂ th
NL 〉=

(2π)3

Nth

∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
(2π)6δ2

D(k1 +k2 +k3)
Bth(k1,k2,k3)Bobs(k1,k2,k3)

Pδ(k1)Pδ(k2)Pδ(k3)
, (6.12)

where we substituted the expected value of the three-point function of the observational

density field with its respective bispectrum [Eq. (3.98) ]. For now the normalisation Nth

is just a value, but shortly we will derive an expression for it coming from the estimator

itself. In addition, we can substitute one of the two Dirac deltas with δD (0) = V/(2π)3,

where V is the volume of the simulation, since only one is need to impose the triangle

condition. The final step is to perform the angular integration, after taking into advantage

the expansion of the Dirac delta into spherical harmonics, given by:

δD (k1 +k2 +k3) = 8

∫
d3x

∑

l1m1

il1jl1(k1x)Yl1m1(k̂1)Y ∗

l1m1
(x̂)

×
∑

l2m2

il2jl2(k2x)Yl2m2(k̂2)Y ∗

l2m2
(x̂)

∑

l3m3

il3jl3(k3x)Yl3m3(k̂3)Y ∗

l3m3
(x̂). (6.13)

If we apply the above in Eq. (6.12), we get a constant term from
∫

dΩ
k̂i

Yl,m(k̂i)Y00(k̂i) =

2
√

πδl0δm0 and a factor from the integration over
∫

dΩx̂Y ∗
00(x̂)Y ∗

00(x̂)Y ∗
00(x̂) = G000

000 =

1/(2
√

π), where Gl1l2l3
m1m2m3

is the Gaunt integral. The integration over the Bessel functions

is the one imposing the triangle condition on the Fourier modes, generating a factor of

(π/4)k1k2k3 for a closed triangle and zero otherwise. Combining all these together, the
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Figure 6.1 – The tetrahedral domain as defined by the triangle condition, k1 ≥ k2 ≥ k3. The
volume is bounded in each side towards the small scales from the maximum wavevector value
we consider. Here it is assumed that the minimum mode value is zero. In a simulation of
survey large scales are also bounded by the observed volume hence there is in principle a cut in
the corner of the plot (large scales) defined by kmin. The regions where different configurations
reside are highlighted. Source: Lazanu et al (2016).

expected value of the estimator becomes simply:

〈 f̂ th
NL 〉=

1

Nth

V

π

∫

VB

dk1dk2dk3
k1k2k3Bth(k1,k2,k3)Bobs(k1,k2,k3)

Pδ(k1)Pδ(k2)Pδ(k3)
. (6.14)

Demanding the above to be equal to unity in the case of Bobs = Bth, we get the normali-

sation factor to be:

Nth =
V

π

∫

VB

dk1dk2dk3
k1k2k3[Bth(k1,k2,k3)]2

Pδ(k1)Pδ(k2)Pδ(k3)
. (6.15)
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The integration is done over a tetrahedral volume VB, a visualization of which can be

found in Figure 6.1. The domain is defined from the triangle condition (i.e. k1 ≥ k2 ≥ k3),

where the minimum magnitude value of each mode is bounded by the large scale limit of

the simulating box (i.e. the fundamental frequency kf = kmin = 2π/V 1/3). On the other

hand, its maximum value is defined by the resolution of the simulation at hand. The form

of the domain is a tetrahedron with a glued triangular pyramid on top of it. Although,

the full shape is shown in Figure 6.1, we only need a sixth of it due to the symmetries of

the bispectrum. Taking advantage the form of the estimator’s expected value [Eq. (6.14)

], we can define an inner product for two functions on the tetrahedral domain as:

T [f,g] = 〈f,g 〉=
V

π

∫

VB

f(k1,k2,k3)g(k1,k2,k3)w(k1,k2,k3)dVk, (6.16)

where the fundamental cell is dVk = dk1 dk2 dk3 and w(k1,k2,k3) is a weight function

defined appropriately. One can easily obtain the volume of the tetrahedral domain as

T [1] = k3
max/2. The inner product of two signal-to-noise weighted bispectra can be used

to achieve a comparison between a bispectrum coming from the simulation/survey with

the theoretical prediction (Babich et al, 2004; Fergusson et al, 2012). It is given as

〈Bi,Bj 〉 ≡
V

π

∫

VB

dVk
Bi(k1,k2,k3)Bj(k1,k2,k3)

Pδ(k1)Pδ(k2)Pδ(k3)
, (6.17)

and the shape correlator is given by:

C(Bi,Bj) =
〈Bi,Bj 〉√

〈Bi,Bi 〉〈Bj ,Bj 〉
. (6.18)

where it defines how similar two bispectrum shapes are and can be used to compare

theoretical and simulated bispectra. Furthermore, it can be used to test the convergence of

the modal expansion, indicating the performance of the modal decomposition. Moreover,

if we take the norm of the inner product, we can get the signal-to-noise squared for the

bispectrum as
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|B|2 =
V

(2π)3

∫

VB

dVk
sBB2(k1,k2,k3)

∆B2(k1,k2,k3)
=
〈B,B 〉
6(2π)3

, (6.19)

where the diagonal part of the bispectrum variance is denoted as ∆B2 and is given by

(Scoccimarro et al, 1998; Scoccimarro et al, 2004):

∆B2(k1,k2,k3) = (2π)3 sBPδ(k1)Pδ(k2)Pδ(k3)

8π2k1k2k3
, (6.20)

where the parameter sB is equal to 6 if the formed triangle is an equilateral, 2 if it is

isosceles and unity otherwise. Therefore we can see that the signal-to-noise ratio of the

estimator is consistent with the work of (Scoccimarro et al, 1998; Scoccimarro et al, 2004;

Sefusatti et al, 2012).

6.3.2 Modal decomposition

Having defined the inner product of two bispectra, we can now expand any 3D bis-

pectrum on a basis Qn(k1,k2,k3), defined on the tetrahedral domain, compressing the

information of the full bispectrum into the coefficients of the expansion. We can write

the noise weighted bispectrum as:

√
k1k2k3Bth(k1,k2,k3)√
Pδ(k1)Pδ(k2)Pδ(k3)

=
nmax−1∑

n=0

αQ
n Qn(k1,k2,k3). (6.21)

The convergence of the estimator depends on the size of the basis, i.e. nmax, and the

desired accuracy is achieved with only a small number of coefficients (Schmittfull et al,

2013) of O(50−100). This means that increasing the number of modes contributes neg-

ligible corrections to the reconstructed theory bispectrum. The reason that we choose to

project the weighted signal-to-noise bispectrum will become clear later on, however note

that a no-weight expansion can be chosen.

The basis Qn(k1,k2,k3) is constructed on the same domain to the one generated by

the non-separable bispectrum we wish to expand, while the desired separability should be
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taken into account. This is done by creating one dimensional functions qr(ki) in the ith

direction, which are orthogonal and well behaved over the full tetrahedral domain. The

choice of the modal functions does not affect the final outcome of the decomposition, as

it was shown in the work of (Fergusson et al, 2010a), where they test the convergence

and results for a variety of different basis. An efficient choice of basis is a type of one

dimensional polynomials on the tetrahedral domain, similar to the Legendre polynomials.

These functions are constructed by taking the inner product T [f ] for a unit interval and

using the weight w(x) = x(4−3x)/2. It is useful to use the modes under the transformation

x = k1/kmax, y = k2/kmax and z = k3/kmax, in order to acquire a basis on the normalised

domain that could be easily generalised to any different scale limits. The orthogonal

polynomials are build from the following determinant (Fergusson et al, 2010a):

qn(x) =
1

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/2 7/24 1/5 ... wn

7/24 1/5 3/20 ... wn+1

... ... ... ... ...

wn−1 wn wn+1 ... w2n−1

1 x x2 ... xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6.22)

where

wn ≡ T [xn] =
n+6

2(n+3)(n+2)
. (6.23)

The normalisation of the modal functions is chosen in such a way that the inner product

〈qn(x), qm(x)〉= 1, i.e. we choose qn(x) to be orthogonal in one dimension:

〈qn, qp 〉=
∫

VBqn(x)
qp(x)dVB = δnp. (6.24)

From these well behaved polynomials, where we present the first few of them in Figure

6.2, we can build the three-dimension separable mode basis Qn, which will be ultimately

used to decompose the bispectrum of interest, from:
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calculation can be computationally affordable. However, its numerical cost might be

increased in the case of a large number of modes, i.e. large basis. Nevertheless, γnm

matrix must be computed only ones, saved and reused for any desirable decomposition.

The γ matrix is not diagonal (nearly orthogonal), therefore we would like to have the

convenience of an orthogonal basis. We proceed to its orthonormalization, by choosing the

Cholesky decomposition, due to its numerical stability. The γ matrix will be decomposed

into its associated upper and lower triangular matrices as:

γnm =
nmax∑

r
λ−1

nr (λ−1
rm)T , (6.27)

where λnm is the lower triangular matrix. We can use this now to make the basis orthog-

onal as

Rm(k1,k2,k3) =
nmax∑

p=0

λmpQp(k1,k2,k3), (6.28)

where

〈Rm,Rn 〉= δnm. (6.29)

Any theoretical bispectrum can now be decomposed in a separable basis, by calculating

the coefficients with respect to the orthogonal basis as

αR
n =

〈
Rn,

√
k1k2k3Bth(k1,k2,k3)

Pδ(k1)Pδ(k2)Pδ(k3)

〉
. (6.30)

The above is equivalent to

αQ
n =

nmax∑

p=0

λpmαR
p . (6.31)

The derived coefficients can be used now in Eq. (6.21) to get the reconstructed bispec-

trum. Note that, in order to calculate αR
n in the case of a non-separable bispectrum, the
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3D integral over the tetrahedral domain must be performed. Therefore, there is some com-

putational effort to orthonormalise the basis and to derive αR
n (O(nmaxN3) operations).

However, it needs to be done only ones, while the derived coefficients can be used for any

domain bounds, since the γ matrix is calculated for the normalised tetrahedron. Note

that, there is a trade off between the Q and R basis. More specifically, Qn is not orthog-

onal, but its elements are separable templates, while Rn is orthogonal but non-separable.

Therefore, the Q-basis is ideal for template-fitting and extracting modal coefficients from

data, while the R-basis is well-suited for the theoretical interpretation of the results [see

Eqs. (6.37), (6.38) and (6.38)]. In the case of a separable shape, it is faster and easier to

calculate first the coefficients of the Qn basis from:

αQ
n =

nmax∑

p=0

γ−1
np

〈
Qn,

√
k1k2k3Bth(k1,k2,k3)

Pδ(k1)Pδ(k2)Pδ(k3)

〉
, (6.32)

and then derive the modes of the orthogonal basis from

αR
n =

nmax∑

p=0

λ−1
pn αQ

p . (6.33)

Both the above, are equivalent and give the final decomposition of the theoretical bispec-

trum.

The most powerful result of the modal decomposition is the reduction of the cal-

culations, regarding the simulation or survey bispectrum. If we substitute the modal

decomposition of the theory in the optimal estimator of Eq. (6.12) and expand the Dirac

delta in plane waves we get:

f̂ th
NL =

(2π)3

NTH

∑

n
αQ

n

∫
dx3[Mp(x)Mr(x)Ms(x)], (6.34)

where
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Mp(x) =
∫ d3k

(2π)3

δkqp(k)√
kPδ(k)

. (6.35)

The above can be calculated in an efficient way by using a Fourier transformation. The

coefficients of the decomposition for the simulation is now given by:

βQ
n =

∫
dx3[Mp(x)Mr(x)Ms(x)], (6.36)

which only adds a 3D integration over position space in the computational burden. The

final operations are O(N3) (Schmittfull et al, 2013). We can then transform the coeffi-

cients to the orthogonal frame just by using Eq. (6.33). The bispectrum of the dataset

can be now derived for a single realization, given sufficient signal-to-noise, as (Fergusson

et al, 2012; Regan et al, 2012)

Bobs(k1,k2,k3) =

√
Pδ(k1)Pδ(k2)Pδ(k3)√

k1k2k3

∑

n

βR
n Rn(k1,k2,k3)

=

√
Pδ(k1)Pδ(k2)Pδ(k3)√

k1k2k3

∑

n

βQ
n Qn(k1,k2,k3), (6.37)

which is a simple summation over the number of modes (Schmittfull et al, 2013). For a

desired set of configurations it can be calculated though a triangle loop with a negligible

computational cost, i.e. only a small vector-vector multiplication for each iteration. In

the standard approach one needs to go through all the possible triangles formed in the

simulation grid, which bares a tremendous computational effort. Although, all the above

relations are done assuming a continuous field, the transformation to the discreet version

is simple, e.g. when we use Eq. (6.35) the applied algorithm is the discrete Fourier

transformation, being consistent with the resolution of the simulation.

The coefficients of the projected theoretical bispectrum, obviously, depend on the

model. However this is not true for the coefficients of the simulation, since the model

dependence introduced in the form of power spectrum is cancelled as shown in Eq. (6.37).
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Therefore, the reconstruction of the bispectrum is done in a model independent manner

(Fergusson et al, 2012). Now it is clear why we decomposed the weighted bispectrum in

the first place. By doing this we are able to remove the explicit dependence on signal-

to-noise weight, coming from the estimator itself. The estimator is reduced now in the

following simple summation

f̂ th
NL =

1

Nth

∑

m
αR

mβR
m, (6.38)

whose expectation value is given by

〈 f̂ th
NL 〉=

1

Nth

∑

m
[αR

m]2. (6.39)

The above two equations imply that

〈βR
n 〉= αR

n . (6.40)

In addition we can define the shape correlation between the theory and simulations from

Eq. (6.18) as

Cβ,α = C(Bobs,Bth) =

∑
n αR

n 〈βR
n 〉√∑

m(αR
m)2

∑
p〈βR

p 〉2
. (6.41)

6.3.3 Testing the pipeline and the modal expansion

The shape correlator defined in Eq. (6.18) can be used to test the convergence and

accuracy of the modal decomposition of a theoretical bispectra. Substituting Bi with the

decomposed theoretical bispectrum on the modal basis and Bj with the actual theoretical

prediction, we can define

Cth = C(

√
Pδ(k1)Pδ(k2)Pδ(k3)

k1k2k3

∑

n
αQ

n Qn(k1,k2,k3),Bthk1k2k3). (6.42)
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We measure the shape correlator for an increasing number of modes, to test the effi-

ciency of the modal expansion, for three theoretical bispectra. We choose four separable

shapes, i.e. the tree-level matter bispectrum [Eq. (3.103) ] and the three types primordial

bispectrum considered throughout this thesis (i.e. local, equilateral and orthogonal; see

Sec. 2.4.4). As we have already discussed, very few bispectra share the characteristic

of separability. Therefore, in order to have a more complete picture on the convergence

of the modal decomposition, we choose also a non-separable theoretical bispectrum, i.e.

the 1-loop matter bispectrum, predicted by SPT, for Gaussian initial conditions (see Sec.

3.5.3.1). The resulting shape correlators, Cth, are presented in Figure 6.3 as a function of

the number of modes considered in the expansion. For these tests, we do not perform any

stabilization, i.e. the mode ordering is generated by the mapping n = p + r + s, without

any index reshuffling.

The correlation results, between the decomposed bispectrum and the original theoret-

ical prediction, show that the modal decomposition converges rapidly for a few three-

dimensional modes. More specifically, for the local primordial bispectrum we need 23

modes to achieve a ∼ 98% correlation, while for the equilateral and the tree-level mat-

ter bispectrum the correlation is ∼ 99% with just 17 modes. The reason for the faster

convergence of the equilateral and tree-level bispectrum with respect to local is the struc-

ture of the basis itself, which picks more signal from configurations that do not approach

the squeezed triangles. On the other hand, additional modes are needed for the modal

expansion to start picking signal from the squeezed configurations and accurately decom-

pose the local primordial bispectrum. The 1-loop matter bispectrum can be decomposed

by just 14 modes, where the correlation is greater than 99% at that stage. Finally, the

orthogonal case is the one that needs the most modes, i.e. 25 modes to accomplish 97%

correlation. The more modes we consider the higher the correlation and thus the effi-

ciency of the decomposition. This indicates that beyond 40-50 modes all these bispectra

can be decomposed with 99.9% correlation, which shows the great amount of compression
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Stabilization Method 1: An approach to stabilize the γnm matrix is to normalize each col-

umn and then repeatedly apply a pseudo Principal Component Analysis (PCA). Starting

from one mode of the γnm matrix (e.g. here we start from the constant γ00 element1),

we form a 1x1 γ′
nm sub-matrix. We proceed by increasing the element number of the

square γ′
nm sub-matrix by one, for each step of the loop. In each iteration a different

mode n, which is mapped to the triplet p, r, s in a unique way, is added from the mode

pool, until all the combinations are completed. For example, in the first iteration γ′
nm

becomes a 2x2 sub-matrix of γnm, where the mode indices (i.e. m and n) can take the

value of the starting element (i.e. in our case 0) and a value that remains inside the

pool of mode numbers. This first step of the loop finishes when all the unique 2x2 γ′

sub-matrices, formed by all the index combinations of the initial γnm matrix, have been

generated, e.g. γ′
nm = γ01, γ′

nm = γ02,..., γ′
nm = γ010, etc.. For each iteration of element

loop, the eigenvalues are calculated and the smallest is compared to a positive threshold.

The index combination that is kept to form the 2x2 γ′
nm sub-matrix is the one that has

the largest minimum eigenvalue, which is above the chosen threshold. In the next step

we increase again the number of elements of the square sub-matrix by one (i.e. in our

example it will be a 3x3) and repeat the process. If at any step of the process a mode

generates a negative minimum eigenvalue, the index number is removed from the mode

pool. The process stops when we reach the adopted threshold. The resulting γ′
nm sub-

matrix, formed by the original γnm, is now stable (no negative eigenvalues) and it will be

the one used for the modal decomposition algorithm.

Stabilization Method 2: An alternative would be to follow the opposite direction from the

previous method. We start with the full γnm matrix and in each iteration we remove one

mode index. In the first iteration, one by one, every n-th mode is removed, generating

nmax− 1 different nmax− 1 × nmax− 1 sub-matrices (γ′
nm), originating from the initial

γnm matrix. The sub-matrix that is kept for the next loop step corresponds to the one

1The zero-zero element of γnm is a constant, since it corresponds to the product of zero degree
polynomials (see Figure 6.2), i.e. γ00 = q6

0T [1] = q6
0k3

max/2
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with the largest minimum eigenvalue (above some chosen threshold) with respect to the

rest. The same process continues until the sub-matrix γ′
nm has a minimum eigenvalue

that is just above the positive threshold. The resulting γ′
nm matrix is now, like in the

previous method, positive-defined and numerically stable. This method is much slower

than the former, since for the first couple of iterations the γ′
nm sub-matrix is large and

therefore the eigenvalue decomposition can be numerically cumbersome.

In order to test the efficiency of these two methods in numerically stabilizing the modal

expansion, we choose a large number of modes (e.g. ∼ 200) that devise a numerically

unstable γnm matrix which is still positive-defined. We use the shape correlator [Eq.

(6.42) ] to test the performance and speed of the two stabilization methods on improving

the convergence and accuracy of the modal decomposition. The results are presented for

the test basis in Figure 6.4, where we consider the effect of the stabilization techniques on

the decomposition of the primordial bispectrum for the local, equilateral and orthogonal

PNG. We also consider, separately, the tree-level and 1-loop matter bispectrum.

The improvement of both methods over the results generated by the numerical unstable

basis is significant for all bispectra tested. The unstabilised results show a saturation in the

correlation results beyond the 10th mode, which indicates that the modal expansion does

not converge. In addition, the values of Cth, for all cases, are larger than 60%, which shows

that the numerical unstable basis does not efficiently reconstruct the theoretical bispectra.

The Stabilization Method 1 improves immediately the correlation results, starting from the

first few modes, by ∼ 30−40%, achieving a rapid convergence. The Stabilization Method

2 exhibit a slower convergence (i.e. more modes need to be added) over the previous

method, while at the same time the correlation values increase by ∼ 20− 30% over the

unstable results. In addition, the second method takes about two orders of magnitude

more time to finish than the first, as expected. For this small basis, it does not impose a

problem, since both of them take a very small amount of time over the total load needed

for the pipeline to finish. Further tests were performed, indicating that for larger basis
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6.4 Measuring the bispectrum from N-body simula-

tions

Perturbation theory (Sec. 3) can provide an adequate description for the evolution

of structures in the Universe up to a semi-nonlinear regime. Beyond that point, the

non-linear fluctuations can become large, marking the scales at which any perturbative

approach breaks down. In this non-linear regime the use of cosmological simulations

is necessary in order to follow the dynamics. The main idea is to derive a numerical

solution for the equations that govern the evolution of matter [Eq. (3.1)-(3.3)] in phase

space. Cosmological dark matter simulations treat all matter as collisionless and neglect

any physics coming from baryons, i.e. all matter is considered dark matter. The matter

density field is sampled by partitioning phase space into N elementary cells (”particles”),

that have velocities, positions and usually the same masses. These N-body particles

evolve with gravity in a comoving coordinate system and depending their number we can

define the mass resolution of the simulation. The main steps of the numerical simulation

is first to give the initial condition of the particles. One can use (Sec. 3.3) the ZA

approximation or the second order solution (2LPT) and take advantage the relations

between the gravitational potential and the displacement field, that is the bases of this

formalism, in order to give initial velocity and position to the particles. Usually the initial

time is taken to be at some large redshift (z & 50) during the matter domination era. The

next step is to calculate the gravitational force from the Poisson equation in each particle

due to the mass of the other particles. The derived acceleration is used to update the

positions and velocities of the particles. The process is repeated in a time step fashion

approaching the present, till it reaches the desired redshift. At every step tests on the

conservation of energy and momentum are made as diagnostics (besides the diagnostics

of the pipeline).

The differences between the various methods of performing an N-body simulations
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mainly focus on the different ways of solving the Poisson equation. The naive way of

calculating the force on each particle from all the neighbours, i.e. Particle Particle method

(PP). Although the calculations are exact the computational effort scales like O(N2),

making it extremely challenging for a large numbers of particles. Many alternative have

been proposed and the reader can find a state of the art review in (Kuhlen et al, 2012;

Baldi, 2012) and reference within. For explicit details on the N-body simulations the

reader is addressed to (Hockney and Eastwood, 1988). Here we will just summarize the

main two algorithms used in cosmology.

The first method for improving the PP algorithm is to organize the distribution of

particles in a hierarchical way, i.e. a tree structure (Barnes and Hut, 1986). The main

idea of the tree-like division is to slit the volume in nodes, where each node is divided

in equal volume subcells (eight in the case of the Octree as in (Barnes and Hut, 1986))

and each of them is splitted again in the same number as the parent node. This process

continues till there is one particle or zero in each subcell. The gravitational potential is

calculated by taking advantage the fact that the contribution on a particle coming from

distant particles can be approximated at lower level by a multipole expansion, i.e. treat

the particles in the distant cells as a single particle. The individual contributions are now

calculated only for the neighbouring cells. This process reduces the computational cost to

O(N logN), while keeping the error of the approximation under control. An improvement

in the speed of the algorithm of O(N) is possible if one chooses the Fast Multipole Method

(Greengard and Rokhlin, 1997). In this case the force is computed between tree nodes and

not individual particles and nodes. In order to avoid numerical divergences, a softening

length is introduced to suppress the gravitational interactions between particles that come

too close to each other. This length can give the spatial resolution of the simulation.

An other type of algorithm is the Particle Mesh (PM) (Hockney and Eastwood, 1988)

where in order to define a density field the particles are placed on a mesh. The gravi-

tational forces are then calculated from a Fast Fourier transformation on the grid and
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they are interpolated back to particles. The resulting computational effort is again

O(Ng logNg), only the number of grid points is usually 23 times larger than the par-

ticles (Kuhlen et al, 2012). In this case the softening length is defined by the mesh size

L/Ng, where L is the size of the box. For a length big enough to avoid numerical diver-

gences and achieve good resolution, a large number of particles and grid cells must be

chosen making this method computationally and memory demanding. Hybrid methods

have been introduced that combine the desired characteristics from both methods. Adap-

tive mesh techniques (Couchman, 1991) can improve the resolution of the PM method

by introducing an adaptive mesh that is refined using a tree algorithm in regions that

demand higher accuracy in the calculation of the gravitational force. One of the most

widely used tree-PM code is GADGET (Springel, 2005) and it will be the one used for the

simulations listed in the next section.

6.4.1 Modal decomposed bispectrum and PNG measurements

In order to measure the bispectrum from a set of cosmological simulations we need to

define the overdensity field in Fourier space, which is assumed in theoretical prediction to

be a continuous random field. This is not the case for N-body simulations where we have

Np discrete particles. The density is defined in such case as

ρ(x) =
Np∑

i=1

miδD (x−xi) , (6.43)

and the overdensity will be

δ(x) =
1

n

Np∑

i=1

miδD (x−xi)−1, (6.44)

where n is the mean number of particles inside the cubic volume V = L3 (i.e. n = Np/V ).

In order to take advantage of the Fast Fourier transformation technique we need to inter-

polate the density field into a grid of size Ng in each direction. The derived overdensity
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field will give a Fourier coefficient, where its maximum accessible is the Nyquist fre-

quency, kNyq = Npkf /2, which kf being the fundamental frequency of the volume (i.e.

kf = 2π/L). The distribution of the particles to the nearby grid points is called a mass

assignment scheme and is done by applying a shape function, which quantifies how the

mass is distributed on the grid. The assigned density field will be given by

ρ(x) =
∫

d3x′ρ(x′)W (x−x′), (6.45)

where the window function W (x−x′) defines the amount of density distributed at a grid

point xg with a separation x. Therefore, the interpolated overdensity field on the grid is

given by

δ(xg
j ) =

1

n

Np∑

i=1

W (xg
j −xi)−1. (6.46)

The window function can be calculated for each distribution scheme from the integral

over the cell volume of the shape function

W (xg
j −xi) =

1

H3

∫

x
g
j

dxS(x−xi), (6.47)

where H = L/Ng is the grid spacing. The are mainly three schemes widely used, catego-

rized according to number of grid points each particle is assigned to. The simplest is the

Nearest Grid Point (NGP) where the particle is assigned only to the cell that contains it,

which is obviously a very crude assignment scheme. In this case the window function is

the top-hat given in one-dimension as:

W (d) =





1, if

∣∣∣∣∣
d

H

∣∣∣∣∣≤
1

2

0, otherwise,

(6.48)

where d = |xg−xi| is the distance of the particle from a grid point. Its Fourier transform
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is

WNGP (k) =
sin(πk)

2kNyq
. (6.49)

The most commonly used scheme is the Cloud-in-Cell (CIC), where each particle is as-

signed to the two neighbouring grid points (eight in the 3D case). The window function

is given by:

W (d) =





1− d

H
, if d≤H

0, otherwise,

(6.50)

and its Fourier coefficient is given by

WCIC(k) = W 2
NGP =

(
sin(πk)

2kNyq

)2

. (6.51)

Finally the Triangular Shaped Cloud (TSC) distributes the point to three neighbouring

grid cells (28 for the 3D case) and is the smoothest of these three. The window function

is given by

W (d) =





3

4
−
(

d

H

)2

, if d≤ H

2

1

2

(
3

2
− d

H

)2

, if
H

2
≤ d≤ 3H

2

0, otherwise,

(6.52)

its Fourier transformation is given by

WT SC = W 3
NGP =

(
sin(πk)

2kNyq

)3

, (6.53)

all the above are easily generalised for a three-dimensional grid for the real and Fourier
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space as

W (d) = W (d1)W (d2)W (d3), (6.54)

W (k) =

(
sin(πk1)

2kNyq

sin(πk2)

2kNyq

sin(πk3)

2kNyq

)p

, (6.55)

where p = 1,2,3 for the NGP, CIC and TSC respectively. The final overdensity at each

grid point will be given in three dimensions by

ρ(xg) =

∑Np

i=1 miW (|dx|)W (|dy|)W (|dz|)
H3

. (6.56)

The above means that the overdensity contrast will be now the convolved one with the

window function and not the actual overdensity. Therefore ,we need to deconvolve the

Fourier coefficients by simply dividing the resulting overdensity with the Fourier transform

of the window function, i.e. δk = δg
k/W (k) with δg

k being the interpolated overdensity

contrast on the grid. The final step is to remove from the measured correlators the

Poisson noise.

Here we will present the bispectrum results coming from 20 N-body with 5123 number

of particles in a box of side L = 2400Mpc/h. The simulations start from redshift z = 49,

where the Gaussian initial conditions are generated by using 2LPT method (Crocce et al,

2006), which applies an initial displacement field to the particles as discussed in Sec. 3.3.

The evolution of the N-body towards z = 0.5 is done by using GADGET 2 (Springel, 2005).

The final overdensity field at the desired redshift is interpolated on a grid by using the

CIC mass assignment scheme. A Fast Fourier transformation is applied to get δk, which

is later deconvolved with the kernel WCIC(k) [Eq. (6.55) ]. The cosmology used in this

section differs from the rest of this work, where we assume a flat ΛCDM cosmology with

Ωm = 0.223, Ωb = 0.047, h = 0.7, ∆2
ζ = 2.5887× 10−9 and ns = 0.95. Finally in order to

avoid aliasing effects that can affect the results near the Nyquist frequency, we stay well

bellow that at |k| ≤ 0.3kNyq. The main objective here is to test the efficiency and the
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tree-level bispectrum 1-loop bispectrum
fNL Cβα fNL Cβα

1.25 0.91 1.07 0.984

Table 6.1 – Measurements of the effective non-Gaussianity, generated by the gravitational
evolution, from a single realization. Two theoretical templates are fitted, i.e. the tree-level
and the 1-loop matter bispectrum.

regime (up to the scales of validity of SPT).

Finally, up to the scale considered, we measure the effective fNL value, corresponding

to the late-time gravitational evolution. Since we have normalized the estimator already

to the effective theoretical fNL value, we expect the results to be close to unity if the

decomposition of both the theoretical and observational bispectrum was accurate. Indeed

that is what we measure, f eff
NL = 1.058± 0.005, where the deviation from unity can be

attributed to the fact that the tree-level bispectrum, used to normalise the estimator

deviates towards the smaller scales (Figure 6.6).

The pipeline is further tested on a single box simulation with side L = 600Mpc/h and

5123 number of particles. The simulations starts again at redshift z = 49, where the initial

conditions are Gaussian. The final redshift of the realisation is z = 0, while the cosmology

is now slightly different than before, i.e. Ωm = 0.2241, Ωb = 0.047, h = 0.703. As done

before, we use CIC scheme to assign the particles on the grid and measure δk from a fast

Fourier transformation. We limit the scale range up to kmax = kNyq/8 ≈ 0.335h/Mpc,

in order to retain the analysis inside the linear regime. The coefficients of the modal

decomposition are plotted in Figure 6.7, where we have considered both the tree-level

bispectrum, as well as the 1-loop predictions.

The coefficient comparison show a good agreement with each other, where α1-loop
R

seems to agree more with the modal coefficients of the simulation. In order to quantify

this, we show in Table 6.1 the results of the effective fNL parameter measured by the

fitting of the two theoretical templates.
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tree-level bispectrum 1-loop bispectrum

f loc
NL Cβα f loc

NL Cβα

−321 0.92 −205 0.985

Table 6.2 – Measurements of the amplitude of local non-Gaussianity, after separating the
late-time gravitational signal. The latter is achieved after considering two different theoretical
templates, i.e. the tree-level and the 1-loop matter bispectrum.



Chapter 7
Conclusion

In this thesis we have investigated the higher-order statistics of LSS. The main focus

is the potential of the LSS bispectrum, and in particular the bispectrum of galaxies, in

providing constraints on primordial non-Gaussianity, as well as probing the non-linear

regime of structure growth.

The approach followed was threefold:

We started by modelling the galaxy power spectrum and bispectrum, thoroughly ac-

counting for a large number of effects. We considered the tree-level expansions in the

matter fields, since the analysis is restricted on the large-scale regime, while we used a

full second order treatment for redshift space distortion. Moreover, a complete second

order bias expansion was considered, taking into account the recent developments in the

literature. In addition, we improved the modelling of the galaxy bispectrum, by including

the trispectrum bias term, which was extended, for the first time, for redshift space.

In the next step, we have investigated the constraining power of two large volume

radio continuum surveys (i.e. SKA and EMU), as well as for two spectroscopic and two

photometric optical surveys, on forecasting the non-Gaussian parameters fNL for three

types of PNG shapes – local, equilateral and orthogonal– and on galaxy bias parameters.

The statistical tools used were the galaxy power spectrum and bispectrum on large scales,

without taking into account the cross-correlation between the two, while the forecasting

was achieve through the Fisher matrix approach. We have carefully studied the prop-

agation of theoretical uncertainties, where we have considered the impact of theoretical

errors, up to loop-corrections in the matter and bias expansions, on the forecasts.

The forecast results, for most surveys considered, have shown an improvement over

current CMB bounds for the local shape, by a factor ∼ 4-5, while we have verified that the

233
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bispectrum gives a very important contribution for all PNG shapes. On the other hand,

other shapes, especially equilateral, would be poorly constrained. This was mainly due to

the fact that, the power spectrum cannot place constraints on equilateral PNG, leaving

the bispectrum as the only source of signal. Additional limiting factors were, the theoreti-

cal errors, which peak in the equilateral limit, and the small volumes of some surveys (few

optical cases). We have shown that larger optical and radio surveys could improve the

constraints not only for equilateral, but for all shapes considered. However, the trade-off

for these surveys is the presence of large redshift errors, which indeed massively degraded

the final forecasts (especially for equilateral PNG). In a very idealised case, where galaxy

redshift could be accurately known for all objects, even in presence of significant theoret-

ical errors, large improvements (e.g. up to a factor ∼ 5 for radio) with respect to Planck

equilateral constraints were obtained. The source of such non-Gaussian signal was mostly

from the trispectrum contributions, which display a ∼ k−2 scale-dependence even in the

equilateral case. An additional observation was that the trispectrum bias corrections, in

the case of small surveys, degraded the forecasts for equilateral PNG, due to the enhance-

ment of degeneracies between f eq
NL and the bias parameters. These two points indicate

that the trispectrum term is an important ingredient for forecasting equilateral PNG,

through Fisher matrix formalism, and therefore deserves further attention.

The main conclusion from this part of the thesis was that, in order to improve current

PNG bounds, beyond the local case, future LSS surveys should improve the strategies of

redshift determination, while larger volumes is an attractive feature that can increase the

PNG signal.

In the final step of this thesis, we developed a pipeline that can measure the bispectrum

of simulations and LSS datasets, based on the modal estimation formalism. It reduces

the massive computational effort (O(N6)) of the numerical calculations to a manageable

size (O(N3)), while we have shown that it efficiently compresses all the information of

the three-point correlator into a small set of modes. Different tests, for improving the
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convergence and efficiency of the modal decomposition were performed. Moreover, we

have shown the power of this formalism not only in reconstructing the bispectrum of a

simulation/LSS survey, but also to effortlessly measure the effective non-Gaussianity, gen-

erated by the non-linear evolution, and separating it from the inflationary non-Gaussian

signal.
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Maŕın FA, Blake C, Poole GB, McBride CK, Brough S, Colless M, Contreras C, Couch

W, Croton DJ, Croom S, Davis T, Drinkwater MJ, Forster K, Gilbank D, Gladders M,

Glazebrook K, Jelliffe B, Jurek RJ, Li Ih, Madore B, Martin DC, Pimbblet K, Pracy

astro-ph/9610219
0711.4126
0912.0201
arXiv:hep-ph/0110002
astro-ph/0506614
1104.1300
arXiv:astro-ph/0210603


BIBLIOGRAPHY 257

M, Sharp R, Wisnioski E, Woods D, Wyder TK, Yee HKC (2013) The WiggleZ Dark

Energy Survey: constraining galaxy bias and cosmic growth with three-point correlation

functions. MNRAS432:2654–2668, DOI 10.1093/mnras/stt520, 1303.6644

Martin J, Ringeval C, Vennin V (2014) Encyclopædia Inflationaris. Phys Dark Univ 5-

6:75–235, DOI 10.1016/j.dark.2014.01.003, 1303.3787

Matarrese S, Verde L (2008) The Effect of Primordial Non-Gaussianity on Halo Bias.

ApJ677, 0801.4826

Matsubara T (1999) Stochasticity of bias and nonlocality of galaxy formation: Linear

scales. Astrophys J 525:543–553, DOI 10.1086/307931, astro-ph/9906029

McDonald P (2006) Clustering of dark matter tracers: Renormalizing the bias param-

eters. Phys Rev D74:103,512, DOI 10.1103/PhysRevD.74.103512,10.1103/PhysRevD.

74.129901, [Erratum: Phys. Rev.D74,129901(2006)], astro-ph/0609413

McDonald P (2008) Primordial non-Gaussianity: large-scale structure signature in the

perturbative bias model. Phys Rev D78:123,519, DOI 10.1103/PhysRevD.78.123519,

0806.1061

McDonald P, Roy A (2009) Clustering of dark matter tracers: generalizing bias for the

coming era of precision LSS. Journal of Cosmology and Astro-Particle Physics8, 0902.

0991

Melott AL, Buchert T, Weib AG (1995) Testing higher-order Lagrangian perturba-

tion theory against numerical simulations. 2: Hierarchical models. A&A294:345–365,

astro-ph/9404018

Ménard B, Scranton R, Schmidt S, Morrison C, Jeong D, Budavari T, Rahman M (2013)

Clustering-based redshift estimation: method and application to data. ArXiv e-prints

1303.4722

1303.6644
1303.3787
0801.4826
astro-ph/9906029
astro-ph/0609413
0806.1061
0902.0991
0902.0991
astro-ph/9404018
1303.4722


BIBLIOGRAPHY 258

Mirbabayi M, Schmidt F, Zaldarriaga M (2015) Biased Tracers and Time Evolution.

JCAP 1507(07):030, DOI 10.1088/1475-7516/2015/07/030, 1412.5169

Mo HJ, White SDM (1996) An analytic model for the spatial clustering of dark matter

haloes. MNRAS282, astro-ph/9512127

Mo HJ, Jing YP, White SDM (1996) The correlation function of clusters of galaxies and

the amplitude of mass fluctuations in the Universe. MNRAS282, astro-ph/9602052

Mostek N, Coil AL, Cooper M, Davis M, Newman JA, Weiner BJ (2013) The DEEP2

Galaxy Redshift Survey: Clustering Dependence on Galaxy Stellar Mass and Star For-

mation Rate at z ˜ 1. ApJ767:89, DOI 10.1088/0004-637X/767/1/89, 1210.6694

Mukhanov V (2005) Physical Foundations of Cosmology. Cambridge University Press

Mukhanov VF, Steinhardt PJ (1998) Density perturbations in multifield inflationary mod-

els. Phys. Lett. B422:52–60, DOI 10.1016/S0370-2693(98)00032-X, arXiv:astro-ph/

9710038

Newman JA (2008) Calibrating Redshift Distributions beyond Spectroscopic Limits with

Cross-Correlations. ApJ684:88-101, DOI 10.1086/589982, 0805.1409

Nikoloudakis N, Shanks T, Sawangwit U (2013) Clustering analysis of high-redshift lumi-

nous red galaxies in Stripe 82. MNRAS429:2032–2051, 1204.3609

Norris RP, Hopkins AM, Afonso J, Brown S, Condon JJ, Dunne L, Feain I, Hollow R,

Jarvis M, Johnston-Hollitt M, Lenc E, Middelberg E, Padovani P, Prandoni I, Rud-

nick L, Seymour N, Umana G, Andernach H, Alexander DM, Appleton PN, Bacon D,

Banfield J, Becker W, Brown MJI, Ciliegi P, Jackson C, Eales S, Edge AC, Gaensler

BM, Giovannini G, Hales CA, Hancock P, Huynh MT, Ibar E, Ivison RJ, Kennicutt

R, Kimball AE, Koekemoer AM, Koribalski BS, López-Sánchez ÁR, Mao MY, Murphy
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S, Gregorio, A, Gruppuso, A, Gudmundsson, J E, Hamann, J, Hansen, F K, Hanson,

D, Harrison, D L, Helou, G, Henrot-Versillé, S, Hernández-Monteagudo, C, Herranz,
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