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Abstract 

Surface Supported Supramolecular Architectures: 

An Experimental and Modeling study  

 

L’auto-organizzazione di molecole organiche su superfici solide è uno degli approcci 

più diffusi per la creazione di architetture supramolecolari supportate di dimensioni 

controllate e con proprietà innovative. L’uso combinato di differenti interazioni di 

natura non covalente adsorbato–adsorbato e adsorbato–substrato consente infatti la 

modulazione dell’associazione di specie distinte in modo quasi altrettanto accurato 

che nei sistemi biologici, fonte primaria di ispirazione per ciò che può essere 

realizzato artificialmente. Il consenso sull’uso d’interazioni intermolecolari estese 

non covalenti nell’ingegnerizzazione di nanostrutture bidimensionali supportate prive 

di difetti è unanime. Ciononostante, i materiali così ottenuti sono spesso fragili, 

incapaci di resistere a condizioni aggressive, privi di stabilità meccanica ed 

inefficienti nei processi di trasferimento di carica intermolecolare; sono cioè materiali 

inadatti per applicazioni tecnologiche. La produzione di sistemi nanostrutturati 

supportati con proprietà predeterminate, privi di difetti e con risvolti applicativi 

implica quindi la sintesi di network covalenti robusti, non caratterizzati dalle 

limitazioni di cui sopra. In questa tesi di dottorato si è voluta esplorare sia 

sperimentalmente sia teoricamente la possibilità di stabilizzare covalentemente 

network supramolecolari funzionali in una/due dimensioni stimolando la formazione 

di legami covalenti tra molecole preorganizzate su una superficie.  
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Abstract 

Surface Supported Supramolecular Architectures: 

An Experimental and Modeling study 

 

The scientific community is nowadays focused on the design and the production of 

nm/μm-sized systems for their relevance to nanotechnology, energy production and 

storage, life science and environment. Advances in high performing computing and in 

synthetic/characterization methods make possible devising novel rational approaches 

to tailor properties of low-dimensional architectures of molecular networks on 

inorganic substrates; i.e., to control the electron transport properties of active layers 

and the reactivity of selected sites. As such, the self-assembly of functional 

architectures on appropriate surfaces is the most promising bottom-up approach to 

organize and integrate single molecules on solid substrates. As a consequence of the 

persistent progress in computational power and multiscale material modeling, new 

materials are less likely to be discovered by a trial-and-error approach. This points to 

a paradigm shift in modeling, away from reproducing known properties of known 

materials and towards simulating the properties of hypothetical composites as a 

forerunner to get real materials with desired characteristics. The interplay among 

multiscale material modeling, new synthetic routes and appropriate validation 

experiments is crucial to design the desired behavior at each length scale. In this PhD 

thesis we exploited integrated methodologies to provide interpretative tools about 

structure and functions of organic/inorganic hybrid nanostructured materials made of 

molecular mono-layers deposited on technological relevant substrates, suitable for 

applications in strategic areas such as catalysis, artificial photosynthesis, molecular 

electronics-magnetism and molecular recognition. 
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Introduction 

 
Despite the growing computing power has augmented our capability of modeling the 

details of physico-chemical processes, we still face the challenge that phenomena of 

interest are often the result of interactions between multiple spatial and temporal 

scales, and processes of interest are necessarily treated by means of substantially 

different models at different scales. With specific reference to the condensed matter, 

the researchers' attention is focused on the properties of systems whose length scale 

extends over ~10 orders of magnitude, ranging from ~1 nm to macroscopic functional 

components in materials engineering. Surely, physics provides basic theories and 

modeling strategies to treat matter at all scales; nevertheless, there is no single and 

all-including model to compute material properties at all scales relevant for materials 

science, where complex structural hierarchies occurring in nature are often mimicked 

by artificial chemical and engineering devices. At the sub-nanometric scale there are 

only atoms; however, at larger scales, they generate complex hierarchical structures, 

which have to be treated with different theories, each one having a certain range of 

applicability [Steinhauser, 2008]. In this regard, computational modeling of materials 

behavior is becoming a reliable tool to underpin scientific investigations and to 

complement traditional theoretical and experimental approaches. In fact, multiscale 

theories recognize that interesting phenomena often takes place at multiple length 

scales simultaneously, and their ultimate purpose is the one of including the 

theoretical description of these different length scales into a single framework. With 

specific reference to the material modeling, multiscale material modeling (MMM) 

aims to enhance predictive materials research by combining advanced materials 

theory with principles of computational science. MMM is thus not only an evolution 

of the traditional materials modeling field; rather, it represents a revolution in this 
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field because of the possibility of developing frameworks to tackle materials 

modeling problems at multiple time and length scales in unifying ways. As a part of 

the wider field of materials science, MMM is necessarily interdisciplinary and 

intimately linked to experiments, thus playing the dual role of improving our 

understanding of materials and enabling the design of new materials with boosted 

performances. From an experimental point of view, since the Grill’s seminal study on 

on-surface-synthesis (OSS) in UHV [Grill et al., 2007] through thermally-triggered 

covalent linking of halogenated organic precursors (Ullmann Coupling – UC;) 

[Ullmann & Bielecki, 1901], the scientific community has witnessed a growing 

experimental activity aimed to go "beyond supramolecular self-assembly" [Gourdon, 

2008]. Conventional self-assembly techniques, either by condensation in vacuum or 

by precipitation from solution, represent viable routes to synthesize artificial homo- 

and hetero-molecular architectures; however, most of them are typically stabilized 

through weak van der Waal's (vdW) interactions easily broken under operation 

conditions. The stabilization of one dimensional (1D)/two dimensional (2D) organic 

frameworks requires either the immobilization of the organic active centers by 

chemical linking to specific surface sites or the optimization of bottom-up synthetic 

routes to tailor robust, well-defined, covalent organic framework (COF) on inorganic 

substrates starting from well-designed secondary building units (SBUs) [Gourdon, 

2008; Franc & Gourdon, 2011]. The interest for these 1D/2D materials lies in the 

issues they raise about their electronic, transport and magnetic properties exploitable 

for optoelectronic devices, sensing, bioimaging, molecular electronics and, if spin-

bearing precursors are integrated in the nanostructures, single molecule magnet-based 

spintronics [Bogani & Wernsdorfer, 2008]. A huge range of reactions beyond the UC 

has been adapted to UHV OSS to produce 1D/2D materials, and particular efforts 

have been devoted to the synthesis of polymers affording π-conjugation in 2D 

[Gutzler & Perepichka, 2013; Perepichka & Rosei, 2009] to match the unique 

transport properties of graphene with the need of a non-vanishing band-gap, 

necessary in most electronic device applications and affordable through a proper 

SBUs functionalization. Polyconjugated aromatic hydrocarbons (PAHs) and 

heteroaromatic dyes have been also effectively exploited in thin film technology to 

tailor their anisotropic properties (e.g. transport) through an appropriate choice of the 

substrate geometry and structure. As such, PAHs require a suitable peripheral 
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functionalization to establish a chemical bonding with substrates, while metallorganic 

dyes, such as porphyrins and phthalocyanines, offer a larger number of degrees of 

freedom to tailor the adsorbate-substrate interaction. In this regard, it is noteworthy 

that a large number of experimental evidences concur to demonstrate that the 

electronically active center can be directly involved in chemical reactions with the 

substrate and that, more specifically, the incorporation of metal atoms from the 

substrate [González-Moreno et al., 2011], predeposited clusters [Gottfried et al., 

2006; Kretschmann et al., 2007] or post-growth deposition [Marbach, 2015] can now 

be considered an OSS routine protocol to produce ultrapure ordered films of 

metalloporphyrins (MPs). As such, it has been demonstrated in the near past that the 

self-metalation reaction can be favored by the presence of surface oxygen on metals 

[Verdini et al., 2016]. Direct self-metalation on transition metal oxides (TMOs), such 

as rutile TiO (110), represents one step forward to the strengthening of the molecule 

to substrate interaction since it leads to the formation of the most robust porphyrin 

overlayer reported so far (stable up to 450 °C) [Lovat et al., 2017]. A further popular 

approach for the COFs' synthesis is the one implying the boronic group, which can 

undergo condensation upon either auto-recognition process (three boronic 

terminations link to form a boroxine group) or hetero-recognition with catechol 

[Kubo et al., 2015]. On surfaces, boronic 2D COFs may be obtained with good 

morphology both in solution and in UHV [Clair et al., 2014; Guam et al., 2012] and 

have been successfully employed as templates for the growth of molecular films [Plas 

et al., 2016]. Moreover, it has been recently shown that the boroxine ring can promote 

ultrafast charge transfer towards the metallic electrode [Toffoli et al., 2017], 

suggesting that the boronic templates may not only drive the morphology of complex 

hybrid interfaces but may also have an active role in defining their electronic 

properties. OSS has been also recently exploited to produce molecular devices by 

manufacturing hybrid systems realized by anchoring suitable molecular architectures 

on previously functionalized technological substrates. As such, covalent mono and 

multi-layers of structurally organized metal-organic networks have been recently 

prepared, consisting of Os or redox-active Ru complexes able to generate 

supramolecular networks exhibiting reversible redox reactions and showing useful 

electrochemical properties [Kumar et al., 2014]. Finally, the great flexibility of free 

porphyrins and MPs, fullerenes, and some Rh complexes has been exploited in the 

near past to produce a variety of functional materials, such as memory elements, 
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photovoltaic systems, switches and sensors.  

Research in this field has been so far mostly based on synthetic advancements 

and a trial-and-error approach, and no unified computational framework exists for a 

rational design of these systems. This PhD thesis is meant to provide a contribution in 

the modeling of surface supported self-assembled architectures. To this end, two case 

studies will be considered: i) the surface-confined 2D polymerization of the 1,2-bis(4-

bromophenyl)ethyne on Ag(110); ii) the generation of a metallorganic coordination 

network of tetrahydroxyquinone on Cu(111). Molecular and electronic structure of 

adsorbates and of the adsorbate/substrate interfaces will be modeled by running DFT 

calculations as implemented in the Quantum ESPRESSO (QE) suite [Giannozzi et al., 

2009]. Moreover, original scanning tunneling microscopy (STM) maps of the surface 

supported 1D/2D supramolecular architectures will be simulated within the Tersoff-

Hamann (TH) approach [Tersoff & Hamann, 1985]. The pivotal role played in this 

thesis by the theoretical modeling has been twice: on one hand, it provided an 

irreplaceable tool to rationalize experimental evidences; on the other hand, it drove 

experiments towards the desired outcomes, in a sort of cross-fertilization successfully 

experimented in the past by the group in which the thesis has been developed. 
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Chapter 1 
 

Theoretical Framework, Basis Theories and Concepts 

 
1.1 The Schrödinger Equation 

In quantum mechanics (QM) the physical state of a quantum system (e.g., 

atoms, molecules and extended systems) can be completely described, at a given 

moment, by a definite (in general complex) function, the so-called wave function. 

Such a function is the solution of the time-dependent Schrödinger equation 

[Schrödinger, 1926a-g], the fundamental equation of QM, which describes the 

changes of a quantum state with time: 

 

 (1.1.1) 

 

where  is the Hamiltonian operator describing the total energy of the system of 

interest, and Ψ(t) is the time-dependent wave function. When  does not depend 

explicitly on time, it coincides with the total energy operator and it corresponds to the 

sum of kinetic and potential energy operators. In general, the form of the Hamiltonian 

operator defines the solution of the wave equation and so the wave function, as 

solution of the following eigenvalue equation: 

 

 (1.1.2) 

 

i!
∂Ψ t( )
∂t

= ĤΨ t( )

Ĥ

Ĥ

ĤΨi = ε iΨi
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where the eigenvalue εi is the energy associated to the i-th eigenstate Ψi of the 

chemical system. Thus, the definition of the Hamiltonian operator is a problem of 

primary importance. Moreover, it is worth of note that the eigenstates of the 

Hamiltonian  are orthogonal by definition and form a complete basis set in the 

Hilbert space of the system. The wave function itself has not a precise physical 

meaning, but its square is associated to the probability of finding the particle 

described by the wave function at a given point and time. In particular, for an atomic 

or molecular system with N electrons the electron density ρ is related to the square of 

the modulus of the wave function, |Ψ|2, and it is defined as: 

 

 (1.1.3) 

 

For the validity of the Eq. (1.1.3), the wave functions must be normalized accordingly 

to 

 

 (1.1.4) 

 

where δij is the Kronecker delta, to let the electron density ρ to integrate the total 

number of electrons N: 

 

 (1.1.5) 

 

In a non-relativistic approach, the Hamiltonian operator for a chemical system 

with N electrons (i, j, . . .) and M nuclei (p, q, . . . ) with Zp, Zq, . . . charges can be 

written (in atomic units)* as: 

 

 (1.1.6) 

																																																								
* In Hartree atomic units, the numerical values of the following four fundamental physical constant are 

all unity by definition: electron mass me (9.10938188(72) × 10-31 kg); elementary charge e 
(1.602176462(63) × 10-19 C); reduced Planck’s constant  (1.054571596(82) × 10-34 J•s); 
Coulomb’s constant ke = (4πε0)-1 (8.987551787 × 109 N•m2•C-2) [Lide, 2009]. 

Ĥ

ρ r( ) = N d r2 d r3…d rN∫ Ψ r2,r3,…,rN( ) 2

Ψi Ψ j = δ ij

ρ r( )d r = N∫

Ĥ = − 1
2mp

∇̂ p
2

p=1

M

∑ − 12 ∇̂i
2 −

i=1

N

∑
Zp
ripp,i

M ,N

∑ +
ZpZq
Rpqp<q

M ,M

∑ + 1
riji< j

N ,N

∑

!
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where the first and second terms are the kinetic energies of the nuclei and electrons, 

respectively, the third is the Coulomb electron-nucleus attractive interaction, and the 

fourth and the fifth terms are the Coulomb nucleus-nucleus and electron-electron 

repulsions, respectively. However, for most chemical applications, the electronic and 

nuclear motions can be separated as a consequence of the huge difference between 

the electron and the nuclei masses, and the Hamiltonian can be written as a sum of 

nuclear and electronic contributions. This is known as Born-Oppenheimer 

approximation [Born & Oppenheimer, 1927] according to which the Hamiltonian of 

the quantum system can be rewritten in terms of the electronic one: 

 

 (1.1.7) 

 

where the nuclear coordinates are treated as constants, and the nuclear repulsion (the 

fourth term of the right-hand side (RHS) of Eq. (1.1.6)) can be considered as a 

constant value for each nuclear configuration rpq. The first term of the electronic 

Hamiltonian of equ. (1.1.7) corresponds to the kinetic energy operator for the N 

electrons ( ), the second is the nucleus-electron Coulomb interaction ( ) on the ith 

electron due to the M nuclei (each of them characterized by a charge Zp) and the third 

term is the electron-electron repulsion ( ). Interestingly, the Eq. (1.1.7) shows that 

the actual system of interest is involved in the Hamiltonian through the position and 

the nature of its nuclei and the total number of electrons N. If is Ψ is known, the 

expectation value of any physical quantity can be defined as [Landau & Lifshitz, 

1965]: 

 

 (1.1.8) 

 

where  is the linear Hermitian operator† associated to the physical quantity A. In 

particular, if the wave function Ψ is normalized, the expectation values for the kinetic 

																																																								
† An operator  is Hermitian or self-adjoint if † = . Eigenvalues of Hermitian operators are real; 
moreover, corresponding eigenvectors are orthogonal [Landau & Lifshitz, 1965]. 

Ĥe = −12 ∇̂i
2 −

i=1

N

∑
Zp
ripp,i

M ,N

∑ + 1
riji< j

N ,N

∑

T̂e V̂ne

V̂ee

Â =
Ψ*Â∫ Ψdτ

Ψ*∫ Ψdτ
=

Ψ Â Ψ
Ψ Ψ

Â

Â Â Â
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and the potential energies are 

 

 (1.1.9) 

 

and 

 

 (1.1.10) 

 

where the square brackets indicate that T and V are two distinct functional of Ψ. 

T Ψ⎡⎣ ⎤⎦ = T̂ = Ψ*T̂∫ Ψdτ

V Ψ⎡⎣ ⎤⎦ = V̂ = Ψ*V̂∫ Ψdτ
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1.2 The Thomas – Fermi Model 

The density functional theory stems from the Thomas & Fermi (TF) model 

[Thomas, 1927; Fermi, 1927; Fermi, 1928; Wigner, 1934; Weizsäcker, 1935; Lieb, 

1981; March, 1986; Perdew & Wang, 1986; Koch & Holthausen, 2001; Tsuneda, 

2014], according to which the quantum state of a uniform free electron gas in three 

dimensions can be described by its electronic density ρ0 instead of the wave function. 

The electron density can be expressed as function of the Fermi momentum pf (Ashroft 

et al., 1976), which is defined for the highest energy one-electron occupied level as: 

 

 (1.2.1) 

 (1.2.2) 

 

where kf is the Fermi wave vector, N is the number of electrons and Vf is the spherical 

momentum space volume. The corresponding energy 

 

 (1.2.3) 

 

is the Fermi energy [Kittel, 2005]. So the electron density ρ0 for a uniform electron 

gas is: 

 

 (1.2.4) 

 

This formulation, exact for a uniform electron gas, has been then extended to 

inhomogeneous electron densities, such as those characterizing atoms, molecules and 

solids in the presence of an external potential υ(r). If the inhomogeneous electron 

density at the point r is denoted by ρ(r), when the equation defining ρ0 is applied 

locally at r, the expression for the total electronic energy is  

 

pf = !k f

k f =
3π 2N
Vf

⎛

⎝
⎜

⎞

⎠
⎟

1
3

ε f =
!2k f

2

2m

ρ0 =
pf
3

3π 2!3
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 (1.2.5) 

 

where CTF is a constant corresponding to  

 

 (1.2.6) 

 

the first term of the RHS of Eq. (1.2.5) is the kinetic energy of the electrons, the 

second is the attraction between the electrons and the nucleus and the third term 

accounts for the inter-electronic repulsion. The important result they reached was that 

the total electronic energy for a system with N electrons, E[ρ], could be expressed as a 

functional, ETF, of the charge density ρ(r). The revolutionary aspect of this approach 

is that, for the first time, the ground-state energy of a system is a functional of a 

physical observable like the electron density, and not a functional of the wave 

function, which does not correspond to a physical observable. Eq. (1.2.5) is an 

approximate form of the rigorous expression for the electronic energy (vide infra), 

where only the stabilizing (nucleus-electron) and destabilizing (electron-electron) 

classical interactions are taken into account. 

The TF theory gives a reasonable description of the charge density for heavy 

atoms. In fact, it can be demonstrated [Lieb & Simon, 1973] that this theory is exactly 

valid in the limit of an atomic number Z � ∞. Nevertheless, it fails if applied to 

molecular systems, because it is unable to predict the existence of any chemical 

bonds: in the ambit of the TF theory, the minimum energy for an aggregate of atoms 

is always given by nuclei at infinite distance [Teller, 1962]. 

 

  

ETF ρ r( )⎡⎣ ⎤⎦ =CTF d rρ
5
3 r( )∫ + d rυ r( )ρ r( )∫ + 12 d r1 d r2

ρ r1( )ρ r2( )
| r2 − r1 |

∫∫

CTF =
3
10 3π 2( )

2
3
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1.3 The Hohemberg – Kohn Theorems 

Hohenberg and Kohn (HK) [Hohenberg & Kohn, 1964] revolutionized the world 

of the theoretical chemistry demonstrating that the TF model had to be considered as 

an approximate form of an exact theory, now known as density functional theory 

(DFT). This is the consequence of the demonstration of the first and the second HK 

theorems. If we define an external potential υ(ri): 

 

 (1.3.1) 

 

the first HK theorem justifies the use of ρ(r) as basic variable. In fact, the first 

theorem establishes that the external potential υ(r) is determined, apart from an 

additive constant, by the electron density ρ(r). Since the electron density integrates to 

the number of electrons N (see the Eq. (1.1.5)), it follows that the ground state wave 

function and all the electronic properties of the chemical system are univocally 

determined by the electron density. The relation between ρ(r) and υ(r), together with 

the normalization condition in the Eq. (1.1.5), legitimate the use of ρ as basic variable, 

and allow to define the total energy in the Eq. (1.2.5) as a functional of the electron 

density ρ and explicating its dependence on υ(r): 

 

 (1.3.2) 

 

with 

 

 (1.3.3) 

 (1.3.4) 

 (1.3.5) 

 

where FHK[ρ] is the HK functional, J[ρ] represents the classic term of the Coulomb 

repulsion, while the major contribution to the Exc[ρ] is due to the non-classical terms 

of exchange and correlation energies. It is noteworthy that FHK[ρ] does not depend 

υ ri( ) = −
Zp
ripp

∑

E = Eυ ρ⎡⎣ ⎤⎦ = T ρ⎡⎣ ⎤⎦ +Vee ρ⎡⎣ ⎤⎦ +Vne ρ⎡⎣ ⎤⎦ = FHK ρ⎡⎣ ⎤⎦ + d rρ r( )∫ υ r( )

Vne ρ⎡⎣ ⎤⎦ = d rρ r( )∫ υ r( )
FHK ρ⎡⎣ ⎤⎦ = T ρ⎡⎣ ⎤⎦ +Vee ρ⎡⎣ ⎤⎦

Vee ρ⎡⎣ ⎤⎦ = J ρ⎡⎣ ⎤⎦ + Exc ρ⎡⎣ ⎤⎦
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upon the external potential, resulting an universal functional of ρ(r). 

The second theorem provides the variational principle for the energy. It 

establishes that, given a trial electron density (r), with (r) ≥ 0, and 
 

 

 (1.3.6) 

 

where  is the energy functional obtained from Eq. (1.3.2) with while 

E0 is the exact ground-state energy. The first HK theorem asserts that (r) determines 

its own external potential υ(r) and its wave function , which can be used as a trial 

function for the minimization problem: 

 

 (1.3.7) 

 

The validity of the HK theorems is limited by the fact that FHK is defined only for 

those trial ρ that are υ-representable, where a υ-representable ρ is an electron density 

associated with an antisymmetric ground state wave function of an Hamiltonian of the 

form (1.1.7) with a local external potential υ(r). Actually, FHK[ρ] is a universal 

functional of ρ in that the same value is delivered for a given trial υ-representable ρ 

no matter what external potential is considered [Levy, 1979]. A limitation of FHK[ρ] is 

that it is undefined for any ρ that is not υ-representable, and thus the theorems cease 

to apply. However, HK pointed out that it has not been proved that an arbitrary 

density distribution containing an integral number of electrons can be realized by 

some external potential [Hohenberg & Kohn, 1964; Gunnarsson & Lundqvist, 1976], 

and thus FHK[ρ] can be redefined for electrons densities ρ satisfying the weaker 

condition of N-representability. A density is N-representable if it may be obtained 

from some antisymmetric wave function [Coleman, 1963]. The conditions for an 

electron density ρ to satisfy the N-representability can be fulfilled by any reasonable 

density [Gilbert, 1975]: 

 

 (1.3.8a) 

!ρ !ρ d r∫ !ρ r( ) = N

E0 ≤ Eυ
!ρ⎡⎣ ⎤⎦

Eυ
!ρ⎡⎣ ⎤⎦ ρ = !ρ r( )

!ρ

!Ψ

!Ψ Ĥ !Ψ = FHK !ρ⎡⎣ ⎤⎦ + d r !ρ r( )∫ υ r( ) = E !ρ⎡⎣ ⎤⎦ ≥ E ρ⎡⎣ ⎤⎦ = Ψ Ĥ Ψ

ρ r( ) ≥ 0
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 (1. 3.8b) 

 (1. 3.8c) 

 

Despite the great importance of the two HK theorems for DFT, they do not 

provide any operative strategy for any application. Particularly, the second theorem is 

simply an existence theorem and does not give any information about the construction 

of the ground state energy functional. In fact, the kinetic energy (T) and the electron-

electron interaction (Vee) functionals in Eq. (1.3.2), i.e., the universal functional FHK 

in the Eq. (1.3.4), are still unknown and the existence of an exact theory justifies the 

research of new functionals that, even though approximate, can be more and more 

accurate. The reader interest to a quite detailed, but certainly incomplete, description 

of DFT historical developments may refer to the following reviews and books 

[Callaway et al., 1984; Becke, 1988c; Parr et al., 1989; Ziegler, 1991; Koch et al., 

2001; Fiolhais C. 2003, Tsuneda, 2014]. 

 

  

d∫ rρ r( ) = N

d∫ r ∇ρ r( )
1
2
2

< ∞



	

 14 

1.4 The Kohn – Sham Equations 

In 1965 Kohn and Sham (KS) proposed [Kohn & Sham, 1965] the most 

successful approach to treat indirectly the kinetic energy functional T[ρ], making DFT 

a powerful method for rigorous calculations. KS proposed to introduce the orbitals 

into the problem in such a way that it could be possible to calculate the kinetic energy 

with a good approximation. The exact expression for the kinetic energy of the ground 

state can be expressed as [Parr & Yang, 1989]: 

 

 (1.4.1) 

 

where ψi are the spin orbitals and ni are their occupation numbers. The Pauli 

exclusion principle [Pauli, 1925] implies that 0 ≤ ni ≤ 1; furthermore, the first HK 

theorem ensures that the kinetic energy is a functional of the total charge density 

[Hohenberg & Kohn, 1964]. Any non-negative, continuous and normalized electron 

density ρ is N-representable and can be decomposed in [Gilbert, 1975]: 

 

 (1.4.2) 

 

where ψi(r, s) represents a spin orbital with spatial coordinates r and spin coordinates 

s. Nevertheless, given an electron density, there is not a unique decomposition in 

terms of spin orbitals. Kohn and Sham started from considering the simplest 

expression for T and ρ: 

 

 (1.4.3) 

 

and 

 

 (1.4.4) 

 

T ρ⎡⎣ ⎤⎦ = −12 ni ψ i ∇
2 ψ i

i=1

N

∑

ρ r( ) = ni ψ i r ,s( ) 2
s
∑

i=1

N

∑

TS = −12 ψ i ∇
2 ψ i

i=1

N

∑

ρ r( ) = ψ i r ,s( ) 2
s
∑

i=1

N

∑
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i.e., ni = 1 for N orbitals, otherwise ni  = 0. The problem is to obtain an unique orbital 

decomposition providing one value of TS[ρ]. The simplified representation of the 

electron density and of the kinetic energy proposed by KS correspond to a reference 

system of non-interacting electrons in absence of any electron-electron repulsion, and 

for which its ground state electron density is exactly ρ(r). In analogy with the 

definition of the universal functional FHK[ρ], KS defined a system composed by non-

interacting particles, with ground-state density ρ(r), and Hamiltonian 

 

 (1.4.5) 

 

excluding any repulsive term. The ground state of such a system is exactly described 

by a single Slater determinant multi-electron wave function 

 

 (1.4.6) 

 

where ψi are the first N eigenvectors of the one-electron Hamiltonian 

 

 (1.4.7) 

 

The kinetic energy of the reference system is simply TS[ρ], given by the Eq. 

(1.4.8) 

 

 (1.4.8) 

 

and the electron density is decomposed according to (1.4.4). Even though TS can be 

defined univocally for any density, it is still not an exact kinetic energy functional, 

and the difference between the exact kinetic energy functional T[ρ] and TS[ρ] lies in 

its exchange-correlation part. The success of the KS method lies in the fact that TS[ρ], 

which can be evaluated through the equation (1.4.8), is exactly the kinetic energy used 

ĤS = −12 ∇i
2 +

i=1

N

∑ υS r( )
i=1

N

∑

ΨS =
1
N !
det ψ 1ψ 2...ψ N( )

ĥSψ i = −12∇
2 +υS r( )⎡

⎣
⎢

⎤

⎦
⎥ψ i = ε iψ i

TS ρ⎡⎣ ⎤⎦ = ΨS −12 ∇i
2

i=1

N

∑⎡

⎣
⎢

⎤

⎦
⎥ ΨS = −12 ψ i

i=1

N

∑ ∇2 ψ i
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to determine the ground-state energy. This result can be obtained by writing 

 

 (1.4.9) 

 (1.4.10) 

 (1.4.11) 

 

where Exc[ρ] is the exchange-correlation energy, and it includes the difference 

between T[ρ] and TS[ρ], usually a small quantity, and Vee[ρ] non-classical 

contributions. The KS iterative procedure operates as follows: defined an external 

potential υ(r), the orbitals are obtained by solving the N one-electron equations: 

 

 (1.4.12) 

 

where the exchange-correlation potential υxc(r) is defined as:  

 

 (1.4.13) 

 

The electron density ρ is computed through the equation (1.4.4) and the new 

density ρ is substituted in equation (1.4.12) where is used to compute the new orbitals 

ψi. The iterative cycle is repeated until the self-consistency is reached. 

The total energy for the system at each step is: 

 

 (1.4.13) 

 

  

FS ρ⎡⎣ ⎤⎦ = TS ρ⎡⎣ ⎤⎦ + J ρ⎡⎣ ⎤⎦ + Exc ρ⎡⎣ ⎤⎦

J ρ⎡⎣ ⎤⎦ =
1
2 d r d ′r

ρ r( )ρ ′r( )
r − ′r∫∫

Exc ρ⎡⎣ ⎤⎦ ≡ T ρ⎡⎣ ⎤⎦ −TS ρ⎡⎣ ⎤⎦ +Vee ρ⎡⎣ ⎤⎦ − J ρ⎡⎣ ⎤⎦

−12∇
2 +υ r( )+ d r

ρ ′r( )
r − ′r

+υxc r( )∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ i = ε iψ i

υxc r( ) = δExc ρ⎡⎣ ⎤⎦
δρ r( )

E = −12 ψ i ∇
2

i=1

N

∑ ψ i + J ρ⎡⎣ ⎤⎦ + Exc ρ⎡⎣ ⎤⎦ + d rρ r( )υex r( )∫
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1.5 The Electron Exchange and Correlation 

In order to evaluate the total energy (1.4.13) of a chemical system, thanks to KS a 

procedure to compute the kinetic energy has been developed. As far as the electron-

electron repulsion Vee in (1.3.5), it has been already pointed out that it is sum of two 

contributions, J[ρ] and Exc[ρ]. The exact form of the exchange-correlation functional 

Exc[ρ] is still unknown, and thus several approximated forms have been built up to 

gain fairly accurate results on many chemical systems. If we define the exchange-

correlation hole as: 

 

 (1.5.1) 

 

then, the interelectronic repulsion Vee can be rewritten as: 

 

 (1.5.2) 

 

 The exchange and correlation tend to keep electrons apart, so the exchange and 

correlation contributions can be described in terms of a hole surrounding each 

electron and keeping other electrons from approaching it. The exchange-correlation 

hole can be interpreted in relation to the combined probability to find an electron at 

point r1 given the existence of another electron at point r2. The better the hxc is 

approximated, the better is the accuracy reached by the resulting functional Exc[ρ]. 

The accuracy of DFT calculations largely depends upon the quality of the 

approximations adopted for υex(r) in Eq. (1.4.13), and for the corresponding Exc[ρ] in 

Eq. (1.3.5). It is noteworthy that the HK theorems are valid only with the exact 

exchange-correlation functional, whereas they are not for the approximated forms. 

Thus, practical approaches to DFT are no longer variational. Common approximated 

exchange-correlation functionals can be divided in four main groups, each of them 

related to different levels of approximation. The simplest approximation is the local 

density approximation (LDA) and the exchange-correlation functionals belonging to 

these groups depend only on the local value of the electron density ρ(r): 

 

hxc r1,r2( ) = ρ2 r1,r2( )
ρ r1( ) − ρ r2( )

Vee =
1
2 d∫∫ r1dr2

ρ r1( )ρ r2( )
r1 − r2

+ 12 d∫∫ r1dr2
ρ r1( )
r1 − r2

hxc r1,r2( ) = J ρ⎡⎣ ⎤⎦ + Exc
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 (1.5.3) 

 

where εxc is the exchange-correlation energy per electron and it is given by the 

uniform electron gas formula in the ambit of the TF theory. The exchange-correlation 

energy can be split in two terms: 

 

 (1.5.4) 

 

where the exchange energy contribution Ex is defined as [Dirac, 1930]: 

 

 (1.5.5) 

 

while the correlation term Ec is obtained analytically by interpolating the quantum 

Monte Carlo results [Ceperley & Alder, 1980; Vosko et al., 1980; Perdew & Zunger, 

1981; Perdew & Wang, 1992] or by adopting other approaches [Wigner, 1934; Cole 

& Perdew, 1982; Lee et al., 1988]. Despite the rather rough approximation, the LDA 

works surprisingly fine for describing many real chemical systems. Later on, more 

complex schemes aimed to overcome the LDA limits have been proposed to reach a 

better accuracy of the method. In this regard, it is noteworthy that the main source of 

error in the LDA based Exc[ρ] lies in the exchange component and many contributions 

have been then focused on the research of suitable corrections of Ex [Langreth et al., 

1983; Becke, 1983; Perdew, 1985; Perdew et al., 1986; Becke, 1986; De Pristo et al., 

1987; Becke, 1988a-c; Tschinke et al., 1989; Perdew et al., 1989]. Thus, to go beyond 

LDA the inhomogeneity of the electron density must be considered. The exchange 

energy is calculated by adding to the LDA based Exc[ρ] the non-local correction term 

( ), which depends upon the gradient of the electron density, in order to take 

somehow into account the non-uniformity of the density in a real system. This class of 

functionals are called Generalized Gradient Approximation (GGA) functionals. The 

exchange functional has the following general form: 

 

Exc
LDA = d rρ r( )ε xc ρ( )∫

Exc = Ex + Ec

ε x
LDA ρ⎡⎣ ⎤⎦ = − 34

3
π

⎛
⎝⎜

⎞
⎠⎟

1
3
d rρ r( )

4
3∫

Ex
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 (1.5.6) 

 

where g(χ) is a function of the parameter  

 

 (1.5.7) 

and the form of g(χ) depends on the particular GGA functional under consideration. 

Before going on, it has to be noticed that most GGA exchange functionals have 

unique behaviors only for large χ [Tsuneda et al., 1999; Tsuneda et al., 2001]. This is 

because small χ behaviors of functionals are restricted by the physical condition for 

slowly-varying density [Kleinman & Lee, 1988], although there is no definite 

conditions for rapidly-varying density [Tsuneda et al., 1999; Tsuneda & Hirao, 2000; 

Tsuneda et al., 2001]. Hence, GGA exchange functionals are usually characterized by 

the behaviors for large χ (i.e., low-density-high-gradient) density. Great attention has 

been devoted to find the gradient correction able to provide values of the exchange 

energy closer to the exact quantity, and in literature many non-local corrections are 

available [Becke, 1983; Perdew, 1985; Perdew, 1986; Perdew & Wang, 1986; Becke, 

1986; Becke, 1988a-c; Perdew & Wang, 1989]. Another family of exchange-

correlation functions is that of the so-called meta-GGA functionals, whose formula 

includes a contribution related to the positive kinetic energy density of the occupied 

orbital KS orbitals [Tao et al., 2003]. Moreover, two other classes of exchange-

correlation functionals with approximations more complicated and more accurate can 

be considered: in hyper-GGA functionals the exact exchange energy density is added 

[Perdew et al., 2008], and generalized random phase approximation functionals 

consider the unoccupied orbitals [Constantin et al., 2008]. It can be observed that 

increasing the complexity of the approximations typically more accurate results can 

be achieved with computation costs increasing modestly from the LDA to the meta-

GGA and much more steeply after that [Perdew et al. 2009]. Furthermore, another 

important class of exchange-correlation functionals uses the KS orbitals of the 

chemical system to compute the exchange through its exact formula from the Hartree-

Fock theory, and for this reason these are called hybrid functionals [Ernzerhof & 

Scuseria, 1999; Adamo & Barone, 1999; Stephens et al. 1994]. 

Ex
GGA = Ex

LDA − d∫ rg χ( ) ρ r( )⎡⎣ ⎤⎦
4
3
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∇ρ r( )
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1.6 The Long-range Correction 

Long-range (LR) correction refers to the correction of exchange functionals for 

LR electron–electron exchange interactions, which are poorly included in 

conventional exchange functionals. These usually depend only on the electron 

distribution; thus, they essentially contain no explicit electron–electron interactions 

and it sounds then reasonable to suppose that exchange functionals always require a 

LR correction. Incidentally, LR exchange interactions are naturally present in the 

Hartree–Fock exchange integral, which is an explicit two electron coordinate integral. 

For the LDA exchange functional [Dirac, 1930], Savin suggested the formulation of a 

LR correction scheme [Savin, 1996], which makes it applicable in quantum chemistry 

calculations. In this scheme, the two-electron operator, (r12)-1, is factorized by the 

standard error function3 as 

 

 (1.6.1) 

 

In other words, (r12)-1 is separated into the short-range (SR) and LR parts by the 

standard error function with µ representing a parameter, which determines the ratio of 

these parts. Even without entering into details, it of some relevance to outline that the 

LR correction has allowed the solution of a large variety of problems, the most 

relevant of which certainly are: i) the evaluation of van der Waals (vdW) binding 

energies (see the next section); ii) the modeling of electronic excitation spectra; iii) 

the optical response properties and orbital energies. 

 

  

																																																								
3	The error function, often called Gauss error function, is a special function of sigmoid shape, which 
occurs in probability, statistics and partial differential equations describing diffusion. It is defined as 

; for this definition erf(0) = 0; erf(∞) = 1, erf(-x) = -erf(x) (the 

interested reader may refer to Riley et al., 2006)		

  

1
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1.7 The van der Waals Corrections 

A quite large number of physical phenomena that are responsible for attraction 

and repulsion between molecules can be identified. All of the important ones arise 

ultimately from the electrostatic interaction between the particles comprising the two 

molecules. They can be separated into two main types: ii) LR, where the energy of 

interaction behaves as some inverse power of the distance between the interacting 

molecules, and ii) SR, where the energy decreases in magnitude exponentially with 

distance. Such an apparently arbitrary distinction has a clear foundation in theory. LR 

effects are of three kinds: electrostatic, induction and dispersion. Electrostatic effects 

are the simplest one to be understood. In general terms, they arise from the 

straightforward classical interaction between the static charge distributions of the two 

interacting molecules; they are strictly pairwise additive and may be either attractive 

or repulsive. Induction effects arise from the distortion of a particular molecule in the 

electric field of all its neighbors, and they are always attractive. Moreover, because 

the fields of several neighboring molecules may reinforce each other or cancel out, 

induction effects are strongly non-additive. As far as dispersion effects are concerned, 

they cannot easily understood in classical terms, in fact they arise because molecular 

charge distributions are constantly fluctuating. The electron motions in two 

interacting molecules become correlated in such a way that lower-energy 

configurations are favored and higher-energy ones disfavored. The average effect is a 

lowering of the energy, and since the correlation effect becomes stronger as the 

molecules approach each other, the result is an attraction. A. J. Stone [Stone, 2013], in 

his inspiring book devoted to the intermolecular forces, provides the classification of 

the contributions to the energy of interaction between molecules (see Table 1.1). 

Even though systematically neglected in the development of correlation 

functionals, “the vdW interaction is one of the most significant types of electron 

correlations” [Tsuneda, 2014]. vdW interactions, seminally reviewed by F. London 

and H. Margenau in the late 1937 and 1939, respectively [London, 1937; Margenau, 

1939], collectively includes dipole-dipole, dipole-induced dipole and dispersion 

interactions [Israelachvili, 1992].  
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Table 1.1.1 Contributions to the energy of different interactions between molecules 

Contribution Additive? Sign Comment 

LR (E ~ R-n) 

   Electrostatic Yes ± Strong orientation dependence 

Induction No – 

 Dispersion Approx. – Always present 

Resonance No ± Degenerate states only 

Magnetic Yes ± Very small 

SR (E ~ e-aR) 

   Exchange-repulsion Approx. + Dominates at very short range 

Exchange-induction Approx. – 

 Exchange-dispersion Approx. – 

 Charge transfer No – Donor-acceptor interaction 

 

As already mentioned, the dipole-dipole interaction is the electrostatic interaction 

between permanent dipoles in polar systems, while dipole-induced dipole interaction 

is the interaction between polar and nonpolar systems. As far as the universal 

dispersion interaction, which takes place even between bodies with neither charge nor 

multipole moment, it may be classically estimated through the London formula 

(1.7.1), firstly proposed at the beginning of the last century [London, 1930]. 

 

Vd
L r( )= - 32

α Aα B

4πε0( )2 rAB6
IAIB
IA + IB

  (1.7.1) 

 

where IX is the ionization potential of the species X, rAB is the distance between A and 

B and αX is the X polarizaility. As such, the dispersion interaction may be interpreted 

as the interaction between an instantaneous dipole moment, generated by a fluctuation 

of the electron distribution, and an induced dipole moment, due to the electric field 

formed by the instantaneous dipole moment. In other words, two spatially separated 

electron distributions fluctuate around their equilibrium distributions by electron 

correlation to produce interactions between the two bodies. As such, the origin of the 

dispersion interaction is manifest: a pure electron correlation between two bodies, 
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which cannot be incorporated in the one-body mean-field approximation; even more 

specifically, a LR correlation explicitly acting between distant electrons. Even though 

the dispersion interaction should be included in correlation functionals, it has usually 

not been taken into consideration. Conventional GGA correlation functionals have 

been developed by density gradient corrections for the LDA correlation functional or 

by incorporating the dynamical correlation coming from the correlation cusp. Since 

these functionals include only the SR correlation resulting from correlation holes, the 

LR correlation, including dispersion interactions, is neglected. It is then not 

particularly surprising that KS calculations exploiting GGA correlation functionals, 

which neglect dispersion interactions have almost always failed even in a qualitative 

estimate of van der Waals bonds. It is, therefore, reasonable to consider that 

dispersion interactions should be explicitly supplemented in conventional correlation 

functionals. So far, various types of dispersion corrections have been suggested. 

These dispersion corrections are generally classified into five types: i) classical 

dispersion corrections; ii) combinations with perturbation theories; iii) linear-response 

theories; iv) van der Waals (dispersion) functionals; v) semiempirical dispersion-

corrected functionals. In addition to these dispersion corrections, LR exchange 

interactions and correlation functionals are also significant in calculating van der 

Waals bonds [Kristyan et al, 1994; Tsuneda, 2014]. 
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1.8 The Perturbation Theory of Dispersion Forces 

Dispersion represents the main interaction between non-polar molecules at large 

distance; i.e., when the superposition of the electron clouds becomes negligible. Let 

us consider two neutral and non-polar molecules A and B, whose wave functions ΨA 

and ΨB are non-zero in different regions of the space. As long as ΨA and ΨB do not 

overlap, calculations can be done without requiring antisymmetrization of the total 

wave function. This allows us to identify a set of NA electrons belonging to A and for 

which a Hamiltonian ĤA  can be defined (analogous considerations hold for B). The 

unperturbed Hamiltonian Ĥ 0  for the coupled system will then be: 

 

Ĥ0 = Ĥ
A
+ Ĥ

B
  (1.8.1) 

 

whose eigenfunction, according to the “physical meaning” associated to ΨA and ΨB, 

will be the simple products Ψ
i
AΨ

j
B , hereafter simplified as i, j . 

Ĥ 0 i, j = ĤA + ĤB( ) i, j = Ei
A + E j

B( ) i, j = Eij0 i, j   (1.8.2) 

 

Incidentally, indexes i and j of the Eq. (1.8.2) label specific electronic states of A and 

B, respectively. As usual, the electrostatic interaction between molecules is treated as 

a perturbation 

 

ˆ ′H = 1
rabb∈B

∑
a∈A
∑   (1.8.3) 

 

The application of the ordinary Rayleigh-Schrödinger perturbation theory [Rayleigh, 

1894; Schrödinger, 1926d] allows us to write the total energy E00 for the ground state 

0,0  of the coupled system as 

 

E00 = E00
0 + ′E00 + ′′E00 +…   (1.8.4) 

 

where 
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E00 = E00
A + E00

B   (1.8.5) 

′E00 = 00 ˆ ′H 00  (1.8.6) 

′′E00 = −
00 ˆ ′H ij ij ˆ ′H 00

Eij
0 − E00

0ij

'∑  (1.8.7) 

 

The prime on summation implies that i and j cannot be simultaneously zero. 

The first order correction (1.8.6) simply accounts for the electrostatic interaction 

between the charge density of the two molecules 

 

′E00 = dr d ′r
ρ A r( )ρB ′r( )
r − ′r∫  (1.8.8) 

 

while the second order correction (1.8.7) involves both induction and dispersion. To 

realize that, we may separate ′′E00  in three parts (Stone, 2013) by considering 

separately the terms in the sum for which molecule A is excited but B is in its ground 

state, the terms for which molecule B is excited but A is in its ground state, and the 

terms where both molecules are excited (the only term excluded in the sum is the one 

in which both molecules are in their ground state). 

 

′′E00 =Uind
A +Uind

B +Udisp  (1.8.9) 

 

with 

 

Uind
A = −

00 ˆ ′H i0 i0 ˆ ′H 00
Ei
A − E0

A
i≠0
∑   (1.8.10) 

Uind
B = −

00 ˆ ′H 0 j 0 j ˆ ′H 00
Ej
B − E0

B
j≠0
∑   (1.8.11) 

Udisp = −
00 ˆ ′H ij ij ˆ ′H 00
Ei
A + Ej

B − E0
A − E0

B
i , j≠0
∑   (1.8.12) 
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Equations (1.8.10), (1.8.11), and (1.8.12) describe the induction energy of molecule A, 

the induction energy of molecule B, and the dispersion energy, respectively. The 

equation (1.8.12) may be worked out by exploiting the multipole expression for ˆ ′H  

(Stone, 2013) 

 

ˆ ′H = −T̂αβ µ̂α
Aµ̂β

B − 1
3
T̂αβγ µ̂α

AΘβγ
B −Θαβ

A µ̂γ
B( )−

T̂αβγδ
1
15

µ̂α
AΩβγδ

B − 1
9
Θαβ
A Θγδ

B + 1
15

Ωαβγ
A µ̂δ

B⎛
⎝⎜

⎞
⎠⎟
+…

  (1.8.13)4 

 

where µ̂α
A , Θαβ

A

 

and Ωαβγ
A  are the matrix elements of the dipole, quadrupole and 

octupole moment operators, respectively, acting on the molecule A. The equation 

(1.8.13) takes into account dipole-dipole, dipole-quadrupole, dipole-octupole and 

quadrupole-quadrupole interactions. All the terms of the multipolar expansion 

(1.8.13) depending on net charges have been omitted for we have to deal with non-

charged molecules. Now, keeping in mind that ˆ ′H is leaded by dipole-dipole 

interactions, we may consider only the first term in the RHS of the equation (1.8.13) 

to obtain 

 

Udisp = −
00 µ̂α

AT̂αβ µ̂β
B ij ij µ̂γ

AT̂γδ µ̂δ
B 00

Ei
A + Ej

B − E0
A − E0

B
i , j≠0
∑ =

− T̂αβT̂γδ
0A µ̂α

A i A i A µ̂γ
A 0A 0B µ̂β

A jB jB µ̂δ
A 0B

Wi0
A +Wj0

B
i , j≠0
∑

 (1.8.14) 

 

where Wi0
A = Ei

A − E0
A  and we exploited the evidence that µ̂A

 

acts only on the 

electronic coordinate of A. Now, the matrix elements are factorized into terms 

referring to A and terms referring to B, but the denominator is not. To handle it, 

London [London, 1930] used the average-energy approximation [Unsöld, 1927]. 

 

																																																								
4	In	atomic	units,	 T̂ = 1

R
	and	 T̂αβ…ν = ∇α∇β…∇ν

1
R
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Udisp = − T̂αβT̂γδ
Wi0

AWj0
B

Wi0
A +Wj0

B
i , j≠0
∑

×
0A µ̂α

A i A i A µ̂γ
A 0A

Wi0
A

0B µ̂β
A jB jB µ̂δ

A 0B

Wj0
B

 (1.8.15) 

 

Wi0
AWj0

B

Wi0
A +Wj0

B ≈
UAUB

UA +UB

1+ Δ ij( )  (1.8.16) 

 

with 

Δ ij =

1
UA

− 1
Wi0

A +
1
UB

− 1
Wj0

B

1
Wi0

A −
1
Wj0

B

 (1.8.17) 

 

With a proper choice of UA and UB, Δij becomes negligible for all i and j and Udisp 

reduces to 

 

Udisp ≈ −
UAUB

4 UA +UB( ) T̂αβT̂γδααγ
A αβδ

B  (1.8.18) 

 

with 

 

ααβ =
0 µ̂α j j µ̂β 0 + 0 µ̂β j j µ̂α 0

Wj −W0j≠0
∑  (1.8.19) 

 

corresponding to the matrix elements of the polarizability tensor. For atoms, where	

ααβ	reduces	to	αδαβ we obtain the London formula for the Udisp.		

	

Udisp ≈ −
UAUB

4 UA +UB( ) T̂αβT̂γδα
Aα B = − 3

2
UAUB

UA +UB( )
α Aα B

R6
 (1.8.20a) 

Udisp ≈ −
C6
RAB
6  (1.8.20b) 
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C6 =
3
2
UAUB

UA +UB( )α
Aα B  (1.8.20c) 

 

It is noteworthy that Udisp is always negative, i.e. it gives raise to attractive 

interactions between molecules. Moreover, dispersion energy is pairwise additive; this 

means that the total dispersion energy of a system composed by two or more 

molecules is just the sum of the dispersion energy between each pair of components. 

For practical purposes, the evaluation of 1.8.20a requires suitable values of the 

average excitation energies UA and UB. It is common use to equals them to the 

ionization energies, thus obtaining a rough approximation of C6. Alternatively, using 

the lowest excitation energies of A and B, the Eqs. (1.8.20) provides an upper bound 

to the magnitude of dispersion. Slater & Kirkwood [Slater & Kirkwood, 1931] 

proposed a formula, in which UA is approximated as NA /α
A where NA is an 

effective number of valence electrons for molecule A. 
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1.9 Dispersion Forces in DFT 

Dispersion interactions arise from the correlated motion of electrons and their proper 

treatment involves electronic excited states of the interacting species. This might be 

worked out by exploiting post Hartree-Fock (post-HF) approaches such as the Møller-

Plesset perturbation theory [Møller & Plesset, 1934] at the second (MP2) or higher 

orders (MPn) and coupled cluster approach [Szabo & Ostlund, 1996; Williams & 

Chabalowski, 2001], but the computational cost becomes readily unsustainable even 

for medium-size systems. Even though DFT allows to handle chemical systems 

consisting of several hundreds of atoms and, in principle, the exact density functional 

would be able to account for dispersion interactions, commonly exploited local 

(LDA) and semi-local (GGA) functionals describe badly the physics of this kind of 

dynamical correlation [Kristyan & Pulay, 1994]. Among the several attempts devoted 

to the inclusion of dispersion effects in DFT, few of them will be considered in the 

following. 

Dion et al. [Dion et al., 2004] proposed a non-local density functional explicitly 

accounting for dispersion corrections by means a non-local energy term 

 

EC
NL = 1

2π
tr ln 1−V !χ( )− lnε⎡⎣ ⎤⎦

0

∞

∫ du  (1.9.1) 

 

where !χ  is the density response to the electric potential (neglecting spectator 

excitations),  𝑉 is the interelectronic Coulomb interaction and 𝜖 is the (approximated) 

dielectric function; moreover, the integration runs over the imaginary frequency u.  

Grimme [Grimme, 2006a], by taking advantage of the results obtained by Görling 

& Levy [Görling & Levy, 1993; Görling & Levy, 1994], included dispersion in DFT 

by developing a so-called double-hybrid functional, containing some amount of 

correlation computed at the MP2 level 

 

EC
MP2 = 1

4

ia r12
−1 jb − ib r12

−1 ja
2

ε i + ε j − εa − εbjb
∑

ia
∑  (1.9.2) 
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It is of some relevance to note that EC
MP2 is obtained by using KS orbitals. Moreover, it 

has also to be emphasized that Truhlar and co-workers developed a suite of strongly 

parameterized hybrid meta-GGA functionals [Zhao & Truhlar, 2008], which has been 

shown to model with good accuracy non covalent interactions. Although these 

strategies allow to treat dispersion forces with adequate accuracy, their computational 

cost is rather high, in particular when applied to the modeling of extended system 

such as crystalline polymers, organic/inorganic frameworks and self-assembled 

monolayers, where plane-wave basis sets are commonly employed. Indeed, the 

efficiency of plane-wave algorithms drops dramatically when non-local potentials are 

involved. This problem has been overcome by adding a semiempirical correction to 

the exchange-correlation functional in the form of a pairwise summation over the M 

atoms contained in the system 

 

Edisp = − fdamp rij( )C6ijrij6i> j

M

∑  (1.9.3) 

 

where fdamp(rij) is the damping function 

 

fdamp rij( ) = s6

1+ exp −d
rij
r0
−1

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.9.4) 

 

whose role is the exclusion of dispersion interactions at short distance, between 

directly bonded atoms. This method is known as dispersion-corrected DFT (DFT-D). 

Incidentally, s6 represents a global-scaling parameter, whose value depends on the 

exchange-correlation functional actually used, while C6ij coefficients are obtained 

from tabulated values of atomic C6i coefficients through a square root combination 

rule [C6ij =(C6iC6j)1/2] and r0 is the sum of atomic vdW radii (Pauling, 1960). 

Although similar correction schemes were applied earlier even to Hartree-Fock 

calculations [Hepburn et al., 1975], the approach developed by Grimme [Grimme, 

2006a-b] is innovative since the C6 coefficients and vdW radii are computed rather 

than fitted or taken from experiments, which in principle allows to provide dispersion 
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parameters for the whole periodic table and not only for few atoms as happens in 

several implementations. Dispersion coefficients of atomic species are computed as: 

 

C6i = 0.05NAIiα i  (1.9.5) 

 

where NA is an effective number of electrons assuming the values 2, 10, 18, 36 and 54 

for elements belonging to rows 1 – 5 of the periodic table, Ii and αi are the ionization 

potential and the static dipole polarizability computed by means of unrestricted DFT 

calculations carried out using the PBE0 density functional [Adamo & Barone] with a 

QZPV basis set. As far as vdW radii are concerned, they are derived from the radius 

of the 0.01 au contour of electron density of the atom in their ground state, computed 

at the HF level of theory using a TZV basis set, scaled by a factor 1.1. 

DFT-D is computationally cheap, it gives good results for a broad range of 

compounds [Grimme, 2006], and it may be used in conjunction with diverse Kohn-

Sham energy functionals; last but not least, its accuracy may be further improved by 

refining ad-hoc atomic C6 parameters and vdW radii for the system under study. 

Energy and gradients are easier to implement than those of other methods and can be 

straightforwardly extended to the periodic case, where also the stress tensor can be 

obtained analitically. As a final considerations, it should be pointed out that an exact 

implementation of the Eq. (1.9.3) would require the use of Ewald summation [Ewald, 

1921]; however, since the dispersion energy decays as r-6, it is absolutely convergent 

in crystals and the real-space summation (1.9.3) works properly. 
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Chapter 2 
 

The Plane Wave Pseudopotential Method 

 
2.1 Plane-wave Basis Sets 

In the previous chapter it has been demonstrated that certain observables of the 

many-body problem can be mapped into equivalent observables in an effective single-

particle problem. However, there still remains the problem of how to tackle an infinite 

number of noninteracting electrons moving in the static potential of an infinite 

number of nuclei or ions. More specifically, when facing the electronic structure of 

condensed matter systems, one is investigating the behavior of a number of electrons 

in the order of ∼ 1028 per mole of atoms. As such, two difficulties have to be 

overcome: a wave function must be calculated for each of the infinite number of 

electrons in the system, and, since each electronic wave function extends over the 

entire solid, the basis set required to expand each wave function is infinite. 

 Both problems may be worked out by performing calculations on periodic 

systems5 and applying the Bloch's theorem [Bloch, 1928] to the electronic wave 

functions, which states that in a periodic solid each electronic wave function can be 

expressed as the product of a plane-wave part and a periodic-cell part [Ashcroft & 

Mermin, 1976; Kittel, 2005], 

 

ψ i r( ) = exp ik ⋅ r⎡⎣ ⎤⎦ fi r( )  (2.1.1) 

																																																								
5 Many extended systems are periodic in structure; i.e., they correspond to one of the Bravais lattices 
[Bravais, 1850]. In these cases, an infinite periodic system may be and calculations may be limited to 
the electrons of the periodic cell. 
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where the plane-wave part has wave-vector k, which is confined to the first Brillouin 

zone (BZ) [Brillouin, 1930]. As far as the cell-periodic part of the wave function is 

concerned, it has the same periodicity of the lattice; i.e., 

 

fi r + R( ) = fi r( )  (2.1.2) 

 

where R is one of the lattice vectors. This leads us to choose a plane-wave basis set to 

describe the wavefunction within the periodic cell. The periodic part of the 

wavefunction can then be written as: 

 

fi r( ) = ci ,G × e
G
∑ iG⋅r⎡⎣ ⎤⎦  (2.1.3) 

 

where we have plane-wave coefficients ci,G and G are the reciprocal lattice vectors 

satisfying the relationship 

 

G ⋅R = 2πm  (2.1.4) 

 

for all the R and m being an integer. If we combine Eqs (2.1.1) and (2.1.3) KS orbitals 

can therefore be written as an infinite sum of plane-waves: 

 

ψ i r( ) = ci ,G+ke
G
∑ i G+k( )⋅r⎡⎣ ⎤⎦  (2.1.5) 

 

where ci,G+k
 are the plane-wave coefficients describing the wavefunction. 

Electronic states are allowed only at a set of k points determined by the 

boundary conditions that apply to the bulk solid. The density of allowed k points is 

proportional to the volume of the solid. The infinite number of electrons in the solid 

are accounted for by an infinite number of k points, and only a finite number of 

electronic states are occupied at each k point. The Bloch theorem thus changes the 

problem of calculating an infinite number of electronic wave functions to one of 

calculating a finite number of electronic wave functions at an infinite number of k 
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points. The occupied states at each k point contribute to the electronic potential in the 

bulk so that, in principle, an infinite number of calculations are needed to compute 

this potential. However, the electronic wave functions at k points that are very close 

together will be almost identical. Hence, it is possible to represent the electronic wave 

functions over a region of k space by the wave functions at a single k point. In this 

case the electronic states at only a finite number of k points are required to calculate 

the electronic potential and hence determine the tota1 energy of the solid. Incidentally, 

the symmetry of the lattice may be used to reduce the number of k-points required. 

The BZ can be made irreducible by applying the point group symmetries of the lattice, 

leaving no k-points related by symmetry.  

Diverse methods have been devised for obtaining very accurate 

approximations to the electronic potential and the contribution to the total energy 

from a filled electronic band by calculating the electronic states at special sets of k 

points in the Brillouin zone (Chadi & Cohen, 1973; Joannopoulos & Cohen, 1973; 

Monkhorst & Pack, 1976; Evarestov & Smirnov, 1983). Using these methods, one 

can obtain an accurate approximation for the electronic potential and the total energy 

of an insulator or a semiconductor by calculating the electronic states at a very small 

number of k points. The electronic potential and total energy are more difficult to 

calculate if the system is metallic because a dense set of k points is required to define 

the Fermi surface precisely. The magnitude of any error in the total energy due to 

inadequacy of the k-point sampling can always be reduced by using a denser set of k 

points. The computed total energy will converge as the density of k points increases, 

and the error due to the k-point sampling then approaches zero. In principle, a 

converged electronic potential and total energy can always be obtained provided that 

the computational time is available to calculate the electronic wave functions at a 

sufficiently dense set of k points. 

 Bloch's theorem states that the electronic wave functions at each k point can 

be expanded in terms of a discrete plane-wave basis set. In principle, an infinite 

plane-wave basis set is required to expand the electronic wave functions. However, 

the coefficients ci,k+G for the plane-waves with small kinetic energy (ħ2/2m)|k + G|2 

are typically more important than those with large kinetic energy.6 Thus the plane-

																																																								
6	This corresponds to a sphere in reciprocal space within which all the used |k + G| vectors lie. 
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wave basis set can be truncated to include only plane-waves that have kinetic energies 

less than some particular cutoff energy. If a continuum of plane-wave basis states 

were required to expand each electronic wave function, the basis set would be 

infinitely large no matter how small the cutoff energy. Application of the Bloch 

theorem allows the electronic wave functions to be expanded in terms of a discrete set 

of plane-waves. Introduction of an energy cutoff to the discrete plane-wave basis set 

produces a finite basis set. The truncation of the plane-wave basis set at a finite cutoff 

energy will lead to an error in the computed total energy. However, it is possible to 

reduce the magnitude of the error by increasing the value of the cutoff energy. In 

principle, the cutoff energy should be increased until the calculated total energy has 

converged; nevertheless, it can be demonstrates that it is possible to perform 

calculations at lower cutoff energies. 

One of the difficulties associated with the use of plane-wave basis sets is that 

the number of basis states changes discontinuously with the cutoff energy. In general 

these discontinuities will occur at different cutoffs for different k points in the k-point 

set. In addition, at a fixed-energy cutoff, a change in the size or shape of the unit cell 

will cause discontinuation in the plane-wave basis set. This problem can be reduced 

by using denser k-point sets, so that the weight attached to any particular plane-wave 

basis state is reduced. However, the problem is still present even with quite dense k-

point samplings. It can be handled by applying a correction factor which  accounts 

approximately for the difference between the number of states in a basis set with 

infinitely large number of k points and the number of basis states actually used in the 

calculation (Francis & Payne,  1990). 

The use of plane-waves as a basis set is advantageous in a number of ways. In 

terms of the accuracy required for the system in question, one can always improve the 

accuracy by increasing the plane-wave cutoff energy and therefore tending towards 

the complete basis set. Real space quantities, such as potentials, can be easily 

transformed to reciprocal space using standard numerical techniques, in order to 

obtain the plane-wave coefficients. Derivatives in real space become multiplications 

in reciprocal space, so quantities such as the kinetic energy of the KS orbitals can be 

easily evaluated. The use of plane-waves treats all regions of space equally, so can be 

applied generally, even for non-periodic systems, if an appropriate periodic supercell 

is used. We make use of this in our forthcoming investigation concerning the 

modeling of two surface supported supramolecular architectures (see below). 
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However, this includes regions of vacuum, so there is an added memory and 

computational cost in such cases. A plane-wave basis set also lends well to 

distribution of data and processing in a parallel computing environment. This allows 

larger and more complicated systems to be simulated with higher accuracy.  

When plane-waves are used as a basis set for the electronic wave functions, 

the KS equations assume a particularly simple form. Substitution of Eq. (2.1.3) into 

(1.4.12) and integration over r gives the secular equation 

 

!
2m
G+ k

2
δG ′G +υ G - ′G( )

+υH G - ′G( )+υxc G - ′G( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ci , ′G +k = ε ici , ′G +k

′G
∑  (2.1.4)7 

 

In this form, the kinetic energy is diagonal, and the various potentials are 

described in terms of their Fourier transforms. Solution of the Eq. (2.1.4) proceeds by 

diagonalization of a Hamiltonian matrix whose matrix elements Hk+G,k+G′ are given by 

the terms in the brackets above. The size of the matrix is determined by the choice of 

the cutoff energy (ħ2/2m)|k + Gc|2, and will be intractably large for systems including 

both valence and core electrons. This is a severe problem, which can be overcome by 

use of the pseudopotential approximation. The interested reader may refer to 

“Electronic Structure: basic theory and practical methods” [Martin, 2004].  

The Bloch theorem can be applied neither to a system that contains a single 

defect nor in the direction perpendicular to a crystal surface. A continuous plane-wave 

basis set would be required for the defect calculation, and, although the plane-wave 

basis set for the surface calculation would be discrete in the plane of the surface, it 

would be continuous in the direction perpendicular  to the surface. Hence an infinite 

number of plane-wave basis states would be required for both of these calculations, 

no matter how small the cutoff energy chosen for the basis set. Calculations using 

plane-wave basis sets can only be performed on these systems if a periodic supercell 

is used. The supercell for a point-defect calculation is illustrated schematically in 

Figure 2.1.1. The supercell contains the defect surrounded by a sufficiently extended 

region of the crystal. Periodic boundary conditions are applied to the supercell so that 

																																																								
7	υH r( ) = d r

ρ ′r( )
r - ′r∫ 	
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it is reproduced throughout space. The energy per unit cell of a crystal containing an 

array of defects is calculated, rather than the energy of a crystal containing a single 

defect.  

 
Figure 2.1.1  Schematic representation of a supercell geometry representative of a point defect (a 

vacancy) in the extended solid. The supercell is outlined by dashed lines. 
 

Obviously, a key role is played by the supercell dimensions; i.e., it is of fundamental 

importance to include enough bulk solid in the supercell to prevent the defects in 

neighboring cells from interacting appreciably with each other. The independence of 

defects in neighboring cells can be checked by increasing the volume of the supercell 

until the computed defect energy has converged. It can then be assumed that defects 

in neighboring unit cells no longer interact. Analogous considerations hold for a 

surface, which may have periodicity in the plane of the surface itself, but it cannot in 

a direction perpendicular to the surface. The supercell for a surface calculation is 

depicted schematically in the left panel of Figure 2.1.2.  The supercell includes a 

crystal slab and a vacuum region. The supercell is repeated over all space, so the total 

energy of an array of crystal slabs is calculated.  To ensure that the results of the 

calculation accurately represent an isolated surface, the vacuum regions need to be 

wide enough so that faces of adjacent crystal slabs do not interact across the vacuum 

region, and the crystal slab must be thick enough so that the two surfaces of each 

crystal slab do not interact through the bulk crystal. Finally, even isolated molecules 

may be studied in this fashion, as illustrated in the right panel of Figure 2.1.2. Again, 

the supercell needs to be large enough so that the interactions between adjacent 

molecules are negligible. 
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Figure 2.1.2  Schematic representation of a supercell geometry representative of: (left panel) a surface 

in the extended solid and (right panel) an isolated molecule. The supercell is outlined by 

dashed lines. 
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2.2 The Pseudopotential approximation 

Although Bloch's theorem states that the electronic wave functions may be 

expanded by using a discrete set of plane-waves, a plane-wave basis set is usually 

very poorly suited to expanding electronic wave functions because a very large 

number of plane waves are needed  to expand the tightly bound  core orbitals and  to 

follow the rapid oscillations of the wave functions of the valence electrons in the  core 

region. An extremely large plane-wave basis set would be required to perform an all-

electron calculation, and a huge amount of computational time would be required to 

calculate the electronic wave functions. The pseudopotential approximation (Phillips,  

1958; Heine & Cohen, 1970; Yin & Cohen, 1982) allows the electronic wave 

functions  to be expanded using a much smaller number of plane-wave basis states. It 

is well known that most physical properties of solids are dependent on the valence 

electrons  to a much greater extent than on the core electrons. The pseudopotential 

approximation exploits this by removing the core electrons and by replacing them and 

the strong ionic potential by a weaker pseudopotential that acts on a set of pseudo 

wave functions rather than the true valence wave functions. An ionic potential, 

valence wave function and the corresponding pseudopotential and pseudo wave 

function are illustrated schematically in  Figure 2.2.1.  

 

  
Figure 2.2.1  (left) The all-electron wavefuntion (black line) and the pseudowavefunction (red line) for 

the 3s orbital in Si. (right) The all-electrons potential (black line) and the 

pseudoppotential (red line) felt by the pseudised 3s orbital. The radius at which all-

electron and pseudoelectron values match is designated rC (not displayed in the Figure). 

 

The valence wave functions oscillate rapidly in the region occupied by the core 



	

 40 

electrons due  to the strong ionic potential in this region. These oscillations maintain 

the orthogonality between the core wave functions and the valence wave functions, 

which is required by the exclusion principle. The pseudopotential is constructed, 

ideally, so that its scattering properties  or phase shifts for the pseudo wave functions 

are identical to the scattering properties of the ion and the core electrons for the 

valence wave functions, but in such a way that the pseudo wave functions have no 

radial nodes in the core region. In the core region, the total phase shift produced by 

the ion and the core electrons will be greater by π, for each node that the valence 

functions had in the  core region, than the phase shift produced by the ion and the 

valence electrons. Outside the core region the two potentials are identical, and the 

scattering from the two potentials is indistinguishable. The phase shift produced by 

the ion  core is different for each angular momentum component of the valence wave 

function, and so the scattering from the pseudopotential must be angular momentum 

dependent. The most general form for a pseudopotential is 

 

VN
L = ℓm Vℓ ℓm

ℓm
∑   (2.2.1) 

 

where ℓm are the spherical harmonics of degree ℓ and order m, while Vℓ  is the 

pseudopotential for the angular momentum having as quantum number ℓ. Acting on 

the electronic wave function with this operator decomposes the wave function into 

spherical harmonics, each of which is then multiplied by the relevant pseudopotential 

Vℓ. 

 A pseudopotential that uses the same potential for all the angular momentum 

components of the wave function is called a local pseudopotential. A local 

pseudopotential is  a function only of the distance from the nucleus. It is possible to 

produce arbitrary, predetermined phase shifts for each angular momentum state with a 

local potential, but there are limits to the amount that the phase shifts can be adjusted 

for the different angular momentum states, while maintaining the crucial smoothness 

and weakness of the pseudopotential. Without a smooth, weak pseudopotential it 

becomes difficult  to expand the wave functions using  a reasonable number of plane-

wave basis states. 
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2.3 The Minimization of the Total Energy 

The KS equations (Eq. 1.4.12) become a problem of matrix diagonalization when 

expressed in terms of plane waves. However, numerical algorithms for matrix 

diagonalization do not scale well with the size of the matrix in question. This both 

limits	 the number of plane waves and number of atoms in the periodic cell that can be 

practically used. Alternative methods involve direct minimization of the KS total 

energy functional. This is done through variation of the plane wave coefficients of the 

KS orbitals while ensuring that each band is orthogonal to the others.  Among those 

methods one of the most efficient is the conjugate gradients technique [Polak, 1971]. 

This proceeds by taking an initial search direction to be that with the steepest gradient 

for the function and variable in question. That line is then followed to find the 

minimum. Subsequent search directions are then chosen such that they are 

independent of any previous minimization directions. This then guarantees the 

minimum will be found in the same number of steps as there are dimensions in the 

system. In practice, each band is treated one at a time to save memory costs in 

computation, made possible by keeping the bands orthogonal. The minimization 

procedure can be improved by using a preconditioning scheme [Teter et al., 1989; Gill 

et al., 1981]. This is because the plane waves with high kinetic energy dominate the 

search directions even though the corresponding coefficients in the wavefunction are 

small. Preconditioning is generally performed through multiplying the hamiltonian by 

a diagonal matrix consisting of the inverse kinetic energy operator for the high kinetic 

energy plane waves and a constant for the low kinetic energy plane waves. For the 

high kinetic energy plane waves, the energies will be dominated by the kinetic energy 

so any errors introduced by such an approximate preconditioning matrix will be small. 

In practice this allows convergence within tens of iterations for a basis set containing 

∼ 106 plane-waves.  
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Chapter 3 
 

Case Study n° 1 

 
3.1 Surface-confined 2D polymerization of the 1,2-bis(4-bromophenyl) ethyne on 

Ag(110). 

 

Introduction: Acetylenic monodisperse oligomers [Martin & Diederich, 1999] and 

polydisperse high molecular weight polymers [Bunz, 2000; Bunz, 2005; Advances in 

Polymer Science, 2005; Ortiz et al., 2017] have been the focus of intense research in 

the last twenty years. Oligo- and poly(aryleneethynylenes) (OAE, PAE) constitute a 

broad class of such materials, characterized by a repeat unit containing an aryl group 

linked to an alkyne spacer (Scheme 1), which is responsible for a high degree of 

structural rigidity and a highly π-conjugated electronic structure of the resulting 

oligomeric/polymeric chains. The latter can be modulated by the proper choice and 

functionalization of the arylene units, the simplest being phenylene (leading to 

poly(phenyleneethynylene), PPE). As a result, an impressive array of applications has 

been envisaged for PAEs, which comprise optoelectronics [Montali et al., 1998] and 

chemical sensing [Swager, 2008] (due to their remarkable 

photoluminescence quantum yield, thermo- and 

photostability), light polarization [Weder et al., 1998], 

organic photovoltaics [Kastner et al., 2012] and – in highly 

branched 2D and 3D morphologies – porous materials for 

gas adsorption/capture [Jiang et al., 2007] and for 

heterogeneous catalysis in confined microporous systems [Lu et al., 2015]. Shorter 

chain length monodisperse oligomers have been studied both as model systems to 

elucidate the properties of polymers [Martin & Diederich, 1999] and as single 

molecular wires in molecular electronics and nanotechnological devices. In particular, 

Ar

n
Scheme 1 



	

 43 

OAEs as prototypes of rigid-rod π-conjugated systems have been extensively 

explored in single molecular junctions [Gantenbein et al., 2017], and it has been 

shown that the optical and conductance properties of both OAEs and PAEs strongly 

dependent on the dihedral angle between successive arylene units, with coplanar 

configurations leading to maximized conjugation [Montali et al., 1998] (similarly to 

what is observed for oligo-paraphenylene units [Venkataraman et al., 2006]) and 

hence to red shift in absorption and emission and to intra-chain ambipolar charge 

transport of the order of 10-3 cm2 × V-1 × s-1 [Montali et al., 1998]. 

The synthesis of PAEs mainly relies either on Sonogashira-type [Sonogashira, 

2002] cross coupling of terminal alkynes and aryl halide monomers or on alkyne 

metathesis [Martin & Diederich, 1999; Bunz, 2000; Bunz, 2005; Advances in 

Polymer Science, 2005; Ortiz et al., 2017; Montali et al., 1998], with the latter 

providing more control on the linearity and of the defectiveness of the resulting 

polymers (side reactions leading to branching are common in cross coupling), but 

somewhat hindered by the relatively scarce development of new alkyne metathesis 

catalysts [Montali et al. 1998]. More complex strategies are required to prepare and 

purify monodisperse OAEs, such as the iterative divergent/convergent binomial 

synthesis originally reported by Tour et al. [Schumm et al., 1994, Jones II et al., 1997]. 

All these approaches share a multi-step nature requiring separation and purification, 

with the additional problems of the generally low solubility of OAEs and PAEs, 

which makes the functionalization of aryl units with side chains mandatory. Moreover, 

it is well known that in solution only lower molecular weight PAEs exhibit rigid rod-

like structures, while at chain lengths exceeding approximately 15 nm (about 20 

repeating units) the linear conformation breaks down leading to worm-like random 

coil structures [Cotts et al., 1996]. For all these reasons, a new and simpler one-pot 

synthetic approach producing defect-free, unsubstituted chains maintaining length-

independent chain linearity and possibly a high degree of spatial orientation and 

periodicity is highly desirable in the field of advanced applications in molecular 

(opto)electronics. 

One such approach is provided by OSS, which in recent years has shown an 

enormous potential in providing efficient synthetic routes – often catalyzed by the 

substrate – alternative to solution chemistry, and has led to a wealth of surface-

supported covalently linked carbon nanostructures [Gourdon, 2008; On-Surface 
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Synthesis, 2016; On-Surface Synthesis, 2018]. In this field, the research on the on-

surface formation of acetylenic scaffolds is comparatively recent and has been 

prompted by the interest for 1D carbine [Casari et al., 2016] and 2D graphyne and 

graphdiyne structures [Li et al., 2014], whose common structural motif is the triple 

bond between two sp-hybridized carbon atoms. The reaction most often employed to 

link monomers containing the ethynyl functional group is the dehydrogenative 

homocoupling of terminal alkynes reminiscent of the Glaser-Hay reaction [Zhang et 

al., 2012; Gao et al., 2013], with the resulting formation of a butadiyne bridge. This 

strategy has, however, several drawbacks stemming from the high reactivity of 

terminal alkynes, which leads to poor chemo- and regioselectivity due to several side 

reactions (cis/trans hydrogenation, insertion, cyclotrimerization, etc.) and ultimately 

results in the formation of a mixture of short-chain, branched and irregular oligomers 

[Zhang et al., 2012; Gao et al., 2013; Eichhorn et al., 2013; Cirera et al., 2013]. A 

certain degree of control on the selectivity can be exerted by carefully choosing the 

crystallographic orientation of the substrate [Liu et al., 2015], but the best results to 

date in the growth of a linear PAE by on-surface synthesis have been obtained 

through the aid of vicinal surface templating, with measured linear chain maximum 

lengths of 27 nm and 40 nm for graphdiyne wires on Ag(887) [Cirera et al., 2014] and 

Ag(455) [Klappenberger et al., 2018], respectively. A very recent alternative 

approach consisting in direct in situ formation of triple C-C bonds through on-surface 

dehalogenative homocouplings of tribromometyl-substituted arenes [Sun et al., 2018] 

seems to bear promising potential in the production of extended linear PAEs. 

In this former case of study, we report the experimental and theoretical results 

pertaining to the alternative attempt of growing ordered arrays of long chain linear 

PAEs based on the well-established Ullmann-like aryl halide homocoupling reaction, 

which has been extensively used in on-surface synthesis in the last decade [Goudon, 

2008; Lipton-Duffin et al., 2009; Eichhorn et al., 2014]. Instead of using highly 

reactive terminal alkynes as in Glaser-type couplings, we resort to 1,2-bis(4-

bromophenyl) ethyne (DBPE, 1) molecules (see Fig. 3.1.1) as molecular precursor, 

wherein the acetylenic functional group is internal rather than terminal, being linked 

to two phenyl groups, each bearing a Br atom in para position.  
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Figure 3.1.1 Schematic representation of longitudinal polymerization of DBPE (1) molecules via 
organosilver intermediate 2 into PAE wires 3. 

 

The latter are easily detachable by the catalytic role exerted by a metallic 

substrate [Fan et al., 2015]. We show that 1 deposited and carefully annealed on Ag 

(110) leads to the production of linear and long range-ordered poly(para-

biphenyleneethynylene) (3) polymeric wires more than 100 nm long through a two-

step synthesis involving the organosilver nanowire (2) as an intermediate. We also 

show that a key role in the successful outcome of the synthetic strategy is played by 

Br atoms detached from 1 in the first step of the Ullman-like synthesis: by residing on 

the substrate they keep apart the growing nanowires with a twofold effect: they both 

direct the linear growth of the polymeric chains and limit the access to (i.e. protect) 

the C≡C triple bonds within the chain, thereby substantially enhancing the reaction’s 

chemo/regioselectivity by preserving its essentially topotactic nature [Lotgering, 1959, 

Günther & Oswald, 1975]. In fact, Br desorption at higher temperatures unfetters the 

reactivity of alkynyl functional groups, leading to a highly branched, amorphous 

structure. 

Methodology: Periodic DFT calculations have been performed by exploiting the QE 

suite of codes [Giannozzi et al., 2009] and by adopting the Perdew-Burke-Ernzerhof 

(PBE) exchange–correlation (XC) functional [Perdew et al., 1996]. Valence orbitals 

were expanded in a plane-wave basis set with a kinetic energy cut-off of 30 Ry, while 

the interaction between ion cores and valence electrons has been modelled by means 

of ultrasoft pseudopotentials [Vanderbilt, 1990]. The cut-off on the charge density 

was 240 Ry. Brillouin-zone (BZ) [Brillouin, 1930] integrations were limited to the Γ-

point and a smearing parameter of 0.02 Ry for the electron population function was 

considered [Marzari et al., 1999]. Numerical experiments have been carried out with 

and without the inclusion of the dispersion corrections (by taking advantage of the 
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semi-empirical dispersion-correction scheme developed by Grimme [Grimme, 2006b] 

and implemented in QE by Baroni and Giannozzi [Baroni & GIannozzi, 2009]). 

Scanning tunneling microscopy (STM) images have been modelled by using the TH 

approximation [Tersoff & Hamann, 1985]. Finally, molecular graphics were 

generated by using the XCRYSDEN graphical package [Kokalj, 1999; Kokalj & 

Causà, 2000]. Two different sets of numerical experiments have been performed to 

reproduce the low temperature (LT; organosilver polymer 2 in Figure 3.1.1) and the 

high temperature (HT; polymer 3 in Figure 3.1.1) phases. In both cases, the Ag(110) 

surface were modelled by a cell containing five layers, where the top three have been 

allowed to relax, while the others were kept fixed at their bulk positions. The vacuum 

region between repeated image along the z direction was large enough to prevent 

interactions (ca. 16 Å). A bulk optimized lattice parameter of 4.16 Å has been used, 

which slightly overestimated (1.7%) the experimental value of 4.09 Å [Lide, 2009], 

but in perfect agreement with other generalized gradient approach calculations 

[Kokalj et al., 2002; Wang et al., 2001]. Indeed, the dimensions of the two units cells 

are sensitively different: a unit cell 9.75 × 13.79 × 21.84 Å3 including 80 atoms has 

been employed for the low temperature (LT) system (see Figure 3.1.2a), while the 

dimensions of the latter unit cell are 16.63 × 45.83 × 21.84 Å3, which includes 277 

atoms (see Figure 3.1.2b, where each unit cell contains four debrominated monomers).  

 
Figure 3.1.2  Ball models for supported (a) LT phase (organosilver polymer 2) and (b) HT phase (PAE 

3 nanowires). Unit cells are outlined by black lines. Color code in models: Br red, C 
yellow, H light blue, Ag adatoms dark blue, Ag substrate grey. 

 

LT-phase numerical experiments: In the LT phase, major structural variations 

associated to the presence/absence of dispersion corrections are observed for carbon 

and hydrogen atoms, while structural parameters of Br atoms are negligibly perturbed. 
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Indeed, as clearly reported in Figures 3.1.3a and 3.1.3b, the ligand is strongly curved 

when dispersion corrections are neglected.  

 

 
Figure 3.1.3 Side view of the LT phase ball and stick models (a) with and (b) without dispersion 

corrections. 
 

The distance of C≡C bonds from the surface is 2.76 Å (3.34 Å) when dispersions are 

(are not) considered. Incidentally, the reduction of the adsorbate/substrate average 

distances with the inclusion of the dispersion corrections is often reported in the 

literature for the PBE XC [Ruiz et al., 2016; Toyoda et al., 2010], also for the Ag 

(110) surface [Ruiz et al., 2016]. 

Experimental (Figure 3.1.4a) and simulated (Figures 3.1.4b and 3.1.4c) STM 

images of the LT phase on Ag(110) are displayed in Figure 3.1.4. The agreement 

between theory and experiment is satisfactory in both cases: i) the Br atoms are 

brighter than carbon atoms, ii) there is an evident brightness variation for on-top Br 

atoms when compared to those occupying long-bridge positions (see the white and 

grey dots in Figures 3.1.4b and 3.1.4c, which are the Br atoms in on-top and long-

bridge sites, respectively), and iii) the Ag adatoms are generally brighter than the 

carbon atoms and their brightness is comparable with that of the on-top Br atoms. 

 

Figure 3.1.4 (a) Experimental and simulated STM images (b) with and (c) without the inclusion of 
dispersion corrections for the LT phase at a bias voltage of V = -0.6 V. 
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Nevertheless, a careful comparison of experimental and simulated STM images with 

and without dispersion corrections (see Figures 3.1.4b and 3.1.4c) demonstrates that 

the image without corrections overestimates the adsorbate-substrate distance (see the 

red oval in Figure 3.1.4c, which highlights that the brightness of the ethynyl carbon 

atoms is comparable to that of the Br atoms). This in not observed in the experimental 

image (see red oval in Figure 3.1.4a). In agreement with the experimental evidence, 

carbon atoms in the red oval of Figure 3.1.4b are less bright than the Br atoms.  

HT-phase numerical experiments: Optimized structures obtained with and without 

dispersion corrections are displayed in Figure 3.1.5. The inspection of Figures 3.1.5a 

and 3.1.5b, reveals that, differently from the LT phase, the inclusion of dispersion 

corrections has minor effects: the polymer remains in its flat conformation in both 

cases. The most evident variation is the average distance of the polymer from the 

surface, which is smaller (~ 0.5 Å) when adopting the dispersion corrections approach. 

 

Figure 3.1.5 HT phase ball and stick models (a) with and (b) without dispersion corrections. 
 

Also the STM images of the HT phase are simulated with and without dispersion 

corrections. Figure 3.1.6 includes the experimental image (Figure 3.1.6a), recorded at 

a bias voltage of -1.0 V, as well as the simulated ones (Figures 3.1.6b and 3.1.6c). The 

agreement between experiment and theory is satisfactory in both cases. In particular, 

simulated images correctly reproduce the following evidences: i) polymer chains are 

brighter than Br atoms, and ii) despite all Br atoms are in hollow positions, their 

brightness is different. The only relevant difference between the two calculations is 

the overestimated brightness of polymer chains when the dispersion corrections are 

neglected. The simulation with dispersion corrections included is more similar to the 

experimental image. Hence, similarly to the LT phase, the simulated STM image with 

dispersions included better fits the experimental ones, even though differences 

between the two approaches are less evident for the HT phase. 
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(a) 

 

  
(b) (c) 

Figure 3.1.6 (a) Experimental and simulated STM images (b) with and (c) without the inclusion of 
dispersion corrections for the HT phase at a bias voltage of V = -1.0 V.  

 

Löwdin analysis for LT/HT optimized geometries with dispersion corrections: 

Further information about the nature of the adsorbate-substrate interactions and the 

role of the Br atoms can be obtained by exploiting the Löwdin charge analysis 

[Löwdin, 1950; Szabo & Ostlund, 1996], which has been limited to the results 

obtained with the inclusion of dispersion corrections. This analysis was used to 

determine the charges on different carbon atoms in different systems (see Table 

3.1.1): i) isolated molecule (ISO), ii) LT phase, iii) LT phase without Br atoms (LT*), 

iv) HT phase and v) HT phase without Br atoms (HT*). The inspection of data 

collected in Table 3.1.1 for the LT phase reveals that carbon atoms are usually 

negatively charged with respect to the isolated molecule (ISO); moreover, C5 are the 

most negatively charged carbon atoms. C5 of the LT* system have the same charge 

values, thus stressing the negligible effect of the Br atoms on the ligand. The carbon 

atoms (C1 and C'1) involved in the triple bond do not undergo significant charge 

variations and this is supported by the negligible variation of the triple bond length 

(1.2196 Å vs 1.2208 Å, for the isolated and LT supported system, respectively). The 

charge analysis for the HT and HT* systems reveals i) the same negligible effects of 

Br atoms on the charge of carbon atoms and ii) a not significant charge variation for 

carbon atoms (C1 and C'1) involved in the triple bond with respect to the isolated 

molecule (bond lengths 1.2196 Å vs 1.2348 Å, for the isolated and HT supported 

system, respectively). 

	



	

 50 

 

Table 3.1.1 Average total Löwdin charge analysis (in units of e) for the C atoms of isolated molecule 
and average triple bond lengths (in Å) for low and high temperatures 2D patterns. Systems with (*) 
contain only the molecular systems without Br atoms in their optimized geometries. All the charges are 
reported for the calculations with the inclusion of the dispersion correction.  

 
 

 C1 C2 C3 C4 C5 C'1-C1 
ISO 3.983 3.958 4.085 4.104 4.004 1.220 
LT 4.004 3.970 4.113 4.131 4.396 1.221 
LT* 4.004 3.968 4.112 4.115	 4.393 1.220 
HT 4.000 4.004 4.109 4.122 3.961 1.235 
HT* 4.002 3.973 4.106 4.118 3.965 1.236 
 

The more relevant variations with respected to the isolated molecule are observed for 

C5 atoms, which were negatively charged in LT (+0.39e) and slightly positively 

charged in HT (-0.04e). This difference is due to the different atom involved in the 

bond with C5: an Ag adatom in the former and a phenyl ring in the latter case. 

 
Results and Discussion: STM-images reported in Figure 3.1.7 show the as-deposited 

structure of 1 on the Ag (110) surface. The large-scale image (Figure 3.1.7a) reveals 

that the surface is almost fully covered by the molecules. The deposition is self-

limiting at LT: by increasing the deposition time the on-surface amount of the 

precursor, estimated by the X-ray Photoelectron Spectroscopy (XPS) C 1s peak area, 

does not increase after the completion of the first monolayer (ML). A closer 

inspection of Figure 3.1.7a reveals that the molecules are organized in two separate 

domains aligned along the 113  and 113  directions (highlighted by blue arrows), 

which are symmetrically equivalent with respect to the substrate [001] main direction 

(denoted by the vertical black arrow). Already at LT, molecules react to form 

organosilver nanowires 2. As well known for the surface synthesis starting from 

brominated organic molecules deposited on silver substrates [Chung et al., 2012; Fan 

et al., 2018], Br atoms detach from the precursor due to the substrate-catalyzed 

homolytic C-Br bond cleavage and silver adatoms replace them, forming C-Ag-C 

bonds. At LT, however, ordered domains are formed by organosilver wires composed 
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by only few monomers, and often quite disordered areas are found. Annealing for 1 

hour at 90 °C, as reported in Figure 3.1.7b, increases the order of the organometallic 

phase, but at the same time decreases the surface coverage due to molecular 

desorption. To increase the dimensions and the regularity of the domains, we 

therefore performed the annealing at 90 °C under the deposition flux of 1. The 

equilibrium between desorbed and adsorbed molecules allowed us to obtain a well-

covered surface with large domains, as reported in Figure 3.1.7c. 

 

 
Figure 3.1.7 (a) (100 × 100 nm2, V = -0.6 V, I = 1.5 nA) Self-assembly of the as-deposited DBPE 

molecules; blue arrows indicate the directions of the two symmetrically equivalent 
domains; (b) (50 × 50 nm2, V = -0.2 V, I = 0.5 nA) after annealing at 90°C in UHV; (c) 
(50 × 50 nm2, V = -0.5V I = 5 nA) after annealing at 90°C in atmosphere of 1.  

 

Figure 3.1.8 shows the STM images of the organosilver phase (hereafter: low 

temperature, LT phase) obtained upon deposition of 1 on Ag (110) in the described 

conditions, as well as the proposed model and the DFT simulation of the STM image. 

On the basis of the Low Energy Electron Diffraction (LEED) pattern (not herein 

reported), the unit cell orientation and dimensions of the model (see also Figure 3.1.2) 

correspond to a commensurate superlattice expressed by the [3± 1,2∓ 3] matrix 

notation. As shown in the model reported in Figure 3.1.8, the Br atoms (red spots) 

detach from opposite ends of 1 and silver adatoms (blue spots) replace them, thereby 

creating the organosilver wires 2. The dissociated Br atoms remain adsorbed on the 

Ag substrate and diffuse to two precisely identifiable positions: (a) between two Ag 

adatoms belonging to adjacent organosilver wires and (b) in the free space between 

two nearby C≡C triple bonds. The image reveals that the former appear brighter than 

the latter. To understand the nature and the role of the different atoms involved in the 

supported system and to rationalize the different Br contrast in the STM image, 
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supercell DFT numerical experiments by using the Quantum-ESPRESSO package 

have been carried out [Giannozzi et al., 2009].  

 

 
Figure 3.1.8 Experimental STM (6 × 5 nm2, V = -0.7 V, I = 12 nA) of the LT phase, consisting of 

organosilver polymer 2 obtained by deposition of 1 on Ag (110) at 90°C (left); ball-and-
stick model: Br red, C yellow, H light blue, Ag adatoms dark blue, Ag substrate grey 
(center); DFT simulation of the experimental image (right, see text for details). 

 

DFT simulations correctly reproduce the STM image and important information 

on the geometry of the system can be inferred: i) there is an evident brightness 

variation for Br atoms, which is correlated with the different absorption site they 

occupy on the Ag substrate, with darker Br atoms on long-bridge positions (halfway 

the long side of the rectangular Ag(110) surface unit cell), and with the brighter ones 

on-top of Ag substrate atoms; ii) on-top Br atoms are brighter than carbon atoms, and 

iii) Ag adatoms are generally brighter than carbon atoms and their brightness is 

comparable with that on the on-top Br atoms. Further information about the nature of 

the adsorbate-substrate interactions can be obtained by exploiting the Löwdin charge 

analysis (see Table 3.1.1). With respect to the isolated molecule, the supported C 

atoms are negatively charged, with a strong prevalence of the charge on the carbon 

atoms involved in the bond with Ag adatoms (C5 in Table 3.1.1). It is noteworthy that 

the Br atoms negligibly affect the charge distribution on the carbon atoms of 

monomers.  

The second step of the synthesis consists in annealing the LT phase at 170 °C 

(HT phase) for 45 minutes under deposition flux of 1 (Figure 3.1.9). Large scale and 

high resolution STM images (Figures 3.1.9a and 3.1.9b, respectively) reveal that this 

causes the release of the Ag adatoms, with the production of an ordered array of 

poly(para-biphenyleneethynylene) polymeric wires 3 more than 100 nm long that 

covers the whole surface (The DFT optimized model is reported in Figure 3.1.9c). 
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Figure 3.1.9 Experimental STM of organic nanowires 3 obtained after annealing at 170 °C (a) large 

scale (100 × 100 nm2, V = 0.23 V, I = 4.3 nA) , (b) small scale (6 × 6 nm2, V = -1.1 V, I 
= 12 nA ); (c) ball-and-stick model: Br red, C yellow, H light blue, Ag substrate grey; (d)  
DFT simulation of the experimental image (right, see text for details). 

 

The length of each building block of 3 is about 1.1 nm, which is consistent with a 

repeat unit formed by a triple C≡C bond sided by two phenyl rings. The STM contrast 

of the organic part is well reproduced by the DFT simulation reported in Figure 3.1.9d. 

The Br atoms are still in-between the nanowires and give rise to a fairly regular 

alternation of brighter and dimmer spots, a feature that is also well reproduced by 

DFT simulations. Polymeric wires do not show any clear sign of commensuration 

with the substrate. For this reason, the long unit cell 16.63 × 45.83 × 21.84 Å3 

including 277 atoms has been considered to simulate the surface structure (see Figure 

3.1.2b). It has been already mentioned that, differently from the LT system, the 

inclusion of the dispersion corrections has only minor effects: in both cases the 

polymer retains the flat conformation (see Figure 3.1.5). Moreover, similarly to LT 

theoretical outcomes, the most evident variation is the polymer/surface average 

distance, which is smaller (~ 0.5 Å) when dispersion corrections are included, 

resulting in a better reproduction of the STM contrast. Despite the larger dimensions 

of the unit cell, the interpretation of DFT calculations for the HT phase is definitely 

more straightforward: long polymeric wires are separated by Br atoms, all residing in 

hollow surface sites (see Figure 3.1.9c). It should be noted that these Br atoms are not 

equally distributed along the wires: their positions are not equivalent both with 

respect to the surface (from a minimum vertical distance of 1.54 Å to a maximum of 

1.95 Å, the average value within the unit cell being 1.77 Å) and to the polymer. This 

is evident in the STM experimental image (Figure 3.1.9b) and it is correctly 

reproduced by the DFT model (Figure 3.1.9d), which confirms that the different 
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heights of the Br atoms are responsible for their different brightness. Similarly to the 

LT system, the Löwdin charge analysis reveals the negligible effects of Br on the 

charge distribution on the polymer carbon atoms. More specifically, when moving 

from the LT to the HT phase all but one carbon atoms are characterized by 

substantially the same charge density. The exception corresponds to the C5 atom (see 

Table 3.1.1), which in 3 is bonded to a phenyl ring, while in 2 was bonded to an Ag 

adatom. 

Interestingly, the DFT-optimized polymeric chain structure shows that 

biphenylene units within the chain lie flat on the Ag (110) surface, i.e. the dihedral 

angle both between nearest neighbor phenyl rings within a biphenyl unit and between 

successive biphenyl units is zero within ±2° (see the side views in Figure 3.1.5). This 

is different from what is found for polyparaphenylene (PPP) wires supported on 

weakly interacting Au (887) [Basagni et al., 2016], where the dihedral angle between 

successive phenyl rings was measured to be 40° ± 10°, and similar to PPP on the 

much more strongly interacting Cu(110) [Di Giovannantonio, 2013]. The twisted 

conformation of the para-linked phenylene units is due to the steric hindrance 

between the orto hydrogen atoms of neighboring phenyl rings [Ambrosch-Draxl et al., 

1995; Sasaki et al., 1992], which is counteracted by the vertical polymer-substrate 

interaction. In wire 3 such steric hindrance is halved with respect to PPP due to the 

insertion of ethynyl units among biphenylene units. The resulting flat conformation 

maximizes the 1D polymer conjugation and should therefore reduce the optical band 

gap with respect to twisted conformations. The DFT Highest Occupied Molecular 

Orbital (HOMO) – Lowest Unoccupied Molecular Orbital (LUMO) ΔE of 

unsupported 3, calculated for a molecule with 16 phenyl rings to prevent the 

dependence of the electronic structure from the length of the oligomer, amounts to 

1.79 eV at the Γ point of the first BZ, which is reduced to 1.49 eV for the surface-

supported polymeric wire. The value for unsupported PPE is 1.63 eV. 

Further information on the reaction sequence as a function of temperature is 

provided by XPS measurements: results for C 1s and Br 3d peaks from LT and HT 

phases are compared in Fig. 3.1.10. 
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Figure 3.1.10 Experimental and fitting of (a) C 1s and (b) Br 3d XPS peaks of the organosilver wires 2 

obtained after annealing at 90 °C (LT phase) and of the PAE wires 3 obtained after 
annealing at 170 °C (HT phase).  

 

Both the Br 3d peaks have the 5/2 component centered at 68.0 eV (Fig. 3.1.10b), 

confirming that all Br atoms are adsorbed at the surface, whereas the C 1s peak shifts 

from a BE of 284.2 eV (Fig. 3.1.10a) for the organosilver wires, characterized by the 

C-Ag bonds, to 284.5 eV after the annealing, due to the release of the Ag atoms and 

the formation of direct C-C bonds between the molecular building blocks [Píš et al., 

2016]. The spectra obtained from molecules deposited at LT (not shown) are identical 

to those reported after the annealing at 90 °C, confirming that the organosilver wires 2 

are already formed at LT and that the annealing at 90 °C only increases the surface 

order. 

The combined use of the experimental and computational results suggests that 

Br atoms detached from the molecular precursor act as spacers between the 

organometallic wires, thus preventing the interaction between nearest neighbor triple 

bonds and collectively playing the role of a “rail” for the longitudinal self-assembly of 

the wires. Comparative experiments performed on Au(111) (see Figure 3.1.11) have 

evidenced how – due to the lower absorption energy of Br atoms on gold – on that 

surface only a mesh of interconnected nanowires can be obtained. Indeed, already at 

170 °C the C≡C triple bonds start to react, forming an interlinked network of 

nanowires aligned along different directions. From a computational point of view, the 

role of Br atoms as spacers between wires is supported by the Löwdin charge analysis 

for the LT and HT phases, with and without the presence of the Br atoms. In both 

cases, the partial charges residing on C atoms are negligibly affected by the presence 
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of Br. This finding supports the hypothesis that Br atoms play a "physical" (spacer) 

rather than a "chemical" (electronic interaction) role.  

 

 
Figure 3.1.11  STM images. (left) (65 × 65 nm2) and (right) (33 × 33 nm2), V = 1.1 V, I = 0.8 nA. 2D 

DBPE-based amorphous polymers obtained on Au(111) at T = 170 °C. 
 

At temperature higher than 320 °C Br atoms start to desorb, as revealed by the 

decrease of the area of the Br 3d5/2 peak in XPS. The effects of Br desorption from the 

surface are shown in Figure 3.1.12. In Figure 3.1.12a the PAE wires maintain the 

uniaxial order as long as Br atoms stay in place (blue arrow), but – given their high 

flexibility [Ortiz et al., 2017], even on-surface [Cirera et al., 2014] – they start to link 

to each other as soon as Br leaves the surface. Yellow circles evidence x-shaped links 

that seem to point to a [2 + 2] cycloaddition of two alkynyl groups belonging to 

adjacent wires (a reaction that has been recently claimed for the on-surface coupling 

of pyrene moieties [Tran et al., 2017] and that is known to be catalyzed (and the 

resulting cyclobutadiene unit stabilized) by transition metals [Schore, 1988]. However, 

given the complex chemistry of alkynes, which can undergo metathesis, insertion, 

cyclization, hydrogenation reactions to name but a few, most often the onset of Br 

desorption is accompanied by a degradation of the starting order, leading to the 

formation of small oligomers linked in many different geometries. In addition, 

Figures 3.1.12b and 3.1.12c show how, by increasing the temperature to 350 °C, Br 

atoms completely desorb, thereby allowing lateral reactions between the nanowires to 

occur on the whole surface. The final result is an amorphous bi-dimensional short-

branched mesh with no preferential growth direction compared to the starting ordered 
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1D PAE wires array. It is instructing to compare this finding with what has been 

observed starting from 4,4″-dibromo-p-terphenyl molecules, where no triple bonds 

are present: the graphene nanoribbons developing by lateral fusion of PPP polymers, 

initially produced by the 1D Ullmann-like polymerization of the precursors, display a 

clear azimuthal orientation reminiscent of the order of starting PPP nanowires 

[Basagni et al., 2015]. 

 

 
Figure 3.1.12  STM images. (a) (40 × 40 nm2, V = 1.5 V, I = 0.2 nA) onset of the 2D linking of PAE 

nanowires (T = 320 °C): the blue arrow shows ordered nanowires, yellow circles 
indicate x-shaped links between adjacent nanowires; (b) (200 × 200 nm2, V = -0.7 V, I 
= 0.3 nA) and (c) (24 × 24 nm2, V = 0.8 V, I = 8 nA) 2D DBPE-based amorphous 
polymers (T = 350 °C). 

 

As already remarked, up to now the bottom-up synthesis of PAE wires by means 

of on-surface synthesis has mostly relied on Glaser-like homocoupling of terminal 

alkynes [Zhang et al., 2012; Gao et al., 2013; Eichhorn et al., 2013; Cirera et al., 

2013], although dehalogenative homocoupling of tribromomethyl-substituted arenes 

has recently emerged as a possible alternative [Sun et al., 2018]. The high reactivity 

of terminal alkynes requires a strict control of the chemo- and regioselectivity of the 

coupling reaction, which can be achieved by exploiting the templating effect of 

vicinal surfaces [Cirera et al., 2014], possibly further enforced by the smart 

functionalization of molecular precursors, affording specific directional 

intermolecular interactions capable of properly orienting the monomers 

[Klappenberger et al., 2018]. Surface templating by regular monoatomic step arrays 

poses, however, limits the achievable polymeric surface density (in principle one 

polymeric wire or double strand per step) and affords only approximate linearity due 

to the irregularities in the step edge profiles. 
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Conclusions: In this former case of study it has been shown that a long-range ordered, 

dense arrays of highly linear and extremely long PAE wires can be grown without 

relying on substrate templating if Ullmann-like homocoupling of alkynyl-containing 

bromo-arenes such as DBPE (1) is carried out on Ag (110). In the past, the 

permanence of Br detached from molecular precursors in on-surface Ullmann-like 

homocoupling reactions has been often identified as a limiting factor in the growth of 

ordered polymeric nanostructures produced by Ullmann coupling, since it usually 

influences the diffusion of reacting monomers and hampers the formation of regular 

covalent bonds [Tran et al., 2017; Pham et al., 2016]. For this reason Br removal by 

hydrogen dosing during the activation of the on-surface reaction has been recently 

proposed [Bronner et al., 2015] and successfully employed [Tran et al., 2017]. 

Surprisingly, in the present case Br adatoms detached from the molecular 

precursor, far from degrading the quality of the on-surface grown polymeric wires, 

play an active role in the successful outcome of the synthesis. In fact, in the initial 

stages of the reaction Br adatoms act as spacers between adjacent organosilver 

nanowires with a twofold effect: they both increase the reaction’s 

chemo/regioselectivity by avoiding the interaction between adjacent C≡C triple bonds 

(i.e. they have the role of protecting groups) and also provide a directing effect for 

their 1D growth. The organosilver nanowires are then topotactically transformed into 

ordered and oriented all-organic 1D linear polymers by annealing at 170 °C. This 

occurs by elimination of the Ag adatoms from the initial organosilver nanowires, with 

contextual formation of direct C-C links between successive monomeric precursors, 

with Br atoms still retaining their role in controlling the selectivity and directing the 

growth. Only at much higher temperature (320 °C) enough thermal energy is provided 

to initiate Br desorption. This in turn allows C≡C triple bonds on adjacent polymeric 

wires to approach each other, react and form an amorphous surface-supported 2D 

oligomeric mesh. DFT calculations provide an excellent fit to the STM images of the 

polymeric strands, and in particular show that the byphenylene units within the 

polymeric scaffold lie flat on the surface, which maximizes the electron conjugation 

along the PAE wires. 
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Case Study n° 2 

 
3.2 An experimental and theoretical study of a metallorganic coordination networks 

of tetrahydroxyquinone on Cu(111). 

 

Introduction: The adsorption of single molecular units on clean surfaces, the earliest 

step to fabricate surface-supported supramolecular structures, is one of the most 

promising ways for obtaining novel, two-dimensional (2D) ordered metal-organic 

architectures [Dong et al., 2016] with unique and peculiar structural features, 

functionalities, and catalytic properties [Ecija  et al., 2012; Stepanow et al., 2004; 

Kudernac et al., 2009; Grumelli et al., 2013; Dmitriev et al., 2003; Rosseinsky, 2004; 

Perepichka & Rosei, 2007]. In this way, single metal atoms embedded into an organic 

cage [Betti et al., 2012; Fortuna et al., 2012] or small metal clusters [Bebensee et al., 

2013; Bebensee et al., 2014] can be obtained in a highly ordered fashion within a 

quasi-planar 2D molecular lattice. For metals such as gold, clusters made of few 

atoms often present catalytic properties absent in their bulk counterpart [Hashmi & 

Hutchings, 2006], and also the chemical reduction efficiency of tetrameric copper 

clusters has been recently outlined [Liu et al., 2015]. The wide range of applications 

that need a specific cluster size underlines the importance of developing novel 

techniques to enable the tuning of material properties. As such, Lo Cicero et al. [Lo 

Cicero et al., 2017] were able to grow in the near past a highly-ordered array of 

tetrameric copper clusters coordinated into a metal-organic network by using 

tetrahydroxyquinone (THQ) (see Figure 3.2.1) as organic SBU. The cluster array was 

obtained by depositing THQ molecules on the Cu(111) surface held at RT; a 

thermally activated dehydrogenation with the formation of tetraoxyquinone tetra-
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anions (TOQ) having a 4 × 4 periodicity was then produced by exploiting an 

annealing procedure involving a 20 min heating ramp up to ∼ 110 °C followed by 4 

min annealing at the same temperature. 

 In this latter case of study, we have theoretically revisited the results recently 

published by Lo Cicero et al. [Lo Cicero et al., 2017] to get an even more detailed 

description of the structural arrangement of the tetrameric copper clusters on Cu(111). 

 

 
Figure 3.2.1  Ball and stick representation of the tetrahydroxyquinone (THQ) SBU in a planar D2h 

conformation.	
 

Methodology: Similarly to the modelling of the surface-confined 2D polymerization 

of the DBPE on Ag(110), the theoretical study of THQ on Cu(111) has been carried 

out by exploiting the QE suite of codes [Giannozzi et al., 2009] and by adopting the 

Perdew-Burke-Ernzerhof (PBE) exchange–correlation (XC) functional [Perdew et al., 

1996]. Valence orbitals were expanded in a plane-wave basis set with a kinetic energy 

cut-off of 30 Ry, while the interaction between ion cores and valence electrons has 

been modelled by means of ultrasoft pseudopotentials [Vanderbilt, 1990]. The cut-off 

on the charge density was 120 Ry; BZ integrations [Brillouin, 1930] were limited to 

the 2 × 2 × 1 Monkhorst and Pack mesh [Monkhorst & Pack, 1976]; moreover, a 

smearing parameter of 0.02 Ry for the electron population function was considered 

[Methfessel et al., 1989; Marzari et al.1999]. Again, numerical experiments have been 

carried out either neglecting or including [Grimme, 2006b] dispersion corrections as 

implemented in QE by Baroni and Giannozzi [Baroni & GIannozzi, 2009]. STM 

simulations have been modelled by using the usual TH approximation [Tersoff & 

Hamann, 1985]. In both cases, the Cu(110) surface was modelled by a supercell p(4 × 
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4) containing five layers, where the top three have been allowed to relax, while the 

others were kept fixed at their bulk positions. The vacuum region between repeated 

image along the z direction was large enough to prevent interactions (ca. 18 Å). A 

bulk optimized lattice parameter of 3.66 Å has been used, which slightly 

overestimated the experimental value of 3.62 Å [Lide, 2009], but in perfect agreement 

with other generalized gradient approach calculations [Vitos et al., 1998; Kovačević 

& Kokalj, 2013].  

 
Figure 3.2.2  Top (left) and side (right) view representations of the Cu(111) surface. The surface unit 

cell is outlined in orange in the left panel. Grey, silver and yellow spheres are 
representative of the Cu atoms belonging to the first, second and third layers, 
respectively.	

 

Free THQ optimized structural parameters are compared with corresponding 

experimental values [Allen et al., 1987] in Table 3.2.1. Numerical experiments have 

been carried out by adopting a cubic unit cell 20 × 20 × 20 Å3, including (PBE-D2) or 

neglecting (PBE) dispersive interaction, by using a cutoff of 30 Ry and 2 × 2 × 1 k-

point mesh. Results reported in Table 3.2.1 ultimately testify the negligible role 

played by dispersive interactions when considering the isolate adsorbate. 

 
Table 3.2.1 Optimized geometries (Å) for isolated THQ estimated by adopting either the PBE or the 
PBE-D2 XC functional. Experimental results have been also included for comparison. Atom labels are 
those of Figure 3.2.1. 
 

 PBE PBE-D2 Exp.a 

C1–C2	 1.47 1.47 1.47 
C2–C2	 1.36 1.36 1.34 
C1–O1 1.24 1.24 1.23 
C2–O2	 1.34 1.34 1.36 
O2–H 0.99 0.99 0.96 

 

aAllen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., 

Perkin Trans. 2, 1987, 0, S1. 
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THQ adsorption at LT: Diverse possible configurations of THQ@Cu(111) have 

been considered to determine the relative stability of different adsorption sites (top 

(T), bridge (B), hollow (H); see Figure 3.2.3). As already mentioned, all the numerical 

experiments have been carried out by adopting a hexagonal p(4×4) unit cell having 

dimensions 10.36 × 10.36 × 26.46 Å3 consisting of 96 atoms on which a single THQ 

molecule have been initially positioned in a flat geometry at 2.20 Å from the surface 

[Bebensee et al., 2014; Lo Cicero et al., 2017].  

 

 
Figure 3.2.3  Schematic representation of THQ@Cu(111): (a) T, (b) B, (c) H. Corresponding unit 

cells are also displayed. The atom color code is the same of the Figures 3.2.1 and 3.2.2. 
 

Adsorption energy values of THQ@Cu(111) surface are collected in Table 3.2.2.8  
	

Table 3.2.2 Adsorption energies (eV) for different THQ chemisorption sites (T, B, H; see text) on 

Cu(111) (see Figure 3.2.3) including or neglecting dispersive interactions. 
Site PBE PBE-D2 
T -0.06 -1.42 
B  +0.02 -1.73 
H +0.09 -1.69 

 

As expected, and in agreement with data reported by Liu et al. for C6H6 on Cu(111) 

[Liu et al., 2013] and Tonigold & Grob for C4H4S on Cu(111) [Tonigold & Grob, 

2010], the inclusion of dispersive corrections (PBE-D2) implies adsorption energies 

significantly larger than those computed by using the PBE XC functional. Moreover, 

among the diverse chemisorption sites taken into account, the quasi-degenerate B and 

H ones are the most favoured (see Table 3.2.2).  
																																																								
8The adsorption energy has been evaluated as the difference between the total energy of the 
adsorbate/substrate system and the sum of total energy of the clean slab and the total energy 
of the isolated adsorbate molecule.	
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 The comparison between free (Table 3.2.1) and chemisorbed (Table 3.2.3) 

THQ bond lengths ultimately testifies that, independently of the chemisorption site 

and the inclusion/exclusion of dispersive corrections, the adsorbate structural 

parameters undergo minor perturbations upon chemisorption. 
 
Table 3.2.3 THQ Bond Lengths (BLs, Å) for T, B and H chemisorption sites. BLs pertaining to the 

free THQ (THQF) have been also included for comparison. Internuclear distances between 
selected THQ atoms and the Cu(111) surface are also reported. Atom labels are the same 
of the Figure 3.2.1. 

BL  PBEF  PBE-D2F  PBET  PBE-D2T  PBEB  PBE-D2B  PBEH  PBE-D2H 
C1–C2 1.47 1.47 1.46 1.45 1.43 1.43 1.43 1.43 
C2–C2 1.36 1.36 1.36 1.37 1.39 1.39 1.40 1.40 
C1–O1 1.24 1.24 1.25 1.27 1.31 1.31 1.32 1.32 
C2–O2 1.34 1.34 1.35 1.36 1.36 1.37 1.37 1.37 
Cu(111)–C1   3.37 2.72 2.42 2.34 2.37 2.28 
Cu(111)–C2   3.34 2.75 2.50 2.41 2.45 2.34 
Cu(111)–O1   3.38 2.64 2.39 2.28 2.34 2.26 
Cu(111)–O2   3.31 2.78 2.67 2.58 2.59 2.48 

 

The most relevant structural variation concerns the C1–O1 BL, which increases from 

1.24 Å (free THQ) to 1.31/1.32 Å (THQ(B)/THQ(H)). In agreement with the PBE-D2 

adsorption energies, higher than the PBE ones, the PBE-D2 distances of C and O 

THQ atoms from the Cu(111) surface are shorter than the PBE ones. It can be of some 

interest to point out that, even though THQ structural parameters at the T site are 

substantially unaffected upon chemisorption and, for this reason, they are not herein 

reported, the opposite is true when the adsorbed-substrate distance is considered (vide 

infra). 

 Further insights into the THQ–Cu(111) interaction may be gained by taking 

advantage of the Löwdin charge analysis [Löwdin, 1950; Szabo & Ostlund, 1996] 

carried out for free and chemisorbed TQH at T, B and H sites (see Table 3.2.4). 
 
Table 3.2.4  Löwdin charges for THQ atoms (free THQ charges in parenthesis). Atomic labels are the 

same of the Figure 3.2.1. 
Atom PBEF PBE-D2F PBET  PBE-2DT PBEB PBE-D2B PBEB PBE-D2B 
C1 0.30 0.30 0.27 0.18 0.11 0.11 0.11 0.11 
C2 0.19 0.19 0.17 0.13 0.11 0.11 0.11 0.11 
O1 -0.33 -0.33 -0.36  -0.48 -0.54 -0.55 -0.54 -0.55  
O2 -0.33 -0.33 -0.33 -0.35 -0.37 -0.37 -0.37 -0.37 
Slab   0.20 0.86 +1.28 +1.30 +1.28 +1.30 

 

The inspection of Tables 3.2.1, 3.2.3 and 3.2.4 clearly indicates that, among THQ 

heavy atoms, those undergoing the strongest structural and electronic perturbations 

upon adsorption are C1 and O1. This is ultimately due to a substrate � adsorbate 

charge transfer from Cu d atomic orbitals (AOs) into lowest-lying THQ-based π* 
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MOs, antibonding in character with respect to the C1–O1 interaction. This charge 

transfer, more effective for B and H chemisorption sites than for the T one, allows us 

to rationalize: i) the different adsorption energies associated to the different 

chemisorption sites; ii) the quasi degeneracy of B and H adsorption energies; iii) the 

negligible structural perturbations undergone by THQ when chemisorbed at the T site. 

THQ adsorption at HT: The annealing of THQ@Cu(111) up to ~ 385 K implies the 

dehydrogenation of the four hydroxyl groups to generate the 2,3,5,6-tetraoxyquinone 

tetra-anion (TOQ) schematically depicted in Figure 3.2.4a, which self-assembles into 

extended and single-domain islands, as revealed by the inspection of the STM image 

reported in Fig. 3.2.4b [Lo Cicero et al., 2017]. These islands are characterized by a 4 

× 4 periodicity implying an intermolecular distance of 10.2 Å, as revealed by low 

energy electron diffraction (LEED, see Figure 3.2.4d) and in agreement with the Fast 

Fourier Transform (FFT) of the STM image (compare Figures 3.2.4b and 3.2.4c). 

Individual molecular units appear in the STM images as doughnut-like protrusions 

(see Figure 3.2.5) with a size compatible with that of a single molecule and with an 

intermolecular distance equal to four times the interatomic copper distance. 

 

  

  
Figure 3.2.4 Schematic representation of the TOQ anion (a); large scale STM image (bias = 0.55 V, I 

= 37.2 nA) showing the self-assembly of TOQ on Cu(111) after annealing to ~ 385 K 
(b); corresponding fast Fourier Transform (FFT) image (c); low-energy electron-
diffraction pattern (LEED) acquired at an energy of 45 eV on the same sample (d). 

 

b a 
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The homogeneity in the apparent height of the doughnut-like structures points toward 

a flat adsorption geometry of the molecules, with the molecular ring parallel to the 

Cu(111) plane. High-resolution STM images show that additional, apparently 

triangular, features are present between the doughnuts (see Figure 3.2.5).  

 

 
 

Figure 3.2.5 High-resolution STM image (bias = 0.55 V; I = 37.2 nA) of TOQ tetra-anions assembled 
on the Cu(111) surface. 

 

Incidentally, these additional features do not appear as triangles if defects are present 

in the molecular network, thus suggesting that the dominant triangular-shaped 

structure is present only when it is surrounded by three molecules. Lo Cicero et al. 

[Lo Cicero et al., 2017] demonstrated that each triangular-shaped structure consists of 

a tetrameric Cu cluster generated by thermally released Cuad incorporated in a metal-

organic network by TOQ units and comprising a central Cuad (CCuad), not involved in 

any directly interaction with the organic tetraanion, and three peripheral Cuad (PCuad), 

directly bound to CCuad as well as to the O TOQ atoms. 

Similarly to the modeling of the THQ@Cu(111) at RT, diverse chemisorption 

sites (T, B, and H) have been considered for TOQ generated on Cu(111) at HT (see 

Figure 3.2.6). Numerical experiments have been carried out by using the hexagonal 

p(4 × 4) supercell outlined in the Figure 3.2.6 and by exploiting either the PBE or the 

PBE-D2 XC functionals. As far as the BZ sampling is concerned, two distinct sets of 

calculations have been run: the former with a 2 × 2 × 1 k-point mesh; the latter by 

limiting the BZ sampling at the Г-point to favor the comparison with data recently 

published by Lo Cicero et al. [Lo Cicero et al., 2017]. Selected geometrical 

parameters evaluated at the different chemisorption sites of TOQ@Cu(111) are 

collected in Tables 3.2.5 and 3.2.6, where selected TOQ BLs and adsorbate–substrate 

distances are reported, respectively, for different XC functionals and BZ samplings.    
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Figure 3.2.6 Schematic representation of the optimized geometries assumed for the TOQ 

chemisorption sites on Cu(111): (a) T, (b) B, (c) H. Corresponding unit cells are also 
displayed. Blue spheres are representative of Cuad, while the color code of the remaining 
atomic species is the same of the Figures 1 and 2. Only the first and second layer of the 
five layer slab representative of the Cu(111) surface are included in the figure. The p(4 × 
4) supercell we adopted to optimize geometrical parameters is outlined in orange. 

 
Table 3.2.5 TOQ BLs (Å) at the T, B and H chemisorption sites. The superscript Г refers to the 

numerical experiments carried out by limiting the BZ sampling at the Г point. For B and 
H chemisorption site average BLs are reported.  

 ГPBET PBET  PBE-D2T ГPBEB PBEB  PBE-D2B ГPBEH PBEH  PBE-D2H 
C–C 1.43 1.43 1.42 1.44a 1.45e 1.43i 1.43m 1.45q 1.44u 

C–O 1.32 1.32 1.33 1.30b 1.29f 1.29j 1.30n 1.29r 1.30v 
Cuad–O 2.10/2.14 2.10/2.16 2.10/2.16 2.06c 2.01g 2.04k 2.09o 2.01s 2.00x 

Cuad–Cuad
 2.64 2.63 2.64 2.64d 2.62h 2.58l 2.64p 2.62t 2.54y 

 
a(BLM = 1.47; BLm = 1.42);  b(BLM = 1.32; BLm = 1.27);  c(BLM = 2.16; BLm = 1.95);  d(BLM = 2.80; BLm = 2.57) 
e(BLM = 1.48; BLm = 1.42);  f(BLM = 1.31; BLm = 1.27);  g(BLM = 2.18; BLm = 1.94);  h(BLM = 2.77; BLm = 2.49) 
i(BLM = 1.47; BLm = 1.40);  j(BLM = 1.33; BLm = 1.27);  k(BLM = 2.17; BLm = 1.89);  l(BLM = 2.70; BLm = 2.44) 
m(BLM = 1.46; BLm = 1.41);  n(BLM = 1.31; BLm = 1.28);  o(BLM = 2.15; BLm = 1.98);  p(BLM = 2.72; BLm = 2.54) 
q(BLM = 1.48; BLm = 1.41);  r(BLM = 1.32; BLm = 1.27);  s(BLM = 2.12; BLm = 1.93);  t(BLM = 2.72; BLm = 2.52) 
u(BLM = 1.48; BLm = 1.40);  v(BLM = 1.32; BLm = 1.27);  x(BLM = 2.12; BLm = 1.91);  y(BLM = 2.62; BLm = 2.44) 

 

Theoretical outcomes reported in Table 3.2.5 reveals that the inclusion of dispersion 

corrections negligibly affect BLs for all the assembled structures, while the opposite 

is true when the TOQ–Cu(111) distances are considered (see Table 3.2.6). As a matter 

of fact, even though TOQ tetraanions appear systematically “parallel” to the substrate 

(independently of the adopted XC functional), the use of the PBE-D2 one is 

accompanied by a definitely smaller adsorbate–substrate spacing for TOQ@T. 

Moreover, differently from results obtained by limiting the BZ sampling to the Г 

point [Lo Cicero et al., 2017], data herein included for the T chemisorption site stress 

the presence of two rather than three Cuad–O distinct BLs, see Figures 3.2.7 and 3.2.8.  
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Table 3.2.6 TOQ–Cu(111) distances (Å) at the T, B and H chemisorption sites. The superscript Г 
refers to the numerical experiments carried out by limiting the BZ sampling at the Г 
point. For B and H chemisorption site average internuclear distances are reported.  

Atom ГPBET PBET  PBE-D2T ГPBEB PBEB  PBE-D2B ГPBEH PBEH  PBE-D2H 
C 3.13 3.16 2.85 3.10a 3.28e 2.98i 3.18m 3.51q 3.23u 

O 2.95 2.94 2.74 3.02b 3.22f 2.98j 3.02n 3.24r 3.14v 
CCuad

 1.92 1.95 1.94 2.02c 2.04g 1.97k 1.93o 2.05s 2.00x 

PCuad 2.09 2.09 2.04 2.08d 2.08h 2.01l 2.08p 2.05t 1.98y 

 
a(ASM = 3.16; ASm = 3.06);  b(ASM =3.21; ASm = 2.89);  c(ASM = 2.03; ASm = 2.02);  d(ASM = 2.15; ASm = 1.94) 
e(ASM = 3.35; ASm = 3.13);  f(ASM = 3.39; ASm = 2.84);  g(ASM = 2.08; ASm = 2.02);  h(ASM = 2.14; ASm = 2.02) 
i(ASM = 3.05; ASm = 2.90);  j(ASM = 3.14; ASm = 2.70);  k(ASM = 1.98; ASm = 1.96);  l(ASM = 2.08; ASm = 1.94) 
m(ASM = 3.25; ASm = 3.14);  n(ASM = 3.29; ASm = 2.94);  o(ASM = 1.94; ASm = 1.91);  p(ASM = 2.14; ASm = 2.03) 
q(ASM = 3.59; ASm = 3.40);  r(ASM = 3.49; ASm = 3.07);  s(ASM = 2.11; ASm = 2.00);  t(ASM = 2.11; ASm = 2.00) 
u(ASM = 3.35; ASm = 3.08);  v(ASM = 3.37; ASm = 2.79);  x(ASM = 2.06; ASm = 1.94);  y(ASM = 2.04; ASm = 1.95) 

 

More specifically, Lo Cicero et al. [Lo Cicero et al., 2017] found “two O atoms bound 
to the opposite benzene ring C atoms bind to a single Cu tetramer adatom, while each 
of the remaining four O atoms in the TOQ molecule establishes two non-equivalent 
coordination bonds with Cu atoms from different tetramers”. The inspection of 
Figures 3.2.7 and 3.2.8 ultimately indicates a much more symmetric structure when 
the chemisorption takes place at the T site rather than at the B or H sites. 
 

 
Figure 3.2.7 Schematic representation of the surface supported metallorganic network generated by 

the interaction between TOQ tetraanions at the T (a), B (b) and H (c) chemisorption sites 
on Cu(111). The relaxed substrate is not displayed for the sake of clarity. 

 
The astonishing agreement between STM measurements and the HT simulations 

generated for the highly symmetric arrangement of TOQ@T (see below) rules 

definitely out the need of any detailed description of the “disordered” surface 

supported metal-organic network generated by tetrameric Cuad clusters and TOQ@B 

and TOQ@H. 

 

(a) (b) (c) 
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Figure 3.2.8 Schematic representation of the surface supported metallorganic network generated by 

the interaction between TOQ tetraanions at the T chemisorption site on Cu(111) and 
tetrameric Cuad clusters (left). Cuad nearest neighbors of a single TOQ tetraanion at the T 
chemisorption site on Cu(111) (right). The relaxed substrate is not displayed for the sake 
of clarity. 

 

  

  
Figure	3.2.9		 Experimental (a) and simulated STM images obtained with (c) and without (d) the inclusion of 

dispersion corrections for TOC@T on Cu(111) at ~110 °C and a bias voltage of V = 0.55 V. The 

PBE-D2 optimized geometry (b) has been also reported.9 

																																																								
9 	The	 PBE	 optimized	 geometry	 slightly	 differs	 from	 the	 PBE-D2	 one	 (see	 Tables	 3.2.5	 and	 3.2.6);	
nevertheless,	the	TOQ@T	PBE	schematic	representation	is	undistinguishable	from	the	PBE-D2	one	and	for	
this	reason	it	has	not	been	included	in	Figure	3.2.9.	Analogous	considerations	hold	for	TOQ@B	and	TOQ@H.		
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STM images of TOQ adsorbed at HT on Cu(111) are compared in Figures 3.2.9 with 

PBE and PBE-D2 TH simulation for TOQ@T. Relevant differences between PBE and 

PBE-D2 results concern the higher (lower) brightness of Ph rings (O atoms)	when the 

PBE rather than the PBE-D2 functional is adopted (compare TH simulations in panel 

c and and d of Figure 3.2.9). Such an evidence is a direct consequence of the 

overestimated PBE adsorbate-substrate separation (see Table 3.2.6), particularly 

evident for the Ph carbon atoms. Just for comparison, PBE-D2 optimized structures 

and corresponding simulated STM images for TOQ@B and TOQ@H are displayed in 

Figure 3.2.10. 

 

  

  
Figure	3.2.10		 PBE-D2 optimized geometry of TOC@B (left upper panel) and corresponding TH 

simulated STM image (right upper panel). PBE-D2 optimized geometry of TOQ@H 

(left lower panel) and corresponding TH simulated STM images obtained (right 

lower panel). 
 

In conclusion, we have modelled the chemisorption of the THQ monomer on the 

Cu(111) surface at different temperatures with and without the inclusion of dispersion 

corrections by combining STM measurements and periodic DFT calculations. 

Numerical experiments have been carried out for diverse chemisorption sites, namely 

top, bridge, and hollow sites. According to the DFT outcomes, the B site is the most 

favoured for THQ@Cu(111) at LT. Moreover, even though DFT results herein 
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reported substantially confirm the experimental evidences recently published by Lo 

Cicero et al. [Lo Cicero et al., 2017] for the THQ 2D pattern annealed at  ~110 °C, the 

use of a BZ richer sampling and the inclusion of dispersion corrections allowed a 

definitely better agreement between experiment and theory. In particular, the 

preferred arrangement for THQ@Cu(111) at HT corresponds to the T site of the 

dehydrogenated TOQ tetraanion directly bound to tetrameric Cu adatoms through 

oxygen atoms. 
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