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Abstract

The development of mathematical and numerical models for the study
of the problem of fracture in porous media is motivated by several real-
world applications. In particular, the phase-field approach to fracture,
based on the regularization of the variational formulation of the Griffith’s
theory, seems to be one of the most promising, due to its ability to model
complicated fracture processes, such as nucleation and branching, and
preserve the continuity of the displacement field. The majority of the
phase-field models for fracture in porous media present in the literature
are mainly oriented to the study the problem of fracture in saturated
porous media. Anyway, certain phenomena, such as the cracking of clayey
soils during a desiccation process, suggest the importance of the extension
of these models to a partially saturated framework, in which also the flow
of the gaseous phase can influence the mechanical behavior of the porous

medium, and thus the process of formation and evolution of fractures.

The aim of this work is to develop a finite element model for the phase-
field analysis of fracture in three-phase porous media, in which both the
flux of the water and the flux of the dry air are taken into account. In the
first part of the thesis particular attention is payed to the study of some
numerical difficulties that such modeling implies, such as the errors in
the evaluation of the mass conservation of the water and the occurrence
of numerical locking when a volumetric-deviatoric energy split for the
phase-field model is used. An original mass conservative formulation,
which takes into account the deformability of the solid skeleton, and a
new stabilized mixed finite element formulation for the phase-field model
of fracture in saturated porous media have been proposed, and tested with
different numerical applications. In the last part of the thesis the finite
element discretization of the proposed three-phase model is derived and
applied to the numerical simulation of two different desiccation problems,
in order to to study the influence of the balance equation of the air in the

development of fractures in the porous medium.






Sommario

Lo sviluppo di modelli matematici e numerici per lo studio della frattura
nei mezzi porosi ¢ motivato da numerose applicazioni nel mondo reale. In
particolare, lo studio della frattura con la tecnica del phase-filed, basata
sulla regolarizzazione della formulazione variazionale della teoria di Grif-
fith, sembra essere una delle pitt promettenti, grazie alla sua abilita di
modellare fenomeni complessi, come la formazione e la ramificazione di
fratture, a preservare la continuita del campo di spostamenti. La maggior
parte dei modelli phase-field presenti in letteratura sono principalmente
orientati allo studio della frattura in mezzi porosi saturi. D’altro canto,
alcuni fenomeni, come la formazione di fratture in argille durante un pro-
cesso di essicazione, indicano I'importanza di estendere questi modelli in
condizione di parziale saturazione, tenendo in considerazione la possibile
influenza del flusso della fase gassosa sul comportamento meccanico dello
scheletro solido e, di conseguenza, sul processo di formazione e evoluzione

della frattura.

Lo scopo di questa tesi ¢ la formulazione di un modello numerico agli
elementi finiti per lo studio, con la tecnica del phase-field, della frattura
in mezzi porosi trifase, in cui si considerino sia il flusso d’acqua che il
flusso dell’aria all’interno del mezzo. Particolare attenzione é rivolta ad
un approfondimento di alcune problematiche numeriche che tale model-
lazione comporta, come gli errori nella conservazione della massa della
fase liquida e il locking numerico dovuto ad un eccesso di rigidezza volu-
metrica, quando lo split volumetrico-deviatorico dell’energia viene utiliz-
zato nel modello phase-field. In particolare, vengono proposte e testate
attraverso varie applicationi numeriche una nuova formulazione conser-
vativa che tenga conto della deformabilita dello scheletro solido, e una
nuova stabilizzazione per la formulazione mista del modello phase-field
per la frattura in mezzi porosi saturi. Nell’'ultima parte la discretizzazione

agli elementi finiti del modello trifase proposto viene derivata, e applicata



alla simulazione numerica di due problemi di essicazione, con l’obiettivo
di studiare 'influenza dell’equazione di bilancio dell’aria sullo sviluppo di

fratture nel mezzo poroso.
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Kurzfassung

Die Entwicklung von mathematischen und numerischen Modellen fiir die
Untersuchung des Problems der Fraktur in porésen Medien wird durch
mehrere reale Anwendungen motiviert. Insbesondere der Phasenfeldansatz
fiir die Fraktur, der auf der Regularisierung der Variationsformulierung der
Griffith’schen Theorie basiert, scheint einer der vielversprechendsten zu
sein, da er in der Lage ist, komplizierte Frakturprozesse wie Keimbildung
und Verzweigung zu modellieren und die Kontinuitit des Verschiebungs-
feldes zu erhalten. Die Mehrheit der in der Literatur vorhandenen Phasen-
feldmodelle fiir den Bruch in pordsen Medien ist hauptsédchlich auf die
Untersuchung des Problems des Bruchs in gesdttigten porosen Medien
ausgerichtet. Wie auch immer, bestimmte Phinomene, wie das Spalten
von lehmigen Boden wihrend eines Trocknungsprozesses, deuten darauf
hin, wie wichtig die Erweiterung dieser Modelle zu einem teilweise gesét-
tigten Geriist ist, in dem auch der Fluss der Gasphase das mechanische
Verhalten des porosen Mediums und damit den Prozess der Bildung und

Entwicklung von Briichen beeinflussen kann.

Ziel dieser Arbeit ist es, ein Finite-Elemente-Modell fiir die Phasenfeld-
analyse von Briichen in dreiphasigen porosen Medien zu entwickeln, bei
dem sowohl der Fluss des Wassers als auch der Fluss der trockenen Luft
beriicksichtigt werden. Im ersten Teil der Arbeit wird besonderes Au-
genmerk auf die Untersuchung von einigen numerischen Schwierigkeiten,
die eine solche Modellierung impliziert, wie z. B. die Fehler in der Bew-
ertung der Massenkonservierung des Wassers und das Auftreten von nu-
merischen Sperren, wenn eine volumetrisch-deviatorische Energie-Split fiir
das Phasenfeld-Modell verwendet wird. Eine originale massenkonservative
Formulierung, die die Verformbarkeit des festen Skeletts beriicksichtigt,
und eine neue stabilisierte gemischte Finite-Elemente-Formulierung fiir
das Phasenfeldmodell der Fraktur in gesittigten porésen Medien wurden

vorgeschlagen und mit verschiedenen numerischen Anwendungen getestet.



Im letzten Teil der Arbeit wird die Finite-Elemente-Diskretisierung des
vorgeschlagenen Dreiphasenmodells abgeleitet und auf die numerische Sim-
ulation von zwei verschiedenen Trocknungsproblemen angewendet, um
den Einfluss der Gleichgewichtsgleichung der Luft bei der Entwicklung

von Frakturen im porésen Medium zu untersuchen.
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Chapter 1

Introduction

1.1 Motivation and scope

The phenomenon of fracture in porous media characterizes a great variety of real
world problems, both in the environmental |20, 49| and in the industrial fields. Par-
ticular attention has been devoted, in the last years, to the study of the problem of the
hydraulic fracture [55, 56, 40|, pushed by a growing demand for innovative, and some-
times controversial, methods of extraction of new oil resources. In this application,
the fluid act as a fracture driving force, and the porous material is always considered
saturated. On the other hand, especially looking at environmental problems, the de-
velopment of cracks is strictly correlated to the process of desiccation. Therefore in
this case the development of a model in which partially saturated conditions are con-
sidered becomes necessary. Some example of problems in which the fracture occurs
in partially saturated materials are desiccation cracking in soils [49, 58|, erosion of
marsh borders in lagoons [20], or slope instability [52].

In general are defined as porous media all those materials with an heterogeneous
internal structures characterized by the presence of a solid phase, which confers stiff-
ness to the material, and some empty spaces, called pores, which may be filled by one
or more fluids [37]. Due to this complicated internal microstructure, turns out to be
more convenient to model the behavior of these material at the so-called macroscopic
scale. Within this approach, the real structure of the material is substituted by ide-
ally superimposed continua which occupies the entire domain at the same time [21],
and the classical balance equation characteristic of the continuum mechanics can be
applied without taking into account discontinuity at the interfaces between the real
constituents. A comprehensive description of the balance equations that govern the
mechanical behavior of the porous media can be found in [37]. What makes the

porous media interesting, but at the same time complicated to be modeled, is the
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coexistence and mutual influence of the mechanical deformation of the material and
the flow of the fluids filling the pores of the material.

Concerning the modeling of fracture, a fundamental contribution to the study
of the problem of evolution of preexisting cracks in elastic material is the energetic
approach proposed by Griffith [29]. This approach is based on the definition of an
energetic quantity related to the surfaces of the crack itself. A variational formulation
of the Griffith’s energetic criterion which allows the modeling of complex phenomena
like fracture nucleation and branching was first proposed by Francfort and Marigo [25].
Anyway, this formulation requires to deal with the discontinuity of the displacement
field in correspondence of the crack. The phase-field approach to fracture [12] is
based on the regularization of this variational formulation, and solves the problem
of the discontinuity of the displacement. Several models able to handle the crack
discontinuity [43, 47, 35| have been proposed, but they are rely on an a priori definition
of the crack propagation path, which is not the case of the phase-field approach. A
review on several phase-field formulation present in the literature can be found in [1].

In order to couple the phase-field approach of fracture with the mechanical model
for the porous media, several approaches can be followed. A variation formulation of
the coupled problem, limited to the saturated case, has been proposed in [40]. Other
possible strategies to realizes the coupling can be found in [41, 34, 11]. In this wok we
follow the approach proposed in [17], where the coupling between the two problems
is realized including a dependency on the phase-field parameter into the constitutive
law for the effective stress o', which is the portion of the stress directly correlated
with the elastic deformations of the solid matrix of the porous medium.

Due to the continuity of that displacement field that the phase-field approach
imply, the numerical formulation of the problem can be derived using a standard
finite element approach [46].

The aim of this work is to develop a model able to capture the process of crack
formation in partially saturated porous media, with particular attention on the role
played by the air flow in the porous medium. In order to apply this model to the sim-
ulation of complex real-world problems, a robust numerical implementation, derived

taking into account several numerical issues that this modeling implies, is needed.

1.2 Outline of the thesis

This thesis is organized as follows. In Chapter 2 the governing equations of the model

are presented. In the first part the balance equations characterizing the problem of
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water and air flow in deforming porous media are derived, while the second part deals
with the variational phase-field formulation of fracture in elastic material. Finally the
two problem are coupled, using the concept of effective stress.

Chapter 3 deals with the problem of the derivation of a mass conservative scheme
for the numerical solution of water flow in a partially saturated porous medium. The
first part is a review of the problem, limited to the numerical solution of the Richards
equation. In the second part the problem is extended, considering also the influence
of the deformation of the solid matrix. Four different solution schemes are presented,
and tested in a numerical application.

In Chapter 4 the problem of the numerical locking due to the excess of volumetric
stiffness is treated. In the first part we review the results presented in literature,
limited to the case of saturated elastic porous media with low permeability. The
second part deals with the stability of phase-field model with a volumetric-deviatoric
energy split. It is shown how the numerical instabilities occurring in this two distinct
problems share the same nature, and can be solved using a stable mixed finite element
formulation. A new stabilized mixed formulation of the problem of fracture in dry
and saturated porous media is derived, applying a polynomial pressure-projection
technique. Several numerical examples are included, in order to show the occurrence
of the numerical locking, and the efficiency of the stabilization proposed.

Finally, Chapter 5 deals with the application of the general model derived in
Chapter 2. In the first part the Finite Element Method is applied, in order to derive
the numerical formulation of the governing equations. Then the numerical simulation
of two different problems of desiccation of initially saturated soil is presented, focusing

on the influence of the flow of the air phase in the development of fractures.






Chapter 2

(Governing equations

2.1 Introduction

The aim of this chapter is to introduce the equations governing the fracture propa-
gation in partially saturated deforming porous media. In Section 2.2 the equilibrium
equations and the mass balance equations for the constituents (solid, water and air)
and for the whole multiphase material are introduced within the framework of the
theory of mixtures [63, 61, 62] restricted by the volume fraction concept [14, 21]. The
closure of the problem is obtained adding some necessary constitutive relations for
the solid and the fluid phases, and the key concept of effective stress [59, 28, 10]. This
results into a system of three differential equations, which can be solved with respect
to the displacement u, the water pressure p* and the air pressure p®. This system of
equations form the so-called u — p* — p* formulation of the problem of air and water
flow in a deforming porous medium [37].

In Section 2.3 the phase-field approach to brittle fracture is reviewed. This ap-
proach is based on the regularization [12| of the variational formulation of the Griffith’s
theory of brittle fracture |25], and the differential equations governing the problems
of equilibrium and evolution of the phase-field variable d are derived as Euler’s equa-
tions of a constrained energy minimization problem. Different formulations for the
elastic and the fracture components of the total energy, as well as different techniques
for the enforcing of the irreversibility constraint on the phase-field parameter d, are
taken into account.

Finally, in Section 2.4, the equations governing the phase-field model of fracture
in partially saturated porous media proposed in this thesis are presented. The model
is obtained coupling the evolution equation for the phase-field parameter d, presented
in Section 2.3, with the u—p" —p® formulation presented in Section 2.2. The coupling

is obtained assuming a dependency on the phase-field parameter in the constitutive
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(a) (b)

Figure 2.1: Schematic representation of the real internal structure of
an infinitesimal potion dV of a partially saturated porous medium (a),
and its corresponding representation as a mixture consisting of smeared
overlapping continuous phases (b).

equation for the effective stress [17], i.e. the portion of the stress which is responsible
of the deformation of the solid skeleton of the material. We call the resulting system

of equation the uw — p* — p* — d formulation of the problem.

2.2 Two-phase flow in deforming porous media

2.2.1 The volume fraction concept

A porous medium is a material which consists in a solid matrix, with close and open
pores inside. When the open pores are filled by one ore more fluid phases the material
is called multiphase porous medium. In the case of partially saturated geomaterials,
which are the object of this thesis, two fluid phases filling the pore space are taken
into account: one liquid phase, consisting of water, and one gas phase, consisting
of dry air (i.e. in absence of the vapor species, and the consequent mass exchange
between vapor and water). Furthermore, the three phases are considered immiscible,
and without mutual exchange of mass. A representation of this structure can be seen
in Figure 2.1.a.

Due to the complicated pore structure which characterizes geomaterials, such as
soils, rocks or concrete, and to the presence of interaction forces at the interfaces of

the constituents, the development of a mechanical model at the microscopic level,
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i.e. the level of investigation in which the real non-homogeneous structure of the
material is considered, becomes rather complicated, as well as unnecessary for prac-
tical applications. From an engineering point of view, it is instead more interesting
the development of a model at a less detailed scale, in order to provide an average
description of the mechanical behavior of the porous medium, but still keeping track
of the nature and the mechanical properties of the constituents. This scale of inves-
tigation is called macroscopic scale, and at this level the real multiphase system is
substituted by a model in which every constituent is assumed to occupy the entire
domain, as represented in Figure 2.1.b. Therefore, at each point X € 2, with €2 being
the domain of the multiphase material, all the phase are assumed to by simultane-
ously present (overlapping continua), and the characteristic balance equations (mass,
momentum, energy) of the continuum mechanics can be used, for each phase, on the
entire domain ).

In order to derive the macroscopic equations describing the behavior of these sub-
stitute continua, several theories have been developed in the field of mechanics of
porous media. These theories can be classified into two main approaches [37]. One
approach start from the mechanical description of the behavior of the real constituents
at the microscopic scale, with the derivation of balance equations in which interaction
forces and discontinuities at the interfaces between the constituents are taken into ac-
count. The macroscopic equations are then derived using an averaging process based
on the integration of the microscopic quantities over a control volume, called repre-
sentative element volume (REV). These averaging theories, based on the upscaling of
microscopic quantities, are known as hybrid mixture theories [30, 31, 32, 65].

A second possible approach is to start the derivation of the balance equations for
the single phases directly at the macroscopic level, and is based on the fundamental
concept of volume fraction, defined as the ratio of the volume of the constituents
to the volume of the control space [37]. The volume fraction allows the smearing
operation of the intrinsic mechanical properties of the single phases over the entire
domain 2. Phenomenological approaches, such as the Biot’s theory [4, 5], and mixture
theories [63, 61, 62] restricted by the volume fraction concept belong to this approach
[44, 27, 51, 14]. The latter, in particular will be adopted in this thesis, to the derive
the macroscopic mass balance and equilibrium equations governing the mechanical
behavior of the multiphase material.

Let us define the volume fraction ¢® relative to the phase « as

ave
TV

¢ (2.1)



2.2 Two-phase flow in deforming porous media Chapter 2

where a = s, w, a (solid,water,air) and dV* is the volume occupied by the phase «
within a certain control volume dV, assumed to be tied to the solid matrix. The

volume fractions of the single phases are subjected to the closure condition

Y ¢r=1 (2.2)

Nphases

For applications of the mixture theory to the modeling of partially saturated porous
media, is also useful to introduce two additional volumetric quantities, commonly use

in the field of geomechanics: the porosity n, defined as
n=1-—¢° (2.3)

and the water saturation S*, defined as

-
¢a + wa

Based on the closure condition (2.2), and on the definition (2.3) and (2.4), the volume

fractions ¢°, * and ¢ can be expressed as function of n and S*, obtaining

Sv (2.4)

P =1-n (2.5)
¢ = nS® (2.6)
¢ =n(1— Sv) (2.7)

We define as “intrinsic” a quantity €* defined with respect to the phase volume
dV®. Its corresponding quantity ,, defined with respect to the control volume dV

is then called “partial”, and is related to the intrinsic one by the relation
Eq = P%e” (2.8)

The volume fraction ¢* can be seen as a link between some averaged properties
of the real constituents, and the corresponding distributed properties which charac-
terizes the substitute continua. The partial quantities ¢, are fundamental for the
development of the balance equations at a macroscopic level. In particular we define

the partial density p, of the phase « as

Pa = ¢°p° (2.9)

where p® is the intrinsic density of the constituent, and the partial Cauchy stress
tensor of the phase a as
oo = %0 (2.10)
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where o is the intrinsic stress of the constituent.

A other important fundamental assumption for the kinematic description of the
mixture is that an independent state of motion is assigned to each constituent [22].
This means that the individual constituents follows different motions and, therefore,
the time evolution of a certain material point of a phase «a, described by a mathe-
matical operator called material time derivative, has to be described with respect to
the intrinsic velocity v* of that particular phase. The material time derivative, with
respect to the motion of the phase a, of a certain differentiable function f (x,t) is
defined as

dof _of

e _of .. 911
sl r G (2.11)

When studying the fluid flow in deforming porous media, anyway, it is more useful
to focus on the relative motion of the fluids with respect to the solid matrix, rather
then on their absolute motion. We define then the relative velocity of the fluid phase

a with respect of solid phase as
v =v" —v (2.12)

where v = v? is the intrinsic velocity of the solid phase. It is then possible to express
the material time derivative with respect to a fluid phase o as a function of the
material time derivative with respect to the solid, using the expression
d*f
dt
obtained inserting (2.12) in (2.11), and where the symbol

= f+o°-Vf (2.13)

=20 (214)

indicates the material time derivative with respect to the solid phase.
In the next sections we introduce the macroscopic balance equations that govern
the problem, starting from the integral form of balance equation of the single phase

formulated at the macroscopic scale, and under the assumption of small strains.

2.2.2 Mass balance equation

Let’s consider an arbitrary volume V € 2, where 2 € R? is a domain representing
a d-dimensional three-phase porous medium (d = 2 in 2D, d = 3 in 3D). The total

mass of the phase o in V' is defined as

M, — / padV (2.15)
1%

9
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The law of conservation of mass states that the total mass of each phase must preserve

over time, that is

d*M, d®pq
& /(dt+paV'v)VO (2.16)
v

where the Reynolds transport theorem has been applied, in order to move the time
derivative into the integral. This conservation law must hold for every arbitrary
volume V', so we can derive the following localized form of the mass conservation law

for the phase a:
d®pa
dt
Applying the definition of relative velocity (2.12) and the relation for the material

+ paV - v% =0 (2.17)

time derivative (2.13), we obtain for each phase

puw+ puV v+ V- (¢¥0Y) =0 (2.19)
Po + PV v+ V- (60" =0 (2.20)

Now we want to transform the partial densities into intrinsic densities, which have
a more clear physical meaning. On order to do that, we apply the relation (2.9),

specified for each phase a, obtaining, from equations (2.18), (2.19) and (2.20):

<¢s‘ps) + (bspsv cv=0 (221)
(0"p*) +¢"p"V -0 + V- (6"5") =0 (222)
(6%0%) + ¢"p"V -0+ V- (¢°5") = 0 (2.23)

If we assume the hypothesis of incompressible solid grains (p* = 0), and we express
the volume fractions as function of the porosity n and the water saturation S* throw
equations (2.5), (2.6) and (2.7), we can rewrite equations (2.21), (2.22) and (2.23) as

—p’n+p°(1—n)V-v=0 (2.24)

S+ npP S + SUnpv + SUp nV - v + V- 9% =0 (2.25)

(1 —8")p% — np®S® + (1 — S¥)nps + (1 — S¥)p™nV v+ V- -0°=0  (2.26)
where v and v® are the so-called Darcy velocities of water and air, defined as

BY = nSUY (2.27)

10
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o* = n(1 — S*)5" (2.28)

Due to the constraint (2.2), only n,p.se — 1 equation are necessary to ensure the
conservation of mass. If we sum up the equations (2.24) and (2.25), we obtain the

mass conservation equation of solid and water:
np”Sv + SUnpv + SUpUV v + V- oY =0 (2.29)

With a similar procedure, if we sum up the equations (2.24) and (2.26), we obtain

the mass conservation equation of solid and air:
—np®Sv 4 (1 — S)npe 4 (1 — S¥)p*V - v+ V-5* =0 (2.30)

In order to be able to express equation (2.29) and equation (2.30) as function of
the only variables u, p* and p®, we need to define a set of constitutive repations
for the variable p*, p® Sv, v* and v®. Under the hypotesis of small deformations,
the porosity n is normally assumed constant, and con be considered as a material

parameter.

2.2.3 Equilibrium equation and effective stress

Let’s consider again an arbitrary volume V' of our domain. The balance of the internal

and external forces applied to the phase o in V' is defined as

/ pugdV + / hodV + / t.dA =0 (2.31)
v v 1%
where g is the gravity acceleration vector, %, is the partial traction vector, defined as

t, = ¢°t° (2.32)

and h,, is the force, per unit of total volume, exerted by the other phases on the phase

a, and subjected to the constraint

> =0 (2.33)

Nphase

Now, applying the Cauchy theorem

t,=0,-1 (2.34)

11
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we introduce the Cauchy partial stress tensor o,. Using the divergence theorem, it

is than possible to rewrite (2.31) as

/(V 04+ pag + hy)dV =0 (2.35)
v
This equation must hold for every arbitrary volume V', so we can derive, for each

phase, the following localized forms of the equilibrium law:

V-os+psg+hs=0 (2.36)
V-ou,+pwg+h,=0 (2.37)
V-o,+p.g+h,=0 (2.38)

Due to the low velocities of the fluids in the pores, the viscous dissipating component
of the stress tensor for the fluids is assumed negligible [37]. As consequence of this

assumption, the partial stress tensors o, and o, have the following isotropic forms
o, =—¢"p"T=—nS"p"I (2.39)

o, =—¢"p'I=—-n(1-5")p1 (2.40)

where I is the identity tensor, and p" and p® are the intrinsic relative pressure of water
and air respectively. The relative pressure of a fluid is a measure of the difference
between the absolute pressure of the fluid itself and the atmospheric air pressure pf,

which leads to the following definition for p* and p:

P = Paps — Do (2.41)
" = Paps — Do (2.42)

where p% ~ and p?,. are the absolute values of the pore pressure of water and air
respectively.
We define now the total Cauchy stress tensor of the mixture as the sum of the

partial stress tensor of the components, namely [37]

o=o0,+0,+o0, (2.43)

Taking into account the isotropic forms (2.39) and (2.40) of the partial stress tensorso,

and o,, the definition of the total stress (2.43) can be rewritten as
oc=0,—n[Sp" 4+ (1-5Y)p"1 (2.44)

12
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Summing up equations (2.36), (2.37) and (2.38), and taking into account the defi-
nitions (2.43) and (2.46), we obtain the following equilibrium equation of the whole

mixture:

V.-o+pg=0 (2.45)

where p is the averaged density of the whole mixture, defined as
p=ps+ puw+tpa=(1—n)p"+nS"p" +n(l—5")p" (2.46)

In order to be able to express the equation (2.45) as a function of the only variables
u, p* and p“, the subdivision (2.44) of the total stress unto the sum of the partial
stresses of the single components is not the most appropriate. The partial stress
tensor o relative to the solid phase, in fact, takes into account not only the contact
forces between the grains, which are responsible of the deformation of the solid matrix,
but also the pressure exerted on the grains by the fluids filling the pores, which does
not imply a deformation of the solid matrix. Therefore o, is not as suitable variable
for the definition of a stress-deformation constitutive law. It is therefore useful to
introduce the concept of effective stress o', which is defined as the portion of the
total stress o directly responsible of the deformation of the solid matrix (not to be
confused with the solid grains, which are assumed incompressible). The concept of
effective stress was first introduced by Terzaghi [59], who, in the case of saturated

porous media, proposed the expression
o' =0+ p'l (2.47)

The extension of the concept of effective stress to partially saturated porous media
is not straightforward, and several definition are present in literature. A very well
know definition of the effective stress for partially saturated porous media is the one
proposed by Bishop [6], and experimentally validated by Skempton [57]. In Bishop’s

formulation, the effective stress o’ is defined as
o' =0+ [p"+(1-x)p"1 (2.48)

where x is a coefficient related to the area of contact between the water and the solid,
and must be determined experimentally, based on the type of problem into analysis.
In this work we adopt an alternative expression, derived by Schrefler et al. [53] by

using volume averaging, in which the effective stress o’ is defined as
o' =0+ [Sp"+ (1 —-5")p%1 (2.49)

13
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The expression (2.49) can be seen as a particular case of (2.48), in which the coefficient
X is defined as
x=:5" (2.50)

and does not need any experimental characterization. The quantity
PP =SYp" + (1 —SY)p° (2.51)

is called intrinsic mean pore pressure, and represent the intrinsic averaged value of
the pressure exerted on the grains by the fluids filling the pores. If we define the

partial mean pore pressure as

pp=(1—n)p" (2.52)
and we insert the definition of the effective stress (2.49) into equation (2.44), we
obtain the following relation between the partial stress tensor o, and the effective

stress o’:
o, =0 +pl (2.53)

It can be seen how the effective stress o’ can be obtained subtracting from the partial
stress o the partial mean pore pressure p,, i.e. the portion of o, which does not
imply a deformation of the solid matrix. Furthermore, as a difference between two
partial quantity, o’ is also a partial quantity, resulting to be a good candidate for the
definition of a constitutive relation with the deformation of the solid matrix, which,
in turn, is a quantity defined with respect of the whole mixture, and not an intrinsic
characteristic of the solid phase.

Introducing (2.49) in (2.45), we obtain the following form of the equilibrium equa-

tion of the whole mixture
V-lo' = (S“p"+(1—S")p")I|+pg =0 (2.54)

2.2.4 Constitutive equations

To solve the system of equations (2.29), (2.30) and (2.54) using, as main variables,
the displacement of the solid matrix u, the water pressure p*“, and the air pressure
p®, we need a set of constitutive equations for the variables Sv, p¥, p*, v*, v* and
o’. We underline at this point the important role payed by the choice of the effective
stress o’. Even if, looking at the balance equations of the mixture, several alternative
choices of the effective stress seems to be possible, only a correct derivation of o’
from the entropy inequality ensure the thermodynamic consistency of the constitutive

equations introduced in this section (see [10]).

14
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Constitutive law for the effective stress

It is well know in the field of geomechanics that soils are material that develops irre-
versible deformations, well described within the framework of the theory of plasticity.
Anyway, the scope of this thesis is the development of a model for brittle fracture in
partially saturated porous media, and therefore we need to define a constitutive low
for the effective stress o’ only inside the elastic domain. We assume, in particular, a

linear elastic constitutive equation for the effective stress o', defined as

s 0(e(w)

=C: 2.55
e € (2.55)
where
e =Viu (2.56)
is the infinitesimal stress tensor, and
1
Vo(e(u)) = 5/\’51“2(5) + ptr(e?) (2.57)
is the density of elastic energy. Finally
0% ¥,
C=--"" 2.58
a2 (2.58)

is the forth order elasticity tensor, depending on the Lamé constants A and pu.

Constitutive laws for the density of the fluids

Concerning the density of the fluids, we assume that, at constant temperature, both
water and air behaves as barotropic fluids. That means that exist a function f(p®, p®)
such that

f(p™, p*) =0 (2.59)

For the water we assume the relation |37]
p* = K"“In(p" — pyy) (2.60)

where K™ is a material constant called bulk modulus of the water, and is an intrinsic
property of the fluid, py is the density of water at the atmospheric pressure, and p*

the water pressure. We can then derive the equations

p'LU
v — pWexp [ L 2.61
p* = pp exp (Kw) (2.61)
. pw w
w= 2 2.62
P = el (2.62)



2.2 Two-phase flow in deforming porous media Chapter 2

We assume the water intrinsic density as constant (p* = p{’), maintaining the validity
of the rate equation (2.62).

For the air we assume the equation of state of ideal gas [37], namely
p* 4+ py = RTp* (2.63)

where R is the specific gas constant of air, 7" is the absolute temperature, p{ is the
air atmospheric pressure and p® the relative pressure. Knowing the air density pf at

the atmospheric pressure, we obtain

. DYt Dg
= 2.64
P oo (2.64)
. P°
¢ = —— 2.65
= (2.65)

a
where K¢ = 27—2.
0

Constitutive law for the saturation

Let us introduce a new variable, called capillary pressure p°, defined, at equilibrium,
as

c=p"—p" (2.66)
It is now possible to formulate for water saturation a constitutive relation of the
kind S = S“(p°). In soil mechanics, this constitutive model is called Soil-Water
Characteristics Curve (SWCC). The SWCC used in this work is the well-established

empirical model proposed by Van Genuchten [64]. In this model the water saturation

is defined as

SY=1 for p© <0
SY=(1-.8Y) [1 + <0ch>nvg] o + 57 forp®>0

pvg

(2.67)

where a4 and n,, are parameters of the model depending on the nature of the soil,
myg =1— - and S¥ is the residual water saturation, which is a lower bound for the
vg

water saturation SYv.

Constitutive laws for fluid relative velocities

Based on thermodynamic studies on the dissipative nature of the interaction forces
h" and h® between the the fluids and the solid phase |33, 32, 54], starting from the
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equilibrium equations of the fluid phases (2.37) and (2.38), the Darcy’s law for water
and air phase can be derived, obtaining respectively
Em kST
/1/11)

v =nSYv" = (—=Vp* 4+ p“g) (2.68)

kR T

a

o* =n(1— S)" (—Vp” + p“g) (2.69)

where v* and v are called Darcy velocities of water and air,k® is the intrinsic per-
meability, I is the identity matrix, k® is the intrinsic permeability of the solid matrix,
u* and p® are the dynamic viscosity of water and air respectively. Finally the two
coefficient k™ and k" are called relative permeability of water and air respectively,
and they take into account how the saturated Darcy velocity of a fluid phase is re-
duced by the presence of the other fluids. Therefore the relative permeability can be
determined as functions of the water saturation. For the Van Genuchten model, the

following expressions have been derived [45]
1 Muyg 2
e = /5w {1 - [1 - (Sjj’)mg] } (2.70)

o= {(-s5) [1- (52)7] m}2 Iy (2.71)

where S = (S* — SY¥)/(1 — S) is called effective saturation, m,, is the same pa-
rameter used in the Van Genuchten model, and A3y ¢ < 1 is an artificial residual air
relative permeability, fundamental in the numerical application because it allows to
maintain the mass balance equation of solid and air (2.30) always “active”, also when
SY=1.

2.2.5 Governing equations

Applying the previous set of constitutive equations to the systems of equations (2.29),
2.30 and 2.45, we obtain the following form of the differential equations governing the

problem of water and air flow in a deforming linear elastic porous material:

V-(C:e)=VI[Sp"+(1—-5")p"+pg=0 (2.72)
- w k™ ks T
np® S + S“’n,o“’% +SYpV-v+ V- {pw (=Vp“ + p“’g)] =0 (2.73)
a g w pa wy a akraksI a a
—np*SU+(1-95 )nﬁJr(l—S )V -v+V-|p (—=Vp*+pg)| =0 (2.74)
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that can now be solved with respect of the displacement u, the water pressure p*,
and the air pressure p°.

Finally, the following initial conditions (ICs) boundary conditions (BCs) have to
be specified on the boundary I' of the domain €2 of the problem:

u(x,t)) =u(x,0)) att=0
p* (x,t)) =p*(x,0)) att=0
p*(xz,t)) =p*(x,0) att=0
u="u on I'P
p* =p¥ on I'% (2.75)
p*=p° on I;”
o-n=t on I'N
oY on =g on I}
oY -n = q* on I}

where I'? and I'" are the Dirichlet and the Neumann boundary respectively.

2.3 Phase-field model of brittle fracture

2.3.1 Griffith’s theory of brittle fracture

The first energetic approach of classical fracture mechanics was proposed in 1921
by Griffith [29], who introduced the following criterion of propagation of preexisting

fractures:

dwe:pt dEel _ dEs
dA dA  dA
where Wt is the work of the external loads, E is the elastic energy, E* is the

(2.76)

energy associated to the surface A of the growing crack I'. (A). The evolution of the
problem is considered quasi-static, so the kinetic energy is not taken into account
in the equation (2.76). If we consider a pure elastic body and conservative external

forces, we can define the total potential energy P as
pP=E"—Wwe (2.77)

and identify the left-hand side of equation (2.76) as the the release of the potential

energy upon an infinitesimal increment of the fracture surface dA, defined as

dP

The condition (2.76) can be therefore rewritten as
G=G. (2.79)
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where the quantity
dE?
= —— 2.
G 1 (2.80)

is postulated to be a material property, called fracture toughness, and is a funda-
mental energetic quantity in fracture mechanics. The Griffith’s criterion states that
a preexisting fracture in an elastic body can propagate only if the condition (2.79) is
fulfilled, that is only if the release of the potential energy upon an infinitesimal in-
crement of the fracture surface dA equals the surface energy related to the increment
dA itself. Additionally, the fracture toughness G. is postulated to be also an upper

bound for the release rate GG, namely
G <G, (2.81)

A fundamental characteristic of the Griffith’s theory is that the crack path [.is as-
sumed to be known a priori [13], which means that the growing crack I'. (4) has to

be considered as a subset of the prescribed crack path r ¢, namely
I, (A)CT, (2.82)

The crack growth along the path I'. has to be considered an irreversible process, so

the time evolution of the crack surface A must fulfill the irreversibility condition
A>0 (2.83)

where the time t has to be considered as a pseudo-time parameter governing the
loading history of the quasi-static problem. If we subdivide the entire loading process

into a finite sequence of time steps (t,),,_; y, the condition (2.83) can be rewritten as
A > A, (2.84)

where n 4 1 is the current time step, and n is the previous time step. We can finally

summarize the Griffith’s theory into the following three conditions [19]

Apr > A, (2.85)
G <G, (2.86)
(G — G (A — A,) =0 (2.87)

where (2.85) is the irreversibility condition, (2.86) is the upper bound on the release
rate of the potential energy, and (2.87) is the Griffith’s criterion written in the form

of complementary condition.
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2.3.2 Variational approach to fracture mechanics

A variational formulation of the problem of brittle fracture based on Griffith’s theory
has been first proposed in 1998 by Francfort and Marigo [25]. The problem of equi-
librium and quasi-static evolution of the crack is governed by the minimization of the

functional

B(u,T,) - / Dy(e(w))dV + G 1(T,) — / b udV — / Fror-udS (2.88)

QT Es(Te) QT ry
N

Eel(u,l.) wezt(y,I';)

where
Wo(e(u)) = %/\trz(s) + ptr(e?) (2.89)

is the elastic energy density, {2 € R? is a domain representing an elastic d-dimensional
body (d = 2in 2D, d = 3 in 3D), b is the body force defined on the domain {2 and ¢,, is
the prescribed surface traction acting, at the current time ¢, 1, on the portion of the
boundary with Neumann conditions on the displacement field T'YY. Finally.7#"~(T,) is
the Hausdorff measure of the crack I'. of dimension d—1 which, for d = 3, corresponds
to the area A of the growing crack I'.. The functional (2.88) depends on the the
displacement uw and on the crack itself I'., and the discrete irreveresibility condition
(2.84) becomes

Leny1 2D (2.90)

The main advantage of the formulation based on the minimization of (2.88), compared
to the Griffith’s theory, is that the crack I'. itself is now a variable of the problem,
so it is not constrained to follow a prescribed crack path I, anymore. Therefore, the
minimization of (2.88) allows to model not only the evolution of preexisting cracks
on prescribed path, but also crack initiation and branching. However, in order to
obtain a numerical solution of the problem based on the minimization of (2.88), a
computational model able to perform the numerical tracking of the evolving discon-
tinuity boundary I'. is needed. This tacking operation, anyway, requires complex
and costly computations, especially when complicated phenomena like interaction
between multiple cracks, or branching, need to be modeled [9].

In order to enable an efficient numerical treatment of the variational problem
based on (2.88), the following regularized version of the functional F(u,I") has been

proposed by Bourdin et al. [12]:
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El(u,d):/m (w) dv+4%’ /(—+zywy) /b-udV—/tn-udS
2 2

Q ry

J/ N J/

-
-

Bel(u (u,d) Es(d) Wezt(u)
(2.91)

where d is the phase-field parameter, which varies from d = 0 (undamaged material)
to d = 1 (damaged material), w(d) is the local part of the so-called dissipated energy
density function, whose definition depends on the chosen phase-field model, [ the
so-called characteristic length, and C, a normalization constant, which ensures the
consistency with (2.88). The elastic energy density, now depending also from the

phase-field parameter, is defined as
V(e(u),d) = [(1 - d*) +n] To(e(u)) (2.92)

where ¥, is the undamaged elastic energy density defined in (2.89), and 7 is an
artificial residual stiffness introduced for numerical stability purposes. The discrete
irreversibility condition (2.90) needs now to be formulated as function of the phase-
field variable d, and becomes

d>d, (2.93)

where d and d,,_; are the values of the phase-field at the current and at the previous
time step respectively [26] (the subscript n + 1 has been omitted).

The advantage of the regularized formulation based on the minimization of (2.91),
when compared to the free-discontinuity formulation based on (2.88), is that in the
former no integrals over the discontinuity surfaces are present. The discontinuity
surface is, in fact, transformed into a volume in which a regular transition between
the undamaged and the broken state of the material is modeled. The width of this
transition zone is controlled by the parameter [, and it is mathematically proved that,
for [ — 0, the solution of the regularized formulation, based on the minimization of
the functional (2.91), converges, in the sense of I'-convergence, to the solution based
on the minimization of (2.88).

The solution of the problem of equilibrium and quasi-static evolution of the phase-
field variable d consists in finding a couple (u, d) that minimizes the functional (2.91),
namely

argmin{Ej(u,d) : wel,, de Ty} (2.94)
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where T, and Ty are the admissible displacement space and the admissible phase-field

space, respectively, and are defined as

T,={u:Q—>R*|uc H u=wonTL}

2.
Ty={d: Q=R |de H d>d, in 2) (2.95)

The minimization of the functional (2.91) is a constrained minimization problem,
where the discrete irreversibility condition (2.93) is acting as unilateral constrain.
In order to derive the weak form of the constrained minimization problem, we start

defining the Lagrangian functional

Li(u,d, \) = Ej(u,d) + /)\c (d)dV (2.96)

Q
where A = A (x) is a function called Karush-Kuhn-Tucker (KKT) multiplier, enforcing
on the domain €2 and on the portion of the boundary with Neumann BCs on the

phase-field T'Y the unilateral constrain
c(d)=d,—d<0 (2.97)

which, in turn, coincides with the discrete irreversibility condition (2.93).
Now, the necessary conditions for a pair (u, d) to be a minimum of the constrained

minimization problem, known as Karush-Kuhn-Tucker (KKT) conditions, are

Li(u,d, \) (v) = /% ce(v)dV =0Vv €T, (2.98)
L, d, ) (o) :/—w(%(;”)’d) (0—d)dV + Aijv / (a - D gy
(9] Q
+ 4% /ZZVd-V(a—d)dV—/A(a—d) —0Va eT; (2.99)
A(z) >0 (2.100)
/)\ (dy —d)dV =0 (2.101)

7
where Lj(u,d, \) (v) and Lj(u,d, \) (o) are the directional derivatives of the func-
tional Ej(u,d). Equations (2.98) and (2.99) are the stationarity condition of the
Lagrangian, with respect of u and d. The inequality (2.100), called dual feasibility

22



Chapter 2 2.3 Phase-field model of brittle fracture

condition, ensure the KKT multiplier to be positive. Finally equation (2.101) is called
complementary conditions, and ensure the KKT multipliers to be non-zero only if the
constraint (2.97) is active, i.e. if the inequality becomes an equality.
Considering the condition
a—d>d,—d

which derives directly form the definition of the phase-field admissible space Ty, equa-
tions (2.98), (2.99), (2.100) and (2.101) can be condensed into the three equaitons

0¥(e(u),d) NV — 0Ve
/W' (v)dV = 0Vw € T, (2.102)

2d 0, ] T
G
e /2zw Via—d)dV >0YacT) (2.103)
UQ
0V (e(u),d) G. [w'(
/T(d —ddV+4Cv/ _d)dv
(04 Q
G
o /ZZVd-V(dn—d)dV:O (2.104)

Q

which represent the weak form of the problem (2.94), and are non longer dependent
on the KK'T multiplier . If we define the stress tensor o as
O¥(e(u),d) 0¥ (e(u))

o= = [(1—d?) +n) — (2.105)

and we apply the Green’s Lemma to the equations (2.102), (2.103) and (2.104), it is
possible to derive the strong form of the variational problem, which consists of the

following Euler’s equation, defined on the domain 2

~V.o=b (2.106)
— (1 —d) Wy + 4% (% l(d) —21Ad) > 0 (2.107)
(1 — d) Wy + 4% (wgd) 2AAd)| (d — dy) =0 (2.108)
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together with the BCs

o-n=t, on Y (2.109)
Vd-n>0 on IV (2.110)
(Vd-n)(d—d,) on IV (2.111)

where equation (2.106) is the equilibrium equation, equation (2.107) is the evolution
equation of the phase-field variable d and equation (2.108) is the complementary

condition,

2.3.3 Particularization of the model

The energy split

The phase-field model presented, with the energy ¥(e(w),d) defined as (2.92), is
called isotropic, because the total undamaged energy ¥y(e(u)) is degraded by the
phase-field variable d. This is the simplest constitutive assumption for the energy, but
allows the development of fractures also in compression, leading to possible unrealistic
interpenetration of the material. Therefore several energy splits have been proposed
in the literature |3, 36, 39| in order to maintain undamaged a certain portion of the
elastic energy related to the compressive behavior of the material. These models are

called anisotropic, and are all based on the general energy split definition

V(e(u),d) = [(1—d®) +n] ¥ (e(u) + ¥ (e(u), %= ¥ + ¥  (2112)

The isotropic model can be seen as a particular anisotropic model in which ¥, = 0.
Therefore, from now on in this work, the strain energy ¥(e(u),d) is always intended
to be defined as in (2.112). Starting from the general definition of the anisotropic
split of the elastic energy density (2.112), it is possible to derive from ¥(e(u),d) the

expression for the stress tensor o in the anisotropic case, namely

O¥(e(u),d) 2 0y (e(u)) | 0¥ (e(u))
7 Oe [< )+ 77} Oe i Oe
As for the energy split (2.112), it can be notice that the expression (2.105) for the

stress tensor o in the isotropic model can be seen as a particular case of the more

(2.113)

general definition (2.113). Therefore, from now on in this work, the stress tensor o
is always intended to be defined as in (2.113).
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As follows we present two models, both based on the definition of volumetric-
deviatoric decomposition of the energy. The first one is the model proposed by Lan-
cioni and Royer-Carfagni |36, in which the positive and negative components of the

energy ¥y(e(u)) are defined as

{WS— — (edev . €dev)

2.114
Uy = K,tr?(e) ( )

where K,, = A+ £ is the bulk modulus, gdv =g — %I is the deviatoric part of the
strain tensor and n is the dimension of the problem. In this split only the deviatoric
component of the elastic energy is considered as driving force for the fracture, and
the elastic constitutive equation (2.113) remains linear.

The second model that we consider is the one proposed by Amor et al. [3], in

which the positive and negative components of the energy ¥(e(u)) are defined as

{ Uy = K, (tr(€))] + p(e? : e9) (2.115)

Uy = K, (tr(e))”
where (tr(e)), = 3(tr(e) £ [tr(e)]). In addition to the deviatoric part, this model
considers as a fracture driving force also the volumetric part of the elastic energy, if its
sign is positive (that is, if the hydrostatic component of the stress tensor is positive).
Because of the presence of the Macaulay brackets in (2.115), the elastic constitutive
equation (2.113) is no longer linear.

Based on (2.112) and (2.113), the strong form of the problem of constrained min-

imization of the functional (2.91), becomes, for the anisotropic case:

~V.o=b (2.116)

o —aywt + Ze (D giag) s 0 (2.117)
40, 1

(1 —d) T + 4Goc (@ —2Ad)| (d—dy) =0 (2.118)

together with the BCs (2.109), (2.110) and (2.111).

Choice of the function w (d)

Now, in order to be able to solve the phase-field evolution equation (2.117), we still

need to choose a expression for the local part of the dissipated fracture energy density
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function w(d), and define the corresponding normalization coefficient [50]

C, = /01 Vw(s)ds (2.119)

Two models are taken into account in this work, both commonly use in the phase-
field community. The first one, called AT1 (AT stands for Ambrosio-Tortorelli, see
[2]) assumes a linear expression for the local part of the dissipated fracture energy

density function w(d), namely

w(d) =d (2.120)

The corresponding normalization coefficient C,,, derived inserting (2.120) into (2.119),
is
2
Cy=3 (2.121)

The advantage of this model is that there is an undamaged elastic phase at the
beginning of the loading history (see Figure 2.2.a). But this good property of the
model has a cost: during the elastic phase the phase-field equation (2.117) would

lead to negative values of d, so the the additional positiveness condition
d>0 (2.122)

needs to be explicitly formulated.
The system of differential equations (2.116), (2.117) and (2.118) becomes, for the
AT1 model

_V-o=b (2.123)
o1 —d) g + 3?(% _9IAd) >0 (2.124)
—2(1 —d) ¥y + 350(% —2IAd)| (d—d,) =0 (2.125)

together with the irreversibility condition (2.93), the positiveness condition (2.122)
and the BCs (2.109), (2.110) and (2.111).

The second model taken into account in this thesis is the so-called AT2 model,
in which a quadratic expression for the local part of the dissipated fracture energy

density function w(d) is considered, namely

w(d) = d? (2.126)
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Chapter 2 2.3 Phase-field model of brittle fracture

The corresponding normalization coefficient C, is

C, = (2.127)

1
2
Due to the choice of a quadratic expression for w(d), in this case the constraint
0 < d < 1 is implicitly satisfied by the model. On the other hand, the evolution of
the phase-field parameter stars directly at the beginning of the loading history, so,
unlike the AT1 model, for the AT2 model there is no undamaged elastic region (see
Figure 2.2.b).

The system of differential equations (2.116), (2.117) and (2.118) becomes, for the
AT2 model

—V-o=b (2.128)
d
—2(1 —d) ¥y + GC(7 —IAd) >0 (2.129)
d
—2(1 —d) ¥y + GC(7 —IAd)| (d—d,) =0 (2.130)

together with the irreversibility condition (2.93) and the BCs (2.109), (2.110) and
(2.111).

Figure 2.2 shows the homogeneous (that is, without considering the gradient
term in the phase-field equation) and the localized stress-strain curves for the one-
dimensional problem of tension of an elastic bar. We can notice that the solution
bifurcates (localization of the fracture) in correspondence of the maximum value of
the stress. This value is called critical stress o, and, for the one dimensional tension

problem, its value can be derived analytically. In particular, for the AT1 model

3G .F
ATL — [ === 2.131
o - (2.131)
while for the AT2 model
9 |/G.E
A2 — Z | =< 2.132
e 16V 31 (2.132)

These two expressions define a relation between the variables G., E, [ and o, that
allows, knowing three parameters, to determine the value of the fourth.

It is possible, at this point, to recognize how the internal length [ plays a dual
role in the phase-field model. If we consider the functional (2.91) just as a variational
regularization of Griffith’s theory, the internal length is only a regularization param-
eter, which has to be chosen as small as possible, in order to ensure that the solution

tends to the one of the Griffith’s theory. The latter, in fact, can be applied only to
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Figure 2.2: Homogeneous and localized stress-strain curves for the 1-D
traction problem of an elastic bar: (a) AT1 model, (b) AT2 model.

already existing cracks, requiring no other parameters in addition to G. and E. If we
focus instead on the capability of a phase-field model to estimate the nucleation of
new cracks in a initially undamaged material, the internal length [ assume a precise
physical meaning, allowing, throw equation (2.131) or (2.132), to indirectly insert into

the model the tensile strength of the material.

Irreversibility and positiveness conditions

In order to find the pair (u, d), solution of the system of differential equations (2.116),
(2.117) and (2.118) constrained by the irreversibility condition (2.93), it is necessary
to deal with the inequalities (2.117) and (2.93). We present in this section two possible
techniques which allow to transform the evolution equation of the phase-field variable
d into an equality, in which the satisfaction of the irreversibility condition is implicitly
ensure.

The first technique is the penalty method. This method consists into adding to
the functional Ej(u,d) a penalty term P, (d), defined as [26]

Py(d) = %/ (d—d,)? AV (2.133)
0

where 7 is the so-called penalty parameter, and the term
(d—dy_1 — |d—d,)|)

2
ensure that the penalty term P, (d) is active only when the irreversibility condition

(d—dy) = (2.134)

(2.93) is violated. The penalty parameter v has to be large enough (ideally v — c0)

to ensure an accurate enforcement of the irreversibility condition (2.93), but not so
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Chapter 2 2.3 Phase-field model of brittle fracture

large to result into ill-conditioning of the numerical solution [26]. With the addition

of the penalty term P, (d) the functional Ej(u,d) becomes:

Em(u,d):/W(e(u),d)dv+%/(@+uwy?> dv

2

N J/
—~ —~

Eel(u,d) Es(d)

—/b-udV—/tn-ud8+%/<d—dn>2dv (2.135)

[0 N 9

u N /

-

Wext ('u,) Py (d)

The advantage of the penalty method, is that the variational framework is preserved,
and the problem of constrained minimization of the functional Ej(u,d), defined in
(2.91), has been transformed into a unconstrained minimization problem, based on the
functional E; (u,d), defined in (2.135). The solution of the problem of equilibrium
and quasi-static evolution of the phase-field variable d consists in finding a couple

(u,d) that minimizes the functional (2.91), namely
argmin {E; ,(u,d) : weT,, de Ty} (2.136)

where T, and Ty are the admissible displacement space and the admissible phase-field

space, respectively, and are defined as

T,={u:Q—>R*|uc H u=won L}

Ty={d:Q>R|de H') (2.137)

We notice that the irreversibility constraint is no longer present in the definition of
the admissible phase-field space T,. A necessary condition for (u, d) to be a minimum
of £ ,(u,d), is that E; ,(u,d) has to be stationary in (u,d). We obtain the following
weak form of the minimization problem

0¥(e(u),d) NV — 0V
/W' (v)dV = 0Vov € T, (2.138)

od 4C,

b\

Q

Q

—I—V/(d—dn)_adV:OVaer (2.139)
19
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After the application of the Green’s Lemma, it is possible to derive from equations
(2.138) and (2.139) the strong form of the problem (2.136), which consists in the

Euler’s equaitions

~V-o=b (2.140)
/
—2(1—d) ¥ + 4Gcc (wl(d) —2Ad) +y{d—d,)_ =0 (2.141)
together with the BCs
o-n=t, onlY (2.142)
Vd-n=0 on IV (2.143)

Equation (2.140) is the equilibrium equation, and equation (2.141) is the evolution
equation of the phase-field variable d, which has now become an equality.
The mathematical derivation of a lower bound for v has been provide in [26],

where the following expression of 7, for the AT1 and AT2 model respectively, are

proposed:
%64301? : when w(d) = d
Y=1 o ) (2.144)
= (Tm@r - 1) , whenw(d) =d

The parameter 0 < TOL;. < 1 indicates the error in the approximation of the
[-convergence of the fracture energy E°(d) committed using the phase-field profile
obtained by the solution of equation (2.141), instead of the optimal phase-field profile,
obtain by the solution of the system of equations (2.117), (2.118) and (2.93). In
addition, in [26] the value

TOL;, = 0.01 (2.145)

has been suggested as a practical irreversibility threshold for both the AT1 and the
AT?2 models.

The second technique consists in the use of the notion of history field, and was
proposed in [39]. This technique is based on the idea that the undamaged portion
of the energy UJ (e(u)) can be seen as the driving force of the the evolution of the

phase-field variable d. Therefore, once defined the energy history variable H* as
HT = max,cpoq ¥ (€,7) (2.146)

the following evolution equation for the phase-field d is proposed in [39]:

& M —2IAd) =0 (2.147)

_ _ +
2(1 —d)H +4CU( l
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where the phase-field d is expected to be always and increasing function, driven by
the energy history variable H™, which, in turn, is an increasing function by defini-
tion. This irreversibility technique has two main drawbacks: the first is that, due to
the introduction of the history variable in the phase-field equation, the variational
framework of the formulation is lost. The second is that the role of the variable
Ut (e(u)) as driving force for the evolution of d, and the consequent connection with
its irreversibility, are not clearly demonstrated [26]. On the other hand, this method
results to be very easy to implement, and, after the numerical discretization, the
phase-field equation (2.147) results to be linear with respect to d, which turns to be
a computational advantage if a staggered solution approach is used.

Finally, if the AT1 model is used, the additional positiveness condition

d>0 (2.148)

has to be taken into account. If the penalty method is used to enforce the irrevesi-
bility, the positiveness condition (2.148) can be simply incorporated into the discrete
irreversibility condition (2.93) by setting the following initial condition on the phase-
field d

d(z,t=0)=dy(z) =0, Vee QUTY (2.149)

On the other hand, if the method of the energy history variable is used, the posi-
tiveness condition (2.148) has to be explicitly treated using, for example, a penalty

method very similar to the one exposed for the irreversibility condition [26].

2.4 Phase-field model of fracture in three-fase porous
media

The framework for the modeling of partially saturated porous media, presented in
Section 2.2, and the one for the phase-field modeling of brittle fracture, presented
in Section 2.3, are now unified. In this coupling process, several approaches can be
followed. A variation formulation of the coupled problem, limited to the saturated
case, has been proposed [40]. Anyway, due to the non-linearity that the partially
saturated model implies, to develop an extension of this variational formulation is a
hard task. Other possible strategies to realizes the coupling can be found in [41, 34,
11], where different phase-field formulations for the modeling of hydraulic fracture in

saturated porous media are proposed.
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In this wok we follow the approach proposed in [17], where the coupling between
the two problem is realized including a dependency on the phase-field d into the
constitutive law for the effective stress o', which is the portion of the stress directly
correlated with the elastic deformations of the solid matrix of the porous medium,
and therefore considered as the most natural responsible of the accumulation of the
elastic energy necessary for the development of fractures. In particular, the coupling
between the two problem is obtained defining the following constitutive law for the

effective stress:

OV (e(u),d)
Oe
where the elastic energy density ¥(e(u),d) is the one defined into equation (2.112),

o'(e,d) = (2.150)

namely

U(e,d) = [(1—d*) +n] ¥ (e(u)) + ¥ (e(u)) (2.151)

We can now derive the differential equations governing the phase-field model of frac-
ture in partially saturated porous media proposed in this work. In particular, the

model is based on the equilibrium equation

V-o'(e,d) —VI[Sp” + (1 —S")p" 4+ pg =0 (2.152)
the mass balance equation for solid and water phases

KRS T

+SYp"V v+ V- {p (=Vp" + pwg)l =0 (2.153)

the mass balance equation for solid and air phases

S (18l (1-57)p T 04T [p

keI

7 (=Vp" + pag)} =0 (2.154)

and the evolution equation for the phase-field variable d, which takes the form

Ge W) g ing) 4 (d—d,) =0 (2.155)

_9(1 _ +
2(1 —d) v, +4Cv( ]

if the irreversibility condition (2.93) is enforced with the penalty method, or the

alternative form

G
4C,

D gaa) = (2.156)

—2(1 —d)yHt + z
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if the irreversibility condition (2.93) is enforced using the energy history variable H.
The ICs and the BCs of the problem are the following:

u(x,t)) = u(x,0))
p* (z,t)) = p* (z,0))
p* (il?,t)) = p” <w70)
u=1u

pY =p"

pa:ﬁa

o-n=t

oY on=q"

oY on=q"
Vd-n=20

att =20
att =20
att =0
on I'P
on I,
on I'P
on I'N
on Il
on Il
on I'YV

(2.157)

The system of equations (2.152), (2.153), (2.154) and (2.155) (or alternatively (2.156)),
together with the ICs and BCs (2.157), can be solved with respect of the displacement

u, the water pressure p”, and the air pressure p®

33
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Chapter 3

Mass conservative numerical schemes
for FEM analysis of deforming
variably saturated porous media

3.1 Introduction

The mass balance equation, whose general strong form is given by equation (2.17), is
a parabolic equation, which needs therefore to be integrated in time. In particular,
several discretization schemes are avaiable in literature, and it has been found in
[18, 24] that the way in which the time discretization scheme is applied plays a
fundamental role, leading to a conservative or a non-conservative numerical scheme.
This problem is well known in hydrology, where the flow of one or more fluids is
usually studied assuming a rigid porous skeleton. Less attention on this problem has
been paid in the field of geomechanics, where the flow of the fluids is coupled with
the deformation of the solid matrix.

The first part of this chapter reviews this topic, including the derivation of a mass-
conservative scheme for the solution of the Richards equation, and the numerical study
of an infiltration problem [67]. Then, in the second part of this chapter we study
the mass conservation problem taking into account the deformability of the solid
skeleton. Several numerical discretization schemes are compared, and we propose an
original alternative solution scheme, which is shown to be conservative in a numerical

application.
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3.2 Conservative scheme for the Richards equation

3.2.1 Governing equation and numerical discretization

The aim of this section is the derivation of a conservative numerical scheme for the
resolution of the Richards equation, based on [18, 24].

The Richards equation can be obtained, starting from the general form of the
mass balance of water (2.19). If the solid matrix is assumed to be rigid, which means
that V-v = 0 and n = ng, and the density of the liquid water p" is assumed constant,

which implies that p* = 0, the equation (2.19) can be written as

w

et p“V - [0Y] =0 3.1
nop"” g~ + PV - [0Y] (3.1)

where ©" is the so-called Darcy’s water velocity, defined as
Y =nSY0" (3.2)

where v" is the relative water velocity, with respect to the solid matrix. Equation
(3.1) has to hold for each point of the domain {2. We introduce now, as constitutive
law for the water, the Darcy’s Law (2.68), which allows to calculate the Darcy’s

velocity 0" as
- RET

w

W

(=Vp* +0"9) (3:3)
Introducing (3.3) in (3.1) we obtain

sy [kmkeT
o TV

nop"” (=Vp” +p"g)| =0 (3.4)

This equation depends, not only on the water pressure p*, but also on the air pres-
sure p”, throw the Soil Water Characteristic Curve (SWCC), a constitutive equation

that defines the water saturation S™ as a function of the type
S = SY(p”, p?) (3.5)

It would be therefore necessary to solve also the balance equation for the air mass, in
order to obtain the air pressure p®. Anyway, assuming a constant relative air pressure
p® = 0, the SWCC takes the form

5% =5"(p") (3.6)

and the equation (3.4) can be solved with respect of the only variable p*.
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Chapter 3 3.2 Conservative scheme for the Richards equation

In order to be (3.4) a well-posed problem, we need to specify some boundary
conditions (BCs) on the boundary I" = 042 of the domain {2, together with some initial
conditions (ICs) at the time ¢ = 0. First of all, we have to define on the boundary
I" the portioanP, where the BCs are applied on the water pressure (Dirichlet BCs),
and the portion FpN, where BCs are applied on the water flux (Neumann BCs). This

decomposition must fulfill the relations:
_ D N
=r,url, (3.7)
D N _
Iynr,) =0 (3.8)
The ICs and the BCs are then expressed as
pY = py att =0
p* =p¥ on IP (3.9)
pUoY -mg=q on LY
where py is the initial water pressure, p* is the imposed water pressure on the portion
of the boundary I, g is the imposed flux on the portion of the boundary IV, and
n, is the unit vector perpendicular to the portion of the boundary szv.
Now, in order to move, before the discretization, all the derivatives with respect

to time and space on the main variable p", it is possible to apply the chain rule to

the time derivative of the water saturation, namely

aS”  9S™ opt

= 3.10
ot opv Ot (3.10)
and recast the equation (3.4) in the alternative formulation
2Sv op* kK ksT
wl2 P8 g —Vp¥ + ptg)| =0 3.11
noP" 5w ot +V-|p T (=Vp"” +p"g) (3.11)

We apply now the Backward Euler scheme for the discretization in time. First of
all, we define as n+ 1 and n the current and the previous time steps respectively, and
we call At the dimension of the current time step. In the Backward Euler scheme
(known also as Implicit Euler scheme) a certain differential equation is solved at the
current time step n + 1, replacing the derivatives with respect of time with their

discrete counterpart, namely

()= Lot =0 (3.12)

At
We obtain for equation (3.4)
;VLU B S;f wk;w k1 w w
nop! E——"+ V- |p L%(—Vpnﬂ +p"g)| =0 (3.13)
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and for equation (3.11)

05" P}fﬂ — Dn

w wk;qj—lks‘[
" e At
p n+1

w

+V-|p (=Vpp +07g)| =0 (3.14)

Now, while the two analytical equations (3.4) and (3.11) are two equivalent formu-
lations of the problem, this is not true anymore for the time-discrete equations (3.13)
and (3.14). The key point of this loss of equivalence after the time discretization is
the application of the chain rule (3.10) to transform (3.4) into (3.11) . The chain rule
is, in fact, mathematically correct only when we consider infinitesimal differentials,
that means infinitesimal variation of the quantities. In the time discrete equations
these variations are not infinitesimal anymore, leading to a loss of the validity of the

chain rule, namely

AS) 95" Appiy

3.15
At 7 Opw gl At ( )
where
;EUH = ;EUH - S:f (3-16)
Apﬁﬂ = pg—&—l - pg (3-17)

In particular, the bigger is the variation of the derivative ‘gﬁ: in the interval At,

the bigger become the error in the evaluation of the discrete quantity %. That is

exactly the case of the SWCC curves S = S™ (p*), which shows a highly nonlinear
behavior. A consequence of (3.15) is that the total water mass in the mixture, which
depends on the saturation S*, is not conserved anymore, when the scheme (3.14) is
used.

For the dicretization in space the finite element method (FEM) is used, starting
from the weak form of the problem. Defined the following spaces for the test function

p* and for the weighting function w,
T,={p"  Q=R|p"eH p"=p"onI)}
W, ={w, Q=R |w, € H ,w,=0o0n I’} (3.18)

the solution of the problem (3.13), together with the BCs (3.9), is the function p*
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that solves, for any admissible test function w,, the following weak formulation

Wi = /wpnop“’ (Siy1 — Sy) dV
Q

ke k° T
+ At/pr : [%(Vpﬁﬂ - pwg)] dV + At / wyq,y 1A' =0 (3.19)

w
Q ry

Similarly, the solution of the problem (3.14), together with the BCS (3.9), is the

function p* that solves, for any admissible test function w,, the weak formulation

ne w a5" w w
ntl — /wpnop 8])“’ (pn+1 - pn) dv
0

n+1

ke kT
+ At/pr : {pw%(VpZH — p“’g)} dV + At / wyq,y 1A' =0 (3.20)
17

N
FP

In the weak formulations (3.19) and (3.20), the apex c stands for conservative, while
the apex nc stands for non-conservative.

The corresponding discrete system of equations is obtained applying the Bubnov-
Galerkin approach. We subdivide our domain in a mesh of finite elements, and we
consider an approximation of the spaces T, and W,, based on polynomial shape

functions with local support, namely

~w — N W
b ="%P (3.21)
w, = Npw,

where () are the approximated trials and weighting functions, (A) are the vectors
containing the values of those functions on the mesh nodes, and IN, is the vector of
dimension 1 x nn containing the shape function for the water pressure N;', relative to
an arbitrary node i of the nn nodes defined on the domain {2 by the finite element
mesh. What characterizes the the Bubnov-Galerkin approach is that the same shape
functions are used for the trial and the weighting functions.

We can now obtain the discrete counterpart of the weak form (3.19), namely
RfL—l—l = dSn—l-l + Hn+1ﬁ7;f+1 + fp,n—H =0 (322)

where R | is the so-called residual for the conservative scheme, at the current time

step n 4+ 1. The matrix H,;; and the vectors s,;; and f,, are defined as
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koI
H,, =A\t / (VN p® L VN, dV (3.23)
J e
ds, 1 = / Nl nop® (S¥,y — Sp)dV (3.24)
7w K RST .
font1 = —At [ (VN,)T (p°)? e ———gd2+ At | N gdI’ (3.25)
(% ['N

Similarly, we can write the discrete counterpart of the weak form (3.20) as

ni1 = Sur1 (B1 — PY) + HusaPyyy + fonn =0 (3.26)

where R}, is the residual for the non-conservative scheme, at the current time step

n + 1, and the matrix S, is define as
85”
n+1 /N nOP

Due to the nonlinearity, with respect of p", of some integrals in the equations

N,dV (3.27)
1

(3.19) and (3.20), the system of equations has to be linearized and solved using an

iterative scheme. A general iterative procedure is based on the solution of the system
S, k41
nJrlAp:lU-i-lJr sz+1 (3.28)

where k + 1 and k are the current and the previous iterations whithin the time step
n+1, and T}, | is a “tangent-like” matrix, whose exact definition depens on the chosen
iterative scheme. During the computation of each time step, the solution p, ff Uis

updated after each nonlinear iteration, i.e.
cw k1l wk S kA1
Doyt = Doy + AP (3.29)

The iteration loop is repeated until the residual RZH becomes smaller than a
certain tolerance, which means that the equilibrium has been reached.

A well know iterative scheme, characterized by a quadratic rate of convergence
in the neighborhood of the solution, is the Newton-Raphson method, in which the
matrix T),4, is the Jacobian matrix J,,4; of the residual R in ﬁx’fl. Therefore, from

the residual vectors R}, and R}, we obtain

JC E 8R$L+1 . 8d8n+1 a (Hn—klﬁ%Jrl) a,fp,n-‘rl
n+l = AW o N AW AW (330)
P11 |y o] ) P41 P41
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afp,nJrl
Py 41

OR 0 [Snr (B —B0)]| | O (Hun1Pis)
Jnc,k _ An—&-l _ + An-&-l n + . n+1 3.31
H op* |, o) 2} OPr's1 .

k
Anyway, due to the fact that the quadratic convergence is only local, the convergence
rate of the Newton-Raphson method can be significantly worse than quadratic in the
first iterations. In addition to that, the matrix J,; results to be nonsymmetric. For
these reasons, together with the elevated cost of the computation of the Jacobian
matrix J, .1, several author used the Picard’s method, in order to linearize the non
conservative residual R}, [48], and a modify version of it, in order to linearize the
non conservative residual RS, [18].

The Picard’s method, known also as fixed-point iteration, is a simplified version
of the Newton-Raphson method, in which, in the derivation of Ry, ;, and R}¢, with
respect to p;y, ;, the dependency of S, 1, H,;; and f,,. on the vector p; , is not
take into account. Therefore, for both the residual vectors Ry, | and R}, the matrix
T, is defined as

Tr{jrci’k - Sk+1 + HEH (3.32)

n
Finally we notice that, when the linearization with respect to p"is performed, the term
asv
opw
tangent matrix, which is updated every iteration, without affecting the computation

appears in the conservative scheme too. But in this case it is present only in the
of the residual.

3.2.2 Verification of the mass balance

The aim of this chapter is a numerical comparison of several discretization scheme,
in order to evaluate their efficiency in terms of mass conservation. It is therefore
necessary to find a suitable definition of the error obtained with each numerical scheme
in the evolution of the time-discrete Water Mass Balance statement:

AM™ 4 AL = (3.33)

stor infout

where:

° AMn-l—l — Mn+1 — M"

ator ator oo 1s the variation of the mass of water stored in the

domain during the time step n + 1.

° MZ};;M is the average mass of water entering/exiting the domain during the

time interval [t,,,¢,.1]-
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The mass of the water stored in the domain My, is defined as

stor Z / nOSwdv (334)

el= IQ

where €2, is the volume of a finite element, and ne is the number of elements in which
the total domain € is subdivided. The quantity AM™!! can be therefore calculated

stor
as
anz =3 [ nolsi - spjav (3.35)
el=1¢_
In order to compute the average mass of water entering or exiting the domain
during the time step n + 1, we need to compute the flux of water throw the 