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Abstract

The development of mathematical and numerical models for the study

of the problem of fracture in porous media is motivated by several real-

world applications. In particular, the phase-�eld approach to fracture,

based on the regularization of the variational formulation of the Gri�th's

theory, seems to be one of the most promising, due to its ability to model

complicated fracture processes, such as nucleation and branching, and

preserve the continuity of the displacement �eld. The majority of the

phase-�eld models for fracture in porous media present in the literature

are mainly oriented to the study the problem of fracture in saturated

porous media. Anyway, certain phenomena, such as the cracking of clayey

soils during a desiccation process, suggest the importance of the extension

of these models to a partially saturated framework, in which also the �ow

of the gaseous phase can in�uence the mechanical behavior of the porous

medium, and thus the process of formation and evolution of fractures.

The aim of this work is to develop a �nite element model for the phase-

�eld analysis of fracture in three-phase porous media, in which both the

�ux of the water and the �ux of the dry air are taken into account. In the

�rst part of the thesis particular attention is payed to the study of some

numerical di�culties that such modeling implies, such as the errors in

the evaluation of the mass conservation of the water and the occurrence

of numerical locking when a volumetric-deviatoric energy split for the

phase-�eld model is used. An original mass conservative formulation,

which takes into account the deformability of the solid skeleton, and a

new stabilized mixed �nite element formulation for the phase-�eld model

of fracture in saturated porous media have been proposed, and tested with

di�erent numerical applications. In the last part of the thesis the �nite

element discretization of the proposed three-phase model is derived and

applied to the numerical simulation of two di�erent desiccation problems,

in order to to study the in�uence of the balance equation of the air in the

development of fractures in the porous medium.





Sommario

Lo sviluppo di modelli matematici e numerici per lo studio della frattura

nei mezzi porosi è motivato da numerose applicazioni nel mondo reale. In

particolare, lo studio della frattura con la tecnica del phase-�led, basata

sulla regolarizzazione della formulazione variazionale della teoria di Grif-

�th, sembra essere una delle più promettenti, grazie alla sua abilità di

modellare fenomeni complessi, come la formazione e la rami�cazione di

fratture, a preservare la continuità del campo di spostamenti. La maggior

parte dei modelli phase-�eld presenti in letteratura sono principalmente

orientati allo studio della frattura in mezzi porosi saturi. D'altro canto,

alcuni fenomeni, come la formazione di fratture in argille durante un pro-

cesso di essicazione, indicano l'importanza di estendere questi modelli in

condizione di parziale saturazione, tenendo in considerazione la possibile

in�uenza del �usso della fase gassosa sul comportamento meccanico dello

scheletro solido e, di conseguenza, sul processo di formazione e evoluzione

della frattura.

Lo scopo di questa tesi è la formulazione di un modello numerico agli

elementi �niti per lo studio, con la tecnica del phase-�eld, della frattura

in mezzi porosi trifase, in cui si considerino sia il �usso d'acqua che il

�usso dell'aria all'interno del mezzo. Particolare attenzione è rivolta ad

un approfondimento di alcune problematiche numeriche che tale model-

lazione comporta, come gli errori nella conservazione della massa della

fase liquida e il locking numerico dovuto ad un eccesso di rigidezza volu-

metrica, quando lo split volumetrico-deviatorico dell'energia viene utiliz-

zato nel modello phase-�eld. In particolare, vengono proposte e testate

attraverso varie applicationi numeriche una nuova formulazione conser-

vativa che tenga conto della deformabilità dello scheletro solido, e una

nuova stabilizzazione per la formulazione mista del modello phase-�eld

per la frattura in mezzi porosi saturi. Nell'ultima parte la discretizzazione

agli elementi �niti del modello trifase proposto viene derivata, e applicata



alla simulazione numerica di due problemi di essicazione, con l'obiettivo

di studiare l'in�uenza dell'equazione di bilancio dell'aria sullo sviluppo di

fratture nel mezzo poroso.
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Kurzfassung

Die Entwicklung von mathematischen und numerischen Modellen für die

Untersuchung des Problems der Fraktur in porösen Medien wird durch

mehrere reale Anwendungen motiviert. Insbesondere der Phasenfeldansatz

für die Fraktur, der auf der Regularisierung der Variationsformulierung der

Gri�th'schen Theorie basiert, scheint einer der vielversprechendsten zu

sein, da er in der Lage ist, komplizierte Frakturprozesse wie Keimbildung

und Verzweigung zu modellieren und die Kontinuität des Verschiebungs-

feldes zu erhalten. Die Mehrheit der in der Literatur vorhandenen Phasen-

feldmodelle für den Bruch in porösen Medien ist hauptsächlich auf die

Untersuchung des Problems des Bruchs in gesättigten porösen Medien

ausgerichtet. Wie auch immer, bestimmte Phänomene, wie das Spalten

von lehmigen Böden während eines Trocknungsprozesses, deuten darauf

hin, wie wichtig die Erweiterung dieser Modelle zu einem teilweise gesät-

tigten Gerüst ist, in dem auch der Fluss der Gasphase das mechanische

Verhalten des porösen Mediums und damit den Prozess der Bildung und

Entwicklung von Brüchen beein�ussen kann.

Ziel dieser Arbeit ist es, ein Finite-Elemente-Modell für die Phasenfeld-

analyse von Brüchen in dreiphasigen porösen Medien zu entwickeln, bei

dem sowohl der Fluss des Wassers als auch der Fluss der trockenen Luft

berücksichtigt werden. Im ersten Teil der Arbeit wird besonderes Au-

genmerk auf die Untersuchung von einigen numerischen Schwierigkeiten,

die eine solche Modellierung impliziert, wie z. B. die Fehler in der Bew-

ertung der Massenkonservierung des Wassers und das Auftreten von nu-

merischen Sperren, wenn eine volumetrisch-deviatorische Energie-Split für

das Phasenfeld-Modell verwendet wird. Eine originale massenkonservative

Formulierung, die die Verformbarkeit des festen Skeletts berücksichtigt,

und eine neue stabilisierte gemischte Finite-Elemente-Formulierung für

das Phasenfeldmodell der Fraktur in gesättigten porösen Medien wurden

vorgeschlagen und mit verschiedenen numerischen Anwendungen getestet.



Im letzten Teil der Arbeit wird die Finite-Elemente-Diskretisierung des

vorgeschlagenen Dreiphasenmodells abgeleitet und auf die numerische Sim-

ulation von zwei verschiedenen Trocknungsproblemen angewendet, um

den Ein�uss der Gleichgewichtsgleichung der Luft bei der Entwicklung

von Frakturen im porösen Medium zu untersuchen.
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Chapter 1

Introduction

1.1 Motivation and scope

The phenomenon of fracture in porous media characterizes a great variety of real

world problems, both in the environmental [20, 49] and in the industrial �elds. Par-

ticular attention has been devoted, in the last years, to the study of the problem of the

hydraulic fracture [55, 56, 40], pushed by a growing demand for innovative, and some-

times controversial, methods of extraction of new oil resources. In this application,

the �uid act as a fracture driving force, and the porous material is always considered

saturated. On the other hand, especially looking at environmental problems, the de-

velopment of cracks is strictly correlated to the process of desiccation. Therefore in

this case the development of a model in which partially saturated conditions are con-

sidered becomes necessary. Some example of problems in which the fracture occurs

in partially saturated materials are desiccation cracking in soils [49, 58], erosion of

marsh borders in lagoons [20], or slope instability [52].

In general are de�ned as porous media all those materials with an heterogeneous

internal structures characterized by the presence of a solid phase, which confers sti�-

ness to the material, and some empty spaces, called pores, which may be �lled by one

or more �uids [37]. Due to this complicated internal microstructure, turns out to be

more convenient to model the behavior of these material at the so-called macroscopic

scale. Within this approach, the real structure of the material is substituted by ide-

ally superimposed continua which occupies the entire domain at the same time [21],

and the classical balance equation characteristic of the continuum mechanics can be

applied without taking into account discontinuity at the interfaces between the real

constituents. A comprehensive description of the balance equations that govern the

mechanical behavior of the porous media can be found in [37]. What makes the

porous media interesting, but at the same time complicated to be modeled, is the

1



1.2 Outline of the thesis Chapter 1

coexistence and mutual in�uence of the mechanical deformation of the material and

the �ow of the �uids �lling the pores of the material.

Concerning the modeling of fracture, a fundamental contribution to the study

of the problem of evolution of preexisting cracks in elastic material is the energetic

approach proposed by Gri�th [29]. This approach is based on the de�nition of an

energetic quantity related to the surfaces of the crack itself. A variational formulation

of the Gri�th's energetic criterion which allows the modeling of complex phenomena

like fracture nucleation and branching was �rst proposed by Francfort and Marigo [25].

Anyway, this formulation requires to deal with the discontinuity of the displacement

�eld in correspondence of the crack. The phase-�eld approach to fracture [12] is

based on the regularization of this variational formulation, and solves the problem

of the discontinuity of the displacement. Several models able to handle the crack

discontinuity [43, 47, 35] have been proposed, but they are rely on an a priori de�nition

of the crack propagation path, which is not the case of the phase-�eld approach. A

review on several phase-�eld formulation present in the literature can be found in [1].

In order to couple the phase-�eld approach of fracture with the mechanical model

for the porous media, several approaches can be followed. A variation formulation of

the coupled problem, limited to the saturated case, has been proposed in [40]. Other

possible strategies to realizes the coupling can be found in [41, 34, 11]. In this wok we

follow the approach proposed in [17], where the coupling between the two problems

is realized including a dependency on the phase-�eld parameter into the constitutive

law for the e�ective stress σ′, which is the portion of the stress directly correlated

with the elastic deformations of the solid matrix of the porous medium.

Due to the continuity of that displacement �eld that the phase-�eld approach

imply, the numerical formulation of the problem can be derived using a standard

�nite element approach [46].

The aim of this work is to develop a model able to capture the process of crack

formation in partially saturated porous media, with particular attention on the role

played by the air �ow in the porous medium. In order to apply this model to the sim-

ulation of complex real-world problems, a robust numerical implementation, derived

taking into account several numerical issues that this modeling implies, is needed.

1.2 Outline of the thesis

This thesis is organized as follows. In Chapter 2 the governing equations of the model

are presented. In the �rst part the balance equations characterizing the problem of

2



Chapter 1 1.2 Outline of the thesis

water and air �ow in deforming porous media are derived, while the second part deals

with the variational phase-�eld formulation of fracture in elastic material. Finally the

two problem are coupled, using the concept of e�ective stress.

Chapter 3 deals with the problem of the derivation of a mass conservative scheme

for the numerical solution of water �ow in a partially saturated porous medium. The

�rst part is a review of the problem, limited to the numerical solution of the Richards

equation. In the second part the problem is extended, considering also the in�uence

of the deformation of the solid matrix. Four di�erent solution schemes are presented,

and tested in a numerical application.

In Chapter 4 the problem of the numerical locking due to the excess of volumetric

sti�ness is treated. In the �rst part we review the results presented in literature,

limited to the case of saturated elastic porous media with low permeability. The

second part deals with the stability of phase-�eld model with a volumetric-deviatoric

energy split. It is shown how the numerical instabilities occurring in this two distinct

problems share the same nature, and can be solved using a stable mixed �nite element

formulation. A new stabilized mixed formulation of the problem of fracture in dry

and saturated porous media is derived, applying a polynomial pressure-projection

technique. Several numerical examples are included, in order to show the occurrence

of the numerical locking, and the e�ciency of the stabilization proposed.

Finally, Chapter 5 deals with the application of the general model derived in

Chapter 2. In the �rst part the Finite Element Method is applied, in order to derive

the numerical formulation of the governing equations. Then the numerical simulation

of two di�erent problems of desiccation of initially saturated soil is presented, focusing

on the in�uence of the �ow of the air phase in the development of fractures.

3





Chapter 2

Governing equations

2.1 Introduction

The aim of this chapter is to introduce the equations governing the fracture propa-

gation in partially saturated deforming porous media. In Section 2.2 the equilibrium

equations and the mass balance equations for the constituents (solid, water and air)

and for the whole multiphase material are introduced within the framework of the

theory of mixtures [63, 61, 62] restricted by the volume fraction concept [14, 21]. The

closure of the problem is obtained adding some necessary constitutive relations for

the solid and the �uid phases, and the key concept of e�ective stress [59, 28, 10]. This

results into a system of three di�erential equations, which can be solved with respect

to the displacement u, the water pressure pw and the air pressure pa. This system of

equations form the so-called u− pw − pa formulation of the problem of air and water

�ow in a deforming porous medium [37].

In Section 2.3 the phase-�eld approach to brittle fracture is reviewed. This ap-

proach is based on the regularization [12] of the variational formulation of the Gri�th's

theory of brittle fracture [25], and the di�erential equations governing the problems

of equilibrium and evolution of the phase-�eld variable d are derived as Euler's equa-

tions of a constrained energy minimization problem. Di�erent formulations for the

elastic and the fracture components of the total energy, as well as di�erent techniques

for the enforcing of the irreversibility constraint on the phase-�eld parameter d, are

taken into account.

Finally, in Section 2.4, the equations governing the phase-�eld model of fracture

in partially saturated porous media proposed in this thesis are presented. The model

is obtained coupling the evolution equation for the phase-�eld parameter d, presented

in Section 2.3, with the u−pw−pa formulation presented in Section 2.2. The coupling

is obtained assuming a dependency on the phase-�eld parameter in the constitutive

5



2.2 Two-phase �ow in deforming porous media Chapter 2

X

X

X

X
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SOLID AIR

WATER

(a) (b)

Figure 2.1: Schematic representation of the real internal structure of
an in�nitesimal potion dV of a partially saturated porous medium (a),
and its corresponding representation as a mixture consisting of smeared
overlapping continuous phases (b).

equation for the e�ective stress [17], i.e. the portion of the stress which is responsible

of the deformation of the solid skeleton of the material. We call the resulting system

of equation the u− pw − pa − d formulation of the problem.

2.2 Two-phase �ow in deforming porous media

2.2.1 The volume fraction concept

A porous medium is a material which consists in a solid matrix, with close and open

pores inside. When the open pores are �lled by one ore more �uid phases the material

is called multiphase porous medium. In the case of partially saturated geomaterials,

which are the object of this thesis, two �uid phases �lling the pore space are taken

into account: one liquid phase, consisting of water, and one gas phase, consisting

of dry air (i.e. in absence of the vapor species, and the consequent mass exchange

between vapor and water). Furthermore, the three phases are considered immiscible,

and without mutual exchange of mass. A representation of this structure can be seen

in Figure 2.1.a.

Due to the complicated pore structure which characterizes geomaterials, such as

soils, rocks or concrete, and to the presence of interaction forces at the interfaces of

the constituents, the development of a mechanical model at the microscopic level,

6



Chapter 2 2.2 Two-phase �ow in deforming porous media

i.e. the level of investigation in which the real non-homogeneous structure of the

material is considered, becomes rather complicated, as well as unnecessary for prac-

tical applications. From an engineering point of view, it is instead more interesting

the development of a model at a less detailed scale, in order to provide an average

description of the mechanical behavior of the porous medium, but still keeping track

of the nature and the mechanical properties of the constituents. This scale of inves-

tigation is called macroscopic scale, and at this level the real multiphase system is

substituted by a model in which every constituent is assumed to occupy the entire

domain, as represented in Figure 2.1.b. Therefore, at each pointX ∈ Ω, with Ω being

the domain of the multiphase material, all the phase are assumed to by simultane-

ously present (overlapping continua), and the characteristic balance equations (mass,

momentum, energy) of the continuum mechanics can be used, for each phase, on the

entire domain Ω.

In order to derive the macroscopic equations describing the behavior of these sub-

stitute continua, several theories have been developed in the �eld of mechanics of

porous media. These theories can be classi�ed into two main approaches [37]. One

approach start from the mechanical description of the behavior of the real constituents

at the microscopic scale, with the derivation of balance equations in which interaction

forces and discontinuities at the interfaces between the constituents are taken into ac-

count. The macroscopic equations are then derived using an averaging process based

on the integration of the microscopic quantities over a control volume, called repre-

sentative element volume (REV). These averaging theories, based on the upscaling of

microscopic quantities, are known as hybrid mixture theories [30, 31, 32, 65].

A second possible approach is to start the derivation of the balance equations for

the single phases directly at the macroscopic level, and is based on the fundamental

concept of volume fraction, de�ned as the ratio of the volume of the constituents

to the volume of the control space [37]. The volume fraction allows the smearing

operation of the intrinsic mechanical properties of the single phases over the entire

domain Ω. Phenomenological approaches, such as the Biot's theory [4, 5], and mixture

theories [63, 61, 62] restricted by the volume fraction concept belong to this approach

[44, 27, 51, 14]. The latter, in particular will be adopted in this thesis, to the derive

the macroscopic mass balance and equilibrium equations governing the mechanical

behavior of the multiphase material.

Let us de�ne the volume fraction φα relative to the phase α as

φα =
dV α

dV
(2.1)

7



2.2 Two-phase �ow in deforming porous media Chapter 2

where α = s, w, a (solid,water,air) and dV α is the volume occupied by the phase α

within a certain control volume dV , assumed to be tied to the solid matrix. The

volume fractions of the single phases are subjected to the closure condition∑
nphases

φα = 1 (2.2)

For applications of the mixture theory to the modeling of partially saturated porous

media, is also useful to introduce two additional volumetric quantities, commonly use

in the �eld of geomechanics: the porosity n, de�ned as

n = 1− φs (2.3)

and the water saturation Sw, de�ned as

Sw =
φw

φa + φw
(2.4)

Based on the closure condition (2.2), and on the de�nition (2.3) and (2.4), the volume

fractions φs, φw and φa can be expressed as function of n and Sw, obtaining

φs = 1− n (2.5)

φw = nSw (2.6)

φa = n (1− Sw) (2.7)

We de�ne as �intrinsic� a quantity εα de�ned with respect to the phase volume

dV α. Its corresponding quantity εα, de�ned with respect to the control volume dV ,

is then called �partial�, and is related to the intrinsic one by the relation

εα = φαεα (2.8)

The volume fraction φα can be seen as a link between some averaged properties

of the real constituents, and the corresponding distributed properties which charac-

terizes the substitute continua. The partial quantities εα are fundamental for the

development of the balance equations at a macroscopic level. In particular we de�ne

the partial density ρα of the phase α as

ρα = φαρα (2.9)

where ρα is the intrinsic density of the constituent, and the partial Cauchy stress

tensor of the phase α as

σα = φασα (2.10)

8



Chapter 2 2.2 Two-phase �ow in deforming porous media

where σα is the intrinsic stress of the constituent.

A other important fundamental assumption for the kinematic description of the

mixture is that an independent state of motion is assigned to each constituent [22].

This means that the individual constituents follows di�erent motions and, therefore,

the time evolution of a certain material point of a phase α, described by a mathe-

matical operator called material time derivative, has to be described with respect to

the intrinsic velocity vα of that particular phase. The material time derivative, with

respect to the motion of the phase α, of a certain di�erentiable function f (x, t) is

de�ned as
dαf

dt
=
∂f

∂t
+ vα · ∇f (2.11)

When studying the �uid �ow in deforming porous media, anyway, it is more useful

to focus on the relative motion of the �uids with respect to the solid matrix, rather

then on their absolute motion. We de�ne then the relative velocity of the �uid phase

α with respect of solid phase as

ṽα = vα − v (2.12)

where v = vs is the intrinsic velocity of the solid phase. It is then possible to express

the material time derivative with respect to a �uid phase α as a function of the

material time derivative with respect to the solid, using the expression

dαf

dt
= ḟ + ṽα · ∇f (2.13)

obtained inserting (2.12) in (2.11), and where the symbol

(̇) =
ds ()

dt
(2.14)

indicates the material time derivative with respect to the solid phase.

In the next sections we introduce the macroscopic balance equations that govern

the problem, starting from the integral form of balance equation of the single phase

formulated at the macroscopic scale, and under the assumption of small strains.

2.2.2 Mass balance equation

Let's consider an arbitrary volume V ∈ Ω, where Ω ∈ Rd is a domain representing

a d-dimensional three-phase porous medium (d = 2 in 2D, d = 3 in 3D). The total

mass of the phase α in V is de�ned as

Mα =

ˆ

V

ραdV (2.15)

9



2.2 Two-phase �ow in deforming porous media Chapter 2

The law of conservation of mass states that the total mass of each phase must preserve

over time, that is

dαMα

dt
=

ˆ

V

(
dαρα
dt

+ ρα∇ · vα

)
dV = 0 (2.16)

where the Reynolds transport theorem has been applied, in order to move the time

derivative into the integral. This conservation law must hold for every arbitrary

volume V , so we can derive the following localized form of the mass conservation law

for the phase α:
dαρα
dt

+ ρα∇ · vα = 0 (2.17)

Applying the de�nition of relative velocity (2.12) and the relation for the material

time derivative (2.13), we obtain for each phase

ρ̇s + ρs∇ · v = 0 (2.18)

ρ̇w + ρw∇ · v +∇ · (φwṽw) = 0 (2.19)

ρ̇a + ρa∇ · v +∇ · (φaṽa) = 0 (2.20)

Now we want to transform the partial densities into intrinsic densities, which have

a more clear physical meaning. On order to do that, we apply the relation (2.9),

speci�ed for each phase α, obtaining, from equations (2.18), (2.19) and (2.20):

˙(φsρs) + φsρs∇ · v = 0 (2.21)

˙(φwρw) + φwρw∇ · v +∇ · (φwṽw) = 0 (2.22)

˙(φaρa) + φaρa∇ · v +∇ · (φaṽa) = 0 (2.23)

If we assume the hypothesis of incompressible solid grains (ρ̇s = 0), and we express

the volume fractions as function of the porosity n and the water saturation Sw throw

equations (2.5), (2.6) and (2.7), we can rewrite equations (2.21), (2.22) and (2.23) as

− ρsṅ+ ρs (1− n)∇ · v = 0 (2.24)

Swρwṅ+ nρwṠw + Swnρ̇w + Swρwn∇ · v +∇ · v̄w = 0 (2.25)

(1− Sw)ρaṅ− nρaṠw + (1− Sw)nρ̇a + (1− Sw)ρan∇ · v +∇ · v̄a = 0 (2.26)

where v̄w and v̄a are the so-called Darcy velocities of water and air, de�ned as

v̄w = nSwṽw (2.27)

10
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v̄a = n(1− Sw)ṽa (2.28)

Due to the constraint (2.2), only nphase − 1 equation are necessary to ensure the

conservation of mass. If we sum up the equations (2.24) and (2.25), we obtain the

mass conservation equation of solid and water:

nρwṠw + Swnρ̇w + Swρw∇ · v +∇ · v̄w = 0 (2.29)

With a similar procedure, if we sum up the equations (2.24) and (2.26), we obtain

the mass conservation equation of solid and air:

− nρaṠw + (1− Sw)nρ̇a + (1− Sw)ρa∇ · v +∇ · v̄a = 0 (2.30)

In order to be able to express equation (2.29) and equation (2.30) as function of

the only variables u, pw and pa, we need to de�ne a set of constitutive repations

for the variable ρw, ρa, Sw, v̄w and v̄a. Under the hypotesis of small deformations,

the porosity n is normally assumed constant, and con be considered as a material

parameter.

2.2.3 Equilibrium equation and e�ective stress

Let's consider again an arbitrary volume V of our domain. The balance of the internal

and external forces applied to the phase α in V is de�ned as

ˆ

V

ραgdV +

ˆ

V

hαdV +

ˆ

∂V

tαdA = 0 (2.31)

where g is the gravity acceleration vector, tα is the partial traction vector, de�ned as

tα = φαtα (2.32)

and hα is the force, per unit of total volume, exerted by the other phases on the phase

α, and subjected to the constraint ∑
nphase

hα = 0 (2.33)

Now, applying the Cauchy theorem

tα = σα · n (2.34)

11



2.2 Two-phase �ow in deforming porous media Chapter 2

we introduce the Cauchy partial stress tensor σα. Using the divergence theorem, it

is than possible to rewrite (2.31) as

ˆ

V

(∇ · σα + ραg + hα)dV = 0 (2.35)

This equation must hold for every arbitrary volume V , so we can derive, for each

phase, the following localized forms of the equilibrium law:

∇ · σs + ρsg + hs = 0 (2.36)

∇ · σw + ρwg + hw = 0 (2.37)

∇ · σa + ρag + ha = 0 (2.38)

Due to the low velocities of the �uids in the pores, the viscous dissipating component

of the stress tensor for the �uids is assumed negligible [37]. As consequence of this

assumption, the partial stress tensors σw and σa have the following isotropic forms

σw = −φwpwI = −nSwpwI (2.39)

σa = −φapaI = −n (1− Sw) paI (2.40)

where I is the identity tensor, and pw and pa are the intrinsic relative pressure of water

and air respectively. The relative pressure of a �uid is a measure of the di�erence

between the absolute pressure of the �uid itself and the atmospheric air pressure pa0,

which leads to the following de�nition for pw and pa:

pw = pwabs − pa0 (2.41)

pa = paabs − pa0 (2.42)

where pwabs and paabs are the absolute values of the pore pressure of water and air

respectively.

We de�ne now the total Cauchy stress tensor of the mixture as the sum of the

partial stress tensor of the components, namely [37]

σ = σs + σw + σa (2.43)

Taking into account the isotropic forms (2.39) and (2.40) of the partial stress tensorsσw

and σa, the de�nition of the total stress (2.43) can be rewritten as

σ = σs − n [Swpw + (1− Sw) pa] I (2.44)
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Summing up equations (2.36), (2.37) and (2.38), and taking into account the de�-

nitions (2.43) and (2.46), we obtain the following equilibrium equation of the whole

mixture:

∇ · σ + ρ̄g = 0 (2.45)

where ρ̄ is the averaged density of the whole mixture, de�ned as

ρ̄ = ρs + ρw + ρa = (1− n)ρs + nSwρw + n(1− Sw)ρa (2.46)

In order to be able to express the equation (2.45) as a function of the only variables

u, pw and pa, the subdivision (2.44) of the total stress unto the sum of the partial

stresses of the single components is not the most appropriate. The partial stress

tensor σs relative to the solid phase, in fact, takes into account not only the contact

forces between the grains, which are responsible of the deformation of the solid matrix,

but also the pressure exerted on the grains by the �uids �lling the pores, which does

not imply a deformation of the solid matrix. Therefore σs is not as suitable variable

for the de�nition of a stress-deformation constitutive law. It is therefore useful to

introduce the concept of e�ective stress σ′, which is de�ned as the portion of the

total stress σ directly responsible of the deformation of the solid matrix (not to be

confused with the solid grains, which are assumed incompressible). The concept of

e�ective stress was �rst introduced by Terzaghi [59], who, in the case of saturated

porous media, proposed the expression

σ′ = σ + pwI (2.47)

The extension of the concept of e�ective stress to partially saturated porous media

is not straightforward, and several de�nition are present in literature. A very well

know de�nition of the e�ective stress for partially saturated porous media is the one

proposed by Bishop [6], and experimentally validated by Skempton [57]. In Bishop's

formulation, the e�ective stress σ′ is de�ned as

σ′ = σ + [χpw + (1− χ)pa] I (2.48)

where χ is a coe�cient related to the area of contact between the water and the solid,

and must be determined experimentally, based on the type of problem into analysis.

In this work we adopt an alternative expression, derived by Schre�er et al. [53] by

using volume averaging, in which the e�ective stress σ′ is de�ned as

σ′ = σ + [Swpw + (1− Sw)pa] I (2.49)

13



2.2 Two-phase �ow in deforming porous media Chapter 2

The expression (2.49) can be seen as a particular case of (2.48), in which the coe�cient

χ is de�ned as

χ = Sw (2.50)

and does not need any experimental characterization. The quantity

pp = Swpw + (1− Sw)pa (2.51)

is called intrinsic mean pore pressure, and represent the intrinsic averaged value of

the pressure exerted on the grains by the �uids �lling the pores. If we de�ne the

partial mean pore pressure as

pp = (1− n) pp (2.52)

and we insert the de�nition of the e�ective stress (2.49) into equation (2.44), we

obtain the following relation between the partial stress tensor σs and the e�ective

stress σ′:

σs = σ′ + ppI (2.53)

It can be seen how the e�ective stress σ′ can be obtained subtracting from the partial

stress σs the partial mean pore pressure pp, i.e. the portion of σs which does not

imply a deformation of the solid matrix. Furthermore, as a di�erence between two

partial quantity, σ′ is also a partial quantity, resulting to be a good candidate for the

de�nition of a constitutive relation with the deformation of the solid matrix, which,

in turn, is a quantity de�ned with respect of the whole mixture, and not an intrinsic

characteristic of the solid phase.

Introducing (2.49) in (2.45), we obtain the following form of the equilibrium equa-

tion of the whole mixture

∇ · [σ′ − (Swpw + (1− Sw)pa) I] + ρ̄g = 0 (2.54)

2.2.4 Constitutive equations

To solve the system of equations (2.29), (2.30) and (2.54) using, as main variables,

the displacement of the solid matrix u, the water pressure pw, and the air pressure

pa, we need a set of constitutive equations for the variables Sw, ρw, ρa, v̄w, v̄a and

σ′. We underline at this point the important role payed by the choice of the e�ective

stress σ′. Even if, looking at the balance equations of the mixture, several alternative

choices of the e�ective stress seems to be possible, only a correct derivation of σ′

from the entropy inequality ensure the thermodynamic consistency of the constitutive

equations introduced in this section (see [10]).
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Constitutive law for the e�ective stress

It is well know in the �eld of geomechanics that soils are material that develops irre-

versible deformations, well described within the framework of the theory of plasticity.

Anyway, the scope of this thesis is the development of a model for brittle fracture in

partially saturated porous media, and therefore we need to de�ne a constitutive low

for the e�ective stress σ′ only inside the elastic domain. We assume, in particular, a

linear elastic constitutive equation for the e�ective stress σ′, de�ned as

σ′ =
∂Ψ0 (ε(u))

∂ε
= C : ε (2.55)

where

ε = ∇su (2.56)

is the in�nitesimal stress tensor, and

Ψ0(ε(u)) =
1

2
λtr2(ε) + µtr(ε2) (2.57)

is the density of elastic energy. Finally

C =
∂2Ψ 0

∂ε2
(2.58)

is the forth order elasticity tensor, depending on the Lamè constants λ and µ.

Constitutive laws for the density of the �uids

Concerning the density of the �uids, we assume that, at constant temperature, both

water and air behaves as barotropic �uids. That means that exist a function f(ρα, pα)

such that

f(ρα, pα) = 0 (2.59)

For the water we assume the relation [37]

pw = Kwln(ρw − ρw0 ) (2.60)

where Kw is a material constant called bulk modulus of the water, and is an intrinsic

property of the �uid, ρw0 is the density of water at the atmospheric pressure, and pw

the water pressure. We can then derive the equations

ρw = ρw0 exp

(
pw

Kw

)
(2.61)

ρ̇w =
ṗw

Kw
ρw (2.62)
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We assume the water intrinsic density as constant (ρw = ρw0 ), maintaining the validity

of the rate equation (2.62).

For the air we assume the equation of state of ideal gas [37], namely

pa + pa0 = RTρa (2.63)

where R is the speci�c gas constant of air, T is the absolute temperature, pa0 is the

air atmospheric pressure and pa the relative pressure. Knowing the air density ρa0 at

the atmospheric pressure, we obtain

ρa =
pa + pa0
Ka

(2.64)

ρ̇a =
ṗa

Ka
(2.65)

where Ka =
pa0
ρa0
.

Constitutive law for the saturation

Let us introduce a new variable, called capillary pressure pc, de�ned, at equilibrium,

as

pc = pa − pw (2.66)

It is now possible to formulate for water saturation a constitutive relation of the

kind Sw = Sw(pc). In soil mechanics, this constitutive model is called Soil-Water

Characteristics Curve (SWCC). The SWCC used in this work is the well-established

empirical model proposed by Van Genuchten [64]. In this model the water saturation

is de�ned as ⎧⎨⎩S
w = 1 for pc ≤ 0

Sw = (1− Sw
r )

[
1 +

(
αvgpc

ρwg

)nvg
]−mvg

+ Sw
r for pc > 0

(2.67)

where αvg and nvg are parameters of the model depending on the nature of the soil,

mvg = 1− 1
nvg

and Sw
r is the residual water saturation, which is a lower bound for the

water saturation Sw.

Constitutive laws for �uid relative velocities

Based on thermodynamic studies on the dissipative nature of the interaction forces

hw and ha between the the �uids and the solid phase [33, 32, 54], starting from the
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equilibrium equations of the �uid phases (2.37) and (2.38), the Darcy's law for water

and air phase can be derived, obtaining respectively

v̄w = nSwṽw =
krwksI

µw
(−∇pw + ρwg) (2.68)

v̄a = n(1− Sw)ṽa =
kraksI

µa
(−∇pw + ρwg) (2.69)

where v̄w and v̄a are called Darcy velocities of water and air,ks is the intrinsic per-

meability, I is the identity matrix, ks is the intrinsic permeability of the solid matrix,

µw and µa are the dynamic viscosity of water and air respectively. Finally the two

coe�cient krw and kra are called relative permeability of water and air respectively,

and they take into account how the saturated Darcy velocity of a �uid phase is re-

duced by the presence of the other �uids. Therefore the relative permeability can be

determined as functions of the water saturation. For the Van Genuchten model, the

following expressions have been derived [45]

krw =
√
Sw
e

{
1−

[
1− (Sw

e )
1

mvg

]mvg
}2

(2.70)

kra =
{
(1− Sw

e )
[
1− (Sw

e )
1

mvg

]mvg
}2

+ kraRES (2.71)

where Sw
e = (Sw − Sw

r )/(1 − Sw
r ) is called e�ective saturation, mvg is the same pa-

rameter used in the Van Genuchten model, and kraRES ≪ 1 is an arti�cial residual air

relative permeability, fundamental in the numerical application because it allows to

maintain the mass balance equation of solid and air (2.30) always �active�, also when

Sw = 1.

2.2.5 Governing equations

Applying the previous set of constitutive equations to the systems of equations (2.29),

2.30 and 2.45, we obtain the following form of the di�erential equations governing the

problem of water and air �ow in a deforming linear elastic porous material:

∇ · (C : ε)−∇ [Swpw + (1− Sw)pa] + ρg = 0 (2.72)

nρwṠw + Swnρw
ṗw

Kw
+ Swρw∇ · v +∇ ·

[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (2.73)

−nρaṠw+(1−Sw)n
ṗa

Ka
+(1−Sw)ρa∇·v+∇·

[
ρa
kraksI

µa
(−∇pa + ρag)

]
= 0 (2.74)
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that can now be solved with respect of the displacement u, the water pressure pw,

and the air pressure pa.

Finally, the following initial conditions (ICs) boundary conditions (BCs) have to

be speci�ed on the boundary Γ of the domain Ω of the problem:

u (x, t)) = u (x, 0)) at t = 0

pw (x, t)) = pw (x, 0)) at t = 0

pa (x, t)) = pa (x, 0) at t = 0

u = u on ΓD
u

pw = p̄w on ΓD
pw

pa = p̄a on ΓD
a

σ · n = t̄ on ΓN
u

ṽw · n = q̄w on ΓN
pw

ṽw · n = q̄a on ΓN
pa

(2.75)

where ΓD and ΓN are the Dirichlet and the Neumann boundary respectively.

2.3 Phase-�eld model of brittle fracture

2.3.1 Gri�th's theory of brittle fracture

The �rst energetic approach of classical fracture mechanics was proposed in 1921

by Gri�th [29], who introduced the following criterion of propagation of preexisting

fractures:
dW ext

dA
− dEel

dA
=

dEs

dA
(2.76)

where W ext is the work of the external loads, Eel is the elastic energy, Es is the

energy associated to the surface A of the growing crack Γc (A). The evolution of the

problem is considered quasi-static, so the kinetic energy is not taken into account

in the equation (2.76). If we consider a pure elastic body and conservative external

forces, we can de�ne the total potential energy P as

P = Eel −W ext (2.77)

and identify the left-hand side of equation (2.76) as the the release of the potential

energy upon an in�nitesimal increment of the fracture surface dA, de�ned as

G = −dP

dA
(2.78)

The condition (2.76) can be therefore rewritten as

G = Gc (2.79)
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where the quantity

Gc =
dEs

dA
(2.80)

is postulated to be a material property, called fracture toughness, and is a funda-

mental energetic quantity in fracture mechanics. The Gri�th's criterion states that

a preexisting fracture in an elastic body can propagate only if the condition (2.79) is

ful�lled, that is only if the release of the potential energy upon an in�nitesimal in-

crement of the fracture surface dA equals the surface energy related to the increment

dA itself. Additionally, the fracture toughness Gc is postulated to be also an upper

bound for the release rate G, namely

G ≤ Gc (2.81)

A fundamental characteristic of the Gri�th's theory is that the crack path Γ̂cis as-

sumed to be known a priori [13], which means that the growing crack Γc (A) has to

be considered as a subset of the prescribed crack path Γ̂c, namely

Γc (A) ⊆ Γ̂c (2.82)

The crack growth along the path Γ̂c has to be considered an irreversible process, so

the time evolution of the crack surface A must ful�ll the irreversibility condition

Ȧ ≥ 0 (2.83)

where the time t has to be considered as a pseudo-time parameter governing the

loading history of the quasi-static problem. If we subdivide the entire loading process

into a �nite sequence of time steps (tn)n=1,N , the condition (2.83) can be rewritten as

An+1 ≥ An (2.84)

where n+ 1 is the current time step, and n is the previous time step. We can �nally

summarize the Gri�th's theory into the following three conditions [19]

An+1 ≥ An (2.85)

G ≤ Gc (2.86)

(G−Gc)(An+1 − An) = 0 (2.87)

where (2.85) is the irreversibility condition, (2.86) is the upper bound on the release

rate of the potential energy, and (2.87) is the Gri�th's criterion written in the form

of complementary condition.
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2.3.2 Variational approach to fracture mechanics

A variational formulation of the problem of brittle fracture based on Gri�th's theory

has been �rst proposed in 1998 by Francfort and Marigo [25]. The problem of equi-

librium and quasi-static evolution of the crack is governed by the minimization of the

functional

E(u,Γc) =

ˆ

Ω/Γc

Ψ0(ε(u))dV

  
Eel(u,Γc)

+GcH
n−1(Γc)  

Es(Γc)

−
ˆ

Ω/Γc

b · udV −
ˆ

ΓN
u

t̄n+1 · udS

  
W ext(u,Γc)

(2.88)

where

Ψ0(ε(u)) =
1

2
λtr2(ε) + µtr(ε2) (2.89)

is the elastic energy density, Ω ∈ Rd is a domain representing an elastic d-dimensional

body (d = 2 in 2D, d = 3 in 3D), b is the body force de�ned on the domain Ω and t̄n is

the prescribed surface traction acting, at the current time tn+1, on the portion of the

boundary with Neumann conditions on the displacement �eld ΓN
u . FinallyH

n−1(Γc) is

the Hausdor� measure of the crack Γc of dimension d−1 which, for d = 3, corresponds

to the area A of the growing crack Γc. The functional (2.88) depends on the the

displacement u and on the crack itself Γc, and the discrete irreveresibility condition

(2.84) becomes

Γc,n+1 ⊇ Γc,n (2.90)

The main advantage of the formulation based on the minimization of (2.88), compared

to the Gri�th's theory, is that the crack Γc itself is now a variable of the problem,

so it is not constrained to follow a prescribed crack path Γ̂c anymore. Therefore, the

minimization of (2.88) allows to model not only the evolution of preexisting cracks

on prescribed path, but also crack initiation and branching. However, in order to

obtain a numerical solution of the problem based on the minimization of (2.88), a

computational model able to perform the numerical tracking of the evolving discon-

tinuity boundary Γc is needed. This tacking operation, anyway, requires complex

and costly computations, especially when complicated phenomena like interaction

between multiple cracks, or branching, need to be modeled [9].

In order to enable an e�cient numerical treatment of the variational problem

based on (2.88), the following regularized version of the functional E(u,Γ) has been

proposed by Bourdin et al. [12]:
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El(u, d) =

ˆ

Ω

Ψ(ε(u), d)dV

  
Eel(u,d)

+
Gc

4Cv

ˆ

Ω

(
w(d)

l
+ l |∇d|2

)
dV

  
Es(d)

−
ˆ

Ω

b · udV −
ˆ

ΓN
u

t̄n · udS

  
W ext(u)

(2.91)

where d is the phase-�eld parameter, which varies from d = 0 (undamaged material)

to d = 1 (damaged material), w(d) is the local part of the so-called dissipated energy

density function, whose de�nition depends on the chosen phase-�eld model, l the

so-called characteristic length, and Cv a normalization constant, which ensures the

consistency with (2.88). The elastic energy density, now depending also from the

phase-�eld parameter, is de�ned as

Ψ(ε(u), d) =
[
(1− d2) + η

]
Ψ0(ε(u)) (2.92)

where Ψ0 is the undamaged elastic energy density de�ned in (2.89), and η is an

arti�cial residual sti�ness introduced for numerical stability purposes. The discrete

irreversibility condition (2.90) needs now to be formulated as function of the phase-

�eld variable d, and becomes

d ≥ dn (2.93)

where d and dn−1 are the values of the phase-�eld at the current and at the previous

time step respectively [26] (the subscript n+ 1 has been omitted).

The advantage of the regularized formulation based on the minimization of (2.91),

when compared to the free-discontinuity formulation based on (2.88), is that in the

former no integrals over the discontinuity surfaces are present. The discontinuity

surface is, in fact, transformed into a volume in which a regular transition between

the undamaged and the broken state of the material is modeled. The width of this

transition zone is controlled by the parameter l, and it is mathematically proved that,

for l → 0, the solution of the regularized formulation, based on the minimization of

the functional (2.91), converges, in the sense of Γ-convergence, to the solution based

on the minimization of (2.88).

The solution of the problem of equilibrium and quasi-static evolution of the phase-

�eld variable d consists in �nding a couple (u, d) that minimizes the functional (2.91),

namely

argmin {El(u, d) : u ∈ Tu, d ∈ Td} (2.94)
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where Tu and Td are the admissible displacement space and the admissible phase-�eld

space, respectively, and are de�ned as

Tu =
{
u : Ω → R2 | u ∈ H1,u = u on ΓD

u

}
Td = {d : Ω → R | d ∈ H1, d ≥ dn in Ω} (2.95)

The minimization of the functional (2.91) is a constrained minimization problem,

where the discrete irreversibility condition (2.93) is acting as unilateral constrain.

In order to derive the weak form of the constrained minimization problem, we start

de�ning the Lagrangian functional

Ll(u, d, λ) = El(u, d) +

ˆ

Ω

λc (d) dV (2.96)

where λ = λ (x) is a function called Karush-Kuhn-Tucker (KKT) multiplier, enforcing

on the domain Ω and on the portion of the boundary with Neumann BCs on the

phase-�eld ΓN
d the unilateral constrain

c (d) = dn − d ≤ 0 (2.97)

which, in turn, coincides with the discrete irreversibility condition (2.93).

Now, the necessary conditions for a pair (u, d) to be a minimum of the constrained

minimization problem, known as Karush-Kuhn-Tucker (KKT) conditions, are

L′
l(u, d, λ) (v) =

ˆ

Ω

∂Ψ(ε(u), d)

∂ε(u)
: ε(v)dV = 0 ∀v ∈ Tu (2.98)

L′
l(u, d, λ) (α) =

ˆ

Ω

∂Ψ(ε(u), d)

∂d
(α− d) dV +

Gc

4Cv

ˆ

Ω

(α− d)

l
dV

+
Gc

4Cv

ˆ

Ω

2l∇d · ∇ (α− d) dV −
ˆ

Ω

λ (α− d) = 0 ∀α ∈ Td (2.99)

λ (x) ≥ 0 (2.100)ˆ

Ω

λ (dn − d) dV = 0 (2.101)

where L′
l(u, d, λ) (v) and L′

l(u, d, λ) (α) are the directional derivatives of the func-

tional El(u, d). Equations (2.98) and (2.99) are the stationarity condition of the

Lagrangian, with respect of u and d. The inequality (2.100), called dual feasibility
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condition, ensure the KKT multiplier to be positive. Finally equation (2.101) is called

complementary conditions, and ensure the KKT multipliers to be non-zero only if the

constraint (2.97) is active, i.e. if the inequality becomes an equality.

Considering the condition

α− d ≥ dn − d

which derives directly form the de�nition of the phase-�eld admissible space Td, equa-

tions (2.98), (2.99), (2.100) and (2.101) can be condensed into the three equaitons
ˆ

Ω

∂Ψ(ε(u), d)

∂ε(u)
: ε(v)dV = 0 ∀v ∈ Tu (2.102)

ˆ

Ω

∂Ψ(ε(u), d)

∂d
(α− d) dV +

Gc

4Cv

ˆ

Ω

w′(d)

l
(α− d) dV

+
Gc

4Cv

ˆ

Ω

2l∇d · ∇ (α− d) dV ≥ 0 ∀α ∈ Td (2.103)

ˆ

Ω

∂Ψ(ε(u), d)

∂d
(dn − d) dV +

Gc

4Cv

ˆ

Ω

w′(d)

l
(dn − d) dV

+
Gc

4Cv

ˆ

Ω

2l∇d · ∇ (dn − d) dV = 0 (2.104)

which represent the weak form of the problem (2.94), and are non longer dependent

on the KKT multiplier λ. If we de�ne the stress tensor σ as

σ =
∂Ψ(ε(u), d)

∂ε
=

[
(1− d2) + η

] ∂Ψ0(ε(u))

∂ε
(2.105)

and we apply the Green's Lemma to the equations (2.102), (2.103) and (2.104), it is

possible to derive the strong form of the variational problem, which consists of the

following Euler's equation, de�ned on the domain Ω

−∇ · σ = b (2.106)

− 2(1− d)Ψ0 +
Gc

4Cv

(
w′(d)

l
− 2l∆d) > 0 (2.107)[

−2(1− d)Ψ0 +
Gc

4Cv

(
w′(d)

l
− 2l∆d)

]
(d− dn) = 0 (2.108)
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together with the BCs

σ · n = t̄n on ΓN
u (2.109)

∇d · n > 0 on ΓN
d (2.110)

(∇d · n) (d− dn) on ΓN
d (2.111)

where equation (2.106) is the equilibrium equation, equation (2.107) is the evolution

equation of the phase-�eld variable d and equation (2.108) is the complementary

condition,

2.3.3 Particularization of the model

The energy split

The phase-�eld model presented, with the energy Ψ(ε(u), d) de�ned as (2.92), is

called isotropic, because the total undamaged energy Ψ0(ε(u)) is degraded by the

phase-�eld variable d. This is the simplest constitutive assumption for the energy, but

allows the development of fractures also in compression, leading to possible unrealistic

interpenetration of the material. Therefore several energy splits have been proposed

in the literature [3, 36, 39] in order to maintain undamaged a certain portion of the

elastic energy related to the compressive behavior of the material. These models are

called anisotropic, and are all based on the general energy split de�nition

Ψ(ε(u), d) = [(1− d2) + η]Ψ+
0 (ε(u)) +Ψ−

0 (ε(u)), Ψ0 = Ψ+
0 +Ψ−

0 (2.112)

The isotropic model can be seen as a particular anisotropic model in whichΨ−
0 = 0.

Therefore, from now on in this work, the strain energy Ψ(ε(u), d) is always intended

to be de�ned as in (2.112). Starting from the general de�nition of the anisotropic

split of the elastic energy density (2.112), it is possible to derive from Ψ(ε(u), d) the

expression for the stress tensor σ in the anisotropic case, namely

σ =
∂Ψ(ε(u), d)

∂ε
=

[
(1− d2) + η

] ∂Ψ+
0 (ε(u))

∂ε
+
∂Ψ−

0 (ε(u))

∂ε
(2.113)

As for the energy split (2.112), it can be notice that the expression (2.105) for the

stress tensor σ in the isotropic model can be seen as a particular case of the more

general de�nition (2.113). Therefore, from now on in this work, the stress tensor σ

is always intended to be de�ned as in (2.113).
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Chapter 2 2.3 Phase-�eld model of brittle fracture

As follows we present two models, both based on the de�nition of volumetric-

deviatoric decomposition of the energy. The �rst one is the model proposed by Lan-

cioni and Royer-Carfagni [36], in which the positive and negative components of the

energy Ψ0(ε(u)) are de�ned as{
Ψ+

0 = µ(εdev : εdev)

Ψ−
0 = Kntr

2(ε)
(2.114)

where Kn = λ+ µ
n
is the bulk modulus, εdev = ε− tr(ε)

n
I is the deviatoric part of the

strain tensor and n is the dimension of the problem. In this split only the deviatoric

component of the elastic energy is considered as driving force for the fracture, and

the elastic constitutive equation (2.113) remains linear.

The second model that we consider is the one proposed by Amor et al. [3], in

which the positive and negative components of the energy Ψ0(ε(u)) are de�ned as{
Ψ+

0 = Kn ⟨tr(ε)⟩2+ + µ(εdev : εdev)

Ψ−
0 = Kn ⟨tr(ε)⟩2−

(2.115)

where ⟨tr(ε)⟩± = 1
2
(tr(ε) ± |tr(ε)|). In addition to the deviatoric part, this model

considers as a fracture driving force also the volumetric part of the elastic energy, if its

sign is positive (that is, if the hydrostatic component of the stress tensor is positive).

Because of the presence of the Macaulay brackets in (2.115), the elastic constitutive

equation (2.113) is no longer linear.

Based on (2.112) and (2.113), the strong form of the problem of constrained min-

imization of the functional (2.91), becomes, for the anisotropic case:

−∇ · σ = b (2.116)

− 2(1− d)Ψ+
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d) > 0 (2.117)[

−2(1− d)Ψ+
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d)

]
(d− dn) = 0 (2.118)

together with the BCs (2.109), (2.110) and (2.111).

Choice of the function w (d)

Now, in order to be able to solve the phase-�eld evolution equation (2.117), we still

need to choose a expression for the local part of the dissipated fracture energy density
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function w(d), and de�ne the corresponding normalization coe�cient [50]

Cv =

ˆ 1

0

√
w(s)ds (2.119)

Two models are taken into account in this work, both commonly use in the phase-

�eld community. The �rst one, called AT1 (AT stands for Ambrosio-Tortorelli, see

[2]) assumes a linear expression for the local part of the dissipated fracture energy

density function w(d), namely

w(d) = d (2.120)

The corresponding normalization coe�cient Cv, derived inserting (2.120) into (2.119),

is

Cv =
2

3
(2.121)

The advantage of this model is that there is an undamaged elastic phase at the

beginning of the loading history (see Figure 2.2.a). But this good property of the

model has a cost: during the elastic phase the phase-�eld equation (2.117) would

lead to negative values of d, so the the additional positiveness condition

d ≥ 0 (2.122)

needs to be explicitly formulated.

The system of di�erential equations (2.116), (2.117) and (2.118) becomes, for the

AT1 model

−∇ · σ = b (2.123)

− 2(1− d)Ψ+
0 +

3Gc

8
(
1

l
− 2l∆d) > 0 (2.124)[

−2(1− d)Ψ+
0 +

3Gc

8
(
1

l
− 2l∆d)

]
(d− dn) = 0 (2.125)

together with the irreversibility condition (2.93), the positiveness condition (2.122)

and the BCs (2.109), (2.110) and (2.111).

The second model taken into account in this thesis is the so-called AT2 model,

in which a quadratic expression for the local part of the dissipated fracture energy

density function w(d) is considered, namely

w(d) = d2 (2.126)
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The corresponding normalization coe�cient Cv is

Cv =
1

2
(2.127)

Due to the choice of a quadratic expression for w(d), in this case the constraint

0 ≤ d ≤ 1 is implicitly satis�ed by the model. On the other hand, the evolution of

the phase-�eld parameter stars directly at the beginning of the loading history, so,

unlike the AT1 model, for the AT2 model there is no undamaged elastic region (see

Figure 2.2.b).

The system of di�erential equations (2.116), (2.117) and (2.118) becomes, for the

AT2 model

−∇ · σ = b (2.128)

− 2(1− d)Ψ+
0 +Gc(

d

l
− l∆d) > 0 (2.129)[

−2(1− d)Ψ+
0 +Gc(

d

l
− l∆d)

]
(d− dn) = 0 (2.130)

together with the irreversibility condition (2.93) and the BCs (2.109), (2.110) and

(2.111).

Figure 2.2 shows the homogeneous (that is, without considering the gradient

term in the phase-�eld equation) and the localized stress-strain curves for the one-

dimensional problem of tension of an elastic bar. We can notice that the solution

bifurcates (localization of the fracture) in correspondence of the maximum value of

the stress. This value is called critical stress σc and, for the one dimensional tension

problem, its value can be derived analytically. In particular, for the AT1 model

σAT1
c =

√
3GcE

8l
(2.131)

while for the AT2 model

σAT2
c =

9

16

√
GcE

3l
(2.132)

These two expressions de�ne a relation between the variables Gc, E, l and σc that

allows, knowing three parameters, to determine the value of the fourth.

It is possible, at this point, to recognize how the internal length l plays a dual

role in the phase-�eld model. If we consider the functional (2.91) just as a variational

regularization of Gri�th's theory, the internal length is only a regularization param-

eter, which has to be chosen as small as possible, in order to ensure that the solution

tends to the one of the Gri�th's theory. The latter, in fact, can be applied only to
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ε

σ

AT1 homogenous

AT1 localized

ε

σ

AT2 homogenous

AT2 localized

(a) (b) 

Figure 2.2: Homogeneous and localized stress-strain curves for the 1-D
traction problem of an elastic bar: (a) AT1 model, (b) AT2 model.

already existing cracks, requiring no other parameters in addition to Gc and E. If we

focus instead on the capability of a phase-�eld model to estimate the nucleation of

new cracks in a initially undamaged material, the internal length l assume a precise

physical meaning, allowing, throw equation (2.131) or (2.132), to indirectly insert into

the model the tensile strength of the material.

Irreversibility and positiveness conditions

In order to �nd the pair (u, d), solution of the system of di�erential equations (2.116),

(2.117) and (2.118) constrained by the irreversibility condition (2.93), it is necessary

to deal with the inequalities (2.117) and (2.93). We present in this section two possible

techniques which allow to transform the evolution equation of the phase-�eld variable

d into an equality, in which the satisfaction of the irreversibility condition is implicitly

ensure.

The �rst technique is the penalty method. This method consists into adding to

the functional El(u, d) a penalty term Pγ(d), de�ned as [26]

Pγ(d) =
γ

2

ˆ

Ω

⟨d− dn⟩2− dV (2.133)

where γ is the so-called penalty parameter, and the term

⟨d− dn−1⟩− =
(d− dn−1 − |d− dn|)

2
(2.134)

ensure that the penalty term Pγ(d) is active only when the irreversibility condition

(2.93) is violated. The penalty parameter γ has to be large enough (ideally γ → ∞)

to ensure an accurate enforcement of the irreversibility condition (2.93), but not so
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large to result into ill-conditioning of the numerical solution [26]. With the addition

of the penalty term Pγ(d) the functional El(u, d) becomes:

El,γ(u, d) =

ˆ

Ω

Ψ(ε(u), d)dV

  
Eel(u,d)

+
Gc

4Cv

ˆ

Ω

(
w(d)

l
+ l |∇d|2

)
dV

  
Es(d)

−
ˆ

Ω

b · udV −
ˆ

ΓN
u

t̄n · udS

  
W ext(u)

+
γ

2

ˆ

Ω

⟨d− dn⟩2− dV

  
Pγ(d)

(2.135)

The advantage of the penalty method, is that the variational framework is preserved,

and the problem of constrained minimization of the functional El(u, d), de�ned in

(2.91), has been transformed into a unconstrained minimization problem, based on the

functional El,γ(u, d), de�ned in (2.135). The solution of the problem of equilibrium

and quasi-static evolution of the phase-�eld variable d consists in �nding a couple

(u, d) that minimizes the functional (2.91), namely

argmin {El,γ(u, d) : u ∈ Tu, d ∈ Td} (2.136)

where Tu and Td are the admissible displacement space and the admissible phase-�eld

space, respectively, and are de�ned as

Tu =
{
u : Ω → R2 | u ∈ H1,u = u on ΓD

u

}
Td = {d : Ω → R | d ∈ H1} (2.137)

We notice that the irreversibility constraint is no longer present in the de�nition of

the admissible phase-�eld space Td. A necessary condition for (u, d) to be a minimum

of El,γ(u, d), is that El,γ(u, d) has to be stationary in (u, d). We obtain the following

weak form of the minimization problem
ˆ

Ω

∂Ψ(ε(u), d)

∂ε(u)
: ε(v)dV = 0 ∀v ∈ Tu (2.138)

ˆ

Ω

∂Ψ(ε(u), d)

∂d
αdV +

Gc

4Cv

ˆ

Ω

w′(d)

l
αdV +

Gc

4Cv

ˆ

Ω

2l∇d · ∇αdV

+ γ

ˆ

Ω

⟨d− dn⟩− αdV = 0 ∀α ∈ Td (2.139)
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After the application of the Green's Lemma, it is possible to derive from equations

(2.138) and (2.139) the strong form of the problem (2.136), which consists in the

Euler's equaitions

−∇ · σ = b (2.140)

− 2(1− d)Ψ+
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d) + γ ⟨d− dn⟩− = 0 (2.141)

together with the BCs

σ · n = t̄n on ΓN
u (2.142)

∇d · n = 0 on ΓN
d (2.143)

Equation (2.140) is the equilibrium equation, and equation (2.141) is the evolution

equation of the phase-�eld variable d, which has now become an equality.

The mathematical derivation of a lower bound for γ has been provide in [26],

where the following expression of γ, for the AT1 and AT2 model respectively, are

proposed:

γ =

⎧⎨⎩
Gc

l
27

64TOL2ir
, when w(d) = d

Gc

l

(
1

TOL2ir
− 1

)
, when w(d) = d2

(2.144)

The parameter 0 < TOLir ≪ 1 indicates the error in the approximation of the

Γ-convergence of the fracture energy Es(d) committed using the phase-�eld pro�le

obtained by the solution of equation (2.141), instead of the optimal phase-�eld pro�le,

obtain by the solution of the system of equations (2.117), (2.118) and (2.93). In

addition, in [26] the value

TOLir = 0.01 (2.145)

has been suggested as a practical irreversibility threshold for both the AT1 and the

AT2 models.

The second technique consists in the use of the notion of history �eld, and was

proposed in [39]. This technique is based on the idea that the undamaged portion

of the energy Ψ+
0 (ε(u)) can be seen as the driving force of the the evolution of the

phase-�eld variable d. Therefore, once de�ned the energy history variable H+ as

H+ = maxτ∈[0,t]Ψ
+
0 (ε, τ) (2.146)

the following evolution equation for the phase-�eld d is proposed in [39]:

− 2(1− d)H+ +
Gc

4Cv

(
w′(d)

l
− 2l∆d) = 0 (2.147)
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where the phase-�eld d is expected to be always and increasing function, driven by

the energy history variable H+, which, in turn, is an increasing function by de�ni-

tion. This irreversibility technique has two main drawbacks: the �rst is that, due to

the introduction of the history variable in the phase-�eld equation, the variational

framework of the formulation is lost. The second is that the role of the variable

Ψ+
0 (ε(u)) as driving force for the evolution of d, and the consequent connection with

its irreversibility, are not clearly demonstrated [26]. On the other hand, this method

results to be very easy to implement, and, after the numerical discretization, the

phase-�eld equation (2.147) results to be linear with respect to d, which turns to be

a computational advantage if a staggered solution approach is used.

Finally, if the AT1 model is used, the additional positiveness condition

d ≥ 0 (2.148)

has to be taken into account. If the penalty method is used to enforce the irrevesi-

bility, the positiveness condition (2.148) can be simply incorporated into the discrete

irreversibility condition (2.93) by setting the following initial condition on the phase-

�eld d

d (x, t = 0) = d0 (x) = 0, ∀x ∈ Ω ∪ ΓN
d (2.149)

On the other hand, if the method of the energy history variable is used, the posi-

tiveness condition (2.148) has to be explicitly treated using, for example, a penalty

method very similar to the one exposed for the irreversibility condition [26].

2.4 Phase-�eld model of fracture in three-fase porous

media

The framework for the modeling of partially saturated porous media, presented in

Section 2.2, and the one for the phase-�eld modeling of brittle fracture, presented

in Section 2.3, are now uni�ed. In this coupling process, several approaches can be

followed. A variation formulation of the coupled problem, limited to the saturated

case, has been proposed [40]. Anyway, due to the non-linearity that the partially

saturated model implies, to develop an extension of this variational formulation is a

hard task. Other possible strategies to realizes the coupling can be found in [41, 34,

11], where di�erent phase-�eld formulations for the modeling of hydraulic fracture in

saturated porous media are proposed.
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In this wok we follow the approach proposed in [17], where the coupling between

the two problem is realized including a dependency on the phase-�eld d into the

constitutive law for the e�ective stress σ′, which is the portion of the stress directly

correlated with the elastic deformations of the solid matrix of the porous medium,

and therefore considered as the most natural responsible of the accumulation of the

elastic energy necessary for the development of fractures. In particular, the coupling

between the two problem is obtained de�ning the following constitutive law for the

e�ective stress:

σ′(ε, d) =
∂Ψ(ε(u), d)

∂ε
(2.150)

where the elastic energy density Ψ(ε(u), d) is the one de�ned into equation (2.112),

namely

Ψ(ε, d) =
[
(1− d2) + η

]
Ψ+

0 (ε(u)) +Ψ−
0 (ε(u)) (2.151)

We can now derive the di�erential equations governing the phase-�eld model of frac-

ture in partially saturated porous media proposed in this work. In particular, the

model is based on the equilibrium equation

∇ · σ′(ε, d)−∇ [Swpw + (1− Sw)pa] + ρg = 0 (2.152)

the mass balance equation for solid and water phases

nρwṠw + Swnρw
ṗw

Kw
+ Swρw∇ · v +∇ ·

[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (2.153)

the mass balance equation for solid and air phases

−−nρaṠw+(1−Sw)n
ṗa

Ka
+(1−Sw)ρa∇·v+∇·

[
ρa
kraksI

µa
(−∇pa + ρag)

]
= 0 (2.154)

and the evolution equation for the phase-�eld variable d, which takes the form

− 2(1− d)Ψ+
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d) + γ ⟨d− dn⟩− = 0 (2.155)

if the irreversibility condition (2.93) is enforced with the penalty method, or the

alternative form

− 2(1− d)H+ +
Gc

4Cv

(
w′(d)

l
− 2l∆d) = 0 (2.156)
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if the irreversibility condition (2.93) is enforced using the energy history variable H+.

The ICs and the BCs of the problem are the following:

u (x, t)) = u (x, 0)) at t = 0

pw (x, t)) = pw (x, 0)) at t = 0

pa (x, t)) = pa (x, 0) at t = 0

u = u on ΓD
u

pw = p̄w on ΓD
pw

pa = p̄a on ΓD
a

σ · n = t̄ on ΓN
u

ṽw · n = q̄w on ΓN
pw

ṽw · n = q̄a on ΓN
pa

∇d · n = 0 on ΓN
d

(2.157)

The system of equations (2.152), (2.153), (2.154) and (2.155) (or alternatively (2.156)),

together with the ICs and BCs (2.157), can be solved with respect of the displacement

u, the water pressure pw, and the air pressure pa, and the phase �eld variable d.
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Chapter 3

Mass conservative numerical schemes

for FEM analysis of deforming

variably saturated porous media

3.1 Introduction

The mass balance equation, whose general strong form is given by equation (2.17), is

a parabolic equation, which needs therefore to be integrated in time. In particular,

several discretization schemes are avaiable in literature, and it has been found in

[18, 24] that the way in which the time discretization scheme is applied plays a

fundamental role, leading to a conservative or a non-conservative numerical scheme.

This problem is well known in hydrology, where the �ow of one or more �uids is

usually studied assuming a rigid porous skeleton. Less attention on this problem has

been paid in the �eld of geomechanics, where the �ow of the �uids is coupled with

the deformation of the solid matrix.

The �rst part of this chapter reviews this topic, including the derivation of a mass-

conservative scheme for the solution of the Richards equation, and the numerical study

of an in�ltration problem [67]. Then, in the second part of this chapter we study

the mass conservation problem taking into account the deformability of the solid

skeleton. Several numerical discretization schemes are compared, and we propose an

original alternative solution scheme, which is shown to be conservative in a numerical

application.
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3.2 Conservative scheme for the Richards equation

3.2.1 Governing equation and numerical discretization

The aim of this section is the derivation of a conservative numerical scheme for the

resolution of the Richards equation, based on [18, 24].

The Richards equation can be obtained, starting from the general form of the

mass balance of water (2.19). If the solid matrix is assumed to be rigid, which means

that ∇·v = 0 and n = n0, and the density of the liquid water ρw is assumed constant,

which implies that ρ̇w = 0, the equation (2.19) can be written as

n0ρ
w ∂S

w

∂t
+ ρw∇ · [v̄w] = 0 (3.1)

where v̄w is the so-called Darcy's water velocity, de�ned as

v̄w = nSwṽw (3.2)

where ṽw is the relative water velocity, with respect to the solid matrix. Equation

(3.1) has to hold for each point of the domain Ω. We introduce now, as constitutive

law for the water, the Darcy's Law (2.68), which allows to calculate the Darcy's

velocity v̄w as

v̄w =
krwksI

µw
(−∇pw + ρwg) (3.3)

Introducing (3.3) in (3.1) we obtain

n0ρ
w ∂S

w

∂t
+ ρw∇ ·

[
krwksI

µw
(−∇pw + ρwg)

]
= 0 (3.4)

This equation depends, not only on the water pressure pw, but also on the air pres-

sure pa, throw the Soil Water Characteristic Curve (SWCC), a constitutive equation

that de�nes the water saturation Sw as a function of the type

Sw = Sw(pw, pa) (3.5)

It would be therefore necessary to solve also the balance equation for the air mass, in

order to obtain the air pressure pa. Anyway, assuming a constant relative air pressure

pa = 0, the SWCC takes the form

Sw = Sw (pw) (3.6)

and the equation (3.4) can be solved with respect of the only variable pw.
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In order to be (3.4) a well-posed problem, we need to specify some boundary

conditions (BCs) on the boundary Γ = ∂Ω of the domainΩ, together with some initial

conditions (ICs) at the time t = 0. First of all, we have to de�ne on the boundary

Γ the portionΓD
p , where the BCs are applied on the water pressure (Dirichlet BCs),

and the portion ΓN
p , where BCs are applied on the water �ux (Neumann BCs). This

decomposition must ful�ll the relations:

Γ = ΓD
p ∪ ΓN

p (3.7)

ΓD
p ∩ ΓN

p = ⊘ (3.8)

The ICs and the BCs are then expressed as

pw = pw0 at t = 0

pw = p̄w on ΓD
p

ρwv̄w · nq = q̄ on ΓN
p

(3.9)

where pw0 is the initial water pressure, p̄w is the imposed water pressure on the portion

of the boundary ΓN
p , q̄ is the imposed �ux on the portion of the boundary ΓN

p , and

nq is the unit vector perpendicular to the portion of the boundary ΓN
p .

Now, in order to move, before the discretization, all the derivatives with respect

to time and space on the main variable pw, it is possible to apply the chain rule to

the time derivative of the water saturation, namely

∂Sw

∂t
=
∂Sw

∂pw
∂pw

∂t
(3.10)

and recast the equation (3.4) in the alternative formulation

n0ρ
w ∂S

w

∂pw
∂pw

∂t
+∇ ·

[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (3.11)

We apply now the Backward Euler scheme for the discretization in time. First of

all, we de�ne as n+1 and n the current and the previous time steps respectively, and

we call ∆t the dimension of the current time step. In the Backward Euler scheme

(known also as Implicit Euler scheme) a certain di�erential equation is solved at the

current time step n + 1, replacing the derivatives with respect of time with their

discrete counterpart, namely

(̇) =
() n+1 − () n

∆t
(3.12)

We obtain for equation (3.4)

n0ρ
wS

w
n+1 − Sw

n

∆t
+∇ ·

[
ρw
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0 (3.13)
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and for equation (3.11)

nρw
∂Sw

∂pw

⏐⏐⏐⏐
n+1

pwn+1 − pwn
∆t

+∇ ·
[
ρw
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0 (3.14)

Now, while the two analytical equations (3.4) and (3.11) are two equivalent formu-

lations of the problem, this is not true anymore for the time-discrete equations (3.13)

and (3.14). The key point of this loss of equivalence after the time discretization is

the application of the chain rule (3.10) to transform (3.4) into (3.11) . The chain rule

is, in fact, mathematically correct only when we consider in�nitesimal di�erentials,

that means in�nitesimal variation of the quantities. In the time discrete equations

these variations are not in�nitesimal anymore, leading to a loss of the validity of the

chain rule, namely
∆Sw

n+1

∆t
̸= ∂Sw

∂pw

⏐⏐⏐⏐
n+1

∆pwn+1

∆t
(3.15)

where

∆Sw
n+1 = Sw

n+1 − Sw
n (3.16)

∆pwn+1 = pwn+1 − pwn (3.17)

In particular, the bigger is the variation of the derivative ∂Sw

∂pw
in the interval ∆t,

the bigger become the error in the evaluation of the discrete quantity ∆Sw

∆t
. That is

exactly the case of the SWCC curves Sw = Sw (pw), which shows a highly nonlinear

behavior. A consequence of (3.15) is that the total water mass in the mixture, which

depends on the saturation Sw, is not conserved anymore, when the scheme (3.14) is

used.

For the dicretization in space the �nite element method (FEM) is used, starting

from the weak form of the problem. De�ned the following spaces for the test function

pw and for the weighting function wp

Tp =
{
pw : Ω → R | pw ∈ H1, pw = p̄w on ΓD

p

}
Wp =

{
wp : Ω → R | wp ∈ H1, wp = 0 on ΓD

p

}
(3.18)

the solution of the problem (3.13), together with the BCs (3.9), is the function pw
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that solves, for any admissible test function wp, the following weak formulation

W c
n+1 =

ˆ

Ω

wpn0ρ
w
(
Sw
n+1 − Sw

n

)
dV

+∆t

ˆ

Ω

∇wp ·
[
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +∆t

ˆ

ΓN
p

wpq̄
w
n+1dΓ = 0 (3.19)

Similarly, the solution of the problem (3.14), together with the BCS (3.9), is the

function pw that solves, for any admissible test function wp, the weak formulation

W nc
n+1 =

ˆ

Ω

wpn0ρ
w ∂Sw

∂pw

⏐⏐⏐⏐
n+1

(
pwn+1 − pwn

)
dV

+∆t

ˆ

Ω

∇wp ·
[
ρw
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +∆t

ˆ

ΓN
p

wpq̄
w
n+1dΓ = 0 (3.20)

In the weak formulations (3.19) and (3.20), the apex c stands for conservative, while

the apex nc stands for non-conservative.

The corresponding discrete system of equations is obtained applying the Bubnov-

Galerkin approach. We subdivide our domain in a mesh of �nite elements, and we

consider an approximation of the spaces Tp and Wp, based on polynomial shape

functions with local support, namely

p̃w = Npp̂
w

w̃p = Npŵp
(3.21)

where (̃) are the approximated trials and weighting functions, (̂) are the vectors

containing the values of those functions on the mesh nodes, and Np is the vector of

dimension 1×nn containing the shape function for the water pressure N i
p, relative to

an arbitrary node i of the nn nodes de�ned on the domain Ω by the �nite element

mesh. What characterizes the the Bubnov-Galerkin approach is that the same shape

functions are used for the trial and the weighting functions.

We can now obtain the discrete counterpart of the weak form (3.19), namely

Rc
n+1 = dsn+1 +Hn+1p̂

w
n+1 + fp,n+1 = 0 (3.22)

where Rc
n+1 is the so-called residual for the conservative scheme, at the current time

step n+ 1. The matrix Hn+1 and the vectors sn+1 and fp,n+1 are de�ned as
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Hn+1 = ∆t

ˆ

Ω

(∇Np)
Tρw

krwn+1k
sI

µw
∇NpdV (3.23)

dsn+1 =

ˆ

Ω

NT
p n0ρ

w
(
Sw
n+1 − Sw

n

)
dV (3.24)

fp,n+1 = −∆t

ˆ

Ω

(∇Np)
T (ρw)2

krwn+1k
sI

µw
gdΩ +∆t

ˆ

ΓN
p

NT
p q̄dΓ (3.25)

Similarly, we can write the discrete counterpart of the weak form (3.20) as

Rnc
n+1 = Sn+1

(
p̂w
n+1 − p̂w

n

)
+Hn+1p̂

w
n+1 + fp,n+1 = 0 (3.26)

where Rnc
n+1 is the residual for the non-conservative scheme, at the current time step

n+ 1, and the matrix Sn+1 is de�ne as

Sn+1 =

ˆ

Ω

NT
p n0ρ

w ∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.27)

Due to the nonlinearity, with respect of pw, of some integrals in the equations

(3.19) and (3.20), the system of equations has to be linearized and solved using an

iterative scheme. A general iterative procedure is based on the solution of the system

T k
n+1∆p̂w,k+1

n+1 = −Rk
n+1 (3.28)

where k + 1 and k are the current and the previous iterations whithin the time step

n+1, and T k
n+1 is a �tangent-like� matrix, whose exact de�nition depens on the chosen

iterative scheme. During the computation of each time step, the solution p̂w,k+1
n+1 is

updated after each nonlinear iteration, i.e.

p̂w,k+1
n+1 = p̂w,k

n+1 +∆p̂w,k+1
n+1 (3.29)

The iteration loop is repeated until the residual Rk
n+1 becomes smaller than a

certain tolerance, which means that the equilibrium has been reached.

A well know iterative scheme, characterized by a quadratic rate of convergence

in the neighborhood of the solution, is the Newton-Raphson method, in which the

matrix Tn+1 is the Jacobian matrix Jn+1 of the residual R in p̂w,k
n+1. Therefore, from

the residual vectors Rc
n+1 and Rnc

n+1, we obtain

J c,k
n+1 =

∂Rc
n+1

∂p̂w
n+1

⏐⏐⏐⏐
k

=
∂dsn+1

∂p̂w
n+1

⏐⏐⏐⏐
k

+
∂
(
Hn+1p̂

w
n+1

)
∂p̂w

n+1

⏐⏐⏐⏐⏐
k

+
∂fp,n+1

∂p̂w
n+1

⏐⏐⏐⏐
k

(3.30)
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Jnc,k
n+1 =

∂Rnc
n+1

∂p̂w

⏐⏐⏐⏐
k

=
∂
[
Sn+1

(
p̂w
n+1 − p̂w

n

)]
∂p̂w

n+1

⏐⏐⏐⏐⏐
k

+
∂
(
Hn+1p̂

w
n+1

)
∂p̂w

n+1

⏐⏐⏐⏐⏐
k

+
∂fp,n+1

∂p̂w
n+1

⏐⏐⏐⏐
k

(3.31)

Anyway, due to the fact that the quadratic convergence is only local, the convergence

rate of the Newton-Raphson method can be signi�cantly worse than quadratic in the

�rst iterations. In addition to that, the matrix Jn+1 results to be nonsymmetric. For

these reasons, together with the elevated cost of the computation of the Jacobian

matrix Jn+1, several author used the Picard's method, in order to linearize the non

conservative residual Rnc
n+1 [48], and a modify version of it, in order to linearize the

non conservative residual Rc
n+1 [18].

The Picard's method, known also as �xed-point iteration, is a simpli�ed version

of the Newton-Raphson method, in which, in the derivation of Rc
n+1 and Rnc

n+1 with

respect to p̂w
n+1, the dependency of Sn+1, Hn+1 and fp,n+1 on the vector p̂w

n+1 is not

take into account. Therefore, for both the residual vectorsRc
n+1 andRnc

n+1, the matrix

Tn+1 is de�ned as

T PC,k
n+1 = Sk

n+1 +Hk
n+1 (3.32)

Finally we notice that, when the linearization with respect to pwis performed, the term
∂Sw

∂pw
appears in the conservative scheme too. But in this case it is present only in the

tangent matrix, which is updated every iteration, without a�ecting the computation

of the residual.

3.2.2 Veri�cation of the mass balance

The aim of this chapter is a numerical comparison of several discretization scheme,

in order to evaluate their e�ciency in terms of mass conservation. It is therefore

necessary to �nd a suitable de�nition of the error obtained with each numerical scheme

in the evolution of the time-discrete Water Mass Balance statement:

∆Mn+1
stor + M̄n+1

in/out = 0 (3.33)

where:

• ∆Mn+1
stor = Mn+1

stor − Mn
stor is the variation of the mass of water stored in the

domain during the time step n+ 1.

• M̄n+1
in/out is the average mass of water entering/exiting the domain during the

time interval [tn, tn+1].

41



3.2 Conservative scheme for the Richards equation Chapter 3

The mass of the water stored in the domain Mstor is de�ned as

Mstor =
ne∑

el=1

ˆ

Ωe

n0S
wdV (3.34)

where Ωe is the volume of a �nite element, and ne is the number of elements in which

the total domain Ω is subdivided. The quantity ∆Mn+1
stor can be therefore calculated

as

∆Mn+1
stor =

ne∑
el=1

ˆ

Ωe

n0(S
w
n+1 − Sw

n )dV (3.35)

In order to compute the average mass of water entering or exiting the domain

during the time step n+1, we need to compute the �ux of water throw the Dirichlet

and the Neumann boundaries. The mass of waterMD,n+1
in/out passing throw the Dirichlet

boundary at the time n+ 1 is de�ned as

MD,n+1
in/out =

neD∑
el=1

ˆ

ΓN
p

ρwv̄w · npdΓ (3.36)

where neD is the number of �nite elements having a portion of their boundary be-

longing to the Dirichlet boundary ΓD
p , and np is the unit vector perpendicular to Γ

D
p .

Anyway, it can be shown that, ones the convergence of the time step is reached, the

residual vector Rn+1, as it is de�ned, has null components on every node, except for

the nodes on the Dirichlet boundary ΓD
p , where its value correspond to the value of

the �ux on the area of in�uence of a particular node. Therefore �ux of water throw

the Dirichlet boundary can be calculated as

MD,n+1
in/out =

nn∑
i=1

Ri
n+1 (3.37)

where nn is the total number of nodes in the domain.

Regarding the Neumann boundary conditions, we simply obtain from the �ux q̄

applied onΓq, the expression

MN,n+1
in/out = ∆t

ˆ

ΓN
p

NT
p q̄dΓ (3.38)

Now, we can calculate the average mass of water M̄n+1
in/out entering/exiting the

domain during the time interval [tn, tn+1], simply taking the average of the value at

the extremes of the interval, obtaining

M̄n+1
in/out =

(
MD,n

in/out +MN,n
in/out

)
+
(
MD,n+1

in/out +MN,n+1
in/out

)
2

(3.39)
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Finally we de�ne the relative mass error (expressed in percentage %) as

erel,mass = 100
∆Mn+1

stor − M̄n+1
in/out

M̄n+1
in/out

(3.40)

In the example a numerical scheme will be consider conservative, if it leads always to

relative mass errors

erel,mass ≤ 5% (3.41)

3.2.3 Numerical simulation of water in�ltration in a dry sand-

box

In this section we propose a numerical analysis of the problem of in�ltration in a

sandbox initially dry. The example is proposed in [67], as re-adaption of an example

originally presented in [42], and solved using a conservative numerical formulation

for the mass balance equation, which takes into account the �ux of the water and

the air phases. Anyway, the results obtained in [67] show that the presence of an

active air phase does not in�uence signi�cantly the results. Therefore, this example

is used for a double scope: test whether the Richards equation, where passive air

pressure is assumed, leads to similar results to the one shown in [67], and also to

show the di�erence between the solutions obtained with the conservative and the

non-conservative formulations.

The domain of the problem consists in a square sandbox , with a length of the

side L = 3 m, initially dry, subject to an in�ltration process driven by a pond of

water, hp = 0.1 m high and lp = 1 m wide, located over the central section of the

dry upper boundary. As ICs of the problem, we assume hydrostatic relative water

pressure distribution, with with relative water pressure pw = 0 at the depth z = 3m,

namely

pw = (z − 3)ρwg at t = 0 (3.42)

The same hydrostatic pressure distribution is imposed as Dirichlet boundary con-

dition on the entire boundary, except for the portion of the boundary in contact with

the water pond, where a positive water pressure, corresponding to the height of the

pond, is applied. We can resume the Dirichlet boundary conditions as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pw = 0 at z = 3, x ∈ [0, 3]

pw = (z − 3)ρwg at x = 0, z ∈ [0, 3]

pw = (z − 3)ρwg at x = 3, z ∈ [0, 3]

pw = −3ρwg at z = 0, x ∈ [0, 1) ∪ (2, 3]

pw = hpρ
wg at z = 0, x ∈ [2, 3]

(3.43)
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Regarding the SSWC, the Van Genuchten model [64] is used. In this empirical

model the function Sw = Sw (pw) consists in the expression

Sw (pw) = (1− Swr)

[
1 +

(
αvg

−pw

ρwg

)nvg
]−mvg

+ Swr (3.44)

where, mvg = 1 − 1/nvg, S
wr is the residual water saturation, and αvg and nvg are

parameters of the model. For the Van Genuchten model, an expression for the relative

water permeability function krw = krw (Sw) has been proposed by Mualem [45], that

is

krw (Sw) =
√
Se

[
1−

(
1− S

1
mvg
e

)mvg
]2

(3.45)

where Se is the e�ective water saturation, de�ned as

Se =
Sw − Swr

1− Swr
(3.46)

The material parameters of the problem are resumed in table 3.1, while �gure 3.1

shows the plot of the functions Sw = Sw (pw) and krw = krw (Sw).

n0 [−] ks [m2] µw [Pa · s] ρw [Kg/m3] αvg [m
−1] nvg [−] Swr [−]

0, 301 5, 83 e−12 0, 001 1000 5.47 4.264 0.309

Table 3.1: Material parameters
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Figure 3.1: (a) Soil Water Characteristic Curve Sw = Sw (pw). (b)
Water relative permeability function krw = krw (Sw).

For the discretization in time, an increasing dimension of the time step is used,

as in [67], following the relation

∆tn+1 = 1.05∆tn
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The dimension of the �rst time step is ∆t1 = 10−7 s, and the total number of time

steps is Nts = 451. Every time step is solved iteratively, using the Picard's method,

with a tolerance toll = 10−3 on the relative residual used as exiting criterion. A

maximum number of iterations itermax = 50 is set, in case the tollerance is not

reached.

Regarding the discretization in space, the domain has been divided in a mesh of

triangular linear elements, with regular horizontal discretization (∆x = 0, 1m) and

variable vertical discretization (∆ybottom = 0, 1 m,∆ytop = 0.0125 m). The scheme

of the problem, and the �nite element mesh used for the numerical solution are

represented in Figure 3.2, while in Figure 3.3 the initial conditions for the water

pressure pw and the water saturation Sware shown.

(a) (b) 

p = 0,1ρwg

H
 =

 3
 m

  

L = 3 m  

p = (z-3)ρwg

1 m  z

Figure 3.2: (a) Scheme of the problem. (b) Finite element mesh.
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(a) (b)

Figure 3.3: Initial conditions for (a) the water pressure pwand (b) the
water saturation Sw.

At the end of the simulation, the model based on the conservative formulation

reaches the convergence in every time step, while the model based on the non-

conservative formulation stops to converge at Tstep = 387. In �gure 3.4 the contour

of the water saturation for the both model at this time step is shown, and an a small

di�erence in the dimension of the front of in�ltrating water can be already noticed.

In order to have a better qualitative evidence of the phenomenon of water loss in

the numerical model, the simulation has been carried on till the last time step also

for the non-conservative scheme, even if, in the last time steps, the convergence was

not reached. In Figure 3.5 the contour of the water saturation for the both model,

at the last time step Tstep = 451, is shown, and it can be noticed how the mass of

in�ltrated water obtained with the non-conservative model is clearly smaller than the

one obtained with the conservative model.

Finally, in Figure 3.6, the relative errors in the mass balance at every time step,

for the two model, are shown. It can be noticed that, for the conservative model,

the error is always less than 5%, while with the non-conservative scheme, pick values

greater then 10% are reached already before the loss of convergence of the model.
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(a) (b)

Figure 3.4: Contours of the water saturation Sw at Tstep = 387 (last con-
verged step of the non-conservative scheme): (a) non-conservative scheme,
(b) conservative scheme.

(a) (b)

Figure 3.5: Contours of the water saturation Sw at Tstep = 451 (last step
of the simulation): (a) non-conservative scheme, (b) conservative scheme.
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Figure 3.6: (a) relative mass errors and (b) number of nonlinear itera-
tions at each time steps, for the two schemes. The time steps in wich the
non-conservative scheme did not reached the convergence are marked in
red.
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3.3 Extension including the deformability of the solid

matrix

3.3.1 Governing equations and numerical discretization

We extend now the model considered in the previous section, including the deforma-

bility of the solid matrix. The model is now characterized by two equations, the

equilibrium equation (2.72) and the mass conservation equation (2.73), derived in

Section 2.2, and simpli�ed by assuming the passive air condition pa = 0, a constant

liquid water density ρw and a constant porosity n = n0. Due to the fact that the

relative (to the atmospheric pressure patm = 101325Pa) air pressure pa is assumed

constant, the mass balance equation of solid and air (2.30) is not needed. The equi-

librium equation of the mixture (2.72) becomes

∇ · σ′ −∇ (Swpw) + ρg = 0 (3.47)

where σ′ is the e�ective stress tensor, ρ = (1− n0)ρ
s + n0S

wρw is the density of the

mixture, g is the vector of gravity acceleration. We suppose a linear elastic behavior

of the solid matrix, expressed by the constitutive equation

σ′ = C : ε (3.48)

where ε = ∇su is the strain tensor, de�ned as the symmetric part of the displacement

gradient, and C is the fourth order elasticity tensor. Equation (3.47) can be rewritten

as

∇ · (C : ε)−∇ (Swpw) + ρg = 0 (3.49)

The equilibrium equation (3.49) is accompanied by a set of BCs on the boundary Γ

of the domain Ω. First of all, we de�ne on the boundary Γ the portionΓD
u , where

Dirichlet BCs are applied, and the portion ΓN
u , where Neumann BCs are. This

decomposition must ful�ll the relation:

Γ = ΓD
u ∪ ΓN

u (3.50)

ΓD
u ∩ ΓN

u = ⊘ (3.51)

The BCs associated to the equilibrium equation (3.49) are

u = ū on ΓD
u

σ · nt = t̄ on ΓN
u

(3.52)
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where ū is the prescribed displacement on the portion of the boundary ΓD
u , t̄ is the

prescribed traction on the portion of the boundary ΓN
u , and nt is the unit vector

perpendicular to the portion of the boundary ΓN
u .

The mass balance equation of the solid and the liquid water (2.73), together with

the assumption of the passive air condition pa = 0 and a constant liquid water density

ρw, becomes

n0ρ
wṠw + Swρw∇ · v +∇ ·

[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (3.53)

The mass balance equation (3.53) is accompanied by the ICs and BCs (3.9), in-

troduced in the previous section, with the addition of the initial condition on the

displacements

u = u0 at t = 0 (3.54)

From a closer look at the mass balance equation (3.53), it can be easily seen that,

when ∇·v → 0, the conservative form of the Richards equations (3.4) is resumed. In

the majority of the applications in geomechanics, anyway, equation (3.53) is rewritten

in the form

n0ρ
w ∂S

w

∂pw
ṗw + Swρw∇ · v +∇ ·

[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (3.55)

before the numerical discretization. Also in this case, it can be easily seen that, when

∇ · v → 0, the non-conservative form of the Richards equation (3.11) is resumed. It

is already clear that, also when the solid matrix is not rigid, the formulation (3.53)

is preferable.

Looking at the de�nition of water mass in the mixture

Mw =

ˆ

V

nSwρwdV, (3.56)

we notice that, also the variation of the porosity n in�uences the evaluation of the

water mass, and hence can in�uence the mass conservative properties of the discretized

mass balence equation. The porosity n is, in fact, directly related to the volumetric

deformation of the solid matrix by the expression

n =
n0 − 1

1 + εv
+ 1, (3.57)

where εv = ∇ · u is the volumetric strain, and we would expect that taking into

account this dependency into equation (3.53) could imply a better performance in
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terms of mass conservation. In this case equation (3.53) becomes

nρwṠw + Swρw∇ · v +∇ ·
[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (3.58)

A numerical scheme for the equations (3.53), (3.55) or (3.58) can be derived,

following a procedure similar to the one developed in Section 3.2, obtaining a system

of equations coupled with the discrete counterpart of the equilibrium equation (3.47).

First of all we apply the Backward Euler scheme for the discretization in time of

the di�erent versions of the mass balance equation, obtaining for equation (3.55)

n0ρ
w ∂Sw

∂pw

⏐⏐⏐⏐
n+1

pwn+1 − pwn
∆t

+ Sw
n+1ρ

w∇ · un+1 − un

∆t

+∇ ·
[
ρw
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0 (3.59)

for equation (3.53)

n0ρ
wS

w
n+1 − Sw

n

∆t
+ Sw

n+1ρ
w∇ · un+1 − un

∆t
+∇ ·

[
ρw
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0

(3.60)

and for equation (3.58)

nn+1ρ
wS

w
n+1 − Sw

n

∆t
+Sw

n+1ρ
w∇·un+1 − un

∆t
+∇·

[
ρw
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0

(3.61)

For the discretization in space the �nite element method (FEM) is used, starting

from the weak formulation of the problem. First, we de�ne the following spaces for

the test functions u and pw and of the weighting functions wu and wp

Tu =
{
u : Ω → R3 | u ∈ H1,u = ū on ΓD

u

}
Tp =

{
pw : Ω → R | pw ∈ H1, pw = p̄w on ΓD

p

}
Wu =

{
wu : Ω → R3 | wu ∈ H1,wu = 0 on ΓD

u

}
Wp =

{
wp : Ω → R | wp ∈ H1, wp = 0 on ΓD

p

}
(3.62)

The weak formulation of the equilibrium equation (3.53), together with the BCs

(3.52), results to be

W u
n+1 =

ˆ

Ω

(∇swu : C : εn+1−∇·wuS
wpwn+1−wu ·ρn+1g)dV−

ˆ

ΓN
u

wu · t̄dΓ = 0 (3.63)
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while, the weak formulation of the mass conservation equation (3.59), together with

the BCs (3.9), results to be

W p1
n+1 =

ˆ

Ω

wpn0ρ
w ∂Sw

∂pw

⏐⏐⏐⏐
n+1

(
pwn+1 − pwn

)
dV +

ˆ

Ω

wpS
w
n+1ρ

w∇ · (un+1 − un) dV

+∆t

ˆ

Ω

∇wp ·
[
ρw
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +∆t

ˆ

ΓN
p

wpq̄
wdΓ = 0 (3.64)

Similarly, the solution of the problem (3.60), together with the BCs (3.9), results

to be

W p2
n+1 =

ˆ

Ω

wpn0ρ
w
(
Sw
n+1 − Sw

n

)
dV +

ˆ

Ω

wpS
w
n+1ρ

w∇ · (un+1 − un) dV

+∆t

ˆ

Ω

∇wp ·
[
ρw
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +∆t

ˆ

ΓN
p

wpq̄
wdΓ = 0 (3.65)

and the solution of the problem (3.61), together with the BCs (3.9), results to be

W p3
n+1 =

ˆ

Ω

wpnn+1ρ
w
(
Sw
n+1 − Sw

n

)
dV +

ˆ

Ω

wpS
w
n+1ρ

w∇ · (un+1 − un) dV

+∆t

ˆ

Ω

∇wp ·
[
ρw
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +∆t

ˆ

ΓN
p

wpq̄
wdΓ = 0 (3.66)

Again, we apply now the Bobnov-Galerkin method, in order to obtain the discrete

counterpart of the previous weak formulations. An approximation of the trial func-

tions Tu, Tp and of the weighting functions Wu,Wp is de�ned, based on polynomial

shape functions with local support, obtaining

ũ = Nuû

p̃w = Npp̂
w

w̃u = Nuŵu

w̃p = Npŵp

(3.67)

where (̃) are the approximated trials and weighting functions, (̂) are the vectors

containing the values of those functions on the mesh nodes. In particular, due to the

vectorial nature of the displacement �eld, û, ŵu and Nu are de�ned as
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û = {u1,u2, ...,unn}T

ŵu = {w1
u,w

2
u, ...,w

nn
u }T

Nu = {N 1
u ,N

2
u , ...,N

nn
u }T

(3.68)

where, for a problem in two dimensions,

ui =
{
uix, u

i
y

}
wi

u =
{
wu,x, w

i
u,y

}
N i

u = I2N
i
u

(3.69)

where I2 is the identity matrix of dimension two, and N i
u is the shape function for the

displacement, relative to an arbitrary node i of the nn nodes de�ned on the domain.

In addition, it is useful to represent the elastic constitutive law (3.48) using the Voigt

notation, namely

Jσ′K = D JεK (3.70)

where Jσ′K and JεK are the vectorial forms of the e�ective stress tensor σ′ and the

strain tensor ε = ∇sũ respectively, de�ned as

Jσ′K =
{
σ′
xx, σ

′
yx, σ

′
xy

}T
(3.71)

JεK = {εxx, εyy, 2εxy}T (3.72)

and D is the so-called elasticity matrix, which, for a plain strain problem, is de�ned

as

D =

⎡⎣ λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

⎤⎦ (3.73)

where λ and µ are the Lamè coe�cients.

We can now obtain the discrete counterpart of the weak form of the equilibrium

equation (3.63), namely

Ru
n+1 = Keûn+1 −Qn+1p̂

w
n+1 + fu,n+1 = 0 (3.74)

where the matrices and vectors Ke, Qn+1 and fu,n+1 are de�ned as

Ke =

ˆ

Ω

(BTDBdV (3.75)

Qn+1 =

ˆ

Ω

(bTSwNpdV (3.76)
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fu,n+1 = −
ˆ

Ω

NT
u ρgdΩ −

ˆ

ΓN
u

NT
u t̄dΓ (3.77)

with the matrices B and b de�ned such that Bû = {ε} and bû = ∇ · ũ.
Regarding the discrete counterpart of the weak form of the mass balance equation,

we obtain three discrete algebraic systems of equations, one for each formulation that

has been introduced. Applying again the Bobnov-Galerkin method, from the weak

form (3.64) we obtain

Rp1
n+1 = Sn+1

(
p̂w
n+1 − p̂w

n

)
+QT

n+1 (ûn+1 − ûn) +Hn+1p̂
w
n+1 + fp,n+1 = 0 (3.78)

from the weak form (3.65) we obtain

Rp2
n+1 = dsn+1 +QT

n+1 (ûn+1 − ûn) +Hn+1p̂
w
n+1 + fp,n+1 = 0 (3.79)

and from the weak form (3.66) we obtain ,

Rp3
n+1 = ds∗n+1 +QT

n+1 (ûn+1 − ûn) +Hn+1p̂
w
n+1 + fp,n+1 = 0 (3.80)

where the matrices and the vectors Sn+1, Hn+1, dsn+1and fp,n+1 are the same derived

in Section 3.2.1; the vector ds∗n+1 is a modi�cation of dsn+1, in which the variation

of n with the volumetric deformation is taken into account, obtaining

ds∗n+1 =

ˆ

Ω

NT
p nρ

w
(
Sw
n+1 − Sw

n

)
dV (3.81)

If we de�ne now the generalized solution vector Ûn+1 and the generalized residual

vector Rn+1 as

Ûn+1 =

{
ûn+1

p̂w
n+1

}
(3.82)

Rn+1 =

{
Ru

n+1

R
p1/2/3
n+1

}
(3.83)

the FEM formulation of the coupled �ow-deformation problem can be written in the

compact form

Rn+1 = Rn+1

(
Ûn+1

)
= 0 (3.84)

Due to the presence of nonlinear expressions for the variables Sw, krw and n, the

system of equations (3.84) results to be a nonlinear function in Ûn+1, and so has to be

linearized and solved using an iterative scheme. In this section we apply the Newton-

Raphson method, in which the solution of the current time step n + 1 is searched
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iteratively, approximating the function Rn+1 with its tangent. The approximation

solution Û k+1
n+1 , where k + 1 indicates the current Newton-Raphson iteration k + 1, ,

is obtained solving the linear system of equations

Jk
n+1∆Û k+1

n+1 = −Rk
n+1 (3.85)

and then computing

Û k+1
n+1 = Û k

n+1 +∆Û k+1
n+1 (3.86)

The matrix Jk
n+1, known as Jacobian matrix of Rk

n+1, is de�ned as

Jk
n+1 =

∂Rk
n+1

∂Û k
n+1

(3.87)

From now on, due to the fact that, in the expression for the residual Rk
n+1 and the

Jacobian Jk
n+1, all the values relative to the current time step n + 1 are intended to

be the one computed during the previous nonlinear iteration k, we omit the iteration

index k. Due to the presence of two subsystems of equations, one for the �eld variable

u, and one for the �eld variable pw, the matrix Jn+1 can be subdivided in blocks,

namely

Jn+1 =

[
Juu
n+1 Jup

n+1

J
pu1/2/3
n+1 J

pp1/2/3
n+1

]
(3.88)

where the blocks are de�ned as

Juu
n+1 =

∂Ru
n+1

∂ûn+1
, Jup

n+1 =
∂Ru

n+1

∂p̂w
n+1

, J
pu1/2/3
n+1 =

∂Rp
n+1

∂ûn+1
, J

pp1/2/3
n+1 =

∂Rp
n+1

∂p̂w
n+1

(3.89)

In particular, the non-zero blocks Jup
n+1 and Jpu

n+1 represents the coupling between the

two �elds.

The blocks Juu
n+1 and Jup

n+1 , are derived from the residual Ru
n+1, relative to the

equilibrium equation, obtaining

Juu
n+1 =

∂Ru
n+1

∂ûn+1

= Ke (3.90)

Jup
n+1 =

∂Ru
n+1

∂p̂w
n+1

= Qn+1 + dFu,n+1 (3.91)

where the matrices Ke and Qn+1 are the same derived in the calculation of Ru
n+1,

and dFu,n+1 is de�ned as

dFu,n+1 =

ˆ

Ω

(
NT

u n0ρ
wg

) ∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.92)
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Regarding the residual Rp
n+1, we have three di�erent expressions, one for each

derived formulation of the mass balance equation. From the �rst formulation of the

residual Rp1
n+1, de�ned in (3.78), we derive

Jpu1
n+1 =

∂Rp1
n+1

∂ûn+1

= QT
n+1 (3.93)

Jpp1
n+1 =

∂Rp1
n+1

∂p̂w
n+1

= Sn+1 +Cn+1 +Gn+1 +Hn+1 + Pn+1 + dFp,n+1 (3.94)

from the second formulation of the residual Rp2
n+1, de�ned in (3.79), we derive

Jpu2
n+1 =

∂Rp2
n+1

∂ûn+1

= QT
n+1 (3.95)

Jpp2
n+1 =

∂Rp2
n+1

∂p̂w
n+1

= Sn+1 +Hn+1 + Pn+1 + dFp,n+1 (3.96)

and from the third formulation of the residual Rp3
n+1, de�ned in (3.80), we derive

Jpu3
n+1 =

∂Rp3
n+1

∂ûn+1

= QT
n+1 +Nn+1 (3.97)

Jpp3
n+1 =

∂Rp3
n+1

∂p̂w
n+1

= S∗
n+1 +Cn+1 +Hn+1 + Pn+1 + dFp,n+1 (3.98)

The matrices Sn+1 and Hn+1 are the same derived in Section 3.2.1, while the

matrices Cn+1, Gn+1, Pn+1, dFp,n+1, Nn+1 and S∗
n+1 are de�ned as

Cn+1 =

ˆ

Ω

NT
p n0ρ

w ∂2Sw

∂pw2

⏐⏐⏐⏐
n+1

NpdV (3.99)

Gn+1 =

ˆ

Ω

ˆ

Ω

[
NT

p b (ûn+1 − ûn)
] ∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.100)

Pn+1 = ∆t

ˆ

Ω

[
(∇Np)

Tρw
ksI

µw
∇Npp̂

w
n+1

]
∂krwn+1

∂Sw

⏐⏐⏐⏐
n+1

∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.101)

dFp,n+1 = −∆t

ˆ

Ω

[
(∇Np)

T (ρw)2
ksI

µw
g

]
∂krwn+1

∂Sw

⏐⏐⏐⏐
n+1

∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.102)

Nn+1 =

ˆ

Ω

NT
p ρ

(
Sw
n+1 − Sw

n

) ∂n

∂εv

⏐⏐⏐⏐
n+1

bdV (3.103)

S∗
n+1 =

ˆ

Ω

NT
p nρ

w ∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.104)
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3.3.2 An alternative mass conservative formulation

If we retrace the procedure, followed in Section 2.2.2, to obtain the mass balance

equation of water (2.73), we notice that the product rule of derivation has be applied

to the rate term ρ̇w = ˙(nSwρw), in order to be able to sum up the mass balance

equation of the solid with the one of the �uid, eliminating the material derivative of

the porosity ṅ. When the numerical discretization in time is applied, the product

rule is subjected to the same restrictions exposed in Section 3.2 for the chain rule.

From that point of view, also the formulation of the mass balance (3.53) is already

expected to be not conservative. We propose in this section a formulation of the mass

balance of solid and water, obtained without applying this two rules of derivation.

The mass balance equation for a specie α can be expressed in two alternative forms,

called Lagrangian form and Eulerian form. In the Lagrangian form the conservation

of ρα is stated relatively to an in�nitesimal control volume moving together with a

physical particle of the body, and the conservation of mass for α takes the form

dαρα
dt

+ ρα∇ · vα = 0 (3.105)

where
dαρα
dt

= ρ̇α =
∂ρα
∂t

+∇ρα · vα

is the material derivative of the density ρα, already introduce in the previous chapter.

On the other hand, in the Eulerian form the conservation of ρα is stated relatively

to an in�nitesimal control volume �xed in the space, and the conservation of mass

for α takes the form

∂ρα
∂t

+∇ · (ραvα) = 0 (3.106)

The Eulerian form is known also as conservationform of the equation, in the sense

that leads to conservative numerical schemes, due to the fact the the time integration

is done on the time partial derivative, and not on the material derivative.

In our case we have two mass conservation equations, one for the solid and one for

the liquid phase. Our objective is, therefore, to derive a mass conservation equation

for the both species together, staring from the Eulerian form of the conservation

equations of the single phases, and avoiding the use of the chain rule or the product

rule of the derivation.

Based on the Lagrangian form of the mass balance of the solid and of the water,

derived in Section 2.2.2, we can write the corresponding equations in the Eulerian
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form, obtaining

− ρs
∂n

∂t
+ ρs∇ · (1− n)v = 0 (3.107)

ρw
∂ (Swn)

∂t
+ ρw∇ · [nSw (v + ṽw)] = 0 (3.108)

Summing up these two equations we obtain

ρw
∂ [−n (1− Sw)]

∂t
+ ρw∇ · [1− n (1− Sw)v] + ρw∇ · (nSwṽw) = 0 (3.109)

If we notice now that the term

φa = n (1− Sw) (3.110)

is the volume fraction of air φa, and we apply the Darcy's law (2.68), then equation

(3.109) can be rewritten as

− ρw
∂φa

∂t
+ ρw∇ · [(1− φa)v] + ρw∇ ·

[
krwksI

µw
(−∇pw + ρwg)

]
= 0 (3.111)

After the application of the discretization in time (Backward Euler) we obtain

−
ρwφa

n+1 − φa
n

∆t
+ ρw∇ ·

[(
1− φa

n+1

) un+1 − un

∆t

]

+ ρw∇ ·
[
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0 (3.112)

We apply now the Weighted Residual method, obtaining the following time-

discrete weak formulation

W p4
n+1 = −

ˆ

Ω

wpρ
w
(
φa
n+1 − φa

n

)
dV +

ˆ

Ω

wpρ
w∇ ·

[(
1− φa

n+1

)
(un+1 − un)

]
dV

+∆t

ˆ

Ω

∇wp ·
[
ρw
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +∆t

ˆ

ΓN
p

wpq̄
w
n+1dV = 0 (3.113)

In order tho simplify the numerical treatment of the second term on the left hand
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side of equation (3.113), we apply the Green's Lemma, deriving the equivalent form

W p4
n+1 = −

ˆ

Ω

wpρ
w
(
φa
n+1 − φa

n

)
dV −

ˆ

Ω

∇wp · ρw
[(
1− φa

n+1

)
(un+1 − un)

]
dV

+

ˆ

∂Ω

wpρ
w
(
1− φa

n+1

)
(un+1 − un) ·nΓdΓ+∆t

ˆ

Ω

∇wp ·
[
ρw
krwn+1K

µw
(∇pwn+1 − ρwg)

]
dV

+∆t

ˆ

ΓN
p

wpq̄
w
n+1dV = 0 (3.114)

The corresponding discrete system of equations is obtained applying the Bubnov-

Galerkin approach, following the same procedure used in the previous section. We

obtain the following expression for the residual

Rp4
n+1 = dφn+1 + dvn+1 + dan+1 +Hn+1p̂

w
n+1 + fp,n+1 = 0 (3.115)

where the vectors dφn+1, dvn+1 and dan+1 are

dφn+1 = −
ˆ

Ω

NT
p ρ

w
(
φa
n+1 − φa

n

)
dV (3.116)

dvn+1 = −
ˆ

Ω

(∇Np)
Tρw

[(
1− φa

n+1

)
(un+1 − un)

]
dV (3.117)

dan+1 =

ˆ

∂Ω

NT
p ρ

w
(
1− φa

n+1

) [
nT

Γ (un+1 − un)
]
dΓ (3.118)

Equation (3.115) is coupled with the discrete form of the equilibrium equation

(3.74), obtaining again the nonlinear system of equations

Rn+1 =

{
Ru

n+1

Rp4
n+1

}
= 0 (3.119)

which has to be linearized and solved using an iterative scheme. As in the previous

section, the Newton-Raphson method is used, leading to linear system of equations

Jk
n+1∆Û k+1

n+1 = −Rk
n+1 (3.120)

where ∆Û k+1
n+1 is de�ned in (3.86). The Jacobian matrix Jn+1 results to be

Jn+1 =

[
Juu
n+1 Jup

n+1

Jpu4
n+1 Jpp4

n+1

]
(3.121)
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where Juu
n+1 and Jup

n+1 are de�ned in (3.90) and (3.91) respectively, and Jpu4
n+1 and Jpp4

n+1

must be derived from the residual Rp4
n+1. In particular, for the block matrix Jpu4

n+1 we

obtain the expression

Jpu4
n+1 =

∂Rp4
n+1

∂ûn+1

= Θu
n+1 + V u1

n+1 + V u2
n+1 +Au1

n+1 +Au2
n+1 (3.122)

where

Θu
n+1 = −

ˆ

Ω

NT
p ρ

w (1− Sw)
∂n

∂εv

⏐⏐⏐⏐
n+1

bdV (3.123)

V u1
n+1 = −

ˆ

Ω

(∇Np)
Tρw

(
1− φa

n+1

)
NudV (3.124)

V u2
n+1 = −

ˆ

Ω

[
(∇Np)

Tρw (un+1 − un)
]
(1− Sw)

∂n

∂εv

⏐⏐⏐⏐
n+1

bdV (3.125)

Au1
n+1 =

ˆ

ΓN
p

NT
p ρ

w
(
1− φa

n+1

) (
nT

ΓNu

)
dΓ (3.126)

Au2
n+1 =

ˆ

ΓN
p

{
NT

p ρ
w
[
nT

Γ (un+1 − un)
]}

(1− Sw)
∂n

∂εv

⏐⏐⏐⏐
n+1

bdΓ (3.127)

Finally, for the block matrix Jpu4
n+1 we obtain the expression

Jpp4
n+1 =

∂Rp4
n+1

∂p̂w
n+1

= Θp
n+1 + V p

n+1 +Ap
n+1 +Hn+1 + Pn+1 + dFp,n+1 (3.128)

where Hn+1, Pn+1 and dFp,n+1 are the same de�ned in the previous sections, and the

remaining matrices are de�ned as

Θp
n+1 =

ˆ

Ω

NT
p ρ

wn
∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.129)

V p
n+1 =

ˆ

Ω

[
(∇Np)

Tρw (un+1 − un)
]
n
∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdV (3.130)

Ap
n+1 = −

ˆ

ΓN
p

{
NT

p ρ
w
[
nT

Γ (un+1 − un)
]}
n
∂Sw

∂pw

⏐⏐⏐⏐
n+1

NpdΓ (3.131)
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3.3.3 Veri�cation of the mass balance

In order to verify the conservation of mass for the four proposed formulations in

this section, it is again necessary to evaluate the time-discrete water mass balance

statement

∆Mn+1
stor + M̄n+1

in/out = 0 (3.132)

which, this time, needs to take also the deformability of the solid skeleton into account.

If we consider negligible the variation of length of the boundary with the deforma-

tion, the average mass of water entering/exiting the domain M̄n+1
in/out can be evaluated,

as in the previous section, throw equation (3.39), together with equations (3.37) and

(3.38).

Regarding the evaluation of the storaged water mass Mstor, it becomes necessary

to take into account the variation of the porosity n and of the volume of integration

with the deformation, obtaining the following the de�nition of storage mass

Mstor =
ne∑

el=1

ˆ

Ω̄e

nSwdv (3.133)

where n is the current value of the porosity, dv is and in�nitesimal volume of the

deformed body and Ω̄e,def the deformed volume of a �nite element.

Starting from the de�nition of volumetric strain εv, in the framework of the in-

�nitesimal theory of deformation, is it possible to obtain the following relationship

between the in�nitesimal deformed volume dv and the in�nitesimal undeformed vol-

ume dV:

dv = (1 + εv) dV (3.134)

Inserting (3.134) into (3.133), together with equation (3.57) for the porosity n, we

obtain

Mstor =
ne∑

el=1

ˆ

Ωe

(n0 + εv)S
wdV (3.135)

which can be now integrated on the undeformed volume of the �nite elements. The

variation of storaged mass during the current time step n+ 1 is therefore de�ned as

∆Mn+1
stor =

ne∑
el=1

ˆ

Ωe

(n0 + εv,n+1)S
w
n+1dV −

ne∑
el=1

ˆ

Ωe

(n0 + εv,n)S
w
n dV (3.136)
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3.3.4 Numerical simulation of the Liakopoulos experiment

In this example we show the results of the numerical simulation of the Liakopouls

experiment [38]. This test consists in the study of the drainage of an initially satu-

rated soil column of Del Monte sand due to gravitational e�ects. The initial and the

boundary conditions, together with the dimensions of the domain are shown in Figure

3.7. The initial conditions in the experiment have been set regulating the water �ux

on the top of the column, in order to obtain the condition pw = 0 in all the domain.

Once this condition has been reached, the water supply on the top has been removed,

starting the desaturation process. The parameter of the model are listed in Table 3.2.

n0 [−] ks [m2] µw [Pa · s] ρw [Kg/m3] ρs [Kg/m3] E [MPa] ν [−]

0.2975 4.5 e−13 0.001 1000 2000 1.3 0.4

Table 3.2: Material parameters

The SWCC curve and the relative permeability-saturation curve used by Li-

akopoulos are

Sw = 1− 1, 9722e−11 (pc)2,4279 (3.137)

krw = 1− 2, 207 (1− Sw)0.9529 (3.138)

The mesh is discretized with 40 elements in the vertical direction, and the time step

∆t = 1 s is used. Finally the tolerance of the non-linear solver is set to toll = 10−7.

62



Chapter 3 3.3 Extension including the deformability of the solid matrix

p = 0  

q = kw

H
 =

 1
 m

  

L = 0,1 m  

g = 9,81 m/s2

p = 0  

q = 0 m/s

(a) (b) 

Figure 3.7: Scheme of the Liakopoulos experiment: in (a) the initial
conditions at t = 0 s, in (b) the boundary conditions for the desaturation
process.

Four di�erent numerical schemes are considered, analyzing their mass conservation

property:

• Scheme 1: it is obtained from the formulation (3.55) of the mass conservation

equation, with the chain rule applied to the rate of water saturation.

• Scheme 2: it is obtained from the formulation (3.53) of the mass conservation

equation. This scheme is mass conservative at the rigid skeleton limit.

• Scheme 3: it is obtained from the formulation (3.58) of the mass conservation

equation, considering the porosity n dependent on the deformation (equation

(3.57))

• Scheme 4: it is the new conservative scheme (3.114), derived from the strong

form (3.111), obtained without applying neither the chain rule nor the product

rule to the time derivatives.

In a �rst analysis the elastic properties of the reference test case (E = 1.3MPa,

ν = 0.4) are used, and the numerical results from Scheme 2 for the capillary pres-

sure are compared with the experimental ones (Figure 3.8); moreover, a comparison
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with an analytical solution for the initial conditions (constant �ux and pw = 0 ev-

erywhere) and the steady state drained limit for the displacement is also provided

(Figure 3.9), showing a good agreement between the numerical/experimental and nu-

merical/analytical results. Finally the evolution in time of the saturation Sw is shown

in Figure 3.10.

In a second analysis we compare the results obtain with the Schemes 1−4, for three

di�erent values of the Young modulus E. The �rst value is the one of the reference

test case (E = 1, 3MPa, ν = 0, 4), the second one is a very high value of the Young

modulus, and the third one correspond to a less rigid material (E = 0, 13MPa,

ν = 0, 4).

Figure 3.11.a shows the results obtained assuming a rigid solid skeleton (very big

value of E). It can be clearly seen how the Scheme 1 leads to considerable errors

in the �rst part of the desiccation analysis, while the solutions of the other three

schemes coincide, and are characterized by a relative mass error always lower then

5%, considered as limit of acceptability. In this case only the saturation Sw in�uences

the mass conservation. Figure 3.11.b shows the results relative to the Young modulus

of the material used in the experiment. It can be seen how the relative mass error

obtained with the Scheme 1 remains bigger then 5%, while the other schemes perform

well. In particular the last two schemes, capable to capture the variation of the poros-

ity with the deformation, lead to slightly better results at the end of the desiccation

process. In this case both Sw and n in�uences the mass conservation. In the last

example, shown in Figure 3.11.c, a Young modulus E = 0, 13MPa is considered. It

can be seen that the both �rst two schemes leads to bigger error in the �nal part

of the desiccation process, while the last two performs again well. In particular the

error obtained with the Scheme 1 are slightly lower then the one obtained with the

Scheme 3. In this case n in�uences the mass conservation the most.
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Figure 3.8: Comparison between the numerical results (Scheme 2) and
the experimental evolution in time of the capillary pressure pc.
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Figure 3.9: Comparison between the numerical and the analytical steady
state solution for the vertical displacement.
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Figure 3.10: Evolution in time of the water saturation Sw obtained
with the numerical model (Scheme 2) and the elastic parameters of the
reference test.
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Figure 3.11: Relative mass errors for the Scheme 1− 4 : in (a) E → ∞,
in (b) E = 1, 3MPa, in (c) E = 0, 13MPa. The solutions showing a
maximum relative error greater than 5% are highlighted with a red circle,
while the ones showing a maximum relative error smaller than 5% are
highlighted with a green circle.
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3.4 Conclusions

In this chapter the attention has been posed on the development of conservative nu-

merical schemes for the discretization of the mass conservation equation in partially

saturated porous media. In the �rst part of the chapter we focused on the numer-

ical modeling of porous media with rigid solid skeleton, for which the mass balance

equation of water becomes the so-called Richards equation. The problem of the con-

servation of mass after the numerical discretization has been introduced, and the

main conservative and non-conservative formulations present in the literature have

been reviewed. The two formulations have been used in the numerical simulation

of an in�ltration problem, showing that the non-conservative formulation, not only

leads to signi�cant errors in the mass conservation, but also shows some convergence

issues, not observed using a conservative scheme.

The problem has been after extended, taking into account the deformability of

the solid skeleton, consider as a linear elastic material. Four di�erent formulations

of the mass balance equation of water and solid have been discussed, including an

original formulation obtained starting from the eulerian form of the mass balance of

the single species, and without the use of neither the chain rule nor the product rule

of derivation in the treatment of the equations before the numerical discretization.

Finally, the four di�erent numerical schemes, obtained after the discretization in

time and space, have been used in the simulation of a benchmark desiccation exper-

iment [38]. The problem has been solved using three di�erent values of the Young

modulus, and, compared to the other schemes adopted, the new scheme proposed

leads to the lowest values of relative mass error in all the three cases analyzed. Any-

way, the implementation of this scheme is more complicated and the resolution is the

most computational expensive. For a normal engineering application, probably the

best compromise between accuracy and numerical e�ciency is the so-called Scheme 2,

that can be modi�ed into the Scheme 3 when the deformability of the material be-

comes bigger.
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Stabilized mixed formulation for

phase-�eld modeling of deviatoric

fractures in saturated porous media

4.1 Introduction

In the numerical approximation of a phase-�eld model of fracture in porous media

with the Finite Element Method (FEM), the problem of the numerical locking due

to high volumetric sti�ness of the medium can occur. The causes of this state of

incompressibility can be traced both to the hydraulic and the mechanical properties of

the material. Regarding the hydraulic properties, it is well known in the literature [68,

37, 10] that, in the early stage of the consolidation process of porous media with low

permeability, oscillating solutions for the pore pressure can be found when using �nite

elements that violate the so-called Ladyzenskaja-Babuska-Brezzi (LBB) condition

[15]. Regarding the mechanical properties, has been shown in [60] that, when using

a deviatoric-volumetric energy split in the phase-�eld simulation of brittle fractures

subjected to compressive loading, the phase-�eld solution may feature a much larger

thickness of the localization band than expected based on the chosen characteristic

length, or the simulation may even not converge at all. To the knowledge of the

author, the combination of these two phenomena has not been studied yet.

The objective of this chapter is, therefore, to study the occurrence of these insta-

bilities, generally de�ned as locking phenomena, in the phase-�eld modeling of brittle

fracture in saturated porous media, and to introduce a new stabilized mixed for-

mulation for low-order �nite elements, based on the polynomial-pressure-projection

technique, �rst proposed in [7, 23, 8] in the �eld of �uid dynamics, and successively

applied in [66] to the �eld of saturated porous media. The chapter is subdivided as
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follows: Section 4.2 focuses on the introduction of the stabilization technique and on a

review of its application to the modeling of saturated porous media; in Section 4.3 the

same stabilization technique to phase-�eld modeling of fracture in elastic solids and,

in Section 4.4, the two problems are combined. Here three alternative formulations

of the poroelastic-fracture problem and their relative stabilization are studied.

4.2 Water �ow in a linear elastic saturated porous

medium

4.2.1 Mathematical formulation

The balance equations for the coupled problem of saturated water �ow in a deforming

porous medium brie�y introduced. The following assumptions are made: isothermal

fully saturated condition (u − pw formulation), incompressibility of both solid and

liquid phase, and geometric linearity. With these assumptions, we can rewrite the

strong form of the equilibrium (2.72) equation as

∇ · σt + ρg = 0 (4.1)

and the strong form of the mass balance equation of solid and water mass (2.73) as

∇ · u̇+∇ · vws = 0 (4.2)

where σt is the Cauchy total stress tensor, g is the vector of gravity acceleration, u

the solid matrix displacement, and vws the relative water velocity with respect to the

solid matrix, and

ρ = (1− n)ρs + nρw (4.3)

is the density of the mixture, with ρs and ρw indicating the intrinsic density of the

solid and of the water phase respectively, and n indicating the porosity of the material.

Equations (4.1) and (4.2) are de�ned on the domain Ω of the body.

Based on the Terzaghi's e�ective stress principle (2.47), the Cauchy total stress

tensorσt can be decomposed as

σt = σe − Ipw (4.4)

where pw is the water pore pressure, and σe is the so-called e�ective stress, namely

the portion of the total stress directly related to the deformation of the solid matrix.

In order to be able to solve the system of di�erential equations (4.1) and (4.2) we

need to add some constitutive laws. Concerning the mechanical behavior of the solid
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matrix, we assume a linear elastic constitutive relation between the e�ective stress

tensor σe and the in�nitesimal strain tensor ε, namely

σe = C : ε (4.5)

where C is the fourth-order elastic tensor depending on the two Lamè constants λ

and µ. Note that ε = ∇su, where ∇s is the symmetric part of the gradient operator.

For the �uid phase we introduce, as a constitutive equation, the Darcy's law (2.68),

which for a saturated porous medium takes the form

vws = − kw

ρwg
I(∇pw − ρwg) (4.6)

where kwis the hydraulic conductivity (expressed in m/s).

Introducing (4.5), (4.6) and (4.4) into (4.1) and (4.2) we obtain the system of

equations

∇ · (C : ∇su− Ipw) + ρg = 0 (4.7)

∇ · u̇−∇ ·
[
kw

ρwg
I · (∇pw − ρwg)

]
= 0 (4.8)

that now can be solved for u and pw.

In order for the system of equations (4.7) and (4.8) to be a well-posed problem,

we need to specify some boundary conditions on the boundary Γ = ∂Ω of the domain

Ω, together with some initial condition at the time t = 0. First of all, we have to

de�ne on the boundary Γ the portions ΓD
u and ΓD

p , where boundary conditions are

applied on displacements and water pressure respectively (Dirichlet BCs), and the

portions ΓN
u and ΓN

q , where boundary conditions are applied on traction and water

�ux respectively (Neumann BCs). This decomposition must ful�ll the relationships:

Γ = ΓD
u ∪ ΓN

u = ΓD
p ∪ ΓN

p (4.9)

ΓD
u ∩ ΓN

u = ΓD
p ∩ ΓN

p = ⊘ (4.10)

The initial and boundary conditions are then expressed as

u = u0 at t = 0

pw = pw0 at t = 0

u = u on ΓD
u

pw = p̄w on ΓD
p

σ · n = t̄ on ΓN
u

vws · n = q̄ on ΓN
q

(4.11)
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where u0 arepw0 the initial values of the displacement and water pressure, u and p̄w

are the imposed values of the displacement and water pressure on the portion of Γ

with Dirichlet BCs, t and q̄ are the imposed values of the traction and the water �ux

on the portion of Γ with Neumann BCs, and n is the unit vector perpendicular to

the boundary Γ .

4.2.2 Finite element discretization

We apply now the Weighted Residual Method to derive a weak formulation of the

boundary value problem represented by the di�erential equations (4.1) and (4.2),

together with the BCs (4.11), and starting point for the application of the Finite

Element Method. De�ning the following spaces for the trial functions u and pw and

of the test (or weighting) functions wu and wp

Tu =
{
u : Ω → R2 | u ∈ H1,u = u on ΓD

u

}
Tp =

{
pw : Ω → R | pw ∈ H1, pw = p̄w on ΓD

p

}
Wu =

{
wu : Ω → R2 | wu ∈ H1,wu = 0 on ΓD

u

}
Wp =

{
wp : Ω → R | wp ∈ H1, wp = 0 on ΓD

p

} (4.12)

the solution of the problem (4.1), (4.2) and (4.11) is the pair {u, pw} that solves, for

any admissible pair {wu, wp}, the following weak formulation

´
Ω
(∇swu : D : ∇su− pw∇ ·wu −wu · ρg)dV −

´
ΓN
u
wu · t̄dΓ = 0´

Ω

{
wp∇ · u̇+∇wp ·

[
kw

ρwg
I · (∇pw − ρwg)

]}
dV +

´
ΓN
p
wdq̄dΓ = 0

(4.13)

Starting from this weak form, it is now possible to discretize the problem in space

and in time. Concerning the discretization in space, we subdivide our domain in a

mesh of quadrilateral elements, and we consider an approximation of the spaces Tu,

Tp, Wu, Wp based on polynomial shape functions with local support, namely

ũ = Nuû

p̃w = Npp̂
w

w̃u = Nuŵu

w̃p = Npŵp

(4.14)

where (̃) are the approximated trials and weighting functions, (̂) are the vectors

containing the values of these functions on the mesh nodes, Np is the vector of

dimension 1×nn containing the shape function for the water pressure N i
p, relative to

an arbitrary node i of the nn nodes de�ned on the domain Ω by the �nite element

mesh, and Nu is a matrix de�ned as de�ned as
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Nu = {N 1
u ,N

2
u , ...,N

nn
u }T (4.15)

where, for a problem in two dimensions,

N i
u = I2N

i
u (4.16)

where I2 is the identity matrix of dimension two, and N i
u is the shape function for

the displacement, relative to an arbitrary node i of the nn nodes de�ned on the

domain. The same shape functions are used for the corresponding trial and weighting

functions, so the Bobnov-Galerkin Method is recovered.

Concerning the discretization in time, we apply the Backward Euler scheme. First

of all, we de�ne as n+ 1 and n the current and the previous time steps respectively,

and we call ∆t the dimension of the current time step. In the Backward Euler scheme

(known also as Implicit Euler scheme) a certain di�erential equation is solved at the

current time step n + 1, replacing the derivatives with respect of time with their

discrete counterpart, namely

(̇) =
() n+1 − () n

∆t
(4.17)

We can therefore write the discrete version of the weak form (4.13) as

Ru,n+1 = Kn+1ûn+1 −Qn+1p̂
w
n+1 − fu,n+1 = 0

Rp,n+1 = QT
n+1(ûn+1 − ûn)/∆t+Hn+1p̂

w
n+1 − fp,n+1 = 0

(4.18)

with

K =

ˆ

Ω

BTDBdV (4.19)

Q =

ˆ

Ω

bTNpdV (4.20)

H =

ˆ

Ω

(∇Np)
T k

wI

ρwg
∇NpdV (4.21)

fu =

ˆ

Ω

NT
u ρgdΩ +

ˆ

Γ

NT
u t̄dΓ (4.22)

fp =

ˆ

Ω

(∇Np)
T k

w

g
gdΩ −

ˆ

Γ

NT
p q̄dΓ (4.23)

where the matrices B and b are de�ned such that Bû = JεK and bû = ∇ · ũ, with
JεK being the in�nitesimal strain tensor ε represented in Voigt notation. The matrix
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D is the elasticity matrix , which for a plain strain problem (assumption made for

all the applications in this chapter) is de�ned as

D =

⎡⎣ λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

⎤⎦ (4.24)

where λ and µ are the Lamè coe�cients.

We can now notice that the expressions (4.19) - (4.23) do not depend on the

solution at the current time step, so the problem is linear and the solution can be

directly calculated solving the system[
K −Q

QT ∆tH

] {
û

p̂w

}
n+1

=

[
0 0

QT 0

]{
û

p̂w

}
n

+

{
fu

∆tfp

}
n+1

(4.25)

Now the next step is the choice of the functions Nu and Np : it is well known in

the literature that, for a coupled solid deformation-�uid �ow problem, this choice is

subjected to some restrictions, as the pair (Nu, Np) has to ful�ll the so called LBB

condition in order to ensure the stability of the solution in the locally undrained limit.

The study of the stability of the formulation is the goal of this chapter, and will be

treated in the next section.

4.2.3 Stable, unstable and stabilized formulations

We consider know the algebraic structure of the problem in the local undrained limit,

i.e. when the product ∆tkw → 0 [66]. The di�erential equations (4.7) and (4.8)

become
∇ · (D : ∇su− Ipw) + ρg = 0

∇ · u̇ = 0
(4.26)

and the discrete counterpart (4.25) becomes[
K −Q

−QT 0

] {
û

p̂w

}
=

{
fu

0

}
(4.27)

We can notice that the lower diagonal block in the system (4.27) is now zero, and

the matrix assumes the typical structure of the problems in mechanics where incom-

pressibility acts as a constraint. From a physical point of view, this is exactly what is

happening: if we consider a arbitrary portion of our domain, in the undrained limit

the water can not move in our out of that volume, because of the condition ∇· u̇ = 0,

and, due to its incompressibility, constrains the solid matrix to develop pure devi-

atoric deformations. In order to obtain a stable solution, the choice of the spaces
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Wu and Wp has to satisfy the LBB conditions. The combination of quadratic dis-

placements and linear pressure interpolations (Q9P4 for quadrilateral �nite elements)

satis�es this condition, while the combination of linear displacements and linear pres-

sure interpolations (Q4P4 for quadrilateral �nite elements) does not. In spite of its

stability, the Q9P4 quadrilateral element, with its 22 degrees of freedom (DOFs), is

computationally more expensive than the Q4P4 quadrilateral element, which has only

12 DOFs. The computational advantage of the linear-displacements/linear-pressure

interpolation becomes even more evident in three-dimensional problems, where ev-

ery hexagonal element has 32 degrees of freedom (DOF), while using a quadratic-

displacements/linear-pressure interpolation the number of DOFs per hexagonal ele-

ment rises to 89.

A smart approach to stabilize the linear-displacements/linear-pressure interpola-

tion has been introduced by Bochev and Dohrmann in [23, 7, 8], in the context of

�uid mechanics, and successively applied by White and Borja in [66], in the �eld of

porous mechanics. We brie�y resume the stabilization technique proposed in [23] for

the Stokes equations. The strong form of the equations is

−ν∆u+∇p = f

∇ · u = 0
(4.28)

where u is the water velocity, p the water pressure and ν the water viscosity, along

with the homogeneous boundary condition

u = 0 on Γ (4.29)

The algebraic system obtained after the �nite element discretization of the weak form

of the problem is [
A −B

−BT 0

] {
û

p̂

}
=

{
fu

0

}
(4.30)

where

A =
´
Ω
ν(∇Nu)

T∇NudV, B =
´
Ω
ν(∇ ·Nu)

TNpdV, fu =
´
Ω
NT

u fdV (4.31)

Due to the zero low diagonal block in the sti�ness matrix in (4.30), it is well known

in the literature that �nite elements with the same order of interpolation for the

velocity u and the pressure p do not ful�ll the LBB condition, and therefore can

lead to an oscillating solution for the pressure. In this unstable category falls the

linear-velocity/linear-pressure interpolation. The idea proposed in [23] is to add a

stabilization term in the weak formulation of the problem, resulting in a non-zero low
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diagonal block in the corresponding discrete equation. Let us �rst de�ne an element

piecewise constant projector operator for the pressure as

Πp|Ωe =
1

Ve

ˆ

Ω

pdΩ (4.32)

where Π is the projection operator and Ve is the volume of the element domain

Ωe. This is nothing but the de�nition of the average element pressure. Having this

de�nition in mind, the discrete version of the new stabilized problem becomes[
A −B

−BT −C

] {
û

p̂

}
=

{
fu

0

}
(4.33)

where the new low diagonal block C is introduced. This is de�ned as

C =

ˆ

Ω

1

ν
(Np − ΠNp)

T (Np − ΠNp)dV (4.34)

The idea behind this stabilization is substantially to 'penalize' the oscillations

of the pressure around their element average value. This is actually more than a

simple penalization: Bochev and Dohrmann demonstrated that the additional terms

proposed quantify, and therefore correct, the de�ciency of the linear-velocity/linear-

pressure interpolation with respect to the LBB condition [66]. There are two main

advantages in the use of this stabilization:

• The stabilization term is a local additional term: it requires only the computa-

tion of average value of the element shape functions, so no additional informa-

tion need to be sent to the subroutine calculating the element sti�ness matrix

and residual. Therefore the stabilization can be easily implemented without

changing the overall structure of the �nite element code, and requiring fur-

thermore a minimum additional computational cost (specially when compared

with the saving in therms of DOF due to the use of linear interpolation for the

velocity instead of the quadratic one necessary to satisfy the LBB condition)

• No additional stabilization coe�cients are required: the penalization factor is

the inverse of a physical parameter characterizing the problem, the water viscos-

ity ν, and the risk of an insu�cient or excessive stabilization due to an arbitrary

coe�cient set by the user is avoided.

Starting from this idea, and noticing the clear similarity between the equations (4.27)

and (4.30), White and Borja introduced a similar stabilization term in order to be
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able to use the Q4P4s element in the consolidation analysis of saturated porous media

with low permeability. In [66] they propose the following modi�ed version the discrete

residual (4.18):

Ru,n+1 = Kn+1ûn+1 −Qn+1p̂
w
n+1 − fu,n+1 = 0

Rp,n+1 = QT
n+1(ûn+1 − ûn)/∆t+Hn+1p̂

w
n+1 − fp,n+1 +Rstab

n+1 = 0
(4.35)

where the stabilization vector Rstab
n+1 has been included in the de�nition of the residual

Rp,n+1. The vector R
stab
n+1 is de�ned in [66] as

Rstab
n+1 = SWB(p̂w

n+1 − p̂w
n )/∆t (4.36)

where

SWB =

ˆ

Ω

τ

2µ
(Np − ΠNp)

T (Np − ΠNp)dV (4.37)

Here µ is the shear modulus of the solid matrix, and τ an additional coe�cient intro-

duced mainly to compensate a possible excess of stabilization (τ = 0.04 has been used

in [66] for a two-dimensional numerical application). Being the permeability kw > 0

(even if very small), the problem is always characterized by a transient evolution

(even if very slow) and, therefore, the stabilized quantity is the time derivative of the

water pressure. Now it is interesting to notice that, in analogy with what has been

done for the Stokes equations, also in this case the stabilization term is penalized by

a physical parameter of the problem, namely 2µ. However, while in the current case

of the Stokes equations the parameter multiplying the velocity was a scalar value and

so the choice of the penalization was unique (the inverse of that value), in the case

in analysis the strain tensor ε is multiplied by the fourth order elasticity tensor C,
depending itself from the two Lamè constants λ and µ. Thus a criterion for the choice

of a scalar value representative of the tensor C is needed. We suggest, as a general

criterion, to use as a stabilization coe�cient

cstab = (tr(C)/n)−1 =
1

λ+ 2µ
(4.38)

where n is the dimension of the problem. Following this criterion a modi�ed de�nition

of the stabilization (4.37) arises, namely

Smod =

ˆ

Ω

1

λ+ 2µ
(Np − ΠNp)

T (Np − ΠNp)dV (4.39)

We notice that, in this case, the stabilization coe�cient is always greater or equal to

(4.37), proposed in [66], leading to a weaker stabilization e�ect. With the introduction
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of the stabilization matrix S (SWB or Smod), the stabilized counterpart of the (4.25)

can be derived, namely[
K −Q

QT ∆tH + S

]{
û

p̂w

}
n+1

=

[
0 0

QT S

]{
û

p̂w

}
n

+

{
fu

∆tfp

}
n+1

(4.40)

4.2.4 Numerical example

In this example we show the numerical solution of a classical problem of geomechan-

ics, Terzaghi's problem, whose analytical solution is well known. The domain of the

problem is a layer of poroelastic material of height H and in�nite extension, subjected

to a constant load w applied at the top and vertically constrained at the bottom (see

Figure 4.1). The water �ux is free at the top, but constrained at the bottom. On

the lateral boundaries zero horizontal displacement and water �ux are imposed. The

problem is a plane state of deformation and the mesh used for the discretization of the

domain consists into a column of 20 quadrilateral elements. Although the analytical

solution for displacement and water pressure is known for the entire consolidation

process, our goal is to compare the numerical solutions of the pressure obtained using

di�erent stable and unstable �nite elements at the early stage of the consolidation.

The problem is solved using the classical �nite elements Q9P4, Q4P4, and the sta-

bilized bilinear elements Q4P4s-WB (the original proposed by White and Borja with

the stabilization (4.37)) and Q4P4s (with the modi�ed stabilization term (4.39) pro-

posed in this thesis).The parameters of the models are: E = 1 kPa, kw = 10−5m/s,

ρs = 0, ρw = 1000 kg/m3, ∆t = 1 s; two di�erent Poisson ratios are considered, ν = 0

and ν = 0.4 (very high value for soils, but chosen order to accentuate the di�erences

between the two stabilizations analyzed).

78



Chapter 4 4.2 Water �ow in a linear elastic saturated porous medium

p = 0  

w = 1 kPa

H
 =

 1
 m

  

L = 0,1 m  

Figure 4.1: Scheme of the Terzaghi's problem [66].

In order to study the stability of the di�erent �nite elements, we focus our at-

tention on the initial stage of the consolidation process: it is immediately after the

application of the load that, for a factor kw∆t small enough, the porous medium is

subjected to undrained conditions, behaving as a incompressible material. Under this

condition unstable �nite elements are expected to show oscillations for the pressure

solution. If we look at Figure 4.2.a, we can notice that the solution obtained for

the pressure with the element Q4P4 shows large oscillations that propagate also far

away from the boundary where the load is applied (pressure jump). The solution

obtained with the stable Taylor-Hood element Q9P4 shows a small initial oscillation,

that disappears at a small distance from the boundary where the load is applied.

Both stabilized elements Q4P4s-WB and Q4P4s work perfectly, in the sense that

they reproduce perfectly the solution of the stable element Q9P4. The two solutions

coincides because, for ν = 0, the two stabilization terms (4.37) and (4.39) coincide.

In Figure 4.2.b the results obtained using a Poisson modulus ν = 0.4 are shown.

For the element Q4P4 the results show again large oscillations along the entire do-

main, although slightly smaller than in the previous case. Again the Taylor-Hood

element, as expected, leads to a stable pressure distribution. In this case, however,

the di�erence in the choice of the 'penalty' coe�cient in the stabilization term becomes
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evident. While the proposed stabilized element Q4P4s delivers again exactly the same

solution obtained with the stable Q9P4, the Q4P4s-WB shows a total absence of os-

cillation. This result, which seems to indicate and advantage of Q4P4s-WB, because

it is the closest to the analytical solution (constant pressure equal to the applied

load along the column, and sharp jump in the solution at the top, where Dirichlet

boundary conditions are applied), is instead an indicator of an excess of stabilization.

In fact, we consider as and indicator of the correctness of the stabilization coe�cient

the agreement with the numerical solution obtained with a stable formulation, more

than the agreement with the analytical solution itself. This excess of stabilization

for the element Q4P4s-WB was noticed by the authors themselves, and is possibly

the reason why they introduce in the stabilization (4.37) an additional coe�cient τ

, set smaller than 1, in other to reduce the excess of di�usion that they noticed in

some simulations [66]. Except for the choice of the penalty coe�cient, the stabiliza-

tion technique proposed in [66] results very e�ective and, at the same time, easy to

implement.
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Figure 4.2: Pressure distribution along the column at the �rst time step
for di�erent �nite elements. In (a) ν = 0, in (b) ν = 0.4.

81



4.3 Phase-�eld modeling of deviatoric fractures in elastic materials Chapter 4

4.3 Phase-�eld modeling of deviatoric fractures in

elastic materials

4.3.1 Mathematical formulation

In Section 2.3 the regularized functional (2.135) for the phase-�eld modeling of brittle

fracture ha been introduced. This functional reads

El(u, d) =

ˆ

Ω

Ψ(ε(u), d)dV

  
Eel(u,d)

+
Gc

4Cv

ˆ

Ω

(
w(d)

l
+ l |∇d|2

)
dV

  
Es

l (d)

+
γ

2

ˆ

Ω

⟨d− dn⟩2− dV

  
Pγ(d)

(4.41)

where u is the displacement vector, ε(u) is the in�nitesimal strain tensor, d is the

phase-�eld variable, Gc is the fracture toughness, l the so-called characteristic length,

Cv a normalization constant, depending on the model used for the local part of the

dissipation function w(d), Ψ(ε(u), d) is the elastic energy density, Pγ(d) is a penalty

term, introduce to enforce the irreversibility of the phase-�eld variable d, and the

subscript n indicated the previous step the loading process, which is divided into

a �nite sequence of pseudo-time steps (tn)n=1,N . The functional (4.41) is a general

expression, which need to be particularized by choosing and speci�c model for the

functions w(d) and Ψ(ε(u), d). Concerning the the local part of the dissipation

function, we choose the AT1 model (see Section 2.3.3), characterized by the following

expression for w(d) and Cv:

w(d) = d, Cv =
2
3

(4.42)

For the energy density function Ψ(ε(u), d), we use and expression base on volumetric-

deviatoric energy split proposed by Lancioni and Royer-Carfagni [36], namely

Ψ(ε(u), d) = [(1− d2) + η]Ψdev
0 (ε(u)) +Ψvol

0 (ε(u)) (4.43)

where η is the residual sti�ness, and Ψvol
0 (ε(u)) and Ψdev

0 (ε(u)) are the volumetric

and the deviatoric component of the undamaged elastic energy Ψ0(ε(u)), such that

Ψ0(ε(u)) = Ψdev
0 (ε(u)) +Ψvol

0 (ε(u))

In particular, if a linear elastic model is assumed for the undamaged material, Ψ0(ε(u)),

Ψdev
0 (ε(u)) and Ψvol

0 (ε(u)) are de�ned as
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Ψ0(ε(u)) =
1
2
λtr2(ε(u)) + µtr(ε2) = 1

2
ε : C : ε

Ψdev
0 (ε(u)) = µεdev(u) : εdev(u)

Ψvol
0 (ε(u)) = 1

2
Ktr2(ε(u)) (4.44)

where εdev = ε− 1
3
tr(ε)I is the deviatoric component of the strain tensor ε,K = λ+ 2

3
µ

is the material bulk modulus and C is the fourth-order elastic tensor depending on

the two Lamè constants λ and µ. Inserting (4.42) and (4.43) in (4.41), we obtain

El(u, d) =

ˆ

Ω

[(1− d)2 + η]µεdev(u) : εdev(u)  
Ψdev

0

dV +

ˆ

Ω

1

2
Ktr2(ε(u))  

Ψvol
0

dV

+
3

8
Gc

ˆ

Ω

(
d

l
+ l |∇d|2

)
dV +

γ

2

ˆ

Ω

⟨d− dn⟩2− dV (4.45)

It is now useful, for the following the developments, to express El(u, d) as a function of

the total strain ε, and not of its components εdev and tr(ε). We introduce, therefore,

the following split of the elasticity tensor

C = Cvol + Cdev (4.46)

where the volumetric tensor Cvol and the deviatoric tensor Cdev are de�ned by the

equivalences

Ψvol
0 =

1

2
ε : Cvol : ε =

1

2
Ktr2(ε(u)) (4.47)

Ψdev
0 =

1

2
ε : cc = µεdev(u) : εdev(u) (4.48)

The functional (4.45) can be rewritten as

El(u, d) =

ˆ

Ω

1

2
ε(u) :

{
[(1− d)2 + η]Cdev + Cvol

}
: ε(u)dV

+
3

8
Gc

ˆ

Ω

(
d

l
+ l |∇d|2

)
dV +

γ

2

ˆ

Ω

⟨d− dn⟩2− dV (4.49)

The phase-�eld formulation of brittle fracture is based on the minimization of the

functional (4.49). More precisely. the solution of the problem of equilibrium and
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evolution of the phase-�eld variable d consists in �nding a couple (u, d) that minimizes

the functional (4.45), namely

argmin {El(u, d) : u ∈ Tu, d ∈ Td} (4.50)

where Tu and Td are the admissible displacement space and the admissible phase-�eld

space, de�ned as

Tu =
{
u : Ω → R2 | u ∈ H1,u = u on ΓD

u

}
Td = {d : Ω → R | d ∈ H1} (4.51)

A necessary optimality condition for (u, d) ti be a minimum of El(u, d) is that

E ′
l(u, d) (v) =

ˆ

Ω

ε(u) :
{
[(1− d)2 + η]Cdev + Chyd

}
: ε(v)dV = 0 (4.52)

E ′
l(u, d) (α) =

ˆ

Ω

[
−2(1− d)Ψdev

0 (ε(u))
]
αdV +

3

8
Gc

ˆ

Ω

α

l
dV

+
3

4
Gcl

ˆ

Ω

∇d · ∇αdV + γ

ˆ

Ω

⟨d− dn⟩− αdV = 0 (4.53)

for every (v, α) ∈ Wv ×Wd, where E
′
l(u, d) (v) and E

′
l(u, d) (α) are the directional

derivatives of the functional El(u, d), and Wv and Wα are the displacement and the

phase-�eld test space, de�ned as

Wv =
{
v : Ω → R2 | v ∈ H1,v = 0 on ΓD

u

}
Wα = {α : Ω → R | α ∈ H1} (4.54)

Equations (4.52) and (4.53) represent the weak for of the variational problem(4.50).

Applying the Green's Lemma to the equations (4.52), it is possible to derive the

following Euler's equations of the variational formulation

−∇ · σ(ε, d) = 0 (4.55)

− 2(1− d)Ψdev
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d) + γ ⟨d− dn−1⟩− = 0 (4.56)

where equation (4.55) is the equilibrium equation, equation (4.56) the phase-�eld

evolution equation, and σ(ε, d) is the stress tensor, de�ned as

σ(ε, d) =
∂Ψ(ε(u), d)

∂ε
=

{
[(1− d)2 + η]Cdev + Chyd

}
: ε

= [(1− d)2 + η]2µεdev +Ktr(ε)I (4.57)
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Together with the BCs

σ · n = 0 on ΓN
u (4.58)

∇d · n = 0 on ΓN
d (4.59)

the equations (4.55) and (4.56) form the strong form of the variational problem.

We introduce now an approximation of the spaces Tu, Tp, Wu, Wp based on poly-

nomial shape functions with local support, namely

ũ = Nuû

d̃ = Ndd̂

ṽ = Nuv̂

α̃ = Ndα̂

(4.60)

where (̃) are the approximated trials and weighting functions, (̂) are the vectors

containing the values of these functions on the mesh nodes, Nd is the vector of

dimension 1×nn containing the shape function for the water pressure N i
d, relative to

an arbitrary node i of the nn nodes de�ned on the domain Ω by the �nite element

mesh, and Nu is a matrix de�ned as de�ned as in Section 4.2.2.

Based in the approximation (4.60), it is possible to derive, from (4.52) and (4.53),

the following discrete version of the weak form of the problem:

Ru =

ˆ

Ω

BT
{
[(1− d̃)2 + η]Ddev +Dvol

}
Jε(ũ)K dV = 0 (4.61)

Rd =

ˆ

Ω

NT
d

[
−2(1− d̃)Ψdev

0 (ε(ũ)) +
3Gc

8l

]
dV +

3

4
Gcl

ˆ

Ω

(∇Nd)
T∇d̃dV

+ γ

ˆ

Ω

NT
d

⟨
d̃− d̃n

⟩
−
αdV = 0 (4.62)

where Jε(ũ)K = Bûis the in�nitesimal strain vector, and Ddev and Dvol are the

deviatoric and the volumetric component of the elasticity matrix D, de�ned as

Ddev =

⎡⎣ 4
3
µ −2

3
µ 0

−2
3
µ 4

3
µ 0

0 0 µ

⎤⎦ (4.63)
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Dvol =

⎡⎣ λ+ 2
3
µ λ+ 2

3
µ 0

λ+ 2
3
µ λ+ 2

3
µ 0

0 0 0

⎤⎦ (4.64)

The systems of equations (4.61) and (4.62) is solved in a staggered way: for every

loading step, each system of equations is solved for its main �eld (u for (4.61) and d for

(4.62)) independently, using the last calculated value of the other �eld as a constant.

These procedure is repeated in loop until a convergence condition is satis�ed, namely

[60] d̂s+1 − d̂s


∞
< TOLstag (4.65)

where s + 1 and s are the current and the previous staggered iteration, respectively.

The residual Ru is linear with respect to u, so the solution of the discrete equilibrium

equation (4.61), with d̃ �xed, is obtained solving the system of equations

Kd̃û = 0 (4.66)

where

Kd̃ =

ˆ

Ω

BT
{
[(1− d̃)2 + η]Ddev +Dhyd

}
BdV (4.67)

Due to the presence of the Macaulay brackets, the residualRd is linear with respect to

d, so an iterative procedure has to be used to �nd a solution of the discrete phase-�eld

evolution equation (4.62) at each staggered iteration within the current loading step.

Using the Newton-Raphson method, the solution of (4.62), with ũ �xed, is obtained

solving, at each nonlinear iteration, the system of equations

Jk
d∆d̂k+1 = −Rk

d (4.68)

where k+1 and k are the current and the previous nonlinear iterations. The solution

d̂ is updated after each nonlinear iteration, i.e.

d̂k+1 = d̂k +∆d̂k+1 (4.69)

The iteration loop is repeated until the residual Rk
d becomes smaller than a certain

tolerance.The matrix Jk
d , known as Jacobian matrix of Rk

d, is de�ned as

Jk
d =

∂Rk
d

∂d̂k
= C +G+ P k (4.70)

where

C =

ˆ

Ω

NT
d (2ψ

dev +
3Gc

8l
)NddV (4.71)
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G =
3l

4
Gc

ˆ

Ω

(∇Nd)
T (∇Nd)dV (4.72)

P k = γ

ˆ

Ω

NT
d

⟨
sgn

(
d̃k − d̃n

)⟩
−
NddV (4.73)

4.3.2 Mixed formulation and stabilization

Because of the volumetric-deviatoric energy split introduced in the functional (4.45),

when a fracture occurs the deviatoric sti�ness of the material becomes very small, in

comparison with the volumetric one, which is not a�ected by the phase-�eld variable

d. Therefore, a discretization that cannot treat the deviatoric and the volumetric part

of the deformation independently can lead to unstable solutions when the fracture

localizes. This problem is well known for elastic materials with Poisson modulus

ν → 0.5 (λ→ ∞). To solve this problem a mixed formulation is generally used, that

is a reformulation of the elasticity problem in which, together with the displacement

u, also the hydrostatic component of the stress p, de�ned as

p =
tr(σ)

3
(4.74)

is treated as a primary variable. This hydrostatic component p is related to the

volumetric deformation of the body by the constitutive equation

p = Ktr(ε(u)) = K∇ · u (4.75)

where K = λ+ 2
3
µ is the material bulk modulus.

Following the procedure shown in [60], we now introduce a mixed formulation

u − p − d of the phase-�eld model presented in Section 4.3.1. Taking into account

the elastic constitutive relation (4.75), the volumetric part of the elastic energy (4.44)

can be expressed as a function of p, namely

Ψvol
0 (p) =

p2

2K
(4.76)

With this de�nition of the volumetric part of the elastic energy density, the functional

(4.49) can be rewritten as

El(u, p, d) =

ˆ

Ω

[(1− d)2 + η]ε (u) : Cdev : ε (u)  
Ψdev

0

dV +

ˆ

Ω

p2

2K
Ψvol

0

dV

+
3

8
Gc

ˆ

Ω

(
d

l
+ l |∇d|2

)
dV +

γ

2

ˆ

Ω

⟨d− dn⟩2− dV (4.77)
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where the notation El(u, p, d) indicates that the functional El depends also on the

hydrostatic pressure p as main variable. The evolution of the pressure is related to

the volumetric deformation by the constitutive equation (4.75), which can be viewed

as a constrain equation, namely

∇ · u− p

K
= 0 (4.78)

This constrain equation can be taken into account in the variationl problem using the

method of the Lagrange multipliers. We de�ne the following lagrangian functional

Ll(u, p, d, η) = El(u, p, d) +

ˆ

Ω

η
(
∇ · u− p

K

)
dV (4.79)

where η is a Lagrange multiplier, introduced to enforce the constraint (4.78). The

mixed formulation of the variational problem (4.50) reads

argmin {Ll(u, p, d, η) : u ∈ Tu, d ∈ Tp, d ∈ Td, d ∈ Tη} (4.80)

where
Tu =

{
u : Ω → R2 | u ∈ H1,u = u on ΓD

u

}
Tp = {p : Ω → R | d ∈ L2}
Td = {d : Ω → R | d ∈ H1}
Tη = {η : Ω → R | η ∈ L2}

(4.81)

are the spaces of the admissible spaces for the �eld u, p, d and η. Necessary optimality

conditions for (u, p, d, η) ti be a minimum of Ll(u, p, d, η) are that

L′
l(u, p, d, η) (v) = 0 (4.82)

L′
l(u, p, d, η) (q) = 0 (4.83)

L′
l(u, p, d, η) (α) = 0 (4.84)

L′
l(u, p, d, ξ) (α) = 0 (4.85)

for every (v, q, α, ξ) ∈ Wu ×Wp ×Wd ×Wλ, where

Wu =
{
v : Ω → R2 | v ∈ H1,v = 0 on ΓD

u

}
Wp = {q : Ω → R | d ∈ L2}
Wd = {α : Ω → R | α ∈ H1}
Wη = {ξ : Ω → R | ξ ∈ L2}

(4.86)

are the test spaces for the variation v, q, α and ξ. From the condition

L′
l(u, p, d, η)(q) =

´
Ω
q(p− η)dΩ = 0 ∀ξ ∈ Wλ (4.87)
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we obtain that

p = η

This means that the hydrostatic stress p acts as a Lagrange multiplier in the mixed

formulation. The lagrangian functional (4.79) becomes therefore

Ll(u, p, d) =

ˆ

Ω

[(1− d)2 + η]
1

2
ε (u) : Cdev : ε (u) dV −

ˆ

Ω

p2

2K
dV +

ˆ

Ω

p∇ · udV

+
3

8
Gc

ˆ

Ω

(
d

l
+ l |∇d|2

)
dV +

γ

2

ˆ

Ω

⟨d− dn⟩2− dV (4.88)

and its directional derivatives (4.82), (4.83) and (4.84) read

L′
l(u, p, d) (v) =

ˆ

Ω

[(1− d)2 + η]ε (u) : Cdev : ε(v)dV

−
ˆ

Ω

p2

2K
dV +

ˆ

Ω

p∇ · vdV = 0 (4.89)

L′
l(u, p, d) (q) =

ˆ

Ω

q
(
∇ · u− p

K

)
dV = 0 (4.90)

L′
l(u, p, d) (α) =

ˆ

Ω

[
−2(1− d)Ψdev

0 (ε(u))
]
αdV +

3

8
Gc

ˆ

Ω

α

l
dV

+
3

4
Gcl

ˆ

Ω

∇d · ∇αdV + γ

ˆ

Ω

⟨d− dn⟩− αdV = 0 (4.91)

for every (v, q, α) ∈ Wu×Wp×Wd. After the application of the Green's lemma to the

equations (4.89) and (4.91), we ca derived the strong form of the mixed variational

formulation, which consists into the di�erential equations

−∇ ·
[
Cdev : ε (u) + pI

]
= 0 (4.92)

p

K
−∇ · u = 0 (4.93)

− 2(1− d)Ψdev
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d) + γ ⟨d− dn−1⟩− = 0 (4.94)

valid on the domain Ω, together with the BCs
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σ · n = 0 on ΓN
u (4.95)

∇d · n = 0 on ΓN
d (4.96)

where

σ(ε, p, d) = [(1− d)2 + η]Cdev : ε+ Ip

The Finite Element discretization can be obtained following a procedure similar to

the one exposed in Section 4.3.1. Once de�ned the following approximation of the

solution
ũ = Nuû

p̃ = Npp̂

d̃ = Ndd̂

(4.97)

where Nu, Np and Nd are the shape functions, de�ned in the previous sections and

used also to interpolate the test function, the following discrete version of the weak

form of the problem:

Ru =

ˆ

Ω

BT
{
[(1− d̃)2 + η]Ddev

}
Jε(ũ)K dV +

ˆ

Ω

bT p̃dV = 0 (4.98)

Rp =

ˆ

Ω

BT∇ · ũdV +

ˆ

Ω

NT
p

p̃

K
dV = 0 (4.99)

Rd =

ˆ

Ω

NT
d

[
−2(1− d̃)Ψdev

0 (ε(ũ)) +
3Gc

8l

]
dV +

3

4
Gcl

ˆ

Ω

(∇Nd)
T∇d̃dV

+ γ

ˆ

Ω

NT
d

⟨
d̃− d̃n

⟩
−
αdV = 0 (4.100)

where Ru, Rp and Rd are the residuals vector. The residual Rd is identical to the

one obtained in Section 4.3.1. Therefore, using a staggered procedure, in which the

nonlinear system of equations (4.100) is solved independently from the ones related

to the other �elds, the solution of (4.100) can be solved using exactly the nonlinear

procedure exposed in Section 4.3.1. On the other hand, equations (4.98) and (4.99)

are solved with a monolithic approach, which leads to the following linear system of

equations: [
Kdev

d̃
Q

QT −M

]{
û

p̂

}
=

{
0

0

}
(4.101)
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where

Kdev
d̃

=

ˆ

Ω

[(1− d̃)2 + η]BTDdevBdV (4.102)

Q =

ˆ

Ω

bTNpdV (4.103)

M =

ˆ

Ω

1

K
NT

p NpdV (4.104)

We focus now on the problem of the stability of the formulation. As we saw in

the previous section, to ensure the stability of the solution of the mixed formulation,

the choice of the shape functions Nuand Np has to satisfy the LBB condition. The

combination of quadratic displacements and linear pressure interpolations (Q9P4 for

quadrilateral �nite elements) satis�es this condition, while the combination of linear

displacements and linear pressure interpolations (Q4P4 for quadrilateral �nite ele-

ments) does not. If we look at the structure of the system of equations (4.101), when

the matrix M is zero, we can notice a clear analogy with the structure of the system

(4.30), characterizing the numerical solution of the Stokes equations. This is the case

of materials with very high volumetric sti�ness K, or, as in our case, when, due to

the evolution of the phase-�eld d in a model with a volumetric-deviatoric split of the

energy, the deviatoric sti�ness becomes very small compared to the volumetric one.

In order to stabilize the solution obtained with the linear-displacements/linear-

pressure quadrilateral elements Q4P4, we add to the system (4.101) a stabilization

term Spf de�ned again using the pressure-projection technique exposed in Section

4.2.

As we saw in Section 4.2, the choice of the stabilization coe�cient cstab, which

depends on a scalar value representative of the damaged tensor

Cdev
d = [(1− d̃)2 + η]Cdev (4.105)

Ddev, plays an important role in the performance of the stabilized solution. Following

the rule (4.38), we de�ne the stabilization coe�cient as

cstab = (tr(Cdev
d )/n)−1 =

4

3µ[(1− d̃)2 + η]
(4.106)

The matrix Spf is de�ned than as

Spf =

ˆ

Ω

cstab(Np − ΠNp)
T (Np − ΠNp)dV (4.107)
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The stabilized counterpart of the mixed formulation (4.101) is de�ned as[
Kdev

d̃
Q

QT −M − Spf

]{
û

p̂

}
=

{
0

0

}
(4.108)

4.3.3 Numerical examples

We present now two numerical examples, a one- and a two-dimensional problem, in

order to test the performance of di�erent �nite element interpolations. In particular,

for both the examples, we consider interpolations with with quadrilateral elements

Q4/Q4 and Q9/Q4 for the formulation u − d, and with the quadrilateral elements

Q4P4/Q4, Q4P4s/Q4 and Q9P4/Q4 for the mixed formulation u − p − d. The

interpolations used for each of these elements are speci�ed in Table 4.1, including an

indication of the �eld in which, if present, the stabilization is applied. In the notation

used to identify the elements, the interpolation of the phase-�eld d is separated by

the symbol �/�, in order to point out that we use a staggered procedure in which the

phase-�eld equation is solved separately from the other �elds. We choose a linear

interpolation for the phase-�eld for all the �nite elements considered, in order to

enable a better comparison of the results.

u p d

Q4/Q4 linear - linear

Q9/Q4 quadratic - linear

Q4P4/Q4 linear linear linear

Q4P4s/Q4 linear linear - stabilized linear

Q9P4/Q4 quadratic linear linear

Table 4.1: Summary of the di�erent �nite elements used for the numeri-
cal applications in Section 4.3.3, including the the degree of interpolation
used for each �eld.

With regard to the choice of the penalty coe�cient introduced to enforce the

irreversibility of the phase-�eld, we recall the expression (2.144) derived in [26], which

for the AT1 model used in this chapter gives

γ =
Gc

l

27

64TOL2ir
(4.109)

In particular, in [26] the value

TOLir = 0.01 (4.110)
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has been suggested as a practical irreversibility threshold, which leads to

γ =
Gc

l

27

64 · 0.012
≃ 4000

Gc

l
(4.111)

This expression is used in all the phase-�eld numerical simulations in this chapter,

together with the condition

d (x, t = 0) = d0 (x) = 0, ∀x ∈ Ω ∪ ΓN
d (4.112)

which ensure also the ful�llment of the positiveness constraint

d > 0 (4.113)

necessary �r the AT1 model (see Section 2.3.3).

One dimensional tension test

In this example we study the numerical solution of the tension test of a bar, with

the dimensions shown in Figure 4.3 . The mesh is composed by a regular grid of

square elements, with side hel = 0.01m, and plane strain conditions are assumed.

The problems is solved in control of displacement, so a Dirichlet boundary condition

ux = −∆t (∆t being the time step) is imposed on the left boundary, while the right

one is assumed �xed. Concerning the phase-�eld variable d, homogeneous Dirichlet

boundary conditions are imposed on both sides, in order to maintain the symmetry of

the phase-�eld solution, thus promoting the localization of the fracture in the center

of the domain. The parameters of the model are: E = 1Pa, ν = 0, 4, Gc = 1N/m,

l = 0.005m, η = 10−8,∆t = 0, 05 s. We perform Nts = 80 time steps, with a tolerance

TOLp−f = 10−8 for the phase-�eld Newton-Raphson iterative scheme, and a tolerance

TOLstag = 10−5 for the staggered loop. The localization of the fracture occurs at

tloc = 2, 7 s.

H
 =

 0
,1

 m
  L = 1 m  

ux = -Δt

uy = -0

Figure 4.3: Scheme of the problem

Figure 4.4.a shows the pro�le of the phase-�eld d obtained, at tend = 4 s, with

the standard elements Q9/Q4 and Q4/Q4. The two solutions are compared with the
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one obtained analytically [60]. Starting from the element Q9/Q4, we can see that

the analytical solution is almost perfectly recovered. The small plateau obtain in

correspondence of the cusp of the analytic optimal pro�le, which has the dimension

of one single �nite element, is due to the numerical approximation, and will tend to

disappear for an element dimension hel → 0. On the other hand, the element Q4/Q4

shows a localization width way signi�cantly larger than the analytical one, with a

round pro�le at the peak instead of the cusp that characterizes the analytical solution.

This is how the locking phenomenon manifest itself when the fracture localizes, that

is when the deviatoric sti�ness, degraded by the phase-�eld, becomes very small in

comparison with the volumetric one.

In Figure 4.4.b we compare the analytical pro�le with the one obtained with the

mixed �nite elements Q4P4/Q4, Q4P4s/Q4, Q9P4/Q4. In this case we can notice

that all the solutions reproduce very well the analytical one. However the pro�le

obtained with the element Q4P4/Q4 is a slightly wider than the one obtained with

the stabilized element Q4P4s/Q4, whose solution coincides with the one of the stable

Q9P4/Q4.

In order to compare the general behavior of all the elements, in Figure 4.5 we

plot the force-displacement curve relative to all the numerical solutions. We notice

that, after the localization of the fracture, the reaction force goes to zero for all

the elements, except for the Q4/Q4. This due to an excess of residual sti�ness, again

characteristic of a locking behavior. A con�rmation of this can be obtained by looking

at the maximum values of d corresponding to the peak of the damage: while for all

the other elements d reaches the unity, with the element Q4/Q4 we have d → 1 but

always d < 1.

According to these results, except for a small di�erence in the width of the local-

ization pro�le, the mixed element Q4P4/Q4 seems to behave as well as the elements

Q9/Q4, Q4P4s/Q4 and Q9P4/P4. However, the positive e�ect of the stabilization

becomes evident if we look at the pro�le of the hydrostatic stress p, obtained with

the mixed elements after the localization. In Figure 4.6 we can clearly see that, while

the hydrostatic stress at the crack obtained with the stabilized element Q4P4s/Q4

are in good agreement with the one obtained with the stable Q9P4/Q4, the unstable

element Q4P4/Q4 leads to large oscillations.
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Figure 4.4: Phase �eld pro�les at tend = 4 s: in (a) standard u − d
formulation, in (b) mixed u− p− d formulation.

95



4.3 Phase-�eld modeling of deviatoric fractures in elastic materials Chapter 4

0 0,5 1 1,5 2 2,5 3 3,5 4

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

lateral displacement [m]

re
ac

ti
o

n
 f

o
rc

e 
[N

]
Q4

Q9

Q4P4

Q4P4s

Q9P4

Figure 4.5: Reaction force vs applied displacement curve.
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Figure 4.6: Hydrostatic stress p at tend = 4 s for the mixed u − p − d
formulation: (a) interval [0, 1], (b) interval [0.4, 0.6].

Two dimensional shear test

In this example we study the development of a shear fracture in a rectangular domain

subjected to lateral compression. This problem, with di�erent dimensions, has been

already solved in [60], in order to show the stability of the mixed element Q9P4/Q4,

compared to the standard one Q4/Q4. We recompute this example considering all the

elements used in the previous one. The mesh is composed by square elements with
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side hel = 0, 005m, and the dimensions of the domain are shown in Figure 4.7 along

with the BCs. In this case, on the left side we apply symmetry boundary conditions,

so no Dirichlet conditions are imposed on the vertical displacements uy and on the

phase-�eld d. Again the problem is solved in control of displacements, with ux = −∆t

on the left side boundary. The parameters of the model are: E = 1 kPa, ν = 0, 3,

Gc = 1N/m, l = 0.02m, η = 10−8,∆t = 2, 5e−4 s. We perform Nts = 320 time steps,

with a tolerance TOLp−f = 10−8 for the phase-�eld Newton-Raphson iterative scheme,

and a tolerance TOLstag = 10−5 for the staggered loop. The localization of the fracture

occurs at tloc = 0, 07525 s.

ux = -Δt

d = 0

L = 0,5 m  

H
 =

 0
,2

 m
  

Figure 4.7: Scheme of the problem of shear fracture under compressive
load.

In Figure 4.8 we show the contours of the phase-�eld d obtained at the end of the

simulation with the di�erent �nite elements. Between the standard elements, we can

again notice how the Q9/Q4 element shows a good behavior, leading to a fracture

that localizes along an inclined shear band, starting from the center of the domain

(considering the symmetry). The standard Q4/Q4 element, instead, localizes along a

thick vertical crack, whose width is not controlled by the internal length l anymore.

Focusing on the mixed elements, we notice that the stable Q9P4/Q4 and the stabilized

Q4P4s/Q4 lead to a good solution, very similar to the one of the standard Q9/Q4.

Finally, the unstable Q4P4/Q4 shows, as in the previous example, a width slightly

broader than with the stabilized Q4P4s/Q4, but with a localization of the crack along

an intermediate pattern among the ones obtained with the other elements.

In Figure 4.9 we show the same results, this time obtained with elements of di-

mension hel = 0, 01m, that is the coarsest regular mesh respecting the condition

hel ≤ l/2, essential for a correct prediction of the localization pro�le. In this case
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the model discretized with the unstable mixed element Q4P4/Q4 cannot capture at

all the shear mode evolution of the fracture, while the standard Q9/Q4, the mixed

Q4P4s/Q4 and Q9P4/Q4 can. In particular the element Q4P4s/Q4 seems to behave

better than the element Q9P4/Q4 in terms of pattern of the localization pro�le, but

still not as good as the element Q9P4/Q4 in terms of fracture width.
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Figure 4.8: Contours of the phase-�eld d at t = 0, 08 s, for l = 0, 005m:
(a) Q4/Q4, (b) Q9/Q4, (c) Q4P4/Q4, (d) Q4P4s/Q4, (e) Q9P4/Q4.
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Figure 4.9: Contours of the phase-�eld d at t = 0, 08 s, for l = 0, 01m:
(a) Q4/Q4, (b) Q9/Q4, (c) Q4P4/Q4, (d) Q4P4s/Q4, (e) Q9P4/Q4.
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4.4 Phase-�eld model of fractures in a saturated porous

medium

4.4.1 Mathematical formulation

In this section we aim to combine the model for �uid �ow in a saturated elastic

porous media, shown in Section 4.2, with the phase-�eld model for fracture with

volumetric-deviatoric energy split, shown in Section 4.4.

If we add the phase-�eld equation (4.56) to the system of equations (4.7) and

(4.8), we obtain

∇ ·
{
[(1− d)2 + η]Ddev +Didr

}
: ∇su−∇pw + ρg = 0 (4.114)

∇ · u̇−∇ ·
[
kw

ρwg
I · (∇pw − ρwg)

]
= 0 (4.115)

− 2(1− d)Ψdev
0 +

Gc

4Cv

(
w′(d)

l
− 2l∆d) + γ ⟨d− dn−1⟩− = 0 (4.116)

where the linear elastic constitutive equation (4.5) for σe has been replaced by the

following constitutive relation

σe =
{
[(1− d)2 + η]Ddev +Dvol

}
: ε (4.117)

that is, the same constitutive relation used in Section 4.4. The ICs and BCs of the

problem are
u = u0 at t = 0

pw = pw0 at t = 0

u = u on ΓD
u

pw = p̄w on ΓD
pw

σ · n = t̄ on ΓN
u

vws · n = q̄ on ΓN
q

∇d · n = 0 on ΓN
d

(4.118)

Following the same procedure of Section 4.2, we apply the Weighted Residual

Method and, after the discretization in time and space, we obtain the following ex-

pression for the residuals:

Ru =

ˆ

Ω

BT
{
[(1− d̃n+1)

2 + η]Ddev +Dvol
}

Jε(ũn+1)K dV −
ˆ

Ω

bT p̃wn+1dV

−
ˆ

Ω

NT
u ρgdV −

ˆ

Γu

NT
u t̄n+1dΓ = 0 (4.119)
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Rp =

ˆ

Ω

BT∇· ũn+1 − ũn

∆t
dV +

ˆ

Ω

(∇Np)
T k

wI

ρwg
(∇p̃wn+1−ρwg)dV +

ˆ

Γpw

NT
p q̄n+1dΓ = 0

(4.120)

Rd =

ˆ

Ω

NT
d

[
−2(1− d̃)Ψdev

0 (ε(ũn+1)) +
3Gc

8l

]
dV +

3

4
Gcl

ˆ

Ω

(∇Nd)
T∇d̃n+1dV

+ γ

ˆ

Ω

NT
d

⟨
d̃n+1 − d̃n

⟩
−
αdV = 0 (4.121)

Again, following the same staggered procedure explained in Section 4.3.1, the problem

is split into the two sub-problem, solved for the pair (u, pw) and for the phase-�eld

d independently. The residual Rd is identical to the one obtained in Section 4.3.1

and the same nonlinear solution scheme is adopted. The fully-coupled sub-problem

(4.119) and (4.120) is solved with a monolithic approach, which leads to the linear

system[
Kdev

d̃
Q

QT ∆tH

] {
û

p̂w

}
n+1

=

[
0 0

QT 0

]{
û

p̂w

}
n

+

{
fu

∆tfp

}
n+1

(4.122)

where Kdev
d̃

, Q, H , C, G, fu and fp are de�ned in the previous sections.

In this case, when deviatoric fractures develops under undrained conditions, both

the instabilities analyzed in Section 4.2 and Section 4.3 can appear. The use of a sta-

bilized element Q4Pw4s for the problem (4.122), together with a linear interpolation

(Q4) of the phase-�eld, is expected to be stable under undrained condition, and to

become unstable when the fracture develops. The Taylor-Hood element Q9Pw4/Q4

is stable with respect to the undrained condition and, as it has been shown in the nu-

merical application in Section 4.2.4, can lead to acceptable results for the phase-�eld.

Anyway none of these elements is, on principle, stable when the fracture localizes.

In the next section we derive two possible mixed formulations, stable both under

undrained and fractured conditions.

4.4.2 Mixed formulations and stabilization

As we did for Section 4.3.2, we want to derive a mixed formulation of the model in-

troduced in the previous section. We focus only on the poromechanical sub-problem,

governed by equations (4.114) and (4.115), based on the fact that the phase-�eld equa-

tion is solved independently in the staggered procedure adopted. Following the same
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procedure of Section 4.3.2, we can derive a mixed formulation of equation (4.114),

leaving unchanged equation (4.115), obtaining the system of di�erential equations

∇ ·
{
[(1− d)2 + η]Ddev

}
: ∇su+∇(pe − pw) + ρg = 0 (4.123)

pe

K
−∇ · u = 0 (4.124)

∇ · u̇−∇ ·
[
kw

ρwg
I · (∇pw − ρwg)

]
= 0 (4.125)

where pe is the hydrostatic component of the e�ective stress tensor σe, de�ned through

the e�ective stress principle (4.4). Equation (4.124) is, therefore, the volumetric part

of the elastic constitutive equation (4.117).We apply again the Weighted Residual

Method and, after the discretization in time and space, we obtain the following system

of equations:

⎡⎣ K Q −Q

QT −M 0

QT 0 ∆tH

⎤⎦⎧⎨⎩
û

p̂e

p̂w

⎫⎬⎭
n+1

=

=

⎡⎣ 0 0 0

0 0 0

QT 0 0

⎤⎦⎧⎨⎩
û

p̂e

p̂w

⎫⎬⎭
n

+

⎧⎨⎩
fu

0

∆tfp

⎫⎬⎭
n+1

(4.126)

to be solved together with the phase-�eld equation (4.120). Based on the main vari-

ables of the problem, we call this formulation u− pe − pw − d.

Now, looking at the structure of the matrix on the left side of equation (4.126), we

can notice that both equations for the �elds pe and pw are coupled with the equation

for the displacement �eld u. In the perspective of the stability of the formulation it

will be necessary either to use stable �nite elements, like the quadrilateral element

Q9Pe4Pw4 (quadratic-displacement/linear-e�ective pressure/linear water-pressure),

or to de�ne a stabilization term for both �elds and dealing with the problem of the

correct balance between the two stabilizations.

A possibility to reduce the number of couplings is to perform a change of variables,

based on the e�ective stress principle for the volumetric component of the stresses,

namely

pt = pe − pw (4.127)

where pt is the hydrostatic part of the total stress tensor σt. After applying the change

of variables (4.127), the system of equations (4.123), (4.124) and (4.125) becomes

∇ ·
{
[(1− d)2 + η]Ddev

}
: ∇su+∇pt + ρg = 0 (4.128)
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(pt + pw)

K
−∇ · u = 0 (4.129)

∇ · u̇−∇ ·
[
kw

ρwg
I · (∇pw − ρwg)

]
= 0 (4.130)

We can notice that the equation (4.130) is still directly depending from the displace-

ments u. But if we take the total time derivative of equation (4.129), namely

∇ · u̇ =
(ṗt + ṗw)

K
(4.131)

and we insert equation (4.131) into (4.130), we obtain the system of di�erential equa-

tions

∇ ·
{
[(1− d)2 + η]Ddev

}
: ∇su+∇pt + ρg = 0 (4.132)

(pt + pw)

K
−∇ · u = 0 (4.133)

(ṗt + ṗw)

K
−∇ ·

[
kw

ρwg
I · (∇pw − ρwg)

]
= 0 (4.134)

We apply again the Weighted Residual Method and, after the discretization in

time and space, we obtain the following corresponding system of equations:

⎡⎣ K Q 0

QT −M −M

0 M M +∆tH

⎤⎦⎧⎨⎩
û

p̂t

p̂w

⎫⎬⎭
n+1

=

=

⎡⎣ 0 0 0

0 0 0

0 M M

⎤⎦⎧⎨⎩
û

p̂t

p̂w

⎫⎬⎭
n

+

⎧⎨⎩
fu

0

∆tfp

⎫⎬⎭
n+1

(4.135)

to be solved together with the phase-�eld equation (4.62). Based on the main variables

of the problem, we call this formulation u− pt− pw − d. Now we can notice that pwis

not directly coupled with u anymore.

Both the previous formulations are expected to be stable if we use a higher order of

interpolation for u than for pressures. This is the case of the element Q9Pe4Pw4/Q4

(quadratic-linear-linear/linear) for the formulation u−pe−pw−d, and of the element

Q9Pt4Pw4/Q4 (quadratic-linear-linear/linear) for the formulation u − pt − pw − d.

The order of interpolation for the phase-�eld is assumed always linear.

It is clear that the number of degrees of freedom of a stable �nite element, al-

ready large for the formulation u−pw−d, becomes even larger for the two developed

mixed formulations. For example, if we focus on the interpolation for the porome-

chanical sub-problem, the standard Taylor-Hood element Q9Pw4 implies 22 degrees
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of freedom, while the mixed Q9Pe4Pw4 (or Q9Pt4Pw4) element has 26 degrees of

freedom.

Using the results obtained in the previous two sections for the stabilization of the

�elds of the water pressure pw and the hydrostatic stress p independently, we de�ne

the stabilized versions of the two mixed formulations developed in this section, in

order to be able to use �nite elements with linear interpolation for all the �elds. As

a general guideline, we assume that the stabilization of a particular pressure �eld is

needed when this �eld is directly coupled with the displacement �eld u.

The stabilized version of the discrete system of equations (4.126) is de�ned as

⎡⎣ K Q −Q

QT −M − Spf 0

QT 0 ∆tH + Smod

⎤⎦⎧⎨⎩
û

p̂e

p̂w

⎫⎬⎭
n+1

=

=

⎡⎣ 0 0 0

0 0 0

QT 0 0

⎤⎦⎧⎨⎩
û

p̂e

p̂w

⎫⎬⎭
n

+

⎧⎨⎩
fu

0

∆tfp

⎫⎬⎭
n+1

(4.136)

where the matrices Smod and Spf are de�ned in Section 4.2.3 and Section 4.3.2

respectively. With the stabilization terms, it is now possible to use the �nite ele-

ment Q4Pe4sPw4s, with linear interpolations in all the �elds (the letter 's' indicates

stabilization of the corresponding �eld).

The stabilized version of the discrete system of equations (4.135) is instead de�ned

as⎡⎣ K Q 0

QT −M − Spf −M

0 M M +∆tH

⎤⎦⎧⎨⎩
û

p̂t

p̂w

⎫⎬⎭
n+1

=

=

⎡⎣ 0 0 0

0 0 0

0 M M

⎤⎦⎧⎨⎩
û

p̂t

p̂w

⎫⎬⎭
n

+

⎧⎨⎩
fu

0

∆tfp

⎫⎬⎭
n+1

(4.137)

Also in this case, with the stabilization terms, it is now possible to use the �nite

element Q4Pt4sPw4/Q4,with linear interpolations in all the �elds (again the letter

's' indicates stabilization of the corresponding �eld).

To conclude we notice that, using the stabilized element Q4Pe4sPw4s (or Q4Pt4sPw4)

instead of the stable Q9Pe4Pw4 (or Q9Pt4Pw4), the number of degrees of freedom

per element reduces from 26 to 16, becoming now less than the 22 degrees of freedom

corresponding to the Taylor-Hood element Q9Pw4.
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4.4.3 Numerical examples

In this section two numerical examples are presented, in order to test the performance

of di�erent formulations of the phase-�eld model of brittle fracture in saturated porous

media developed in Section 4.4.1 and Section 4.4.2. In particular, for both the exam-

ples, we consider interpolations with quadrilateral elements Q4Pw4/Q4, Q4Pw4s/Q4

and Q9Pw4/Q4 for the formulation u − pw − d, with the quadrilateral elements

Q4Pe4sPw4s/Q4 and Q9Pe4Pw4/Q4 for the mixed formulation u− pe − pw − d, and

with the quadrilateral elements Q4Pt4sPw4/Q4 and Q9Pt4Pw4sQ4 for the mixed

formulation u − pt − pw − d. The interpolations used for each of these elements are

speci�ed in Table 4.2, including an indication of the �eld in which, if present, the

stabilization is applied.

u pe pt pw d

Q4Pw4/Q4 linear - - linear linear

Q4Pw4s/Q4 linear - - linear linear

Q9Pw4/Q4 quadratic - - linear linear

Q4Pe4sPw4s/Q4 linear linear - stabilized - linear

Q9Pe4Pw4/Q4 quadratic linear - linear linear

Q4Pt4sPw4/Q4 linear - linear - stabilized linear linear

Q9Pt4Pw4/Q4 quadratic - linear linear linear

Table 4.2: Summary of the di�erent �nite elements used for the numeri-
cal applications in Section 4.4.3, including the the degree of interpolation
used for each �eld.

Terzaghi's problem

In this �rst example we solve again the Terzaghi's problem analyzed in Section 4.2.4.

Our goal is to have a �rst comparison, without the in�uence of the phase-�eld d,

between the results obtained with the two mixed formulations u − pe − pw and u −
pt−pw and the one obtained with the standard u−pw formulation. The �nite elements

used in the simulation are the stabilized Q4Pe4sPw4s and the stable Q9Pe4Pw4 for

the u− pe − pw formulation, the stabilized Q4Pt4sPw4 and the stable Q9Pt4Pw4 for

the u − pt − pw formulation, and the Taylor-Hood Q9Pw4 for the standard u − pw

formulation. The parameter are the same of Section 4.2.4, with ν = 0.4.

In Figure 4.10 the pressure pro�le after the �rst time step for the di�erent �nite

elements is shown. Both two stable elements Q9Pe4Pw4 and Q9Pt4Pw4 lead to

the same solution obtained with the standard Q9Pw4, used as reference solution.
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Coming to the stabilized elements Q4Pe4sPw4s and Q4Pt4sPw4, we notice that the

second one leads to the same results obtained with the reference element Q9Pw4,

while the �rst one shows slightly larger oscillations in the vicinity of the top surface.

Moreover, the Q4Pt4sPw4 turns out to be stable for the water pressure �eld pw, even

if the stabilization is applied only to the equation relative to the total hydrostatic

stress �eld pt, con�rming our assumption that the stabilization is needed only for the

�eld directly coupled with the displacement �eld u. On the other hand, the larger

oscillations obtained with the Q4Pe4sPw4s are probably due to the di�culty to de�ne

a correct value for the two stabilization terms needed, which, due to the coupling of

the equations, need to be also mutually balanced.
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Figure 4.10: Pressure distribution along the column at the �rst time
step for di�erent �nite elements. In (a) u − pe − pw formulation, in (b)
u− pt − pw formulation.

Two dimensional saturated shear test

In this second example we solve again the same shear test of Section 4.3.3, but this

time considering the material as a saturated porous medium. Additional boundary

conditions for the water pressure �eld are needed, and in this case we consider the

lower and the lateral sides impervious, while on the upper one we impose the Dirichlet
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boundary condition pw = 0. The �nite elements used in the simulations are the unsta-

ble Q4Pw4/Q4, the stabilized Q4Pw4s/Q4 and the Taylor-Hood Q9Pw4/Q4 for the

u−pw−d formulation, the stabilized Q4Pe4sPw4s/Q4 and the stable Q9Pe4Pw4/Q4

for the u − pe − pw − d formulation, the stabilized Q4Pt4sPw4/Q4 and the stable

Q9Pt4Pw4/Q4 for the u− pt − pw − d formulation. The parameters for the problem

are the same of Section 4.3.3, with the exception of the number of steps Nts = 240

(as will be shown, the presence of the water accelerate the process of formation of

the crack). The permeability of the porous medium is considered very low, namely

kw = 10−8m/s.

In Figure 4.11 we show the results relative to the standard u − pw − d formula-

tion: we can notice how the Q4Pw4/Q4 element shows both oscillations in the water

pressure and a wrong localization pro�le in the phase-�eld, as we already noticed

separately in the previous sections. The Q4Pw4s/Q4 solves the instabilities in the

water �eld, but the phase-�eld pro�le still indicates the presence of locking after the

fracture localization. The Taylor-Hood element Q9Pw4/Q4 behaves well also in the

coupled simulation.

In Figure 4.11 we show the results relative to the mixed u − pe − pw − d and

u− pt − pw − d formulations: we can notice that, if a quadratic interpolation is used

for the displacement �eld (element Q9Pe4Pw4/Q4 and Q9Pt4Pw4/Q4 respectively),

both the formulations are stable, and leads to identical results (only the results relative

to the element Q9Pe4Pw4/Q4 are reported). The Q4Pe4sPw4s/Q4 element is stable

for the pressure �eld and, looking at the phase-�eld pro�le, the crack seems to start

vertically, and then take the expected direction. This right failure pattern is, on the

other side, perfectly captured by the element Q4Pt4sPw4/Q4, which shows results

very similar to the ones obtained with Q9Pt4Pw4/Q4.
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Figure 4.11: Contours of the phase-�eld d (left) and of the water pres-
sure pw (right) for l = 0, 005m, at t = 0, 06 s : (a) Q4Pw4/Q4, (b)
Q4Pw4s/Q4, (c) Q9Pw4/Q4.
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Figure 4.12: Contours of the phase-�eld d (left) and of the water pres-
sure pw(right) for l = 0, 005m, at t = 0, 06 s: (a) Q4Pe4sPw4s/Q4, (b)
Q4Pt4sPw4/Q4, (c) Q9Pt4Pw4/Q4(Q9Pe4Pw4/Q4).

As done in Section 4.3.3, we run again the same simulation whit a mesh composed

by elements of dimension hel = 0, 01m, that is the coarsest regular mesh respecting

the condition hel ≤ l/2. Results are shown in Figure 4.13 and Figure 4.14. Also

in this case the standard Q9Pw4/Q4 and the stabilized mixed Q4Pt4sPw4/Q4 show

again a good behavior for both water pressure and phase-�eld, when compared to

the reference stable mixed Q9Pt4Pw4/Q4 element. On the other hand, the stabilized

mixed Q4Pe4sPw4s/Q4 is, in this case, not able to capture the inclined crack pattern,

typical of the shear failure mode.
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Figure 4.13: Contours of the phase-�eld d (left) and for the water
pressure pw(right) for l = 0, 01m, at t = 0, 06 s : (a) Q4Pw4/Q4, (b)
Q4Pw4s/Q4, (c) Q9Pw4/Q4.
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Figure 4.14: Contours of the phase-�eld d (left) and for the water pres-
sure pw (right) for l = 0, 01m, at t = 0, 06 s: (a) Q4Pe4sPw4s/Q4, (b)
Q4Pt4sPw4/Q4, (c) Q9Pt4Pw4/Q4(Q9Pe4Pw4/Q4).

Finally, Figure 4.15 shows the horizontal reaction - applied displacement curves in

presence of water (�wet� case) and in absence of water (�dry� case, i.e. the one shown

in Section 4.3.3) . Due to the low permeability of the material, under undrained

conditions the water acts as a constraint, imposing pure deviatoric deformations on

the solid. The pressure of the water causes the development of an e�ective tension in

the vertical direction, equal to σe
y = pw, obtained from the e�ective stress principle,

considering that σt
y = 0. This vertical stress leads to an increase in the deviatoric

energy, and so in the �wet� case the failure stress is reached earlier then in the �dry�

case.
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Figure 4.15: Horizontal reaction vs applied displacement curve: (a) �dry�
mixed stabilized u − p − d formulation (Section 4.3.3), (b) �wet� mixed
stabilized u− pt − pw − d formulation.

4.5 Conclusions

In this chapter we focused on the problem of the numerical locking, due to a condi-

tion of high volumetric sti�ness of the solid matrix, that can occur in the numerical

approximation of a phase-�eld model of fracture in porous media with the Finite

Element Method (FEM). The causes of this state of incompressibility can be traced

both to the hydraulic and to the mechanical properties of the material.

In the �rst part of the chapter we introduced the problem of the numerical lock-

ing in the simulation of the consolidation process of saturated porous media under

undrained condition, which occurs when a linear interpolation for both the solid and

the �uid �elds is used. In particular a stabilization technique proposed in [66], devel-

oped using a polynomial pressure-projection technique originally applied in the �eld

of �uid dynamics, has been reviewed.

In the second part of the chapter the problem of volumetric locking due to the

presence of fully developed cracks obtained with a phase-�eld model based on a de-

composition of the elastic energy into volumetric and deviatoric parts has been inves-

tigated. It has been noticed how, in this case, the locking is due to the fact that the

deviatoric sti�ness becomes several order of magnitudes smaller than the volumetric

one, causing an enlargement of the localization band of the phase-�eld variable, and
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a dissipative residual force in the crack. To solve this problem, a stabilized mixed

u − p − d �nite element formulation has been developed, using the same technique

applied in the �rst part of the chapter.

Finally, the model has been extended to variably saturated porous media, and

two alternative mixed and mixed stabilized formulations of the problem have been

proposed and tested in two numerical application, with successfully results.

116



Chapter 5

Phase-�eld model of fracture in

three-phase partially saturated

porous media

5.1 Introduction

In this chapter we deal with the problem of fracture in partially saturated porous

media, governed by the di�erential equations (2.152), (2.153), (2.154) and (2.155)

derived in Chapter 2. In the �rst part the Finite Element Method is applied, in order

to derive the numerical formulation of the governing equations. This model is then

applied to the simulation of two di�erent problems of desiccation of initially saturated

soil, focusing in particular on the investigation of the in�uence of the air phase on the

onset and the development of desiccation cracks. In addition, the stabilized model

developed in Section 4.4.2 is applied in the second example, in order to analyze its

behavior when extended to the unsaturated regime.

5.2 Governing equations and �nite element discretiza-

tion

We recall the set of di�erential equations governing the phase-�eld model of brittle

fracture in three-phase porous media derived in Section 2.4, namely

∇ · σ′(ε, d)−∇ [Swpw + (1− Sw)pa] + ρg = 0 (5.1)

nρwṠw + Swnρw
ṗw

Kw
+ Swρw∇ · v +∇ ·

[
ρw
krwksI

µw
(−∇pw + ρwg)

]
= 0 (5.2)

−nρaṠw+(1−Sw)n
ṗa

Ka
+(1−Sw)ρa∇·v+∇·

[
ρa
kraksI

µa
(−∇pa + ρag)

]
= 0 (5.3)
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− 2(1− d)H+ +Gc(
d

l
− l∆d) = 0 (5.4)

where equation (5.1) is the equilibrium equation of the three-phase mixture, equation

(5.2) is the mass balance equation for the solid and the water phases, equation (5.3) is

the mass balance equation for the solid and the air phases, and (5.4) is the evolution

equation for the phase-�eld variable d, in which the AT2 model for the local part of

the dissipated density function (w (d) = d2,Cv =
1
2
) has been used, and the quantity

H+ = maxτ∈[0,t]Ψ
+
0 (ε, τ)

called energy density history variable, has been introduced in order to ensure the

irreversibility of the phase-�eld d. The ICs and BCs of the model are the following

u (x, t)) = u (x, 0)) at t = 0

pw (x, t)) = pw (x, 0)) at t = 0

pa (x, t)) = pa (x, 0) at t = 0

u = u on ΓD
u

pw = p̄w on ΓD
pw

pa = p̄a on ΓD
a

σ · n = t̄ on ΓN
u

ṽw · n = q̄w on ΓN
pw

ṽw · n = q̄a on ΓN
pa

∇d · n = 0 on ΓN
d

(5.5)

The quantity σ′ and σ that appear in the equilibrium equation (5.1) and in the BCs

(5.5) are respectively the e�ective and the total stress, and are related by the e�ective

stress principle (2.49), namely

σ′ = σ + [Swpw + (1− Sw)pa] I (5.6)

The coupling between the phase-�eld equation (5.4) and the equilibrium equation

(5.1), is realized assuming a dependency on the phase-�eld variable d of the elastic

constitutive law for the e�ective stress σ′, namely

σ′(ε, d) =
[
(1− d2) + η

] ∂Ψ+
0 (ε(u))

∂ε
+
∂Ψ−

0 (ε(u))

∂ε
(5.7)

where Ψ+
0 (ε(u)) and Ψ−

0 (ε(u)) are the positive and the negative part of the undam-

aged elastic elastic energy Ψ0(ε(u)), whose de�nitions depend on the energy split

chosen for the phase-�eld model (see Section 2.3.3). In this chapter we use the split

proposed by Amor et al. [3], in which Ψ+
0 (ε(u)) and Ψ−

0 (ε(u)) are de�ned as{
Ψ+

0 = Kn ⟨tr(ε)⟩2+ + µ(εdev : εdev)

Ψ−
0 = Kn ⟨tr(ε)⟩2−

(5.8)
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where Kn = λ + µ
n
, with n being the dimension of the problem, is the bulk modulus

of the material, and ⟨tr(ε)⟩± = 1
2
(tr(ε)± |tr(ε)|). This de�nition of the split is based

on the idea that degrading the volumetric part of the energy only if the volumetric

part of the deformation tensor ε is positive should prevent the interpenetration of

the crack faces under compression. Furthermore, if tr(ε) < 0, the volumetric part of

the energy is not taken into account in the evolution equation for the phase-�eld d,

avoiding the formation of unrealistic crack patterns in compression. Introducing the

following split of the elasticity tensor C

C± (ε) =
∂2Ψ

±
0

∂ε2
(5.9)

it is possible to rewrite the constitutive relation (5.8) as

σ′ =
{[

(1− d2) + η
]
C+ (ε) + C− (ε)

}
: ε (5.10)

In addition to the constitutive relations introduced in Section 2.2.4, for clayey

materials a dependency of the Young's modulus E and of the tensile strength σt on

the water content w has been experimentally observed [58] , namely

E = E (w) (5.11)

σt = σt (w) (5.12)

where the water content w is de�ned as

w =
nSwρw

(1− n) ρs
(5.13)

Even if the tensile strength of the material is not explicitly modeled in the proposed

formulation, as observed in [17], the expression of the critical stress derived from the

analytical phase-�eld solution for the one dimensional tension problem (see Section

2.3.3), which for the AT2 model reads

σAT2
c =

9

16

√
GcE

3l
(5.14)

can be used to express the value σAT2
c as a function of the fracture toughness Gc, the

Young's modulus E and the characteristic length l. In particular, taking into account

the constitutive expressions (5.11) and (5.12), we can derive from equations (5.14)

the following expression for the fracture toughness [17]

Gc (w) =

(
16

9

)2

σ′
c (w)

3l

E(w)
(5.15)
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which allows to account for (5.12) into the proposed model. Considering constant

values for the porosity n and for the intrinsic density of solid ρs and of the water ρw,

the water content w, de�ned in (5.13), becomes a function of the water saturation Sw

alone. Therefore the expressions (5.11) and (5.12) can be rewritten as

E = E (Sw) (5.16)

Gc = Gc (S
w) (5.17)

The elasticity tensors C± and the e�ective stress σ′, which depends on the Young

modulus E (Sw), become also a function of the saturation Sw

C± = C± (E (Sw) , ε) (5.18)

σ′ = σ′(E (Sw) , ε, d) (5.19)

Taking into account the expressions (5.17) and (5.19), we can rewrite the equilibrium

equation (5.1) and the phase-�eld evolution equation (5.4) as

∇ · σ′(E (Sw) , ε, d)−∇ [Swpw + (1− Sw)pa] + ρg = 0 (5.20)

− 2(1− d)H+ +Gc (S
w) (

d

l
− l∆d) = 0 (5.21)

With a procedure similar to the one exposed in Section 3.3, we apply the Backward

Euler scheme for the discretization in time. De�ned as n + 1 and n the current and

the previous time steps respectively, the equations governing the problem are solved

at the current time step n + 1, substituting the material time derivatives present in

the mass balance equations (5.2) and (5.3) with their discrete counterpart

(̇) =
() n+1 − () n

∆t
(5.22)

where ∆t is the time step. From equations (5.20), (5.2), (5.3) and (5.21) we obtain

∇ · σ′(E
(
Sw
n+1

)
, εn+1, dn+1)−∇

[
Sw
n+1p

w
n+1 + (1− Sw

n+1)p
a
n+1

]
+ ρn+1g = 0 (5.23)

nρw
Sw
n+1 − Sw

n

∆t
+Sw

n+1ρ
w∇·un+1 − un

∆t
+∇·

[
ρw
krwn+1k

sI

µw
(−∇pwn+1 + ρwg)

]
= 0 (5.24)

− nρan+1

Sw
n+1 − Sw

n

∆t
+ (1− Sw

n+1)
n

Ka

pan+1 − pan
∆t

+ (1− Sw
n+1)ρ

a
n+1∇ · un+1 − un

∆t

+∇ ·
[
ρan+1

kran+1k
sI

µa
(−∇pan+1 + ρan+1g)

]
= 0 (5.25)
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− 2(1− dn+1)H+
n+1 +Gc

(
Sw
n+1

)
(
dn+1

l
− l∆dn+1) = 0 (5.26)

We apply now the Weighted Residual method, in order to derive the weak form of

the time-discrete problem governed by the equations (5.23), (5.24), (5.25) and (5.26).

Once de�ned the test functions wu, ww, wa and wd, the weak form of the problem

reads

W u
n+1 =

ˆ

Ω

∇swu : σ′(E
(
Sw
n+1

)
, εn+1, dn+1)dV

−
ˆ

Ω

∇ ·wu

[
Sw
n+1p

w
n+1 + (1− Sw

n+1)p
a
n+1

]
dV

−
ˆ

Ω

wu · ρn+1gdV −
ˆ

ΓN
u

wu · t̄dΓ = 0 (5.27)

Ww
n+1 =

ˆ

Ω

wwnρ
wS

w
n+1 − Sw

n

∆t
dV +

ˆ

Ω

wwS
w
n+1ρ

w∇ · un+1 − un

∆t
dV

+

ˆ

Ω

∇ww ·
[
ρw
krwn+1k

sI

µw
(∇pwn+1 − ρwg)

]
dV +

ˆ

ΓN
p

wwq̄
wdΓ = 0 (5.28)

W a
n+1 = −

ˆ

Ω

wwnρ
a
n+1

Sw
n+1 − Sw

n

∆t
dV +

ˆ

Ω

ww(1− Sw
n+1)

n

Ka

pan+1 − pan
∆t

dV

+

ˆ

Ω

ww(1− Sw
n+1)ρ

a
n+1∇ · un+1 − un

∆t
dV

+

ˆ

Ω

∇ww ·
[
ρan+1

kran+1k
sI

µa
(∇pan+1 − ρan+1g)

]
dV +

ˆ

ΓN
p

wwq̄
adΓ = 0 (5.29)

W d
n+1 = −

ˆ

Ω

wd2(1− dn+1)H+
n+1dV +

ˆ

Ω

wdGc

(
Sw
n+1

) dn+1

l

+

ˆ

Ω

∇wd ·
[
Gc

(
Sw
n+1

)
l
]
∇dn+1 = 0 (5.30)
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The corresponding discrete system of equations is obtained applying the Bubnov-

Galerkin approach. We subdivide our domain in a mesh of �nite elements, and we

consider an approximation of the spaces Tp and Wp, based on polynomial shape

functions with local support, namely

ũ = Nuû

p̃w = Npp̂
w

p̃a = Npp̂
a

d̃ = Ndd̂

w̃u = Nuŵu

w̃w = Npŵw

w̃a = Npŵa

w̃d = Ndŵd

(5.31)

where (̃) are the approximated trials and weighting functions, (̂) are the vectors con-

taining the values of those functions on the mesh nodes, and Nu, Np and Nd are the

matrix and the vectors containing the nodal shape functions. After the discretization

in space, we obtain a system of equations with structure

Rn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ru

n+1

Rw
n+1

Ra
n+1

Rd
n+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0 (5.32)

where Ru
n+1, R

w
n+1, R

a
n+1 and Rd

n+1 are the residual vectors relative to the equations

(5.27), (5.28), (5.29) and (5.30) respectively. The coupled problem is solved using a

staggered iterative procedure similar to the one exposed in Sections 4.3.1, in which

the phase-�eld equation

Rd
n+1 = 0 (5.33)

is solved independently for the variable d, using the last available solution of the

sub-problem

Rn+1 =

⎧⎨⎩
Ru

n+1

Rw
n+1

Ra
n+1

⎫⎬⎭ = 0 (5.34)

and vice versa. The discrete counterpart of the phase-�eld equation (5.33) turns out

to be a linear system of equations with respect to the phase-�eld solution vector d̂n+1,

namely

Rd
n+1 = (C +G)d̂n+1 − fd = 0 (5.35)

122



Chapter 5 5.2 Governing equations and �nite element discretization

where

C =

ˆ

Ωe

NT
d (H+ +

Gc

2l
)NddΩ (5.36)

G =
Gcl

2

ˆ

Ωe

(∇Nd)
T (∇Nd)dΩ (5.37)

fd =

ˆ

Ωe

NT
d H+dΩ (5.38)

Regarding the sub-problem (5.34), we obtain the following expression for the residuals

Ru
n+1 =

ˆ

Ω

BT
r
σ′(E

(
Sw
n+1

)
, ε (ũn+1) , d̃n+1)

z
dV −

ˆ

Ω

bTSw
n+1p̃

w
n+1dV

−
ˆ

Ω

bT (1− Sw
n+1)p̃

a
n+1dV −

ˆ

Ω

NT
u ρn+1gdV −

ˆ

ΓN
u

NT
u t̄dΓ = 0 (5.39)

Rw
n+1 =

ˆ

Ω

NT
p nρ

wS
w
n+1 − Sw

n

∆t
dV +

ˆ

Ω

NT
p S

w
n+1ρ

w∇ · ũn+1 − ũn

∆t
dV

+

ˆ

Ω

(∇Np)
T

[
ρw
krwn+1k

sI

µw
(∇p̃wn+1 − ρwg)

]
dV +

ˆ

ΓN
p

NT
p q̄

wdΓ = 0 (5.40)

Ra
n+1 = −

ˆ

Ω

NT
p nρ

a
n+1

Sw
n+1 − Sw

n

∆t
dV +

ˆ

Ω

NT
p (1− Sw

n+1)
n

Ka

p̃an+1 − p̃an
∆t

dV

+

ˆ

Ω

NT
p (1− Sw

n+1)ρ
a
n+1∇ · ũn+1 − ũn

∆t
dV

+

ˆ

Ω

(∇Np)
T

[
ρan+1

kran+1k
sI

µa
(∇p̃an+1 − ρan+1g)

]
dV +

ˆ

ΓN
p

NT
p q̄

adΓ = 0 (5.41)

where

Jσ′K =
{[

(1− d2) + η
]
D+ (E (Sw) , ε) +D− (E (Sw) , ε)

}
JεK (5.42)

is the constitutive law (5.10) written in Voigt notation. If we consider a two-dimensional

problem, the bulk modulus of the solid matrix becomes

K2 = λ+ µ (5.43)
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and the positive and the negative parts of the elasticity matrix D are de�ned as

D+ (E (Sw) , ε) =
E (Sw)

2 (1− 2ν) (1 + ν)

⎡⎣ 1 1 0

1 1 0

0 0 0

⎤⎦ ⟨sgn (tr(ε))⟩+

+
E

2 (1 + ν)

⎡⎣ 1 −1 0

−1 1 0

0 0 1

⎤⎦ (5.44)

D− (E (Sw) , ε) =
E (Sw)

2 (1− 2ν) (1 + ν)

⎡⎣ 1 1 0

1 1 0

0 0 0

⎤⎦ ⟨sgn (tr(ε))⟩− (5.45)

If we call Ûn+1 the generalized solution vector of the sub-problem (5.34), de�ned as

Ûn+1 =

⎧⎨⎩
ûn+1

p̂w
n+1

p̂a
n+1

⎫⎬⎭ (5.46)

the generalized residual Rn+1 turns out to be a nonlinear function in Ûn+1, and

so has to be linearized and solved using an iterative scheme. In this section we

apply the Newton-Raphson method, in which the solution of the current time step

n+ 1 is searched iteratively, approximating the function Rn+1 with its tangent. The

approximation solution Û k+1
n+1 , where k + 1 indicates the current Newton-Raphson

iteration k + 1, , is obtained solving the linear system of equations

Jk
n+1∆Û

k+1

n+1 = −Rk
n+1 (5.47)

and then computing

Û
k+1

n+1 = Û
k

n+1 +∆Û
k+1

n+1 (5.48)

The matrix Jk
n+1, known as Jacobian matrix of Rk

n+1, is de�ned as

Jk
n+1 =

∂Rk
n+1

∂Û
k

n+1

=

⎡⎢⎣
∂Ru

∂û
∂Ru

∂p̂w
∂Ru

∂p̂a

∂Rw

∂û
∂Rw

∂p̂w
∂Rw

∂p̂a

∂Ra

∂û
∂Ra

∂p̂w
∂Ra

∂p̂a

⎤⎥⎦ (5.49)

The complete derivation of the Jacobian matrix Jk
n+1 is reported in Appendix A
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5.3 Numerical applications

5.3.1 The constrained Liakopoulos experiment

In this section we introduce a modify version of the Liakopoulos test presented in

Section 3.3.4. In this case the upper boundary is constrained in the vertical direction,

and the gravitational force is maintained in the equation of conservation of mass, as

a driving force for the �uid �ow, but its e�ect is not consider into the equilibrium

equation. The initial and the boundary conditions, together with the dimensions

of the domain are shown in Figure 5.1. This modi�cation implies only a change

in the stress state of the material in the initial condition, but has no in�uence on

the evolution of displacements and pressure in the transient phase of the desiccation

process. The modi�cation is done in order to isolate the pressure as fracture driving

force in the porous material. All the analysis are developed with a a two-phase

(passive air pressure) and a three-phase model. We use the same parameter of the

example in Section 3.3.4. summarized in the Table 3.2. The addition parameters for

the air phase and the phase-�eld equation are pa0 = 101325Pa, ρa0 = 1, 25Kg,m3,µa =

0, 000018Pas, l = 0, 01m, Gc = 0, 3N/m. The permeability of the gas is assumed to

be as given by Brooks and Corey [16]

kra = (1− Se)
2
(
1− S

5
3
e

)
(5.50)

Se =
Sw − 0, 2

0, 8
(5.51)

Three di�erent cases, for both the two- and the three-phase model, are studied:

• NC case: vertical displacement non constrained at the upper boundary (Li-

akopoulos solution), without phase-�eld equation.

• C case: vertical displacement constrained at the upper boundary , without

phase-�eld equation.

• C-PF case: vertical displacement constrained at the upper boundary , with

phase-�eld equation.

The quadrilateral �nite elements Q9Pw4/Q9 and Q9Pw4Pa4/Q9 are used for the

two- and the three-phase model respectively.
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p = 0  

q = kw

H
 =

 1
 m

  

L = 0,1 m  

g = 9,81 m/s2

p = 0  

q = 0 m/s

(a) (b) 

Figure 5.1: Scheme of the constrained Liakopoulos experiment: in (a)
the initial conditions at t = 0 s, in (b) the boundary conditions for the
desiccation process. The gravity g is taken into account only in the mass
balance equation.

In Figure 5.2 the evolution in time of the variables pw, pa and u is shown, for the

two- and the three-phase model, and without constraint on the top (NC case). The

solution coincides with the reference solution of the classical Liakopouls problem [37]

obtained in Section 3.3.4, con�rming that the assumption done on the gravitational

force does not in�uence the solution in the desiccation phase. These results are also

useful to understand the in�uence of the air phase, in particular with respect to the

time evolution of the problem. In fact, when the air phase is assumed constant, the

desiccation process turns out to last longer than in the thee-phase case.

Figure 5.3 and Figure 5.4 show, for the two- and the three-phase model respec-

tively, the comparison between the cases NC, C and C-PF. It is clear, looking at the

displacements curves, that, for both two- and the three-phase models, the solution

for the displacement �eld obtained in the C-PF case follows the one obtained in the

C case, until a point in which it shows an abrupt jump, beginning to follow the one

obtained in the NC case. This phenomenon is even more clear if we look at the

evolution of the outgoing mass. This jump can be then consider as an indicator of
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the development of a fracture. We notice also that this jump occurs earlier in the

desiccation process, when three-phase model is used.

Finally, in Figure 5.5 and Figure 5.6 the results for the phase-�eld variable d are

shown. In Figure 5.5.a and 5.5.b the evolution in time of the phase-�eld obtained with

the two di�erent models is shown. In both the cases, the cracking occurs at the lower

boundary of the column. In Figure 5.6, for both models, the time evolution of the

phase-�eld variable at bottom of the column is plotted together with the evolution

of the water pressure at the top of the column: it can be noticed that, the crack

localizes approximately at the same value of the pressure pw for both models (green

line in the �gure). This is because the water pressure is strictly correlated to the

e�ective stress throw the e�ective stress principle (5.6). Due to the fact that the

minimum value reached by the water saturation, for both the models, is Sw ≃ 0.91,

the contribution of the air pressure in the e�ective stress principle (5.6) is negligible

also in the three-phase model. Therefore, taking into account the air phase is not

important in terms of e�ect of the air pressure in the equilibrium equation. The

importance of its contribution lies in the in�uence that the air �ows has in the time

scale of the fracture process.
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Figure 5.2: Comparison between the one phase (- -) and the two phase
(�) model: (a) relative water pressure, (b) vertical displacement, (c)
relative air pressure.
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Figure 5.3: Solution for the two-phase model: (a) vertical displacement:
comparison between the NC (�) and the C (- -) case, (b) vertical dis-
placement: comparison between the NC (�) and the C-PF (- -) case, (c)
evolution in time of the outgoing water mass.
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NUMERICAL RESULTS: 3-PHASE MODEL
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Figure 5.4: Solution for the three-phase model: (a) vertical displace-
ment: comparison between the NC (�) and the C (- -) case, (b) vertical
displacement: comparison between the NC (�) and the C-PF (- -) case,
(c) evolution in time of the outgoing water mass.
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Figure 5.5: Phase-�eld solution: (a) evolution of the phase-�eld pro�le
obtained with the two-phase model (a) and with the three-phase model
(b).

131



5.3 Numerical applications Chapter 5

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 1200 2400 3600 4800 6000 7200

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

d
am

ag
e

time [s]

W
at

e
r 

p
re

ss
u

re
 [

P
a] pw 2PM

pw 3 PM

d 2PM

d 3PM

Figure 5.6: Phase-�eld solution: comparison between the time evolution
of the phase-�eld at the bottom boundary and the evolution of the water
pressure at the top boundary for the two models.

5.3.2 Desiccation cracking in clayey materials

Description of the problem

In this example we simulate the cracking of clayey materials during a desiccation

process. This is a numerical application proposed in Cajuhi et al.[17] and based on

the experimental results reported in [49] and [58] (see Figure 5.7). In the simulation

presented in [17], taken as reference numerical test, the porous medium is considered

partially saturated, with constant air pressure. The aim of this numerical investiga-

tion is to compare the results of the reference tests with the ones obtained considering

the air �ow in the medium.

The geometry and the boundary conditions are shown in Figure 5.8. The applied

�ux is qw = 6 e−7m/s, and the desiccation is studied for a time T = 60min, with a

regular time stepping of ∆t = 1 s. The mesh is discretized with square �nite elements

of dimension he = 0, 01 cm. The tolerance for the Newton-Raphson iterative scheme

is TOLN−R = 10−5 and only one staggered iteration per time step is performed, due to

the small dimension of the chosen time step [17]. The problem is assumed to be a

pure 2D problem, with the deviatoric energy de�ned as εdev = ε − 1
2
tr(ε)I, and no

stress nor strain along the third dimension are present. The parameter of the model

are n = 0.41, ρs = 2800Kg/m3, ks = 10−15m3, l = 0.02m. For the SWCC the Van
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Genuchten model [64] is used, namely⎧⎨⎩S
w = 1 for pc ≤ 0

Sw = (1− Sw
r )

[
1 +

(
αvgpc

ρwg

)nvg
]−mvg

+ Sw
r for pc > 0

(5.52)

with αvg = 0.028, nvg = 1.3. For the relative pressure krw and the air relative pressure

kws the Mualem model [45]

krw =
√
Sw
e

{
1−

[
1− (Sw

e )
1

mvg

]mvg
}2

(5.53)

kra =
{
(1− Sw

e )
[
1− (Sw

e )
1

mvg

]mvg
}2

+ kraRES (5.54)

is used, where Sw
e = (Sw − Sw

r )/(1− Sw
r ) is the e�ective saturation, mvg is the same

parameter used in the Van Genuchten model, and kraRES = 0.01 is an arti�cial residual

air relative permeability, fundamental in the numerical application because it allows

to maintain the mass balance equation of solid and air (2.30) always �active�, also

when Sw = 1.

For the elastic parameter, as done in [17], we assume ν = 0.4, and the relations

E = 1770exp(−0.297w)MPa

σc = 228.85exp(−0.14w)MPa

proposed in [58]. As pointed out in [17], it is possible to use the formula (2.132), to

derive the following expression for the fracture toughness

Gc (w) =

(
16

9

)2

σc (w)
3l

E(w)
(5.55)

obtaining a value of Gc depending on the water content, and therefore on the sat-

uration. The �nite elements used for the solution of the problem are quadrilateral

elements Q9Pw4/Q9 for the two-phase formulation u − pw − d and quadrilateral

elements Q9Pw4Pa4/Q9 for the three-phase formulation u − pw − pa − d. In ad-

dition, the numerical problem is also solved using the mixed two-phase formulation

u−pt−pw−d, developed in Section 4.4.2, and extended to take into account the partial
saturated condition with constant air pressure, in order to test again the stabilization

proposed. For the mixed formulation the quadrilateral elements Q4Pt4Pw4/Q4 and

quadrilateral elements Q4Pt4sPw4/Q4 are used. The interpolations used for all of

these elements are summarized in Table 5.1.
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u pt pw pa d

Q9Pw4/Q9 quadratic - linear - quadratic

Q9Pw4Pa4/Q9 quadratic - linear linear quadratic

Q4Pt4Pw4/Q4 linear linear linear - linear

Q4Pt4sPw4/Q4 linear linear - stabilized linear - linear

Table 5.1: Summary of the di�erent �nite elements used in the simula-
tion.

Péron, 2009 Stirling, 2014

(a) (b)

Figure 5.7: Experiments on desiccation cracking in clays: (a) Peron et

al. [49], (b) Stirling et al. [58]
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qw = q
pa = 0

Figure 5.8: Scheme of the desiccation problem.

Reference numerical test

In Figure 5.9, Figure 5.10 and Figure 5.11 the evolution in time of the phase-�eld

d, the water pressure pw and the water saturation Sw, obtained with the two-phase

u− pw − d formulation, are shown. These results are obtained using a discretization

with quadrilateral elements (Q9Pw4/Q9), the same used in [17], and are in good

agreement with the one shown in the article. In particular, looking at the evolution of

the crack pattern in Figure 5.9, it can be noticed that the �rst crack to occur is a shear

crack at the lower left corner of the domain. As underlined in [17], the presence of

this shear crack is in agreement with the experimental observation done in [49], and is

due to the Dirichlet homogeneous constraint applied on the horizontal displacements

in the lowed boundary, condition similar to the one created in the experiment of

Peron [49] (Figure 5.7.a). After a time t ≃ 27min a second crack nucleates on the

upper part of the domain, and propagates almost vertically throw the entire domain,

dividing the body in two parts. The nucleation of a second vertical crack is observed

at the end of the simulation. Comparing the evolution of the water saturation (Figure

5.11) with the one of the phase-�eld, an other correspondence with the experimental

observations can be found. At the crack onset in fact the water saturation is closed

to the unit value, which have been noticed also in the experiments reported in [49].

In Figure 5.12 and 5.13 the results relative to evolution in time of the phase-�eld

d obtained with the mixed two-phase formulation u − pt − pw − d are shown. Two

di�erent mixed elements are used in the simulation, i.e. the element Q4Pw4/Q4
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(Figure 5.12) and the stabilized element Q4Pt4sPw4/Q4 (Figure ). The location of

the cracks in the domain obtained with the non stabilized element Q4Pw4/Q4 is the

same of the one obtained with the standard Q9Pw4/Q9, but it can be noticed that

the width of the cracks is larger, although the characteristic length l has not been

changed. On the other hand, if we look at the solution obtained with the stabilized

element Q4Pt4sPw4/Q4, not only the same crack pattern of the reference solution

(Q9Pw4/Q9) is obtain, but also the width of the crack is the same. Anyway, in this

application it has been necessary to introduce a coe�cient τ = 0.03, similar to the

one used in [66], in order to slightly penalized the e�ect of the stabilization term,

which otherwise would lead to irregular crack patterns.

Finally, in Figure 5.14 and Figure 5.14 the evolution in time of the phase-�eld d,

and of the water saturation Sw, obtained with the three-phase u − pw − pa − d for-

mulation, are shown. We can immediately notice that the solution for the both �eld

is almost coincident to the one obtained without considering the �ow of the gaseous

phase. Even if at a glance this results seems to lead to the conclusion that the mod-

eling of the air phase is not needed for a correct simulation of the desiccation process,

further investigation is needed to understand if this coincidence of the solutions is a

result of the particular geometry and boundary conditions of the problem. The e�ect

of the air phase is in fact expected to be mitigated in the vicinity of the boundaries

where homogeneous condition on the air pressure are applied. This could be exactly

the case of the problem in analysis, where due to the small height of the domain, the

e�ect of the Dirichlet condition on the air pressure imposed on two sides mitigates

the e�ect of the air phase. This consideration leads to the numerical experiment

presented in the next section, in which the same desiccation problem is solved for an

higher domain and di�erent BCs.
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(a)

(b)

(c)

(d)

Figure 5.9: Phase-�eld contours for the two-phase model (Q9Pw4/Q9
elements): (a) 15 min, (b) 30min, (c) 45 min, (d) 60 min.
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(a)

(b)

(c)

(d)

Figure 5.10: Water pressure contours for the two-phase model
(Q9Pw4/Q9 elements): (a) 15 min, (b) 30min, (c) 45 min, (d) 60 min.
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(a)

(b)

(c)

(d)

Figure 5.11: Water saturation contours for the two-phase model
(Q9Pw4/Q9 elements): (a) 15 min, (b) 30min, (c) 45 min, (d) 60 min.
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(a)

(b)

(c)

(d)

Figure 5.12: Phase-�eld contours for the mixed two-phase model
(Q4Pt4Pw4/Q4 elements): (a) 15 min, (b) 30min, (c) 45 min, (d) 60
min.
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(a)

(b)

(c)

(d)

Figure 5.13: Phase-�eld contours for the stabilized mixed two-phase
model (mixed stabilized Q4Pt4sPw4s/Q4 elements): (a) 15 min, (b)
30min, (c) 45 min, (d) 60 min.
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(a)

(b)

(c)

(d)

Figure 5.14: Phase-�eld contours for the three-phase model
(Q9Pt4Pw4Pa4/Q9 elements): (a) 15 min, (b) 30min, (c) 45 min, (d)
60 min.
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(a)

(b)

(c)

(d)

Figure 5.15: Water saturation contours for the three-phase model
(Q9Pw4/Q9 elements): (a) 15 min, (b) 30min, (c) 45 min, (d) 60 min.

Modi�ed desiccation test

We propose in this section a modi�cation of the previous numerical test, in which

a higher domain is considered. Di�erent BCs are also applied on the left side: no

water and air �ux. These BCs are expected to be more similar to the ones of the

the experiment presented in [58] (Figure 5.7.b). The new geometry and the BCs are

shown in Figure 5.16. All the material properties and the parameter of the simulation

coincides with the ones of the reference test. The total time of the simulation is

T = 120min.
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In Figure 5.17 the evolution in time of the phase-�eld d, for the two- and the three-

phase model, is shown. In this case the in�uence of the air phase becomes relevant.

In contrast with the reference test modeled in the previous section, for both models,

the �rst crack to appear is a vertical crack starting from the upper boundary, while in

a second stage a shear crack appears on the lower left corner. Anyway the moment in

which these two cracks nucleate is di�erent for the two models. In particular, the �rst

vertical crack appears earlier in the two-phase model (t = 23min) and, slightly later,

in the three-phase model (t = 28min). The di�erence becomes event more evident

for the second crack: it appears �rst in the three-phase model (t = 28min), and then

in the two-phase model (t = 28min), showing a di�erence close to the 20% of the

total simulation time. A di�erence can be noticed also in the �nal crack pattern.

Finally, looking at the contours of the saturation Sw at the end of the simulation,

shown in Figure 5.18, it can be noticed that, with the three-phase model, the gradient

of the saturation is slightly more concentrated in the vicinity of the upper boundary,

with respect to the solution obtained using the two-phase model.

H
 =

 0
,1

0
0

 m
  

L = 0,200 m  

qw = q
pa = 0

qw = 0

qa = 0

Figure 5.16: Scheme of the modi�ed desiccation problem.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.17: Phase-�eld contours for the two-phase model
(Q9Pt4Pw4/Q9 elements): (a) 23 min (�rst crack), (b) 28min, (c) 40
min, (d) 75 min, (d) 95 min (second crack), (d) 120 min.

145



5.3 Numerical applications Chapter 5

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.18: Phase-�eld contours for the three-phase model
(Q9Pt4Pw4Pa4/Q9 elements): (a) 23 min, (b) 28min (�rst crack), (c)
40 min, (d) 75 min (second crack), (d) 95 min , (d) 120 min.
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(a)

(b)

0.99

0.93

1

0.94

Figure 5.19: Water saturation contours at t = 120 min: (a) two-phase
model, (b) three-phase model.

5.4 Conclusions

In the �rst part of this chapter the �nite element implementation of the phase-�eld

model for fracture in three-phase porous media has been derived, with particular

attention on the nonlinear constitutive dependency of the elastic and the fracture

parameters that characterizes certain soil materials. A staggered procedure for the

solution of the problem has been adopted, in which the phase-�eld evolution equations

is solved independently, while the equilibrium and the mass conservation equations

are solved with a monolithic approach.

This numerical model has been applied to the solution of two di�erent cases of

constrained desiccation, and the results have been compared with the ones obtained

assuming the passive air condition, i.e. without taking into account the mass con-

servation equation for the air phase. The results show how taking into account the

air phase in�uences the time evolution of the fracture process, as well as the �nal
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cracking pattern. Anyway, for certain speci�c boundary conditions and geometries,

it has been noticed that the in�uence of the air phase becomes negligible. Finally

the stabilized mixed formulation proposed in the previous chapter has been applied

successfully to the second desiccation problem, although in this case the introduction

of a coe�cient which mitigates the e�ect of the stabilization is found to be needed.
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Conclusions

In this work a phase-�eld model for the fracture in three-phase partially saturated

porous media has been developed. The numerical discretization of the model has

been derived using the Finite Element Method, with particular attention on some

numerical issues due to the coupled nature of the problem.

In particular, the mass conservation properties of di�erent numerical schemes for

the discretization of the mass balance equation of the water in partially saturated

porous media have been investigate, both considering the solid skeleton rigid and

deformable. A new conservative scheme for the deformable case has been derived and

successfully tested in the simulation of a desiccation process.

Furthermore, the problem of the numerical locking due to undrained conditions

in saturated porous media has been reviewed, including the study of a stabilization

technique, called polynomial pressure-projection, for �nite elements with linear inter-

polation for the displacement �eld. This stabilization technique has been extended

to di�erent mixed formulations of the phase-�eld model for fracture in elastic and

poroelastic materials.

In the last part of the thesis the �nite element implementation of the equations

governing the phase-�eld model of fracture in three-phase partially saturated porous

media has been developed, and applied to two di�erent problems of constrained des-

iccation. It has been shown how considering the �ow of the air in the medium can

signi�cantly in�uence the time scale of the evolution of the fractures.

Finally we notice how taking into account in the model the mass balance equation

for the gaseous phase, considered in this work as dry air, can also be considered as

a starting point for an extension of the model in which the gas is considered as a

mixture of dry air and vapor, which would allow to model more accurately the real

physical processes which characterize the problem of desiccation.
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Appendix A

Derivation of the Jacobian matrix for

the three-phase model

In this section we derive, from the expressions (5.39), (5.40) and (5.41) the Jacobian

matrix Jn+1 for the nonlinear solution of the system of equations

Rn+1 =

⎧⎨⎩
Ru

n+1

Rw
n+1

Ra
n+1

⎫⎬⎭ = 0 (A.1)

The Jacobian matrix Jn+1 is de�ned as

Jn+1 =
∂Rn+1

∂Û
k

n+1

=

⎡⎢⎣
∂Ru

∂û
∂Ru

∂p̂w
∂Ru

∂p̂a

∂Rw

∂û
∂Rw

∂p̂w
∂Rw

∂p̂a

∂Ra

∂û
∂Ra

∂p̂w
∂Ra

∂p̂a

⎤⎥⎦ (A.2)

The expression obtained for the matrix Juu
n+1 is

Juu
n+1 =

∂Ru

∂û
=

ˆ

Ω

BT
{[

(1− d̃2n+1) + η
]
D+

n+1 +D−
n+1

}
BdV (A.3)

The expression obtained for the matrix Juw
n+1 is

Juw
n+1 =

∂Ru

∂p̂w
= Juw1

n+1 + Juw2
n+1 + Juw3

n+1 + Juw4
n+1 + Juw5

n+1 (A.4)

where

Juw1
n+1 =

ˆ

Ω

BT

{[
(1− d̃2n+1) + η

] ∂D+

∂E
+
∂D+

∂E

}
∂E

∂Sw

∂Sw

∂pw
Jεn+1KNpdV (A.5)

Juw2
n+1 = −

ˆ

Ω

bTSw
n+1NpdV (A.6)
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Juw3
n+1 = −

ˆ

Ω

bT
∂Sw

∂pw
p̃wn+1NpdV (A.7)

Juw4
n+1 =

ˆ

Ω

bT
∂Sw

∂pw
p̃an+1NpdV (A.8)

Juw5
n+1 = −

ˆ

Ω

NT
u

∂ρ

∂Sw

∂Sw

∂pw
gNpdV (A.9)

The expression obtained for the matrix Jua
n+1 is

Jua
n+1 =

∂Ru

∂p̂a
= Jua1

n+1 + Jua2
n+1 + Jua3

n+1 + Jua4
n+1 + Jua5

n+1 + Jua6
n+1 (A.10)

where

Jua1
n+1 =

ˆ

Ω

BT

{[
(1− d̃2n+1) + η

] ∂D+
n+1

∂E
+
∂D+

n+1

∂E

}
∂E

∂Sw

∂Sw

∂pa
Jεn+1KNpdV (A.11)

Jua2
n+1 = −

ˆ

Ω

bT
∂Sw

∂pa
p̃wn+1NpdV (A.12)

Jua3
n+1 = −

ˆ

Ω

bT (1− Sw
n+1)NpdV (A.13)

Jua4
n+1 =

ˆ

Ω

bT
∂Sw

∂pa
p̃an+1NpdV (A.14)

Jua5
n+1 = −

ˆ

Ω

NT
u

∂ρ

∂Sw

∂Sw

∂pa
gNpdV (A.15)

Jua6
n+1 = −

ˆ

Ω

NT
u

∂ρ

∂ρa
∂ρa

∂pa
gNpdV (A.16)

The expression obtained for the matrix Jwu
n+1 is

Jwu
n+1 =

∂Rw

∂û
=

ˆ

Ω

NT
p S

w
n+1ρ

wbdV (A.17)

The expression obtained for the matrix Jww
n+1 is

Jww
n+1 =

∂Rw

∂p̂w
= Jww1

n+1 + Jww2
n+1 + Jww3

n+1 + Jww4
n+1 (A.18)

where

Jww1
n+1 =

ˆ

Ω

NT
p

nρw

∆t

∂Sw

∂pw
NpdV (A.19)
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Jww2
n+1 =

ˆ

Ω

NT
p ρ

w

(
∇ · ũn+1 − ũn

∆t

)
∂Sw

∂pw
NpdV (A.20)

Jww3
n+1 =

ˆ

Ω

(∇Np)
Tρw

krwn+1k
sI

µw
NpdV (A.21)

Jww4
n+1 =

ˆ

Ω

(∇Np)
T

[
ρw
ksI

µw
(∇p̃wn+1 − ρwg)

]
∂krw

∂Sw

∂Sw

∂pw
NpdV (A.22)

The expression obtained for the matrix Jwa
n+1 is

Jwa
n+1 =

∂Rw

∂p̂a
= Jwa1

n+1 + Jwa2
n+1 + Jwa3

n+1 (A.23)

where

Jwa1
n+1 =

ˆ

Ω

NT
p

nρw

∆t

∂Sw

∂pa
NpdV (A.24)

Jwa2
n+1 =

ˆ

Ω

NT
p ρ

w

(
∇ · ũn+1 − ũn

∆t

)
∂Sw

∂pa
NpdV (A.25)

Jwa3
n+1 =

ˆ

Ω

(∇Np)
T

[
ρw
ksI

µw
(∇p̃wn+1 − ρwg)

]
∂krw

∂Sw

∂Sw

∂pa
NpdV (A.26)

The expression obtained for the matrix Jau
n+1 is

Jau
n+1 =

∂Ra

∂û
=

ˆ

Ω

NT
p (1− Sw

n+1)ρ
a
n+1bdV (A.27)

The expression obtained for the matrix Jaw
n+1 is

Jaw
n+1 =

∂Ra

∂p̂w
= Jaw1

n+1 + Jaw2
n+1 + Jaw3

n+1 + Jaw4
n+1 (A.28)

where

Jaw1
n+1 =

ˆ

Ω

NT
p

nρan+1

∆t

∂Sw

∂pw
NpdV (A.29)

Jaw2
n+1 = −

ˆ

Ω

NT
p

n

Ka

p̃an+1 − p̃an
∆t

∂Sw

∂pw
NpdV (A.30)

Jaw3
n+1 = −

ˆ

Ω

NT
p ρ

a
n+1

(
∇ · ũn+1 − ũn

∆t

)
∂Sw

∂pw
NpdV (A.31)

Jaw4
n+1 =

ˆ

Ω

(∇Np)
T

[
ρan+1

kran+1k
sI

µa
(∇p̃an+1 − ρan+1g)

]
∂krw

∂Sw

∂Sw

∂pa
NpdV (A.32)
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The expression obtained for the matrix Jaa
n+1 is

Jaa
n+1 =

∂Ra

∂p̂a
= Jaa1

n+1+Jaa2
n+1+Jaa3

n+1+Jaa4
n+1+Jaa5

n+1+Jaa6
n+1+Jaa7

n+1+Jaa8
n+1+Jaa9

n+1 (A.33)

where

Jaa1
n+1 = −

ˆ

Ω

NT
p

nρan+1

∆t

∂Sw

∂pa
NpdV (A.34)

Jaa2
n+1 = −

ˆ

Ω

NT
p n

Sw
n+1 − Sw

n

∆t

∂ρa

∂pa
NpdV (A.35)

Jaa3
n+1 =

ˆ

Ω

NT
p

n

Ka

(1− Sw
n+1)

∆t
NpdV (A.36)

Jaa4
n+1 = −

ˆ

Ω

NT
p

n

Ka

p̃an+1 − p̃an
∆t

∂Sw

∂pa
NpdV (A.37)

Jaa5
n+1 = −

ˆ

Ω

NT
p ρ

a
n+1

(
∇ · ũn+1 − ũn

∆t

)
∂Sw

∂pa
NpdV (A.38)

Jaa6
n+1 =

ˆ

Ω

NT
p (1− Sw

n+1)

(
∇ · ũn+1 − ũn

∆t

)
∂ρa

∂pa
NpdV (A.39)

Jaa7
n+1 =

ˆ

Ω

(∇Np)
Tρan+1

kran+1k
sI

µa
NpdV (A.40)

Jaa8
n+1 =

ˆ

Ω

(∇Np)
T

[
ρan+1

kran+1k
sI

µa
(∇p̃an+1 − ρan+1g)

]
∂krw

∂Sw

∂Sw

∂pa
NpdV (A.41)

Jaa9
n+1 =

ˆ

Ω

(∇Np)
T

[
kran+1k

sI

µa
(∇p̃an+1 − 2ρan+1g)

]
∂ρa

∂pa
NpdV (A.42)
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