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Abstract

In this thesis we study cotorsion pairs (A,B) generated by classes of R-
modules of projective dimension at most one. We are interested in when
these cotorsion pairs provide covers or envelopes over commutative rings.
More precisely, we investigate Enochs’ Conjecture in this setting. That is, for
a class A contained in the class of modules of projective dimension at most
one, denoted P1(R), we investigate the question of whether A is covering
necessarily implies that A is closed under direct limits. Additionally, under
certain restrictions we characterise the rings which satisfy this property. To
this end, there were two cases to consider: when the cotorsion pair is of
finite type and when it is not of finite type.

For the case that the cotorsion pair (P1(R),P1(R)⊥) is not (necessarily)
of finite type, we show that over a semihereditary ring R, if P1(R) is covering
it must be closed under direct limits. This gives an example of a cotorsion
pair not of finite type which satisfies Enochs’ Conjecture.

The next part of the thesis is dedicated toward cotorsion pairs of finite
type, specifically the 1-tilting cotorsion pairs over commutative rings. We
rely heavily on work of Hrbek who characterises these cotorsion pairs over
commutative rings, as well as work of Positselski and Bazzoni-Positselski in
their work on contramodules.

We consider the case of a 1-tilting cotorsion pair (A, T ) over a commuta-
tive ring with an associated Gabriel topology G, and begin by investigating
when T is an enveloping class. We find that if T is enveloping, then the
associated Gabriel topology must arise from a perfect localisation. That is,
G must arise from a flat ring epimorphism denoted R → RG . Furthermore,
if G arises from a perfect localisation, T is enveloping in Mod-R if and only
if p.dimRG ≤ 1 and R/J is a perfect ring for every ideal J ∈ G if and only if
p. dimRG ≤ 1 and the topological ring End(RG/R) is pro-perfect. Next, we
consider the case that A is a covering class, and we prove that A is covering
in Mod-R if and only if p. dimRG ≤ 1 and both the localisation RG is a
perfect ring and R/J is a perfect ring for every J ∈ G.

Additionally, we study general cotorsion pairs, as well as conditions for
an approximation to be a minimal approximation. Moreover, we consider a
hereditary cotorsion pair and show that if it provides covers it must provide
envelopes.
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Riassunto

In questa tesi studiamo le coppie di cotorsione (A,B) generate da classi di
R-moduli di dimensione proiettiva al più uno. Siamo interessati nel caso in
cui queste coppie di cotorsione ammettano ricoprimenti o inviluppi su anelli
commutativi. Più precisamente, indaghiamo la congettura di Enochs per A.
Cioè, per A contenuta nella classe P1(R), che denota la classe di R-moduli
di dimensione proiettiva al più uno, cerchiamo di capire se per A una classe
ricoprente allora necessariamente implica che A è chiusa per limiti diretti.
In più, con certe restrizioni, descriviamo gli anelli che soddisfano questa
proprietà. Ci sono due casi da considerare: il caso di coppia di cotorsione
di tipo finito e il caso non di tipo finito.

Quando la coppia di cotorsione non è (necessariamente) di tipo finito,
dimostriamo che per un anello commutativo semiereditario R, se P1(R) è
una classe ricoprente, deve essere chiusa per limiti diretti. Questo ci da un
esempio di una coppia di cotorsione che non è di tipo finito che soddisfa la
congettura di Enochs.

Successivamente, analizziamo le coppie di cotorsione di tipo finito. Speci-
ficamente, le coppie di cotorsione 1-tilting su anelli commutativi. A questo
scopo sono indispensabili il lavoro di Hrbek, che caratterizza tali coppie di co-
torsione su anelli commutativi, e il lavoro di Positselski e Bazzoni-Positselski
nel loro lavoro sui contramoduli.

Consideriamo il caso di una coppia di cotorsione 1-tilting (A, T ) su un
anello commutativo con una topologia di Gabriel associata G, e studiamo
quando (A, T ) ammette inviluppi. Troviamo che se T ammette inviluppi, G
è una topologia di Gabriel perfetta. Cioè, G viene da un epimorfismo piatto
di anelli R → RG dove RG è la localizzazione di R rispetto a G. Inoltre,
se G è una topologia di Gabriel perfetta, T ammette inviluppi se e solo se
p. dimRG ≤ 1 e R/J è un anello perfetto per tutti gli ideali J ∈ G se e
solo se p.dimRG ≤ 1 e l’anello topologico End(RG/R) è pro-perfetto. Poi
consideriamo il caso in cui A è ricoprente. Dimostriamo che A è ricoprente
in Mod-R se e solo se p. dimRG ≤ 1 e RG è un anello perfetto e R/J è
perfetto per ogni J ∈ G.

In aggiunta, studiamo coppie di cotorsione in generale e studiamo con-
dizioni sufficienti affinchè una approssimazione sia minimale. Inoltre, con-
sideriamo una coppia di cotorsione ereditaria e dimostriamo che se ammette
ricoprimenti deve ammettere inviluppi.
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careful reading of my thesis, useful commentary, and kindness when I had
the opportunity to meet them.

I would like also to thank everyone in the algebra group in Padova and
Verona; for their warmth and friendliness, and also for providing a platform
to discuss mathematics. This extends to those I have had the pleasure of
meeting during my time in the Torre Archimede.

And finally, I want to thank my parents, family and friends – both here
and around the world – for their constant support or sporadic words of
encouragement. In particular I would like to thank Camilla, Francesca and
Giulia, for making me feel at home during my three years in Padova.

v



vi Acknowledgements



Introduction

The classification problem for classes of modules over arbitrary rings is in
general very difficult, perhaps even hopeless. Nonetheless, approximation
theory was developed as a tool to approximate arbitrary modules by mod-
ules in classes where the classification is more manageable. Left and right
approximations by an arbitrary class were studied in the case of modules
over finite dimensional modules by work of Auslander, Reiten, and Smalø
and independently by Enochs and Xu for modules over arbitrary rings using
the terminology of preenvelopes and precovers.

An important problem in approximation theory is when minimal ap-
proximations, that is covers or envelopes, over certain classes exist. In other
words, for a certain class C, the aim is to characterise the rings over which
every module has a minimal approximation provided by C and furthermore
to characterise the class C itself. The most famous positive result of when
minimal approximations exist is the construction of an injective envelope for
every module [20]. Instead, Bass proved in [8] that projective covers rarely
exist. In his paper, Bass introduced and characterised the class of perfect
rings which are exactly the rings over which every module admits a projec-
tive cover. These results motivated the the study of minimal approximations
for an arbitrary class C.

Among the many characterisations of perfect rings, the most important
from the homological point of view is the closure under direct limits of the
class of projective modules. In fact, a famous theorem of Enochs says that for
a well-behaved class C in Mod-R (that is C is closed under direct summands
and isomorphisms), if C is closed under direct limits, then any module that
has a C-precover has a C-cover [22]. The converse problem, that is if C is a
covering class then it is closed under direct limits, is still an open problem
which is known as Enochs’ Conjecture.

Interestingly, one has a similar conclusion under slightly stronger as-
sumptions for the dual notion of C-envelopes. That is, if C is a class in
Mod-R that is closed under direct limits and extensions, then if a module
M has a C⊥1-preenvelope which is a monomorphism with cokernel in C, then
M has a C⊥1-envelope. A class C of modules is called covering, respectively

vii



viii Introduction

enveloping, if every module admits a C-cover, respectively a C-envelope.
Approximations and minimal approximations are strongly linked with

another notion in homological algebra: cotorsion pairs. Cotorsion pairs
were introduced by Salce in the 1970s as an analogue to the notion of a
torsion pair [37]. That is, cotorsion pairs are pairs of classes in the category
of R-modules which are mutually Ext1

R-orthogonal. A cotorsion pair (A,B)
provides a natural way to look at a well behaved type of approximation:
a special B-preenvelope, which is a monomorphism with cokernel in A in
addition to being a B-preenvelope, or dually a special A-precover, which is
an epimorphism with kernel in B in addition to being an A-precover. Note
that the stronger assumptions on the class C in the previous paragraph turn
out to be that the C-preenvelope is a special C-preenvelope.

In a cotorsion pair (A,B), Salce demonstrated that there is a symme-
try between special A-precovers and special B-preenvelopes. More precisely,
a cotorsion pair (A,B) provides special A-precovers if and only if it pro-
vides special B-preenvelopes. This observation lead to the notion of com-
plete cotorsion pairs, that is cotorsion pairs which provide approximations.
Moreover, by a theorem of Eklof and Trlifaj, complete cotorsion pairs are
abundant. More precisely, in [21] Eklof and Trlifaj proved that that any co-
torsion pair generated by a set is complete, that is for a set S of R-modules,
the cotorsion pair (⊥1(S⊥1),S⊥1) is complete. Thus many well-known co-
torsion pairs were shown to be complete by demonstrating that they can be
generated by a set.

A particularly important accomplishment of Eklof and Trlifaj’s result is
the role it played in the famous flat cover conjecture, which was asserted
by Enochs in 1981 and states that every R-module has a flat cover. This
conjecture could be seen to be influenced by the positive result for the ex-
istence of an injective envelope for every R-module. Finally, the Flat cover
Conjecture was resolved in 2001 by Bican-El Bashir-Enochs [18] who proved
that the flat cotorsion pair (F , C) is generated by a set and thus is complete,
and therefore F is covering since F is closed under direct limits.

Another important type of cotorsion pair is a hereditary cotorsion pair,
which is a cotorsion pair (A,B) where A is resolving, that is closed under
kernels of epimorphisms, or equivalently B is coresolving, that is closed under
cokernels of monomorphisms. Most of the cotorsion pairs we work with in
this thesis are hereditary, to name a few (Pn(R),Pn(R)⊥) where Pn(R) is
the class of modules of projective dimension less than or equal to n, the
injective cotorsion pair (Mod-R, I) and the flat cotorsion pair (F , C).

As mentioned before, by results of Bass Enochs’ Conjecture holds for
the class of projective modules. Morover, Bass gives both a ring-theoretic
characterisation of the rings for which the class P0(R) is closed under direct
limits, as well as homological characterisations in the category of R-modules.
In this thesis we are interested in developing a similar characterisation for the
class of modules of projective dimension less than or equal to one, denoted
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P1(R). Before we discuss the subject of this thesis in more detail, it is
important to take into consideration some significant advancements made
towards Enochs’ Conjecture in recent years.

In 2017, Angeleri Hügel-Šaroch-Trlifaj in [5] proved that Enochs’ Con-
jecture holds for a large class of cotorsion pairs. Explicity, they proved that
for a cotorsion pair (A,B) such that B is closed under direct limits, A is
covering if and only if it is closed under direct limits. To prove this, An-
geleri Hügel-Šaroch-Trlifaj used methods developed in Šaroch’s paper [41],
which uses sophisticated set-theoretical methods in homological algebra. In
particular, this result tells us that Enochs’ Conjecture holds for a large col-
lection of cotorsion pairs (which are not necessarily hereditary) and include
the 1-tilting cotorsion pairs, which we will introduce below.

In this thesis we will avoid using the results of Angeleri Hügel-Šaroch-
Trlifaj discussed in the previous paragraph, rather, we choose to take an
algebraic approach. We will show that one can come to the same conclusion
under our assumptions without needing to use these deep results. With this
in mind, we introduce the main topic of this thesis.

The original goal of our research was to investigate Enochs’ Conjecture
in the specific case of the class of modules of projective dimension less than
or equal to one in Mod-R (denoted P1(R)), and to investigate the properties
of the (commutative) rings which satisfy these conditions. To be precise, we
wanted to investigate the following question over a ring R.

Question 0.0.1. Let R be an associative ring. If P1(R) is a covering class,
is P1(R) necessarily closed under direct limits?

Question 0.0.1 in general is very difficult, so we restrict our investigation
to when R is a commutative ring. To this end, there were two natural di-
rections of research in consideration of some practical issues when working
with certain cotorsion pairs, which we will outline after introducing 1-tilting
cotorsion pairs.

In this thesis we are interested in infinitely generated 1-tilting modules,
where a module T in Mod-R is 1-tilting if and only if Gen(T ) = T⊥, where
Gen(T ) is the class of epimorphic images of direct sums of T [19]. Moreover,
we consider the cotorsion pairs generated by 1-tilting modules, known as 1-
tilting cotorsion pairs and the 1-tilting class T = T⊥. These cotorsion
pairs are not only complete and hereditary, but also have another important
property. First recall that a class C is of finite type if there exists a set S
of modules each with a projective resolution of finitely generated modules
(i.e. S ⊂ mod-R) such that C = S⊥∞ . We say a cotorsion pair (A,B) is
of finite type if B is of finite type. Even though the 1-tilting modules are
not finitely generated, they are well behaved in this sense. That is, in [10]
Bazzoni-Herbera proved that 1-tilting classes are of finite type.
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In the context of Question 0.0.1, the cotorsion pair (P1(R),P1(R)⊥) is
of finite type if and only if it is a 1-tilting cotorsion pair [11]. Furthermore,
in the study of cotorsion pairs where the right hand class is closed under
direct sums (as in the case of 1-tilting cotorsion pairs), one can use a sort
of T-nilpotency result of Enochs-Xu which turns out to be a powerful tool
when working with minimal approximations.

We briefly clarify this concept of T-nilpotency. Recall that if the ring R
is perfect, the Jacobson radical J(R) of R must be T-nilpotent. A theorem of
Enochs-Xu states that if (A,B) has the property that B is closed under direct
sums, a direct sum of minimal approximations remains a minimal approxi-
mation. Moreover, if one has a countable direct sum of minimal approxima-
tions with homomorphisms (f1, f2, . . . , fi, . . . ) where fi : Xi → Xi+1 between
each term of the minimal approximations that satisfy some hypothesis, then
for each x ∈ X1, there exists an integer n such that fnfn−1 · · · f1(x) = 0,
see Theorem 1.2.4. Hence, this can be considered a type of T-nilpotency
which is a sort of generalisation of the notion of a T-nilpotent ideal of the
Jacobson radical when the ring R is perfect.

Thus, in the investigation of the cotorsion pair (P1(R),P1(R)⊥), we
begin by studying the case when this cotorsion pair is not of finite type,
and in particular to study Enochs’ Conjecture in this context. Up until
now, there are no examples of a positive answer to Question 0.0.1 for when
(P1(R),P1(R)⊥) is not of finite type (as far as we are aware). Moreover,
this investigation opens other questions about the class lim−→P1(R). The
second direction of research was to investigate cotorsion pairs (A,B) where
A is contained in P1(R) and (A,B) is of finite type, and in particular a
1-tilting cotorsion pair and investigate the rings over which these cotorsion
pairs admit minimal approximations. Thus, this second direction of research
opened natural questions about when 1-tilting classes are enveloping.

For the first direction when (P1(R),P1(R)⊥) is not of finite type, we
show that over a semihereditary commutative ring, if P1(R) is covering then
P1(R) is closed under direct limits, hence R is hereditary (Theorem 3.2.18).
This provides an example of when the cotorsion pair (P1(R),P1(R)⊥) is not
of finite type and Enochs’ Conjecture holds.

In the investigation of when P1(R) is covering, the class lim−→P1(R) plays
an important role, even though it is not always well understood. Unlike the
case of the projective modules where lim−→P0(R) = F0(R), it is not necessar-
ily true that the direct limit closure lim−→P1(R) coincides with the modules
of weak dimension less than or equal to one, F1(R), though one inclusion
always holds. For certain nice rings, such as commutative domains, the two
classes lim−→P1(R) and F1(R) coincide. This motivated us to give a charac-
terisation of the class lim−→P1(R) when R has a classical ring of quotients,
which is an extension of a result from [11]. We prove that lim−→P1(R) is ex-

actly the intersection of F1(R) and the left TorR1 -orthogonal of the minimal
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cotilting class of Q-Mod, C(Q) := P1(mod-Q)| (see Proposition 3.1.8) where
P1(mod-Q) denotes the finitely presented Q-modules of projective dimen-
sion less than or equal to one.

In our study of 1-tilting cotorsion pairs over commutative rings, that
is, in the second direction of our research, we used extensively the bijective
correspondence between 1-tilting cotorsion pairs and faithful finitely gen-
erated Gabriel topologies as demonstrated by Hrbek in [30]. Classically it
is known more generally that right Gabriel topologies on a ring R are in
bijective correspondence with hereditary torsion pairs in Mod-R. In [30],
over commutative rings Hrbek extended this bijective correspondence be-
tween faithful finitely generated Gabriel topologies (and faithful hereditary
torsion pairs of finite type) to 1-tilting cotorsion pairs, amongst others. In
this characterisation he associates to a 1-tilting class T the collection of
ideals which “divide” T , that is {J | JT = T, ∀T ∈ T }, and in the converse
direction he associates to a faithful finitely generated Gabriel topology G the
1-tilting class of G-divisible modules. This was extended to a correspondence
between silting classes and finitely generated Gabriel topologies in [6].

Classically, it is known that with a Gabriel topology of right ideals of a
ring R one can describe a ring of quotients of R with respect to G, denoted
RG , which has the property that for any J ∈ G, a homomorphism J → RG
can be extended uniquely to map R → RG . This can be considered a sort
of generalisation of a localisation of a commutative ring with respect to a
multiplicative subset, where the Gabriel topology is made up of the principal
ideals {sR | s ∈ S}. In fact, in the case of a localisation of a ring with respect
to a multiplicative subset, there are many other nice properties of the ring
of quotients map, in particular that it is a flat ring epimorphism and RG is
G-divisible.

There are many advantageous properties of perfect localisations. There-
fore, when we work with a faithful finitely generated Gabriel topology over
a commutative ring, or equivalently a 1-tilting cotorsion pair and assume
that this cotorsion pair admits covers or envelopes, the first thing we do is
to deduce that G arises from a perfect localisation and that p. dimRG ≤ 1 as
in Proposition 6.1.6 and Lemma 7.1.3. This is because when G arises from a
perfect localisation and p.dimRG ≤ 1, we find that the 1-tilting class arises
from the flat injective ring epimorphism R → RG , so by work of Angeleri
Hügel-Sánchez in [4], RG⊕RG/R is a 1-tilting module associated to (A,DG).
When we work in this setting, we have a much larger range of theories to
use, in particular the work of Bazzoni-Positselski and Positselski, some of
which we outline now.

There are already some classification results of cotorsion pairs which
satisfy Enochs’ Conjecture for a particularly well behaved type of 1-tilting
cotorsion pair—those which arise from an injective homological ring epimor-
phism u : R → U in the sense of [4]. Explicitly, in [14] Bazzoni-Positselski
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showed the following that in a case that includes all commutative rings (we
will state it here for commutative rings). Consider an injective homological
ring epimorphism u : R→ U of commutative rings with p. dimU ≤ 1 where
K := U/R, T = Gen(U) = K⊥, and the topological ring R := EndR(K).
First in [14, Proposition 13.3], Add(K) is closed under direct limits if and
only if the discrete quotient rings of R are perfect rings. We prove that it fol-
lows that the 1-tilting class T is enveloping in Theorem 6.3.3. We also prove
that a 1-tilting class T is enveloping if and only if the discrete quotient rings
of R are perfect and additionally p. dimU ≤ 1 in Theorem 6.3.4. In Theo-
rem 6.3.5, we start from a more general setting with respect to [14]. That
is, we begin with a general 1-tilting class and show that it must arise from
a flat injective ring epimorphism and thus the above results hold. Moreover
we use Gabriel topologies to state these results.

Furthermore for the covering side, in [14, Theorem 13.5] Bazzoni-Positselski
proved that Add(U ⊕K) is closed under direct limits if and only if both the
ring U and the discrete quotient rings are perfect if and only if the left hand
class of the 1-tilting cotorsion pair (A,Gen(U)) is covering. In this thesis we
start from a slightly more general starting point of a 1-tilting cotorsion pair
(A, T ) with associated Gabriel topology G and show that A is covering if
and only if p.dimRG ≤ 1, RG and the R/J are perfect rings for each J ∈ G
in Theorem 7.3.16. A consequence of this result is that G must arise from a
perfect localisation. Our point of difference is that in [14] Bazzoni-Positselski
use deep results like the tilting-cotilting correspondence and the notion of a
contramodule over a topological ring, whereas in our case we state and prove
results using simpler algebraic methods which are significantly inspired by
the original proofs.

We briefly summarise some of the results mentioned in the previous
two paragraphs as well as some implications. Consider the situation of 1-
tilting cotorsion pair (A, T ) over a commutative ring. Then the ring R is
characterised as follows.

T is enveloping⇔


p. dimRG ≤ 1

R/J is a perfect ring for each J ∈ G
G is a perfect Gabriel topology

A is covering⇔


p. dimRG ≤ 1

RG is a perfect ring

R/J is a perfect ring for each J ∈ G

It is important to note that if p. dimRG ≤ 1 and RG is a perfect ring, then
it follows that G is a perfect Gabriel topology. Thus, the characterisation
of the ring implies that A is covering if and only if T is enveloping and the
ring of quotients RG is a perfect ring. Moreover, in both if T is enveloping
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or A is covering RG⊕RG/R is a 1-tilting module associated to the cotorsion
pair (A, T ).

In [15, Theorem 1.2], Bazzoni and Positselski state that for a (not nec-
essarily injective) ring epimorphism u : R → U such that TorR1 (U,U) = 0
and K := U/u(R), there is an equivalence of additive categories between
the u-h-divisible u-comodules and the u-torsion-free u-contramodules via
the adjoint functors (− ⊗R K),HomR(K,−) . In fact, when u : R → U is
a flat injective ring epimorphism of commutative rings as in our case, this
becomes an equivalence between the u-h-divisible G-torsion modules and the
G-torsion-free u-contramodules.

The advantage of this Matlis category equivalence is that in particular
when p.dimU ≤ 1, the category of u-contramodules is an abelian category
with a projective generator. This Matlis category equivalence is crucial for
the reverse direction of the characterisation of the rings for which the 1-
tilting cotorsion pair (A, T ) admits covers or envelopes, that is in particular
for the result in Proposition 7.3.13. More explicitly, the Matlis category
equivalence is required when we begin with the assumption that all the G-
torsion factor rings of R (that is the R/J for J ∈ G) are perfect rings to
show that K is Σ-pure-split, or equivalently Add(K) is closed under direct
limits, see Proposition 7.3.14.

For obvious reasons, another focus of my thesis is cotorsion pairs in a
more general setting, specifically hereditary cotorsion pairs and cotorsion
pairs which admit covers or envelopes.

In the study of injective envelopes, to show that a homomorphism from
a module M to an injective module E is an injective envelope, it is suffi-
cient to show that it is a monomorphism and additionally the image of M
is essential in E, which in some sense is an intrinsic property of the module
E. Analogously, to show that a homomorphism from a projective module P
to a module M is a projective cover, it is sufficient to show that the homo-
morphism is an epimorphism and additionally its kernel is superfluous in P .
Thus the property of being essential or superfluous is a sufficient condition
for the existence of an injective envelope or projective cover, respectively.

In this thesis we include a generalisation of essential and superfluous sub-
modules to general cotorsion pairs (A,B) in Proposition 2.1.5 and Propo-
sition 2.2.5. Unfortunately, these do not provide a sufficient condition for
the existence of an envelope or cover unless B is closed under epimorphic
images. Although this does not include all the cases that we would like, we
found it interesting to include. However, if a minimal approximation does
exist, then Proposition 2.1.5 and Proposition 2.2.5 provide some sufficient
conditions to show that an approximation is a minimal approximation.

If a cotorsion pair (A,B) admits both covers and envelopes, then it
is called perfect. Examples of perfect cotorsion pairs include the cotorsion
pairs such that A is closed under direct limits by the work of Enochs and Xu,
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Theorems 1.2.5 and 1.2.12. Furthermore, assuming that Enochs’ Conjecture
holds and (A,B) is a cotorsion pair which provides covers, then B must be
enveloping as A is closed under direct limits. Additionally by the work
of Angeleri Hügel-Šaroch-Trlifaj, [5] if A is covering and B is closed under
direct limits then B is enveloping. Therefore there are many examples of
cotorsion pairs for which providing covers is a sufficient condition to be a
perfect cotorsion pair.

However, the converse does not hold, and there are many examples of
cotorsion pairs which admit envelopes and not covers: for example the pro-
jective cotorsion pair (P0(R),Mod-R) when R is not a right perfect ring.
Thus we became interested in the implication that any cotorsion pair that
provides covers must provide envelopes. We found this to be true using
simple algebraic methods for the case of a hereditary cotorsion pair.

Specifically we found that if A is covering, every module in A must
have a B-envelope in Proposition 2.3.1. This proposition holds for all cotor-
sion pairs, and moreover demonstrates that one can extract the B-envelope
of A ∈ A from the injective envelope of A. The next step requires the
assumption that the cotorsion pair is hereditary. We show that for a hered-
itary cotorsion pair (A,B) if every module in A has a B-envelope, then B
is enveloping in Lemma 2.3.5. This lemma was taken from the dual result
presented in [14, Lemma 8.3].

We will now outline the structure of this thesis as it will be presented.

In Chapter 1 we begin with some preliminaries and basic definitions. In
particular we cover some basics about minimal approximations and cotorsion
pairs, characterisations of perfect rings and some sufficient conditions for a
ring to be perfect. Next we introduce ring epimorphisms, 1-tilting and 1-
cotilting modules, silting classes, torsion theories and linear topologies. In
particular we present what we will need for Gabriel topologies, and Hrbek’s
characterisation of 1-tilting classes over commutative rings. The work on
Gabriel topologies will be extended in Chapter 4.

Next in Chapter 2, for a cotorsion pair (A,B) we introduce A-essential
and B-essential submodules, and dually A-superfluous and B-superfluous
submodules. We give some sufficient theorems using these notions for an
approximation to be a minimal approximation. Finally in Section 2.3, we
show that if a hereditary cotorsion pair admits covers, it admits envelopes
in Theorem 2.3.6. Moreover, for any cotorsion pair, if a module A ∈ A has
a B-envelope, this envelope can be extracted from the injective envelope of
A by Proposition 2.3.1.

Our first results in the investigation of Question 0.0.1 are in Chapter 3,
where we state our results relating to when the cotorsion pair (P1(R),P1(R)⊥)
is not of finite type. In Section 3.1 we prove that if an associative ring R has
a classical ring of quotients Q, then we can describe the direct limit closure
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of P1(R) as lim−→P1(R) = F1(R) ∩ |C(Q) where |C(Q) represents the left

TorR1 -orthogonal of C(Q) in Mod-R, as stated in Proposition 3.1.8. Next in
Section 3.2 we show that if R is a commutative semihereditary ring, then if
P1(R) is covering, then P1(R) is closed under direct limits in Theorem 3.2.18.

Next we prepare for the results for cotorsion pairs of finite type, in
particular the 1-tilting cotorsion pairs over a commutative ring. In Chapter 4
and Chapter 5 we introduce the necessary background results for the results
in the final Chapter 6 and Chapter 7.

Chapter 4, Section 4.1 is dedicated to Gabriel topologies, and in partic-
ular when the Gabriel topology is faithful with a basis of finitely generated
ideals. Additionally we needed to generalise some standard results true for
localisations of rings with respect to a multiplicative subset to perfect locali-
sations with respect to Gabriel topologies. Next in Section 4.2, we introduce
H-h-local rings for a linear topology H over a commutative ring, which is
a generalisation of results in [13]. The H-h-local rings provide a way to
describe the H-discrete modules as direct sums of their localisations as seen
in Proposition 4.2.6.

Chapter 5 is divided into five sections. In Section 5.1 we introduce topo-
logical rings as well as completions ΛH(M) for a moduleM . In Section 5.2 we
provide a theorem for when theH-topology and the projective limit topology
coincide on the completion ΛH(M) in Theorem 5.2.1, which is our gener-
alisation of [34, Theorem 2.3]. In Section 5.3 we discuss u-contramodules
where u : R → U is a flat injective ring epimorphism of commutative rings.
We cover the case when there is the additional condition that p. dimU ≤ 1
in Subsection 5.3.2. In Section 5.4 we continue with a flat injective ring
epimorphism of commutative rings u : R → U (with no assumptions of the
projective dimension of U) and state the category equivalence between G-
torsion u-h-divisible modules and G-torsion-free u-contramodules as in [15].
Finally in Section 5.5, as before we let u : R→ U be a flat injective ring epi-
morphism of commutative rings and show that the G-torsion-free modules
satisfy the equivalent conditions of Theorem 5.2.1.

In Chapter 6 we look at when T was an enveloping class in the 1-tilting
cotorsion pair (A, T ) over a commutative ring. We find that if T is en-
veloping, then the associated Gabriel topology must arise from a perfect
localisation in Proposition 6.1.6. Furthermore, if G arises from a perfect
localisation u : R→ U , T is enveloping in Mod-R if and only if p.dimU ≤ 1
and R/J is perfect for every ideal J in the associated Gabriel topology of
T if and only if p. dimU ≤ 1 and the topological ring EndK is pro-perfect
where K := RG/R. We also consider the generalisation to the case that a
silting class is enveloping in Theorem 6.4.3. This chapter is the main content
of the paper [12].

Finally in Chapter 7, we consider the 1-tilting cotorsion pair (A, T ) such
that A is a covering class. Although it is already known in this case that if



A is covering then T is enveloping by Theorem 2.3.6, we prove directly that
the rings R/J are perfect for every J in the associated Gabriel topology of
T . Specifically, we prove that if A is covering then the associated Gabriel
topology must arise from a perfect localisation. Also, A is covering in Mod-R
if and only if p. dimRRG ≤ 1 and both the localisation RG is a perfect ring
and R/J is a perfect ring for each ideal J in the associated Gabriel topology
G of T . Rings with the latter two properties, that is both the localisation
RG is a perfect ring and R/J is a perfect ring for each ideal J ∈ G, will be
called G-almost perfect rings.
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Chapter 1

Preliminaries

1.1 Preliminaries

In this section we will recall some definitions and some notation.

All rings will be associative with a unit, Mod-R (R-Mod) the category
of right (left) R-modules over the ring R, and mod-R the full subcategory
of Mod-R which is composed of all the modules which have a projective
resolution consisting of only finitely generated projective modules.

For a commutative ring R, we let SpecR denote the collection of all
the prime ideals of R and mSpecR denote the collection of all the maximal
ideals of R.

For a right R-module M and a right ideal I of R, we let M [I] denote
the submodule of M of elements which are annihilated by the ideal I. That
is, M [I] := {x ∈M | xI = 0}.

Let C be a class of right R-modules. The right Ext1
R-orthogonal and

right Ext∞R -orthogonal classes of C are defined as follows.

C⊥1 = {M ∈ Mod-R | Ext1
R(C,M) = 0 for all C ∈ C}

C⊥ = {M ∈ Mod-R | ExtiR(C,M) = 0 for all C ∈ C, for all i ≥ 1}

The left Ext-orthogonal classes ⊥1C and ⊥C are defined symmetrically. We
note that this notation changes depending on the exposition, for example in
[29] which we cite extensively, ⊥ and ⊥∞ are used where instead here we use
⊥1 and ⊥ respectively.

For C a class in Mod-R, the right TorR1 -orthogonal and right TorR∞-
orthogonal classes are classes in R-Mod defined as follows.

C|1 = {M ∈ R-Mod | TorR1 (C,M) = 0, for all C ∈ C},

3
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C| = {M ∈ R-Mod | TorRi (C,M) = 0 for all C ∈ C, for all i ≥ 1}

The left TorR1 -orthogonal and left TorR∞-orthogonal classes are classes in
Mod-R which are defined symmetrically for a class C in R-Mod.

If the class C has only one element, say C = {X}, we write X⊥1 instead
of {X}⊥1 , and similarly for the other Ext-orthogonal and Tor-orthogonal
classes.

We denote by Pn(R) (Fn(R), In(R)) the class of right R-modules of
projective (flat, injective) dimension at most n, or simply Pn (Fn, In) when
the ring is clear from the context. We let Pn(mod-R) denote the intersection
of mod-R and Pn. The projective dimension (weak or flat dimension, injec-
tive dimension) of a right R-module M is denoted p.dimMR (w. dimMR,
inj.dimMR).

Given a ring R, the right big finitistic dimension, F.dimR, is the supre-
mum of the projective dimension of right R-modules with finite projective
dimension. The big weak finitistic dimension, F.w. dimR is the supremum
of the flat dimension of right R-modules with finite flat dimension, or equiv-
alently the supremum of the flat dimension of left R-modules with finite flat
dimension.

The right little finitistic dimension, f.dim R, is the supremum of the
projective dimension of right R-modules in mod-R with finite projective di-
mension.

For an R-module C, we let Add(C) denote the class of R-modules which
are direct summands of direct sums of copies of C, and Gen(C) the class
of R-modules which are homomorphic images of direct sums of copies of
C. Dually, we let Prod(C) denote the class of R-modules which are direct
summands of a direct product of copies of C, and Cogen(C) the class of
R-modules which are submodules of direct products of copies of C.

Consider the following short exact sequence (of right R-modules) where
A will be considered a submodule of B.

0→ A→ B → B/A→ 0 (1.1)

Recall that A is a pure submodule of B, or A ⊆∗ B, if for each finitely
presented module F , the functor HomR(F,−) is exact when applied to (1.1).
Equivalently, for every left R-module M , (−⊗RM) is exact when applied to
(1.1). The embedding A ,→ B is called a pure embedding, the epimorphism
B B/A a pure epimorphism and the short exact sequence (1.1) a pure
exact sequence.

Modules that are injective with respect to pure embeddings are called
pure-injective. That is, a module M is pure-injective if it has the property
that HomR(−,M) is exact when applied to a pure exact sequence.
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Example 1.1.1. Let (Mi, fji | i, j ∈ I) be a direct system of modules and
consider the direct limit lim−→I

Mi. The following canonical presentation of
lim−→I

Mi is an example of a pure exact sequence by [29, Corollary 2.9].

0→ K →
M
i∈I

Mi → lim−→
I

Mi → 0

A module X is called Σ-pure-split if every pure embedding A ⊆∗ B with
B ∈ Add(X) splits.

For an R-module M , let the following be a projective resolution of M .

· · · → Pi+1
fi+1→ Pi

fi→ Pi−1 → · · ·
f1→ P0

f0→M → 0

Then for i > 0, the i-th syzygy of M is the module Im fi = Ker fi−1. The
class Ωi(M) denotes the class of all the i-th syzygies of M .
Next we do the same thing for an injective resolution of M to construct a
dual class of objects. Let the following be an injective resolution of M .

0→M
g0→ I0 g1→ I1 → · · · → Ii−1 gi→ Ii

gi+1→ Ii+1 → · · ·

Then for i > 0, the i-th cosyzygy of M is the module Im gi = Coker gi−1.
The class Ωi(M) denotes the class of all the i-th cosyzygies of M .
For a class C of modules, we denote by Ωi(C) the union

S
M∈C Ωi(M), and

analogously by Ωi(C) the union
S
M∈C Ωi(M) for all i > 0.

1.1.1 Homological formulae

The following facts will be useful. Let FR be a right R-module RGS be an
R-S-bimodule such that TorR1 (F,G) = 0. Then, for every right S-module
MS there is the following injective map of abelian groups.

Ext1
R(F,HomS(G,M)) ,→ Ext1

S(F ⊗R G,M)) (1.2)

To see this, apply (−⊗R G) to the following projective presentation of F .

0→ L→ P → F → 0

0→ L⊗R G→ P ⊗R G→ F ⊗R G→ 0

Then we apply HomR(−,HomS(G,M)) to the above short exact sequence
to find the top row of (1.3). The bottom row with the two left-hand iso-
morphisms of (1.3) follow by the tensor-Hom adjunction, and these induce
a homomorphism α such that the diagram commutes.

HomR(P,HomS(G,M)) //

∼=

HomR(L,HomS(G,M)) //

∼=

HomS(P ⊗R G,M) // HomS(L⊗R G,M)
∂ //

(1.3)
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// Ext1
R(F,HomS(G,M)) //

α

0

∂ // Ext1
S(F ⊗R G,M) // Coker ∂

By the four-lemma, α is the desired monomorphism as the rightmost vertical
homomorphism is a monomorphism and the two left-most homomorphisms
are isomorphisms.

Let s : R → S be a ring homomorphism. Suppose TorRi (M,S) = 0 for
M ∈ Mod-R for all 1 ≤ i ≤ n and NS is a right S-module (and also a right
R-module via the restriction of scalars functor). Then the following holds
for all i such that 1 ≤ i ≤ n (see for example [36, Lemma 4.2].

ExtiR(MR, NR) ∼= ExtiS(MR ⊗R S,NS) (1.4)

Moreover, if M is as above and N is a left S-module, then the following
holds.

TorRi (MR,RN) ∼= TorSi (MR ⊗R S,S N) (1.5)

1.2 Envelopes and covers

For this section, C will be a class of right R-modules closed under isomor-
phisms and direct summands. We will begin by defining envelopes as well
as giving some properties of envelopes and enveloping classes before moving
onto the dual notion of covers.

Many of the results in this section are taken from Xu’s book [42], which
generalises work based on Enochs’ paper [22] where he works mainly in the
setting where C is the class of injective modules or flat modules. For this
reason, many results are attributed to Enochs-Xu rather than just Enochs.

Definition 1.2.1. A C-preenvelope of M is a homomorphism ε : M → C
where C ∈ C with the property that for every homomorphism g : M → C 0

with C 0 ∈ C, there exists g0 : C → C 0 such that g0ε = g.

M

g   

ε // C

∃g0

C 0

A C-envelope of M is a C-preenvelope with the property that for every
g : C → C such that gε = ε, g is an isomorphism.

M

ε
  

ε // C

g∼=

C
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A C-preenvelope µ : M → C of M is called a special C-preenvelope if µ
is a monomorphism and Cokerµ ∈ ⊥1C. We point out that for any module
M , any sequence of the following form with C ∈ C and Cokerµ ∈ ⊥1C is a
special C-preenvelope.

0→M
µ→ C → Cokerµ→ 0

The existence of a C-envelope or a (special) C-preenvelope of a module
depends on the class C, the module M , and the ring R. When every R-
module has a C-envelope (C-preenvelope, special C-preenvelope), the class C
is called enveloping (respectively, preenveloping, special preenveloping). If
M does have a C-envelope, one can describe the relationship between the
C-preenvelopes and C-envelopes of a module M which was shown by Xu as
follows.

Proposition 1.2.2. [42, Proposition 1.2.2] Let C be a class of modules
and assume that a module N admits a C-envelope. If µ : N → C is a C-
preenvelope of N , then C = C 0 ⊕ H for some submodules C 0 and H such
that the composition N → C → C 0 is a C-envelope of N .

Corollary 1.2.3. [42, Corollary 1.2.3] Suppose M has a C-envelope. Let
µ : M → C be a C-preenvelope. Then µ is an envelope if and only if there is
no direct sum decomposition C = C1 ⊕K with K 6= 0 and Imµ ≤ C1.

We will often consider C-envelopes where C is a class closed under direct
sums and therefore we will make use of the following result. In fact, the
theorem is strongly connected with the notion of T-nilpotency of an ideal of
a ring (see Section 1.4).

Theorem 1.2.4. [42, Theorem 1.4.4, Theorem 1.4.6]

(i) Let C be a class closed under countable direct sums. Assume that for
every n ≥ 1, µn : Mn → Cn are C-envelopes of Mn and that

L
nMn

admits a C-envelope. Then
L
µn :

L
nMn →

L
nCn is a C-envelope

of
L

nMn.

(ii) Assume that
L
µn :

L
nMn →

L
nCn is a C-envelope of

L
nMn with

Mn ≤ Cn and let fn : Cn → Cn+1 be a family of homomorphisms such
that fn(Mn) = 0. Then, for each x ∈ C1 there is an integer m such
that fmfm−1 . . . f1(x) = 0.

The following is an important result originally from which gives a suffi-
cient condition for a class C to be enveloping. The crucial steps are found
in the paper [22], and the theorem is generally attributed to Enochs and Xu
or sometimes just Enochs.



8 CHAPTER 1. PRELIMINARIES

Theorem 1.2.5. [42, Theorem 2.2.6][29, Theorem 5.27] Assume that C is
a class of modules closed under direct limits and extensions. If a module
M admits a special C⊥1-preenvelope with cokernel in C, then M admits a
C⊥1-envelope.

Theorem 1.2.5 plays an important part in this thesis as one of our main
questions is when certain classes are enveloping.

If the class C contains the injective modules, then it follows that every
C-preenvelope must be a monomorphism as every module can be embedded
in an injective module. Moreover, if C = I0, then every I0-preenvelope is
special, because the cokernel is trivially in ⊥I0 = Mod-R. We can say even
more about injective envelopes, which coincide with the classical notion of an
injective hull. Injective hulls were first introduced by Eckmann and Schopf
in 1953 and were one of the motivating examples for the study of minimal
approximations.

Before stating their theorem, we first recall the notion of an essential
submodule. Let N be a submodule of M . Then N is essential in M , denoted
N ⊆e M , if for a submodule H of M , N ∩ H = 0 implies that H = 0.
Moreover, M is called an essential extension of N .

Proposition 1.2.6. [20][23, Theorem 3.1.14] Every R-module has an in-
jective hull, that is an essential extension to an injective module.

Therefore by the following well-known lemma and Proposition 1.2.6, one
can deduce that every module has an injective envelope. In other words,
the following lemma states that the notion of an injective envelope and an
injective hull coincide.

Lemma 1.2.7. [42, Theorem 1.2.11] An I0-preenvelope ε : M → E is an
I0-envelope if and only if M is essential in E.

We now will discuss the dual concepts of C-precovers and C-covers.

Definition 1.2.8. A C-precover of M is a homomorphism φ : C →M where
C ∈ C with the property that for every homomorphism f : C 0 → M where
C 0 ∈ C, there exists f 0 : C 0 → C such that φf 0 = f .

C 0

∃f 0
f

  
C

φ
//M

A C-cover of M is a C-precover with the additional property that for
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every homomorphism f : C → C such that φf = φ, f is an isomorphism.

C

f ∼=
φ

  
C

φ
//M

A C-precover φ : C → M of M is called a special C-precover if φ is an
epimorphism and Kerφ ∈ C⊥. We point out that for any module M , any
sequence of the following form with C ∈ C and Kerφ ∈ C⊥1 is a special
C-precover.

0→ Kerφ→ C
φ→M → 0

Moreover, if the class C contains R, any C-precover must be surjective.

If every R-module has a C-cover (C-precover, special C-precover), the
class C is called covering (respectively, precovering, special precovering).
Like in the case of envelopes and preenvelopes, the existence of covers and
precovers depends on the module M , the class C, and the ring R. If a
cover does exist, we can describe the relationship between a C-cover and a
C-precover of M , which is analagous to Proposition 1.2.2.

Theorem 1.2.9. [42, Theorem 1.2.7] Suppose C is a class of modules and
M admits a C-cover and φ : C →M is a C-precover. Then C = C 0 ⊕K for
submodules C 0,K such that the restriction φ

C0 gives rise to a C-cover of M
and K ⊆ Kerφ.

The following is dual to Corollary 1.2.3.

Corollary 1.2.10. [42, Corollary 1.2.8] Suppose M admits a C-cover. Then
a C-precover φ : C →M is a C-cover if and only if there is no non-zero direct
summand K of C contained in Kerφ.

The following two theorems are dual to Theorem 1.2.4 and Theorem 1.2.5.

Theorem 1.2.11. [42, Theorem 1.4.7, Theorem 1.4.1]

(i) Suppose for each integer n ≥ 1, φn : Cn → Mn is a C-cover. Then ifL
n φn :

L
nCn →

L
nMn is a C-precover, then it is also a C-cover.

(ii) Assume that
L
µn :

L
nCn →

L
nMn is a C-cover of

L
nMn and

let fn : Cn → Cn+1 be a family of homomorphisms such that Im fn ⊆
Kerφn+1. Then, for each x ∈ C1 there is an integer m such that
fmfm−1 . . . f1(x) = 0.

As before, the crucial steps of the following theorem are due to Enochs
in [22].
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Theorem 1.2.12. [42, Theorem 2.2.8] [29, Theorem 5.31] Assume that C
is a class of modules closed under direct limits. If a module M admits a
C-precover, then M admits a C-cover.

Furthermore, analogously to the case of injective envelopes and essential
submodules, we can describe projective covers more explicitly. Recall that
a module N is superfluous in M (or N M) if for H ≤ M , N +H = M
implies that H = M .

Lemma 1.2.13. [42, Theorem 1.2.12]A projective precover φ : P →M is a
P0-cover if and only if Kerφ is superfluous in P .

Unlike in the case of injective envelopes, projective covers do not nec-
essarily exist for every module, though projective precovers do. Thus it is
then natural to ask over what rings does every module have a projective
cover. These rings are called perfect rings and were characterised by Bass
in [8], which will be discussed more in Section 1.4.

In 1981, Enochs conjectured that every R-module has a flat cover in [22].
This was proven to be true by Bican-El Bashir-Enochs in [18] in 2001 follow-
ing work of Trlifaj and Eklof. More explicitly, the Flat Cover Conjecture was
shown to be true by showing that F0 is precovering, so by Theorem 1.2.12
it follows that F0 is covering.

By Theorem 1.2.12, if C is a precovering class that is closed under direct
limits, it is also a covering class. The converse implication is a major point
of interest in approximation theory and is known as Enochs’ Conjecture.

Conjecture 1.2.14 (Enochs’ Conjecture). If C is a covering class then C
is closed under direct limits.

A well-known positive result of the above conjecture (and perhaps even
a motivating factor for its statement) is the case of projective modules as
given by Bass’s Theorem P (see Theorem 1.4.2). That is, Enochs’ Conjec-
ture holds for the class P0 of projective modules, or to be explicit, P0 is
covering if and only if P0 is closed under direct limits. We will discuss some
more recent positive results in the next section.

1.3 Cotorsion pairs

In this thesis, we consider precovers and preenvelopes for particular classes
of modules, that is classes which form a cotorsion pair. Cotorsion pairs were
introduced by Salce in [37].

Definition 1.3.1. A pair of classes of modules (A,B) is a cotorsion pair
provided that A = ⊥1B and B = A⊥1 .
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Examples of cotorsion pairs include (P0,Mod-R), (Mod-R, I0) and (F0, C)
where C := F⊥1

0 . For any class C, ⊥1(C⊥1), C⊥1 is a cotorsion pair and is
said to be the cotorsion pair generated by C and ⊥1C, (⊥1C)⊥1 is a co-
torsion pair and is said to be cogenerated by C. For a fixed ring R, the
cotorsion pairs of right (or left) R-modules have a partial ordering, where
(A,B) ≤ (A0,B0) if A ⊆ A0 or equivalently B0 ⊆ B. The lattice of cotorsion
pairs has a minimal element (P0,Mod-R) and maximal element (Mod-R, I0).
For example, we have the following for any ring R.

(P0,Mod-R) ≤ (F0, C) ≤ (Mod-R, I0)

The following is known as the Wakamatsu Lemma which we will state using
cotorsion pairs instead of in its full generality. In the case of cotorsion pairs
which provide envelopes (covers), it allows us to work always with special
preenvelopes (special precovers).

Lemma 1.3.2 (Wakamatsu Lemma). [29, Lemma 5.13] Let (A,B) be a
cotorsion pair and M a module. Then the following hold.

(i) If M has a B-envelope, then it is special.

(ii) If M has an A-cover, then it is special.

Moreover, there is a symmetry between preenvelopes and precovers with
respect to a cotorsion pair.

Lemma 1.3.3 (Salce Lemma). [29, Lemma 5.20][37] Let (A,B) be a co-
torsion pair. Then B is special preenveloping if and only if A is special
precovering.

Therefore, one calls a cotorsion pair complete if either B is special preen-
veloping or A is special precovering. The following important result due to
Trlifaj and Eklof shows that complete cotorsion pairs are abundant.

Theorem 1.3.4. [29, Theorem 6.11] Suppose S is a set of modules. Then
the cotorsion pair generated by S, ⊥1(S⊥1),S⊥1 , is complete.

There is a sort of dual for cotorsion pairs cogenerated by a particular
class which we will mention shortly in Theorem 1.3.5.

In analogy with the terminology introduced by Bass, a cotorsion pair
(A,B) is perfect if every R-module M admits an A-cover and a B-envelope.
This terminology was motivated by perfect rings in the sense of Bass. More
precisely, by Theorem 1.4.2, the cotorsion pair (P0(R),Mod-R) is perfect
if and only if the ring is right perfect. In addition, by Theorem 1.2.5 and
Theorem 1.2.12 a if (A,B) is a complete cotorsion pair such that A is closed
under direct limits, then (A,B) is perfect. Another class of examples of
perfect cotorsion pairs is given in the following theorem.
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Theorem 1.3.5. [29, Theorem 6.19] Suppose (A,B) is a cotorsion pair
cogenerated by a class C which is contained in the class of pure-injective
modules. Then (A,B) is a complete cotorsion pair and A = lim−→A, therefore
(A,B) is perfect.

We note that there is an asymmetry with respect to the existence of
B-envelopes and A-covers. That is, given a complete cotorsion pair (A,B)
the existence of B-envelopes doesn’t imply the existence of A-covers. An
easy example of this is (P0,Mod-R) for a non-right perfect ring.

Another example is the complete cotorsion pair generated by the quotient
field Q of a commutative domain R, and denoted (SF ,WC), that is WC =
Q⊥1 and SF =⊥1 WC. A module M ∈ SF is called strongly flat and
a module M ∈ WC is called weakly cotorsion. In fact, WC coincides with
(Mod-Q)⊥1 , hence it is special preenveloping and by Theorem 1.2.5, every R-
module admits aWC-envelope (see [29, Corollary 7.42]). On the other hand,
SF-covers don’t necessarily exist. In the case of commutative domains, SF-
covers were shown to exist for every module if and only if every flat module
is strongly flat in [16], i.e., if SF is closed under direct limits.

For the converse problem, we note that if there exists a complete cotor-
sion pair such that A is covering and B is not enveloping, this cotorsion pair
would be a counterexample of Enoch’s Conjecture, because A is covering
and not closed under direct limits. In fact, we show in Theorem 2.3.6 that
for a particular type of cotorsion pair, a hereditary cotorsion pair (A,B) (see
Lemma 1.3.7), if A is covering, then B is enveloping, that is the cotorsion
pair is perfect.

There have been some important advancements made toward Enochs’
Conjecture in recent years. The following theorem states that Enochs’ Con-
jecture holds for a large class of cotorsion pairs.

Theorem 1.3.6. [5, Corollary 5.5] Let (A,B) be a cotorsion pair such that
B is closed under direct limits. Then A is closed under direct limits if and
only if A is covering.

We note that if (A,B) is a cotorsion pair such that B is closed under
direct limits, then by [41, Theorem 6.1], (A,B) is complete. Moreover, in
this paper Šaroch gives some examples of non-hereditary cotorsion pairs that
satisfy this condition.

A class C is called syzygy closed if Ωi(C) ⊆ C for all i > 0, and dually a
class C is called cosyzygy closed if Ωi(C) ⊆ C for all i > 0.
A class C is a resolving class if it is closed under extensions, kernels of epi-
morphisms and contains the projective modules. In particular, all resolving
classes are syzygy closed. Dually, a class C is coresolving if it is closed under
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extensions, cokernels of monomorphisms and contains the injective modules.
Additionally, coresolving classes are cosyzygy closed.

Resolving classes and coresolving classes are related to another type of
cotorsion pair.

Lemma 1.3.7. [29, Lemma 5.24] Let (A,B) be a cotorsion pair. Then the
following are equivalent.

(i) A is resolving.

(ii) B is coresolving.

(iii) ExtiR(A,B) = 0 for every A ∈ A, B ∈ B and i > 0.

If the above conditions hold, then the cotorsion pair (A,B) is called heredi-
tary.

Thus if a cotorsion pair (A,B) is hereditary, then A = ⊥B and B = A⊥,
thus there is no need to differentiate between ⊥1 and ⊥.

For the most part, in this thesis all the cotorsion pairs we are interested
in will be hereditary, in particular (P1(R),P1(R)⊥).

Theorem 1.3.8. [29, Theorem 8.10] Let R be a ring. Then the pair
(P1(R),P1(R)⊥) is a complete hereditary cotorsion pair. In fact, if (A,B)
is a cotorsion pairs such that A ⊆ P1(R), then (A,B) is hereditary.

A hereditary cotorsion pair (A,B) is of finite type if there is a set S
of modules in mod-R such that S⊥ = B (recall mod-R denotes the class
of modules admitting a projective resolution consisting of finitely generated
projective modules). In other words, (A,B) is of finite type if and only if
B = (A∩mod-R)⊥. Dually, a class C is of cofinite type is there is a set S of
modules in Pn(mod-R) for some n ≥ 0 such that C = S|.

Almost all of the cotorsion pairs we work with in this thesis will be
hereditary and moreover often the right-hand class will be closed under
direct sums.

1.4 Projective covers and perfect rings

Given Eckmann and Schopf’s result on injective envelopes (Proposition 1.2.6),
it is natural to ask over what rings does every module have a projective
cover. These rings were characterised by Bass in the classical Theorem P
(Theorem 1.4.2), both in terms of homological properties of Mod-R and ring
theoretic properties of R, and are called perfect rings. In this section we de-
fine perfect rings and discuss some of their nice properties, as well as giving
some sufficient conditions for a ring to be perfect.
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Before giving the characterisation of perfect rings, we must introduce a
particular type of ideal. One can generalise the notion of a nilpotent ideals,
to a T -nilpotent ideal where the T stands for “transfinite.” An ideal I of R is
said to be right T -nilpotent if for every sequence of elements a1, a2, ..., ai, ...
in I, there exists an n > 0 such that anan−1 · · · a1 = 0. For left T -nilpotence,
one must have a1a2 · · · an = 0.

The property of T -nilpotence of an ideal has interesting consequences.

Lemma 1.4.1. [1, Lemma 28.3] Let I be a right ideal in a ring R. Then
the following are equivalent.

(i) I is right T -nilpotent.

(ii) MI 6= M for every non-zero right R-module M .

(iii) MI M for every non-zero right R-module M .

(iv) R(N)I R(N).

We now define and characterise the right perfect rings as follows. We let
J(R) denote the Jacobson radical of the ring R.

Theorem 1.4.2 (Theorem P, [8]). For a ring R, the following conditions
are equivalent.

(i) R is right perfect (that is, every right R-module has a projective cover).

(ii) Every flat right R-module is projective.

(iii) J(R) is right T -nilpotent and R/J(R) is semisimple.

(iv) The class of projective right R-modules P0 is closed under direct limits
(lim−→P0 = P0).

(v) Every decreasing chain of left principal ideals terminates. That is, for
the sequence of principal ideals

Ra1 ⊇ Ra2 ⊇ · · · ⊇ Rai ⊇ · · ·

where ai ∈ R, there exists an n ∈ N such that Ran = Ram for all
m ≥ n.

Moreover, all idempotents can be lifted modulo J(R).

We also recall that a semi-perfect ring is a ring such that all finitely
generated modules have a projective cover. Examples of right perfect rings
include left artinian rings.
In the case R is a commutative ring, there is the following characterisation
of R. First recall that a ring R is semilocal if R/J(R) is semisimple. If R has
finitely many maximal ideals, then R is semisimple, and if R is commutative
the converse also holds. A ring R is semiartinian if every non-zero factor of
R contains a simple R-module.
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Proposition 1.4.3. Suppose R is a commutative ring. The following state-
ments are equivalent for R.

(i) R is perfect (that is, every R-module has a projective cover).

(ii) F.dimR = 0.

(iii) R is a finite product of local rings, each one with a T -nilpotent maximal
ideal.

(iv) R is semilocal and semiartinian, i.e., R has only finitely many maximal
ideals and every non-zero factor of R contains a simple R-module.

Additionally, if R is perfect then every element of R is either a unit or a
zero-divisor.

Proof. The equivalence of (i), (ii), and (iii) follows from the introduction in
[8], where the equivalence of (ii) and (iii) is a famous result of Kaplansky.
We will show the equivalence of (ii) and (iv) to (i) explicitly using theorems
from Bass’ paper [8].

(i) ⇔ (ii). By [8, Theorem 6.3], for any ring R, F. dimR = 0 if and
only if both R is perfect and every finitely generated proper ideal of R has
a non-zero annihilator. Therefore, (ii) implies (i) always holds.

For the converse, suppose R is a perfect commutative ring and take a
finitely generated proper ideal I of R. Then by [8, Lemma 2.4], either I is
contained in J(R) or I contains a direct summand of R, that is it contains
a non-zero non-unit idempotent e.

In the first case, suppose I ⊆ J(R). We know that J(R) is T -nilpotent,
so as I is finitely generated, it must also be nilpotent. Therefore there exists
a minimal n such that In = 0. Take as the annihilator In−1, which is non-
zero as n is minimal, so I has a non-zero annihilator.
Instead, if I contains a non-zero nilpotent element e, we have that I =
eI ⊕ (1 − e)I = eR ⊕ (1 − e)I. That is, we have the following diagram
where PR/I → R/I is the extracted projective cover of R/I from the natural
quotient homomorphism R→ R/I.

0 // L⊕ eR // PR/I ⊕ eR // R/I // 0

0 // I // R
nat // R/I // 0

Thus, from the above diagram, one can see that L = (1− e)I. Thus (1− e)I
must be contained in the Jacobson radical as (1 − e)I is superfluous in
(1− e)R so also (1− e)I is superfluous in R. Therefore, (1− e)I has a non-
zero annihilator of the form (1−e)In−1 and clearly this ideal also annihilates
eR.
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(i) ⇔ (iii). This is [32, Theorem 23.24].
(i) ⇒ (iv). We use ideas in [1, Theorem 28.4, Remark 28.5]. Assume

that R is a perfect commutative ring. Then by Theorem 1.4.2, R/J(R) is
semisimple, which happens if and only if R is semilocal. We now show that
when R is commutative, R is semiartinian when R is perfect. Fix an ideal I
of R and suppose that R/I does not contain a simple module. Then there
exists a ∈ R such that R/I ) a(R/I) = (aR + I)/I 6= 0, as otherwise I
would be maximal. As (aR+ I)/I is a submodule of R/I, by assumption it
also does not contain a simple module. Thus one can construct an infinite
chain of principal ideals, which contradicts (v) of Theorem 1.4.2, therefore
every non-zero factor of R contains a simple module.

(iv) ⇒ (i). We now show the converse. Assume that (iv) holds. We
will show the ring is perfect by showing that R satisfies Theorem 1.4.2(iii).
It remains to show that J(R) is T -nilpotent. Take a sequence of elements
a1, a2, . . . in J(R) and suppose that a1a2 · · · an 6= 0 for every n > 0. Consider
the poset of ideals Φ where I ∈ Φ if a1a2 · · · an /∈ I for every n. The set
Φ is non-empty as it contains the zero ideal and it is straightforward to see
that every chain in Φ has an upper bound in Φ. Then by Zorn’s Lemma,
there exists a maximal ideal I with respect to this property, and R/I 6= 0.
By assumption, each factor module contains a simple submodule denoted
K/I ≤ R/I, where I ⊂ K. By maximality of I, there exists an n for
which a1a2 · · · an ∈ K \ I, and also a1a2 · · · an+1 ∈ K \ I. Again as K/I is
simple, a1a2 · · · an+1 has an inverse element, that is there exists an r such
that a1a2 · · · an(1 − an+1r) ∈ I. However as an+1 ∈ J(R), 1 − an+1r is an
invertible element in R, thus a1a2 · · · an ∈ I, a contradiction. Therefore,
J(R) is T -nilpotent.

To prove the last statement, take a non-zero divisor r of R. Then R/rR
is of projective dimension one so is projective by (ii). Therefore rR is a direct
summand of R and therefore is isomorphic to eR for some e idempotent. As
r is regular, e = 1, so r is a unit.

It was noticed by Bass in [8] that it is sufficient to look at the following
nice class of modules to find if the ring is perfect.
If R is a ring and {a1, a2, . . . , an, . . . } is a sequence of elements of R, a Bass
right R-module is a flat module of the following form.

F = lim−→(R
a1→ R

a2→ R
a3→ · · · ).

That is, F is the direct limit of the direct system obtained by considering the
left multiplications by the elements ai on R. The direct limit presentation of
F is given by the following short exact sequence, where the homomorphism
can be represented by the matrix below.

0→
M
n∈N

R
φ→

M
n∈N

R→ F → 0
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φ =



1 0 . . . 0 . . .
−a1 1

0 −a2
. . .

...
. . . 1

... −an
. . .

...
. . .


By the above projective presentation, it is clear that all Bass R-modules

have projective dimension at most one. Thus the class of Bass R-modules
is contained in F0 ∩ P1. The following result is implicitly proved in Bass’
paper [8].

Lemma 1.4.4. [35, Proposition 3.2, Lemma 4.1]

(i) If all flat right R-modules have projective covers, then all the flat right
R-modules are projective, so the ring is right perfect.

(ii) If all Bass right R-modules have projective covers then the ring R is
right perfect.

Recall that the socle of a module M , denoted soc(M) is the sum of its
simple submodules. The notion of a socle of a module is related to the Loewy
series of an R-module M , which is constructed by transfinite induction as
follows. Set M0 = soc0 := 0. For an ordinal α, socα+1(M) is defined
from socα(M) by socα+1(M)/ socα(M) = soc(M/ socα(M)). For τ a limit
ordinal, let socβ(M) :=

S
α<β socα(M). Thus for every ordinal α, there

is the following short exact sequence, where the last term is a semisimple
module.

0→ socα(M)→ socα+1(M)→ soc(M/ socα(M))→ 0

For every moduleM , there exists an ordinal α such that socα(M) = socβ(M)
for every β ≥ α. In the case that there exists an α such that socα(M) = M ,
M is called a Loewy module. In other words, if M is a Loewy module,
the Loewy series is a continuous filtration of M by the semisimple modules
of Mod-R. The following gives a condition for when a module is a Loewy
module.

Lemma 1.4.5. [24, Lemma 2.58] A module M is a Loewy module if and
only if every non-zero homomorphic image of M has a non-zero socle.

Thus the following corollary follows from Lemma 1.4.5 and Proposi-
tion 1.4.3 (iv), as over a perfect commutative ring, every module has a
non-zero socle.
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Corollary 1.4.6. If R is a perfect commutative ring, then every module is
a Loewy module.

It will be useful to observe that the notion of projective covers can be
generalised from the category of R-modules to an abelian category. In Sec-
tion 3 of [35], it was pointed out that the notion of projective covers can be
extended to abelian categories.

Let A be an abelian category with enough projective objects (that is,
objects with a lifting property with respect to epimorphisms). Then, an
epimorphism h : P → C with P a projective object is a projective cover of
the object C if for any endomorphism e : P → P of P such that he = h
implies that e is an automorphism.

Similarly as in the case of R-modules, one can extend the notion of
superfluous submodule to a superfluous subobject. A subobject K of an
object Q is superfluous if for H ≤ Q, H +K = Q implies that H = Q.

Lemma 1.4.7. [35, Lemma 3.1] Let P ∈ A be a projective object. Then an
epimorphism h : P → C in A is a projective cover if and only if its kernel
is superfluous in P .

To conclude this section, we return to the category of R-modules and
mention some more recent generalisations of perfect rings. Let R be a com-
mutative ring with a classical ring of quotients Q = Q(R) = R[Σ−1] where Σ
denotes the regular elements of R. Then there is a generalisation of perfect
rings which was first defined for domains by Bazzoni-Salce, and then for
commutative rings by Fuchs-Salce.

Definition 1.4.8. [16][26] A commutative ring R is almost perfect if Q is
a perfect ring and all the quotient rings R/sR for s ∈ Σ are perfect.

In [13, Definition 7.6], Bazzoni-Positselski defined an S-almost perfect
ring for a multiplicative subset S of R, which is a ring R such that R[S−1]
is perfect and all the quotient rings R/sR for s ∈ S are perfect. Thus a
Σ-almost perfect ring in the sense of Bazzoni-Positselski is equivalent to an
almost perfect ring in the sense of Fuchs-Salce. These definitions will be
generalised further in Section 1.7.

Moreover, the notion of an almost perfect ring is related to the direct
limit closure of P1(R), which will be discussed more in Chapter 3.

1.5 1-tilting modules and 1-cotilting modules

We now introduce 1-tilting classes and modules, as well as some properties
that we will use. In this section we will also define 1-cotilting classes and
silting classes.
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1.5.1 1-tilting modules and classes

A right R-module T is 1-tilting if the following conditions hold (as defined
in [19]).

(T1) p. dimT ≤ 1.

(T2) ExtiR(T, T (κ)) = 0 for every cardinal κ and every i > 0.

(T3) There exists an exact sequence of the following form where T0, T1 are
modules in Add(T ).

0→ R→ T0 → T1 → 0

Equivalently, T is 1-tilting if and only if T⊥ = Gen(T ). The cotorsion pair
generated by T , (⊥(T⊥), T⊥), is called a 1-tilting cotorsion pair and the
torsion class T⊥ is called the 1-tilting class. Often we let T denote the
1-tilting class T⊥. Two 1-tilting modules T and T 0 are equivalent if they
define the same 1-tilting class, that is T⊥ = T 0⊥ (equivalently, if Add(T ) =
Add(T 0)). If T is a 1-tilting module which generates a 1-tilting class T , then
we say that T is a 1-tilting module associated to T .

The kernel of the cotorsion pair (⊥T , T ) is the class T ∩ ⊥T , and the
1-tilting cotorsion pairs have the nice property that, T ∩ ⊥T coincides with
Add(T ) (see [29, Lemma 13.10]). As the 1-tilting cotorsion pair is generated
by a set, by Theorem 1.3.4, the tilting cotorsion pair is complete. Also, it is
hereditary as the right-hand class T = Gen(T ) = T⊥ is clearly closed under
epimorphic images, so is a coresolving class. Moreover, by [10], the 1-tilting
cotorsion pair (⊥T , T ) is of finite type.

The following proposition says that 1-tilting modules behave well with
respect to localisations of a commutative ring.

Proposition 1.5.1. [29, Proposition 13.50] Let R be a commutative ring
and T a 1-tilting module, and T = T⊥ the 1-tilting class. Then the following
hold.

(i) For S a multiplicative subset of R, T [S−1] is a 1-tilting module in
Mod-R[S−1] with the corresponding tilting class TS = T [S−1]⊥ = T ∩
Mod-R[S−1].

(ii) Let M be an R-module. Then M ∈ T if and only if Mm ∈ Tm for every
maximal ideal m of R.

The following proposition and theorem relate 1-tilting cotorsion pairs
to approximations and minimal approximations. The first gives a sufficient
condition for the left-hand side of cotorsion pair to be closed under direct
limits, and hence implies that the cotorsion pair be perfect. Recall from
Section 1.1 that a module X is called Σ-pure-split if every pure embedding
A ⊆∗ B with B ∈ Add(X) splits.
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Proposition 1.5.2. [29, Proposition 13.55] Let T be a tilting module with
(A, T ) the associated tilting cotorsion pair. Then A is closed under direct
limits if and only if T is Σ-pure-split.

All 1-tilting classes are torsion classes (see Section 1.7 for definitions),
and as mentioned above the 1-tilting cotorsion pair is complete so provides
special preenvelopes. In fact, there is a sort of converse.

Theorem 1.5.3. [29, Theorem 14.4] Let R be a ring and T be a class of
modules. The following conditions are equivalent.

(i) T is a 1-tilting torsion class.

(ii) T is a special preenveloping torsion class.

(iii) T is a pretorsion class such that R has a special T -preenvelope.

More specifically, by (T3) of the definition of a 1-tilting module we have
the following short exact sequence where T0, T1 ∈ Add(T ).

(T3) 0→ R
ε→ T0 → T1 → 0

In fact, this short exact sequence is a special T -preenvelope of R, and T0⊕T1

is a 1-tilting module associated to T by [29, Theorem 13.18 and Remark
13.19].

1.5.2 Silting modules and classes

A 1-tilting class can be generalised in the following way. For a homomor-
phism σ : P−1 → P0 between projective modules in Mod-R, consider the
following class of modules.

Dσ := {X ∈ Mod-R | HomR(σ,X) is surjective}

An R-module T is said to be silting if it admits a projective presentation

P−1
σ→ P0 → T → 0

such that Gen(T ) = Dσ. The class Gen(T ) is called the silting class. In the
case that σ is a monomorphism, Gen(T ) is a 1-tilting class.

1.5.3 1-cotilting modules and classes

We now move on to the dual notion of tilting, a cotilting class. A right
module C is 1-cotilting if the following conditions hold.

(C1) inj. dimC ≤ 1.
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(C2) ExtiR(Cκ, C) = 0 for every cardinal κ and every i > 0.

(C3) There exists an exact sequence of the following form where each Ci is
in Prod(C) and W is an injective generator for Mod-R.

0→ C1 → C0 →W → 0

Equivalently, C is 1-cotilting if and only if ⊥C = Cogen(C), see [29, Lemma
15.21]. The cotorsion pair cogenerated by C, (⊥C, (⊥C)⊥), is called a 1-
cotilting cotorsion pair and the torsion-free class ⊥C is called 1-cotilting
class. Two 1-cotilting modules C,C 0 are equivalent if they define the same
1-cotilting class ⊥C = ⊥C 0 (equivalently, if Prod(C) = Prod(C 0)).

Unlike the case of 1-tilting modules, 1-cotilting modules are not always
of cofinite type. In fact, there is an example of a 1-cotilting module not of
cofinite type due to Bazzoni, see [29, Example 15.33].

1.6 Ring epimorphisms

A ring epimorphism is a ring homomorphism R
u→ U such that u is an epi-

morphism in the category of unital rings. That is, for ring maps v, w : U ⇒ V
where V is a ring, vu = wu implies that v = w. This is equivalent to the
natural map U ⊗R U → U induced by the multiplication in U being an
isomorphism, or equivalently that U ⊗R (U/u(R)) = 0 (see [39, Chapter
XI.1]).

We note that if R is commutative and u : R → U a ring epimorphism,
then also U is commutative by [38, Corollary 1.2]. Two ring epimorphisms

R
u→ U and R

u0→ U 0 are equivalent if there is a ring isomorphism σ : U → U 0

such that σu = u0.
A ring homomorphism u : R → U (not necessarily a ring epimorphism)

induces two adjoint functors. These are the extension of scalars functor
u∗ : Mod-R → Mod-U which maps a MR ∈ Mod-R to the right U -module
u∗(M) = M ⊗R U , and the restriction of scalars functor u∗ : Mod-U →
Mod-R which for a module M ∈ Mod-U , u∗(MU ) is the R-module M where
the action of R is defined by m · r := m · u(r) for m ∈M .

The following proposition gives some well-known characterisations of ring
epimorphisms.

Proposition 1.6.1. [39, Proposition XI.1.2] Let u : R → U be a ring ho-
momorphism. Then the following are equivalent.

(i) u is an epimorphism of rings.

(ii) U ⊗R (U/u(R)) = 0.

(iii) U ⊗R U ∼= U via the natural map u1 ⊗R u2 7→ u1u2.
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(iv) The restriction functor u∗ : Mod-U → Mod-R is fully faithful. That
is, HomR(MU , NU ) ∼= HomU (MU , NU ).

(v) u∗u∗ → idMod-U is a natural equivalence of functors.

A ring epimorphism is homological if TorRn (UR,RU) = 0 for all n > 0. A
ring epimorphism is called left (right) flat if u makes U into a flat left (right)
R-module. Clearly all left or right flat ring epimorphisms are homological.
We will denote the cokernel of u by K and sometimes by U/R or U/u(R).

In [4], Angeleri Hügel-Sánchez proved that there is a connection between
injective ring epimorphisms and 1-tilting classes as follows.

Theorem 1.6.2. [4, Theorem 2.5] Let u : R → U be an injective ring epi-
morphism with the additional property that TorR1 (U,U) = 0. Then the fol-
lowing are equivalent.

(i) p.dimUR ≤ 1

(ii) (U/R)⊥ = Gen(U)

(iii) U ⊕ U/R is a 1-tilting module.

Theorem 1.6.3. [4, Theorem 2.10] Let R be a ring and T be a 1-tilting
module in Mod-R. The following statements are equivalent.

(i) There is an injective ring epimorphism u : R→ U such that TorR1 (U,U) =
0 and U ⊕ U/R is a 1-tilting module equivalent to T .

(ii) There is an exact sequence 0→ R
ε→ T0 → T1 → 0 such that T0, T1 ∈

Add(T ) and HomR(T1, T0) = 0.

Moreover, under these conditions ε : R → T0 is a T⊥-envelope of R and
u : R→ U is a homological ring epimorphism.

If a 1-tilting module T satisfies the equivalent properties of Theorem 1.6.3,
then T or T⊥ is said to arise from an injective homological ring epimorphism.

1.7 Gabriel topologies

In this section we introduce torsion pairs and Gabriel topologies as well as
proving some results that will be useful to us later on. We will conclude
by discussing some advancements that relate Gabriel topologies to 1-tilting
classes and silting classes over commutative rings as done in [30] and [6].
The reference for this section, particularly for torsion pairs and Gabriel
topologies, is Stenström’s book [39, Chapters VI and IX].

We will start by giving definitions in the case of a general ring with unit
(not necessarily commutative). Everything will be done with reference to
right R-modules (and right Gabriel topologies), but everything can be done
for left R-modules.
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1.7.1 Torsion classes

A class C of R-modules is called a pretorsion class if it is closed under
direct sums and epimorphic images. A pretorsion class is called hereditary
if it is also closed under submodules. A class C of R-modules is called a
pretorsion-free class if it is closed under products and submodules. The
hereditary pretorsion classes are in bijective correspondence with left exact
preradicals, that is with subfunctors r of the identity functor on Mod-R
which are left exact ([39, Corollary VI.1.8]). In other words, a left exact
preradical is a left exact functor r : Mod-R → Mod-R such that r(C) ⊆ C
for every C ∈ Mod-R, and for a map f : C → D in Mod-R, there is an
induced map r(f) : r(C) → r(D) which is the restriction of f to r(C). We
note that by [39, Proposition VI.1.7] all left exact preradicals are idempotent,
that is r(r(C)) = r(C).

For a left exact preradical, the associated hereditary pretorsion class is
the class Er = {C ∈ Mod-R | r(C) = C}. Conversely, for a hereditary
pretorsion class C, the associated left exact preradical assigns to each R-
module M the sum of submodules of M which are contained in C.

A class C of modules is a torsion class if it is closed under extensions,
direct sums, and epimorphic images, that is it is a pretorsion class with the
additional condition of being closed under extensions. A hereditary torsion
class is a torsion class which is additionally closed under submodules. A
radical r is a preradical with the additional property that r(C/r(C)) =
0 for every R-module C. The hereditary torsion classes are in bijective
correspondence with left exact radicals, [39, Proposition VI.3.1], via the
same associations described for hereditary pretorsion classes and left exact
preradicals in the previous paragraph.

A torsion pair (E ,F) in Mod-R is a pair of classes of modules in Mod-R
which are mutually orthogonal with respect to the Hom-functor and max-
imal with respect to this property. That is, E = {M | HomR(M,F ) =
0 for every F ∈ F} and F = {M | HomR(X,M) = 0 for every X ∈ E}.
The class E is called a torsion class and F a torsion-free class.

Every torsion class forms the left-hand class of a torsion pair in Mod-R,
and in this way the collection of torsion classes of R-modules is in bijective
correspondence with the collection of torsion pairs in Mod-R. Analogously
for the right-hand class, a class C is a torsion-free class if and only if it is
closed under extensions, products and submodules, and these classes are in
bijective correspondence with the collection of torsion classes.

A torsion pair (E ,F) is called hereditary if E is also closed under sub-
modules, which is equivalent to F being closed under injective envelopes.

A torsion pair (E ,F) is generated by a class C if F consists of all the
modules F such that HomR(C,F ) = 0 for every C ∈ C. A torsion pair
(E ,F) is of finite type if F is closed under direct limits.
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1.7.2 Linear topologies

Recall that for a right ideal I in R and an element t ∈ R, (I : t) := {r ∈ R |
tr ∈ I}. A right linear topology on R is a collection of ideals of R, denoted
H, which satisfy the following properties.

(G1) If I ∈ H and I ⊆ J , then J ∈ H.

(G2) If I, J ∈ H, then I ∩ J ∈ H.

(G3) If I ∈ H and r ∈ R then (I : r) ∈ H.

The first two conditions just say that H is a filter of right ideals of R. The
right linear topologies on R are in bijective correspondence with hereditary
pretorsion classes in R. This bijection associates to a hereditary pretorsion
class C in Mod-R the right linear topology {I | R/I ∈ C}, and to each
right linear topology H the pretorsion class {M | Annx ∈ H for all x ∈M},
called the class of H-discrete modules (see [39, Proposition VI.4.2]). For
example, for every J ∈ H, R/J is H-discrete. Thus, there is the following
bijection.

right linear topologies
on R

Φ // hereditary pretorsion
classes in Mod-RΨ

oo

Φ: H � // {M | Annx ∈ H, ∀x ∈M}

{I | R/I ∈ C} C : Ψ�oo

A basis of a right linear topology H is a subset B of H such that every ideal
in H contains some ideal in B.

A (right) Gabriel topology on R is a right linear topology on R, denoted
G, such that the following additional condition holds.

(G4) If J is a right ideal of R and there exists a I ∈ G such that (J : t) ∈ G
for every t ∈ I, then J ∈ G.

This extra condition gives the associated hereditary pretorsion class the ex-
tra property that it is closed under extensions, and therefore is a hereditary
torsion class. As with right linear topologies, we have the following equiva-
lence.

right Gabriel topologies
on R

Φ // hereditary torsion
classes in Mod-RΨ

oo

Φ: G � // EG = {M | Annx ∈ G, ∀x ∈M}

{I ≤ R | R/I ∈ E} E : Ψ�oo
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We denote the corresponding torsion pair by (EG ,FG), which is generated
by the cyclic modules R/J where J ∈ G. The classes EG and FG are referred
to as the G-torsion and G-torsion-free classes, respectively.

For a right R-module M let tG(M) denote the associated (left exact)
radical, also called the G-torsion submodule of M , or sometimes t(M) when
the Gabriel topology is clear from context. Thus for every module M , there
is the following unique decomposition.

0→ tG(M)→M →M/tG(M)→ 0

1.7.3 Modules of quotients

A Gabriel topology allows us to generalise localisations of commutative rings
with respect to a multiplicative subset to non-commutative rings. In the spe-
cific case of localisation with respect to a multiplicative subset of a commu-
tative ring, the Gabriel topology would have as a basis collection of principal
ideals generated by the elements of the multiplicative subset. We will come
back to this example later, and will begin by defining the module of quo-
tients of a module with respect to a Gabriel topology G.
The following subsection uses results from [39, Chapter IX].

The module of quotients of the Gabriel topology G of a right R-module
M is the module MG defined as follows.

MG := lim−→
J∈G

HomR(J,M/tG(M))

Furthermore, there is the following canonical homomorphism.

ψM : M ∼= HomR(R,M)→MG

For each R-module M , the homomorphism ψM is part of the following exact
sequence, where both the kernel and cokernel of the map ψM are G-torsion
R-modules.

0→ tG(M)→M
ψM→ MG →MG/ψM (M)→ 0 (1.6)

By substitutingM = R, the assignment gives a ring homomorphism ψR : R→
RG and furthermore, for each R-module M the module MG is both an R-
module and an RG-module.

A right R-module is G-closed if the following natural homomorphisms
are all isomorphisms for each J ∈ G.

M ∼= HomR(R,M)→ HomR(J,M) (1.7)

This amounts to saying that HomR(R/J,M) = 0 for every J ∈ G (i.e. M
is G-torsion-free) and Ext1

R(R/J,M) = 0 for every J ∈ G (i.e. M is G-
injective). Moreover, if M is G-closed then M is isomorphic to its module
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of quotients MG via ψM . Conversely, every R-module of the form MG is
G-closed. The G-closed modules form a full subcategory of both Mod-R
and Mod-RG . The full subcategory of G-closed modules in Mod-R is de-
noted Mod-(R,G). In fact, we now show that every R-linear morphism of
G-closed modules is also a RG-linear, thus the full subcategory of G-closed
modules considered as RG-modules is equivalent to Mod-(R,G). Further-
more in Proposition 1.7.1, we see that the canonical homomorphism ψM is
well behaved with respect to the G-closed modules.

We recall briefly what it means for two elements to be equivalent for a
G-closed module. Consider two elements x, y of a G-closed module M and
let the map ẋ : R→M denote the homomorphism which maps 1 7→ x, and
similarly for y. Then, via the isomorphism in (1.7), if there exists an ideal

J ∈ G such that the restriction of the maps R
ẋ→ M and R

ẏ→ M to J
coincide.

Let M,N be G-closed and consider an R-linear map f : M → N , and
fix an element x ∈ RG which is represented by η : J → R. We must show
that f(mx) = f(m)x. For an element m ∈ M , as before let the map
ṁ : R → M denote the homomorphism which maps 1 7→ m. The element

mx is represented by the map J
η→ R

ṁ→ M . Then as M is G-closed,
HomR(J,M) ∼= HomR(R,M), so each maps J → M extends uniquely to a
map R → M , and similarly for N . These extended morphisms of ṁη and

˙f(m)η are denoted ṁη and ˙f(m)η in the following diagram.

R
ṁη //M

f // N

J
?

OO

_

η // R
ṁ //M

f // N

R
˙f(m)η // N

Therefore it is clear from the above diagram that f ◦ṁη and ˙f(m)η represent
the same element in N . Moreover, mx can be represented by the homomor-
phism ṁη and similarly f(m)x can be represented by the morphism ˙f(m)η.
Thus we have shown that f(mx) = f(m)x as desired.

We have the following diagram of functors. We will use the notation of
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Stenström which is explained below.

Mod-R
ψ∗

//

a

q

))
Mod-RG

ψ∗
oo

Mod-(R,G)

i

__

j

>>

(i) ψ∗ is the restriction of scalars functor which is exact and faithful.

(ii) ψ∗ := (−⊗RRG) is the extension of scalars functor MR 7→MR⊗RRG .

(iii) a maps M 7→MG in Mod-R.

(iv) i is the inclusion functor of the G-closed modules into Mod-R.

(v) j is the inclusion functor of the G-closed modules into Mod-RG and is
full and faithful.

(vi) q maps M 7→MG in Mod-RG and is left exact.

In general, there is a natural transformation Θ: ψ∗ → q with ΘM : M⊗R
RG → MG which is defined as m ⊗R η 7→ ψM (m) · η. That is, for every M
the following triangle commutes.

M
M⊗RψR //

ψM !!

M ⊗R RG

ΘMyy
MG

(1.8)

The Gabriel topologies for which Θ is a natural equivalence form an im-
portant class of Gabriel topologies, which we will discuss more in detail in
Subsection 1.7.4.

Proposition 1.7.1. [39, Proposition IX.1.11] The functor a is left adjoint
to i. Therefore for a G-closed module N the canonical map HomR(ψM , N) : HomR(MG , N)→
HomR(M,N) is an isomorphism.

A left R-module N is called G-divisible if JN = N for every J ∈ G.
Equivalently, N is G-divisible if and only if R/J ⊗R N = 0 for each J ∈ G.
We denote the class of G-divisible modules by DG . It is straightforward to
see that DG is a torsion class in R-Mod.

A right Gabriel topology is faithful if HomR(R/J,R) = 0 for every J ∈ G,
or equivalently if R is G-torsion-free, that is the natural map ψR : R → RG
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is injective. A right Gabriel topology is finitely generated if it has a basis
consisting of finitely generated right ideals. The torsion pairs associated to
the finitely generated Gabriel topologies have an additional property, which
we will state after recalling the following definition.

Consider a direct system of submodules of M , denoted {Mi, fji | Mi →
Mj , i ≤ j}i,j∈I such that the natural maps fji are all inclusion maps. Then
lim−→M =

P
iMi is called a direct union of the {Mi, fji | Mi → Mj , i ≤

j}i,j∈I . For example, every module M is a direct union of its finitely gener-
ated submodules.

Proposition 1.7.2. [39, Proposition XIII.1.2] The following properties of
a right Gabriel topology G are equivalent.

(i) G has a basis of finitely generated ideals.

(ii) Every direct union of G-closed modules is G-closed.

(iii) The G-torsion radical preserves direct limits (that is there is a natural
isomorphism tG(lim−→i

Mi) ∼= lim−→i
(tG(Mi))).

(iv) The G-torsion-free modules are closed under direct limits (that is, the
associated torsion pair is of finite type).

Proof. The equivalence of (i), (ii), and (iii) are in [39, Proposition XIII.1.2].
The equivalence of these conditions with (iv) was noted by Hrbek in the
discussion before [30, Lemma 2.4]. We will prove the equivalence of (iv)
with (iii) here for completeness.

We will denote tG(M) by t(M). Assume (iii) holds, and take a direct
limit M = lim−→i

Mi of G-torsion-free modules Mi. Then t(M) = t(lim−→i
Mi) ∼=

lim−→i
t(Mi) = 0 as each of the Mi is G-torsion-free, so we conclude that also

M is G-torsion-free. For the converse, suppose (iv) holds, and consider a
direct system of module {Mi, fji |Mi →Mj , i ≤ j}i,j∈I . Then the image of
restriction fji t(Mi) is contained in t(Mj), thus there is an induced directed

system {t(Mi), fji t(Mi) : t(Mi) → t(Mj), i ≤ j}i,j∈I . As the G-torsion mod-

ules are closed under direct sums and homomorphic images, lim−→i
t(Mi) is

also G-torsion. Thus as the direct limit functor is exact, we have the follow-
ing commuting diagram, where α is the natural restriction of the inclusion
map.

0 // lim−→i
t(Mi) //

α

lim−→i
Mi

// lim−→i
Mi/t(Mi) //

β

0

0 // t(lim−→i
Mi) // lim−→i

Mi
// lim−→i

Mi/t(lim−→i
Mi) // 0

By the snake lemma, the cokernel of α is isomorphic to the kernel of β. Addi-
tionally, the cokernel of α is G-torsion, and by assumption lim−→i

(Mi/t(Mi)) is
G-torsion-free, so the kernel of β is G-torsion-free. Thus Cokerα ∼= Kerβ =
0, so α is an isomorphism as required.
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1.7.4 Perfect localisations

We will often be concerned with a particular type of Gabriel topology that
has many useful properties. The following theorem tells us that a flat ring
epimorphism gives rise to a Gabriel topology.

Theorem 1.7.3. [39, Theorem XI.2.1] Suppose u : R→ U is a ring homo-
morphism. Then the following are equivalent.

(i) u is an epimorphism of rings which makes U into a flat left R-module.

(ii) The family G of right ideals J such that u(J)U = U is a Gabriel
topology, and the natural ring homomorphism ψ : R→ RG is equivalent
to u : R → U . That is, there is a ring isomorphism σ : U → RG such
that σu : R→ RG is the canonical homomorphism ψR : R→ RG.

This theorem allows us to give the following definition. A left flat ring
epimorphism R

u→ U is called a perfect right localisation of R, and there is
the following associated right Gabriel topology.

Gu = {J ≤ R | u(J)U = U}

Note also that a right ideal J of R is in Gu if and only if R/J⊗RU = 0. Often
we will simply write G instead of Gu for the associated Gabriel topology of a
ring epimorphism u. Moreover, when we find that a Gabriel topology arises
from a perfect localisation, we will often denote RG by U and RG/ψR(R) by
K, thus ψR : R→ RG is denoted u : R→ U .

We note that the adjective “perfect” for a Gabriel topology can be
slightly confusing as it is not related in any way to perfect rings. How-
ever, we will continue to use this nomenclature as it is already commonly
used in the literature.

In Stenström’s book the perfect right localisations are characterised in
the following way. Recall that q : Mod-R → Mod-RG is the functor that
maps each module to its module of quotients M 7→MG .

Proposition 1.7.4. [39, Proposition XI.3.4] Let G be a right Gabriel topol-
ogy. Then the following conditions are equivalent.

(i) ψR : R→ RG is a perfect right localisation and G = {J ≤ R | ψR(J)RG =
RG}.

(ii) RG is G-divisible.

(iii) G has a basis of finitely generated ideals and q is exact.

(iv) Ker(M →M ⊗R RG) is the G-torsion submodule of M .

(v) Θ: ψ∗ → q is a natural equivalence of functors.
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In particular, Proposition XI.3.4 in Stenström’s book states that the
right Gabriel topology G associated to a flat ring epimorphism R

u→ U is
finitely generated and the G-torsion submodule tG(M) of a right R-module
M is the kernel of the canonical homomorphism M → M ⊗R U . Addition-
ally it is clear that K = U/u(R) is G-torsion, hence HomR(K,U) = 0. If
moreover the flat ring epimorphism R

u→ U is injective, then TorR1 (M,K) ∼=
tG(M) and G is faithful.

1.7.5 Gabriel topologies and 1-tilting classes

As mentioned before, much useful and important research has already been
done in this direction. Specifically, in [30], Hrbek showed that over commu-
tative rings the faithful finitely generated Gabriel topologies are in bijective
correspondence with 1-tilting classes, and that the latter are exactly the
classes of G-divisible modules for some faithful finitely generated Gabriel
topology G. Before we state this theorem, we recall briefly a definition and
a Lemma, which were used to prove Hrbek’s correspondence.

Suppose M is a finitely presented right R-module with projective pre-
sentation P1

ρ→ P0 →M → 0 where P0, P1 are finitely generated projective
modules. Recall that the transpose of M , denoted Tr(M), is the cokernel of
the map ρ∗ : P ∗

0 → P ∗
1 where (−)∗ := HomR(−, R). Moreover, we have the

following relations from [3, Lemma 2.9] or [30, Lemma 3.3].

Lemma 1.7.5. Let R be a ring and M a non-zero finitely presented right
R-module such that HomR(M,R) = 0. Then the following hold.

(i) p.dimR TrM = 1 and TrM is a finitely presented left R-module.

(ii) HomR(M,−) and TorR1 (−,TrM) are isomorphic functors.

(iii) Ext1
R(TrM,−) and (M ⊗R −) are isomorphic functors.

We now state the following theorem that is an indispensable starting
point for Chapters 6 and 7 of this thesis.

Theorem 1.7.6. [30, Theorem 3.16] Let R be a commutative ring. There
are bijections between the following collections.

(i) 1-tilting classes T .

(ii) Faithful finitely generated Gabriel topologies G.

(iii) Faithful hereditary torsion pairs (E ,F) of finite type in Mod-R.

Moreover, the tilting class T is the class of G-divisible modules with respect
to the Gabriel topology G.
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That is, Hrbek shows that to a faithful finitely generated Gabriel topol-
ogy G, one considers the modules Tr(R/J) ∈ P1(mod-R) for each finitely

generated J ∈ G, and associates the 1-tilting class T =
L

J∈G;J f.g. Tr(R/J)
⊥

.
For the reverse direction, he associates to each 1-tilting class T the Gabriel
topology G = {J ≤ R | JT = T, ∀T ∈ T }.

When we refer to the Gabriel topology associated to a 1-tilting class T
we will always mean the Gabriel topology in the sense of the above theorem.
In addition we will often denote DG to be the 1-tilting class associated to G
and A to be the left Ext-orthogonal class to DG so (A,DG) will denote the
1-tilting cotorsion pair associated to G.

Moreover, in the case of a Gabriel topology that arises from a perfect
localisation such that p.dimRG ≤ 1, we can describe the 1-tilting class more
explicitly. One can conclude that the 1-tilting class arises from the flat ring
epimorphism ψR : R→ RG in the sense of Theorem 1.6.2. This observation
is crucial as the 1-tilting module RG ⊕ RG/R is much more convenient to
work with than the 1-tilting class DG .

Proposition 1.7.7. [30, Proposition 5.4] Let R be a commutative ring, T
a 1-tilting module, and G the Gabriel topology associated to DG = T⊥ in the
sense of Hrbek. Then the following are equivalent.

(i) G is a perfect Gabriel topology and p.dimRG ≤ 1.

(ii) Gen(RG) = DG

If the above equivalent conditions hold, T or the 1-tilting class DG is said to
arise from a perfect localisation.

We note that there is yet more confusion with our terminology. That is
the 1-tilting class arises from a perfect localisation if and only if the Gabriel
topology arises from a perfect localisation and p.dimRG ≤ 1. Therefore we
often include the statement p.dimRG ≤ 1 for clarity.

In [6] the correspondence between faithful finitely generated Gabriel
topologies and 1-tilting classes over commutative rings was extended to
finitely generated Gabriel topologies which were shown to be in bijective
correspondence with silting classes. Thus in this case the class DG of G-
divisible modules coincides with the class Gen(T ) for some silting module
T . We state the result formally.

Theorem 1.7.8. [6, Theorem 4.7] Let R be a commutative ring. There is a
one-to-one correspondence between silting classes T in Mod-R and Gabriel
topologies with a basis of finitely generated ideals over R.

We conclude this section with a definition which extends S-almost perfect
rings.



32 CHAPTER 1. PRELIMINARIES

Definition 1.7.9. Let R be a ring with a right Gabriel topology G. Then
R is G-almost perfect if RG is a perfect ring and the quotient rings R/J are
perfect for each J ∈ G.



Chapter 2

Cotorsion pairs and minimal
approximations

In this chapter we study classes which form the left-hand and right-hand
classes of cotorsion pairs in relation to approximations. In Sections 2.1 and
2.2 we describe some results which extend the relationship between injective
envelopes and essential submodules of injective modules to a general cotor-
sion pair (A,B). That is we relate B-envelopes to the so called A-essential
submodules and B-essential submodules. Analogously, the relationship be-
tween projective covers and superfluous submodules of projective modules
is extended to a general cotorsion pair (A,B), that is to A-covers and the
so called A-superfluous submodules and B-superfluous submodules. In later
chapters we will often refer to Examples 2.1.9 and 2.2.10.

Next in Section 2.3 we consider the relationship between A being cov-
ering and B being enveloping for a cotorison pair (A,B). As mentioned in
Section 1.3, there are many examples and even simple examples of cotor-
sion pairs where B is enveloping and A is not covering. In this section, we
consider the converse: if A is covering, is B enveloping. There are already
some positive results. If A is closed under direct limits, then if A is covering
then B is enveloping by Theorem 1.2.5 and Theorem 1.2.12. Moreover, if
B is closed under direct limits and A is covering, then A is closed under
direct limits by Theorem 1.3.6 and so B is enveloping by Theorem 1.2.5.
Cotorsion pairs with the assumption that B is closed under direct limits are
not necessarily hereditary cotorsion pairs.

In Section 2.3 we give a purely algebraic proof that for any hereditary
cotorsion pair (A,B), if A is covering then B is enveloping in Theorem 2.3.6.
We note that if there existed a cotorsion pair (A,B) such that A is cov-
ering and B is not enveloping, this would be a counterexample to Enochs’
Conjecture as A would not be closed under direct limits.

The proof of Theorem 2.3.6 is divided into two parts. First we show
that if A is covering then every module in A has a B-envelope. This holds

33
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for all cotorsion pairs, that is the hereditary condition is not required. Next
we use [14, Lemma 8.3] of Bazzoni-Positselski (where the dual statement
was shown) to show that if (A,B) hereditary and every module in A has a
B-envelope then B is enveloping.

2.1 C-essential submodules

For a complete cotorsion pair (A,B), we investigate the properties of B-
envelopes of arbitrary R-modules. First of all we state two lemmas.

Lemma 2.1.1. Let 0 → N
φ→ B

π→ A → 0 be an exact sequence. Let f
be an endomorphism of B such that φ = f ◦ φ. Then f(B) ⊇ φ(N) and
Ker f ∩ φ(N) = 0.

Lemma 2.1.2. Let 0→ N
φ→ B

π→ A→ 0 be an exact sequence. For every
endomorphism f of B, the following are equivalent

(i) φ = f ◦ φ.

(ii) The restriction of f to φ(N) is the identity of φ(N).

(iii) There is a morphism g ∈ HomR(A,B) such that f = idB − g ◦ π.

Proof. (i) =⇒ (ii). This is clear as fφ(n) = f(n) for every n ∈ N .
(ii) =⇒ (iii). As (idB −f)φ = 0 and π is the cokernel of φ, there exists a
unique map g such that gπ = idB −f , as required.
(iii) =⇒ (i). If such a g exists, then fφ = φ− gπφ = φ.

Recall that a submodule N of a module X is essential in X if for every
submodule H of X, H ∩ X = 0 implies H = 0. We define a notion of
essential submodule with respect to classes in a cotorsion pair.

Definition 2.1.3. Let (A,B) be a cotorsion pair. Let B ∈ B and let N be
a submodule of B.

(i) We say that N is A-essential in B if for every submodule K of B,
K ∩N = 0 and B/(N +K) ∈ A imply K = 0.

(ii) We say that N is B-essential in B if for every submodule H of B
containing N , H ∈ B implies H = B.

Remark 2.1.4. Consider the class I0 of injective right R-modules and the
complete cotorsion pair (Mod-R, I0). Our definition of Mod-R-essential
submodule coincides with the classical definition of essential submodule. More-
over, if E is an injective envelope of a module M , and M ⊆ X ⊆ E where
X is also injective, then X = E so M is I0-essential in the sense of the
above definition.
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The next proposition illustrates the relations between the notions of
envelopes and the restricted notions of essential submodules.

Proposition 2.1.5. Let (A,B) be a cotorsion pair. Assume that

0→ N
φ
,→ B

π→ A→ 0 (2.1)

is a special B-preenvelope of the R-module N and identify N with φ(N).
Then the following hold.

(i) If (2.1) is a B-envelope of N , then N is A-essential and B-essential
in B.

(ii) If N admits a B-envelope and N is B-essential in B, then (2.1) is a
B-envelope.

(iii) If N admits a B-envelope and N is A-essential in B, then (2.1) is a
B-envelope.

(iv) Assume that B is closed under epimorphic images. Then (2.1) is a
B-envelope if and only if N is A-essential and B-essential in B.

Proof. (i) Assume that (2.1) is a B-envelope of N . We first show that N is

A-essential in B. Let K ≤ B be such that K ∩ N = 0 and
B

(N +K)
∈ A.

Let σ : B → B/K and ν : (N + K)/K → B/K be the canonical projection
and inclusion, respectively. There is an isomorphism h : N → (N + K)/K
such that σ ◦ φ = ν ◦ h. Consider the following diagram.

0 // (N +K)/K
ν //

φ◦h−1

B/K //

ψ
xx

B/(N +K) // 0

B

The diagram can be completed by ψ, since B/(N + K) ∈ A. Consider
the endomorphism ψ ◦ σ of B. We have that φ ◦ (ψ ◦ σ) = φ, hence, by
assumption ψ ◦ σ is an automorphism of B. In particular, Ker(ψ ◦ σ) = 0,
so K = 0.

Now we show that N is B-essential in B. Let N ≤ H ≤ B, H ∈ B.
Then B/H is a quotient of B/N ∼= A; hence there is a canonical projection
τ : A→ B/H.

Consider the following diagram.

0 // H
µ // B

ρ // B/H // 0

A

g

OO

τ

<<
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where µ, ρ are the inclusion and the projection maps. The diagram can
be completed by g, since Ext1

R(A,H) = 0. Consider the morphism f =
idB − g ◦ π. Then f is an endomorphism of B satisfying f ◦ φ = φ. By
assumption f is an isomorphism, hence f(B) = B.

We show f(B) ≤ H, so that we must have H = B. In fact, ρ ◦ f =
ρ− ρ ◦ g ◦ π = ρ− τπ = 0. Hence f(B) ⊆ Ker ρ = H.

(ii) and (iii) By Xu’s result quoted in Proposition 1.2.2, it is enough to
show that if N is A-essential or B-essential in B, then B doesn’t contain
any proper direct summand containing N .

Assume that B = Y ⊕ B1 with Y ≥ N ; then Y ∈ B. So, if N is
B-essential in B we conclude that Y = B.

We also have B1∩N = 0 and A ∼= Y/N ⊕B1 where Y/N ∼= B/(N ⊕B1).
Thus, B/(N + B1) ∈ A, since it is isomorphic to a summand of A. Hence,
if N is A-essential in B we conclude that B1 = 0.

(iv) The necessary part is proved in (i). We show sufficiency. Let f
be an endomorphism of B such that φ = f ◦ φ. We must prove that in
our assumption f is an automorphism of B. First we show that f is an
epimorphism. By Lemma 2.1.1, f(B) ⊇ N and f(B) is an epimorphic
image of B, hence by assumption f(B) ∈ B. Thus f(B) = B, since N is
B-essential in B. The morphism π ◦ f : B → A is an epimorphim, since f
and π are surjective and Kerπ◦f is the preimage N under f . Since φ = f ◦φ
we have Ker(π ◦ f) = Ker f +N and Ker f ∩N = 0. Thus, Ker f = 0, since
B/(Ker f +N) ∼= A and N is A-essential in B.

Remark 2.1.6. The condition that B is closed under epimorphic images
in (iv) of Proposition 2.1.5 is stronger than one would like. In fact, in the

case of the cotorsion pair (Mod-R, I0), if a preenvelope 0→M
µ→ E has the

condition that µ(M) is Mod-R-essential in E, then µ is an envelope, even
though I0 is not closed under epimorphic images.

Proposition 2.1.7. Let (A,B) be a cotorsion pair and assume that

0→ N
φ→ B

π→ A→ 0

is a special B-preenvelope of N . The following are equivalent.

(i) φ is a B-envelope of N .

(ii) For every g ∈ HomR(A,B), idB − g ◦ π is an isomorphism of B.

(iii) HomR(A,B)π is a left ideal of End(B) contained in the Jacobson rad-
ical of End(B).

Proof. (i) ⇒ (ii) Let g ∈ HomR(A,B) and let f = idB − g ◦ π. f is an
endomorphism of B and f ◦ φ = φ, since π ◦ φ = 0. By assumption f is an
isomorphism of B.
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(ii)⇒ (iii) It is clear that HomR(A,B)π is a left ideal of End(B). Let g ∈
HomR(A,B). For every h ∈ End(B), idB − h ◦ g ◦ π is an invertible element
of End(B), by (ii). Hence HomR(A,B)π is contained in the Jacobson radical
of End(B).

(iii)⇒ (i) Let f ∈ End(B) be such that f ◦φ = φ. By Lemma 2.1.2 (iii),
there exists a morphism g ∈ HomR(A,B) such that idB − f = g ◦ π. By
assumption, −g ◦ π belongs to the Jacobson radical of End(B), hence f =
idB + g ◦ π is a unit of End(B).

The following was originally shown in [9]. We have modified the proof
slightly.

Proposition 2.1.8. Let (A,B) be a complete cotorsion pair over a ring

R. Assume that 0 → M
µ→ B is a B-envelope of the R-module M . Let α

be an automorphism of M and let β be any endomorphism of B such that
βµ = µα. Then β is an automorphism of B.

Proof. By the Wakamatsu Lemma (Lemma 1.3.2), µ induces an exact se-
quence

0→M
µ→ B

π→ A→ 0

with A ∈ A. Since α is an automorphism of M , it is immediate to see
Cokerµα ∼= A ∈ A and fµα = µα implies that f is an isomorphism, so the
following is a B-envelope of M .

0→M
µα→ B → A→ 0

is a B-envelope of M . Let β be as assumed and consider an endomorphism
g of B such that gµα = µ. Then gβµ = µ and thus gβ is an automorphism
of B, since µ is a B-envelope. This implies that β is a monomorphism.
To see that β is an epimorphism, note that βgµα = βgβµ = βµ = µα,
so by the envelope property of µα, βg is an automorphism, thus β is an
epimorphism as required.

The following is an important application of Proposition 2.1.8 which we
will use often.

Example 2.1.9. Let R be a commutative ring and S a multiplicative subset,
and fix a cotorsion pair (A,B) in Mod-R. Consider the localisation of R at
the multiplicative subset S, denoted R[S−1], and let M be an R[S−1]-module
with a B-envelope in Mod-R.

0→M
µ→ B → A→ 0 (2.2)

As M is an R[S−1]-module, multiplication by an element of S is an auto-
morphism of M . Therefore applying Proposition 2.1.8, multiplication by
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an element of S is also an automorphism of B and so B is an R[S−1]-
module. One concludes that the short exact sequence (2.2) is a sequence
in Mod-R[S−1], as moreover R → R[S−1] is a ring epimorphism so the
embedding Mod-R[S−1]→ Mod-R is fully faithful.

2.2 C-superfluous submodules

We investigate the properties of A-covers when A is the left component of
a cotorsion pair. First of all we need two easy lemmas whose proofs are
similar to the proofs of Lemmas 2.1.1 and 2.1.2.

Lemma 2.2.1. Let 0 → B ,→ A
φ→ M → 0 be an exact sequence. Let f be

an endomorphism of A such that φ = φ◦f . Then f(A)+B = A, Ker f ≤ B
and B ∩ f(A) = f(B).

Lemma 2.2.2. Let 0→ B
ε
,→ A

φ→M → 0 be an exact sequence. For every
endomorphism f of A, the following are equivalent.

(i) φ = φ ◦ f .

(ii) The restriction of f to B is an endomorphism of B and the morphism
induced by f on M is the identity of M .

(iii) There is a morphism g ∈ HomR(A,B) such that f = idA − ε ◦ g.

Proof. (i)⇔ (ii) If φ = φ ◦ f , then f(B) ⊆ B, by Lemma 2.2.1, so f induces
an endomorphism of B. Consider the following commutative diagram.

0 −−−−→ B
ε−−−−→ A

φ−−−−→ M −−−−→ 0xf|B xf xh
0 −−−−→ B

ε−−−−→ A
φ−−−−→ M −−−−→ 0

Then it follows that if φ = φ ◦ f , then h is the identity on M .
The converse follows again by the above commutative diagram.
(i) ⇔ (iii) φ ◦ f = φ if and only if φ ◦ (idA − f) = 0, that is if and

only if the image of idA − f is contained in B, so idA−f factors through ε.
Equivalently, there is g ∈ HomR(A,B) such that idA − f = ε ◦ g.

Recall that a submodule N of a module X is superfluous in X, if for
every submodule H of X, N +H = X implies H = X.

We define a notion of superfluous submodule with respect to classes in
a cotorsion pair.

Definition 2.2.3. Let (A,B) be a cotorsion pair. Let B ∈ B be a submodule
of a right R-module X.
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(i) We say that B is B-superfluous in X if for every submodule H of X,
H +B = X and H ∩B ∈ B imply H = X.

(ii) We say that B is A-superfluous in X if for every submodule K of B,
X/K ∈ A implies K = 0.

Remark 2.2.4. Let P0 be the class of projective right R-modules and con-
sider the complete cotorsion pair (P0,Mod-R). Our definition of Mod-R-
superfluous submodule coincides with the classical definition of superfluous
submodule.

The next proposition shows how our the notions of A-superfluous and
B-superfluous submodules are related to A-covers.

Proposition 2.2.5. Let (A,B) be a cotorsion pair. Assume that

0→ B ,→ A
φ→M → 0 (2.3)

is a special A-precover of the R-module M . The following hold.

(i) If (2.3) is an A-cover of M , then B is at the same time B-superfluous
and A-superfluous in A.

(ii) If M admits an A-cover and B is B-superfluous in A, then (2.3) is an
A-cover.

(iii) If M admits an A-cover and B is A-superfluous in A , then (2.3) is
an A-cover.

(iv) Assume that B is closed under epimorphic images. Then (2.3) is an
A-cover if and only if B is at the same time B-superfluous and A-
superfluous in A.

Proof. (i) Assume that (2.3) is an A-cover of M . We first show that B is
B-superfluous in A. Let H ≤ A be such that H + B = A and H ∩ B ∈ B.
Consider the following diagram where φ|H is the restriction of φ to H.

0 // H ∩B // H
φ|H //M // 0

A

ψ

OO

φ

>>

The diagram can be completed by ψ, since Ext1
R(A,H∩B) = 0. Consider the

inclusion ν of H into A; then by the above diagram it is clear that φ = φνψ.
Since (2.3) is an A-cover of M , we conclude that νψ is an automorphism of
A, hence H = A.
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Now we show that B is A-superfluous in A. Let K be a submodule of
B such that A/K ∈ A. Consider the following diagram.

0 // K
µ //

ι

A //

g

A/K // 0

B

where µ, ι are the inclusion maps. The diagram can be completed by g,
since Ext1

R(A/K,B) = 0. Consider the inclusion ε of B into A. Then, by
Lemma 2.2.2, f = idA− ε ◦ g is an endomorphism of A satisfying φ ◦ f = φ.
By assumption f is an isomorphism, hence Ker f = 0. Since g extends the
inclusion of K into B we infer that K ⊆ Ker f , hence K = 0.

(ii) and (iii) By Xu’s result quoted in Corollary 1.2.10, it is enough to
show that if B is A-superfluous in A or if B is B-superfluous in A, then B
doesn’t contain any non-zero summand of A.

Assume that A = Y ⊕ A1 with Y ≤ B; then A/Y ∈ A. So, if B is
A-superfluous in A we conclude that Y = 0.

We have B + A1 = A and B = Y ⊕ (B ∩ A1). B ∩ A1 ∈ B, since it is a
summand of B. Hence, if B is B-superfluous in A we conclude that A1 = A.

(iv) By (i), we have only to prove that if B is B-superfluous and A-
superfluous in A, then (2.3) is an A-cover of M . Let f be an endomorphism
of A such that φ = φ ◦ f . We must prove that f is an automorphism of
A. First we show that f is an epimorphism. By Lemma 2.2.1, Ker f ≤ B,
f(B) = B ∩ f(A) and f(A) + B = A. Consider the sequence 0 → Ker f →
B

f→ f(B) → 0. By assumption f(B) ∈ B, thus f(A) = A, since B is
B-superfluous in A. It remains to show that f is a monomorphism. Since f
is an epimorphism, we have A ∼= A/Ker f and Ker f ⊆ B. Hence Ker f = 0,
since B is A-superfluous in A.

Remark 2.2.6. Note that the condition of the closure of the class B un-
der epimorphic images in Proposition 2.1.5(iv) is the same as in Proposi-
tion 2.2.5(iv) and not a condition on the class A as one would expect.

Proposition 2.2.7. Let (A,B) be a cotorsion pair and assume that

0→ B
ε
,→ A

φ→M → 0

is a special A-precover of M . The following are equivalent.

(i) φ is an A-cover of M .

(ii) For every g ∈ HomR(A,B), idA − ε ◦ g is an automorphism of A

(iii) εHomR(A,B) is a right ideal of End(A) contained in the Jacobson
radical of End(A).
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Proof. (i) ⇒ (ii). Let g ∈ HomR(A,B) and let f = idA − ε ◦ g. Then
φ ◦ f = φ− φ ◦ ε ◦ g = φ, hence f is an isomorphism of A.

(ii) ⇒ (iii). It is clear that εHomR(A,B) is a right ideal of End(A). Let
g ∈ HomR(A,B). For every h ∈ End(A), idA−ε◦g◦h is an invertible element
of End(A), by (ii). Hence εHomR(A,B) is contained in the Jacobson radical
of End(A).

(iii)⇒ (i). Let f ∈ End(A) be such that φ◦f = φ. By Lemma 2.2.2 (iii),
idA − f = ε ◦ g for a morphism g ∈ HomR(A,B) and by assumption, ε ◦ g
belongs to the Jacobson radical of End(A). Hence f = idA − ε ◦ g is a unit
of End(A).

Proposition 2.2.8. Let (A,B) be a cotorsion pair and assume that a module
M admits an A-cover, and consider the following special A-precover of M .

0→ B
ε
,→ A

φ→M → 0 (2.4)

Then (2.4) is an A-cover of M if and only if for every g ∈ HomR(A,B),
1A − ε ◦ g is a monomorphism.

Proof. The necessary condition follows by Proposition 2.2.7. Assume that
1A − ε ◦ g is a monomorphism for every g ∈ HomR(A,B) and that π is not
a cover. By Theorem 1.2.9 there is a direct summand 0 6= X of A contained
in B. Let pX : A → X be the projection map and i : X → B the inclusion
map. Then g = i ◦ pX is a map in HomR(A,B) and for every x ∈ X we
have ε ◦ g(x) = x. Hence Ker(1A − ε ◦ g) contains X and 1A − ε ◦ g is not a
monomorphism.

Another useful result is the following, which as in Proposition 2.1.8 is
due to [9] but with a slightly modified proof.

Proposition 2.2.9. Let (A,B) be a complete cotorsion pair over a ring R.

Assume that A
φ→ M → 0 is an A-cover of the R-module M . Let α be an

automorphism of M and let β be an endomorphism of A such that φβ = αφ.
Then β is an automorphism of A.

Proof. By the Wakamatsu Lemma (Lemma 1.3.2) φ gives rise to an exact
sequence

0→ B
µ→ A

φ→M → 0

with B ∈ B. Since α is an automorphism of M , it is immediate to see
that Kerαφ ∼= B ∈ B and αφf = αφ implies f is an isomorphism, so the
following is an A-cover of M .

0→ B → A
αφ→M → 0
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Let β be as assumed and consider an endomorphism g of A such that αφg =
φ. Then φβg = φ and thus βg is an automorphism of A, since φ is an A
cover of M . This implies that β is an epimorphism.
To see that β is a monomorphism, note that αφgβ = φβgβ = φβ = αφ,
thus by the cover property of αφ, gβ is an automorphism, thus β is an
automorphism as required.

An analogous example of Example 2.1.9 holds.

Example 2.2.10. Let R be a commutative ring and S a multiplicative
subset, and fix a cotorsion pair (A,B) in Mod-R. Consider the localisation
of R at the multiplicative subset S, denoted R[S−1], and let M be an R[S−1]-
module with a A-cover in Mod-R.

0→ B → A
φ→M → 0 (2.5)

As M is an R[S−1]-module, multiplication by element of S is an auto-
morphism of M . Therefore applying Proposition 2.1.8, multiplication by
an element of S is also an automorphism of A and so A is an R[S−1]-
module. One concludes that the short exact sequence (2.5) is a sequence
in Mod-R[S−1], as moreover R → R[S−1] is a ring epimorphism so the
embedding Mod-R[S−1]→ Mod-R is fully faithful.

2.3 Covering implies enveloping for hereditary co-
torsion pairs

We want to show that for a cotorsion pair (A,B) if A is covering then B is
enveloping. We begin by showing the following.

Proposition 2.3.1. If (A,B) is a cotorsion pair such that A is covering,
then every A ∈ A has a B-envelope.

Proof part 1. Let ε : A → E(A) be the injective envelope of A and take
γ : A0 → E(A)/A to be an A-cover of E(A)/A, and consider the following
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pullback of E(A)
π→ E(A)/A

γ← A0.

0 0

0 // A
ε // E(A)

π //

OO

E(A)/A //

OO

0

0 // A
µ // Z

ρ //

α

OO

A0 //

γ

OO

0

B

β

OO

B

δ

OO

0

OO

0

OO

(2.6)

Then A0 ∈ A by construction and Z ∈ B as B is closed under extensions,
thus µ is a special B-preenvelope of A. Moreover, Z is also in A as A is closed
under extensions. We claim that µ is a B-envelope of A. Take f : Z → Z
such that fµ = µ. We will show that this f is an isomorphism which will
be proved in the following three lemmas.

We begin by proving a lemma which allows us to use that a module is
an essential submodule of its injective envelope.

Lemma 2.3.2. Consider the following commuting diagram of short exact
sequences such that µ0(A) is essential in M 0.

0 // A
µ //M

ρ //

f

N //

k

0

0 // A
µ0 //M 0 ρ0 // N 0 // 0

Then for every submodule H of M such that H ∩ µ(A) = 0, H is contained
in the kernel of f .

Proof. Take H ≤ M such that H ∩ µ(A) = 0, so µ(A) + H = µ(A) ⊕ H.
Then we have the following induced diagram, where µ0 : A → µ(A) ⊕H is
µ with the codomain restricted to µ(A)⊕H ⊆ M , and f

µ(A)⊕H , k are the
obvious restriction maps.

0 // A
µ0 // µA⊕H ρ//

f
µA⊕H

µA⊕H/µA ∼= H //

k
(µA⊕H)/µA

0

0 // A
µ0 //M 0 ρ0 // N 0 // 0

We will show that f(H) = 0. First we claim that f(H) ∩ µ0(A) = 0. Take
x ∈ f(H)∩ µ0(A). Then x = f(y) = µ0(a) for a ∈ A and y ∈ H. So kρ(y) =
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ρ0f(y) = ρ0µ0(a) = 0, so ρ(y) ∈ Ker k. However, the snake lemma induces
an isomorphism ρ

Ker f∩µ(A)+H
| Ker(f

(µ(A)+H)
) → Ker(k

(µ(A)+H)/µ(A)
), thus

y ∈ Ker f , so x = f(y) = 0. By assumption, µ0(A) is essential in M 0, so
f(H) ∩ µ0(A) = 0 implies f(H) = 0.

Lemma 2.3.3. Let (A,B) be a cotorsion pair such that A is covering. Take
f : Z → Z such that fµ = µ using the notation of Diagram (2.6). Then f
is a monomorphism.

Proof. By Lemma 2.3.2, as µ(A) ∩ Ker f = 0 it follows that α(Ker f) = 0
so Ker f ⊆ Kerα. Therefore, the maps f : Z → Z and α : Z → E(A) both
factor through p : Z → Z/Ker f so that f = f̄p and α = ᾱp where f̄ , ᾱ are
as in (2.7). Using that E(A) is an injective module we find that α factors
through f as follows.

0 // Z/Ker f
f̄ //

ᾱ

Z

g
{{

E(A)

(2.7)

That is, there exists a g : Z → E(A) such that gf = gf̄p = ᾱp = α. Let
k and l be the unique induced maps that make the following short exact
sequences commute as follows (where the columns are not exact).

0 // A
µ // Z

ρ //

f

A0 //

k

0

0 // A
µ // Z

ρ //

g

A0 //

l

0

0 // A
ε // E(A)

π // E(A)/A // 0

(2.8)

Using also the commutativity of (2.6), we have that γρ = πα = πgf = lρf =
lkρ. As ρ is an epimorphism, we conclude that lk = γ.

We now claim that k is a monomorphism by using the A-cover property
of γ.

Consider the map l : A0 → E(A)/A. By the A-precover property of γ,
there exists an h : A0 → A0 such that l = γh. Thus as γhk = lk = γ, hk is
an automorphism, thus k is a monomorphism and therefore also f , which
is seen by an application of the snake lemma to the upper two short exact
sequences of (2.8) to find that Ker f ∼= Ker k.

Lemma 2.3.4. Let (A,B) be a cotorsion pair such that A is covering. Take
f : Z → Z such that fµ = µ as in (2.6). Then f is an isomorphism.
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Proof. By Lemma 2.3.3 we have that f is a monomorphism. We now use
the fact that Z ∈ A ∩ B, thus f composed with the canonical epimorphism
Z → Z/f(Z) is an A-precover of Z/f(Z). We extract the following A-cover
of Z/f(Z) where ν = (coker f)

Z0 .

0 // Z 00 f 0 //
_

⊕

Z 0 ν //
_

⊕

Z/f(Z) // 0

0 // Z
f // Z // Z/f(Z) // 0

We want to show that Z 0 = 0 which implies that Z/f(Z) = 0 and this proves
our claim. In fact, we will see that if Z 0 is non-zero, there exists a non-zero
direct summand of A0 which is contained in Ker γ, which contradicts the
A-cover property of γ : A0 → E(A)/A by Corollary 1.2.10.

Firstly, by the snake lemma applied to the top row of diagram (2.8),
ρ : Z → A0 induces an isomorphism ρ̄ : Z/f(Z) ∼= A0/k(A0) = Coker k. Thus
by the precover property of ν, the map ρ̄−1 coker k : A0 → Z/f(Z) must
factor through ν, as in the bottom row of the following diagram (2.9), i.e.
there exists a j : A0 → Z 0 such that νj = ρ̄−1 coker k. The top square of
(2.9) commutes by the construction of ν, that is (coker k)(ρ

Z0 ) = ρ̄ν.

Z 0 ν //

ρ
Z0

Z/f(Z)

A0 ρ̄−1 coker k //

j

Z/f(Z)

Z 0 ν // Z/f(Z)

(2.9)

By the A-cover property of ν, jρ
Z0 is an isomorphism, so ρ

Z0 is a monomor-
phism, and moreover ρ(Z 0) is a direct summand in A0. It follows that
Z 0 ∩ µ(A) = 0 since µ(A) = Ker ρ from (2.6). Therefore by Lemma 2.3.2,
Z 0 ⊆ Kerα, and as the restriction map ρ

Kerα
: Kerα ∼= Ker γ is an iso-

morphism by the snake lemma, ρ(Z 0) ⊆ Ker γ. Thus we have shown that
ρ(Z 0) is a direct summand of A0 which is contained in Ker γ, thus ρ(Z 0) = 0
by the cover property of γ and by Corollary 1.2.10. Therefore also Z 0 = 0
as ρ

Z0 is a monomorphism. We conclude that Z/f(Z) = 0, so f is an
isomorphism.

Next we would like to prove the following lemma, whose dual result was
proved by Bazzoni-Positselski in [14, Lemma 8.3]. Here we will present the
dual result. For this proof, one must assume that the cotorsion pair (A,B)
is hereditary.
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Lemma 2.3.5. [14, Dual of Lemma 8.3] Let (A,B) be a hereditary complete
cotorsion pair in Mod-R. Suppose every module in A has a B-envelope.
Then B is enveloping, that is every module has a B-envelope.

Proof. Fix an R-module M and take 0→ B
ε→ A

π→M → 0 to be a special
A-precover of M . Additionally, by assumption A has a B-envelope which is

denoted 0 → A
γ→ B0 δ→ A0 → 0. Thus we take the pushout of the maps

B0 γ← A
π→M as follows.

0 0

0 // B
ε // A

π //

γ

M //

µ

0

0 // B
α // B0 β //

δ

Z //

ρ

0

A0 A0

0 0

(2.10)

As B is a coresolving class, Z ∈ B by the middle row as B,B0 ∈ B. Therefore,
the right vertical column is a B-preenvelope of M . Moreover, B0 ∈ A from
the middle vertical short exact sequence as A is closed under extensions.

Fix an automorphism f of Z such that fµ = µ. We will show that this
f is an isomorphism to conclude that µ is in fact a B-envelope. Take the

pullback of Z
f→ Z

β← B0, and denote it by W as follows. Moreover, consider
the maps B0 γ← A

µπ→ Z, which make the following diagram commute. Thus
there exists a homomorphism h such that gh = γ.

A

γ

µπ

##
h
  
W

β0
//

g

Z

f

B0 β // Z

(2.11)

Thus we have the following commuting diagram.

0 // B
ε // A

π //

h

M //

µ

0

0 // B
α0
//W

β0
//

g

Z //

f

0

0 // B
α // B0 β // Z // 0

(2.12)
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The composition of right column fµ is µ by assumption and the centre
column is γ as previously shown. Moreover, W ∈ B as both B,Z ∈ B.
We will now use the envelope property of γ. As W ∈ B, there exists a map
k : B0 →W such that kγ = h as follows in the top left square. The lower-left
square follows from Diagram 2.11.

0 // A
γ // B0 //

k

A0 // 0

0 // A
h //W //

g

Cokerh // 0

0 // A
γ // B0 // A0 // 0

Therefore as γ is an envelope and γ = gkγ, gk is an automorphism of
B0. This means that there exists a map k0 : B0 → B0 such that gkk0 =
k0gk = idB0 . First note that γ = k0gkγ = k0γ. Moreover kk0α = kk0γε =
kγε = hε = α0. Therefore there exists an l such that the following diagram
commutes.

0 // B
α // B0 β //

kk0

Z //

l

0

0 // B
α0
//W

β0
//

g

Z //

f

0

0 // B
α // B0 β // Z // 0

(2.13)

Moreover, the centre column composed is idB0 , therefore flβ = βgkk0 =
β, and we conclude that fl = idZ as β is surjective.
Finally, we have the following equalities.

lµπ = βkk0γ = β0kγ = β0h = µπ

Therefore lµ = µ. By the above proof, we can conclude that also l is an
epimorphism, therefore f must be a monomorphism, so is an automorphism
as required.

We now state the main result of this section.

Theorem 2.3.6. Let (A,B) be a hereditary cotorsion pair. If A is covering
then B is enveloping.

Proof. Suppose (A,B) is a hereditary cotorsion pair such that A is cover-
ing. Then by Proposition 2.3.1, every module in A has a B-envelope, and
since (A,B) is hereditary from Lemma 2.3.5 this is sufficient for B to be
enveloping.



Chapter 3

The class P1(R)

In this chapter we study the class P1(R) over rings which have a classical
ring of quotients, with the aim to study Enochs’ Conjecture in this setting,
that is the question of when P1(R) is covering implies that P1(R) is closed
under direct limits. We were mainly interested in finding an example of a
positive result when the cotorsion pair (P1(R),P1(R)⊥) is not of finite type,
since a consequence of Theorem 1.3.6 is that Enochs’ Conjecture holds for
the cotorsion pairs (P1(R),P1(R)⊥) of finite type.

In the investigation of when P1(R) is covering, the class lim−→P1(R) plays
an important role, although it is not always well understood. Unlike the
case of the projective modules where lim−→P0(R) = F0(R), it is not neces-
sarily true that the direct limit closure lim−→P1(R) coincides with the mod-
ules of weak dimension less than or equal to 1, F1(R). However the inclu-
sion lim−→P1(R) ⊆ F1(R) always holds, although an example of rings where
lim−→P1(R) ( F1(R) can be found in [29, Example 9.12]. For certain nice
rings, such as commutative domains, the two classes lim−→P1(R) and F1(R)
coincide ([29, Theorem 9.10]).

The aim of Section 3.1 is to give a characterisation of the class lim−→P1(R)
when R has a classical ring of quotients, as a generalisation of a result from
[11] without the assumption that f. dimQ = 0. The main result of this
section is in Proposition 3.1.8, which states that lim−→P1(R) is exactly the

intersection of F1(R) with the left TorR1 -orthogonal of the minimal cotilting
class of Q-Mod, C(Q) := P1(mod-Q)|.

Next, Section 3.2 is divided into three parts, where the main aim is to
show that if P1(R) is covering, P1(R) must be closed under direct limits
for all commutative semihereditary rings. This provides us with an exam-
ple of a class of rings for which P1(R) satisfies Enochs’ Conjecture and
(P1(R),P1(R)⊥) is not (necessarily) of finite type.

We begin in Section 3.2 by looking at some consequences of P1(R) being
covering on the classical ring of quotients of R in Subsection 3.2.1. Next

48
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we collect some equivalent characterisations of certain commutative rings,
specifically semihereditary rings, hereditary rings, and the larger class of
rings of weak global dimension less than or equal to one. Additionally we
provide some theorems and lemmas which will be required in the final sub-
section. Finally the aforementioned main result is Theorem 3.2.18 in Sub-
section 3.2.3.

In this chapter, R will always be a ring such that the regular elements
Σ satisfy both the left and right Ore conditions. Then the classical ring of
quotients of R, denoted Q = Q(R) is the ring R[Σ−1] = [Σ−1]R which is flat
both as a right and left R-module. Additionally, we recall that an ideal I of
R is called regular if I contains a regular element of R, that is I ∩ Σ 6= ∅.

Recall that P1(R) denotes the class of right R-modules with projective
dimension less than or equal to one. We denote by B(R) the right orthogonal
class P1(R)⊥.

For a ring R, we will denote by C(R) the minimal 1-cotilting class of
cofinite type, so C(R) = P1(mod-R)|1 = P1(mod-R)|. To see that this is in
fact minimal, recall that a 1-cotilting class C is of cofinite type if there exists
a set S ⊆ P1(mod-R) such that S| = C, thus the 1-cotilting class C(R) is
contained in every other 1-cotilting class C as S| ⊇ P1(mod-R)|.

When it is not clear in which module category we are taking the Tor-
orthogonal, for clarity we will denote the TorR1 -orthogonal class in Mod-R

as |R .

3.1 The direct limit closure of P1(R)

The purpose of this section is to describe the class lim−→P1(R). It is a gen-
eralisation of [11, Theorem 6.7 (vi)] which states that when f.dimQ = 0,
lim−→P1(R) = F1(R) ∩ |Q-Mod.

We begin by recalling the following Corollary, which states that one can
consider only the finitely presented modules in P1(R) to find its direct limit
closure.

Theorem 3.1.1. [29, Corollary 9.8] Let R be a ring. Then lim−→P1(R) =

lim−→P1(mod-R) = |(P1(mod-R)|) = |C(R) and P1(mod-R)| = lim−→P1(R)
|

We now state some results from [11]. Following the nomenclature of [11],
in this chapterD will denote the class of rightR-modules {D | Ext1

R(R/rR,D) =
0, r ∈ Σ} which are called the divisible modules in Mod-R. Similarly, T F
will denote the class of left R-modules {N | TorR1 (R/rR,N) = 0, r ∈ Σ}
which are called the torsion-free modules in R-Mod. The analogous state-
ments hold for the divisible modules in R-Mod (D = {D | Ext1

R(R/Rr,D) =
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0, r ∈ Σ}) and the torsion-free modules in Mod-R (T F = {N | TorR1 (N,R/Rr) =
0, r ∈ Σ}).

Remark 3.1.2. The transpose of each of R/rR and R/Rr is the other.
Explicitly, TrR/rR ∼= R/Rr and TrR/Rr ∼= R/rR for r ∈ Σ (up to stable
equivalence). So by Lemma 1.7.5, Ext1

R(R/rR,M) ∼= Ext1
R(TrR/Rr,M) ∼=

M ⊗RR/Rr, and TorR1 (R/rR,N) ∼= TorR1 (TrR/Rr,N) ∼= HomR(R/Rr,N),
so the definition of D and T F coincide with the Σ-divisible and Σ-torsion-
free classes defined in Section 1.7 with respect to the left Gabriel topology
generated by principal ideals of the form Rr where r ∈ Σ.

We will first quote three useful lemmas from [11]. The first one is a well-
known fact about Ore localisations which we paraphrase for our convenience.
It allows us to state that the torsion-free class defined above coincides with
the torsion-free class that arises from the perfect localisation R→ Q. From
another point of view, it is straightforward to conclude from Remark 3.1.2.

Lemma 3.1.3. [11, Lemma 5.3] Let R be a ring with classical ring of quo-
tients Q. Then for every torsion-free left R-module RN , TorR1 (Q/R,N) = 0.
Analogously, for every torsion-free right R-module NR, TorR1 (N,Q/R) = 0.

The following lemma establishes a relationship between P1(R) and P1(Q).

Lemma 3.1.4. [11, Lemma 6.2] Let R be a ring with classical ring of quo-
tients Q. Then a right Q-module V is in P1(Q) if and only if there exists
MR ∈ P1(R) such that V = M ⊗R Q.

Finally we have a lemma about projective presentations of finitely pre-
sented modules.

Lemma 3.1.5. [11, Lemma 6.4] Let R be a ring and C a module in P1(mod-R).
Then there is a finitely generated projective module P and a short exact se-
quence of the following form.

0→ Rm → Rn → C ⊕ P → 0

We now apply these lemmas to the minimal 1-cotilting class of cofinite
type, C(R) = P1(mod-R)|.

The following lemma is a sort of analogue to Lemma 3.1.5 using the
results of Lemma 3.1.4 for the finitely presented case.

Lemma 3.1.6. Let R be a ring with classical ring of quotients Q. Then the
following hold.

(i) If M ∈ P1(mod-R), then M ⊗R Q ∈ P1(mod-Q).

(ii) If CQ ∈ P1(mod-Q), then there exists a PQ ∈ P0(mod-Q) and NR ∈
P1(mod-R) such that CQ ⊕ PQ ∼= N ⊗R Q.
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Proof. (i) is straightforward as Q is both left and right flat.
(ii) Take CQ ∈ P1(mod-Q). Then by Lemma 3.1.5, there exists a PQ ∈
P0(mod-Q) such that there is the following short exact sequence.

0→ Qm
µ→ Qn → CQ ⊕ PQ → 0

Arguing as in the proof of Lemma 3.1.4, it follows that there exists a finitely
presented NR in P1(R) of the desired form. We will rewrite the proof here
for this special case. Fix a basis (e1, . . . , em) and (f1, . . . , fn) of Qm and Qn

in Mod-Q respectively. Let A the n × m matrix with entries in Q which
represents right multiplication of the monomorphism µ on each of the basis
entries (e1, . . . , em). As A is a finite matrix (specifically, a finite column
matrix), one can take the multiple of the denominators of all the entries in
the ith column of A. As this multiple is a unit in Q (and is a regular element
of R) one can adjust the corresponding basis elements of Qm accordingly.
Explicitly, if [a1 · · · an]| is the ith column of A and di ∈ Σ is such that
di[a1 · · · an]| is a column in Rn, then one takes (e1d1, . . . , emdm) as a basis
of Qm. Therefore µ can be represented by a matrix B with entries in R. The
matrix B represents a morphism ε of right free R-modules Rm → Rn, and
ε is moreover a monomorphism as Rm ⊆ Qm and the matrix B commutes
with this inclusion map. Therefore ε ⊗R idQ = µ so Coker ε ∈ P1(mod-R)
is the desired N .

Lemma 3.1.7. Let R be a ring with classical ring of quotients Q. Then the
following hold.

(i) C(R) ∩Q-Mod = C(Q).

(ii) If Z ∈ C(R), then Q⊗R Z ∈ C(Q).

Proof. (i) For modules M ∈ Mod-R and N ∈ Q-Mod, there is the following
isomorphism as Q is flat from Equation 1.5.

TorR1 (M,N) ∼= TorQ1 (M ⊗R Q,N) (3.1)

Suppose M ∈ P1(mod-R). Then N ∈ C(R) ∩ Q-Mod if and only if the
left-hand side of (3.1) vanishes. On the other hand, N ∈ C(Q) if and only if
N ∈ P1(Q)| which in view of Lemma 3.1.4 amounts to the right-hand side
of (3.1) vanishing. Therefore N ∈ C(R) ∩ Q-Mod if and only if N ∈ C(Q),
which proves C(R) ∩Q-Mod = C(Q).

For (ii), we first note that C(R) is closed under direct limits as Tor
commutes with direct limits so a Tor-orthogonal must always be closed under
direct limits.

As Q is both left and right flat, one can write Q as a direct limit of
finitely generated free right R-modules lim−→α

Rnα . Fix a Z ∈ C(R). Then
Q ⊗R Z ∼= lim−→α

Znα which must be in C(R) as C(R) is closed under direct
limits. Moreover, Q⊗R Z ∈ Q-Mod, thus since C(R)∩Q-Mod = C(Q) from
(i), Q⊗R Z ∈ C(Q).
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Proposition 3.1.8. Let R be a ring with classical ring of quotients Q. Then
the direct limit closure of P1(R) can be written as follows.

lim−→P1(R) = F1(R) ∩ |RC(Q)

In particular, if f.dimQ = 0, lim−→P1(R) = F1(R) ∩ |Q-Mod.

Proof. We will simply write |C(Q) for the left TorR1 -orthogonal of C(Q) in
Mod-R instead of |RC(Q).

First we suppose that M ∈ lim−→P1(R) and show that M ∈ F1(R)∩|C(Q).
The inclusion lim−→P1(R) ⊆ F1(R) always holds so it remains to show that
M ∈ |C(Q). By Theorem 3.1.1, if M ∈ lim−→P1(R), then M ∈ |C(R). As
C(Q) ⊆ C(R) by Lemma 3.1.7(i), it follows that |C(R) ⊆ |C(Q), so M ∈
|C(Q) as required.

For the converse, fix M ∈ F1(R)∩|C(Q). We will show M ∈ lim−→P1(R) =
|C(R).

As {R/sR | s ∈ Σ} ⊆ P1(mod-R), the class C(R) is contained in {R/sR |
s ∈ Σ}|, so is torsion-free. Hence by Lemma 3.1.3, TorR1 (Q/R,N) = 0 for
every N ∈ C(R).

Therefore for every N ∈ C(R) we have the following short exact sequence
in R-Mod.

0→ N → Q⊗R N → Q/R⊗R N → 0 (3.2)

We apply (M ⊗R −) to the short exact sequence (3.2) to get the following
short exact sequence (3.3).

0 = TorR2 (M,Q/R⊗R N)→ TorR1 (M,N)→ TorR1 (M,Q⊗R N) = 0 (3.3)

The first term vanishes as M ∈ F1(R) and the last term vanishes as M ∈
|C(Q) and N ∈ C(R) implies Q⊗RN ∈ C(Q) by Lemma 3.1.7(ii). Therefore
the centre term vanishes for every N ∈ C(R) so we have shown that M ∈
|C(R).

The final statement follows as if f.dimQ = 0, P1(mod-Q) = P0(mod-Q).
Therefore C(Q) = P0(mod-Q)| = Q-Mod.

We now state some consequences that were already known for the class
P1(R) when f. dimQ = 0.

Proposition 3.1.9. [11, Corollary 6.8] Let R be a commutative ring such
that f. dimQ = 0. The following are equivalent

(i) lim−→P1(R) = F1(R).

(ii) F.w. dimQ = 0

Proof. First note that for every M ∈ R-Mod and Z ∈ Q-Mod we have
TorR1 (M,Z) ∼= TorQ1 (M ⊗R Q,Z) by Equation 1.5.
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(i) ⇒ (ii) We show that F1(Q) = F0(Q). Since Q is a flat R-module,
every flat Q-module is flat as an R-module. Let X ∈ F1(Q), then view-
ing X as an R-module, X ∈ F1(R). Thus, by combining the assump-
tion lim−→P1(R) = F1(R) and Proposition 3.1.8, F1 ⊆ |Q-Mod, therefore
X ∈ F0(Q).

(ii)⇒(i) Let M ∈ F1(R). If F.w.dimQ = 0, then M ⊗R Q is a flat Q-
module, hence, F1 ⊆| Q-Mod and thus, lim−→P1 = F1, by Proposition 3.1.8.

Proposition 3.1.10. Let R be a commutative ring such that Q is a perfect
ring. The following are equivalent.

(i) P1 is closed under direct limits.

(ii) P1 = F1.

(iii) R is an almost perfect ring.

Proof. The equivalence (i) ⇔ (ii) follows by Proposition 3.1.9.

The equivalence (ii) ⇔ (iii) is proved in [26] or [13, Proposition 8.5].

We note some consequences for certain almost perfect rings. Our results
in the next section regard semihereditary rings and valuation domains, in
particular in Subsection 3.2.2.

Corollary 3.1.11. Let R be a commutative ring. Then the following hold.

(i) If R is an almost perfect semihereditary ring, then R is hereditary.

(ii) If R is an almost perfect valuation domain, it is a discrete valuation
domain.

Proof. (i) This follows by the equivalence of (i) and (iii) in Proposition 3.1.10
and Lemma 3.2.6.

(ii) This follows by [16, Theorem 4.4 and Proposition 4.5], as a noetherian
valuation domain is a discrete valuation domain.

We note that there exist commutative (hereditary) rings with non-perfect
total quotient ring, therefore it is necessary to impose the condition that the
classical ring of quotients is perfect.

Example 3.1.12. In [17, 5.1] it is shown that there is a totally disconnected
topological space X whose ring of continuous functions K is Von Neumann
regular and hereditary. Moreover, every regular element of K is invertible.
Hence K coincides with its own quotient ring and P1 = F0 = Mod-K, but
K is not perfect, since it is not semisimple.



54 CHAPTER 3. THE CLASS P1(R)

3.2 When P1(R) is covering

The purpose of this section is to show that if R is a semihereditary com-
mutative ring, P1(R) is covering if and only if P1(R) is closed under direct
limits. This section will be divided into three subsections. First in Subsec-
tion 3.2.1 we collect some facts about when P1(R) is a covering class, and
in particular state consequences for Mod-Q where Q is the ring of quotients
of R. Next we discuss semihereditary rings and state some useful theorems
in Subsection 3.2.2. In the final Subsection 3.2.3, we assume that R is semi-
hereditary and P1(R) is covering, and we will show that R is hereditary,
thus P1(R) is closed under direct limits.

3.2.1 Classical rings of quotients when P1(R) is covering

We restate the following theorem in a way which will be more convenient to
us.

Theorem 3.2.1. [11, Theorem 7.2] Let R be a ring with an ℵ0-noetherian
classical ring of quotients Q such that f.dimQ = 0. Then F.dimQ = 0 if
and only if (P1(R),B) is of finite type.

Moreover, in this case B = D, the class of divisible modules.

Remark 3.2.2. When R is a commutative domain, the classical ring of quo-
tients Q is a field, so the conditions of Theorem 3.2.1 are satisfied. Therefore
B = D, the class of divisible modules and thus is closed under direct limits
and the cotorsion pair (P1(R),B) is of finite type. Furthermore by The-
orem 1.3.6 P1(R) is covering if and only if P1(R) is closed under direct
limits.

However, the result that P1(R) is closed under direct limits when P1(R)
is covering for when R is a commutative domain can be proved easily without
referring to Theorem 1.3.6. For commutative domains, the proof is even
easier using classical Matlis equivalence and some theorems about strongly
flat covers. We do not include an explicit proof here, as it will follow for
arbitrary commutative rings from Theorem 7.3.16 and from the properties
of almost perfect domains, see Proposition 3.1.10.

Lemma 3.2.3. Let R be a commutative ring. Then B(R) ∩ Mod-Q =
P1(Q)⊥.

Proof. Fix some P ∈ P1(R) and B ∈ Mod-Q. Then there is the following
natural bijection.

Ext1
R(P,B) ∼= Ext1

Q(P ⊗R Q,B)

If B ∈ B(R), then the left-hand side vanishes, thus B ∈ P1(Q)⊥, as every
module in P1(Q) is of the form P⊗RQ for some P ∈ P1(R) by Lemma 3.1.4.
Conversely, if B ∈ P1(Q)⊥, then the right-hand side vanishes, so we conclude
that B ∈ B(R) via the isomorphism.
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We now find some consequences of when P1(R) is covering.

Lemma 3.2.4. Let R be a commutative ring and let S be a multiplicative
subset of R. Then the following hold.

(i) If R[S−1] has a P1(R)-cover, then p. dimRR[S−1] ≤ 1.

(ii) If M ∈ P1(R) and M⊗RR[S−1] admits a P1(R)-cover, then p. dimR(M⊗R
R[S−1]) ≤ 1.

(iii) Suppose P1(R) is covering. Let S, T be multiplicative systems of R

with S ⊆ Σ. Then p. dimR

R[S−1]⊗R R[T−1]

R[T−1]
≤ 1.

Proof. (i) Let the following be a P1(R)-cover of R[S−1].

0→ Y → A→ R[S−1]→ 0 (3.4)

By Example 2.2.10, both A and Y are R[S−1]-modules as well. Thus (3.4)
is an exact sequence of R[S−1]-modules, hence it splits. We conclude that
R[S−1] is a direct summand of A as an R-module, hence p. dimR[S−1] ≤ 1.

(ii)Suppose M ∈ P1(R) and let the following be a P1(R)-cover of M ⊗R
R[S−1].

0→ Y → A→M ⊗R R[S−1]→ 0 (3.5)

As in (i), we conclude by Example 2.2.10 that the sequence (3.5) is in
Mod-R[S−1]. Thus, Ext1

R[S−1](M ⊗R R[S−1], Y ) ∼= Ext1
R(M,Y ) = 0 since

Y ∈ P1(R)⊥ and M ∈ P1(R). Therefore M ⊗R R[S−1] is a summand of A,
hence it has projective dimension at most one.

(iii)Suppose P1(R) is covering in Mod-R. By (i) p. dimRR[S−1]/R ≤ 1
as S ⊆ Σ, hence (iii) follows by (ii).

Lemma 3.2.5. Let R be a commutative ring and suppose P1(R) is covering
in Mod-R. Then the following hold.

(i) P1(R) ∩Mod-Q = P1(Q)

(ii) P1(Q) is covering in Mod-Q.

Proof. (i) The inclusion P1(R)∩Mod-Q ⊆ P1(Q) is clear. For the converse,
take M ∈ P1(Q) and consider the following P1(R)-cover of M .

0→ B → A
φ→M → 0 (3.6)

Then by Example 2.2.10, A,B ∈ Mod-Q. From Lemma 3.2.3, B ∈ P1(Q)⊥,
so φ splits, so M must be in P1(R).

(ii) Fix a Q-module M and let its P1(R)-cover be as in (3.6). Then
again by Example 2.2.10, (3.6) is a short exact sequence in Mod-Q, and by
(i) and Lemma 3.2.3, A ∈ P1(Q) and B ∈ P1(Q)⊥ so φ must be a P1(Q)-
precover. To see that is a cover, any endomorphism f of A in Mod-Q is also
a homomorphism in Mod-R, therefore φ is also a P1(Q)-cover.
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3.2.2 Properties of semihereditary rings

The following lemma holds symmetrically for the case of a left semihereditary
ring.

Lemma 3.2.6. Suppose R is a right semihereditary ring. Then P1(R) is
closed under direct limits if and only if R is right hereditary.

Proof. Recall that R is right hereditary if and only if P1(R) coincides with
the category of R-modules Mod-R.

Every R-module can be written as a direct limit of finitely presented
modules, and as by assumption R is semihereditary, the finitely presented
modules are contained in P1(R). Thus, every module M is a direct limit
of (finitely presented) modules in P1(R), so Mod-R ⊆ lim−→P1(R). There-
fore for a commutative semihereditary ring we have the inclusions P1(R) ⊆
lim−→P1(R) = Mod-R.

If R is hereditary, then P1(R) = lim−→P1(R) as P1(R) = Mod-R. Con-
versely, if P1(R) = lim−→P1(R) then P1(R) = Mod-R, so the conclusion fol-
lows.

We now state some equivalent characterisations of commutative semi-
hereditary rings. We found it interesting to include the rings of weak global
dimension one as the semihereditary rings form a subclass of these rings.
We first recall some definitions.

A valutation domain is a commutative domain R such that for every
x ∈ Q(R), the quotient field of R, x ∈ R or x−1 ∈ R. Equivalently, all the
ideals of R are totally ordered by inclusion.

A discrete valuation domain is a local principal ideal domain which is
not a field. A discrete valuation has exactly two prime ideals: the zero ideal
and its unique maximal ideal. Moreover, a discrete valuation domain is a
valuation domain.

Theorem 3.2.7. [28, Corollary 4.2.6] Let R be a commutative ring. Then
w. gl. dimR ≤ 1 if and only if Rp is a valuation domain for all prime ideals
p of R.

Proposition 3.2.8. [28, Corollary 4.2.19] The following are equivalent for
a commutative ring R where Q(R) denotes the classical ring of quotients of
R.

1. R is semihereditary.

2. Q(R) is Von Neumann regular and for every prime ideal p, Rp is a
valuation domain.



3.2. WHEN P1(R) IS COVERING 57

Moreover, R is a reduced ring (that is it does not contain any nilpotent
elements) and w. gl. dimR ≤ 1.

We will use the following characterisation of hereditary rings.

Theorem 3.2.9. [28, Corollary 4.2.20],[40, Theorem 1.2] Let R be a com-
mutative ring. Then R is hereditary if and only if Q(R) is hereditary and
any ideal of R that is not contained in any minimal prime ideal of R is
projective.

We also have the following proposition from a paper of Vasconcelos.

Proposition 3.2.10. [40, Proposition 1.1] Let R be a commutative ring
with a projective ideal I. If I is not contained in any minimal prime ideal
it is finitely generated.

The following proposition in modelled on Cohen’s Theorem which states
that if all prime ideals are finitely generated, then all ideals are finitely
generated, providing a sufficient condition for a ring to be noetherian, for
example see [31, Theorem 8]. In the following we consider only the regular
ideals.

Proposition 3.2.11. If every regular prime ideal is finitely generated, then
every regular ideal is finitely generated.

Proof. Let Θ be the collection of regular ideals which are not finitely gen-
erated, {Jα} with a partial ordering by inclusion and assume that Θ is not
empty. Let Φ be a totally ordered subset of Θ. We first claim that Φ has an
upper bound in Θ, which implies that the set Θ has a maximal element by
Zorn’s Lemma. Set I :=

S
Jα∈Φ Jα to be an upper bound of Φ. Clearly I con-

tains a regular element, so it remains to show that I is not finitely generated.
Suppose for contradiction that I has a finite set of generators {a1, . . . , an}.
Then there exists a Jα ∈ Φ such that I =< a1, . . . , an >⊆ Jα ⊆ I, therefore
Jα is finitely generated which is a contradiction.

Thus we can apply Zorn’s Lemma, so we fix a maximal element L of Θ.
We will show that such a maximal element must be prime, so that Θ must
be empty. Fix a maximal element L of Θ, and suppose it is not prime, that
is there exist two elements a, b ∈ R \L such that ab ∈ L. Then both L+ aR
and L+bR strictly contain L, so they are both finitely generated. Therefore,
there exist x1, . . . , xn ∈ L and y1, . . . , yn ∈ R so that the following forms a
generating set of L+ aR.

{x1 + ay1, . . . , xn + ayn}

Consider the ideal H := (L : a) = {r | ra ∈ L}. Then L ( L + bR ⊆ H,
therefore also H is finitely generated, and so also aH is finitely generated.
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We now will show that L =< x1, . . . , xn > +aH so L is finitely generated.
Take an element r ∈ L ( L+aR which can be written in the following form.

r = s1(x1 + ay1) + · · ·+ sn(xn + ayn) = Σisixi + a Σisiyi

In fact, Σisiyi ∈ H as a Σisiyi = r − Σisixi ∈ L. Therefore r ∈<
x1, . . . , xn > +aH, so L ⊆< x1, . . . , xn > +aH. The converse inclusion is
clear, so L =< x1, . . . , xn > +aH which implies that L is finitely generated
as H is, a contradiction. Therefore L is prime, and so by the assumption
that every prime ideal is finitely generated, Θ must be empty.

The following lemma is due to Glaz.

Lemma 3.2.12. Let R be a semihereditary commutative ring and I an ideal
of R. Then I is contained in a minimal prime ideal of R if and only if I is
not regular.

Proof. First suppose that I ⊆ p where p is a minimal prime ideal of R. By
assumption R is semihereditary, therefore Rp is a domain. Therefore pp = 0
as the prime ideals of Rp are in bijective correspondence with the prime
ideals of R contained in p. Therefore also Ip = 0, so for each a ∈ I, there
exists a s /∈ p such that as = 0. Therefore for every a ∈ I, a /∈ Σ, that is I
is not regular.

For the converse, suppose that I is not regular. This proof follows a
technique of Kaplansky, see [31, Theorem 1]. Take an ideal L such that
I ⊆ L, L ∩ Σ = ∅ and L is maximal with respect to this property. Then we
claim that L is prime, which we will show by contradiction.

Suppose that there exist a, b /∈ L such that ab ∈ L. Then L + aR and
L + bR strictly contain L, and so by the maximality of L with respect to
L ∩Σ = ∅, there exist s1 ∈ L+ aR and s2 ∈ L+ bR. Rewrite s1 as l1 + ar1

and s2 as l2 + br2 and consider the following.

s1s2 = (l1 + ar1)(l2 + br2)

Clearly the right-hand side is contained in L as l1, l2 ∈ L and ab ∈ L.
Therefore s1s2 ∈ L ∩ Σ, a contradiction.

It remains to show that L is minimal. Suppose there exists a prime p
such that p ⊆ L. Then pQ ⊆ LQ ( Q, where the last strict inclusion follows
as L is not regular. However, as R is semihereditary, Q is Von Neumann
regular by Proposition 3.2.8 and therefore has Krull dimension zero. As
pQ ⊆ LQ are both primes of Q by the bijective correspondence between
the non-regular primes of R and the primes of Q, p = L, so L must be
minimal.
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3.2.3 When P1(R) is covering and semihereditary rings

We are now ready to show that if R is a semihereditary commutative ring
such that P1(R) is covering, then R is hereditary or equivalently P1(R) is
closed under direct limits.

We first show that if P1(R) is covering for a Von Neumann regular com-
mutative ring R, then P1(R) is closed under direct limits.

Proposition 3.2.13. Let R be a Von Neumann regular commutative ring.
Then P1(R) is covering if and only if R is a hereditary ring.

Proof. R is semi-hereditary, so it remains to show that every infinitely gen-
erated ideal I of R is projective. Let the following be a P1(R)-cover of
R/I.

0→ B → A→ R/I → 0 (3.7)

The ideal I is the sum of its finitely generated ideals which are all of the
form Re, for some idempotent element e ∈ R. For every idempotent element
e ∈ I, we have Ae ⊆ B, hence by Corollary 1.2.10 Ae = 0. We conclude
that AI = 0. On the other hand, A = B + xR for some element x ∈ A such
that xR ∩ B = xI. Thus B ∩ xR = 0, since AI = 0 and we infer that the
the sequence (3.7) splits, thus p.dim R/I ≤ 1 and I is projective.

Note that if R is a Von Neumann regular commutative ring such that
P1(R) is closed under direct limits, the ring R is hereditary as F0(R) ⊆
P1(R).

By Proposition 3.2.8, if R is semihereditary then Rp is a commutative
valuation ring for each p ∈ SpecR. Thus Rp is semihereditary (every finitely
generated ideal is principal so is free). Statement (i) clearly holds for all
localisations at a multiplicative subset.

Lemma 3.2.14. Let R be a commutative semihereditary ring and p a prime
ideal of R. Then the following statements hold.

(i) For every M ∈ P1(R), M ⊗R Rp ∈ P1(Rp)

(ii) For every N ∈ B(R), N ⊗R Rp ∈ B(Rp).

(iii) If P1(R) is covering then P1(Rp) is covering.

Proof. (i) Clear as Rp is flat.
(ii) As Rp is a commutative domain, the cotorsion pair (P1(Rp),B(Rp)) is of
finite type, and B(Rp) coincides with the divisible modules by Theorem 3.2.1.
Thus it is sufficient to show that for every N ∈ B(R), Ext1

Rp
(Rp/aRp, N ⊗R

Rp) = 0 for each a ∈ Rp. Without loss of generality, we can assume that
a ∈ R, since if a = x/y with y /∈ p, Rp/aRp

∼= Rp/xRp. As R is commutative
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and R/aR ∈ P1(mod-R) since R is semihereditary, there is the following
isomorphism.

Ext1
R(R/aR,N)p ∼= Ext1

Rp
(Rp/aRp, Np)

As R/aR ∈ P1(R), the left-hand side vanishes as required.
(iii) Consider the following P1(R)-cover of M ∈ Mod-Rp.

0→ B → A
φ→M → 0 (3.8)

Then A,B ∈ Mod-Rp by Example 2.2.10, and by (i) and (ii), A ∈ P1(Rp)
and B ∈ B(Rp). Therefore, (3.8) is also a P1(Rp)-precover of M in Mod-Rp.
Moreover, it follows that any Rp-module homomorphism is also an R-module
homomorphism, thus (3.8) is a P1(R)-cover of M .

Lemma 3.2.15. Let R be a commutative semihereditary ring such that
P1(R) is covering. Then for each prime p, the ring Rp is a discrete valuation
domain (or a field) and so is an almost perfect hereditary ring. Therefore,
Mod-Rp ⊆ P1(R).

As a consequence, every maximal ideal m in R is projective.

Proof. First note that as Rp is a valuation domain, it is also semiheredi-
tary. By Lemma 3.2.14(iii), P1(Rp) is covering. Therefore by Remark 3.2.2,
P1(Rp) is closed under direct limits, so by Proposition 3.1.10, Rp is almost
perfect. Thus by Corollary 3.1.11, Rp is a discrete valuation domain.

To see that Mod-Rp ⊆ P1(R), consider an Rp-module M with the fol-
lowing P1(R)-cover.

0→ B → A
φ→M → 0 (3.9)

By Example 2.2.10, the short exact sequence (3.9) is also a P1(Rp)-cover of
M in Mod-Rp by Lemma 3.2.14. We have just shown that Rp is hereditary,
so M ∈ P1(Rp), so the sequence must split. We conclude that as A ∈ P1(R),
also M ∈ P1(R) for any Rp-module M .

For the second statement, let m be a maximal ideal of R. Once one ob-
serves that R/m is a Rm-module, it follows that m is projective as Mod-Rm ⊆
P1(R) by the first part of this lemma.

Lemma 3.2.16. Let R be a commutative semihereditary ring such that
P1(R) is covering. Then every regular prime ideal is maximal.

Proof. Take p to be a regular prime ideal of R. Then by Lemma 3.2.12,
p cannot be minimal. Fix a maximal ideal m such that p ⊆ m. Then by
Lemma 3.2.15 in the localisation Rm, there are exactly two prime ideals, as
Rm is a discrete valuation domain by Lemma 3.2.15 and m is not minimal
by assumption. These are the prime ideals 0 and mm, which are in bijective
correspondence with the prime ideals of R contained in m. As p cannot be
minimal, one concludes that p = m, therefore p is maximal.
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The following corollary follows easily. It states that all primes not con-
tained in a minimal prime ideal are finitely generated.

Corollary 3.2.17. Let R be a commutative semihereditary ring such that
P1(R) is covering. Then every regular prime (hence maximal) ideal is finitely
generated.

Proof. Let R be as in the statement of the corollary. From Lemma 3.2.16
we know that all regular primes are maximal and therefore projective by
Lemma 3.2.15. By assumptionR is semihereditary, so we can apply Lemma 3.2.12
to conclude that regular primes are not minimal. Thus by Proposition 3.2.10,
as the regular primes are not contained in any minimal prime ideals and are
projective, they are finitely generated.

We now can state the main result of this section.

Theorem 3.2.18. Let R be a commutative semihereditary ring such that
P1(R) is covering. Then R is hereditary. Therefore P1(R) is closed under
direct limits.

Proof. We use Theorem 3.2.9 to show that R must be hereditary. First
we show that the the classical ring of quotients, Q, is hereditary. From
Lemma 3.2.5 and the assumption that P1(R) is covering, we know that
P1(Q) is covering. Additionally, as R is semihereditary, we know that Q is
Von Neumann regular by Proposition 3.2.8. Therefore, Q must be hereditary
by Proposition 3.2.13.

Now we show that any ideal not contained in a minimal prime ideal is
projective. By Lemma 3.2.12, it is enough to show that any regular ideal is
projective, which follows if any regular ideal is finitely generated as R is semi-
hereditary. By Proposition 3.2.11, it is sufficient to show that the regular
prime ideals are finitely generated, which follows from Corollary 3.2.17. We
conclude that all ideals not contained in a minimal prime ideal are finitely
generated, and hence are projective as R is semihereditary.



Chapter 4

Gabriel topologies and
H-h-local rings

One of the main interests in this thesis are the enveloping and covering
properties of 1-tilting cotorsion pairs over commutative rings. As discussed
in Section 1.7, these 1-tilting cotorsion pairs over commutative rings are in
bijective correspondence with faithful finitely generated Gabriel topologies.
Therefore, for Chapter 6 and Chapter 7 we will require some more prop-
erties of Gabriel topologies, in particular faithful finitely generated Gabriel
topologies, although often these properties are true in more generality. These
results are outlined in Section 4.1.

In Section 4.2, we study H-h-local rings with respect to a linear topology
H on a commutative ring R. The H-h-local rings are a generalisation of the
S-h-local rings with respect to a multiplicative subset S of R, which were
defined and studied in [13, Section 4]. The results and proofs on S-h-local
rings can be extended in a straightforward way to a linear topology H. The
important property of H-h-local rings is that they can be characterised by
the properties of the H-discrete modules (or H-torsion when H is a Gabriel
topology), as seen in Proposition 4.2.6 which is the main result of Section 4.2.

Eventually, we will use these results for the case of a Gabriel topology
associated to a 1-tilting class, but we found it interesting to generalise to
the case of a linear topology. That is, we only require that the associated
hereditary pretorsion class (in this case the H-pretorsion class) is closed
under direct sums, submodules and quotients. In other words, the additional
property of closure under extensions as in the case of Gabriel topologies is
not required for Proposition 4.2.6.

4.1 Some properties of Gabriel topologies

We note that in the following two lemmas, all statements hold in the non-
commutative case except for Lemma 4.1.1 (iii). Otherwise, all the Gabriel
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topologies will be right Gabriel topologies, therefore the associated torsion
pair (EG ,FG) are right R-modules and the G-divisible modules are left R-
modules.

We will often refer to the following exact sequence where ψR is the ring
of quotients homomorphism discussed in Section 1.7. We often will denote
tG(M) simply by t(M) and when clear from the context, ψ instead of ψR.

0→ tG(R)→ R
ψR→ RG → RG/ψR(R)→ 0 (4.1)

Lemma 4.1.1. Suppose G is a right Gabriel topology. Then the following
statements hold.

(i) If M is a G-torsion (right) R-module and D is a G-divisible module
then M ⊗R D = 0.

(ii) If N is a G-torsion-free module then the natural map
idN ⊗RψR : N → N⊗RRG is a monomorphism and N → N⊗RR/t(R)
is an isomorphism.

(iii) Suppose R is commutative. If D is both G-divisible and G-torsion-free,
then D is a RG-module and D ∼= D ⊗R RG via the natural map
idD ⊗RψR : D ⊗R R→ D ⊗R RG.

(iv) If X is an R-R-bimodule and is G-torsion, then M ⊗RX is G-torsion
for every M ∈ Mod-R.

Proof. (i) This is from [39, Proposition VI.9.1]. Suppose M is a G-torsion
module and D is a G-divisible module. Then there is the following surjection.M

α∈A
Jα∈G

R/Jα →M → 0

As R/J ⊗R D = 0 for every J ∈ G by definition, the conclusion follows by
applying (−⊗R D) to the above sequence.
(ii) Consider the following commuting triangle where N is G-torsion-free in
Mod-R.

0

N
idN ⊗RψR //

ψN

N ⊗R RG

ΘN
vv

NG

Then ψN is a monomorphism and since ψN = ΘN ◦ (idN ⊗RψR), also
idN ⊗RψR is a monomorphism. Moreover, we know that idN ⊗RψR factors
as follows.

N N ⊗R R/t(R)→ N ⊗R RG
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Thus also N N ⊗R R/t(R) is a monomorphism, and therefore is an iso-
morphism.
(iii) Consider the following commuting diagram where the horizontal se-
quence is exact by (i) as D is G-torsion-free.

0

0 // D
idD ⊗RψR //

ψD

D ⊗R RG

ΘDww

// D ⊗R RG/ψ(R) // 0

DG

Additionally, D ⊗R RG/ψ(R) = 0, since RG/ψ(R) is G-torsion. Therefore
the following map is an isomorphism.

idD ⊗RψR : D → D ⊗R RG

(iv)Fix X a G-torsion R-R-bimodule and M ∈ Mod-R. Take a free presen-
tation of M , R(α) → M → 0. Apply (− ⊗R X) to find the following exact
sequence.

X(α) →M ⊗R X → 0

As X(α) is G-torsion and the G-torsion modules are closed under quotients,
also M ⊗R X is G-torsion.

Lemma 4.1.2. Suppose G is Gabriel topology of right ideals. Then the
following hold.

(i) If p. dimMR ≤ 1, then TorR1 (M,RG) = 0.

(ii) If p. dimMR ≤ 1 and M is G-torsion-free, then
TorR1 (M,RG) = 0 = TorR1 (M,RG/ψ(R)).

Proof. (i) By assumption p. dimMR ≤ 1, so there is the following projective
resolution of M , where P0, P1 are projective right R-modules.

0→ P1
γ→ P0 →M → 0 (4.2)

We first note that from the following short exact sequence, TorR1 (M,R/t(R))
is G-torsion, as it is contained in the G-torsion module M ⊗R t(R) (see
Lemma 4.1.1(iv)) and is itself a right R-module as R/t(R) is an R-R-
bimodule.

0→ TorR1 (M,R/t(R))→M ⊗R t(R)→M →M ⊗R R/t(R)→ 0
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Next, we note that from the following short exact sequence, TorR1 (M,RG) is
G-torsion-free as it is contained in the G-torsion-free module P1 ⊗R RG .

0→ TorR1 (M,RG)→ P1 ⊗R RG → P0 ⊗R RG →M ⊗R RG → 0 (4.3)

Thus from the following short exact sequence, TorR1 (M,R/t(R)) is G-torsion-
free as by assumption TorR2 (M,RG/ψ(R)) = 0. Therefore we conclude that
TorR1 (M,R/t(R)) = 0 as it is both G-torsion and G-torsion-free.

0→ TorR1 (M,R/t(R))→ TorR1 (M,RG)→ TorR1 (M,RG/ψ(R)) (4.4)

Moreover, also TorR1 (M,RG/ψ(R)) is G-torsion by applying (−⊗RRG/ψ(R))
to the short exact sequence (4.2). Therefore TorR1 (M,RG) = 0 as it is both
G-torsion by (4.4) and G-torsion-free.

(ii) Consider the following commuting triangle where idM ⊗RψR is a
monomorphism by Lemma 4.1.1(ii).

0

0 //M
idM ⊗RψR //

ψM

M ⊗R RG

ΘMvv
MG

By applying the functor (M⊗R−) to the short exact sequence (4.1), we have
the following exact sequence, as the connecting map TorR1 (M,RG/ψ(R))→
M ⊗R R/t(R) is zero.

0 = TorR1 (M,RG) // TorR1 (M,RG/ψ(R)) // 0

By (i), TorR1 (M,RG) = 0, and idM ⊗RψR is a monomorphism by thus also
TorR1 (M,RG/ψ(R)) = 0 as these two modules are isomorphic from the above
short exact sequence.

Lemma 4.1.3. Consider a right Gabriel topology G. Let M be a G-torsion
module and N a G-closed module in Mod-R. Then Ext1

R(M,N) = 0.

Proof. Let G be a Gabriel topology of right ideals and E its associated hered-
itary torsion class in Mod-R which is generated by the cyclic modules R/J
where J ∈ G. Therefore, for M a G-torsion module, there exists a presenta-
tion of M as follows.

0→ H →
M
Jα∈G

R/Jα →M → 0 (4.5)
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The module H is G-torsion since E is a hereditary torsion class. Take a
G-closed module N and apply the functor HomR(−, N) to (4.5).

0 = HomR(H,N)→ Ext1
R(M,N)→ Ext1

R(
M

R/Jα, N) = 0 (4.6)

The first abelian group of the sequence (4.6) vanishes since H is G-torsion
and the last abelian group vanishes since direct sums commute with ExtiR(−, N)
and Ext1

R(R/Jα, N) = 0 for every Jα ∈ G. Therefore Ext1
R(M,N) = 0 as

desired.

We note that in the case of a Gabriel topology with a basis of finitely
generated ideals, Lemma 4.1.2 can be generalised slightly to include all mod-
ules of w. dimMR ≤ 1. This interests us as the Gabriel topologies associated
to silting classes and 1-tilting classes are finitely generated.

Lemma 4.1.4. Suppose G is a right Gabriel topology with a basis of finitely
generated ideals. Then the following hold.

(i) If p. dimMR ≤ 1, then MR ⊗R RG is G-torsion-free.

(ii) If w.dimMR ≤ 1, then TorR1 (M,RG) = 0.

(iii) If w.dimMR ≤ 1 and M is G-torsion-free, then
TorR1 (M,RG) = 0 = TorR1 (M,RG/ψ(R)).

Proof. For (i), first note that for any projective right R-module PR, PR ⊗R
RG ≤

⊕
R

(α)
G . By the assumption that G is finitely generated, by Proposi-

tion 1.7.2, we have that arbitrary direct sums of copies of G-closed modules
are G-closed, thus we conclude that PR⊗RRG is G-closed. Now consider the
presentation 0 → P1 → P0 → M → 0 of M with P0, P1 projective. Then
0→ P1⊗RRG → P0⊗RRG →M⊗RRG → 0 is exact as TorR1 (M,RG) = 0 by
Lemma 4.1.2(i). As the middle term P0⊗RRG is G-torsion-free and P1⊗RRG
is G-closed, it follows that M ⊗R RG is G-torsion-free.

For (ii), it is enough to show that for every flat right R-module F , F ⊗R
RG is G-torsion-free, then by an identical argument to that in Lemma 4.1.2,
the conclusion follows. Explicitly, for (ii) one finds that TorR1 (M,RG) is
G-torsion-free and at the same time a submodule of the G-torsion module
TorR1 (M,RG/ψ(R)), and similarly for (iii).

We now show that for every flat right R-module F , F ⊗R RG is G-
torsion-free. By assumption, G has a basis of finitely generated ideals. By
Proposition 1.7.2, the G-torsion-free modules are closed under direct limits.
As F can be seen as a direct limit of projective modules, and the tensor
product commutes with direct limits, F ⊗R RG is a direct limit of modules
Pα⊗RRG with Pα projective. Each Pα⊗RRG is G-torsion-free, thus F⊗RRG
is a direct limit of G-torsion-free modules, thus is itself G-torsion-free by
Proposition 1.7.2.
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The following lemma is taken from [39, Exercise IX.1.4], although we
state the lemma in a slightly more convenient way for us. We let E(M)
denote the injective envelope of M and E(M)/M the cokernel of the natural
inclusion map.

Lemma 4.1.5. Let G be a right Gabriel topology on R. Then the following
are equivalent.

(i) The functor q : Mod-R→ Mod-RG is exact.

(ii) The module E(M)/M is G-closed for every G-closed module M .

(iii) For every G-closed module M and each J ∈ G, Ext2
R(R/J,M) = 0.

Proof. We will show (i) =⇒ (ii)⇔(iii) =⇒ (i) The equivalence of (ii) and (iii)
follows applying HomR(R/J,−) to the injective envelope of M . Therefore
we have the following isomorphism for each J ∈ G.

0→ Ext1
R(R/J,E(M)/M)→ Ext2

R(R/J,M)→ 0

For the equivalence of (i) and (iii), we begin by assuming that q is exact.
Fix a J ∈ G and take a G-closed R-module M . Let 0 → M → E(M) →
E(M)/M → 0 be the injective envelope of M in Mod-R. Then since M
is essential in E(M), E(M) must be G-torsion-free and thus is G-closed.
Thus we have the following commuting diagram, where the exactness of the
bottom row follows by our assumption that q is exact.

0 //M //

ψM∼=

E(M) //

ψE(M)∼=

E(M)/M //

ψE(M)/M

0

0 //MG // E(M)G
π // (E(M)/M)G // 0

It follows by the snake lemma that E(M)/M is isomorphic to its module of
quotients so is G-closed. Therefore, by applying the functor HomR(R/J,−)
to the injective envelope of M , we find the following sequence is exact and
so the conclusion follows.

0 = Ext1
R(R/J,E(M)/M)→ Ext2

R(R/J,M)→ Ext2
R(R/J,E(M)) = 0

For the converse, assume that for every G-closed module M and every J ∈
G, Ext2

R(R/J,M) = 0. First note that by assumption that the G-closed
modules are closed under cokernels of monomorphisms, which follows easily
by applying HomR(R/J,−). Now consider q applied to the exact sequence

0 → L
f→ M

g→ N → 0. Recall that q is left exact, so it remains only
to show that the induced map gG is a surjection. We have the following
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commuting diagram where the top row is in Mod-R and the bottom row is
in Mod-RG .

0 // L
f //

ψL

M
g //

ψM

N //

ψN

0

0 // LG
fG //MG

gG // NG

(4.7)

As R → RG is a ring homomorphism and the canonical homomorphisms
ψL, ψM , ψN are R-linear, the diagram can be considered an exact sequence
in Mod-R (and so also gG). Therefore it is sufficient to show that gG is a
surjection in Mod-R, and it will follow that it is a surjection in Mod-RG .
Firstly, the canonical homomorphisms ψL and ψM induce a map h : N →
Coker fG and k : Coker fG → NG by the universal property of the cokernel
as in the following commuting diagram.

0 // L
f //

ψL

M
g //

ψM

N //

h

0

0 // LG
fG //MG

π // Coker fG //

k

0

0 // LG
fG //MG

gG // NG

(4.8)

Thus from (4.8) khg = kπψM = gGψM . Additionally from (4.7) ψNg =
gGψM , so by the surjectivity of g, kh = ψN . We would like to show that
k : Coker fGNG is an epimorphism, forcing the bottom row of (4.8) to be
exact as we want.

By assumption Coker fG is G-closed. Additionally from Proposition 1.7.1we

have the isomorphism ψ∗
N : HomR(NG , X)

∼=→ HomR(N,X) for any G-closed
module X. It follows that below we have the existence and uniqueness of h0

and k0 such that h0ψN = h and kψN = ψN .

N
ψN //

h

NG

h0zz

N
ψN //

ψN

NG

k0}}
Coker fG NG

Since k0 is unique and both kh0 and idNG make the above-right triangle
commute, we conclude that kh0 = idNG . Therefore k is surjective, so also gG
must be surjective, as required.

Lemma 4.1.6. Let G be a right Gabriel topology and ψR : R → RG the
natural ring homomorphism. Then ψR is a ring epimorphism if and only if
RG ⊗R RG is G-torsion-free.
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Proof. If ψR is a ring epimorphism, then RG ∼= RG ⊗R RG , so RG is clearly
G-torsion-free. For the converse, by Lemma 4.1.1 (ii), the following is a short
exact sequence.

0→ RG
idRG ⊗RψR
→ RG ⊗R RG → RG ⊗R RG/ψ(R)→ 0

If RG ⊗R RG is G-torsion-free, then RG ⊗R RG/ψ(R) is G-torsion-free as
additionally RG is G-closed. Thus RG ⊗R RG/ψ(R) = 0 as it is both G-
torsion and G-torsion-free.

More generally, if every RG-module is G-torsion-free as an R-module,
then RG is a right perfect localisation, see [39, Exercise XI.6].

Next we want to show that if the ring of quotients is flat, the localisation
map must be an epimorphism of rings. We note that this doesn’t necessarily
mean that the Gabriel topology arises from a perfect localisation, as in the
following example.

Example 4.1.7. Let R be a valuation domain which has a (non-principal)
idempotent maximal ideal m. Consider the Gabriel topology G = {m, R} on
R. We claim that R→ RG is a flat ring epimorphism but G is not a perfect
localisation.

We first compute RG = lim−→HomR(m, R). Fix a map f : m → R, and
let ε : R → Q denote the inclusion of R in its field of fractions. Then there
exists a g : R → Q which makes the following diagram commute as Q is an
injective module.

0 // m
i //

f

R

g
R _

Q

We want to show that Im g ⊆ R, that is that g(1) ∈ R. As R is a valuation
domain, for every z ∈ Q, z ∈ R or z−1 ∈ R. Thus we suppose that g(1) :=
r/s for r, s ∈ R. If r/s ∈ R, we are done. If s/r ∈ R, then r/s = 1/t for
some t ∈ R. We will show that this t is necessarily a unit.

For every x ∈ m, g(x) ∈ R, so g(x) = x/t ∈ R. Therefore, m ⊆ tR,
but as m is maximal not principal, tR = R. Therefore, t is a unit, so
every map f extends uniquely to a map h : R → R. We conclude that
HomR(m, R) ∼= HomR(R,R), so RG ∼= R. Therefore, the map ψR : R → RG
is an isomorphism, so is clearly a flat ring epimorphism. Instead, RG is
clearly not G-divisible, as mR 6= R, so G is not a perfect Gabriel topology.
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Proposition 4.1.8. Let G be a finitely generated right Gabriel topology over
R. Suppose RG is flat as a left R-module. Then the localisation map R→ RG
is an epimorphism of rings.

Proof. By Lemma 4.1.6, it is enough to show that RG ⊗R RG is G-torsion-
free. As RRG is flat, it is a direct limit of free left R-modules Fα. Thus as
the tensor product commutes with direct limits, we have that RG ⊗R RG ∼=
lim−→α

(RG ⊗R Fα). Each RG ⊗R Fα is G-torsion-free, thus by the assumption
that G is finitely generated, by Proposition 1.7.2, also the direct limit of G-
torsion-free modules is G-torsion-free. Thus RG ⊗RRG is G-torsion-free.

Similarly, by Lemma 4.1.6 and Lemma 4.1.4(i), if G is a finitely gener-
ated Gabriel topology and p.dim(RG)R ≤ 1, then ψR : R → RG is a ring
epimorphism.

The following lemma will be useful when working with a faithful Gabriel
topology over a commutative ring that arises from a perfect localisation.

Lemma 4.1.9. Let R be a commutative ring, u : R→ U a flat injective ring
epimorphism, and G the associated Gabriel topology. Then the annihilators
of the elements of U/R form a sub-basis for the Gabriel topology G. That
is, for every J ∈ G there exist z1, z2, . . . , zn ∈ U such that\

0≤i≤n
AnnR(zi +R) ⊆ J.

Proof. Every ideal of the form AnnR(z+R) is an ideal in G since K = U/R
is G-torsion.

Fix an ideal J ∈ G. Then, U = JU , so 1U =
P

0≤i≤n aizi where ai ∈ J
and zi ∈ U . We claim that\

0≤i≤n
AnnR(zi +R) ⊆ J.

Take b ∈
T

0≤i≤n AnnR(zi +R). Then

b =
X

0≤i≤n
baizi ∈ J

since each bzi ∈ R, hence baizi ∈ J , and it follows that b ∈ J .

4.2 H-h-local rings

This section concerns a class of rings which includes the commutative local
rings and the h-local rings. We will be looking at H-h-local rings. The main
result of this section is that the H-h-local rings can be characterised by the
properties of the H-discrete modules, as will be shown in Proposition 4.2.6
which is the main result of this section.
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The following observations were made in [13, Section 4] but in the case
of a multiplicative subset of R. All the proofs can be extended easily to the
case of a linear topology H on a commutative ring R.

Definition 4.2.1. A ring R is H-h-local if for every J ∈ H, J is contained
only in finitely many maximal ideals of R and every prime ideal in H is
contained in only one maximal ideal.

We say that the ring R is H-h-nil if every element J ∈ H is contained
only in finitely many maximal ideals of R and every prime ideal of R in H
is maximal.

It is clear that every H-h-nil ring is H-h-local. We first give a sufficient
condition for a ring to be H-h-nil.

Lemma 4.2.2. Let H be a linear topology on R. If R/J is perfect for every
J ∈ H, then R is H-h-nil.

Proof. By Proposition 1.4.3, it follows that there are only finitely many max-
imal ideals of R/J thus each J ∈ H is contained in finitely many maximal
ideals of R.

Take a prime p ∈ H. Then R/p is a perfect domain, so is a field (by
the comment at the end of Proposition 1.4.3), so it follows that p must be
maximal.

Before continuing with linear topologies, we will need a well-known fact
about localisations and a corollary.

Lemma 4.2.3. [7, Exercise 3.3] Suppose S, T are multiplicative subsets of
a commutative ring R and T̄ is the image of T in R[S−1], or in other words
the multiplicative subset {(t/s)∼ ∈ R[S−1] | t ∈ T, s ∈ S} of R[S−1]. Then
R[(ST )−1] ∼= (R[S−1])[T̄−1].

Corollary 4.2.4. Let S be a multiplicative subset of a commutative ring R,
φS : R→ R[S−1] the localisation map and p, q where p = φ−1

S q be primes of
R and R[S−1] respectively, so p ∩ S = ∅. Then the localisation of R[S−1]
with respect to q and the localisation of R with respect to the prime p are
isomorphic as rings and as R-modules.

Proof. First fix a prime q of R[S−1] and a prime p of R as above.
The image of R\p can be considered as a multiplicative subset of R[S−1]

via the natural ring map φS . Also, as q = φS(p)(R[S−1]), φS(R \ p) is
contained in R[S−1] \ q.

Moreover, every element of R[S−1] \ q can be written as a multiple of
φS(R\p) and a unit of R[S−1], thus the localisations of R[S−1] with respect
to φS(R\p) and with respect to R[S−1]\q are the same, so (R[S−1])[φS(R\
p)−1] = (R[S−1])[(R[S−1] \ q)−1]. Therefore, setting S to be S and T to be
R \ p in Lemma 4.2.3, we find ST = S(R \ p) = R \ p = T as p∩ S = ∅. We
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conclude that there is the following isomorphisms of rings. As all the ring
maps are R-linear, it is also true for R-modules.

Rp = R[(ST )−1] ∼= (R[S−1])[T̄−1] = R[S−1]q

The following holds for any linear topology on R of a commutative ring.

Lemma 4.2.5. Let H be a linear topology on R such that every prime in H
is contained in only one maximal ideal. Then for m 6= n maximal ideals of
R, the following hold.

(i) J(Rm ⊗R Rn) = Rm ⊗R Rn for each J ∈ H.

(ii) For each H-discrete module N , N ⊗R Rm ⊗R Rn = 0.

Proof. Let φ : R→ Rm ⊗R Rn denote the natural ring map. For (i), first fix
J ∈ H. Take q a prime ideal in Rm ⊗R Rn. Then there is a unique prime
p of R such that p ⊆ m ∩ n and q = p(Rm ⊗R Rn). By assumption, p /∈ H
as it is a prime contained in two maximal ideals. Therefore, J * p so there
exists a ∈ J such that a /∈ p and we conclude that JRp = Rp.

Applying the exact functors (− ⊗R Rm) and (− ⊗R Rn) to the inclu-
sion 0 → J → R, we find the following inclusion where εmn := ε ⊗R
idRm ⊗R idRn = ε⊗R idRm⊗RRn .

0→ J ⊗R Rm ⊗R Rn
∼= J(Rm ⊗R Rn)

εmn→ Rm ⊗R Rn

We will show εmn is an isomorphism of Rm ⊗R Rn-modules by showing that
for every prime q of Rm ⊗R Rn, the localisation εmn is an isomorphism. Fix
a prime q of Rm ⊗R Rn. From Corollary 4.2.4, we know that localisation of
R with respect to p is the same as localisation of Rm ⊗R Rn with respect
to q, that is Rp

∼= (Rm ⊗R Rn)q as R-modules. Moreover, as we know that
J(Rm⊗RRn)⊗RRp

∼= Rm⊗RRn⊗RRp by the argument in the first paragraph,
we conclude the first statement of the lemma.

The statement (ii) follows easily as R/J ⊗R Rm ⊗R Rn = 0 for every
J ∈ H, so as every H-discrete module N is an epimorphic image of modules
of the form

L
αR/Jα with Jα ∈ H.

0 = (
M
α

R/Jα)⊗R Rm ⊗R Rn → N ⊗R Rm ⊗R Rn → 0

The following two propositions are the main results of this section, which
generalise [13, Proposition 4.3 and Lemma 4.4].

Proposition 4.2.6. Suppose H is a linear topology over a commutative ring
R. The following are equivalent.
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1. R is H-h-local.

2. N ∼=
L

m∈mSpecR

Nm for every H-discrete module N .

3. N ∼=
L
m∈H

m∈mSpecR

Nm for every H-discrete module N .

Moreover, the above conditions hold when R/J is perfect for every J ∈ H.

Proof. (i) ⇒ (ii). We begin by showing that statement (ii) holds for the
cyclic modules R/J with J ∈ H. By assumption, J is contained in finitely
many maximal ideals so 1+J is mapped to a non-zero element of Rm⊗RR/J
for only finitely many maximal ideals. Thus there is the following natural
monomorphism.

ΨR/J : R/J //
L

m∈mSpecR

(R/J)m ⊆
Q

m∈mSpecR

(R/J)m

r + J � //
P

m∈mSpecR

(r + J)m

We will show that ΨR/J is surjective by showing that ΨR/J(R/J) and
(

m∈mSpecR

R/J)m coincide for every localisation at a maximal ideal of R. To

begin, if n /∈ H is maximal, then for each J ∈ G (R/J)n = 0 as there exists
an a ∈ J \ n, and it also follows that

L
m∈mSpecR(R/J)m n

= 0. For a
maximal ideal n ∈ H, by Lemma 4.2.5, (R/J)m ⊗R Rn = 0 for m 6= n. So
clearly

L
m∈mSpecR(R/J)m n

∼= (R/J)n ∼= ΨR/J(R/J)n, so we are done.
For N a general H-discrete module, consider a short exact sequence of

the following form where Jα ∈ H and all the modules are H-discrete as the
class of H-discrete modules is closed under submodules and quotients (that
is, it is hereditary pretorsion).

0→ H →
M
α

R/Jα → N → 0 (4.9)

Consider the following commuting diagram formed by taking the direct sum
of all

L
m∈mSpecR(Rm⊗R−) applied to (4.9), and ψH , ψN the natural maps

sending each element to its image in the localisations, which can be seen
to be well defined (that is, contained in the direct sum) considering the
isomorphism for each R/J .

0 // H //

ψH

L
αR/Jα

//

∼=

N //

ψN

0

0 //
L

m∈mSpecR

Hm
//

L
m∈mSpecR

L
α
R/Jα //

L
m∈mSpecR

Nm
// 0

(4.10)
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Thus ψN is surjective by the snake lemma applied to (4.10). Additionally,
as also H is H-discrete, the same argument says that ψH is surjective. Thus
ψN must be an isomorphism again by the snake lemma applied to (4.10).

(ii) ⇒ (iii). We claim that if J ∈ H, (R/J)n = 0 for every n /∈ H
maximal, as there exists an element a ∈ J , a /∈ n, so JRn = Rn as J
contains a unit of Rn. Therefore, using that every H-discrete module N is
the image of cyclic H-discrete modules, Nn = 0 for every maximal n /∈ H.

(iii) ⇒ (i). If R/J ∼=
L

m∈mSpecR;m∈H(R/J)m, this direct sum must be
finite as R/J is cyclic. Moreover, if (R/J)n = 0 for n maximal, JRn = Rn so
J must contain a unit of Rn, so J * n. This shows J is contained in finitely
many maximal ideals. To see that every prime p of H must be contained
only in one maximal ideal, suppose p ⊆ m ∩ n where m 6= n are maximal
and consider R/p ∼=

L
m∈mSpecR;m∈H(R/p)m. Then applying (Rp ⊗R −),

Rp/pRp
∼=

L
m∈mSpecR;m∈H(R/p)p as p ⊆ m, so Rm ⊗R Rp = Rp. This is a

contradiction, as Rp/pRp cannot contain two direct sum copies of itself, so
p is contained in exactly one maximal ideal.

Proposition 4.2.7. Let R be a H-h-local ring. Let M(m), N(m) be two
collections of Rm-modules indexed by maximal ideals m of R. Suppose the
modules M(m) are H-discrete. Then any morphism

L
mM(m)→

L
mN(m)

is a direct sum of Rm-module homomorphisms M(m)→ N(m).

Proof. We will show that HomR(M(m), N(n)) = 0 for m 6= n maximal ideals.
As R → Rn is a ring epimorphism, note that N(n) ∼= HomRn(Rn, N(n)) ∼=
HomR(Rn, N(n)). Thus using the tensor-Hom adjunction we have the fol-
lowing.

HomR M(m),HomR(Rn, N(n)) ∼= HomR(M(m)⊗R Rn, N(n))

However, as M(m) is H-discrete and R/J ⊗RRm⊗RRn = 0 for every J ∈ H
and m 6= n, M(m)⊗R Rn

∼= M(m)⊗R Rm ⊗R Rn = 0, as required.



Chapter 5

Topological rings and
contramodules

Along with Chapter 4, the purpose of this chapter is to introduce some con-
cepts that we will need for the final Chapter 6 and Chapter 7. The material
covered in this chapter is a combination of ideas from [34], [15], and [14],
and covers mostly methods using contramodules and topological rings.

In Section 5.1 we begin by defining the completion of an R-module with
respect to the right linear topology H on R, as well as stating some prelimi-
naries. In particular, for whenH is nice enough, we introduce the topological
ring ΛH(R). Moreover when G is a faithful perfect Gabriel topology, there is
a ring R := EndR(K) where K = RG/R. The two ΛG(R) and R, as well as
more generally the modules ΛGM and HomR(K,M ⊗R K) for a G-torsion-
free R-module M will be particularily interesting for us later in Section 5.5
and moreover in Chapter 6 and Chapter 7.

The main result of Section 5.2 is an extension of [34, Theorem 2.3] which
itself a generalisation of [33, Theorem 6.8]. In this theorem, Positselski
considered a commutative ring R and a multiplicative subset S of R and
considered the so called S-completion of a module M . He proceeded to give
a characterisation of the modules M such that the projective limit topology
and the S-topology coincide on the completion ΛS(M) of M . We extend
this to to a right linear topology H. Furthermore, we give some equivalent
conditions for these topologies to coincide in Theorem 5.2.1 which is an an
extension of [34, Theorem 2.3].

In Section 5.3 we discuss u-contramodules with respect to a ring epimor-
phism of commutative rings u : R → U and let K := U/u(R). We begin
with u a general ring homomorphism before specialising first to the case that
u is a flat injective ring epimorphism, and then furthermore with the addi-
tional assumption that p.dimU ≤ 1 in Subsection 5.3.2. Here we introduce
some modules, for example HomR(K,M⊗RK) and ∆u(M) := Ext1

R(K,M),

75
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which in view of the category equivalence in Theorem 5.4.2, will be very use-
ful. When we use these results in Chapter 6 and Chapter 7, we will be in
this setting of a flat injective ring epimorphism u : R → U of commutative
rings such that p. dimU ≤ 1.

The brief Section 5.4 recalls the equivalence of two additive subcategories
of Mod-R with respect to a flat injective ring epimorphism of commutative
rings u : R → U with associated Gabriel topology G: the u-h-divisible G-
torsion modules and the G-torsion-free u-contramodules. This is a special
case of [15, Theorem 1.3], where the equivalence is proved for a general
ring epimorphism u : R → U such that TorR1 (U,U) = 0 (note that U is not
necessarily flat).

Finally in Section 5.5 we show that if u : R→ U is a flat injective ring epi-
morphism of commutative rings, the equivalent conditions of Theorem 5.2.1
hold for G-torsion-free modules. This was proved in [34, Lemma 2.4] for the
S-topology which is a generalisation of [33, Lemma 6.9]. However, in our
more general case we need to use a different approach which is more involved
than that for the S-topology.

As mentioned above, for most of this chapter, u : R → U will always
denote a ring epimorphism of commutative rings, and for the most part
(outside the beginning of Section 5.3) u will denote a flat injective ring epi-
morphism. Only in Subsection 5.3.2 will there also be the assumption that
p.dimU ≤ 1.

Even though Section 5.1 on topological rings covers only preliminary
material, we chose to include it in this chapter rather than in Chapter 1 to
make this chapter self-contained.

5.1 Topological rings

A ringR is a topological ring if it has a topology such that the ring operations
are continuous.

A topological ring R is right linearly topological if it has a topology with
a basis of neighbourhoods of zero consisting of right ideals of R. The ring
R with a right Gabriel topology is an example of a right linearly topological
ring.

If R is a right linearly topological ring, then the set of right ideals J
in a basis B of the topology form a directed set. The B-topology on a
right R-module M is the topology where the base of neighbourhoods of 0
are the submodules MJ for J ∈ B. Furthermore, for every R-module M ,
{M/MJ | J ∈ B} is an inverse system. The completion of M with respect
to B is the module

ΛB(M) := lim←−
J∈B

M/MJ.
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There is a canonical map λM : M → ΛB(M) which sends the element x ∈M
to (x + MJ)J∈B. Each element in ΛB(M) is of the form (xJ + MJ)J∈B
with the relation that for J ⊆ J 0, xJ − xJ 0 ∈MJ 0. The module M is called
H-separated if the homomorphism λM is injective, which is equivalent toT
J∈BMJ = 0. The module M is called H-complete if the map λM is

surjective.

The projective limit topology on ΛB(M) is the topology where a sub-
basis of neighbourhoods of zero is given by the the kernels of the pro-
jection maps ΛB(M) → M/MJ . That is, it is the subspace topology ofQ
J∈BM/MJ , where the topology on

Q
J∈BM/MJ is the product topology

of the discrete topologies on each of the M/MJ . In this case, the R-module
ΛB(M) is both separated and complete with this topology. We will simply
write Λ(M) when the basis B is clear from the context.

The assignment ΛB is a functor from Mod-R to the full subcategory of
complete and separated right R-modules, and the assignment {λM}M∈Mod-R

forms a natural transformation idMod-R → ΛB. Thus if f : M → N is
a homomorphism of R-modules, λ(f) maps (mJ + MJ)J∈B to (f(mJ) +
NJ)J∈B, and there is the following commuting diagram.

M
λM //

f

ΛB(M)

ΛB(f)

N
λN // ΛB(N)

If the ideals in B are two-sided in R then the module ΛB(R) is a ring.
Furthermore, it is a linearly topological ring with respect to the projective
limit topology.

Let H be a right linear topology with basis B. Then it follows that the
module lim←−J∈HM/MJ is isomorphic to ΛB(M), thus we sometimes denote

the completion by ΛH(M).

Remark 5.1.1. For each J ∈ B, let VJ denote the kernel of the projection
pJ : ΛB(M)→M/MJ . Then there is always the inclusion VJ ⊇ ΛB(M)J .

The following is [34, Proposition 2.2(a)].

Lemma 5.1.2. Let B be a basis for a right linear topology H on R and M
a right R-module. Then the completion ΛB(M) is H-separated.

Proof. By Remark 5.1.1, ΛB(M)J ⊆ VJ for each J ∈ B. ThereforeT
J∈B ΛB(M)J ⊆

T
J∈B VJ = 0, since ΛB(M) is always separated with

respect to the projective limit topology.

Let R be a linearly topological ring. A right R-module M is discrete
if for every x ∈ M , the annihilator ideal AnnR(x) = {r ∈ R | xr = 0} is
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open in the topology of R. So if H is a right linear topology on R, then
M is H-discrete if and only if M is in the associated pretorsion class of
H. The H-discrete modules are naturally ΛB(R)-modules, where the action
of ΛB(R) is defined as follows. Fix x ∈ M and r̃ := (rJ + J)J∈B and let
I ∈ B be an ideal of R such that I ⊆ Annx. Then the action is defined as
x · r̃ := xrI . Furthermore, in the case that the topology on R is a Gabriel
topology G on R, then a module is discrete if and only if it is G-torsion.

Definition 5.1.3. A linearly topological ring is pro-perfect ([14, 35]) if it is
separated, complete, and with a basis of neighbourhoods of zero formed by
two-sided ideals such that all of its discrete quotient rings are perfect.

5.1.1 Perfect Gabriel topologies and the ring ΛGR

In this subsection we consider the case where the linear topology is a faithful
perfect Gabriel topology over a commutative ring R. Therefore ψR : R→ RG
is a flat injective ring epimorphism of commutative rings, which as usual we
will denote by u : R → U . Let R denote the endomorphism ring EndR(K)
where K = RG/R = U/R. Take a finitely generated submodule F of K,
and consider the ideal formed by the elements of R which annihilate F . The
ideals of this form form a base of neighbourhoods of zero in R. Note that
this is the same as considering EndR(K) with the subspace topology of the
product topology on KK where the topology on K is the discrete topology.
We will consider R endowed with this topology, which we will call the finite
topology.

We will now state the above in terms of a Gabriel topology that arises
from a perfect localisation. Let G be the Gabriel topology associated to the
flat ring epimorphism u : R→ U of commutative rings. As K ⊗R U = 0, K
is G-torsion, or equivalently a discrete module. Thus there is a natural well-
defined action of ΛG(R) on K. As well as the natural map λR : R→ ΛG(R),
there is also a natural map ν : R → R where each element of R is mapped
to the endomorphism of K which is multiplication by that element.

5.2 The H-topology and the projective limit topol-
ogy

We now return to the more general case of a right linear topology H. We
would like to prove a theorem which is an analogue of [34, Theorem 2.3] with
a basically identical proof. Instead of considering localisations, we consider
right linear topologies on R which we will denote H, and B a basis for H.

The definition of an S-pure submodule given in [34] is extended to right
linear topologies in the following way. A submodule L of a right R-module
M is H-pure in M , if MJ∩L = LJ for every J ∈ H. We note that this is not
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the same definition given by Stenström in [39, Exercise IX.23] for Gabriel
topologies, and coincides with his definition of a H-copure submodule.

We let
Q

BM denote
Q
J∈BM/MJ and VJ the kernel of the natural

projection map pJ : ΛB(M)→M/MJ .

Theorem 5.2.1. Let M be a right R-module and and B the basis for a right
linear topology H on R. Consider the following conditions.

(i) The R-module ΛB(M) is (H-separated and) H-complete.

(ii) The H-topology and the projective limit topology on ΛB(M) coincide.

(iii) For every J ∈ B, the submodule VJ ⊆ ΛB(M) coincides with ΛB(M)J .

(iv) For every J ∈ B, λ̄M : M/MJ → ΛB(M)/ΛB(M)J is an isomor-
phism.

(v) For every H-separated and H-complete module D and every R-module
homomorphism f : M → D there exists a unique R-module homomor-
phism f 0 : ΛB(M)→ D such that the following commutes.

M
λM //

f

ΛB(M)

f 0{{
D

(vi) The R-module CokerλM equals (CokerλM )J for every J ∈ B.

(vii) ΛBM is H-pure in
Q
J∈BM/MJ (or (

Q
BM)J ∩ΛB(M) = ΛB(M)J

for every J ∈ B).

Then (i)-(v) are always equivalent, and we have the implications (vi) ⇒ (i)-
(v) ⇒ (vii). If moreover H has a basis of finitely generated ideals B, (i)-(v)
and (vii) are equivalent.

If B consists only of two-sided ideals, then (i)-(vi) are equivalent.

Thus, for the case that R is commutative and B is a basis of finitely
generated ideals, all the above conditions are equivalent, and CokerλM is an
H-divisible module.

Proof. We will often omit the B in ΛB and M in λM for clarity of exposition.

We first show the equivalence of (i), (ii), and (iii). Recall that the module
Λ(M) is always H-separated by Lemma 5.1.2.

(ii) ⇒ (i). This is clear as the module Λ(M) is always complete with
respect to the projective limit topology. Similarly, (iii)⇒ (ii) is clear as (iii)
implies that the bases of the H-topology and projective topology coincide
on Λ(M).
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(i) ⇒ (iii). Consider the following two morphisms.

λΛ(M),Λ(λM ) : Λ(M) ⇒ Λ(Λ(M))

The morphism λΛ(M) is an isomorphism by assumption. Take x ∈ Λ(M).
Then there exists a y ∈ Λ(M) such that λΛ(M)(y) = Λ(λM )(x). Denote
x and y by (xJ + MJ)J∈B and (yJ + MJ)J∈B respectively. Then we can
rewrite the elements as Λ(λM )((xJ + MJ)J∈B) = (λM (xJ) + Λ(M)J)J∈B
and λΛ(M)(y) = (y + Λ(M)J)J∈B. Hence λM (xJ) − y ∈ Λ(M)J for each
J ∈ H, so looking at the J-th component, (xJ − yJ +MJ) = (z+MJ)J for
some z ∈M , but (z+MJ)J = MJ . So xJ − yJ ∈MJ and x = y in Λ(M).
Thus x− λ(xJ) ∈ Λ(M)J for each J ∈ B.

Thus, in particular, any element of Λ(M)J can be written in this form,
and this element is clearly mapped to 0 via the projection map pJ : Λ(M)→
M/MJ . So Λ(M)J ⊆ VJ , as required.

(iii)⇔ (iv). Consider the following two natural maps, where λ̄ is induced
by λ : M → Λ(M) and p̄J is induced by pJ : Λ(M)→M/MJ .

M/MJ
λ̄M→ Λ(M)/Λ(M)J

p̄J→M/MJ

The composition is the identity on M/MJ , so p̄J is a monomorphism if and
only if λ̄ is an epimorphism. Moreover, (iii) holds if and only if p̄J is a
monomorphism if and only if λ̄ is an epimorphism if and only if (iv) holds.

(v) ⇒ (iv). Note that for J ∈ B, any R/J-module is H-discrete, so is
H-separated and H-complete. So, there exists a unique f such that the left
triangle below commutes. The map f induces f̄ since Λ(M)J ⊆ Ker f , so
the right triangle below also commutes.

M

ρ

λ // Λ(M)

fzz

Λ(M)

f

π // Λ(M)/Λ(M)J

f̄ww
M/MJ M/MJ

Let λ̄ be the map induced by λ as in the following commuting diagram. We
will show that f̄ and λ̄ are mutually inverse.

M
λ //

ρ

Λ(M)

π

M/MJ
λ̄ // Λ(M)/Λ(M)J

Then, we have that πλ = λ̄ρ, and so using the above commuting triangles
it follows that f̄ λ̄ρ = f̄πλ = fλ = ρ. As ρ is surjective, f̄ λ̄ = idM/MJ . We
now show that λ̄f̄ = idΛ(M)/Λ(M)J . By assumption there exists a unique
map h which makes the following diagram commute.
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M

πλ

λ // Λ(M)

hww
Λ(M)/Λ(M)J

By uniqueness, π is the unique map that fits into the triangle above, that is
πλ = hλ implies that h = π. So,

πλ = λ̄ρ = λ̄fλ = λ̄f̄πλ

Therefore π = λ̄f̄π, and as π is surjective, λ̄f̄ = idΛ(M)/Λ(M)J as required.
(iv) ⇒ (v). Note that for J ∈ B, any right R/J-module is H-separated and
H-complete. Therefore, for any right R-module D, one can extend any ho-
momorphism M → D/DJ uniquely to Λ(M)→ D/DJ via the isomorphism

M/MJ ∼= Λ(M)/Λ(M)J of our assumption. So λ∗M : HomR(M,D/DJ)
∼=→

HomR(Λ(M), D/DJ).

Now let D a H-separated and H-complete module. Then we have the
following isomorphisms via the homomorphism λM .

HomR(M,D) ∼= lim←−
J∈B

HomR(M,D/DJ)

∼= lim←−
J∈B

HomR(Λ(M), D/DJ)

∼= HomR(Λ(M), D)

(5.1)

We have shown that the statements (i) − (v) are equivalent. We now
show that (vi) ⇒ (v) and (iii) ⇒ (vi), showing the equivalence of (vi) with
(i)-(v).

(vi) ⇒ (v). Take a H-complete H-separated module D and a homomor-
phism f : M → D. Then consider Λ(f) which makes the following diagram
commute. We must show that Λ(f) is unique.

M
λ //

f

Λ(M)
ρ //

Λ(f)

Cokerλ

D
∼=
λ
// Λ(D)

It is enough to show that if hλ = 0 for h : Λ(M) → D, then h = 0. Take
h such that hλ = 0. By the universal property of the cokernel, there ex-
ists a unique map h0 : Cokerλ → D such that h0ρ = h. By assumption
Cokerλ = (Cokerλ)J for each J ∈ B, so h0(Cokerλ) = h0((Cokerλ)J) =
(h0(Cokerλ))J ⊆ DJ . Therefore, Imh0 ⊆

T
J∈BDJ = 0, as D is H-

separated.
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(iii) ⇒ (vi). We must assume that B is a basis of two-sided ideals.
Suppose (iii) holds, and for some J ∈ B, apply (−⊗RR/J) to the following
exact sequence.

M
λ→ Λ(M)→ Cokerλ→ 0

As λ̄ = λ ⊗R idR/J is an isomorphism by assumption, we conclude that
Cokerλ⊗R R/J = 0, so Cokerλ = (Cokerλ)J for each J ∈ B.

(iii)⇒ (vii), (vii) when B is finitely generated⇒(iii). We will revert back
to the notation

Q
(M/MJ). We will show that for each ideal J ∈ B, there

are the following inclusions, and that the second inclusion is an equality
when J is finitely generated.

Λ(M)J ⊆ Λ(M) ∩ (
Y

(M/MJ))J ⊆ VJ (5.2)

This is sufficient as (iii) holds if and only if all the all the modules in (5.2)
coincide (as Λ(M)J = VJ), and (vii) holds if and only if the first inclusion
is an equality.

The first inclusion of (5.2) is clear. For the second, take x ∈ Λ(M) ∩
(
Q

(M/MJ))J . Then clearly xJ ∈MJ , so x ∈ VJ .
Now we show Λ(M)∩(

Q
(M/MJ))J0 = VJ0 when J0 is finitely generated.

Take x ∈ VJ0 and let it be represented by the element (xJ + MJ)J∈B.
Then xJ0 ∈ MJ0, and for all J 0 ⊆ J0 in B, xJ 0 − xJ0 ∈ MJ0, so also
xJ 0 ∈ MJ0. Set yJ := xJJ0 , and let y = (yJ + MJ)J∈B. Then y = x as
yJ − xJ = xJJ0 − xJ ∈MJ . Moreover, yJ ∈MJ0 for each J ∈ B as JJ0 ⊆
J0, so y ∈

Q
((M/MJ)J0). As J0 is finitely generated,

Q
((M/MJ)J0) =Q

(M/MJ)J0, thus x = y ∈ Λ(M) ∩ (
Q
M)J0, as required.

The following lemma states that one can extend the properties of the
basis elements as shown in Theorem 5.2.1 to all ideals in H.

Lemma 5.2.2. Suppose H is a right linear topology with a basis B, and
consider the completion Λ(M) of a module M such that λ̄ : M/MJ →
Λ(M)/Λ(M)J is an isomorphism for every basis element J ∈ B. Then
λ̄ : M/MJ → Λ(M)/Λ(M)J is an isomorphism for every J ∈ H.

Proof. AsH has a basis B, for every J ∈ H, there exists an ideal J0 ∈ B such
that J0 ⊆ J . First recall that for every J ∈ H, there is a monomorphism
λ̄J : M/MJ → Λ(M)/Λ(M)J induced by the morphism λ : M → Λ(M).
That is, if x ∈ M is such that λ̄(x + MJ) = λ(x) + Λ(M)J , then clearly
x ∈ MJ . Now consider the following diagram where the horizontal homo-
morphisms are the natural quotient morphisms, and by assumption λ̄J0 is
an isomorphism.

M/MJ0
//

∼=λ̄J0

M/MJ //

λ̄J

0

Λ(M)/Λ(M)J0
// Λ(M)/Λ(M)J // 0
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The above diagram shows that λ̄J must be an epimorphism, so is an iso-
morphism.

5.3 u-contramodules

We will begin by discussing a general commutative ring epimorphism u : R→
U before moving onto flat injective ring epimorphisms. We begin with some
definitions.

A module M is u-h-divisible if M is an epimorphic image of U (α) for some
cardinal α. An R-module M has a unique u-h-divisible submodule denoted
hu(M), which is the image of the map u∗ : HomR(U,M)→ HomR(R,M) ∼=
M . In nice situations, the u-h-divisible modules are related to the G-divisible
modules, which we will discuss later in Subsection 5.3.2.

Definition 5.3.1. Let u : R→ U be a ring epimorphism. A u-contramodule
is an R-module M such that the following holds.

HomR(U,M) = 0 = Ext1
R(U,M)

We let u-contra denote the full subcategory of u-contramodules in Mod-R.
Dually, a u-comodule is a module M such that the following holds.

M ⊗R U = 0 = TorR1 (M,U)

Lemma 5.3.2. [27, Proposition 1.1] The category of u-contramodules is
closed under kernels of morphisms, extensions, infinite products and projec-
tive limits in Mod-R.

The following two lemmas are proved in [34] for the case of the local-
isation of R at a multiplicative subset. For completeness of this work, we
include their proofs in our setting.

Lemma 5.3.3. [34, Lemma 1.2] Let u : R → U be a ring epimorphism of
commutative rings and let M be an R-module.

(i) If HomR(U,M) = 0, then HomR(Z,M) = 0 for any u-h-divisible mod-
ule Z.

(ii) If M is a u-contramodule, then Ext1
R(Z,M) = 0 = HomR(Z,M) for

any U -module Z.

Proof. For (i), by the u-h-divisibility of Z there exists a map U (α) → Z → 0.
As HomR(U (α),M) = 0, it follows that HomR(Z,M) = 0.

For (ii), let Z ∈ Mod-U . Then there is U -projective presentation of Z,
0→ H → U (α) → Z → 0 of U -modules in Mod-R. We apply HomR(−,M)
to this projective presentation. As u is a ring epimorphism, we have that
Ext1

R(U (α),M) ∼= Ext1
U (U (α),M) = 0, so HomR(H,M) ∼= Ext1

R(Z,M).
However, by (i) of this lemma, HomR(H,M) = 0, so also Ext1

R(Z,M) =
0.
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Lemma 5.3.4. [34, Lemma 1.2] Let u : R → U be a ring epimorphism of
commutative rings and let M be an R-module.

(i) If M ⊗R U = 0, then M ⊗R Z = 0 for any u-h-divisible module Z.

(ii) If M is a u-comodule, then TorR1 (M,Z) = 0 = M ⊗R Z for any U -
module Z.

Proof. The proof is dual-analogous to that of Lemma 5.3.3.

Lemma 5.3.5. [34, Lemma 1.10] Let b : A → B and c : A → C be two
R-module homomorphisms such that C is a u-contramodule and Ker(b) is
a u-h-divisible R-module and Coker(b) is a U -module. Then there exists a
unique homomorphism f : B → C such that c = fb.

Proof. First we show the existence of a homomorphism f : B → C such that
c = fb. Ker b is a u-h-divisible module, so the composition c ◦ ker b = 0 by
Lemma 5.3.3 (i), hence the map c factors through c̄ : A/Ker b→ C as in the
following diagram.

Ker b
ker b // A

%% %%

c

b // B
coker b// Coker b

A/Ker b

c̄

99

99

C

(5.3)

By applying the functor HomR(−, C) to the right short exact sequence above
we get the following exact sequence.

HomR(B,C)→ HomR(A/Ker b, C)→ Ext1
R(Coker b, C)

By Lemma 5.3.3 (ii), Ext1
R(Coker b, C) = 0 as Coker b is a U -module. Thus

c̄ : A/Ker b → C factors through A/Ker b → B, and we conclude that c
factors through b.

Now we show the uniqueness of such a homomorphism. Suppose h = f−
g is such that hb = 0. Then there exists a homomorphism h̄ : Coker b → C
such that h̄ ◦ coker b = h.

A
b //

##

B

h

coker b// Coker b

h̄yy
C

By assumption, Coker b is a U -module, and C is a u-contramodule, so
HomR(Coker b, C) = 0 by Lemma 5.3.3 (ii). Thus h must be the zero ho-
momorphism, so f = g.

From now on, u : R→ U will always be a flat injective ring epimorphism
of commutative rings.
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5.3.1 Flat injective ring epimorphisms

Let 0 → R
u→ U be a flat injective ring epimorphism of commutative rings

where U = RG , K = RG/R and G is the associated Gabriel topology {J ≤
R | JU = U}. We will often refer to the following short exact sequence.

0→ R
u→ U

w→ K → 0 (5.4)

In general we will use N to denote a G-torsion-free module, while M to
denote any R-module.

In our case, we already assume that U is flat, so 0 = TorR1 (M,U) always
holds, and moreover, M ⊗R U = 0 if and only if M is G-torsion, as seen by
the following exact sequence.

0→ tG(M) = TorR1 (M,K)→M →M ⊗R U →M ⊗R K → 0

Thus the u-comodules coincide with the G-torsion modules.

Every u-h-divisible module is G-divisible, but the converse doesn’t neces-
sarily hold. The converse holds exactly when GenU = DG , so the equivalent
conditions of Proposition 1.7.7 hold, therefore exactly when p.dimU ≤ 1.
We will cover what this condition means in more detail in Subsection 5.3.2.

Hence for anR-moduleM , by applying the contravariant functor HomR(−,M)
to the short exact sequence (5.4) we have the following short exact sequences.

0→ HomR(K,M)→ HomR(U,M)→ hu(M)→ 0 (5.5)

0→ hu(M)→M →M/hu(M)→ 0 (5.6)

0→M/hu(M)→ Ext1
R(K,M)→ Ext1

R(U,M)→ 0 (5.7)

For an R-module M , we let ∆u(M) denote the module Ext1
R(K,M) and

δM : M → ∆u(M) the natural connecting map from the exact sequences
(5.6) and (5.7).

For each R-module M , let νM be the unit of the adjunction (− ⊗R
K),HomR(K,−) evaluated at M .

νM : M // HomR(K,M ⊗R K)

m � // [m∗ : z +R→ m⊗R (z +R)] z ∈ U

In the next lemmas we want to show that for a G-torsion-free module N ,
the modules HomR(K,N⊗RK) and ∆u(N) are isomorphic in a natural way.
More precisely, they are isomorphic via a natural connecting homomorphism
µN (see (5.9)), and moreover δN = µNνN . This will be useful when proving
Corollary 5.5.7.

We will sometimes not include the subscript on the homomorphisms δN ,
µN and νN for clarity of exposition.
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Lemma 5.3.6. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings. Then if N is a G-torsion-free R-module, µN : HomR(K,N⊗R
K)

∼=→ ∆u(N) where µN is a connecting homomorphism of the long exact
sequence in (5.9).

Proof. We apply the covariant functor HomR(K,−) to the short exact se-
quence in (5.8), which is exact since N is G-torsion-free.

0→ N → N ⊗R U → N ⊗R K → 0 (5.8)

0 = HomR(K,N⊗RU)→ HomR(K,N⊗RK)
µN→ Ext1

R(K,N)→
(5.9)

→ Ext1
R(K,N ⊗R U) = 0

The first term vanishes as K is G-torsion and N ⊗RU is G-torsion-free. The
last term vanishes since by the flatness of the ring U , there is an isomor-
phism Ext1

R(K,N ⊗R U) ∼= Ext1
U (K ⊗R U,N ⊗R U) = 0. Thus note that

HomR(K,N ⊗R K) is isomorphic to Ext1
R(K,N) = ∆u(N) via µ.

Alternatively, one can use Lemma 4.1.3 as K is G-torsion and N ⊗R U
is G-closed.

Before continuing with the goal of proving that δN = µNνN , we state a
consequence of the Lemma 5.3.6. We note that in the reference provided, the
statement is more general thus requires a more sophisticated proof, whereas
here we choose to provide a simpler proof.

Lemma 5.3.7. [15, Lemma 2.5(a),(b)] Let u : R → U be a flat injective
ring epimorphism. Then the following hold.

(i) HomR(K,M) is a u-contramodule for every R-module M .

(ii) ∆u(N) is a u-contramodule for every G-torsion-free R-module N .

Proof. (i)Now we will show that HomR(K,M) is a u-contramodule. By the
tensor-Hom adjunction, we have the following isomorphism.

HomR(U,HomR(K,M)) ∼= HomR(U ⊗R K,M) = 0

Similarly, to see that Ext1
R(U,HomR(K,M)) = 0, we use the flatness of U so

TorR1 (U,K) = 0. Hence there is the following inclusion (see the homological
formulas in Section 1.1).

0→ Ext1
R(U,HomR(K,M))→ Ext1

R(U ⊗R K,M) = 0

(ii)This follows by Lemma 5.3.6 and (i) of this lemma.

The second statement in the above lemma can be extended with the
additional assumption that p.dimU ≤ 1, which is stated in Lemma 5.3.17.
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Lemma 5.3.8. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings. Consider two short exact sequences ζ, ζ 0 such that B0 is
G-torsion-free and C 0 is G-torsion, and fix a morphism α : A→ A0.

ζ : 0 // A
f //

α

B
g //

β

C //

β̄

0

ζ 0 : 0 // A0 f 0 // B0 g0 // C 0 // 0

If there exists a β : B → B0 which makes the above into a commuting dia-
gram, then β is unique.

Proof. Suppose there exist β, β0 such that βf = β0f = f 0α and β̄, β̄0 : C →
C 0 are the induced homomorphisms by β, β0. Then it follows that Im(β −
β0) = Im(β̄− β̄0), which is a submodule of both B0 and C 0, therefore both G-
torsion and G-torsion-free, and therefore is 0. Thus β = β0, as required.

Lemma 5.3.9. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings. For N a G-torsion-free module, the following diagram com-
mutes.

N
δN //

νN

Ext1
R(K,N)

HomR(K,N ⊗R K)

∼=
µ

55

Proof. As Φ(νN ) = idN⊗RK and Φ is an isomorphism, it is enough to show
that Φ(µ−1δN ) = idN⊗RK , that is that (µ−1δN )(x)(k) = n ⊗R k for every
x ∈ N and k ∈ K.

Fix m ∈ N and k ∈ K. Consider the map fx : 1R 7→ x ∈ HomR(R,N).

Then δN (fx) is the map associated to the pushout of N
fx← R

u→ U which
is shown in the top two rows of short exact sequences of Diagram 5.10. As
µ is an isomorphism, for each extension ζx of K by N , one can associate a
map µ−1(ζx) = gx : K → N ⊗R K such that the bottom two rows of short
exact sequences in (5.10) commute and form part of a pullback diagram.

0 // R //

fx

U // K // 0

ζx : 0 // N // Zx // K //

gx

0

0 // N // N ⊗R U // N ⊗R K // 0

(5.10)

As the larger squares also commute, we apply Lemma 5.3.8 to say that the
map U → Zx → N ⊗R U is exactly the map z 7→ x ⊗R z, as this map



88 CHAPTER 5. TOPOLOGICAL RINGS AND CONTRAMODULES

makes the larger left square commute. Thus gx : z + R 7→ x⊗R (z + R). It
is now straightforward to see that (µ−1δN )(x)(k) = (µ−1)(ζx)(k) = gx(k) =
x⊗R k.

The next corollary states that νN satisfies the assumptions of b : A→ B
Lemma 5.3.5

Corollary 5.3.10. Let u : R → U be a flat injective ring epimorphism
of commutative rings and N a G-torsion-free module. Then the kernel of
νN : N → HomR(K,N⊗RK) is u-h-divisible and the cokernel is a U -module.

Proof. This follows from Lemma 5.3.9 as µνN = δN and µ is an isomor-
phism, so Ker νN ∼= Ker δN = hu(N), a u-h-divisible module and Coker νN =
Coker δN = Ext1

R(U,N), a U -module as required.

The following two lemmas will be useful in Chapter 7.

Lemma 5.3.11. [34, Lemma 1.11] Let u : R → U be a flat injective ring
epimorphism with associated Gabriel topology G, and let M by any R-module.
Then M/MJ ∼= ∆u(M)⊗R R/J is an isomorphism for every J ∈ G.

Proof. Consider the combination of Equations (5.6) and (5.7).

0→ hu(M)→M →M/hu(M)→ 0 (5.6)

0→M/hu(M)→ Ext1
R(K,M)→ Ext1

R(U,M)→ 0 (5.7)

Applying (−⊗RR/J) to (5.6) we first find that M ⊗RR/J ∼= M/hu(M)⊗R
R/J as hu(M) is G-divisible. Applying (−⊗RR/J) to (5.7) we findM/hu(M)⊗R
R/J ∼= Ext1

R(K,M)⊗RR/J as Ext1
R(U,M) is a U -module, so by Lemma 5.3.4

TorR1 (Ext1
R(U,M), R/J) = 0 = Ext1

R(U,M)⊗R R/J .

Lemma 5.3.12. Let u : R → U be a flat injective ring epimorphism with
associated Gabriel topology G, and let N by a G-torsion-free R-module. Then
TorR1 (N,R/J) ∼= TorR1 (∆u(N), R/J) is an isomorphism for every J ∈ G.

Proof. The R/J are u-comodules, so we apply Lemma 5.3.4(ii). Otherwise,
note that TorRi (Z,R/J) = 0 = Z ⊗R R/J for any U -module Z and i > 0 as
U is flat, so TorRi (Z,R/J) ∼= TorUi (Z,U ⊗R R/J) = 0.

Consider the combination of Equations (5.6) and (5.7).

0→ hu(N)→ N → N/hu(N)→ 0 (5.6)

0→ N/hu(N)→ Ext1
R(K,N)→ Ext1

R(U,N)→ 0 (5.7)

A N is G-torsion-free, also hu(N) is G-torsion-free and G-divisible, so is a
U -module. Thus applying (− ⊗R R/J) to the above sequences, we use the
observation in the first lines of this proof, and find the following isomor-
phisms.

TorR1 (N,R/J) ∼= TorR1 (N/hu(N), R/J) ∼= TorR1 (∆u(N), R/J)
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The following lemma and corollary link u-contramodules with comple-
tions of a module with respect to the G-topology.

Lemma 5.3.13. Pos Let u : R→ U be a flat injective ring epimorphism with
associated Gabriel topology G. Then for every J ∈ G, every R/J-module M
is a u-contramodule.

Proof. To see that HomR(U,M) = 0, take f : U → M . Then f(U) =
f(JU) = Jf(U) = 0 as J annihilates M .

To see Ext1
R(U,M) = 0, as TorRi (R/J,U) = 0 and R → R/J is a ring

epimorphism, one has the following isomorphism.

Ext1
R(U,M) ∼= Ext1

R/J(R/J ⊗R U,M) = 0

Corollary 5.3.14. Let u : R → U be a flat injective ring epimorphism of
commutative rings with associated Gabriel topology G. Then ΛG(M) is a
u-contramodule.

Proof. This follows immediately by Lemma 5.3.13 and by the closure prop-
erties of u-contramodules in Lemma 5.3.2.

5.3.2 When p. dimU ≤ 1

Let u : R → U be an flat injective ring epimorphism as before. The addi-
tional condition that p.dimU ≤ 1 has many important consequences for the
category u-contra, and moreover these consequences will be crucial to the
future chapters.

Remark 5.3.15. Suppose u : R → U is a flat injective ring epimorphism
of commutative rings and let G be the associated Gabriel topology. Then
p. dimU ≤ 1 if and only if the u-h-divisible modules and the G-divisible
modules coincide by Proposition 1.7.7.

Lemma 5.3.16. [15, Proposition 3.2] Let u : R→ U be a flat injective ring
epimorphism such that p.dimU ≤ 1. Then the category of u-contramodules
is closed under cokernels, and so is an abelian category.

Lemma 5.3.17. [15, Lemma 2.5(c)] Let u : R → U be a flat injective ring
epimorphism such that p. dimU ≤ 1. Then the following hold. Then ∆u(M)
is a u-contramodule for every R-module M .

Proof. Let the following short exact sequence denote the injective envelope
of M .

0→M → E(M)→ E(M)/M → 0
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We apply HomR(K,−) to the injective envelope of M , and find the exact
sequence in (5.11).

HomR(K,E(M))→ HomR(K,E(M)/M)→ Ext1
R(K,M)→ 0 (5.11)

Moreover, the first two modules in (5.11) are u-contramodules by Lemma 5.3.7(i).
Therefore, ∆u(M) := Ext1

R(K,M) is a cokernel of u-contramodule, therefore
by Proposition 5.3.18, ∆u(M) is also a u-contramodule.

Lemma 5.3.18. [15, Proposition 3.2] Let u : R→ U be a flat injective ring
epimorphism such that p. dimU ≤ 1. Then the category of u-contramodules
is closed under cokernels, and so is an abelian category.

Proposition 5.3.19. [15, Proposition 3.2(b)] Let u : R→ U be a flat injec-
tive ring epimorphism such that p. dimU ≤ 1. Then ι : u-contra ,→ Mod-R
is an exact embedding and the functor ∆u = Ext1

R(K,−) defines a left ad-
joint to this embedding. In particular, ∆u(R) is a projective generator of
u-contra.

Sketch of proof. To prove that ∆u is left adjoint to the inclusion, the crucial
observation is Lemma 5.3.5, that is, any R-module homomorphism B → C
where C is a u-contramodule extends uniquely to a homomorphism of u-
contramodules ∆u(B)→ C.

Furthermore the inclusion ι : u-contra → Mod-R is exact, ∆u(R) is a
projective object in u-contra and so is a generator since C ∼= HomR(R,C) ∼=
Homu-contra(∆u(R), C).

Lemma 5.3.20. Let u : R → U be a flat injective ring epimorphism of
commutative rings such that p. dimU ≤ 1. The coproduct of ∆u(R) indexed
over a set X is ∆u(R(X)).

The projective modules in u-contra are the direct summands of the mod-
ules of the form ∆(R(X)) for some set X.

Proof. By Proposition 5.3.19, ∆u(−) is a left adjoint, and thus the lemma
follows as left adjoints preserve coproducts. The second statement then
follows by the fact that ∆u(R) is a projective generator of u-contra. That
is, for every C ∈ u-contra, there exists a u-contra-projective presentation
of the following form. a

X

∆u(R)→ C → 0 (5.12)

As
‘
X ∆u(R) ∼= ∆u(R(X)), the sequence (5.12) splits.

It is straightforward to see that a direct summand of a projective u-
contramodule is still a projective u-contramodule.
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5.4 The equivalence of categories

The following is a specific case of [15, Theorem 1.2], which we will prove here
for completeness. We will associate the Gabriel topology G to the flat injec-
tive ring epimorphism u. We note that in [15] for u a (not necessarily injec-
tive nor flat nor commutative) ring epimorphism such that TorR1 (U,U) = 0,
Bazzoni-Positselski show a more general equivalence.

The u-torsion-free modules are modules which are contained in a U -
module, or equivalently a module N is u-torsion-free if the natural map
N → N ⊗R U is a monomorphism.

In [15, Theorem 1.2], it is shown that (− ⊗R K),HomR(K,−) where
K = U/u(R) defines an equivalence between the u-h-divisible right u-
comodules and the u-torsion-free u-contramodules.

Recall from Subsection 5.3.1, the G-torsion and u-comodules coincide
when u is a flat ring epimorphism. Additionally, as when U is flat, there
is an associated Gabriel topology and all the U -modules are G-torsion-free,
therefore the G-torsion-free modules and the u-torsion-free modules coincide.

Lemma 5.4.1. [15, Lemma 1.3] Let u : R → U be a flat injective ring
epimorphism of commutative rings. Then the following hold.

(i) For any R-module M , HomR(K,M) is G-torsion-free u-contramodule.

(ii) For any R-module M , M ⊗R K is u-h-divisible and G-torsion.

Proof. Fix an R-module M .
(i) To see that HomR(K,M) is G-torsion-free, note that by applying HomR(−,M)
to u, we have the following inclusion.

0→ HomR(K,M)→ HomR(U,M)

As HomR(U,M) is a U -module, it is also G-torsion-free, thus so is HomR(K,M).

That HomR(K,M) is a u-contramodule follows by Lemma 5.3.7.

(ii)M ⊗RK is G-divisible as K is, that is for each J ∈ G, (M ⊗RK)J =
MJ ⊗R K = M ⊗R K. Furthermore U ⊗R (M ⊗R K) ∼= 0 ⊗R M = 0, so
M ⊗R K is G-torsion.

Theorem 5.4.2. [15, Theorem 1.2] Let u : R → U be a flat injective ring
epimorphism of commutative rings. Then the restrictions of the adjoint
functors HomR(K,−) and (− ⊗R K) are mutually inverse equivalences be-
tween the additive categories of u-h-divisible G-torsion modules and G-torsion-
free u-contramodules.
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G-torsion-free
u-contramodules

(−⊗RK)

%%

u-h-divisible and
G-torsion modules

HomR(K,−)

ee

Proof. Let M be u-h-divisible and G-torsion. We would like to show that
HomR(K,M) ⊗R K → M is an isomorphism. We have the following exact
sequence as M is u-h-divisible so M = hu(M) := u∗(HomR(U,M)).

0→ HomR(K,M)→ HomR(U,M)
u∗→M → 0

As M is G-torsion, we have that HomR(K,M)⊗RU ∼= HomR(U,M)⊗RU ∼=
HomR(U,M) since HomR(U,M) is a U -module. As HomR(K,M) is G-
torsion-free, we also have the following exact sequence.

0→ HomR(K,M)→ HomR(K,M)⊗R U → HomR(K,M)⊗R K → 0

Thus we have the following commuting diagram.

0 // HomR(K,M) // HomR(K,M)⊗R U //

∼=

HomR(K,M)⊗R K // 0

0 // HomR(K,M) // HomR(U,M) //M // 0

(5.13)
So it follows that the natural map HomR(K,M) ⊗R K → M , which is the
counit (z + R)⊗R f 7→ f(z + R), is an isomorphism by applying the snake
lemma to the above diagram. To explicitly see that HomR(K,M)⊗RK →M
is the counit in Diagram 5.13 will follow from a dual-analogous proof which
we write explicitly in the second part of this proof (when we show that
M → HomR(K,M ⊗R K) is the unit).

We now consider the case of M a G-torsion-free u-contramodule.
Consider

0→M
u⊗RidM→ M ⊗R U →M ⊗R K → 0 (5.14)

We first note that HomR(U,−) applied to (5.14) gives us the following iso-
morphism as M is a u-contramodule.

0 = HomR(U,M)→ HomR(U,M⊗RU)
∼=→ HomR(U,M⊗RK)→ Ext1

R(U,M) = 0

Next we apply HomR(−,M ⊗R K) to u.

0→ HomR(K,M⊗RK)→ HomR(U,M⊗RK)→M⊗RK → Ext1
R(K,M⊗RK) = 0



5.4. ΛG(N) AND ∆U (N) 93

Moreover, there is the isomorphism HomR(u,M⊗RU) = u∗ : HomR(U,M⊗R
U)

∼=→M ⊗R U

0 //M
u⊗RidM //

β

M ⊗R U
w⊗RidM //

∼= α

M ⊗R K // 0

0 // HomR(K,M ⊗R K)
w∗
// HomR(U,M ⊗R K)

u∗ //M ⊗R K // 0

(5.15)
We will explicitly show that β is indeed the unit of M . The map α is the
composition HomR(U,w⊗RidM )◦HomR(u,M⊗RU)−1 = (w⊗RidM )∗(u∗)−1,
so it is clear the right square commutes.

HomR(U,M ⊗R U)
∼=

(−)◦u
//

w⊗RidM ◦(−) ∼=

M ⊗R U

w⊗RidM

HomR(U,M ⊗R K)
(−)◦u //M ⊗R K

It follows that the map β is the unit, as when computed explicitly from the
above commuting diagram of short exact sequences Diagram 5.15, β(m) is
the map m 7→ [m∗ : z +R→ m⊗R (z +R)] for z ∈ U .
Therefore, by the snake lemma applied to Diagram 5.15, we find the exact
sequence that we wanted.

5.5 The equivalence of ΛG(N) and ∆u(N) for G-
torsion-free modules

For the rest of this subsection, we will be considering a flat injective ring
epimorphism of commutative rings denoted 0→ R

u→ U , and we will denote
by K the cokernel U/R of u.

As before, we denote by hu(M) the u-h-divisible submodule of M . Addi-
tionally, as before we will often drop the subscripts on the homomorphisms
νM , δM and λM for clarity of exposition.

Lemma 5.5.1. Let u : R→ U be a flat injective ring epimorphism with as-
sociated Gabriel topology G and suppose N is G-torsion-free. Then hu(N) ⊆T
J∈G NJ .

Proof. As hu(N) is u-h-divisible, it is G-divisible, so hu(N)J = hu(N) for
every J ∈ G, so clearly hu(N) ⊆ NJ for every J ∈ G, as required.

As before, for each R-module M , let νM be the unit of the adjunction
(−⊗R K),HomR(K,−) evaluated at M .



94 CHAPTER 5. TOPOLOGICAL RINGS AND CONTRAMODULES

Lemma 5.5.2. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings and G the associated Gabriel topology. For every G-torsion-
free module N , there exists an R-module homomorphism ν̃N which makes
the following diagram commute.

N
νN //

λN

HomR(K,N ⊗R K)

ΛG(N)

ν̃N

66

Proof. Take ñ = (nJ +NJ)J∈G ∈ ΛG(N). We will first define how ν̃((nJ +
NJ)J∈G) acts on a fixed z +R ∈ K.

Let the annihilator of z +R ∈ K be denoted as Iz = AnnR(z +R).

ν̃(ñ) : K // N ⊗R K

z +R � // nIz ⊗R (z +R)

First we claim that ν̃(ñ) is a well-defined map. Consider ñ0 = (n0J +
NJ)J∈G ∈ ΛG(N) such that ñ = ñ0, so nJ − n0J ∈ NJ for each J ∈ G.
Then nIz − n0Iz ⊗R (z +R) = 0 for each z +R ∈ K, so ν̃(ñ) = ν̃(ñ0).

We claim the map ν̃(ñ) is R-linear. Note that AnnR(z+R) ⊆ AnnR(rz+
R) for every r ∈ R so nIrz − nIz ∈ NIrz. Therefore the two elements on the
right represent the same element in N ⊗R K.

ν̃(ñ) (rz +R) = nIrz ⊗R (rz +R)

r ν̃(ñ) (z +R) = r(nIz ⊗R (z +R)) = nIz ⊗R (rz +R)

It remains to see that the homomorphism ν̃(ñ) respects addition. We first
note that for z, y ∈ U , 0 6= AnnR(z) ∩ AnnR(y) ⊆ AnnR(z + y), so nIz+y −
nIz∩Iy ∈ NIz+y.

ν̃(ñ) (z + y +R) = nIz+y ⊗R (z + y +R)

ν̃(ñ) (z +R) + ν̃(ñ) (y +R) = yIz ⊗R (z +R) + nIy ⊗R (y +R)

= nIz∩Iy ⊗R (z +R) + nIz∩Iy ⊗R (y +R)

= nIz∩Iy ⊗R (z + y +R)

It is straightforward to see that ν̃ is an R-linear homomorphism of R-
modules. It is clear that the above triangle commutes, ν̃λ = ν as ν̃λ(n) =
ν̃((n+NJ)J∈G) : z +R 7→ n⊗R (z +R), as required.

The following uses ideas related to Lemma 4.1.9.
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Lemma 5.5.3. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings and G the associated Gabriel topology. For every G-torsion-
free module N , the R-module homomorphism ν̃N is a monomorphism.

Proof. Take ñ ∈ ΛG(N) such that ν̃(ñ) = 0. That is, nIz ⊗R (z+R) = 0 for
every z ∈ U as defined in Lemma 5.5.2. We first note that if n⊗R(z+R) = 0,
then one can rewrite each n ⊗R z ∈ N ⊗R U as an element of N ⊗R R, as
seen from the following short exact sequence.

0 // N // N ⊗R U // N ⊗R K // 0

nIz ⊗R z
� // 0

Therefore for each z ∈ U there exists an m ∈ N such that m ⊗R 1 =
nIz ⊗R z ∈ N ⊗R U .

Fix a J ∈ G, and we claim that nJ ∈ NJ . As JU = U , one can write
1U =

P
0≤i≤k aizi where ai ∈ J and zi ∈ U . Recall that by the argument

in Lemma 4.1.9, that
T

0≤i≤n Izi ⊆ J where Izi = Ann(zi + R). Thus it is
sufficient to show that nT Izi

∈ NJ as nJ − nT Izi
∈ NJ . Rearranging, we

find the following.

nT Izi
⊗R 1 = nT Izi

⊗R (
X
i

aizi)

=
X
i

ai(nT Izi
⊗R zi)

=
X
i

ai(nIzi ⊗R zi)

=
X
i

ai(mi ⊗R 1)

= (
X
i

aimi)⊗R 1

(5.16)

Therefore we have shown that nT Izi
=

P
i aimi ∈ NJ , so also nJ ∈ NJ as

desired.

Proposition 5.5.4. For every G-torsion-free module N , the homomorphism
ν̃N is an isomorphism of R-modules. That is, ν̃N : ΛG(N) ∼= HomR(K,N⊗R
K).

Proof. This follows by applying Lemma 5.3.5 to the unit νN : N → HomR(K,N⊗R
K), which satisfies the assumption of the lemma. That is, Ker νN is u-h-
divisible and Coker νN is a U -module. Moreover, ΛG(N) and HomR(K,N⊗R
K) are both u-contramodules by Corollary 5.3.14 and Lemma 5.4.1. Thus
consider the following two commuting diagrams, with the existence and
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uniqueness of f and idHomR(K,N⊗RK) respectively in the following diagrams
follow by Lemma 5.3.5.

N
νN //

λ

HomR(K,N ⊗R K)

fww

N
νN //

νN

HomR(K,N ⊗R K)

idHomR(K,N⊗RK)uu
ΛG(N) HomR(K,N ⊗R K)

We already know that ν̃λ = νN and that ν̃ is a monomorphism by Lemma 5.5.3.
Thus ν̃fνN = ν̃λ = νN , so ν̃f = idHomR(K,N⊗RK). Therefore ν̃ is an isomor-
phism, as required.

Corollary 5.5.5. Let u : R → U be a flat injective ring epimorphism and
let R := EndR(K). Then ν̃R : ΛG(R)→ R is a ring isomorphism.

Proof. By Proposition 5.5.4 we know that ν̃R : ΛG(R) → R is an isomor-
phism of R-modules. It remains only to check that this is a homomorphism
of rings.

Let r̃ = (rJ + J)J∈G and s̃ = (sJ + J)J∈G denote elements of ΛG(R). As
before let Iz denote AnnR(z+R) and note that Iz ⊆ Itz for each t ∈ R. We
let z0 := sIzz.

ν̃(r̃ · s̃) : K → K : z +R 7→ rIzsIzz +R

ν̃(r̃)ν̃(s̃) = (K
r̃→ K)(K

s̃→ K) : z +R 7→ sIzz +R 7→ rIz0sIzz +R

Then as Iz0 = IsIz z ⊇ Iz, clearly rIz0 − rIz ∈ Iz0 , so (rIz − rIz0 )sIzz = 0. We
conclude the endomorphisms ν̃(r̃ · s̃) and ν̃(r̃)ν̃(s̃) are equal.

Corollary 5.5.6. If V is an open ideal in the topology of R = EndR(K),
then there is J ∈ G and a surjective ring homomorphism R/J → R/V .

Proof. By the definition of the topology on R, if V is an open ideal, then by
Corollary 5.5.5, W = α−1(V ) is an open ideal in the projective limit topology
of ΛG(R). Hence by Remark 5.1.1, there is J ∈ G such that W ⊇ ΛG(R)J .
By Corollary 5.5.5 there is a surjective ring homomorphism R/J ∼= R/RJ →
R/V.

Corollary 5.5.7. For every G-torsion-free module N , the projective limit
topology and the G-topology coincide in ΛG(N). That is, the equivalent con-
ditions of Theorem 5.2.1 hold. Moreover,

T
J∈G NJ = hu(N).

Proof. This is straightforward to see as ν̃λ = ν where ν̃ is an isomorphism,
so Cokerλ ∼= Coker ν. We know that Coker ν ∼= Ext1

R(U,N) is a U -module
so is G-divisible as required.



Chapter 6

Enveloping classes and
1-tilting cotorsion pairs over
commutative rings

The results of this chapter form the main content of the preprint [12]. We
begin with a 1-tilting cotorsion pair over a commutative ring, (A,DG). The
aim of this chapter is to characterise the commutative rings for which DG is
an enveloping class. Some of the results in this chapter are proved directly
or more generally in other parts of this thesis, but we chose to leave it as
written in [12].

Section 6.1 is dedicated to showing that if DG is enveloping then R →
RG must arise from a perfect localisation, or equivalently RG ∈ DG . In
particular, the assumption that DG is enveloping and that (A,DG) is of
finite type is used to show that the DG-envelopes of G-torsion modules must
be G-torsion in Lemma 6.1.3. Let T be an associated 1-tilting module of
(A,DG). Our results in this first section use the Add(T ) coresolution of R
in (T3) (see Section 1.5) and facts about the Gabriel topology G which were
shown in Chapter 4. Proposition 6.1.6 is the main result of this section.
We note that Lemma 6.1.2 is a particular case of Lemma 4.1.4, although we
choose to leave the proof as it is presented in [12].

Next, in Section 6.2 we continue with the assumption that the class DG
is enveloping, with the additional information from Section 6.1 that G arises
from a perfect localisation. Thus this information along with that p.dimU ≤
1 in Proposition 6.2.1 implies that Gen(U) = DG = K⊥ and U ⊕K is the
associated 1-tilting module and U = RG ,K = RG/R by Proposition 1.7.7 so
DG arises from a perfect localisation. We prove that all the quotient rings
R/J , for J ∈ G are perfect rings and so are all the discrete quotient rings
of the topological ring R = End(K) (Theorems 6.2.14 and 6.2.15). In the
terminology of [35] or [14] this means that R is a pro-perfect topological

97
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ring. Moreover, Example 6.2.3 provides an instance of when R has a T -
envelope, but the class T is not enveloping. We note additionally that
Proposition 6.2.1 partly generalises [2, Theorem 1.1], which was already
partly generalised in [4].

In Section 6.3 we show that the converse holds, that is if R = End(K)
is a pro-perfect topological ring and the projective dimension of U is at
most one, then the class of G-divisible modules is enveloping, as stated in
Theorem 6.3.4. Consequently, applying results from [14, Theorem 13.3], we
obtain that Add(K), the class of direct summands of direct sums of copies of
K, is closed under direct limits. This result is shown directly in Section 7.3,
where we show that if the R/J are perfect rings for each J ∈ G, K is Σ-
pure-split and so Add(K) must be closed under direct limits. The method
we use in Section 7.3 is that used by Positselski in [35, Sections 3].

Since DG coincides with the right Ext-orthogonal of Add(K), we have an
instance of the necessity of the closure under direct limits of a class whose
right Ext-orthogonal admits envelopes. Therefore in our situation we prove
a converse of the result by Enochs and Xu Theorem 1.2.5 which states that if
a class A of modules is closed under direct limits and extensions and whose
right Ext-orthogonal A⊥ admits special preenvelopes with cokernel in A,
then A⊥ is enveloping.

As a byproduct we obtain that a 1-tilting torsion class over a commu-
tative ring is enveloping if and only if it arises from a flat injective ring
epimorphism u : R → U such that p.dimU ≤ 1 with associated Gabriel
topology G where the factor rings R/J are perfect rings for every J ∈ G
(Theorem 6.3.5). This provides a partial answer to Problem 1 of [29, Sec-
tion 13.5] and generalises the result proved in [9] for the case of commutative
domains and divisible modules.

In Section 6.4, we consider the case that u : R → U is not a monomor-
phism. This case is easily reduced to the injective case, since the class of
G-divisible modules is annihilated by the kernel I of u, so all the results
proved for R apply to the ring R/I and to the cokernel K of u.

As mentioned previously in this thesis, if the assumption states that the
Gabriel topology G arises from a perfect localisation, we denote RG by U
and RG/R by K, and the natural ring homomorphism by u : R→ U .

6.1 Enveloping 1-tilting classes over commutative
rings

For this section, R will always be a commutative ring and T a 1-tilting class.

By Theorem 1.7.6 there is a faithful finitely generated Gabriel topology G
such that T is the class of G-divisible modules. We denote again by (EG ,FG)
the associated faithful hereditary torsion pair of finite type. We use DG and
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T = Gen(T ) = T⊥ interchangeably to denote the 1-tilting class, and A to
denote the left orthogonal class ⊥DG .

Recall that if T is 1-tilting, T ∩ ⊥T = Add(T ) (see Section 1.5). By
(T3) of the definition of a 1-tilting module we have the following short exact
sequence where T0, T1 ∈ Add(T ).

(T3) 0→ R
ε→ T0 → T1 → 0 (6.1)

In fact, this short exact sequence is a special DG-preenvelope of R, and
T0 ⊕ T1 is a 1-tilting module which generates T .

Furthermore, assuming that R has a DG-envelope, we can suppose with-
out loss of generality that the sequence (T3) is the DG-envelope of R, since
an envelope is extracted from a special preenvelope by passing to direct
summands (Proposition 1.2.2). For the rest of the section we will denote
the DG-envelope of R by ε as in (6.1).

Recall from Section 1.7 that for every M ∈ Mod-R there is the com-
muting diagram (1.8). Since G is faithful we have the following short exact
sequence where ψR is a ring homomorphism and RG/R is G-torsion.

0→ R
ψR→ RG → RG/R→ 0 (6.2)

We now show two lemmas about the 1-tilting module T0 ⊕ T1 and the
class Add(T0 ⊕ T1) assuming that R has a DG-envelope.

Lemma 6.1.1. Let the following short exact sequence be a DG-envelope of
R.

0→ R
ε→ T0 → T1 → 0

Then T0 is G-torsion-free and T0
∼= T0 ⊗R RG.

Proof. We will show that for every J ∈ G, T0[J ], the submodule of elements
of T0 which are annihilated by J , is zero. Set w := ε(1R) and fix a J ∈ G.
As T0 = JT0, w =

P
1≤i≤n aizi where ai ∈ J and zi ∈ T0. This sum is finite,

so we can define the following maps.

z : R //
L

1≤i≤n T0 a :
L

1≤i≤n T0
// T0

1R
� / (z1, ..., zn) (x1, ..., xn) � /

P
i aixi

As
L

n T0 is also G-divisible, by the preenvelope property of ε there exists a
map f : T0 →

L
n T0 such that fε = z. Also, az(1R) =

P
1≤i≤n aizi = w, so
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az = ε and the following diagram commutes.

0 // R

z

$$

ε

ε // T0
β //

f

T1
// 0

L
n T0

a

T0

By the envelope property of ε, af is an automorphism of T0. The restriction
of the automorphism af to T0[J ] is an automorphism of T0[J ], and factors
through the module

L
n T0[J ]. However a(

L
n T0[J ]) = 0, so af(T0[J ]) = 0,

but af restricted to T0[J ] is an automorphism, thus T0[J ] = 0.
It follows from (iii) of Lemma 4.1.2 that T0

∼= T0 ⊗R RG since T0 is G-
divisible.

As mentioned in the introduction of this chapter, the following is a par-
ticular case of Lemma 4.1.4(i).

Lemma 6.1.2. Suppose R has a DG-envelope in Mod-R. Then for every
M ∈ Add(T0 ⊕ T1), M ⊗R RG is G-torsion-free.

Proof. From Lemma 6.1.1, T0
∼= T0 ⊗R RG is G-torsion-free. We first show

that T1 ⊗R RG is G-torsion-free. Consider the following short exact se-
quence obtained by applying (− ⊗R RG) to the envelope of R, and note
that TorR1 (T1, RG) = 0 by Lemma 4.1.2 (iii).

0→ RG → T0 ⊗R RG → T1 ⊗R RG → 0

As RG is G-closed and T0⊗RRG is G-torsion-free, by applying the covariant
functor HomR(R/J,−) to the above sequence for every J ∈ G, we obtain
that T1 ⊗R RG must be G-torsion-free.
It is now straightforward to see that the statement holds for any direct
summand of (T0 ⊕ T1)(α).

We look at DG-envelopes of G-torsion modules in Mod-R, and find that
they are also G-torsion.

Lemma 6.1.3. Suppose DG is enveloping in Mod-R and M is a G-torsion
R-module. Then the DG-envelope of M is G-torsion.

Proof. To begin with, fix a finitely generated J ∈ G with a set {a1, . . . , at} of
generators and consider a DG-envelope D(J) of the cyclic G-torsion module
R/J , denoted as follows.

0→ R/J ,→ D(J)→ A(J)→ 0
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We will use the T-nilpotency of direct sums of envelopes as in Theorem 1.2.4 (ii).
Consider the following countable direct sum of envelopes of R/J which is
itself an envelope, by Theorem 1.2.4 (i):

0→
M
n

(R/J)n ,→
M
n

D(J)n →
M
n

A(J)n → 0.

Choose an element a ∈ J and for each n set fn : D(J)n → D(J)n+1 to be
the multiplication by a.

Then clearly (R/J)n vanishes under the action of fn, hence we can apply
Theorem 1.2.4 (ii). For every d ∈ D(J), there exists an m such that

fm ◦ · · · ◦ f2 ◦ f1(d) = 0 ∈ D(J)(m+1).

Hence for every d ∈ D there is an integer m for which amd = 0.
Fix d ∈ D and let mi be the minimal natural number for which (ai)

mid = 0
and set m := sup{mi | 1 ≤ i ≤ t}. Then for a large enough integer k we have
that Jkd = 0 (for example set k = tm), and Jk ∈ G. Thus every element of
D(J) is annihilated by an ideal contained in G, therefore D(J) is G-torsion.

Now consider an arbitrary G-torsion module M . Then M has a presen-
tation

L
α∈ΛR/Jα

p→ M → 0 for a family {Jα}α∈Λ of ideals of G. Since G
is of finite type, we may assume that each Jα is finitely generated.

Take the push-out of this map with the DG-envelope of
L

αR/Jα.

0 //
L

α∈ΛR/Jα
//

p

L
α∈ΛD(Jα) //

L
α∈ΛA(Jα) // 0

0 //M // Z //
L

α∈ΛA(Jα) // 0

0 0

The bottom short exact sequence forms a preenvelope of M . We have shown
above that for every α in A, D(Jα) is G-torsion, so also Z is G-torsion.
Therefore, as the DG-envelope of M must be a direct summand of Z by
Proposition 1.2.2, also the DG-envelope of M is G-torsion.

The following is a corollary to Lemma 6.1.2 and Lemma 6.1.3.

Corollary 6.1.4. Suppose DG is enveloping in Mod-R and suppose M is a
G-torsion R-module. Then M ⊗R RG is G-divisible.

Proof. Let the following be a DG-envelope of a G-torsion module M , where
both D and A are G-torsion by Lemma 6.1.3.

0→M → D → A→ 0
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The module A is G-divisible and RG/R is G-torsion so A ⊗R RG/R = 0,
hence A→ A⊗RRG is surjective. In particular, A⊗RRG is G-torsion. Also
as A ∈ Add(T0 ⊕ T1), A ⊗R RG is G-torsion-free by Lemma 6.1.2 (ii). It
follows that A⊗R RG is both G-torsion and G-torsion-free so A⊗R RG = 0.
Additionally as p. dimA ≤ 1, TorR1 (A,RG) = 0, so the functor (− ⊗R RG)
applied to the envelope of M reduces to the following isomorphism.

0 = TorR1 (A,RG)→M ⊗R RG
∼=→ D ⊗R RG → A⊗R RG = 0

Hence as D⊗RRG is G-divisible, also M⊗RRG is G-divisible, as required.

Proposition 6.1.5. Suppose DG is enveloping in Mod-R. Then RG is G-
divisible.

Proof. We will show that for each J ∈ G, R/J ⊗R RG = 0. Fix a J ∈ G. By
Corollary 6.1.4, R/J ⊗R RG is G-divisible, Thus we have R/J ⊗R (R/J ⊗R
RG) = 0. However

0 = R/J ⊗R (R/J ⊗R RG) ∼= (R/J ⊗R R/J)⊗R RG ∼= R/J ⊗R RG ,

since R→ R/J is a ring epimorphism, thus RG is G-divisible.

Using the characterisation of a perfect localisation of [39, Chapter XI.3,
Proposition 3.4], we can state the main result of this section. Note that
it remains to show that p.dimRG ≤ 1 to say the equivalent conditions of
Proposition 1.7.7 hold.

Proposition 6.1.6. Assume that T is a 1-tilting class over a commutative
ring R such that the class T is enveloping. Then the associated Gabriel
topology G of T arises from a perfect localisation.

Proof. By Proposition 6.1.5, RG is G-divisible, hence the Gabriel topology G
is perfect by Proposition 1.7.4. Hence ψ : R → RG is flat ring epimorphism
and moreover it is injective.

6.2 When a G-divisible class is enveloping

For this section, R will always be a commutative ring. Fix a flat injective
ring epimorphism u and an exact sequence

0→ R
u→ U → K → 0.

Denote by G the corresponding Gabriel topology.

The aim of this section is to show that if DG is enveloping then for each
J ∈ G the ring R/J is perfect. It will follow from Corollary 5.5.5 that also
R is pro-perfect.
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We begin by showing that for a local ring R the rings R/J are perfect,
before extending the result to all commutative rings by showing that all
G-torsion modules (specifically the R/J for J ∈ G) are isomorphic to the
direct sum of their localisations.

In Lemma 6.1.1, it was shown that if ε : R → D is a DG-envelope of R
in Mod-R, then D must be G-torsion-free. Furthermore, if G arises from a
perfect localisation u : R→ U and R has a DG envelope, then the following
proposition allows us to work in the setting that DG = Gen(U), thus (A,DG)
is the 1-tilting cotorsion pair associated to the 1-tilting module U ⊕K (see
Proposition 1.7.7).

Proposition 6.2.1. Let u : R → U be a (non-trivial) flat injective ring
epimorphism and suppose R has a DG-envelope. Then p.dimR U ≤ 1.

Proof. Let
0→ R

ε→ D → D/R→ 0 (6.3)

denote the DG-envelope of R. First we claim that D is a U -module by
showing that D is G-closed, or that D ∼= U ⊗R D. Consider the following
exact sequence.

0→ TorR1 (D,K)→ D → D ⊗R U → D ⊗R K → 0

Therefore we must show that TorR1 (D,K) = 0 = D⊗RK. As D is G-divisible
and K is G-torsion it follows that D ⊗R K = 0. By Lemma 6.1.1 D is G-
torsion-free, hence D ∼= D ⊗R U and D is a U -module. The cotorsion pair
(A,DG) is complete, which implies R-moduleD/R is inA, so p.dimRD/R ≤
1. From the short exact sequence (6.3) it follows that also p.dimRD ≤ 1.
Consider the following short exact sequence of U -modules

0→ U → D ⊗R U ∼= D → D/R⊗R U → 0

We now claim that D/R⊗RU is U -projective. Indeed, take any Z ∈ U -Mod
and note that Z ∈ DG . Then 0 = Ext1

R(D/R,Z) ∼= Ext1
U (D/R ⊗R U,Z).

Therefore the short exact sequence above splits in Mod-U and so U is a
direct summand of D also as an R-module, and the conclusion follows.

Combined with Proposition 1.7.7, this provides a generalisation of [2,
Theorem 1.1]. More precisely, it shows that conditions (1),(4), and (6) in
that theorem hold also in this more general context. The equivalence of
(1),(2), and (3) was already shown in [4].

Corollary 6.2.2. Let u : R → U be a (non-trivial) flat injective ring epi-
morphism and suppose R has a DG-envelope. Then

0→ R
u→ U → K → 0

is a DG-envelope of R.
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Proof. By Proposition 6.2.1 p.dimU ≤ 1, so by Proposition 1.7.7, U ⊕K is
a 1-tilting module such that (U ⊕ K)⊥ = DG . Thus K ∈ A and so u is a
DG-preenvelope. To see that u is an envelope, note that HomR(K,U) = 0,
so by Lemma 2.1.2, if u = fu, then f = idU is an automorphism of U , thus
u is a DG-envelope as required.

Before continuing, we give an example of a ring R and 1-tilting cotorsion
class T where R has a T -envelope, but T is not enveloping. This result uses
our characterisation of the rings over which a 1-tilting class T is enveloping
in Theorem 6.3.4.

Example 6.2.3. Let R be a valuation domain with valuation v and valu-
ation group Γ(R) = R, and an idempotent maximal ideal m =< rn ∈ R |
v(rn) = 1/n, n ∈ Z>0 > (see [25, Section II.3] for details on valuation rings).
Then as m is countably generated, it follows that the field of quotients Q of
R is also countably generated and therefore of projective dimension at most
one. Thus Q⊕Q/R is a 1-tilting module with 1-tilting cotorsion pair (A, T ),
and the Gabriel topology is made up of the principal ideals generated by
the non-zero elements of R. Moreover, the following is a T -envelope of R.

0→ R→ Q→ Q/R→ 0

However, we claim that T is not enveloping, using results stated at later in
this chapter. If T is enveloping, then in particular R is an almost perfect
ring by Theorem 6.3.4 and as Q is a field, so perfect. By Corollary 3.1.11,
almost perfect valuation domains are discrete valuation domains, but by
assumption R is not discrete as m is countably generated, a contradiction.

We now begin by showing that when R is a commutative local ring, if
DG is enveloping in Mod-R then for each J ∈ G, R/J is a perfect ring. We
will use the ring isomorphism ν̃R : Λ(R) ∼= R of Corollary 5.5.5.

Lemma 6.2.4. Let R be a commutative local ring and u : R → U a flat
injective ring epimorphism and let K denote U/R. Then K is indecompos-
able.

Proof. It is enough to show that every idempotent of R := EndR(K) is
either the zero homomorphism or the identity on K. Let m denote the
maximal ideal of R. Take a non-zero idempotent e ∈ EndR(K). Then there
is an associated element ν̃−1

R (e) = r̃ := (rJ + J)J∈G ∈ Λ(R) via the ring
isomorphism ν̃R : Λ(R) ∼= R of Corollary 5.5.5. Clearly r̃ is also non-zero
and an idempotent in Λ(R). We will show this element is the identity in
Λ(R).

As r̃ is non-zero, there exists a J0 ∈ G such that rJ0 /∈ J0. Also, r̃ · r̃− r̃ =
0, hence

rJ0rJ0 − rJ0 = rJ0(rJ0 − 1R) ∈ J0.
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We claim that rJ0 is a unit in R. Suppose not, then rJ0 ∈ m, hence rJ0 − 1R
is a unit, which implies that rJ0 ∈ J0, a contradiction.

Consider some other J ∈ G such that J 6= R. rJ∩J0 − rJ0 ∈ J0, hence
rJ∩J0 /∈ J0. Therefore, by a similar argument as above, rJ∩J0 is a unit in
R. As rJ∩J0 − rJ ∈ J and rJ∩J0 is a unit, rJ /∈ J . Therefore by a similar
argument as above rJ is a unit in R for each J ∈ G and we conclude that r̃
is a unit in Λ(R).

Finally, as rJ(rJ − 1R) ∈ J for every J , and r̃ := (rJ + J)J∈G is a unit,
it follows that rJ − 1R ∈ J for each J , implying that r̃ is the identity in
Λ(R).

Proposition 6.2.5. Let R be a commutative local ring and consider the 1-
tilting cotorsion pair (A,DG) induced by the flat injective ring epimorphism
u : R → U . If DG is enveloping in Mod-R, then R/J is a perfect ring for
each J ∈ G.

Proof. Let m denote the maximal ideal of R. As R is local, to show that
R/J is perfect it is enough to show that for every sequence of elements
{a1, a2, . . . , ai, . . . } with ai ∈ m \ J , there exists an m > 0 such that the
product a1a2 · · · am ∈ J (that is m/J is T-nilpotent) by Proposition 1.4.3.

Fix a J ∈ G and take {a1, a2, . . . , ai, . . . } as above. Consider the follow-
ing preenvelope of R/aiR.

0→ R/aiR ,→ U/aiR→ K → 0

As R is local, by Lemma 6.2.4, K is indecomposable, and as R/aiR is not
G-divisible this is an envelope of R/aiR.

We will use the T-nilpotency of direct sums of envelopes from The-
orem 1.2.4. Consider the following countable direct sum of envelopes of
R/aiR which is itself an envelope by Theorem 1.2.4 (i).

0→
M
i>0

R/aiR ,→
M
i>0

U/aiR→
M
i>0

K → 0

For each i > 0, we define a homomorphism fi : U/aiR → U/ai+1R between
the direct summands to be the multiplication by the element ai+1. Then
clearly R/aiR ⊆ U/aiR vanishes under the action of fi = ȧi+1, hence we
can apply Theorem 1.2.4 (ii) to the homomorphisms {fi}i>0. So, for every
z + a1R ∈ U/a1R, there exists an n > 0 such that

fn · · · f2f1(z + a1R) = 0 ∈ U/an+1R,

which can be rewritten as

an+1 · · · a3a2(z) ∈ an+1R.
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By Lemma 4.1.9, there exist z1, z2, . . . , zn ∈ U such that\
0≤j≤n

AnnR(zj +R) ⊆ J.

Let Ω = {z1, z2, . . . , zn}. For each zj , there exists an nj such that anj+1 · · · a3a2

annihilates zj . That is,

anj+1 · · · a3a2(zj) ∈ anj+1R ⊆ R.

We now choose an integer m such that am · · · a3a2 annihilates all the zj for
a ≤ j ≤ n. Set m = max{nj | j = 1, 2 . . . , n}. Then this m satisfies the
following, which finishes the proof.

amam−1 · · · a3a2 ∈
\

0≤j≤n
AnnR(zj +R) ⊆ J

Now we extend the result to general commutative rings. Our assumption
is that the Gabriel topology G is arises from a perfect localisation u : R→ U
and that the associated 1-tilting class DG is enveloping in Mod-R.

Notation 6.2.6. There is a preenvelope of the following form induced by
the map u.

0→ R/m→ U/m→ K → 0

Let the following sequence denote an envelope of R/m.

0→ R/m→ D(m)→ X(m)→ 0

By Proposition 1.2.2, D(m) and X(m) are direct summands of U/m and K =
U/R respectively. For convenience we will consider R/m as a submodule of
D(m) and X(m) as a submodule of K.

Remark 6.2.7.

(i) Note that for every maximal ideal m of R, R/m is G-divisible if and
only if, for every J ∈ G, J + m = R if and only if J * m if and
only if m /∈ G. Therefore, we will only consider the envelopes of R/m
where m ∈ G. The modules D(m) and X(m) will always refer to the
components of the envelope of some R/m where m ∈ G. Additionally,
as R/m is also an Rm-module, it follows by Example 2.2.10 that D(m)
and X(m) are also Rm-modules.

(ii) For every J ∈ G, (R/J)m = 0 if and only if J * m.

(iii) If M is a G-torsion R-module, then Mm = 0 for every m /∈ G which
follows by (ii).
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The following lemma allows us to use Proposition 6.2.5 to say that if DG
is enveloping in R, all localisations Rm/Jm are perfect rings where m is a
maximal ideal in G and J ∈ G.

Lemma 6.2.8. Let R be a commutative ring and consider the 1-tilting
cotorsion pair (A,DG) induced from the flat injective ring epimorphism
u : R → U . Fix a maximal ideal m of R and let um : Rm → Um be the cor-
responding flat injective ring epimorphism in Mod-Rm. Then the following
hold.

(i) Km = 0 if and only if m /∈ G.

(ii) The induced Gabriel topology of um denoted

G(m) = {L ≤ Rm | LUm = Um}

contains the localisations Gm = {Jm | J ∈ G}.

(iii) Suppose p. dimU ≤ 1. Then (Am, (DG)m) is the 1-tilting cotorsion pair
associated to the flat injective ring epimorphism um : Rm → Um. That
is, (DG)m = DG(m) and Am = ⊥DG(m).

(iv) If DG is enveloping in Mod-R, then DG(m) is enveloping in Mod-Rm.

Proof. (i) Since K is G-torsion, m /∈ G implies Km = 0 follows by Re-
mark 6.2.7 (iii). For the converse, suppose Km = 0. If m ∈ G then
Rm
∼= Um = mmUm

∼= mmRm, a contradiction.

Note that if m /∈ G the rest of the lemma follows trivially.

(ii) Take Jm ∈ Gm. Then Rm/Jm ⊗R Um
∼= (R/J ⊗R U) ⊗R Rm = 0, so

Jm ∈ G(m).

(iii) That (Am, (DG)m) is the 1-tilting cotorsion pair associated to the 1-
tilting module (U ⊕ K)m is Proposition 1.5.1, therefore Gen(Um) =
(DG)m in Mod-Rm. As um : Rm → Um is a flat injective ring epimor-
phism and p. dimRm

Um ≤ 1 the 1-tilting classes Gen(Um) and DG(m)

coincide in Mod-Rm by Proposition 1.7.7. Thus (DG)m = DG(m) and it

follows that Am = ⊥DG(m).

(iv) Assume that DG is enveloping in Mod-R and take some M ∈ Mod-Rm

with the following DG-envelope.

0→M → D → X → 0

We claim that M has a DG(m)-envelope in Mod-Rm. Since M ∈
Mod-Rm, D and X are Rm-modules by Proposition 2.1.8. By Propo-
sition 6.2.1 p.dimU ≤ 1. By (iii), (DG)m = DG(m) so D ∈ DG(m)
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and X ∈ ⊥DG(m). Since R → Rm is a ring epimorphism, any direct
summand of D which contains M in Mod-Rm would also be a direct
summand in Mod-R. Thus we conclude that 0 → M → D → X → 0
is a DG(m)-envelope of M in Mod-Rm.

By the above lemma, if DG is enveloping in Mod-R, then DG(m) is en-
veloping in Mod-Rm. Next we show that, under our enveloping assumption,
all G-torsion modules are isomorphic to the direct sums of their localisations
at maximal ideals.

The proof of the following lemma uses an almost identical argument to
the proof of Lemma 6.1.3.

Lemma 6.2.9. Let u : R → U be a flat injective ring epimorphism, G the
associated Gabriel topology and suppose that DG is enveloping. Let D(m)
and X(m) be as in Notation 6.2.6 and fix a maximal ideal m ∈ G. For
every element d ∈ D(m) and every element a ∈ m, there is a natural number
n > 0 such that and = 0. Moreover, for every element x ∈ X(m) and every
element a ∈ m, there is a natural number n > 0 such that anx = 0.

Proof. We will use the T-nilpotency of direct sums of envelopes as in The-
orem 1.2.4 (ii). Consider the following countable direct sum of envelopes of
R/m which is itself an envelope by Theorem 1.2.4 (i).

0→
M
0<i

(R/m)(i) →
M
0<i

D(m)(i) →
M
0<i

X(m)(i) → 0

For a fixed element a ∈ m, we choose the homomorphisms fi : D(m)(i) →
D(m)(i+1) between the direct summands to all be multiplication by a. Then
clearly R/m ⊆ D(m) vanishes under the action of fi = ȧ, hence we can apply
Xu’s Theorem: for every d ∈ D(m), there exists an n such that

fn · · · f2f1(d) = 0 ∈ D(m)(n+1).

Since each fi acts as multiplication by a, for every d ∈ D there is an integer
n for which and = 0, as required.

It is straightforward to see that X(m) has the same property as X(m) is
an epimorphic image of D(m).

Lemma 6.2.10. Let u : R → U be a flat injective ring epimorphism and
suppose DG is enveloping. Let m ∈ G and let X(m) be as in Notation 6.2.6.
The support of X(m) is exactly {m}, and each X(m) ∼= X(m)m is Km.

Proof. We claim that X(m) is non-zero. Otherwise, X(m) = 0 would imply
that R/m is G-divisible, so R/m = m(R/m) = 0, a contradiction.

Consider a maximal ideal n 6= m. Take an element a ∈ m \ n. Then for
any x ∈ X(m), anx = 0 for some n > 0, by Lemma 6.2.9 and since a is an
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invertible element in Rn, x is zero in the localisation with respect to n. This
holds for any element x ∈ X(m), hence X(m)n = 0.

It follows that since X(m) is non-zero, X(m)m 6= 0. As mentioned in
Remark 6.2.7, X(m) is an Rm-module and since X(m) is a direct sum-
mand of K, X(m) is a direct summand of Km which is indecomposable,
by Lemma 6.2.4. Therefore X(m) is non-zero and is isomorphic to Km.

Lemma 6.2.11. Let u : R → U be a flat injective ring epimorphism and
suppose DG is enveloping. Then the sum of the submodules X(m) in K is a
direct sum. X

m∈G
X(m) =

M
m∈G

X(m)

Proof. Recall that X(m) is non-zero only for m ∈ G by Remark 6.2.7. Con-
sider an element

x ∈ X(m) ∩
X
n6=m
n∈G

X(n).

We will show that this element must be zero. By Lemma 6.2.10, since
x ∈ X(m), x is zero in the localisation with respect to all maximal ideals
n 6= m. But x can also be written as a finite sum of elements xi ∈ X(ni),
each of which is zero in the localisation with respect to m, by Lemma 6.2.10.
Therefore, (x)n = 0 for all maximal ideals n, hence x = 0 .

Proposition 6.2.12. Let u : R → U be a flat injective ring epimorphism
and suppose DG is enveloping. The module K can be written as a direct sum
of its localisations Km, as follows.

K ∼=
M
m∈G

Km =
M

m∈mSpecR

Km

Proof. From Lemma 6.2.11, we have the following inclusion.M
m∈G

X(m) ≤ K

To see that this is an equality we show that these two modules have the
same localisation with respect to every m maximal in R. Recall that by
Lemma 6.2.8(i) if n is maximal, then Kn = 0 if and only if n /∈ G and by
Lemma 6.2.10, Supp(X(m)) = {m}. Using these lemmas, it follows that for
n /∈ G, Kn = 0 = (

L
m∈G X(m))n. Similarly, if m ∈ G, then Km = X(m)m.

Hence we have shown the following.M
m∈G

X(m) = K

Since Km = X(m)m, it only remains to see that X(m) ∼= X(m)m, which
follows from Remark 6.2.7.
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Corollary 6.2.13. Let u : R→ U be a flat injective ring epimorphism and
suppose DG is enveloping. Then for every G-torsion module M , the following
isomorphism holds.

M ∼=
M
m∈G

Mm =
M

m∈mSpecR

Mm

Furthermore, it follows that for every J ∈ G, J is contained only in finitely
many maximal ideals of R.

Proof. For the first isomorphism, recall that if an R-module M is G-torsion,
then M ∼= TorR1 (M,K). Also, note that in this case, Mm

∼= TorR1 (M,K)m ∼=
TorRm

1 (Mm,Km) ∼= TorR1 (M,Km). Hence we have the following isomor-
phisms.

M ∼= TorR1 (M,K) ∼= TorR1 (M,
M
m∈G

Km) ∼=
M
m∈G

TorR1 (M,Km) ∼=
M
m∈G

Mm

The fact that M
m∈G

Mm =
M

m∈mSpecR

Mm

follows from Remark 6.2.7 (iii).
For the final statement of the proposition, one only has to replace M with

the G-torsion module R/J where J ∈ G. Hence as R/J is cyclic, it cannot
be isomorphic to an infinite direct sum. Therefore, (R/J)m is non-zero only
for finitely many maximal ideals and the conclusion follows.

We are now in the position to show the main results of this section.

Theorem 6.2.14. Let u : R → U be a flat injective ring epimorphism and
suppose DG is enveloping. Then R/J is a perfect ring for every J ∈ G.

Proof. By Corollary 6.2.13, every R/J is a finite product of local rings
Rm/Jm. Additionally as (DG)m is enveloping in Mod-Rm by Lemma 6.2.8
each Rm/Jm is a perfect ring by Proposition 6.2.5. Therefore, by Proposi-
tion 1.4.3, R/J itself is perfect.

Theorem 6.2.15. Let u : R → U be a flat injective ring epimorphism and
suppose DG is enveloping in Mod-R. Then the topological ring R = End(K)
is pro-perfect.

Proof. Recall that the topology of R is given by the annihilators of finitely
generated submodules of K, so that R = EndR(K) is separated and com-
plete in its topology. Let V be an open ideal in the topology of R. By Corol-
lary 5.5.6 there is J ∈ G and a surjective ring homomorphism R/J → R/V .
By Theorem 6.2.14 R/J is a perfect ring and thus so are the quotient rings
R/V .



6.3. DG IS ENVELOPING IF AND ONLY IF R IS PRO-PERFECT 111

6.3 DG is enveloping if and only if R is pro-perfect

Suppose that u : R → U is a commutative flat injective ring epimorphism
where p.dimR U ≤ 1 and denote K = U/R. In this section we show that if
the endomorphism ring R = EndR(K) is pro-perfect, then DG is enveloping
in Mod-R. So combining with the results in the Section 6.2 we obtain that
DG is enveloping if and only if p. dimU ≤ 1 and R is pro-perfect.

Recall that if p.dimU ≤ 1, (A,DG) denotes the 1-tilting cotorsion pair
associated to the 1-tilting module U ⊕K. The following theorem of Posit-
selski is vital for this section.

Theorem 6.3.1. ([14, Theorem 13.3]) Suppose R is a commutative ring
and u : R → U a flat injective ring epimorphism with p. dimR U ≤ 1. Then
the topological ring R = End(K) is pro-perfect if and only if lim−→Add(K) =
Add(K).

A second crucial result that we will use is Theorem 1.2.5. It states that
C is a class of modules closed under direct limits and extensions, then if a
M admits a special C⊥1-preenvelope with cokernel in C, then M admits a
C⊥1-envelope.

We now show that if R is pro-perfect, then Add(K) does in fact satisfy
the conditions of Theorem 1.2.5. From Theorem 6.3.1 Add(K) is closed
under direct limits. Moreover, Add(K) is closed under extensions as any
short exact sequence 0→ L→M → N → 0 with L,N ∈ Add(K) splits.

As the cotorsion pair (A,DG) is complete, every R-module M has an in-
jectiveDG-preenvelope, and asDG = K⊥ = (Add(K))⊥, M has a (Add(K))⊥-
preenvelope. It remains to be seen that every M has a special preenvelope
ν such that Coker ν ∈ Add(K), which we will now show.

Lemma 6.3.2. Suppose u : R → U is a flat injective ring epimorphism
where p.dimR U ≤ 1. Let (A,DG) be the 1-tilting cotorsion pair associated to
the 1-tilting module U⊕K. Then every module has a special DG-preenvelope
ν such that Coker ν ∈ Add(K).

Proof. For every cardinal α the short exact sequence 0 → R(α) → U (α) →
K(α) → 0 is a DG-preenvelope and is of the desired form. Take an R-module

M and consider the canonical surjection R(α) p→ M → 0. Consider the
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following pushout Z of M ← R(α) → U (α).

0 0

ker p ker p

0 // R(α) //

p

U (α) // K(α) // 0

0 //M // Z // K(α) // 0

0 0

The module Z is in Gen(U) = DG , and so the bottom row of the above
diagram is a DG-preenvelope of M of the desired form.

The following theorem follows easily from the above discussion.

Theorem 6.3.3. Suppose u : R → U is a flat injective ring epimorphism
with p. dimR U ≤ 1. If the topological ring R is pro-perfect, then DG is
enveloping in Mod-R.

Proof. From Theorem 6.3.1 and Lemma 6.3.2, Add(K) does satisfy the
conditions of Theorem 1.2.5. Thus the conclusion follows, since DG =
Add(K)⊥.

Finally combining the above theorem with the results in Section 6.1 and
Section 6.2 we obtain the two main results of this chapter.

Theorem 6.3.4. Suppose u : R → U is a commutative flat injective ring
epimorphism, G the associated Gabriel topology and R the topological ring
EndR(K). The following are equivalent.

(i) DG is enveloping.

(ii) p.dimU ≤ 1 and R/J is a perfect ring for every J ∈ G.

(iii) p.dimU ≤ 1 and R is pro-perfect.

In particular, if DG is enveloping then the class Add(K) is closed under
direct limits.

Proof. (i)⇒(ii) Follows by Proposition 6.2.1 and Theorem 6.2.14.
(ii)⇒(iii) Follows from Corollary 5.5.5.
(iii)⇒(i) Follows from Theorem 6.3.3.
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Theorem 6.3.5. Assume that T is a 1-tilting module over a commutative
ring R such that the class T⊥ is enveloping, and let G be the associated
Gabriel topology of T . Then we have the following equivalence.

T is enveloping⇔


p.dimRG ≤ 1

R/J is a perfect ring for each J ∈ G
G is a perfect Gabriel topology

That is, there is a flat injective ring epimorphism u : R → U such that
U ⊕ U/R is equivalent to T .

Proof. (⇒) By Proposition 6.1.6, the Gabriel topology G associated to T⊥

arises from a perfect localisation. Moreover, ψ : R → RG is injective so by
setting U = RG we can apply Theorem 6.3.4 to conclude.

(⇐)This follows by Theorem 6.3.4.

6.4 The case of a non-injective flat ring epimor-
phism

Now we extend the results of the previous section to the case of a non-
injective flat ring epimorphism u : R→ U with K = Cokeru.

As before, the Gabriel topology Gu = {J ≤ R | JU = U} associated to
u is finitely generated and the class

DGu = {M ∈ Mod-R | JM = M for every J ∈ Gu}

of Gu-divisible modules is a torsion class. Moreover, by [6] it is a silting
class, that is there is a silting module T such that Gen(T ) = DGu .

The ideal I will denote the kernel of u and R the ring R/I so that there
is a flat injective ring epimorphism u : R→ U .

To u, one can associate the Gabriel topology Gu = {L/I ≤ R | LU =
U, I ⊆ L} on R and the following class of R-modules.

DGu = {M ∈ Mod-R | (L/I)M = M, for every L/I ∈ Gu}

That is, we have that if J ∈ Gu, then J + I/I ∈ Gu, and conversely if
L/I ∈ Gu, L ∈ Gu.

We first note the following.

Lemma 6.4.1. Every module in DGu is annihilated by I, thus DGu = DGu.

Proof. Note that Keru = I is the Gu-torsion submodule of R. Hence for
every b ∈ I there is J ∈ Gu such that bJ = 0. Let M ∈ DGu , then bM =
bJM = 0, thus IM = 0. We conclude that DGu can be considered a class in
Mod-R and coincides with DGu .
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Proposition 6.4.2. The class DGu is enveloping in Mod-R if and only if
DGu is enveloping in Mod-R.

Proof. Assume that DGu is enveloping in Mod-R and let M ∈ Mod-R. Con-
sider a DGu-envelope ψ : M → D in Mod-R. Since R → R/I is a ring
epimorphism and D is annihilated by I by Lemma 6.4.1, it is immediate to
conclude that ψ is also a DGu-envelope of M .

Conversely, assume that DGu is enveloping in Mod-R. Take M ∈ Mod-R
and let ψ : M/IM → D be a DGu-envelope of M/IM in Mod-R. Let
π : M → M/IM be the canonical projection. We claim that ψ = ψπ is
a DGu-envelope of M in Mod-R. Indeed, if f : D → D satisfies fψ = ψ, then
fψπ = ψπ. As π is a surjection, fψ = ψ and so f is an automorphism of
D.

Note that EndR(K) coincides with EndR(K) both as a ring and as a
topological ring. It will be still denoted by R. Thus if DGu is enveloping in
Mod-R we can apply the results of the previous sections to the ring R, in
particular Theorem 6.3.4.

Theorem 6.4.3. Let u : R → U be a commutative flat ring epimorphism
with kernel I. Let Gu be the associated Gabriel topology and R the topological
ring EndR(K). The following are equivalent.

(i) DGu is enveloping.

(ii) p.dimR U ≤ 1 and R/L is a perfect ring for every L ∈ G such that
L ⊇ I.

(iii) p.dimR U ≤ 1 and R is pro-perfect.

In particular, U ⊕K is a 1-tilting module over the ring R and since Gen(U)
is contained in Mod-R, DGu = Gen(U).

As already noted, results from [6] imply that Gen(U) is a silting class in
Mod-R. Since we have that U ⊕K is a 1-tilting module in Mod-R inducing
the silting class Gen(U), it is natural to ask the following question.

Question 6.4.4. Is U ⊕K a silting module in Mod-R?



Chapter 7

Covering classes and 1-tilting
cotorsion pairs over
commutative rings

Suppose (A,DG) is a 1-tilting cotorsion pair over a commutative ring with
associated Gabriel topology G. The aim of this chapter is to characterise the
commutative rings R over which the class A of the cotorsion pair (A,DG) is
covering. We find that A is covering if and only if both p.dimRG ≤ 1 and
R is G-almost perfect, that is RG and R/J for each J ∈ G are perfect rings.
Moreover in these cases the Gabriel topology G is perfect, that is R → RG
is a perfect localisation and G = {J ≤ R | JRG = RG}, and RG ⊕RG/R is a
1-tilting module associated to (A,DG).

We note that one can conclude that if A is covering, the R/J are perfect
rings for every J ∈ G by applying Theorem 2.3.6, that is if A is covering then
DG is enveloping. However, we found it interesting to show it directly, as
one uses different techniques to study covers and envelopes. Additionally, in
Section 7.3 we show explicitly that if the R/J are perfect rings, K is Σ-pure-
split. Thus by Example 1.1.1, Add(K) is closed under direct limits, and so
this gives an explicit proof of the implication (ii)⇒(i) in Theorem 6.3.4.

To find the closure under direct limits of A in (A,DG), we could ap-
ply Theorem 1.3.6, but we chose to use purely algebraic methods to get
moreover a ring theoretic characterisation of R. Another possibility is to
apply [14, Theorem 13.5] once we prove that the Gabriel topology G associ-
ated to the 1-tilting pair arises from a perfect localisation and additionally
p.dimRG ≤ 1. This will be shown in Lemma 7.1.3 and Proposition 7.1.4.

In Section 7.1 we first begin by showing that if A is covering, then the
Gabriel topology G is perfect. We use some properties of covers of R/J-
modules where J ∈ G, using in particular the fact that (A,DG) is of finite
type, so DG is closed under direct sums. Moreover in this section we show

115
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in Proposition 7.1.4 that if A is covering then p.dimRG ≤ 1, so RG ⊕RG/R
is a 1-tilting module associated to (A,DG) and Gen(RG) = DG .

Next in Section 7.2, we continue with the assumption that A is covering
and show that R must be G-almost perfect. First we show that every RG-
module has a projective cover, thus is perfect. For R/J , we show that every
Bass R/J-module N has a projective cover. To do so we must use the free
presentation of N , and find a short exact sequence that corresponds to this
free presentation from which we can extract an A-cover. Next we must
pass to the category of u-contramodules where we show that the sequence
becomes a projective cover in the category of u-contramodules. Finally, one
can show that the original free presentation must split, thus N is projective
in Mod-R/J .

Finally, Section 7.3 is divided into three subsections. The aim is to
show that if we begin with a 1-tilting cotorsion pair (A,DG) over a G-almost
perfect commutative ring R, and p.dimRG ≤ 1, then A must be covering.
We begin Section 7.3 by showing that G must arise from a perfect locali-
sation, thus we can work in the case that U ⊕K is the associated 1-tilting
module of (A,DG). The main result is Lemma 7.3.2 and only requires that
f. dimRG = 0.

In Subsection 7.3.1 we prove some initial results about the pure short
exact sequence (7.11), and that by Lemma 7.3.3 and Lemma 7.3.5, it only
remains to show that K is Σ-pure-split. Next in Subsection 7.3.2, we prove
that K is Σ-pure-split when R is local by using the equivalence of G-torsion
G-divisible modules and G-torsion-free u-contramodules via the functors
(−⊗R K),HomR(K,−) as in Section 5.4. The results of Subsection 7.3.2

are from [35, Sections 3] which in our context can be proved in a much more
straightforward way. Finally, we extend these results on local rings to the
global case. We use that if the R/J are perfect, the ring R is G-h-local as
shown in Proposition 4.2.6. Additionally we summarise the main result of
this chapter in Subsection 7.3.3, and in particular Theorem 7.3.16.

As mentioned previously in this thesis, if the assumption states that the
Gabriel topology G arises from a perfect localisation, we denote RG by U
and RG/R by K, and the natural ring homomorphism by u : R→ U .

7.1 G rises from a perfect localisation and RG ⊕
RG/R is 1-tilting

The next two sections are devoted to the study of the following situation.

Setting 7.1.1. Let R be a commutative ring and let (A,DG) be a 1-tilting
cotorsion pair with associated Gabriel topology G. We suppose moreover
that A is covering.
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We begin by describing covers of modules annihilated by some J ∈ G.

Lemma 7.1.2. Suppose R is commutative and let (A,DG) be a 1-tilting
cotorsion pair with associated Gabriel topology G. Consider an R-module M
such that MJ = 0 for some J ∈ G and let the following be an A-cover of
M .

0→ B → A
φ−→M → 0

Then both A and B are G-torsion.

Proof. We will use the T-nilpotency of direct sums of covers as in The-
orem 1.2.11 (ii). Suppose M has the property that MJ = 0 for some
J ∈ G, and let the sequence above be an A-cover of M . Consider the
following countable direct sum of covers of M which is itself a cover, by
Theorem 1.2.11 (ii).

0→
M
n

Bn →
M
n

An

L
φn−−−→

M
n

Mn → 0.

Choose an element x ∈ J and for each n set fn : An → An+1 to be the
multiplication by x.

Then clearly φ(fn(An)) = 0 for every n > 0, hence we can apply Theo-
rem 1.2.11 (ii). For every a ∈ A, there exists an m such that

fm ◦ · · · ◦ f2 ◦ f1(a) = 0 ∈ Am+1.

Hence for every a ∈ A there is an integer m for which xma = 0.
Fix a ∈ A and let mi be the minimal natural number for which (xi)

mia =
0 and set m := sup{mi | 1 ≤ i ≤ t}. Then for a large enough integer
k we have that Jka = 0 (for example set k = tm), and Jk ∈ G. Thus
every element of A is annihilated by an ideal contained in G, therefore A
is G-torsion. Since the associated torsion pair of the Gabriel topology is
hereditary, also B ⊆ A is G-torsion.

Next we show that G must arise from a perfect localisation using an
exercise from Stenström, Lemma 4.1.5.

Lemma 7.1.3. Suppose R is commutative and let (A,DG) be a 1-tilting
cotorsion pair with associated Gabriel topology G. Suppose A is covering.
Then G is a perfect Gabriel topology.

Proof. From Proposition 1.7.4, RG arises from a perfect localisation if and
only if both the functor q is exact and G has a basis of finitely generated
ideals. The associated Gabriel topology, G of a 1-tilting class has a basis of
finitely generated ideals by Hrbek’s characterisation in Theorem 1.7.6, so it
remains only to show that q is exact.
We will show that Ext2

R(R/J,M) = 0 for every G-closed R-module M and
every J ∈ G, and then apply Lemma 4.1.5 to conclude that q is exact.
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Let M be any G-closed R-module and J ∈ G, and consider the following
A-cover of R/J .

0→ BJ → AJ → R/J → 0

By Lemma 7.1.2, AJ and BJ are G-torsion. We apply the contravariant
functor HomR(−,M) to the above cover, and find the following exact se-
quence.

0 = Ext1
R(BJ ,M)→ Ext2

R(R/J,M)→ Ext2
R(AJ ,M) = 0

The first module Ext1
R(BJ ,M) vanishes by Lemma 4.1.3 since BJ is G-

torsion and M is G-closed. The last module Ext2
R(AJ ,M) vanishes since

p.dimAJ ≤ 1. Therefore Ext2
R(R/J,M) = 0 for every M G-closed and

every J ∈ G, as required.

The above lemma allows us to use the equivalent conditions of Proposi-
tion 1.7.4. In particular, we have that ψR : R → RG is a flat injective ring
epimorphism and that RG is G-divisible, so RG ∈ DG . It remains to see that
if A is covering in (A,DG) then RG ⊕RG/R is the associated 1-tilting mod-
ule, that is the equivalent conditions of Proposition 1.7.7. This amounts to
showing that p. dimRG ≤ 1.

Proposition 7.1.4. Suppose R is commutative and let (A,DG) be a 1-tilting
cotorsion pair with associated Gabriel topology G. Suppose A is covering.
Then the module RG⊕RG/R is a 1-tilting module associated to the cotorsion
pair (A,DG) and moreover Gen(RG) = DG.

Proof. We know that G is perfect, so that RG is G-divisible by Lemma 7.1.3.
By Proposition 1.7.7 it only remains to show that p.dimRG ≤ 1, that is we
will show that RG ∈ A. Let the following be an A-cover of RG .

0→ D → A
φ−→ RG → 0 (7.1)

Note that A is G-divisible since both RG and D are G-divisible. We will
first show that A must be G-torsion-free, and therefore an RG-module. Fix
a finitely generated J ∈ G with generators x1, . . . , xn. We will show that
A[J ] = 0, that is the only element of A annihilated by J is 0. Since RG is
divisible, one can write 1R = 1RG =

P
xiηi for some xi ∈ J and ηi ∈ RG .

Let x and s be the following homomorphisms.

x : RG //
L

1≤i≤nRG s :
L

1≤i≤nRG // RG

1RG
� / (η1, ..., ηn) (ν1, ..., νn) � /

P
i xiνi

sA :
L

1≤i≤nA
// A

(a1, ..., an) � /
P

i xiai
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By the definition of s and sA, the lower square of (7.2) commutes. Clearly φn

is a precover of RnG as Dn ∈ DG and An ∈ A (it is in fact a cover). Therefore,
there exists a map f such that the upper square of (7.2) commutes.

A
φ //

f

RG //

x

0

An
⊕φ //

sA

RG
n //

s

0

A
φ // RG // 0

(7.2)

The map sx is the identity on RG , so we have that φsAf = φ and by
the A-cover property of φ, sAf is an automorphism of A. Consider an
element a ∈ A[J ] and let f(a) = (f1(a), . . . , fn(a)) ∈ An. Then sA(f(a)) =P
xifi(a) =

P
fi(xia) = 0 as xi ∈ J , and by the injectivity of sAf , a = 0.

We have shown that A,D are both G-torsion-free and G-divisible, so by
Lemma 4.1.1 they are RG-modules. Then the sequence (7.1) is a sequence in
Mod-RG as R → RG is a ring epimorphism and Mod-RG → Mod-R is fully
faithful. Thus (7.1) splits so RG ∈ A and p.dimRG ≤ 1 as required.

7.2 When A is covering, R is G-almost perfect

In this section we continue with the situation of Setting 7.1.1, that is we
suppose that (A,DG) is a 1-tilting cotorion pair such that A is covering.
We now additionally know that U ⊕ K is a 1-tilting module associated to
(A,DG) by Proposition 7.1.4.

In Proposition 7.2.1 we prove that RG is a perfect ring and in Propo-
sition 7.2.4 that the R/J are perfect for every J ∈ G. The main result is
stated in Theorem 7.2.5.

By Proposition 7.1.4 if (A,DG) is a 1-tilting pair such that A is cov-
ering then the associated tilting module arises from a flat injective ring
epimorphism u : R → U and U ⊕K is a 1-tilting module for (A,DG), thus
DG = Gen(U).

Proposition 7.2.1. Suppose R is commutative and let (A,DG) be a 1-tilting
cotorsion pair with associated Gabriel topology G. Suppose A is covering.
Then RG is a perfect ring.

Proof. We will show that every RG-module has a projective cover in Mod-RG
(see Theorem 1.4.2). Consider some M ∈ Mod-RG with the following short
exact sequence in Mod-RG .

0→ L→ R
(α)
G

φ→M → 0 (7.3)
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Then this sequence is also a short exact sequence of R-modules with R
(α)
G ∈

A by Proposition 7.1.4 and L ∈ DG since all RG-modules are G-divisible, thus
it is an A-precover of MR. By the assumption that A is covering, one can
extract the A-cover (7.4) from the above short exact sequence (7.3), so that

L0 and P are direct summands of L and R
(α)
G respectively as R-modules. As

R → RG is a ring epimorphism, the direct summand of a RG-module must
be also an RG-module.

0→ L0 → P
φ0→M → 0 (7.4)

We now have a P0(RG)-precover of M in Mod-RG as above, which is also an
A-cover when considered in Mod-R. It remains to see that it is a P0(RG)-
cover, that is that L0 is superfluous in P . Consider H ≤ P an RG-submodule
of P such that H+L0 = P . Then H∩L0 is an RG-module, hence G-divisible.
Therefore, by the A-cover property of φ0, H is DG-superfluous in P , thus by
Proposition 2.2.5(i) H = P . It follows that L0 is superfluous in P so φ0 is a
P0(RG)-cover of M , as required.

Another way to see that (7.4) is a P0(RG)-cover, is to use that every
RG-homomorphism f such that φ0f = φ0 is also an R-homomorphism, and
therefore is an automorphism by the A-cover property of φ0.

We will now show that R/J is perfect for each J ∈ G by showing that
every Bass R/J-module has a P0(R/J)-cover, that is using Lemma 1.4.4.

Take a1, a2, . . . , ai, . . . a sequence of elements of R and let N be the Bass
module with presentation as in the sequence (7.5), where (ei)i∈N and (fi)i∈N
are basis of the domain and codomain of φ respectively.

0 //
L

NR/J
φ //

L
NR/J

// N // 0

ei // fi − aifi+1

(7.5)

As the elements a1, a2, . . . , ai, . . . are in R, we can also define a Bass R-
module, which is a lift of N . That is, we consider the following Bass R-
module.

0→
M
N
R

φ→
M
N
R→ F → 0 (7.6)

It is clear that applying (− ⊗R R/J) to (7.6) will give us (7.5), thus F ⊗R
R/J = N , where F is flat.

We will make use of results in Section 5.3 and Section 5.4.

Lemma 7.2.2. Suppose A is covering and F is a Bass R-module. Then
HomR(K,F⊗RK) has a projective cover in the category of u-contramodules.

Proof. Apply the functor (−⊗R K) to (7.6).

0→
M
N
K

φ→
M
N
K → F ⊗R K → 0
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The above is an A-precover by Proposition 7.1.4. As by assumption A is
covering, one can extract the A-cover from the above sequence, which we
will denote as follows.

0→ D1

φ D1→ D0
π→ F ⊗R K → 0 (7.7)

Now we apply HomR(K,−) to the above sequence, and we claim that it is
a projective cover in the category of u-contramodules.

0→ HomR(K,D1)→ HomR(K,D0)
ρ→ HomR(K,F ⊗R K)→ 0 (7.8)

Firstly, HomR(K,D1) and HomR(K,D0) are direct summands of modules
of the form µR(α) : HomR(K,K(α)) ∼= ∆u(R(α)) (see Lemma 5.3.6), thus
are projective objects in the category u-contra. We will show that ρ :=
HomR(K,π) is a projective cover in u-contra. Take f : HomR(K,D0) →
HomR(K,D0) such that ρf = ρ. By Theorem 5.4.2, the adjoint functors
(− ⊗R K),HomR(K,−) form equivalences between the subcategories of
G-torsion G-divisible modules EG ∩ DG and G-torsion-free u-contramodules
FG ∩ u-contra. Thus in particular the functor HomR(K,−) restricted to
the subcategories EG ∩DG → FG ∩u-contra is full so there exists a g : D0 →
D0 such that HomR(K, g) = f . Thus as πg = π implies that g is an
automorphism, we conclude that also f is an automorphism, as required.

Lemma 7.2.3. Suppose R is a ring with unit and take a right ideal I of R
and take a monomorphism f : A→ B ∈ Mod-R. Suppose f(A) is superflu-
ous in B. Then f̄(A/AJ) is superfluous in B/BJ , where f̄ is the naturally
induced map from f .

Proof. Take H/BJ ⊆ B/BJ such that H/BJ + f̄(A/AJ) = B/BJ . Note
that f̄(A/AJ) = (f(A)+BJ)/BJ . Then it follows that H+f(A)+BJ = B.
As BJ ⊆ H and f(A) is superfluous in B, we find H = B, as required.

Proposition 7.2.4. Suppose (A,DG) is a 1-tilting cotorsion pair over a
commutative ring where A is covering. If F is a Bass R-module, then F ⊗R
R/J has a P0(R/J)-cover.

Proof. By Lemma 7.2.2, there is a projective cover of HomR(K,F ⊗RK) in
the category of u-contramodules. Moreover, as F is flat it is G-torsion-free,
so HomR(K,F ⊗R K) ⊗R R/J ∼= F/FJ by Lemma 5.3.11, and similarly
HomR(K,K(α))⊗R R/J ∼= (R/J)(α).

HomR(K,D0)⊗R R/J ≤
⊕

HomR(K,K(α))⊗R R/J

∼= (R/J)(α)
(7.9)
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Moreover we have the following short exact sequence. The first isomor-
phism is by Lemma 5.3.12 and Lemma 5.3.6, the latter of which states
HomR(K,F ⊗R K) ∼= ∆u(F ). Finally we use that F is flat.

TorR1 (HomR(K,F ⊗R K), R/J) ∼= TorR1 (F,R/J) = 0

It will be enough to show the following sequence (7.10), which is (−⊗RR/J)
applied to (7.8), is a projective cover in Mod-R/J .

0→ HomR(K,D1)⊗R R/J → HomR(K,D0)⊗R R/J
ρ⊗RidR/J→ F/FJ → 0

(7.10)
By Lemma 7.2.3, HomR(K,D1)⊗RR/J HomR(K,D0)⊗RR/J , so (7.10)
is a P0(R/J)-cover of F/FJ .

Theorem 7.2.5. Suppose R is a commutative ring and (A,DG) a 1-tilting
cotorsion pair. Then if A is covering, R → RG is a perfect localisation,
p. dimRG ≤ 1, and R is G-almost perfect.

Proof. That R → RG is a perfect localisation and p.dimRG ≤ 1 are by
Lemma 7.1.3, Proposition 7.1.4. That R is G-almost perfect is by Proposi-
tion 7.2.1 and Proposition 7.2.4.

7.3 When R is a G-almost perfect ring

Let R be a commutative ring. We suppose that (A,DG) is a 1-tilting cotor-
sion pair and R is G-almost perfect (that is RG is a perfect ring and R/J is
a perfect ring for every J ∈ G) and additionally p.dimRG ≤ 1. The purpose
of this section is to show that under these assumptions A is covering. We
will do this by first showing that G arises from a perfect localisation. Next
it is sufficient to show that we will show that U ⊕K is Σ-pure-split, as then
A is closed under direct limits using Proposition 1.5.2. To show that U ⊕K
is Σ-pure-split, the problem naturally splits into two parts: showing that
each of U and K are Σ-pure-split.

Setting 7.3.1. Let R be a commutative ring. We suppose that (A,DG) is
a 1-tilting cotorsion pair and R is G-almost perfect (U = RG is perfect and
R/J is perfect for every J ∈ G) and additionally p.dimU ≤ 1.

We first prove a lemma. Recall that G is faithful and finitely generated,
so Lemma 1.7.5 is satisfied for the modules R/J for the finitely generated
J ∈ G.

Lemma 7.3.2. Let R be a commutative ring. Suppose (A,DG) is a 1-tilting
cotorsion pair, G the associated Gabriel topology and f. dimRG = 0. Then
G arises from a perfect localisation, or equivalently RG is G-divisible.
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Proof. We use the relations in Lemma 1.7.5 to show that RG⊗RR/J for each
finitely generated J ∈ G. That is, for a finitely generated J ∈ G, RG ⊗R
R/J ∼= Ext1

R(TrR/J,RG), and as p.dim TrR/J ≤ 1, by Lemma 4.1.2(i)
TorR1 (TrR/J,RG) = 0. Thus applying (RG⊗R−) to the projective resolution
of TrR/J , we find the following.

0→ RG → RnG → RG ⊗R TrR/J → 0

By assumption f. dimRG = 0 so RG ⊗R TrR/J is RG-projective. Next
consider the following isomorphism.

Ext1
R(TrR/J,RG) ∼= Ext1

RG (RG ⊗R TrR/J,RG) = 0

The last module vanishes as RG⊗RTrR/J is RG-projective, so R/J⊗RRG ∼=
Ext1

R(TrR/J,RG) = 0 for each J ∈ G so RG is G-divisible.

Our assumption states thatRG is perfect, so by Proposition 1.4.3, F. dimRG =
0, so we can use Lemma 7.3.2. Thus G is a perfect Gabriel topology and we
can work in the case that the 1-tilting cotorsion pair (A,DG) arises from a
flat injective ring epimorphism u : R→ U and Gen(U) = DG as in Proposi-
tion 1.7.7.

7.3.1 U ⊕K is Σ-pure spilt

Take X ∈ Mod-R such that the following is a pure exact sequence and
T ∈ Add(U ⊕K).

0→ X → T → Y → 0 (7.11)

It follows that X,Y ∈ DG as T ∈ DG and the sequence (7.11) is pure
exact, so the sequence vanishes when one applies (R/J ⊗R −).

Lemma 7.3.3. Let G be a faithful finitely generated perfect Gabriel topology
over R such that p. dimU ≤ 1 and R/J is a perfect ring for each J ∈ G.
Suppose furthermore that U is a perfect ring. Then the following sequence
(which is (−⊗R U) applied to (7.11)) splits.

0→ X ⊗R U → T ⊗R U → Y ⊗R U → 0 (7.12)

Furthermore, (7.12) is a short exact sequence of projective modules in Mod-U .

Proof. The sequence (7.12) is pure exact as it is a tensor product of a pure
exact sequence and a flat module. Moreover, as T ∈ Add(U ⊕ K), it is
straightforward to see that T ⊗R U ∈ Add(U), thus is U -projective.

Since the sequence (7.12) is pure and T⊗RU is projective as a U -module,
also Y ⊗R U is also U -flat and therefore U -projective as U is perfect. So
the sequence splits both in Mod-U and hence in Mod-R. Also note that this
implies that X ⊗R U is flat in Mod-R.
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Lemma 7.3.4. Let G be a faithful finitely generated perfect Gabriel topology
over R such that p.dimU ≤ 1 and R/J is a perfect ring for each J ∈ G.
Suppose D is G-divisible module. Then its G-torsion module t(D) is also
G-divisible.

Proof. Take the G-torsion decomposition of D as follows.

0→ t(D)→ D → D/t(D)→ 0

Apply HomR(K,−) to the above sequence. We have that 0 = HomR(K,D/t(D))
as D/t(D) is G-torsion-free and Ext1

R(K,D) = 0 as D is G-divisible and
DG = K⊥.

0 = HomR(K,D/t(D))→ Ext1
R(K, t(D))→ Ext1

R(K,D) = 0

Lemma 7.3.5. Let G be a faithful finitely generated perfect Gabriel topology
over a commutative ring such that U is a perfect ring and p.dimU ≤ 1. Let
X,T, Y be as in (7.11). Then the following sequence is pure exact.

0→ t(X)→ t(T )→ t(Y )→ 0

Proof. We claim diagram (7.13) has exact rows and exact columns. This is
because the bottom row is exact as U is flat, and by the snake lemma and
the fact that X⊗RK = 0 as X is G-divisible, forces the top row to be exact.

0 0 0

0 // t(X) // t(T ) // t(Y ) // 0

0 // X // T // Y // 0

0 // X ⊗R U // T ⊗R U // Y ⊗R U // 0

0 0 0

(7.13)

We apply (− ⊗R N) for some N ∈ Mod-R to the diagram above, and it is
enough to show that in the first row the connection map δ : TorR1 (t(Y ), N)→
t(X) ⊗R N is zero. As we have shown X ⊗R U is flat in Lemma 7.3.3,
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TorR1 (X ⊗R U,N) = 0. We want to show that δ = 0.

TorR1 (X ⊗R U,N) = 0

TorR1 (t(Y ), N)
δ // t(X)⊗R N

ε

TorR1 (Y,N)
0 // X ⊗R N

So εδ = 0 and as ε is a monomorphism, δ = 0 as required.

Corollary 7.3.6. Let G be a faithful finitely generated perfect Gabriel topol-
ogy over R such that p.dimU ≤ 1 and R/J is a perfect ring for each J ∈ G
and U is a perfect ring. Suppose that K is Σ-pure split. Then U ⊕ K is
Σ-pure split, that is every pure embedding as in (7.11) splits.

Proof. Consider a pure exact sequence as in (7.11). Then the pure exact
sequence forms the middle row in Diagram (7.13). By assumption, the top
row splits, so t(Y ) ∈ Add(K). Moreover by Lemma 7.3.3, the bottom row
splits so Y ⊗R U ∈ Add(U).

0→ t(Y )→ Y → Y ⊗R U → 0

Thus by the above short exact sequence, Y ∈ Add(U ⊕K) as t(Y ), Y ⊗R U
are in Add(U ⊕K) and Add(U ⊕K) is closed under extensions. Thus (7.11)
splits as X ∈ DG .

We will let (7.14) denote a pure exact sequence with Tt ∈ Add(K). That
is, it denotes the torsion part of the pure exact sequence (7.11).

0→ Xt → Tt → Yt → 0 (7.14)

Thus from Corollary 7.3.6, it remains only to see that (7.14) splits, that is
if K is Σ-pure-split. In this case, (7.14) is a sequence of G-torsion G-divisible
modules. Hence we can use the results of Section 5.4, that is the equivalence
between the categories of G-torsion G-divisible modules and the G-torsion-
free u-contramodules via the adjoint functors (−⊗RK),HomR(K,−) . As
we will see, once in u-contra we can show that HomR(K,Yt) is a projec-
tive u-contramodule and moreover the sequence splits in the category of
G-torsion-free u-contramodules, and thus also the original sequence (7.14)
in the category of G-torsion G-divisible modules.

Moreover, we will use that for a G-torsion-free module N , (in partic-
ular a free module R(β)), there is an isomorphism ν̃N : ∆u(N) ∼= ΛG(N)
as stated in Proposition 5.5.4, and these are modules are u-contramodules
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by Lemma 5.3.7. Also we use regularly Lemma 5.3.11, that is M/MJ ∼=
∆u(M) ⊗R R/J for any R-module M and every J ∈ G. Finally, we also
recall that with the assumption p.dimU ≤ 1, u-contra is an abelian cate-
gory by Proposition 5.3.18 and the direct summands of modules of the form
∆u(R(β)) for some cardinal β are the projective modules in u-contra as
stated in Lemma 5.3.20.

Before working in the local case, we want to prove a lemma about a G-
torsion-free u-contramodule M such that M ⊗R K ∈ F1(R). In particular,
HomR(K,Yt) with Yt from the sequence (7.14) satisfies this condition as
Xt, Yt ∈ F1(R) since Tt ∈ F1(R) by the pure-exactness of the sequence
(7.14), and moreover Yt ∼= HomR(K,Yt)⊗R K by Theorem 5.4.2.

Lemma 7.3.7. Let G be a faithful finitely generated perfect Gabriel topology
over R such that p.dimU ≤ 1 and R/J is a perfect ring for each J ∈ G.
Suppose M is a G-torsion-free u-contramodule such that M ⊗R K ∈ F1(R)
and N is a G-torsion module. Then TorR1 (M,N) = 0.

Proof. Fix an M and N as above. We apply (−⊗RN) to the following short
exact sequence.

0→M →M ⊗R U →M ⊗R K → 0

0 = TorR2 (M ⊗R K,N)→ TorR1 (M,N)→ TorR1 (M ⊗R U,N)

Thus as U is flat, we have that TorR1 (M ⊗RU,N) ∼= TorU1 (M ⊗RU,U ⊗RN)
which is zero as in the case that N is G-torsion, U ⊗R N = 0.

7.3.2 When R is local and R/J is a perfect ring for each J ∈ G

In this subsection we will assume that R is local with maximal ideal m.
The module M will denote HomR(K,Yt) where Yt is the module in (7.14),
although as mentioned before everything can be generalised to a G-torsion-
free u-contramodule M such that M ⊗R K ∈ F1(R).

Remark 7.3.8. By assumption R is local, so R/J is a perfect local ring for
each J ∈ G. Therefore the maximal ideal of each R/J is T-nilpotent, so by
Lemma 1.4.1 it follows that Nm N for every R/J-module N . Moreover
by Proposition 1.4.3 (iv), every R/J-module has a non-zero socle.

Lemma 7.3.9. Suppose R is a local commutative ring and G a faithful
finitely generated perfect Gabriel topology over R such that p. dimU ≤ 1
and R/J is a perfect ring for each J ∈ G. Then every non-zero R-module
M is either in DG or Mm 6= M .

Proof. Suppose M is not in DG . Then there exists a J ∈ G such that
M/MJ 6= 0. By Remark 7.3.8 we have the following strict inclusion.

(M/MJ)m = (Mm)/(MJ) (M/MJ
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So it follows that Mm (M , as required.

We will show the following using the method of Positselski in [35, Lemma
3.3 and Proposition 3.4], although in a much simpler setting. That is, we
will show that M = HomR(K,Y ) is projective in u-contra. Consider the
following short exact sequence of the natural inclusion of Mm in M .

0→Mm→M
pM→ M/Mm→ 0

As M/Mm is an R/m module and R/m is simple, there exists a β such that
(R/m)(β) ∼= M/Mm. Thus we let p : ∆u(R(β)) → (R/m)(β) be the natural
projection map where (R/m)(β) is associated with ∆u(R(β))/∆u(R(β))m.

∆u(R(β))
p→ ∆u(R(β))/∆u(R(β))m ∼= (R/m)(β) → 0

Proposition 7.3.10. Suppose R is a local commutative ring and G a faithful
finitely generated perfect Gabriel topology over R such that p. dimU ≤ 1 and
R/J is a perfect ring for each J ∈ G. Then there is a map f that makes the
following diagram commute.

∆u(R(β))

f

p // (R/m)(β)

∼=

// 0

0 //Mm //M //pM //M/Mm // 0

(7.15)

Furthermore, f is an epimorphism.

Proof. The fact that f exists follows from the fact that all the modules
in the above diagram are u-contramodules and ∆u(R(β)) is a projective u-
contramodule.

To see that f is an epimorphism, note that as ∆u(R(β))→M/Mm is an
epimorphism, it follows that f + Mm = M . By the following computation
and Lemma 7.3.9, it follows that M/ Im f is G-divisible.

(M/ Im f)m = (Mm + Im f)/ Im f = M/ Im f

However, f is a map of u-contramodules, so also Coker f = M/ Im f is a
u-contramodule, thus M/ Im f contains no non-zero G-divisible submodule.
We conclude that M/ Im f = 0, so f is an epimorphism as required.

As R/J is a perfect ring for each J ∈ G, as mentioned in Remark 7.3.8,
every R/J-module contains a non-zero socle. As R and thus also R/J are
local, the only simple module to consider is R/m. We will use a minor
modification of the Loewy series of R/J . We construct it as follows.

Let J0 = J so that N0 = J0/J = 0. Next, for each ordinal σ, let
Nσ/Nσ−1 = Jσ/Jσ−1 be the image of 0 → R/m → R/Jσ−1 in R/Jσ−1 for
some choice of map R/m→ R/Jσ−1. Thus we have the following.

0→ R/m ∼= Jσ/Jσ−1 → R/Jσ−1 → R/Jσ → 0
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Rearranging, we find the following short exact sequence.

0→ Jσ−1/J → Jσ/J → Jσ/Jσ−1
∼= R/m→ 0

For a limit ordinal τ , define Mτ = Jτ/J to be the union
S
σ<τ Mσ =S

σ<τ Jσ/J .
Thus one can write R/J =

S
α Jα/J , that is as a direct limit of modules

in its Loewy series.

Proposition 7.3.11. Suppose R is a local commutative ring and G a faithful
finitely generated perfect Gabriel topology over R such that p. dimU ≤ 1
and R/J is a perfect ring for each J ∈ G. Then we have the following
isomorphism where M is a G-torsion-free u-contramodule and f is as in
(7.15).

idR/J ⊗Rf : (R/J)(β) ∼= M/MJ

Proof. For each ordinal σ, we have the following commuting diagram as
TorR1 (R/m,∆u(R(β))) ∼= TorR1 (R/m,M) = 0 by Lemma 5.3.12 and Lemma 7.3.7,
and f is an epimorphism by Proposition 7.3.10.

0

0 // Jσ−1/J ⊗R ∆u(R(β)) //

idJσ−1/J
⊗Rf

Jσ/J ⊗R ∆u(R(β)) //

idJσ/J ⊗Rf

R/m⊗R ∆u(R(β)) //

idR/m ⊗Rf∼=

0

0 // Jσ−1/J ⊗RM // Jσ/J ⊗RM // R/m⊗RM // 0

0 0 0

We will show the isomorphism by transfinite induction on σ. It is clear in
the base case of σ = 0. If idJσ−1/J ⊗Rf is an isomorphism, then by the
five-lemma, as the two outer vertical morphisms of the above diagram are
isomorphisms, also idJσ/J ⊗Rf is an isomorphism.

For τ a limit ordinal, we have that the tensor product commutes with
direct limits and that idJσ/J ⊗Rf is an isomorphism for every σ < τ . Thus
these maps induce an isomorphism idJτ/J ⊗Rf .[

σ<τ

Jσ/J ⊗R ∆u(R(β)) =
[
σ<τ

Jσ/J ⊗R ∆u(R(β))

∼=
[
σ<τ

(Jσ/J ⊗RM)

=
[
σ<τ

Jσ/J ⊗RM

As R/J =
S
α Jα/J , we have shown that R/J (β) ∼= R/J ⊗R ∆u(R(β)) ∼=

M/MJ , as required.
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The following proposition uses work done in Section 5.2 and Section 5.5.
That is, we finally use the isomorphism ∆u(N) ∼= ΛG(N) for a G-torsion-free
module N and that ΛG(N) is G-separated.

Proposition 7.3.12. Suppose R is a local commutative ring and G a faithful
finitely generated perfect Gabriel topology over R such that p. dimU ≤ 1 and
R/J is a perfect ring for each J ∈ G. Then the morphism f : ∆u(R(β))→M
as defined in (7.15) is an isomorphism.

Proof. Note that the kernel of f : ∆u(R(β)) → M is contained in every
∆u(R(β))J , thus Ker f ⊆

T
J∈G ∆u(R(β))J . However, as R(β) is G-torsion-

free by Corollary 5.5.7 ∆u(R(β)) ∼= ΛG(R(β)), which is already G-separated
by Lemma 5.1.2, so

T
J∈G ∆u(R(β))J =

T
J∈G ΛG(R(β))J vanishes.

Proposition 7.3.13. Let G be a faithful finitely generated perfect Gabriel
topology over a commutative ring such that p.dimRG ≤ 1. Suppose R is
local and R/J is perfect for each J ∈ G. Consider the pure exact sequence
with Tt ∈ Add(K).

0→ Xt → Tt → Yt → 0 (7.14)

Then the sequence splits. In other words, K is Σ-pure-split.

Proof. In Proposition 7.3.12, we have shown that M = HomR(K,Yt) is
a projective u-contramodule, therefore the following sequence (which is
HomR(K,−) applied to (7.14)) splits.

0→ HomR(K,Xt)→ HomR(K,Tt)→ HomR(K,Yt)→ 0

Applying (− ⊗R K), we recover the original short exact sequence up to
isomorphism, which also splits.

We have shown that for R a local (commutative) ring, if R/J is perfect
for every J ∈ G, a pure submodule of a module Tt ∈ Add(K) splits. We will
now extend this to the global case in the following final subsection.

7.3.3 Final results

We recall that since R/J is perfect for each J ∈ G, by Lemma 4.2.2 the ring
R is G-h-nil. In particular, the equivalent statements of Proposition 4.2.6
holds. That is, we use in particular that for every G-torsion module M ,
M ∼=

L
m max

Mm, where m runs over all the maximal ideals of R.

Proposition 7.3.14. Let G be a faithful finitely generated perfect Gabriel
topology over a commutative ring such that p.dimRG ≤ 1. Suppose that the
R/J are perfect rings for each J ∈ G. Then K is Σ-pure-split.
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Proof. Take 0 → Xt → Tt
ρ→ Yt → 0 a pure exact sequence. By Propo-

sition 4.2.6, Tt =
L

m(Tt)m and Yt =
L

m(Yt)m. Additionally by Proposi-
tion 4.2.7, the morphism ρ is a direct sum of surjective maps (Tt)m → (Yt)m
and also is a pure epimorphism (it is (− ⊗R Rm) applied to a pure epi-
morphism). By Proposition 7.3.13, each (Yt)m is in Add(K)m, thus also
Yt ∈ Add(K). Thus ρ is a split epimorphism as Xt ∈ DG .

Theorem 7.3.15. Suppose (A,DG) is a 1-tilting cotorsion pair over a com-
mutative ring R such that R is G-almost perfect and p.dimRG ≤ 1. Then
RG is G-divisible and RG⊕RG/R is Σ-pure-split, so A is closed under direct
limits.

Proof. Lemma 7.3.2 states that RG is G-divisible. That RG ⊕ RG/R is Σ-
pure-split is a combination of Corollary 7.3.6 and Proposition 7.3.14. Finally
by Proposition 1.5.2 we conclude that A is closed under direct limits.

Finally combining the above theorem with the results in Section 7.3 and
Section 7.2 we obtain the main result of this chapter.

Theorem 7.3.16. Suppose (A,DG) is a 1-tilting cotorsion pair, G the asso-
ciated Gabriel topology and R the topological ring EndR(K). The following
are equivalent.

(i) A is covering.

(ii) A is closed under direct limits.

(iii) p.dimRG ≤ 1 and R is G-almost perfect.

Moreover, if these equivalent conditions hold R→ RG is a perfect localisation
and R is pro-perfect.

Proof. The implications (ii) ⇒ (i) is Theorem 1.2.12. (iii) ⇒ (ii) is using
Theorem 7.3.15. Finally, (i) ⇒ (iii) is Theorem 7.2.5.

The final statement holds by Lemma 7.1.3 and that R is a separated com-
pete topological ring and R/RJ ∼= R/J by Lemma 5.3.6 and Lemma 5.3.11.
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