
Sede Amministrativa: Università degli Studi di Padova
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Abstract

Time series of different nature might be characterised by the presence of determinis-

tic and/or stochastic seasonal patterns. By seasonality, we refer to periodic fluctuations

affecting not only the mean but also the shape, the dispersion and in general the density

of the variable of interest over time. Using traditional approaches for seasonal adjust-

ment might not be efficient because they do not ensure, for instance, that the adjusted

data are free from periodic behaviours in, say, higher-order moments. We introduce a

seasonal adjustment method based on quantile regression that is capable of capturing

different forms of deterministic and/or stochastic seasonal patterns. Given a variable of

interest, by describing its seasonal behaviour over an approximation of the entire con-

ditional distribution, we are capable of removing seasonal patterns affecting the mean

and/or the variance, or seasonal patterns varying over quantiles of the conditional dis-

tribution. In the first part of this work, we provide a proposed approach to deal with the

deterministic seasonal pattern cases. We provide empirical examples based on simulated

and real data where we compare our proposal to least-squares approaches. The results

are in favour of the proposed approach in case if the seasonal patterns change across

quantiles. In the second part of this work, we improve the proposed approach flexibly

to account for the essential effect of the structural breaks in the time series. Again, we

compare the proposed methods to segmented-least squares and provide several empiri-

cal examples based on simulated and real data that are affected by both the structural

breaks and seasonal patterns. The results, in case of stochastic periodic behaviour,

are in favour of the proposed approaches especially when the seasonal patterns change

across quantiles.
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Introduction

Overview

By seasonality we refer to periodic fluctuations affecting not only the mean but also

the shape, the dispersion and in general the density of the variable of interest over time.

Notable examples are weather-related times series (temperature, solar radiation, wind

speed, etc.), economic time series (industrial production, retail sales, new orders, etc.),

financial time series (intra-daily traded volume, intra-daily financial asset returns, etc.)

and energy data (energy prices, electricity consumption, gas consumption, etc.). Sea-

sonal (or periodic – we use the two words as synonyms) variation is thus a widespread

phenomenon common to many research fields. Moving to specific examples, retail sales

tend to peak during the Christmas season and then decline after the holidays. Con-

sequently, retail sales time series will typically show increasing sales from September

through December and declining sales in January and February. The most widely cited

feature of temperature is its seasonal variation. In the northern hemisphere, it reaches,

in general, its minimum during the months of January and February, gradually increases

from the month of March and usually peaks in July and August. This pattern is re-

peated annually and is superimposed to an intra-daily pattern due to the day/night

alternation.

In general, the higher the frequency of the seasonal data, the more complex the

seasonality we might observe. In fact, the periodic behaviour of the data might be a

consequence of several seasonal factors that are superimposed one to the other. A simple

example is given by energy or electricity time series, whose periodic oscillation at the

monthly frequency might depend on the alternation of seasons, which leads to changes

in the consumption of electricity in the summer compared to the consumption during

the winter. If we move to a daily frequency, a further periodic component emerges, as

the time series fluctuations also depend on the day of the week, with the week-end being

characterised by a behaviour different from that of the working days. Furthermore, if we

3



4 Overview

move at an intra-daily level, a third element appears due to the differences associated

with the day and night alternation.

In many cases, the periodic behaviour, due to its relevance or even just due to its

presence, hides the underlying role and relevance of stochastic elements characterising

the evolution of the time series of interest. Therefore, we need criteria and methods

for filtering out the seasonal pattern in order to highlight the underlying stochastic

behaviour. Such approaches are referred to as seasonal adjustment methods, whose

main goal is to determine the presence, estimate and then filter out the seasonal effect

of a time series. The statistics literature includes a variety of methods that we might

use to estimate and remove a periodic (or seasonal) component. These include simple

approaches based on time series regression over dummy variables or periodic waves, the

use of moving average filters (additive or multiplicative) or more complex smoothing

approaches. They might also require the estimation of a model, such as autoregressive

integrated moving average (ARIMA) models with seasonal behaviour, or structural time

series methods. These approaches can handle purely deterministic seasonal patterns,

seasonal variations characterised by stochastic behaviour and combinations of the two.

Of the available methods, we focus in the first chapter on those pointing at removing

purely deterministic periodic fluctuations. While in the second chapter we deal with

the stochastic seasonal behavior. Regarding the models of the deterministic seasonal

patterns, the most common examples are those based on linear regressions over time

and seasonal dummies or over periodic functions (i.e. harmonic functions).

These approaches make several assumptions, starting from the fact the deterministic

periodic function is invariant over time (otherwise, a more flexible model with a struc-

tural break should be taken into account) and that the periodic component impacts,

usually, the observations’ location and/or the dispersion of the variable of interest. The

presence of periodic patterns in the mean and variance characterises, for instance, the

time series of temperature, where we observe seasonality in both the mean and in the

variance, with the latter differing from the mean because winter temperature vary more

than summer temperature; see Caporin and Preś (2013). While the violation of the

first assumption, time invariance of the periodic components, can be easily handled,

the violation of the second assumption, impact on location and/or shape, is much more

challenging, as it opens the door for potential model misspecification. In fact, using

traditional approaches for seasonal adjustment might not be efficient because they do

not ensure, for instance, that the adjusted data are free from periodic behaviours in, say,

higher order moments. Even in the simple case of temperature data, where two periodic

patterns can be easily identified, the first in the mean and the second in the variance,
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several seasonal adjustment methods point at adjusting the mean of the time series, but

the seasonal pattern might remain very clear in the higher order moments, starting from

the second-order moment of the seasonally (mean-)adjusted time series. Depending on

the purpose of the analysis, the seasonal behaviour on higher order moments should also

be removed. This calls for multi-step seasonal adjustment approaches, which might still

leave some unexplained periodic behaviour in moments above the second-order one and

might also be exposed to a loss of efficiency in the estimation approaches due to the use

of multi-step methods.

The literature includes examples of periodic patterns in, at least, the second-order

moment. For instance, Alexandridis and Zapranis (2014) present the autocorrelation

function of the squared residuals of modelling detrended and deseasonalised daily av-

erage wind speed data in Figure 9.6. Their Figure shows a clear seasonal pattern in

the variance of the seasonally adjusted time series. A similar problem, leading to het-

eroskedasticity in the variance of a wind time series, is presented in Figure 5 of Caporin

and Preś (2012).

We provide here a further motivating example building on the daily average tem-

perature time series of Ada (see Section 4.1 for details on the data). We applied a

harmonic regression approach to perform the seasonal adjustment. In Figure 1, we ob-

serve that the daily average temperature (Figure1(a)) and its auto-correlation function

(Figure 1(b)) show a clear seasonal pattern. Figure 1(c) shows the seasonally adjusted

series, which is free from the periodic behaviour in the mean. On the contrary, in Figure

1(d), the auto-correlation function of the de-meaned and squared seasonally adjusted

series (a proxy of a time-varying second-order moment) shows evidence of a clear deter-

ministic seasonal pattern. Therefore, the use of a simple adjustment tool might leave

deterministic seasonal components in the series. Standard practice calls for additional

regressions/adjustments based on transformed series. However, the multi-step approach

is exposed to possible estimation errors, loss of efficiency and does not ensure that the

residual series is properly seasonally adjusted. For instance, if we take the de-meaned

squared seasonally adjusted data and, again by means of a harmonic regression, filter

out the periodic behaviour,1 we might still find mild evidence of seasonal variation in

higher order moments.

1In this case, we apply a log transformation on the squared seasonally adjusted time series. This
leads to a multiplicative seasonal component acting on the shape of the distribution. The adjustment
in the mean is thus additive while for the variance we use a ration. On the resulting series the first and
second order moments are no longer characterised by periodic behaviour, but seasonal patterns still
appear in proxies of third- and fourth-order conditional moments.



6 Overview

These empirical evidences motivate the introduction of a more flexible seasonal ad-

justment approach. Accordingly, we propose a quantile regression-based seasonal ad-

justment. The advantage of our method lies in the ability of quantile regression to

describe the entire conditional distribution of the dependent variable, which makes it

possible to determine a specific (deterministic) periodic component for each quantile

of the conditional distribution. In turn, for each observation of a time series, we are

able to identify its location under the conditional distribution and then recover the best

periodic behaviour, which can then be easily removed.
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(a) Daily temperature time series. (b) ACF of the time series.

(c) Seasonally adjusted time series using least squares. (d) ACF of the squared demeaned seasonally adjusted

time series using least squares.

(e) The seasonally adjusted series with variance adjust-

ment made by least squares.

(f) The ACF of the third-order power of the seires in-

cluded in figure (e).

Figure 1: Daily temperature of Ada station in USA and its seasonal adjustment using least
squares.

Main contributions of the thesis

In the first chapter, we introduce a more flexible seasonal adjustment approach namely

the quantile regression-based seasonal adjustment. The advantage of our method lies in

the ability of quantile regression to describe the entire conditional distribution of the de-

pendent variable, which makes possible to determine a specific (deterministic) periodic



8 Main contributions of the thesis

component for each quantile of the conditional distribution. In turn, for each observation

of a time series, we can identify its location under the conditional distribution and then

recover the best periodic behavior, which can then be easily removed. In this thesis, we

evaluate the proposed approach using simulations of different data-generating process,

considering both a case in which the periodic fluctuations affect only the location and/or

the dispersion as well as a case with quantile-based seasonal patterns. We also evaluate

the performances of our proposal if the data-generating processes allow for serial depen-

dence in the error term. Further, we show how to make use of quantile stability tests as

a tool for deciding whether the seasonal adjustment should be based on linear regression

or quantile regression approaches. The introduction of serial dependence in the error

term does not alter the previous findings. We also provide examples on real data, focus-

ing on daily temperature time series and five-minute returns of a financial asset. The

simulations show that the quantile-based seasonal adjustment is comparable to simpler

approaches when the periodic components are not changing over quantiles. Conversely,

when the data-generating process includes quantile-based periodic components, we ob-

serve that seasonal adjustment based on standard regression-based techniques leaves

periodic components in the adjusted series while quantile regression seasonal adjust-

ment correctly removes the deterministic periodic pattern.

In the second chapter, we introduce the seasonal adjustment based quantile regression

approach in the presence of the structural breaks in the time series. The significant effect

caused by the structural breaks motivates us to improve the quantile regression-based

seasonal adjustment approach flexibly to account for structural breaks. We thus propose

two approaches, the first is based on the rolling analysis using a rolling window of fixed

size. The second is based on implementing a structural break test to determine the

locations of the change-points in the time series, then we can perform what we call

segmented quantile regression-based seasonal adjustment. Actually, the concept of the

piecewise quantile regression approach has been implemented in different studies (Aue

et al. (2017); Lahiani (2019); Chen et al. (2017)). We evaluate the proposed approaches

using simulations of different data generating processes, considering the presence of

both the seasonal patterns and the structural breaks. For the seasonal patterns, we

provide the two cases where the seasonal patterns affect only the location and/or the

dispersion as well as a case with quantile-based seasonal patterns. We also presented the

structural breaks in different ways which include introducing the break in the seasonal

pattern of the data generating process, in the variance of the innovations of the data

generating process and through the intercept of the data generating process. We also

provide examples on real data focusing on the industrial production index of the USA.
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The simulations in case of structural breaks show that both the rolling and segmented

quantile-based seasonal adjustment are comparable to simpler approaches that account

for the structural breaks when the periodic components are not changing over quantiles.

While in the case when both the seasonal pattern changes across quantiles and the time

series is affected by the structural break, the suitable approaches are the rolling and

segmented quantile-based seasonal adjustment.





Chapter 1

Quantile regression-based seasonal

adjustment

1.1 Quantile regression-based seasonal adjustment

Quantile regression, as introduced by Koenker and Bassett (1978), makes it possible

to perform estimations and make inferences about conditional quantile functions. By

evaluating conditional quantile functions over a wide range of quantiles, we are capable

of providing a more complete statistical analysis of the stochastic relationships among

random variables (Koenker and Xiao (2002)). In our setting, we specifically focus on the

relation variation across conditional quantiles of the role and relevance of deterministic

and periodic functions.

A further feature of quantile regression, compared to conditional mean estimation

via regression, is that is allows the estimation of the entire conditional distribution of

the dependent variable without requiring a prior analysis of the distribution of errors.

In fact, an estimate of the conditional distribution for a variable of interest might be

obtained by proper smoothing of a collection of estimated conditional quantile functions.

We will build on this aspect to derive our proposal for the seasonal adjustment.

The flexibility of quantile regression, and in particular the latter feature, inspired

the idea of using this approach for seasonal adjustment as an alternative to the existing

seasonal adjustment methods based on the modelling of specific (conditional) moments

of a random variable. We introduce a seasonal adjustment method that modifies the

conditional distribution form, without focusing on a single moment (even conditional) of

a random variable. This turn out to be relevant in cases where the traditional methods

might face the risk of leaving some seasonal variation in the higher order moments, as

shown in the introduction. The peculiar form of seasonality in higher order moments,

11
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after the seasonal adjustment of the mean and/or the variance, might signal the in-

appropriateness of traditional seasonal adjustment tools, and this could be associated

with specific features of the variable of interest. For instance, it is possible that the sea-

sonal behaviour affects the conditional distribution of the target random variable but

with different intensities over quantiles. Therefore, our approach builds on a quantile-

specific seasonal adjustment in which we choose for each observation of the time series

an optimal estimated seasonal component recovered from a (large) family of estimated

conditional quantiles. The choice of the optimal quantile will depend on the minimi-

sation of an intuitive criterion function, the absolute value of the difference between

the observed target variable and the estimated conditional quantile. Consequently, our

method focuses on adjusting each observation in the time series according to its location

under the estimated conditional density, the latter being recovered from a collection of

conditional quantile functions.

To perform the seasonal adjustment based on quantile regression, we suggest the

following steps. Our proposal starts from the implementation of a collection of quantile

regressions to model the observed data. We make a simplifying assumption that the

periodic behavior is purely deterministic and might thus be represented by resorting to

functions of time. Among the various possible functions we might consider, we opt for

the use of time trends and of a collection of harmonics. This is coherent with the choices

made in several areas, including remote sensing (Neuenschwander and Crews (2008)),

eye movements (Lindsey et al. (1978)), accidental deaths series (Brockwell et al. (2002))

and airline passenger series (Young et al. (1999)). Consequently, the conditional quantile

of order τ might be estimated by quantile regression on the following linear model:

Qτ (yt) = α0,τ +

p∑
i=1

αi,τ t+
m∑
j=1

[δj,τ cos(2πfjt) + φj,τ sin(2πfjt)] (1.1)

where α0, αi, i = 1, 2, . . . , p, δj, γj, j = 1, . . . ,m are the parameters to be estimated,

fj, j = 1, . . . ,m are the known frequencies of the harmonics . Clearly, to estimate the

conditional quantiles, we first need to recover the frequencies. In turn, these might be

easily identified by means of spectral analysis or by resorting to the features charac-

terising the reference data. For instance, if we focus on weather data, the amplitudes

of possible oscillations affecting the time series evolution is known and might point to

the season alternation, the day and night alternation or the moon cycle. Differently, for

economic data, we might have quarterly, monthly or weekly amplitudes. These hypothe-

sised amplitudes and the associated frequencies might be validated through the analysis
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of the periodogram (i.e. the sample counterpart of the power spectrum) of the target

variable. Within the periodogram, the frequencies to be used for the specification of

the harmonics corresponds to the highest values, the spikes of the periodogram, as the

power spectrum is infinite at the frequencies associated with a deterministic seasonal

component. Given that the periodogram is an estimate of the power spectrum and that

the precision in frequencies and amplitude estimation depends on the sample size, there

might be the need to perform some rounding, as we will show later in the empirical

examples. In addition, the identification of the optimal number of harmonics and the

inclusion of a time trend should be carefully taken into account in the analysis of the

series features as well as of the periodogram of the seasonally adjusted time series. The

literature has also condidered the quantilogram Linton and Whang (2007), Dette et al.

(2015) as a possible choice for the selection of the harmonics.

Given a choice for the time trend order and the number of harmonics, together with

their frequencies, we need the estimated conditional quantiles for a collection of τ values.

We suggest compromising between the sample size, which has a relevant impact on the

evaluation of extreme quantiles, and the precision required in the seasonal adjustment

procedure.

However, given that we need to estimate many conditional quantiles, a further issue

emerges. In fact, we need to estimate the model in 1.1 by quantile regression over

different choices of τ while simultaneously imposing the absence of quantile crossing, see

(Bondell et al. (2010)). Therefore, we must recover a collection of conditional quantiles

satisfying

Q̂τ (yt) = α̂0,τ +

p∑
i=1

α̂i,τ t+
m∑
j=1

[δ̂j,τ cos(2πfjt) + φ̂j,τ sin(2πfjt)], (1.2)

subject to Q̂τl(yt) ≥ ̂Qτl−1
(yt) for l = 2, ..., q, where q is the number of estimated

conditional quantiles and 0 < τ1 < τ2 < . . . < τq < 1. We achieve that objective by

following the estimation approach of Bondell et al. (2010).

Given the collection of estimated conditional quantiles, we proceed by identifying

the optimal quantile from among the τl quantiles available for each observation. The

vine of estimated non-crossing quantiles makes it possible to recover a semi-parametric

estimate of the density for each observation of yt. Thus, we identify the location of yt

under the estimated density, identify the optimal quantile and then recover the proper

seasonal pattern.

For every point in time there are q estimated quantiles, from which we chose one
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specific quantile as the best estimate of the location for the observation at time t.

The criteria we follow for choosing the best quantile is the minimum absolute value of

deviations, that is

xt = argminτ |yt − Q̂τ (yt)|. (1.3)

We stress that we evaluate this minimisation for all points in time, and we thus

recover a time series of optimal quantiles. Using the optimal quantiles for each point

in time, as obtained in 1.3, we recover the optimal periodic pattern for each yt. We

evaluate such a component by extracting the pure seasonal deterministic part from the

estimated conditional quantiles; that is, we compute

pt =
m∑
j=1

[δ̂j,xt cos(2πfjt) + φ̂j,xt sin(2πfjt)]. (1.4)

Note that the periodic component pt is a function of the optimal quantile at time

t, and the estimates of both the trend and the constant are not included, as we are

interested in removing the seasonal component only and in preserving the trend, if

present, and the series level. Further, as the seasonal coefficients change according to

the change of the optimal quantile, the periodic pattern takes into account both the

seasonal evolution and the location of the target variable over its conditional density.

Finally, the seasonal adjustment could be performed by subtracting the estimated

periodic pattern in 1.4 from the original time series yt. The seasonally adjusted series

zt (1.5) thus equals

zt = yt − pt. (1.5)

We highlight that the criteria we follow identifies an optimal quantile from the grid

of quantiles we adopt for the estimation of non-crossing quantile curves. However, this

is a simplifying choice, the precision of which depends on the total number of estimated

quantiles. Clearly, other approaches might be used. For instance, for each yt, we could

estimate a conditional density by smoothing the estimated quantiles and then estimate

with greater precision the location of yt under the density. However, this has a further

consequence on the derivation of the seasonal component. In fact, the latter comes

from a collection of quantiles, for which we do have coefficients. If we need to recover
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the seasonal component for a quantile that has not been estimated, we need a further

smoothing of the estimated harmonic coefficients. Such an approach is clearly feasible,

but we left it to further works, and we concentrate here on a simplified procedure that

provides satisfactory results, as we will show later.

Through the introduction of the seasonal adjustment method based on the quantile

regression approach, as described in the previous steps, it is possible to capture different

forms of seasonal patterns, including those affecting only, for example, the mean of the

variable of interest and including, differently from traditional methods, more general

forms of seasonal variation that impact the entire conditional density of the variable of

interest. We verify the performance of the approach we introduce through simulations

and with real data. Figure 1.1 represents a summary diagram of the proposed seasonal

adjustment method.

Figure 1.1: Summary diagram of the seasonal adjustment method

1.2 Simulations

1.2.1 Data-generating processes

We consider eight data-generating processes differing in the form of seasonality and

allowing, in some cases, for serial dependence in the innovations. In all data-generating

processes, except the fourth and the eighth processes, the seasonal adjustment can

be properly performed by means of least square methods. Conversely, in the fourth

and the eighth data-generating processes, the most appropriate approach for seasonal

adjustment builds on quantile regression. In all cases, for simplicity, we limit the periodic

patterns to be equal to a single harmonic. The last four data-generating processes differ

from the previous ones, as we assume a serial dependence structure in the innovations.

In particular, we introduce an autoregressive term of order one.

In the first data-generating process, the seasonal effect St only impacts the location

of a random variable. Therefore, the seasonal pattern is part of the conditional mean

of a time series:
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yt = µ+ St + εt, (1.6)

St = δ cos(2πft) + φ sin(2πft),

where µ is an intercept, f is a known frequency and εt ∼ N(0, 1) (the same density is

used in the following). In this case, we can estimate, and then remove, the seasonal

pattern by focusing on the linear regression of the variable of interest over an intercept

and two sinusoidal functions. This case corresponds to the presence of an additive

seasonal pattern.

The second data-generating process, the seasonal effect, now defined as κt, only

impacts the scale of the distribution

yt = µ+ κtεt, (1.7)

ln(κt)
2 = α cos(2πft) + β sin(2πft).

The simulated series thus includes a multiplicative seasonal component that might

be captured and removed by focusing again on a standard linear regression, where

the dependent variable becomes ln(yt − µ)2 and we use two sinusoidal functions as

explanatory variables.

The third data generating process included two seasonal patterns, St and κt, affecting

the location and the scale of yt, respectively

yt = µ+ St + κtεt, (1.8)

St = δ cos(2πf1t) + φ sin(2πf2t),

ln(κt)
2 = α cos(2πf2t) + β sin(2πf2t),

where f1 and f2 are two known frequencies, µ is an intercept and εt ∼ N(0, 1). This

process corresponds to a case where two seasonal patterns, with possibly different am-

plitudes, impact the time evolution of a variable of interest. In this case, the seasonal

adjustment process commonly adopted requires a two-step procedure in which we first

remove the periodic component from the mean with a first linear regression over two

sinusoidal functions. Then, we run a second regression on the first step residuals to

identify the multiplicative seasonal pattern.
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In the fourth data-generating process, we build a structure where the seasonal ad-

justment requires the use of quantile regression. We use the following model to simulate

time series with a seasonal component that changes across quantiles:

Qτ (yt) = Φτct +Qτ (εt) , (1.9)

Φτ = ∆0 + ∆1τ,

ct = cos(2πft),

where Φτct is a zero-mean periodic function (across all possible values of τ) with an

associated f frequency, and εt ∼ N(0, 1). Consequently, the conditional quantile inter-

cept corresponds to the unconditional quantile of a standardised normal density. Finally

(∆0,∆1) are chosen in such a way that the conditional quantile curves do not cross. We

simulate yt by generating from a Uniform (between 0 and 1) the quantiles τ and then

building the corresponding yt quantile.

In the fifth, sixth and seventh data-generating processes, the innovation εt follows an

autoregressive process of order one

εt = ϕεt−1 + ηt, (1.10)

where ηt is i.i.d. according to a standardised normal. We then use these serially cor-

related innovations to modify the first, second and third data-generating processes of

equations (1.6), (1.7) and (1.8).

Finally, the last data-generating process introduced serial correlation in the innova-

tions of the fourth process, and, as the latter, its design requires the use of the quantile

regression approach for performing the seasonal adjustment. In this case, the data-

generating process becomes

Qτ (yt) = Φτct +Qτ (εt) , (1.11)

with innovations following equation (1.10). Consequently, to generate the values of yt,

we first simulate the innovations and then evaluate the τ sequence over the conditional

density of the innovations.

For each data-generating process, we perform 1000 simulations, and each simula-

tion includes 1000 observations. Furthermore, we use the settings in Table 1.1 for the
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simulations.1

DGP Seasonality Coefficients of each DGP Period

1 In mean δ = 0.5, φ = 0.6 100

2 In variance α = 0.5, β = 0.6 50

3 In mean and variance δ = 0.5, φ = 0.6, α = 0.7, β = 0.4 100 and 50

4 Changing across quantiles ∆0 = 1,∆1 = 3 100

5–8 As in 1–4 As in 1–4 and ϕ = 0.7 As in 1–4

Table 1.1: Settings of each data-generating process.

For each simulated series, we perform the seasonal adjustment by resorting to both

the least square methods and quantile regression. Under the first and the fifth data-

generating processes, we run a single linear regression on the simulated series. For the

second and the sixth data-generating processes, we consider a linear regression on the

log-squared simulated series. In the third, fourth, seventh and the eighth data-generating

processes we apply two linear regressions, first on the simulated series and then on the

log-squared mean seasonally adjusted data. Under all data-generating processes we

estimate a collection of quantile regressions, assuming the perfect knowledge of the

frequency of the periodic components.

1.2.2 Validation criteria

To determine the appropriateness of the seasonal adjustment methods we apply, we

consider three validation criteria.

First, we search for the presence of seasonal patterns by focusing on the autocorrela-

tions of the adjusted series ε̂t . Therefore, we employ the Ljung-box test on the series ε̂t

for a number of lags equal to twice the length of the amplitude of the seasonal oscillation.

We test the null of the absence of serial correlation for all lags, and we graphically report

the frequency of rejection of the null. Large frequencies will signal an inefficiency in the

seasonal adjustment approach. Note that we also report this graphical evidence for the

squared values of ε̂t when the data-generating process includes a seasonal pattern in the

variances or to highlight the inefficiency of least squares methods when the appropriate

approach requires quantile regression.

The second validation criterion involves the use of loss functions. We use a simple

loss function, namely the squared difference between the true innovations εt and the

1In addition to what is reported in Table 1.1, in section 1.2.4 we also consider a case where both
periods are set equal to 100 observations.
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estimated one, i.e. lt = (εt−ε̂t)2. If the time series is seasonally adjusted in a proper way,

the values of the losses are expected to be approximately zero. On the contrary, larger

values of the loss functions indicate inefficiencies in the seasonal adjustment process.

In the third validation criteria, we perform a two-sample Kolmogorov–Smirnov goodness-

of-fit test to determine if the true innovations and the estimated one appear to come

from the same distribution. The test is based on the maximum vertical distance between

the two cumulative distribution functions, with a null hypothesis that the cumulative

distribution function of both the true innovations and the estimated one are equal. We

implement the test on both the seasonally adjusted series in the mean and the seasonally

adjusted series in the mean and variance. All validation criteria are used to evaluate the

first four data-generating processes. Meanwhile, we only use the first validation criteria

for the last four data-generating processes.

We expect that in the all data-generating processes, except the fourth and the eighth,

least squares-based seasonal adjustment turns out to be the most efficient method. In

fact, the seasonal pattern in these models is nothing more than a change in the location

or the scale (or in both of them). Furthermore, we also expect that quantile regression-

based seasonal adjustment performs reasonably well, as the existence of a unique sea-

sonal pattern across all quantiles is a special case of a more general situation where

the seasonal behavior varies across quantiles. Consequently, for the first three data-

generating processes, we expect that the Ljung-Box test and the Kolmogorov–Smirnov

test will provide similar performances for both least squares and quantile regression.

Finally, for the fourth and eighth data-generating processes, we expect a preference for

quantile regression-based seasonal adjustment for all validation criteria.

1.2.3 Results

Figure 1.2 presents a summary of the validation criteria for the first data-generating

process. The scatter plot of the average losses obtained by least squares and quantile

regression seasonal adjustments (upper left panel) provides evidence in favor of least

squares, as this method leads to smaller losses. However, we also note that the two ap-

proaches do not result in huge differences in terms of average loss. For the Kolmogorov–

Smirnov test (upper right panel) we observe broadly similar patterns for the p-values

associated with the two approaches, with the average p-values equal to 0.99 for both

quantile regression and least squares. This is an indication that both least squares- and

quantile regression-based seasonal adjustment have an appropriate fit. The plot of the

Ljung-Box test (lower panel) confirms that the two approaches for removing the seasonal

pattern in the mean are very similar to each other. Therefore, under the presence of an
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additive seasonal pattern, both least squares and quantile regression provide a proper

adjustment, although the former method leads to smaller losses, as expected.

(a) Losses (b) K-S test on the seasonally adjusted series in
the mean.

(c) LB test

Figure 1.2: Data-generating process: seasonal component in mean; see Table 1.1. The up-
per left panel reports the average losses associated with the two seasonal adjustment methods
(i.e. least squares and quantile regression). The upper right panel refers to the p-values of the
Kolmogorov–Smirnov test of each simulation and for the two seasonal adjustment methods
(i.e. least squares and quantile regression). The lower panel includes the frequency of rejection
of the null for the Ljung-Box test over lags from 1 to 200 on the seasonally adjusted series
obtained from least squares adjustment or from quantile regression adjustment. Number of
simulations: 1000. Series length: 1000 observations.

Figure 1.3 includes the summary results for the second data-generating process, where

we introduce a multiplicative seasonal pattern. We report the scatter plot for the average

losses for the two approaches as well as the Ljung-Box test and the Kolmogorov–Smirnov

test evaluated on the innovations (i.e. the seasonally adjusted series). The empirical

evidence we recover from the losses and the Ljung-Box test is similar to that from the first

data-generating process: when pointing at the serial correlation, both approaches lead

to very similar results without any evidence of seasonal behaviors; the losses are small in

both cases but slightly lower for the least square method. For the Kolmogorov–Smirnov

test, although the test results indicate that both methods perform well, the acceptance

probability of the goodness-of-fit hypothesis using the quantile regression approach is

higher; the average p-value is 0.96 for quantile regression and 0.80 for least squares.

The results of the third data-generating process (Figure 1.4), where we have both an

additive and a multiplicative seasonal component, are in line with the two previous
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cases. Again the Ljung-Box results are similar for least squares seasonal adjustment

and quantile regression-based seasonal adjustment; the losses are close but smaller for

least squares. The p-values of the Kolmogorov–Smirnov test show the appropriateness

of both methods with, again, some preference for the quantile regression approach. In

this case, the average p-value is 0.93 for quantile regression and 0.88 for the mean and

variance seasonally adjusted series with least squares.

(a) losses (b) K-S test on the seasonally adjusted se-

ries.

(c) LB test (squared SA series))

Figure 1.3: data-generating process: seasonal component in variance; see Table 1.1. The
panel (a) reports the average losses associated with the two seasonal adjustment methods (i.e.
least squares and quantile regression). Panel (b) refers to the p-values of the Kolmogorov–
Smirnov test of each simulation and for the two seasonal adjustment methods (i.e. least
squares and quantile regression) evaluated on seasonally adjusted data. Panel (c) reports
the frequency of rejection of the null for the Ljung-Box test over lags from 1 to 200 on the
squared seasonally adjusted series (to detect periodic components in the variances). Again
the adjusted series might be obtained from least squares variance adjustment or from quantile
regression adjustment. Number of simulations: 1000. Series length: 1000 observations.
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(a) losses (b) K-S test on the seasonally adjusted series in

the mean.

(c) K-S test on the seasonally adjusted series in

the mean and variance.

(d) LB test

(e) LB test (squared SA series)

Figure 1.4: Data-generating process: seasonal component in mean and variance; see Table
1.1. Panel (a) reports the average losses associated with the two seasonal adjustment methods
(i.e. least squares and quantile regression). Panel (b) refers to the p-values of the Kolmogorov–
Smirnov test of each simulation and for the two seasonal adjustment methods (i.e. least
squares and quantile regression) where the least squares accounts only for additive seasonal
components. Panel (c) refers to the p-values of the Kolmogorov–Smirnov test evaluated on
seasonally adjusted series, where for least squares we account for mean and variance periodic
components. Panel (d) includes the frequency of rejection of the null for the Ljung-Box test
over lags from 1 to 200 on the seasonally adjusted series obtained from the least squares
mean and variance adjustment or from quantile regression adjustment. Panel (e) reports
the frequency of rejection of the null for the Ljung-Box test over lags from 1 to 200 on the
squared seasonally adjusted series (to detect periodic components in the variances). Again,
the adjusted series might be obtained from the least squares mean and variance adjustment
or from quantile regression adjustment. Number of simulations: 1000. Series length: 1000
observations.

In the fourth data-generating process, the seasonal adjustment requires the use of

quantile regression because the seasonal patterns have different intensities over quantiles.
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Figure 1.5(a) reports the scatter plot of the average losses. We note that the losses are

smaller when the adjustment is made with the aid of quantile regression. Figures 1.5(b)

and 1.5(c) report the p-values of the Kolmogorov–Smirnov tests. It is clear that the

pattern of the p-values using quantile regression is comparable with the previous cases,

as the average p-value is 0.9. On the contrary, using least squares for the seasonal

adjustment in the mean and two-step least squares for seasonal adjustment in the mean

and variance lead to a highly significant rejection of the goodness-of-fit hypothesis, as the

average p-value is zero in both cases. Figure 1.5(d) shows the Ljung-Box rejection rates

for the seasonally adjusted time series, contrasting the least square residuals of a mean

regression on a sinusoidal function with the quantile regression adjustment, while Figure

1.5(e) focuses on the Ljung-Box for the squared innovations of the seasonally adjusted

series using quantile regression, least squares and two-least squares regressions. Notably,

while the pattern with quantile regression is similar to those of the previous cases, with

least squares we see different behaviour, suggesting that a periodic pattern is left in the

second order moment and there is a need to perform a second least squares to remove

the seasonal pattern from the variance. Figure 1.5(f) shows the Ljung-Box for the third-

order power of the innovations of the seasonally adjusted series using quantile regression

and two-least squares, and the results are very similar to those in Figure 1.5(d).
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(a) losses (b) K-S test on the seasonally adjusted series in

the mean.

(c) K-S test on the seasonally adjusted series in

the mean and variance.

(d) LB test

(e) LB test (squared SA series) (f) LB test (cubed SA series)

Figure 1.5: Data-generating process: seasonal component changing across quantiles; see
Table 1.1. Panel (a) reports the average losses associated with the two seasonal adjustment
methods (i.e. least squares and quantile regression). Panel (b) refers to the p-values of the
Kolmogorov–Smirnov test of each simulation and for the two seasonal adjustment methods
(i.e. least squares and quantile regression) evaluated on seasonally adjusted series in the
mean. Panel (c) refers to the p-values of the Kolmogorov–Smirnov test evaluated on seasonally
adjusted series in the mean and variance. Panel (d) includes the frequency of rejection of the
null for the Ljung-Box test over lags from 1 to 200 on the seasonally adjusted series obtained
from least squares mean adjustment or from quantile regression adjustment. Panel (e) reports
the frequency of rejection of the null for the Ljung-Box test over lags from 1 to 200 on the
squared seasonally adjusted series (to detect periodic components in the variances). The
plot includes three cases, the quantile seasonal adjustment, the least squares mean seasonal
adjustment and the least squares mean variance seasonal adjustment. Panel (f) includes the
frequency of rejection of the null for the Ljung-Box test over lags from 1 to 200 on the cubed
seasonally adjusted series (to detect periodic components in the variances) for both the mean
and variance least squares adjustment and the quantile regression adjustment. Number of
simulations: 1000. Series length: 1000 observations.
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Figure 1.6 shows the average losses for the last four data-generating processes, where

innovations include serial dependence. The plots are comparable to those in Figures

1.2, 1.3, 1.4 and 1.5. We do find a confirmation that when the data-generating process

includes an additive and/or multiplicative seasonal component which is invariant across

quantiles, the least squares seasonal adjustment provides smaller losses, but quantile

regression is close. On the contrary, the quantile regression performs much better than

least squares if the periodic component has a different impact across quantiles.

(a) DGP 5. (b) DGP 6.

(c) DGP 7. (d) DGP 8.

Figure 1.6: The figure reports the average losses of the last four data-generating processes
where innovations include serial dependence. Panel (a) reports the average losses of the
fifth data-generating process with an additive seasonal component. Panel (b) reports the
average losses of the sixth data-generating process with a multiplicative seasonal component.
Panel (c) reports the average losses of the seventh data-generating process with additive and
multiplicative seasonal components. Panel (d) reports the average losses of the eighth data-
generating process with quantile-varying seasonal behavior. Number of simulations: 1000.
Series length: 1000 observations.
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1.2.4 Least squares or quantile regression?

Figure 1.7: Quantile regression coefficients for a simulated series under the third data-
generating process. The four panels report the estimated coefficients associated with the two
harmonics. The upper coefficients refer to the frequency of the additive seasonal component,
while the lower coefficients refer to the frequency of the multiplicative seasonal component.

An important issue that we shall take into account is how to distinguish between

the cases where there is the need for quantile regression-based seasonal adjustment

or where a least-squares based seasonal adjustment could be used. The distinction

between the two cases is not immediate, as can be seen in Figure 1.7. In this graph, we

report the quantile coefficient process for a single simulated series under the third data-

generating process. The coefficients associated with the seasonal pattern affecting the

mean are, roughly, stable across quantiles and not significantly different from the least

squares estimates. On the other hand, the quantile regression coefficients associated

with the second frequency, the one impacting the variances, vary over quantiles and are

significantly different from the least squares estimates. The graphical evidence might

thus suggest the need of a quantile-based seasonal adjustment. However, the estimated

graphical analysis assumes perfect knowledge of the two frequencies associated with the

mean and variance periodic components. This might be reasonable in some fields, where

the amplitudes of possibly superimposed seasonal components are known (such as for

weather variables), but in other cases the frequencies must be identified on the basis

of the periodogram. If this is the case, the choice between least squares and quantile

regression might not be immediate. In order to choose the appropriate method, we

suggest a multi-step procedure.

First, we recover the reference frequencies of the seasonal patterns from the peri-

odogram of the series of interest. With these frequencies, we proceed to the estimation
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of a set of non-crossing quantile regressions. Based on the estimates, we verify the null

hypothesis of coefficient stability across quantiles. Note that the size and power of the

test depend on the number of quantiles and on the sample size, as we will show later.

If we reject the null, the appropriate method is the one based on quantile regression.

On the contrary, if we accept the null, we must validate the choice of the least squares

approach by checking that the second-order conditional moment of the mean seasonally

adjusted series is devoid of seasonal patterns. In fact, there might be cases where ad-

ditional periodic components affect only the variances of a time series, as in our third

data-generating process. In addition, if we do not observe periodic components on the

series level, we should consider the possible presence of periodic components in the vari-

ances, as in our second data-generating process (the following section also includes an

example with real data). To validate the seasonal adjustment choice made on the series

level, or to verify the existence of periodic components in the variances, we suggest eval-

uating the periodogram of a transformation of the mean seasonally adjusted series or

performing a transformation of the series of interest if no periodic components are iden-

tified on the series level. Possible choices for the transformation are the absolute value,

the squares or the log-squares. If the periodogram of the transformed series show evi-

dence of the presence of a periodic component, a second set of quantile regressions must

be considered, and again the null hypothesis of coefficient stability has to be verified. If

the null is rejected, then quantile regression must be used, while if we accept the null, we

should decide if we should stop here and focus on least squares approaches for seasonal

adjustment or proceed to a further check on, for example, the third-order power of the

mean and variance adjusted series. Ideally, the procedure could go farther, continuing

beyond the third-order power, but the choice depends on the data features (and source)

and on the interpretation one could recover from seasonal patterns appearing only on

higher order moments.

We verified such a procedure for the data-generating processes in the previous sub-

section. However, the number of quantiles and the sample length could impact the size

and power of the coefficient stability test across quantiles. To control for that, we con-

sider different sample sizes (500, 1000 and 2000 observations) and two different sets of

quantiles (9 quantiles, i.e. from 10% to 90% with a 10% step, and 19 quantiles, from

5% to 95% with a 5% step). Table 1.2 reports summary measures of our analyses of the

first four data-generating processes, while Table 1.3 reports the same summary of the

last four data generating processes.

For the first data-generating process, which is characterised by an additive periodic
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Ind. NQ T Model 1 Model 2 Model 3.a Model 3.b Model 4
Original series yt

P1 500 0.010 (0.000) 0.246 (0.145) 0.010 (0.000) 0.010 (0.000) 0.010 (0.000)
P1 1000 0.010 (0.000) 0.247 (0.146) 0.010 (0.000) 0.010 (0.000) 0.010 (0.000)
P1 2000 0.010 (0.000) 0.257 (0.147) 0.010 (0.000) 0.010 (0.000) 0.010 (0.000)
P2 500 — — 0.248 (0.145) — —
P2 1000 — — 0.248 (0.146) — —
P2 2000 — — 0.257 (0.147) — —
R 9 500 0.060 — 0.064 0.999 1.000
R 9 1000 0.053 — 0.059 1.000 1.000
R 9 2000 0.042 — 0.035 1.000 1.000
R 19 500 0.136 — 0.148 1.000 1.000
R 19 1000 0.108 — 0.102 1.000 1.000
R 19 2000 0.060 — 0.068 1.000 1.000

Log-squared series log (y2
t )

P1 500 — 0.025 (0.042) 0.023 (0.033) 0.108 (0.151) —
P1 1000 — 0.020 (0.000) 0.020 (0.000) 0.034 (0.081) —
P1 2000 — 0.020 (0.000) 0.020 (0.000) 0.011 (0.014) —
R 9 500 — 0.078 0.212 0.083 —
R 9 1000 — 0.056 0.139 0.070 —
R 9 2000 — 0.059 0.112 0.117 —
R 19 500 — 0.139 0.677 0.167 —
R 19 1000 — 0.103 0.440 0.136 —
R 19 2000 — 0.074 0.296 0.172 —

Log-squared mean-adjusted series log

((
yt − Ŝt

)2
)

P1 500 — — 0.025 (0.038) 0.017 (0.048) 0.010 (0.000)
P1 1000 — — 0.020 (0.000) 0.010 (0.000) 0.010 (0.000)
P1 2000 — — 0.020 (0.000) 0.010 (0.000) 0.010 (0.000)
R 9 500 — — 0.069 0.065 0.994
R 9 1000 — — 0.068 0.061 1.000
R 9 2000 — — 0.054 0.065 1.000
R 19 500 — — 0.142 0.157 0.999
R 19 1000 — — 0.112 0.106 1.000
R 19 2000 — — 0.089 0.075 1.000

Table 1.2: Summary results for the identification of the most appropriate seasonal ad-
justment approach (quantile regression versus least squares). All results are based on 1000
simulations. Column 1 specifies the indicator reported in the rows; P1 and P2 stands for the
frequencies associated with the highest and second highest values, respectively, of the peri-
odogram; R stands for rejection frequency for the null hypothesis of coefficient stability across
quantiles at the 5% confidence level. The second column reports, if relevant, the number of
quantiles used to evaluate the null hypothesis of stability of estimated coefficients across quan-
tiles. The third column reports the sample size of the simulated time series. Columns four
to eight include results for the four data-generating processes we consider. For the estimated
frequencies, we report the average and the standard deviation (in parenthesis) across simu-
lations. The table includes three panels referring to the series levels, the series log-squared
levels and the log-squared values of the mean seasonally adjusted series.
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component, and thus invariant across quantiles, the periodogram (evaluated on the sim-

ulated series levels) allows perfect detection of the seasonal pattern frequency. The

subsequent non-crossing quantile regressions show evidence of rejection frequencies in

line with our expectations: with increasing sample sizes, the rejection frequency con-

verges to the nominal level, with results that worsen (in particular with smaller samples)

as the number of quantiles we consider increases. We thus correctly identify least squares

as the appropriate approach.

The second data-generating process includes a multiplicative periodic component. As

we already noted, this component only impacts the variances and should not be treated

with quantile regression but with least squares on a transformation of the original series.

The periodogram evaluated on the simulated series levels does not show any evidence of

the presence of a seasonal pattern. In fact, the average frequency across all simulations

converges to 0.25, the expected level, as, in the absence of deterministic and stochastic

components, the maximum of the periodogram has a uniform distribution in [0, 0.5]. In

this case, to verify the presence of a periodic component in the variances, we evaluate

the periodogram on the log-squared series. We now have a perfect identification of the

seasonal frequency. When estimating the non-crossing quantile regressions, the rejection

frequency converges to the nominal level as the sample size increases. Our procedure

thus correctly suggests that the least squares, adapted on a transformed time series,

should be used to remove the periodic component.

We now move to the third model, which is more challenging because it includes both

additive and multiplicative periodic components. We consider two cases for this data-

generating process. The first corresponds to the same model adopted in the previous

subsection, with different amplitudes for the mean and variance periodic components,

while the second has mean and variance seasonal components with the same amplitude

(with a length of 100 observations). We start from the first case. The periodogram on

the series level shows evidence of the presence of a single seasonal component. In fact,

the average frequency of the second highest value of the periodogram again converges to

0.25. In this case, we evaluate a set of non-crossing quantile regressions characterised by

the presence of a single periodic component. The associated stability test suggests that

least squares should be used to remove the additive periodic component (the results are

comparable to those of the first data-generating process). One might argue that ad-

ditional periodic components impacting, for example, the variance, could be identified

by means of the periodogram evaluated on transformed data. This is exactly the case

shown in Table 2 in the second panel: we correctly identify the frequency of the peri-

odic component impacting the variances. However, the performances of the stability test
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worsen, particularly when increasing the number of quantiles we consider. This could

be a byproduct of the presence of an additive periodic component that is not taken into

account. Furthermore, one might test the original series to determine the effect of re-

moving both periodic components with quantile regression. However, this would lead to

an improper selection of the model for seasonal adjustment. We also consider this case,

the results of which are not reported in Table 1.2, and when we evaluate non-crossing

quantile regressions with two periodic components, the rejection frequency of the sta-

bility test converges to 100%. The choice is clearly incorrect, and it is driven by the

joint presence of additive and multiplicative seasonal components. Consequently, when

running non-crossing quantile regressions on the series level, we suggest only including

the periodic components identified on the series level. Following such a procedure on

the seasonally adjusted series, we correctly identify the frequency of the second periodic

component, and the rejection frequencies of the stability test converge to the nominal

level, although with a somewhat lower convergence compared to previous cases (see the

third panel of Table 1.2). Our procedure could thus lead to the proper selection of the

seasonal adjustment approach. When deterministic additive and multiplicative seasonal

components are both present, and when they are also characterised by the same period,

in order to appropriately select least squares, we must consider the analysis on the orig-

inal series as well as on the mean-adjusted data. In fact, limiting the analysis to the

series level will always cause the quantile stability test to reject the null.

In the fourth data-generating process, the periodogram allows correct identification

of the seasonal component frequency, and non-crossing quantile regressions clearly lead

to a rejection of the null. However, if we disregard this test and proceed to a least

squares estimation, the search for additional periodic components on the adjusted series

show evidence of seasonal variation. Further, rejection frequencies still lead to a clear

preference for quantile regression compared to least squares. These elements should

be viewed as evidence in favour of quantile regression-based seasonal adjustment on

the original series. Further, we note that contrasting the third model (case b) and the

fourth one, the quantile stability test indicates different behaviour on the mean-adjusted

series. This different behavior is crucial for the distinction between quantile regression

and least squares seasonal adjustment.

Finally, the results of the last four data-generating processes in Table 1.3 (i.e. when

innovations include serial dependence) only partially differ from those in Table 1.2.

First, we observe a worsening of the rejection frequencies of the quantile stability test,

particularly when the periodic component is additive. We link this to the presence of the

serial correlation on the innovations, but we also observe that the increase in the sample
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size alleviates this problem. Second, in models 6 and 7.a, we observe that the frequencies

with the maximal periodogram value oscillate around 0.02. This does not indicate that

the periodic behavior for the variances appears in the original series; rather, it is a

byproduct of the auto-regressive dynamic. In fact, the evaluation of the periodogram

for a single series does not show evidence of periodic components but rather of serial

dependence.
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Ind. NQ T Model 5 Model 6 Model 7.a Model 7.b Model 8
Original series yt

P1 500 0.010 (0.004) 0.022 (0.017) 0.011 (0.005) 0.011 (0.006) 0.010 (0.000)
P1 1000 0.010 (0.000) 0.020 (0.015) 0.010 (0.001) 0.010 (0.001) 0.010 (0.000)
P1 2000 0.010 (0.000) 0.018 (0.013) 0.010 (0.000) 0.010 (0.000) 0.010 (0.000)
P2 500 — — 0.023 (0.016) — —
P2 1000 — — 0.020 (0.014) — —
P2 2000 — — 0.018 (0.013) — —
R 9 500 0.225 — 0.227 0.996 1.000
R 9 1000 0.212 — 0.220 1.000 1.000
R 9 2000 0.182 — 0.206 1.000 1.000
R 19 500 0.371 — 0.389 1.000 1.000
R 19 1000 0.283 — 0.327 1.000 1.000
R 19 2000 0.205 — 0.271 1.000 1.000

Log-squared series log (y2
t )

P1 500 — 0.023 (0.017) 0.023 (0.014) 0.020 (0.029) —
P1 1000 — 0.020 (0.000) 0.020 (0.005) 0.012 (0.012) —
P1 2000 — 0.020 (0.000) 0.020 (0.000) 0.010 (0.001) —
R 9 500 — 0.081 0.256 0.104 —
R 9 1000 — 0.084 0.182 0.092 —
R 9 2000 — 0.072 0.140 0.096 —
R 19 500 — 0.199 0.725 0.204 —
R 19 1000 — 0.128 0.519 0.146 —
R 19 2000 — 0.097 0.304 0.100 —

Log-squared mean-adjusted series log

((
yt − Ŝt

)2
)

P1 500 — — 0.024 (0.019) 0.015 (0.024) 0.010 (0.000)
P1 1000 — — 0.020 (0.004) 0.010 (0.008) 0.010 (0.000)
P1 2000 — — 0.020 (0.000) 0.010 (0.000) 0.010 (0.000)
R 9 500 — — 0.070 0.063 0.998
R 9 1000 — — 0.072 0.075 1.000
R 9 2000 — — 0.067 0.070 1.000
R 19 500 — — 0.169 0.170 0.997
R 19 1000 — — 0.120 0.128 1.000
R 19 2000 — — 0.102 0.096 1.000

Table 1.3: Summary results for the identification of the most appropriate seasonal ad-
justment approach (quantile regression versus least squares). All results are based on 1000
simulations. Column 1 specifies the indicator reported in the rows; P1 and P2 stand for the
frequencies associated with the highest and second highest values, respectively, of the peri-
odogram; R stands for rejection frequency for the null hypothesis of coefficient stability across
quantiles at the 5% confidence level. The second column reports, if relevant, the number of
quantiles used to evaluate the null hypothesis of stability of estimated coefficients across quan-
tiles. The third column reports the sample size of the simulated time series. Columns four to
eight include results for the last four data-generating processes we consider. For the estimated
frequencies, we report the average and the standard deviation (in parenthesis) across simu-
lations. The table includes three panels referring to the series levels, the series log-squared
levels and the log-squared values of the mean seasonally adjusted series.
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1.3 Application to real data

1.3.1 Daily average temperature data

In this section, we apply our quantile regression seasonal adjustment approach and

compare it to a least squares adjustment method. We work here on a temperature time

series including 2854 daily observations from January 2010 to November 2017. These

observations refer to the average temperature for Ada, in the USA. Data have been

recovered from the North Dakota Agricultural Weather Network. Seasonal adjustment

of temperature time series is important for better recovering time trends as well as

extreme events.

We present the time series plot in Figure 1 (a) and its autocorrelation function

for 1000 lags in Figure 1 (b). We report the partial autocorrelation function for 100

lags in Figure 1.8 (a) and the periodogram in Figure 1.8 (b). Visual inspection of

these graphs shows clear evidence of the existence of a seasonal pattern in the time

series. Given that the seasonal variation might be due to a number of seasonal factors,

we sort out the essential frequencies from the periodogram, where we chose the three

frequencies that, to our understanding, are the most relevant for the seasonality in

the temperature time series; namely, yearly, half-yearly and monthly. In Table 1.4,

the first two columns represent the chosen empirical periods and their corresponding

frequencies, while the third and fourth columns include the theoretical periods and

the corresponding frequencies, respectively. The values of the periodogram differ from

the theoretical frequencies due to the discretisation introduced in the evaluation of

the sample power spectrum, where the latter would highlight the existence of periodic

components associated with the frequencies that match natural phenomena, namely, the

period of revolution of the earth. The table reports an approximation of the length of

the period of revolution and adopts fractions of this length (one half for the half-year

and one twelfth for the month). In our empirical analyses, we also verified that the

inclusion of additional frequencies does not lead to improvement in the model fit (both

for least squares and quantile regression approaches).
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Period (days) Frequency Adopted period Adopted frequency
356.625 0.0028 365.250 0.00273
178.310 0.0056 182.625 0.0054
30.670 0.0326 30.4375 0.0328

Table 1.4: Essential frequencies of the daily average temperature data.

(a) Pacf of the daily average temperature.

(b) Periodogram of daily average temperature.

Figure 1.8: Daily average temperature time series.

The deterministic function we adopt for the quantile regression and linear regression

specifications also includes a time trend that we might link to a global warming effect.

The overall model we consider for the temperature time series xt is thus

xt = α0 + α1t+
3∑
j=1

[δjcos (2πfj) + γjsin (2πfj)] + εt, (1.12)

with the frequencies fj reported in Table 1.4. In Figure 1.9, we graph the estimated

parameters for the non-crossing quantile regression curves over the 99 quantiles we con-

sider. The figure contains the patterns across quantiles for all coefficients, intercept and
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trend included. Notably, all coefficients show relevant variation over quantiles, thus sup-

porting the existence of seasonal patterns that change over quantiles of the temperature

data. Along the conditional distribution of temperature data, the seasonal oscillations

have varying impacts, thus supporting the introduction of quantile regression-based sea-

sonal adjustment. As a further confirmation of our choice, we perform the coefficient

stability test on the original series as well as on the least squares mean-adjusted series

using 9 and 19 quantiles, obtaining a p-value of zero in the four cases. These results

verify the use of the quantile regression approach, particularly since we reject the stabil-

ity test on the seasonally adjusted series using the least squares approach. Finally, for

comparison purposes, we also report least squares estimation of the model in (1.12) and

the associated confidence intervals. It is clear that the quantile regression coefficients

differ in a significant way from the least squares ones.

Figure 1.9: Quantile regression estimation.

To contrast the quantile regression and least squares seasonal adjustment approaches,

we compare the seasonally adjusted temperature time series by focusing on autocorrela-

tion functions. For the quantile regression case, we report (Figure 1.10) the autocorrela-

tion function of the seasonally adjusted time series level, squared values and third-order

power. For the least squares case, we focus on the mean and variance adjusted series

and consider the autocorrelation function of the third-order power, which is included
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in Figure 1. Notably, in the quantile regression case, the adjusted time series does not

show any evidence of seasonal variation.

Figure 1.10: The autocorrelation function of the seasonally adjusted time series
level, squared values and third-order power respectively.

1.3.2 Apple five-minute returns data

We now apply quantile-based seasonal adjustment and the least squares seasonal

adjustment on a financial time series, namely, the five-minute returns data of Apple

equity recorded from 03/01/2011 to 04/06/2015. We focus on the regular market trading

hours, lasting from 9:30 in the morning until 4 in the afternoon. Consequently, we have

78 observations per day and a time series with a total length of 86113 observations.

Figure 1.11 reports the time series plot while Figure 1.12 includes, in the upper

panel, the autocorrelation function of the returns. As expected, the two graphs do not

show evidence of seasonal variation. On the contrary, when taking the squares, the

autocorrelation function clearly indicates the existence of a periodic component; see the

lower panel of Figure 1.12. This behaviour is well known in the financial econometrics

literature and relates to the increase in volatility that is observed just after the mar-

ket opening and before market closing. The periodogram (Figure 1.13) confirms the

existence of deterministic seasonal fluctuations, which we associate to the frequencies

reported in Table 1.5. The table focuses on the first three frequencies, the most relevant
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ones in the periodogram, which are associated with periods of one day, half a day and

one-third of a day. Note that the discretisation effect on the frequencies is no longer

present given the huge sample size.

Period Frequency Adopted period Adopted frequency

78 0.0128 78 0.0128

39 0.0256 39 0.0256

26 0.0385 26 0.0385

Table 1.5: Essential frequencies of Apple data.

Figure 1.11: Apple data.

Figure 1.12: ACF of apple time series and its squares.
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Figure 1.13: Periodogram of apple time series squares.

Figure 1.14 includes the estimated coefficients from the non-crossing quantile regres-

sion on the Apple data returns times series, while Figure 1.15 focuses on the same

regression but on the log-squared returns. We run both estimates because, according

to our procedure for deciding between least squares and quantile regression, we should

focus on the log-squared case. This is because, with the Apple data, the returns peri-

odogram does not show evidence of a seasonal component, which emerges only on the

log-squared returns. Consequently, the quantile stability test run on the log-squared

case shows evidence of instability, thus suggesting the need for a quantile regression-

based seasonal adjustment. We perform the latter by focusing on the estimates shown

in Figure 1.14.

Figure 1.14: Process of coefficients across 99 quantiles for the Apple returns.
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Figure 1.15: Process of coefficients across quantiles for the log squared Apple re-
turns.

Similarly to the temperature data, we also contrast the quantile regression adjust-

ment to the least squares adjustment. Figure 1.16 reports the autocorrelation functions

of the squared values for of the quantile-based seasonally adjusted returns and of the

variance-adjusted (using least squares) returns (left and right panels, respectively). The

correlogram for the quantile regression-based seasonal adjustment shows a very stable

pattern, similar to those of the long-memory process. Figure 1.17 includes the autocor-

relation functions and the periodogram of the third-order powers of the same series. In

this case, we note that, by removing the periodic component with quantile regression,

the third-order power of the adjusted data seems to be closer to a random walk sequence

compared to the least squares adjustment case.

(a) ACF of the squared seasonally adjusted

time series using quantile regression.

(b) ACF of the squared seasonally adjusted

series with variance adjustment made by

least squares.

Figure 1.16: Analysis of the squared seasonally adjusted Apple returns data.
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(a) ACF of the third-order power of the least

squares seasonally adjusted series.

(b) Periodogram of the third-order power of

the least squares seasonally adjusted series.

(c) ACF of the third-order power of the

quantile regression seasonally adjusted series.

(d) Periodogram of the third-order power of

the quantile regression seasonally adjusted se-

ries.

Figure 1.17: Analysis of the third-order power of seasonally adjusted Apple returns
data.

1.4 Conclusion

We propose a seasonal adjustment method, based on quantile regression, that en-

sures proper adjustment of the seasonal pattern when periodic deterministic compo-

nents might have varying impacts on the conditional density of a variable of interest.

We compare the proposed approach with a more conventional method for performing

a seasonal adjustment, namely, the use of least squares based on harmonics. We apply

both models to environmental and economic time series as well as to simulated data

generated from eight different models. The findings of the first, second, third, fifth,

sixth and seventh data generating processes ,when the data-generating process includes

additive and/or multiplicative seasonal components (invariant across quantiles), show

that our approach is only marginally inferior to a least squares-based seasonal adjust-

ment. The results of all validation criteria of these processes are very close to each other

using the two approaches. This is clear from the results of the loss function which has

a small value and proves the appropriateness of both methods for performing the sea-

sonal adjustment. Also, the goodness of fit test shows a well fit using both approaches.

The rejection frequencies of the Ljung-box test are also near the nominal level and at
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the same time very close using the two approaches. However the findings of the fourth

and the eighth data generating processes, when the periodic component changes across

quantiles, show that our proposal outperforms the least squares-based approach. The

results of all validation criteria of these processes are in favor of the proposed approach.

This is clear from the results of the loss function which have very small values using

the proposed approach in comparison with least squares. Also, the goodness of fit test

shows the well fit only using the proposed approach. The rejection frequencies of the

Ljung-box test are near the nominal level using only the proposed approach. We also

introduce a procedure for choosing the most appropriate seasonal adjustment method

between quantile regression and least squares. The empirical examples confirm the flex-

ibility of our approach for both environmental and economics data. This work aims to

develop a seasonal adjustment procedure. We didn’t consider the issue of the predic-

tion, however, the seasonally adjusted time series properties will allow for the use of a

variety of time series methods, including ARMA, quantile regression and score-driven

approaches. A further possible extension of this part can be achieved by performing

the comparison of forecasts made on the seasonally adjusted series from both linear and

quantile regression approaches.





Chapter 2

Seasonal adjustment by quantile

regression in the presence of

structural break

2.1 Introduction

In the first chapter, it was assumed that the periodic function is invariant across

the entire period. However, many time series, especially in economics and finance,

do not hold to this assumption as there are cases where an unexpected change over

time in the parameters of regression models could happen. This is called a structural

break in the time series in which the change in the data-generating process could be

due to many reasons, such as major changes in the business or social environment, or

changes in the legal and administrative systems that in such cases produce the data. In

this case, a structural break model would be more flexible in incorporating the change

points in the parameters of the models. Large practical problems that can be found

in different fields include the stock market analysis Hsu (1982). For example, the daily

oscillation of any stock price changes normally as explained by the economic theory,

however, there are some unusual changes which require the awareness of the investors.

Another application is in the quality control Hawkins et al. (2003) as with statistical

process control, the goal is to determine and interpret the cases in which the process

has gone out of the statistical control, this important to monitor the stability of the

quality of the products. Time-series models are implemented for different purposes

like predicting future events, understanding the pattern of the time series in the past

and making the economic policy proposals. The violation of the assumption of the

parameter’s invariance over time reduces the capability of a model to deal with any of

43
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these purposes. Literature shows that essential and commonly used economic indicators

contain structural breaks. Therefore, failure to determine and model structural breaks

may cause imprecise predictions and illogical conclusions. Being able to detect when

the structure of the time series changes, can provide insights into the problem we are

studying. Structural break tests help us to determine whether and when there is a

significant change in our data.

In this chapter, we are interested in performing the seasonal adjustment in the pres-

ence of the structural breaks in the time series using the quantile regression approach.

It was evidenced in the first chapter the need for the quantile regression-based seasonal

adjustment approach in the cases when the seasonal pattern affects not only observa-

tions’ location and/or the dispersion of the variable of interest but also the higher-order

moments. The significant effect that caused by the structural breaks motivates us to

improve the quantile regression-based seasonal adjustment approach flexibly to account

for the effect of the structural breaks. In this part we make an assumption about how

changes in model parameters occur which is parameters shift immediately at a specific

breakpoint. We focused on this assumption because the sudden changes in the time

series are commonly observed in many applications. We thus propose two approaches:

the first is based on the rolling analysis using a rolling window of fixed size. The sec-

ond is based on implementing a structural break test to determine the locations of the

change-points in the time series, then we can perform what we call segmented quantile

regression-based seasonal adjustment. Actually, the concept of the piecewise quantile

regression approach has been implemented in different studies (Aue et al. (2017); Lahi-

ani (2019); Chen et al. (2017)). There are further possibilities for modeling the dynamic

change in the time series, for instance, we can allow for the dynamic which depending

on the conditional autoregressive value at risk (CAViaR) model Engle and Manganelli

(2004). We evaluate the proposed approaches using simulations of different data gener-

ating processes, considering the presence of both the seasonal patterns and the structural

breaks. For the seasonal patterns, we provide the two cases where the seasonal patterns

affect only the location and/or the dispersion of the time series as well as a case with

quantile-based seasonal patterns. We also introduce the structural breaks in different

ways which include introducing the break in the seasonal pattern of the data generating

process, in the variance of the innovations of the data generating process and through

the intercept of the data generating process. We end this part with an analysis of real

data on the industrial production index.

The chapter proceeds as follows. Section 2 describes our proposals for quantile

regression-based seasonal adjustment in the presence of structural breaks. Section 3
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is devoted to simulations. Section 4 focuses on one case study namely the industrial

production index. Section 5 provides a conclusion to the study.

2.2 Models

2.2.1 Rolling quantile regression based seasonal adjustment.

One of the important issues in the time series framework is to ascertain the stability

of the model over time. The main hypothesis of most research on economic time series

is that the coefficients are constant in terms of time. The significant changes in eco-

nomic environments usually show that this key assumption isn’t prudent. To overcome

this problem, the so-called rolling analysis can be implemented. The idea behind this

methodology is to compute the estimates of the model coefficients across a rolling win-

dow of fixed size. If these coefficients are stable over time, then the estimates shouldn’t

be significantly different from each other. Otherwise, if they are too different due to

some reasons like structural breaks, then we can consider the coefficients of the interest

as time-varying parameters in which the rolling estimates should capture this instability

Zivot and Wang (2007). It should be mentioned that the choice of the window size is one

of the drawbacks of using this method because of its essential effect on the behavior of

the estimates over time. Also, the obtained estimates are not for all the entire sample as

it just for the fixed window size Zanin and Marra (2012). (Pascual, 2003) recommended

the use of rolling regression with a fixed window instead of using recursive regression

as this maintains the test power fixed. The implementation of the rolling quantile re-

gression approach has been applied in previous studies which mainly focuses on finance

(Guler et al. (2017); (Aretz and Arisoy, 2016); (Cenesizoglu and Timmermann, 2007);

(Bonaccolto, 2016); (Xu and Childs, 2013); (Cho et al., 2015); (Chen et al., 2016)). Here

we implement the quantile regression-based seasonal adjustment approach in the frame-

work of the rolling analysis. The estimation window is rolled over almost the data-set

period, keeping the window period constant, starting at the beginning and moving the

window forward one observation at a time. Another approach is to divide the entire

sample into non-overlapping subsets, but in this case, we have to pay attention that each

sub-sample is large enough to get accurate estimates of the statistics Hällman (2017).

Following the rolling analysis with fixed window size, we can write the rolling quantile

regression-based seasonal adjustment procedures as following:

In the same manner, as the first chapter, we first model the seasonality of the data

using a collection of harmonics obtained from the spectral analysis.
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Qτ (yt) = α0,τ +

p∑
i=1

αi,τ t+
m∑
j=1

[δj,τ cos(2πfjt) + φj,τ sin(2πfjt)], (2.1)

where α0, αi, i = 1, 2, . . . , p, δj, γj, j = 1, . . . ,m are the parameters to be estimated, fj,

j = 1, . . . ,m are the known frequencies of the harmonics. Secondly, we need to estimate

the model in 2.1 by rolling quantile regression over different choices for τ .

Q̂τ (yt) = α̂0,τ,t +

p∑
i=1

α̂i,τ,tt+
m∑
j=1

[δ̂j,τ,t cos(2πfjt) + φ̂j,τ,t sin(2πfjt)]. (2.2)

We notice in model 2.2 that the parameters α0, αi, i = 1, 2, . . . , p, δj, φj, j = 1, . . . ,m

are time varying parameters due to the use of the rolling analysis. The third step in the

proposed seasonal adjustment approach, as explained in chapter 1.1, is identifying the

best quantile for each observation using the criteria of the minimum absolute value of

deviations, that is

xt = argminτ |yt − Q̂τ (yt)|. (2.3)

Using the optimal quantiles for each point in time, as obtained in 2.3, we move to the

fourth step by recovering the optimal periodic pattern for each yt. We evaluate such a

component by extracting the pure seasonal deterministic part from the estimated time

varying conditional quantiles, that is, we compute

pt =
m∑
j=1

[δ̂j,xt,t cos(2πfjt) + φ̂j,xt,t sin(2πfjt)]. (2.4)

Finally we compute the seasonally adjusted time series by subtracting the estimated

periodic pattern in 2.4 from the original time series yt. The seasonally adjusted series

zt (2.5) thus equals

zt = yt − pt. (2.5)

To overcome the aforementioned challenges of using the rolling analysis framework,

we propose a method for determining the best window size. This method is built on the

Fisher g-test (Fisher, 1929) and associate the choice of the window size with the purpose
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of the analysis which is doing the seasonal adjustment. Firstly, we determine an interval

of the window sizes to choose the best through them. This could be by choosing an

interval starting from the main seasonal amplitude that affects the time series and ending

with one of its multipliers. Secondly, we implement the rolling quantile regression-based

seasonal adjustment using each window in the interval and compute the seasonally

adjusted time series. Thirdly, on the seasonally adjusted time series, we test the null

hypothesis of Gaussian white noise against the alternative of an added deterministic

periodic component of unspecified frequency using Fisher g-test. The basic idea behind

the test is to reject the null hypothesis if the periodogram contains a value significantly

larger than the average value. Finally, we choose the window size that leads to the

largest non-significant p-value of the test.

2.2.2 Segmented quantile regression.

If we assumed that there are structural breaks in the time series, then, in this case,

there is a need for testing the existence and detecting the locations of the change points.

In applications, we don’t know the exact number of change-points. The detection of

these points is essential in methodological and practical aspects such as the validation of

untested scientific assumptions, Controlling and evaluation of safety-critical process and

the validation of the modeling assumptions Eckley et al. (2011). In the literature, there

are many changepoint search algorithms have been suggested to deal with this problem.

we focus here on the offline change point detection in which we have the full-time series

is available for the analysis. The most frequently used algorithms include the binary

segmentation method (Scott and Knott (1974); Sen and Srivastava (1975)); the seg-

ment neighborhood method (Auger and Lawrence (1989);Bai and Perron (1998)); the

PELT algorithm Killick et al. (2012). In this paper, we applied the binary segmentation

approach, as this method has advantages of determining the number of change-points

and its locations at the same time with saving time in the computational process. We

use the detection method here in both the mean and the variance and with assuming

the normal distribution for the data. Assuming that x1, x2, ..., xn is a sequence of inde-

pendent normal random variables with parameters (µ1, σ
2
1), (µ2, σ

2
2), ...(µn, σ

2
n). We are

concerned here with testing the hypothesis

H0 : µ1 = ... = µk = µk+1 = ...µn

and

σ2
1 = ... = σ2

k = σ2
k+1 = ...σ2

n.
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against

H1 : µ1 = ... = µk 6= µk+1 = ...µn

and

σ2
1 = ... = σ2

k 6= σ2
k+1 = ...σ2

n.

We use here the likelihood ratio test statistics Lehmann and Romano (2006)

λn = max
2≤k≤n−2

σ̂n

σ̂k1
ˆσn−kn

A general description of the binary segmentation technique in the detection of the

changes followed by implementing the seasonal adjustment can be summarized in the

following steps.

Step 1: Test the null hypothesis that there is no change-point against the alternative that

there is a single change-point. If the null is not rejected, then there is not any

change point and the procedure is stopped here. On the other hand, if the null

hypothesis is rejected we move to the second step.

Step 2: The change-point divides the sequence into two sub-sequences, so we test for the

existence of the change point in each sub-sequence.

Step 3: Repeat step two until there are no further change-points.

Step 4: Denote the detected change-points as k̂1, k̂2, ..., k̂q to represent a q change points,

then split the entire data-set into q + 1 sub-periods.

Step 5: for each sub-period, apply the quantile regression-based seasonal adjustment ap-

proach explained in section 1.1:

Qτ (yt) = α0,τ +

p∑
i=1

αi,τ t+
m∑
j=1

[δj,τ cos(2πfjt) + φj,τ sin(2πfjt)], (2.6)

Q̂τ (yt) = α̂0,τ +

p∑
i=1

α̂i,τ t+
m∑
j=1

[δ̂j,τ cos(2πfjt) + φ̂j,τ sin(2πfjt)]. (2.7)

xt = argminτ |yt − Q̂τ (yt)|. (2.8)
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pt =
m∑
j=1

[δ̂j,xt cos(2πfjt) + φ̂j,xt sin(2πfjt)]. (2.9)

zt = yt − pt. (2.10)

Figure 2.1 represents a summary diagram of the proposed seasonal adjustment method.

Figure 2.1: Summary diagram of the seasonal adjustment method

For more information about the used test statistics and the binary segmentation

approach see Chen and Gupta (2011).

2.3 Simulations

We consider nine data-generating processes, differing in the form of the seasonality

and the structural breaks that affect the time series. In all data-generating processes

except the fourth, the eighth and the ninth processes, the seasonal adjustment can be

properly performed using segmented least squares method. In contrast, in the fourth,

the eighth and the ninth data-generating processes, the most appropriate approach for

seasonal adjustment builds on the proposed quantile regression approaches in the second

chapter. We assume that the structural changes in the time series shift immediately at a

specific breakpoint. The simulations have been performed through three different classes

of structural breaks. The first class includes the first four data-generating processes in

which we introduce the structural break as a change in the coefficients of the seasonal

covariates after a specific observation. The introduced heteroskedasticity, in this case,

is due to the change in the variance of the seasonal pattern. While the structural

change in the following four data-generating processes, representing the second class, is

introduced through the variance of the innovations after a specific observation which

causes a heteroskedasticity due to the change in the variance of the innovations. In the
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last data-generating process, the third class, the structural change is introduced through

the intercept of the time series after a specific observation.

In the first data-generating process, the seasonal effect St impacts only on the location

of a random variable. Therefore, the seasonal pattern is part of the conditional mean of

a time series, at the same time St allows for a single structural break in the coefficients

of the seasonal harmonics as follows :

yt = µ+ St + εt, (2.11)

St = δ1d1 cos(2πft) + φ1d1 sin(2πft) + δ2d2 cos(2πft) + φ2d2 sin(2πft),

where µ is an intercept, f is a known frequency, and εt ∼ N(0, 1) (the same density is

used in the following). di is a dummy variable that takes the value 1 if t ∈ sub-period i

as determined by the break date and 0 otherwise(the same dummy variables are used in

the following). In this case, we can estimate, and then remove, the seasonal pattern by

detecting the structural break location and implementing a segmented linear regression

of the variable of interest over an intercept and two sinusoidal functions. This case

corresponds to the presence of an additive seasonal pattern.

In the second data-generating process, the seasonal effect, now defined as κt which

allows for a structural change in the coefficients of the seasonal harmonics, the seasonal

pattern impacts only on the scale of the distribution

yt = µ+ κtεt, (2.12)

ln(κt)
2 = α1d1 cos(2πft) + β1d1 sin(2πft) + α2d2 cos(2πft) + β2d2 sin(2πft).

The simulated series thus includes a multiplicative seasonal component that might

be captured and removed by focusing again on a segmented standard linear regression

where the dependent variable becomes ln(yt − µ)2 and we use two sinusoidal functions

as explanatory variables.

The third data-generating process included two seasonal patterns St and κt, affecting

the location and the scale of yt, respectively, and allow for structural changes in both

seasonal patterns.
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yt = µ+ St + κtεt, (2.13)

St = δ1d1 cos(2πft) + φ1d1 sin(2πft) + δ2d2 cos(2πft) + φ2d2 sin(2πft),

ln(κt)
2 = α1d1 cos(2πft) + β1d1 sin(2πft) + α2d2 cos(2πft) + β2d2 sin(2πft),

where f1 and f2 are two known frequencies, µ is an intercept and εt ∼ N(0, 1).

This process corresponds to a case where two seasonal patterns, with possibly different

amplitudes, impact on the time evolution of a variable of interest. In this case, the

seasonal adjustment process commonly adopted requires a two-step procedure where

we first remove the periodic component from the mean with a first segmented linear

regression over two sinusoidal functions. Then, we run a second segmented regression

on the first step residuals to identify the multiplicative seasonal pattern.

In the fourth data-generating process, we build a structure where the seasonal ad-

justment requires the use of the proposed quantile regression approaches in the second

chapter. We use the following model to simulate time series with a seasonal component

that changes across quantiles and allows for a structural break in the coefficients of the

seasonal harmonics:

Qτ (yt) = Φτct +Qτ (εt) , (2.14)

Φτ = ∆0d1 + ∆1d1τ + ∆2d2 + ∆3d2τ,

ct = cos(2πft).

where Φτct is a zero-mean periodic function (across all possible values of τ) with

an associated f frequency, and εt ∼ N(0, 1). Consequently, the conditional quantile

intercept corresponds to the unconditional quantile of a standardized Normal density.

Finally, (∆0,∆1,∆2,∆3), are chosen in such a way that the conditional quantile curves

do not cross. We simulate yt by generating from a uniform (between 0 and 1) the

quantiles τ and then building the corresponding yt quantile.

In the fifth, sixth, seventh and eighth data-generating processes, the innovation εt ∼
N(0, σ2

i ), σ
2
i indicate the variance of the innovations in the sub-period i which is defined

by the change-point.
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In the fifth data-generating process, the seasonal effect St impacts only on the location

of a random variable. with the structural break in the variance of the innovations σ2
i .

yt = µ+ St + εt, (2.15)

St = δ cos(2πft) + φ sin(2πft).

The sixth data-generating process introduces a model in which the seasonal pattern κt

impacts only on the scale of the distribution and the structural break is introduced in

the variance of the innovations σ2
i .

yt = µ+ κtεt, (2.16)

ln(κt)
2 = α cos(2πft) + β sin(2πft).

In the seventh data-generating process, two seasonal patterns St and κt, affecting

the location and the scale of yt, respectively. The structural break again is introduced

through the variance of the innovations σ2
i .

yt = µ+ St + κtεt, (2.17)

St = δ cos(2πf1t) + φ sin(2πf2t),

ln(κt)
2 = α cos(2πf2t) + β sin(2πf2t),

The eighth data-generating process requires the use of the proposed quantile regres-

sion approaches in the second chapter. Again the structural break introduced here in

the variance of the innovations σ2
i .

Qτ (yt) = Φτct +Qτ (εt) , (2.18)

Φτ = ∆0 + ∆1τ,

ct = cos(2πft).

In the last data-generating process, we introduce the structural change through the

intercept of the time series, and we focus here only on the case in which the seasonal
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pattern changes across quantiles.

Qτ (yt) = d1µ1 + d2µ2 + Φτct +Qτ (εt) , (2.19)

Φτ = ∆0 + ∆1τ,

ct = cos(2πft).

Finally, we implement the simulations using a single structural break at observation

701 which divides the data-set into two sub-periods. For all data-generating processes,

we implement three intensities for the introduced structural breaks, to evaluate its

impact on the seasonal adjustment process.

2.3.1 Evaluation

To determine the appropriateness of the seasonal adjustment methods in the presence

of the structural breaks, we consider two validation criteria. Also, we consider another

validation criterion for evaluating the used structural break test.

Firstly, we search for the presence of seasonal patterns by focusing on the autocor-

relations of the seasonally adjusted series ε̂t. Therefore, we employ the Ljung-box test

on the series ε̂t for many lags equal to twice the length of the amplitude of the sea-

sonal oscillation. We test the null of the absence of serial correlation for all lags and we

graphically report the frequency of rejection of the null. Large frequencies will signal

an inefficiency in the seasonal adjustment approach. Note that we report this graphical

evidence also for the squared values of ε̂t when the data-generating process includes

a seasonal pattern in the variances or to highlight the inefficiency of segmented least

squares method when the appropriate approach requires quantile regression.

The second validation criteria involve the use of loss functions. We use a simple

loss function, namely the squared difference between the true innovations εt and the

estimated one, i.e. lt = (εt − ε̂t)
2. If the time series is seasonally adjusted properly,

the values of the losses are expected to be approximately zero. On the contrary, larger

values of the loss functions indicate inefficiencies in the seasonal adjustment process.

In the third validation criteria, we evaluate the binary segmentation method, the

used approach in change-point detection, in determining the correct structural break

location.

We implement the simulations using a single structural break at observation 701

which divide the data-set into two sub-periods. For all data-generating processes, we

implement three intensities for the introduced structural breaks, to evaluate the im-

pact of this increase on the seasonal adjustment process. We compare the proposed
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approaches, the rolling analysis and the segmented quantile regression, with the seg-

mented least squares and the static quantile regression which was explained in the first

chapter.

We expect that in all data-generating processes, except the fourth, the eighth and

the ninth processes, segmented least-squares based seasonal adjustment turns out to be

the most efficient method. The seasonal pattern in these models is nothing more than a

change in the location or on the scale (or in both of them). Furthermore, we also expect

that both rolling and segmented quantile regression-based seasonal adjustment performs

reasonably well, as the existence of a unique seasonal pattern across all quantiles is

a special case of a more general situation where the seasonal behavior varies across

quantiles. Finally, for the fourth, the eighth and the ninth data-generating processes,

we expect a preference for rolling and segmented quantile regression-based seasonal

adjustment, and this for the first two validation criteria. For the last criterion, we expect

that the greater the intensity of the structural break, the more precise the detection of

the correct change-point location, and this for all data generating processes.

2.3.2 Results

Figure 2.2 presents a summary of the validation criteria for the first data-generating

process. The histograms of the structural break test in Panels c, f and i show a right

detection of the known structural break location. The frequency of the correct detection

is positively correlated to the intensity of the introduced structural break. Panels a,

d and g represent the box plots of the average of losses obtained by rolling quantile

regression, segmented least squares, segmented quantile regression and static quantile

regression seasonal adjustments for the three levels of the structural break. The results

show evidence in favor of segmented least squares, as this method leads to smaller

losses. However, we also note that both segmented and rolling quantile regressions are

comparable to the segmented least squares.

The static quantile regression shows a large difference from the other methods due to

the neglect of the structural break effect in the modeling step. Increasing the intensity

of the structural break leads to the same pattern of the average of losses between the

approaches with an increase in the scale of the average of losses. The results in Panels b,

e, and h of the Ljung-Box test match the results obtained from the losses’ criterion. Both

segmented approaches and the rolling analysis for removing the seasonal pattern in the

mean are very close one to another and to the nominal level of the rejection frequency

(five percentage). The static quantile regression approach shows the inefficiency of this

approach in the presence of the structural break as the rejection frequencies reach ninety
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percent. Again, by increasing the intensity of the structural break, we obtain the same

pattern between the approaches with an increase in the level of the rejection frequencies.

Therefore, under the presence of an additive seasonal pattern, segmented least squares,

segmented quantile regression and rolling quantile regression-based seasonal adjustments

provide a proper adjustment even if the segmented least squares method leads to smaller

losses, as expected.

Figure 2.3 includes the summary results for the second data-generating process, where

we introduce a structural break in the multiplicative seasonal pattern. We report again,

for the three levels of the structural break, the histogram of the structural break test,

the box plots for the average losses and the Ljung-Box test. The empirical evidence

we recover from the validation criteria is similar to those of the first data-generating

process. The structural break test’ results are more concentrated around the correct

value by increasing the intensity of the structural break. On the other hand, in the

case of losses, the segmented least squares show small noticeable differences than the

segmented quantile regression and the rolling analysis. Again, static quantile regression

approach results in the highest average of losses. Increasing the level of the structural

break results in the same pattern of the average of losses between the approaches with

an increase in the scale of the average of losses. When considering the serial correlation,

both segmented approaches and rolling analysis lead to very similar results without any

evidence of seasonal behaviors. This contrasts with the static quantile regression which

is evidently affected by the serial correlation across all lags due to the remain seasonal

behavior in the seasonally adjusted series. Again, by increasing the intensity of the

structural break, we obtain the same pattern between the approaches with an increase

in the level of the rejection frequencies.

The results of the third data-generating process (Figure 2.4), where we have struc-

tural breaks in both additive and multiplicative seasonal components, are in line with

the two previous cases: again the structural break test results are concentrated around

the correct breakpoint, and are much better with increasing the intensity of the struc-

tural break. The Ljung-Box test’ results in both the mean and the variance are similar

for the segmented approaches and the rolling analysis. The static approach is com-

pletely inefficient due to the neglect of the effect of the structural break. On the other

hand, the segmented approaches and the rolling analysis are very close in terms of losses

but it still smaller for segmented least squares. The static quantile regression is very

high in terms of the average of losses compared to the other approaches. Again, by

increasing the intensity of the structural break, we obtain the same pattern between the

approaches with an increase in the level of the rejection frequencies and the average of
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losses.

In the fourth data-generating process (Figure 2.5) the seasonal adjustment requires

the use of the segmented or rolling quantile regressions as the seasonal patterns have

different intensities over quantiles, alongside the effect of the structural break. The

results of the structural break test in Figures 2.5 (d),(h) and (l) are in line with the

previous cases and are much better with increasing the intensity of the structural break.

Figures 2.5 (a),(e) and (i) report the box plots of the average of losses. We note that

the losses are smaller when the adjustment is made with the aid of both segmented and

rolling quantile regressions. This is because these approaches account simultaneously

for the seasonal pattern that changes across quantiles and the structural break effect.

Figure 2.5 (b),(f) and (j) show the Ljung-Box rejection rates for the seasonally adjusted

time series, contrasting the segmented approaches with the static and rolling quantile

regression adjustments, while Figures 2.5 (c),(g) and (k) focus on the Ljung-Box for the

squared innovations of the seasonally adjusted series. Notably, while with segmented,

static and rolling quantile regressions the patterns are comparable to those of the previ-

ous cases, for the segmented least squares a different behaviour is observed, suggesting

that a periodic pattern is left in the higher-order moment. Again, by increasing the

intensity of the structural break, we obtain the same pattern between the approaches

with an increase in the level of the rejection frequencies and the average of losses.

In the fifth data-generating process (Figure 2.6) the structural break is introduced in

the variance of the innovations of the time series. Regarding the structural break test

in Figures 2.6 (c),(f) and (i), it is clear that the test detects the correct breakpoint at

observation 701, the more we increase the intensity of the heteroskedasticity the more

concentration of the histogram of the test around the correct breakpoint. The results

of the losses in Figures 2.6 (a),(d) and (g) are better in case of using segmented least

squares, segmented quantile regression and rolling analysis respectively. While the static

quantile regression shows a small difference than the other approaches. By increasing

the intensity of the structural break, we get the same pattern of the losses but with

an increase in the value of the losses. The results of the Ljung-Box test are in Figures

2.6 (b),(e) and (h). The patterns for both the segmented approaches, rolling analysis

and the static one are almost similar. The results of the static quantile regression are

logical here because the structural break is introduced in the innovations and not in

the seasonal pattern. In this case, the results show that the static approach can adjust

correctly the seasonal behavior despite the effect of the structural break in this data-

generating process.

In the sixth data-generating process (Figure 2.7) the structural break is again causing
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heteroskedasticity in the innovations of the time series. Regarding the structural break

test in Figures 2.7 (c),(f) and (i), it is in line with the results of the fifth data-generating

process and it is clear that the test detects the correct breakpoint at observation 701,

the more we increase the intensity of the break the higher is the concentration of the

histogram of the test around the correct breakpoint. The results of the losses in Figures

2.7 (a),(d) and (g) are better in case of using segmented least-squares approach. By

increasing the intensity of the structural break, we get the same pattern of the losses

but with an increase in the value of the losses. The Ljung-Box test in Figures 2.7 (b),(e)

and (h) show that the pattern of the test is in line with the fifth data-generating process

(Figure 2.6). There is no evidence that the introduced structural break here affects the

behavior of the static approach.

In the seventh data-generating process (Figure 2.8),again, the structural break is

introduced as a heteroskedasticity in the innovations of the time series. Regarding the

structural break test in Figures 2.8 (d),(h) and (l), it is in line with the results of

the previous data-generating process with correct detection of the breakpoint around

observation 701. The results of the losses in Figures 2.8 (a),(e) and (i) are better in case

of using segmented least squares approach than the other approaches. By increasing

the intensity of the structural break, we get a similar pattern of the losses but with

an increase in the value of the losses. Again we perform the Ljung-Box test on the

seasonally adjusted time series, squared values of the seasonally adjusted time series.

The results of all approaches in Figures 2.8 (b), (f), (j) (c ), (g) and (k) are not different

from each other and from the nominal level.

In the eighth data-generating process (Figure 2.9) the structural break is introduced,

again, as a heteroskedasticity in the innovations of the time series. The seasonal ad-

justment requires the use of segmented or rolling quantile regressions as the seasonal

patterns have different intensities over quantiles. Regarding the structural break test in

Figures 2.9 (d),(h) and (l), it is in line with the results of the previous data-generating

processes. It is clear that the test detects the correct breakpoint at observation 701, the

more we increase the intensity of the heteroskedasticity the higher the concentration

of the histogram of the test around the correct breakpoint. The results of the losses

in Figures 2.9 (a), (e) and (i) are much better in case of using segmented and rolling

quantile regressions approaches than the other approaches. By increasing the intensity

of the structural break, the same pattern of the losses is obtained but with an increase in

the value of the losses. Again we perform the Ljung-Box test on the seasonally adjusted

time series and squared values of the seasonally adjusted time series. The best and the

stable approaches that have the same pattern in the Figures 2.9 (b), (f), (j), (c), (g)
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and (k) are the segmented and rolling quantile regressions. By using these approaches,

we don’t see any evidence of the seasonal pattern. The number of rejection frequencies

in the static quantile regression is high because the structural break effect is neglected.

While for the segmented least squares, it is high due to the seasonal pattern remained

in the higher-order moment of the seasonally adjusted series.

In the ninth data-generating process, (Figure 2.10) in which the structural break is

introduced through the intercept of the time series. The seasonal adjustment requires

the use of segmented or rolling quantile regression as the seasonal patterns have different

intensities over quantiles. The structural break test in Figures 2.10 (d),(h) and (l), is in

line with the results of the previous data-generating processes. It is clear that the test

detects the correct breakpoint at observation 701, the more we increase the intensity

of the break the higher is the concentration of the histogram of the test around the

correct breakpoint. The results of the losses in Figures 2.10 (a),(e) and (i) are better

when using segmented and rolling quantile regression approaches. By increasing the

intensity of the structural break, we get the same pattern of losses but the values are

higher. We again perform the Ljung-Box test on the seasonally adjusted time series

and squared values of the seasonally adjusted time series. Regarding the test on the

seasonally adjusted time series, the best and the only stable approaches that have the

same pattern in the Figures 2.10 (b), (f), (j), (c), (g) and (k) are the segmented and

rolling quantile regressions. The number of rejections in the static quantile regression

is high due to the neglect of the structural break effect. While for the segmented least

squares it is high due to the seasonal pattern remained in the higher-order moment of

the seasonally adjusted series.
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(a) Losses1 (b) lb mean1

(c) test of structural break 1 (d) Losses 2

(e) lb mean 2 (f) test of structural break 2

(g) Losses 3 (h) lb mean 3

(i) test of structural break 3

Figure 2.2: First data-generating process: Structural break through the coefficients of
the seasonal pattern in mean. Plots a, d and g refer to the losses with first, second and
third specifications of the introduced structural break intensity respectively. Plots b,e and
h report the frequency of the rejection of the null for the Ljung-box test results with the
first,second and third specifications respectively and over lags from 1:250 on the seasonally
adjusted series obtained from segmented least squares, segmented quantile regression, rolling
quantile regression and static quantile regression adjustment. Plots c,f and i reports the
histogram of the structural break test with first,second and third specifications respectively.
Number of simulations: 1000. Series length: 1000 observations.
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(a) Losses1 (b) lb variance1

(c) test of structural break 1 (d) Losses 2

(e) lb variance 2 (f) test of structural break 2

(g) Losses 3 (h) lb variance 3

(i) test of structural break 3

Figure 2.3: Second data-generating process: Structural break through the coefficients of
the seasonal pattern in variance. Plots a, e and i refer to the losses with first, second and
third specifications of the structural break intensity respectively. Plots b,e and h report the
frequency of rejection of the null for the Ljung-box test results with first, second and third
specifications respectively and over lags from 1:250 on the squared values of the seasonally
adjusted series (to detect periodic components in the variances) obtained from segmented
least squares, segmented quantile regression, rolling quantile regression and static quantile
regression adjustment. Plots c,f and i report the histogram of the structural break test with
first, second and third specifications respectively. Number of simulations: 1000. Series length:
1000 observations.
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(a) Losses1 (b) lb mean1 (c) lb variance1

(d) test of structural break 1 (e) Losses 2 (f) lb mean 2

(g) lb variance2 (h) test of structural break 2 (i) Losses 3

(j) lb mean 3 (k) lb variance3 (l) test of structural break 3

Figure 2.4: Third data-generating process: Structural break through the coefficients of
the seasonal pattern in the mean and variance. Panels a, e and i refer to the losses with
first, second and third specifications respectively. Plots b,f and j reports the frequency of
rejection of the null for the Ljung-box test results with first, second and third specifications
respectively and over lags from 1:250 on the seasonally adjusted series obtained from segmented
least squares, segmented quantile regression, rolling quantile regression and static quantile
regression adjustments. Panels c,g and k report the frequency of rejection of the null for the
Ljung-Box test over lags from 1 to 250 on the squared seasonally adjusted series (to detect
periodic components in the variances). Plots d,h and l report the histogram of the structural
break test with first, second and third specifications respectively. Number of simulations:
1000. Series length: 1000
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(a) Losses1 (b) lb mean1 (c) lb variance1

(d) test of structural break 1 (e) Losses 2 (f) lb mean 2

(g) lb variance2 (h) test of structural break 2 (i) Losses 3

(j) lb mean 3 (k) lb variance3 (l) test of structural break 3

Figure 2.5: Fourth data-generating process: Structural break through the coefficients of
the seasonal pattern that changes across quantiles. Panels a, e and i refer to the losses with
first, second and third specifications respectively. Plots b,f and j report the frequency of
rejection of the null for the Ljung-box test results with first, second and third specifications
respectively and over lags from 1:250 on the seasonally adjusted series obtained from segmented
least squares, segmented quantile regression, rolling quantile regression and static quantile
regression adjustments. Panels c,g and k report the frequency of rejection of the null for the
Ljung-Box test over lags from 1 to 250 on the squared seasonally adjusted series (to detect
periodic components in the variances). Plots d,h and l report the histogram of the structural
break test with first,second and third specifications respectively. Number of simulations: 1000.
Series length: 1000
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(a) Losses1 (b) lb mean1

(c) test of structural break 1 (d) Losses 2

(e) lb mean 2 (f) test of structural break 2

(g) Losses 3 (h) lb mean 3

(i) test of structural break 3

Figure 2.6: Fifth data-generating process: Structural break through the variance of the
innovations of the time series with seasonal pattern in the mean. Plots a, d and g refer to the
losses with first, second and third specifications of the structural break intensity respectively.
Plots b,e and h report the frequency of rejection of the null for the Ljung-box test results with
first, second and third specifications respectively and over lags from 1:250 on the seasonally
adjusted series obtained from segmented least squares, segmented quantile regression, rolling
quantile regression and static quantile regression adjustments. Panels c,f and i report the
histogram of the structural break test with first, second and third specifications respectively.
Number of simulations: 1000. Series length: 1000 observations.
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(a) Losses1 (b) lb variance1

(c) test of structural break 1 (d) Losses 2

(e) lb variance 2 (f) test of structural break 2

(g) Losses 3 (h) lb variance 3

(i) test of structural break 3

Figure 2.7: Sixth data-generating process: Structural break through the variance of the
innovations of the data-generating process with seasonal pattern in the variance. Plots a, d and
g refer to the losses with first, second and third specifications of the structural break intensity
respectively. Plots b, e and h report the frequency of rejection of the null for the Ljung-box test
results with first, second and third specifications respectively and over lags from 1:250 on the
squared seasonally adjusted series (to detect periodic components in the variances) obtained
from segmented least squares, segmented quantile regression, rolling quantile regression and
static quantile regression adjustments. Panels c,f and i report the histogram of the structural
break test with first, second and third specifications respectively. Number of simulations:
1000. Series length: 1000 observations.
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(a) Losses1 (b) lb mean1 (c) lb variance1

(d) test of structural break 1 (e) Losses 2 (f) lb mean 2

(g) lb variance2 (h) test of structural break 2 (i) Losses 3

(j) lb mean 3 (k) lb variance3 (l) test of structural break 3

Figure 2.8: seventh data-generating process: Structural break in the variance of the in-
novations of a data-generating process with a seasonal pattern in the mean and variance.
Panels a, e and i refer to the losses with first, second and third specifications of the struc-
tural break intensity respectively. Plots b,f and j reports the frequency of rejection of the
null for the Ljung-box test results with first, second and third specifications respectively and
over lags from 1:250 on the seasonally adjusted series obtained from segmented least squares,
segmented quantile regression, rolling quantile regression and static quantile regression ad-
justments. Panels c,g and k report the frequency of rejection of the null for the Ljung-Box
test over lags from 1 to 250 on the squared seasonally adjusted series (to detect periodic com-
ponents in the variances). Plots d,h and l report the histogram of the structural break test
with first,second and third specifications respectively. Number of simulations: 1000. Series
length: 1000 observations.
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(a) Losses1 (b) lb mean1 (c) lb variance1

(d) test of structural break 1 (e) Losses 2 (f) lb mean 2

(g) lb variance2 (h) test of structural break 2 (i) Losses 3

(j) lb mean 3 (k) lb variance3 (l) test of structural break 3

Figure 2.9: Eighth data-generating process: Structural break in the variance of the innova-
tions of the data-generating process with a seasonal pattern changes across quantiles. Panels
a, e and i refer to the losses with first, second and third specifications respectively. Plots
b,f and j reports the frequency of rejection of the null for the Ljung-box test results with
first, second and third specifications respectively and over lags from 1:250 on the seasonally
adjusted series obtained from segmented least squares, segmented quantile regression, rolling
quantile regression and static quantile regression adjustments. Panels c,g and k report the
frequency of rejection of the null for the Ljung-Box test over lags from 1 to 250 on the squared
seasonally adjusted series (to detect periodic components in the variances). Plots d,h and l
reports the histogram of the structural break test with first, second and third specifications
respectively. Number of simulations: 1000. Series length: 1000
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(a) Losses1 (b) lb mean1 (c) lb variance1

(d) test of structural break 1 (e) Losses 2 (f) lb mean 2

(g) lb variance2 (h) test of structural break 2 (i) Losses 3

(j) lb mean 3 (k) lb variance3 (l) test of structural break 3

Figure 2.10: Ninth data-generating process: Structural break in the intercept of the data-
generating process with a seasonal pattern changes across quantiles. Panels a, e and i refer
to the losses with first, second and third specifications respectively. Plots b,f and j reports
the frequency of rejection of the null for the Ljung-box test results with first,second and third
specifications respectively and over lags from 1:250 on the seasonally adjusted series obtained
from segmented least squares, segmented quantile regression, rolling quantile regression and
static quantile regression adjustments. Panels c,g and k report the frequency of rejection of
the null for the Ljung-Box test over lags from 1 to 250 on the squared seasonally adjusted
series (to detect periodic components in the variances). Plots d,h and l report the histogram
of the structural break test with first, second and third specifications respectively. Number of
simulations: 1000. Series length: 1000
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2.4 Application to real data

2.4.1 Industrial production Index

In this section, we apply our structural breaks-quantile regression approaches and

compare them to the segmented least squares and static quantile regression adjustment

methods. We work here on an industrial production index time series including 869

daily observations, from January 1947 to May 2019, these observations refer to the not

seasonally adjusted industrial production (durable consumer goods) in the USA. Data

has been recovered from the database of the Federal Reserve Economic Data (FRED).

We present the time series in Figure 2.11 (a), the growth rate of the time series in

Figure 2.11 (b), the auto-correlation function of the growth rate in Figure 2.11 (c), the

partial auto-correlation function of the growth rate in 2.11 (d) and the periodogram in

Figure 2.11 (e). Visual inspection of graph Figure 2.11 (a) shows a clear evidence of an

existence of at least one change-point in the time series around the 688th observation.

this will impact on the auto correlation function in Figure 2.11 (c) as the observed

pattern is due to the existence of both the seasonal pattern, as evidenced in the peri-

odogram Figure 2.11 (e), and the structural break effect. Since the seasonal variation

might be due to a number of seasonal factors, we sort out of the essential frequencies

from the periodogram. From these we we choose the five essential frequencies that, to

the best of our understanding, are the most relevant for the seasonality in the industrial

production index growth rate time series. More specifically these were the six months,

two months, three months, twelve months and four months. The first two columns in

Table 2.1 represent the chosen empirical periods and their corresponding frequencies,

while the third and fourth columns include the theoretical periods and the corresponding

frequencies. In our empirical analyses, we also verified that the inclusion of additional

frequencies does not lead to an improvement in the model fit (both for segmented least

squares and quantile regression approaches).

Period (days) Frequency Adopted period Adopted frequency

5.986 0.167 6.000 0.167

2.397 0.417 2.000 0.500

3.000 0.332 3.000 0.033

12.055 0.082 12.000 0.083

4.000 0.250 4.000 0.250

Table 2.1: Essential frequencies of the industrial production index growth rate.
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(a) Monthly Industrial production index time
series

(b) Monthly Industrial production index
growth rate

(c) Acf of the growth rate time series (d) Pacf of the growth rate time series

(e) Periodogram of the growth rate time series

Figure 2.11: Monthly Industrial Production Index.

We start modeling the industrial production index growth rate by identifying the

structural change using the structural break test. The test detects the change points at

observations 201, 300 and 578. The overall model we consider for the growth rate time

series is presented in equation 2.20 :

xt = d1α0 + d2α0 + d3α0 + d4α0 +
5∑
j=1

d1 [δjcos (2πfj) + γjsin (2πfj)]

+
5∑
j=1

d2 [δjcos (2πfj) + γjsin (2πfj)] +
5∑
j=1

d3 [δjcos (2πfj) + γjsin (2πfj)]

+
5∑
j=1

d4 [δjcos (2πfj) + γjsin (2πfj)] + εt (2.20)
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di is a dummy variable that takes the value of 1 if t ∈ sub-period i as determined by

the break dates and 0 otherwise. The frequencies fj reported in Table 2.1. Figure 2.12

shows the estimated parameters for the non-crossing static quantile regression curves

over the considered 99 quantiles. On the other hand, Figures 2.13, 2.14, 2.15 and 2.16

present the estimated parameters for the non crossing segmented quantile regression.

The coefficients of the static quantile regression show a relevant variation over quantiles

which suggest using quantile regression over the least-squares approach. However, by

focusing on the estimation of the four segments it is clear that the structural breaks

affect the variation of the coefficients across quantiles for each segment in a different

way. This supports the existence of the seasonal patterns that change across both the

quantiles and the segments defined by the change-points. As a further confirmation of

our choice, we compute the coefficient stability test on the original series using static

quantile regression and the four-segments quantile regression, obtaining a p-value equal

to zero in the five cases.

Figures 2.17 and 2.18 represent a comparison between the seasonal adjustment ap-

proaches using the auto-correlation function and the periodogram of the seasonally

adjusted time series level and squared values. It is clear that using the static quantile

regression approach leads to improper seasonally adjusted series due to the neglect of

the effect of the structural breaks in the series. In contrast both the segmented ap-

proaches and the rolling analysis show almost similar and satisfactory results as the

auto-correlation functions and the periodograms are free from the periodic behavior in

both the series level and its squared level.
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Figure 2.12: Static quantile regression estimation..

Figure 2.13: Quantile regression estimation segment 1.
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Figure 2.14: Quantile regression estimation segment 2.

Figure 2.15: Quantile regression estimation segment 3. .
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Figure 2.16: Quantile regression estimation segment 4. .
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(a) ACF of the seasonally adjusted time series

using static quantile regression.

(b) Periodogram of the seasonally adjusted

time series using static quantile regression.

(c) ACF of the seasonally adjusted time series

using segmented quantile regression.

(d) Periodogram of the seasonally adjusted

time series using segmented quantile regression.

(e) ACF of the seasonally adjusted time series

using segmented least squares.

(f) Periodogram of the seasonally adjusted

time series using segmented least squares.

(g) ACF of the seasonally adjusted time series

using rolling quantile regression.

(h) Periodogram of the seasonally adjusted

time series using rolling quantile regression.

Figure 2.17: The auto-correlation function and the periodogram of the seasonally adjusted
time series
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(a) ACF of the squared values of the season-

ally adjusted time series using static quantile

regression.

(b) Periodogram of the squared values of the

seasonally adjusted time series using static

quantile regression.

(c) ACF of the squared values of the seasonally

adjusted time series using segmented quantile

regression.

(d) Periodogram of the squared values of the

seasonally adjusted time series using segmented

quantile regression.

(e) ACF of the squared values of the season-

ally adjusted time series using segmented least

squares.

(f) Periodogram of the squared values of the

seasonally adjusted time series using segmented

least squares.

(g) ACF of the squared values of the season-

ally adjusted time series using rolling quantile

regression.

(h) Periodogram of the squared values of the

seasonally adjusted time series using rolling

quantile regression.

Figure 2.18: The auto-correlation function and the periodogram of the squared values of
the seasonally adjusted time series.
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2.5 Conclusion

We extend the introduced seasonal adjustment approach in the first chapter to ensure

a proper adjustment of the seasonal pattern when the time series is characterized by a

periodic stochastic component. The proposals, in this situation, account for the case

when the seasonal patterns might have varying impacts on the conditional density of a

variable of interest. We compare our proposals, namely the segmented quantile regres-

sion and the rolling analysis, to the segmented least squares and the proposed approach

in the first chapter for performing a seasonal adjustment. We evaluate the models using

simulations of different data generating processes that present various seasonal patterns

and structural breaks. The evaluation has been extended to a real time series namely

the industrial production index. The findings of the first, second, third, fifth, sixth and

seventh data generating processes, when the data-generating process includes additive

and/or multiplicative seasonal components (invariant across quantiles) with different

patterns of the structural breaks, show that the proposed approaches correctly perform

the seasonal adjustment. The results of the validation criteria using the segmented ap-

proaches and the rolling analysis show small values of the loss function. The rejection

frequencies of the Ljung-box test are near the nominal level using these approaches. The

static quantile regression approach leads to undesirable results. However, the findings

of the fourth, eighth and ninth data generating processes, when the periodic compo-

nent changes across quantiles, show that our proposals outperform the other methods

including the segmented least squares. This is clear from the results of the loss function

which has very small values using the proposed approaches in comparison with other ap-

proaches. The rejection frequencies of the Ljung-box test are near the nominal level and

at the same time very close using only the proposed approaches. We also evaluate the

structural break test with different intensities of the introduced break-point. The results

show a correct detection of the breakpoint in all data generating processes. The em-

pirical example confirms the flexibility of the proposed approaches for economics data.

Further extensions of this study could be possible by taking into account the methods

of the time varying quantiles. The conditional autoregressive value at risk (CAViaR)

model Engle and Manganelli (2004) or conditional score driven models Harvey (2013),

Patton et al. (2019) can be considered for this purpose. Also the comparison of fore-

casts made on the seasonally adjusted series from both linear and quantile regression

approaches is another extension.
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Caporin, M. and Preś, J. (2012) Modelling and forecasting wind speed intensity for

weather risk management. Computational Statistics & Data Analysis 56(11), 3459–

3476.
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