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The Moon has held our imaginations for millennia, yet it is only in modern times that we 

have visited this body, first with robotic machines and then with astronauts. Exploration of 

the moon has taught us much about the evolution of the solar system and ourselves. We’ve 

known for centuries about the effects on tides and biological cycles from a waxing and 

waning moon. But it took space-age exploration to show us how the moon is connected to 

human existence on a very fundamental level. 

 

By Paul D. Spudis 

 (Lunar and Planetary Institute) 
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ABSTRACT 

 

 

The main focus of this PhD research is the morphologic characterization of simple impact 

craters on lunar maria in order to find out a correlation between craters morphological 

degradation and absolute model ages of the surfaces where they were emplaced. Crater 

degradation can be indeed used to constrain the chronological evolution of planetary 

surfaces. 

The crater degradation is usually retrieved through visual inspection by subdividing craters 

into 4 classes: C1 represents the freshest ones, C2 are the ones with the first evidence of 

degradation (smoothed rim), C3 and C4 are related to morphologies ranging from heavily 

eroded to totally flattened respectively [Arthur, 1963].      

We firstly conducted a morphometric analysis of craters representative of the four classes 

starting from the freshest one represented by the Linné crater. Craters were chosen on a 

homogeneous geological unit, the S28 unit in mare Serenitatis, with an absolute model age 

of 2.84 Gy [Hiesinger et al., 2011]. This analysis allowed us to establish the thresholds of 

mean slope from craters inner wall, in order to constrain the morphometric characterization 

of the four degradation classes. 

Successively we have extracted all impact craters (383) from a unique geological unit and 

we have defined the morphologic relationships among the degradation classes in function 

of the craters diameters.  

Finally, we expanded our analysis to six lunar maria, considering six lunar maria with 

different average absolute model ages, in order to perform this analysis with the wider 

range of ages. For each mare we considered a unique surface (dataset) derived from the 

merging of geological units with similar absolute model ages within the basin, in order to 

guarantee the most homogeneous possible surfaces, both in terms of impact rheology and 

absolute age. From the six surfaces we have extracted inner wall mean slopes from over 

1000 impact craters. The mean slope values of the inner walls have shown a relation 

between crater morphology and the absolute model ages of the geological units where they 

are located. Older basins are characterized by craters with lower mean slope values, 

suggesting a dominance of older craters in their population, whereas the younger units have 

shown higher mean slope values of their simple craters, suggesting a population dominated 

by recent impacts. This tendency is the expression of the morphological alteration strictly 

connected to the lunar maria age. Since the geomorphometry of impact craters is influenced 

by the absolute age of the target area, we have constrained potential isochrones by fixing 

absolute age thresholds based on the morphological variations of impact craters. 
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RIASSUNTO 

 

 

Il principale obiettivo di questa tesi di dottorato è stato la caratterizzazione morfologica dei 

crateri di impatto semplici all’interno dei maria lunari, al fine di trovare una correlazione 

tra la degradazione dei crateri e l'età assoluta stimata delle superfici ad essi correlate. La 

degradazione dei crateri può essere infatti utilizzata per comprendere meglio l'evoluzione 

cronologica delle superfici planetarie. 

In questa ricerca abbiamo considerato le quattro classi di degradazione generalmente 

impiegate nella classificazione visuale dello stato di degradazione dei crateri. Sulla Luna la 

classe C1 rappresenta crateri freschi, la C2 crateri al primo stadio di degradazione (rim 

smussato) e le ultime due classi sono riferite ai crateri con morfologie profondamente 

modificate dall’erosione (C3) e totalmente erosi (C4) [Arthur, 1963]. 

In primo luogo abbiamo condotto una analisi morfometrica su crateri rappresentativi delle 4 

classi a partire da Linné che viene considerato il riferimento dei crateri semplici di tipo C1 

sulla luna. Quest’analisi è stata fondamentale per stabilire le soglie di inclinazione media 

relativa alla scarpata interna di crateri rappresentanti le quattro classi. Attraverso queste 

soglie è stato possibile caratterizzare morfometricamente le quattro classi di degradazione. 

Successivamente abbiamo estratto 383 crateri da una singola unità geologica per 

confrontare le relazioni morfologiche tra le classi di degradazione in funzione del diametro 

dei crateri. Infine l’analisi morfometrica è stata estesa a diversi maria lunari, mediante 

l'estrazione di migliaia di crateri di impatto semplici provenienti da superfici con diversa 

età. Successivamente sono stati considerati sei bacini lunari con età medie molto differenti, 

per sviluppare l’analisi su un range di età il più grande possibile. Per ogni bacino è stata 
creata una superficie (dataset), derivata dal raggruppamento di unità geologiche coeve del 

bacino stesso, così da estrarre crateri posti su una superficie il più omogenea possibile sia in 

termini di reologia di impatto che di età assoluta. 

I valori di pendenza media delle scarpate interne dei crateri estratti hanno dimostrato una 

relazione con l’età assoluta stimata delle unità geologiche in cui si trovano. I bacini più 

vecchi, infatti, sono caratterizzati da crateri con valori inferiori di pendenza media, il che 

suggerisce una predominanza di crateri antichi ed erosi. Le unità più giovani, invece, hanno 

mostrato crateri con alti valori di pendenza media, suggerendo una popolazione dominata 

da impatti più recenti. Questa tendenza è espressione della degradazione morfologica, 

strettamente legata all'età assolute dei maria lunari. 

Poiché la Geomorfometria dei crateri da impatto è risultata essere influenzata dall'età 

assoluta delle stesse superfici di impatto, abbiamo potuto creare delle potenziali isocrone 

fissando soglie di età assoluta basate sulle variazioni morfologiche dei crateri da impatto. 
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INTRODUCTION 

 

 

1- Exploration of the Moon 

 

The Moon is our closest planetary body and its surface was observed since the development 

of optical telescopes. The first pioneering exploration of the Moon was in 1959 when Luna 

1, a small Soviet sphere probe, flew over our natural satellite at a distance of 5995 km, 

revealing the absence of lunar magnetic field and the evidence of the solar wind. Since 

Luna 1 reached the Moon shifted from a unattainable silver sphere visible in our sky to a 

real place, a potential destination for probes and human missions. Luna 2 in 1959 landed on 

the Moon surface near Aristides, Archimedes, and Autolycus craters. However only with 

the Luna 3 probe humanity observed for the first time the far side of the Moon, never 

visible from the Earth.  

The first USA landing on lunar surface was in 1962, when NASA lunched Ranger 4, a 

kamikaze missions set up to crash on the surface and capturing as many images as possible 

before the contact with the surface. After several failures Ranger 7 succeeded in taking 

pictures of Mare Nubium in 1964 and it was followed by Ranger 8 and Ranger 9. Thanks to 

these missions we discovered very small impact craters. Those craters were formed by the 

micrometeorite bombardment, one of the reasons for the formation of the lunar fine 

powder, called regolith. The first orbit around the Moon was performed by Soviet probe 

Luna 10, in 1966. Again U.S.S.R were the pioneers of the soft-landing, with the automatic 

robot Luna 9, successful landed on Oceanus Procellarum, where it founds a powdered 

surface with few rocks and a strength sufficient to support the weight of a lander 

[ROSCOSMOS]. 

NASA followed with the landing of the robotic spacecraft Surveyor 1 in 1966. Over the 

years robotic missions, such as the five NASA Lunar Orbiters, have mapped the entire 

Moon surface from orbit retrieving extremely high resolution images of potential landing 

sites for the forthcoming Moon landings of Apollo missions. At the same time aerospace 

technology was developing very quickly until Neil Armstrong made the first steps on the 

Moon surface in the 1969, with the Apollo 11 mission. Later missions saw astronauts spend 

as long as three days on the Moon driving a lunar rover that across the satellite's surface. 

Before the end of Apollo project in 1972, five other missions and a dozen men had explored 

the Moon, included the geologist-astronaut Jack Schmitt onboard the Apollo 17. 

Apollo missions provided also several lunar samples from different regions of the Moon, 

allowing scientists to perform radiometric absolute age estimations for the first time in 

other planetary surfaces.  
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In 1994 the U.S. Naval Research Laboratory (Ballistic Missile Defense Organization) 

launched Clementine mission, initially pointed to test military technologies and 

successively focused to perform the first global mapping of the Moon surface. The 

observations included imaging at various wavelengths including ultraviolet and infrared, 

laser ranging altimetry, and charged particle measurements, with the purposes of assessing 

the surface mineralogy of the Moon and obtaining a lunar altimetry map from 60N to 60S 

latitude. In 1999 was the turn of Lunar Prospector, aimed to find out possible evidence of 

ice at the lunar poles, to complement the previously Clementine’s Moon composition 
mapping and to explore the Moon's gravitational field. One of the main scientific goals of 

Lunar Prospector was the support to the Moon formation hypothesis, confirming the later 

formation of the Moon with respect to the Earth. At the end of the mission the spacecraft 

was intentionally crashed into the Moon in the hopes of raising a plume that could yield 

evidence of water ice, but none was observed from earth based telescopes [NASA]. In the 

last years several missions of different countries interested the Moon. 

In 2007 Japan Aerospace Exploration Agency [JAXA] lunched the Kaguya-Selene mission 

in order to obtain scientific data of the lunar origin and evolution and develop the 

technology for future lunar explorations. Some of the main results of this mission are the 

improvement of lunar global topography, with global high resolution images and Digital 

Terrain Models and a detailed gravity map of the far side of the Moon. 

In 2009 NASA lunched the Lunar Reconnaissance Orbiter spacecraft with the purpose of 

investigating the lunar surface through a global 3D high resolution topography, improving 

maps of mineralogical components of the lunar crust and finding potential landing sites for 

future human missions.  

In the last years China and India developed the technology to reach the Moon with several 

missions. China lunched the Chang’e 1 orbiter in 2004, followed by the orbiter spacecraft 

Chang’e 2 (2010) and the lander probe Chang-e 3 (2013) that was a small rover landed on 

the lunar surface. The scientific objectives of Chang'e missions include lunar surface 

topography and geology survey, lunar surface material composition and resource survey, 

Sun-Earth-Moon space environment detection [CNSA]. On the Indian side in 2008 was 

lunched Chandrayaan-1 mission with the objectives to perform of a three-dimensional high 

resolution atlas of both the near and far sides of the Moon and a high spatial resolution 

chemical and mineralogical mapping of the entire lunar surface.  

 

 

2- Physical and Geological properties of the Moon 

 

The Moon has a diameter of 3476 km, with a density of  3.34g/cm3 and the average 

distance from the Earth is 385000 km. The internal structure of our satellite is 

differentiated: crust, mantle, and core. The crust has a thickness of about 50-60 km and the 
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lithosphere-asthenosphere transition is approximatively 1100 km deep. The mantle presents 

a thickness of about 650 km and is subdivided in upper and lower mantle. Recent 3D 

thermal evolution models of the Moon have confirmed the possibility for the presence of a 

solid inner iron-rich core with a radius of about 240 km and a fluid outer core primarily 

made of liquid iron with a radius of about 330-350 km, surrounded by a partially molten 

boundary layer [Weber et al., 2012; Zhang et al., 2013]. 

The basaltic lunar rock samples erupted onto the surface from mantle partial melting 

confirm the mafic mantle composition. The crust thickness is on average about 50 km 

[Wieczorek et al., 2006]. 

The main volcanic formations on the Moon are the lunar maria, generated by ancient large 

impacts successively pooled by basaltic lavas. They appear as dark and relatively 

featureless smoothed plains, not saturated by cratering. 

On the nearside of the Moon maria basins cover about 31% of the surface, whereas on the 

far side the maria coverage is only 2% [Wilhelms, 1987]. 

The analyses conducted using laser altimeters and stereo images allowed to perform a 

detailed topographic map of the Moon, revealing elevation difference between far side and 

near side, of 1.9 km on average. 

The Moon surface is densely cratered (more of 300000 impact craters with diameter > 1 km 

in the near side), being impact cratering the major geologic process that has affected its 

surface [Melosh, 1989]. For this reason impact craters are the main geomorphological 

markers on which is based the lunar geological timescale. They are generally well-

preserved because of the lack of an atmosphere and an idrosphere, being the space 

weathering a very slow erosional process.  

The selenological timescale divides the history of the Moon into five periods: Copernican 

(0 to 1 Ga), Eratosthenian (1.0 to 3.2 Ga), Imbrian (3.20 to 3.85 Ga), Nectarian (3.85 to 

3.92 Ga), and Pre-Nectarian (3.92 to 4.6 Ga). [Wilhelms, 1987]. The radiometric ages of 

impact-melted rocks collected during the Apollo missions, clustered between 3.8 and 4.1 

Ga, has been used to constrain the absolute ages of lunar geological periods. 

 

3- Formation and morphology of simple impact craters 

 

The final morphology of impact craters derives from the post impact modifications, mainly 

due to gravitative collapses of the steepest parts of the rim within the transient crater. The 

transient crater has a circular bowl-shaped cavity, with a depth-diameter of about 1:4. The 

shape of a transient crater is not influenced by the impact velocity, diameter or impact 

angle, but it undergoes to morphological modifications due to gravitational phenomena. 

The final impact crater morphology is hence strictly related to gravity, rock density and 

strength and geological setting of the target surface. 
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The gravitational instability on small simple impact craters involve the rim, composed and 

surrounded by fractured, heated and shocked rocks, that collapse within the crater 

producing landslides, dry flows and lens of broken rocks accumulation on the floor. 

Differently, large craters are subjected to dramatic collapses, that give rise to the formation 

of wall terraces , central peaks and internal rings (complex craters). The very large craters 

also form several rings (multi-ring craters).  

On the Moon the transition between simple and complex craters is estimated close to 15 km 

of rim diameter. The morphology of complex craters is more complicated and the erosion 

of so large craters is too slow, being the degradation effect less clear [Fassett, 2014]. On the 

other hand simple impact craters have a morphology easier to characterize and their erosive 

evolution is more evident. Moreover simple craters are widely distributed than complex 

craters within lunar maria. For these reasons we have chosen simple impact craters to 

perform our analyses [Melosh, 1989, 1999, 2011].  

 

4- Current dating method and the contribute of this research 

 

Nowadays the age estimates of geological units on planetary surfaces are mainly performed 

with crater counting. This method is based on the concept for which impact craters 

accumulate at a nearly constant rate on a fresh surface with no impact craters. Indeed the 

age of a geological unit and the crater production rate determine the number of impact 

craters superposed on that geological units [Öpik, 1960; Shoemaker et al., 1962; Baldwin, 

1985].   

This method has been successively calibrated using the radiometric absolute ages of 

samples returned back from the Moon by Apollo missions, allowing the averaged cratering 

rate to be estimated much more accurately. Lunar maria have preserved the cratering record 

over their 3.2–3.5 Ga history. The calibrated surfaces allowed to employ with greater 

confidence crater counting as a chronometric tool, in order to date the rest of the 

unsampled lunar surface. On the basis of the concept for which the crater number is 

inversely proportional to the square of crater diameter (N=kD-2) is possible to retrieve 

relative ages of not saturated units, by calculating the size–frequency distribution (SFD) of 

craters and correlate it to a 11°polynomial function, the Neukum Production Function 

(NPF) [Neukum, 1983]. This chronology model is calibrated on the crater size–frequency 

distribution measurements performed on lunar units on which it is possible a correlation 

with radiometric ages, retrieved from sample return missions of lunar rocks. Afterwards the 

NPF was applied on other planetary bodies (e.g. Mercury, Mars and minor rocky bodies) by 

understanding and modeling the fluxes of impactors. According to Neukum & Ivanov 

[1994]  the overall shape of the crater size–frequency distribution has not changed over the 

past 4 Ga, suggesting  a stable impactor population over the past 4 Ga. 
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This methodology is wildly employed to date the unsampled planetary surfaces, however at 

present there are no methods to retrieve the absolute age from the crater degradation. 

Crater degradation morphology is an important point of view for the relative age 

determination among different geological units. This process induces morphologic 

modification and its obviously related to the geological time, because of the erosion 

depending, which is due to space weathering as well as gravitational phenomena.    

For these reasons crater degradation can be employed to constrain the chronological 

evolution of a planetary surfaces, on the basis of the concept for which older terrains should 

have craters in a more advanced state of degradation than younger ones, exposed for a 

shorter period to erosional processes [Fassett, 2014]. 

This research is therefore focused on characterizing the degradation of simple impact 

craters on different lunar maria through a numerical approach based on topographic data. 

In order to understand how degradation processes are impressed in the geomorphological 

evolution of impact craters, was firstly necessary to conceptualize and characterize the 

morphology of a pristine simple impact crater (Cap.1). In this regard Linné is considered in 

literature as the best preserved impact crater on the Moon, displaying a pristine morphology 

appearing as an inverted truncated cone [Garvin et al., 2011].  

In 1963 Arthur proposed four crater classes of degradation for the Moon: C1 represents 

fresh craters, C2 are the ones with the first evidence of degradation (smoothed rim) and C3-

C4 are related to impact craters with morphologies ranging from heavily eroded to totally 

flattened ones. However the four degradation classes are discriminated through a visual 

interpretation, which is affected by subjectivity. To propose an objective procedure of 

classification we used the high resolution morphometric signature of Linné crater as 

morphological reference for the C1 class. Than we have conducted a high resolution 

morphometric analysis on other craters representative of C2, C3 and C4, fundamental to 

establish morphometric thresholds to numerically characterize the four degradation classes. 

Successively we extracted 252 craters in order to compare the morphologic relationships 

among the degradation classes pertaining to a unique geological unit (Cap.2). 

The morphometric characterization of the degradation classes was a milestone in the 

understanding of a possible correlation between morphological evolution of impact craters 

and the age of the surface where they are superposed (Cap.3). 

Then, in the light of the above, we expanded our analysis to several lunar maria, extracting 

thousands of simple impact craters from differently aged surfaces. We have chosen several 

geological units from six lunar basaltic basins characterized by different absolute ages, as 

shown in TAB.1.  

In particular we gathered geological units with similar absolute model age from basaltic 

basins, in order to compare crater morphology distribution from the most homogeneous 

possible surfaces, both in terms of impact rheology and absolute age.  
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The mean slope values of the inner walls have shown a relation between crater morphology 

and the absolute model ages of the geological units where they are located. Older basins 

indeed are characterized by lower mean slope values, suggesting a dominance of older 

craters in their population, whereas the younger units have shown higher mean slope 

values, suggesting a crater population dominated by recent impacts. This tendency is the 

expression of the morphological alteration due to degradation processes, strictly connected 

to the lunar maria age. Since the geomorphometry of impact craters is influenced by 

absolute age of the target area we may fix absolute age thresholds based on the 

morphological variations of impact craters to constrain potential isochrones. 

This research may potentially offer new possibilities to the estimation of the absolute model 

ages on planetary terrains, being a parallel support to crater counting. 

 

 
CHRONOLOGICAL 

SUBSET 

GEOLOGICAL UNITS (Hiesinger 
et al., 2011) 

MEAN 

AGE 

SURFACE 

AREA 

N° 

CRATERS 

Procellarum 

 
P60 (1.20Ga); P58 (1.33Ga);  P55 

(1.67Ga); P56 (1.49Ga); P53(1.68Ga) 
 

1.47 Gy 200,000 km2 164 

Serenitatis 

 
S26 (2.94 Ga); S27 (2.90 Ga); S28 

(2.84 Ga) 
 

2.89 Gy 100,000 km2 181 

Imbrium 

 
I19 (3.10 Gy); I20 – I21 (3.01 Gy); 

I22 (2.96 Ga). 
 

3.02Gy 400,000 km2 178 

Crisium 

 
U1 (3.65±0.05  Ga); U2 (3.50±0.10 

Ga) 
 

3.57 Gy 100,000 km2 159 

Endymion 

 
 (3.63–3.70 Ga) 

 
 

3.66 Gy 25,000 km2 174 

Australe 

 
 

A2 (3.80 Ga); A22 (3.57Ga) 
 

3.68 Gy 25,000 km2 158 

 

TAB.1- Lunar basins with the geological units used to perform the statistical analysis. There are the absolute 

model ages [Hiesinger et Al., 2011], the mean ages of the considered surfaces, the surface area and the n° of 

extracted craters. 
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ABSTRACT 

 

This research introduces a quantitative method to characterize the morphology of a fresh 

simple impact crater on the Moon. At this purpose a morphometric analysis was conducted 

on high resolution Digital Terrain Models (DTMs) produced by Lunar Reconnaissance 

Orbiter (LRO) (NASA). Linné is a well-preserved impact crater of 2.2 km in diameter, 

located at 27.7°N 11.8°E, near the western edge of mare Serenitatis on the nearside of the 

Moon. The crater was photographed by many space missions orbiting the Moon and its 

particularly pristine morphology may place Linné as one of the most striking example of a 

fresh simple crater. In particular, we have performed the morphometric signature of the 

four main morphological sectors of the crater (rim, floor, inner and outer wall) using the 

“NAC DTM LINNECRATER E280N0120” DTM (2m/px). The morphometric signature of 
Linné crater enlighten its pristine morphology, confirming that the crater was not eroded 

by degradation processes. For these morphometric characteristics Linné can be considered 

as a base reference for the morphologic analysis of crater degradation. In addition, from a 

detailed analysis of the Linné inner scarp we have found the presence of clear-cut 

boundaries within the inner scarp, highlighting the morphologic setting of possible lava 

emplacement events sequences. 
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INTRODUCTION 

 

Impact craters are the most widespread landform on the rocky bodies surfaces of the Solar 

System [Melosh, 1989]. They have been collected on planetary and small bodies, and 

therefore they kept the record of the cumulative effects of subsequent impacts, volcanic 

emplacements, tectonics, landslides, aeolian activity, and space weathering [Neukum et al., 

1975]. The morphology of simple impact craters depends on the interaction between 

gravity and target strength under dynamical loading [Melosh, 1989, 1999, 2011]. In 

addition, post-impact modification processes as for instance crater degradation, might 

deeply affect the morphology of observed structures. 

On the Moon crater degradation is due to gravitational processes (landslides, dry flows) and 

space weathering, and it can be related to the chronological evolution of planetary surfaces, 

known as planetary resurfacing. The space weathering is a process of erosion and mineral 

alteration caused by cosmic, solar rays and micrometeorite bombardment: this process is 

particularly influenced by micrometeoroids flux [Cremonese et al., 2013; Pieters et al., 

2012; Hapke, 2001; Vernazza et al., 2009]. 

This research introduces an innovative method to determine and quantify the post-impact 

morphology of a lunar simple impact crater. 

Morphometric analysis has twofold benefits as the topographic based survey and the 

quantitative approach, providing for an objective analysis. Geomorphometry on planetary 

surfaces is indeed usually conducted through the measurements of 2D topographic profiles 

Fig.1- 3D visualization of Linné crater from high resolution DTM (LROC). 
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[e.g., Aasim and Bahuguna, 2014; Basilevsky et al., 2014; Fassett and Thomson, 2014; 

Pike, 1995; Salamumićcar et al., 2012; Watters et al., 2015], but areal 3D surveys on high 

resolution DTMs are normally favored by Earth geomorphologists since in this way a much 

robust statistic is guaranteed. Moreover, this distributed analysis allows a better 

understanding of the real landforms characteristics (i.e. areal extension, continuity, precise 

boundary definition, etc.). Hence, in this analysis we have applied a 3D areal approach in 

order to retrieve an accurate surface statistic from the extraction of the morphometric 

variables. 

Post-impact simple crater morphology can be better studied from the analysis of fresh 

pristine impact structures. In this regard Linné (Fig.1) is one of the best preserved simple 

impact crater on the Moon, showing a particularly pristine morphology and appearing as an 

inverted truncated cone [Garvin et al., 2011]. Linné is located near the western edge of 

mare Serenitatis, a basalt smooth basin located on the nearside of the Moon, on S14 

spectral unit. S14 has an absolute model age of 3.49 GY [Hiesinger, 2011] and it’s 
superposed on LPM-1 unit, that is characterized by a smooth morphology with an albedo 

ranging from 0.064 to 0.066 [Carr, 1966]. 

 

DATA AND METHODS 

 

Remote sensing data from the recent space missions provided a huge amount of high 

resolution Digital Terrain Models (DTMs). This detailed topographic survey enables a 

surface analysis with a high level of accuracy. High resolution topography was fundamental 

for the characterization and the quantification of the geomorphometry on the four different 

morphological homogeneous domains of a simple impact crater. 

The geomorphometric analysis of Linné crater was carried out on Lunar Reconnaissance 

Orbiter (LRO) data, and more in details on the orthorectified images with cell size of 0.5 m 

and the Digital Terrain Model (DTM) with cell size of 2 m. The DTM was generated from 

the LRO Camera – Narrow Angle Camera (LROC NAC) stereo pairs, calibrated on the 

Lunar Orbiter Laser Altimeter (LOLA) transects [Robinson et al., 2010]. 

LROC images were acquired at different solar illumination conditions between March and 

October 2010. The camera was not designed as a stereo system, but can obtain stereo pairs 

through images acquired from two different orbits (with at least one off-nadir slew) [Beyer 

et al. 2009]. The DTM was produced processing the stereo pair with USGS Integrated 

Software for Imagers and Spectrometers (ISIS) for the radiometric correction, and SOCET 

SET® from BAE Systems for the ingestion of spacecraft coordinates, altitude, Euler 

angles, and ephemeris positions [Tran et al., 2010]. The LOLA near center-line topographic 

transect of the crater were acquired between June and September 2010. 
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In particular, we used the “NAC DTM LINNECRATER E280N0120” Digital Terrain 

Model with a cell size of 2m and the derived product “NAC DTM LINNECRATER 
M139829261 50CM”.  
 

METHODS 

 

With the purpose of a morphological quantification of a lunar fresh simple crater the main 

four morphological domains of the crater (rim, floor, inner and outer wall) were studied. 

This analysis has been conducted by processing a high resolution DTM in order to retrieve 

different derivatives such as slope, curvatures and topographic openness. Curvatures have 

been calculated along different planes: the profile curvature has been calculated along the 

maximum slope plane and the plan curvature along the horizontal plane. The topographic 

openness is an angular measure applied on an irregular surface in order to quantify the 

dominance or the enclosure degree of the surface [Yokoyama et Al., 2002]. In this study the 

positive openness has been adopted to emphasized convex morphologies, as for instance 

the rim crest, using a radial distance of 1000 m. 

All those morphometric variables have been employed as a topographic and numerical tool 

for the automatic detection of the four domains. In particular slope was applied to detect the 

inner and the outer scarp whereas curvatures automatically detected the rim and the floor 

boundaries. Moreover, with the topographic openness we were able to better highlight the 

edge between the rim and the inner scarp, showing the pristine crest as well as 

morphological irregularities within the inner scarp. However, the calculation of curvatures 

is particularly affected by DTM noises and errors. For this reason, we applied a multi-scalar 

approach in order to reduce DTM noises and errors, evaluating also the scale sensitivity of 

the analyzed surfaces. At this purpose, a kernel analysis has been employed to calculate 

curvatures. Land Serf software 

has been applied to statistically 

assess the maximum expression 

of the profile curvature at 

different kernel sizes [Wood, 

2009]. In particular, every kernel 

size from 3x3 to 99x99 has been 

tested, corresponding on the 

Linnè DTM to a window area 

ranging from 6m
2
 to 198m

2
. The 

maximum expression of the 

profile curvature for this DTM 

resulted to be the 66m
2
 one as 

shown in Fig.2. 

Fig.2- Plots of the maximum expression of the profile curvature 

at different evaluation kernel sizes for the LRO DTM, testing 

every kernel sizes from 3×3 to 99×99. For the LRO DTMs were 

estimated the peak at kernel 33. 
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The automatic detection was carried out by performing an unsupervised classification (k-

mean) on slope and curvatures variables. From this objective classification were defined 

the boundaries among floor, inner wall, rim and the outer wall of the crater. Afterward a 

multi band raster mask has been created by reclassifying the k-mean raster of slope and the 

curvatures. From this raster was possible to create a vectorial layer in ESRI Arc Map, 

necessary for the extraction of all pixel values from each morphological domain.  

In this analysis the values of slope, curvatures and topographic openness have been 

extracted to perform the statistical surface analysis. 

When calculating topographic variables from a Digital Terrain Model (DTM), the choice of 

scale is constrained by the DTM resolution, as well as by the elevation errors present in any 

DTM. At coordinates x~0, y~0, the slope G, profile curvature kr and plan curvature kl can 

all be calculated from the parameters of the conic equation [Wood, 1996] as follow: 

 � = arctan √ +    ;  �  

� = − + ++ + + /    ;  −
 

� = −200 + −+    ; −
 

 

RESULTS  

 

Morphometric analysis of Linné crater 

The observations performed on the high 

resolution orthorectified images (0.5m/px) of 

the crater enlighten its circular and sharp rim 

crest, which suggests that degradation 

processes have not yet significantly modified 

the crater. The wall is clearly interested by a 

change in albedo located at about 300 m 

below the rim, involving some sectors of the 

floor. Deposits on the crater floor are 

interpreted as a lens of breccia and melts by 

analogy with terrestrial cases. Such breccia 

lens is made up by allochthonous material of 

low level shock, but containing highly 

shocked melt clasts slumped down from the 

rim and crater walls [Sharpton, 2014]. The 

Fig.3 – Topographic openness enlighten the 

pristine morphology of Linné crater. 
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change in albedo might therefore point to a different material composition.  

By measurements on the Linné DTM, we found that the crater is 2.224 km in diameter and 

0.52 km in depth, with d/D of 0.23. Linné crater covers an area of about 10 km
2
 considering 

the outer scarp/ejecta border. The four morphological domains cover different areas of the 

crater, summarized as follow: outer scarp 5.5km
2
 (55%), rim crest 0.3 km

2
 (3%), inner 

scarp 4 km
2
 (40%) and floor 0.2 (2%). 

The outer scarp presents a mean slope gradient of about 10°. Profile curvature was 

calculated along the maximum declivity plane and shows a negative value (-0.05) revealing 

a slightly concave morphology radially from the center of the crater. 

The rim sector is characterized by an average profile curvature of 0.5, suggesting a convex 

morphology. Null values of profile curvature and slope reveal a thin top edge on the rim 

identifiable as the Linné pristine rim crest. Moreover, the topographic openness confirmed 

this particularly pristine rim crest, enhancing a clear boundary between rim and inner scarp. 

This characteristic is also distinguishable in the first 50 m of depth of the inner scarp, below 

the rim edge Fig.3. In this section indeed the average slope gradient is about 45°-50°, 

exceeding the global inner scarp mean slope of 31.2° and suggesting the presence of an 

outcrop wall under the rim. 

The mean slope gradient of inner wall of 31.2° resulted close with the lunar regolith angle 

of repose (about 31°) [Nickerson et al., 2011] and with the theoretical post-impact 

morphology of a simple impact crater [Melosh, 1999], confirming the youngness of this 

morphological structure. At the same time the mean profile curvature value is negative, 

approximately -0.1, suggesting a slightly concave morphology. Moreover, the floor 

presents a mean slope gradient of 0°- 3°, with a profile curvature of 0.05, enlighten a flat 

floor crater. The floor is interested by some morphological irregularities due to landslides 

from the bottom of the rim to the floor. 

For these particular morphometric characteristics Linné can be classify as a very fresh 

crater, not eroded by degradation processes. 

 

Detailed analysis of Linné inner scarp 

 

The inner scarp of Linné crater was further investigated in order to understand the pre-

impact target surface properties and to confirm a possible evidence of stratigraphic 

layering.  

We processed through a density slice raster the profile curvature to enhance the map 

contrast and isolate any morphological changes on the scarp. This procedure enlightened 

the presence of three clear changes of curvature within the crater wall. The changing of 

curvature shown in fig.4 by black boundaries is the expression of the slope gradient 

variation along the maximum slope direction. If setting the mean elevation of Linné 

surrounding area (-2620 m) as zero, those boundaries occur as continuous rings at +50, -
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100 and -200 m along the inner crater scarp. Convex morphologies on simple crater walls 

may indeed have different origin, including gravitational landslides or non-homogeneities 

on the crust stratigraphy. These variations may also be interpreted as the expression of 

differently layered lava sequences, alternated by strata characterized by different strength. 

This last hypothesis 

is more realistic in the case of Linné crater because the three steps run continuously along 

the wall, whereas post-impact collapses usually occur as local anomalies. Hence, the three 

boundaries are characterized by a positive value of the profile curvature that may arise 

from differential erosion on layers with different rheological properties. This difference of 

strength may affect the erosional processes, producing stepped landforms and suggesting a 

transition between overlapping geological units (likely lava flows interleaved by regolith or 

volcanic ashes) in mare Serenitatis. 

Fig.4- Classification of profile curvature to enhance the morphological steps in the inner 

scarp, as shown by the three black boundaries. 
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Fig.5-. Profiles of (A) topographic elevation, (B) slope, and (C) profile curvature. Profiles are taken along the 

line AA'. The arrows indicate the corresponding position along the topographic profile where changes in both 

slope and profile curvature occur. 



20 

 

CONCLUSIONS 

 

This research shows how morphometric analysis can be useful to detect and quantify the 

morphology of impact craters. The extraction of pixel values, from different morphometric 

variables, enable us to calculate surface statistics, in order to quantify different sectors of an 

impact crater. 

In this work we performed a morphometric analysis on the LROC DTM of Linné crater in 

order to constrain the morphometric signature of a very fresh impact crater. The 

morphometric signature of Linné crater confirmed its pristine morphology, enlighten that 

the crater was not strongly modify by degradation processes. For these morphometric 

characteristics Linné can be considered as a base reference for the morphological analysis 

of crater degradation classes, as concerning the fresh simple impact craters class C1 

[Arthur, 1963].  

In addition, we have found the presence of three uphill scarps running along the crater wall. 

Those features may be the morphological expression of subsequent emplacements of thin 

lava flows within mare Serenitatis, potentially useful to infer the stratigraphy at the impact 

site, mare Serenitatis. 

The quantification and classification of morphometric variables described in this research, 

may be useful also for semi-automatic detection and characterization of the degradation 

classes of simple craters. This approach could be potentially a helpful tool for the 

geological mapping of planetary surfaces. 
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ABSTRACT 

 

The classification of impact crater degradation is classically performed through a 

subjective visual interpretation of lunar surface images. The freshest craters are defined C1 

and the more degraded ones are defined as C4 [Arthur et al., 1963]. Here we propose an 

alternative quantitative methodology based on a morphometric analysis of simple craters 

carried out on high resolution digital terrain models (DTM) from Lunar Recognisance 

Orbiter (NASA) and Kaguya-Selene (JAXA) missions. 

The morphometric variables such as slopes and curvatures were calculated on a 

representative fresh (C1) simple crater (Linné), in order to retrieve the morphometric 

signature of the four main sectors: floor, inner scarp, rim and outer scarp. After we applied 

the morphometric analysis on other simple impact craters, representative of the last three 

degradation classes (C2, C3, C4), aiming to constrain the morphometric thresholds 

pertaining to the four classes of degradation. 

After the characterization of the morphometric variables thresholds for the four classes we 

have conducted the morphometric analysis on 383 impact craters from a unique geological 

unit on mare Serenitatis (S28-2.84 Gy) [Hiesinger et al., 2011]. The extracted 

morphometric values allowed a statistical analyses of simple impact craters degradation as 

function of both the diameter and degradation class. The erosion of lunar impact craters is 

driven by gravitative processes as well as space weathering, that induce a smoothing effect 

especially on the rim and on the inner wall of craters. However the inner wall shows the 

more evident morphologic variations, being the wider sector of a simple crater as well as 

more susceptible to infilling and flattening processes. A power law trend in mean slope and 

mean profile curvature changing within the inner wall was discovered in function of 

diameter within each class. Those power law trends of degradation with decreasing crater 

size are comparable among the classes and enlighten an upper diameter cut-off for C4 and 

C3. 
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INTRODUCTION 

 

Impact craters are the most widespread landforms on rocky bodies surfaces of the Solar 

System (Melosh, 1989). They are one of the most important geological features that 

characterize and modify the local and the global morphology of a planetary surface, being 

an essential element for understanding the formation and the evolution of the Solar System. 

Indeed the morphologic evolution of a planetary surface results from cumulative effects of 

subsequent impacts, volcanic emplacements, tectonics, landslides, aeolian activity (in 

presence of an atmosphere), and space weathering [Neukum et al., 1975]. 

Impact craters morphology results from the interaction between gravity and target strength 

under dynamical load [Melosh, 1989, 1999, 2011]. Progressively post-impact modification 

processes, as for instance crater degradation, might deeply affect the observed 

morphologies and structures. 

To simplify the morphological quantification of crater degradation we have chosen the 

Moon, avoiding planetary bodies with an atmosphere, where impact craters structures are 

continuously modified by active effects of erosion, transport and deposition (e.g. Mars). 

The principal active processes of degradation on the Moon are gravitative processes, 

dominated by post impact landslides, and space weathering, due to micrometeorites 

bombardment and cosmic rays alteration [Neukum 1976]. The space weathering is a 

process of erosion and mineral alteration caused by cosmic, solar rays and micrometeorite 

bombardment: this process is particularly influenced by micrometeoroids flux [Cremonese 

et al., 2013; Pieters et al., 2012; Hapke, 2001; Vernazza et al., 2009]. Crater degradation 

can be used to constrain the chronological evolution of planetary surfaces. On the Moon 

post-Copernican craters (ages < 1.1 Ga) can be modified only by later impacts which 

caused rim crest smoothing or collapse, and debris infilling [Garvin et al., 1998], whereas 

pre Copernican craters were subjected to volcanism infilling and smoothing effects due to 

erosional processes (e.g. space weathering, gravitational processes). 

Lunar impact craters with different degrees of preservation are classified into four classes 

of degradation, being the C1 referred to fresh craters with well sharp rims and bright ejecta, 

the C2 to craters with more smoothed rims and a well preserved inner cavity, the C3 to 

craters with no evidence of rims but with the presence of a cavity, and the C4 to heavily 

eroded craters with a bland topographic outline of their ancient cavity [Arthur, 1963]. 

However this classification is based on visual interpretation that is obviously affected by a 

certain degree of subjectivity. 

Indeed the qualitative description of landforms (e.g. hilly, steep, and rough) in Earth 

geomorphology are subjective and often insufficient for comparative studies [Pike, 1995]. 

A more robust quantitative approach to empirically describe the shapes of the Earth's 

surface can facilitate the detailed interpretation of individual landform units and across 

various landform types. The mathematical description of planetary surfaces and the 
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extraction of surface-landform parameters are known as Geomorphometry [Pike et Al., 

1995, 2002; 2008]. 

Nowadays morphometric analysis on planetary surfaces is mainly conducted through 

topographic profiles [e.g., Aasim and Bahuguna 2014, Basilevsky et al. 2014, Fassett and 

Thomson 2014, Pike 1977, Salamumićcar et al. 2012, Watters et al. 2015] which might not 

be exhaustive to represent the real 3D surface complexity. This can be instead retrieved by 

a statistical analysis of morphometric variables, derived from high resolution 3D 

topography (DTMs). 

In this research we considered only simple, circular and symmetric impact craters, to avoid 

elliptical shapes and irregular morphologies of analysed craters. On the Moon indeed 

simple impact craters (D<15 km) involved minor modifications of the transient cavity in 

their formation being represented mainly by flows of breccia and melt along the crater wall 

to the floor [Melosh, 1999]. 

Here we propose a morphometric method to objectively determine and quantify the 

degradation of simple impact craters. In particular we applied a surface analysis based on 

the geomorphometry to the inner wall sector of each impact crater, with diameter ranging 

from 0.1 to 12 km, on target area in mare Serenitatis (Fig.1). The inner wall is the wider 

sector of a simple impact crater and its degradation interests a broad area of the crater itself: 

for this reason the morphologic variations due to degradation processes on the inner wall is 

more easily quantifiable. 

 

GEOLOGICAL SETTING OF TARGET AREA 

 

For this analysis we have chosen basaltic smooth plain target which can be considered 

homogeneous from topographic and mechanic point of view, being affected only by the 

rheological variability between the regolite and the underlying substratum. In particular we 

have chosen a geological unit in mare Serenitatis which is a large multiring basin, located 

on the nearside of the Moon with a diameter of 920 km [Head, 1979]. Recent works based 

on crater counting placed Serenitatis basin in the Nectarian period (3.87 Gy), at the same 

time of the Late Heavy Bombardment (LHB), when the Moon was exposed to hundred-

kilometer size asteroids impacts [Hiesinger 2003, Stöffler et al., 2006]. Mare Serenitatis 

was subdivided into 29 geological units differing in albedo, thickness and spectral 

properties and belonging to successive lava flows emplaced between 3.81 and 2.44 Ga 

[Hiesinger et al., 2011]. 

The stratigraphic sequence characterized by solidified lava flows could reach few 

kilometers of depth from the maria surface, and each geological unit is thick several 

hundred meters [Pommerol et al., 2010; Weider et al., 2010]. Within mare Serenitatis we 

have chosen unit S28 dated to 2.84 Ga [Hiesinger et al., 2011]. 
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FIG. 1 – Mare Serenitatis with the geo-chronological units proposed by Hiesinger (2011). The red area 

indicate the S28 Unit, used as target surface to compare the four degradation classes.
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DATA 

 

We used high resolution DTMs and orthographic products from Kaguya-Selene [JAXA] 

and Lunar Reconnaissance Orbiter (LRO) [NASA] missions. 

The Japan Aerospace Exploration Agency [JAXA] launched to the Moon the Kaguya-

Selene spacecraft in September 2007, providing a great amount of data from 2007 to 2009, 

when the mission ended [Haruyama, J - 2008]. The high-performance optical Terrain 

Camera (TC), integrated in the Lunar Imager/Spectrometer (LISM) instrument suite, 

produced a global DTM with 7.4 to 10 meter of spatial resolution [Kato, M., 2007], in 

addition to the global survey of the Multi-Band Imager (MI, 20 m/pixel) [Isbell et al., 

2014]. One of the objectives of TC camera was the production of a high resolution global 

mosaic, by releasing two morning and two evening near-global tile sets. The morning tile 

sets covered about 88% of the lunar surface and the evening sets provided about 89% of the 

spatial coverage. In addition a global orthographic product was produced with gap-filled by 

the Multi-Band Imager data in order to achieve about 95% of global coverage. We have 

built a global DTM mosaic of Serenitatis, by merging 40 DTMs and orthorectified tiles 

from TC, with a resolution of 7.4m. 

The Global Lunar DTM “GLD 100”, with a resolution of 100 meters per pixel, was instead 
produced by LRO and derived from the merging of Lunar Orbiter Laser Altimeter (LOLA) 

and Wide Angle Camera (WAC) observations. The “GLD 100” was used as base map to 
reference the Kaguya-Selene DTM mosaic and to perform a cross-check of the altimetric 

values. 

The Near Angle Camera (NAC) onboard LRO produced very high resolution spotted 

images (0.5 m/pixel) and DTMs (2m/px). This camera was not designed as a stereo system, 

but stereo pairs can be obtained from acquisitions along two different orbits with at least 

one off-nadir slew [Beyer et al. 2015]. We employed the high resolution DTMs, acquired 

by the NAC at different solar illumination conditions between March and October 2010, in 

order to retrieve the morphometric signature of impact craters representative of the four 

degradation classes. 

 

METHODS  

 

Morphometric analysis was focused on the calculation and statistical analysis of the first 

two elevation derivatives, slope and curvatures. Curvatures were calculated along different 

planes: the profile curvature along the maximum slope plane and the plan curvature along 

the horizontal plane. 

The slope shows wide areas with homogeneous values, such as the inner and the outer wall. 

The profile curvature is instead sensitive to morphologic variations along the maximum 

plane of declivity, enlightening for example the rim, the floor and the boundary between 
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inner wall and floor. On the contrary the plan curvature is sensitive to morphologic 

variations orthogonal to the maximum plane of declivity, detecting for example the rim 

crest (in fresh craters) or dry flows within the inner wall as well as rim interruptions by 

gravitational collapses. 

However the relation among morphometric variables and real landforms strictly depends on 

the scale and the object ontology, such as the dimension in relation to the surrounding area. 

Indeed morphometric parameters change continuously over the real landform and they 

essentially measure an average value related to a certain areal size taken into consideration. 

The accuracy of morphometric parameters defines the scale of the analysis and depends on 

the DTM cell size [Albani, 2004]. In fact, in geomorphometry, scale is considered as a 

function of the resolution of Digital Elevation Models (DEMs) [Evans, 2009; MacMillan, 

2009]. 

Another point to consider is the DTM noise, that affect mainly curvatures respect to slope. 

In this work we have thus applied a multiscalar approach in order to retrieve curvatures 

reducing DTM errors and noises and maximizing the scale of analysis [Wood, 2009]. One 

of the main advantages of this approach is the possibility to test and compare a range of 

different kernel sizes. Kernel has indeed twofold effects: one is the maximization of 

curvature for the specific scale of analysis and the other is the smooth or loss of minor 

“features”, often expression of minor landforms or DTM noise. In other words the larger is 
the kernel size, the stronger is the smoothing applied to the DTM. The smoothing effect can 

be useful for the reduction of DTM high frequency noises, derived from random errors 

[Albani, 2004]. A “LandSerf” script was employed to statistically assess the maximum 
expression of the profile curvature for each kernel size, by using the Evans’ biquadratic 

polynomial function to compute the profile curvature [Wood, 2009]. Definitely this 

approach was necessary to evaluate the best kernel size for curvatures calculation, 

balancing the reduction of the propagation of errors in elevation and the expression of the 

relevant forms. 

Multiscalar approach was applied both to Kaguya TC DTMs and LROC-NAC DTMs. For 

the LROC NAC DTMs every kernel sizes from 3x3 to 99x99 were calculated. On LROC 

DTMs those kernel sizes correspond to windows sizes ranging from 6m
2
 to 198m

2
. The 

more favorable kernel resulted the 33x33 one, which coincides to a windows area of 66m
2
, 

as shown in Fig.2. For the Kaguya TC DTMs every kernel sizes from 3x3 to 33x33 were 

tested and the best size calculated was the 15x15 one, which corresponds to a 150m
2
 

window area (Fig.2). 
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FIG. 2 –  Plots of the maximum expression of the profile curvature at different evaluation kernel sizes for the 

LRO DTM (black line) and for the Kaguya DTM (red line), testing every kernel sizes from 3×3 to 99×99. For 

the LRO DTMs were estimated the peak of profile curvature expression on kernel 33, whereas for the Kaguya 

DTM on kernel 15. 

 

 

RESULTS 

 

Morphological characterization of a fresh simple impact crater: Linné crater 

 

Morphometric analyses were firstly conducted on high resolution DTMs from LRO-NAC 

(2 m/px) in order to quantify the typical crater morphology pertaining to each degradation 

class (from C1 to C4). The C1class refers to freshest craters, that are very poorly 

represented in the analysed areas if we consider diameter ranging from 0.8 to 10 km and 

exclude secondary impact craters. 

A fresh crater can be distinguished from its sharp edge and high reflectance ejecta and can 

be considered as the best natural model for the pristine post-impact morphology of an 

impact craters [Craddock and Howard, 2000; Head, 1979]. 

Linné crater is considered in several publications as a paradigm for the fresh simple craters 

class [e.g., Melosh, 2011; Chappelow, 2013, Martellato et Al., 2017]. The crater is located 
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at 27.7°N 11.8°E, near the western edge of Mare Serenitatis, presenting a diameter of 2.220 

km, a depth 0.520 km and a d/D ratio of 0.23. 

In this work we automatically subdivided the fresh crater into its four homogeneous 

morphologic domains (outer and inner wall, rim and floor) through an unsupervised 

classification, using the three morphometric variables exposed above (slope, profile 

curvature and plan curvature) (Fig.3). The product of this classification was a raster mask, 

capable to detect and extract values from the four morphologic domains of the crater.  

Using the obtained mask to extract values we found that the crater covers an area of about 

10 km
2
 considering the outer scarp border. The crater area is subdivided into four sub-areas, 

pertaining to the outer scarp which covers 4.6 km
2
 (46% of the total area), the rim which 

covers 0.7 km
2 

(7% of the total area), the inner scarp covering 3.5 km
2
 (35% of the total 

area) and the floor which is of 0.2 km
2
 (2% of the total area) [Vivaldi et al., 2016]. 

Afterward, in order to establish the specific geomorphometric aspects of the four sectors of 

a fresh impact crater, we extracted morphometric values. We calculated the mean slope and 

curvature values, which were representative for each sector (rim crest, inner and outer wall, 

floor), effectively quantifying the morphology of each domain of Linné crater as follows. 

The outer scarp presents a mean slope of ~10°. The profile curvature calculated along the 

maximum inclination plane is negative (-0.05), revealing a slightly concave morphology. 

The rim has a mean slope of about 45-50°, that is typical of a not eroded outcrop, and 

presents an average value of profile curvature of 0.5 (convex morphology). A subsection 

area of the rim, which denotes the top of such sector, has a mean slope approximating 0°, 

identifying the rim crest. The inner scarp has a mean slope gradient of the of 31.2° and 

resulted coherent with the lunar regolith angle of repose (about 31° [Nickerson et al., 

2011]), whereas the mean profile curvature value of -0.1 suggests a slightly concave 

morphology. These morphologic characteristics highlight the very pristine nature of Linné 

crater, and therefore they can be representative of highly fresh craters which have not 

undergone any kind of heavy degradation process [Vivaldi et al., 2016]. 
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FIG. 3 – A) K-mean classification derived by merging slope, profile curvature and planar curvature from Linnè 

crater DTM. This classification allows the numerical subdivision of a simple impact crater into the four sectors 

(outer scarp, rim, inner scarp and floor). B) 3D visualization of Linné crater from LRO-NAC observations. C) 

Topographic profile of Linnè crater with the principal morphometric variables thresholds.  

A 

C 

B
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Automatic detection of the four morphological domains of simple impact craters 

 

Using Linné crater as a morphometric reference for the simple impact crater morphology 

we have conducted a morphometric analysis on the other three degradation classes (C2, C3, 

C4). 

At this purpose we chose three impact craters with diameters similar to Linné crater and 

representative of C2 (NAC DTM IMBRIUM E287N3336), C3 (NAC DTM HARDINGH 

E400N2962) and C4 (NAC DTM RUMKERDOME2 E400N3010). 

Density slices of slope gradients applied on the four resulting slope maps revealed, as 

expected, how the rim crest tends to enlarge and smooth and the inner wall to lose slope 

gradient, with the increase of the degradation (Fig.4). Even though each morphologic 

domain of a simple impact crater is influenced by degradation, the inner wall showed the 

more significant morphologic modifications. Erosional processes indeed tend to flatten the 

inner wall, concurrently with the rim crest erosion and floor infilling. The main result is a 

progressive global smoothing effect of the crater morphology, as shown in Fig.4. Thus we 

have quantified the relation between diameter and the inner wall mean slope gradient, as a 

function of crater degradation. 

The extraction of the morphometric variables from each pixel of the more degraded craters 

confirmed this degradation trend (Tab.1). Indeed C2 crater analyses presented an inner wall 

mean slope gradient reduction up to 24°, whereas C3, which refers to more degraded 

craters without a defined rim, present an inner wall filled by deposits and a substantial loss 

of slope gradient (around 16°). The C4 class represents craters totally eroded, without a 

rim, but identifiable only through a little topographic depression. In this case a mean slope 

value of inner wall is around 7°. We have identified the C4 crater ancient rim area, which 

no longer displays a rim crest, but is rather a slightly degrading slope of 1.4° on average. 

Moreover a bland topographic feature around the residual inner scarp with a mean slope 

lower than 2°, identifies the presence of the ancient rim by now totally eroded. 

Tab.1 summarizes all the mean slope values for each degradation class, as well as the min-

max values and their range. The decrease of the mean slope values from C1 to C4 shows 

how the inner slope loses its declivity, with the increase of degradation. A maximum slope 

value around 70° on C1 may prove the presence of pristine outcrops in the inner wall, that 

are smoothed in C2, being the maximum slope value around 60°, and disappear in the other 

classes. Tab.1 allowed us to establish mean slope gradient thresholds of inner wall, in order 

to build different extraction masks for the automatic detection and morphometric 

characterization of the degradation classes.  
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FIG. 4 – Orthoimages (top) of the four simple impact craters representative of the four degradation classes. 

Topographic profiles (center) , calculated on DTMs show the flattening effect due by degradation.  The slope 

density slice (bottom) shows the evolution of degradation from C1 to C4 class (from left to right). The rim 

crest tends to smooth and enlarge its morphology, whereas the inner wall tends to strongly reduce its declivity 

increasing the crater infilling. 

CLASS DTM COORDINATES 

(DMS) 

INNER WALL 

MEAN SLOPE 

C1 NAC DTM LINNECRATER E280N0120 (Linné) 11°47'42.55"E  

27°44'57.726"N 

31.20° 

C2 NAC_DTM_IMBRIUM_E287N3336.IMG 26°5'46.563"W  

29°20'5.745"N 

24.26° 

C3 NAC_DTM_HARDINGH_E400N2962.IMG 63°48'23.627"W  

39°37'5.466"N 

16.46° 

C4 NAC_DTM_RUMKERDOME2_E400N3010.IMG 

 

59°8'8.24"W  

40°41'34.294"N 

7.58° 

 

TAB.1: mean slope values calculated from the four DTMs pertaining to four simple impact craters, 

representative of the C1 to C4 classes. The table fields are related to the degradation classes, the name of the 

DTM raster (PDS), the slope mean value. 
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Degradation classes morphometry comparison 

 

After having characterized the typical mean slope values for each degradation class we 

extended the morphometric analysis to a unique geological unit on Serenitatis basin. 

We have chosen a restricted area of about 23000 km
2 

on the S28 unit, that is located in the 

central part of mare Serenitatis. The composition of S28 is basaltic and has an absolute 

model age of 2.84 Ga [Hiesinger et al., 2011]. From this area we have mapped 383 simple 

impact craters, with diameters ranging from 0.1km up to 12 km (Fig.5). Impact craters with 

a diameter lower than 0.1 km have not enough pixels on the Kaguya TC DTM mosaic to 

assure significant morphometric statistic. On the other side diameters of 12 km define the 

transition from simple to complex craters. 

Afterward we subdivided the craters into the four degradation classes (Tab.2) by applying 

the characteristic inner wall mean slope calculated in the previous high resolution 

topographic analysis. For each class was considered a buffer of ±5° centered on the mean 

slope values of the class: C1=31°, C2=24°, C3=20°, C4=15°. 

To be sure of this objective classification we verified the results through the visual 

interpretation of orthoimages (cell size 0.5m/px). 

 

 

 

 

CLASS NUMBER 

C1 106 

C2 79 

C3 157 

C4 41 

TOTAL 383 

 

 

 

 

 

 

 

 

 

TAB.2: extracted craters. 
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FIG. 5 – Detail of S28 Unit with the vectorial extraction masks subdivided for the four degradation classes. 

 

Slope analysis 

 

C1 larger craters have mean slope values approximating the regolite angle of repose, 

between 31° and 32°, whereas craters with diameter <100m of the same class show a mean 

slope ranging from 18° and 20°. 

The resulting distribution of inner walls slope values shows a degradation trend within the 

first three. The first three degradation classes indeed follow a comparable power law trend: 

the mean slope increases from small to large diameters, as shown in the inner wall mean 

slope/diameter ratio diagram (Fig.6). C4 class is instead characterized by a wide dispersion 

of the data. This is due to the bland topographic expression and the mainly irregular 

morphology of the most degraded craters.  

The slope/diameter diagram shows also a diameter upper cut-off at about 1 km size, for the 

most degraded crater class (C4). This is most probably due to the relative young age of the 

unit considered in mare Serenitatis [Hiesinger et Al., 2011], that does not allow larger 

craters to be degraded up to C4 class. In fact the diameter upper cut-off is present to all the 

degradation classes, shifting to larger craters from C4 to C1.  
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FIG. 6 – Inner scarp mean slope values plotted in relation to crater diameter derived from the extraction of 

craters. The plot shows a power law trend enlightening how the inner wall of the small diameter craters 

presents low values of mean slope. This trend can be explained with a stronger erosion rate on small 

diameter craters that are subjected to a more quick degradation. The plot shows also a diameter upper cut-off 

at about 1 km size, related to the most degraded crater class (C4). 

 

 

Concavity analysis 

 

The analysis of curvatures was conducted isolating the negative values of profile curvature 

(concavity) from the positive ones (convexity). This was obtained by applying a masking 

binary raster containing only negative values, in order to analyze only the concavity trends 

within the inner wall of the impact craters.  

After the extraction we plotted the mean concavity values of each crater, in function of its 

diameter and the diagram was subdivided into the four degradation classes, alike the 

slope/diameter diagram (Fig.7). 

The distribution of the negative profile curvature values follows a similar power law trend 

for C1 and C2, which becomes less defined for C3 and disappear in C4. This enlightens 

C2, C3 Diameter Cut-Off 
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how the concavity along the inner wall tends to decrease in function of degradation class 

from C1 to C4, according with a flattening morphological evolution from less degraded to 

more degraded craters. 

Considering the relation between the mean concavity and the diameter is clear how the 

concavity is inversely proportional to the increase of the diameter size. In other words 

larger and more degraded craters tend to a flatten morphology (profile curvature 

approximate to 0) and might eventually reach a positive profile curvature expression 

(convexity). 

 

 

 
FIG. 7 - Distribution of negative profile curvature values (concavity). The plot shows a power law trend for 

C1 and C2, that become less clear on C3 and disappear on C4. This enlightens how the convexity along the 

inner wall tends to decrease in function of degradation class from C1 to C4, according with a flattening 

morphological evolution from less degraded to more degraded craters. In addition larger craters show a flatten 

morphology along the inner wall (profile curvature approximate to 0) and might eventually reach a positive 

profile curvature expression (convexity) (see more details within the text). 
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DISCUSSIONS  

 

The statistical distribution of the inner wall mean slope highlighted a plausible power law 

trend in function of the diameter, at least for C1, C2 and C3  classes, whereas C4 class is 

affected by the maximum degree of degradation exhibiting a low topographic relevance. 

Craters with larger diameter (>4 km) in C1 and C2 show clear differences in terms of ejecta 

albedo and rim sharpness on the visual interpretation in the orthoimages, although the 

topographic analyses measure bland morphologic variations of the inner wall as enlighten 

in the plot of Fig.6. Hence in the first step of crater degradation the rim crest erosion 

probably prevails, whereas in the following steps the continuous infilling of the inner wall 

becomes topographically more important. However the gap among C1 and C2 improve 

when the crater diameter decrease under 3km, making topographic variations more evident. 

This trend may be related to the velocity of erosional processes on lunar impact craters, 

becoming quicker from large craters to small ones. Small impacts involve mainly the 

regolite and the fractured uppermost layers of lunar crust generating impact craters with 

blender morphologies. Hence the inner scarp of small impact craters interests materials 

with a lower strength than the basalts, being more affected to gravitative phenomena and 

erosional processes. 

The inner wall mean slope of C1larger craters approximates the regolith angle of repose, 

about 31° [Nickerson et Al., 2011]. This is coherent with the relatively freshness crater 

morphology, shaped only by early post impact modifications. However <200m sized craters 

of C1, show very bright ejecta and radial rays typical of fresh craters, present a mean slope 

value within the inner wall ranging from 18° to 20°, more typical of C3 mean values (14°-

18°) than C1 (28°-32°). This is probably related to the mechanics of small impacts that 

involve exclusively regolith layers, which have a lower strength if compared to basaltic 

layers and the resulting impact morphology is blander. Moreover in the post impact phase 

the regolith is probably much more prone to landslides and collapses of the inner scarp, as 

well as more susceptible to weathering processes. The distribution of impact craters 

revealed a diameter upper cut-off out 1 km for the most degraded crater class (C4). This 

cut-off can be explained probably with the relative young age of the considered units in 

mare Serenitatis [Hiesinger et al., 2011], that does not allow larger craters to be degraded 

up to C4 class. Indeed the diameter upper cut-off is present to all the degradation classes 

and increase to larger craters from C4 to C1. This cut-off will potentially allow a 

refinement of relative age discrimination among different geological units, with similar 

absolute model ages. 

The mean concavity diagram (Fig.7) shows how the concavity decreases with growing 

diameter and increasing degradation status of impact craters. In general degradation 

processes reduce inner wall concavity, decreasing the slope gradient with the simultaneous 

crater infilling. Sediments from dry-flows, landslides and potential material ejected from 
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surrounding impact events, tend to fill up the crater, supporting the increase and finally the 

prevalence of positive profile curvature values for the more degraded craters (C4). Craters 

also exhibit decreasing concavity with increasing diameters. These results can be explained 

under the light of the mechanic of impact that lead to more concave morphologies for small 

craters (bowl shaped floors and concave inner walls), to steep and sharp inner walls and 

flattened floors for larger craters, in particular at diameter closest to the transition with 

complex craters [Wilhelms, 1987; Melosh, 1989]. In addition larger craters are also 

interested by major and deeper gravitational events which might deform the carter floor at 

their foot leading to more irregular morphologies. 

 

CONCLUSIONS 

 

In this research we have applied morphometric analysis on high resolution topographic data 

in order to quantify the degradation of simple impact craters. We firstly derived and 

measured the morphological expression of the four different crater domains: the outer and 

inner wall, the rim and the floor. For this purpose we have chosen a particular fresh impact 

crater (Linné) as a reference for the quantification of the four homogeneous morphological 

domains. We applied the same analysis to other three simple impact craters, representative 

respectively of C2, C3 and C4 classes, in order to set up the characteristic thresholds of the 

four degradation classes. Afterwards we applied morphometric analysis on several simple 

craters on mare Serenitatis. Our results have provided a quantitative distinction among 

different crater classes and have shown common trends of degradation, going from larger to 

smaller craters within each class. 

The statistical distribution of the inner wall mean slopes highlights a similar power law 

trend of the first three degradation classes, which seems independent from the degradation 

class.  

We have also found a diameter upper cut-off at about 1 km of the most degraded crater 

class (C4), which can be explained with the relative young age of the considered unit in 

mare Serenitatis [Hiesinger et al., 2011], for which there were not enough time useful to 

degrade large craters up to C4 class. Indeed the diameter upper cut-off is present on all the 

degradation classes and increases from C4 to C1. This cut-off will potentially allow a 

refinement of relative age discrimination among different geological units, with similar and 

different absolute model ages. 

The shape evolution of simple impact craters inner wall was suggested by the negative 

profile curvature distribution, that shown a trend in function of diameter that enlightens a 

decreasing of mean concavity with both increasing diameters and raising degradation 

status: larger and more degraded craters have lower concavities and might eventually reach 

positive profile curvatures (convex shape). 
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The development of morphometric variables classification described in this research, may 

be also useful for semi-automatic detection and characterization of the degradation classes 

of simple craters, potentially helpful for geological mapping and age determination of 

planetary surfaces. 
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ABSTRACT 

 

Crater degradation can be employed to constrain the chronological evolution of a 

planetary surfaces. The degradation of lunar simple impact craters is influenced indeed by 

gravitative processes as well as space weathering, that induce a continuous and diffusive 

smoothing effect on crater morphology.  

This research is focused on finding a correlation between the distribution of the 

morphometric variables of simple impact craters and the absolute model ages of the units 

where they were emplaced. At this purpose we have applied an objective numerical 

approach based on a topographic survey to evaluate and characterize the simple impact 

craters degradation within different lunar maria. In particular, a geomorphometric 

analysis was carried out using the global DTM “SLDEM2015” in order to retrieve 
morphometric variables, such as slope and curvatures. 

We analysed over 1000 simple impact craters from several geological units to compare the 

distribution of crater morphology population pertaining to six differently aged lunar 

basins. 

A power law function has been identified between inner wall mean slopes and crater 

diameters, for each of the six basins considered. The mean slope values have shown a 

relation between crater morphology and the absolute model ages of the lava units where 

they reside. The older is the unit the lower are the mean slopes values in function of crater 

diameters. Older lava units are indeed characterized by a dominance of older craters with 

lower mean slope values in their crater populations, whereas younger units, with higher 

mean slope values, show a crater populations dominated by more recent impacts. This 
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trend is the expression of the morphological degradation, which is strictly connected to the 

lunar maria age. 

 

 

INTRODUCTION  

 

Impact craters are the most widespread landforms on rocky bodies surfaces of the Solar 

System [Melosh, 1989]. They are one of the most important geological features that 

characterize the local and global morphology of planetary surfaces, being an essential 

element for understanding the formation and the evolution of the Solar System. Indeed the 

morphologic evolution of a planetary surface results from cumulative effects of subsequent 

impacts, volcanic emplacements, tectonics, landslides, aeolian activity, and space 

weathering [Neukum et al., 1975; Melosh, 1989]. 

Impact craters morphology results from the interaction between gravity and target strength 

under dynamical load. Progressively post-impact modification processes, as for instance 

crater degradation, might deeply affect the observed structures. Fresh craters are the best 

expression of the original morphology of an impact crater, and can be distinguished from 

their sharp profiles and the high reflectance of their ejecta [e.g.  Head, 1979].  

In 1970 Soderblom formulated a theoretical basis that suppose a diffusional form of 

degradation, confirmed by Fassett [2014]. Particularly active processes of degradation on 

the Moon are the gravitative ones, dominated by post impact landslides, and space 

weathering, due to micrometeorites bombardment and cosmic rays alteration [Neukum 

1976]. Thermal expansion and contraction [Molaro and Byrne, 2012] or seismic shaking 

[Schultz, 1995] are other active processes involved in regolith movement on the Moon. 

Those processes may have a contribution to the topographic diffusion, but their importance 

relative to space weathering is still unknown.  

Crater degradation can be used to constrain the chronological evolution of planetary 

surfaces as relative dating [Fassett, 2014]. On the Moon, pre-Copernican craters were 

subjected to heavy erosional rate due to volcanism infilling and continuous impact 

phenomena. By contrast post-Copernican craters are undergone to a moderate erosional 

rate. They can be modified indeed only by space weathering or eventually by later impacts 

in their proximity, which caused rim crest smoothing or collapse and floor infilling with 

external ejecta [Garvin et al., 1998]. Recent works attempted even absolute age 

determinations based on the concept that older terrains should have craters in a more 

advanced state of degradation than younger ones, exposed for a shorter period to erosional 

processes. In particular a diffusive erosional process was demonstrate to be the main cause 

of the crater’s morphologic evolution [Fassett, 2014].  
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Geomorphometry allows a qualitative description of planetary morphology and can be used 

to quantitatively characterize crater morphologies through surface landform parameters 

such as the elevation, the slope and the curvatures [Pike, 1995, 2002; Pike et al., 2009]. 

Nowadays morphometric analysis on planetary surfaces is mainly conducted through 

topographic profiles [e.g., Aasim and Bahuguna 2014, Basilevsky et al. 2014, Fassett and 

Thomson 2014, Pike 1974, Salamumićcar et al. 2012, Watters et al. 2015] which might not 

be well representative of the real 3D surface complexity. This can be instead retrieved by a 

continuous areal analysis of high resolution topography (DTMs).  

Here we propose an objective method to determine and quantify the degradation of simple 

impact craters, by applying areal geomorphometric techniques on DTMs. Morphometric 

analysis indeed has twofold benefits as topographic based survey and quantitative approach 

of investigation. In particular we have tested and applied a method of surface analysis, 

based on the geomorphometry of all the area covered by each impact crater. 

In this research we have recognized only simple, circular and symmetric impact craters 

with no elliptical shape, in order to guarantee as uniform initial morphology. Moreover we 

have mainly investigated the crater inner walls, one of the more susceptible crater sectors to 

morphologic modifications by degradation processes [Vivaldi et al., 2017].  

 

GEOLOGICAL SETTING OF THE TARGET AREAS 

 

We have performed a wide survey on the nearside of the Moon, considering most of the 

main maria, which are characterized by different average age and excluding from the 

analysis surfaces dominated by obvious clusters or secondary crater chains. Lunar maria 

are smooth plains with relative young surfaces not saturated by cratering and their basaltic 

composition suggests a homogeneous rheology when the impacts occurred. In this context 

only a thin regolith layer might influence small impacts (diameters <200m). 

We analysed simple crater of several geological units from six lunar basaltic basins. 

Crater within units with a comparable absolute model age and pertaining to the same basin, 

were considered together obtaining six chronological subsets as shown in Tab.1. All 

chronological subsets areas covers a total of about 15% (about 850,000 km
2
) of the maria 

in the nearside of the Moon (Fig.1A). 

 

 

 

 

 

 

 

 

 



48 

 

CHRONOLOGICAL 

SUBSET 

GEOLOGICAL UNITS  

(Hiesinger et al., 2011) 
MEAN 

AGE 

SURFACE 

AREA 

N° 

CRATERS 

Procellarum 

 

P60 (1.20Ga); P58 (1.33Ga);  P55 

(1.67Ga); P56 (1.49Ga); P53(1.68Ga) 

 

1.47 Gy 200,000 km
2 

164 

Serenitatis 

 

S26 (2.94 Ga); S27 (2.90 Ga); S28 

(2.84 Ga) 

 

2.89 Gy 100,000 km
2
 181 

Imbrium 

 

I19 (3.10 Gy); I20 – I21 (3.01 Gy); 

I22 (2.96 Ga). 

 

3.02Gy 400,000 km
2
 178 

Crisium 

 

U1 (3.65±0.05  Ga); U2 (3.50±0.10 

Ga) 

 

3.57 Gy 100,000 km
2
 159 

Endymion 

 

 (3.63–3.70 Ga) 

 

 

3.66 Gy 25,000 km
2
 174 

Australe 

 

 

A2 (3.80 Ga); A22 (3.57Ga) 

 

3.68 Gy 25,000 km
2
 158 

 

Table 1- Summary of lunar maria and geological units used in this research. The table include the average 

absolute modes ages of the units and the count of the extracted craters. 

 

 

Oceanus Procellarum is a wide lunar basaltic mare located on the western edge of the 

Moon near side. Procellarum is called “oceanus” because it’s the largest of the lunar maria 

covering over 4000000 km
2
, with a diameter from the northern to the southern edge of 2500 

km. 

This basin was interested by a long period of volcanism, occurred from 1.3 to about 3.7 

billion years. There are some basalt flows covering the bright rays of Lichtenberg crater 

(Eratosthenian age) and confirming the youngness of lava flows in Procellarum [McAlpin 

et al., 2008] This lava flows are  probably Copernican in age and they may be a marker of 

the end of volcanism on the Moon [Hiesinger et al., 2000]. The central regions of the basin, 

considered in our analysis, are characterized by younger ages with respect to the western 

sector (1.47 Ga on average).  

The crater size frequency distribution on oceanus Procellarum shows an absolute ages 

range from 1.2 to 3.93Ga [Hiesinger et al., 2003]. It was subdivided into 60 geological 

units, five of which are Copernican in age (P56, P57, P58, P59, P60) [Hiesinger et al., 

2011]. We considered impact craters within the younger geological units, P60 (1.20 Gy), 

P58 (1.33Ga), P55 (1.67 Ga), P56 (1.49 Ga) and P53 (1.68 Ga) [Hiesinger et al., 2011]. 
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Mare Imbrium is a wide basaltic plain on the nearside of the Moon and with its diameter of 

1160 km and an area of 890000 km
2
 is the second largest basin after Oceanus Procellarum 

[Spudis, 1993]. It was emplaced on one of the larger impact craters in the Solar System, 

probably due to the collision between the Moon and a proto-planetary body, during the Late 

Heavy Bombardment [Wetherill, 1975]. Later the large basin was covered by basaltic lava 

floods shaping the flat volcanic maria we can see today. The basin is located within 

different surrounding concentric rings of mountains that are the morphologic evidence of 

the dramatic uplift due to the impact event. 

Imbrium was subdivided into 30 units defined by morphological boundaries and spectral 

analysis and with an absolute model age ranging from 2.01 to 3.57 Ga [Hiesinger et al., 

2000]. We have chosen units with intermediate ages I19 (3.10 Gy), I20, I21 (3.01 Gy) and 

I22 (2.96 Gy) [Hiesinger et al., 2011]. 

Mare Serenitatis is located on the nearside of the Moon and it is a large multiring basin, 

with a diameter of 920 km and an area of about 400000 km
2
. The age of mare Serenitatis 

basin is not yet clearly known. Recent works based on crater counting placed Serenitatis in 

the Nectarian period (3.87 Gy), at the time of the Late Heavy Bombardment (LHB), when 

the Moon was exposed to impacts of asteroids hundred-kilometers in size [Hiesinger 2003, 

Stöffler et al., 2006]. The Serenitatis stratigraphic sequence could reach few kilometers of 

depth from the maria surface and it is characterized by solidified lava flows, with a 

thickness up to around several hundred meters [Pommerol et al., 2010; Weider et al., 2010]. 

The thickness of lava units, which can change in function of the pre-emplacement local 

topography and erosional processes, is constrained by the spectral analyses of impact 

craters and their ejecta that can reveal possible distinct material ejected by impacts or 

exposed at the craters floors at different depths [Weider et al., 2010]. 

The mare Serenitatis basin was subdivided into 29 geological units differing in albedo, 

thickness and spectral properties and belonging to successive lava flows emplaced from 

2.44 to 3.81 Ga ago [Hiesinger et al., 2011]. From the 29 units we extracted simple impact 

craters only from the latest ones: S26 (2.94 Gy), S27 (2.90 Gy), S28 (2.84 Gy). 

Mare Crisium is located in the northeast quadrant of the lunar near side. This basin is 

Nectarian in age (about 3.9 Gy) and cover an area of 176,000 km
2
. The measurements from 

LOLA altimeter revealed that the floor of mare Crisium is approximately 1.8 km below the 

lunar datum, while the outer rim is about 3.34 km above it. Mare Crisium regional 

topography appears clearly annular. Mare surface slopes and the annular nature of unit 

boundaries suggest that the present topographic configuration of the mare is not simply the 

result of continued accumulation of lavas on the Crisium basin floor [Adams et al, 1978]. 

Lava flows indeed are prominent enough in this mare to be seen in the LOLA topographic 

data. The Soviet mission “Luna 24” landed in mare Crisium in 1976 and returned samples 

from the lunar surface to Earth. 
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The model age measurements for mare Crisium basalts enlighten a wide range of ages from 

2.71 to 3.65 Ga, suggesting an emplacement period spanning from Eratosthenian to Imbrian 

ages. In particular the sectors in proximity with the highlands boundary at the NE quadrant 

have 2.5 Ga whereas the ages in the central and the western regions of the basin range from 

3.5 to 3.65 Ga [Hiesinger et al., 2011]. 

The basin was subdivided into 3 main groups (Units) being the group II (Unit II) the wider 

with an absolute model age of 3.5±0.1 Gy, the group I (Unit I) the older (absolute age 

3.65±0.07) and the group III (Unit III)the younger one (absolute age 2.5±0.4 Gy) [Boyce & 

Johnson, 1977]. The Unit II age was also fixed by the radiometric ages from “Luna 24” 
mission giving 3.4 Ga [Hiesinger et al., 2011]. 

Endymion is a small basin located to the east of mare Frigoris, and north of the lacus 

Temporis close to the northeast limb of the Moon. It cover an area of about 19000 km
2
 with 

a dimeter of about 180 km. The basin floor was interested by basalt lava floods 3.63–3.70 

Ga in age [Hiesinger et al., 2011]. The infilling materials are characterized by a particularly 

low albedo. Given the small size of this basin we have extracted simple impact craters from 

entire surface.  

Mare Australe is located in the southeastern hemisphere of the Moon and its central 

selenographic coordinates are 38.9° S, 93.0° E. This lunar mare has a diameter of 880km 

and interests both the near and far sides of the Moon [Spudis, 1993]. Mare Australe is 

characterized by dark volcanic basalts that was emplaced in the Upper Imbrian age, 

infilling the basin which was formed in Pre-Nectarian time. Hence the estimated model 

ages of Australe infillings are between 3.08 and 3.91 Ga. In the late Imbrian was formed 

the main part of the lava flows of Australe, ranging from 3.6 to 3.8 Ga [Hiesinger et al., 

2000]. Within Australe basin we have limited our analysis to the units A2 (3.80 Gy) and 

A22 (3.57Gy). 
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Fig.1A- Geological units with their absolute model ages [Hiesinger et al., 2011]. The units are 

gathered into the six datasets considered in this research. 

Fig1B- Particular of crater extraction masks. 
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DATA AND METHODS 

 

Our analysis was performed on the “SLDEM2015” product, a global DTM produced by 

United States Geological Survey (USGS) with a spatial resolution of 59m at the equator 

and a vertical accuracy of about 1-2 m [Baker et al., 2016].  

“SLDM2015” was obtained by merging the data of the Lunar Orbiter Laser Altimeter 

(LOLA), onboard the Lunar Reconnaissance Orbiter (LRO), and the DTMs derived by the 

Kaguya-Selene Terrain Camera (TC). In particular, LOLA produced a global topographic 

model as well as a global geodetic framework, with a resolution of 118m/px. Moreover it 

covered also the permanently shadowed polar regions of the lunar surface [Beyer et al. 

2015]. The optical high-performance of the Terrain Camera (TC), integrated in the Lunar 

Imager/Spectrometer (LISM) instrument suite onboard Kaguya-Selene mission (JAXA), 

produced a 7.4-meter spatial resolution global DTM [Kato, 2007]. 

The “SLDEM2015” was generated from ∼4.5×10
9
 geodetically-accurate topographic 

heights from LOLA, to which were co-registered 43,200 stereo-derived DTMs (1°x1°) 

from the Kaguya-Selene Terrain Camera (TC) (∼1010 pixels in total) with less than 5 m of 

vertical residuals with the LOLA data [Baker et Al, 2016]. The global “SLDEM2015” was 

clipped into six DTM tiles, one for each chronological unit, to reduce time processing for 

the calculation of the morphometric variables. From the topography of each “SLDEM2015” 
DTM tile we extracted two morphometric variables, slope and profile curvature, calculated 

in ENVI.  

Since the profile curvature is sensitive to morphologic variations along the maximum plane 

of declivity, we employed this morphometric variable to automatically isolate the inner 

walls of the analyzed impact craters [see Vivaldi et al., submitted, for details]. At this 

purpose we have classified the profile curvature raster to detect the rim/inner wall and inner 

wall/floor transitions. Those transitions are characterized by a significant change of slope 

and maximum values of profile curvature highlighting the inner scarp perimeter and 

allowing the extraction of the sector. The classified rasters were successively converted into 

vector layers (shapefiles) which are used as extracting masks for inner walls (Fig.1B). In 

addition those shapefiles allowed to calculate area and diameter of the impact craters. 

The analysis was carried out by extracting 1024 impact craters with a diameter ranging 

from 0.5 to 12 km. Impact craters with a diameter lower than 0.5 km have not enough 

pixels on the “SLDEM2015” mosaic to assure significant morphometric statistic: from a 

small crater (diameter of 0.5 km) we could extract about 80 pixels, whereas from a large 

crater (diameter 12 km) we could extract about 3x10
4
 pixels. On the other side diameters of 

12 km define the transition from simple to complex craters. Finally we have extracted all 

slope pixel values within each crater inner wall, retrieving a robust geomorphometric 

statistics: 1024 craters were extracted into six datasets, one of each pertaining to distinct 

chronological units.  
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The statistical analysis was performed using Esri Arc Map, Past and Stat-Graphics. We 

have performed several descriptive and comparative statistical analyses on all datasets, with 

the aim to find out potential morphologic evidences of datasets that differ in absolute model 

age.    

 

RESULTS 

 

Datasets statistical description 

 

A preliminary descriptive statistics of the six datasets related to mean slope values of crater 

inner walls was carried out and shown in Tab.2 where are reported crucial statistical 

parameters, such as mean, Standard Deviation (SD), Coefficient of Variation (CV), 

Minimum and Maximum (MIN – MAX), Range, Skewness and Kurtosis. Particularly 

interesting are the Skewness and the Kurtosis parameters, that can be used to determine if 

samples are close to normal distribution. In our datasets the values of five datasets over six 

are out of the range -2 to +2, indicating significant deviations from a normal distribution. 

As shown in Tab.2, Skewness and Kurtosis indexes enlighten indeed that dataset Australe, 

Endymion, Crisium, Serenitatis and Procellarum exceed the normal distribution, suggesting 

the presence of several outliers craters. 

 

 
 AUSTRALE ENDYMION CRISIUM SERENITATIS IMBRIUM PROCELLARUM 

MEAN 12.179 12.3539 16.5903 18.6754 22.563 23.89 

SD 2.27781 1.38362 3.24444 2.34444 2.07081 2.46577 

CV 18.7027% 11.1999% 19.5563% 12.5536% 9.17788% 10.3213% 

MIN 9.00432 10.3485 9.50141 15.3043 18.7631 20.5139 

MAX 22.759 18.5111 28.401 28.6229 28.5036 32.1432 

RANGE 13.7547 8.16265 18.8996 13.3187 9.74054 11.6292 

SKEWNESS 8.96786 8.5535 4.52839 7.55988 1.95987 4.16107 

KURTOSIS 11.3365 10.9903 2.84107 8.10599 -0.866503 0.177323 

 

Table 2 – Summary of statistical parameter: mean, Standard Deviation (SD), Coefficient of Variation (CV), 

Minimum and Maximum (MIN – MAX), Range, Skewness and Kurtosis. The underlined Skewness and 

Kurtosis values are exceeding the normal distribution. 

 

 

Tab.3 summarizes the datasets average absolute age, the number of extracted craters, the 

minimum-maximum mean slope value and the Standard Error of the Mean (SEM). In 

particular the SEM was useful to evaluate the precision in the crater mean slope estimation, 

taking into account both the value of the Standard Deviation (SD) and the crater population 

count. SEM index decreases with the number of craters in each population. In other words 

the SEM helped us to estimate the variability between samples, since the SD describes only 
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the deviation of each sample from the normal distribution. From the SEM values evaluation 

we can observe that the estimation of crater mean slope was homogeneously calculated, 

being the number of craters comparable for all datasets. SEM varies indeed only from 0.19° 

to 0.20° for all datasets, hence the mean value of the population is in a confidence interval 

of 95%. 

 

 

DATASET ABSOLUTE 

AGE 

CRATER 

COUNT 

MIN MEAN 

SLOPE 

MAX MEAN 

SLOPE 

SEM 

PROCELLARUM 1.47 Gy 164 20.5 31.80 0.20 

SERENITATIS 2.89 Gy 181 18.76 30.40 0.19 

IMBRIUM 3.02Gy 178 15.30 29.45 0.19 

CRISIUM 3.57 Gy 159 9.50 28.55 0.20 

ENDYMION 3.66 Gy 174 10.35 19.60 0.19 

AUSTRALE 3.68 Gy 168 9.00 22.8 0.20 

 

Table 3 - Summary of the datasets, related to their average absolute age, the number of extracted craters, the 

minimum-maximum mean slope value and the SEM. 

 

 

Afterwards we have applied the Kolmogorov-Smirnov Normality Test for each dataset to 

confirm the non-normal distribution of those datasets, previously identified by Skewness 

and Kurtosis indexes (Tab.2). This test verify the normality or non-normality of the shape 

of the sample distribution. If the p-value is <0.05 the distribution is non-normal while if it 

is >0.05 the distribution is normal (Fig.2,3). In our datasets the normal distribution was 

proven only for the Serenitatis dataset (p-value >0.05); the other datasets are non-normal, 

with a confidence level of 95% (Tab.4).  

 

 

 

DATASET P-VALUE 

PROCELLARUM 0.0190 

IMBRIUM 0.0026 

SERENITATIS 0.4481 

CRISIUM 0.0210 

ENDYMION 0.0008 

AUSTRALE 0.0068 

 

Table 4 - Kolmogorov-Smirnov Normality test with p-values for each dataset. 
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Fig.2 – Frequency histograms of the six datasets. The blue lines are the estimated normal distributions of 

datasets. Serenitatis is the only dataset normal distributed. On x axes are plotted the craters mean slope 

values.    

 

 

 

Datasets statistical comparison  

 

In this section provide different statistical tests and diagrams, in order to compare our 

datasets and understand if there are significant statistical variations among them. The 

importance of finding a significant statistical variations is related to the correlation between 
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the geomorphometry of simple impact craters and the absolute model ages of the surfaces 

where they are superposed. 

Given that the samples of all datasets are non-normal distributed, a non-parametric test is 

more advisable [Field, 2000]. At this purpose we have performed the non-parametric one-

way Kruskal-Wallis test, comparing the medians instead of averages, as shown in Tab.5. 

The p-value of this test is <0.05 and it confirms there is a significant variation among the 

datasets, in a confidence level of 95%. 

 

 

 

SURFACE DATASET SAMPLE SIZE AV.  RANK TEST RESULTS 

PROCELLARUM 158 828.633  

SERENITATIS 181 578.619 Statistical Test = 770.004 

IMBRIUM 178 784.410  

CRISIUM 159 442.805 P-value = 0 

ENDYMION 174 208.489  

AUSTRALE 158 168.190  

 

Table 5 - Kruskal-Wallis test. The table reports the number of craters extracted, the average Rank and the 

test result with the p-value. 

 

 

 

Since the Kruskal-Wallis test enlightens a statistically significant variance among the six 

datasets we performed the Multiple Range Test (MRT) in order to quantify the differences 

among diverse combinations of datasets. As shown in  Tab.6 the MRT confirmed that there 

are significant differences (S.D.) in all datasets matchings where surfaces of different 

model age occur. The only exception is the Australe-Endymion combination, that have not 

a significant statistical variation (difference=0.53492) as expected, given their similar 

average absolute age models (3.66-3.68 Ga). 
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Fig.3 – Density distribution of the six datasets. The red lines mark the peak of the sample distributions density 

for each datasets. The peaks shift from lower to higher men slope values from the older to the younger 

surfaces.   
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DATASET COMPARISON S.D. DIFFERENCE +/-  

    

AUSTRALE  - ENDYMION  NO -0.53492 0.558702 

AUSTRALE - CRISIUM YES -4.56965 0.571106 

AUSTRALE - SERENITATIS YES -7.15546 0.553537 

AUSTRALE - IMBRIUM YES -10.8268 0.555707 

AUSTRALE - PROCELLARUM YES -11.7785 0.572006 

ENDYMION - CRISIUM YES -4.03473 0.557781 

ENDYMION - SERENITATIS YES -6.62054 0.539777 

ENDYMION - IMBRIUM YES -10.2918 0.542002 

ENDYMION - PROCELLARUM YES -11.2436 0.558702 

CRISIUM - SERENITATIS YES -2.58581 0.552607 

CRISIUM - IMBRIUM YES -6.25711 0.554780 

CRISIUM - PROCELLARUM YES -7.20883 0.571106 

SERENITATIS - IMBRIUM YES -3.67130 0.536676 

SERENITATIS - PROCELLARUM YES -4.62302 0.553537 

IMBRIUM - PROCELLARUM YES -0.95171 0.555707 

 

Table 6 – Multiple Range Test. The table reports the combinations of datasets, the Significant Difference 

(S.D.), the Difference values and the approximation limits. 

 

 

 

The analysis of variance one-way ANOVA is a parametric test and it would be not suggested 

for non-normal population analysis [Fisher, 1942; Snedecor & Cochran, 1967 ]. However 

we have also tried to check the statistical difference among the datasets by performing the 

parametric one-way ANOVA test, bisecting the data variance into two components: a 

component between datasets and an intra-dataset component. In the ANOVA table (Tab.7) 

the p-value is less than 0.05 confirming that there is a significant statistical difference 

among the averages of the six datasets, with a confidence level of 95.0%.  

 

 

ANOVA TEST SS DF MS F P-VALUE 

AMONG 

DATASETS 

20853.7 5 4170.73 619.84 0.0000 

WITHIN EACH  

DATASET 

6742.15 1002 6.7287   

TOTAL 27595.8 1007    

 

Table 7 – ANOVA table parameters: the table summarize the Sum of Squares (SS), the Degrees of Freedom 

(DF), the Mean Sum of Squares due to the source (MF), the F-statistic and the P-value. 
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After we ensured that datasets were characterized by significant statistical differences 

among them, related only to morphological variations, we were able to hypothesize that the 

morphometry of the dominant population of craters superposed on a specific surface could 

be dependent on the surface age. We have therefore plotted in a box-plot diagram the 

frequency of the mean slope values from all six datasets (Fig.4). The main result clearly 

shows how the mean slope decreases with the increase of absolute model ages of the units. 

This means that the main crater population of the older surfaces is dominated by impact 

craters with lower values of inner wall mean slope, suggesting the massive presence of 

craters in advanced status of degradation. On the other hand younger surfaces, such as 

Procellarum (1.47 Ga), Serenitatis (2.89 Ga) and Imbrium (3.02 Ga) are characterized by a 

dominance of craters with higher inner wall declivity, that is due to their more pristine 

morphologies. 

 

 

 
Fig.4 – Box-plot diagrams of the frequency related to mean slope values of the six datasets. The 

boxes represent the 95% of craters populations. The blue lines are the medians and the error bars 

are related to the outliers craters. 

 

 

 

Relationships between inner scarp mean slopes and crater diameters  

 

The previous results allowed us to plot the mean slope values against the craters diameters 

(Fig.5). The regression analysis of craters inner wall mean slope in function of craters 

diameters displayed a similar trend for each dataset of values. In particular all those trends 

show how the average inner wall declivity tends to increase from smaller to larger 

diameters in all the analysed surfaces. Moreover large craters have a more scattered 

distribution on the older terrains. Australe and Endymion datasets indeed shown (3.68 Ga 
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and 3.66 Ga) a population of large craters that range from C4 to C1 degradation classes, 

whereas in the younger surfaces large craters appear mainly fresh (C1-C2). 

The distribution of the datasets clearly displays a decrease of mean slope values from 

younger to the older terrains, confirming the correlation with the absolute model age of the 

surface. Hence the comparison among the six datasets from different lunar maria shows a 

clear discrimination of their absolute ages. 

Afterwards we found out the best trend line fitting the datasets samples distributions. The 

six datasets follow trend lines that fit the 40-50% of the samples, with R
2
 ranging from 42% 

to 55%. 

The related trend lines four parallel one each other out of six, are representative of the 

average age of the specific units dataset and can be potentially used as isochrones. 

 

 

 

Fig.5 – Regression analysis of mean slope values from crater inner wall in function of craters diameter The 

power-law trend of the six datasets allow to fix potential isochrones based on the morphologic variations of 

craters inner walls. Black lines mark the interval related to the 95% of craters population. 
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DISCUSSIONS 

 

The results obtained from the statistical analysis highlighted a correlation between the 

morphologic distribution of simple impact craters and the absolute ages of the surface 

where they reside. Since we have considered only homogeneous basaltic surfaces we have 

isolated the crater degradation as the only one variable determining crater morphologies. 

From the non-parametric one-way Kruskal-Wallis and the parametric ANOVA tests, the 

resulting p-values of <0.05 (Tab.5) have highlighted that the six datasets pertaining to 

different basins and ages show significant variations among them, confirming the different 

morphological distribution of their simple crater populations. This observation allows us to 

suppose a correlation between the absolute model age of a surface and the statistical 

distribution of the values of inner wall mean slope of their simple craters. Indeed the 

morphological modifications involving craters inner walls mainly depends on the erosional 

processes that smooth and infill the craters. 

On the Australe, Endymion, Crisium, Imbrium and Procellarum surfaces the crater 

population has a scattered distribution of mean slope values, suggesting broad ranges of 

crater degradation states, as confirmed by the Skewness and Kurtosis indexes (Tab.2) and 

the Kolmogorov-Smirnov Normality Test. This is more evident for the ancient lunar terrains 

such as Australe and Endymion that have collected craters over more than 3.5 Ga. The 

infilling of those two basins present the largest deviation from the normal distribution of 

mean slopes and are covered by craters with a wider range of degradation states, from C4 to 

C1. Differently, more recent surfaces are characterized by a lower relative amount of highly 

degraded craters (C4) and by a smaller deviation from normal distribution of inner mean 

slopes. 

The mean slope box-plot enlightens the distribution of the crater population of each 

surface; it clearly shows how the mean slope on the inner wall decreases with the increase 

of absolute model ages (Fig.3). Indeed, observing the frequency of the mean slope values 

(Fig.2,3), is clearly visible that the distributions of the inner wall mean slopes shift towards 

lower values from younger surfaces to older ones. This means that the main crater 

population of the more ancient surfaces, such as Endymion (3.66 Ga) and Australe (3.68 

Ga),  is dominated by impact craters with lower values of inner wall mean slope, suggesting 

the massive presence of old craters in advanced status of degradation (C3-C4). On the other 

hand younger surfaces, such as Procellarum (1.47 Ga), Serenitatis (2.89 Ga) and Imbrium 

(3.02 Ga) are dominated by craters with higher inner wall declivity, typical of fresh craters 

(C1-C2). 

The following step is to understand how these morphological variations are distributed in 

function of crater diameter and ages. We compared the four degradation classes taking into 

account that the degradation rate a non-linear function of crater size and age and 

considering the uncertainty in modelling its evolution. The quantification of the inner wall 
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morphologic modifications among craters within the same degradation class enlighten a 

power law trend in function of diameter [Vivaldi et Al, 2017]. Similarly the regression 

analysis of the six datasets shows a trend line of the mean slope values in function of 

craters diameters. As shown in Fig.5 larger craters present a limited range of mean slope 

values (∼10°) whereas smaller ones shown a broad range of slope values (>30°).  This can 

be due to two different effects: the mechanics of impacts and the velocity of erosion. Indeed 

we can hypothesize that small impacts involve mainly the regolith layers and the 

underlying highly fractured basalts, generating impact craters with blender morphologies. 

Those craters may be affected by instantaneous gravitative phenomena smoothing inner 

scarps of the freshly formed craters. In addition smaller craters are more susceptible to a 

quick erosion than the larger ones [Fassett & Thomson, 2014]. The average lunar 

diffusivity is indeed ~5.5m
2
/Ga in the past 3Ga; in this time range and a 1km diameter 

craters may degrade approximately up to 52% of their initial depth, 300m diameter craters 

up to 7%, and craters smaller than 200–300m are totally degraded [Fassett & Thomson, 

2014]. 

The distribution of the datasets show a clear decreasing of the average declivity shifting 

from the younger to the older terrains, confirming that the dominant crater population of the 

more ancient datasets is mainly composed by eroded craters (C3-C4) in coherence with the 

absolute age of the surface. Large craters present also a more scattered distribution in older 

surfaces being present C4 to C1 craters all together. This is because ancient surfaces had 

enough time to erode large craters from C1 to C4, whereas in the younger surfaces large 

craters are less eroded (C1-C2) [see Vivaldi et al., 2017]. 

Finally the six regression analysis trends derived from the datasets regression analysis 

suggest a relation between the trend lines of crater distribution and potential isochrones. 

The trend lines indeed are expression of about the 50% of the population from each dataset 

of craters and depend on the absolute model age of the surface where craters reside. 

 

CONCLUSIONS 

 

In this research we have applied morphometric analysis on a global topographic DTM 

(SLDEM2015) in order to find out a correlation between the degradation of simple impact 

craters and the absolute model age of the surfaces where they are superposed. 

The analysis allowed us to better interpret the statistical distribution and compare the crater 

morphometry of differently aged surfaces. 

In particular, we extracted the mean slope values from the inner walls of 1024 impact 

craters, on six differently aged surfaces. The statistical distribution of the mean slope has 

shown that older surfaces are characterized by a lower mean slope values in function of 

crater diameters with respect to the younger surfaces. This suggests a dominance of more 
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eroded craters (C3-C4) within old units. By contrast younger surfaces are dominated by 

more recent impacts (C1-C2), with higher mean slopes of their walls. Hence the statistical 

analysis of crater geomorphometry allowed us to fix absolute age thresholds following the 

morphologic trends of simple craters from differently aged lunar maria in function of 

diameters [Vivaldi et al., 2017, submitted]. 

The morphometric approach described in this research, supported by a robust statistical 

analysis, can be potentially useful for the age refinement of lunar geological units as well as  

of other planetary surfaces (e.g. Mercury, small bodies). 
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CONCLUSIONS 

 

 

In planetary sciences age estimation of different surfaces is mainly performed by means of 

crater counting.  Here we have attempted to find a possible correlation between crater 

degradation and absolute model age of geological units where craters are superposed. This 

purpose was carried out by applying morphometric analysis on simple impact craters.  

The research can be summarized in three points: i) a topographic investigation on very high 

resolution data (LROC-NAC, with a cell size of 2m/pixel) to fix the typical morphometry 

of differently degraded craters, ii) a topographic analysis on medium resolution data 

(Kaguya TC DTM mosaic, with a cell size of 7.4m/pixel) to quantitatively compare the 

different degradation classes and iii) topographic survey on global data at low resolution 

(SLDEM2015, with a cell size of 59m/pixel) to correlate the statistical distribution of inner 

walls mean slopes of simple crater population to the absolute age of the surfaces where 

craters are superposed. 

The first research step was to constrain the morphometric signature of a suitable example of 

a fresh simple impact crater, representative of the C1 degradation class. For this reason, we 

carried out a morphometric analysis on the Linné crater, which can be considered one of the 

best preserved simple impact crater on lunar maria. From the high resolution Linné DTM 

we calculated the main morphometric variables, such as slope, profile curvature, planar 

curvature and topographic openness that allowed us to characterize the morphology of the 

outer and inner scarps, the rim and the crater floor. In addition, from the detailed analysis of 

the Linné cavity, we found three uphill scarps running along the crater inner wall. Those 

features may be the morphological expression of subsequent emplacements of thin lava 

flows within mare Serenitatis and can be potentially useful to infer the stratigraphy at the 

impact site. 

The quantification of the Linné inner wall was fundamental for the subsequent morphologic 

characterization of craters pertaining to the other three classes of increasing degradation 

(C2, C3, and C4). In particular we applied the morphometric analysis to several simple 

craters within the same geological unit in mare Serenitatis, finding a common power-law 

trend of inner slope degradation, going from larger to smaller craters, within each of the 

first three classes. We have also found a diameter upper cut-off at about 1 km of the most 

degraded crater class (C4). This can be explained by the relative young age of the 

considered unit in mare Serenitatis, for which there were not enough, time to degrade 

craters larger than 1 km up to C4. Indeed the upper diameter cut-off is present on all the 

degradation classes and increases from C4 to C3. These cut-offs will potentially allow a 

refinement of the relative age discrimination among different geological units. 
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The shape evolution of simple impact craters was also highlighted by the distribution of 

negative profile curvature (concavity) among different craters. In particular, the mean 

concavity decreases with increasing diameters and with the raising of degradation status.  In 

other words, larger and more degraded craters are characterized by lower concavities and 

might eventually reach positive profile curvatures (convex shape). In particular larger 

craters have steep inner walls and flat floors, since they approximate the complex crater 

morphology, whereas more degraded craters are filled by the sediments driven by 

degradation processes that introduce the presence of convex landforms. 

Since impact craters morphology is related to the absolute age of the area where they were 

emplaced, we expanded our analysis to six lunar maria, extracting over ~1000 simple 

impact craters from units with different absolute ages. The morphometric analysis on those 

craters have shown how the mean inner slopes can be a significant morphological marker to 

constrain the absolute age of the surfaces. In particular, older surfaces were characterized 

by lower mean slope values in function of crater diameters, suggesting dominance of old 

eroded craters (C3-C4) within their population. By contrast, the younger surfaces have 

shown higher mean slope values, suggesting a crater population dominated by recent fresh 

impacts (C1-C2). This trend is the expression of the morphological degradation, which is 

strictly connected to the lunar maria age. Moreover the geomorphometry distribution of 

impact craters population on a homogeneous surface is influenced by the surface absolute 

model age. Hence we can hypothesize to fix absolute age thresholds based on the 

morphological variations of impact craters and to constrain potential isochrones in function 

of crater diameters. 

However this research represents only a preliminary attempt towards a new method for 

planetary surface age discrimination and surely needs to be further improved and calibrated 

by considering more surfaces on other lunar maria. Anyway the study has unambiguously 

shown that the surface morphometric approach, supported by a robust statistical analysis, is 

useful for the characterization and semi-automatic detection of the degradation classes of 

simple craters as well as for the age refinement of lunar geological units. In addition, being 

independent from impactor fluxes and scaling laws, this approach can be considered for 

future employments on other airless planetary bodies ( such as Mercury and minor bodies), 

where the surface chronology is still uncertain, taking into consideration the differences of 

the target surfaces, such as for example strength, porosity, grain size and presence of ice. 
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In this paper my contribution concerned the geological setting introduction as well the 

topographic data description and analysis. In particular the main contribution of my 

research in this paper was the morphologic observations and the morphometric analysis of 

Linné crater, reported in the “Results”, “Discussions” and “Conclusions” chapters. 

 

ABSTRACT 

 

Linné crater is a 2.22-km diameter and 0.53-km deep simple crater located in northwestern 

Mare Serenitatis. Recent high resolution data acquired by the Lunar Reconnaissance 

Orbiter Camera revealed that the interior of this crater is best described as an inverted 

truncated cone. Using the iSALE shock physics code, we modeled the Linné impact event to 

investigate the dependence of the final crater morphology on target properties, including 

material parameters and layering. Model results were compared to the topographic 

expression of the crater interior provided by the related Digital Terrain Model, slope and 

profile curvature, which highlighted the presence of a topographic step 100 m below the 

pre-impact surface. Comparison with numerical simulations showed that this interface can 

develop along the crater wall if the local surface is modeled as a double-layered target, 

where the upper layer has thicknesses ranging from 100 to 200 m, while the lower layer 

(basement) is at least 200 to 300 m thick. These two layers can be interpreted as the 

expression of two "compound individual flows", each one characterized by a similar 

composition. Alternatively, they may represent a unique volcanic inflated-like event. 
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INTRODUCTION  

 

Impact cratering is one of the most important geological processes in terms of the formation 

and evolution of solid bodies (planets, asteroids, comets). Craters have accumulated on 

planetary and small bodies since the early phases of the formation of the Solar System, and 

record the cumulative effects of later collisions, volcanic emplacements, tectonics, 

landslides, aeolian activity, and space weathering (e.g., Chapman and Jones 1977, Neukum 

et al. 1975). During an impact event, the projectile transfers its kinetic energy to the target 

body (e.g., Collins et al. 2012, Melosh, 1989). The subsequent excavation flow opens a 

cavity, while target material is displaced, compacted or ejected. The growth of the crater is 

halted by strength and gravitational forces (e.g., O'Keefe and Ahrens 1993). In the "strength 

regime", the crater size is determined by the strength of the target material, and is 

proportional to cube root of the kinetic energy (e.g., Holsapple 1993). In the "gravity 

regime", gravity and target material properties are the main factors in constraining crater 

sizes. The transient cavity established at the end of the excavation flow undergoes further 

gravity-driven collapse that causes enlargement of the crater diameter and decrease of its 

depth (e.g., Wünnemann et al. 2011). The extent of such modification depends on the crater 

sizes. Simple craters are among the smaller impact structures (range of crater diameter 

D<15 km on the Moon, D<7 km on Mars and Mercury, D<4 km on the Earth, e.g., Melosh 

and Ivanov 1999), and they form by minor modifications of the transient cavity, including 

collapse of unshocked and/or melt materials from crater rim and walls down onto the floor, 

folding over of the crater lip and negligible elastic rebounding (e.g., Kenkmann et al. 2013, 

O'Keefe and Ahrens 1993). In homogenous targets, simple craters can be described by a 

bowl-shaped either parabolic- or cone-like morphology, with depth-to-diameter ratio (d/D) 

of about 1/5 (e.g., Chappelow and Sharpton 2002). However, the structure and composition 

of planetary crusts may deviate significantly from relatively homogeneous competent 

rocks. For instance, the Moon and small bodies are covered by regolith (e.g., Bart et al. 

2011, Fa et al. 2015, Housen and Wilkening 1982), Mars is characterized by icy, regolith 

and rocky layers (e.g., Holt et al. 2008, Nowicki and Christensen 2007, Plaut et al. 2007, 

Schultz 2002), whereas, the Earth experiences the largest variations in terms of different 

lithologies and water content. Such variations within planetary crusts have a significant 

effect on the cratering process, and the final crater shape results from the balance between 

strength, composition, layering and the gravity field (e.g., Holsapple and Housen 2007, 

Housen and Holsapple 2003). Therefore, impact structures reflect the characteristics of 

planetary crusts, and can be used to explore near-surface stratigraphy.  

Linné (Figure 1B) is an impact structure defined by circular raised and sharp rim with high-

reflectance ejecta, suggesting that its current shape was not undergone significant 

degradation processes. It likely formed in the late Copernican period, within the last 10 Ma 

(e.g., Stickle et al. 2016). Due to its young age, Linné is one of the most striking examples 
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of pristine crater, and therefore it has been used so far as the archetype of simple craters by 

several authors (e.g., Hiesinger and Head 2006, Garvin et al. 2011, Wilhelms et al. 1987). It 

has been observed by several space missions (e.g., Lunar Orbiter, Apollo, Clementine, 

SELENE-Kaguya, and Lunar Reconnaissance Orbiter (LRO)). However, only the Lunar 

Reconnaissance Orbiter Narrow Angle Camera (LROC/NAC) (Robinson et al. 2010) 

acquired high resolution images (1 m pixel scales) from different points of view, allowing 

derivation of a Digital Terrain Model (DTM) of the crater. These new data of Linné crater 

revealed it to be a 2.22-km diameter and 0.53-km deep, with truncated-cone shape (Garvin 

et al. 2011), even though Linné was previously described as an example of a parabolic-

shaped crater (e.g., Chappelow 2013, Melosh 2011). Chappelow (2013) used shadow 

measurement method on NAC images to evaluate the Linné profile, and found that it lies 

between the parabolic and pure "conic" shape.  

Linné is located near the northwestern edge of Mare Serenitatis (27.74°N 11.76°E), and is 

likely to lie on top of a complex stratigraphic sequence of distinct volcanic events that piled 

up and formed a stack of solidified lava flows. Chronological studies based on crater 

counting techniques (Hiesinger et al. 2000) showed that Mare Serenitatis underwent 

magmatic activity from 2.44 to at least 3.81 Gyr ago. Estimation of the type of lunar 

volcanism and thicknesses of magmatic events was fulfilled in several studies, and the 

current widely accepted hypothesis relies on the idea that a mare unit is emplaced as 

multiple low-rate effusion events close to the same source vent (Schaber 1973b, Whitaker 

1972). The thickness of the individual flows was estimated by using different approaches, 

from in-situ measurements by the Apollo astronauts (Howard et al. 1972), to 

photogrammetric measurements (e.g., Schaber 1973a), to chemical investigations on lunar 

samples (e.g., Brett 1975), to the presence of S-shaped kinks in the crater size-frequency 

distribution (Neukum and Horn 1976, Hiesinger et al. 2002), or the identification of 

layering in lava tube pit walls on remote sensing image (Robinson et al. 2012). All these 

studies indicated thin thicknesses of each individual flow within a given mare unit, from 

few meters to a few tens of meters.  

Alternative approaches used radargrams from the Kaguya Lunar Radar Sounder (LRS) 

experiment (e.g., Ono et al. 2009, Pommerol et al. 2010). These data showed the presence 

of multiple reflectors in mare regions, which were associated with buried regolith layers 

between two subsequent magmatic events, and therefore may provide constraints on the 

thickness of a geologic unit (Oshigami et al., 2009, 2012, 2014). The upper stratigraphy of 

the lunar surface has been also inferred from impact crater shapes and associated ejecta 

deposits (e.g., De Hon 1979, Weider et al. 2010). The presence of a layered stratigraphy, 

where an upper weak layer overlays a competent one can cause the development of a flat-

floor morphology when the ratio of crater diameter and the thickness of the upper weak 

layer is 8-10 (Quaide and Oberbeck, 1968, Senft and Stewart, 2007). On the other hand, as 

ejecta represent material excavated from depth, it can reveal the presence of a layered 
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stratigraphy if it is spectrally distinct from the surrounding surface (e.g., Ernst et al. 2010). 

For example, workers mapped color of ejecta from Clementine multispectral data and 

derived flows to be as much as several hundreds of meters thick in southeastern Mare 

Serenitatis (Ono et al. 2009, Pommerol et al. 2010, Weider et al. 2010). These estimates 

were referred to the thicknesses of mare units, since they were derived from composition-

based approaches that were not able to discriminate individual magmatic events within a 

homogeneous mare unit (Robinson et al. 2012).  

Therefore, Linné crater is expected to cross several individual lava flow emplacements, but 

it is not clear if it lies within one homogeneous mare unit or more. The truncated-cone 

shape of Linné can be explained either by specific characteristics of a homogeneous surface 

or by the cumulative effects of shock waves propagating into a number of layers with 

different rheological properties. It was indeed advanced that the composition of mare 

basalts can vary over time, and therefore distinct compound lava flows may display specific 

mechanical characteristics (Stickle et al. 2016 and references therein).  

In this paper, we aim to investigate the origin of the truncated-cone shape of Linné by 

numerically modeling this impact event. By comparing the results of simulations with the 

crater DTM profiles, we discuss the characteristics of near-surface stratigraphy in the area 

where the crater formed. Additionally, we performed geomorphometric analyzes, in order 

to better constrain the near-surface stratigraphy, and discuss our findings in view of the 

geological evolution of the Serenitatis basin.  

 

DATA  

 

In this study, we used LROC images and derived topographic data to compare the results of 

our modeling, and provide constraints on the target properties and layering within Linné 

crater. The LROC NAC images we used (available through the Planetary Data System 

(PDS)) have a pixel scale of 0.5 m. The NAC images were orthorectified accounting for 

topographic and camera distortions, radiometrically calibrated to reflectance (Robinson et 

al. 2010, Humm et al. 2015), and map-projected through the U.S. Geological Survey 

Integrated Software for Images and Spectrometers (ISIS) software (e.g., Gaddis et al. 1997, 

Anderson et al. 2004). The NAC-derived DTM (also available through PDS) has 2 m/pixel 

scale with a m scale vertical accuracy. Since LROC was not designed as a stereo camera, 

the stereo observations of Linné crater were obtained by combining NAC images collected 

during two adjacent orbits on September 2010, with nearly identical solar illumination 

conditions and camera-surface orientation (Tran et al. 2010), and Lunar Orbiter Laser 

Altimeter (LOLA) profiles acquired along the crater center between June and September 

2010 (e.g., Baker et al. 2016 and ref. therein).  
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The crater morphology was analyzed through ENvironment for Visualizing Images (ENVI) 

software package, and further processed on Environmental Systems Research Institute's 

(ESRI's) ArcGIS (Beyer 2015).  

The elevation values provided by the NAC-derived DTM are the distance with respect to a 

reference sphere of radius equal to the mean lunar radius (1737.4 km) (Mazarico et al. 

2010, Smith et al. 2010). However, the grid of the numerical simulations defined zero 

elevation at the pre-impact surface, which was given by the average elevation of the mare 

surrounding Linné crater, and correspond to -2620 m in the “DTM system”. Therefore, in 
our analysis we adopted zero elevation as the reference of lunar elevation, by subtracting 

the elevation mean value to the DTM data.  

Notwithstanding the Linné crater displays a symmetrical and smooth topography (Mahanti 

et al. 2014), local asymmetries due to gravitational landslides may occur. Therefore, the 

representative profile to be compared with modeling outputs is obtained by averaging eight 

topographic profiles starting from the crater center towards the rim following different 

directions.  

 

GEOLOGICAL SETTING AND CRATER DESCRIPTION  

 

Serenitatis basin, with its diameter of 920 km, is one of the three largest multiring 

structures located in the lunar Nearside. It is characterized by other four rings with 

diameters of 410, 620, 1300 and 1800 km (e.g., Head 1979). The time of its formation was 

inferred on the basis of both crater-counting techniques and radiogenic isotope 

measurements on lunar samples. However, while the first suggested a quite old age for 

Serenitatis (Hartmann and Wood 1971), the second produced no more than a range of ages 

spanning from 3.86 to 3.93 Ga, given the controversial correlation of the rocks collected at 

the Apollo landing sites to the Serenitatis impact event (e.g., Stoffler et al. 2006, Fassett et 

al. 2012, Spudis et al. 2011, and reference therein). The re-interpretation of the lunar 

samples constrained the age of the basin to 3.89 Ga, within the Nectarian period, when the 

Moon was undergoing a heavy bombardment by hundred-kilometer size asteroids (e.g., 

Stöffler et al. 2006). More recently, the new high-resolution data acquired by NASA LRO 

mission provided new clues for the understanding of the lunar stratigraphic sequence of 

large basins and supported a formation of the Serenitatis within the pre-Nectarian epoch 

(Fasset et al. 2012, Spudis et al. 2011).  

The original floor of the Serenitatis basin was emplaced by multiple lava flows within a 

period spanning from 2.44 to 3.81 Ga ago (Figure 1A, modified from Hiesinger et al. 

2000). The result of this long magmatic activity is a smooth plain, where 29 spectrally 

homogeneous lithological units can be distinguished on the basis of albedo, spectral 

properties and age. According to Hiesinger et al. (2000) geologic map (cf. also Figure 9 in 

Hiesinger et al. 2000), Linné is located in unit S14, which is dated back to 3.49 Ga ago. 
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This geological unit lies in contact with overlying younger geological units, having ages 

between 3.43 and 2.90 Ga ago, and it can likely superpose only unit S10 (3.60 Ga).  

Measurements on the NAC-derived DTM of Linné showed that the crater is (2.22 ± 0.02) 

km in diameter and (0.53 ± 0.01) km in depth, and therefore it is defined by a depth-to-

diameter (d/D) ratio of (0.24 ± 0.04). The crater rim has a sharp and edge-like appearance, 

and it is lined by a sequence of ridges and chutes, features observed also in other fresh 

craters (e.g., Watters et al. 2015). The uppermost 50-m steep walls of Linné are 

characterized by basaltic layer outcrops (see white arrow in Figure 1C) (Sharpton 2013). 

The upper inner wall is lined with patches of impact melt (see black arrow in Figure 1D) 

that were ejected, coalesced under gravity and then flowed back into the crater, forming 

drainage channels. These melt flows were recognized in only one part of the crater walls.  

Furthermore, crater walls are superposed by debris flows (e.g., Garvin and Frawley 1998, 

Stopar et al. 2014, Xiao et al. 2013). Debris and rocky blocks up to few tens of meters in 

size are completely strewn over the floor of Linné, and form a lens extending up to a depth 

of about -200 m below the pre-impact surface, where the crater experiences a change in 

albedo (see black arrow in Figure 1D). Differences in albedo may be associated to either a 

different composition or a different degree of maturity of the soil (e.g., Blewett et al. 2005). 

In the case of Linné, the high-reflectance deposit might be associated to boulder and debris 

flows veneering the crater lower walls and floor, and characterized by a different 

composition and/or heterogeneous granulometry (see white arrow in Figure 1D).  

This rocky sheet obscures, if present, any melt ponds. Melt can pool on smooth low-

reflectance deposits on crater floors, and is recognizable for the presence of cooling 

fractures, pressure ridges and flow textures (Denevi et al. 2012, Neish et al. 2014, Stopar et 

al. 2014). Furthermore, the crater slope is expected to have undergone a steep change at the 

point of transition from crater walls to melt ponds (Stopar et al. 2014). Plescia and Cintala 

(2012) performed quantitative study on melt ponds based on statistics of highland simple 

craters observed by LROC, deriving the trend of impact melt pool size in function of their 

parent craters. For a Linné-sized crater, the melt pond diameter is about 500 m, which 

matches the bottom of Linné (also characterized by a clear-cut change with the crater 

walls). Therefore, even though no smooth terrain is identified on the floor of Linné, nor is 

the presence of low-albedo material, the presence of a melt pond under the rocky deposit 

cannot be completely ruled out.  

Stickle et al. (2016) used the data acquired by the Miniature Radio Frequency (Mini-RF) 

instrument on board LRO to compute the radial circular polarization ratio (CPR) and derive 

the surface roughness of Linné. They found a low CPR at the crater rim, suggesting a 

region of fine-grained material in a shallow near-surface layer. They observed in addition 

that the CPR rises on the proximal ejecta, which likely denotes the presence of unweathered 

meter-sized blocky material. The continuous ejecta of Linné, which extends up to 8 km 
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from the crater center, is indeed characterized by a high albedo emblematic of very young 

surfaces (e.g., Nettles et al. 2011).  

 

METHODS  

 

Approach to Numerical Modeling  

 

Our current understanding of the impact process results from a multidisciplinary approach 

including geological and structural mapping, remote sensing, geophysical imaging, 

petrographic analysis of impact products, laboratory-scale analogue experiments, isotopic 

and elemental geochemical analysis, and real-scale computer simulations. The latter, 

numerical modeling of dynamic processes is carried out by means of the so-called shock 

physics codes (Johnson and Anderson 1987). Such codes allow for a quantitative 

simulation of the propagation of shock waves and the behaviors of matter over a broad 

range of stress states and deformation rates (e.g., Pierazzo et al. 2008). They are based on 

the equations of conservation of mass, momentum, and energy (the so-called compressible 

Navier-Stokes equations). The material response is quantified by constitutive equations, 

which are formulated as Equations of States (EoS) and strength models, governing the bulk 

thermodynamic material response and deviatoric deformations, respectively.  

iSALE is one shock physics code (Wünnemann et al., 2006) largely employed in impact 

cratering studies (e.g., Collins et al. 2008, Wünnemann et al. 2008). This code is a multi-

rheology, multi-material extension of the SALE hydrocode (Amsden et al. 1980), which 

relies on an elasto-plastic constitutive model, fragmentation models, a number of EoS, 

multiple materials, and the ε-α porosity compaction model (Collins et al. 2004, 2011a, 
Ivanov et al. 1997, Melosh et al. 1992, Wünnemann et al. 2006). It is well tested against 

laboratory experiments at low and high strain-rates (Wünnemann et al. 2006), and other 

hydrocodes (Pierazzo et al. 2008).  

 

Initial conditions  

 

We simulated the formation of Linné crater by means of iSALE. We use an Eulerian 

approach, which describes the instantaneous state of the material in each fixed cell, but is 

unable to follow a point in the material through the mesh. Since information regarding the 

thermodynamic history of these points is lost, we used Lagrangian tracer particles to record 

the material position and state during crater formation.  

A number of simulations were carried out to test different models, varying the projectile 

dimensions, material parameters and the number of layers used to describe the lunar surface 

in order to obtain the best agreement between models and observations. The grid where the 

crater forms is made up by a high resolution zone covering the impact area, which had 
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dimensions on the real world of 2.3 × 2.5 km. This zone was surrounded by a zone of 

progressively lower resolution, where the cell is increased by a factor of 1.05 from the 

previous cell, in order to avoid spurious shock wave reflections at the target boundaries.  

The projectile was simplified to a basaltic homogeneous sphere, due to the higher 

probability of an asteroidal composition for the impactor population on the Earth-Moon 

system (>90%: Chyba 1991, Pierazzo and Chyba 1999). The radius was varied between 38 

and 48 m, in order to obtain a 2.22-km diameter crater and preserve a good fit with the 

measured crater diameter while testing target properties and layering. The crater size 

obtained from the various model setups resulted highly sensitive to the target 

characteristics, in particular layering. However, we kept constant the projectile resolution to 

10 cppr (cell per projectile radius), a value that allowed to have the completion of the 

simulations in reasonable computational time (lower projectile dimensions needs more 

computation time). Cell resolutions therefore ranged between 3.8 and 4.8 m. The mean 

impact velocity of asteroids on the Moon is 18 km/s (Marchi et al. 2009). Due to the 2D 

nature of iSALE, the impact is modeled as perpendicular to the target surface. 

Notwithstanding perpendicular impacts are not common in nature, craters show no 

evidence of an oblique incidence of the impactors until very low impact angles (e.g., 

Collins et al. 2011b, Gault and Wedekind 1978). On the other hand, ejecta may represent a 

better marker of an eventual projectile obliquity (e.g., Pierazzo and Melosh 2000a). In the 

case of Linné, its ejecta are quite symmetric and display no peculiar pattern. Therefore, 

vertical impact at 18 km/s is a good approximation for our simulations.  

The target was approximated as an infinite half-space, with a basaltic composition, which 

best represents the material of lunar maria. The thermodynamic behavior and 

compressibility of basalt is given by the ANalytical Equation Of State (ANEOS) (Pierazzo 

et al. 2005). A lunar surface gravitational acceleration of 1.62 ms−2 was used. The lunar 
interior was modeled with a uniform temperature of 273 K. This assumption can be a good 

approximation for the upper few hundreds of meters of a relatively young lunar surface. 

According to the thermal evolution of the Moon, the lithosphere was growing to the 

detriment of the partial melt zone which ceased between 3.4 and 2.2 Ga ago (Spohn et al. 

2001), well before of the 10 Ma suggested for the Linné impact event.  

We tested several target configurations for the formation of Linné, aiming at exploring 

whether the truncated-cone shape of the crater derives from either the peculiar property and 

state of basaltic lava flows or the presence of layering influencing the propagation of 

impact-generated shock waves. The first approach (case A) treated the target as one 

homogeneous layer (hereafter referred as the basement). The further approaches increased 

the target complexity, adding one or more layers atop the basement. Such layers 

approximated more recent magmatic events emplaced over older solidified lava flows 

(reproduced in our model by the basement). These lava flows can differ in composition and 

mechanical properties, due to variations of magma emplaced in different geologic times 
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and/or through different volcanic vents (e.g., Hiesinger et al. 2001). Therefore, it is not 

unrealistic to describe the additional upper layers with different material properties from the 

basement. In order to clearly distinguish the upper layers/younger lava units from the 

basement/older lava units, we modeled the first ones with fractured basalt. In the second 

approach (case B), the target is thus made up by an upper layer with variable thickness 

ranging between 50 and 400 m on top of the intact basement. In the last approach (case C), 

two 100 m thick upper layers, with the lower stronger than the upper one, are laying atop 

the basement.  

A last word about our model assumptions regards regolith, the unconsolidated fine-grained 

material that covers the lunar surface and is produced by subsequent impacts and space 

weathering. Such a regolith layer is not included in neither of our three models, because it 

would be barely resolved. Earlier estimates based on the Surveyor mission landers 

indicated that this weakly cohesive material can be found at 1 to 20 m depths (e.g., Jaffe 

1969b). Other in-situ estimates based on the analyzes of impact craters and ejecta 

morphologies provided values ranging from few meters to a few tens of meters (e.g., 

Basilevsky et al. 2015). A 4-m thick regolith layer was found at Mare Serenitatis on the 

basis of Earth-based radar and optical data (Shkuratov and Bondarenko 2001). A mean 

thickness of 2-4 m in mare regions were also found from the analysis of crater geometry 

(Bart et al. 2011), while the same methodology applied to the Sinus Iridum region gave a 

regolith thickness ranging from about 5 to 11 m (Fa et al. 2015). These works suggested 

that the regolith blanket at the Linné impact site can be likely a very thin layer, resolvable 

by at most a couple of cells according to the resolutions used in our models, and thus it 

would have had only a negligible effect on the final results.  

A crude estimate of the regolith thickness at the Linné impact site can be performed by 

using eq. 9 in Bart and Melosh (2010). They studied the effects of a regolith blanket on the 

ejecta emplacement for craters in the range of hundreds of meters, finding that shallower 

the regolith layer is, further the distance rocky blocks are ejected from the crater. Eq. 9 

allowed to compute the maximum distance of boulders ejected on a 45° ballistic trajectory, 

when the target is made up of a layer of regolith on top a consolidated substratum. In the 

case of a 4-m regolith layer, the expected maximum ejecta range is about 7 km for a Linné-

sized crater, while it can reach 20 km if the regolith thickness drops down to 1 m. In the 

case of Linné, the discontinuous ejecta can be observed as far as 30-40 m from the crater 

center, which is almost twice the value found with the relation provided by Bart and 

Melosh (2010). Although the equation was derived for a different crater diameter range 

than the Linné size, it may suggest that the regolith may have not played an important role 

in the formation of the crater, and a regolith-free target can be a proxy for the lunar surface 

at Linné impact site.  
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Strength model for the target  

 

The layering distinction in cases B and C are implemented as differences in the rheological 

model and in the strength values. The upper fractured layer is described by a linear-

dependent strength model, the Drucker-Prager model (e.g., Drucker and Prager 1952). In 

this case, the shear strength Y is computed as a function of the cohesive strength at zero 

pressure Y0 and the coefficient of internal friction μ: the fractured nature of this layer is 
also given by the activation of porosity (Wünnemann et al. 2006). Porosity was fixed to 

10%, which is a likely value for basaltic maria from laboratory density measurements 

Apollo samples (e.g., Kiefer et al. 2012) and Kaguya LRS data on Mare Serenitatis lava 

flows (e.g., Ishiyama et al. 2013).  

The basement layer, which corresponds to the whole target in case A and the lower 

competent layer in cases B and C and, is instead described by a pressure and damage-

dependent strength model described and implemented by Collins et al. (2004). The strength 

Y depends on the deformational history, as given in the following equation (Ivanov et al. 

1997):  

where Yi and Yd are the static strength of the intact and damaged material respectively, and 

D is the damage and can varies between 0 and 1, and increases as a function of plastic 

strain (see Collins et al. 2004, for details). In our simulations, we set the basement to be 

initially partially damaged (damage = 0.25). The static strength of the intact basement was 

represented by the Lundborg (1968) approximation:  

where Yi0 is the shear strength at zero pressure (cohesion of the intact material at zero 

pressure), μi is the coefficient of internal friction, and YM is the von Mises plastic limit of 
the material. In the presence of a fully fractured material, the damaged strength at zero 

pressure is given by frictional forces between the fragments, and represented by Drucker-

Prager model:  

where Yd0 is the effective cohesion of the damaged material, μd is the coefficient of 
friction at low pressure. No porosity was set for the basement, in order to make more 

substantial the difference between the two layers.  

Furthermore, no acoustic fluidization is assumed. Firstly theorized by Melosh (1979), this 

mechanism was implemented in iSALE in a simpler mathematical approximation called 

"block model" (Wünnemann and Ivanov 2003). Acoustic fluidization causes the material to 

weaken and flow in a fluid-like manner when subjected to strong vibrations, and it is 

invoked in the formation of complex crater to allow deep-seated gravitational collapse of 

the transient cavity (Melosh 1979, Melosh and Ivanov 1999). Being the Linné structure of 

modest dimensions, the acoustic fluidization would have only a negligible contribution on 

the rock debris flow and the final crater morphology, and thus it was not taken into account 

in our models (Senft and Stewart 2007).  
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RESULTS  

 

In this section, we present the results of the simulations, for the three cases: (A) 1-layer 

target, (B) 2-layer target, and (C) 3-layer target. The best-fit models for all the three cases 

were determined by comparing the outcome of the simulations with the Linné DTM profile. 

The expected errors on the crater dimensions are about 10%, according to validation tests 

of iSALE simulations against laboratory experiments of an aluminum on aluminum impact 

(Pierazzo et al. 2008).  

In Table 1, we summarized the projectile dimensions we adopted to run the different model 

configurations. It also lists the target rock strength model parameters implemented in this 

study to obtain the best fit with the topographic profile (see Collins et al. 2004 for further 

parameter description).  

 

The formation process  

 

Figure 2 illustrates the impact process simulated with iSALE shock code for two Linné-

sized impacts into target with different layering. On the right side, it is shown the 1-layer 

configuration, while on the left one, the 2-layer configuration with an upper 100-m thick 

crust. During the first minutes after the impact event, an approximately hemispherical 

cavity is produced and expands (Figure 2A) by material displacement from the impact point 

until its maximum depth is reached (~500 m, cf. Figure 2B). Part of melt and high-shocked 

material lines the cavity, while part is ejected away from the impact site and covers the 

region surrounding the cavity (Figure 2C). At this stage, both the two models present a 

similar bowl-shaped cavity, but they experience a different degree of crater collapse. The 1-

layer configuration remains mostly unaltered from the transient cavity (Figure 2D, right 

side). On the other hand, the 2-layer configuration undergoes modification, as material 

collapse into the crater floor (Figure 2D, left side). The result is a shallower crater with 

respect to the 1-layer case. Strain is greater on the crater wall and floor, and is thicker in the 

2-layer configuration, but it rapidly decreases outwardly and remains localized in a thin 

sheet near the surface.  

 

Setup A: 1-layer target  

 

In order to investigate the effect of material properties on crater formation, we used a 3.8 m 

radius projectile impacting on a single homogeneous basaltic layer, varying both the intact 

and damaged cohesions and friction coefficients. A number of studies has been focused in 

the understanding of the lunar surface characteristics, in particular in quantifying its 

density, porosity, cohesion and angle of friction. Strengths of geological materials range 

from kPa for soils to tens of MPa for the competent rocks. Earlier works based on the 
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Apollo mission sample analyzes and strength experiments estimated cohesions ranging 

from ~0.2 to 3 kPa for the upper few centimeters of the lunar surface, but stronger material 

was expected with increasing depths (e.g., Carrier et al. 1991, Costes and Mitchell 1970, 

Jaffe 1969a,1969b, 1973). A cohesion of 10 MPa for intact basalt rocks was used by 

Pierazzo et al. (2005) and derived from fits to laboratory quasi-static triaxial test data. 

However, this value might not be representative of large-scale geology, since the lunar 

surface is subject to deformations in the brittle regime, including faults and dilatant cracks 

(Holsapple 1993, Schultz 1995). Therefore, crustal cohesion can be one to two orders of 

magnitude lower than the corresponding values for intact basalt.  

The results of the one-layer configuration were shown in Figure 3, where the Linné 

topographic profile is outlined by a solid thick line, while the modeled crater profiles are 

represented as a shadowed region. Variations of the intact cohesion Yi0 (from 0.1 MPa to 

10 MPa) did not produce large modifications in the crater shape, but it caused the decrease 

of about 12% in the diameter and 9% in the depth values (Figure 3A). The d/D changed 

slightly from 0.26 to 0.25 with increasing cohesion. The crater slope did not vary 

significantly, being about 34-35° in all the cases. The increase of μi (from 1.2 to 2) caused a 
diameter decrease of 9%, and a depth decrease of 3%. The d/D experienced an increase 

from 0.26 to 0.27, and the crater slope varied from 35 to 37° (Figure 3B).  

We found that the damaged cohesion Yd0 is the parameter responsible for the most severe 

variations in the final crater morphology. We tested cohesion values from 10 Pa to 1 MPa, 

while keeping constant all the other material parameters (cf. Figure 3C and 3D). Craters 

developing in low cohesion targets displayed a conic shape with rims poorly defined 

(Figure 3C), while craters forming in higher cohesion targets were bowl-shaped (Figure 

3D). Figure 4 illustrates the model results for a sample of tested damaged cohesions, and 

precisely 10 Pa, 10 kPa and 1 MPa. Each plot displays the plastic strain map on a grey 

scale, overlaid by Lagrangian tracer particles. The tracers measure the deformation of the 

target caused by the shock waves propagation and the consequent material displacement. At 

higher cohesions (1 MPa), deformation was mainly localized at the crater rim, where the 

target rocks were uplifted and overturned (Figure 4C). The final crater was bowl-shaped, 

with raised rims and no material deposit on the floor. It thus developed after a negligible 

modification of the transient cavity. As cohesion decreases, the final impact structure 

showed the presence of fragmentation along the crater walls and floor, which derived from 

target rock slumping (Figures 4A and B). The lower the cohesion, the higher the 

fragmentation extent, the thicker the breccia lens on the crater floor was (10 Pa vs. 10 kPa). 

The resulting crater developed therefore a conic-like shape, which was ascribed to a greater 

amount of debris flows. Such dependence of the impact process on the target cohesion can 

therefore explain the differentiation in the final crater morphology, i.e. either conic- or 

parabolic-shape, observed in the simple crater population on the lunar landscape.  
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Furthermore, Figures 3C and 3D highlight that the transition from conic-shaped to bowl-

shaped craters is not progressive, but there is instead a sudden jump in the morphology at 

the cohesion Yd0 of 10 kPa. In the case of conic-shaped craters (Yd0≤10 kPa), the crater 
diameter ranges from (2.23 ± 0.22) to (2.32 ± 0.23) km, and the depth varied between (0.50 

± 0.05) and (0.58 ± 0.06) km (d/D ranges from 0.22 to 0.26). On the other hand, in the case 

of bowl-shaped craters (Yd0>10 kPa), crater depth was higher than (0.63 ± 0.06) km. For 

the higher value of cohesion tested, the diameter decreased as much as (1.56 ± 0.16) km 

(d/D=0.40). This trend was also underlined by the crater wall slopes. At lower cohesion 

values, slope exhibit a modest increase of 3° (from 27° to 30°) over three orders of 

cohesion magnitude. At Yd0 =10 kPa, the slope undergoes a sudden jump to 35°. In the 

higher cohesion range, slope is higher than 40°. Significant variations in the final crater 

morphology were found also by varying the friction coefficient. We observed that the 

smaller the coefficient of friction μd, the shallower the resulting crater was (Figure 3E). In 
particular, when setting the value of 0.35 characteristics of weaker target, we obtained a 

truncated-cone crater, with larger diameter and lower depth (D=(2.82 ± 0.28) km, d=(0.30 ± 

0.1) km, d/D=0.11) than the 0.6 case. As shown in Figure 5, the 0.35-ud crater (Figure 5A) 

developed after a much more severe slumping of the rim material into the crater floor, in 

comparison with the 0.6 case (Figure 5B) where the slumping was negligible. We 

determined that in low friction coefficient targets the transient cavity can be filled up to 

50% its depth. Such higher material collapse caused the inner wall slope to drop down to 

~10°.  

 

Setup B: 2-layer target  

 

As shown by the results of one layer configuration (setup A), truncated-cone shapes can 

develop in homogeneous low damaged cohesion Yd0 targets. However, the observed Linné 

morphology was not perfectly reproduced in the 1 layer configuration. Even though the 

depth difference between the best fit simulation and observations was within the modeling 

accuracy, the modeled crater slope differed by 4° from the measured one. Therefore, we 

tested if any increase in the complexity of the target stratigraphy can lead to a better 

agreement between model and observation. In this second configuration, we modeled the 

target as a doubled-layered half-space, where the two layers are characterized by a different 

degree of fracturation. For the basement, we set the damaged cohesion to 10 kPa, i.e. the 

value identified as threshold between the conic- and the bowl-shaped crater morphology, 

while we set the intact cohesive strength one order of magnitude weaker than in quasi-static 

laboratory tests. We tested different thickness of the upper layer, ranging from 50 to 400 m. 

Figure 6 illustrates the results of this analysis. Plots on the left column show strain and 

deformation within the crater, post-impact, overlaid by a Lagrangian grid. The comparison 
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of the models with the topographic profile of Linné is provided on the right column of 

Figure 6.  

In the case of thinner fractured layers, i.e. 50 and 100 m (Figures 6A and 6B), a smaller 

projectile is needed to fit the Linné diameter (2.22 km). It was 38 and 40 m in radius, 

respectively for the two thicknesses. The forming craters fully penetrated the upper layer, 

and hence they predominantly developed in the harder crust material (basement). During 

the crater formation, target material was displaced and ejected from the excavated zone of 

the transient cavity. Target stratigraphy was preserved all around the crater, but was 

uplifted and overturned at its rim creating an isoclinal recumbent fold (e.g., Collins et al. 

2012, Melosh 1989, Reimold et al. 1998, Sharpton 2014). In this case of thin upper layers, 

the rim of the modeled craters was composed by the basement material. Plastic strain 

accumulated during the impact was localized on the crater walls. The floor resulted poorly 

fractured for the 50 m-case, while it was covered by a slightly thicker breccia deposit in the 

100 m-layer case (10% of transient cavity depth). The crater diameters were (2.18 ± 0.21) 

km and (2.24 ± 0.22) km, while depths were (0.59 ± 0.06) km and (0.55 ± 0.05) km, 

respectively for the two cases. The final d/D ratio turned out to be 0.27 and 0.24, 

respectively. Finally, the crater wall slopes were 34° and 32°, respectively in the 50 m- and 

100 m-layer configurations.  

A 42 m radius projectile was adopted to fit Linné topographic profile when an intermediate 

thickness (200 and 250 m) of the upper layer was set (Figures 6C and D). The crater 

diameters were (2.21 ± 0.22) and (2.12 ± 0.21) km, and depths were (0.59 ± 0.06) and (0.58 

± 0.06) km, respectively. A d/D ratio of 0.27 was obtained in both cases. The crater slope 

resulted slightly higher in the 250-m case (37° vs. 35°). In these models with intermediate 

upper layer thicknesses, the crater formed prevalently in the upper fractured layer, but its 

final depth and morphology were affected by the presence of the harder lower basement. 

The inner walls were fractured, but the upper layer material did not contribute to the thin 

breccia lens covering the crater floor.  

We finally considered thicker upper layers, with values of 300 (Figure 6E) and 400 m 

(Figure 6F). In order to derive the best fit with the measured crater diameter, projectiles of 

45 and 48 m were used respectively in the 300 m- and 400 m-layer. The modeled crater 

diameters were (2.24 ± 0.22) and (2.19 ± 0.22) km, respectively. Being the depth equal to 

(0.60 ± 0.06) and (0.52 ± 0.05) for the two cases, the d/D ratio resulted of 0.27 and 0.24 

respectively. In the case of a 300 m upper layer (Figure 6E), the crater developed in both 

the fractured and the basement layers. The upper layer material flowed into the crater floor, 

and originated a very thin veneer of rocky debris. The resulting crater had an inner slope of 

36°. On the other hand, when the upper layer was fixed to 400 m (Figure 6F), the modeled 

crater did not succeed in penetrating the fractured layer and reaching the basement, and 

hence it formed entirely in the upper weaker layer. In this last model setup, the crater 
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exhibited a thicker breccia lens (10% of the transient cavity) lining its floor than the 

previous cases.  

We noticed that all these models originated a relatively thin breccia lens lining the crater 

floor, reaching a maximum value of 10% the transient cavity depth (100-m and 400-m 

upper layer thicknesses).  

 

Setup C: 3-layer target  

 

In this last target configuration, we modeled the formation of the Linné crater in a 3-layer 

target, where the layer transitions were set to 100 and 200 m under the pre-impact surface. 

The simulated target stratigraphy was therefore made up by 100 m of fractured basalt on 

top of 100 m of an intermediate basaltic layer, which in turn overlaid the (basaltic) 

basement. Each layer was described by specific rheological and/or mechanical properties, 

in order to represent a clearly distinguishable layer. The upper layer is distinguishable for 

the strength model adopted (Drucker-Prager vs. Collins et al. 2004), whereas the lower two 

basaltic layers differ each other for the implemented strength values (cf. Tab. 1).  

We tested several projectile dimensions, finding that the Linné diameter was matched when 

adopted a 42-m radius projectile. In this 3-layer configuration (Figure 7), the model did not 

fit the Linné morphology, because the simulated crater exhibited a concentric terrace within 

the inner wall. Such wall change may likely develop from the severe strength differences 

we set between the three layers. The choice of a less extreme difference in the strength 

values between the target layers might lead to a better match between model and 

observation, but, at the same time, suggest that except the potential presence of an upper 

fractured layer, only small strength variations can occur at the impact site. Therefore, if 

present, any layering below the upper fractured layer (100 m in this specific model 

configuration) can not be resolved by the modeling, and the lunar surface can be considered 

homogenous.  

 

Crater Morphometry  

 

Morphometric studies on impact craters have been a long used practice to quantitatively 

characterize such landforms. These investigations mainly relied on shadow measurements 

(e.g., Chappelow 2013, Chappelow and Sharpton 2002, Pike 1980) or photoclinometry 

(e.g., Bray et al. 2008, Craddock and Howard 2000, Davis and Soderblom 1984, Fasset and 

Thomson 2014), however, the recent availability of elevation data allowed to derive more 

accurate and detailed description of impact craters (e.g., Basilevsky et al. 2014, Herrick and 

Sharpton 2000, Salamunićcar et al. 2012, Watters et al. 2015). The present study analyzed 
the morphology of Linné crater by processing the elevation topographic map of the crater 

through ENVI and ArcGIS softwares and quantitatively determining specific morphometric 
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characteristics of this impact structure. Our goal is to compare these morphometric 

variables extracted from the crater DTM to the results of numerical simulations and test the 

predictions of our models.  

First of all, we fit the shape of the Linné crater with a nonlinear least-squares power law 

and derived the exponent αc (cf. Watters et al. 2015 for details). We found a value of 
αc=1.40 ± 0.44 on the mean DTM profile, and is in agreement with the αc=1.46 value 
found by Garvin et al. (2011). According to Watters et al. (2015), this value lies between 

the two extremes of craters with a conic- (αc=1) and parabolic- (αc=2) shape, and it is 

similar to the exponent found for Martian small unmodified craters forming in low strength 

targets (αc=1.56).  
The variables computed from topographic elevation of Linné were slope and curvature. The 

topographic slope is the first derivative of elevation, geometrically seen as the plane tangent 

to the surface at a certain elevation point, and represents the absolute value of the 

topographic gradient (e.g., Kreslavsky and Head 2016). Figure 8B shows the bidimensional 

slope map of Linné crater, while Figure 9B the slope values taken along the profile AA' in 

Figure 8. We found that the rim crest is characterized by a mean slope of nearly 0°, a value 

that is representative of very sharp rims. The presence of steep rims has been widely 

referred to as parameter to identify fresh craters (e.g., Barlow 2004, Craddock et al., 1997, 

2000, Garvin et al. 2000). However, recent studies highlighted that this is not a global 

property to identify fresh impact structure. As for instance, Watters et al. (2015) showed 

that on Mars, pristine impact structures smaller than 1 km in diameter have rim less sharp 

than older larger simple craters. Scaling to the Moon, Linné-sized craters fall within the 

class of large simple craters, having steep rims as parameter qualifying their freshness. 

Surficial degradation processes then work to modify the impact structure, causing the rim to 

lower, widen, and round up to loose any topographic elevation (e.g., Craddock et al. 1997). 

The upper cavity slope of Linné was 45°, and is similar to the slope measured on the 

Martian unmodified craters with diameter larger than 1 km (Watters et al. 2015).  

The inner wall is defined by a mean slope of ~31°, which fell in the angle of repose range 

expected for normal dune slope faces (30°-35°; Atwood-Stone and McEwen 2013, Watters 

et al. 2015). This value was lower than the maximum angle of repose associated to 

parabolic-shaped craters (~35°, Daubar et al. 2014), whereas is in agreement with the angle 

of repose observed in the lunar regolith (~31°, Bart et al. 2011). This may denote that the 

crater wall is composed by broken rock debris fallen down from the rim (Melosh 1989). 

The unmodified crater population on Mars (with diameter larger than 1 km) turned to have 

inner wall slopes somehow higher than the Linné case (about 35°, cf. Figure 12a in Watters 

et al. 2015). The outer scarp presents a mean slope of ~10°.  

Profile curvature is the second derivative of elevation and represents the curvature in the 

gradient direction (e.g., Bue and Stempiski 2007). Since it measures variations in the slope 

angle of surfaces, it identifies and emphasizes the areas of concavity and convexity 
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(negative and positive values, respectively) at the sides of points of topographic inflection. 

Therefore, profile curvature is the best terrain attribute to reveal changes distributed 

perpendicular to the maximum slope direction in the crater morphology, as for instance the 

rim down-faulted annular trough located along the inner wall. Such trough can originated 

during the impact cratering process, ranging from the stepped terraces separated by scarps 

on large (complex) craters (Kenkmann et al. 2013), to subtle steps marking shocked and 

unshocked debris lens on smaller (simple) craters (Grieve 1987). On the other hand, 

troughs can be also found at the interface between two different layers. Layers can be found 

on lunar maria, which formed by overlapping lava flow emplacements within billions of 

years. During this lapse of time, the composition and characteristics of magma can have 

likely varied (Hiesinger et al. 2001), causing differences in the rheological properties of 

two contiguous layers/lava units. Therefore, if compositionally different layers are exposed 

by an impact, they likely degrade at a different rate, producing subtle trough along the inner 

wall.  

In order to reliably estimate the profile curvature, we applied a smoothing filter to the 

elevation map (e.g., Bue and Stempiski 2007, Kreslavsky and Head 2013, Rosenburg et al. 

2011). The second derivative is indeed very sensitive to any roughness of the surface, as 

well as to the accuracy and resolution of the DTM, and the algorithm used for computation 

(Evans 1998). Therefore, we convolved each point of the DTM with a kernel. We tested 

different kernel sizes and finally chose a kernel size of 33×33, which represented a 

compromise between maximization of visual sharpness of the map and lower noise.  

The 33×33 kernel was applied to Linné elevation map to create a binary image of the crater 

and draw the map of profile curvature. Figure 8C shows the result of this processing 

sequence, where we notice the presence of three faint rings that runs with a different degree 

of continuity along the wall of Linné. These rings were also shown in a profile curvature vs. 

crater radial profile plot (Figure 9C). In Figure 9A we indicated with arrows the 

corresponding points along the crater inner wall where such inflection points occur.  

These negative curvature peaks occur in correspondence of oscillations of the topographic 

slope of the crater wall. However, being such rings very faint features, we further post-

processed the profile curvature map in order to make them more clearly distinguishable 

from the background. We enhanced crater concavities (negative values) through a "3-

threshold classification" method. Such technique relied in merging the zero, positive and 

negative values of the profile curvature in three separate classes, then setting to zero all the 

positive values, and finally showing only the negative ones. The result of this procedure is 

given in Figure 10, which emphasizes and resolves the three rings only perceived on the 

profile curvature map. These rings are located along the inner crater wall at +20, -100 to -

120, and -200 to -220 m.  

Even though these three rings might be only an overemphasis of tiny variations of the crater 

slope ascribable to subtle effects of the cratering mechanics, at least two of these rings can 
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be associated to observed features. The ring at elevation +20 m is fully continuous along 

the crater wall, and thus it can identify a strong material interface such the transition from 

the ejecta deposit to the structurally-uplifted rim. At this elevation, layered outcrops were 

observed (Sharpton 2014). The ring at depth -200 m occurred at the albedo transition, and it 

may mark the extent of the breccia lens. This ring is indeed defined by large discontinuities 

along the crater wall, suggesting that it is associated to asymmetries caused by local 

variations of debris flows.  

The median ring at -100 m is mostly continuous along the entire crater wall. If it may 

represent real crater features like the other two topographic steps, it denotes the presence of 

a convex morphology developed after mass wasting or differential erosional rate between 

layers with different composition and mechanical properties (Hiesinger et al. 2001). 

However, a debris deposit originated by gravitational collapse of target material already 

occurs at a deeper depth (-200 m), and it seems unlikely that it can extend up to a further 

shallower depth (-100 m) developing a symmetrical face. Even though we can not 

completely rule out the gravitational hypothesis, we supported that the median ring at -100 

m identifies an interface between two layers characterized by a different rheology.  

 

DISCUSSION  

 

In this section, we provide a discussion of the results, including implications for 

understanding the stratigraphic evolution of Mare Serenitatis, on the basis of the numerical 

analysis and morphometric considerations. In this study, we performed numerical modeling 

of the Linné crater, a 2.22 km diameter and 0.58 km deep truncated-cone shaped impact 

structure, located in the northwestern side of Mare Serenitatis. It distinguishes among the 

crater population for its high freshness degree, which is suggested by crispy rims and high-

reflectance ejecta. Therefore, it has long been used as proxy for simple craters, and this 

raised the necessity to better understand how the crater formed and in which impact 

conditions (e.g., projectile and target properties).  

Given a natural impact structure, it is not straightforward to retrieve information about the 

projectile that have originated it, since different combinations of composition, speed and 

angle of impact can produce similar results (e.g., Melosh 1989). Many studies have focused 

on the effects of impact angle on the final shape of impact structures (e.g., Gault and 

Wedekind 1978, Pierazzo and Melosh 2000a), but they all agreed on the circularity of the 

final crater down to impact angle of about 30°. However, experimental and numerical 

studies highlighted that the impact angle does have a great effect on quantities like crater 

efficiency, vaporization energy, shock pressure and melt production (e.g., Pierazzo and 

Melosh 2000a, Schultz 1996). As for instance, the volume of melt decreases to 80%, 50% 

and 90% in comparison to a vertical impact, at the respective impact angles of 45°, 30° and 

15° (Pierazzo and Melosh 2000b). However, the total volume of impact melt can not be 



88 

 

directly measured on natural impact craters, thus it can not be used to constrain the impact 

angle. In remote sensing image, the ejecta distribution can be rather the more suitable 

parameter to provide some clues on the projectile direction (Gault and Wedekind 1978). At 

impact angle below 45°, ejecta become asymmetric and develop a characteristic "butterfly 

wing" pattern.  

In the LROC NAC image of Linné crater, we did not notice any asymmetric pattern on the 

ejecta blanket, hence the Linné impact might plausibly have occurred at an impact angle 

greater than 45°, though is expected to be at least moderately oblique. Laboratory 

experiments performed on different substances ranging from metals to rocky materials 

highlighted the independence of the d/D ratio for angles varying between 0° and 45° when 

impact velocities are above the target sound speed (e.g., Burchell and Whitehorn 2003, 

Gault 1973, Love et al. 1994, Michikami et al. 2014). Therefore, the assumption adopted in 

our numerical models of vertical impact and the use of the full velocity value of incoming 

meteoroids on the Moon (18 km/s) without any angle correction can be a reliable proxy for 

the formation of Linné crater, and any small dependence of the d/D ratio on the impact 

angle can be accounted within the model uncertainties.  

The final morphology of craters depends in addition on the target properties. Therefore, we 

spanned several target configurations, including layering. In the 1-layer target, we observed 

that the highest variations occurred when varying cohesive strength (Figures 3B, 3C, and 4) 

or friction coefficient (Figures 3E and 5) for damaged material. We tested damaged 

cohesive strengths ranging from 10 Pa to 1 MPa. We observed that craters forming in low 

cohesion targets (Yd0≤10 kPa) developed a conic shape, which varied about 15% in the 
d/D ratio and 3° in the inner slope over three orders of cohesion magnitude. On the other 

hand, craters forming in high cohesion targets (Yd0>10 kPa) are rather closer to a parabolic 

shape, with higher d/D ratio (0.4 for Yd0=1 MPa) and higher inner crater slope (~63°). A 

similar result was also found by Watters et al. (2015), who performed a morphometric 

analysis on a statistical sample of Martian craters. Even though they did not provide any 

ultimate conclusion on how the cavity shape depends on terrain type, they had observed 

indeed a predominance of conic-shaped craters in weaker terrains. On the other hand, 

several investigations showed that the d/D ratio is larger for fresh craters forming in high-

cohesion target, since stronger materials can better support steeper slopes (e.g., Atwood-

Stone and McEwen 2013, Daubar et al. 2014).  

The friction coefficient is the parameter responsible of the degree of slumping of the rim 

into the crater floor. We indeed observed that a coefficient of friction of 0.35 caused the 

formation of a breccia lens as thick as half the depth of transient cavity. This lens shallows 

the final crater and decreases the inner crater slope (Figure 5). At the same time, the 

diameter widened as much as 25% with respect to the simulation considering a friction 

coefficient of 0.6.  
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According to all the simulations performed in a 1-layer target, the better fit with the Linné 

crater was obtained by assuming a 1 MPa intact cohesive strength and a 10 kPa damaged 

cohesive strength. The final diameter resulted (2.24 ± 0.22) km. This specific model did not 

perfectly match the measured topographic profile, because it had a higher depth (9%), slope 

(13%), and aspect ratio d/D (8%). Even though these values fall within the model 

uncertainties, a better agreement between models and observations considering a 

homogeneous 1-layer target configuration may be obtained by including dilatancy in the 

modeling. However, this parameter was not implemented on the iSALE version we used to 

run our models, therefore we can only discuss here the possible effects of dilatancy on 

crater formation.  

Dilatancy represents the development of porosity in the crater wall and floor due to 

fracturing and brecciation created during the shear-dominated cratering flow (Collins 

2014). Only few study have been conducted so far to explore how the final crater 

morphometry is modified by dilatancy (Artemieva et al. 2004, Collins 2014, O'Keefe et al. 

2001). These studies highlighted that dilatancy accounts for correctly explaining the breccia 

lens in terrestrial simple impact structure, and can decrease the final crater depth as much as 

20% (Collins 2014). On the other hand, the effects of dilatancy on the formation of lunar 

craters are less straightforward, since two facing aspects contribute to the final result. 

Dilatancy is more efficient on smaller planetary bodies, but, at the same time, it is less 

efficient in high-porosity terrains (Collins 2014). On the basis of these considerations, we 

can only observe that dilatancy may indeed account for the mismatch in crater depth 

between the best fit model and Linné topographic elevation.  

Nevertheless the role of dilatancy, another interesting picture of the formation of Linné can 

be drawn when considering a double layered target. We examined the effects on the final 

crater shape of an upper fractured layer with thicknesses varying between 50 and 400 m. 

The modeled craters are all truncated-cone shaped, with a variation of 12% in the d/D ratio 

and 15% in the inner crater slope, over the range of the thicknesses tested. In Figure 6 

(column on the right side), we compared the modeling result with Linné topographic 

elevation, finding that the better agreement is obtained when the upper fractured layer is 

either 100 m or 400 m thick. However, on the basis of the only elevation datum, all the 

thickness of the upper fractured layer considered in this study can account for the shape of 

Linné, since the final depth of the simulated craters differ by up to ~13% from the 

topographic profile, value which is of the order of the model uncertainties.  

In both the 1-layer and 2-layer configurations, we noticed that a relatively thin breccia lens 

deposited on the crater floor, typically of negligible thickness up to a maximum value of 

~10% the transient cavity depth. The only exception was given by the model with a 

damaged friction coefficient of 0.35, where the rim collapse reached 50% the transient 

cavity depth. On terrestrial craters, a breccia lens is expected to be 1/2 to 1/3 the crater 

depth (e.g., Melosh 2011). As discussed above, these "deeper" craters may arise from not 
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having implemented dilatancy into the modeling. However, regardless the model 

assumptions, we noticed that (i) the depth mismatch between the modeled crater and the 

real impact structure reached up 13%, and (ii) the d/D ratio measured on Linné falls within 

the d/D trend inferred for lunar and Martian simple craters (Pike 1974, Watters et al. 2015). 

These observations seem to suggest that any rim collapse was not a very efficient 

mechanism during the formation of Linné crater, in comparison to the terrestrial case. This 

can arise from either the smaller Linné size with respect to terrestrial craters approaching 

the simple-to-complex transition, or differences in the near-surface characteristics. 

Therefore, the high-albedo deposit lining the crater floor and lower wall can possibly be 

fragmental material due to a nearly-vertical impact, rather than the inward collapse of the 

crater rim. The LROC NAC image of Linné highlighted indeed the presence of small-sized 

debris on the crater floor. Being of few meters the resolution of our models, our simulation 

can not follow the overall emplacement of this high-albedo deposit.  

Some further considerations can be done if comparing the modeling results with other 

observational data, including the morphometric analysis of the crater. The slope and profile 

curvature maps computed on the topographic elevation of Linné showed the presence of 

three topographic steps along the inner crater wall (Figure 10). The first one, at +20 m 

above the pre-impact surface, can be associated to the transition from the structurally-

uplifted rim to the ejecta blanket. The 200 m deep ring occurred together with the albedo 

variation, and likely represents the top area of the breccia lens. The ring at -100 m is a small 

mostly continuous feature along the crater wall highlighted by the morphometric analysis, 

but no impact-related product seemed associated to it. We suggest that this ring at -100 m 

might possibly occur at the interface between two different layers. Such layer may 

represent two lava flow units that emplaced in different geologic times or through different 

volcanic vents, and can be expected to possess an own specific rheology (Hiesinger et al. 

2001). Independent measurements about the Linné morphology were made by Stickle et al. 

(2016) on LROC NAC images. These authors observed the presence of an outcrop along 

the crater wall, finding a thickness of 120 m (once corrected for the wall slope measured 

from the topographic profile). This value is in agreement with the morphological ring we 

extracted from the curvature profile map, and thus a layered stratigraphy can be a realistic 

description of the Linné impact site.  

These observations about crater morphometry can be compared to the material 

displacement plots derived from our models (Figure 6, column on the left). At the smaller 

thickness values (50 and 100 m, Figures 6A and B), the upper layer is completely 

embedded within the basement material. Indeed, the basement is found at shallow depth, 

thus it is uplifted and overturned during crater formation, sandwiching the thin upper layer. 

In the 100 m case, a roughly 100 m thick breccia lens is observed on the crater floor, while 

it is nearly absent in the 50 m case, where the major fracturation occurs along the crater 

wall. At intermediate thicknesses (200 and 250 m, Figures 6C and D), the rim and the upper 
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wall are instead made up by the uplifted and overturned fractured layer. The lower crater 

wall is made up of fractured basement, while the floor is lined with material coming from 

the upper layer. It is worthy to note that, after crater formation, the interface between the 

two layers moved to a 100-150 m depth below the pre-impact surface. Indeed the crater rim 

and upper wall were formed by an outward and upward flow-field operating during the 

excavation stage, which originated a raised structure (e.g., Kenkmann et al. 2013, Melosh 

1989). Finally, at higher thicknesses (300 and 400 m, Figures 6E and F), the interior of the 

final crater is made up by the only upper layer material. However, in the 300 m 

configuration, rim material slumped down and filled the crater wall and floor except for an 

exposed area at 300 m depth, whereas in the 400 m case, the opening cavity was not able to 

penetrate into the basement, and thus it entirely formed within the upper layer.  

Our simulations seemed to suggest that the 100 m deep layer interface revealed by 

morphometric analysis can be explained if an intermediate thick upper layer (~200 m) is 

considered. Indeed, it is only in this model configuration that the boundary between the two 

layers developed at the measured depth. However, the configuration with an upper layer 

100 m thick cannot be completely ruled out if further post-impact gravitational landslides 

occur and work to expose the crater rim and upper wall. Mass wasting can indeed expose 

the embedded layer, and at the same time produce debris flows that then cluster on the 

crater floor and shallow the final crater (improving the fit between model and topographic 

elevation profiles).  

From the overall discussion presented here, we outlined that numerical modeling on both 

one homogeneous and double layered target can account for the truncated-cone shape of 

Linné, given the model assumptions (high impact velocity and no dilatancy) and 

uncertainties (accuracy within 10%). Evidences from morphometric data suggested that a 

complex stratigraphy at the Linné impact site is more reliable, and can have various 

interpretations among the evolutionary history of Mare Serenitatis. One first hypothesis 

(Figure 11A) relies on the idea that the two layers represent two compound mare units.  

Mare units formed as a homogeneous layer of several individual lava flows flooded by the 

same volcanic vent. As noticed from the 3-layer configuration results, numerical 

simulations were not able to discriminate individual lava flows of similar composition. The 

upper fractured layer suggested by both simulations and morphometric analyzes 

represented therefore a multiple flow unit. Its proposed thickness of 100 to 200 m 

accounted for the topographic step measured on the crater wall at 100 m below the pre-

impact surface, and is in agreement with previous estimates of mare thicknesses (e.g., Ono 

et al. 2009, Weider et al. 2010). According to Hiesinger et al. (2000) geologic map, the 

upper 100-200 m thick layer should correspond to S14 unit, where Linné is located. This 

unit, which is dated 3.49 Ga ago, is surrounded by several younger units, with ages ranging 

between 3.43 and 2.90 Ga ago. The closer unit emplaced before S14 is S10 (3.60 Ga), and 

it might represent the underlying consolidated layer modeled in the numerical simulations 
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(the basement). Both these units are the result of successive thin lava emplacements, 

possibly interleaved by regolith and/or volcanic ash deposits. The difference in the 

rheology, which was accounted in our numerical simulation as differences in the cohesion 

values, can be explained as variations in the magma compositions with time (Hiesinger et 

al. 2001). Alternatively, S10 unit did not undergo heavy space weathering since it was 

covered by unit S14 relatively shortly after its emplacement, while the younger S14 unit 

experienced stronger impact cratering and/or fracturing after cooling processes.  

A double-layer stratigraphy at the Linné impact site can be either explained as one single 

volcanic event (Figure 11B). In fact, an inflated lava flow is generally made up of a 

competent core that is sheltered by a film of a chilled brittle and often fractured material. 

The outer shell developed fractures and joints because the higher cooling rate with respect 

to the inner core, and the exposition to space weathering. According to this scenario, unit 

S14 where Linné formed is at least 400 m thick (100-200 m of a weak shell above ≥200 m 
of lava core).  

 

CONCLUSION  

 

In this paper, we presented the study about Linné crater, a simple impact structure located 

in the northwestern edge of Mare Serenitatis. High-resolution images of the Lunar 

Reconnaissance Orbiter Camera highlighted that Linné is a 2.22 km diameter and 0.58 km 

deep crater characterized by a truncated-cone shape. It has long been used as proxy for 

simple craters since it is a pristine landform, as suggested by its sharp rim and high-

reflectance ejecta. Therefore, it is valuable to better understand how the crater formed and 

in which impact conditions (e.g., projectile and target properties).  

The analysis was performed by numerical modeling through iSALE shock physics code the 

impact event that formed the crater. We focused our investigation in testing the effects of 

target properties (material parameters and layering) on the final crater shape. The best-fit 

models were then constrained by comparing simulation results to observational data, 

including the representative mean topographic profile of Linné and morphometric 

measurements on the crater cavity including slope and profile curvature. These data 

highlighted the presence of three topographic steps along the inner crater wall, at the 

elevations of +20, -100 and -200 m. While the first and the last ring can be impact-related 

features associated to the transition from the structurally-uplifted rim to the ejecta blanket 

and the upper boundary of breccia lens on the crater floor, respectively, the ring at -100 m 

can possibly represent an interface between two different rheological layers.  

When simulating the formation of Linné in one single homogeneous target, we obtained the 

higher variations in crater appearance when varying either the cohesive strength or friction 

coefficient for damaged material. We observed that craters forming in low cohesion targets 

(Yd0≤10 kPa) developed a conic shape, with a 15% d/D and 3° slope variations over three 
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orders of cohesion magnitude. On the other hand, crater forming in high cohesion targets 

(Yd0>10 kPa) are rather closer to a parabolic shape, with higher d/D ratio (up to 0.4) and 

higher inner crater slope (~63°). The implementation of a low friction coefficient (0.35) led 

to the formation of a breccia lens as thick as half the depth of the transient cavity.  

The better agreement between models and topographic elevation of the crater was found by 

using a 1 MPa intact cohesive strength and a 10 kPa damaged cohesive strength. The final 

diameter resulted (2.24 ± 0.22) km. This specific model did not perfectly match the 

measured topographic profile, because it had a higher depth (9%), slope (13%), and aspect 

ratio d/D (8%), nevertheless such discrepancies can be explained by the model uncertainties 

(10%) and assumptions (high impact velocity and no dilatancy model).  

In the double layer configuration, we introduced an upper fractured layer over a basement 

(with the material parameters set to the one layer best fit). We varied the upper layer 

thickness between 50 and 400 m, finding that the modeled craters are all truncated-cone 

shaped, with a variation of 12% in the d/D ratio and 15% in the inner crater slope, over the 

range of the thicknesses tested. The better agreement between models and the mean 

topographic profile was found with an upper layer thickness of 100 and 400 m. Even 

though the discrepancies between numerical simulations and crater topographic elevation 

can be explained by model uncertainties, the analysis of displaced material provided further 

details on the expected crater morphology. Only when considering intermediate thicknesses 

(~200 m) for the upper layer, the resulting crater had a clearly exposed interface between 

the two layers along its wall at 100 m below the pre-impact surface. Conversely, in the 

borderline cases of either thinner or larger thicknesses of the upper fractured layer, the 

crater wall was entirely made up by only one type of material that obscured, if present, any 

layering transition. However, the configuration with an upper layer 100 m thick can not be 

completely ruled out, if post-impact gravitational landslides occurred and worked to expose 

the crater rim and upper wall.  

The layered stratigraphy suggested by this analysis can have two different interpretations. 

A first hypothesis suggested that these two layers are two mare (compound flow) units, 

where the upper one experienced stronger impact cratering and/or fracturing after cooling 

processes, and emplaced soon afterwards the lower one. The second hypothesis proposed 

that the two modeled layers represent the brittle shell over a competent core of a single 

volcanic inflated-like event.  
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Figure 1. A) Map of Serenitatis basin, subdivided into the spectral units classified by Hiesinger et al. (2000). 

B) LROC NAC DTM derived from the orthorectified images M139829261 L/R and M139836046 L/R. It 

clearly shows the difference in albedo characterizing the crater floor. (http://lroc.sese.asu.edu/posts/305; 

credits: NASA/GSFC/Arizona State University). C) Detail of the rim of Linné; the white arrow outlines 

topographic uplift-ejecta transition outcrops, while the black arrow indicates impact melt patches; D) Detail of 

the central area of the crater, including the floor with its debris flow deposit (white arrow), and lower crater 

wall where the albedo variation occurs (black arrow); credits: NASA/GSFC/Arizona State University. 

 

 

 



105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The crater-forming process for two Linné sized impact into (right) one layer, and (left) two layer 

target. Each model represents the best fit derived for the two target configurations (1 layer: 38 m radius 

projectile and Yd=10 kPa; 2 layers: 40 m radius projectile and 100 m thick upper crust; cf. Table 1 for further 

details).  
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Figure 3. Plots show the results of numerical modeling of the one layer configuration, spanning different 

material properties: A) intact cohesive strength, B) intact friction coefficient, C) and D) damaged cohesive 

strength, and E) damaged friction coefficient. The simulated craters obtained by testing different values of 

each material parameter are represented as a shadowed area. The representative mean topographic profile of 

Linné is also given (black line). 
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Figure 4. Accumulated plastic strain distribution (on a gray scale) overlaid by a Lagrangian grid for the 1 

layer configuration, with varying damaged cohesive strengths: A) 10 Pa, B) 10 kPa, and C) 1 MPa. 
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Figure 5. Accumulated plastic strain distribution (on a gray scale) overlaid by a Lagrangian grid for the 1 

layer configuration, with varying damaged friction coefficient: A) 0.35, B) 0.6.  

 

 

 

 

 

 



109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The results of numerical modeling derived for a Linné sized impact into the two layer configuration, 

where different upper layer thicknesses are considered; A) 50 m, B) 100 m, C) 200 m, D) 250 m, E) 300 m, 

and F) 400 m. In the left column, plots show the accumulated plastic strain distribution (on a gray scale) 

overlaid by a Lagrangian grid. In the right column, simulated crater profiles (continuous line) are compared to 

the mean topographic elevation of Linné (dotted line).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Final snapshot of the 3-layer model of Linné, where the semi-infinite target is made up by 100 m of 

fractured basalt on top of 100 m intermediate layer, which in turn overlays the basaltic basement. The left 

panel shows the total plastic strain (on a gray scale) that was accumulated during the passage of the shock 

wave and subsequent crater formation. The right panel of each plot represents the material overdrawn by a 

Lagrangian grid. 
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Figure 8. Maps of (A) topographic elevation, (B) slope, and (C) profile curvature.  
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Figure 9. Profiles of (A) topographic elevation, (B) slope, and (C) profile curvature. Profiles are taken along 

the line AA' shown in Figure 8. The arrows indicate the corresponding position along the topographic profile 

where changes in both slope and profile curvature occur.  
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Figure 10. The figure represents the Linné crater overlaid by the post-processed profile curvature map. Crater 

concavities (negative values) revealed in Figure 8C were enhanced through a "3-threshold classification" 

method. Such technique relied in merging the zero, positive and negative values of the profile curvature in 

three separate classes, then setting to zero all the positive values, and finally showing only the negative ones. 

This new map highlighted the presence of three topographic steps along the inner wall at about +20, -100, and 

-200 m with respect to a theoretical zero set at the mare surface (-2620 m). The +20 m ring can be associated 

to the transition from the structurally-uplifted rim to the ejecta blanket; the -100 m ring can possibly represent 

the interface between two distinct geological units emplaced at different time on the Serenitatis basin; finally, 

the -200 m ring can mark the upper boundary of breccia lens on the crater floor.  
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Figure 11. Sketch of our interpretation of the stratigraphy of Mare Serenitatis at the Linné impact site. 

Differences in age between the two layers are underlined by using a different color. A representative shape of 

Linné crater is drawn over over the two settings. A) The two modeled layers are different mare (compound 

flow) units, where the upper one experienced stronger impact cratering and/or fracturing after cooling 

processes, and emplaced soon afterwards the lower one. B) The two modeled layers represent the brittle shell 

over a competent core of a single volcanic inflated-like event. 

 

 


