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Riassunto 

Nell’ambito di questo lavoro sono stati condotti esperimenti di campo, semi-campo e 

laboratorio sugli acari predatori Kampimodromus aberrans, Amblyseius andersoni, 

Typhlodromus pyri e Phytoseius finitimus allo scopo di perfezionare le strategie di controllo 

biologico degli acari fitofagi nei meleti. Il primo esperimento ha riguardato l’introduzione di 

K. aberrans in meleti convenzionali e biologici. I meleti biologici erano trattati soprattutto 

con piretro e spinosad, mentre i meleti convenzionali erano trattati con neonicotinoidi, esteri 

fosforici e regolatori della crescita. Le densità dei predatori hanno raggiunto densità superiori 

nelle tesi oggetto d’introduzione rispetto ai testimoni. Tuttavia, le popolazioni dei predatori 

hanno raggiunto livelli più elevati nei meleti biologici rispetto ai meleti convenzionali. 

Amblyseius andersoni risultava naturalmente presente nei meleti. Nel 2010, non sono stati 

riscontrati effetti delle introduzioni di K. aberrans né della gestione dei meleti 

sull’abbondanza di A. andersoni. Al contrario, nel 2011 sono state riscontrate densità più 

contenute di A. andersoni nelle tesi oggetto d’introduzione rispetto ai testimoni. In uno dei siti 

sperimentali (Spresiano), le popolazioni di  K. aberrans sono risultate più elevate, ove 

introdotte, in due meleti di cultivar Florina e Golden Delicious. Le densità di K. aberrans 

sono aumentate nel corso del tempo ma in misura più rilevante su Florina, probabilmente per 

la morfologia fogliare di questa cultivar. Nel meleto di Golden Delicious, le popolazioni di A. 

andersoni sono risultate più contenute nella tesi oggetto d’introduzione di K. aberrans rispetto 

ai testimoni; probabilmente, questo risultato è stato influenzato dalla morfologia fogliare di 

questa cultivar. Nei meleti convenzionali, le introduzioni di K. aberrans sono fallite a causa di 

trattamenti ripetuti con prodotti fitosanitari non selettivi ma anche gli insetticidi impiegati nei 

meleti biologici hanno comportato decrementi significativi delle densità dei predatori.  

La competizione tra K. aberrans, A. andersoni, T. pyri e P. finitimus è stata oggetto di un 

secondo esperimento. Le femmine dei predatori sono state allevate sulle larve delle altre 

specie allo scopo di simulare possibili interazioni in condizioni di scarsità di preda. In queste 

condizioni sperimentali, i predatori hanno esibito buoni tassi di sopravvivenza e di fecondità. 

A. andersoni ha predato più larve di T. pyri e P. finitimus che di K. aberrans e la sua fecondità 

è stata superiore sulle prime due prede. Per A. andersoni, una dieta basata sulle larve di T. pyri 

è stata associata a tassi più elevati di conversione delle prede in biomassa destinata alle uova; 

la longevità del predatore è risultata più elevata sulle larve di K. aberrans. K. aberrans ha 

predato più P. finitimus che T. pyri e A. andersoni e la sua fecondità è risultata più elevata 

sulla prima specie. Il tasso di conversione in uova non ha mostrato tendenze particolari mentre 

la longevità di K. aberrans è risultata più elevata quando i predatori sono stati alimentati con 
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larve di A. andersoni. Typhlodromus pyri ha consumato più larve di P. finitimus che di A. 

andersoni e il tasso di ovideposizione è stato conseguente. Phytoseius finitimus ha predato più 

larve di K. aberrans e T. pyri che di A. andersoni ma la fecondità non ha mostrato la stessa 

tendenza: i predatori allevati su A. andersoni sono stati più efficienti nella conversione delle 

prede in uova. Relativamente ai tassi di predazione e di fecondità, A. andersoni sembra 

avvantaggiato rispetto a T. pyri, T. pyri rispetto a K. aberrans, mentre A. andersoni, K. 

aberrans e T. pyri sono avvantaggiati rispetto a P. finitimus. Le prestazioni di A. andersoni, K. 

aberrans e T. pyri (tassi di predazione e fecondità) sono state migliori quando i predatori sono 

stati allevati con larve di P. finitimus. Le prestazioni di P. finitimus sono apparse le più basse 

in assoluto e questo suggerisce uno svantaggio competitivo. L’alimentazione pollinica ha 

garantito prestazioni ottimali in termine di fecondità a sostegno del ruolo del polline nel 

garantire la persistenza dei predatori generalisti negli ecosistemi agrari. 

Il terzo esperimento ha riguardato l’effetto degli insetticidi su K. aberrans in condizioni di 

pieno campo e di laboratorio. E’ stato saggiato l’effetto degli insetticidi chlorpyrifos, 

thiacloprid, acetamiprid, lufenuron, indoxacarb, methoxyfenozide e etofenprox. Nelle prove di 

pieno campo, etofenprox è risultato l’insetticida più dannoso nei confronti degli acari 

predatori ed ha causato pullulazioni di acari fitofagi. In ulteriori prove di pieno campo, 

spinosad e tau-fluvalinate hanno causato problemi analoghi. Nelle prove di laboratorio sono 

stati inseriti anche spinosad, tau-fluvalinate, thiamethoxam, clothianidin e imidacloprid. 

Spinosad, tau-fluvalinate e etofenprox hanno causato effetti drammatici sulla sopravvivenza e 

sulla fecondità di K. aberrans. I neonicotinoidi non sono apparsi molto tossici ma hanno 

causato una riduzione della fecondità di K. aberrans. Per altri insetticidi (chlorpyrifos, 

indoxacarb, lufenuron e methoxyfenozide) sono state osservate riduzioni meno drammatiche 

della fecondità del predatore. 

In un altro studio è stato valutato il ruolo del polline nel mitigare gli effetti degli insetticidi 

su K. aberrans. Nella prima parte di questo studio sono stati calcolati i parametri demografici 

di K. aberrans allevato su polline o su Panonychus ulmi. Il polline si è dimostrato un alimento 

ottimale rispetto a  P. ulmi in quanto i predatori hanno esibito una fecondità più elevata e 

tempi di sviluppo più brevi con implicazioni per i parametri demografici. La seconda parte 

dell’esperimento ha riguardato le interazioni tra pesticidi, polline e K. aberrans in condizioni 

di semi-campo. Gli acari predatori sono stati introdotti 7 giorni prima dei trattamenti 

insetticidi e il polline di Typha latifolia è stato impiegato quale alimento. L’applicazione degli 

insetticidi (soprattutto spinosad) ha ridotto la densità della popolazione di K. aberrans. 

L’applicazione ripetuta del polline è stata associata a un incremento della popolazione dei 
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predatori. E’ stata riscontrata un’interazione significativa tra l’applicazione di polline e degli 

insetticidi: l’applicazione di polline ha mitigato l’effetto del chlorpyrifos sulla fecondità di K. 

aberrans. Tuttavia, questo effetto non è stato osservato sulle piante trattate con spinosad. 

I meccanismi di resistenza al chlorpyrifos in K. aberrans sono stati oggetto di un ultimo 

contributo. In particolare, è stata indagata la resistenza associata a mutazioni nell’enzima 

Acetilcolinesterasi (AChE). Il cDNA dell’enzima è stato clonato mediante una strategia basata 

sul sequenziamento della AChE di Tetranychus urticae. Al fine di ottenere sequenze 

omologhe di cDNA in K. aberrans sono stati disegnati primers con domini funzionali delle 

AChE nel genoma dell’acaro predatore Metaseiulus occidentalis. Combinando le sequenze 

AChE di ceppi sensibili e resistenti di K. aberrans è stata posta in evidenza una sostituzione  

di glicina in serina (G119S) mentre entrambe le sequenze AChE avevano un residuo di 

fenilalanina in posizione 331. Questi risultati hanno escluso la mutazione F331W quale 

responsabile della resistenza target size al chlorpyriphos ma apre interrogativi sul ruolo della 

mutazione G119S. Questa sostituzione è già stata descritta in Anopheles gambiae e Culex 

pipiens ove è coinvolta in una AChE1 insensibile o a ridotta attività. Tale sostituzione è stata 

associata ad una moderata resistenza al chlorpyrifos in T. urticae. Pertanto, sembra che tale 

sostituzione abbia un ruolo specie-specifico. Le analisi hanno dimostrato la presenza della 

sostituzione G119S in tre ceppi resistenti di K. aberrans in cui è assente la mutazione F331W.  

Allo stesso tempo, due ulteriori ceppi sensibili a chlorpyrifos hanno esibito una glicina in 

posizione 119, in luogo della serina, nella sequenza AChE. I dati suggeriscono che il 

polimorfismo G119S sia coinvolto nel controllo poligenico del fenotipo resistente. Le 

mutazioni della AChE potrebbero essere collegate con uno o più fattori genetici determinanti 

la resistenza a chlorpyrifos in K. aberrans.  
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Summary  

Laboratory, field and semi-field experiments have been carried out on the predatory mites 

Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius 

finitimus in order to optimize biological control strategies against phytophagous mites in apple 

orchards. The first experiment concerned the augmentative releases of K. aberrans in organic 

and conventional apple orchards. The most frequent insecticides used in organic orchards 

were pyrethrins and spinosad, whereas neonicotinoids, OPs and IGRs were used in 

conventional orchards. K. aberrans releases were successful and predatory mites were 

significantly higher in released than in control plots. Moreover, populations were high in 

organic orchards compared to conventional orchards. Amblyseius andersoni was naturally 

occurring in all orchards. In 2010, no effect of K. aberrans release and orchard management 

were observed on A. andersoni populations but in 2011 A. andersoni population densities 

were low in released plots compared to control plots. In organic orchards located at Spresiano 

releases were made on two cultivars, i.e., Florina and Golden Delicious. In both 2010 and 

2011 releases, K. aberrans population densities were higher in release than in control plots of 

both cultivars. K. aberrans population increased during the three years on Florina but not in 

Golden Delicious orchard. On the latter A. andersoni population densities were lower in 

released than in control plots. In conventional orchards K. aberrans did not establish probably 

because of a series of non-selective insecticide and fungicide treatments. However, the use of 

spinosad was associated to a decline of predatory mite populations in organic orchards.  

The second experiment considered interspecific predation among K. aberrans, A. 

andersoni, T. pyri and P. finitimus. All four predators fed with heterospecific larvae were able 

to survive some weeks laying a number of eggs. A. andersoni consumed more T. pyri and P. 

finitimus than K. aberrans larvae and its fecundity was higher on the first two prey species. A 

diet based on T. pyri larvae was associated to the highest conversion rate of food into egg 

biomass; longevity was higher for predatory mite females fed with K. aberrans larvae. K. 

aberrans preyed more P. finitimus than T. pyri and A. andersoni larvae and its fecundity 

resulted higher on the first species. The conversion of food into egg biomass did not show 

precise trend while the longevity of K. aberrans resulted higher when fed with A. andersoni. 

Typhlodromus pyri consumed more P. finitimus and K. aberrans than A. andersoni larvae and 

laid more eggs on the first two species. Phytoseius finitimus preyed more K. aberrans and T. 

pyri than A. andersoni larvae but fecundity was not affected by prey; predatory mite females 

fed with A. andersoni larvae were more efficient in converting food into egg biomass but 

those fed with K. aberrans larvae lived longer. In terms of predation rate and fecundity, A. 
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andersoni seems to be advantaged over T. pyri, T. pyri over K. aberrans, and A. andersoni, K. 

aberrans and T. pyri over P. finitimus. The performance of A. andersoni, K. aberrans and T. 

pyri in terms of predation rate and fecundity proved to be better of P. finitimus larvae than on 

other prey. The low prey consumption and fecundity of the latter suggest that is disadvantaged 

in interspecific predation. The comparison between pollen and prey diets confirmed the 

positive effect of pollen on the fecundity of all four predatory mite species. 

 The third experiment deals with the effects of insecticides, frequently applied in apple 

orchards, on K. aberrans in field and laboratory conditions. Insecticides including 

chlorpyrifos, thiacloprid, acetamiprid, lufenuron, indoxacarb, methoxyfenozide and 

etofenprox were tested. In field studies etofenprox was the most detrimental pesticide to 

predatory mites. It caused dramatic effects on K. aberrans populations and induced spider 

mite outbreaks. In other trials tau-fluvalinate and spinosad did similar effects. In laboratory 

studies we assessed lethal and sub-lethal effects for each pesticide tested. Spinosad, tau-

fluvalinate, thiamethoxam, clothianidin and imidacloprid were included. Etofenprox, spinosad 

with tau-fluvalinate proved to be harmful insecticides to K. aberrans in terms of lethal effects. 

Neonicotinoids did not affect survival so much but their sub-lethal effects were more 

prominent in terms of fecundity. Other pesticides such as chlorpyrifos, indoxacarb, lufenuron 

and methoxyfenozide also significantly reduced fecundity in K. aberrans at a lower level. 

In the fourth study we explored the role of pollen in alleviating the effects of pesticides on 

K. aberrans at individual and population levels. In the first part we tested biological and 

demographic parameters of K. aberrans on pollen and Panonychus ulmi. K. aberrans was 

reared individually on P. ulmi and on pollen. Both food sources allowed for predatory mites 

survival, development and reproduction. Pollen was preferred food as compared to P. ulmi. 

Total fecundity and survival rates of K. aberrans were higher on pollen than on tetranychids. 

Developmental times of protonymphs, deutonymphs and adults of K. aberrans were longer on 

P. ulmi than on pollen. Life-table parameters of K. aberrans were positively affected by 

pollen. The second part deals with the interactions of pesticides, pollen and K. aberrans in 

semi-field conditions. Experimental factors were: insecticide application and pollen 

application. Predatory mites were released on 3-4 shoots per plant 7 days before insecticide 

applications. Typha latifolia pollen was used. Insecticide application, particularly spinosad, 

determined a reduction in K. aberrans abundance. Pollen applications were associated to an 

increase in predatory mite population. Significant interaction between pollen applications was 

observed: pollen application mitigated the effect of chlorpyrifos (because of its compensation 

of sublethal effects on fecundity) but no effect was observed on spinosad treated plants. 
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In the last work mechanisms of resistance to chlorpyrifos due to mutations in insensitive 

Acetylcholinesterase (AChE) in K. aberrans was investigated. AChE cDNA was cloned. The 

cloning strategy relied on the AChE sequence of Tetranychus urticae. To obtain the 

homologous cDNA sequence in K. aberrans, degenerate primers were designed on conserved 

functional domains of the annotated AChEs in Metaseiulus occidentalis genome, and 

combined with 5’-3’ rapid amplification of cDNA ends. When the cloned AChE sequence 

was compared between K. aberrans sensible and resistant strains, only a Glycine to Serine 

(G119S) substitution was detected while both AChE sequences had a Phenylalanine residue at 

331 position. These results excluded the F331W mutation as responsible for chlorpyrifos 

target site resistance in K. aberrans but it opened interrogatives about the role of G119S. 

Indeed the G119S substitution had been already described in mosquitoes Anopheles gambiae 

and Culex pipiens where it led to AChE1 insensitivity or reduced AChE1 activity. On the 

contrary, the same aminoacid change in T. urticae AChE sequence was associated with a 

more moderate decrease in chlorpyrifos response. So a species-specific effect of this 

substitution cannot be kept out. In any case, site oriented sequencing of AChE cDNA, 

confirmed the presence of G119S substitution in further three resistant strains of the mite 

predator as well as the absence of F331W mutation.  At the same time, two additional sensible 

strains, displayed a Glycine at the position 119, instead of Serine, in their AChE sequence. 

Altogether, these findings might suggest that the G119S polymorphism was involved in the 

polygenic control of the resistant phenotype. In addition or alternatively, the mutated AChE 

might be in linkage with one of the genetic determinants which affect the insecticide 

sensitivity in K. aberrans.  
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Mites 

Mites are microscopic and tiny creatures belonging to subclass Acari of the class 

Arachnida. They are a diverse group which is worldwide in distribution and inhabiting all 

types of terrestrial (plants, mountains, deserts, plains, pastures) and aquatic habitats (oceans, 

rivers, springs, streams, lakes) (Evans, 1963 Krantz, 1959  Chillar et al., 2007). Mites have 

always attracted considerable interest because of remarkable habits of some species. Mites 

may be classified as phytophagous, predatory, parasitic and stored product mites on the basis 

of their feeding behavior.  

Tetranychid mites, the popularly called spider mites are obligate plant feeders and several 

species are reported to show secondary pest outbreaks (Helle and Sabelis, 1985a). There are 

dozens of species of spider mites belonging to genera Tetranychus, Eutetranychus, 

Eotetranychus, Schizotetranychus, Oligonychus, Panonychus and so on, which cause severe 

damage to plants. The present day knowledge on spider mites undoubtedly confirmed them as 

major agricultural pests, in fact they have been considered as a constant source of threat to the 

economy of agriculture. Tetranychid mites have been reported as pests of more than 150 

cultivated plants ranging from greenhouse to fruit and tree crops. This group of mite attacks 

cotton, peanut, bean, eggplant, squash, cucumber, corn, apple, peach, citrus, grapevine, 

papaya, castor, mulberry, rose and many other ornamental plants (Naher and Haque, 2007). 

Some mites transmit viruses e.g. wheat streak mosaic virus by eriophyid mites (Hong et al., 

1999) and potato virus by tetranychid mites (Jeppson et al., 1975). Chemical control of these 

mites is quite expensive and quite often useless as in several instances these mites are seen to 

develop resistance to various kinds of acaricides. Hence, there is an increasing trend to devise 

control measures against mite pests, utilizing biological enemies like macropredators and 

predatory mites, and especially phytoseiid mites (Phytoseiidae). 

 Predatory mites constitute an important group owing to their potential in controlling mite 

pest populations below the economic injury levels. Among various groups of pests, mites of 

the families Tetranychidae, Eriophyidae, Tenuipalpidae and Tarsonemidae constitute the most 

known preys of phytoseiid mites. The objective of using phytoseiids as biocontrol agents is to 

restore and/or to enhance the relationships between pests and their natural enemies either by 

reintroduction and or by creating the same habitat conditions under which the relationship 

would be strengthened (Collyer, 1956; Chant, 1959; McMurtry and Croft, 1997). Phytoseiidae 

is a large family with worldwide distribution and comprising about 1600 species belonging to 

over 70 genera. This family consists of three subfamilies, Amblyseiinae, Phytoseiinae and 

Typhlodrominae. Effective biocontrol agents occur in all these three subfamilies. They have 
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drawn attention of economic entomologists and acarologists all over the world and have 

encouraged intensive and extensive faunistic studies. As a result, many countries have started 

implementing biological control programmes also as a part of IPM through mass rearing, 

release and export of phytoseiid predators. Phytoseiids enjoy a wide range of habitats, ranging 

from the arctic to the tropics. They could be found out from all types of plants comprising 

herbs, shrubs, trees, grasses, fungi, mosses and from any part of the plant, inflorescence, 

leaves, flowers etc. The ability to prosper on non-animal food items like pollen, honey and 

nectar is another factor behind their success as biocontrol agents. Besides these, phytoseiid 

mites possess an array of supreme adaptive features which often raise them to the level of 

potential predators of pest mites and also insects to a certain extent. These include wide 

distribution, high abundance, short life cycle than that of their prey, equivalent reproductive 

potential, good searching capacity, good dispersal rate, ability to survive on a low prey 

density, and adaptability to different ecological niches (McMurtry, 1982). 

Role of phytoseiid mites 

Since phytoseiid mites are the most important biological control agents of phytophagous 

mites, numerous investigations have been conducted focusing on their development and 

reproduction (McMurtry et al., 1970; McMurtry, 1982; Helle and Sabelis, 1985b). Different 

studies have been conducted to calculate their life history traits and life table parameters that 

could delineate their role in field conditions. These studies have considered phytoseiid species 

common in European agro-ecosystems such as Kampimodromus aberrans (e.g. Schausberger, 

1997, 1998 a, 1998b; Pappas et al., 2005; Broufas et al., 2007; Kasap, 2005; Lorenzon et al. 

2012), Amblyseius andersoni (e.g. Overmeer and Van Zon, 1982; Duso et al., 1991; Zhang 

and Croft, 1994; Pozzebon and Duso 2008; Pozzebon et al., 2009; Lorenzon et al., 2012) and 

Typhlodromus pyri (Overmeer and Van Zon, 1982; Engel and Ohnesorge 1994; Zemek et al, 

1997; Schausberger, 1998a, 1998b, 1999a, 1999b; Pozzebon and Duso 2008; Lorenzon et al., 

2012).  

On the basis of demographic parameters related to food preferences, some authors have 

proposed a classification of phytoseiids according to their diets (McMurtry et al., 1997). 

In particular, they are classified as type I if specialized on species of the genus Tetranychus: 

this is the case of Phytoseiulus persimilis (Athias-Henriot). Type II includes Galendromus 

occidentalis (Nesbitt) and species of the genus Neoseiulus that prefer tetranychid prey. 

Phytoseiids of the type III, such as A. andersoni, K. aberrans, T. pyri, or Phytoseius finitimus 

Ribaga are polyphagous. Finally, predators of type IV like Euseius finlandicus (Oudemans) 

prefers pollen to prey. Phytoseiid belonging to type III or IV (eg. A. andersoni, T. pyri, K. 



 15 

aberrans, P. finitimus and E. finlandicus) greatly predominate in orchards and vineyards in 

Europe and elsewhere, Phytoseiids proved to be more efficient in controlling phytophagous 

mites as compared to other predators which is attributable to certain characteristics such as: a) 

rapid development period (equal to or shorter than that of the prey), b) good prey searching 

ability, c) ability to consume plenty of prey and capability to survive even in food shortage. 

Phytoseiid mites in orchards and vineyards in northern Italy 

A number of investigations of mite fauna have been carried out in vineyards (e.g., Duso 

and Liguori, 1984; Lozzia et al., 1990; Zandigiacomo et al., 1992; Duso et al., 1993) and fruit 

orchards (e.g, Ioriatti and Mattedi, 1988; Oberhofer et al., 1985; Duso and Sbrissa, 1990) of 

northern Italy. A short description will be given for the most common species and most 

important in biological control: Kampimodromus aberrans (Oudemans), Amblyseius 

andersoni (Chant), Typhlodromus pyri (Scheuten) and Phytoseius finitimus Ribaga.  

 

Kampimodromus aberrans  

Kampimodromus aberrans can be found as dominant in neglected fruit orchards but is rare in 

commercial orchards due to its susceptibility to different pesticides. The persistence of K. 

aberrans in vineyards seems positively influenced by the reduced use of insecticides and 

fungicides (Ivancich Gambaro, 1973, Tirello, 2012). K. aberrans proved to be effective in 

controlling spider mites ((Panonychus ulmi (Koch) and Eotetranychus carpini (Oudemans)in 

vineyards (Ivancich Gambaro, 1973, Duso et al., 1983; Girolami, 1987; Duso, 1989). 

Recently, the role of this predatory mite has been evaluated in commercial apple orchards 

where a strain resistant to organophosphates was successfully released (Duso et al., 2009). 

The life history and life-table parameters of this species reveal a preference for pollen and 

eriophyoid mites compared to spider mites (Schausberger, 1991, 1992; Lorenzon et al., 2012). 

Its persistence on alternative foods in condition of prey scarcity is a key factor to prevent 

phytophagous mite outbreaks (Duso et al., 2012). 

 

Amblyseius andersoni  

Amblyseius andersoni was found to be a dominant species in apple orchards of northern Italy 

(Ioriatti et al., 1988; Duso and Sbrissa, 1990) probably because of its resistance to many 

insecticides and fungicides (Ivancich Gambaro, 1975; Baillod et al., 1985; Duso et al., 1992; 

Angeli et al., 1994). Its aggressiveness in interspecific predation can also explain the 

dominance within predatory mite communities (Croft, 1994; Schausberger and Croft, 2000). 

The life history and life-table parameters of this species show a high polyphagy (Dicke and 
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De Jong, 1988; Pozzebon and Duso, 2009; Lorenzon et al., 2012). Amblyseius andersoni 

population dynamics sometimes shows unpredictable trends partly explained by adverse 

climate and food scarcity (Duso et al., 2012).  

 

Typhlodromus pyri  

Typhlodromus pyri has been reported as the most important predatory mite in European 

apple orchards (Collyer, 1956, 1964; Johnsen and Hanssen, 1986; Duso and Sbrissa, 1990) 

and vineyards (Schruft, 1985; Duso, 1989; Engel and Ohnesorge, 1994). Pesticide resistant 

strains have been widely detected (Duso et al., 1992; Bonafos et al., 2008). Typhlodromus 

pyri populations can persist for long time in conditions of prey scarcity by exploiting 

alternative foods such as pollen and fungi (e.g., Addison et al., 2000; Engel and Ohnesorge, 

1994; Zemek et al., 1997, Pozzebon and Duso, 2009). It proved to be competitive towards 

other specialist and generalist predatory mites (Croft and McRae, 1992a, 1992b; 

Schausberger, 1997, 1998, 1999a, 1999b). However, the successful colonization of vineyards 

by T. pyri can be hindered by climatic conditions and cultivar features (Duso and Pasqualetto, 

1993; Duso and Vettorazzo, 1999).  

 

Phytoseius finitimus  

Phytoseius finitimus is another phytoseiid species recorded frequently in European 

vineyards and apple orchards (Castagnoli, 1989; Nicotina, 1996; Papaioannou-Souliotis et al., 

1999; Kreiter et al., 2000; Ragusa and Tsolakis, 2001). It has been found to be more abundant 

on grape varieties with pubescent leaf undersurfaces (Duso and Moretto, 1994; Duso and 

Vettorazzo, 1999). Its food range includes tetranychids, eriophyoids and pollen (Rasmy and 

El-Banhawy, 1975). This species have potential for controlling P. ulmi but seems to be 

ineffective towards E. carpini and proved to be susceptible to various pesticides (Duso and 

Vettorazzo, 1999).  

Factors affecting phytoseiid mite performance 

The spread, colonization, and the persistence of phytoseiid mites on different crops are 

affected by many factors. Environmental factors exert major pressure on a large scale. 

Phytoseiid species even in fruit and vine growing areas have a different distribution according 

to altitude. For example, T. pyri is found most frequently in hilly areas (Mathis, 1958). 

Temperature strongly affects the development and reproduction of predatory species used as 

biocontrol agents. The intrinsic rate of natural increase (rm) is an important parameter for 

assessing the reproductive potential of a predator under laboratory conditions, and 
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temperature is a significant determinant of this parameter (Sabelis, 1985; Janssen and Sabelis, 

1992; Roy et al., 2003). Among abiotic factors important for establishment and efficacy of 

introduced and native phytoseiid mites, relative humidity is probably second to temperature 

(Sabelis, 1985). Different studies showed the effects of low relative humidity on the biology 

and performance of phytoseiids (Sabelis, 1985; Zhang and Kong, 1985, Van Dinh et al., 1988; 

Mangini and Hain, 1991). For example, K. aberrans egg-hatching is more affected by low 

humidity than that of T. pyri and E. finlandicus (Schausberger 1998). This phenomenon may 

contribute to explaining why this species is attracted to hairy leaves, with their inherent lower 

risk of egg desiccation. Many phytoseiids have low rates of egg eclosion below 50% relative 

humidity.  

Other factors such as predator-prey relationships, interspecific competition and pest 

management program are equally important in establishment and colonization of phytoseiid 

mites (Croft and McRae, 1992a, 1992b; Croft et al., 1992). Differences in plant characteristics 

may further affect the spread and the establishment of phytoseiid mite species in orchards 

(Chant, 1959; Collyer 1956; Blommers and Overmeer, 1986; Duso et al., 2003) and vineyards 

(Duso, 1992; Camporese and Duso, 1996). A number of predatory mites preferred to colonize 

pubescent leaf undersurfaces (Kreiter et al. 2002) and this phenomenon could affect 

interspecific competition in vineyards (Duso and Vettorazzo, 1999) and apple orchards (Duso 

et al., 2009). Pollen and fungal spores, important alternative foods for generalists, can be 

captured and retained easily by leaves having numerous trichomes or domatia (Kreiter et al. 

2002; Roda et al., 2003). Leaf trichomes and/or domatia provide refuge for phytoseiid mites 

from their predators (Roda et al., 2000; Norton et al., 2001). In addition, a high trichome 

density can improve micro-environmental conditions for phytoseiids (Grostal and O’Dowd 

1994). 

The persistence and effectiveness of generalist phytoseiid mites is based on their ability to 

survive in conditions of prey scarcity and the use of alternative food sources. It is well known 

that generalist phytoseiids can develop and reproduce on pollen, but the impact of pollen on 

phytoseiid populations in vineyards has only been studied at a small spatial and short temporal 

scale. Studies showed that T. pyri populations peaked following phases with large pollen 

availability on leaves (Engel and Onhesorge, 1994b). Long-term studies in north-eastern Italy 

confirmed a similar relationship for T. pyri, K. aberrans and, to a lesser extent, A. andersoni 

(Duso et al., 1997). Grape pathogenic fungi can also play an important role as alternative 

foods for generalist phytoseiids (Pozzebon and Duso 2009). Late-summer spread of grape 

downy mildew (GDM) foliar symptoms has been associated with sudden population increases 
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of A. andersoni and, to a lesser extent, T. pyri (Duso et al., 2003). Additional effects of GDM 

involved competition between A. andersoni and T. pyri: GDM provided advantage to A. 

andersoni over T. pyri that was outcompeted by the former species. An interesting case of 

interactions between predators and prey mediated by GDM concerned the phytoseiid 

Paraseiulus talbii (Athias-Henriot) and the tydeid Tydeus caudatus Dugès. The latter can 

develop and reproduce on GDM and is the preferred prey for P. talbii (Camporese and Duso, 

1995). GDM positively affected tydeid populations and consequently P. talbii numbers (Duso 

et al., 2005).  

Competition influence predatory mite community structure. Generalist phytoseiids feed more 

on other phytoseiids than specialists do (Croft and Croft 1996, Croft et al., 1996). 

Implications of intraspecific competition for predatory mite population dynamics have been 

widely discussed (Zhang and Croft, 1995a; Schausberger and Croft, 2000). Predation by large 

phytoseiids or by macropredators, such as mites in the Anystidae, Cheyletidae, Erythraeidae, 

Cunaxidae, and Bdellidae, as well as insects and spiders, is another factor to be considered. 

Some phytoseiids use domatia to escape detection; some use avoidance behavior when 

contacted. The generalist T. pyri spends much time in cover on leaves, is very mobile, and 

shows evasive behavior when contacted by predators (Croft and Croft, 1996). In contrast, 

adult females of the specialist G. occidentalis show little if any avoidance behaviors and they 

are easily captured and consumed even by only slightly larger phytoseiids. Immature stages 

differ greatly in activity, food requirements, feeding habits, and tendencies for intra- and 

interspecific predation. Specialists have immatures that seem to develop more rapidly and 

require less food (especially Type II species), but they are less active in intra- and inter-

specific predation than immatures of generalists (Croft and Croft, 1993; Zhang and Croft, 

1995; Schausberger and Croft, 2000).  

Effects of pesticides on phytoseiids  

Chemical control is a commonly used management tactic against different pest species of 

tetranychids in several crops of economic importance. However the intensive use of pesticides 

has compromised their effectiveness, especially due to the evolution of pesticide resistance to 

the main active ingredients (Cranham and Helle, 1985; Nauen et al., 2001). Compatibility of 

pesticides with beneficial arthropods is a key aspect of Integrated Pest Management (IPM).  

The use of selective pesticides that do not harm phytoseiids is needed. It has been observed 

that continuous application of non selective pesticides may interfere with phytoseiid mite 

performance because these predators are generally more susceptible to pesticides than their 

prey (Croft, 1990). Traditionally, the measurement of acute toxicity of pesticides to beneficial 
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arthropods has relied largely on the determination of an acute median lethal dose or 

concentration. However, the estimated lethal dose during acute toxicity tests may only be a 

partial measure of deleterious effects. In addition to direct mortality induced by pesticides, 

their sub-lethal effects on arthropod physiology and behavior must be considered for a 

complete analysis of their impact. Pesticides applied in controlling pests and diseases can 

exert pronounced effects on phytoseiid survival, development and reproduction and may alter 

their response to different factors. These pesticides may also have strong, negative, direct and 

indirect impacts on a broad range of non-target organisms. So the use of pesticides in IPM 

systems requires a prior assessment of their possible side effects (lethal and sub-lethal) on 

beneficials. Sub-lethal effects are defined as effects (either physiological or behavioral) on 

individuals that survive exposure to a pesticide. These sub-lethal effects can be categorizes as 

physiological effects on development, adult longevity, fecundity and sex ratio and behavioral 

effects like mobility, orientation, feeding behavior. 

For the past 20 years, the effects of pesticides on beneficial arthropods have been the subject 

of an increasing number of studies and several laboratory and field studies have been 

conducted to evaluate the side effects of pesticides on predators belonging to family 

Phytoseiidae. In European vineyards, predatory mites are exposed to fungicides and 

insecticides. The latter are required to control berry moths, leafhoppers and minor pests. 

Studied conducted in the last decades showed the detrimental effects of a number of pesticides 

(e.g. organophosphates, carbamates and pyrethroids) on predatory mites (e.g. Marchesini 

1989; Duso et al., 1992). It has been observed that certain chemicals may not have direct 

effect on predatory mites in terms of mortality but are associated with some sub-lethal effect 

like reduction in fecundity rate, and repellent effects that ultimately results into overall 

population decrease of predatory mites. Reduction in fecundity of predatory mites associated 

with pesticides may be due to both physiological and behavioral effects. Some experiments 

showed that despite negligible mortality and high resistance to some OPs and carbamate 

insecticides in three A. andersoni strains from north Italian orchards and vineyards, the 

fecundity of the adult females was sometimes significantly reduced (Duso et al., 1992). 

Tirello (2010) evaluated lethal and sub-lethal effects of pesticides on predatory mite females. 

Spinosad and etofenprox were associated with significant effects on mite survival and 

fecundity. Thiamethoxam caused a significant reduction in fecundity. Duso et al. (2008) 

tested spinosad at the maximum rate allowed in Italy (330 ppm) and found 47% of mortality 

of P. persimilis females along a 57% of reduction in oviposition. Another sublethal effect 

associated with pesticides is the functional response of predatory mites. Pesticides like 
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imidacloprid can significantly affect the functional response of predatory mite Neoseiulus 

californicus (Poletti et al., 2007), with a conspicuous increase in handling time by the 

predator during the process of prey identification, capture, attack, consumption and digestion 

and a decrease in predators’ attack coefficient. Alteration in these parameters led to a 

reduction of approximately 55% in the consumption of T. urticae eggs by this predator. 

Castagnoli et al. (2005) observed that even though imidacloprid showed low toxicity on adult 

N. californicus females, it significantly reduced the predator’s fecundity. Therefore a 

reduction in predatory capacity of predatory mites on a contaminated prey may affect its 

reproductive capacity, inhibiting its population growth and consequently affecting its 

performance in mite-pest management programms.  

Applications of certain insecticides may also result in sublethal effects on reproduction, 

foraging behavior, fecundity and longevity (Croft, 1990) For example; foliar residues (both 

wet and dry) may inhibit volatile cues emitted by hosts, which are used by certain natural 

enemies to detect host location within plants (Dicke and LEM, 1999; Gohole et al., 2003). 

This may influence foraging behavior and the time required to find hosts. Sub-lethal effects 

may also inhibit the ability of natural enemies to establish populations, suppress the ability of 

natural enemies to utilize a host, impact parasitism (for parasitoids) or consumption (for 

predators) rates, decrease longevity and progeny production rate, reduce host availability, 

inhibit ability to recognize hosts and influence the sex ratio (females: males) (Rosenheim and 

Hoy 1988; Grafton-Cardwell et al., 2006). Natural enemies feeding on plant pollen or nectar 

may also ingest the active ingredient. Furthermore, any repellent properties, based on vapor 

activity or volatility, may prevent natural enemies from entering or re-colonizing habitats; 

however, any behavioral effects that may be observed are likely due to detergency and 

sublethal effects associated with direct exposure to the active ingredient (Croft, 1990).  
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Abstract  

Experiments of the release of the predatory mite Kampimodromus aberrans were 

conducted in organic and conventional apple orchards located in North-eastern Italy. Releases 

were made in 2010 and 2011 following a completely randomized design and observations 

were carried out from 2010 to 2012. The material utilized for releases was collected from a 

commercial vineyard where K. aberrans was the dominant phytoseiid species. The most 

frequent insecticides used in organic orchards were pyrethrins and spinosad, whereas 

neonicotinoids, OPs and IGRs were mostly used in conventional orchards. Predatory mites 

were significantly higher in released plots as compared to control plots and K. aberrans 

populations were higher in organic compared to conventional orchards. In 2010, no effect of 

K. aberrans release and orchard management was observed on populations of the native 

predatory mite Amblyseius andersoni. However, in 2011 A. andersoni population densities 

were lower in released than in control plots. In conventional orchards K. aberrans did not 

establish probably because of a series of non-selective insecticide and fungicide treatments. In 

one experimental site releases were evaluated on two organic orchards (Florina and Golden 

Delicious) managed with the same cropping systems. In both 2010 and 2011 releases, K. 

aberrans population densities were higher in release than control plots both in Florina and 

Golden Delicious cultivars. On Florina K. aberrans population appeared to be larger than on 

Golden Delicious suggesting a role of leaf morphology in predatory mite colonization. On 

Golden Delicious, A. andersoni population densities were lower in released than in control 

plots. Implications for mite management in organic and conventional orchards are discussed. 

Introduction 

Phytophagous mite densities in apple orchards are kept within economic levels by a 

complex of predators comprising macropredators and predatory mites (McMurtry et al., 1970; 

Van de Vrie, 1985; Blommers, 1994; Solomon et al., 2000). Macropredators exert a 

significant role in reducing large mite populations but their persistence declines at low prey 

densities. Predatory mites occurring in apple orchards are less voracious than macropredators 

but can persist longer in conditions of prey scarcity. Those belonging to the Phytoseiidae 

family are generalist predators that survive and reproduce by feeding on non-prey food such 

as pollen, honeydew and fungi (McMurtry, 1992; McMurtry and Croft, 1997; Schausberger, 

1991; Pozzebon and Duso, 2008). They are crucial in preventing phytophagous mites’ 

outbreaks. The most important phytoseiid species recorded in European apple orchards are 

Typhlodromus pyri Scheuten, Euseius finlandicus (Oudemans) and Amblyseius andersoni 
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(Chant); Kampimodromus aberrans (Oudemans) and Phytoseius finitimus Ribaga are also 

common in some regions (e.g. Collyer, 1964; Ivancich Gambaro 1975; El Borolossy and 

Fischer-Colbrie, 1989a, 1989b; Duso and Sbrissa, 1990; Schausberger, 1998a). Several 

factors can affect the success of predatory mites as biological control agents but the most 

relevant are pesticide application, climatic conditions, food availability, cultivar features and 

intraguild competition (e.g. Van de Vrie, 1985; Duso, 1992a; Blommers, 1994; Croft, 1994; 

Cross and Berrie, 1994, 1996; Schausberger, 1998b; Solomon et al., 1993, 2000; Fernandez et 

al., 2006; Bonafos et al., 2007; Duso et al., 2012). In biological control programmes these 

factors and predatory mite species attributes should be considered to maximize their 

performance and preserve their populations in the long term (Croft, 1994; Croft and Luh, 

2004). Knowledge on the mechanisms involved in the coexistence of different species and the 

displacement of one species by a more competitive one are also crucial in biological control 

tactics (e.g. Croft and Croft, 1993; Zhang and Croft, 1995; Schausberger, 1997, 1998b; 

Rosenheim et al., 1995). 

Releasing predatory mites proved to be a successful technique in European vineyards 

where T. pyri and K. aberrans were the most commonly used species (Boller, 1978; Girolami, 

1987; Ivancich Gambaro, 1987; Duso, 1989). K. aberrans was the most competitive predator 

when released with A. andersoni and T. pyri (Duso, 1989). The competition between T. pyri 

and A. andersoni was sometimes mediated by grape variety (Duso and Vettorazzo, 1999). The 

possibility of releasing predatory mites in apple orchards has also been explored and some 

experiments have obtained good results (e.g., Baillod and Guignard, 1984; Marshall et al., 

2001).  

K. aberrans has been proved successful in controlling phytophagous mites in vineyards but 

this capacity has often been limited by the use of non-selective pesticides, mainly ethylene-

bis-dithiocarbamate (EBDC) fungicides and organophosphates (OPs) (Ivancich Gambaro, 

1973; Girolami, 1987). Then resistant strains have been detected and released in vineyards 

and apple orchards (see Duso et al., 2009 and Tirello et al., 2012 for details). In some regions 

K. aberrans has been commonly found in apple orchards but little has been reported about 

pesticide pressure in these situations (El Borolossy and Fischer-Colbrie 1989a, 1989b; 

Schausberger, 1991; Nicotina and Cioffi, 1998; Cobanoglu and Ozman, 2002; Kasap, 2004). 

It should be stressed that a high number of insecticide applications are made annually in 

conventional apple orchards where predatory mites able to persist are usually characterised by 

some resistance. A. andersoni and T. pyri have been reported to be resistant to various 

pesticides (e.g., OPs, carbamates, pyrethroids) and are known to be widely distributed in 

http://www.cabdirect.org/search.html?q=au%3A%22Cobanoglu%2C+S.%22
http://www.cabdirect.org/search.html?q=au%3A%22O%CC%8Bzman%2C+S.+K.%22
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European apple orchards since the 1970s (e.g., Ivancich Gambaro, 1975; Anber and 

Overmeer, 1988; Duso et al., 1992; Fitzgerald and Solomon, 1992).  

The impact on predatory mites of pesticides applied in organic orchards has not been 

investigated in depth. In this study an OP resistant strain of K. aberrans was released in 

conventional and organic apple orchards naturally colonized by A. andersoni. The 

establishment of K. aberrans under different orchard management and interactions between 

native and released predatory mites were assessed for three years.  

Materials and Methods 

Experimental orchards 

Experiments were conducted in the Veneto region, North-eastern Italy from 2010 to 2012. 

In 2010, five sites (Pernumia, Lancenigo, Povegliano 1 and 2, and Spresiano) were identified 

for predatory mite releases (Table 1). Three organic orchards were considered at Pernumia 

(Golden Delicious) and Spresiano (two contiguous orchards with Golden Delicious and 

Florina cultivars), and three conventional orchards in the remaining sites (Lancenigo, 

Povegliano 1 and 2) the latter containing Golden Delicious. Golden Delicious is characterized 

by a glabrous leaf under-surface, a relatively low number of domatia at the conjunction of 

main veins and a low hair density along the veins (Duso et al., 2009). Florina shows a 

moderately pubescent leaf under-surface, a relatively high number of domatia at the 

conjunction of main veins and high hair density along the veins (Duso et al., 2003).  

In 2011, three organic orchards with Golden Delicious cultivar were selected for releases at 

Spresiano, Pernumia and San Pietro Viminario and three conventional apple orchards at 

Lancenigo and Povegliano (1 and 2). At Spresiano, there were additional releases in the 

Florina orchard. 

The most frequent insecticides used in organic orchards were pyrethrins and spinosad, 

whereas various formulations were used in conventional orchards (Table 1). It should be 

stressed that some fungicides known for their negative effects on predatory mites (e.g. lime-

sulphur, mancozeb, pyrimethanil) were also applied in conventional orchards.   

Experimental design 

The effect of predatory mite releases was tested with a non-release treatment (control) 

following a completely randomized design. In each orchard, predatory mites were released in 

four plots (replicates) containing four apple trees, separated by 8-10 trees in the subsequent 

plots. In 2010, K. aberrans were released in June. The material utilized for releases (shoots) 
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was collected from a commercial vineyard located at Monteforte d’Alpone (Verona province), 

where K. aberrans was the dominant phytoseiid species. This strain proved to persist despite 

the use of several pesticides, namely OPs and EBDCs (Posenato, 1994). In June 2010, before 

releases, 50 shoots (10-15 leaves/shoot) were collected from the source vineyard and taken to 

the laboratory for analysis using a stereomicroscope. The identity and density of phytoseiids 

were assessed and the presence of other arthropods was recorded. A mean density of 5.01 K. 

aberrans motile forms per shoot was calculated. This figure was considered in order to assess 

the number (approximately 50) of predatory mites to be released per tree. Shoots were placed 

along the main branches inside the canopy. 

In 2011, releases were in February and June. In February, prior to release, 50 two-year-old 

branches were collected from the vineyard and analyzed using a stereomicroscope. A mean 

density of 4.05 overwintered females per internode was recorded. Approximately 100 females 

of K. aberrans were released per plant via two-year-old branches using procedures described 

in Duso (1989). In June, densities of K. aberrans were calculated on shoots removed from the 

same vineyard. A mean of 20.08 K. aberrans per shoot was calculated. Approximately 200 K. 

aberrans were released per plant by using shoots and following previous procedures. 

For the 2010 trials sampling was conducted from August to September and in spring 2011. 

The positive results obtained with releases at Spresiano suggested prolonging samplings in 

these orchards for three years (2010-2012). In the 2011 trials, observations were conducted 

during the vegetative season and in spring 2012. Additional observations were made in 2012 

at Spresiano only. Seasonal mite abundance (mainly Tetranychidae, Eriophyidae, Tydeidae 

and Phytoseiidae) was monitored by taking 25 leaves per replicate (100 leaves per treatment) 

per sampling date. Leaves were transferred to the laboratory and immediately analyzed using 

a stereomicroscope in order to assess the identity and density of mites.  

Statistical analysis 

Data collected during the year when K. aberrans was released (2010 and 2011) were 

analyzed using a Restricted Maximum Likelihood (REML) repeated measures model with the 

Proc MIXED of SAS (SAS Institute Inc., 1999). K. aberrans release, orchard type, time of 

sampling and their interactions were considered as source of variation for K. aberrans and A. 

andersoni populations and F tests were used to evaluate their effects (α = 0.05). Degrees of 

freedom were estimated using the Kenward–Roger method (Littell et al., 1996). According to 

Aikaike’s Information Criterion, first-order autoregressive proved to be the best fitting 

covariance structure for correlating different sampling dates (Littell et al., 1996). Differences 

among treatments were evaluated with a t-test (α = 0.05) to least square means. The SLICE 
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option of the LSMEANS statement was used to test K. aberrans release and orchard type 

effect variation during observation periods (SAS Institute Inc., 1999). Data collected in the 

spring after release (i.e., spring 2011 and 2012) were analysed with a REML model with the 

Proc MIXED of SAS (SAS Institute Inc., 1999). K. aberrans release, orchard type, time and 

their interactions were considered as source of variation for K. aberrans and A. andersoni 

populations.   

Three years of data collected in Spresiano were also analyzed using a REML repeated 

measures model. In this model K. aberrans release, year, time of observation nested within 

year and their interactions were considered as source of variation for K. aberrans and A. 

andersoni populations. Degrees of freedom were estimated using the Satterthwaite 

approximation method (Littell et al., 1996). First-order autoregressive was used as covariance 

structure for correlating different sampling dates (Littell et al., 1996). Differences among 

treatments were evaluated with a t-test (α = 0.05) to least square means.  

Mite densities were analyzed separately. All data were checked for normality assumption 

and thus the number of phytoseiids per leaf was log (x + 1) transformed. 

Results 

Mite population dynamics in orchards (2010 releases) 

Among native predatory mites, A. andersoni was found in all orchards at low to moderate 

densities. Eriophyoids (i.e. Aculus schlechtendali Nalepa) were observed at low population 

densities and tetranychids (i.e. Panonychus ulmi (Koch) occurred at negligible levels. Tydeids 

were also recorded on most sampling dates but at low densities. The effect of K. aberrans 

releases in conventional and organic apple orchards is reported with regard to K. aberrans and 

A. andersoni abundance. 

 

Kampimodromus aberrans 

K. aberrans releases were successful and predatory mite numbers were much higher in the 

release than in the control plots (F1, 83.8 = 21.45; P < 0.0001, Figure 1). Orchard management 

influenced the success of releases (F1, 95.9 = 10.53; P = 0.002). In organic orchards K. aberrans 

populations were larger in the release than in the control plots (t 83.8 = 5.66; P < 0.0001) while 

there were no differences in conventional orchards (t 83.8 = 0.98; P = 0.328) due to low 

predatory mite numbers (Figure1). An interaction was observed between time and K. aberrans 

release (F3, 146 = 6.71; P = 0.0003) as the variation in predatory mites population level over 

time was observed in release plots (F3, 146 = 12.72; P < 0.0001) but not in control plots (F3, 146 
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= 0.04; P = 0.985). K. aberrans population variation over time was also influenced by orchard 

management (F3, 146 = 4.02; P = 0.009), being significant in organic (F3, 83.8 = 32.06; P < 

0.0001) but not in conventional orchards (F3, 83.8 = 0.97; P = 0.328). Interaction among K. 

aberrans release, orchard management and time was also significant (F7, 157 = 32.06; P < 

0.0001) since the effect of K. aberrans release*time was significant in organic (F7, 157 = 4.56; 

P = 0.004) but not in conventional orchards (F7, 157 = 0.37; P = 0.918).  

In the sampling performed in spring 2011 K. aberrans was found only in one organic 

orchard (Spresiano) and no effects of K. aberrans release (F1, 43.7 = 3.17; P = 0.081) or orchard 

management (F 1, 3.4 = 1.25; P = 0.336) were observed. 

 

Amblyseius andersoni 

No effects of K. aberrans release and orchard management were observed on A. andersoni 

populations (respectively F1, 68.1 = 1.94; P = 0.168 and F1, 3.03 = 5.23; P = 0.105; Fig. 2). The 

same trend was observed in the sampling done in spring 2011 (respectively F1, 42.9 = 1.69; P = 

0.20 and F1, 2.72 = 0.08; P = 0.792). 

Aculus schlechtendali  

In 2010 no effects of K. aberrans release and orchard management were observed on apple 

rust mite densities (F1, 84 = 0.72; P = 0.398; F1, 2.87 = 0.10; P = 0.774, respectively). The same 

trend was observed in the sampling done in spring 2011 (F1, 193 = 0.68; P = 0.411 and F1, 2.87 = 

0.10; P = 0.771; respectively). 

Mite population dynamics in orchards (2011 releases) 

Among phytoseiid mites A. andersoni and K. aberrans occurred at low to moderate 

population densities while phytophagous mite numbers were negligible. The effects of K. 

aberrans releases in organic and conventional orchards are reported below. 

 

Kampimodromus aberrans 

K. aberrans densities were confirmed to be higher in the release plots than in control plots 

(F1, 113 = 13.08; P = 0.0004). Populations appeared to reach lower levels than in the previous 

experiment despite multiple releases (Figure 3). Orchard management did not affect predatory 

mite densities (F1, 4 = 0.32; P = 0.604). There was a variation in K. aberrans population 

densities among sampling dates (F5, 224 = 5.39; P = 0.0001) but this effect was significant only 

in organic orchards (F5, 224 = 5.71; P < 0.0001). Other interactions were not significant. 

In spring 2012 there were more K. aberrans in the release plots than in control plots (F1, 42 

= 12.60; P = 0.001). No effects of orchard management nor of interaction K. aberrans 
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release*orchard management were observed (F1, 3.99 = 0.07; P = 0.806; F1, 42 = 0.15; P = 

0.701, respectively).  

 

Amblyseius andersoni 

K. aberrans releases determined a significant effect on A. andersoni populations (F1, 103 = 

8.24; P = 0.005; Fig. 4). There was no significant effect of orchard management on A. 

andersoni (F1, 4.04 = 4.63; P = 0.09) nor of the interaction K. aberrans release*orchard 

management (F1, 103 = 0.71; P = 0.401). A variation in A. andersoni population levels was 

observed among sampling dates (F5, 214 = 79.83; P < 0.0001). The interaction K. aberrans 

release*time was significant (F5, 214 = 6.25; P < 0.0001) as A. andersoni declined in the release 

plots in the second part of summer (Figure 4). There was also a significant interaction 

time*orchard management (F5, 214 = 11.92; P < 0.0001) as A. andersoni numbers were higher 

in conventional orchards in late summer only.  

In the sampling conducted in spring 2012 there were no significant effects of release (F1, 42 

= 2.15; P = 0.149), orchard management (F1, 3.98 = 2.60; P = 0.182) and their interaction (F1, 42 

= 3.87; P = 0.056) on A. andersoni. 

Mite population dynamics in Florina and Golden Delicious orchards (Spresiano, 

2010 trials) 

Predatory mite releases were successful in the Spresiano orchards containing Florina and 

Golden Delicious cultivars and managed with the same cropping methods. Observations in 

these orchards lasted three years (2010-2012).                 

 

Kampimodromus aberrans and A. andersoni in Florina orchard  

K. aberrans densities were higher in the release than in control plots (F1, 24.5 = 89.55; P < 

0.0001) where predatory mites were recorded from late summer 2010 (Figure 5). The effect of 

release was not constant over the observation period (F10, 63.1= 9.79; P < 0.0001). Higher 

numbers of K. aberrans were observed in the release plots compared to the control in August 

2010, from late summer onwards in 2011 and during spring and summer in 2012 (Fig. 5). The 

population level of the predatory mite varied among sampling dates (F10, 63.1= 33.72; P < 

0.0001). Moreover, a significant interaction between K. aberrans release and years was 

observed (F2, 35.7 = 14.53; P < 0.0001). In release plots K. aberrans population increased over 

the three years (2010 vs. 2011:  t 33 = -2.47; P = 0.018; 2010 vs. 2012:  t 34.6 = -12.45; P < 

0.0001; 2011 vs. 2012:  t 39.6 = -11.4; P < 0.0001) while in control plots they were similar in 
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2010 and 2011 (t 34.6 = -2.01; P = 0.053) but higher in 2012 (vs. 2010: t 33 = 5.73; P < 0.0001; 

vs. 2011: t 39.6 = 4.44; P < 0.0001).  

No effect of K. aberrans release was observed on A. andersoni populations in Florina 

orchard (F1, 28.6 = 0.04; P = 0.845, Figure 6). A. andersoni population dynamics fluctuated at 

low levels over the three-year period (F2, 39.1 = 14.66; P < 0.0001) and among sampling dates 

within years (F10, 61.7 = 5.36; P < 0.0001).   

 

Kampimodromus aberrans and A. andersoni in Golden Delicious orchard   

K. aberrans population densities were higher in release plots than in the control (F1, 28.2 = 

127.60; P < 0.0001). The effect of release varied over sampling dates (F10, 60.2= 14.97; P < 

0.0001). In release plots there were higher numbers of K. aberrans in mid-summer 2010, 

August 2011 and late summer 2012 (Figure 7). The population level of the predatory mite 

varied among sampling dates (F10, 60.2= 19.28; P < 0.0001), and a significant interaction K. 

aberrans release*year was found (F2, 38.7 = 22.07; P < 0.0001). In release plots K. aberrans 

populations were higher in 2010 and 2012 compared to 2011 (respectively:  t 37.6 = 6.29; P < 

0.0001; t 42 = 6.69; P < 0.0001) but no differences were observed between 2010 and 2012 (t 

36.5 = 0.88; P = 0.383). In control plots the population levels were similar among the three 

years (2010 vs. 2011: t 37.6 = 1.87; P = 0.069; 2010 vs. 2012: t 36.5 = 0.99; P = 0.327; 2011 vs. 

2012: t 42 = 0.63; P = 0.531).  

A. andersoni population size in Golden Delicious appeared to be higher than that observed 

in Florina orchard (Figure 8). Predatory mite levels were lower in K. aberrans release plots 

compared to control plots (F1, 28.5 = 29.59; P < 0.0001). This effect varied among years (F2, 39 

= 8.84; P = 0.001). A. andersoni population was higher in the control than release plots in 

2010 (F1, 34.2 = 18.47; P = 0.0001) and 2012 (F1, 38.9 = 12.11; P = 0.001), but not in 2011 (F1, 

30.3 = 2.43; P = 0.155). Variations in A. andersoni numbers were observed among the three 

years (F2, 39 = 8.84; P = 0.001) and sampling dates within years (F10, 61.2 = 9.09; P < 0.0001). 

Mite population dynamics in Florina and Golden Delicious orchards (Spresiano, 

2011 trials) 

 

Kampimodromus aberrans and A. andersoni in Florina orchard 

K. aberrans population levels were higher in release plots compared to control plots (F1, 

20.5 = 26.10; P < 0.0001). Predatory mite population reached higher levels in 2012 than 2011 

(F1, 29.6 = 229.34; P < 0.0001). The effect of release varied among sampling dates within years 



 39 

(F7, 43 = 6.60; P < 0.0001) resulting significant from August onwards in 2011, and in mid-

summer 2012 (Figure 9).  

A. andersoni population levels were similar among treatments (F1, 20.2 = 0.01; P = 0.926) 

and persisted at low levels in both years (F1, 28.9 = 2.02; P = 0.166). Population densities 

fluctuated among sampling dates within years (F7, 39.4 = 4.29; P = 0.001, Figure10). 

 

Kampimodromus aberrans and A. andersoni in Golden Delicious orchard 

K. aberrans population densities appeared to be lower in Golden Delicious than in Florina 

orchard (Figure11). They were higher in release plots compared to the control (F1, 17.9 = 28.48; 

P < 0.0001). A significant interaction K. aberrans release * year was found (F1, 28.2 = 19.78; P 

< 0.0001). Population level increased from 2011 to 2012 in release plots (F1, 28.2 = 32.52; P < 

0.0001) but not in control plots (F1, 28.2 = 0.35; P = 0.562). A significant interaction K. 

aberrans release * sampling time was found (F7, 43.9 = 5.09; P < 0.001) as K. aberrans 

population fluctuated in release plots (F8, 44.3= 12.82; P < 0.0001) but not in control plots (F8, 

44.3 = 1.01; P = 0.441).  

Amblyseius andersoni numbers were lower in release plots (F1, 25.1 = 33.04; P < 0.0001) but 

this effect varied between years (F1, 33.9 = 31.14; P < 0.0001, Figure12). A. andersoni 

population was larger in control plots compared to release plots in 2012 (F1, 31.7 = 49.69; P < 

0.0001) but not in 2011 (F1, 25.6 = 0.06; P = 0.803). Variation was also observed among 

sampling dates within years (F17, 42.1= 3.99; P = 0.002). 
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Discussion 

In Europe K. aberrans is commonly recorded in neglected apple orchards but less 

frequently in commercial orchards (Genini et al., 1983; El-Borolossy and Fischer-Colbrie, 

1989a, 1989b; Duso and Sbrissa, 1990; Costa-Comelles et al., 1990; Espinha et al., 1998; 

Baudry et al., 1999; Minãrro et al., 2002; Fitzgerald and Solomon, 2002). Detailed 

observations made in the Trentino-Alto Adige region, where most Italian apple production is 

concentrated, confirmed similar patterns (Oberhofer and Waldner, 1985; Ioriatti and Mattedi, 

1988; Solva et al., 1997). The susceptibility of K. aberrans to various pesticides can largely 

explain this situation (Fauvel and Gendrier, 1992). The discovery of K. aberrans strains 

showing tolerance to OPs and EBDCs in Italian vineyards (Posenato, 1994) suggested their 

release in some commercial orchards located in Trentino. These experiments were successful 

despite the use of various pesticides and competition with native predatory mites (Duso et al., 

2009). More recently the resistance of K. aberrans strains to OPs was shown in the laboratory 

(Tirello et al., 2012) and additional studies were performed to evaluate lethal and sub-lethal 

effects of various insecticides on one of these strains. The latter study showed that OPs, IGRs 

and neonicotinoids caused low effects on survival of K. aberrans females but reduced their 

fecundity with potential implications for persistence in apple orchards (Duso et al., 

submitted). Apple orchards in northern Italy are usually inhabited by A. andersoni and less 

commonly by T. pyri and E. finlandicus (Duso and Sbrissa, 1990). A. andersoni populations 

fluctuate over the growing season showing irregular patterns and decline to low levels in hot 

and dry summers. Phytophagous mites can build large populations in these conditions 

especially if predatory mites occur at low densities. Observations made in vineyards during 

hot summers (e.g. 2003 and 2006) showed that K. aberrans persisted longer than other 

predatory mites. This finding and encouraging results obtained in Trentino suggested the 

release of K. aberrans in apple orchards of the Veneto region inhabited by A. andersoni and 

managed by different cropping methods.  

The K. aberrans strain considered in our study was transferred from a vineyard to apple 

orchards with contrasting results. Releases obtained positive results in organic orchards, 

although with significant variations, whereas they were not successful in conventional 

orchards. Pesticide use can be a key factor in explaining these results. The use of pyrethrins 

and spinosad were associated with low predatory mite numbers in organic orchards but did 

not prevent the establishment of K. aberrans in orchards located at Spresiano. In the 

remaining organic orchards the success of releases was less clear probably because of the 

early use of spinosad. Monteiro et al., (in press) found a higher predation rate of codling moth 
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eggs in organic compared to conventional apple orchards. However, some organic orchards 

showed lower predation rates than heavily treated conventional ones. The authors discussed 

these differences suggesting a negative effect of spinosad on predators. We found spinosad to 

be harmful to K. aberrans in laboratory and field studies (Duso et al., submitted) and this 

detrimental effect is likely associated to predatory mite decreases observed in mid-summer at 

Spresiano in the three experimental years. Predatory mite releases in conventional orchards 

were followed by the use of various fungicides (e.g. mancozeb and pyrimethanil) and 

insecticides (e.g. thiachloprid, tau-fluvalinate and emamectin) poorly selective towards 

predatory mites (e.g. Pozzebon et al., 2002; Bernard et al., 2010; Kim et al., 2005). This strain 

proved to be resistant to chlorpyrifos (Tirello et al., 2012) and female survival was slightly 

affected by several insecticides (e.g. neonicotinoids) in laboratory trials. However, females 

showed a significant decrease in fecundity when exposed to these pesticides (Duso et al., 

submitted). We can suggest that the impact of non-selective pesticides was probably even 

higher on predatory mites stressed by release procedures (grapevine shoots were detached and 

transferred) and climatic conditions (temperatures were relatively high in June 2010 and 

2011).  

Factors potentially affecting failures in K. aberrans releases include predatory mite-host 

plant relationships. The best performance in K. aberrans releases was obtained in Florina 

orchard located at Spresiano. This cultivar has leaf morphology (relatively high trichome 

density on the leaf blade and domatia) favourable to predatory mite colonization as shown for 

T. pyri (Duso et al., 2003). In previous work K. aberrans proved to build larger populations 

on cultivars having pubescent leaf morphology such as Reinette du Canada compared to other 

cultivars (Duso et al., 2009). It has been argued that leaves having domatia or high 

pubescence favour the colonization of phytoseiids because of improved micro-environmental 

conditions (Grostal and O’Dowd, 1994), increased protection from predators (Roda et al., 

2000; Norton et al., 2001), and retention of alternative foods (e.g. pollen) (Kreiter et al., 2002; 

Roda et al., 2001, 2003). Egg-hatching of K. aberrans is strongly affected by low humidity 

(Schausberger, 1998a) and this can be related to the association of K. aberrans with plant 

species having pubescent leaves in both natural conditions (Kreiter et al., 2002) and  

agroecosystems (Duso, 1992b). Finally, the impact of non-selective pesticides can be lower 

on apple cultivars having pubescent leaf under-surfaces (Blommers and Overmeer, 1986). 

Unfortunately, Florina and Golden Delicious were not inter-planted and so this hypothesis 

could not be tested. On the other hand our data confirm trends reported in Trentino where 

Golden Delicious was less favourable to K. aberrans colonization than other cultivars (Duso 
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et al., 2009). Amblyseius andersoni did not show clear preferences for definite leaf 

morphology and only a slight preference for Florina when compared with other apple cultivars 

(Duso and Pasini, 2003). Releases of K. aberrans in Golden Delicious commercial orchards 

located in Trentino obtained better results than in the current study probably because the 

pesticides used were less detrimental and their use was delayed with respect to the release 

time.  

Interspecific competition is another significant factor affecting the outcome of releases 

(Croft, 1994; Croft and McRae, 1992). Interactions among T. pyri, E. finlandicus and K. 

aberrans on apple seedlings showed the dominance of T. pyri over the other two species 

because this predator was superior in terms of interspecific predation and survival in 

conditions of prey and water scarcity (Schausberger, 1997, 1998b, 1999). Comparative studies 

on interspecific predation showed that A. andersoni females were more aggressive than K. 

aberrans females towards heterospecific larvae (Schausberger and Croft, 2000). The 

competition with the more aggressive A. andersoni, which were probably more resistant than 

K. aberrans to pesticides, could be another factor explaining failures in conventional 

orchards. However, data from Spresiano orchards highlight that K. aberrans can compete 

successfully with A. andersoni under a minor pesticide pressure. Recent studies show that the 

conversion of food in K. aberrans is more efficient than in A. andersoni regardless of prey 

species (Lorenzon et al., 2012). This phenomenon can represent a clear advantage for 

predatory mite persistence in conditions of prey scarcity as observed in our study.  

In conclusion, pesticides and host plant features are the main obstacles to the establishment 

of K. aberrans in apple orchards. Improvement of IPM strategies according to Directive 

128/2009 will offer new chances to achieve better results in biological control programmes. 
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Figure 1- Seasonal abundance of K. aberrans in release and control plots of conventional and 

organic apple orchards during 2010. Releases (R) were in June. 

 

 

 

Figure 2 - Seasonal abundance of A. andersoni in release and control plots of conventional 

and organic apple orchards during 2010. Releases (R) were in June. 
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Figure 3 - Seasonal abundance of K. aberrans in release and control plots of conventional and 

organic apple orchard during 2011. Releases (R) were in February and June. 

 

 

 

Figure 4 - Seasonal abundance of A. andersoni in release and control plots of conventional 

and organic apple orchards during 2011. Releases (R) were in February and June. 
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Figure 5 - Seasonal abundance of K. aberrans in release and control plots of Florina apple 

orchard at Spresiano during 2010-2012. Releases (R ) were in June. 

 

 

 

Figure 6 - Seasonal abundance of A. andersoni in release and control plots of Florina orchard 

in Spresiano during 2010-2012. Releases (R) were in June. 
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Figure 7 - Seasonal abundance of K. aberrans in release and control plots of Golden Delicious 

apple orchard at Spresiano during 2010-2012. Releases (R) were in June. 

 

 

 

Figure 8 - Seasonal abundance of A. andersoni in K. aberrans release and control plots of 

Golden Delicious orchard at Spresiano during 2010-2012. Releases (R) were in June. 
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Figure 9 - Seasonal abundance of K. aberrans in release and control plots in Florina orchard 

at Spresiano during 2011-2012. Releases (R)were in February and June 2011. 

 

 

 

Figure 10 - Seasonal abundance of A. andersoni in release and control plots of Florina orchard 

in Spresiano during 2011-2012. Releases (R) were in February and June 2011. 
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Figure 11 - Seasonal abundance of K. aberrans in release and control plots of Golden 

Delicious orchard in Spresiano during 2011-2012. Releases were in February and June 2011. 

 

 

 

Figure 12 - Seasonal abundance of A. andersoni in release and control plots of Golden 

Delicious orchard in Spresiano during 2011-2012. Releases (R) were in February and June 

2011.  
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Orchard Type Cultivar Year Active Ingredient (date)

Spresiano Organic Florina 2010 Pyrethrins (7 May, 20 July), Spinosad (28 July, 18 and 28 August)

2011 Pyrethrins (5 April, 7 and 13 May, 6 July), Spinosad (16 and 28 July, 18 August)

2012 Pyrethrins (28 June, 8 July), Spinosad (4, 19 and 27 July)

Spresiano Organic Golden Delicious 2010 Pyrethrins (7 May, 20 July), Spinosad (28 July, 18 and 28 August)

2011 Pyrethrins (5 April, 7 and 13 May, 6 July), Spinosad (16 and 28 July, 18 August)

2012 Pyrethrins (28 June, 8 July), Spinosad (4, 19, 27 July)

Pernumia Organic Golden Delicious 2010 Spinosad (28 July, 6 and 27 August)

2011 Spinosad (24 May, 16 and 23 July)

San Pietro Viminario Organic Golden Delicious 2011 Pyrethrins (4 April), Spinosad (7 May, 15 July)

Lancenigo Conventional Golden Delicious 2010 Thiacloprid (8 June), Chlorpyrifos (28 June), Methoxyfenozide (31 July)

2011 Thiacloprid (13 June), Chlorpyrifos (5 July), Methoxyfenozide (2 August)

Povegliano 1 Conventional Golden Delicious 2010 Emamectin (15 July)

2011
Tau-fluvalinate (20 May), Chlorpyrifos (20 May), Emamectin (13 July), 

Methoxyfenozide (25 August)

Povegliano 2 Conventional Golden Delicious 2010
Thiacloprid (7 June), Chlorpyrifos (26 June, 9 July), Methoxyfenozide (31July), 

Emamectin (10 Sep)

2011 Thiacloprid (30 June, 12 July), Emamectin (10  August)

Table 1 - Locations of experimental orchards, management type, cultivar, and insecticides used from 2010 to 2012. 
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Predation on heterospecific larvae by adult females of 

Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus 

pyri and Phytoseius finitimus (Acari: Phytoseiidae) 
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Abstract 

The longevity, prey consumption, fecundity and prey conversion rates of Kampimodromus 

aberrans (Oudemans), Amblyseius andersoni (Chant), Typhlodromus pyri Scheuten and 

Phytoseius finitimus Ribaga females fed with heterospecific larvae were assessed in the 

laboratory. Moreover, the survival curves and age-specific oviposition of predatory mites fed 

on pollen were compared with those obtained on heterospecific larvae. Results suggest that A. 

andersoni should be considered as the intraguild predator. At the same time A. andersoni 

appeared to be the least efficient in food conversion. P. finitimus appears to suffer from 

intraguild predation, and its efficiency in food conversion is not superior to that of K. 

aberrans and T. pyri. Differences in the profiles of K. aberrans and T. pyri are less clear. The 

comparison between pollen and prey diets confirmed the positive effect of pollen on the 

fecundity of all four predatory mite species. Fecundity was higher on pollen than on predatory 

mite larvae. Implications in interspecific competition in a low prey availability scenario are 

discussed.  

Introduction 

Species sharing the same habitats and resources may have to compete when the latter are 

limited. Competition can be distinguished as either direct (interference) or indirect 

competition (exploitation); interspecific predation belongs to the former type and can produce 

significant effects on competitors living in a community (Begon et al., 1986). Interspecific 

competition and predation have important consequences on the structure and population 

dynamics of ecological communities (Connell, 1983; Schoener, 1983; Sih et al., 1985). A 

more complex interaction that combines competition and predation is the intraguild predation 

that occurs when two species competing for the same limited resource can also prey on each 

other (Polis et al., 1989). Predatory mites of the Phytoseiidae family can coexist and compete 

for prey in the form of phytophagous mites. Some phytoseiid mites prey also on phytoseiid 

competitors, especially when the mite prey density is low (e.g., Yao and Chant, 1989; Croft 

and Croft, 1993; Zhang and Croft, 1995).  

The predatory mites Kampimodromus aberrans (Oudemans), Amblyseius andersoni 

(Chant), Typhlodromus pyri Scheuten and Phytoseius finitimus Ribaga are all generalist 

predatory mites (McMurtry and Croft, 1997). They are commonly found in orchards and 

vineyards in Europe and elsewhere (e.g., Chant, 1959; El Borolossy and Fischer-Colbrie, 

1989; Nicotina and Cioffi, 2001; Kreiter et al., 2000; Duso et al., 2012). These species play an 

important role in the control of tetranychids and eriophyoids (Acari Tetranychidae, 
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Eriophyidae), and may be dominant within predatory mite communities (Collyer, 1964; 

Ivancich Gambaro, 1975; McMurtry, 1982; Duso, 1989; Blommers, 1994; Solomon et al., 

2000; McMurtry and Croft, 1997; Papaioannou-Souliotis et al., 1999). They can share the 

same habitats and have overlapping food ranges (e.g., Overmeer, 1981; Dicke et al., 1990; 

Schausberger, 1991; Duso and Camporese, 1991; Lorenzon et al., 2012; Duso et al., 2012) 

and likely interact with each other through predation.  

Field studies provided some trends in interspecific competition among generalist predatory 

mites. Single and mixed releases of K. aberrans, T. pyri and A. andersoni in north-Italian 

vineyards were done to identify optimal biocontrol strategies for controlling phytophagous 

mites (Duso, 1989; Duso et al., 1991; Duso and Pasqualetto, 1993; Camporese and Duso, 

1996; Duso and Vettorazzo, 1999). Field experiments in apple orchards suggested the 

importance of interspecific competition in predator-prey communities (Croft and Mac Rae, 

1992a, 1992b; Croft et al., 1992; Croft, 1994). Direct competition might be the reason for the 

dominance of one species. However in the field, the differential impact of pesticides due to 

the possible presence of resistant strains can be a confounding factor. Laboratory studies thus 

clarified the significance of intraspecific and interspecific competition in affecting the 

dominance of a particular intraguild species (Croft and Croft, 1993, 1996; Croft et al., 1996).  

Predation on con or heterospecific life stages is common among predatory mites, and this 

can influence the relative dominance of one species over another (Helle and Sabelis, 1985; 

Schausberger and Croft, 2000). Various aspects of cannibalism and interspecific predation in 

both adult and immature phytoseiid mites have been considered in previous investigations 

(e.g., Yao and Chant, 1989; MacRae and Croft, 1993, 1997; Croft et al., 1996, 1998; Monetti 

and Croft, 1997; Schausberger, 2003). The propensity to cannibalism and intraguild predation 

appear to be related to diet specialization (Schausberger and Croft, 1999, 2000). More 

advantage can be gained by exploiting phytoseiid intraguild prey than by cannibalism. The 

tendency is often the opposite for specialist predatory mites (Croft et al., 1996; Schausberger, 

1999; Schausberger and Croft, 2000a, 200b). Some generalist predatory mites can 

discriminate between con- and hetero-specific juveniles as prey (Schausberger, 1997, 1999). 

Feeding on hetero-specifics or con-specifics can affect juvenile survival, development and 

reproduction of predatory mites (Schausberger, 1997; Schausberger and Croft, 2000). 

Interspecific competition can influence their population growth and persistence on plants 

when prey is scarce (Schausberger, 1998). The effects of single or mixed population releases 

of Euseius finlandicus (Oudemans), T. pyri and K. aberrans were studied on apple seedlings 

infested by Panonychus ulmi (Koch) (Schausberger, 1998). The performance of predatory 
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mites was compared in conditions of diminishing prey availability. In single releases, each 

predatory species persisted to the end of the experiment despite prey scarcity, but T. pyri 

reached higher population levels than E. finlandicus or K. aberrans. T. pyri was superior in 

competition probably because it was able a) to survive for some time without food, b) to 

complete juvenile development and reproduce on phytoseiid prey, and c) to forage more 

efficiently on spider mites when present at low densities (Schausberger, 1997, 1998). 

In the absence of prey, non-prey foods are also important for the persistence of 

polyphagous predatory mites on plants (McMurtry and Croft, 1997). They can exploit food 

sources such as honeydew, plant-based substances and fungi (e.g. Gnanvossou et al., 2005; 

Nomikou et al., 2003; van Rijn and Tanigoshi, 1999; Pozzebon and Duso, 2008). Among 

alternative foods the importance of pollen has been extensively proved (e.g., Overmeer, 1985; 

McMurtry and Rodriguez, 1987; McMurtry et al., 1991; Duso and Camporese, 1991). The 

abundance of phytoseiids on plants can be correlated to pollen availability (McMurtry and 

Johnson, 1965; Kennett et al., 1979; Engel and Ohnesorge, 1994; Duso et al., 1997; Addison 

et al., 2000; Duso et al., 2004). Some predatory mites can express higher reproductive fitness 

by feeding on pollen than preying on phytophagous mites (e.g., McMurtry and Johnson, 1965; 

Lorenzon et al., 2012). 

Efficiency in the utilization of food resources to produce offspring plays a central role in 

determining the outcome of intraguild interactions (e.g. Holt and Polis, 1997; Rosenheim et 

al., 1995; Diehl and Feissel, 2000, Mylius et al., 2001). Moreover, the presence of non-prey 

food sources can have implications on these interactions (Briggs and Borer, 2005; Holt and 

Huxel, 2007), and efficiency in their exploitation is a key aspect (Heithaus, 2001; Daugherty 

et al., 2007). Life history parameters of predatory mites can represent food source exploitation 

efficacy, and their assessment can help in understanding the role of food sources on 

interspecific interactions (e.g., Duso and Camporese, 1991; Schausberger, 1992; Tanigoshi et 

al., 1993; van Rijn and Tanigoshi, 1999; Onzo  et al., 2005).  

Investigations on interspecific predation among K. aberrans, A. andersoni, T. pyri did not 

consider all predator-predator interactions and P. finitimus has not been included within this 

framework. The primary objective of the present study was to fill this gap. The longevity, 

prey consumption and fecundity rates of predatory mite females fed with larvae of 

heterospecifics were assessed in the laboratory. We also estimated the conversion rate of prey 

into egg biomass for the four predatory mites. Secondly, due to the importance of pollen for 

persistence of these predatory mites in the absence of prey, the survival curves and age-
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specific oviposition of predatory mites fed on pollen were compared with those obtained on 

heterospecific prey.   

Materials and Methods 

Stock cultures 

Kampimodromus aberrans, A. andersoni, P. finitimus and T. pyri strains were collected 

from apple orchards and vineyards in North-East Italy where they were dominant among 

predatory mites. Stock cultures were maintained in the laboratory at the Department 

DAFNAE, University of Padua, Legnaro (Italy). Colonies of the first three species were 

reared on grape leaves in controlled conditions (24±1 °C, 70 ± 10% R.H., 16 L: 8 D 

photoperiod regime) for at least three generations prior to the experiments. Single leaves were 

placed with the upper side down on pieces of foam plastic (3-4 cm thick) saturated with water 

and put in an open plastic tray. Wet tissue paper (hanging down in the water) was folded 

along its periphery for drinking water supply and to prevent mites escaping. The mites were 

fed with pollen of Typha latifolia stored at -20 °C in a freezer and this was replenished every 

two days. A piece of transparent plastic sheet (1-2 cm
2
) folded in the shape of a tent, was 

placed over each arena as shelter and oviposition site for the mites. T. pyri colonies were 

maintained on artificial arenas (plastic tile of 8 cm x 15 cm x 0.4 cm) placed on water-

saturated foam plastic (wet tissue paper serving as a barrier) in a plastic tray (Overmeer, 1981) 

in the same laboratory conditions as above. Mites were fed with T. latifolia pollen. Pieces of 

cotton fibers were placed on all the substrates, to serve as egg-laying sites and shelter.  

Experimental procedures 

Longevity, survival, fecundity and prey consumption of predatory mite females fed with 

larvae of heterospecifics were assessed. For each predator species, cohorts of newly laid eggs 

were obtained by placing approximately 50 females from the laboratory colonies onto new 

apple leaves and allowing them to lay eggs for 24 hours. Mites were fed with T. latifolia 

pollen. Eggs were collected every 24 h and then transferred to separate rearing units 

consisting of an apple leaf section (5 x 5 cm) placed bottom-side down on a wet layer of 

cotton within a plastic box. Egg arenas were checked for larvae, nymphs and adults every 24h.  

Each experiment started by placing single gravid females of the same age onto leaf arenas 

consisting of a section of apple leaf (2 x 2 cm) placed bottom-side down on a wet layer of 

cotton within a plastic box. The experimental units were maintained in climatic chambers at 

the above-mentioned controlled conditions. After 24 h starvation each female was offered 
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eight larvae of heterospecifics. The prey larvae were transferred with a camel hair brush into 

the arenas at 24 h intervals. In another set of arenas, gravid females were offered T. latifolia 

pollen.  

There were 10-15 replicates (females) in each experimental unit with an arrangement of 

leaf sections with one adult predator female with eight heterospecific larvae as prey. The 

shriveled corpses of the dead larvae were taken as evidence of predation. Dead larvae which 

were only deflated were assessed to have died of starvation or other causes. Uneaten larvae 

were removed. If a female phytoseiid died before the trial period expired, it was discounted 

and another replicate conducted.  The number of larvae consumed, and of eggs laid by 

predatory mites was recorded daily. Eggs were removed from the experimental units.  

Data analysis 

In a first set of analyses we considered the performances of different predatory mites 

feeding on heterospecific larvae. We evaluated the effect of different prey species on female 

longevity (days), fecundity rate (number of eggs per female per day), prey consumption rate 

(prey per female per day), and prey conversion rate of prey into egg biomass (number of 

prey/number of eggs) of four predator species with one-way ANOVA using the GLM 

procedure of SAS (SAS Institute Inc., 1999) followed by multiple comparison using Tukey-

Kramer tests (P = 0.05). With the same statistical approach we compared longevity, fecundity, 

prey consumption and food conversion rates of different predatory mites species feeding on 

the same heterospecific larvae. Prior to all analyses data were checked for the respect of 

assumption of ANOVA and data on fecundity, prey consumption and food conversion rates 

were transformed in log (x+1), while untransformed longevity data were used. 

In a second set of analyses we compared survival and age-specific oviposition curves of 

predatory mites feeding on prey with those feeding on pollen. Survival curves were estimated 

using the Kaplan–Meier method and were compared by Wilcoxon χ
2
 test (P = 0.05) using the 

LIFETEST procedure of SAS (Allison 1995). In this analysis we also estimated survivals of 

25
th

, 50
th

 and 75
th

 percentiles and their 95% confidence limits. Age-specific fecundity was 

fitted using the NLIN procedure of SAS to the following equation based on the two-parameter 

Weibull density distribution function: 

Asft = Eggsmxabt
b–1

e
–atb

 

where Asft is the age-specific oviposition rate observed at time t, Eggsmx is the total 

fecundity of a female and a and b are scale and shape parameters, respectively. In this analysis 

95% confidence intervals of scale and shape parameters were also estimated. Significant 

differences in shape and scale parameters were established by non-overlapping 95% 
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confidence intervals. Pseudo-R
2
 values were calculated according to Schabenberger (1998). 

Total fecundity of females feeding on pollen and prey were compared using one-way 

ANOVA with the GLM procedure of SAS (SAS Institute Inc., 1999) followed by multiple 

comparison using Tukey-Kramer tests (P = 0.05). Data were checked for the respect of 

assumption of ANOVA and were transformed in log (x+1) prior to the analysis.   

Results 

Predatory mite performance on heterospecific larvae  

 

Kampimodromus aberrans 

Longevity of K. aberrans females differed significantly among diets (F2, 31 = 5.46; P = 

0.009). Adult females survived longer when fed with A. andersoni as compared to T. pyri 

larvae (Figure 1). A diet based on P. finitimus larvae gave intermediate results (Figure 1). 

Different foods showed a significant effect on K. aberrans fecundity rate (F2, 31 = 7.29; P = 

0.003). K. aberrans laid more eggs when fed with P. finitimus than with A. andersoni and T. 

pyri larvae (Figure 2). Prey consumption rates of K. aberrans on the three prey species 

resulted as different (F2, 31 = 57.22; P < 0.0001). K. aberrans preyed more on P. finitimus 

larvae as compared to A. andersoni and T. pyri (Figure 3). Regarding prey conversion into egg 

biomass, results showed no significant differences for K. aberrans females fed with different 

prey species (F2, 31 = 0.18; P = 0.834, Figure 4).  

 

Amblyseius andersoni 

Longevity of A. andersoni females was influenced by food (F2, 32 = 24.09; P < 0.0001). A. 

andersoni could survive longer when fed with K. aberrans larvae as compared to other prey. 

Longevity was higher on P. finitimus compared to T. pyri larvae (Figure 1). There were 

significant effects of diet on A. andersoni fecundity (F2, 32 = 15.23; P < 0.0001). A. andersoni 

showed significantly higher fecundity when fed with P. finitimus or T. pyri compared to K. 

aberrans larvae (Figure 2). Prey consumption rate was also influenced by prey species (F2, 32 

= 55.30; P < 0.0001). A. andersoni females were able to consume more P. finitimus and T. 

pyri larvae as compared to K. aberrans (Figure 3). Food conversion into egg biomass resulted 

as different among prey species (F2, 32 = 4.62; P = 0.017). A. andersoni required more K. 

aberrans than T. pyri larvae to produce one egg while P. finitimus was associated to 

intermediate values (Figure 4). 
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Typhlodromus pyri  

Typhlodromus pyri longevity was not influenced by diet (F2, 27 = 3.25; P = 0.054; Figure 

1). Fecundity rate was influenced by prey (F2, 27 = 23.78; P < 0.0001) and was lowest on A. 

andersoni (Figure 2). There were no differences in the performance of T. pyri females fed 

with P. finitimus or K. aberrans larvae (Figure 2). Prey consumption of T. pyri was affected 

by prey mite species (F2, 27 = 65.39; P < 0.0001) resulting as higher on P. finitimus compared 

to K. aberrans and A. andersoni larvae (Figure 3). Moreover, T. pyri females consumed more 

K. aberrans than A. andersoni larvae (Figure 3). Conversion of prey into egg biomass by T. 

pyri females was similar on the three prey species (F2, 27 = 0.13; P = 0.875) (Figure 4).  

 

Phytoseius finitimus 

There were significant differences in the longevity of P. finitimus fed with heterospecific 

larvae (F2, 41 = 3.74; P = 0.032; Figure 1). Longevity was higher on K. aberrans than on A. 

andersoni (Figure 1) while values were intermediate on T. pyri (Table 1). Fecundity was not 

influenced by diet (F2, 36 = 0.08; P = 0.921; Figure 2). There were significant effects of prey 

species on prey consumption by P. finitimus females (F2, 41 = 16.15; P < 0.0001). They 

consumed more K. aberrans and T. pyri than A. andersoni larvae (Figure 3). The food 

conversion rate was significantly different among prey species (F2, 36 = 5.34; P = 0.009). 

Lowest values were calculated for A. andersoni compared to K. aberrans while T. pyri did not 

differ from the others (Figure 4). 

Comparative performance of predatory mites on the same prey  

 

K. aberrans, T. pyri and P. finitimus feeding on A. andersoni larvae 

There were significant differences among the longevities of K. aberrans, T. pyri and P. 

finitimus fed with A. andersoni larvae (F2, 36 = 3.80; P = 0.033). Longevity was higher for K. 

aberrans than for P. finitimus while that of T. pyri was similar to the others (Table 1). 

Fecundity rate of predatory mites fed with A. andersoni larvae was also different (F2, 36 = 

18.81; P < 0.0001), being higher for K. aberrans and T. pyri than for P. finitimus (Table 1). 

Prey consumption followed a similar trend (F2, 36 = 63.24; P < 0.0001; Table 1). In contrast, 

the prey conversion rate did not significantly differ among predators (F2, 32 = 0.61; P = 0.547; 

Table 1).  
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K. aberrans, T. pyri and A. andersoni feeding on P. finitimus larvae 

The longevity of predatory mite females feeding on P. finitimus larvae differed 

significantly (F2, 27 = 47.31; P < 0.0001). A. andersoni females survived longer as compared to 

K. aberrans and T. pyri. Fecundity rate also differed among predatory mites, resulting as 

higher for T. pyri and K. aberrans than for A. andersoni (F2, 27 = 18.50; P < 0.0001; Table 1). 

Prey consumption rate was significantly different among predators (F2, 27 = 15.43; P < 

0.0001), resulting as higher for A. andersoni than for K. aberrans and T. pyri (Table 1). Prey 

conversion rate also differed (F2, 27 = 31.29; P < 0.0001): A. andersoni needed more prey than 

K. aberrans and T. pyri to produce one egg (Table 1). 

 

T. pyri, A. andersoni and P. finitimus feeding on K. aberrans larvae 

There was a significant effect of prey on the longevity of A. andersoni, T. pyri and P. 

finitimus (F2, 36 = 7.76; P = 0.002). Longevity of A. andersoni females was higher than that 

exhibited by T. pyri while that of P. finitimus did not differ from the others (Table 1). 

Fecundity differed significantly among predators feeding on K. aberrans (F2, 36 = 29.53; P < 

0.0001) and was higher for T. pyri compared to the other species (Table 1). Prey consumption 

rates on K. aberrans larvae differed significantly among predatory mites (F2, 36 = 90.16; P < 

0.0001). Adult females of T. pyri and A. andersoni consumed more prey as compared to P. 

finitimus (Table 1). The conversion rate of food into egg biomass also differed (F2, 36 = 16.38; 

P < 0.0001). The most efficient was T. pyri and the least A. andersoni, while P. finitimus 

showed intermediate performance (Table 1). 

 

K. aberrans, A. andersoni and P. finitimus feeding on T. pyri larvae 

Longevity of females was similar among predators (F2, 32 = 0.03 P = 0.969) fed with T. pyri 

larvae (Table 1). In contrast, fecundity differed (F2, 31 = 9.05; P = 0.008), being higher for A. 

andersoni and K. aberrans than for P. finitimus (Table 1). Prey consumption rate was 

significantly different among predatory mites (F2, 32 = 117.58; P < 0.0001). A. andersoni 

showed the highest prey consumption rate, and P. finitimus consumed less prey than K. 

aberrans (Table 1). The prey conversion rate also differed (F2, 32 = 4.73; P = 0.016), being 

lower for K. aberrans than for A. andersoni, and intermediate for P. finitimus (Table 1). 
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Survival and age-specific oviposition curves on pollen and prey 

 

Kampimodromus aberrans 

Survival curves of K. aberrans fed with different food sources were different (χ
2
 = 14.49; 

df = 3; P < 0.0001; Figure 5). Feeding on pollen or T. pyri resulted in similar curves (χ
2
 = 

0.22; df = 1; P = 0.635; Table 2; Figure 5). Survival was lower on these food sources than on 

P. finitimus (vs. pollen: χ
2
 = 9.47; df = 1; P = 0.002; vs. T. pyri:  χ

2
 = 10.19; df = 1; P = 0.001; 

Table 2; Figure 5), and A. andersoni (vs. pollen: χ
2
 = 4.71; df = 1; P = 0.029; vs. T. pyri:  χ

2
 = 

5.02; df = 1; P = 0.024; Table 2; Figure 5). No differences were found between survival 

curves of K. aberrans feeding on P. finitimus or A. andersoni (χ
2
 = 3.14; df = 1; P = 0.076; 

Table 2; Figure 5). Total fecundity of K. aberrans was influenced by food sources (F3, 40 = 

8.24; P < 0.001; Table 3). A higher number of eggs was laid with pollen compared to prey 

(Figure 6; Table 3). Scale parameter of oviposition curves was higher for females fed with 

pollen than for those fed with A. andersoni (Figure 6; Table 3). No differences were observed 

in shape parameter (Figure 6; Table 3).  

 

Amblyseius andersoni 

Food source influenced survival curves of A. andersoni (χ
2
 = 48.11; df = 3; P < 0.0001; 

Figure 5). Feeding on pollen or on T. pyri resulted in similar survival (χ
2
 = 0.46; df = 1; P = 

0.493; Table 2; Figure 5). On these food sources survival was lower than on P. finitimus (vs. 

pollen: χ
2
 = 18.05; df = 1; P < 0.0001; vs. T. pyri:  χ

2
 = 17.98; df = 1; P = 0.001; Table 2; 

Figure 5), and K. aberrans (vs. pollen: χ
2
 = 26.89; df = 1; P < 0.0001; vs. T. pyri:  χ

2
 = 26.59; 

df = 1; P < 0.0001; Table 2; Figure 5). No differences were found between survival curves of 

A. andersoni fed with P. finitimus or K. aberrans (χ
2
 = 3.46; df = 1; P = 0.069; Table 2; 

Figure 5). Fecundity of A. andersoni was influenced by food sources (F3, 41 = 14.88; P < 

0.0001; Table 3). Higher fecundity was found in predatory mites feeding on pollen compared 

to prey (Figure 6; Table 3). Among prey, a higher number of eggs was laid preying on P. 

finitimus compared to T. pyri (Figure 6; Table 3). The fecundity of A. andersoni fed with K. 

aberrans reached intermediate values (Figure 6; Table 3). Scale parameter of age-specific 

oviposition curve on pollen was similar to T. pyri but higher than K. aberrans and P. finitimus 

(Figure 6; Table 3). Moreover, the scale parameter was higher for T. pyri compared to K. 

aberrans (Figure 6; Table 3). No differences were observed in shape parameter (Figure 6; 

Table 3).  
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Typhlodromus pyri  

Food source influenced survival curves of T. pyri (χ
2
 = 11.47; df = 3; P = 0.009; Figure 5). 

Survival curve on pollen was similar to those on K. aberrans (χ
2
 = 0.46; df = 1; P = 0.493; 

Table 2; Figure 5), and A. andersoni (χ
2
 = 3.46; df = 1; P = 0.06; Table 2; Figure 5), but lower 

compared to P. finitimus (χ
2
 = 6.30; df = 1; P = 0.012; Table 2; Figure 5). No differences 

emerged between survival curves on K. aberrans and A. andersoni (χ
2
 = 0.03; df = 1; P = 

0.856; Table 2; Figure 5), while on these prey survival was lower than on P. finitimus (vs. T. 

pyri: χ
2
 = 4.97; df = 1; P = 0.025; vs. A. andersoni:  χ

2
 = 4.72; df = 1; P = 0.03; Table 2; 

Figure 5). Total fecundity of T. pyri differed among food sources (F3, 36 = 51.57; P < 0.0001; 

Table 3), with higher level of fecundity observed on pollen than on prey (Table 3). Among the 

latter, a higher number of eggs was laid by preying on K. aberrans and P. finitimus compared 

to A. andersoni larvae (Table 3). No differences were found in parameters of age-specific 

oviposition curves of T. pyri (Figure 6; Table 3). 

 

Phytoseius finitimus 

Food sources influenced survival curves of P. finitimus (χ
2
 = 10.97; df = 3; P = 0.012; 

Table 2; Figure 5). Survival curve on pollen was similar to that observed on T. pyri (χ
2
 = 3.23; 

df = 3; P = 0.072; Table 2; Figure 5) and A. andersoni (χ
2
 = 5.81; df = 3; P = 0.054; Table 2; 

Figure 5), but lower compared to K. aberrans (χ
2
 = 9.68; df = 3; P = 0.008; Table 2; Figure 5). 

However, no differences were observed among prey (T. pyri vs. K. aberrans:  χ
2
 = 1.28; df = 

3; P = 0.288; T. pyri vs. A. andersoni:  χ
2
 = 2.49; df = 3; P = 0.114; A. andersoni vs. K. 

aberrans:  χ
2
 = 0.69; df = 3; P = 0.404; Table 2; Figure 5). Oviposition curves were 

influenced by food sources. Total fecundity of P. finitimus differed among food sources (F3, 50 

= 17.29; P < 0.0001; Table 3), resulting as higher on pollen compared to prey (Table 3). No 

differences were found in parameters of age-specific oviposition curves of P. finitimus (Figure 

6; Table 3). 
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Discussion  

When prey or alternative foods are scarce, interspecific predation can be common among 

phytoseiids and is a key factor explaining the dominance of predatory mite species in natural 

and agricultural ecosystems (Yao and Chant, 1989). Predator-predator interactions in 

perennial crops were investigated in Oregon (USA) apple orchards inhabited by specialist and 

generalist predatory mites, in particular Metaseiulus occidentalis (Nesbitt), Neoseiulus fallacis 

(Garman), T. pyri and A. andersoni (Croft et al., 1992; Croft and McRae, 1992a, 1992b; 

Croft, 1994); the impact of interspecific and intraspecific competition among these species 

was evaluated in the laboratory allowing an interpretation of field results (Zhang and Croft, 

1995a, 1995b; Croft and Croft, 1996; Croft et al., 1996). Investigations carried out in Austrian 

apple orchards and in laboratory studies highlighted the importance of interspecific 

competition among the polyphagous predatory mites Euseius finlandicus (Oudemans), K. 

aberrans and T. pyri (Schausberger, 1997, 1998, 1999). These and additional investigations 

showed that T. pyri, K. aberrans and A. andersoni were able to sustain survival and 

oviposition by intraguild predation (Schausberger, 1997, 1998, 1999; Schausberger and Croft, 

2000a). Amblyseius andersoni proved to be more aggressive than T. pyri, K. aberrans and 

many other species, showing a propensity to displace competitors when coexisting (Zhang 

and Croft, 1995b; Croft and Croft, 1996; Schausberger and Croft, 2000b). Typhlodromus pyri 

was less aggressive than A. andersoni but more than specialist predatory mites (Schausberger 

and Croft, 2000b); moreover, it can avoid predation and survive longer without food than 

other predatory mite mites (Croft and Croft, 1996; Schausberger, 1997, 1999a, 1999b). The 

profile of K. aberrans was less definite: it was less aggressive and gained less advantage than 

T. pyri from predation on heterospecific immatures (Schausberger, 1999a, 1999b).  

Experiments aimed at assessing the outcome of predatory mite releases in vineyards and 

orchards suggested that direct and indirect competition were probably involved in interactions 

among K. aberrans, T. pyri, A. andersoni and P. finitimus (Duso, 1989; Duso et al., 1991; 

Duso and Pasqualetto, 1993; Duso and Vettorazzo, 1999; Duso et al., 2009). Some trends that 

emerged in vineyards (e.g. the competition between A. andersoni and T. pyri) were partly 

explained by results of the above-mentioned studies. However, the dominance of K. aberrans 

that emerged in most of these field studies remained unexplained. Interactions between A. 

andersoni and K. aberrans have been poorly investigated in the laboratory, and Phytoseius 

species have not been considered in such studies. In the present work we reproduced 

interspecific competition among these four predatory mite species in controlled conditions. 

Predation on juveniles by predatory mite females is probably more common than interspecific 
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predation among adult females or immatures. Previous investigations showed that predation 

on heterospecific larvae is a key aspect in intraguild predation among predatory mites (e.g., 

Schausberger 1997, 1999a; Croft and Zhang, 1995). In the present paper we offered 

heterospecific prey or pollen to K. aberrans, A. andersoni, T. pyri and P. finitimus in order to 

compare their performance. In contrast with previous observations on interspecific predation, 

predatory mite females were maintained on prey larvae or pollen until their death and this can 

explain some discrepancies. Adult females of K. aberrans, T. pyri, A. andersoni and P. 

finitimus were able to survive and oviposit on heterospecific larvae. Their response to 

different prey offered showed some trends that can contribute to delineate their role in 

intraguild predation. A. andersoni consumed more T. pyri and P. finitimus than K. aberrans 

larvae and its fecundity was higher on the first two prey species. A diet based on T. pyri larvae 

was associated to the highest conversion rate of food into egg biomass; longevity was higher 

for predatory mite females fed with K. aberrans larvae. K. aberrans preyed more P. finitimus 

than T. pyri and A. andersoni larvae and its fecundity resulted as higher on the first species. 

The conversion of food into egg biomass did not show a precise trend, while the longevity of 

K. aberrans resulted as higher when fed with A. andersoni. Typhlodromus pyri consumed 

more P. finitimus (and to a lesser extent K. aberrans) larvae than A. andersoni and laid more 

eggs on the first two species. No clear trends emerged considering conversion rate and 

longevity. Phytoseius finitimus preyed more on K. aberrans and T. pyri than A. andersoni 

larvae but fecundity was not affected by prey; predatory mite females fed with A. andersoni 

larvae were more efficient in converting food into egg biomass, but those fed with K. 

aberrans larvae lived longer. These results suggest possible outcomes when species coexist 

and enter into intraguild predation. In terms of predation rate and fecundity, A. andersoni 

seems to be advantaged over T. pyri, T. pyri over K. aberrans, and A. andersoni, K. aberrans 

and T. pyri over P. finitimus. Most of these results agree with those reported in previous 

studies and some of them can be explained by the aggressiveness of predatory mites that is 

related to body size (Zhang and Croft, 1995b; Croft and Croft, 1996; Croft et al., 1996; 

Schausberger, 1997, 1998, 1999; Schausberger and Croft, 2000). Prey consumption was 

always high on P. finitimus larvae and low on A. andersoni. This can be related to larval body 

size since A. andersoni have bigger larvae compared to T. pyri and K. aberrans (Croft et al., 

1999) and P. finitimus have the smallest ones (Duso C. personal observation).  

In addition to prey consumption rate, the results suggest that predatory mites exhibit some 

preference in prey selection. Indeed, food preference is driven by its profitability in terms of 

energy content (Murdoch, 1969; van Baalen et al., 2001) that can be estimated by the prey 
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conversion into egg biomass rate. A. andersoni females exhibited a higher performance on T. 

pyri than on the slightly smaller K. aberrans. This preference was underlined by the higher 

efficiency in prey conversion into egg biomass. Relationships between A. andersoni and K. 

aberrans do not suggest precise trends as reciprocal predation was less common than that 

exhibited on other heterospecifics and both species lived longer when fed with the other. The 

performance of A. andersoni, K. aberrans and T. pyri in terms of predation rate and fecundity 

proved to be better on P. finitimus larvae than on other prey. The low prey consumption and 

fecundity of the latter suggest that is disadvantaged in interspecific predation. This is in 

agreement with the results obtained releasing K. aberrans in vineyards colonized by P. 

finitimus. However, T. pyri releases were not successful, suggesting that other factors could be 

involved in interspecific competition among these predatory mite species (Duso and 

Vettorazzo, 1999).       

A comparison of the performance exhibited by predatory mites on a specific prey species 

offers another point of view of their potential impact in intraguild competition. A. andersoni, 

K. aberrans and T. pyri were more voracious than P. finitimus, A. andersoni consumed more 

P. finitimus larvae compared to K. aberrans and T. pyri, and A. andersoni preyed more on T. 

pyri larvae than K. aberrans. Amblyseius andersoni was the most aggressive among these 

species but its voracity did not imply higher fecundity rates; therefore this predator was the 

least efficient in converting prey food into egg biomass. Regarding the last two parameters T. 

pyri (and to a lesser extent K. aberrans) was superior to A. andersoni. Interactions between A. 

andersoni and T. pyri in field conditions did not follow precise trends. Amblyseius andersoni 

displaced T. pyri in some situations but the reverse was also observed (Croft, 1994, Lange and 

Trautman, 1994; Camporese and Duso, 1996). Cultivar features and in particular leaf 

morphology can mediate interactions between these two species: T. pyri was advantaged on 

cultivars with pubescent leaf undersurfaces whereas A. andersoni performed better on 

cultivars with glabrous or slightly hairy leaf undersurfaces (Duso and Vettorazzo, 1999).  

Some interesting aspects emerged in the comparison between K. aberrans and A. 

andersoni: K. aberrans laid more eggs when P. finitimus was offered as prey and the 

fecundity of A. andersoni and K. aberrans did not differ on a diet based on T. pyri larvae. In 

both cases, prey conversion rate was higher for K. aberrans than for A. andersoni. This 

parameter could be considered as an indicator of the capacity for population persistence when 

prey is diminishing. A. andersoni is commonly observed in vineyards and orchards in 

Northern Italy but its population dynamics is subjected to fluctuations mainly due to adverse 

climate and lack of prey (e.g., Duso, 1989; Duso and Vettorazzo, 1999; Duso et al., 2003). K. 
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aberrans populations show definite trends over the seasons (often related to pollen 

abundance) and are less subject to unpredictable fluctuations (Duso et al., 1997, 2012). 

Problems encountered in managing A. andersoni populations suggested the release of K. 

aberrans in vineyards and apple orchards and this tactic proved to be an effective way to 

accelerate the establishment of this species and prevent spider mite outbreaks (Duso et al., 

2009; Duso et al., 2012). In several cases competition between K. aberrans and A. andersoni 

has resulted in the dominance of the former species (Duso and Pasqualetto, 1993; Camporese 

and Duso, 1996; Duso et al., 2009). Some factors affecting these results have been suggested 

but convincing evidence is lacking. Here we show that K. aberrans is advantaged over A. 

andersoni when interspecific predation involves larval stages. Additional studies also showed 

that K. aberrans is more efficient than A. andersoni in food conversion when predators are fed 

with the same spider mite prey (Lorenzon, 2012).    

The theoretical framework of intraguild predation has been the subject of a consistent 

number of studies (Holt and Polis, 1997; Diehl and Feissel, 2000; Mylius et al., 2001; Diehl, 

2003; Tanabe and Namba, 2005). These studies indicate that coexistence is possible only if 

the intraguild prey is a more efficient at resource exploitation, but this state depends on the 

level of productivity (Polis and Holt 1992; Mylius et al., 2001; Holt and Polis, 1997; Diehl 

and Feissel, 2000). Among the set of predatory mites considered here, the results suggest that 

A. andersoni should be considered as the intraguild predator. At the same time A. andersoni 

appeared to be the least efficient in food conversion, and conditions determining its 

dominance over other predatory mites’ species occur only at high productivity level. This is 

consistent with other studies: at a high level of resource availability A. andersoni is able to 

displace other predatory mites’ species while it can suffer from competition at low 

productivity level, tending to disperse from prey patches (Duso et al., 2003; Walzer and 

Schausberger, 2011). Among the other species, P. finitimus appears to suffer from intraguild 

predation, and its efficiency in food conversion is not superior to that of K. aberrans and T. 

pyri.  The differences in the profiles of K. aberrans and T. pyri are not clear. In previous 

investigations T. pyri was not clearly superior to K. aberrans in reciprocal predation 

(Schausberger, 1997, 1999a). Here we show that these two species have not marked 

differences in survival, fecundity and in food conversion efficiency when fed with reciprocal 

larvae. Some differences between K. aberrans and T. pyri emerged in juvenile development, 

since the latter species benefits more from predation upon heterospecifics than the former 

(Schausberger, 1999b). However, in field conditions, the interactions among K. aberrans, T. 

pyri and P. finitimus did not show precise trends while K. aberrans resulted often superior in 
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competition. A determinant role in the interactions among these predators is probably played 

by other factors such as indirect competition, environmental conditions and host-plant traits 

(e.g., Schausberger, 1998; 1997; Duso and Vettorazzo 1999; Lorenzon et al., 2012). 

The comparison between pollen and prey diets confirmed the positive effect of pollen on 

the fecundity of all four predatory mite species. Fecundity was higher on pollen than on 

predatory mite larvae but this is not surprising as some of them exhibited a higher fecundity 

on pollen than on tetranychid prey (e.g., Overmeer, 1985; Duso and Camporese, 1991; 

Schausberger, 1991, 1992; Engel and Ohnesorge, 1994; Kasap, 2005; Lorenzon et al., 2012). 

This phenomenon has been reported for other predatory mites (e.g., McMurtry and Johnson, 

1965; James, 1989; James and Whitney, 1993). In these studies an ad libitum supply of 

different food resources was offered. Thus it was expected that results would be affected by 

the quality of food sources. In the current work the number of prey consumed was largely 

lower than that of prey offered, suggesting that predatory mite response was also affected by 

food quality. Capacity for population increase on a defined food can contribute towards 

explaining why a predatory mite species becomes dominant in field conditions; in vineyards 

A. andersoni can be advantaged by mildew when coexisting with K. aberrans and T. pyri and 

laboratory studies showed that mildew is a more profitable food for A. andersoni than for the 

other two species (Duso et al., 2003; Lorenzon et al., 2012). Since the fecundity exhibited by 

the four predatory mites on pollen was similar we can suggest that this source of food does 

not greatly impact their interactions. In other papers pollen influenced interspecific 

interactions among predatory mites with outcomes depending on the initial size structure of 

competitors (Montserrat et al., 2008). Further studies are needed to elucidate the role of pollen 

in mediating interspecific competition among generalist predatory mites.  
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Figure 1 - Mean longevity (± SE) of adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and 

Phytoseius finitimus when offered heterospecific larvae. Different letters indicate significant differences at Tukey-Kramer test (P = 0.05). 
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Figure 2 - Mean fecundity rate (± SE) of adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and 

Phytoseius finitimus when offered heterospecific larvae. Different letters indicate significant differences at Tukey-Kramer test  
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Figure 3 - Prey consumption rate (± SE) of adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and 

Phytoseius finitimus when offered heterospecific larvae. Different letters indicate significant differences at Tukey-Kramer test (P = 0.05). 
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Figure 4 - Mean prey conversion rates (± SE) by Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius 

finitimus when offered heterospecific larvae. Different letters indicate significant differences at Tukey-Kramer test (P = 0.05). 
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Figure 5 - Survival curves of Kampimodromus aberrans, Typhlodromus pyri, Amblyseius andersoni and Phytoseius finitimus females fed 

with different food sources.  
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Figure 6 - Age-specific oviposition of Kampimodromus aberrans, Typhlodromus pyri, Amblyseius andersoni and Phytoseius finitimus 

females fed with different food sources estimated by Weibull density distribution model. 
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Predator
(No. 

Replicates)
Prey larvae

K. aberrans (15) A. andersoni 49.36 ± 5.01 a 0.46 ± 0.04 a 1.95 ± 0.04 a 4.66 ± 0.44 a

T. pyri (10) A. andersoni 36.50 ± 0.22 ab 0.42 ± 0.02 a 1.83 ± 0.07 a 4.48 ± 0.25 a

P. finitimus (15) A. andersoni 31.40 ± 3.73 b 0.19 ± 0.03 b 1.10 ± 0.06 b 4.09 ± 0.35 a

K. aberrans (10) P. finitimus 37.60 ± 0.76 b 0.66 ± 0.04 a 2.70 ± 0.05 b 4.23 ± 0.26 b

T. pyri (10) P. finitimus 38.30 ± 0.94 b 0.64 ± 0.03 a 2.81 ± 0.05 b 4.48 ± 0.23 b

A. andersoni (10) P. finitimus 47.00 ± 0.52 a 0.42 ± 0.03 b 3.27 ± 0.12 a 8.09 ± 0.56 a

T. pyri (10) K. aberrans 36.40 ± 0.34 b 0.59 ± 0.02 a 2.51 ± 0.06 a 4.31 ± 0.13 c

A. andersoni (15) K. aberrans 56.67 ± 3.26 a 0.27 ± 0.03 b 2.47 ± 0.04 a 10.58 ± 1.00 a

P. finitimus (15) K. aberrans 45.50 ± 4.49 ab 0.26 ± 0.03 b 1.67 ± 0.06 b 7.39 ± 0.78 b

K. aberrans (10) T. pyri 33.60 ± 0.54 a 0.49 ± 0.04 a 2.06 ± 0.04 b 4.47 ± 0.34 b

A. andersoni (10) T. pyri 32.60 ± 0.73 a 0.47 ± 0.03 a 3.22 ± 0.03 a 7.12 ± 0.45 a

P. finitimus (15) T. pyri 32.80 ± 3.70 a 0.27 ± 0.05 b 1.41 ± 0.08 c 5.99 ± 0.75 ab

Prey consumption rate 

(prey/female/day

Fecundity 

(eggs/female/day)
Longevity (Days)

Prey conversion rate 

(prey/egg)

 

Table 1 - Comparative longevity, fecundity, prey consumption and prey conversion rates (± SE) of predatory mite females fed with the same 

prey species. Different letters indicate significant differences at Tukey-Kramer test (P = 0.05). 
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Upper Lower Upper Lower Upper Lower

K. aberrans Pollen 33 32 34 34 32 35 35 34 37

A. andersoni 33 16 47 48 32 64 64 47 77

P. finitimus 36 34 38 38 34 39 39 38 42

T. pyri 33 30 35 34 30 35 35 33 35

A. andersoni Pollen 28 23 35 34.5 23 36 36 34 39

K. aberrans 43 41 54 54 43 65 72 54 75

P. finitimus 46 45 47 47 45 48 48 47 50

T. pyri 31 30 32 32 30 34 34 32 37

T. pyri Pollen 34 32 35 35 34 36 36 35 38

K. aberrans 36 34 37 37 36 37 37 - -

P. finitimus 37 32 39 39 37 40 40 39 42

A. andersoni 36 35 37 37 36 37 37 - -

P. finitimus Pollen 33 27 37 37 27 38 38 37 40

K. aberrans 33 24 50 50 32 64 64 43 64

T. pyri 39 38 40 40 38 44 44 40 45

A. andersoni 36.5 24 40 40.5 25 41 41 40 45

50th 

percentile

CL(95%) 75th 

percentile

CL(95%)
Food sourcePredator

CL(95%)25th 

percentile

 

Table 2 - Survival of 25
th

, 50
th

 and 75
th

 percentiles with confidence limits (95 %) of predatory mites females fed with different food 

sources.  
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A B

Lower Upper Lower Upper

18.1 ± 0.546 a 0.00027 0.00001 0.00052 2.672 2.366 2.979 0.25

10 ± 1.153 b 0.00479 0.0002 0.00939 1.928 1.585 2.271 0.79

12.1 ± 0.766 b 0.00117 0.00004 0.00231 2.372 2.037 2.707 0.42

11.6 ± 0.832 b 0.00174 -0.00047 0.00395 2.038 1.624 2.453 0.53

Amblyseius andersoni

18.2 ± 0.904 a 0.00113 0.00037 0.00189 2.489 2.245 2.732 0.41

10.4 ± 0.965 bc 0.00707 -0.00065 0.0148 1.437 1.107 1.767 0.87

13.3 ± 0.651 b 0.00213 -0.00032 0.00459 1.87 1.513 2.228 0.61

9.2 ± 0.489 c 0.00097 -0.00018 0.00211 2.375 1.975 2.774 0.54

Typhlodromus pyri

20.8 ± 0.8 a 0.00032 0.00006 0.00058 2.616 2.355 2.876 0.29

14.2 ± 0.611 b 0.00052 -0.00005 0.00109 2.442 2.088 2.796 0.33

13 ± 0.557 b 0.00035 -0.00001 0.00071 2.672 2.328 3.016 0.31

9.1 ± 0.604 c 0.00097 -0.00023 0.00217 2.266 1.865 2.667 0.61

Phytoseius finitimus

11.6 ± 0.945 a 0.00002 -0.00002 0.00006 3.313 2.783 3.844 0.42

3.5 ± 0.344 b 0.00022 -0.00041 0.00085 2.581 1.715 3.448 0.9

3.2 ± 0.416 b 0.00112 -0.00159 0.00384 2.261 1.459 3.064 0.89

2.8 ± 0.489 b 0.00012 -0.00019 0.00043 2.991 2.159 3.823 0.42

CI (95%) CI (95%)
b
Pseudo - R

2

K. aberrans

T. pyri

A. andersoni

T. pyri

Pollen

Pollen

Pollen

K. aberrans

P. finitimus

T. pyri

K. aberrans

P. finitimus

A. andersoni

a
Eggsmx 

(Eggs)

P. finitimus

Kampimodromus aberrans

Pollen

A. andersoni

Table 3 - Parameters and confidence intervals estimated by fitting the age-specific oviposition of Kampimodromus aberrans, Typhlodromus 

pyri, Amblyseius andersoni and Phytoseius finitimus females fed with different food sources to a Weibull density distribution model. All 

models fit the data (p < 0.01).
 ♦

 Different letters indicate significant differences at Tukey – Kramer test (P = 0.05).* Pseudo-R
2
 values were 

calculated according to Schabenberger (1998).  
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Abstract  

Kampimodromus aberrans is an effective predatory mite in fruit orchards. The side-effects 

of insecticides on this species have been little studied. Field and laboratory experiments were 

conducted to evaluate the effects of insecticides on K. aberrans. Field experiments showed 

the detrimental effects of etofenprox, tau-fluvalinate and spinosad on predatory mites. Spider 

mite populations reached higher densities on plots treated with etofenprox and tau-fluvalinate 

than in the other treatments. Single or multiple applications of neonicotinoids caused no 

detrimental effects on predatory mites. In the laboratory, spinosad and tau-fluvalinate caused 

100% mortality. Etofenprox caused a significant mortality and reduced fecundity. The 

remaining pesticides did not affect female survival except for imidacloprid. Thiamethoxam, 

clothianidin, thiacloprid, chlorpyrifos, lufenuron and methoxyfenozide were associated with a 

significant reduction in fecundity. No effect on fecundity was found for indoxacarb or 

acetamiprid. Escape rate resulted as relatively high for etofenprox and spinosad, and to a 

lesser extent thiacloprid. The use of etofenprox, tau-fluvalinate and spinosad resulted as 

detrimental for K. aberrans and the first two pesticides induced spider mite population 

increases. The remaining pesticides caused no negative effects on predatory mites. Some of 

them (reduced fecundity and repellence) should be considered in IPM tactics. 

Introduction 

Mating disruption is widely used to control the codling moth Cydia pomonella L. in several 

European fruit growing areas but insecticides are still needed to control a number of apple 

pests (e.g., aphids, leafminers and scales). Mating disruption is not applicable in a number of 

situations where insecticides remain the most frequent control measure against C. pomonella. 

A high number of fungicide applications are required to control apple scab, powdery mildew 

and other diseases in apple orchards. Multiple pesticide treatments may therefore be applied 

on these crops despite efforts to reduce them following Integrated Pest Management 

strategies. Knowledge of pesticide side-effects on beneficials is essential to preserve their 

populations in a defined crop system and reduce risks from pest outbreaks. Phytophagous 

mites (e.g., Tetranychoidea and Eriophyoidea) are very sensitive to pesticide use and can 

build up large populations when natural enemy’s populations are destroyed by non-selective 

chemicals. Predatory mites belonging to the Phytoseiidae family are key-biocontrol agents of 

phytophagous mites in orchards. Some predatory mite species have been considered as 

representative non-target organisms in perennial crops and a number of testing programmes 

have been undertaken to evaluate the effects of several pesticides on them in laboratory, semi-
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field and field conditions (e.g., Sterk et al., 1999; Bostanian et al., 2009). Pest control 

strategies and mite fauna differ from one geographic region to another, for instance in 

southern and central European orchards or vineyards. Studies on the compatibility of 

pesticides with conservation biological control tactics based on predatory mites should be 

developed at a regional level considering potentially involved factors (Bostanian et al., 2010; 

Lefebvre et al., 2011, 2012). Predatory mites can be released artificially in orchards using 

inexpensive techniques to accelerate biological control processes and the release of pesticide 

resistant predatory mites has attracted a number of researchers who have obtained promising 

results (e.g., Baillod and Guignard, 1984; Prokopy and Christie, 1992; Solomon et al., 1993; 

Blommers, 1994; Lester et al., 2000; Marshall et al., 2001; Jung et al., 2004; Duso et al., 

2009). Among predatory mites occurring in Europe Kampimodromus aberrans (Oudemans) 

proved to be effective in controlling phytophagous mite populations in vineyards (Ivancich 

Gambaro, 1973; Duso, 1989; Girolami et al., 1992; Kreiter et al., 2000; Tixier et al., 1998; 

Duso et al., 2012). However, its potential proved to be limited for a long time because of its 

susceptibility to several pesticides, mainly Ethylene-bis-dithiocarbamate (EBDC) fungicides 

and broad-spectrum insecticides such as organophosphates (OPs) (Ivancich Gambaro, 1973; 

Girolami, 1987; Pozzebon et al., 2002). Kampimodromus aberrans has also been detected in 

other agricultural systems, mainly hazelnuts and apples (e.g., Garcia-Marì et al., 1989; 

Fischer-Colbrie and El Borolossy, 1990; Espinha et al., 1995; Nicotina and Cioffi, 1998; 

Tsolakis et al., 2000; Kasap, 2005). In most of these studies K. aberrans was detected in 

untreated orchards or with a low pesticide pressure. While commercial hazelnuts are not 

subjected to many pesticide treatments, the number of insecticide applications per year in 

conventional apple orchards can be significant (e.g., 6-10 per year in Northern Italy if mating 

disruption is not adopted, see Angeli et al., 2007). Strains resistant to conventional pesticides 

(OPs, carbamates, pyrethroids) in European fruit orchards have been reported in two 

predatory mite species, i.e. Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) 

since the 1970s and this can explain their dominance over heterospecifics (e.g., Ivancich 

Gambaro, 1975; Van de Baan et al., 1985; Anber and Overmeer, 1988; Duso, 1992; Duso et 

al., 1992; Blommers, 1994; Baillod and Guignard, 1984; Fitzgerald and Solomon, 2000, 

2002). Strains of K. aberrans apparently resistant to OPs and EBDC fungicides have been 

reported to occur in some vineyards located in northern Italy (Corino et al., 1986; Vettorello 

and Girolami, 1992; Posenato, 1994). Resistance to EBDCs was then demonstrated 

definitively in France (Auger et al., 2004) and to OPs in Italy (Tirello et al., 2012). Climate 

change in the last decades resulted in unusually high temperatures in Italian subalpine areas 
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(e.g. Trentino) and these conditions seemed to affect both A. andersoni and T. pyri persistence 

and performance (Angeli, pers. comm.). K. aberrans proved to persist in conditions of prey 

scarcity and high temperatures and to compete with these predatory mite species (Duso and 

Vettorazzo, 1999). Therefore K. aberrans was selected for experimental releases in Trentino 

apple orchards. A strain originating from the neighbouring Veneto region and apparently 

resistant to various pesticides (Posenato, 1994) was introduced in a number of commercial 

apple orchards located in the Trentino region in the late 1990s. Releases were successful and 

K. aberrans displaced native predatory mites (including T. pyri and A. andersoni) despite the 

application of various insecticides and fungicides (Duso et al., 2009). In this and other areas 

broad-spectrum insecticides have recently been replaced by insecticides with a lower risk for 

human health, e.g. some insect growth regulators (IGRs) and neonicotinoids. However, the 

impact of these products on predatory mites is not well investigated (e.g., see Bostanian et al., 

2009, 2010 for North-American species). Field experiments were conducted to evaluate the 

effects of insecticides frequently applied in European apple orchards on this K. aberrans 

strain. At the same time laboratory studies aimed at assessing lethal and sub-lethal effects of 

these pesticides were conducted to provide information useful for improving Integrated Pest 

Management (IPM) strategies. 

 

Materials and Methods 

Field studies 

The effects of a number of insecticides on K. aberrans populations were evaluated in an 

apple orchard located at the experimental station of E. Mach Foundation (FEM, S. Michele 

all’Adige, Trento, Italy) in the 2009 and 2010 growing seasons. The orchard surface area was 

approximately 5000 m
2
 and contained 12 years old Golden Delicious plants. Seven 

insecticides commonly applied in apple orchards in Europe and elsewhere were considered: 

chlorpyrifos, thiacloprid, acetamiprid, lufenuron, indoxacarb, methoxyfenozide and 

etofenprox. 

Insecticides were applied according to codling moth control timing. In 2009, they were 

applied on 18 June and 15 July; acetamiprid was used on the first date only. In 2010, pesticide 

applications were on 25 May and 25 June. A randomized block design was adopted with four 

replicates per treatment. Sampling was conducted before and approximately every 10 days 

after insecticide applications (until 12 August 2009, and 21 July 2010). A total of 60 leaves 

per treatment (15 leaves per replicate) were removed and transferred to the laboratory where 
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predatory and phytophagous mites, eventually present, were counted under a dissecting 

microscope. The phytoseiids were mounted on slides, in Hoyer's medium, and identified 

under a phase contrast microscope. Data were analyzed with a Restricted Maximum 

Likelihood (REML) repeated measures model with the SAS MIXED procedure (SAS Institute 

Inc., 1999). Mite densities were considered as response variables with repeated measures 

made at different times, i.e. sampling dates. Using an F test (α = 0.05) we evaluated the effect 

of insecticide application, time and their interaction. Contrasts (α = 0.05) were designed for 

pairwise comparison between treatments before and after insecticide applications. Degrees of 

freedom were estimated using the Kenward-Roger method (Littell et al., 1996). According to 

Aikaike’s Information Criterion, first-order autoregressive was chosen as best fitting 

covariance structure for correlating different sampling dates (Littell et al., 1996). Data were 

checked for analysis assumptions and square-root transformation was applied.  

Two additional experiments were performed in 2011 in other apple orchards located in 

Trentino. In the first experiment, the effects of clothianidin, thiacloprid, imidacloprid, tau-

fluvalinate, thiamethoxam and acetamiprid were compared on K. aberrans populations. An 

untreated control was included for a comparison. The number of insecticide applications (1, 2 

or 3) was considered as nested effect within each insecticide treatment. The overall 

experimental design resulted in 20 treatments. Insecticides were applied on 23 May, 22 June, 

and 21 July. A completely randomized block design with three replicates per treatment was 

adopted. In the second experiment, spinosad and etofenprox were compared with an untreated 

control to assess their impact on K. aberrans populations. Insecticides were applied on 8 June. 

A completely randomized block design with four replicates per treatment was used. Leaves 

and mites were processed as in the previous experiment. Data of 2011 experiments were 

analyzed with a Restricted Maximum Likelihood (REML) repeated measures model with 

treatments; times and their interactions were considered as sources of variation and F tests 

were used to evaluate their effects (α = 0.05). Degrees of freedom were estimated using the 

Kenward-Roger method (Littell et al., 1996). Mite densities were considered as response 

variables with repeated measurements at different times, i.e. sampling dates. Data were 

checked for normality assumption and thus the number of phytoseiids per leaf was log (x+1) 

transformed prior to the analyses. The SLICE option of the LSMEANS statement was used to 

test treatment effect variation during observation periods (SAS Institute Inc., 1999). For the 

first experiment of 2011 differences among treatments were evaluated with a t-test with 

Bonferroni adjustment (α = 0.05) to least square means, while for the second experiment 

pairwise comparison between treatments in the period after treatment were performed using 
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contrasts (α = 0.05). 

Laboratory studies 

Pesticides applied in field trials were tested at the same concentrations in the laboratory. 

Apple leaves were treated with pesticides and then young K. aberrans females were 

transferred onto the leaves to expose them to fresh pesticide residues. The detailed 

experimental procedure is reported in Tirello et al., (submitted). Fresh pollen was provided 

every two days as food for predatory mites. The experimental units were kept in a climatic 

chamber at 25 ± 2 °C, 70 ± 10% relative humidity and 16L: 8D photoperiod. Effect of 

pesticides on female mortality was evaluated after 72 h. Surviving females were observed 

daily for additional four days to assess effects on fecundity. Eggs’ hatching was also 

monitored until 100 % hatching rate was reached in the control. Escaped or drowned females 

were removed from the initial number. In total we assessed 45-50 females per pesticide. 

We performed one-way ANOVA with F test (P = 0.05) to evaluate the effect of pesticides 

on mite survival, fecundity, escape rate and egg hatching using GLM procedure of SAS 
40

. 

Treatments were compared using Tukey–Kramer test (P = 0.05). In order to meet the ANOVA 

assumptions, data on survival were arcsin-transformed while square-root transformation was 

applied to data on fecundity. The Blümel and Hausdorf 
43

 formula was used for fecundity 

calculation. The overall toxicity of each pesticide was expressed as:  

E = 100% - (100% - M)
.
R 

Where E is the coefficient of toxicity; M is the corrected mortality according to Abbott 

(1925); R is the ratio between the average number of hatched eggs produced by treated 

females and the average number of hatched eggs produced by females in the control group. 

Results 

Field studies 

In 2009, the first insecticide application affected K. aberrans populations (F 7, 50.1= 6.94; P 

< 0.001). No differences were observed among treatments prior to insecticide applications (F 

7, 140= 1.85; P = 0.081). Later, predatory mite numbers were significantly reduced by 

etofenprox compared to other treatments (P < 0.01 in all comparisons; Figure 1). There were 

no differences among treatments before the second insecticide application (F 6, 99.8= 1.74; P = 

0.119) but they emerged on the subsequent sampling dates (F 6, 37.3= 3.07; P = 0.015; Figure. 

1). Lower K. aberrans numbers were recorded in etofenprox treated plots compared to the 

control (F 1, 40.8= 5.22; P = 0.027), chlorpyriphos (F 1, 40.8= 4.27; P = 0.045) and indoxacarb (F 
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1, 40.8= 10.17; P = 0.002). Higher predatory mite densities were observed in indoxacarb 

compared to methoxyfenozide plots (F 1, 40.8= 6.28; P = 0.016). No differences were observed 

among etofenprox, lufenuron, thiacloprid and methoxyfenozide (P > 0.05 in all comparisons). 

Among phytophagous mites, the presence of Panonychus ulmi (Koch) was detected. 

Panonychus ulmi populations reached low levels with no effect of insecticides (F 7, 56.3= 0.46; 

P = 0.862; F 7, 46.2= 0.97; P = 0.471; after the first and second application respectively Figure. 

1). 

In 2010, K. aberrans populations increased from May to June when relatively high 

densities were reached. The first insecticide application exerted significant effects on K. 

aberrans populations (F 7, 21.7= 21.96; P < 0.001). Predatory mite numbers dramatically 

declined after the use of etofenprox (P < 0.001 in all comparisons; Figure 2). There were no 

significant effects when the remaining insecticides were applied (P > 0.15 in all comparisons). 

A significant effect of insecticide application was observed on P. ulmi (F 1, 38.7= 2.93; P = 

0.015), which reached higher densities on etofenprox treated plants (P < 0.01 in all 

comparisons; Figure 2). No effect of the other insecticides was observed (P > 0.4 in all 

comparisons). An additional insecticide treatment was applied in late June. Considering the 

overall season, the effect of the two insecticide treatments on K. aberrans populations was 

significant (F 7, 50= 51.94; P < 0.001), and etofenprox was confirmed to be the most 

detrimental (P < 0.001 in all comparisons). No differences emerged among other insecticides 

(P > 0.10 in all comparisons). At the same time P. ulmi densities were significantly higher in 

etofenprox plots than in other treatments (F 7, 62.5= 18.80; P < 0.001; P < 0.0001 in all 

comparisons). No differences were found among the others treatments (P > 0.4 in all 

comparisons). 

In the first experiment of 2011, a significant variation in K. aberrans numbers was found 

among treatments (F 18, 321= 42.34; P < 0.0001) and over time (F 9, 321= 36.03; P < 0.0001). 

There was also a significant interaction between treatments and time (F 162, 286= 2.10; P < 

0.0001). No differences among treatments were found prior to the first insecticide application 

(F 18, 373= 1.13; P = 0.324) while significant differences emerged later (Table 2; Figure 3). In 

particular, insecticide applications determined low numbers of predatory mites compared to 

the control, independently of application frequency (Table 2; Figure 3). Among insecticides, 

tau-fluvalinate was the most detrimental to predatory mites (Table 2; Figure 3). Panonychus 

ulmi was present and its population level differed among treatments (F 18, 111= 6.00; P < 

0.0001) and sampling times (F 9, 331= 21.89; P < 0.0001), and a significant interaction 

“treatment*time” was found (F 162, 292= 3.63; P < 0.0001). There was no effect of treatments 
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before the first insecticide application (F 18, 340= 0.05; P = 1) but later higher spider mite 

densities were associated with applications of tau-fluvalinate (Table 3).  

In the second experiment of 2011, insecticide application was associated with a decrease in 

predatory mite numbers (F 2, 11.1= 29.82; P < 0.0001; Figure 4). Kampimodromus aberrans 

density changed over time (F 4, 33.5= 26.67; P < 0.0001) and a significant interaction 

‘treatment*time’ was found (F 8, 33.8= 3.94; P = 0.002). There were no differences among 

treatments prior to insecticide application (F 2, 33.5= 0.21; P = 0.81). After insecticide 

treatment, higher levels of predatory mites were found in the control compared to spinosad (F 

1, 12.6= 57.18; P < 0.0001, Figure. 4) and etofenprox (F 1, 12.6= 55.73; P < 0.0001, Figure 4). No 

differences were found between spinosad and etofenprox (F 1, 12.6= 0.01; P = 0.925, Figure. 4). 

Low P. ulmi densities were detected without differences among treatments (F 2, 9.31= 0.97; P = 

0.413; Figure. 4).  

Laboratory studies 

Pesticides affected K. aberrans survival (F 11, 503= 133.80; P < 0.0001; Figure 5) and 

fecundity (F 9, 258= 21.76; P < 0.0001; Figure 5). Spinosad and tau-fluvalinate caused 100% 

mortality. The two formulations of etofenprox caused 90.7% and 58.2% mortality respectively 

and survived females manifested lower fecundity (Table 2). The remaining pesticides did not 

affect female survival except for imidacloprid, where a survival of 81.7% was observed along 

with a low level of fecundity (Figure. 5, Table 2). Thiamethoxam, clothianidin, thiacloprid, 

chlorpyrifos, lufenuron and methoxyfenozide were associated with a significant reduction in 

fecundity (Figure 5, Table 2). No effect on fecundity was found for indoxacarb and 

acetamiprid (Figure 5).  

Escape rate was also affected by pesticides (F 11, 519= 5.29; P < 0.0001), resulting as 

relatively high for the two formulations of etofenprox, spinosad, and to a lesser extent 

thiacloprid. Escape rates of other pesticides were not significantly different compared to the 

control (Figure5). 
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Discussion  

In field trials etofenprox and tau-fluvalinate applications were associated with significant 

effects on K. aberrans densities. Data on etofenprox confirm previous observations conducted 

on K. aberrans in vineyards (Girolami et al., 2001; Tosi et al., 2006). The detrimental effects 

of tau-fluvalinate on predatory mites also confirm the results obtained in other investigations 

(Petitt and Karan, 1991; Bellows et al., 1992; Grout et al., 1997; Amin et al., 2009). Our 

laboratory study shows that these effects involve essentially the survival of predatory mites. 

The effects of etofenprox on females exposed to fresh pesticide residues were comparable 

with those reported for Neoseiulus longispinosus (Evans) (Kongchuensin and Takafuji, 2006). 

In the latter study the detrimental effects of etofenprox declined when the predatory mite was 

exposed to aged residues. We also showed a repellent activity of etofenprox on K. aberrans in 

the laboratory. Lethal and sub-lethal effects of tau-fluvalinate and etofenprox on K. aberrans 

females were associated with spider mite increases in the experimental plots. It should be 

stressed that pyrethroid residues also induce sub-lethal effects on spider mites, e.g. increasing 

locomotory activity or escape (Bowie et al., 2001; Holland and Chapman, 1994). Field 

concentrations of pyrethroids can disrupt predator-prey dynamics in apple orchards 

(Bostanian et al., 1985; Bowie et al., 2001) and this was observed in our trials. The residual 

toxicity of pyrethroids on predatory mites can differ among active ingredients, that of 

etofenprox being lower than that of cypermethrin (Kongchuensin and Takafuji, 2006). These 

differences may have practical implications in field conditions. 

Spinosad exerted dramatic effects on K. aberrans populations and this was likely due to 

its impact on predatory mite survival. A significant escape rate was also observed with 

spinosad suggesting its repellence to predatory mites exposed to foliar residues. 

Investigations on the effects of spinosad on different predatory mite species gave 

contrasting results (e.g. Williams et al., 2003; Kim et al., 2005; Van Driesche et al., 2006; 

Villanueva and Walgenbach, 2005; Yoo and Kim, 2000; Ahn et al., 2004). However, 

studies conducted in conditions similar to those in the present study showed significant 

effects of spinosad on predatory mites. An experimental work conducted in a vineyard 

showed 54-60% reduction in K. aberrans population size 10 and 20 days after spinosad 

treatment, respectively (Tosi et al., 2006). In another field trial T. pyri population density 

was reduced by 43% by one spinosad application (Miles and Dutton, 2003). Our laboratory 

results highlighted the toxic effects of spinosad in the laboratory at 14.4 g a.i. hl
-1

. The 

response to spinosad by other predatory mites (e.g. Phytoseiulus persimilis Athias-Henriot) 

in the laboratory appeared to be less dramatic than that seen for K. aberrans (Williams et 
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al., 2003). Duso et al., (2008) tested spinosad at 36 g a.i. hl
-1

 and found 47% mortality of P. 

persimilis females along with a 57% reduction in oviposition. The possibility of combining 

P. persimilis releases and spinosad applications has been explored with some positive 

results (e.g. Ahn et al., 2004; Holt et al., 2006; Miles and Dutton, 2003). This is probably 

due to the relatively low persistence of spinosad. Direct exposure to spinosad resulted in 

>90% mortality in various predatory mites but this effect was dramatically reduced when 

aged residues were considered (Miles and Dutton, 2003; Kongchuensin and Takafuji, 2006; 

Bernard et al., 2010; Rahman et al., 2011). The compatibility of spinosad with predatory 

mite releases depends on the time after pesticide application. This is more important for 

protected crops than for perennial ecosystems where conservation biological control is 

crucial and the use of unselective pesticides can cause serious problems with spider mites 

for a long time. Field data reported in this work show a significant impact of a single 

application of spinosad on K. aberrans populations. This could have much more importance 

when multiple applications of spinosad are planned, such as on organic farms where 

pesticide use is restricted to few compounds. Repeated applications of spinosad on organic 

apple orchards were associated with failures of K. aberrans releases (S. Ahmad, unpub. 

data) and semi-field experiments conducted on the same predatory mite confirmed this 

detrimental effect (Pozzebon et al., unpub. data).  

In the present study, neonicotinoids exhibited some effects on K. aberrans in field 

conditions but the response of the predatory mites differed among trials. There were no 

effects on spider mite outbreaks after single or multiple applications of neonicotinoids in 

contrast with previous findings in North America (Beers et al., 2005). Our laboratory 

studies showed a low effect of neonicotinoids on K. aberrans survival confirming the 

results of experiments conducted on other predatory mites (Mizell and Sconyer, 1992; 

James, 1997; James and Vogele, 2001; Poletti et al., 2007; Lefebvre et al., 2011). In other 

studies imidacloprid (0.13 g a.i. l
-1

) was more toxic to G. occidentalis and N. fallacis than to 

A. andersoni when predatory mites were exposed directly to the pesticide (James, 2003). 

Lower rates were still highly toxic to G. occidentalis and N. fallacis. Imidacloprid affected 

the latter species even through systemic and residual routes of exposure. Bostanian et al., 

(2009) reported a high toxicity of imidacloprid and acetamiprid to G. occidentalis adult 

females whereas thiamethoxam and thiacloprid showed slight or negligible effects. In the 

current study neonicotinoids significantly affected K. aberrans fecundity. A similar effect 

was reported for N. californicus exposed to imidacloprid (Castagnoli et al., 2005), N. 

fallacis exposed to thiamethoxam (Villanueva and Walgenbach, 2005), and G. occidentalis 
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exposed to imidacloprid, acetamiprid and to a lesser extent thiamethoxam (Bostanian et al., 

2009). Neonicotinoids (i.e. imidacloprid, thiamethoxam, acetamiprid, and thiacloprid) have 

been reported to cause repellence to predatory mites (Bostanian et al., 2009) and some of 

them (i.e. acetamiprid, imidacloprid and thiamethoxam) alter the functional response of N. 

californicus and Phytoseiulus macropilis (Banks) to their prey Tetranychus urticae Koch 

(Poletti et al., 2007). A repellent effect of thiacloprid has been found in the current study. 

The implication of this phenomenon for biological control of phytophagous mites is not yet 

fully understood. 

The toxicity of neonicotinoids on predatory mites depends on species, strains, pesticide 

history, and experimental testing methods. This may explain the contrasting results reported 

for the most studied compounds. As an example, imidacloprid has been considered slightly 

toxic (Ahn et al., 2004), moderately toxic (Duso et al., 2008) or highly toxic towards P. 

persimilis (Blümel and Hausdorf, 2002; Sterk et al., 2003). Present laboratory tests show that 

imidacloprid affected K. aberrans more than other neonicotinoids in terms of mortality. It also 

reduced egg production compared to acetamiprid. Bostanian et al., (2009) also reported a 

higher toxicity of imidacloprid (and of acetamiprid) to G. occidentalis compared to 

thiamethoxam and thiacloprid. Villanueva and Walgenbach (2005) found similar trends when 

evaluating the mortality of N. fallacis adults exposed to leaf residues of different 

neonicotinoids. Bostanian et al., (2010) conducted an additional evaluation on the toxicity of 

these neonicotinoids to N. fallacis. Imidacloprid and thiamethoxam were toxic to adults and 

reduced their fecundity; acetamiprid and thiacloprid showed lower toxicity levels and were 

recommended for field testing trials. Exposure to imidacloprid increased egg production of the 

predatory mite Amblyseius victoriensis (James, 1997) but this observation was not later 

confirmed. The repellent effect of some neonicotinoids requires additional studies. In our 

studies thiacloprid significantly affected K. aberrans escape rate, a parameter likely associated 

with repellence. Bostanian et al., (2009) also observed repellent effects of thiacloprid on G. 

occidentalis in the laboratory. The implications of this phenomenon need to be investigated.  

The compatibility of neonicotinoids with IPM is a matter of discussion. Imidacloprid and 

thiamethoxam have been considered good candidates for IPM on some crops (Lee et al., 

2002). However, Grafton-Cardwell et al., (2008) and Bostanian et al., (2009) considered 

imidacloprid and acetamiprid incompatible with IPM programmes. It has been argued that the 

response of spider mites to neonicotinoids application can be strain dependent (Ako et al., 

2006). Repeated applications of acetamiprid were associated with spider mite (P. ulmi and T. 

urticae) outbreaks in US apple orchards (Beers et al., 2005). This situation was less frequent 
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with thiacloprid and clothianidin. According to these authors neonicotinoids did not eliminate 

predatory mites but they inhibited their response to increasing prey populations. Comparative 

toxicity studies may help in understanding the impact of a pesticide in realistic conditions. 

Stavrinides and Mills (2009) evaluated the impact of imidacloprid on the growth rate of the 

spider mite Tetranychus pacificus McGregor and its predatory mite G. occidentalis. 

Imidacloprid led G. occidentalis populations close to extinction, allowing T. pacificus 

populations to increase. They recommended evaluating the demographic effects of pesticides 

on pests and natural enemies for a full assessment of pesticide impacts on biological control. 

Another relevant topic is the route of exposure. Cloyd and Bethke (2011) reviewed the 

possible ways of contamination of predators by neonicotinoids (e.g. ingestion of prey, pollen, 

nectar, plant tissue or plant fluids contaminated by the pesticides) and stressed the potential 

importance of interactions between plants or flowers and pesticides (e.g. concentration and 

metabolites). In another study the effect of thiamethoxam on T. urticae and its predator P. 

persimilis was evaluated by considering different routes of exposure. Residual and 

contaminated food exposures caused higher effects than topical exposure on both mite 

species. Combinations of all routes of exposure caused effects higher than 90%. The impact of 

the pesticide was more favourable to P. persimilis than to its prey by limiting thiamethoxam 

exposure to ingestion of contaminated food (Pozzebon et al., 2011).  

In field trials K. aberrans populations were not affected by chlorpyrifos according to a 

recent evaluation on its resistance to organophosphates (Tirello et al., 2012). However 

chlorpyrifos reduced predatory mite fecundity, confirming trends seen for OP resistant 

Amblyseius andersoni strains (Duso et al., 1992). The compatibility of chlorpyrifos with IPM 

strategies aimed at enhancing the performance of K. aberrans depends on pesticide history 

(Mori et al., 1999).  

Lufenuron and methoxyfenozide showed low effects on K. aberrans strain survival with 

some effect on fecundity, while indoxacarb proved to be the most selective among the tested 

pesticides. Our results confirm the findings of some field trials conducted on K. aberrans 

(Mori et al., 1999; Tosi et al., 2006) or other predatory mite species (Rodrigues et al ., 2004).  

The present study shed light on lethal and sub-lethal effects of pesticides frequently used in 

orchards. For most pesticides results were consistent with those of field trials available in the 

literature. This suggests that laboratory studies with K. aberrans can predict most effects 

induced by field applications of pesticides on this beneficial. 

 

 

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q2JijcJfeGdgNE1N4kM&author_name=Cloyd,%20RA&dais_id=10778398
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q2JijcJfeGdgNE1N4kM&author_name=Cloyd,%20RA&dais_id=10778398
http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=Q2JijcJfeGdgNE1N4kM&field=AU&value=Bethke,%20JA
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Figure 1 - Population dynamics of Kampimodromus aberrans (A-B) and Panonychus ulmi (C-D) observed in the field experiment during 

2009. Arrows indicate insecticide application. 
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Figure 2 - Population dynamics of Kampimodromus aberrans (A) and Panonychus ulmi (B) 

observed in the field experiment during 2010. Arrows indicate insecticide application. 
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Figure 3 - Population dynamics of Kampimodromus aberrans (A, B, C) and Panonychus ulmi (D, E, F) observed in the first field experiment of 

2011. Arrows indicate insecticide applications. 
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Figure 4 - Population dynamics of Kampimodromus aberrans (A) and Panonychus ulmi (B) 

observed in the second field experiment of 2011. Arrows indicate insecticide applications. 
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Figure 5 - Effects of selected insecticides on survival (A) fecundity (B) and escape rate (C) of 

Kampimodromus aberrans in laboratory tests. Etofenprox* indicates treatment with the 

commercial formulation Trebon Up
®
.  

 



 

 

114 

Table  1 - Pesticides applied in laboratory and field trials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRAC 

Group

Chemical       Sub-

group

Active Ingredient Trade Mark Dose Concentration of 

Formulation

Field

1B
Organophosphates Chlorpyrifos Dursban

®
 75WG 70 g hL

-1   2009 2010

3A Pyrethroids Etofenprox Trebon star
® 

100 ml hL
-1

158 g L
-1 2009 2010    

Trebon Up 100 ml hL
-1

200 g L
-1 2011

Tau-fluvalinate Klartan
®

 20EW 75 ml hL
-1

240 g L
-1 2011

4A Neonicotinoids Acetamiprid
Epik

®

37.5 g hL
-1

  2009 2010 

2011

Clothianidin
Dantop

®
 50WG

15 g hL
-1   2011

Imidacloprid Confidor
®

 200SL
50 ml hL

-1 200 g L
-1 2011

Thiamethoxam Actara
®

 25WG 30 g hL
-1   2011

5 Spinosyns Spinosad Laser
® 

20 ml hL
-1

480 g L
-1   

15 Benzoylureas Lufenuron Match Top
®

100 ml hL
-1

50 g L
-1 2009 2010    

18 Diacylhydrazines Methoxyfenozide Prodigy
®

40 ml hL
-1

240 g L
-1 2009 2010    

22A Oxadiazine Indoxacarb  Steward
®

16.5 g hL
-1 - 2009 2010
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Table 2 - Effects of selected pesticides on survival and fecundity of K. aberrans; the 

coefficient of toxicity is also reported. Etofenprox* indicates treatment with the commercial 

formulation Trebon Up
®
. 
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active ingredient

number of 

applications
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

t 5.22 4.91 5.27 5.01 4.60 4.70 5.97 6.55 6.09 3.64 5.37 4.25 4.84 4.29 4.89 16.82 16.76 15.84

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

t -0.31 0.05 -0.21 -0.62 -0.51 0.75 1.33 0.87 -1.58 0.15 -0.96 -0.38 -0.93 -0.33 11.60 11.54 10.62

P 0.7569 0.9567 0.8323 0.5347 0.6086 0.4556 0.1869 0.3833 0.1175 0.8831 0.3367 0.703 0.3565 0.7422 <0.0001 <0.0001 <0.0001

t 0.36 0.10 -0.31 -0.20 1.06 1.64 1.19 -1.27 0.46 -0.65 -0.07 -0.62 -0.02 11.91 11.85 10.93

P 0.716 0.9221 0.7553 0.8393 0.2918 0.1041 0.2383 0.2079 0.648 0.5142 0.9428 0.5394 0.9845 <0.0001 <0.0001 <0.0001

t -0.27 -0.68 -0.57 0.69 1.27 0.82 -1.63 0.09 -1.02 -0.44 -0.98 -0.38 11.55 11.49 10.56

P 0.7902 0.4997 0.5712 0.489 0.2055 0.4135 0.1055 0.926 0.3103 0.6632 0.329 0.7016 <0.0001 <0.0001 <0.0001

t -0.41 -0.30 0.96 1.54 1.09 -1.36 0.36 -0.75 -0.17 -0.71 -0.12 11.81 11.76 10.83

P 0.6822 0.7637 0.3386 0.1263 0.2791 0.175 0.7197 0.4534 0.8653 0.4769 0.9067 <0.0001 <0.0001 <0.0001

t 0.11 1.37 1.95 1.5 -0.95 0.77 -0.34 0.24 -0.3 0.29 12.22 12.17 11.24

P 0.9133 0.1729 0.0535 0.1368 0.3421 0.4428 0.7331 0.8104 0.7624 0.7701 <0.0001 <0.0001 <0.0001

t 1.26 1.84 1.39 -1.06 0.66 -0.45 0.13 -0.41 0.18 12.11 12.06 11.13

P 0.2094 0.0681 0.1676 0.2899 0.5099 0.6528 0.8958 0.6809 0.8545 <0.0001 <0.0001 <0.0001

t 0.58 0.13 -2.32 -0.60 -1.71 -1.13 -1.67 -1.08 10.85 10.79 9.87

P 0.5637 0.8995 0.0217 0.5489 0.0893 0.2604 0.0967 0.2831 <0.0001 <0.0001 <0.0001

t -0.45 -2.90 -1.18 -2.29 -1.71 -2.25 -1.66 10.27 10.22 9.29

P 0.6518 0.0044 0.2403 0.0236 0.0899 0.0261 0.1001 <0.0001 <0.0001 <0.0001

t -2.45 -0.73 -1.84 -1.26 -1.80 -1.20 10.72 10.67 9.74

P 0.0157 0.4683 0.0683 0.2111 0.0743 0.2307 <0.0001 <0.0001 <0.0001

t 1.72 0.61 1.19 0.65 1.25 13.18 13.12 12.20

P 0.0873 0.5417 0.2347 0.5164 0.2149 <0.0001 <0.0001 <0.0001

t -1.11 -0.53 -1.07 -0.48 11.45 11.40 10.47

P 0.2684 0.5974 0.2854 0.6342 <0.0001 <0.0001 <0.0001

t 0.58 0.04 0.63 12.56 12.51 11.58

P 0.5615 0.9691 0.5268 <0.0001 <0.0001 <0.0001

t -0.54 0.05 11.98 11.93 11.00

P 0.5878 0.9582 <0.0001 <0.0001 <0.0001

t 0.6 12.53 12.47 11.54

P 0.5523 <0.0001 <0.0001 <0.0001

t 11.93 11.87 10.95

P <0.0001 <0.0001 <0.0001

t -0.06 -0.98

P 0.9548 0.3287

t -0.92

P 0.3574

acetamiprid tau-fluvalinate

control

thiamethoxam

1

thiamethoxam thiacloprid imidacloprid clothianidin

2

thiacloprid

imidacloprid

clothianidin

acetamiprid

tau-fluvalinate

2

1

3

3

1

2

1

3

1

2

3

2

3

2

1

Table 3 - Results of pairwise t-test on the least square means of Kampimodromus aberrans 

population observed in different treatments during 2011. Degree of freedom = 121. Bold 

numbers indicate significant differences after Bonferroni adjustment of the critical alpha value 

(0.05/121 = 0.00041). 
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active ingredient

number of 

applications
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

t 2.03 0.58 0.40 0.37 0.03 0.08 0.03 0.16 0.00 0.05 -0.28 -0.24 -0.19 -0.59 -0.63 -9.00 -10.56 -8.09

P 0.0468 0.5615 0.6935 0.7154 0.976 0.9352 0.9745 0.8734 0.9985 0.9614 0.783 0.8136 0.8502 0.5562 0.5306 <0.0001 <0.0001 <0.0001

t 1.44 1.63 1.66 2.00 1.95 2.00 1.87 2.03 2.08 1.75 1.79 1.84 1.44 1.40 -6.97 -8.53 -6.07

P 0.1537 0.1077 0.1016 0.0501 0.0561 0.0503 0.0664 0.0466 0.0419 0.0848 0.0781 0.0707 0.1559 0.1673 <0.0001 <0.0001 <0.0001

t 0.19 0.22 0.55 0.50 0.55 0.42 0.59 0.63 0.31 0.35 0.39 -0.01 -0.05 -8.41 -9.98 -7.51

P 0.8517 0.8286 0.5819 0.6174 0.5832 0.6733 0.5603 0.5295 0.7598 0.7299 0.6949 0.9937 0.9627 <0.0001 <0.0001 <0.0001

t 0.03 0.37 0.31 0.36 0.24 0.4 0.44 0.12 0.16 0.21 -0.2 -0.23 -8.60 -10.17 -7.7

P 0.9764 0.7158 0.7544 0.7172 0.8143 0.6921 0.6582 0.9054 0.8741 0.8373 0.8455 0.8152 <0.0001 <0.0001 <0.0001

t 0.34 0.28 0.33 0.21 0.37 0.41 0.09 0.13 0.18 -0.23 -0.26 -8.63 -10.20 -7.73

P 0.7379 0.7769 0.7394 0.8373 0.714 0.6796 0.9288 0.8974 0.8604 0.8224 0.7924 <0.0001 <0.0001 <0.0001

t -0.05 0.00 -0.13 0.03 0.08 -0.25 -0.21 -0.16 -0.56 -0.60 -8.97 -10.53 -8.06

P 0.9591 0.9985 0.8971 0.9745 0.9374 0.8062 0.837 0.8738 0.5765 0.5504 <0.0001 <0.0001 <0.0001

t 0.05 -0.08 0.08 0.13 -0.19 -0.16 -0.11 -0.51 -0.55 -8.91 -10.48 -8.01

P 0.9606 0.9378 0.9337 0.8968 0.8461 0.8772 0.9143 0.6118 0.585 <0.0001 <0.0001 <0.0001

t -0.13 0.03 0.08 -0.24 -0.20 -0.16 -0.56 -0.60 -8.96 -10.53 -8.06

P 0.8986 0.973 0.9359 0.8076 0.8384 0.8753 0.5778 0.5516 <0.0001 <0.0001 <0.0001

t 0.16 0.21 -0.12 -0.08 -0.03 -0.43 -0.47 -8.84 -10.40 -7.93

P 0.8719 0.8354 0.9076 0.939 0.9764 0.6675 0.6396 <0.0001 <0.0001 <0.0001

t 0.05 -0.28 -0.24 -0.19 -0.59 -0.63 -9.00 -10.56 -8.10

P 0.9629 0.7815 0.8121 0.8487 0.5549 0.5294 <0.0001 <0.0001 <0.0001

t -0.33 -0.29 -0.24 -0.64 -0.68 -9.04 -10.61 -8.14

P 0.7461 0.7762 0.8124 0.5243 0.4995 <0.0001 <0.0001 <0.0001

t 0.04 0.09 -0.32 -0.35 -8.72 -10.29 -7.82

P 0.9684 0.931 0.7538 0.7245 <0.0001 <0.0001 <0.0001

t 0.05 -0.35 -0.39 -8.76 -10.33 -7.86

P 0.9626 0.7239 0.6951 <0.0001 <0.0001 <0.0001

t -0.40 -0.44 -8.81 -10.37 -7.90

P 0.6891 0.6608 <0.0001 <0.0001 <0.0001

t -0.04 -8.40 -9.97 -7.50

P 0.969 <0.0001 <0.0001 <0.0001

t -8.37 -9.93 -7.46

P <0.0001 <0.0001 <0.0001

t -1.57 0.90

P 0.1223 0.3705

t 2.47

P 0.0163

2

3

2

1

3

1

2

1

3

1

2

3

tau-fluvalinate

2

1

3

thiacloprid

imidacloprid

clothianidin

acetamiprid

acetamiprid tau-fluvalinate

control

thiamethoxam

1

thiamethoxam thiacloprid imidacloprid clothianidin

2

Table 4 -  Results of pairwise t-test on the least square means of Panonychus ulmi population 

observed in different treatments during 2011. Degree of freedom = 63.9. Bold numbers 

indicate significant differences after Bonferroni adjustment of the critical alpha value 

(0.05/63.9 = 0.00078). 
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Abstract 

The enhancement of biological control tactics for a reduction in pesticide use in agriculture 

is an important issue in agro-ecosystem management studies.  In the last decades, there has 

been increasing interest in conservation biological control, which includes agricultural 

practices aimed at the promotion of natural enemies through the provision of plant-derived 

food sources for natural enemies. In several agricultural systems, natural enemies are 

endangered by the insecticide necessary to control key pests. Here we investigate the impact 

of the provision of plant-derived food sources on the effects of pesticides on beneficial 

predatory mites.   

Experiments were performed using Kampimodromus aberrans, which is a generalist 

predatory mite of phytophagous mites on several perennial crops. In laboratory we evaluated 

the influence of pollen dose and pollen application frequency on lethal and sub-lethal effect of 

two pesticides (chlorpyrifos, spinosad).  Using potted plant experiment, the effects of 

pesticides and pollen were assessed at predatory mite population level.  

Predatory mite fecundity increased by augmenting pollen amount and application 

frequency. Survival and fecundity were reduced by insecticides: spinosad was more toxic than 

chlorpyrifos. High pollen application frequency compensated for the negative effect of 

chlorpyrifos. Potted plant experiment confirms also at predatory mite population level the 

positive effect of pollen application and the negative effect of insecticide treatments. Spinosad 

was confirmed to be detrimental, independently from pollen application. Pollen application 

reduced the impact of chlorpyrifos on K. aberrans. Without pollen application predatory mites 

numbers were similar between spinosad and chlorpyrifos.  

Results obtained here highlighted the importance of the nutritional quality of food provided 

to predatory mites. The provision of fresh pollen is of particular importance when pesticides 

are applied. Pollen can be contaminated by insecticides and the provision of uncontaminated 

fresh pollen can decrease the exposure to pesticides with a reduction in their detrimental 

effects. The findings obtained here stress that management practices aimed at food source 

availability can mitigate the effect of pesticides on natural enemies, promoting their 

persistence in agro-ecosystems.  
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Introduction 

The enhancement of biological control tactics for a reduction in pesticide use in agriculture 

is an important issue in agro-ecosystem management studies (Bale et al., 2008; Pretty, 2008; 

Whittingham 2011) and it is also considered in European policy (e.g., Directive 

2009/128/EC). In the last decades, there has been increasing interest in conservation 

biological control, which includes agricultural practices aimed at modifying the environment 

for the enhancement and protection of specific natural enemies (Barbosa 1998; Landis et al., 

2000; Jonsson et al. 2008; Gurr et al., 2004). Conservation biological control tactics are 

mainly based on the promotion of natural enemies characterized by a certain degree of 

polyphagy (Symondson et al., 2002), and an important aspect of this is the provision of plant-

derived food sources for natural enemies (Coll and Guershon, 2002; Wäckers et al., 2005).  

Plant-provided food can improve survival, longevity and fecundity of beneficial arthropods, 

and is of particular importance to overcome periods of prey shortage (Wäckers, 2005; 

Lundgren, 2009). Several measures have been studied to optimize plant-derived food sources, 

such as the provision of food-providing plants and food spray (Landiset al., 2000; Wade et al., 

2008; Simpson et al., 2011b).  

In several agricultural systems the major limitations for natural enemies are the insecticide 

treatments necessary to control key pests. The detrimental effects of pesticides on the complex 

of natural enemies can induce secondary pest outbreaks (e.g., Croft 1990; Ruberson et al., 

1998) with a consequent increase in pesticides use (Steinmann et al., 2011). A reduction of 

the adverse effects of pesticides is a prerequisite for other conservation practices (Landis et 

al., 2000). Several researches have investigated pesticide selectivity on beneficial non-target 

arthropods with the purpose of minimizing the risk associated with pesticide use (e.g., Hassan 

et al., 1994; Sterk et al., 1999). Among conservation practices, some studies evidenced that an 

increase of refuge habitats can help in maintaining the presence of predators in insecticide 

treated fields (Lester et al., 1998; Lee et al., 2001). However, there is a lack of knowledge on 

the impact of the provision of plant-derived food sources in crop systems where pesticides are 

extensively used. 

In this paper we investigated this aspect considering the consequences of plant-derived 

food provision on the impact of insecticide treatments on generalist predatory mites. We 

focused on pollen, which is an extremely rich source of nutrients essential for the 

development and reproduction of various biological control agents (Lundgren, 2009). It is of 

particular importance as an alternative food source to prey for generalist predatory mites 
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(Acari: Phytoseiidae) (McMurtry and Croft, 1997). These predators play a key role in 

controlling spider mites and eriophyoids on perennial crops (e.g., Sabelis 1985; Duso et al., 

2010) and are also bio-indicators for pesticide impact on terrestrial arthropod communities 

(Candolfi et al., 1999; Beaulieu and Weeks, 2007; Bernard et al., 2010). Field observations 

showed that phytoseiid population dynamics on plants are often correlated to pollen 

availability on leaves suggesting that they can persist by exploiting pollen in the absence of 

prey (e.g., McMurtry and Johnson, 1965; Eichhorn and Hoos, 1990; van Rijn and Tanigoshi, 

1999a;  Addison et al., 2000; Duso et al., 2004). In cultivated plant systems, pollen 

availability promote increase in generalist predatory mite population levels (e.g., Kennett, et 

al., 1979; Engel and Ohnesorge, 1994b; Aguilar-Fenollosa et al., 2011; Montserrat et al., 

2011), and can lead to biocontrol improvement (Nomikou et al., 2002; Van Rijn et al., 2002; 

Onzo et al., 2005; Gonzalez-Fernandez et al., 2009; Nomikou et al., 2010; Maoz et al., 2011). 

It is well known that pollen can have a positive effect on oviposition, survival and longevity 

of predatory mites, in some cases resulting as higher or comparable to those of prey (Duso & 

Camporese 1991; Schausberger 1992; Engel & Ohnesorge 1994a; Wei & Walde 1997; 

Vantornhout et al. 2004; Ragusa, Tsolakis & Palomero 2009; van Maanen et al. 2010) or 

other non-prey food substances (Tanigoshi et al., 1993; van Rijn and Tanigoshi, 1999b; 

Gnanvossou et al., 2005; Pozzebon and Duso, 2008; Pozzebon et al., 2009). On the other 

hand, life history parameters of beneficials are negatively influenced by pesticides (Stark et 

al., 2004; Desneux et al., 2007; Stark et al., 2007). The response by generalist predatory mites 

in terms of life history is a topic of basic research in the evaluation of pesticide risks for non-

target arthropods (Bakker 1995; Candolfi et al., 2000 and 2001). Here we evaluated the effect 

of pollen provision on the impact of pesticides on predatory mites at individual and population 

level. The effect of experimental factors was evaluated on life-history parameters in 

laboratory experiments and the effect of pollen and insecticides application were evaluated on 

predatory mite population in a plant-scale manipulative experiment.    
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Materials and methods 

Study system 

Experiments were performed using Kampimodromus aberrans (Oudemans), which is a 

generalist predatory mite inhabiting perennial crops (Chant 1959; Espinha et al. 1995; Kasap 

2005; Miñarro et al., 2005; Broufas et al., 2007). Its role as biocontrol agent has been 

investigated on grapevines (e.g., Duso 1989; Kreiter et al., 2000; Tixier et al., 2002; Duso and 

Vettorazzo, 1999), hazelnuts (e.g., Nicotina and Cioffi 1998; Tsolakis et al., 2000; Ozman-

Sullivan, 2006), and apple orchards (El-Borolossy and Fischer-Colbrie 1989; Schausberger, 

1992; Duso et al., 2009). This study was performed using a K. aberrans strain proved to be 

resistant to organophosphate insecticides (Tirello et al., 2012) collected from a commercial 

apple orchard located at San Michele all’Adige (Trento province, Trentino-Alto Adige 

Region). Prior to the experiments, predatory mite colonies were maintained on mass rearing 

units using various taxa pollen as food.  

We used pollen of cattail Typha latifolia L. in the experiments because is a naturally 

occurring pollen in several agricultural areas, it is easy to collect and has often been used as 

standard food for predatory mite rearing (Van Rijn and Tanigoshi, 1999; Roda et al., 2001; 

Pozzebon., 2009; Park et al., 2011). Pollen was collected during summer and stored in a 

freezer at -20 °C until use.  

Among pesticides used in apple orchards against the codling moth Cydia pomonella L. we 

selected spinosad (Laser ®, Dow AgroSciences, 14.4 a.i. g/hl) and chlorpyrifos (Dursban ®, 

Dow AgroSciences, 31.31 a.i. g/hl). 

Laboratory experiments 

In the first experiment we assessed the suitability of cattail pollen as food source for K. 

aberrans as compared to mite prey. The life table parameters of predatory mites feeding on 

pollen were compared with those feeding on the spider mite Panonychus ulmi (Koch). Sixty 

one-day-old eggs were transferred singly to experimental units consisting of apple leaf discs 

placed on a wet layer of cotton in a plastic box. They were maintained at controlled conditions 

(23 ± 1 °C, 70 ± 10% R.H., 16L: 8D photoperiod) until the end of the experiments. 

Panonychus ulmi juvenile stages or cattail pollen were provided daily. The duration of all 

developmental stages (egg, larva, protonymph, deutonymph, adult) and their survival rate on 

both diets were recorded every 12 hours. When adults were obtained, one male and one 
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female reared on the same food source were placed together in the same experimental unit 

provided with P. ulmi or pollen. Mite oviposition was also monitored every 24 hours. 

Oviposition was recorded until the females’ death. Freshly laid eggs or larvae were regularly 

counted and transferred to a separate detached apple leaf rearing box to check the effects of 

food sources on sex ratio of phytoseiids. Life table parameters [Reproductive rate (Ro); mean 

generation time (T); intrinsic rate of increase (rm); doubling time (Dt); finite rate of increase 

(λ)] were estimated and compared using a SAS-based procedure developed by Maia et al. 

(2000).  

In another experiment predatory mites were exposed to fresh pesticide residues. In this 

experiment pollen was provided at two doses and two frequencies in order to assess its effect 

on the impact of pesticides on predatory mites at individual level. A factorial design was used 

and experimental factors were: insecticide application (chlorpyrifos, spinosad or untreated 

control), pollen dose (low: 0.03 mg/cm
2
; high: 0.33 mg/cm

2
) and pollen application frequency 

(low: once at the start of the experiment; high: every 48 h after the first 72 h). Apple leaf 

sections (6 cm
2
) were immersed in the pesticide solution for 30 sec (water was used in control 

treatments). When pesticide residues had dried, the leaf sections were used to form 

experimental units similar to those described above for rearing. Two coeval K. aberrans 

females were transferred onto leaf sections for a total of 40 females per treatment. Prior to 

females transfer, pollen was provided according to the experimental protocol. Experimental 

arenas were maintained in a climatic chamber at 25 ± 2 °C, 60 ± 10 % RH and a photoperiod 

of 16L: 8D. Female survival and escapes were recorded at 72 and 168 h after treatments and 

fecundity was recorded for 168 h. Data on survival and escapes were analyzed using a 

factorial logistic regression with GENMOD procedure of SAS (SAS Institute, 1999) and a 

likelihood ratio G test (α = 0.05) to evaluate effect of experimental factors and their 

interaction. Differences among treatments were evaluated with a Wald chi-square test (α = 

0.05) to the least-square means. Data on fecundity were analyzed with a REML (Restricted 

Maximum Likelihood) model and the F test (p = 0.05) was applied to assess experimental 

factors and their interaction effects. Differences among treatments were evaluated with a t-test 

(α = 0.05) to the least-square means. Prior to the analysis, data on fecundity were checked for 

normality and homoscedasticity and then transformed in log (x +1).  

Potted plant experiment 

Pesticide and pollen augmentation effects were assessed at population level on potted apple 

plants colonized by K. aberrans. A factorial experimental design was used, where 
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experimental factors were: insecticide application (chlorpyrifos, spinosad and untreated 

control) and pollen application (pollen vs. no pollen). Each treatment comprised four plants 

with 7-10 shoots each.  Predatory mites were released on 2-3 homogenous shoots (about 100 

females per shoot) per plant seven days before insecticide applications using shoots collected 

from an apple orchard. Cattail pollen was sprayed onto selected shoots according to the 

experimental design. A strip of plumber’s tape with a sticky barrier was placed at the base of 

each shoot to avoid mite escapes. Cattail pollen was provided on a half of these plants every 

two days using an experimental sprinkler (Girolami et al. 2000; Baldessari 2005). Mite 

densities and their developmental stages were assessed prior to insecticide applications and 

thereafter at 3, 7 and 15 days after treatments by removing five leaves per shoot. Collected 

leaves were analyzed in the laboratory under a dissecting microscope.  

Data on population density were analyzed with a Restricted Maximum Likelihood (REML) 

repeated measures model with the SAS MIXED procedure (SAS Institute Inc., 1999). 

Densities of K. aberrans adults (male and adults), juveniles (protonymphs, deutonymphs and 

eggs) and motile forms (adults and juveniles), were analyzed separately and considered as 

response variables with repeated measures made at different times, i.e. sampling dates. Plant 

was considered as random effect term. Using an F test (α = 0.05) we evaluated the effect of 

experimental factors, time and their interactions. Slice option was used to partition F test of 

interactions between insecticide application and time.  Interaction contrasts were designed 

with the ESTIMATE statement and tested using a t-test (α = 0.05). Moreover differences 

among treatments at each sampling date were evaluated using a t-test to the least-square 

means (α = 0.05).  The Kenward-Roger method was used for degrees of freedom estimation 

(Littell et al., 1996).  According to Aikaike’s Information Criterion, first-order autoregressive 

proved to be the best fitting covariance structure for correlating different sampling dates 

(Littell et al., 1996). Data were checked for analysis assumptions and untransformed data 

were used. 
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Results 

Laboratory experiments 

 

Effect of pollen on life-table parameters of K. aberrans 

Panonychus ulmi and cattail pollen were suitable food sources for the development of K. 

aberrans. Food sources affected some life-table parameters of K. aberrans: feeding on pollen 

resulted in higher rm, Ro, λ, and lower Dt than feeding on P. ulmi. Mean generation time (T) 

was not influenced by food type (Table 1). 

 

Effect of pesticides and pollen on predatory mites survival and fecundity 

Laboratory studies evidenced a significant effect of insecticide applications on K. aberrans 

survival observed 72 h after treatments (G = 352.87; df = 2; p < 0.001). Survival was higher in 

the control than in chlorpyrifos and spinosad treatments (Figure 1). Survival was not affected 

by different pollen amounts (G = 0.89; df = 1; p = 0.346; Figure 2). Insecticides affected 

escape rate when assessed at 72 h (G = 70; df = 2; p < 0.001), which resulted as higher in 

spinosad than in other treatments (Figure 4). Pollen amount did not affect escape rate assessed 

at 72 h (G = 0.39; df = 1; p = 0.532; Figure 5).   

Insecticides influenced survival rate calculated at 168 h (G = 6.89; df = 2; p = 0.008). 

Predatory mites did not survive spinosad, and significant mortality was induced by 

chlorpyrifos (Figure 1). No effects of pollen amount, nor pollen application frequency were 

observed on survival assessed at 168 h (G = 2.60; df = 1; p = 0.107; G = 0.01; df = 1; p = 

0.99; respectively; Figures 2 - 3). At 168 h, insecticides affected escape rate (G = 33.37; df = 

2; p < 0.001) resulting higher where spinosad was applied compared to the control and 

chlorpyrifos treatments (Figure 4). No effects of pollen amount or pollen application 

frequency were observed on escape rate at 168 h (G = 0.01; df = 1; p = 0.987; G = 0.71; df = 

1; p = 0.40; respectively; Figures 5 - 6). 

Fecundity of K. aberrans was influenced by insecticide application (F = 19.72; df = 1. 132; 

p < 0.001). No eggs were laid where spinosad was applied, and a higher fecundity was 

observed in the control than on chlorpyrifos (Figure 7). Predatory mite fecundity increased by 

augmenting pollen amount (F = 15.83; df = 1, 132; p < 0.001; Figure 7) and application 

frequency (F = 17.58; df = 1, 132; p < 0.001; Figure 7). A significant interaction “insecticide 

application*pollen application frequency” was observed (F = 9.30; df = 1, 132; p = 0.002). At 
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low pollen application frequency fecundity was higher in the control than on chlorpyrifos, 

while no effect of insecticides was observed at high pollen application frequency (Figure 7). 

Potted plant experiment 

 

Pesticides, pollen and predatory mites: Population density 

A general effect of insecticide applications was observed on K. aberrans population 

density and this effect varied over time (Table 2). No differences among treatments were 

found prior to insecticide application (F1, 37.6 = 0.31; P = 0.738). After insecticides application 

motile forms were observed at higher level in control compared to chlorpyrifos (t20.5= 4.01; P 

= 0.0007; Figure 8) and spinosad plots (t20.5= 8.19; P < 0.0001; Figure 8). During the same 

period, densities of motile forms of predatory mites were higher on chlorpyrifos than spinosad 

(t20.5= 4.18; P < 0.0001; Figure 8). The abundance of K. aberrans motile forms was also 

influenced by pollen applications (Table 2), resulting highest where pollen was provided 

(Figure 8). A significant interaction was found among insecticides, pollen application and 

time (Table 2). The interaction between pollen application and insecticides was not significant 

prior to insecticide applications (F1, 37.6 = 0.37; P = 0.863) but emerged thereafter. In 

particular, pollen application determined higher population levels in control (t20.5= 3.34; P = 

0.003; Figure 8) and chlorpyrifos (t20.5= 4.39; P = 0.0003; Figure 8), but not in spinosad plots 

(t20.5= 1.41; P = 0.173; Figure 8). Consequently, differences among insecticide treatments 

were influenced by pollen application. After insecticide application negative effects of 

chlorpyrifos (vs. control: t20.5= 2.31; P = 0.031; Figure 8) and spinosad were found (vs. 

control: t20.5= 6.75; P < 0.031; Figure 8) but motile forms were higher on chlorpyrifos than on 

spinosad where pollen was provided (vs. control: t20.5= 2.31; P = 0.031; Figure 8). Without 

pollen application, motile form density was higher in the control compared to chlorpyrifos 

(t20.5= 3.36; P = 0.003; Figure 8) and spinosad (t20.5= 4.83; P < 0.0001; Figure 8), but there 

were no differences between insecticide treatments (t20.5= 1.41; P = 0.174; Figure 8).  

The effect of experimental factors on K. aberrans adults reflected those on motile forms 

(Table 2).  The interaction among insecticides, pollen applications and time was significant 

(Table 2). This interaction was not significant prior to insecticide applications (F1, 37.1 = 0.51; 

P = 0.769). Considering the period after treatment a positive effect of pollen was found in 

control (t20.6= 2.99; P = 0.007; Figure 8) and chlorpyrifos (t20.6= 3.87; P < 0.001; Figure 8), 

but not in spinosad plots (t20.6= 1.26; P = 0.223; Figure 8). In pollen application treatments, 

negative effects of chlorpyrifos (vs. control: t20.6= 2.32; P = 0.031; Figure 8) and spinosad 
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were found (vs. control: t20.6= 6.18; P < 0.0001; Figure 8). K. aberrans adults reached higher 

numbers in chlorpyrifos than spinosad (vs. control: t20.6= 3.86; P = 0.001; Figure 8).  Without 

pollen, the number of adults was higher in the control compared to chlorpyrifos (t20.6= 3.20; P 

= 0.004; Figure 8) and spinosad (t20.6= 4.45; P = 0.0002; Figure 8), while no differences 

emerged between insecticide treatments (t20.6= 1.25; P = 0.225; Figure 8).  

A positive effect of pollen was found regarding K. aberrans juveniles (Table 2). The 

presence of juveniles was affected by insecticides (Table 2), with the same trend as for motile 

forms and adults. There was a significant interaction between pollen application and 

insecticides, together with the third order interaction “pollen*insecticides*time” (Table 2). 

After treatment a positive effect of pollen was found in control (t85.6= 3.63; P < 0.001; Figure 

8) and chlorpyrifos (t85.6= 5.14; P < 0.001; Figure 8), but not in spinosad plots (t85.6= 1.57; P = 

0.121; Figure 8).  In particular, with pollen application only a negative effect of spinosad (vs. 

control: t85.6= 6.55; P < 0.0001; vs. chlorpyrifos: t85.6= 5.50; P < 0.0001; Figure 8) was found, 

while no differences emerged between chlorpyrifos and control (t85.6= 1.05; P = 0.2987; 

Figure 8).  Without pollen application, juvenile numbers were higher in the control compared 

to chlorpyrifos (t85.6= 2.25; P = 0.012; Figure 8) and spinosad (t85.6= 4.49; P < 0.0001; Figure 

8), while no differences emerged between insecticide treatments (t85.6= 1.94; P = 0.056; Figure 

8). 
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Discussion 

Cattail pollen resulted as being an adequate food source for predatory mites in terms of 

population persistence and increase. Kampimodromus aberrans fed with pollen exhibited a 

better performance compared to those fed with prey. In laboratory experiments with 

pesticides, the provision of a high amount of pollen and the increase of pollen application 

frequency augmented predatory mite fecundity. These results confirmed that predatory mite 

fecundity depends on food amount and stress the importance of the freshness of food provided 

by frequent pollen application. The effect of pollen application frequency was independent 

from the pollen amount provided. Potted plant experiments corroborated the positive effect of 

pollen on predatory mite population: pollen application induced higher predatory mite 

population levels. This effect was evidenced by adults and juveniles. These results confirmed 

the importance of pollen as food source for K. aberrans (Schausberger, 1992; Kreiter et al., 

2002; Kasap, 2005; Ozman-Sullivan, 2006; Lorenzon et al., 2012). When prey availability 

diminishes, the most frequent food source for predatory mites is often windborne pollen and 

thus predatory mite and pollen abundances can be strictly related (Engel and Ohnesorge, 

1994b; Addison et al., 2000; Duso et al., 2004). Pollen is an important source of proteins, 

lipids, carbohydrates and minerals (Lundgren, 2009). However, the nutritional value of pollen 

can degrade over time (Vanbilsen and Hoekstra, 1993; Lundgren, 2009). The results we 

obtained showed that predatory mites gain an advantage from feeding on fresh pollen. The 

beneficial effects of pollen augmentation can be observed in a wide range of natural enemies 

and its augmentation as a practice should be considered for conservation biological control 

(Gurr et al., 2004; Wackers and van Riijn, 2005; Landis et al., 2000; Montserrat et al., 2012). 

Natural enemies of importance in agriculture can be endangered by the lethal and sub-

lethal effects of pesticide use (e.g., Lester et al., 1999; Desneux et al., 2007; Poletti et al., 

2007; Duso et al., 2008; Beers et al., 2009; Bostanian et al., 2009, 2010; Bernard et al., 2010). 

We showed the detrimental effects of spinosad and chlorpyrifos on K. aberrans. Both 

insecticides reduced the survival of this predator, but the mortality caused by chlorpyrifos was 

less dramatic than that by spinosad. Fecundity was also reduced by insecticides. No eggs were 

laid by the few females that survived spinosad, while chlorpyrifos caused a significant 

reduction in fecundity. The K. aberrans strain used in the experiment was collected in 

commercial orchards where organophosphate insecticides were widely applied and showed 

resistance to pesticides of this class (Tirello et al., 2012). Spinosad is a relatively new 

insecticide (Thompson et al., 2000) that has been used less in apple orchards than 
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organophosphates. Resistance to this insecticide in predatory mites has not yet been observed. 

Potted plant experiments confirmed the detrimental effects of insecticides, but with a lower 

magnitude of the effects than that seen in the laboratory. This was not surprising as laboratory 

experiments are often considered as a worst-case scenario where exposure is maximized 

(Candolfi et al., 2000).  

The results obtained highlighted the role of pollen in influencing the impact of pesticides 

on predatory mites. In laboratory trials the increase in frequency of pollen application 

compensated for the negative effect of chlorpyrifos on fecundity. This effect was not observed 

with spinosad. Apart from the effect of pollen amount, the availability of fresh pollen appears 

to be of particular importance. Having a higher nutritional value, fresh pollen compensated for 

the insecticide effects and promoted the reproduction of predatory mites. To our knowledge 

this is the first report on the positive effect of food sources in mitigating the effect of 

pesticides treatment.  

The level of exposure to insecticides can also be involved in the response to fresh pollen 

applications. It is known that organic compounds such as pesticides can be adsorbed by pollen 

grains (Villa et al., 2000; Thio et al., 2011). This is likely to increase with the time of contact 

with insecticide residues. Predatory mites feeding on contaminated pollen are exposed to 

insecticides through ingestion. This can determine multiple exposures to pesticides with an 

increased negative effect on arthropods at sub-lethal level (Banken and Stark 1991; Galvan et 

al., 2006; Pozzebon et al., 2011). The provision of uncontaminated fresh pollen decreased the 

exposure to chlorpyrifos with a reduction in sub-lethal effects. 

This effect was also clear on potted plants. At the end of the experiment, the number of 

predatory mites on pollen treated plants was similar between control and chlorpyrifos (Figure 

8). The positive response to pollen application on chlorpyrifos treated plants emerged first in 

juveniles and then in adults, confirming the role of the effect on fecundity. Laboratory 

experiments showed that survival was not influenced by pollen provision while fecundity was. 

On potted plants receiving pollen, no effect of chlorpyrifos was detected on juveniles during 

the experimental period, whilst without pollen application this insecticide caused a population 

decrease to the same level as spinosad.  

The effect of fresh pollen application on the fecundity of female predatory mites treated 

with different pesticides appears to be related to their toxicity. In the laboratory chlorpyrifos 

induced a reduction in fecundity, but the few females that survived spinosad application were 

unable to produce eggs. The reduction in fecundity of natural enemies due to insecticides use 
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can be related to physiological and behavioral effects such as the disruption of foraging, food 

processing and biochemical mechanisms involved in food conversion into egg biomass 

(Desneux et al., 2007). The results suggest that the mechanisms that regulate the fecundity of 

predatory mites were completely compromised by spinosad application, and  treated females 

were unable to gain an advantage from the availability of fresh pollen. This aspect is clear in 

the potted plants experiment where, after spinosad application, K. aberrans population 

persisted at low level and independently of pollen applications. On the other hand on 

chlorpirifos treated plants, pollen applications induced a popolation growth in line with the 

potential of cattail pollen shown in the first laboratory experiment and in previous studies 

(Lorenzon et al., 2012). It should be noted that most of the life-history parameters are 

temperature dependent (Broufas et al., 2007) and the potted plant experiment was not 

conducted at constant temperature. The trend in juveniles increase from 3 to 7 days after 

treatment observed on chlorpyrifos treated with pollen was higher than in the control. This 

provides further support that the effect of pollen application is mediated by fecundity. 

Fecundity in K. aberrans and other predatory mites is density-dependent (Kostiainen and 

Hoy, 1994; Malison, 1996). The density of predatory mites was reduced by chlorpyrifos but 

the surviving females exhibited a fecundity level that overcompensated for the detrimental 

effect of the insecticide.   

Food subsidy practices (e.g., food spray, habitat management) can be applied to enhance 

the population of natural enemies (Bostanian et al., 2004; Begum et al., 2006; Wade et al., 

2008) and are considered key aspects in innovative pest management practices (Simpson et 

al., 2011a, 2011b). However, pesticide use poses major threats to successful biological 

control. Pesticides are often necessary to control key pathogens and pests in agricultural crops, 

and they are sometimes required for quarantine pest eradication. Their use can have dramatic 

effects on the environment, and can reduce the biological control potential (Tilman et al., 

2001; Geiger et al., 2010). The reduction of pesticide side-effects on non-target arthropods is 

a prerequisite for any conservation practice in agro-ecosystems; but the findings obtained here 

stress that management practices aimed at season-long food availability can mitigate the effect 

of pesticides on natural enemies, promoting  their persistence in agro-ecosystems.  
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Figure 1- Survival of K. aberrans females treated with insecticides measured after 72 

and 168 hours. Different letters indicate significant differences at Wald chi-square test 

(α = 0.05). 
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Figure 2 - Survival of K. aberrans females receiving different amount of pollen 

measured after 72 and 168 hours. Different letters indicate significant differences at 

Wald chi-square test (α = 0.05). 
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Figure 3 - Survival of K. aberrans females receiving different pollen application 

frequency measured after 168 hours. Different letters indicate significant differences at 

Wald chi-square test (α = 0.05). 

 

 

 

Figure 4 - Escape rate of K. aberrans females treated with insecticides measured after 72 and 

168 hours. Different letters indicate significant differences at Wald chi-square test (α = 0.05). 
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Figure 5 - Escape rate of K. aberrans females receiving different amount of pollen 

measured after 72 and 168 hours. Different letters indicate significant differences at 

Wald chi-square test (α = 0.05). 

 

 

 

 

 

 

 

 

 

Figure 6 - Escape rate of K. aberrans females receiving different pollen application 

frequency measured after 168 hours. Different letters indicate significant differences at 

Wald chi-square test (α = 0.05). 
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Figure 7 - Fecundity in 168 hours of K. aberrans females treated with insecticides (A), receiving pollen amount (B), different pollen 

application frequency (C) and treated with insecticides and different pollen application frequency (C). Different letters indicate significant 

differences at t-test (α = 0.05). 
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 Figure 8 - Density of K. aberrans motile forms (A, B), adults (C, D) and immatures (E, F) observed on plant receiving insecticides and     

pollen application. Figure A, C and E represent data from no pollen treatments, while B, D and F are obtained from pollen  treatments 

data. Different letters indicate significant differences at t-test (α = 0.05) to the least-square means.  
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Parameters

6.180 ± 0.222 b 14.040 ± 0.959 a

1.119 ± 0.005 a 1.050 ± 0.113 b

0.112 ± 0.004 a 0.049 ± 0.003 b

10.943 ± 0.583 a 2.696 ± 0.277 b

21.355 ± 0.601 20.327 ± 1.235

Panonychus ulmiCattail pollen

T (day)

Dt (day)

λ (female/female/day)

rm (female/female/day)

Ro (female/female)

 

Source of variation F p

Motile forms

Pollen 17.94 1 , 18.4 0.001

Insecticides 21.52 2 , 18.4 <.0001

Pollen*Insecticides 1.22 2 , 18.4 0.319

Time 73.81 4 , 243.0 <.0001

Pollen*Time 17.63 4 , 243.0 <.0001

Insecticides*Time 21.36 8 253.0 <.0001

Pollen*Insecticides*Time 3.79 8 253.0 0.000

Adults

Pollen 13.91 1 , 18.5 0.002

Insecticides 17.81 2 , 18.5 <.0001

Pollen*Insecticides 0.82 2 , 18.5 0.455

Time 62.81 4 , 244.0 <.0001

Pollen*Time 14.12 4 , 244.0 <.0001

Insecticides*Time 21.37 8 254.0 <.0001

Pollen*Insecticides*Time 3.47 8 254.0 0.001

Juveniles

Pollen 28 1 , 75.8 <.0001

Insecticides 25.94 2 , 75.8 <.0001

Pollen*Insecticides 3.14 2 , 75.8 0.049

Time 21.56 4 , 237.0 <.0001

Pollen*Time 6.36 4 , 237.0 <.0001

Insecticides*Time 3.06 8 250.0 0.003

Pollen*Insecticides*Time 2.32 8 250.0 0.021

d.f.

 

 

Table 1 - Life-table parameters (±SE) of K. aberrans reared on cattail pollen and 

Panonychus ulmi. 

 

 

 

 

Values within a row bearing different letters were significantly different a t-test (α = 0.05). 

 

 

 

Table 2 - Results of REML repeated measures analysis with Kampimodromus aberrans 

population density as dependent variable. Degrees of freedom in all models were calculated 

using the Kenward-Roger method.  
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Chapter VI 

 

 

 

Acetylcholinesterase cDNA cloning in chlorpyrifos susceptible and 

resistant strains of the predatory mite Kampimodromus aberrans 

(Acari: Phytoseiidae). 
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Introduction 

Acetylcholesterase genes in insects and mites 

Acetylcholinesterse (AChE, EC 3.1.1.7) is an enzyme anchored on the surface of post 

synaptic membranes at cholinergic synapses and neuromuscular junctions. AChE terminates 

nerve impulses by catalyzing the hydrolysis of the neurotransmitter acetylcholine in the 

cholinergic nervous system of most animals, including insects and mites (Figure 1). Beyond 

neuronal transmission, AChE is thought to play other roles, such as neurite growth and 

synapse formation, modulation of glia activation and learning/memory (Shapira et al., 2001; 

Soreq and Seidman 2001).   

An extensive phylogenetic and biochemical analyses on cloned AChE gene/s suggest that 

before the differentiation of insects, a duplication event of an ancestral gene led to the 

development of two AChE loci endocoding for AChE1, which is paralogous to Drosophila 

AChE, and AChE2 the orthologous to Drosophila AChE (Kim and Lee, 2012). By examining 

100 insect species, more than half posses both AChEs, with AChE1 responsible for the main 

catalytic activity. However in some species ranging from Palaeoptera to Hymenoptera, 

AChE1 locus is lost and only AChE2 was detectable at the genomic and functional level (Kim 

and Lee, 2012; Huchard et al., 2006).  

In Acari subclass the number of AChE loci has not been investigated so deeply. The recent 

analysis of spider mite Tetranychus urticae (Acari: Tetranychidae) genome revealed only one 

locus encoding for a functional AChE (Grbic et al., 2011), excluding the contributing of other 

paralogous AChE(s) genes to AChE activity. This finding was supported by a unique AChE 

transcript detected after transcriptomic analysis of the citrus red mite, Panonychus citri (Niu 

et al., 2012). However in the cattle tick Rhipicephalus (Boophilus) microplus, three different 

cDNAs encoding for putative AChEs, were functional characterized, by using an in vitro 

baculovirus expression system (Temeyer et al., 2010). Likewise transcriptome analysis in 

American dog tick, Dermacentor variabilis (Acari: Tetranychidae) revealed seven AChE 

transcripts, probably expressed from different loci, relaying on their diverging nucleotide 

sequences (Bissinger et al., 2011). The evidence that tick genomes, contain multiple copy of 

AChE genes came from the annotation of the black-legged tick Ixodes scapularis genome, 

where several AChEs loci were predicted, even not yet functionally confirmed (Van Zee et 

al., 2007). 
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To date, no studies on AChE were reported for the Phytoseiidae family. Recently the 

genome project of the Western predatory mite Metaseiulus occidentalis has been completed 

(Western Orchard Predatory Mite Genome Project, 2012) and the automatic annotation phase 

started. Preliminary in-silico gene prediction by GNOMON algorithm, using previously 

cloned or annotated mRNA sequences for arthropod AChEs, supports the evidence for multi-

loci AChEs in M. occidentalis.  

AChE target site resistance in insects and acari 

Pesticide resistance in insects and mites is a serious worldwide problem in agriculture 

(Pesticide Resistance Database, 2012). Resistance is often caused by the overuse and misuse 

of pesticides leading to metabolic and/or target site resistance.  

Target site resistance rises from gene mutations at the target for the insecticide, resulting in 

insensitivity to the active principle. It is usually monogenic but it can be polygenic too if 

multiple mutated copies of the same gene exist or when different mutated subunits are 

assembled into the same insecticide target molecule (e.g. nicotinic acetylcholine receptors or 

ion channel units).  

Organophosphates (OPs) and Carbamates are two important classes of inhibitors which act 

as analogous to the substrate acetylcholine, inactivate the AChE by phosphorilating or 

carbamylating a serine residue in the enzyme’s catalytic centre (Figure 2); Ishaaya et al., 

2001). The neuro toxic effect of AChE inactivation is then caused by repetitive firings of 

postsynaptic leading to a lethal desensitization of the nervous system.  

Many different mutations, six in AChE1 and eleven in AChE2, have been associated with 

insensitivity to OPs and carbamates mainly in insect and a few mite species (Russel et al., 

2004; Khajehali et al., 2010; Temeyer et al., 2009). Nevertheless, the range of insensitivity to 

different compounds, as magnitude and spectra, is highly variable among species and even 

inside the same specie. The differences in resistant phenotype can be due to the presence of 

more than one gene encoding for multiple AChE targets and by the presence of overlapping 

metabolic resistance. Through three dimensional modelling most of mutations are though to 

reduce the AChE sensitivity by providing steric hindrance to the insecticide entrance at the 

catalytic site, while allowing the access of the smaller acetylcholine substrate. Two examples 

of these recurrent mutations are G119S and F331W (AChE amino acid numbering from 

Torpedo californica mature AChE) (Russell et al., 2004; Oakeshott et al., 2005). These 

mutations were found, alone or in association, affecting the AChE gene in T. urticae strains 

resistant to several OPs and one carbamate (Khajehali et al., 2012). Both mutations are 
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responsible for a decreasing in AChE sensitivity to the OPs monocrotophos and chlorpyrifos 

at the price of a reduction in enzyme’s catalytic efficiency (Kwon et al., 2012; Khajehali et 

al., 2012) with an additive effect when the G119S and F331W substitutions were present 

simultaneously in vitro expressed T. urticae AChE (Kwon et al., 2012). These findings 

suggest that the co-selection of both mutations can be favoured in field condition since they 

act in a synergistic manner boosting resistance phenotype. In addition some amino acid 

substitutions outside the catalytic site may have essentially a further additive effect, increasing 

the stability of the enzyme and its ability to hydrolyse the acetylcholine (Mutero et al., 1994; 

Shi et al., 2004), counteracting the inhibitory effects of the insecticides and/or the reduction in 

catalytic efficiency due to co-existing AChE mutations. This is the case of A391T mutation in 

T. urticae AChE, which was found, associated to the F439W substitution (analogous to 

F331W) in field populations resistant to monocrotophos (Kwon et al., 2010b, 2012).  Another 

adaptive response in T. urticae may consist in AChE gene duplication (Kwon et al., 2010a, 

2012) since multi-copies of a gene per aploid genomes increases the chance that mutations 

conferring insecticide resistance can be positive selected. Indeed the co-presence of wild type 

and mutated gene copies and/or an increased transcription rate may also compensate the 

fitness cost due to a reduced catalytic efficiency of insensitive AChEs. The same evolution 

strategy is probably adopted by resistant strain of thick Rhipicephalus Microplus, which 

displays elevated copy numbers of the three AChE loci (Temeyer et al., 2009, 2012).  

The metabolic resistance can also contribute to the resistant phenotype. It consists in an 

efficiency increase of an elaborate three-phase detoxification system, metabolizing 

xenobiotics into less harmful substances and facilitating their excretion (Xu et al., 2005). It is 

usually under polygenic control since involves multi-gene family enzymes encoding for  

a) P450 monooxygenases, which decrease the biological activity of a broad range of 

substrates (or, increase their toxicity as well, i.e. chlorpyrifos activated in oxon form), 

phase I. 

b)  Glutathione S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), which 

adding bulky side groups onto toxic compounds increase their hydrophilicity, 

facilitating the excretion from the organism (phase II). Carboxylesterases (EST) which 

catalyze the hydrolysis of ester-containing xenobiotics (such as organophosphate 

inscecticides), leading to their detoxification, phase II. 

ATP-binding cassette (ABC) and other transmembrane transporters that actively export the 

conjugated toxins out of the cell into an excretory system, phase III. 
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Likely metabolic resistance accounts for difference sensitivity to chlorpyrifos and 

dimethoate in T. urticae populations sharing the same F331W substitution in their AChE 

(Khajehali et al., 2010). Main objective of our study was cloning in the predatory mite 

Kampimodromus aberrans the homologous AChE cDNA characterized in T. urticae and 

looking for new and/or previously described mutations affecting the AChE sensitivity to 

chlorpyrifos, in resistant strain of K. aberrans. 

Materials and Methods 

Kampimodromus aberrans populations 

The study was performed on four resistant and three susceptible K. aberrans strains 

collected in North-eastern Italy. Resistant strains include; 1) Posenato that was collected from 

a commercial vineyard located at Monteforte d‟Alpone (Verona province, Veneto region), 

where predatory mites showed a low susceptibility to OPs (Posenato 1994); population 

Meneghello (2) was collected from a commercial vineyard located in Treviso province (San 

Vito di Valdobiadene, Posas). Resistant populations (3) San Floriano and Bixio (4) were 

collected from a commercial vineyard (Verona province, Veneto region). From 1997 to 2008, 

OP (chlorpyrifos) was used every year at Monteforte d‟Alpone but much less frequently (1-2 

times in the last 1990s) at San Vito di Valdobiadene, Posas. Three susceptible populations 

including; 1) population Paese (located at Treviso provinve), (2) population Padova and (3) 

population Legnaro were collected from untreated hackberry trees (Celtis australis L.) at 

Legnaro (Padova province, Veneto region). We assumed Paese population as reference for its 

susceptibility to organophosphate compounds. These populations were collected and reared 

for several generations in separate boxes in the laboratory at the Department of Environmental 

Agronomy and Crop Science, University of Padova. Grapevine leaves were used as substrate 

for predatory mites. They were settled on a pad of wet cotton where small pieces of PVC were 

placed for shelter and oviposition. Typha latifolia pollen was provided every two days as 

food.  

 Insecticide bioassays 

Bioassays were conducted with a chlorpyrifos formulation, (Dursban® 75 WG, 75% a.i., 

Dow AgroSciences, 70 g/hl) widely used in vineyards to control leafhoppers (e.g., 

Scaphoideus titanus Ball. Empoasca vitis Göthe), grape berry months (Lobesia botrana Den. 

& Schiff. and Eupoecilia ambiguella Hübner) and mealybugs (e.g. Planococcus ficus 
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Signoret). This formulation was diluted into distilled water before testing procedures. 

Toxicological trials were performed by using rectangular leaf sections (6 cm
2
). They were 

immersed in the insecticide solution for 30 sec. and then left to dry. Control leaf units were 

immersed into distilled water for 30 sec. Leaf sections were put on a wet cotton pad and 

cotton barriers were created along their perimeter to avoid predatory mite escape. Two mated 

K. aberrans females (about 12 days old) were gently transferred on each leaf section using a 

fine brush and fresh pollen was provided every two days as food. Units were kept into a 

climatic chamber at 25 ± 2° C, 70 ± 10% relative humidity and 16L: 8D photoperiod. Female 

mortality was assessed 72 h after treatments. Females drowned or escaped were removed from 

the initial tested number.  

Before proceeding towards Total RNA extraction, 200 adult females of each K. aberrans 

tested population were collected in Appendorf vials and stored at -80°C. 

Primer design for cloning AChE cDNA in K. aberrans 

The annotated version of the genome assembly (release Mocc_1.0, March 2012) of western 

orchard predatory mite M. occidentalis was used to look for putative for AChE-like proteins, 

through tBlastn algorithm (http://www.ncbi.nlm.nih.com), using the cDNA AChE cloned in T. 

urticae (GenBank accession n. ADK12685.1) as query sequence.  

Predicted mRNAs coding for putative AChE-like were extracted from scaffolds and their 

open reading frames (ORFs) compared to T. urticae AChE protein using Lasergene sequence 

analysis tools EditSeq and MegAlign 5.0 (DNASTAR, Inc., Madison, WI, USA). 

Degenerate primers were designed by manual inspection of conserved domains after 

alignments of T. urticae AChE and putative orthologous AChE-like proteins in M. 

occidentalis. The resulting primers were used to amplify cDNA core fragments of 

homologous AChE in K. aberrans.  No degenerate primers necessary to complete the cDNA 

cloning, by walking steps and 3’-5’ RACEs in K. aberrans were outlined with PrimerSelect 

5.0 (DNASTAR, Inc., Madison, WI, USA). 

mRNA extraction and AChE cDNA cloning 

Total RNA was extracted homogenising 200 adults in 500 µl Tri-Reagent (Sigma), 

according to the manufacturer’s instructions. Sample’s integrity was checked in 

electrophoresis on a 1.2% agarose, 2.2 M formamide/formaldehyde denaturing gel. Quality 

and quantity assessment of the extracted RNA were performed in Nanodrop ND-1000 

Spectrophotometer (NanoDrop, Fisher Ther-mo, Wilmington, DE, USA). First strand cDNA 
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was synthesized according to the supplier recommended protocol, using Improm-II reverse 

transcriptase (Promega) and random primers. Amplification of a cDNA fragment for a 

putative AChE in K. aberrans was achieved through two consecutive rounds of RT-PCR, 

employing degenerate primers. PCR mixtures (25 µl) contained GoTaqGoTaq Flexi buffer 1x 

buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 30 pmol forward and reverse degenerate primers, 1 U 

GoTaq, 2.5 µl of cDNA Degenerate primers laid on conserved functional domains of 

homologous AChEs proteins in T. urticae and M. occidentalis. For the first RT-PCR round 

the forward and reverse primers are KaAChEF1 (GIPYAKP domain) and KaAChER1 or 

KaAChER2 (WVYGGSF motif) respectively (Table 1). This PCR was then 10 fold diluted 

and used as template for a second RT-PCR where the KaAChEF1 primer was replaced with a 

more internal primer, KaAChEF2, designed on PYAKPP domain (Table 1). The two PCR 

rounds share same thermal profile, consisting in an initial denaturation step of 3 min at 94 °C 

followed by 5 cycles at 94 °C for 30 s, 45 °C for 30 s, 72°C for 60 s, then 5 cycles at 94 °C for 

30 s, 45 °C plus +1 °C/cycle, 72°C for 60 s, and further 25 cycles at 94 °C for 30 s, 45 °C for 

30 s, 72°C for 60 s, with a final extension step at 72 °C for 10 min. PCR products of expected 

size (around 300 bp) were purified from 1% (w/v) agarose/TBE 1x gel using EuroGOLD Gel 

Extraction Kit (Euroclone) and cloned using pGEM-T easy vector (Promega). Plasmids were 

purified with EuroGOLD Plasmid Miniprep Kit (Euroclone) and sent for sequencing at the 

BMR genomics (Padua, Italy). Sequences were assembled and analysed using SeqMan 5.0 

(DNASTAR, Inc., Madison, WI, USA). Identification of AChE-like sequences was performed 

with BLASTX search in GenBank (http://www.ncbi.nkm.nih.gov) using the ORFs deduced 

from the cloned cDNA fragments. The cDNA cloning was further extended in 3’ direction by 

performing a RT-PCR which used a forward primer designed on the first cloned cDNA 

fragment in K. aberrans (KaAChEF3) and a reverse primer (KaAChER3) devised on the 

conserved AChE domain CAFWKNFL in M. occidentalis (Table 1). The PCR mixture has the 

same composition described above except primer concentration was reduced to 15 pmol. PCR 

was carried out in 1 cycle of 94 °C for 2 min, followed by 5 cycles including three steps of 

94°C for 30 s, 50 °C for 30 s, 72 °C for 60 s, 5 cycles of 94 °C for 30 s, 50 °C for 30 s (+ 1 

°C/cycle) , 72 °C for 60 s, 20 cycles of 94°C for 30 s, 55 °C for 30 s, 72 °C for 60 s, and a 

final extension step at 72 °C for 10 min. PCR product was purified, sequenced and analyzed 

as described above. 3’ and 5’ Rapid Amplification of cDNA ends reactions were performed to 

complete the cDNA sequences of AChE (Figure. 3). In RACE reactions the first strand cDNA 

was synthesized using total RNA and polyT-adaptor primer for 3’ RACE or KaAChE-R4 for 

http://www.ncbi.nkm.nih.gov/
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5’ RACE (Table 1), according to the manufacturer protocol (5´ RACE System for Rapid 

Amplification of cDNA Ends, Invitrogen). The 3’ RACE product spanning across the 

unknown 3’-end of AChE was amplified in two consecutive PCR rounds, coupling the primers 

KaAChEF4 and Adaptor1 and KaAChEF5 and Adaptor2. For obtaining the 5’ end of AChE 

transcript, the cDNA went through polyC-tailing of its 3’-end by terminal deoxynucleotidyl-

transferase (TdT) following the kit protocol (5´ RACE System for Rapid Amplification of 

cDNA Ends, Invitrogen). The upstream cDNA sequence encompassing the 5’ untranslated 

region were obtained with two PCR rounds using the couples of primers KaAChER5-TS-

primer and KaAChER6-TS-PCR (Table 1). The first 5’RACE round was done at 94 °C for 2 

min (1 cycle), 5 cycles at 94 °C, 56 °C for 30 s, 72 °C for 60 s, 5 cycle at 94 °C, 57 °C for 30 

s, 72 °C for 60 s, and 20 cycles at 94 °C for 30 s, 58 °C for 20 s, 72 °C for 60 s. The second 

5’RACE round consisted in 1 cycle at 94 °C for 2 min, 30 cycles at 94 °C for 30 s, 55 °C for 

30 s, 72 °C for 60 s. The 5’ RACE fragment was purified from agarose gel and sequenced as 

previously described. 

Full length AChE cDNA sequencing  

Total RNA was extracted from adults of both susceptible (Paese) and resistant (Posenato) 

strains with Tri-Reagent as done for cDNA cloning. First strand cDNA was synthesized from 

total RNA with Improm reverse transcriptase (Promega) with random primers as indicated by 

manufacturer's protocol. To sequence the ORF of the cloned cDNA, three RT-PCR fragments 

partially overlapped were amplified using the following couple of primers KaAChEF6-R7, 

KaAChEF7-R8 and KaAChEF8-R9 (Table 1). PCR reaction (25 µl) included 2 µl of cDNA, 

and a final concentration of GoTaq Flexi 1x buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.6 µM 

of each primers, 0.625 U/µl GoTaq (Promega). The adopted thermal profile was 94°C for 2 

min (1 cycle), followed by 30 cycles of 94 °C for 30 s, 56 °C for 30 s, 72 °C 60 s, with a final 

extension step at 72 °C for 10 min. PCR products were checked by electrophoresis on 1% 

agrarose in TBE 0.5x, purified with the EuroGOLD Cycle-Pure Kit (Euroclone) and sent to 

BMR genomics (Padova, Italy) for sequencing. To this aim the same primers for RT-PCR 

amplifications plus new internal primers (KaAChEF9, R10, and F10) were used (Table 1). 

Chromatograms were assembled with SeqMan tools (DNAstar, Lasergene), and the alignment 

of cDNA consensus sequences from sensible and resistant strains were manual inspected for 

non synonymous SNPs with MegAlign program (DNAstar, Lasergene). The same program 

provided the phylogenetic tree after clustal method alignment of AChE sequences.  
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DNA extraction and screening for G119S and F331W mutations 

DNA extraction was performed according to Tixier et al., 2008, scaling up the reagents. 

Two thousands of frozen adults for each strain were homogenized in 150 µl of extraction 

buffer (2% CTAB, 1.4M NaCl, 0.2% 26-mercaptoethaol, 100mM EDTA, 100mM Tris-HCl, 

and pH 8.0) using a micro tissue grinder (Wheaton, Millville, NJ). The homogenate was 

transferred in a 0.5 ml test tube and incubated for one hour at 65°C, with periodical hand 

mixing. One hundred and fifty microliters of chloroform: isoamyl alcohol mixture (24:1) was 

added, mixed by inversion and tubes were centrifuged at 6°C for 5 min at 1000 g. The 

aqueous solution was collected in a new test tube and 80 µl of isopropanol was added to the 

decanted aqueous phase and chilled at –20°C for 20 min for DNA precipitation. After 

centrifugation (15 min, 6°C, 1000 g), the pellet was suspended in 100 µl of 96% alcohol at 

4°C. After a final centrifugation of 10 min (6°C, 1000 g), the dried pellet was suspended in 30 

µl of de-ionized water. Quality and quantity of extracted DNA was assayed by 

spectrophotometric analysis at Nanodrop ND-1000, as its integrity through electrophoresis on 

1% agrarose/TBE 0.5x gel. The screening for G119S and F331W substitutions was done by 

amplification and direct sequencing of AChE gene traits potentially bearing the mutations. 

Since the exon-intron organization in K. aberrans was unknown, a successful intron 

predictions was done by aligning the AChE cDNA sequence cloned in K. aberrans with the 

homologous gene sequence annotated in M. occidentalis (Spidey tool,  

http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/spideydoc.html). Relaying on this 

information an exon free fragment was amplified for G199S screening, using primers 

KaAChEF11 and KaAChER11, while a short intron was included in the PCR fragment 

obtained with primers KaAChEF12 and KaAChER12, which was necessary to verify the 

presence of F331W substitution (Table 1). PCR mixture consisted in GoTaq Flexy buffer 1x, 

1.5 mM MgCl2, 0.2 mM dNTPs, 0.6 µM forward and reverse primers, 2 ng/µl DNA, 0.05 

U/µl GoTaq (Promega). Amplification was carried out through 94 °C for 2 min (1 cycles), 5 

cycles of 94 °C for 30 s, 56 °C for 30 s , 72 °C for 60 s, 5 cycles of 94 °C for 30 s, 57 °C for 

30 s, 72 °C for 60 s, and 20 cycles of 94 °C for 30 s, 58 °C for 30 s, 72 °C for 60 °, followed 

by a final extension step at 72 °C for 10 min. PCR products were purified and sequenced as 

described for cDNA sequencing using the same primers employed for the DNA 

amplifications. 

 

http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/spideydoc.html
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Results 

AChE gene in M. occidentalis genome 

The tBlastn search on annotated genome of the predator mite M. occidentalis using the T. 

urticae AChE wild type sequence as query, gave back two scaffolds (GenBank accession 

numbers AFFJ01003151.1 and AFFJ01002402.1) containing predicted mRNAs (XR_145413, 

XR_145279) coding for putative AChEs with functional domains having high similarity 

indexes (e-value max 1e-078 and 1e-69) to query’s ones. The two mRNA sequences differed 

at the predicted splicing sites and because XR_145279 was shorter than XR_145413 owing to 

an exon skipping at the 5’ end of the ORF. When the in-silico predicted mRNAs went through 

Blastn interrogation of M. occidentalis transcriptome shotgun assembly, two cDNA fragments 

were retrieved (JL046593.1 and JL050556.1), confirming that they were actually transcribed. 

Altogether these findings suggested the both mRNAs coded for AChE homologous to that 

cloned in T. urticae, and that they could be informative for AChE cloning in K. aberrans as 

well.   

AChE cDNA in K. aberrans 

cDNA of 2329 was isolated from sensible strain of K. aberrans (KaAChE). The deduced 

precursor was composed of 655 amino acids (Figure. 4) with a signal peptide predicted 

encompassing the first 32 amino acids from the amino terminal (Shen et al . 2007). The 

cloned KaAChE displayed most of the amino acids responsible for the functional integrity of 

the enzyme and usually well conserved both in insect and mite AChEs, i.e. KaAChE residues 

involved in intramolecular disulphide bonds (C139, C166, C325, C336, C471, C593), 

catalytic triad (S271, E395, H509), anionic sub-site (W156), oxyanion-hole (G190, G191, 

A274), and the acyl pocket (W304, F358 or F360, F399). The phylogenetic tree (Figure. 5) 

indicated that KaAChE sorted with a cluster formed by the putative AChE-like sequences 

annotated in genomes of M. occidentalis (coded by XR_145413) and in Ixodes scapularis  

(XP_002413212) or cloned in T. urticae (ADK12685). Since AChEs are divided in two 

groups, orthologous and paralogous to D. melanogaster AChE, and the T. urticae AChE 

belongs to the latter, also KaAChE could be considered in the same group. The amino acid 

identity with other AChEs in acari, ranged from 62% (I. scapularis putative AChE, 

XP_002413212 ) to 33% (R. microplus, AChE3, AAP92139) and it was compatible with that 

observed comparing AChEs from different mite species or even AChEs from multiple loci in 

I. scapularis or R. microplus. The highest identity (> 93%) was for AChEs annotated in M. 
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occidentalis, in particular with XR_145413, where the amino acid sequences were much more 

consistent at the putative splicing cite than in XR_145279. This suggests that the correct 

automated annotation of the AChE transcript in that locus in M. occidentalis genome was 

XR_145413. As expected the highest divergence in amino acid sequence between KaAChE 

and XR_145413 was restricted to the amino or carboxy –terminal of the protein, outside the 

functional domains.  

Comparing AChE sequences among different strains 

Full length sequencing of cDNA KaAChE in susceptible (Paese) and resistant (Posenato) 

strains evinced a non synonymous G to A mutation at the postion 687 which led to a G191S 

substitution into protein sequence (G199S AChE Torpedo numbering; Figure 5, 6). This 

residue took part to the oxyanion-hole, one of the functional domains for AChE activity. 

Susceptible and resistant strains differed also for another single nucleotide polymorphism 

(SNPs) at 1499 position of the cloned cDNA, a C to T transition which did not affect the 

codon meaning (D461; data not shown). The resistant strain was homozygous at this site, 

bearing only the T allele while the susceptible strain displayed both SNPs with a prevalence 

of C nucleotide over T alternative. The phenylalanine residue (F339) replaced by a tryptophan 

in chlorpyrifos resistant stains of T. urticae (F439W mutation, or F331W AChE torpedo 

numbering) was still conserved both in sensible and resistant strains of K. aberrans. The same 

was for the glycine residue (G336) which was fond replaced with Alanine (G328A) in F331W 

bearing strains of T. urticae. The presence of these three mutations was also checked in 

further two susceptible and three resistant strains of K. aberrans. Owing to a reduced number 

of available specimens the screening was performed at genomic level by amplifying 

fragments of AChE gene potentially carrying these mutations. In the case of F331W and 

G328A screening, the amplification of a short predicted intron was achieved. This finding 

confirmed the conservation of this splicing site between K. aberrans and M. occidentalis 

(Figure 5). The G191S substitution was found only in resistant strains as they lacked of both 

F331W and G328A substitutions.  

 

 

 



 

 

159 

Discussion  

In Acari, target site resistance conferring insensitivity to OPs, including chlorpyrifos, due 

to an insensitive AChE, has been described in of T. urticae and T. kanzawai (Aiki et al., 2004; 

Khajehali et al., 2010). A moderate chlorpyrifos resistance was associated to a G119S 

substitution (AChE torpedo numbering) in the single copy AChE gene of T. urticae while an 

higher level of insensitivity ( > 400 folds when compared to a sensible strain) was usually 

detected in case of F331W substitution. Both substitutions conferred high OP and carbamate 

resistance in mosquito Culex pipiens and Anopheles gambiae (G119S; Weill et al., 2004) as 

well as in Culex tritaeniorhynchus (F331W; Alout et al., 2007). The role of these mutations in 

reducing the AChE sensitivity to OPs was confirmed by inhibition analysis of mutated AChE 

expressed in S2 cells (Weill et al., 2003; Oh et al., 2006). Three dimensional modelling 

showed that the G119 and F331 residues lie within the active ‘gorge’ of the enzyme (Figure 

7). The hydrophobic side chain of Glycine is part of the oxyanion hole and participates to the 

stabilization of the transition state (Figure 2) during the acylation reaction (Zang et al., 2002). 

The aromatic moiety of F331 is located near the anionic sub-site and it is involved in the 

proper orienteering of acetylcholine within the catalytic site of AChE (Harel et al., 1993). 

When mutated AChE forms of T. urticae carrying F331W or G119S were expressed in Sf9 

cells, a reduction of both sensitivity to OP monocrotophos and the catalytic efficiency of the 

enzyme were found (Kwon et al., 2012). Although this effect appeared much more evident for 

F331W mutated AChE, the two substitutions acted synergistically when they were present 

together. The decrease in catalytic efficiency of modified AChE was consistent with the 

fitness cost observed in field for mutant mosquitoes (Alout et al., 2008) carry the same 

mutations even no data are still available for T. urticae.  

Recently chlorpyrifos resistant strains of the predatory mite K. aberrans were described 

(Tirello et al., 2011). To verify if they had a mutated AChE, with reduced insecticide 

sensitivity, the cDNA for a paralogous AChE was first cloned in a susceptible strain and its 

sequence compared to that of a resistant strain. For the cloning step the annotated genome 

project of the western orchard predatory mite M. occidentalis was exploited. Unfortunately 

more a dozen of AChEs-like sequences were predicted by the curators of the M. occidentalis 

genome using an automated computational analysis based on GNOMON algorithm. Since the 

GNOMON was trained on the previously deposited AChE sequences in GenBank, and very 

few of them were from subclass acari, as expected, the predicted AChE-like sequences in the 

phytoseiidae genomes displayed uncompleted open reading frames or differed in splicing 
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paths. To identify a possible candidate the AChE sequence from T. urticae was used. Once 

found a putative homologous AChE in M. occidentalis, its sequence was used to speed up the 

cloning of paralogous AChE in K. aberrans. When the cDNA sequences from susceptible and 

resistant strains were compared, only a non synonymous mutation G to A were detected 

(Figure 6), which introduced a G191S substitution in the protein sequence, corresponding to 

the G119S as AChE torpedo numbering. To confirm that this mutation was associated to the 

chlorpyrifos resistant phenotype in K. aberrans, it was searched, along with the F331W 

mutation, in further two susceptible and three resistant strains, by direct sequencing of gene 

fragments, coding for both amino acid positions. The G191S substitution was present only in 

resistant strains while it was confirmed that the F331W mutation in K. aberrans AChE was 

not involved in reduced sensitivity to chlorpyrifos. However since the full length cDNA 

sequencing had been completed just in one resistant strain, it can not be excluded that in the 

remaining three resistant strains other substitutions might be present beyond the G119S. 

Weirdly the corresponding amino acid position in the homologous AChE found in the 

annotated genome of M. occidentalis is occupied by a Serine. Unfortunately no information 

was available concerning the chlorpyrifos sensitivity of M. occidentalis strains included in the 

genome project. Although chlorpyrifos inhibition study of acetylcholinesterases bearing the 

G119S substitution in Culex quinquefasciatus showed a reduced sensitivity of mutated AChE 

(Liu et al., 2005), T. urticae strains with the same AChE genotype displayed in-vivo only a 

moderate resistance to the insecticide. In contrast all examined resistant strain in K. aberrans 

were high resistant to chlorpyrifos (>145,000 fold). So the G119S substitution in cloned K. 

aberrans AChE could be consider as a molecular marker of the resistant phenotype but likely 

not the unique genetic determinant of resistant phenotype. This finding is in agreement with 

preliminary backcrossing data between susceptible and resistance strains which seems to 

indicate a polygenic mode of inheritance of the chlorpyrifos insensitivity (personal 

communication). Other potential mechanisms linked to target site resistance in subclass acari 

may consist in amplification of modified AChEs, to compensate the reduction in catalytic 

efficiency often associated to mutations conferring insecticide insensitivity (Kwon et al., 

2010a; Temeyer et al., 2012). Moreover, even if in T. urticae genome, only one AChE gene 

copy was annotated and actively transcribed (Grbic et al., 2011; Anazawa et al., 2003), 

multiple AChE loci were predicted in I. scapularis genome (Van Zee et al., 2007) or cloned 

and in-vitro expressed as functional AChEs, in R. microplus (Temeyer et al., 2010). In 

addition, mutations in different copies of R. microplus AChEs are though to contribute with 
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additive effect to the resistant phenotype, which result under polygenic control (Temeyer et 

al., 2012). Intriguingly if the cloned KaAChE was used as query sequence in a Blastp research 

on annotated M. occidentalis genome, many putative in-silico predicted AChEs were 

confirmed. Considering just those candidates with conserved functional residues for AChE 

activity (i.e. forming the catalytic triad and acetylcholine binding pocket) and that received 

support from transcriptoma analysis (Hoy et al., 2012), probably further six loci for AChE-

like sequences are expressed in M. occidentalis (GenBank accession numbers XP_003743019, 

XP_003747509, XP_003739584, XP_003738701, XP_003744479, XP_003745369). Most of 

these sequences were much more similar to AChE-3 in R. microplus (maximum identity range 

50-35%) then to AChE in T. urticae (maximum identity range < 30%). Actually in R. 

microplus AChE-1 and AChE-3 enzymes with reduced sensitivity to OP-inhibition have been 

cloned and in-vitro expressed, confirming their involvement in OP resistance (Temeyer et al., 

2012). Altogether these findings suggest the in predator mites, the target site resistance due to 

insensitive AChE might resemble the complex pictures found in ticks, with more than one 

potential target site for insecticide insensitivity. Obviously it cannot be excluded the 

contribution of metabolic resistance even if higher insensitivities to OPs as that found in the 

examined K. aberrans strain , are mainly associated to target site resistance. In literature very 

few reports explore the potential metabolic mechanism for chlorpyrifos resistance in acari. In 

a T. urticae strain with an increased insensitivity to chlorpyrifos (91.6 fold) induced by 

laboratory selection, high level of carboxylesterases activity was found, together with the 

expression of particular enzyme variants detectable in native PAGE (Ay et al., 2010). In 

insects a few reports focused on the role played by carboxylesterases as well. Gene 

amplification of carboxylesterases was described in a 90 fold resistant strain of C. pipiens 

(Buss et al., 2004). Similarly multi-organophosphorus resistance in the saw-toothed grain 

beetle Oryzaephilus surinamensis and in the small brown planthopper, Laodelphax striatellus 

was due to elevated esterase levels (Conyers et al., 1998; Lee et al., 1991; Wang et al., 2010; 

Zang et al., 2012). Chlorpyrifos selection in the german cockroach, Blattella germanica (L.) 

induced the expression of different carboxylesterases isoforms, instead of an increasing in 

total esterase activity, along with an augmented level of cytochrome P450 monooxigenases 

(Scharf et al., 1998). In whiteflies Bemisia tabaci and Trialeurodes vaporariorum two 

molecular mechanisms were proposed: a main decreased in AChE sensitivity, supported by a 

carboxylesterase mediated hydrolysis or sequestration of the insecticide (Alon et al., 2012; 

Erdogan et al., 2012). In transcriptoma of M. occidentalis (Hoy et al., 2012) seventeen 
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independent transcripts coding for putative carboxylesterases were detected. Since the AChE 

cloned in K. aberrans was very similar to that annotated in M. occidentalis, the same high 

level of sequence conservation is expected inside the close related carboxylesterase super 

family. If so the sequence of carboxylesterase transcripts in M. occidentalis might be useful to 

verify whether the over expression of homologous carboxylesterases were involved in 

chlorpyrifos resistance in K. aberrans, as suggested by preliminary results of biochemical 

analysis performed on the insensitive.  

In summary, molecular mechanisms of chlorpyrifos resistance in K. aberrans is probably 

more complex than that described in T. urticae. The F331W substitution responsible for high 

insensitive AChE in T. urticae was absent in the homologous gene cloned in resistant strain of 

K. aberrans. However a G119S mutation detected in the same gene appeared strongly 

associated to the resistant phenotype. According to literature the presence of this mutation can 

not explain alone the high level of chlorpyrifos resistance detected in K. aberrans but it might 

be useful as molecular marker to test the performance of resistant populations released in field 

for IPM programs. The cloned AChE sequence, used as probe to query the M. occidentalis 

genome project, confirmed the existence of multi loci AChE genes in predatory mites, 

contributing to disclose new potential candidates for target site resistance in K. aberrans. The 

sequence similarity found between K. aberrans and M. occidentalis paralogus AChE suggest 

that an analogous strategy might be used to explore at molecular level, the role of metabolic 

detoxifying activity due to carboxylesterases which often supports the target site insensitivity 

in chlorpyrifos resistance.  
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Figure 1 - Acetylcholine cycle. Cholinergc nerve transmission is terminated by the enzyme 

acetylcholinesterase (AChE). AChE is found both on post-synaptic membrane of cholinergic 

synapses and in other tissue. Acetylcoline (ACh) binds to AChE and is hydrolysed to acetate 

and choline. This inactivates the acetylcholine and the nerve impulse is halted. AChE 

inhibitors (as the chlorpyrifos insecticide) prevent the hydrolysis of ACh, increasing the 

concentration of the neurotrsmitter in the synaptic cleft which in turn results into a neurotoxic 

effect. 
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Figure 2 - a) How Acetyl-cholinesterase (AChE) normally works: the positively charged 

nitrogen in the acetylcholine molecule is attracted to the ionic site on acetylcholinesterase, and 

hydrolysis is catalyzed at the esteric site to form choline and acetic acid. b) Organophosphate 

(OP) insecticide as nerve agent. c) Interactions between OP inhibitor and AChE. Partially 

electropositive phosphorus is attracted to partially electronegative serine. (δ + indicates that 

phosphorus is partially electropositive, δ – indicates that oxygen is partially electronegative). 

d) Phosphorilation of Serine by the OP at the esteric site blocks the hydrolysis of 

acetylcholine. 
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Figure 3A - Rapid amplification of 3’ cDNA end (3’RACE) procedure. In the text OligodT 

containing Adapter stands for polyT-adaptor primer, GSP for KaAChEF4 primer, UAP for 

Adaptor1, nested GSP for KaAChE-F5, AUAP for Adaptor2.  
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Figure 3B - Rapid amplification of 5’ cDNA end (5’RACE) procedure. In the text GSP1 

stands for KaAChER4 primer, Abridged Anchor primer for TS-primer, GSP2 for KaAChER5 

primer, AUAP for TS-PCR primer and GSP for KaAChER6 primer.  
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           ---------|---------|---------|---------|---------|---------|---------| 

         1 ACACCTTGATAAACTGTCGCTGTGGCCCCGCGTCCCAGGATACATGTCGTACTCCAGACGTAATTTGCTG 70 

           ---------|---------|---------|---------|---------|---------|---------| 

        71 ACCCCCGCAAATACGACATCGCTCTCGGAGGACTGGATGATTGGATatgcggctaggagtttcaggcggg 140 

         1                                               M  R  L  G  V  S  G  G   8 

           ---------|---------|---------|---------|---------|---------|---------| 

       141 gccagtggcttagctaagctagcgctgtgccgatccatggcggccactgtgcgttcgttgtcgacgcggg 210 

         9 A  S  G  L  A  K  L  A  L  C  R  S  M  A  A  T  V  R  S  L  S  T  R  A 32 

           ---------|---------|---------|---------|---------|---------|---------| 

       211 cgctgtttgcatttttgattcacttatggctggtggtcactctatgcgtcggacgcgtggacgcaagggc 280 

        33   L  F  A  F  L  I  H  L  W  L  V  V  T  L  C  V  G  R  V  D  A  R  A  55 

           ---------|---------|---------|---------|---------|---------|---------| 

       281 agctcatcttctacaccatcatagacatcgtacggcgggaagcgcgcaatcccaaggagatcctcttctg 350 

        56  A  H  L  L  H  H  H  R  H  R  T  A  G  S  A  Q  S  Q  G  D  P  L  L   78 

           ---------|---------|---------|---------|---------|---------|---------| 

       351 gtccatacaaccaaaggtcccgtccgaggaataacactgcaggcctccaatgggaaacttgtcgacgcat 420 

        79 V  H  T  T  K  G  P  V  R  G  I  T  L  Q  A  S  N  G  K  L  V  D  A  F 102 

            Int  178 bp  Intron in Metaseiulus occidentalis   
           ---------|---------|---------|---------|---------|---------|---------| 

       421 tcctcggtattccgtatgcgaaaccaccggtgggcaaaatgcgatttcgacatcctgtgcctatggaccc 490 

       103   L  G  I  P  Y  A  K  P  P  V  G  K  M  R  F  R  H  P  V  P  M  D  P  125 

           ---------|---------|---------|---------|---------|---------|---------| 

       491 atgggagaagccactcaacgtgacagaacgtcccgccacatgtgtccaagtagttgacacatatttcgac 560 

       126  W  E  K  P  L  N  V  T  E  R  P  A  T  C  V  Q  V  V  D  T  Y  F  D   148 

           ---------|---------|---------|---------|---------|---------|---------| 

       561 gactttgagggttcaacaatgtggaatgccaacactaatatgagcgaagactgtttaaacatgcttgttt 630 

       149 D  F  E  G  S  T  M  W  N  A  N  T  N  M  S  E  D  C  L  N  M  L  V  W 172 

           ---------|---------|---------|---------|---------|---------|---------| 

       631 gggttccgcggccacggccgacgaacgctgccgtccttctatgggtttacggaggcggcttttattcggg 700 

       173   V  P  R  P  R  P  T  N  A  A  V  L  L  W  V  Y  G  G  G  F  Y  S  G  195 

           ---------|---------|---------|---------|---------|---------|---------| 

       701 ctgtgccacactggacgtgtacgatgggaaaattctcgccagtgaagaaaacgtaatcgttgtatcattc 770 

       196  C  A  T  L  D  V  Y  D  G  K  I  L  A  S  E  E  N  V  I  V  V  S  F   218 

           ---------|---------|---------|---------|---------|---------|---------| 

       771 aactatcgggtcggctctctgggcttcctctacctcgatcacgcagacgctccgggcaatgcaggcatga 840 

       219 N  Y  R  V  G  S  L  G  F  L  Y  L  D  H  A  D  A  P  G  N  A  G  M  M 242 

           ---------|---------|---------|---------|---------|---------|---------| 

       841 tggaccaagtgatggctctacgatgggtccaggacaatatacacttgttcggaggcaacccgaacaacgt 910 

       243   D  Q  V  M  A  L  R  W  V  Q  D  N  I  H  L  F  G  G  N  P  N  N  V  265 

           ---------|---------|---------|---------|---------|---------|---------| 

       911 gactttgttcggggagagcgcaggtgccgtcagcgttgcctaccacctcctctcgcctctctcgagggac 980 

       266  T  L  F  G  E  S  A  G  A  V  S  V  A  Y  H  L  L  S  P  L  S  R  D   288 

           ---------|---------|---------|---------|---------|---------|---------| 

       981 ctattttctcaagccgtgctgcaatccgggggagcgactgttccctggggatacaacgagcggcagactg 1050 

       289 L  F  S  Q  A  V  L  Q  S  G  G  A  T  V  P  W  G  Y  N  E  R  Q  T  A 312 

           ---------|---------|---------|---------|---------|---------|---------| 

      1051 ccatgacaaatggctacaaactcgcggaggaagtcaagtgtcccacagacgacgtggaagccaccgtaaa 1120 

       313   M  T  N  G  Y  K  L  A  E  E  V  K  C  P  T  D  D  V  E  A  T  V  K  335 

           m--------|---------|---------|---------|---------|---------|---------| 

      1121 gtgccttcgacttcaggaccccgacctacttgtaaagtcggagatcttcgccaccggggtcgtggacttt 1190 

       336  C  L  R  L  Q  D  P  D  L  L  V  K  S  E  I  F  A  T  G  V  V  D  F   358 

           ---------|---------|---------|---------|---------|---------|---------| 

      1191 tctttcgtccccgtggtggacggcgcatttctcacagagcgaccagaggatacaatgaactcagggaatt 1260 

       359 S  F  V  P  V  V  D  G  A  F  L  T  E  R  P  E  D  T  M  N  S  G  N  F 382 

           ---------|---------|---------|---------|---------|---------|---------| 

      1261 tcaaaaagtgcaaaatactacttggatcgaatcgcgacgaagggacttacttcataatctactatctcac 1330 

       383   K  K  C  K  I  L  L  G  S  N  R  D  E  G  T  Y  F  I  I  Y  Y  L  T  405 

                                                   G328A   F331W              

           ---------|---------|---------|---------|---------|---------|---------| 

      1331 tcaacttttcaaacgagacgaaaatgtttatctgaccagagaagacttcgtcgacgccgtccaggctctc 1400 

       406  Q  L  F  K  R  D  E  N  V  Y  L  T  R  E  D  F  V  D  A  V  Q  A  L   428  
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Figure 4 - Alignment of acetylcholinesterase coding cDNA and protein sequence, cloned in 

susceptible strain of K. aberrans. The asterisk indicates the stop codon. Residues forming the 

functional domains are in different colours: in green cysteines forming intramolecular 

disulphide bonds, in orange amino acid residues of the catalytic triad, in violet the anionic 

subsite, in red the residues of the oxyanion holes and in pink the acyl pocket residues. G119S 

substitution found in AChE sequence both in resistant strains of T. urticae and K. aberrans is 

underlined and in red colour. In blue G328A and in green F331W substitutions found in 

insensitive T. urticae AChE. The solid inverted triangle shows the position of the intron 

amplified during the genomic screening of F331W and G328A substitutions. 

 

                            Int  194 bp intron in K. aberrans  

           ---------|---------|---------|---------|---------|---------|---------| 

      1401 agtccttttacctcgcaggtggtgaacgaagccatcatttttgagtacacggactggttgaaccctgacg 1470 

       429 S  P  F  T  S  Q  V  V  N  E  A  I  I  F  E  Y  T  D  W  L  N  P  D  D 452 

           ---------|---------|---------|---------|---------|---------|---------| 

      1471 atccgatcaaaaatcgagatgccgtcgacaagattgttggcgattactacttcacatgcccggtaatcga 1540 

       453   P  I  K  N  R  D  A  V  D  K  I  V  G  D  Y  Y  F  T  C  P  V  I  D  475 

           ---------|---------|---------|---------|---------|---------|---------| 

      1541 tacggcacactattattcatcggctggactcgatgtctacatgtactactacgtgtaccgctcgtctcag 1610 

       476  T  A  H  Y  Y  S  S  A  G  L  D  V  Y  M  Y  Y  Y  V  Y  R  S  S  Q   498 

           ---------|---------|---------|---------|---------|---------|---------| 

      1611 aataaatggccggagtggatgggagtgatccacgccgacgagattgcttacgtcttcggcgagccgctca 1680 

       499 N  K  W  P  E  W  M  G  V  I  H  A  D  E  I  A  Y  V  F  G  E  P  L  N 522 

           ---------|---------|---------|---------|---------|---------|---------| 

      1681 accaaacatggtcttaccgccaagacgaacagatgtttagtcgccgcattatgcggtactgggccaattt 1750 

       523   Q  T  W  S  Y  R  Q  D  E  Q  M  F  S  R  R  I  M  R  Y  W  A  N  F  545 

           ---------|---------|---------|---------|---------|---------|---------| 

      1751 tgcgcgaatgggaaacccgagcctgaaccccgacggaaactgggagaaaacatattggccggcgcacact 1820 

       546  A  R  M  G  N  P  S  L  N  P  D  G  N  W  E  K  T  Y  W  P  A  H  T   568 

           ---------|---------|---------|---------|---------|---------|---------| 

      1821 gcgttcggcaaggagttcctcatcctcgacgtcaactcgacgcaagttggatacgggaaccgagcgaaac 1890 

       569 A  F  G  K  E  F  L  I  L  D  V  N  S  T  Q  V  G  Y  G  N  R  A  K  H 592 

           ---------|---------|---------|---------|---------|---------|---------| 

      1891 attgcgcattctggaagaatttccttccaaacctcatcgcgctatcgggcaacaacacaaacaaggccga 1960 

       593   C  A  F  W  K  N  F  L  P  N  L  I  A  L  S  G  N  N  T  N  K  A  E  615 

           ---------|---------|---------|---------|---------|---------|---------| 

      1961 ggaaggctgcagagacggagcgagttcgcagagctcgtcgtccatcatgctcttatgctcattggcggca 2030 

       616  E  G  C  R  D  G  A  S  S  Q  S  S  S  S  I  M  L  L  C  S  L  A  A   638 

           ---------|---------|---------|---------|---------|---------|---------| 

      2031 agcatagtcgtcacgggccgtattctgtcacaaccaccggcgacagcagcgtagCTTCAGCTGATAACAG 2100 

       639 S  I  V  V  T  G  R  I  L  S  Q  P  P  A  T  A  A  *                   655 

           ---------|---------|---------|---------|---------|---------|---------| 

      2101 GGTCTACAATTCTGCCATGACACCGACAACGTCAACATGTACTGCAATCCAAACATTGTAACCACCTCGA 2170 

           ---------|---------|---------|---------|---------|---------|---------| 

      2171 AGTCGTGCTCCAACTGAAGGAGCGAACTAGGATTGTTGCTGAAAATGTTACAACCACCACAATCGGCAAA 2240 

           ---------|---------|---------|---------|---------|---------|---------| 

      2241 AGGCAGCACCGGAAGCAACGGCAGCAGCCGCTGCAAGTGAAAGCTGAAGCTCGCTTAAACGGAGTGTGAC 2310 

           ---------|--------- 

      2311 CGAAAGAACAAGCCCACCC 2329 
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Figure 5 - Rooted phylogenetic tree of representative AChEs found in Acari subclass, by 

neighbour joining method, using AChE-2 cloned in R. microplus (GenBank number 

ADO65737) as outgroup. The scale bar represents 5 percent divergence. For tree construction 

used AChE annotated in genome project of Ixodes scapularis (XP_002413212, 

XP_002406790) and Metaseiulus occidentali (XR_145413) or cloned in Rhipicephalus 

microplus (CAA11702, AAP92139), in Dermacentor variabilis (AAP49303) and in 

Kampimodromus aberrans (this study). 
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R strain AGC 

(S199) 

S strain GGC 

(G199) 

 

 

 

Figure 6 - The AChE genotype with the G-to-A single nucleotide polimorphism for G119S 

substitution (AChE Torpedo cali fornica numbering) in susceptible (S) and in resistant (R) 

strains of K. aberrans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Schematic picture of AChE active site with aminoacid substitutions which impair 

the catalytic function (Aiki et al., 2005) 
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Table 1 - Primer sequences 

     

 Forward primer  Reverse primer  

Degenerate primers  5’  3’  5’  3’ 

 KaAChEF1d GGNATHCCNTAYGCNAARCC KaAChER1d ACCCANATRCCZCCNAGZAAK 

 KaAChEF2d CCNTAYGCZAARCCNCC KaAChER2d ACCCANATRCCZCCNTCZAAK 

3’ cDNA extension     

 KaAChEF3 GTTGAACCCTGACGATCCGATCAA KaAChER3 AGGAAGTTCTTCCAAAACGCGCA 

     

3’ RACE      

   oligdTadapter 

ACAGCAGGTCAGTCAAGCAGTAGCA

GCAGTTCGATAAGCGGCCGCCATGG

AT12 DN 

 KaAChEF4 AGGTGGTGAACGAAGCCATCAT Adapter1 ACAGCAGGTCAAGTCAAG 

 KaAChEF5 TTGAGTACACGGACTGGTTGAACCCT Adapter2 AGCAGTAGCAGCAGTTCGATA 

5’ RACE     

   KaAChER4 CTCCGTAAACCCATAGAAGGA 

 TS-Primer CACCATCGATGTCGACACGCGTCGGGIGGIG KaAChER5 CCACATTGTTGAACCCTCAAAGTCG 
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 TS-Pcr CATCGATGTCGACACGCGTC KaAChER6 TGTTGAACCCTCAAAGTCGTCG 

cDNA sequencing     

 KaAChEF6 ACCTTGATAAACTGTCGCTGTGGC KaAChER7 AAAGTCACGTTGTTCGGGTTGCCT 

 KaAChEF7 CAATGCAGGCATGATGGACCAAGT KaAChER8 AGGAAATTCTTCCAGAATGCGCA 

 KaAChEF8 GTTGAACCCTGACGATCCGATCAA KaAChER9 TCCTAGTTCGCTCCTTCAGTTGGA 

 KaAChEF9 AAATGCGATTTCGACATCCTGTGCC KaAChER10 CCAACAATCTTGTCGACGGCATCT 

 KaAChEF10 GCGCTATCGGGCAACAACACAAACA   

G119S screening     

 KaAChEF11 AATGCGATTTCGACATCCTGTGCC KaAChER11 AAAGTCCGTTGTTCGGGTTGCC 

     

F331W screening KaAChEF12 AAACTCGCGGAGGAAGTCAAGTGT KaAChER12 CCAACAATCTTGTCGACGGCATCT 
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Conclusions 
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The effects of pesticides on predatory mites occurring in apple orchards have been studied 

following a multi-step approach in a number of experiments planned at field, semi-field and 

laboratory levels. Among predatory mites, we selected Kampimodromus aberrans, a species 

successfully used in European vineyards but poorly considered in IPM tactics in apple 

orchards. The main scopes of this study were to assess: a) the potential of K. aberrans 

populations to establish and play a key role in apple orchards, c) the effect of interspecific 

competition in this context; b) the impact of pesticides in preventing the activity of predatory 

mites as biocontrol agents, c) the role of alternative foods in mitigating the pesticide effects on 

predatory mites, d) the mechanisms evolved by K. aberrans pesticide resistant strains to 

reduce the impact of pesticides.     

Releases of K. aberrans were made in conventional and organic apple cultivars. Predatory 

mites were significantly higher in released plots as compared to control plots and K. aberrans 

populations were higher in organic compared to conventional orchards. However, releases 

were fully successful only in some organic orchards and especially on cultivars having 

favorable leaf morphological features for predatory mites. Populations of the native predatory 

mite Amblyseius andersoni were lower in released than in control plots. We can suggest that 

the use of non-selective pesticides affected K. aberrans colonization in conventional apple 

orchards, and also multiple application of spinosad were associated with a significant 

reduction in K. aberrans populations in organic orchards. Therefore, pesticides, host plant 

features and interspecific competition were key factors in the establishment of K. aberrans in 

apple orchards.  

Interspecific competition proved to be an important factor affecting the structure of mite 

communities in orchards. Four predatory mites common in European apple orchards (A. 

andersoni, T. pyri, K. aberrans and P. finitimus) were tested in reciprocal predation 

experiments in which females were fed with heterospecific larvae. All predatory mite species 

were able to survive and oviposit on heterospecific larvae. In terms of predation rate and 

fecundity, A. andersoni seems to be advantaged over T. pyri, T. pyri over K. aberrans, and  A. 

andersoni, K. aberrans and T. pyri over P. finitimus. Most of these results were expected to be 

influenced by relative aggressiveness that is partly associated to body size. However, A. 

andersoni females exhibited a higher performance on T. pyri than on the slightly smaller K. 

aberrans. The performance of A. andersoni, K. aberrans and T. pyri in terms of predation rate 

and fecundity proved to be better of P. finitimus larvae than on other prey. The low prey 

consumption and fecundity of the latter suggest that is disadvantaged in interspecific 
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predation. The comparison of performance exhibited by predatory mites on specific prey 

species additional information. Amblyseius andersoni confirmed to be the most aggressive 

among these species but its voracity did not imply higher fecundity rates; therefore this 

predator was the least efficient in converting prey food into egg biomass. Regarding the last 

two parameters T. pyri (and to a lesser extent K. aberrans) was superior to A. andersoni. 

Some interesting aspects emerged in the comparison between K. aberrans and A. andersoni: 

K. aberrans laid more eggs when P. finitimus was offered as prey and the fecundity of A. 

andersoni and K. aberrans did not differ on a diet based on T. pyri larvae. In both cases, prey 

conversion rate was higher for K. aberrans than for A. andersoni. This parameter could be 

considered as an indicator of the capacity to survive when prey is diminishing. The 

comparison between pollen and prey diets confirmed the positive effect of pollen on the 

fecundity of all four predatory mite species. Fecundity was higher on pollen than on predatory 

mite larvae.  

Knowledge of pesticide side-effects is fundamental for maintaining the population of 

beneficial mites and also to prevent risks of pest outbreaks. The present study shed light on 

lethal and sub-lethal effects of pesticides frequently used in orchards. In field and laboratory 

experiments, etofenprox, tau-fluvalinate and spinosad proved to be harmful to K. aberrans 

and induced spider mite outbreak. Laboratory studies evidenced sub-lethal effects of 

pesticides (e.g., neonicotinoids) with potential implications for IPM. The ecological 

significance and practical consequences of a high escape rate should be investigated more in 

depth. 

The reduction of pesticide side-effects on non-target arthropods is a necessary requisite for 

conservation biological control. We tried to assess if increasing alternative food availability 

can mitigate the effect of pesticides on natural enemies and promote their persistence in agro-

ecosystems. In laboratory experiments, the provision of a high amount of pollen and the 

increase of pollen application frequency augmented predatory mite fecundity. These results 

confirmed that predatory mite fecundity depends on food amount and stress the importance of 

the freshness of food provided by frequent pollen application. The effect of pollen application 

frequency was independent from the pollen amount provided. Potted plant experiments 

corroborated the positive effect of pollen on predatory mite population: pollen application 

induced higher predatory mite population levels. These results confirmed the importance of 

pollen as food source for K. aberrans. We showed the detrimental effects of spinosad and 

chlorpyrifos on K. aberrans. Both insecticides reduced the survival of this predator, but the 
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mortality caused by chlorpyrifos was less dramatic than that by spinosad. Fecundity was also 

reduced by insecticides. No eggs were laid by the few females that survived spinosad, while 

chlorpyrifos caused a significant reduction in fecundity. Potted plant experiments confirmed 

the detrimental effects of insecticides, but with a lower magnitude of the effects than that seen 

in the laboratory. The results obtained highlighted the role of pollen in influencing the impact 

of pesticides on predatory mites. In laboratory trials the increase in frequency of pollen 

application compensated for the negative effect of chlorpyrifos on fecundity. This effect was 

not observed with spinosad. Apart from the effect of pollen amount, the availability of fresh 

pollen appears to be of particular importance. Having a higher nutritional value, fresh pollen 

compensated for the insecticide effects and promoted the reproduction of predatory mites. The 

provision of uncontaminated fresh pollen decreased the exposure to chlorpyrifos with a 

reduction in sub-lethal effects. This effect was also clear on potted plants. At the end of the 

experiment, the number of predatory mites on pollen treated plants was similar between 

control and chlorpyrifos. 

Pesticide resistance mechanisms in K. aberrans have been poorly explored. Our study on 

target site resistance to chlorpyrifos in insensitive Acetylcholinesterase (AChE) revealed that 

AChE mutations conferring chlorpyrifos resistance to T. urticae AChE are not present in 

AChE K. aberrans. One mutation G119S substitution is associated to three resistant 

phenotypes of K. aberrans. This mutation could reduce the AChE sensitivity to chlorpyrifos 

as occurs in other species. This seems important because this could be in linkage with loci 

responsible for the chlorpyrifos insensitivity, acting as molecular marker of the resistant 

phenotype. 
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