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Riassunto 

Lobesia botrana Den & Shiff (Lepidoptera: Tortricidae) e Scaphoideus titanus Ball (Hemiptera: 

Cicadellidae) sono considerati tra i parassiti animali più importanti della viticoltura europea. 

Lobesia botrana oltre che nel del bacino del Mediterraneo, suo areale di origine, è attualmente 

presente in Giappone, America Latina e California, mentre lo Scaphoideus titanus nativo del Nord 

America è ampiamente diffuso in Europa. Entrambi gli insetti sono presenti nelle regioni del Nord-

est Italia. La loro importanza deriva dal danno quali-quantitativo che arrecano alla produzioni di 

uva. Il danno è causato per via diretta dall’attività trofica delle larve di L. botrana delle 

infiorescenze e degli acini, o indirettamente dallo S. titanus attraverso la trasmissione del fitoplasma 

agente della Flavescenza dorata. A causa di ciò, sono sempre considerati nei disciplinari di difesa 

delle regioni italiane. Essi vengono principalmente controllati tramite l’applicazione di insetticidi; 

recentemente per L. botrana si sta diffondendo l’impiego della tecnica della confusione sessuale. La 

recente Direttiva Europea 128/2009 sull’uso sostenibile dei pesticidi in agricoltura, la comparsa di 

ceppi di insetti resistenti ai pesticidi di sintesi, la diffusione di queste due specie in nuove regioni e 

le recenti problematiche legate al cambiamento climatico, impongono una migliore conoscenza 

della biologia ed ecologia di questi artropodi al fine di un loro controllo più efficace e compatibile 

con la salute umana e l’ambiente 

Una comprensione più completa della fenologia dell'insetto e del suo comportamento potrebbe 

essere il primo passo per la costruzione di una strategia di controllo coerente e di successo. Questa è 

la motivazione principale per la quale è stata effettuata questa ricerca. Nel presente lavoro è stata 

indagata la fenologia(I) e la struttura genetica di popolazioni (II) di L. botrana e per S. titanus la 

fenologia (III), il comportamento (IV) e l’interazione con i fitoplasmi agenti dei Giallumi della vite 

(V). 

(I) La fenologia delle tignole dell’uva L. botrana ed Eupoecilia ambiguella è stata indagata in 

diverse località in Veneto durante il triennio 2010 - 2012. I risultati mostrano una netta preferenza 

per E. ambiguella delle aree collinari e per L. botrana delle zone di pianura. Il numero di 

generazioni annuali è risultato variabile tra i diversi siti e tra i diversi anni. Generalmente nel 2011 è 

stato evidenziato un anticipo di voli per entrambi i carpofagi rispetto al 2010 e 2012. Per E. 

ambiguella sono stati osservati dai 2 ai 3 voli. Per quanto riguarda L. botrana sono stati registrati 

dai 2 ai 4 voli. In alcune località, si è avuto un lungo periodo di catture che ha reso difficile stabilire 

se si erano verificati uno o due voli sovrapposti. Inoltre, a fronte dei quattro voli che sono stati 

notati in alcune zone, nessuna prova per la quarta generazione è stata fornita. La temperatura è stata 
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trovata per avere un'influenza sul secondo volo di E. ambiguella e l'inizio di questo volo per L. 

botrana. 

(II) La struttura genetica delle popolazioni di L. botrana è stata indagata in quanto, nonostante 

l'importanza economica della tignoletta dell’uva, poco è noto dal punto di vista genetico su questo 

insetto. Al fine di indagare la variazione interspecifica e la struttura genetica di 16 popolazioni di L. 

botrana provenienti dal Bacino del Mediterraneo e dal Medio Oriente, sono stati analizzati sei loci 

microsatelliti. I risultati hanno mostrato moderati livelli di differenziazione genetica tra le diverse 

popolazioni. Una elevata eterozigosi è stata notata nella maggior parte delle popolazioni 

probabilmente a causa dell'accoppiamento tra individui di diverse popolazioni. Le popolazioni 

provenienti dal Medio Oriente e dalla Spagna appartengono a due diversi gruppi genetici, mentre le 

popolazioni provenienti dalla Germania e dall’Italia sono risultate mescolate tra loro . Nessun 

effetto chiaro riferimento geografico è stato rilevato sulle diverse popolazioni studiate. Questi dati 

sono rilevanti per lo sviluppo di strategie di controllo dei parassiti, in quanto lo studio del flusso 

genico delle popolazioni potrebbe aiutare a conoscere la distanza entro la quale la popolazione 

riesce a disperdersi, e di conseguenza capire la scala spaziale entro la quale le tecniche di 

prevenzione potrebbero essere efficaci.  

(III) La fenologia di S. titanus è stata indagata in diverse località Venete nel triennio 2010-2012, al 

fine di conoscere il momento migliore per applicare le diverse strategie di difesa. I dati raccolti 

hanno dimostrato che le ninfe di S. titanus compaiono in maggio, mentre gli adulti è sono presenti, 

tra la terza decade di giugno - prima metà di luglio fino alla fine di settembre - primi di ottobre. In 

generale i diversi stadi di sviluppo dell’insetto sono comparsi prima nel 2011 e nel 2012 rispetto al 

2010 con alcune varianti tra i diversi siti a seconda dell'altitudine e dell’esposizione dei vigneti. La 

temperatura ha influito sulla comparsa e sullo sviluppo degli stadi giovanili e la fenologia delle 

ninfe sembra essere sincrona con lo stadio di sviluppo della pianta ospite. Per quanto riguarda gli 

adulti, è emerso che ci sono altri fattori oltre la temperatura che possono influenzare la fenologia, 

come ad es. l'altitudine ed il fotoperiodo. 

(IV) La preferenza a diverse cultivar di uva, ed il ruolo degli stimoli olfattivi nel riconoscimento 

della pianta ospite, sono stati indagati in Scaphoideus titanus, in quanto questi parametri 

comportamentali non sono finora ben noti e spiegati per questa cicalina vettrice. L’attrattività verso 

i diversi stadi di sviluppo di S. titanus è stata indagata su Chardonnay, Cabernet Franc, Merlot e 

Glera. Inoltre, germogli di vite sani ed infetti dai fitoplasmi agenti dei Giallumi della Vite 

(Flavescenza dorata e Legno nero) sono stati utilizzati per determinare la capacità della cicalina di 

distinguere i loro diversi stimoli olfattivi. I risultati di questo studio hanno mostrato che la 
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preferenza di S. titanus per le diverse cultivar indagate varia a seconda dell'età. Chardonnay è 

risultato attrattivo sulle neanidi e sulle ninfe, mentre il Cabernet Franc è risultato attrattivo per 

neanidi ed adulti. Per quanto riguarda gli stimoli olfattivi, S. titanus è risultato essere in grado di 

distinguere tra un germoglio di vite sano ed infetto da fitoplasmi dei giallumi, mentre non è in grado 

di distinguere i due diversi fitoplasmi agenti della FD e del LN. Questi risultati fornendo un aiuto 

nella comprensione del comportamento degli insetti e la loro distribuzione all'interno dei vigneti, 

potrebbero contribuire allo sviluppo di utili strumenti per le strategie di monitoraggio e di controllo. 

(V) L'effetto dei fitoplasmi agenti dei Giallumi della Vite sulla longevità e sulla sopravvivenza di 

Scaphoideus titanus è stata studiata utilizzando foglie di vite infette come fonte di infezione da 

fitoplasmi. Oltre alla Flavescenza dorata (FD) è stato indagato anche il fitoplasma agente del Legno 

nero (BN) in quanto la sua presenza è in aumento in molte regioni italiane e perché è stato rilevato 

all'interno di S. titanus. Inoltre, anche se S. titanus non è coinvolto nella trasmissione e diffusione 

del BN il fitoplasma agente del giallume potrebbe avere un effetto sulla vita dell’insetto. Ninfe 

appena nate sono state raccolte da germogli di vite asintomatici e allevate artificialmente in 

condizioni controllate su foglie sane, infette da FD o LN. I risultati hanno mostrato che le ninfe 

allevate su foglie infette da fitoplasmi, sono sopravvissute di meno e sono diventate adulti in più 

giorni rispetto a quelle allevate su foglie sane. Le analisi di rilevamento fitoplasmi confermato la 

capacità di S. titanus ad acquisire l'agente causale della BN. 
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Summary 

Lobesia botrana Den & Shiff (Lepidoptera: Tortricidae) and Scaphoideus titanus Ball (Hemiptera: 

Cicadellidae) are considered major pests in European viticulture. Lobesia botrana is native from the 

Mediterranean basin and now is present in America while Scaphoideus titanus native from North 

America is an exotic pest for Europe. They are both present in north-eastern Italy. Their importance 

comes from the big damage they cause to the quality and the quantity of grape production. This 

damage is caused directly through larval feeding of Lobesia botrana, and indirectly by Scaphoideus 

titanus as a vector of a dangerous quarantine Phytoplasma disease (Flavescence dorée). 

Consequently, they are the target of different pest management strategies. They are mainly 

controlled with the use of pesticides and mating disruption for L. botrana only. The raising 

awareness on the impact of pesticides on the human health and the environment, concerns about 

pesticide resistance, the spread of these species into new regions and the recent challenges such as 

climate change all underline the necessity of more efficient control for those pests based on an 

improved knowledge of their biology and ecology.  

A more comprehensive understanding of the insect phenology and behaviour could be the first step 

in building a coherent and successful control strategy. This is the main motivation to conduct this 

research. In this thesis the phenology (I) and the genetic structure of populations (II) of L. botrana 

and regarding S. titanus the phenology (III), behavior (IV) and Grapevine Phytoplasmas interaction 

(V) were studied 

(I) the phenology of grape berry moths Lobesia botrana and Eupoecilia ambiguella was 

investigated in several sites in Veneto region during the period of 2010 and 2011. Few sites were 

also studied in 2012. The results show a clear preference for E. ambiguella to hilly areas and for L. 

botrana to plain areas. Number of generations per year varied among the sites, and the beginning of 

the flights were generally earlier in 2011. For E. ambiguella the observed generation numbers was 2 

to 3. Regarding L. botrana 2 to 4 flights were recorded. In some areas L. botrana showed a long 

flight period which made it difficult to determine whether it was one or two overlapping flights. 

However, this phenomenon could be associated with larval aestivation. Moreover, four flights were 

noticed for Lobesia botrana in some areas, but no evidence for fourth generation was provided. 

Temperature was found to have an influence on the second flight of E. ambiguella and the 

beginning of this flight for L. botrana. 

(II) The genetic structure of populations of L. botrana was studied, because, in spite of the 

importance of grape berry moth, little is known about its genetic structure. In this study, six 

microsatellite loci were used to analyse 16 population of Lobesia botrana from the Middle East and 



5 
 

Europe, to investigate their variation and structure. The results showed moderate levels of genetic 

differentiation among the different populations. An excess heterozygosity was noticed in most of 

the populations due to the mating among the populations. The populations coming from Middle 

East and Spain belong to different genetic clusters, while the German and Italian ones were mixed. 

No clear geographical effect was detected on the different studied populations. These data are 

relevant for the development of pest control strategies because, the study of the gene flow of 

populations could help in knowing the distance over which the population could disperse, 

consequently, knowing the spatial scale within which the forecasting techniques could be effective. 

(III)  The phenology of S. titanus was studied in several sites in Veneto region in 2010-2012 in 

order to know the best time to apply the different pest management practices. The collected data 

showed that the S. titanus nymphs appear in May, while the adults appeared, between the third part 

of June and the mid of July, and disappeared between September and early October. In general, S. 

titanus nymphs and adults appeared earlier in 2011 and 2012 than in 2010 with some variations 

among the sites depending on altitude and sun exposure. The temperature affects the nymphs 

phenology and the nymphs appearance and development are synchronized with the host phenology, 

while for the adults there are other factors that could affect the phenology beside the temperature 

such as altitude and photoperiod.  

(IV) The study on the preference of Scaphoideus titanus to different grape cultivars, and the role of 

stimuli in host recognition was conducted because these aspects are not well known and explained 

for this leafhopper. In this study four grapevine Cultivars were used (Chardonnay, Cabernet franc, 

Merlot and Glera) to study their attractiveness to different life stages of S. titanus. Furthermore, 

healthy and infected shoots by Grape Yellow Phytoplasma Diseases (Flavescence dorée and Bois 

noir) were used to investigate the ability of the leafhopper to distinguish among their different 

stimuli. The results of this study showed that there are different levels of preference rates for S. 

titanus towards the investigated cultivars. This preference varied according to the age and 

throughout the experiment period. Chardonnay was more attractive to the young nymphs and 

nymphs. Young nymphs and adults seemed to prefer Cabernet Franc. Moreover, S. titanus was 

found to be able to distinguish among healthy and GYs infected stimuli, while no strong attraction 

was detected of this insect to the stimuli of FD, BN phytoplasma. These results could provide help 

in understanding the insect behaviour and distribution within the vineyard. Hence, they could 

contribute to the development of stronger tools for the monitoring and control strategy.   

(V) The effect of the Grapevine Yellow Phytoplasmas on the development and the survival of 

Scaphoideus titanus was studied using grapevine leaves as phytoplasma infection source. In 



6 
 

addition to Flavescence dorée (FD) the Bois noir (BN) causal agent was also investigated because 

its importance and occurrence are increasing in many Italian regions, and because it was detected 

inside Scaphoideus titanus. Although this leafhopper is not involved in BN transmission and spread, 

the BN phytoplasmas could have an effect on the insect life. Newly hatched nymphs were collected 

on asymptomatic shoots and reared artificially on healthy, FD or BN infected leaves, under 

controlled conditions. The results showed that nymphs reared on phytoplasma infected leaves had a 

greatly longer longevity and lower survival rate, while no differences between FD and BN were 

found. The phytoplasmas detection analyses confirmed the ability of S. titanus in acquiring the 

causal agent of BN. 
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Grapevine: Importance and Challenges 

The grapevine (Vitis vinifera L.) is a fruit crop widely distributed in the world (Vivier and 

Pretorius, 2002). It includes the wild grapevine (Vitis vinifera spp. Silvestris) which is considered 

to be the origin of the domesticated grapevine V. vinifera spp. sativa (De Mattia et al., 2008). 

The first evidence of grape cultivation came from the Middle East (Zohary and Hopf, 2000). 

Grapevine is a water-stress adapted crop (Flexas et al., 1998), hence it could be easily spread to 

new environments such as the tropical and semi-tropical (Camargo et al., 2007). Moreover, 

grape has a very good economic value (Arroyo-Garcia et al., 2006) and it could be consumed as 

fresh fruit, wine, juice and leaves due to its high nutritional content (Didem et al., 2009).  

Nowadays there are many challenges that the grapevine growers have to face including climate 

change, invasive pests, developing of more efficient agronomic practices and plant-protection 

strategies. They could be considered as major factors potentially involved in the evolution of 

arthropods associated problems in viticulture.  

Climate change is the most important challenge to viticulture worldwide, in particular to the 

wine industry (Jones et al., 2005). Climate has a big contribution to grapevine growth and to the 

quality of wine (Jones and Davis, 2000). On the other hand, climate change could influence the 

presence of pests and diseases (Jones et al., 2005), more specifically, it can induce an expansion 

of the geographic range of grape leafhoppers and berry moths. Moreover, climate change can 

alter pest phenology, determining an increase in the number of generations per year.  

Invasive pest occurrences have complicated the plant-protection management in some areas. The 

impact of horticultural techniques on grapevine arthropods community is increasing in 

importance, interesting examples are provided by the effect of the weed management on Bois 

Noir BN spread, and the interactions between water management and Empoasca vitis.  

However, the plant protection techniques depend largely on a combination of pesticides use, 

agronomical practices (pruning, variety selection, soil tillage…) and biological control methods. 

As a consequence of the damage pesticides may cause to the human and environmental health, 

the public demand for producing food free from chemical residuals, and the non-efficiency of the 

available alternatives, other agricultural production systems have been developed as organic 

agriculture.  



10 
 

Grapevine was among the first crops which were managed organically (Geier, 2006), since 

1950s (Willer, 2008), because of the importance of this crop. In 2010, the organic viticulture area 

was more than 200.000 ha, which is approximately 2.9% of the world’s total grape area (FAO, 

2010). In Italy, the statistics show an increase of about 20% in the organic grape area between 

2009 and 2010 (Willer and Kilcher, 2012).   

Pests and diseases are a constant risk to grape production and quality, this risk is even greater for 

the organic growers who are not allowed to use chemical pesticides (Magarey et al., 2000). In 

spite of the availability of some organic plant protection techniques such as, agronomical 

practices and natural insecticides, these techniques are not always effective and they are highly 

influenced by the climatic conditions when applied in the field (Handelsman, 2002).  

There are several pests that can infect grapevine. The most relevant one is grape berry moth 

(Lobesia botrana Schiff) which is widely distributed in the world. Whereas the grapevine leaf 

hopper (Scaphoideus titanus Ball) does not cause a direct damage to grape, but it is a vector of a 

quarantine phytoplasma disease in Europe (Flavescence Dorée) which makes it another 

important pest for viticulture. 

Grape Berry Moth (Lobesia botrana Schiff) 

The grape berry moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera:  Tortricidae) is a 

major pest in all grape growing areas.  

L. botrana was firstly described by Denis and Schiffermüller in Austria in 1776 (Maher and 

Thiéry, 2006). It is thought to be a key pest on grape since the Roman times (Kreiter, 2000). 

Nowadays, L. botrana is present throughout the Palaearctic region (Bovey, 1966). It is found in 

Middle Europe, the Mediterranean countries, southern Russia, Japan, the Middle East, and 

northern and western Africa (Venette et al., 2003; Thiéry and Moreau, 2005; Maher and Thiéry, 

2006) and recently in California in USA (Varela et al, 2010; Todd et al., 2011; Gutierrez et al., 

2012).  

Grape berry moth is polyphagous insect which occur and complete its development on more than 

20 species (Bovey, 1966; Stoeva, 1982; Thiéry, 2005; Thiéry and Moreau, 2005). Maher and 

Thiéry (2006) found out that the ever green shrub (Daphne gnidium L.), which grows wildly in 

south Europe and the Mediterranean basin, can stimulate the oviposition of L. botrana. This 

supports the hypothesis that says L. botrana shifted to grape from other wild plants, and that D. 
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gnidium could be the ancestral host plant for grape berry moth (Balachowsky and Mesnil, 1935; 

Bovey, 1966; Stoeva, 1982; Thiéry and Moreau, 2005). In the same context, there are some 

reports that show the presence of L. botrana larvae on olive trees in north Greece and Bulgaria 

(Tzanakakis and Savopoulou, 1973; Stoeva, 1982). Those alternative hosts (Daphne and olive) 

were found to increase Lobesia botrana fitness even more than grape (Thiéry and Moreau, 

2005). However, grape continues to be the main food resource for grape berry moth (Maher and 

Thiéry, 2006). 

This moth has more than one generation per year, the number of generations depends on the 

temperature, photoperiod (Martìn-Vertedor et al., 2010) and the latitude (Roehrich and Boller, 

1991) and each generation lasts from 1-2 months depending on the region (Moreau et al., 2010). 

In central Europe (Austria, Germany, Switzerland and central France) L. botrana completes two 

generations per year. While in southern Europe (south France, south Italy, Spain, Portugal, 

Greece), the rest of the Mediterranean countries such as (Algeria, Tunisia and Syria) and in Iran, 

it has three to four generations (Bovey, 1966; Coscollá, 1997; Badenhausser et al., 1999; Ibrahim 

and Al-Radwan, 2006; Bounaceur et al., 2011; Akbarzadeh Shoukat, 2012). 

The female of Lobesia botrana oviposits on the floral buds and berries from spring to autumn 

(Maher and Thiéry, 2006). Number of eggs varies between 70-150 according to climatic 

conditions and to the quality of food and its abundance to larvae (Maher and Thiéry, 2006). The 

females are able to distinguish among different grape cultivars (Maher et al, 2001; Moreau et al., 

2008). However, females tend to prefer the host species on which they developed as larvae 

(Moreau et al, 2008), but they also select the plant species which will increase the larval growth 

and survival (Courtney and Kibota, 1990; Thompson and Pellmyr, 1991; Leather, 1994; Janz, 

2002). The egg size is controlled by physiological and environmental factors (e.g. female age at 

mating, availability of water, larval feeding and pupal weight). On the other hand, a bigger egg 

size could significantly enhance larval performance (Torres-Vila and Rodríguez-Molina, 2002).  

The eggs hatch and give larvae that develop in five instars (Bovey, 1966). The width of head 

capsule could be used to distinguish among the different instars (Irigaray et al., 2006; Delbac et 

al., 2010). The total development time for larvae depends on the plant species (Thiéry and 

Moreau, 2005), as what was reported in Greece (Savopoulou-Soultani et al., 1990) where on 

olive the development time was two to three days faster than on grape. Likewise, the larval food 

could have a big impact on the mating ability of L. botrana adults (Moreau et al., 2007). In 



12 
 

addition to the plant species and grape cultivar, the grape phenological stage during the larval 

stage could also affect the reproduction of adults and their weight (Torres-Vila, 1996; Torres-

Vila et al., 1999). The first generation larvae feeds on grape flowers giving a low adult weight 

and mating ability, while the second and third generations feed on berries and ripe berries 

respectively, resulting on a higher adults’ weight and reproduction performance (Badenhausser et 

al., 1999; Pavan et al., 2010). At the end of larval stage, larvae convert into pupae.  

Lobesia botrana overwinters as diapausing pupae, the length of the photoperiod is the main 

factor which affects the diapauses of L. botrana pupae (Pavan et al., 2010). In that case, a short 

photoperiod leads to an increase in the development period of the larvae, causing the pupae to be 

heavier (Deseö et al. 1981; Roditakis and Karandinos, 2001). Figure 1 demonstrates the different 

life stages of Lobesia botrana. 

 

Figure 1- Different life stages of Lobesia botrana. (A, B and C) represent the three instars of L. botrana egg. (D) the 

larva. (E) larva becoming a pupa. (F) the pupa and (G) the adult 

 
Figure 2 shows the life cycle of grape berry moth (Lobesia botrana) in North Italy (Zangheri et 

al., 1992).  
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Figure 2- Lobesia botrana life cycle in north Italy (Zangheri et al., 1992) 

 
Grape berry moth (Lobesia botrana) has a very big economic importance due to the damage it 

makes to both the quality and the yield of grape (Bovey, 1966). Larvae are considered to be the 

most damaging life stage of L. botrana because of their feeding activity (Caffara et al., 2012). 

For the first generation of grape berry moth, the newly hatched larvae feed on the flower buds, 

which causes kind of thinning to the clusters (Zahavi et al., 2003), and later on, they gather 

several buds together by making glomerules. The glomerules provide protection to the larvae 

while they continue their feeding. The tolerance level of the first generation is relatively high, 15 

to 100 larvae per 100 grape flowers, corresponding to approximately 60% of bunches attached 

(Pavan and Girolami, 1986; Roehrich and Boller, 1991), and it seems to depend on the grape 

variety ability to compensate the damage (Roehrich and Schmid, 1979; Badenhausser et al., 

1999). The second and the third generations are the most damaging. The larvae of these 

generations feed on berries and mature berries causing a direct damage represented by the loss in 

the production weight in particularly with the 2nd generation (Pavan et al., 1998). In addition to 

the production quantity damage, there is a reduction in the quality especially for table grape 

varieties where the accepted level of damage is zero (Reynaud, 2003). As a consequence of the 

larval feeding, an indirect damage could occur, by facilitating the infection with fungal diseases 

(e.g. Botrytis cinerea) (Deseö et al., 1981; Badenhausser et al., 1999; Zahavi et al., 2003) during 

the season, or the black aspergilla rot (Aspergilus niger and Aspergilus carbonarius) (Cozzi et 

al., 2006). The damage of Lobesia botrana depends from one side on how much the clusters are 
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compact (Pavan et al., 1993), and on the other side on the phenological stage of grape (Roerich 

and Boller, 1991). The damage caused by the larval feeding on grape is presented in figure 3. 

 

Figure 3- (A) hollowed berries after L. botrana larval feeding. (B) Larva is feeding on berries (photo by Vasquez 

S.J., 2009). (C) Larva penetrates the berries thus could facilitate fungal diseases (photo by Rigs N., 2012). (D) The 

damage on grape bunches (photo by Del Estal P., 2007). 

As a result of this economical importance, the different pest management programs considered 

Lobesia botrana as a main target (Moreau et al., 2010).  The most traditional method to control 

pests and diseases are the pesticides, which were used extensively against L. botrana (Irigaray et 

al., 2006; Moreau et al., 2010). The most common compounds recently are insect growth 

regulators (IGRs) (Hosseinzadeh et al., 2011), chitin synthesis inhibitors (e.g. flufenoxuron) and 

moulting accelerating compounds (e.g. tebufenozide) (Charmillot, 1989; Charmillot et al., 1994; 

Pavan et al., 2005a). Selective pesticides are also used (i.e., benzoyl phenil ureas BPUs) but their 

efficiency depends a lot on knowing precisely the development stage of the insect (Irigaray et al., 

2006). Currently, the use of ovicides before and during the ovipositing period is to be thought an 

efficient method for grape protection against L. botrana. However, the oviposition period is 

difficult to determine, and this method could need a direct contact with the eggs (Delbac et al., 

2010). But, the increasing cost of applying pesticides, the risk of resistant development (Ioriatti 
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et al., 2002), the increasing aware on the damage the pesticides cause to the environment and 

human health and the side effect they could cause (for example, when controlling the first 

generation of L. botrana an outbreak of spider mites could be noticed at the same time, reported 

in Duso et al., (1989)), lead to the need to develop other alternative techniques to control grape 

berry moth. A good alternative for pesticides is mating disruption, it has been widely used in 

viticulture against L. botrana since 1994 (Louis et al., 2002). This technique depends on the 

emission of female pheromone which is naturally used by the female moth to attract males for 

mating. This leads to male disorientation and the reduction of pest offspring thus the damage 

(Varner et al., 2001;  Mazzocchetti et al., 2004; Ioriatti et al., 2004; Bagnoli et al., 2006; 

Marchesini et al., 2006; Lucchi et al., 2007; Bigot et al., 2008; Duso et al., 2010a). The only 

problem of this method is that it requires low density of the pest (Feldhege et al., 1993; Varner et 

al., 2001). Moreover, another promising alternative for the control of L. botrana is biological 

control which depends on the use of beneficial living organisms (Gurr and Wratten, 2000; 

Eilenberg et al., 2001). One of the most famous biological control agent is Bacillus thuringiensis, 

in fact, L. botrana was successfully controlled using this bacterium particularly with the strains 

(3 and 34) (Ruiz de Escudero et al., 2007). A more successful biological control strategy is to 

favor the use of already existing natural enemies, this requires scanning to identify the possible 

natural enemies in a given environment and the knowledge on the interaction between the pest, 

the host and the natural enemy (Van Lenteren, 2006; Moreua et al., 2010; Duso et al., 2010a). 

There are several studies that provide an adequate knowledge about the presence of natural 

enemies in some regions, among these studies (Marchesini and Dalla Montà, 1994; Moreau et 

al., 2010) and they proved the ability of the parasitoids to control Lobesia botrana. Most of the 

parasitoids belong to the families Hymenoptera or Diptera (Thiéry et al., 2001; Chuche et al., 

2006). As an example of these parasitoids, the wasp Dibrachys cavus, was found on 

overwintering pupae of Lobesia botrana in several European countries including Italy 

(Marchesini and Dallà Monta, 1994; Chuche et al., 2006). However, the parasitoids species of L. 

botrana differ from a region to the other, and they are affected by the grape cultivar. 

Nevertheless, the interaction among the pest and its surrounding should be taken into account 

when using biological control programs (Moreau et al., 2010). 
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Grape leafhopper Scaphoideus titanus Ball 

The grape leafhopper Scaphoideus titanus (Homoptera: Cicadellidae) is a dangerous pest for 

viticulture, because it is a vector of 16SrV Candidatus Phytoplasma vitis, the causal agent of the 

Grape Yellow Disease Flavescence Dorée (FD). (Schvester et al., 1961; Carraro et al., 1994; 

Bianco et al., 2001; Mori et al., 2002).  

This Nearctic leafhopper has an American origin of the Great lake region (Vidano, 1966), it was 

introduced to Europe between 1950-1960 through the south of France (Bonfils and Schvester, 

1960; Vidano, 1966; Boudon-Padieu, 2000a) by importing grapevine canes with eggs under the 

bark (Caudwell, 1983). A recent study by Papura et al. (2012) used a combination of nuclear and 

mitochondrial markers to trace back the invasion history of S. titanus to Europe Confirmed the 

American origin of this leafhopper, and suggested that the introduction of this pest happened 

once or several times from the same area. Nowadays, S. titanus could be found more in the 

eastern and northern vineyards of Europe more than in the southern Mediterranean parts 

(Boudon-Padieu, 2000a; Chuche and Thiéry, 2009). S. titanus is spread in France, Italy, Spain, 

Switzerland, Serbia, Croatia, Slovenia, Austria, Hungary and Portugal (Bonfils and Schvester, 

1960; Vidano, 1964; Quartau et al., 2001; DeSousa et al., 2003; Alma, 2004; Magud and 

Toševski, 2004; Mazzoni et al., 2005; Lessio and Alma, 2006; Steffek et al., 2007; Dér et al., 

2007; Gabrijel, 2008). In Italy, S. titanus was detected for the first time by Prof. Carlo Vidano in 

1964 in Liguria. Now, it is found in the northern and central Italian regions (Sancassani et al., 

2008) and also under the latitudes 40° N in Basilicata and Campagna regions (Viggiani et al., 

2002; 2004). 

In its native area S. titanus could be found on different grasses, shrubs and trees (Gibson, 1973; 

Barnett, 1976; Hill and Sinclair, 2000; Mazzoni et al., 2009), as well as, on different grape 

species such as the wild Vitis riparia and the cultivated Vitis vinifera, but with more preference 

to the wild species V. riparia (Maixner et al., 1993; Beanland et al., 2006). Although in Europe 

Scaphoideus titanus is considered a monophagous insect which feeds only on grape vine 

(Vidano, 1966; Lessio and Alma, 2006; Decante and Helden, 2006; Lessio et al., 2007), it might 

feed on other plants in the laboratory (Cineraria maritime and Vicia faba) and in nature (Ulmus 

americana) (Caudwell et al., 1970; Gibson, 1973). 
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Scaphoideus titanus has one generation per year (Vidano, 1966; Pavan et al., 1987) and it is a 

hemimetabolous phloem-feeding insect (Conti and Vidano, 1988; Bertin et al., 2007). The 

female oviposits on the woody canes from summer till autumn, the node area was more favorable 

for the females to lay the eggs, according to some tests (Bagnoli and Gargani, 2011). However, 

some studies demonstrate that the females of S. titanus could also lay the eggs on one year old 

wood, although the hatching rate would be lower than the two year old wood by 20-30 times 

(Forte et al., 2010). Eggs are the overwintering stage of S. titanus (Vidano, 1966), and they 

hibernate under a two year old wood bark. Nymphs hatch from the eggs from May of the 

following year (Boudon-Padieu, 2000a; b). The nymphs manage to survive if the hatching took 

place with or shortly after grapevine bud bursting, when the leaves are young and they have high 

nitrogen content (Mooney and Gulmon, 1982). They could be found on the lower side of 

grapevine leaves, and they do not go for big distance. They feed by sucking the sap from the 

small venations, whereas the older nymphs (4th and 5th instars) could feed on the stems and the 

green shoots (Vidano, 1966). Nymphs occur in spring from May till the end of June in Italy 

(Pavan et al., 1987; Lessio and Alma, 2006) or till July in France (Boudon-Padieu, 2000b). 

Nymphs develop through five instars (Vidano, 1966) with different dimensions and colors that 

facilitate the ability to distinguish among them (Dal Ri and Capra, 2003). Some studies state that, 

starting from the third instar nymphs the acquisition of phytoplasma could begin, this is due to 

the feeding behavior of the 1st and 2nd instar nymphs (Carle and Moutous, 1965). While for other 

studies, all the stages of S. titanus may acquire the phytoplasma (Bertin et al., 2007) but the 

possibility to detect the phytoplasma acquisition increases with the insect age (Bressan et al., 

2006). The acquisition begins through the feeding process on already infected plants (Lessio and 

Alma, 2006), which appears to be the only source for the vector natural acquisition (Bressan et 

al., 2006). The acquisition efficiency is affected by several factors such as the susceptibility of 

the grape cultivar, the nymph instar and the growing season (Bressan et al., 2005b). The 

transovarial does not seem to be the way to transmit the phytoplasma through the different 

generations (Bressan et al., 2005a). During the feeding the insect inoculates the phytoplasma into 

the phloem of healthy plants (Pajoro et al., 2008), so the vector spread the disease from vine-to-

vine which leads to the expansion of the disease over the years (Van der Plank, 1963; Pavan et 

al., 1997). Then, after a latency period of 28-35 days, the adults could infect new plants 

(Schvester et al., 1969). During the latency period, the phytoplasma can multiply and persist 

inside the vector’s body (Conti and Vidano, 1988; Bressan et al., 2006). The adults are 
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considered as the most important life stage in the spreading of this disease (Bressan et al., 2006). 

Adults are found in mid-summer from mid July to mid October (Pavan et al., 1987) their flight is 

mainly concentrated between the evening and the early morning, other than that, they do not tend 

to move far from the plant (Lessio and Alma, 2004a; b). Consequently, it is thought that human 

trading activities may have the essential role in the long distance dispersal of this insect (Bertin 

et al., 2007).The adults distribution in the field is noticed to be highly varied (Duso et al., 2010b) 

and could be influenced by the planting system (Lessio and Alma, 2004a; 2006). The adults and 

nymphs show aggregated pattern of distribution, but this social behavior could be because of the 

attraction to the plant or to the group (Bosco et al., 1997; Lessio and Alma, 2006).  Figure 4 

presents the different life stages of S. titanus. 

 

Figure 4- Different life stages of Scaphoideus titanus. A: the eggs B: young nymphs C: old nymphs and D: the adult 

 
The economic importance of Scaphoideus titanus does not come from the direct feeding on the 

grapevine leaves (Mazzoni et al., 2009) but from being a vector of the Candidatus Phytoplasma 

vitis, Flavescence dorée FD disease which is a main threat to viticulture and is considered as a 

quarantine infectious disease in Europe because of its big damage, and due to its rapid spread by 

its specific vector S. titanus (Schvester et al., 1961; Boudon-Padieu, 2003).  

As a consequence of the importance of FD disease chemical treatment is compulsory (Planas, 

1987; Barba, 2005; Pavan et al., 2005b). Since, there is no direct control to the casual agent of 
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Flavescence dorée (Marzorati et al., 2006), so all the control strategies are targeting the vector S. 

titanus. The control includes in addition to the insecticide treatments the rouging of the infected 

plants (Weintraub and Beanland, 2006). It could be also necessary to eradicate the abandoned 

neighbouring vineyards and the American grapevines growing wild in spontaneous vegetation 

(Pavan et al. 2012), because they could serve as a reservoir for S. titanus (Lessio et al., 2007; 

Pavan et al., 2012). Regarding the number of pesticides treatments, there are usually one to three 

sprays per year depending on the FD presence (Pavan et al., 2005b) and on the insect population 

density. The number of treatments against S. titanus varies according to the country. For 

example, in Switzerland, insect growth regulators are used twice per year, but they require an 

accurate knowledge on the phenology and the appearance dates of the youngs and adults 

(Rigamonti et al., 2011). While in Italy where FD is present, at least one treatment is 

compulsory, and the used compounds were chitin depressors and neurotoxic products (Bosio et 

al., 2004; Pavan et al., 2005b) and, nowadays, neonicotinoidis. The first treatment is in June 

against the nymphs, while the second treatment (if needed) is in July (Pavan et al., 2005b). In 

organic agriculture pyrethrum could be applied (Caobelli and Carcereri, 1995; Caruso and 

Mazio, 2004), but due to the high sensitivity of the active ingredients which are allowed in 

organic agriculture to temperature and light, treatments should be made with high application 

volume and preferably in the evening (Bottura et al; 2003).  

However, the efficient control depends on the availability of a correct monitoring of S. titanus 

(Posenato et al., 2001; Lessio et al., 2011).  

In agreement with the recent European directive 128/2009, that requires a sustainable use of 

pesticides, it is very important to reduce the use of pesticides and apply more environmentally 

friendly methods. Some of these alternatives could be trying to disturb the mating process by 

pheromone dispensers, till now there are not studies about the role of chemical communications 

in leafhoppers. Instead, the vibration signals is the method used by S. titanus for mating, and 

Mazzoni et al. (2009) found out that playing back some disruptive vibration signals could 

interrupt the female-male duet and manage the population of this leafhopper. It could be useful 

for a better control of the insect, to use preventive measures such as the right selection of grape 

cultivar, Bressan et al. (2005c) showed that the resistant cultivars to FD are a bad acquisition 

source for S. titanus. The use of disease-free propagating material could be also a possible way to 

prevent the infection in the field (Caudwell et al., 1997). The propagating material may carry the 
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overwintering eggs of Scaphoideus titanus, the fact that made Caudwell et al. (1997) conduct 

through the years several experiments on the elimination of those eggs with the use of hot water 

(of 50°C for 45 minutes).  In spite of the increasing need for biological control agents, there are 

few studies in this regard. An interesting field for the ecologically control of S. titanus is the 

“symbiotic control” that is based on the use of the microorganisms symbionts in the host body, to 

interfere with the FD pathogen itself (Bextine et al., 2004). In that context, a study was done by 

(Marzorati et al., 2006) and found out that there are two bacteria colonizing the body of S. 

titanus they could be used, after further studies, for the symbiotic control of the FD agent. 
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Research motivation 

Based on what was stated before: 

• The big importance of grapevine especially for Europe in general, and Italy in particular 

as a big producer of grape fruit and wine; 

• The economical importance of both insects and the damage they cause to the quality and 

the quantity of grapevine production; 

• Changing climate, the spread of the previously mentioned pests into new regions; 

• The negative impact of pesticides on the environment and human health, and the ban on 

the use of chemicals in other agricultural production systems such as organic agriculture; 

•  The need to develop an efficient ecological method to control these pests. 

All these factors raise the question of how to control better Lobesia botrana and Scaphoideus 

titanus. 

A more comprehensive understanding of the insect phenology and behavior could be the first 

step in building a coherent and successful control strategy. This is the main motivation to 

conduct this research. 

 

The objectives 

The present research deals with the following objectives: 

1. Study the phenology of both insects in several locations in Veneto (north-eastern Italy). 

The phenological data are going to be used to develop and/or improve forecasting models 

which will provide the farmers and the technicians with reliable information for the best 

timing of the pest treatment. 

2. Study the population genetic structure of several L. botrana populations from Middle 

East and Europe with the use of microsatellite loci. The purpose of this study is to shed 

the light on the population dynamic and structure of grape berry moth, which could help 

for developing rational control strategies. 

3. The attraction of Scaphoideus titanus towards grapevine varieties and their response to 

stimuli emitted by healthy or infected grapevine leaves. 
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4. The effect of phytoplasma on the longevity and the survival of S. titanus. Since, most of 

the studies are focusing more on Flavescence dorée than its vector, these studies could 

help to provide a boarder view on the vector itself, in order to improve the used strategy 

against the leafhopper.   
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Abstract 

The grape berry moths Eupoecilia ambiguella and Lobesia botrana are the most important 

grapevine pests in European vineyards. Although their distribution is different in grapevine 

growing areas they can co-exist in many regions as in North-eastern Italy. The phenology of 

grape berry moths was investigated in several sites in Veneto region in 2010 and 2011. Few sites 

were also included in 2012. E. ambiguella was more common in hilly areas while L. botrana in 

plain areas. The number of flights per year varied among the sites and the beginning of flights 

were generally earlier in 2011. Lobesia botrana showed in some areas a long flight period which 

made it difficult to determine whether it was one or two overlapping flights. This phenomenon 

could be associated with larval aestivation. Four flights were noticed for L. botrana in some 

areas, but no evidence for four larval generations was provided. Temperature had an effect on the 

second flight of both berry moths.  

 

Introduction 

The grape berry moths Lobesia botrana (Denis & Schiffermüller) and Eupoecilia ambiguella 

(Hübner) are major pests in European viticulture because of the considerable damage they cause 

to the quality and quantity of grape production (e.g., Bovey, 1966; Kast, 1990). This damage is 

directly caused by feeding on the flower clusters and grape berries and indirectly by facilitating 

the infection of pathogens, mainly Botrytis cinerea (Deseö et al., 1981; Mondy et al., 1998; 

Badenhausser et al., 1999; Zahavi et al., 2003; Dalla Montà et al., 2007) and increasing the risk 

of ochratoxin contamination of grape berries (Cozzi et al., 2006; Visconti et al., 2008). These 

polyphagous species have different ecological requirements (Bovey, 1966; Galet, 1982) which 

are reflected by their distribution throughout the European grapevine areas. Lobesia botrana is 

found to be more dominant in warmer regions of central and south Europe, while E. ambiguella 

seems to prefer northern European regions (Bovey, 1966; Chalverat, 1978; Galet, 1982; Zangheri 

et al., 1987; Sobreiro, 1989; Zangheri and Dalla Montà, 1989). However, L. botrana and E. 

ambiguella coexist in some regions as in north-eastern Italy (Pavan et al., 1994). In these 

transition areas, climatic conditions could influence the dominance of one species over the other. 

Warmer years favour the presence of L. botrana, while rainy and cold years help the 
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development of E. ambiguella (Schirra and Louis, 2001; Bărbuceanu, 2005). Both species are 

able to develop more than one generation per year depending on climatic conditions (Martìn-

Vertedor et al., 2010). In north-eastern Italy, E. ambiguella develops two generations per year, 

but a third generation is also commonly observed; L. botrana has usually three generations per 

year but in hot seasons a fourth generation was noticed in north-eastern Italy (Zangheri and Dalla 

Montà, 1989; Pavan et al., 1994; Marchesini and Dalla Montà, 2004; Pavan et al., 2006).  

Grape berry moths could be controlled by pesticides or other alternatives as mating disruption 

(Charmillot et al., 1995; Schirra and Louis, 2001; Schmidt-Büsser et al., 2009; Moreau et al., 

2010) or by a combination of both of them since pheromone traps were found to be less effective 

with high infestation rates of grape berry moths (Feldhege et al., 1993; Varner et al., 2001). The 

use of pesticides in agricultural production should be reduced according to European rules (Dir. 

2009/128/CE). Therefore it is crucial to identify the best timing of treatment and environmental 

friendly control methods. In any case, the key for successful pest management program is a 

comprehensive knowledge of the pest phenology (Patrick et al., 2003). The phenological data is 

considered as the fundamental part in building day-degrees models which are used to predict the 

development progress of the insect linked with the climatic conditions, to provide decision 

support systems for efficient insecticide application timing (Riedl et al., 1976; Touzeau, 1981). 

The objective of this study was to investigate the phenology of L. botrana and E. ambiguella in 

some sites of Veneto region (north-eastern Italy) along an altitude gradient (Table 1). 

  

Materials and methods 

Experimental sites 

Seven sites were selected to study the phenology of both grape berry moths in Veneto region 

(Table 1). These fields have different histories and cropping systems but no insecticides were 

applied during the studying period.  

Insect sampling 

The adults of both species were captured using pheromone traps (Isagro Traptest®) to study the 

beginning of each flight, its duration and variation among the years and the sites. The study 

lasted for two years (2010-2011). Nevertheless, Valdobbiadene 2, Roncade and Meolo were also 
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considered in 2012. In some sites traps were located after the beginning of the first flight that is 

poorly considered in this work. 

Table 1- Sampling locations in Veneto region 

n. Location  Province GPS cod. Altitude 
(m.a.s.l.) 

1 Feltre Belluno 46°1′0″N 11°54′0″E 540 
2 Fonzaso  Belluno  46°1′0″N 11°48′0″E 329 
3 Valdobbiadene 1 Treviso  45°53′46″N 11°57′54″E 240 
4 Valdobbiadene 2 Treviso  45° 54′ 0″ N, 11° 55′ 0″ E 105 
5 Pernumia  Padova  45°16′0″N 11°47′0″E 9 
6 Roncade  Treviso  45°37′41″N 12°22′30″E 8 
7 Meolo  Venezia  45° 37′ 13.08″ N, 12° 27′ 21.24″ E 2 

 

Climatic data 

The minimum, medium and maximum temperatures were provided by ARPAV (Agenzia 

Regionale per la Prevenzione e la Protezione Ambientale del Veneto), from the nearest weather 

station to each site. The greatest distance between the investigated vineyards and the weather 

stations was 3.6 km. Regression analyses were performed by R software release 2.15.0 (R 

Development Core Team, 2011), to study the relation between average medium and maximum 

temperatures and the dates of second flight beginning for both moths or the date of 50% of adult 

captures. Those dates were expressed by Julian days. Temperatures values used here are the 

averages of medium and maximum temperatures in the month when flight occurred and in two 

months before (e.g., if the flight started in June, average temperatures of April+May+June were 

used).  

 

Results 

Phenology of grape berry moths 

Eupoecilia ambiguella 

At Feltre, traps were placed in mid-May of 2010 but only the second flight was seen (14 July - 

29 July). Only 14 adults were captured (figure 1). In 2011, traps were located in time to detect 

the first flight but captures were very low over the season (figure 1). 
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At Fonzaso, two flights were observed in 2010, the first was already started when the traps were 

placed and the second started on third of July, few adults were captured (figure 2). In 2011, two 

flights were seen, the first one from 13 April to 2 May, and the second from 14 June to 8 July. At 

the flight peaks 13 (for the first flight) and 14 males (for the second flight) were captured (figure 

2). 

At Valdobbiadene 1, three flights were seen in 2010, the first was detected on 8 May, the second 

on 21 June, while the third on 23 August (figure 3). The higher number of captures (17) was 

recorded in late June. In 2011, three flights took place, the first started on 11 April, the second on 

10 June and the third on 23 August. The highest number of captures (21) was recorded on 26 

April and 20 June (figure 3). 

At Valdobbiadene 2, two flights were observed in 2010 (figure 4). The first one was already 

started when the traps were placed (10 May) and the second started on 18 June. The highest 

number of captures was recorded on 27 June at the peak of the second flight. In 2011 three 

flights were seen, the first started on 11 April, the second on 8 June and the third on 23 August 

(figure 4). In 2012, three flights were recorded again. The beginning of the three flights was 

registered on 25 April, 20 June and 12 August respectively (figure 4). 

At Pernumia, E. ambiguella was not detected in 2010. In 2011 few individuals were captured 

during the vegetative season but no clear flights were seen (figure 5). 

At Roncade, few individuals were captured during April and May of 2010 and some others later. 

In 2011, the second and third flights started on 14 June and 8 August, respectively, but both were 

characterised by few captures (figure 6). 

At Meolo, the traps for E. ambiguella were placed only in 2011 and 2012. In 2011, three flights 

were observed, the first one detected from 11 April, the second started on 8 June and the third on 

26 July. In 2012, the only captures of second and third flights were available. The second flight 

started on 26 June and the third on 24 July. Captures appeared to be higher in 2011 than in 2012 

(figure 7). 

In 2011 all the second flights started earlier than in 2010 and 2012 by ten days (Valdobbiadene 

2) to 19 days (Fonzaso). The third flight, on the other hand, started on the same days over the 

three years or significantly earlier in 2012 than in 2011 (see Valdobbiadene 2). Meolo and 
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Valdobbiadene 2 had the earliest second flights and Valdobbiadene 2 the highest captures 

compared to other sites. 

Lobesia botrana 

No L. botrana captures were detected in Feltre and few adults were captured at Fonzaso (figures 

1 and 2).  

At Valdobbiadene 1, three flights were noticed in 2010 (figure 3). The first flight was already 

started when traps were placed. The second flight started on 1st of July and the third on 28 

August. In 2011, only two flights were seen, the first one started on 16 April and the second on 

19 June (Figure 3). 

At Valdobbiadene 2, three flights were registered during 2010, 2011 and 2012 (figure 4). In 

2010, the first flight probably started before traps were placed. The second flight started on 18 

June and the third on 25 August. In 2011, the second flight started on 17 June and the third on 23 

August. In 2012, the first flight started in late April, the second on 20 June and the third on 7 

August. There were few individuals in October. 

At Pernumia, the first flight of 2010 was missed. The second flight started on 17 June, the third 

on 2 August and the fourth started in early October (figure 5). In 2011, the traps were placed 

earlier and the first flight occurred in April. Then captures were low. Trends suggest that the 

second flight started on 9 June, the third on 18 July, and the fourth on 23 September (figure 5). 

At Roncade, L. botrana showed three flights in 2010. The first flight started on 23 April, the 

second on 17 June and the third on 4 August. In 2011, three flights took place, the first flight 

started on 7 April, the second on 14 June and the third on 4 August (figure 6).  In 2012 the first 

flight lasted from mid April to early June. The second flight started on 24 June and the third on 5 

August. However, there were additional captures from mid-September to early October (figure 

6).   

At Meolo, observations in 2010 started with second flight (not reported in figure 7) while three 

flights were confirmed in 2011 (figure 7); the first started in early April, the second on 8 June 

and the third on 2 August. In 2012 the first flight was missed, the second started on 26 June and 

the third on 22 July (figure 7). 
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In all the locations the second flight of L. botrana was earlier in 2011 than in 2010 and 2012. 

The only big variation was observed in Meolo between 2011 and 2012. Contrasting results 

emerged for the third flight that was earlier in 2011 or in 2012. Regarding the locations, the 

second and third flights started earlier in Pernumia, Meolo and Roncade.  

 

 

Figure 1- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) at Feltre for 2010 and 2011. 



47 
 

 

 

Figure 2- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) at Fonzaso for 2010 and 2011. 
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Figure 3- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) for 2010 and 2011 at Valdobbiadene1. 
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Figure 4- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) for 2010-2012 at Valdobbiadene2. 
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Figure 5- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) at Pernumia for 2010 and 2011. 
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Figure 6- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) at Roncade for 2010-2012. 
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Figure 7- Phenology of L. botrana (L.B.) and E. ambiguella (E.A.) in Meolo for 2011 and 2012. 

Trends in temperature   

The highest temperatures were recorded in plain sites (Pernumia, Roncade and Meolo). In most 

sites temperatures of March were higher in 2012 than in other years. On the other hand 

temperatures of April and May were often higher in 2011. Temperatures recorded in June and 

August were higher in 2012. In July relatively high temperatures were detected in 2010 and 2012 

than in 2011 (figure 8). 
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Figure 8- Medium and maximum temperatures in the experimental sites during 2010-2012 

 

Relations between grape berry moth phenology and temperatures 

Only Valdobbiadene sites were considered in relationships involving E. ambiguella. A 

significant relation was found between the beginning of the second flight and medium or 

maximum temperatures. This relation was also significant for the cumulated 50% of captures and 

medium and maximum temperatures (figure 9). 
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Figure 9- Relation between 2nd flight of E. ambiguella (beginning and 50% capture) and medium and maximum 

temperature (°C) 

The relations between the second flight of L. botrana (beginning and 50% of second flight 

captures) and the medium and maximum temperatures were studied considering Meolo, 

Pernumia and Roncade. The relation between the beginning of second flight and temperature was 

significant as shown in figure 10. 
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Figure 10- Relation between the beginning of the 2nd flight of L. botrana and medium and maximum temperature 

(°C). 

Nevertheless, the relation between medium and maximum temperatures and the date of 50% of 

the second flight captures was not significant. 

 

Discussion 

The results of this study showed that E. ambiguella was dominant in the hilly areas (Feltre and 

Fonzaso), while L. botrana in the plain areas (Pernumia, Roncade and Meolo). In two close hilly 

sites (Valdobbiadene 1 and 2) both moths co-existed at significant levels and their fluctuations 

followed different trends. At Valdobbiadene 1, E. ambiguella was dominant over L. botrana but 

the latter became dominant at Valdobbiadene 2 in 2012. Probably temperature contributed to this 

trend as relatively high temperatures favour more L. botrana than E. ambiguella (e.g., Stellwaag 

1928; Milonas et al., 2001; Gallardo et al., 2009; Martin-Vertedor et al., 2010; Caffarra et al., 

2011; Gutierrez et al., 2012). However, temperature is not the only factor to explain the presence 

of the two species and their fluctuations through the years and the different sites. Other factors 

could be also involved such as the interaction with the host plant, pesticide pressure, cropping 

system, landscape features, etc. (e.g., Pavan et al., 2006; Moreau et al., 2008; Sciaretta et al., 

2008). 

The phenology of grape berry moths in the three-year study showed some variation probably 

affected by climatic conditions and altitude. E. ambiguella was able to develop two generations 
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at Fonzaso and three generations in most of the sites. However, few males were recorded at 

Feltre where viticulture is poorly developed because of cold winters. For L. botrana, three 

generations were accomplished in most of the sites, but four adult peaks were observed at 

Pernumia. The occurrence of four flights for L. botrana is not necessarily associated with four 

generations. The duration of the third flight of L. botrana was sometimes unusually long (see at 

Roncade) suggesting a larval aestivation phenomenon, these larvae remain inactive while the 

remaining continues developing (Marchesini E., unpubl. data). 

The most interesting data concerned the second and third flights. Regarding E. ambiguella the 

earliest second flights were detected at Meolo and Valdobbiadene 2 but male numbers reached 

significant levels only in the latter site. Regarding L. botrana the second and third flights started 

earlier in Pernumia, Meolo and Roncade. The relationship between berry moth phenology and 

temperature was found to be significant for E. ambiguella and the beginning of L. botrana 

second flight. These relations can be useful to point out models based on day-degrees (e.g., 

Touzeau, 1981; Milonas et al., 2001; Gallardo et al., 2009). More recently, Amo-Salas et al. 

(2011) criticized the use of linear models and suggested to take into account the effect of high 

temperatures on L. botrana development to increase prediction of moth population flights. 

In our study the second flights of E. ambiguella and L. botrana were found to be earlier in 2011 

compared with the other two years. Again, temperature could play a role to explain this trend. 

Temperatures of April and May were higher in 2011 than in 2010 and 2012 and probably they 

accelerated the development of the first generation. Summer temperatures (especially in June and 

August) appeared to be higher in 2012 than in 2011 and 2010. As a consequence the third flight 

of both species was earlier in 2012 than in 2011 in four cases out of five.  

The importance of the phenological data presented in this work lies on their use as component in 

building up forecasting models which could enhance the predictive ability for the occurrence of 

grape berry moths. Thus, achieving an enhanced control for these species by determining 

precisely the best timing of control. The fact that helps grapevine growers to protect their 

production with less pesticides application, according to current European rules.  
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Abstract 

Lobesia botrana is a key pest for viticulture. It feeds on flowers and berries causing significant 

economic losses. In spite of the importance of grape berry moth, little is known about the 

population genetic structure of this species. In this study, six microsatellite loci were used to 

analyse 16 population of Lobesia botrana from the Middle East and Europe, to investigate their 

variation and structure. The results showed moderate levels of genetic differentiation among the 

different populations. An excess heterozygosity was noticed in most of the populations due to the 

mating among the populations. The populations coming from Middle East and Spain belong to 

different genetic clusters, while the German and Italian ones were mixed. No clear geographical 

effect was detected on the different studied populations.  

 

Introduction 

The grape berry moth Lobesia botrana (Denis & Schiffermüller) is a major pest for viticulture 

worldwide. It is a polyphagous insect which presence has been reported on several plant species 

(Bovey, 1966; Stoeva, 1982; Maher, 2002; Thiéry, 2005; Thiéry and Moreau, 2005). Besides 

grapevine (Vitis vinifera L.) it is common on Olea europaea L. (Savoupoulo-Soultani et al., 1998; 

Roditakis, 1988) and Daphne gnidium L. (Maher and Thiéry, 2006), which is thought to be the 

ancestral host of L. botrana before it shifted to grape (Balachowsky and Mesnil, 1935; Bovey, 

1966; Stoeva, 1982; Thiéry and Moreau, 2005). Nowadays, this moth is widely spread in the 

Palearctic areas especially in the Mediterranean basin which is referred by some theories as the 

origin of L. botrana. But the origin is still under debate (Maher and Thiéry, 2006). 

Lobesia botrana has two to four generations per year, depending on the temperature, photoperiod 

and the latitude (Roehrich and Boller, 1991; Martìn-Vertedor et al., 2010). The economic 

importance of this moth is based on the damage caused to grape production by larval feeding on 

berries (Bovey, 1966; Pavan et al., 1998). Moreover, the larval feeding facilitates fungal infections 

by Botrytis cinerea and other species (Deseö et al., 1981; Badenhausser et al., 1999; Zahavi et al., 

2003; Cozzi et al., 2006). 

Consequently, the different pest control strategies considered L. botrana as the main target (Moreau 

et al., 2010). Various pesticides were used extensively for the control of this pest (Hosseinzadeh et 

al., 2011) but the raising awareness on the negative impact of chemicals and the fear of resistance 

development motivated the need to develop more environment friendly control methods (Saeidi and 



66 
 

Kavoosi, 2011). There are several examples for these alternatives, as mating disruption which has 

been widely used against L. botrana since 1994 (Feldhege et al., 1993; Varner et al., 2001; Louis et 

al., 2002). Biological control is a promising field, but it needs further studies (Marchesini and Dalla 

Montà, 1994; Thiéry et al., 2001; Chuche et al., 2006; Moreau et al., 2010). 

An improved knowledge of the biology, ecology and behaviour of this species is needed to 

implement control measures. In this regard, studying the pest population diversity and genetic 

structure is essential (Amsellem et al., 2003; Franck et al., 2007; Mozaffarian et al., 2008). 

Microsatellites have been used as a powerful tool to study genetic differentiation and gene flow in 

insects and other animals (Loxdale and Lushai, 1998; Simard et al., 2000; Bailly et al., 2004; 

Keyghobadi et al., 2005; Endersby et al., 2006; Franck et al., 2007; Fuentes-Contreras et al., 2008; 

Chen and Dorn, 2010) because of their co-dominance and high polymorphic levels (Plaschke et al., 

1995).  

In this study, six microsatellite loci were used to investigate the genetic structure and differentiation 

of different natural populations of Lobesia botrana from the Middle East and Europe.    

 

Materials and methods 

Sampling 

Lobesia botrana adults and larvae were collected from 16 vineyards located in 5 countries, during 

2007-2012. The samples included one population from Spain, two populations from Syria, three 

populations from Israel (in particular Golan), five populations from Italy (Veneto and Tuscany 

regions) and five populations from Germany. The sampling locations are detailed in table 1 and 

figure 1. The term “population” refers here to samples taken from the same location. Adults were 

gathered by the use of pheromone traps and larvae were collected by direct sampling from bunches 

or from laboratory breeding. The individuals were preserved in pure alcohol (>95%) and stored at  

(-20°C) until the DNA extraction. 
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Figure 1- The sampling locations of Lobesia botrana. 

Table 1- List of L. botrana samples used for the SSR analyses, their locations, date of collection 

and the life stage of the used insects. 

Code Country Region Location Altitude 
m.s.l Date Stage n. 

* 
SP Spain Murcia Yelca 597 2011 Adults 11 

SYK Syria Swieda Kafr 1352 2010 Adults 21 
SYA Syria Swieda Arman 1380 2010 Adults 12 
PLGa Israel 

Israel 
Israel 

Lower Galil Maccia 458 2011 Adults 3 
PHGo High Golan Merom Golan 981 2011 Adults 3 
PSGo South Golan Geshur 835 2011 Adults 7 
ITS Italy Tuscany Siena 322 2011 Larvae 7
ITP Italy Veneto Pernumia 3 2010 Adults 14 
ITD Italy Veneto Roncade dalmas 8 2011 Adults 3 
ITV Italy Veneto Valdobbiadene 105 2011 Adults 13 
ITM Italy Veneto Meolo 2 2010 Larvae 20 
GLS Germany Hesse Lorch, 

Schlossberg 740 2007 Adults 10 

GH Germany Hesse Heppenheim, 
eckweg hinten 122 2007 Adults 17 

GE Germany Hesse Erbach 250 2007/2010 Adults 15 
GF Germany Baden-

Württemberg 
Freiburg, 

Jesuitenschloss 274 2007 Adults 10 

GK Germany Baden-
Württemberg Kaiserstuhl 179.5 2007 Adults 18 

* The numbers here are referring to the number of individuals used in the analyses, not to the total number of 

individuals/sample.  
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DNA extraction 

The total genomic DNA was extracted from adults and larvae by using a CTAB-based method 

(Reineke et al., 1998) modified by the addition of an isopropanol precipitation step. 

Spectrophotometer was used to measure the DNA concentration. 

PCR and microsatellite analyses 

The analyses were performed in the laboratories of phytomedicine Department at Geisenheim 

research centre in Germany. In total, 184 individuals were tested with 6 microsatellite loci 

(Lobbot_0569, Lobbot_0713, Lobbot_0838, Lobbot_0993, Lobbot_2967 and Lobbot_3992). 

Microsatellite isolation was carried out by Ecogenics (Zurich, Switzerland) by combining biotin-

enrichment and high throughput 454 pyrosequencing. 

Polymerase chain reaction (PCR) amplifications were carried out with a final volume of 15µl 

containing 40ng of the DNA template and 5pmol of the reverse and forward microsatellite primers. 

The reaction took place in a thermal cycler according to a touch down profile as the following: i) 

Denaturation step at 94°c for 4 minutes ii) Touch-Down PCR step of denaturation at 94°C for 30 

seconds then annealing at 65°C for 30 sec and extension at 72°C for 30 sec, this step is repeated for 

20 times with a decrease of 0.5°C for each time iii) Normal PCR step of (94°C for 15 seconds - 

55°C for 30 seconds - 72°C for 30 seconds, and with 20 times of repeating)iv) Final extension at 

72°C for 10 minutes. 

During the preparation of the PCR mixtures, the forward primers were dye-labelled to help 

distinguishing among the various PCR products in the capillary electrophoresis (Franck et al., 

2005). To allow a fluorescent labelling of the generated PCR products, a M13(-21) tail was placed 

at the 5’-end of each forward primer, and a fluorescently labelled CY5 universal primer M13(-21) 

was added to the PCR reactions according to the method described by Schuelke (2000). The 

fluorescent dyes were as the following: BMN5 blue with (Lobbot_0569 and Lobbot_0713), DY-751 

black with (Lobbot_0838 and Lobbot_0993) and DY-681 green with (Lobbot_2967 and 

Lobbot_3992).  

Then, PCR products were separated and analysed through capillary electrophoresis on a 

GenomeLab GeXP DNA Genetic Analysis System (Beckman). Reactions were loaded as a 

multiplex analysis.  

Most of the reactions were repeated three times to check the products of the amplification process. 

Allele sizes were determined using GenomeLab GeXP Version 10.2 (Beckman). 
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Data analyses  

The microsatellite data were analysed in two ways, first by analysing each population separately, 

second by grouping the populations according to their geographical location. Arlequin version 3.5 

(Excoffier and Lischer, 2010) was used for the analyses of both ways.  Genetic variation within the 

populations was quantified by calculating the number of alleles, their sizes, allelic richness, and the 

observed and expected heterozygosities HO and HE respectively. Also, the deviations from Hardy–

Weinberg equilibrium for each population were tested. The population differentiation was studied 

by calculating the global estimate of FST and population pairwise measures of FST, and their 

significance was also determined. 

In order to investigate the genetic population structure among and within groups using hierarchical 

analyses of molecular variance (AMOVA), Lobesia botrana populations were divided into 3 groups 

according to geographical location (table 2). 

Table 2- The groups of L. botrana populations for the AMOVA analyses 

N. group Name of the group Populations in the group 
1 South Mediterranean SYK, SYA, PLGa, PHGo, PSGo 
2 North Mediterranean ITS, ITP, ITV,ITM, ITD, SP 
3 Germany GLS, GH, GE, GF, GK 

 

Null allele frequency was estimated using Genepop 4.0.10 (Raymond and Rousset, 1995) for each 

locus through all the populations, based on the expectation maximization (EM) algorithm by 

(Dempster et al., 1977). 

Finally, the software STRUCTURE release 2.2 (Pritchard et al., 2007) was used to estimate the 

number of genetic clusters (K) for all the European and Middle East populations all together, and 

after grouping them according to the geographic location as shown in table 3. STRUCTURE 

performs the Bayesian assignment analysis of Pritchard et al. (2000) to assign individuals to 

genetically similar clusters. An admixture model and no prior information about populations were 

used. Twenty independent runs were done for each value of clusters (K) (K=1-18) with a burn-in 

period of 10,000 iterations and 10,000 post burn-in in Markov chain Monte Carlo (MCMC) 

iterations for each K value. The method described by Evanno et al. (2005) was followed to 

determine the most likely number of clusters (K). 
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Table 3- The grouped populations used for the STRUCTURE software  

n. group Name of group Populations within the group 
1 Middle East SYK, SYA, PLGa, PHGo and PSGo 
2 Italy ITS, ITP, ITV ITM and ITD 
3 Germany GLS, GH, GE, GF and GK 
4 Spain SP 

 

Results 

Diversity of Lobesia botrana populations 

The six SSR loci scored a total of 54 alleles for the 16 L. botrana populations and the 184 

individuals. The number of alleles for all the loci ranged from 6 (in the population GK) to 2.2 (in 

PLGa) (table 4). The locus Lobbot_0993 showed the highest number of alleles (16), while 

Lobbot_0838 showed the lowest number (6) (table 6). The 6 used SSR loci were polymorphic in the 

16 populations except for the Lobbot_0838 which was monomorphic in 7 populations (PLGa, ITD, 

ITM, GH, GF, GK and GE). In the same context, Lobbot_0993 was monomorphic only in 1 

population (PLGa), and Lobbot_3992 was also monomorphic in one population (ITD). The range of 

observed heterozygosity was between 0.92 and 0.62, while the average for all the populations over 

all the loci was 0.78 (table 4). While the expected heterozyosity ranged from 0.83 in GK to 0.56 in 

ITV (table 4).  

All the studied populations showed negative values of FIS over all the 6 loci (table 4), all the values 

were significant except those of (PHGo, PSGO, SP and GE). As well as, when calculating 

populations specific FIS indices per polymorphic locus, the values were found again negative except 

for the locus Lobbot_3992. FIS value was unavailable for the Lobbot_0993 because it is 

monomorphic (table 6). 

The maximum likelihood estimation of null alleles frequency showed the presence of null alleles, 

but this frequency was generally low (table 5). However, few exceptions are noticed for some 

populations and microsatellite loci. For example, SP population showed high null alleles frequency 

with (Lobbot_2967, 0993 and 3992), which were (0.6, 0.3 and 0.1) respectively. The locus 

Lobbot_2967 showed the higher frequency value of 0.6 with SP as was mentioned before. While 

the lowest frequency was shown by both Lobbot_0713 and 0993, the value is 0.01 and it was shown 

with (GE and PSGo respectively). However, the mean values of null alleles frequency for all the 

populations ranged from 0 (in PHGo, ITD and GLS) to 0.17 (in SP) (see table 4).  
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Table 4- Statistical analyses for 16 Lobesia botrana populations expressed by mean values for six 

microsatellite loci. The table includes the following information: code of each population; number 

of individuals of each population (N); number of alleles (±standard deviation); allelic range (AR); 

observed (HO) and expected (HE) heterozygosity, population specific (FIS) indices, and (Na) null 

alleles frequency. 

Code N A (±SD) AR HO HE FIS Na 
 SP 11 5.17 

(1.94) 
73.17 0.62 0.70 -0.04849 0.17 

SYK 21 3.83 
(0.75) 

86.33 0.83 0.66 -0.30545   0.01 

SYA 12 5.00 
(1.67) 

85.67 0.87 0.74 -0.40024  0.02 

PLGa 3 2.17 
(1.47) 

71.50 0.67 0.77 -0.26316 0.08 

PHGo 3 3.67 
(0.52) 

85.33 0.89 0.82 -0.10345 0 

PSGo 7 3.33 
(1.03) 

83.00 0.71 0.62 -0.16505 0.01 

ITS 7 3.67 
(1.03) 

84.33 0.88 0.68 -0.32537 0.03 

ITP 14 4.50 
(1.76) 

86.67 0.67 0.65 -0.47546 0.02 

ITD 3 2.33 
(1.37) 

55.75 0.92 0.82 -0.38462 0 

ITV 13 4.00 
(1.67) 

74.67 0.62 0.56 -0.41390 0.02 

ITM 20 3.50 
(2.07) 

76.80 0.81 0.62 -0.50271 0.01 

GLS 10 4.33 
(1.51) 

87.33 0.83 0.64 -0.31965 0 

GH 17 4.50 
(2.66) 

77.20 0.89 0.68 -0.39390  0.01 

GE 15 5.50 
(2.07) 

86.33 0.66 0.68 -0.08108 0.01 

GF 10 3,67 
(1.63) 

76.20 0.82 0.68 -0.44828 0.05 

GK 18 6.00 
(2.68) 

79.20 0.84 0.83 -0.20956 0.05 
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Table 5- Locus by population of estimated null alleles frequency 

Loci SP SYK SYA PLGa PHGo PSGo ITS ITP ITD ITV ITM GLS GH GF GK GE 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0.01 

3 0 0 0 NA 0 0 0 0 NA 0 NA 0 NA NA NA 0 

4 0.31 0.09 0.12 NA 0 0.01 0.19 0 0 0.12 0 0 0 0 0.09 0.14 

5 0.60 0 0 0.33 0 0 0 0.03 0 0 0 0 0 0 0 0 

6 0.11 0 0 0 0 0.05 0 0.08 NA 0 0.07 0 0 0.05 0.15 0.15 

* NA values are due to the monomorphic locus. The loci here are expressed with numbers from 1 to 6, see table 6 for 

the names of these loci. 

 

Table 6- Number of alleles, allelic size range and the population specific FIS per polymorphic locus 

of SSR markers in 16 L. botrana populations. Marker Lobbot_0838 was analysed only in 10 

populations, whereas markers Lobbot_0993 and Lobbot_3992 in 15 populations. 

N Locus Number of alleles Allele size range 
(bp) 

FIS 

1 Lobbot_0569 9 56 – 64 -0.307 
2 Lobbot_0713 7 58 – 64 -0.426 
3 Lobbot_0838 6 127 – 135 -0.354 
4 Lobbot_0993 16 19 – 100 NA 
5 Lobbot_2967 8 86 – 92 -0.195 
6 Lobbot_3992 8 80 – 92 0.022 

 

Genetic structure  

The result showed a significant difference from zero for the global estimate of genetic 

differentiation for all the 16 populations (FST=0.07951, P= 0.00000+0.00000). Nevertheless, this 

result indicates the presence of some genetic differentiation among the populations included in this 

study. Out of the 120 FST pairwise values among the various populations, only 58 values were 

found to be significantly larger than zero at the level (α=0.05), after performing Bonferroni 

correction for multiple comparisons (table 7). The biggest FST value was 0.27 between the Italian 

population from Meolo ITM (Veneto, north-eastern Italy) and the Israelian population from low 

Galil PLGa. In general, the Italian populations from Meolo ITM showed a high level of genetic 

differentiation in comparison to the other populations, where it was found to be significant in 14 of 
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16 pairwise FST values. Similarly, two of the German populations (GH and GF) showed a moderate 

to high level of genetic differentiation from almost all the other populations, they both were 

significant for 12 of 16 pairwise FST values. 

 

Table 7- Pairwise FST for L. botrana populations. Bold numbers indicate the significant values on 

the level =0.05. 

 

 

To obtain more information about the hierarchical genetic structure AMOVA test was carried out. 

The studied populations were divided to three groups based on their geographical locations (table 

2).  AMOVA results indicate the presence of high significant difference within populations and 

among populations within groups. On the other hand, no significant difference was found among 

the grouped regions (table 8). 

 

Table 8- The results of molecular variance analyses (AMOVA) comparing among three groups of 

Lobesia botrana populations. 

Variation 
source 

d.f Sum of 
squares 

Variance 
components 

% of variation Fixation 
indices 

P value 

Among groups 2 15.15 0.025 1.51 0.015 FCT 
 

0.11241+-
0.00955 

 
Among 

populations 
within groups 

13 49.83 0.106 6.44 0.065 FSC 
 

0.00000+-
0.00000 

 
Within 

populations 
352 535.57 1.521 92.05 0.079 FST 

 
0.00000+-
0.00000 

 
Total 367 600.55 1.653    
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Further analyses of Lobesia botrana population structure were performed using the method of 

Bayesian clustering to detect the possible substructure in the whole dataset. The results revealed the 

presence of two main genotypes groups or clusters (K=2) for all the populations considered together 

and after grouping them based on the geographic location (see table 3). As shown in figure 2a, the 

first cluster is coloured in green and includes SYK, ITM and GE. The second one is in red and it 

contains population ITP, GK, GF and SP. The remaining populations are mixed of those two 

clusters. A clearer trend was found after grouping the population in four groups. The Middle East 

group is coloured with red, while the Spanish population is coloured with green. The Italian and 

German groups are a mixture of the Spanish and Middle East groups. 

 

Figure 2- Populations structure as inferred in the STRUCTURE analysis with K=2. Each individual is represented by a 

vertical line with maximum of two coloured segments. a: is for all the studied populations, and b: for the grouped 

populations according to geographic location 

 

Discussion 

The microsatellite data revealed the presence of moderate level of genetic differentiation among the 

studied populations. The highest level of genetic differentiation was shown by the Italian population 

from Meolo (ITM), in fact this population expressed various levels of genetic differentiation even 

with other adjacent populations. The codling moth Cydia pomonella (Lepidoptera: Tortricidae) was 

an object of several studies with microsatellite loci; in some of them a significant genetic 
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differentiation was detected (Chen and Dorn, 2010) while in others this genetic differentiation was 

not found (Frank et al., 2007; Fuentes-Contreras et al., 2008; Gund et al., 2012). At any case, the 

flight ability of L. botrana does not allow it to disperse over large distance, as was found by 

Roehrich and Carles (1981). Males could fly till 300 m and females are less mobile (Schmitz, 1992; 

Badenhausser et al., 1999). This low flight ability could explain the genetic differentiation among 

the studied populations. 

Most of populations showed higher values of observed heterozygosity compared to the expected 

values indicating the presence of excess heterozygosity. This excess was also shown in the negative 

FIS values. This deviation from Hardy-Weinberg equilibrium was significant in all the populations 

except the South and high Golan populations (PSGo and PHGo). On the other hand, the lower Galil 

population (PLGa) had a significant heterzygosity deficiency, while the heterozygosity deficiency 

in the Spanish and German Erbach (SP and GE) populations was not significant. The presence of 

null allele could be associated to heterozygosity deficiency (Meglécz et al., 2004). In this study, the 

Spanish and German Erbach populations showed high levels of null allele frequency with most of 

the loci (as shown in table 5), while the small sample size of lower Galil population (PLGa) 

population could lead to a true bias for the interpretation of the results. In any case, the excess of 

heterozygosity suggests that the populations are not well isolated among each other. This isolation 

breaking could have happened recently enabling the individuals to mate with other from different 

populations. 

The AMOVA results revealed a significant differentiation among the populations and among 

populations within groups, due to the mating among populations. No significant variation was 

found among the groups which belong to different geographical areas. This result corresponds to 

what was found previously with excess heterozygosity, but still does not explain the significant 

genetic differentiation among the populations. 

Two main clusters were found for all the analysed populations when considered separately and after 

grouping them based on the location. On the first case (when populations analysed separately), the 

Syrian Kafr (SYK) together with Italian Meolo and German Heppenheim (ITM and GH) 

populations belong to the first cluster in spite of the geographical distance among them. Whereas, 

the Spanish population (SP), German Kaiserstuhl (GK), German Freiburg (GF) and Italian 

Pernumia (ITP) belong to the other cluster. Regarding this later cluster, it only includes some 

European populations, yet still the distance among those populations is big. The remaining 

populations are mixed of those two clusters. For the second case (populations grouped), the 

populations from the Middle East showed a cluster differs from the one shown by the Spanish 
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population. Italian and German are mixture of those two clusters. This result suggests that the 

European populations are not strongly structured but are rather a mix of genotypes. No clear 

geographic separation was detected among them.  

In this study, the genetic variation and structure for several populations of Lobesia botrana from the 

Middle East and Europe were described using microsatellite loci. This knowledge is valuable for 

the development of pest management strategies (Miller et al., 2003). For example, populations with 

highly diversified individuals could widely spread in different geographical locations, and they 

could feed on other plants besides grapevine. Thus, the technicians when planning for a plant 

protection strategy could take such information into consideration (Bournoville et al., 2000). 

Moreover, studying the gene flow of populations could help in knowing the distance over which the 

population could disperse, consequently, knowing the spatial scale within which the forecasting 

techniques could be effective (Loxdale and Lushai, 2001). Hence, more research is needed with a 

bigger range of populations to understand the gene flow among them.  
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Abstract 

The Nearctic leafhopper Scaphoideus titanus Ball is the only known vector of grapevine yellow 

disease Flavescence dorée. It is spread in a number of European countries and widely distributed 

in Italy. This study aims at studying S. titanus phenology in several sites in Veneto region (north-

eastern Italy) in 2010-2012, in order to know the best time to apply pest control measures. First 

S. titanus nymphs appeared in May while first adults appeared from the third decade of June to 

mid-July, and flight until September-October. In general, S. titanus nymphs and adults appeared 

earlier in 2011 and 2012 than in 2010 with some variations among the sites depending on altitude 

and sun exposure. Temperature affected nymphs phenology that was partly synchronized with 

grapevine phenology. Among factors affecting adult phenology, temperature and altitude 

appeared the most important. Data reported in this work can be useful to build up a phenological 

model for S. titanus. 

Introduction 

The grapevine leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) is native from 

North America (Vidano, 1966; Maixner et al., 1993). It was introduced into Europe probably 

during the 1950s where it appeared for the first time in France (Bonfils and Schvester, 1960). 

The damage of this leafhopper does not come from direct feeding on vines but through the 

transmission of the Candidatus Phytoplasma vitis 16SrV, which is the cause of the Grapevine 

Yellow Flavescence dorée (FD) disease (Schvester and Moutous 1961; Schvester et al., 1962; 

1969; Carraro et al., 1994; Bianco et al., 2001; Mori et al., 2002). Currently, S. titanus is an 

important grapevine pest in different European countries such as Italy, Slovenia, Switzerland, 

Croatia, Serbia, Hungary, Spain and Portugal (Bertin et al., 2007; Schaub and Linder, 2007; 

Krnjaić, 2007; Seljak, 2008). In Italy, S. titanus is widespread except in some southern regions 

(Mazzoni et al., 2005).   

Scaphoideus titanus was described for the first time in 1932 by Ball (1932). Its life cycle was 

firstly described in France (Schvester et al., 1962), followed by Vidano (1966) in Italy. 

Afterwards, the life cycle of this pest was described in various regions. In Veneto region (north-

eastern Italy) S. titanus was detected by Belli et al. (1984) and Pavan et al. (1987).  
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Scaphoideus titanus is not widely established in all grapevine areas, and climatic conditions 

could explain this phenomenon (Chuche and Thiéry, 2009). Climatic conditions may affect the 

synchronization among the pest, the phytoplasma acquisition and the host plant development. 

According to Duchên and Schneider (2005), warm winters can anticipate grapevine bud burst, 

but it can also delay the egg hatching of S. titanus (Chuche and Thiéry, 2009). For S. titanus, 

similarly to species that diapause as eggs, the temperature experienced during the diapause is 

crucial for life cycle (Chuche and Thiéry, 2009). In other words, the low temperature during 

winter is useful to break the diapause and the summer temperature is needed to complete the life 

cycle of S. titanus (Boudon-Padieu and Maixner, 2007). Based on Chuche and Thiéry 

observations (2009), the eggs exposed to cold and moderate winters would have the same 

hatching pattern but beginning and peak of hatching can be anticipated after cold winters. Winter 

temperature could influence not only hatching time but also sex ratio, juveniles and insect 

population (Chuche and Thiéry, 2012). The temperature experienced by eggs determined a 

greater variation in hatching dynamics for females, but not for males. The dynamic of protandry 

of S. titanus is negatively associated with temperature during incubation: cold temperature 

induces an increase in protandry (Chuche and Thiéry, 2012). Moreover, nymphs that are exposed 

to warm temperatures are bigger than those exposed to cold temperatures (Chuche and Thiéry, 

2012). It has been hypothesised that the thermal effects on S. titanus can have consequences on 

its spread to south Europe (Chuche and Thiéry, 2009 and 2012): 1) warm temperature may 

induce asynchronism between the hatching of S. titanus and the bud burst of grapevine 

determining reduced juvenile survival, 2) reduction in protandry due to warm temperatures can 

reduce the fitness of the species. On the other hand, climate change with global warming could 

have an effect on the spreading of S. titanus, i.e. the increasing temperature could help the insect 

to spread northwards (Boudon-Padieu and Maixner, 2007). 

FD is a very important quarantine disease (EPPO standards, 2011) that causes a big economic 

damage and is considered as the most threatening among the Grapevine Yellows in Europe 

(Schvester et al., 1969; Caudwell, 1990; Morone et al., 2007). As a consequence, the control of 

S. titanus is compulsory and based mostly on pesticide use (Schvester, 1969; Pavan et al., 2005). 

However, current European Community rules require reducing insecticide use through the use of 
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forecasting models and alternatives to conventional pesticides (Dir. 2009/128/CE). Therefore, it 

is crucial to obtain detailed data on the phenology of major pests in large areas to improve pest 

management strategies. We studied the phenology of S. titanus in some areas of Veneto region in 

order to optimize pesticide use and obtain data useful for phenological models. 

 

Materials and methods 

Experimental sites 

This study was carried out in five sites located in different districts of Veneto region during 

2010-2012 (Table 1). Insecticides were not applied in the vineyards during the three 

experimental seasons. 

Table 1- Features of sites selected for this study. 

Site District GPS cod. Altitude 
(m a.s.l.) Cultivar 

1 - Bagnoli Padova 45° 11’ 11.77” N; 11° 53’ 11.76” E 0 
 

Raboso Piave 
 

2 - Portogruaro Venice 45°48'52.27"N ; 12°43'24.94"E 6 Merlot 
 

3 - Breganze Vicenza 45° 42’ 43.98” N; 11° 34’ 54.49” E 112 
 

Merlot 
Cabernet S. 

4 - Roncà Verona 45° 29.291’ N; 11° 17.719’E 227 
 

Durella 
 

5 - Mugnai Belluno 46° 0'57.64"N ; 11°51'43.14"E 308 
Pavana 

Bianchetta 
 

 

Insect sampling 

Nymphs were sampled by checking the lower surface of leaves close to the cordon/trunk and 

then collected using a vacuum. A total of 100 leaves were checked weekly to assess nymph stage 

and density. Sampling took place from May to August in each year. Nymph stages were 

identified using a stereoscope on the base of morphological characteristics reported in Della 

Giustina et al. (1992). Adults were sampled by using yellow sticky traps (Serbios Super 

Color®). Traps were checked and renewed weekly from June to October. 
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Climatic data 

The minimum, maximum and medium temperatures were provided by ARPAV (Agenzia 

Regionale per Prevenzione e Protezione Ambientale del Veneto) from the nearest weather station 

to each site. The greatest distance between investigated vineyards and the correspondent weather 

stations was 3.6 km. Averages of medium and maximum temperatures from the 1st of January till 

the date of the first nymph and adult captures were calculated. Similarly, averages of medium 

and maximum temperatures from the 1st of January till the date when cumulated 50% nymph and 

adult populations were calculated. Regression analyses were done using R software release 

2.15.0 (R Development Core Team, 2011), to study the relation between temperature and the 

date of first nymph and adult appearance, and the cumulated 50% nymph and adult populations. 

Those dates were expressed by Julian days. Degree days based on temperatures higher than a 

threshold of 8.7°C were also calculated. 
 

Results 

The phenology of Scaphoideus titanus 

In 2010, the first S. titanus nymphs appeared in site 1 (19 May), while the first adults were 

recorded in site 4 (2 July). In site 3, S. titanus nymphs and adults appeared later compared to 

other sites (26 May for nymphs and 14 July for adults). The 50% of cumulated nymph and adult 

populations was reached earlier in site 2 (6 June and 3 July respectively (table 2)). The last 50% 

cumulated nymph population was registered in site 4 (23 June), while the last 50% of cumulated 

adult population (15 August) was observed in the site 5. 

In 2011, the first nymphs appeared on 6 May (site 1 and 4) and the first adults on 24 June (site 

4). On the other hand, nymphs and adults appeared later (26 May and 8 July, respectively) in site 

5. The 50% of cumulated population was reached earlier for nymphs and adults in site 3 (4 June 

and 20 July respectively) for adults. The last 50% cumulated nymph number was seen in site 2 

(21 June) and site 5 for the last in adult cumulating number (10 August) (table 2). 

In 2012, nymphs appeared earlier (18 May) in sites 1, 3 and 4 than the remaining sites. For 

adults, site 2 registered the earliest appearance (5 July). Nymphs appeared later in site 5 (26 

May), and adults in site 3 (16 July). The 50% of cumulated population was reached earlier in site 
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2 for nymphs (14 June) and in site 5 (16 July) for adults. Site 3 was the last in cumulating nymph 

numbers (28 June) and site 4 was the last in cumulating adult numbers (7 August) (table 2). 

No great variation was found in the appearance dates of S. titanus nymphs and adults in most of 

the locations during 2010-2012. In general, nymph and adult appearance was earlier in 2011 and 

2012 than in 2010 (figure 1). In nymphs’ case, the only significant difference in appearing date 

among the three years was noticed in site 4, where nymphs appeared in about 12-15 days earlier 

in 2011 than in 2010 and 2012. Adults appeared earlier in 2011 than in 2010 and 2012 in four out 

of five sites; the only exception was registered in site 5, where adults appeared on the same day 

in both 2010 and 2011. Sites 1, 3 and 4 were associated with marked differences in adult 

appearance dates. In those sites the adults appeared in 2011 earlier by 15-20 days than in 2012. 

Big variation was registered in the 50% of cumulated nymph population in most of the locations 

during the investigated period: in site 2 it was obtained 7-15 days earlier in 2010 than in 2012 

and 2011 respectively, in site 3 it was registered 15-23 days before in 2011 than in 2010 and 

2012 and in site 1 it was reached 12-13days before in 2012 than 2010 and 2011. Site 5, showed 

small variation of 5 days between 2010 and 2011, while this variation reached 25 days to a 

month between 2012 and 2011 and 2010 respectively (table 2).  

Table 2- Data for the 50% of cumulated nymphs and adults populations.  

Site Stage 2010 2011 2012 
Bagnoli Nymph 15-Jun 14-Jun 14-Jun 

Adult 20-Jul 26-Jul 31-Jul 
Portogruaro Nymph 06-Jun 21-Jun 13-Jun 

Adult 3-Jul 02-Aug 18-Jul 
Breganze Nymph 19-Jun 04-Jun 27-Jun 

Adult 22-Jul 20-Jul 31-Jul 
Ronca Nymph 23-Jun 20-Jun 22-Jun 

Adult 29-Jul 27-Jul 07-Aug 
Mugnai Nymph 11-Jun 12-Jun 24-Jun 

Adult 15-Aug 10-Aug 15-Jul 
 

 



89 

 

 

 

 



90 

 

 

 

 



91 

 

 

 

 



92 

 

 

 

 



93 

 

 

 

 

Figure 1- Shows the life cycle of Scaphoideus titanus in all the studied locations during 2010-2012. 
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Leafhopper abundance showed large variation among the sites and the years (Figure 2). Nymph 

numbers appeared to be higher in site 2 compared to other sites for both 2010 and 2011, but not 

in 2012 where nymphs were more abundant in site 5. Sites 4 and 5 showed the lowest values in 

2010 and 2011 respectively. Nymph peaks were observed in June except in 2012 when peaks 

were detected in May (site 1 and 2) and July (site 3, 4 and 5). Regarding adult populations, the 

highest captures during 2010 were seen in site 4, during 2011 in sites 2, 4 and 5, and during 2012 

in site 4. Generally, the adult peaks were observed in July and early August. However, peaks 

were detected in late August in sites 1 (2010) and 5 (2010, 2011).  

Regarding the temperature registered during the growing season in all the sites, April, May and 

September appeared to be warmer in 2011 (Figure 3). On the other hand, during the peak season 

for nymphs and adults (from June to August), 2012 registered the highest temperature among the 

other two years. The highest temperature during 2010 was in July, whilst August was the 

warmest in 2011 and 2012. The highest temperature for 2010 was registered in site 4 in July, site 

4 also shows the highest temperature in 2011 in August. In 2012, the highest registered 

temperature was in August in site 1. On the contrary, site 5 was the coldest among all the 

experimental sites. 
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Figure 2- Scaphoideus titanus abundance in all the sites for 2010-2012 

  

  

 

Figure 3- The temperature during the growing season in all the sites 
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Relation between appearance dates and temperature 

The first appearance of nymphs for the five locations (2010-2012) was noticed within the range 

of 280-430 DD. In fact, the first nymph appearance in the majority of the experimental sites took 

place within 300 DD. Actually, site 2 needed the lowest DD in 2010 and 2012 compared to other 

locations. Whereas, the range of cumulate temperature (DD>8.7°C) for the first adult appearance 

was wider in the five locations (700-1200). Likewise, the 50% cumulate nymph population in all 

the locations happened within values of 400-800 DD. For 50% cumulate adult population, the 

range was 1000-1400. Figure 4 shows the regression between the averages of medium 

temperature from January till the first appearance of nymphs and adults, and with the cumulated 

50% of the nymph and adult populations. This regression was significant only for the first 

appearance of the nymphs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- Regression between medium temperature and the first appearance of nymphs and adults, and with the 50% 

of nymphs and adults captures 
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The regression between the averages of maximum temperature from January till the first 

appearance of nymphs and adults, and with the cumulated nymph and adult populations is shown 

in figure 5. Similarly to before, the only significant regression was found with the first nymph 

appearance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- Regression between maximum temperature and the first appearance of nymphs and adults, and with the 

50% of nymphs and adults captures 

 

Discussion 

Regarding S. titanus phenology, data confirm previous observations on the life cycle of this 

leafhopper in Veneto region (Belli, 1984; Pavan et al., 1987; Posenato and Girolami, 1994; 

Posenato, 2001) and add information on the potential variation among locations different in 

altitude, exposure and climatic conditions. The appearance dates of S. titanus nymphs and adults 

in Veneto can be compared with those reported for other Italian regions and countries (Table 3). 
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Table 3- Appearance dates of nymphs and adults in some regions or countries where 
Scaphoideus titanus is widely spread.  

Country / Region Nymph appearance date Adult appearance date 
Italy / Liguria 

(Vidano, 1966) 
 

2nd half of May First decade of July 

Italy / Piedmont 
(Bosco et al., 1997) 

 

Not mentioned  Mid/end of July 

Italy / Liguria and Tuscany  
(Mazzoni et al., 2001) 

 

Mid-May Beginning of June 

Italy / Trentino 
(Dal Rì and Capra, 2003) 

 

21 May 19 July 

France / Armagnac 
(Magarey, 1986) 

 

3rd week of May 4th week of July 

France / Corse  
(Bagard, 1987) 

 

10-25 of May End of July 

France / Bordeaux 
(Decante and Van Helden, 

2006) 
 

End of April - beginning of 
May               End of July 

Hungary 
(Dèr et al., 2007) 

 

Not mentioned 5 July 

Serbia 
(Krnjajić et al., 2007) 

 

Mid-May Third decade of June 

Austria  
(Steffek et al., 2007) 

 

Not mentioned Beginning of June - late 
September  

Switzerland (Gugerli, 2007)  
 

Mid-May Late July - early September 
   

   
In our study the leafhopper phenology showed variation among sites and years. In 2010, the first 

nymphs appeared from 19 to 26 May, and the first adults from 2 to 14 July. In the warmest year 

(2011), the first nymphs appeared from 6 to 26 May and the first adults from 24 June to 8 July. 

Finally in 2012, nymphs appeared from 18 to 26 May and adults from 5 to 16 July. At the same 

time it is interesting to note that site 3 showed a delay in leafhopper phenology despite it was not 

the coldest one. If climatic factors (in particular temperature) varied among years and locations 

affecting appearance dates, other factors seem to influence S. titanus phenology. The effects of 



104 

 

temperature were clear on nymph appearance dates. Medium and maximum temperatures 

significantly affected nymph appearance and in particular, the latter was earlier with increasing 

temperature. In contrast, there were no significant relationships between temperature and 

cumulated leafhopper populations.    

Our results confirm previous investigation on hatching dynamics of S. titanus (Chuche and 

Thiéry, 2009). Warm temperature was associated to early detection of first nymph appearance. 

Moreover our results stress that late winter, spring temperature are determinant for the 

emergence of nymphs, while no clear association exist of temperature with immature 

development.     

The importance of understanding the relation between temperature and insect population is 

recently increasing because it could help in predicting the development of S. titanus, thus 

knowing the best time to apply pest management practices. Some studies suggest that using the 

Degree Days above the threshold of 8.7°C can help viticulture growers for a more accurate 

monitoring to pests. In that case, farmers would achieve a better protection for their fields from 

S. titanus and the disease it transmits. The study of Rigamonti et al. (2011) is an example of 

similar studies that used the monitoring information and the relation with temperature for the 

development of a temperature-driven phonological model to stimulate the occurrence time of S. 

titanus nymphs in the vineyards. This study took place in Switzerland, but the model could be 

developed for other regions.  

The phenological data presented at this work could be useful to build up a forecasting model for 

the prediction of S. titanus occurrence, particularly in new colonization regions. This means that 

technicians may be provided with an updated phenological data to determine the best timing for 

the mandatory pesticides treatments. So, a continuous research on S. titanus phenology in 

different regions together with further investigation of the relation with the field temperature 

under the challenge of climate change, is strongly needed to improve and develop the capability 

of the forecasting models. 
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Abstract 

The leafhopper Scaphoideus titanus is the vector of Flavescence dorée (FD), a serious disease in 

European vineyards. The preference of this leafhopper for different grape Cultivars and the role 

of stimuli in host recognition are not well known despite their potential implications for pest 

control. In this study, the attractiveness of four grape Cultivars to different life stages of S. 

titanus was evaluated. Furthermore, shoots infected by Flavescence dorée (FD) or Bois noir 

(BN) or not infected were used to investigate the ability of this leafhopper to distinguish among 

different stimuli. The results of this study showed different levels of preference of S. titanus 

towards the investigated Cultivars. This preference varied according to the leafhopper stage. 

Moreover, S. titanus was found to be able to distinguish between stimuli emitted by healthy or 

disease infected shoots, while no preference was exhibited towards stimuli emitted by shoots 

infected by FD or BN phytoplasmas. These results could contribute in understanding S. titanus 

behaviour and its distribution pattern within vineyards. Hence, they could contribute to the 

development of tools for the monitoring and control strategy.  

 

Introduction 

The grapevine leafhopper Scaphoideus titanus Ball is a phloem-feeding species belonging to the 

family Cicadellidae (Schvester et al., 1962; 1969; Bertin et al., 2007). This leafhopper is the 

vector of Candidatus Phytoplasma vitis 16SrV, the causal agent of the disease Flavescence 

Dorée (FD), one of the most threatening among the Grapevine Yellow (GY) diseases in Europe 

(Boudon-Padieu, 2003). Scaphoideus titanus appears unable to transmit the agent of another GY, 

the Bois noir (BN) Candidatus Phytoplasma solani 16SrXII (Carraro et al., 1994; Martini et al., 

1999; Mori et al., 2002), a major disease of grapevine in Italy (Bondavalli et al., 2005; Borgo et 

al., 2005; Duso et al., 2010).  

In Europe, S. titanus feeds on cultivated grapes (Vitis vinifera L.). It has one generation per year 

and overwinters as eggs usually laid under two years-old bark (Vidano, 1966; Decante and 

Helden, 2006). Nymphs usually are found on leaf undersurfaces and are not able to move for 

long distances. Adults can fly but they also do not move away from their host plants (Lessio and 

Alma, 2004). 
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Scaphoideus titanus, originating from North America (Barnett, 1976), was probably introduced 

to Europe as overwintering eggs (Vidano, 1966; Boudon-Padieu, 1999). It was reported in 

southern France in 1958 (Bonfils and Schvester, 1960), then it spread to Italy where it was 

reported for the first time in Liguria (Vidano, 1966). Nowadays, this leafhopper is spread in 

various Italian regions (Alma, 2002; Viggiani, 2002; 2004; Sancassani et al., 2008). 

Scaphoideus titanus acquires FD agent by feeding on infected plants and then transmits it to 

other plants when feeding on them (Conti and Vidano, 1988; Bressan et al., 2006). All the 

feeding stages of S. titanus are able to acquire the FD phytoplasma but a latent period is needed 

for the phytoplasma to multiply and achieve persistency in the vector (Conti and Vidano, 1988; 

Weintraub and Beanland, 2006; Bressan et al., 2006).  

Scaphoideus titanus has been the subject of many studies to understand the acquisition and 

transition way of FD phytoplasma (Schvester et al., 1969; Alma et al., 1997; Bressan et al., 

2005; Weintraub and Beanland, 2006) rather than investigating its biology and behaviour (Lessio 

and Alma, 2004; Rigamonti et al., 2011).  

Grapevine Cultivars have an important effect on the incidence of infected leafhoppers, 

consequently they have an influence on the spread of FD disease (Bressan et al., 2005). The 

susceptibility of grapevine Cultivars to FD varies greatly. In Italy, two molecular types of FD 

were distinguished and they are associated to some “preference” for different Cultivars (Martini 

et al., 1999; Bertaccini et al., 2000; Angelini et al., 2001; Mori et al., 2002). The Cultivars 

Chardonnay, Pinot Noir, Pinot Gris, Cabernet Franc, Cabernet Sauvignon, Barbera, Sangiovese, 

Soave, and Glera (Prosecco) are more susceptible to FD than Merlot, Sauvignon Blanc and Syrah 

(Pavan et al., 1997; Belli et al., 2000; Vercesi and Scattini, 2000; Bellomo et al., 2007; Belli et 

al., 2010). Unfortunately, the attractiveness of grapevine Cultivars towards S. titanus is not well 

studied. It is not known if Cultivars susceptible to FD or BN are preferred or not by this vector. 

This data could be helpful for effective pest control programs. 

In this framework, little attention was paid on S. titanus attraction to stimuli emitted by plants, 

and the role of plant volatiles in host detection (Mazzoni et al., 2009). These authors found that 

olfactory cues may play a role in host plant detection by S. titanus nymphs. Nymphs were able to 

distinguish among volatile compounds emitted by various grapevine organs. On the other hand, 

vision abilities may interact with host plant stimuli in host detection by leafhoppers (Todd et al., 
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1990). So depending on stimuli perception and vision S. titanus is able to detect preferred host 

plants, but its ability to distinguish between healthy and infected plants based on the respective 

stimuli has not been studied. 

In this study, the preference of S. titanus for four grapevine Cultivars and its ability to perceive 

stimuli emitted from healthy or disease infected grapevine shoots has been investigated.  

 

Materials and methods 

This research was carried out in 2011 and 2012. Nymphs and adults of S. titanus were collected 

from an experimental vineyard located at the University of Padova (Department DAFNAE, 

Legnaro, Italy) using a vacuum. Experiments were carried out in screen house and laboratories 

located at Department DAFNAE. In the first study (Cultivar effects) we distinguished between 

“young nymphs” (1st and the 2nd instars together) and “nymphs” (3rd, 4th and 5th instars 

altogether) while in the second (detection of stimuli from healthy or infected shoots) five nymph-

instars were used.    

 

The response by Scaphoideus titanus to grapevine Cultivars:    

Experimental design 

Four grapevine Cultivars of economic importance with a different susceptibility to FD were 

selected: Chardonnay, Cabernet franc, Merlot and Glera (Prosecco). Seedlings belonging to these 

Cultivars were used as potted plants bearing four to five leaves. Four potted plants were placed 

inside a cage, each plant from one Cultivar. The plants were placed in the four corners of cages 

in an experimental screen house. A Petri dish with 20 individuals of S. titanus was placed in the 

centre of the cage to guarantee an equal distance from the four potted plants (figure 1). Eight 

cages were used. The experiment was repeated twice with each life stage of S. titanus and each 

time with new set of plants. After the release of 20 individuals, the cages were checked after one 

(h1), six (h6), twelve (h12) and twenty four (h24) hours to assess the number of leafhoppers on 

each Cultivar over the time.  
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Figure 1- The experimental design showing the distribution of the four Cultivars and the Petri dish in the centre. 

Statistical analysis  

Data were analysed using a repeated REML (Restricted Maximum Likelihood) analysis of 

variance using the PROC MIXED (SAS Institute, 1999). The proportion (number of insect found 

on a specific Cultivar / total number of insect found in a cage) of insects found on each Cultivar 

during each assessment time was considered as dependent variable. In modelling, Cultivar, time 

of assessment and their interaction were considered as source of variation and their effect was 

evaluated using F test (α = 0.05). Using the LSMEAN statement we performed a t- test on the 

pairwise comparison of different Cultivars (α = 0.05). An angular transformation was applied to 

data to meet the assumption of REML analysis of variance.  

 

Scaphoideus titanus perception of stimuli emitted by healthy and infected shoots: 

Plant material  

Chardonnay grapevine shoots having small leaves were used as stimuli source. The FD infected 

shoots were collected from symptomatic plants in vineyards (located in Treviso and Vicenza 

districts, in 2011 and 2012 respectively) where only FD was widespread among GYs. The BN 
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infected shoots were collected from symptomatic plants in a vineyard located in Verona district 

where only BN was present among GYs. The healthy shoots were collected from a vineyard 

located in Verona district where no GY symptomatic plants were observed. The presence/ 

absence of the phytoplasmas in plants and in shoots were tested and certified by molecular 

analyses performed by CRA-VIT (Centro di ricerca per la Viticoltura, Conegliano TV).  

Olfactometer used in the study  

The experiment was conducted with a vertical glass Y-olfactometer (the stem and the arms are 

12.0 cm length, and 4.3 cm width; figure 2). The two arms were connected to glass flasks in 

which the shoots were placed. The olfactometer was located on a black board, and the two glass 

flasks were covered with white sheets to guarantee that the decision of the insect was made by 

the stimuli only not by interaction with the vision ability. The insects were tested individually, by 

inserting each insect into the main stem of the olfactometer. After that the time needed for the 

insect to make its decision was recorded. To be considered as a decision each individual had to 

reach beyond the half of the arm. When the individual took more than 15 minutes to make a 

decision or just it moved back and forward in the stem, it was considered as “No-choice”. After 

five insects, the glass flasks were reversed, and after ten the olfactometer was cleaned by 

Acetone.  

 

Figure 2- The vertical glass Y-olfactometer used in the experiments 
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Statistical analysis  

The χ2 test (α = 0.05) for homogeneity of proportion was used to test whether the proportion of 

insects was the same for healthy or infected shoots. Considering time needed to make the 

decision (expressed in seconds) as the response, F test (α = 0.05) was used to study the effect of 

age (nymphs or adults), decision (the No-choice option was excluded for this part) and their 

interaction. R software release 2.14.0 (R Development Core Team, 2011) was used in statistical 

analysis. 

 

Results 

The response by Scaphoideus titanus to grape Cultivars 

A significant variation in the proportion of young nymphs was found among Cultivars (F3, 239 = 

4.21; P=0.0063). No effect of time (F3, 239=0.08; P=0.971), nor of the interaction time*Cultivar 

was found (F9, 239=0.48; P=0.888). The proportion of insects found on Cabernet franc and 

Chardonnay Cultivars was similar (t239=0.11; P=0.915; Figure 3), and the proportion of insects 

found on these Cultivars was higher compared to those reported for Merlot (vs. Chardonnay: 

t239=2.85; P=0.005; vs. Cabernet franc: t239=2.74; P=0.007; Figure 3) and Glera (vs. Chardonnay: 

t239=2.20; P=0.029; vs. Cabernet franc: t239=2.09; P=0.038; Figure 3). No differences were 

observed between Merlot and Glera (t239=0.65; P= 0.516; Figure 3).   
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Figure 3- Proportion of young nymphs of Scaphoideus titanus on observed on different Cultivars during the 

experimental period (h1: one hour after release; h6: six hours after release; h12: twelve hours after release; h24: 

twenty four hours after release).  cha: Chardonnay; cab: Cabernet franc; mer: Merlot; gle: Glera. 

 

A significant variation in the proportion of nymphs was found among the Cultivars (F3, 239=2.88; 

P=0.037). No effect of time (F3, 239=0.03; P=0.994) nor of the interaction time*Cultivar was 

found (F9, 239=0.47; P=0.893). The proportion of nymphs found on Chardonnay, Glera and 

Merlot was similar (Chardonnay vs. Glera: t239=0.26; P=0.796; vs. Merlot: t239=0.31; P=0.760; 

Glera vs. Merlot: t239=0.05; P=0.963; figure 4). The proportion of nymphs found on those three 

Cultivars was higher compared to that found on Cabernet franc (vs. Chardonnay: t239=2.57; 

P=0.011; vs. Glera: t239=2.31; P=0.022; vs. Merlot: t239=2.27; P=0.024; figure 4). 
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Figure 4- Preference for a Cultivar exhibited by Scaphoideus titanus nymphs during the experimental period. (h1: 

one hour after release; h6: six hours after release; h12: twelve hours after release; h24: twenty four hours after 

release). cha: Chardonnay; cab: Cabernet franc; mer: Merlot; gle: Glera. 

 

A significant variation in adult proportion was found among Cultivars (F3, 239=3.61; P=0.014). 

No effect of time (F3, 239=0.10; P=0.961) nor of the interaction time*Cultivar (F9, 239=1.18; 

P=0.311) were found. The proportion of adults found on Cabernet franc and Merlot were similar 

(t239=0.75; P=0.454; figure 5). The proportion found on Cabernet franc was higher compared to 

that of Glera and Chardonnay (vs. Chardonnay: t239=2.78; P=0.006; vs. Glera: t239=2.38; 

P=0.014; figure 5). Merlot showed a higher adult proportion than Chardonnay, but a similar 

proportion compared to Glera (vs. Chardonnay: t239=2.03; P=0.043; vs. Glera: t239=1.73; 

P=0.085; figure 5). Finally, Glera and Chardonnay showed similar adult proportion (t239=0.30; 

P=0.763; figure 5).  
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Figure 5- Preference for a Cultivar by Scaphoideus titanus adults during the experimental period. (h1: one hour after 

release; h6: six hours after release; h12: twelve hours after release; h24: twenty four hours after release). Cha: 

Chardonnay; cab: Cabernet franc; mer: Merlot; gle: Glera. 

 

Scaphoideus titanus perception of stimuli emitted by healthy and infected shoots 

At the beginning, S. titanus nymphs (n. 152) and adults (n. 75) were tested separately to study 

their ability to distinguish between stimuli emitted by healthy and FD infected shoots. A 

significant difference was found in the nymph proportion among healthy shoots, FD infected 

shoots and No-choice options (χ2=87.8816, df=2, P < 0.001). The 69% of nymphs selected 

healthy shoots showing a higher attraction rate compared to FD infected shoots (18%) and No-

choice option (13%) (figure 6). The proportion of nymphs which selected FD infected shoots and 

those which selected the No-choice option was similar. Adults also showed a different proportion 

among the three options (χ2=43.44, df= 2, P< 0.001). The 68% of adults selected healthy shoots 

showing a higher attraction rate compared to FD infected shoots (24%) and No-choice option 

(8%) (figure 6). The proportion of adults that preferred FD infected shoots or the No-choice 

option was similar.      
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Figure 6- Comparison between healthy and FD infected shoots using the olfactometer. No (refers to No-choice), 

and the letters a,b indicates the significant difference according to chi-square test. 

 

Another group of insects was tested to see if they could distinguish between the stimuli emitted 

by FD and BN infected shoots. No significant variation was found in the nymph proportion 

among the three options (χ2=2.6, df=2, P=0.272). Out of 120 nymphs, 40% were attracted by FD 

infected shoots, 28% by BN infected shoots and 32% were for No-choice (figure 7). For adults, 

no significant variation in the adult proportion among the three options was found (χ2=0.1, df=2, 
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P=0.951). Out of 60 adults, 32% selected FD infected shoots, 33% selected BN infected shoots 

and 35% did not make any decision (figure 7).  

 
 

 

Figure 7- Comparison between FD infected and BN infected shoots using the olfactometer. No refers to No-choice,  

 

A significant difference was found for the time needed to make the decision between the healthy 

and FD infected shoots due to the age of the insect (F= 10.863, df=1, P=0.0012). No effect was 

found due to the decision (F=1.348, df=1, P= 0.2471) nor to the effect of the interaction 
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age*decision (F=0.246, df=1, P=0.6206). In other words (as shown in figure 8) the insects 

needed less time to prefer healthy compared to FD infected shoots. At the same time, nymphs 

needed more time to make the decision compared to the adults. 

 

Figure 8- Interaction plot describing the decision (H: healthy and FD: FD infected shoots), and the age (ad: adults 

and ny: nymphs) for the time needed to make the decision (in seconds). 

 

On the other hand, no effect was found for the age on the time needed to make the decision 

between FD and BN infected shoots (F=0.109, df=1, P=0.742). Decision also did not have any 

effect (F=2.46, df=1, P=0.12), and the interaction age*decision was not significant (F=1.932, 

df=1, P=0.167) (figure 9). 
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Figure 9- Interaction plot describing the decision (FD: FD infected shoots and BN: BN infected shoots), and the age 

(ad: adults and ny: nymphs) for the time needed to make the decision (in seconds). 

 

Discussion 

Scaphoideus titanus exhibited some preferences among Chardonnay, Cabernet franc, Merlot and 

Glera Cultivars because it was not attracted at the same degree by the four Cultivars. This 

attraction varied over the time starting from the release till one-day after (the end of the 

experiment). Young nymphs needed some time before showing a preference among the 

Cultivars, while nymphs showed no specific preferences to any of the four Cultivars after 6 hours 

of the release till the end of the experiment. Adults showed a preference that varied over the time 

of experiment.  

In general, Chardonnay was more attractive for young and aged nymphs but less attractive for 

adults. On the other hand young nymphs and adults seemed to prefer Cabernet franc which was 

the least preferred Cultivar by aged nymphs. In general, all the four Cultivars were attractive for 

S. titanus but this attraction varied with time and age. 

The preference of S. titanus for one of the Cultivars may depend on leaf characteristics (e.g., leaf 

hairiness). Pavan and Picotti (2009) showed that there were different susceptibility levels of 
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grape Cultivars toward the grape leafhopper Empoasca vitis (Goethe). They found that the lowest 

egg density was on Chardonnay and Cabernet, and that the hairiness of grape leaves did not 

affect the egg density but it had an effect on the parasitism rate by Anagrus spp. 

In the case of S. titanus, the leaf characteristics could be the main driving force for the vector 

decision, because on potted plants there were no grape clusters yellow or red coloured which 

proved to be attractive to this insect in different proportions (Lessio and Alma, 2004). According 

to the hair density of different grapevine Cultivars leaves (Pavan and Peterlungher, 1999), 

Chardonnay has the lowest hair density compared to Merlot and Cabernet franc, except for the 

erect hairs on the main veins. This low hair density could be favourable for nymphs in 

particularly to the young ones which feed mainly from the grapevine leaf veins (Lessio and 

Alma, 2006). Another factor that may have influenced the insect decision is the presence of 

volatiles emitted by grape leaves and shoots.  Olfactometer studies will be performed to test this 

hypothesis.  

Scaphoideus titanus nymphs and adults were able to distinguish between healthy and FD 

infected grapevine shoots. Moreover, S. titanus did not exhibit preference for any of the two 

phytoplasma infected shoots (FD and BN), which correspond with higher tendency of S. titanus 

for the No-choice option, in this case.  

Both nymphs and adults showed a similar ability to distinguish healthy shoots, so no effect of the 

age was found on the decision. Actually, the effect was for the time needed to make the decision 

and the age of the insect, as adults decided and moved faster than nymphs.  

The results of this experiment showed for the first time that stimuli emitted by grapevines help S. 

titanus not only in host recognition (Mazzoni et al., 2009) but also in distinguishing between 

healthy and FD infected grapevines shoots. This may contribute to explain the role of S. titanus 

in spreading FD within a vineyard: the attraction to healthy plants for feeding can favour the 

disease transmission. 

Understanding the preference of S. titanus towards different grape Cultivars is essential for 

accurate pest control decisions. The most attractive Cultivars could be monitored carefully to 

reveal the presence of leafhoppers, thus controlling them at the right time. Some studies showed 
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that the spread of S. titanus within a vineyard is strongly related to the planting system and the 

canopy density (Lessio and Alma, 2004). In the establishment of new vineyards, the least 

preferred Cultivars could help to reduce S. titanus pressure and consequently FD infection. 

Further research is needed to know the effect of grapevine Cultivar on S. titanus, in particular the 

characteristics of each Cultivar responsible for the attractiveness towards this pest. As an 

example, if leaf hair density is responsible for such preference rate, then this density should be 

taken into consideration in hybridization programs. 

On the other hand, the high attraction of S. titanus towards healthy shoots stresses the need to 

identify the responsible plant volatile compounds and probably to synthesize them. These 

products could be used in the traps as a tool to attract and monitor S. titanus for more efficient 

control management.   
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The effect of plant status on the survival and development of Scaphoideus 
titanus (Hemiptera: Cicadellidae) under controlled conditions 
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Abstract 

Flavescence dorée (FD) and Bois noir (BN) are Grape Yellow (GY) diseases causing severe 

damage in European vineyards. Candidatus Phytoplasma vitis, the causal agent of FD disease, is 

transmitted from grapevine to grapevine by Scaphoideus titanus. Candidatus Phytoplasma 

solani, the phytoplasma associated to BN was also detected inside S. titanus but this cicadellid 

was not involved in BN transmission. The aim of this study was to understand if the interaction 

between phytoplasmas and S. titanus can result in effects on vector biology. Newly hatched 

nymphs of S. titanus were collected and reared under controlled conditions to investigate the 

effect of phytoplasmas on their survival and development. Healthy, FD and BN infected 

grapevine leaves were used for experimental treatments. The results showed that nymphs reared 

on phytoplasma infected leaves had longer developmental times and lower survival than those 

reared on healthy leaves. The interactions between S. titanus and the phytoplasmas could be 

among the factors that influence the vector population dynamics in vineyards. 

 

Introduction 

Flavescence dorée (FD) and Bois noir (BN) are Grape Yellow diseases causing severe damage in 

European vineyards. The disease symptoms include yellow leaves, downward curling of the 

leaves, fruit abortion, reduction in fruit setting, thin rubbery shoots, failure in the lignification of 

new shoots (Caudwell, 1983) and in some varieties the death to the plant (Boudon-Padieu, 1996; 

Pavan et al., 1997; Osler et al., 2002). FD affects the yield and the quality of production both for 

table and wine grapes (Steffek et al., 2007). Usually, infected plants start to express the disease 

symptoms after one year from the inoculation, depending on the variety and the age of plants 

(Caudwell et al., 1987). Later, a recovery could be seen unless vines are not exposed again to 

infection (Caudwell et al., 1987). In any case, the yield of the recovered plants is still lower than 

that of healthy ones (Morone et al., 2007).  

Candidatus Phytoplasma vitis, the causal agent of FD disease, is transmitted from grapevine to 

grapevine by the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) (Schvester et 

al., 1963; Carraro et al., 1994; Bianco et al., 2001; Mori et al., 2002), while BN is associated 

with Candidatus Phytoplasma solani which is transmitted to grapevines by the planthopper 
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Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae) (Maixner 1994; Alma et al., 2002; Bressan 

et al., 2007). The acquisition of FD phytoplasma is performed by all the development stages of S. 

titanus but the leafhopper is able to transmit only from the third-fourth nymph instars onwards 

(Bressan et al., 2006). After a latent period the leafhopper gets involved in a vine to vine 

phytoplasma transmission, which causes an exponential increase of the disease infection within 

the vineyard (Schvester et al., 1969; Bressan et al., 2005b). S. titanus acquires the phytoplasma 

by feeding on FD infected vines but the phytoplasma is not transmitted from one generation to 

another by transovarial infection (Schvester et al., 1969; Bressan et al., 2006). The acquisition 

efficiency depends on several factors, like the susceptibility of grapevine Cultivar (Bressan et al., 

2005a), the nymph age (Schvester et al., 1969) and probably the period of growing (Bressan et 

al., 2006). In spite of the fact that adults are the most efficient stage in transmitting the 

phytoplasma, their limited ability to spread it over long distance was proved (Lessio and Alma, 

2004; 2006). 

The interaction between the phytoplasma and its vector could be harmful or beneficial (Purcell, 

1982). There are some studies of the effect of the phytoplasma on vectors different from S. 

titanus, like Euscelidius variegatus Kirschbaum, and on mechanisms of phytoplasma 

multiplication and invasion of different organs on this vector (Caudwell et al., 1972; Boudon-

Padieu et al., 1989; Lherminier et al., 1990; Lefol et al., 1994). The effect of FD on the longevity 

and fecundity of S. titanus has been studied by confining males and females on FD infected 

broad beans Vicia faba L. (Fabaceae) (Bressan et al., 2005b). But most of The studies focused 

more on the phytoplasma acquisition by the vector than on the interaction between the vector and 

the phytoplasma.  

The objective of this study is to shed the light on the effect of FD on the development and the 

survival of its natural vector S. titanus using grapevine leaves as phytoplasma infection source. 

The effect of Bois noir phytoplasma (BN) was also studied because its importance is increasing 

in many Italian regions (Duso et al., 2010) and it was detected inside S. titanus but this later is 

not involved in its transmission and spread (Carraro et al., 1994; Mori et al., 2002), the 

phytoplasma causal agent could have an effect on the insect biology. 
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Materials and methods 

Plant material 

Grapevine leaves of the cultivar Chardonnay were used for rearing the insects and as 

phytoplasma source. Healthy, FD and BN infected leaves were used. The FD infected leaves 

were collected from symptomatic plants in a vineyard (located in Vicenza district) where only 

FD was widespread. The BN infected leaves were collected from symptomatic plants in a 

vineyard located in Verona district where only BN was present. Healthy shoots were collected 

from a vineyard located in Verona district where no symptomatic plants had never been 

observed. The presence/absence of the phytoplasmas in the leaves was tested and certified by 

molecular analyses performed by CRA -VIT (Centro di Ricerca per la Viticoltura, Conegliano 

TV). Those leaves were provided to the insects at least twice a week. 

Insects  

Grapevine canes were collected from two organic vineyards located in Veneto region where the 

presence of S. titanus was ascertained; thus they were used as source of insect eggs. The canes 

were placed in rearing cages under screen house, and were checked daily to guarantee the 

accurate detection of nymphs hatching.  

Artificial rearing and climatic chambers 

The newly hatched nymphs (12-24 hours old) were collected and placed inside Petri dishes lined 

with agar and containing leaves. This method was developed by Saguez and Vincent (2011) to 

rear nymphs of leafhoppers belonging to the genus Erythroneura. Different rearing methods and 

relative humidity conditions were tested during 2011 in order to select the most successful for 

the experiment.  

Then Petri dishes were placed in a climatic chamber at 24°C, relative humidity 60%, 16:8 Light: 

Dark ratio. This experiment was implemented in 2012 with the use of 15 Petri dishes for each 

group of leaves (healthy, FD and BN infected), and in each dish two nymphs were used for the 

study.   
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Molecular analyses 

At the end of observations, the dead insects were tested to verify phytoplasma presence and 

identity. Nucleic acid was extracted according to Angelini et al. (2001). Nested-PCR followed by 

restriction fragment length polymorphism (RFLP) analyses on 16S ribosomal gene and on tuf 

gene for phytoplasma molecular characterization were performed as described by Duduk et al. 

(2004). Informative restriction enzymes employed were TruI and TaqI on 16S rDNA gene and 

HpaII on tuf gene.  

Monitoring and statistical analyses  

Petri dishes were monitored daily to obtain data on survival and development of S. titanus 

nymphs. The first and second nymph instars are very similar, so the presence of the exuvia was 

used to identify the moult. The moulting dates of other instars were easily recognized by their 

morphological characteristics. Data were analysed using restricted maximum likelihood model. F 

test (α = 0.05) was used to evaluate the effect of treatment (FD and BN infected, healthy leaves 

as control) on the development times. Then, t-test on least square means was used for pairwise 

comparisons among the treatments. Data were transformed in logx+1 prior to the analysis to 

meet the model assumption. Regarding the survival, the percentage of insects which survived 

within each developmental stage was considered. The effect of treatments on S. titanus survival 

was evaluated with a chi-square test. Pairwise comparison of treatments was also performed with 

chi-square test on least square means. These analyses were performed with SAS software (SAS 

institute, 1999). 

 

Results 

Effects on development 

A significant variation among the three treatments (healthy, FD and BN infected leaves) was 

observed in time needed by nymphs developing from the first to the second instar (F2,22=4.07; 

P=0.031). Nymphs reared on healthy leaves have a significant shorter development time (first to 

second instar) than those reared on FD infected leaves (t22=2.85; P=0.009; figure 1), while there 

were no differences between nymphs reared on BN infected leaves (t22=0.81; P=0.426; figure 1). 
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The development time for nymphs reared on FD or BN infected leaves was also similar 

(t22=1.75; P=0.095; figure 1). 

No significant variation was observed in development times of nymphs developing from the 

second to the third instar (F2,22=1.52; P=0.241). In particular, the following values were 

calculated: BN infected leaves vs. FD infected leaves: t22=0.22; P=0.824; BN infected leaves vs. 

Healthy leaves: t22=1.27; P=0.217; healthy leaves vs. FD infected: t22=1.53; P=0.140; figure 1). 

The three treatments showed significant variation in the period requested by third nymph instars 

to develop into fourth nymph instars (F2,22=10.87; P<0.001). Nymphs reared on healthy leaves 

have a significant shorter time period than those reared on FD and BN infected leaves (vs. FD 

infected leaves: t22=4.38; P<0.001; vs. BN infected leaves: t22=2.91; P=0.008; figure 1). On the 

other hand, the time period for nymphs reared on BN and FD infected leaves was similar 

(t22=1.25; P=0.223; figure 1). 

No significant variation was found among the three treatments in the period requested by 

nymphs developing from the fourth to the fifth instar (F2,22=0.35; P=0.707). The time period for 

nymphs reared on healthy, FD and BN infected leaves was similar (BN infected leaves vs. FD 

infected leaves: t22=0.83; P=0.413; BN infected leaves vs. Healthy leaves: t22=0.56; P=0.578; 

healthy vs. FD infected leaves: t22=0.41; P=0.684; figure 1). 

Also no significant variation was found among the three treatments for nymphs developing from 

fifth nymph instars to adults (F2,22=0.45; P=0.644). The following values were calculated: BN 

vs. FD infected leaves: t22=0.94; P=0.356; BN infected leaves vs. Healthy leaves: t22=0.62; 

P=0.539; Healthy leaves vs. FD infected leaves: t22=0.48; P=0.637; figure 1).  
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Figure 1- Developmental times (expressed in days) of different juvenile stages  of Scaphoideus titanus reared on 

healthy (CHH), FD infected (CHFD) and BN infected (CHBN) leaves (S 1_2: first to second instar; S2_3: second to 

third instar; S3_4: third to fourth instar; S4_5: fourth to fifth instar; S5_ad: fifth instar to adult).  

 

There was a significant effect of treatments on total development times of S. titanus (F2,22=6.98; 

P=0.005). Insect reared on healthy leaves had the shortest times compared to those reared on FD 

and BN infected leaves (vs. FD: t22=3.51; P=0.002; vs. BN: t22=2.31; P=0.03; figure 2). Insects 

reared on FD and BN infected leaves showed similar time periods (t22=1.02; P=0.317; figure 2).  
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Figure 2- Total development time period of Scaphoideus titanus (expressed in days) reared on healthy (CHH), FD 

infected (CHFD) and BN infected (CHBN) leaves. 

 

Effects on survival  

A significant variation in the survival of nymphs developing from first to second instars was 

found (χ2 =8.38; DF=2; P=0.015). The survival of nymphs reared on healthy and BN infected 

leaves was similar (χ2 =0.00; DF=1; P=1.000; figure 3), while the survival of insects reared on 

FD infected leaves was lower than that of those reared on healthy or BN infected leaves (vs. 

Healthy leaves: χ2 =3.88; DF=1; P=0.049; vs. BN infected leaves: χ2 =3.88; DF=1; P=0.049; 

figure 3). 

Nymphs developing from second to third instars showed a significant variation in the survival 

among the three treatments (χ2 =16.07; DF=2; P<0.001). The survival of nymphs reared on 

healthy and BN infected leaves was similar (χ2 =0.00; DF=1; P=1.000; figure 3), but those reared 

on FD infected leaves survived less than those reared on healthy (χ2 =6.49; DF=1; P=0.011) or 

BN infected leaves (χ2 =6.49; DF=1; P=0.011; figure 3). 

A significant variance in the survival among the three treatments was found for nymphs 

developing from third to fourth instars (χ2 =8.87; DF=2; P=0.012). The survival of nymphs 

reared on healthy and BN infected leaves was similar (χ2 =0.57; DF=1; P=0.452; figure 3). The 
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lowest survival value was found for nymphs reared on FD infected leaves (vs. Healthy leaves: χ2 

=4.25; DF=1; P=0.039; vs. BN infected leaves: χ2 =6.75; DF=1; P=0.009; figure 3). 

No significant variance was found among the three treatments in the survival of nymphs 

developing from fourth to fifth instars (χ2 =4.29; DF=2; P=0.1173). The following values were 

calculated: healthy leaves vs. BN infected leaves: χ2 =3.73; DF=1; P=0.054; healthy leaves vs. 

FD leaves: χ2 =2.25; DF=1; P=0.134; FD infected leaves vs. BN infected leaves: χ2 =0.10; DF=1; 

P=0.746; figure 3).  

A significant variation was found in the survival among the three treatments for nymphs 

developing from fifth instar to adults (χ2 =7.98; DF=2; P=0.018). Nymphs reared on healthy 

leaves have the highest survival value compared to the other two treatments (vs. BN infected 

leaves: χ2 =5.91; DF=1; P=0.016; vs. FD infected leaves: χ2 =4.87; DF=1; P=0.027; figure 3). On 

the other hand, nymphs reared on FD and BN infected leaves have similar survival values (χ2 

=0.01; DF=1; P=0.908; figure 3). 

 

Figure 3- The survival of the various development stages of Scaphoideus titanus reared on healthy (CHH), FD 

infected (CHFD) and BN infected (CHBN) leaves (S 1_2: first to second instar; S2_3: second to third instar; S3_4: 

third to fourth instar; S4_5: fourth to fifth instar; S5_ad: fifth instar to adult).  
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The effect of treatments on the survival of S. titanus nymphs was significant (χ2 =12.51; DF=2; 

P=0.002). Nymphs reared on healthy leaves had the highest survival compared to those reared on 

FD and BN infected leaves (vs. FD infected leaves: χ2 =9.14; DF=1; P=0.003; vs. BN infected 

leaves: χ2 =7.73; DF=1; P=0.005; figure 4). No difference was found in the survival of nymphs 

reared on FD and BN infected leaves (χ2 =0.09; DF=1; P=0.766; figure 4). 

 

Figure 4- Survival of nymphs on different treatments. 

 

Result of molecular analyses 

The results of molecular analyses showed the presence of the phytoplasma 16SrV, the causal 

agent of FD, in 67% of leafhoppers reared on FD infected leaves. Most of them (about 20) were 

adults. The BN causal agent 16SrXII was detected in the 20% of insects reared on BN infected 

leaves. No phytoplasmas were detected on insects reared on healthy leaves.  

 

Discussion 

The results of this study show that feeding on phytoplasma infected leaves increases the 

developmental times of S. titanus and reduces its survival. Further investigations are needed to 
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investigate whether this effect resulted from the multiplication and the invasion of the 

phytoplasma inside the leafhopper body or from biochemical changes induced by the 

phytoplasma on grape leaves.  

The effect of phytoplasmas (FD and BN) on the development and the survival of its vector could 

be among the factors that affect S. titanus populations dynamics in vineyards. A longer 

development time period for nymphs might expose them longer to unsuitable climatic conditions 

and natural antagonists. Moreover, the lower survival of nymphs will imply a reduction in the 

number of adults, the most effective life stages in transmitting the phytoplasma disease to 

grapevine, and subsequent FD infection.  

Results reported in other studies can contribute to understand better this phenomenon. Bressan et 

al. (2005b) found that the experimental infection with FD phytoplasma reduced greatly the 

fecundity and the survival of S. titanus adults. The source of phytoplasma infection in Bressan et 

al. (2005b) was from broad beans, while in the present work the source of infection was 

grapevine, the natural host of S. titanus. A study on Colladonus montanus Van Duzee, the vector 

of Western X-disease phytoplasma also found that phytoplasma reduced the survival of its vector 

(Jensen et al., 1967). 

In other studies phytoplasmas increased the developmental times of their vectors (Beanland et 

al., 2000; Ebbert and Nault, 2001; Kaul et al., 2009; Johannesem et al., 2011). Nevertheless, the 

Eastern-X disease phytoplasma was found to reduce the life span of its vector Paraphlesius 

irroratus Say (Garcia-Salazar et al., 1991).  

The results of the present work and the previously mentioned papers reveal a various range of 

interactions between the phytoplasma and its vector. It has been suggested that the long 

evolution between them could help achieving a beneficial relation (Purcell, 1982). The negative 

impact of FD and BN on S. titanus could be due to the limited co-evolution time period (Bressan 

et al., 2005b). 

The phytoplasma detection analyses confirmed the ability of S. titanus to acquire the BN 

phytoplasma but there is no proof of any involvement of S. titanus in the transmission of this 

phytoplasma. 
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This present work represents a preliminary step on understanding the impact caused by 

phytoplasma FD and BN on S. titanus using its natural host i.e. grapevine. This interaction could 

be used to develop a model for the phytoplasma epidemiology to improve S. titanus and FD 

management. In fact, a similar model has been pointed out for aster yellows on lettuce (Beanland 

et al., 2000 reported unpublished data by C.W.H.).  
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Conclusions 

The phenological studies of grape berry moths (Lobesia botrana and Eupoecilia ambiguella) and 

Scaphoideus titanus shed the light on the occurrence of these pests in several sites in Veneto 

region. According to the results of this survey, the presence of grape berry moths was not 

homogeneous in the studied areas. There was a clear dominance of E. ambiguella in hilly areas 

and of L. botrana in the plain areas confirming previous reports. In one of these sites 

(Valdobbiadene) both species were detected but in a fluctuating rate through the studying period. 

Temperature could be a major factor explaining this fluctuation as the relation between 

temperature and second flight was found to be significant for E. ambiguella and L. botrana. Two 

to three generations were seen for E. ambiguella, while Lobesia botrana achieved three 

generations in most of the sites. The third flight was sometimes unusually long which may 

suggest a larval aestivation. Four adult peaks were observed for L. botrana in some areas, but no 

evidence for a fourth generation was provided.  

Regarding the phenology of S. titanus, nymphs appeared in the second half of May and the adults 

from the end of June to early July. This corresponds with previous studies on the phenology of S. 

titanus in Veneto region. However, the results of this work showed a significant variation in the 

phenology of S. titanus among the sites and the years. This variation could not by explained only 

by temperature, as other environmental factors such as altitude and sun exposure are probably 

involved. Nevertheless, a significant effect of temperature on the appearance of nymphs was 

found suggesting its major role on S. titanus phenology. In contrast, the relation between 

temperature and nymph development was not clear suggesting the need for further studies. 

In most sites the phenology of grape berry moths (second flight) and S. titanus (first appearance 

of nymphs/adults) was earlier in 2011 compared to 2010 and 2012 and this effect was likely 

associated to spring temperatures of 2011. Phenological data are essential for developing 

forecasting models to help in predicting the occurrence of those pests in a given area and 

improve their control according to current EC rules (e.g., Directive 128/2009). 

The population diversity and the genetic structure of L. botrana were investigated. Microsatellite 

loci were used to analyse 16 L. botrana populations from Europe (Spain, Italy and Germany) and 
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the Middle East (Syria, and Golan heights).  A moderate level of genetic differentiation was 

found among the populations. However, the low flight ability of this moth could explain this. 

The highest genetic differentiation level was found with an Italian population from Meolo 

(Veneto region, Italy). But, the high heterozygosity values for most of the studied populations 

suggest that a recent breaking in isolation took place enabling the individuals to mate among the 

different populations. The AMOVA results confirmed also the high heterozygosity within the 

individual level with no clear effect of the geographic location. This later result corresponded 

with what was found with the STRUCTURE analyses. The European populations (Italian and 

German) are not strongly structured and that they appear to be a mixed of two genotypes, the 

first genotype was noticed with the Spanish population and the second with the populations of 

Middle East. The evaluation of gene flow among the populations and the level of diversity of 

their individuals is essential to understand the origin, the distribution and the potential expansion 

of an insect pest to new areas.  

The behaviour of S. titanus and the factors which affect its distribution within vineyards were 

investigated in a number of laboratory and semi-field experiments.  

Grapevine cultivars may have a role in the pest distribution in viticultural areas. Therefore, the 

response by S. titanus to four grapevine varieties (Chardonnay, Cabernet franc, Merlot and 

Glera) was tested in semi-field conditions. The leafhopper was able to distinguish among the 

selected varieties and exhibited some preferences. Chardonnay seemed to be preferred by the 

young nymphs (first and second instars) and aged nymphs (third, fourth and fifth instars) but was 

less preferred by adults. Cabernet franc, on the other hand, was more preferred by young nymphs 

and adults compared to aged nymphs. Leaf characteristics could be a reason for this variation in 

the preference by nymphs and adults.  

The ability of S. titanus to distinguish among healthy and infected stimuli was investigated using 

an olfactometer. Both nymphs and adults were able to distinguish between healthy and Grape 

Yellow phytoplasma (Flavescence dorée and Bois noir) infected shoots, and they were 

significantly attracted by stimuli emitted from healthy shoots. Leafhoppers moved faster towards 

healthy shoots while nymphs seemed to need more time to make a decision. S. titanus was not 

able to distinguish between the stimuli emitted by Flavescence dorée (FD) or Bois noir (BN) 

infected shoots. These results could help in understanding the spread of S. titanus within 
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vineyards. The stimuli emitted by shoots help in host recognition and in detecting the plant status 

(healthy or GY infected).  

Finally, the effect of phytoplasmas on S. titanus biology was studied by rearing leafhopper 

nymphs on healthy or GY (FD or BN) infected leaves. Grapevine leaves infected by FD and BN 

increased the developmental times of S. titanus nymphs and decreased their survival when 

compared to healthy leaves. The results of this study contribute to the knowledge of interactions 

between phytoplasmas, vectors and host plants. However, mechanisms involved in these effects 

require additional investigations.  
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