
Sede Amministrativa Università degli Studi di Padova
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Sommario

Cellule e tessuti umani sono sistemi essenziali per lo studio della biologia e fisiologia

del corpo umano e per lo sviluppo di nuove strategie e farmaci per la cura di varie

patologie. Il coinvolgimento di persone in casi studio di ricerca e testing farmacologici

espone i soggetti ad elevato rischio e introduce problematiche tecniche ed etiche

non facilmente risolvibili. Lo sviluppo di nuove strategie in vitro è di fondamentale

importanza per ricavare informazioni sull’organismo umano e limitare l’uso di sistemi

animali non pienamente predittivi. La richiesta di sistemi efficaci, rappresentativi e

a basso costo in campo clinico ed industriale è indubbiamente in aumento.

I sistemi convenzionali per colture cellulari sono normalmente costituiti da re-

cipienti con dimensioni caratteristiche dell’ordine dei centimetri. I nutrienti sono

veicolati alle cellule tramite mezzi di coltura liquidi che contengono buffer salini e

oligoelementi. Un quantitativo di medium minimo è necessario per garantire un

battente omogeneo al di sopra della coltura cellulare e deve essere sostituito peri-

odicamente per apportare nuovi nutrienti e rimuovere i prodotti di scarto. Molti

studi e applicazioni richiedono reagenti costosi e sono soggetti a una ridotta capacità

di ricavare dati. La scoperta del processo di riprogrammazione cellulare da parte del

Premio Nobel 2012 Yamanaka hanno aperto nuove esaltanti prospettive in ambito

di ricerca e applicazioni cliniche. In tale processo, da una biopsia cutanea di un

paziente è possibile ricavare cellule staminali pluripotenti indotte (iPSC) e derivare

nuovi tessuti per una riparazione autologa ad hoc dei tessuti.

Ad oggi, le iPSC umane (hiPSC) non sono ancora state utilizzate in ambito clinico

a causa di aspetti sulla loro derivazione non ancora pienamente caratterizzati, di

metodologie non a livello clinico e del costo significativo della derivazione di hiPSC

per singolo paziente. La micronizzazione del processo di riprogrammazione può dare
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un’opportunità notevole per la derivazione di hiPSC a basso costo e per ottenere

tessuti umani in vitro.

Scopo di questa tesi è lo sviluppo di una piattaforma per la riprogrammazione di

cellule umane in microscala. Per la sua realizzazione, abbiamo focalizzato la ricerca

sullo sviluppo di un microambiente cellulare che tenga conto sia dell’ambiente solubile

che dei componenti solidi per l’adesione cellulare.

Durante questo dottorato, sono stati sviluppati degli idrogel sintetici e biodegrad-

abili. La produzione su larga scala di substrati a rigidità variabile a base di poliacril-

ammide è stata fondamentale per rivelare le interazioni tra la rigidità del substrato e

il comportamento e destino cellulare. L’ingegnerizzazione di idrogel biodegradabili ha

rivelato il potenziale nello sviluppare tessuti in vitro funzionali e la loro integrazione

nel paziente. Il know-how acquisito sulle modifiche chimiche è stato trasferito al

controllo della topologia del substrato e all’interno dell’ambiente microfluidico.

L’ambiente microfluidico e la sua amministrazione sono stati ottimizzati per

garantire l’adesione e la crescita cellulare a lungo-termine e registrare importanti

fenomeni biologici. Le proteine di adesione fondamentali per la crescita delle cel-

lule sono state modificate e integrate in un ambiente in microscala. In microflu-

idica, poiché il medium necessario alle colture viene perfuso all’interno del ciruito,

un flusso continuo o periodico possono essere applicati. Abbiamo così studiato

l’amministrazione della distribuzione del medium per determinare le migliori strate-

gie per colture a lungo termine in microfluidica.

I risultati ottenuti nello sviluppo dei substrati e ambienti microfluidici per col-

ture cellulari sono stati applicati alla generazione di una nuova piattaforma per

la derivazione delle hiPSC, differenziamento e validazione in microscala. Per la

prima volta in letteratura, è possibile ottenere cloni hiPSC in microfluidica con una

riduzione sostanziale dei requisiti minimi (materiali, reagenti, spese globali).

La produzione di hiPSC a basso costo può portare a una produzione di massa di

tessuti caratterizzati e funzionali che possono in seguito essere integrati in supporti

3D e servire come valida fonte di derivazione per lo sviluppo di nuovi farmaci. La

nostra piattaforma apre nuove prospettive nello studio e trattamento di malattie

diffuse e rare coinvolgendo scienziati e imprenditori.



Summary

Human cells and tissues are key systems to study human biology and physiology, and

to develop new strategies and targeting drugs for human diseases. Since the study

and testing on human beings may not be acceptable due to exposure to risks and

practical and ethical concerns, in vitro strategies are of paramount importance to

rely on human organism and avoid non-fully predictive animal models. The demand

of research in clinical and industrial fields for effective, representative and affordable

strategies is undoubtedly increasing.

Conventional cell culture systems and drug discovery are normally performed in

vessels with a characteristic dimension in the order of centimeters. Nutrients are

delivered to cells through liquid media containing balanced saline buffers and oligo-

elements. A reasonable amount of medium is necessary to homogeneously cover a cell

layer and must exchanged with fresh media to maintain a proper amount of available

nutrients and remove released waste products. Many studies and applications require

expensive reagents and are subjected to limited data throughput. The discovery of

reprogramming process by 2012 Nobel Prize Yamanaka opened breakthrough new

perspective on research and clinical applications. Basically, from a patient’s skin

biopsy it is now possible to derive induced pluripotent stem cells (iPSC) and to

obtain new tissues for an ad hoc self-repair. So far, human iPSC (hiPSC) have

not been applied to clinics due to some unexplored aspects on their derivation, non

clinical-grade methods and the significative cost of hiPSC derivation per patient.

The down-scale of reprogramming process could provide an unique opportunity to

derive cost-effective hiPSC and obtain valuable human in vitro tissues.

The aim of this thesis is the development of a comprehensive platform for the

reprogramming of human cells at the microscale. To this end, we focused on the
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development of cell microenvironment which is composed by both soluble and solid

components.

During this thesis, synthetic and biodegradable hydrogels were developed. The

large-scale production of mechanically-tunable poly-acrylamide-based substrates were

fundamental to reveal the interaction occurring between substrate stiffness and cell

behavior and fate. Engineering of biodegradable hydrogels has revealed the poten-

tial to develop in vitro functional tissues and to integrate them at a later stage in

patients. Chemical modifications were transferred to topological substrate control

and in turn in microfluidic platforms.

Microfluidic chip environment and management was designed in order to allow

long-term adhesion, culture and biologically relevant cell behaviors. Adhesion pro-

teins fundamental for cell attachment and growth were modified and integrated with

the micronized substrates. Since medium for microfluidic cell culture relies on perfu-

sion, continuous or periodic flow could be applied. Thus, we studied the management

of media delivery in order to determine the best strategy for long-term cell cultures.

The achievements obtained with both substrate and microfluidic cell culture de-

velopment was applied to the generation of a new platform for hiPSC derivation,

differentiation and testing at the microscale. For the first time, it is possible to

obtain human iPSC clones in microfluidics with a remarked reduction of minimum

requirements (materials, reagents, overall expenses).

The production of cost effective hiPSC can lead to a mass production of character-

ized and functional tissues that can be either integrated in 3D developed constructs

and serve as valuable tissue source derivation for drug development. Our platform

opens new perspectives in studying and treating both abundant and rare diseases

involving both scientists and entrepreneurs.
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Chapter 1

Engineering the Generation of

Human Pluripotent Stem Cells

Human somatic cells of an adult can be reprogrammed to an embryonic-like state

through the subministration of defined molecular factors. In this state, cells have

the potential to generate all the cell of an adult organism, the so called pluripo-

tency. Reprogrammed cells, namely Induced Pluripotent Stem Cells (iPSC), can be

programmed further to indefinitely obtain different desired somatic cell types [1–3].

For this finding, prof. Shynia Yamanaka has been awarded for the Nobel Prize in

2013. Since the original publication in 2006, the reprogramming efficiency has been

revealed as a barrier to an intense application of iPSC. Despite recent efforts and

new technology available, many other barriers limit the use of iPSC both in research

and preclinical approaches.

Nowadays, the reprogramming process is unfeasible and not affordable for more

than a few tens of people [4]. In the standard process, before, during and after

the reprogramming phase, cells must be expanded, evaluated to assess the proper

phenotype, stored for cells banking and programmed towards adult phenotypes. For

a few samples from a single patient, thousands of euros and a full-time dedicated

expert are required over a 1-2 months period. Hence, big efforts have to be invested

to scale-up the iPSC production.
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2 CHAPTER 1. ENGINEERING THE GENERATION OF HUMAN PSC

1.1 Introduction

The majority of the cells in a adult human body are terminally differentiated cells

with defined properties and functions to support the activities of different tissues

and organs. A very low number of partially specified cells, namely adult stem cells

(ASC), support the renewal of differentiated cells undergoing senescence and death

[5]. Other than these somatic cells, germ cells (GC) (i.e. spermatozoa and egg cells)

are specialized for the generation of a new individual.

When an egg is fertilized, several cell divisions occur ending up with a hollow

structure, the blastocyst (Figure 1.1.1A). The inner cell mass (ICM) is surrounded

by cells of the trophoblast, which are responsible for the placenta development. The

ICM cells are defined as pluripotent since they account for the formation of all the

cells necessary for the development of the embryo and finally of the adult. When a

part of the ICM is cultured in vitro, the cultured cells maintain the pluripotent state

under specific conditions. This cells are called human Embryonic Stem Cells (hESC)

(Figure 1.1.1A).

The 2012 Nobel prize Shynia Yamanaka and colleagues evidenced that differen-

tiated cells from ad adult, can be reprogrammed back to a state similar to hESC.

Thanks to the forced-expression of genetic regulators of the pluripotent state (OCT4,

SOX2, KLF4, c-MYC) via viral vectors, human iPSC (hiPSC) were derived from dif-

ferentiated fibroblasts [2]. Since hiPSC can be derived from cells of an adult tissue,

they can solve ethical problems rising from the use of hESC and they offer the op-

portunity for a theoretical unlimited source of pluripotent stem cells (Figure 1.1.1B).

The means to derive hiPSC have extended in the past 5 years [2, 4, 6–9]. De-

spite little is known of the reprogramming and its players during the whole process,

some common aspects have been defined: for instance, the ectopic forced-expression

of a ‘consensus’ class of factors is necessary [10, 11]. These transcription factors

are recapitulated by a list of four, comprising OCT4, SOX2, KLF4, c-MYC and

more defined cocktails and variants can be found in the literature. The delivery

method of these factors account for part of the process efficiency. Viral vectors were

the first to be used thanks to they ability to transfer genes inside the cell. Both

genome-integrating and transient viruses were used. Firsts efforts to develop non-
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Figure 1.1.1 – Pluripotent stem cells. (A) The egg fertilization produce a globular cell
structure (the blastocyst, here sectioned) that is the source for embryonic stem cells. Cells
depicted in grey form the trophoblast and the ICM is facing inside (black). The ICM cells
are defined as pluripotent stem cells since they can produce all the differentiated cells in our
body (e.g. neurons, cardiac cells, etc.). (B) Patient’s derived cells (e.g. a skin biopsy or
blood sample) can be turn back in time through a reprogramming process that erase actual
cell functions. The delivery of Yamanaka’s factors induce pluripotency in cells leading to
an analog state of embryonic stem cells. This cells being pluripotent can generate new cell
types valid for the self-repair (autologous) of patient’s tissues.
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viral vectors (e.g. proteins, mRNAs, chemical compounds, etc.) have offered limited

reprogramming efficiency [12, 13]. Recently, modified mRNAs (mmRNAs) and small

synthetic molecules emerged as a powerful and potentially clinical-grade tool for the

reprogramming of human cells [9, 14].

Since the various steps towards the iPSC depend on the sustained delivery and

expression of the reprogramming factors - which is not fully efficient - , and on the

state of each individual cell, the target cells to be reprogrammed do not show the

same capacity to enter and complete the process [15]. Beyond others, an evident

morphological cell rearrangement (mesenchymal-epithelial transition, MET) and an

epigenetic reorganization of the genome are key factors of the process concomitant

with cell sustained proliferation [16]. A recent study shows that cells can be deter-

ministically reprogrammed by abolishing defined key factors [17]. However, only cells

that are transfected with the reprogramming factors enter the process.

Significative advances have been introduced to ameliorate the reprogramming

of human cells but the overall process remains far to be extensively applicable. In

this Chapter, we introduce the key aspects to develop cost effective and clinical-grade

solutions for the reprogramming of human cells. Advantages of substrate engineering

and microfluidic technology will be evidenced and their development will be reported

for the efficient generation of hiPSC.

1.2 Motivation for technology development

Since cell continuously interact with their microenvironment, its control is crucial

to drive cell behavior and fate. Soluble and solid biochemical species are the two

major components surrounding cells, thus, the understanding and modeling of their

dynamics can effectively impact on tightly balanced biological processes such as

reprogramming.

1.2.1 Mechanical control and physical barriers - substrates

Besides soluble components of the cell niche, the adhesion substrate has a key role

on cell behavior and is continuously modeled to accomplish different biochemical

and mechanical roles [5]. Rigidity, topology and chemical properties of the substrate
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Figure 1.2.1 – Engineering 2D artificial stem-cell niches. (A) Surfaces can be functionalized
with pro-adhesion molecules of the ECM that specificaly bind cellular receptors exposed at
the surface. (B) Different types of ECM molecules can be used to trigger differential path-
ways and signals. (C) Substrate stiffness can be tuned in order to elicit different mechanical
stimuli on cells. Stiffer substrates promote cell spreading and flattening. (D) Surface can be
functionalized in order to allow cell adhesion on defined patterned regions exposing ECM
components. Image adapted from [18].

are recognized by adhesion proteins and receptors at the cell surface and can trigger

either direct mechanical or biomolecular soluble transduction to various cell com-

partments (Figure 1.2.1) [18].

Cells can vary their gene expression in order to respond to the substrate stimulus.

Various examples of the mechanical importance of substrates were demonstrated in

non-pluripotent cells, comprising cell maturation [19], functional activity [20], growth

and death [21]. Conversely, little is known regarding the interaction of hPSC with

their culture substrate.

A new way to control the pluripotency state through substrates may reduce the

need of expensive soluble factors and reduce the operations and time required to

maintain culture purity and remove spontaneous events of differentiation [18, 22,

23]. Moreover, substrates mechanics, topology and biochemical features can influ-

ence the reprogramming process [8, 24]. The imposition of a hPSC-like shape or the

biochemical composition of the substrate may favor the remodeling of differentiated

cells fastening the transition to pluripotency.

1.2.2 Soluble control and micronization - microfluidics

The reprogramming process is tightly controlled by cell internal events and external

surroundings. Outside the cell, extrinsic factors play as environmental stimuli which
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occur at a few cell distances. Figure 1.2.2A illustrates the major players in the so

called “cell niche”. As described in the previous section 1.2.1, the extracellular matrix

substrate has a part in affecting some biological processes. Many other stimuli are

soluble factors that are released by neighboring cells (paracrine) or by the cell itself

(autocrine) [5]. These factors account for endogenous (EnF) signals while exogenous

(ExF) ones are derived from the culture medium supplemented to the cells. Bio-

chemical pathways are activated upon the recognition of these extrinsic factors by

receptors at the cell membrane (Figure 1.2.2A).

Since many soluble factors can act at the same time and insist on even redun-

dant pathways, the control of the soluble environment is crucial to support proper

stimulation of cell under reprogramming. Typically, established protocols suggest

daily medium changes in order to prevent the accumulation of toxic signals (EnF)

and continuously stimulate cells with fresh exogenous and controlled factors (ExF).

Deprivation of nutrients and accumulation of waste products of cell metabolism and

cell turnover can trigger cell death or induce differentiation of non terminally diffe-

rentiated cell types. Figure 1.2.2B-C shows a comparison of medium usage between

conventional vessels and emerging microfluidic technology. Standard culture systems

like Petri dishes require a minimum amount of medium volume over a 24 h cycle in

order to:

• provide a minimum height to homogeneously cover the entire culture surface;

• reduce the concentration of medium components due to evaporation at 37 °C;

• provide nutrients to high-demanding cells like hPSC;

• dilute waste and unwanted cell product.

Microfluidics represents a way to deliver tiny amounts of media (nanoliters to

microliters) over a cell layer with homogeneous distribution and tight control of cell

species inside the fluidic environment both in space and time (Figure 1.2.2B-C) [25].

Adjusting the perfusion rate of media through the channels it would be possible to

control the balance of the extrinsic factors either produced by cells or carried within

the fresh medium (Figure 1.2.2C).
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Figure 1.2.2 – Cell niche and comparison between conventional cell culture environment
and microfluidics. (A) Cell biology is based on extrinsic (outside the cells) and intrinsic
(inside the cell) signals of the microenvironment. While intrinsic signals directly acts on
internal cell system, extrinsic signals can be further classified. Besides the interaction with
the substrate where cells adhere, soluble environment is bases on exogenous molecules (e.g.
provided nutrients) and cell-produced molecules such important cell signaling species or by-
products and waste. (B) Longitudinal sections of a common culture dish and a microfluidic
chip. Most used cell culture vessels require some milliliters of culture medium in order to
provide a homogeneous and sufficient height above cells. In a common 35-mm-wide Petri dish
this consist in 2 ml of media ( ⇠2 mm height). Microfluidic chips have inlets and outlet for
media delivery into channels. Channels height ranges from 100 to 200 micrometers, a tenth
of conventional vessels. (C) Micro-environments at the cell culture surface. Large amounts
of media in conventional vessels allow a nutrients supply for 1-4 days, depending on the cell
type and density. Cell metabolism produces biochemical signals (e.g. cytokines, hormones,
etc.) important for cell communications and to sustain cell proliferation and activities.
Since waste products are also produced medium exchange is necessary to avoid toxic effects.
Oxygen, carbon dioxide and water vapor diffuse across the medium-air interface. Excessive
evaporation leads to unbalanced osmotic pressure in the medium that can dramatically
affect cell viability. Microfluidic liquid environment results in a tiny volume above the cell
layer. The perfusion of the channel allow to apport fresh nutrients while washing out waste
products. Since perfusion may also alter the balance of factors secreted by cells a proper
strategy should be defined using living systems. Gases and vapor can diffuse through the
roof of the channel based on permeable polymers. Due to the small amount of medium,
osmotic pressure must be tightly monitored.
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Culture components for hPSC are considerably expensive compared to other cell

lines and may limit the use of these pluripotent cells. For these reasons, a reduced

volume for culture reagents and a homogeneous long-term hPSC culture system are

fundamental. A such micronized system would benefit of a controlled and automated

liquid handling integration.

Microfluidic derivation and expansion of hiPSC can guarantee a new system to

match the precise requirements of hPSC and to boost their applicability with cost-

effective and automated production and maintenance.

1.3 State of the art

1.3.1 Reprogramming

The scientific community is pursuing a translational approach for human pluripotent

stem cells (Center for Commercialization of Research Medicine, Toronto, Canada)

[26]. Overcoming the ethical issue of hESC, hiPSC derivation capabilities have been

improving in the latest years. Despite the present process efficiency may not sustain

a full translational procedure, safe and clean ways have been introduced to prove the

feasibility of clinical grade operations and materials [14, 27].

After the first selection of optimal reprogramming factors by Yamanaka’s group,

others concentrated on the optimal stoichiometry of each factor [10, 28, 29] and on

the expansion of the original pool of factors [30, 31]. Other groups evidenced other

components and pathways affecting the reprogramming process and the morpholog-

ical evolution of transforming cells [6, 15, 16, 32–35].

Figure 1.3.1 illustrates the major classes of reprogramming tools to deliver ex-

ogenous factors that initiate the process.

Various reprogramming efforts have adopted genome-integrating viruses to de-

liver Yamanaka-like factors [2, 7, 10, 15, 16, 36]. Modified retroviruses and lentiviruses

have the ability to infect a cell, to integrate within its genome and to use the cell

machinery to produce ad hoc factors [7, 28]. However, a permanent random genome

integration of viral nucleic information can lead to alterations and instability of the

cell genome and related activities. Non-integrating viruses have been modified to
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Figure 1.3.1 – Exogenous factors for cell reprogramming. Various biochemical approaches
have been used to deliver reprogramming factors inside cell. Genome-integrating viruses
have been the most used system since it is easy to take advantage of their innate capacity
of infecting cells; major limits of this system are the modification of host genome and the
low reprogramming efficiency. Non-integrating viruses such Sendai have significant higher
efficiency and do not integrate in the cell genome. Proteins of the reprogramming factors can
directly be delivered inside cells. They require at least a modification with a tag sequence
to enter cells and must be provided repeatedly since they are naturally degraded. Modified
mRNAs are being commercialized as the method with highest yeald. They need a lipophilic
vesicle in order to enter cells and an protectant must be provided to block the activation of
immune cellular response. Small chemicals can offer a new frontier to reprogram cells in a
fully defined and synthetic way. These molecules can act either as activators or repressors
of biological functions to elicit the reprogrammig.
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prevent replication [37, 38]. After cell infection, they rely in the cell cytoplasm and

are diluted during the progress of cell divisions. Adenoviruses and Sendai virus (SeV)

are based on DNA and RNA, respectively. Adenovirus have a short transient expres-

sion and require various transfections during the reprogramming window, whereas

SeV is retained for various weeks after a single transfection with a reprogramming

efficiencies up to 1% of the starting transfected cells [39].

In order to avoid the virus-mediated delivery of reprogramming factors, three

ways have been explored:

• direct proteins subministration;

• modified mRNAs delivery;

• chemicals.

Recombinant proteins with tagged epitopes can enter the cell and directly operate

as transcription factors [40, 41]. The total amount and stoichiometry needed is a

major limitation to promote an efficient reprogramming. Modified RNA messengers

(mmRNA) have been introduced in the last 2 years and provide the most efficient

methodology to produce hiPSC (up to 3% of efficiency) [9, 14, 42]. Chemicals are

being improved and tested in order to provide the most elegant way to revert dif-

ferentiated cells into iPSC. Chemicals were mostly used for the reprogramming of

murine cells [12, 13, 43]. Using degradable chemicals in the same way we take drugs,

no biological derivates will be adopted without leaving any footprint of the delivery

of the reprogramming factors.

Since mouse embryonic stem cells (mESC) represent a different and earlier stage

of embryonic development compared to hESC, mouse and human induced pluripo-

tent stem cells recapitulate different stages [44]. Mouse pluripotent cells have different

requirements in terms of culture conditions and are the typical case study in liter-

ature. hPSCs require more restrictive conditions both at the maintenance and at

the reprogramming phase. For example, hPSC require additional cells that help in

supporting the pluripotency or defined media with stimulating degradable factors

(i.e. cytokines) that sustain their state. In this context, the mechanisms underlying

the relationship between hPSC and their environment are poorly characterized.
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1.3.2 Substrates for cell culture

Cell cultures are normally performed on tissue-culture-treated poly-styrene plates

with different dimensions and shapes. In vivo, cells experience a complex niche

made of various biochemical species, structural proteins and polysaccharides that

cooperate to the peculiar biochemical and biophysical properties of each tissue [20,

45–48].

Advantages in substrate development to study cell behavior in physiological en-

vironment have been obtained in the past on different cell types. Discher and Engler

were pioneers in using compliant matrices for muscular cells and underlining the in-

terplay between stiffness and biological activities [19, 49, 50]. Physical contribution

to biological activities has been termed mechanotransduction since external forces

are transferred through the cell’s anchor sites binding the ECM to the internal cel-

lular cytoskeleton and converted in biochemical soluble signals down to the nuclear

regulation [51–56].

Although a multitude of studies have been published on the relationship between

substrates and cells dynamics, little is still known on how hPSCs relate to substrates

[18, 57]. Research groups have focused on two issues: the intrinsic mechanical pro-

perties of PSC compared to other cells [58–64] and the effect of different substrates

on PSC maintenance (both for mouse and human) [22, 57, 65–74].

Little is known about the implications of substrates on the reprogramming pro-

cess [8, 24, 54, 75, 76]. The use of defined substrates may significantly contribute

to remove machanotransduction barriers that naturally prevent cell transformation

and determine a reprogramming pathway in cultured cells. In the future, this studies

may also shed light on the role of substrate in tumor formation and metastases which

gain independence from the original substrate.

1.3.3 Cell culture in microfluidics

Microfluidics offers an unique way to deliver nanoliters to microliters over a fluidic

circuit. It has expanded both in research and industry thanks to the availability of

technology and the cost reduction of components and machinery to build fluidic chips.

Microfluidic devices are being used for low cost and high-throughput biomolecular
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assays and chemical reactions [77–84], however the integration of living systems is

still at the beginning. Despite interesting properties such efficient mass transport and

low volumes, some drawback may impair the integration of cell and tissues cultures

[85, 86].

Cells need a balanced soluble environment, with fresh nutrients, removal of waste

products, defined pH and osmolarity (Figure 1.2.2). For instance, at the microscale,

evaporation and medium exchange, can significantly affect these issues [85, 87]. In

order to acquire the advantages of the microscale and to look at biological system

from a new perspective, microfluidics must sustain viable and healthy cell cultures

for prolonged periods. Despite various authors proposed long-term culture systems

for particular purposes [68, 82, 83, 87–93], no clear and comprehensive advance has

been proposed for long-term cell cultures in the last decade.

Various groups focused on the integration of chip tools and add-ons [87] but

poorly characterized the role of the soluble environment at different conditions.

Among others, pluripotent stem cells are particularly sensitive to an unbalanced

environment and precise medium management must be found in order to preserve

their phenotype. As depicted in a review by Voldman and colleagues [86], before

being widely adopted, microfluidic system for robust long-term cell cultures must be

developed.

The translation of cell cultures from open macroscopic vessels to non directly

accessible microfluidic circuits undoubtedly requires a comprehensive study of ma-

terial adoption, medium management and environmental conditions. In this thesis,

we propose an advance for long-term cell cultures, pointing out the importance of

medium management strategies and adhesion substrates at the microscale.

1.4 Rationale of substrate and microfluidic development

for the high-throughput generation of hiPSC

Expectations on new ways of drug development and regenerative medicine are con-

siderably high because of the social and economical impact. The classical way of

drug development and commercialization results in a long process which can span
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over 15 years [81]. Even if the screening of molecular candidates may be accelerated

in some phases by bioinformatic means, the testing on animal or human candidates

still requires a lot of effort in terms of time, money and proper testers.

The development of new technologies and biological tools can dramatically favor

this process:

• first, new lab-on-a-chip technology aims to improve and extend the possibilities

of bioassays, cell biology and biomedical research by mimicking the environ-

ment and the physics of biological tissues [80, 81, 94–96];

• second, hiPSC are a promising and unlimited source for the in vitro derivation

of adult-like cells and tissues [97, 98].

Up to the in vivo early trials for drug discovery, hiPSC may represent the key to a

better, safer, faster and parallelized description of the drug-related human biology

and physiology, rather than animal models or adult people. Additionally, self-derived

hiPSC can offer a attractive way to easily sustain the development of personal drug

therapies. Community of regenerative medicine is expecting great promise o hiPSC

and it is deepening into translational approaches for clinical applications. hiPSC not

only represent a possible source for autologous tissue regeneration, but can provide

extended informations related to human development and disease outcomes.

In this perspective, the high-throughput generation of hiPSC can represent a

paramount advance in drug discovery and regenerative medicine. The development

of defined substrates controlling cell shape and behavior, and the automated mana-

gement of defined soluble micro-engineered environments can resolve the technical

issues that currently limit hiPSC adoption.

1.5 Aim of the thesis

This thesis aims at the developing of technological tools for the generation of human

induced pluripotent stem cells (hPSC), a promising source for tissue engineering and

pharmaceutical development and assays. Since hPSC generation (reprogramming),

maintenance and differentiation are highly amenable to soluble microenvironment

and culture substrate, and require considerable efforts, microfluidic cell culturing
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Figure 1.5.1 – Aim of the thesis. A platform for high-throughput reprogramming and
programming at population scale. Cells derived from hundreds of patients can be repro-
grammed in order to produce a comprehensive library of hiPSC. These cells, beside being
expanded, can be directly differentiated in order to provide additional libraries on various
tissues. Each of them could be used for assays such as drug screening, and biological and
medical research.

and biomimetic materials were developed to provide a defined microenvironment

with a considerable reduction in costs and manual labour.

Since substrates determine the behavior of adherent cell cultures we focused on

the development of hydrogels to study the role of mechanical and biochemical pro-

perties exerted on cells. The microscale culturing offers consistent reagents reduction

and flow control but requires unique management to permit restrictive cell culture

conditions. Cell cultures were integrated in microfluidic devices specifically aiming

at the implementation of robust, healthy and long-term culture conditions and at the

efficient delivery of biochemicals for reprogramming process. Optimal management

of culture conditions revealed as a mandatory requirement for subsequent studies

on reprogramming at the microscale. Achievements gained with the engineering of

cell microenvironments allowed to build a reprogramming platform of human patient

cells at the microscale. Figure 1.5.1 depicts the final aim of the entire thesis. By pro-

ducing hiPSC in a cost effective and high-throughput manner, derived cells can be

programmed further to adult tissues of various organs to provide a population-scale

library of functional cells. This library can be then used to perform population-scale

assays valuable for drug discovery, screening and disease characterization. Thanks

to the clinical-grade approaches and reduced requirements and expenses hiPSC can

be easily be adopted in medical tissue engineering.
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In this thesis, the development of substrates and microfluidic systems to control

cell behavior is proposed as follows:

• in Chapter 2, substrates have been developed to study the relations of cells

and their adhesion support;

• in Chapter 3, the long-term integration for cell cultures in microfluidics is

illustrated;

• in Chapter 4, the advances in substrate-optimized microfluidic cell cultures are

adopted to derive hiPSC at the microscale for the first time;

• in Chapter 5, early results on the use of substrates to promote reprogramming

are introduced.

• in Chapter 6, the perspectives on microscale tissue an organ development.

1.6 Conclusions

The development of in vitro screenings strongly based on human biology and physiol-

ogy is a future step for ad hoc biomedical applications and pre-clinical pharmaceutical

screenings. In this perspective, new tools and technologies are emerging to obtain

reliable system and provide faster high-throughput data. Human pluripotent stem

cells, especially hiPSC, are a promising source for unlimited personal screenings and

self-regeneration of our tissues. Engineered microenvironments can be designed to

finely control both adhesive and soluble properties of in vitro cell cultivation. The

synergic implementation of these two fields can unleash the potential of hiPSC that

has never been translated in clinical or industrial applications so far.

Thanks to the substantial cost reduction, delivery efficiency and chemically de-

fined surfaces, microfluidics and substrates can massively expand hiPSC clone pro-

duction and obtain new differentiated cell lines at a low cost - an affordable process

for limited samples nowadays. Parallelized one-step processes to obtain newly gen-

erated tissues can provide a platform to perform breakthrough screenings at the

population level, shortening the finding of new biological pathways and drug targets,

and making attractive the development of compounds for rare diseases.





Chapter 2

Substrate development

This chapter introduces to the development of substrates for cell cultures. Differ-

ent types of substrates have been developed for different purposes in 2D and 3D

applications: polymeric substrates presented in this chapter form tunable hydrogels

with biologically relevant physical and chemical properties. As a second task, we

focused on the functionalization of surfaces in order to control cell adhesion, shape

and behavior. The knowledge gained with this part of the thesis revealed crucial to

control cell behavior at the microscale for the reprogramming purpose presented in

Chapter 4 and 5.

2.1 Motivations

Tissues in our body are made of different type of cells embedded in a network of

a secreted extracellular matrix (Figure 2.1.1A) [45]. This external skeleton of pro-

teins, glycoproteins and polysaccharides, retains water and other soluble substances

that form the interstitial fluid. Since the composition of the ECM varies between tis-

sues and each bio-polymer has its own functionality and physical-chemical properties

each tissue displays a different global stiffness (Figure 2.1.1B). Since cells exert their

functions in a compliant microenvironment pairing defined chemical-mechanical pro-

perties (Figure 2.1.1C), it is necessary to develop substrates that mimic the natural

matrix in vitro [50, 99].

Cells actuate complex interaction with the extracellular substrate that is preva-

lently composed by structural proteins and glycosilated polymers which define the

17
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Figure 2.1.1 – Matrix mechanics. (A) Decellularization process reveal the extracellular
matrix is a major component of living tissues (adapted from [47]). (B) Each tissue has
its own stiffness. Bone and cartilage have high percentages of deposited matrix and result
particularly stiff. Muscles have a medium living stiffness in order to provide elasticity,
strength and power stroke. Softer tissues such brain and fat do not require particular
mechanical properties. (C) Each cell attached to a substrate exerts forces by organizing its
internal cytoskeletal architecture (adapted from [99]).
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Figure 2.1.2 – Cell and substrate interaction. Cells sense the chemistry, stiffness, morpho-
logy and topology of the substrate by mechanical intermediates that in turn act on soluble
biochemical players that control gene expression, cell fate, maturation and eventually local
or systemic diseases.

extracellular matrix (ECM). The physical and biochemical properties of the ECM

directly influence cells through a direct interaction with mechanical intermediates

connected to the internal cellular cytoskeleton (Figure 2.1.2). These players commu-

nicate in turn with soluble biochemical intermediates that trigger regulatory path-

ways ending in defined cell behaviors and eventually in local or systemic diseases.

In the last decades, de facto standards for in vitro culture system has remained

unchanged resulting in a poor mimicking of in vivo ECM. Conventional cell cultures

are mainly performed on treated poly-styrene (PS) that can be molded in different

types of open vessels. The treatment performed via plasma-oxidation turns the in-

ternal surface hydrophilic and more attractive for the adsorption of ECM proteins

and for cell ligands such as integrins [100, 101]. Each cell type may show affinity for

a particular subset of ECM components, requiring the adsorption of certain proteins

on the PS prior the cell seeding. When the material to support cell culture is changed

(e.g. glass), attention should be placed on the compatibility with the protein previ-

ously used on PS. Changes in treating concentration, time, and operative conditions

may be necessary prior to a change in ECM components.

Besides the advantage in using cheap plastic supports with various formats and
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the condition of de facto support for cell culture, PS shows some drawbacks:

• PS is not compatible with diffused fluorescent-based applications due to intrin-

sic autofluorescence;

• it is rigid, with a stiffness of a few GPa [102], 106-times the physiological range

[45, 50];

• it limits the diffusion of soluble components to the apical-lateral portion of

cells.

The development of new substrates for cell cultures is an active field, with the aim of

expanding current methodologies and mimic the in vivo extracellular environment.

Particular efforts have been made for the development of 3D scaffolds aimed at tissue

reconstruction and to provide an in vitro model to understand tissue dynamics [103,

104].

Among the abundance of materials applied to cell cultures (polymers, resins,

ceramics etc.), hydrogels emerged as unique opportunity to couple the chemical pro-

perties of the surface with the physical properties of the gel. Hydrogels are based

on a solid non-soluble network dispersed in a water environment: in their hydrated

state they allow solute to diffuse within the matrix accordingly to the cutoff of the

mesh. Since the major component is water, these substrate can be extremely soft

and stiffness can be tuned depending on the water/matrix ratio.

In the following sections, we report the achievements on substrate development.

In particular we focus the attention on:

• mechanically tunable biocompatible substrates to perform large studies on the

mechanotransduction cell behaviors.

• mechanically tunable substrates to be directly used as biosensors of cellular

activities.

• mechanically tunable biodegradable substrates for tissue engineering and in

vivo applications.

• chemistry for long-term and topological control of cell adhesion.
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2.2 Mechanically tunable biocompatible substrates

This section describes the development of synthetic substrates able to resemble the

mechanics of different tissues. Important results based on the formulation of these

substrates are presented.

Various studies revealed that the culture substrate can affect the behavior of

differentiated cell types [19, 50, 62, 105–108]. Beyond chemistry composition, the

stiffness revealed an important co-factor for cell maturation. Soft substrate may

also be used to study the earlier stages of human developmental process, tissue and

organ growth and the single-cell behavior. In this perspective, we wanted to study

the mechanotransduction behavior on immature cells like mesenchymal stem cells,

which are a key component of human body development.

In order to study mechano-related issues on cell cultures soft materials mimicking

the physiological in vivo stiffness were chosen. Here we describe the approach and a

summary of the obtained results. Extensive informations can be found in Appendix

A and B.

Biocompatibility of materials results from various aspects such as the release of

toxic species and the cellular recognition of antigens triggering an inflammatory re-

sponse [109]. First, we focused on substrates that results bio-compatible with a large

number of cell types. Starting from the pioneeristic work of Pelham and colleagues

[110], we introduced bidimensional poly-acrylamide hydrogels in our activities. These

gels are well known in molecular biology since - when dissolved in defined buffer solu-

tion - they have been used as a support for high-resolution electrophoresis for decades.

They result in a cross-linked matrix of linear poly-acrylamide fibers that is not de-

graded by the enzymatic activity of cells. Although acrylamide molecules alone are

toxic and carcinogenic, the polymerization process produces inert macromolecules

bridging with bis-acrylamide. Free monomers that can interfere with biological pro-

cesses are eventually extracted in a water bath.

Varying the proportions of acrylamide, bis-acrylamide and water it is possible

to change the stiffness of the gel and the diffusivity of species inside the matrix ac-

cording to their hydrodynamic radius. Although some guidelines report the stiffness

values associated with defined proportions of the three species [111], others report
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Figure 2.2.1 – Poly-acrylamide hydrogels at various nominal stiffnesses. Tuning the pro-
portion of acrylamide and bis-acrylamide it is possible to obtain soft and hard gels. Softer
hydrogels below 1 kPa have more than 97% of water and do not retain the shape of the tube
were they have been polymerized. Optical features can also be altered varying the ratio
between acrylamide and bis-acrylamide (see 40 kPa).

discordant values [112]: most of the times, details and procedures applied for the

measurements are not reported. Atomic force microscopy (AFM) is tool for mea-

suring the stiffness based on the deflection of a cantilever tapping the surface of the

material [113]: when we had the opportunity to measure the stiffness of our hydrogels,

softer gels were even impossible to detect even by an expert technician.

Due to the softness of the hydrogels, a glass coverslip is always used as a support

and treated for the adhesion of the acrylamide. Different chemistries can be used to

bound the gel to the glass surface and terminally-functionalized silanes are used as

a bridge. The height of the hydrogel above the glass must be considered since cells

on the top can feel differences in stiffness down to several micrometers [114].

A particular aspect when performing extensive experiments regarding many con-

dition to be tested and spanning various months of work is the consistency of each

produced piece within the lot and between lots. With this in mind, protocols are

normally defined for the production of a dozen of hydrogels. Due to the high demand

of our experiments (100-200 pieces at once per week) we rearranged the current avail-

able protocols to produce consistent hydrogels over months. Since poly-acrylamide

prevents proteins from adsorbing on its surface and in turn results cell-repellent, the

coating procedures with ECM proteins have been revisited.

Using hydrogels namely from 0.2 to 120 kPa, after a total of 5000 produced

pieces, we were able to resemble a physiological or pathological stiffness, controlling

the cell spreading, overall shape and in turn to study biological processes affecting cell
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Figure 2.2.2 – Role of YAP/TAZ in mechanotransduction. (A). On relatively rigid sub-
strates, cell and tissue growth controllers YAP/TAZ localize in the nucleus to promote cell
activity (active). YAP/TAZ immunofluorescence signal co-localizes with the nuclear marker
TOTO3. When cells are cultured on soft substrates below 1 kPa, YAP/TAZ localization
is prominently sparse in the cell cytoplasm (inactive). (B) When stem cells are cultured
on 1 kPa and 40 kPa different differentiation pathways occur. On 40 kPa hydrogels, cells
preferentially differentiate towards an osteogenic pathways mimicking the in vivo stiffness
of bones morphogenesis. Osteogenic markers are not identified on soft substrates or when
YAP/TAZ activity is blocked (siYT and C3). Adipogenesis occurs on soft gels and it is not
significantly present on stiff substrates. When YAP/YAZ are inactivated (siYT), cells do
not sense the rigid stiffness and adipogenesis is promoted.

behavior. Details on bidimensional hydrogel production are reported in Appendix

G.1. Appendix A reports the achievements obtained with these hydrogels and the

collaboration with Stefano Piccolo’s lab. It was found that substrate mechanics can

act as a master control over certain biochemical pathways and cells - perceiving

their microenvironment - remodel their overall shape and fate (Figure 2.2.2A). This

discovery opens implications on how our tissue and organs regulate their expansion

and homeostasis when subjected to mechanical forces and on how changes in ECM

composition and mechanical cues may be linked to differentiation and cancer (Figure

2.2.2B).

The same hydrogel technology also served another publication reported in Ap-

pendix B, pushing a step further the first research. A series of proteins have been

identified as transducers of the mechanical-responsiveness of transcription factors

(YAP/TAZ) responsible of the genetic activity and cell behavior (Figure 2.2.3).

Again, we gained evidence on how substrates mechanical properties can affect cellular

behavior in vitro and can be juxtaposed to physiological and pathological phenomena

occurring in our body.
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Figure 2.2.3 – Mechanical players drive cell fate. (A) Substrate stiffness affects proliferation
and cell shape. Softer hydrogels limit cell duplication and spreading on the substrate. (B)
When cells are included in a 3D matrix, soft gels induce a cell clustering with inactive
YAP/TAZ out of the nucleus (TOTO3). Stiff gels induce the speading of single cells and
the protrusion of the tissue. (C-D) Mechanical players inside the cells are responsible for
the ECM mechanotransduction. When cells are cultured of soft hydrogels (C), Capz, a
protein controlling cytoskeletal architecture, drive the inactivation of YAP/TAZ. When Capz
activity is abolished (siCapzb) YAP/TAZ activity is restored. Analog results were obtained
using cell confluence as YAP/TAZ inhibitor (D), demonstrating that cells perceive their
physical environment in different manner and these signals affect cell biochemistry and fate.

2.3 Mechanically tunable electroconductive substrates

Previously described hydrogels are used as scaffolds to integrate cell cultures. We

next thought to hydrogels as a compliant substrate to send stimuli and collect data

from cells in real-time.

Muscle cells exert contractions after the depolarization of the cell membrane

and the calcium influx. These cells are also implicated in high-impact pathologies

such as diabetes being a major player in the glucose-uptake and metabolism [115].

Cultivating these cells on a substrate capable of detecting the membrane potential

or the glucose consumption would be a direct tool to study pathological conditions.

With this perspective, we integrated the previously developed hydrogels with

the biosensors expertise in our lab. Carbon single-walled nanotubes (SWNTs) are
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Figure 2.3.1 – SWNT-doped hydrogels for biosensing. (A) Representation of biosensor
with a terminal hydrogel-based detector. (B) Evolution of concentration-dependent signal
of oxidized glucose by GOx. Conversion of oxidized glucose follow a Michaelis-Menten
profile. (C) SWNTs-doped hydrogel with nanotubes distribution. (D) Muscle cells are able
to differentiate properly on SWNT-doped hydrogels.

extremely conductive fibers meaning that a non-invasive doping procedure of the hy-

drogel may be performed [116]. In the publication reported in Appendix C we show

that a proper electron network could be successfully used to acquire electrons from

a redox enzymatic reaction that takes place within soft biomaterials. Figure 2.3.1

reports an hydrogel biosensor that enzymatically process glucose producing an elec-

tron transfer through SWNTs. The sensor detects different glucose concentrations

within a biologically relevant range. Muscular precursors were successfully cultivated

and differentiated on SWNT-doped compliant poly-acrylamide hydrogels, finalizing

the perspective of integrating a soft biosensor for dynamically monitoring metabolic

activity.

The use of SWNTs within the hydrogel matrix revealed effective without dra-

matically altering the mechanical properties of the substrates and allowing the cell

viability and maturation as normally performed in conventional methods. Thus, this

approach can allow the real time monitoring of detectable activities at the cell niche

in a compliant environment.
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2.4 Chemistry for long term cell adhesion

Poly-acrylamide hydrogels are a tunable tool to cultivate cells on a defined stiffness.

Since the hydrogel results in a repellent surface for standard ECM protein adsorption,

ECM species must be incubated for a few hours to result partially entrapped in the

superficial matrix mesh and allow cell attachment and propagation.

When hydrogel are used for short-term experiments and cells do not exert sub-

stantial force on the substrate, the physical adsorption/absorption of ECM molecules

is a convenient and fast way to finalize substrate ready for seeding. However, in our

experience, long-term experiments and cells with particularly active locomotion (e.g.

contracting muscle cells) necessitate an anchored and stable adhesive layer.

As stated in section 2.2, poly-acrylamide gels are established electrophoresis sup-

ports in molecular biology for their inertness versus proteins. A covalent coupling

of ECM proteins requires the surface activation with new reactive groups. Although

ad hoc commercially available UV-active cross-linkers can be used, they are expen-

sive, offer poor scalability in large hydrogel production, have poor solubility, rapid

decrease of cross-linking activity when solubilized, limited shelf life, and dependence

on UV lamp power and positioning [117]. Other techniques involve carbodiimide or

the straightforward inclusion of 6-((acryloyl)amino) hexanoic acid during the polyme-

rization of acrylamide: the N-hydroxysuccinimide ester reacts with amines exposed

by proteins, however only cross-linker molecules exposed on the surface can react.

Although in line with a limited hydrogel production, Damljanovic and colleagues

proposed a convenient alternative to functionalize poly-acrylamide, derived from the

fabrication process of oligonucleotide microchips: amide groups, once reduced by

highly reactive hydrazine hydrate can be coupled to oxidized proteins [117].

Since the hydrogel production and functionalization can be executed a priori

and protein oxidation revealed stable for weeks, the translation of this technique to

our large and frequent lot production was successfully adopted. Even after several

vigorous washes of the functionalize surface, poly-acrylamide hydrogel offered good

adhesion capability to different cell types. Cardiac and muscle cells were successfully

cultivated for various weeks on activated hydrogels (Figure 2.4.1). Tested techniques

and hydrazine protocol modification are reported in Appendix G.2.
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Figure 2.4.1 – Beating cardiac rat cardiomyocytes on long-term functionalized hydrogels.
Bar 250 µm.

Hydrazine chemistry revealed a cost effective alternative for the cross-linking of

fibronectin or laminin on poly-acrylamide surfaces and allows stable integration of

cells on soft gels.

2.5 Substrate development for large-scale studies

The production of large number of hydrogels at one time is extremely useful when

various conditions have to be tested along with technical replicates. However:

• hydrogel surface is usually limited to few square centimeters and certain appli-

cations require a large number of cells to be analyzed in the same sample;

• part of the cells are wasted because of hydrogel is attached to a glass support

that can not completely fit the entire plastic vessel; this point reveal particu-

larly tricky with cell obtained from precious and limited sources;

• acrylamide polymerization relies on a radical reaction that is inhibited by oxy-

gen; the outer ring of the hydrogel exposed to the air do not polymerize leaving

a thin glass adhesive surface for the attachment of cellular outliers not cultured

on a soft matrix (Figure 2.5.1A). These cells can interfere with the analysis of

the whole sample dynamics. Dedicated hypoxic working boxes would prevent

radical transfer inhibition.

Poly-acrylamide hydrogels covering the entire surface of common biological Petri

dishes and multiwell plates are now commercially available (Matrigen Life Tech-

nologies, USA) but were ineffective when we tried to replicate results reported in

section 2.2 and Appendix A and B. Maintaining the same hydrogel formulation
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in our hands, we tried to develop a similar tool on conventional biological dishes

made in poly-styrene. Details of fabrication are reported in Appendix G.3. A brief

description of results is reported here.

Although the priming of PS through an oxidation step is simple, plastic can ef-

fectively adsorb free molecular oxygen [118], preventing the coupling of acrylamide

at the PS level and previously used cross-linkers may not efficiently cover the surface

in a manner comparable to glass. In fact, various techniques and molecular bridges

failed to couple the hydrogel on the PS (diazonium salts, acryl-terminated silanes,

methacrylic anhydride), and in many cases the pre-polymer solution did not reacted

few micrometers above PS even after a degassing step of prepolymer solution (Figure

2.5.1B). Even with a lower efficiency, the same technique used with glass supports

in our previous works [108, 119] was effective when we considerably incremented the

concentration and reaction time of each coupling reagent and during the polymeri-

zation process. This supports are now being used for extended proteomic and gene

expression analysis for mechanotransduction and metabolic studies with ⇠ 106 cells

per sample. Previously performed assays evidenced same cell behavior of smaller

glass-supported hydrogels.

The opportunity to culture cell on conventional vessels but with a compliant

stiffness at the bottom can allow to dissect the behavior of an entire cell population

instead of looking at a few hundreds representative cells. These substrate could also

be applied to reprogramming studies to investigate the role of stiffness in hiPSC gen-

eration. Large surface are an indispensable prerequisite for statistical evaluation of

sporadic hiPSC colonies rising from differentiated cells cultured on a single stiffness.

Preliminary studies are reported in Chapter 5.

2.6 Mechanically tunable biodegradable substrates

Poly-acrylamide hydrogels are considerably useful since a broad range of biologically-

relevant stiffnesses can be explored. Some applications may require substrates that

can also actively interact with the cells. Since poly-acrylamide can not be degraded

by the cells, new hydrogel-based biodegradable polymers should be developed aiming

also at new research targets. Due to the continuous remodeling of ECM components
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Figure 2.5.1 – Soft hydrogels on standard Petri dishes. (A-C) Oxygen inhibition of radical
reaction is normally experienced at the air interface of the solution under polymerization. (B-
C) Arrows show glass (white) and hydrogel limit (black). (D) Oxygen inhibition occurs also
at surfaces that adsorb/absorb oxigen such plastics and rubbers. (E) Convalently bonded
hydrogel stained with a green dye
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by cells and the culture in three-dimensional scaffolds, biodegradable hydrogels can

further improve the in vitro microenvironment for a better mimicking of in vivo

tissues. In our experience of muscle tissue engineering, various substrate cues have

been proven to optimally drive in vitro tissue maturation [108, 119, 120].

Before seeking at synthetic polymers that can be degraded we focused on a

biomolecule known for implications on cell regeneration, the hyaluronic acid (HA).

HA is an unique non-sulfonated poly-saccharide based on D-glucuronic acid and D-

N-acetyl-glucosamine (NAG) present throughout the body. It is synthesized by cells

directly in the pericellular space with an sustained daily turnover and serves different

biological functions [121, 122]. Depending on the chain length, different roles have

been address to HA, even if some of them remain putative [98, 123]. Global cosmetic

industry has revamped HA for body and facial creams with the potential of skin re-

newal. HA has also found commercial applications in biomedical rehabilitation and

tissue repair with Fidia Farmaceutici s.p.a. located in Padova, Italy. HA chemical

derivates are also sold as hydrogel precursors for the maintenance of human stem

cells in 3D environments (Glycosan, Biotime, Inc., USA) [98, 123–125].

Since HA is a natural linear polymer, its hydrogel formulation would require an

inter-molecular cross-link (Figure 2.6.1). Current strategies presented by researchers

and companies propose a modification of HA backbone in order to bridge two macro-

molecules with an additional cross-linker [126, 127]. Since additional cross-likers may

not be fully degradable, we studied the opportunity of synthesizing an hydrogel only

based on modified HA and that can eventually be further functionalized with other

biomolecules, ending with a more complex biomimetic microenvironment (Figure

2.6.1).

Here we present the main results aimed at obtaining a new concept of an in

vitro biodegradable scaffold with geometrically controlled features for in vivo tissue

regeneration. A scaffold for the generation of bundled muscle fibers and subsequent

integration in a damaged muscle was engineered. Protocols and additional informa-

tions are available in Appendix G.4.

Starting from a method available in the literature [124, 125, 127], we derived a

methacrylated form (MeHA) of a naive 700 kDa HA produced by Fidia Farmaceutici
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Figure 2.6.1 – Native and modified biopolymers. (A) Polymers produced by cells can be
used to improve the biological responsiveness in an in vitro environment. Natural poly-
meric chains can be derived by chemically introducing new functional groups that are able
to cross-link together in defined conditions forming a soft hydrogel with active biological
functionality. (B) Hyaluronic acid have been derived with methacrylic groups to obtain UV-
or APS/TEMED-activatable hydrogels as well as poly-acrylamide gels.

s.p.a.. Since two methacrylated groups can react together forming a stable chemical

bond, a MeHA chain can be recursively cross-linked with neighbors, thus, forming a

hydrogel. Although we did not have the opportunity to characterize the gel, com-

paring it with poly-acrylamide gels, its bona fide stiffness ranges from ⇠0.2 to <10

kPa depending on the percentage in water.

Using a 3D mold with an array of fibers, we were able to produce a three-

dimensional hydrogel with a bundle of channels for the in vitro reconstruction of

muscle precursors. Figure 2.6.2A shows the main steps for the in vivo integration

of engineed muscle fibers. Cells can directly interact with HA through the recep-

tors CD44 and CD138 located on the plasma membrane but we experienced poor

long-term adhesion and spreading (data not shown). Thus, we further improved

the architecture of this 3D device cross-linking ECM proteins on the surface of each

channel (Figure 2.6.2 and 2.6.3A-C). Arranging the MeHA derivation protocol, we

adapted the reagents for the derivation of methacryated proteins such as gelatin or

collagen .

The in vitro degradability experienced with MeHA constructs was comparable to

literature with the use of additional cross-linkers [128]. Due to the high viscosity of

HA at >2% w/v, a minor percentage (0.5% v/v) of poly-ethylene-glycole di-acrylate

(PEGDA) was added to increase the cross-linking ratio and the stiffness up to the

physiological level of the muscle. Well-differentiated myotube fibers integrated with

the 3D hydrogel were obtained (Figure 2.6.3D). At this stage, the hydrogel platform

was mechanically laminated from the glass support for the in vitro cultivation and
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Figure 2.6.2 – Three-dimensional construct for the in vitro development of integrable arrays
of muscle fibers in patients. (A) A 3D scaffold is produced and coated with bioreactive
molecules that allow the attachment of muscle cell precursors. These cells propagate inside
each channel, aligning a differentiate into myotube fibers. Mature constructs are transferred
in damaged muscle to promote its regeneration. Once in vivo, HA matrix is progressively
degraded and promote the proliferation of silent cell both from the in vitro fibers and the
damaged muscle. When degradation is complete both cell type can interact each other in
a regenerated muscle. (B) As a proof of concept, these constructs have been successfully
integrated in mice with damaged-tibial muscle.

transferred inside an ablated muscle in a mice’s leg (Figure 2.6.3G). The construct

perfectly integrated with the host muscle promoting its regeneration (Figure 2.6.3H).

Again, in vivo we experienced a lower degradation than expected and the in vitro

muscle fibers remained isolated.

In parallel, we tried a Fidia’s proprietary new HA formulation. In this case, the

hydrogel had fast degradability botj in vitro and in vivo (Figure 2.6.3I), but not

enough to allow proper development of in vitro muscle fibers. In the next future, we

aim at integrating both hydrogels: MeHA will constitute the core shell to support the

proper formation of in vitro fibers and the bulk will be formed by the fast degradable

formulation (Figure 2.6.2B).

These results evidence the potential of HA in promoting controlled maturation of

in vitro tissues and in allowing the in vivo integration to promote tissue regeneration.

Exhancement of available chemistry protocols allowed the generation of 3D hydrogel
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Figure 2.6.3 – 3D biodegradable hydrogel constructs. (A) Different chemical functional-
izations were performed in order to obtain an optimal scaffold for in vitro differentiation
of muscle cell precursors. Methacrylated HA and gelatin were used to produce the hydro-
gel and the permanent ECM coating, respectively. HA was bind to a glass slide with a
methacrylic terminated silane. (B) An hydrogel prototype with channels filled with a green
fluorescent tracer. (C) Transversal section of a 100-µm-wide channel and the detection of
ECM protein on the walls with fluorescent-tagged antibody. (D) Evolution of cell culture,
from cell injection to maturation in myotubes. Immunofluorescent analysis shows expression
of mature muscular markers MHC-II and a-actinin (right). (E) One fiber extracted from the
hydrogel after 10 days and (F) MHC-II immunofluorescence of an extracted fiber. (G) In

vivo implants of 3D constructs with fibers on mice with ablated muscles. (H) Section of a
muscle 2 weeks after implant. Hydrogel is degrading and favoring muscle regeneration. (I)
Section of a muscle 2 weeks after implant using a the commercial hyaluronic acid derivate.
Hydrogel was completely degraded with concurrent muscle regeneration.
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scaffolds and the control of cell adhesion and maturation. Engineered muscle fibers

can support the host regeneration together with a stimulating biomimetic scaffold.

The chemical control of native biomolecules here presented will be used for the

microscale substrate enginering in microfluidic environments in Chapter 4.

2.7 Topological control

Previous sections depicted how substrate mechanics can influence and drive cell be-

havior, transducing signals from mechanical to soluble biochemical intermediates.

As reported in Appendix A and [129], mechanotransduction pathways also sense

cell morphology and spreading over the substrate. topological control of adhesive

substrates can complete the tools in out hands to control cell behavior in vitro.

Substrate topology has been controlled in many ways [108, 129–138] and detailed

experience in micro-contact printing (mCP) was gained during this thesis. However,

mCP results an unpractical way to topologically define a large number of samples.

Thanks to the experience achieved in this thesis, UV-activatable surfaces can be

exposed for few seconds to transfer geometric patterns from a photomask. In section

2.2, the poly-acrylamide surface was described problematic for the repellent action

versus proteins and cells. To topologically control cell adhesion, we turned in favor

this property saturating selected regions for cell-exclusion and leaving pro-adhesive

areas free for cell landing (Figure 2.7.1).

Instead of using a branched polymer as previously described, linear chains of

poly-acrylamide can be produced as well; in the first case, cell-exclusion is based

both on the chemical nature of the polymer and on the physical discontinuity of a

wall with defined height. In the second case, one side of poly-acrylamide chain is

anchored leaving the other fluctuate: the length of polymer is affected by the rate

of radical catalysis, the faster is catalysis the shorter will be the chain lenght, and

viceversa.

Since radical polymerization of acrylamide can be actuated either by the well

established chemical initiation/catalysis of APS/TEMED (see Appendix 2.2) or by

UV photo-activation different strategies can be followed. Stamps or other relief have

to be placed in conformal contact with a flat surface to guide patterned chemical
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Figure 2.7.1 – Techniques for topological control of cell cultures. (A) Indirect micropat-
terning. Glass is functionalized with an methacrylic-terminated silane and thin film of
positive photoresist is spinned on the entire surface. A defined pattern is transferred to
the photoresist thanks to the UV light passing through a mask. Acrylamide is then poly-
merized passivating resist-free regions. Resist is then solubilized to unmask regions for cell
adhesion. (B) Direct micropatterning. Silanized glass can be directly patterned using UV-
activated polymerization of acrylamide. Non exposed areas are free of acrylamide and allow
cell adhesion and patterned growth.
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polymerization, while photomasks can exclude regions from light exposure and photo-

polymerization. Techniques to topologically control cell cultures are reported in

Figure 2.7.1. Geometric constrains down to the single-cell isolation were realized

(Figure 2.7.2).

In Chapter 6, a concept of direct topological control inside finalized microfluidic

platforms is presented. Thanks to this advantage, soluble environment, substrate

Figure 2.7.2 – Topologically controlled cell cultures. (A-C) Indirect patterning. (A)
Crossilinked poly-acrylamide gels can be patterned on glass surfaces to obtain micrometric
wells. Cells (here stained with blue nuclei) adhere at the bottom ad are confined by non-
adhesive walls ( 100 height). (B) Linear poly-acrylamide has been used to pattern cells in
different geometries. Adhesive lanes 500 µm wide are separated by 200 µm. Muscle pre-
cursor cells align along the major axis, promoting cell fusion and myogenesis. (C) Large
areas can be patterned with linear poly-acrylamide. Here a merged image shows a pattern
obtained by after the removal of a spindle-shaped microfluidic stamp. Pre-polymer solution
was injected ad exposed prior to the detatcment of the sticky rubber above. (D) Result
of a high-resolution indirect patterning. Cells adhere on small adhesive areas aligned in a
matrix. Two magnifications show how it is possible to have single-cell patterns. At higher
magnification (bottom-right) it is possible to apprecciate the cell nucleus (bright spot at the
center).
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mechanics, chemistry and topology can be tailored and combined in an unique plat-

form to mimic human physiology and pathology to improve research discovery and

industrial valuable products.

2.8 Functionalization of PDMS based devices

Poly-dimethysiloxane (PDMS) is a commercially available silicon rubber mostly used

for micro-engineering applications. Although the precise chemical composition is

unknown, many aspects of PDMS are characterized [85, 139].

Cured blocks of the polymer can be activated via a plasma oxidation treatment

and permanently sealed together or with glass [140]. However, an effective and sta-

ble functionalization of cured PDMS is hard to achieve: inertness and evolution of

exposed polymer chains to water environment are the major obstacles [141].

In order to perform substrate development also on materials commonly used in

microfluidic applications, we explored the possibility to integrate previously described

techniques on PDMS. Compliant hydrogel films could cover stretchable PDMS mem-

branes and acrylamide surface chemistry may reduce adsorption of hydrophobic

molecules and topographically pattern silicone surface.

To provide an easy and stable functionalization, we thought of doping the base

pre-polymer of PDMS before the curing process (Figure 2.8.1).

Since the monomeric unit is based on a dimethyl-silane we introduced a 2.5% v/v

methacryl-terminated silane to co-polymerize with the PDMS backbone. Early tri-

als, evidenced that direct acrylamide polymerization occurs on methacrylate-doped

PDMS and geometric patterns can be realized. Further investigation will complete

the implementation PDMS modification for comprehensive control of surfaces in

micro-engineered devices.

2.9 Conclusions

Conventional culture substrates offer simple but chaotic cell distribution and grow,

and are not able to fully reproduce defined peculiarities such a biological valuable

stiffness, complex physical and biochemical architectures and geometric controlled
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Figure 2.8.1 – Functionalization of PDMS. (A) Commercial PDMS can be thermally cured
and oxidized through plasma activation. Oxidized species generated on the surface can be
used to react with functional silanes. (B) Uncured PDMS is obtained by mixing a two-
component kit. Since the monomeric unit is based on a siloxane, silanes can be included
during the polymerization by heating the doped PDMS. (C) BJ fibroblasts seeded on func-
tionalized PDMS with an array of adhesive lanes. Bars 500, 300, 100 µm from left to right
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patterns. Emerging examples of body-on-a-chip studies underline the importance of

controlling spatial, chemical and physical organization of cell culture environment in

order to resemble in vitro architecture and functionality of human tissues.

In this chapter, the achievements obtained in substrate development at different

levels were described. Starting from previously reported protocols, we extend the

potential and applicability of substrate control for cell culture studies, achieving

important research results and the possible scalability to commercialization.

The large adoption of synthetic biocompatible substrates with tunable stiffness

evidence brand-new biological dynamics and implications in the biomedical field.

Chemical activation and doping of hydrogels generated supports for long-term cell

adhesion of contracting cells and compliant biosensors with the possibility of real-

time measurements of metabolic activity. Looking at a clinical approach, we designed

a 3D biodegradable hydrogel prototype for in vitro cell and tissue production and

its straightforward delivery in vivo for muscular reconstruction and rehabilitation.

Acrylamide chemistry was then redefined in order to provide topological control of

cell culture down to the single-cell level and to modify PDMS rubber, a principal

component of micro-scaled engineered devices.

The expertise gained with substrate development will be translated in microflu-

idics to provide substrates for long-term cultures, a key requirement for the repro-

gramming and programming of human cells at the microscale.





Chapter 3

Cell cultures in microfluidics

This chapter introduces to the cell culture in microfluidic systems. As a proof of

concept, a first reversible integration of mammalian cell cultures with defined sti-

muli is proposed. A dissertation on the robust long-term cultivation in microfluics

follows. Long-term cultivation will be evidenced as a fundamental prerequisite for

reprogramming and programming studies at the microscale.

3.1 Motivation

Cells in our tissues are surrounded by an interstitial fluid that support the diffusion of

metabolites and connects to the blood vessels network for their delivery throughout

the body. Thanks to the low volume of these fluids, small changes in a solute secretion

or withdrawal can result in fast and effective signals directed to cells of the local tissue

or towards the periphery of our body [5].

In order to reproduce these advantages in an in vitro system, a miniaturized

environment at the cell-level must be designed together with the use of semi-synthetic

or synthetic media. Conventional culture systems based on plastic dishes result in

macroscopic vessels that can be used when 105 � 106 cells are required to grow

as a monolayer in few milliliters of medium. When a massive production of cells

is necessary, these culture surfaces can be extended in piles or cylindrical vessels

requiring liters of growth medium.

Since the in vivo cellular dynamics are exerted in a tiny soluble environment, the

previous examples can not provide a tool to screen and mimic biological processes

41
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which can take down to seconds [5]. Reducing the working volumes down to the

microscale, it is possible to perform a real-time control over the entire culture system

and obtain reproducible conditions [25]. Second, the use of large amounts of media

and of biochemical supplements needed for certain cellular activities dramatically

increase the costs for the maintenance and the stimulation of the cell layer.

Microfluidics can potentially drive low amounts of compounds over a cell culture

with high-efficiency and in an automated and parallelized manner [83, 91, 96, 142].

Moreover, microfluidics platforms can be designed as an open or closed system, with

the latter one a key characteristic for Good Manufacturing Process (GMP) directives

of Food and Drug Administration (FDA) [143].

All combined, these aspects are crucial for a next-generation cell culture platform

that can permit the control of new variables and make feasible new studies at an

affordable cost.

3.2 State of the art of microfluidic cell culture

Microfluidics is aimed at being utilized in various fields and for multiple purposes

(e.g. chemical reactions, detection of biochemical species, cell sorting, etc.) [79,

144–146] and microfluidic components has also been used in commercial apparatuses

(e.g. Agilent Technologies, Inc., USA; Affymetrix, Inc., USA; Fluidigm Corp., USA).

Working at the microscale, microfluidics has the potential to control the process

in time and space in real-time [147]. Thanks to the laminar flow regime, the use of

multiple inlets allow to perform multi-parametric analyses on the same sample, to

create gradients of soluble species and the design of fluidic channel can significantly

impact over the system behavior.

Cell cultures and living tissues have been integrated in microfluidics in the past

decade, with the aim of controlling the microenvironment for higher reproducibility

and higher throughput compared to conventional cell cultures [80, 82, 84, 142, 148].

Microfluidics has the potential to resemble the environmental conditions at the same

scale of in vivo tissues and can be tailored both to 2D or 3D architectures for a better

approximation of human organs.

Since microfluidic devices can be built in transparent materials (e.g. glass, plastic,
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resins, rubbers, etc.) cull culture progression, real-time experimental behaviors or

the analysis at a later stage are easy to monitor. Release of unwanted compounds and

uptake of essential components for cell culture by any material can compromise the

stability and healthy of cell cultures both at short and long term [85, 139]. In many

cases, glass and poly-dimethylsiloxane (PDMS) were chosen as elective materials for

their stability, low cytotoxicity, low price and easiness to assembly.

3.2.1 Materials for microfluidic cell cultures

In the development of microfluidic devices for cell cultures, some materials have raised

among others for their superior biocompatibility. This aspect includes different issues

referring the properties of a biomaterial. Any materials of the platform should not

release toxic compounds into the cell culture environment:

• attention have to be placed not only to the surfaces where cells are directly

growing but also to all materials exposed to the culture medium (i.e. upstream

reservoirs, tubings, connectors, bulk and structural components of the device);

• the interaction between materials, cells and culture medium should not trigger

any physical interaction or chemical reaction, leading to nutrients depletion or

release of unwanted substances.

Oxidized poly-styrene plates have being used for decades as the elective culture

surfaces in biology for in vitro cell and tissue cultures. Since microfluidic devices

rely on the three-dimensional confinement of micrometric channels, gas-permeable

materials have been adopted instead of plastic, which in turn can also result difficult

to integrate with other materials.

Hybrid devices of glass and PDMS or PDMS alone have been extensively used

in biological applications. While both show optimal optical properties and glass is

totally inert, PDMS presents some issues that must be considered with cell cultures:

• different formulation of PDMS are commercialized (e.g. RTV-615, Sylgard

184, etc.), offer different approaches and may impact differently on cell culture

quality;
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• PDMS is a silicone rubber which is commonly polymerized through the catal-

ysis of two-components (base and curing agent); uneven mixing can result

in defects of chip fabrication and in monomers dispersion in the cell culture

system. Additionally, a 5% of the initial monomer is estimated to always be un-

cured at the end of chip fabrication [85]; some solvents may be used to extract

low molecular weight species, which are in part responsible for the unstable

functionalization of PDMS surfaces [77].

• adsorption of lipophilic species and absorption of small non-polar molecules

[139];

• while diffusivity of oxygen and carbon dioxide in PDMS is not a limiting factor,

water evaporation from the tiny fluid circuit results in biased osmolarity that

strongly affect cell culture healthy.

Glass slides are commonly used in standard cultures when a thin support is required

for a later analysis. To improve the adhesion properties and the spreading capacity

of seeded cells, the glass surface is often coated with extracellular matrix (ECM)

proteins (e.g. fibronectin, lamin, collagen, gelatin, etc.) which normally support cell

adhesion in vivo. The physical adsorption of these proteins to the glass surface can

support cell culture for various days. Once cells have colonized the entire culture

surface, cell-cell interaction can become prominent over the cell-substrate interaction.

In this period, duplicating cells also rearrange the composition of the initial protein

layer, synthesizing a more complex network which can eventually not interact with

the glass surface [149]. For these reasons, a compact cell layer can laminate from the

support compromising the sample.

Due to the particular characteristics of microfluidic chips, this and other issue

must be addressed when culturing mammalian cells. A brief argumentation of current

limititations follows.

3.2.2 Current limitations and perspectives

Despite various efforts, the integration of cell culture in microfluidics always revealed

problematic since cells require multiple aspects to be solved at once [25]. Here are
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reported some of the main challenges to culture mammalian cells in microfluidics:

• the biocompatibility of the materials directly or indirectly exposed to the cells;

• adsorption/absorption of crucial molecules;

• the adhesion properties of the substrate for cell culture and its long-term sta-

bility;

• sterility;

• culture medium management and evaporation;

• limited operability at 37 °C and permeability to oxygen and carbon dioxide.

In many studies, once the cells were integrated within microfluidic chambers they

were not maintained for more than few hours or days and reflected abnormal pheno-

types [68, 82, 86, 87]. Human cells can reveal more demanding compared to animal

cells and specific cell type can be extremely sensitive to the variations of the mi-

croenvironment requiring ad hoc design and management of the microfluidic system

[86].

Another important aspect is the simplicity in using microfluidic devices. Behind

new built-in functionalities in a same chip, these devices must be both user-friendly

and simple to integrate with delicate biological samples. The need of a complex

apparatus and skilled operators in both biology and engineering limit the broadening

of this technology [150].

The integration of miniaturized add-ons to the microfluidic core is a powerful fea-

ture that can not be straightforward and present with the same packaging in standard

plastic culture plates. Biosensors upstream and downstream the culture chamber can

reveal many biological processes in real-time (e.g. metabolites, secreted factors, etc.)

[151]. At this time, no sensor has been successfully integrated in microfluidic devices.

Such fully integrated microfluidic chips would outperform existing biological and

biomedical devices providing real high-throughput performance and un-precedented

cost reduction and efficiency. Moreover, miniaturized accurate human in vitro mod-

els will substitute animal models that can not fulfill the entire human biology and
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physiology [81]. Dangerous pre-clinical trials will be avoided for human testers, and

personalized drug compounds would be easier to develop.

3.3 Culture approaches in microfluidics

In the following sections, the main issues of microfluidic cell culture referred in the

3.2.2 are addressed. The research and results achieved during this thesis are focused

on various strategies to obtain a robust long-term cell culture platform over several

weeks. The cultivation over this timespan will be fundamental in order to perform

the reprogramming and programming processes at the microscale; a minimum of 2

weeks for each step is required in standard protocols.

The achievements obtained in this section have been obtained thanks to an inter-

disciplinary development across chemistry, biology and engineering. The long-term

integration of cell cultures in microfluidics required a comprehensive knowledge span-

ning from chemical bonds in biomaterial development to the physics of the microflu-

idic liquid environment. Especially regarding complex and delicate cell cultures such

hPSC, additional parameters fulfilling the biological requirements of these cells must

be taken into account. The accumulation of secreted factors by the cells or the their

washout with sustained exogenous stimuli carried by the medium can significantly

alter the homeostasis of hPSC [86].

In the following sections we report the results obtained integrating cell cultures

in microfluidic devices:

• in section 3.4, we report a first integration of conventional cell cultures in an

ad hoc microfluidic platform.

• in section 3.5, we extend the knowledge gained with substrates development

(Chapter 2) in microfluidic devices for long-term cell cultures.

• in section 3.6, we report the technical improvement for the definition a liquid

handling platform serving microfluidic chips.

• in section 3.7, we report the study of optimal strategies for medium delivery

on microfluidic cell cultures.
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3.4 Conventional cell cultures integrated in microfluidics

An early step to respond to some of the issues in 3.2.2 was performed by integrat-

ing cells grown in a conventional culture system into a microfluidic platform. The

work reported in Appendix D shows how starting from a conventional glass dish, we

integrated a defined cell culture in a microfluidic device with reversible sealing.

Briefly, starting from the expertise in structured cell cultures gained in the lab, we

integrated cells cultured in well defined static conditions in a fluidic chamber (Figure

3.4.1A,C). Three layers of PDMS were combined together: (i) at the bottom, a glass

(75x50 mm) support with a thin silicone membrane carved to accommodate the cell

culture glass slide; (ii) in the middle, a PDMS membrane permits the sealing on

the chip with a vacuum ring system and the communication between the sample

and the microfluidic layer above; (iii) at the top, the microfluidic channels provide

inlet and outlet support to the common culture chamber. Middle and top layer were

irreversibly bonded by plasma treatment (Figure 3.4.1A). After the prototyping of

different geometries and flow operative conditions, we achieved a platform to perform

multi-parametric experiments within a single sample with an accurate control of the

delivered species (Figure 3.4.1B). Since the platform serves as a temporary solution

for the selective delivery of factors above cells, the culture glass slides were transferred

back in the conventional dishes after the infection process. This platform has proved

that microfluidics, delivering a thin layer of viral suspension above the cell layer,

can increase the efficiency of infection (Figure 3.4.1D-E). Experimental validations

have also been confirmed by mathematical modeling in our laboratory. Moreover,

defined area of cell culture subjected to viral exposition were also detectable in static

condition 24 hours after the perfusion (data not shown), indicating that microfluidics

can optimally regulate stimuli in time and space over a cell culture.

This work represented a first approach on microfluidic cell cultures aimed at un-

derstanding the limits and the potential of the technology when coupled to biologial

systems. Since chip fabrication has been routinely adopted in our lab, we next fo-

cused on the permanent integration of cells directly in the fluidic circuits (section

3.5).
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Figure 3.4.1 – Conventional cell culture integration in microfluidics. (A) Schematic rep-
resentation of chip assembly, with (i) base for culture coverslip, (ii) sealing system with
common chamber and (iii) microfluidic layer. (B) Assembled chip with inlets and outlets
connected and perfusing either saline solution or fluorescein tracer. (C) Platform overview.
The microfluidic chip is integrated in a climatic chamber with an automatized fluorescent mi-
croscope for data acquisition. Syringe pumps and a vacuum system serve the chip for liquid
handling and temporary sealing. (D) Controlled viral infections in microfluidics. Once viral
particles above cells have been internalized in the cells, the delivery of the same amount of
virus per cell results in higher infection efficiency using the microfluidic integration with con-
tinuous perfusion (> 6 h). (E) Since infections performed in static vessels and microfluidics
rely on extremely different amounts o media, infection efficiency was determined using the
effective number of viral particles perfused over cells (effective MOI). Microfluidics results
significantly more efficient that static infection. Detailed material is reported in Appendix
D.
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3.5 Substrate development in microfluidic devices for long-

term cultures

The knowledge and practice achieved with the first platform were transferred in

microfluidic chips where cell can be directly seeded and cultured. When glass and

PDMS are permanently sealed together the chip offers inlet and outlet ports for the

cell seeding and medium perfusion. This permit a stable and and more robust device

compared to previous one (section (3.4)). On one side, this solution do not need any

sealing control, a two-step process (seeding and culturing separated by the stimulus)

is avoided and the chip is ready to use after the sterilization process; on the other

side cell culture on the surfaces of microfluidic channels require the development of

surfaces and protocols adapted to the micrometric scale.

Normally, PDMS layers are plasma bonded on mounting glass slides (1 mm thick)

to support the rubber layer with a rigid one. Coverslips normally used in cell cul-

turing (⇠100-130 µm thick) have a different composition based on borosilicate. This

aspect can impact on cell culturing since one cell type can behave differently on naive

surfaces with different compositions.

In order to understand how cell cultures behave in microfluidic channels, we first

applied the standard coating procedures injecting each solution form the inlet. Before

cell seeding, ECM proteins are adsorbed on the glass at the bottom of each channel.

Cells start adhering to the ECM protein and spread in few hours. Lack of adhesion

proteins results in lower and retarded attachment and can affect cell growth rate and

overall behavior at a later stage.

Despite the hydrophobicity of PDMS, ECM proteins may also adsorb to its ex-

posed surfaces in the channel. Proteins commonly have different aminoacids and

oligomers that interact in different manners depending on the side group chain; apo-

lar groups and aliphatic chains can weakly interact with PDMS, anchoring proteins

to the surface; proteins themselves may also recruit others and stack together. Due

to the tiny height of a microfluidic channel (e.g. 50-200 µm), the injected cells are

preferentially dispersed at the mid-height of the channel with few cells at the roof and

floor level; once the flow is interrupted, cells are subjected to gravity and concentrate
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at the bottom of the channel, with almost no cells on the PDMS roof.

When cells reached confluence and cover the entire glass at the bottom, the

cell-cell interaction becomes predominant. In particular:

• the initial provided substrate is dynamically rearranged during the culture

period by the cells.

• each cell is surrounded and in direct contact with various cells;

• the more the culture area is crowed the more the cell reduce their spreading

and contact area with the substrate;

• at confluence, cells stop growing and can than behave differently according to

the cell type.

• microfluidic channels have a discontinuity of materials (i.e. glass/PDMS) and

surfaces (i.e. edges) that can interfere with the homogeneity of the initial

coating and forces exerted by the cell layer.

When cell cultures remain confluent for various days, a tight cell monolayer is formed

and can eventually laminate where a discontinuity is present. In Figure 3.5.1, a

typical case is presented on the left. Cell layer laminates at the edges of glass/PDMS

interface and rolls for the cell-cell interaction with the progression of the culture until

a complete detachment of the cell layer.

The concentration of ECM proteins and their interaction with the surface at

the initial stage, thus, were found to be critical for the long-term stability of cell

cultures. In order to provide a stable culture surface for long-term studies various

functionalizations were explored, both absorption-based or with chemical immobi-

lization (Table 3.5.1). The work on substrate development (Chapter 2) revealed

particularly important and previous techniques were transferred inside microfluidic

channels.

Glass surface can be easily activated for the generation of chemical groups that

can stabilize the adsorbed proteins or can serve as bonding site for covalent immobi-

lization of ECM proteins. We stabilized the internal surface of microfluidic channels

by chemical bonding of ECM. Using previously functionalizations either based on
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Table 3.5.1 – ECM protein functionalization of microfluidic channels. Conventional ad-
sorption methods or cross-linking strategie are reported. Eventual cell layer lamination was
reported at 25 days of culture within microfluidic channels. Silanes were used to functionalize
the glass.

method cell layer lamination
gelatin 0.6% w/v adsorption yes, ⇠7 days
gelatin 0.1% w/v adsorption yes, ⇠10 days

fibronection 0.05 mg/ml adsorption yes, ⇠15 days
gelatin 0.1% w/v + aminated silane adsorption yes, ⇠10-15 days
fibronection 0.05 mg/ml + aminated

silane adsorption yes, ⇠15-20 days

gelatin + aminated silane +
glutaraldehyde bridging cross-link no, not fully tested

methacrylated gelatin 0.1% w/v +
methacrylic silane cross-link no

oxidized fibronectin + aminated silane cross-link no

Figure 3.5.1 – Substrate development for microfluidic cell cultures. Adsorption of ECM
molecules on the surfaces inside a channel (left) leads to the detachment of confluent cell
layers, starting at the edges. When a covalent attachment of ECM proteins was performed
(right), cultures resulted in stable cell layers for weeks.

methacrylation or oxidation (section 2.6 and 2.4, respectively), we bonded proteins

on glass surfaces via methacrylic- or amine-terminated silanes. Cells were stably

cultured for various weeks on chemically engineered surfaces (Figure 3.5.1).

Thanks to the know how acquired in Chapter 2, we were able to apport chemically

enginered biomolecules at the microscale. Since reprogramming and programming

procedures require various weeks of culture, the individuation of stable substrates

that allow a prolonged cell culturing is a fundamental step.

3.6 Liquid handling

Once we stabilized the cell substrate for cell cultures at the microscale, we focused

on the soluble microenvironment.
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Figure 3.6.1 – Schematic representation of a microfluidic platform. A microfluidic chip
composed by various parallel channels with indipendent reservoirs is connected with ta
bundle of tubings to a syringe pump. Controlled withdrawal is actuated by a LabVIEW
interface developed in the lab. A finalized chip with a glass as sealing and cell culture surface
is modeled on the right.

Since each microfluidic channel relies on few microliters of liquid volume and cells

need fresh nutrients before their depletion and waste products accumulation, new

fresh culture medium must be supplemented in the microfluidic system with a refresh

rate higher than conventional culture systems with lower culture surface/medium

volume ratios.

Depending on the cell requirements and microfluidic design, refresh rates of cul-

ture medium may not be possible to perform by an operator. Especially when the

number of similar operations is too frequent, a liquid handling automation is required

and can reduce possible errors by a human being (e.g. vehicle of contamination, re-

moval of chip from incubators and loss of temperature and gases, etc.).

Two liquid handling systems available in the laboratory were converted and in-

terfaced with a software in order to perform scheduled operations of culture medium

delivery. Syringe pumps and then step motor pumps (components of a previous-

generation DNA sequencer) were connected via serial ports to a computer and two

applications were written in LABVIEW software accommodating the machine own

language. LABVIEW offers an intuitive graphical interface to build applications as

a block diagram and basic templates serve a starting point to build your own appli-

cation. For each pump type, instructions can be either sent as command string or

by pressing a sequence of buttons. Further software implementation will be required

if pumps, micro-valves inside the microfluidic chip and an external medium source

have to work in synergy in a unique system.
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3.7 Medium delivery strategies in microfluidics

Having developed a cell substrate for a durable integration of cell layers in microflu-

idics and a tool for automated medium delivery, we explored the best strategy of

medium management to perform robust long-term microfluidic cell cultures and to

maintain optimal phenotype and biological functions of cultured cells.

In our body, a few cell types are exposed to a continuous flow. Endothelial

cells on the inner surface of blood vessels are continuously exposed to the flow at

least on one side [5]. The rest of our cells exchange nutrients and waste products

thanks a diffusion gradient between the tissue and the capillary bed. This gradient

can be subjected to fluctuations: for example, during digestion, glucose is delivered

throughout the circulating system to restore and support cell metabolism of tissues

and organs after a resting period [115].

Many studies reported to sustain cell cultures in microfluidics for prolonged time

[152] and either continuous or periodic medium delivery has been used [68, 82, 83,

87–93, 153]. Although the complexity of microfluidic architecture has been exten-

sively explored, and the effect of some operative variables has been analyzed, the

identification of an optimal strategy for medium delivery is still an open issue .

Microfluidics offers an efficient system in terms of medium consumption and

delivery but showed some drawbacks when coupled with cell culture systems: due to

the high surface/volume ratio, frequent accumulation or washout of extrinsic factors

can result in a long-term toxicity effect [68, 82, 91]. Even using the same overall

amount of medium in a time interval, it should be considered that different delivery

strategies imply different spatio-temporal profiles of metabolites and growth factors,

which may significantly influence overall cell behavior and long-term culture stability

(Figure 3.7.1A-B).

In the publication reported in Appendix E we reported that a periodic flow,

resulting in a fast perfusion pulse followed by a prolonged resting period is the best

strategy to:

• avoid downstream effects due to upstream consumption and release of species

(Figure 3.7.1C);
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• sustain grow by the accumulation of cell-secreted species for sufficient time

(Figure 3.7.1C and 3.7.1A-B);

• grow cells at normal rates and maintain their overall phenotype (Figure 3.7.2A-

B);

• optimize medium consumption.

These results were obtained using either mouse or human cells, and different cell types

and differentiation stages. Even though operative parameters of medium manage-

ment may be defined for each cell type, a common strategy emerged when integrating

cells in microfluidics channels. The model provided by E. Magrofuoco confirms that

continuous perfusion favours heterogeneous conditions along the culture chamber

and periodic pulses of fresh medium can restore optimal culture conditions (Figure

3.7.2C).

3.8 Conclusions

Microfluidics has the potential to improve current techniques in many fields thanks

to unique properties of a high surface/volume ratio and a small amount of fluid at the

microliter scale. Although this technology has been proposed in various studies cou-

pled with cell cultures and has found some biology-related commercial applications,

it has never been fully characterized for the integration of long-term cell cultures.

Since the phenomena at the microscale are unique, the adoption of proper substrate

and medium delivery strategy are key aspect for a successful cell culture.

In this chapter, substrate development via biochemistry and periodic medium

management are reported as powerful tools for the integration of long-term cell cul-

ture in microfluidics. Conventional cultures have been first integrated in ad hoc

microfluidic reversible chambers to evidence in our hand the potential and limits

of microfluidics. The infection process perfomed on integrated conventional samples

evidenced that microfluidics can efficiently and selectively deliver biochemical species

at the cell layer. Substrate development was integrated in microfluidics in order to

extend the lifespan of microscaled cell cultures. ECM cross-linking methods revealed

as the most reliable for culturing cell for several weeks. Medium delivery strategies
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Figure 3.7.1 – Medium delivery strategies for cell cultures. (A) The same amount of
medium can be perfused in a defined period with different strategies. Continuous or per-
diodic perfusion with different flow rates can be applyied and the same total perfused medium
equals to the rectangular area under a hyperbolic curve. (B) Transversal section of a mi-
crofluidic channel with fluxes of metabolites. Below, steady state behaviour of the system
(i.e. metabolites concentration) as a function of medium flow rate (at 80% of cell culture
confluence). (C) Microfluidic C2C12 cell line cultures at 4 days. Three different regions of
microfluidic channel were analysed, the upstream, the middle-section, and the downstream.
Upstream and downstream conditions are reported for continuous (up) and periodic perfu-
sion (down). Continuous flow presented marked heterogeneous growth (a – b) and cellular
death especially downstream. Altered morphologies resulted all along the channel with
marked perinuclear vesiculation (c). Applying a fast pulse with a periodic flow of medium
delivery, cells grew uniformly along the channel (g and h) and did not present alterations (i).
Microfluidic C2C12 cultures at 5 days. Continuouslly perfused cultures reached confluence
even with abnormalities but an antithetic situation followed downstream (j), compared to
the downstream channel of periodic flow where the culture was over-confluent (l). Insets
were taken at half-length of each channel.
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Figure 3.7.2 – Microfluidic mouse embryonic stem cell (mESC) cultures at 6 days. (A)
Bright field and immunofluorescence (IF) analysis for pluripotency marker SSEA-1 are illus-
trated. Continuouslly perfused channel presented marked heterogeneous up-/downstream
growth and marked differentiation with SSEA-1 negative flattened cells. Periodic condition
resulted in homogeneous and pluripotent compact colonies. Scale bars 250 µm. The same
amount of medium was used either in periodic or continuous regime. (B) Image analysis
of the pluripotency marker Nanog indicate that a fast pulsed periodic flow (P2’) is opti-
mal for mESC cultures. (C) Model of concentration profiles of glucose in the medium and
cell-produced factors (endogenous factors, EnF). Periodic perfusions result in oscillating
concentration while continuous perfusion generates two different microenviroment up and
downstream.
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evidenced that the soluble control in microfluidic cell culture is a fundamental aspect

for cell culture grow and long-term maintenance. Periodic flow was found as the best

strategy to culture a variety of cell types.

A comprehensive, fine and tunable control of microfluidic environment for weeks

is a fundamental prerequisite to maintain human PSC and direct human pluripotent

stem cells fate in vitro. Achivements both on substrate development and microfluidic

cell cultures were fundamental for the development of a reprogramming strategy

at the microscale: cell behavior control, defined delivery of exogenous factors and

reduced requirements and reagents will be evidenced in Chapter 4 as key components

for a next generation reprogramming platform.





Chapter 4

Human reprogramming in a

substrate-defined microfluidics

This chapter describes the technological integration of substrate and microfluidics

development for the reprogramming of human cells at the microscale. The downscale

of the reprogramming process would introduce a fundamental tool to substantially

extend the actual capabilities and unleash the potential of human pluripotent stem

cells for screening assays and drug development from a population scale to individual

needs. Detailed methods of this chapter are available in Appendix F.

4.1 Introduction

Human pluripotent cells can provide insights on human development and generate

differentiated cells of our body for in vitro investigations on biological processes,

drug development and tissue regeneration [97]. Besides some limits of embryonic

stem cells, mostly ethical and relative to abundance, induced pluripotent stem cells

can be derived without these problems and expanded in large quantities.

The major limit regarding hiPSC is the generation phase: despite various avail-

able systems, these products still retain a considerable cost for every sample to be

reprogrammed. When looking forward for a large number of patients with differ-

ent clinical profiles, genetics, habits, etc., that reflects a population, the derivation

of at least one single clone per person becomes unsustainable in terms of material

expenses, skilled operators, facilities and required time [4].

59
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Scaling down the cost for each reprogramming sample would make possible the

realization of a platform for the reprogramming of a multitude of people and the

screening of human biodiversity at various level. With the difficulty in developing

new drugs for pharmaceutical industries, the scalability of reprogramming process

would provide unlimited in vitro human cells of different tissues [81]. Improvements

would span from the understanding of the variety of human biotypes to the ad hoc

solutions for unique people and rare diseases.

Thanks to the new achievements on cell culture substrates and microfluidics

gained in this thesis, it would be possible to generate a new platform for the mi-

croscaled and extended derivation of hiPSC. A significant cost and material reduction

would also allow to avoid the expansion process of hiPSC, realizing a straightforward

one-step process for derivation of human tissues on-a-chip.

4.2 Delivery of reprogramming factors at the microscale

In order to understand the practical aspects of the reprogramming process, we first

tried available conventional reprogramming systems. Early efforts to introduce repro-

gramming factors inside cells in conventional and microfluidic environments focused

on the adoption of viral constructs, the most used and efficient system known at that

time.

Since we wanted a system that relies on a transient expression of exogenous

reprogramming factors, we decided to adopt non-integrating viruses such as aden-

ovectors and Sendai (data not shown). The use of repeated infections of transient

adenovectors produced at the Dept. of Molecular Medicine resulted in a long-term

toxicity and some of the vectors had also production issues. The commercially avail-

able Sendai virus (Life technolgies, USA) was adopted in conventional systems to

understand the implications of delivering four different variants of the virus carrying

OCT4, SOX2, KLF-4 and c-MYC human genes. As stated in the official protocol,

a single series of viral transfections had a substantial toxicity on reprogramming

cultures with a cell death up to 60% in the first 4 days. After 7 days cells were

replated on non-replicating murine cells that support reprogramming process. Three

samples of 105 cells each were cultivated for at least 5 weeks in hiPSC media and
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10-cm-wide dishes, resulting in 0, 1, 13 stable clones. Efficiency is calculated as

the number of hiPSC clones over the initial cell number (0, 0.001%, 0.013%, respec-

tively). Transfection process performed in microfluidics resulted extremely cytotoxic

with cell cultures collapsing before 5 days, even with a 1/10 of the concentration used

in standard systems.

Despite the various problems emerged with the previous techniques, the stan-

dard reprogramming revealed the importance of transition steps from adult cell to

a pluripotent phenotype. Cell density, transfection efficiency, morphological changes

were taken into account in order to design the microfluidic protocol.

Since these methods were not satisfactory in our hands we looked for new alter-

natives to be scaled in microfluidics. As proposed in the next paragraph 4.2.1, the

emerging technology of modified mRNAs was studied and implemented.

4.2.1 Emerging modified-mRNAs technology

The 2011 International ISSCR conference on stem cells (Yokohama, Japan. 2011.

isscr.org) offered the great opportunity to discover the emerging reprogramming tech-

nology based on modified RNA messengers (mmRNA) provided by Stemgent, Inc.

(USA). mmRNAs directly encode encode proteins of reprogramming factors and by

their nature are degraded in less then 48 hours from the delivery inside the cell

[9, 14]. A subsequent partnership with Miltenyi biotec, GmbH (Germany) provided

own-developed GMP-grade mmRNAs for reprogramming.

We first assessed the delivery of mmRNAs in microfluidics with a sequence pro-

moting a nuclear-localizing fluorescent protein (nGFP). A cell fraction, 24 hours after

transfection, evidenced fluorescent nuclei and, thus, the possibility of delivering re-

programming factors. We next explored how to increment the transfection efficiency

by altering the ratio of mmRNAs, transfection complex necessary for the delivery

inside cells medium and time of transfection, and by providing non-adsorbent surface

in a microfluidic system (see section 2.8). Transfections are performed by incapsu-

lating mmRNAs in solution within lipid vesicles that in turn are dispersed in an

ad hoc medium for reprogramming (see Appendix F). In order to provide all the

seven mmRNAs encoding the reprogramming factors in the provided kit in the 5 µl
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Table 4.2.1 – Delivery efficiency of nGFP mmRNA reported for various conditions tested.
Medium proportion was reduced from the conventional protocol (0% means pure transfection
complex without PL). An incubation for 4 h revealed optimal for higher nGFP delivery.
Average percentage of nGFP positive cells at 24 h from a single transfection are reported.

Conventional
PL amount

1X mmRNA
single

transfection

Transfection
time
1 h

Transfection
time
2 h

Transfection time
4 h

100% 12% - - -
50% 28% 6% 13% 28%
25% 31% 9% 24% 29%
0% 13% - - -

volume of each microfluidic chamber, we had to reduce the proportion of medium

(Pluriton, PL) of the transfection mix presented in the official protocol (Table 4.2.1).

A 25%-50% of PL volume - compared to standard transfections performed in static

vessels - resulted optimal for repeated delivery of mmRNAs. Starting from the first

transfection, microfluidic was significantly more efficient than standard static proce-

dures (Figure 4.2.1). Although the previous treatment of microfluidic surfaces with

2% w/v Pluronic F-127 for 1 hour gave an higher transfection efficiency, probably

due to the lower adsorption of lipophilic vesicles on PDMS, at this stage, we main-

tained the platform the as simple as possible. Since mmRNAs have an expression

peak after 18-24 hour from the transfection, daily subministration of reprogramming

factors must be performed. Daily transfection a evidenced complete delivery over

the cell population (Figure 4.2.1).

4.3 Strategies for reprogramming and programming at

the microscale

Once verified that it is possible to deliver mmRNAs in microfluidics for days following

a fluorescent reporter, we introduced in the transfection complex all the 7 available

mmRNAs for reprogramming (OCT4, SOX2, KLF-4, c-MYC, LIN-28, NANOG,

nGFP). A comprehensive scheme of the reprogramming apparatus is reported in

Figure 4.3.1.

Standard procedures performed on static vessels follow the following pattern:

(i) target cell isolation, (ii) expansion, (iii) reprogramming, (iv) hiPSC clone isola-

tion, (v) clonal expansion, (vi) characterization and (vii) differentiation in defined
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Figure 4.2.1 – (A) Daily complete reprogramming mmRNAs delivery on BJ cells in mi-
crofluidics with 25% PL. Acquisition was performed at 1, 5, 8 days after the first transfection.
nGFP positive cells increased during culture and morphological changes occured on cells.
(B) Even with a single transfection, microfluidics results more efficient with lower amounts
of mmRNAs compared to medium (MW6) and small (MW96) conventional culture plates.

Figure 4.3.1 – Reprogramming apparatus. Cells are taken from biopsies or established cell
lines and integrated in the microfluidic platform. Liquid handling pumps are controlled by
a LabVIEW software. A reprogramming sequence is proposed on the panel below. After
an initial seeding, repeated transfections were performed for 16 days followed by 15 days of
differentiation.
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cell types. Reducing the minimum requirements to perform a microfluidic repro-

gramming, it should be possible to reduce or eliminate expansion steps and perform

one-shot experiments. In order to recapitulate the standard pattern in microfluidics

and dissect and optimize procedures at the microscale, we planned three different

strategies.

Strategy A: reprogramming in microfluidics, clone isolation and standard expan-

sion and characterization, differentiation. This strategy would clarify the perfor-

mance of microfluidics in the generation of hiPSC. Eventually, clones would be iso-

lated from the chip and expanded with standard procedures to verify the stability of

clones and the differentiation potential.

Strategy B: reprogramming in microfluidics, collection and clones plating on new

chip for differentiation. This strategy avoid the need of clonal expansion. Different

clones are pooled in new chips with free available space to grow and differentiated.

Strategy C: one-step reprogramming with differentiation. This strategy represent

the best option to obtain new defined cell types from the cells of a patient. Patient

cells are reprogrammed in microfluidics and directly differentiated toward desired

cell types to perform assays.

In order to obtain the best performance from our microfluidic chip, we used the

substrates developed in section 3.2.1 and the whole expertise detailed in Chapter 3.

In the next section, the results of evaluated strategies are reported.

4.4 Strategy A: reprogramming at the microscale

Reprogramming. Starting from the basics of the Stemgent’s reprogramming pro-

tocol (available at stemgent.com) we daily transfected cells inside microfluidic chan-

nels. Using the BJ fibroblast cell line model, we evaluated their reprogramming

starting with different seeding densities. In the first five days, normally elongated

cells evolved in more round shapes as seen in standard protocols. At day 12, we

experienced the first bona fide hiPSC colony generated at the microscale (Figure

4.4.1).
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Figure 4.4.1 – hiPSC colony derived in microfluidics. (A) Colony present characteristic
morphological markers such as compact cells, defined edges, well formed-nucleoli. Colony
expanded progressively in 4 days before being processed. (B) Reprogramming efficiency
of BJ cells. Average efficiency in a chip is displayed in blue. Total number of colonies
per channel is displayed in red. Higher seeding densities of BJ cells were more efficient in
producing hiPSC.

Due to the enormous importance of this hallmark, we continued following the

evolution of reprogramming. Best results were obtained with higher cell density

tested. In fact, different other colonies appeared the days later. As evidence by the

plot in Figure 4.4.1, we obtained efficiencies up to 3.2%.

Isolation. We next evaluated how to isolate colonies from each microfluidic chan-

nel. Two strategies were adopted:

• using a biopsy punch, we generated a core through the PDMS rubber and

exposed colonies were dissected and aspirated;

• based on the recent published method [154], we applied a high flow rate in-

side the channels. hiPSC colonies detached preferentially leaving the non-

reprogrammed cell layer on the chip.

Expansion & characterization. hiPSC clones were expanded for several pas-

sages on conventional plates in the presence of non-proliferating murine fibroblasts.

All molecular markers tested proved the effective pluripotency of each clone. Both

random or specific differentiation protocols available in the lab were effective. It can

be argued if microfluidic-derived clones have same characteristics of hiPSC obtained

with conventional procedures.
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Figure 4.4.2 – Microfluidic-derived colonies extraction methods. PDMS rubber was cored
in order to have access to the colony on bottom of the channel (top). Some colonies were
also isolated by shear-stress leaving non reprogrammed cells on the channel (bottom).

Figure 4.4.3 – Characterization of isolated colonies for pluripotency. Immunofluorescence
analysis evidenced standard pluripotency markers (Oct-4, Nanog, SSEA-4, Tra-1-60). Ad-
ditional analysis were performed via RT-PCR, karyotype stability and alkaline phosphatase
assay (right).
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Figure 4.4.4 – Characterization of isolated colonies for differentiation potential. Colonies
cultured on non adhesive wells formed spheroidal clusters that differentiate spontaneously
in the three germ layers that form our body. RT-PCR analysis revealed typical markers
(b-III-tubulin, AFP, aSMA). Immunofluorescence analysis evidenced markers for all germ
layers ectoderm (Tuj-1), mesoderm (brachyury), endoderm (AFP).
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Figure 4.4.5 – HFF-derived hiPSC. Various in situ immunofluorescence assays reveal the
expression of pluripotency markers NANOG, OCT4 an SSEA-4 within compact cell colonies.

4.4.1 Reprogramming of other cells types in microfluidics

HFF fibroblasts were tested to prove the reliability of the microfluidic system. It is

worth to underline that HFF were used at higher passage (P18) compared to fresh

BJ cells. In fact, fresh isolated cells are usually preferred since they are more prone

to undergo a reprogramming process. Reprogramming of HFF in microfluidics gave

clones with efficiencies similar to BJ. In situ characterization of HFF hiPSC clones

is reported in Figure 4.4.5.

A step towards clinics. Since the goal of this thesis is the application of the

developed platform on cells freshly-derived patient’s cells, we studied a non-invasive

way to obtain cells. To obtain fresh fibroblasts, an invasive skin biopsy is normally

required. It has been shown that epithelial cells can be derived from patients by their

isolation from urine and subsequently reprogrammed [36]. Regenerating renal epithe-

lium normally lose few luminal cells that are washed out with urine. Collecting these

cells we were able to introduce and cultivate them in the microfluidic environment

(Figure 4.4.6A-B). Although these cells can be subdivided in two different categories

and one resulted somehow refractory to repeated mmRNA transfections, we were
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Figure 4.4.6 – hiPSC derived from urine cells. (A) Phase contrast of renal epithelial cell
cultured in microfluidics under reprogramming. (B) Relative fluorescence image of nGFP
positive cells carrying the other factors. (C) An emerging compact hiPSC colony from the
epithelial cell layer. (D) A small colony of four hiPSC under expansion and derived from
the dissection of the colony in panel C.

able to generate hiPSC clone freshly derived from a patient (Figure 4.4.6B-D).

The isolation of cells from urine in a totally non-invasive manner and their re-

programming in our microfluidic chip is a paramount milestone for the realization

on an integrated platform for a large-scale screening based on hiPSC derived tissues.

Feeder-free. Since mmRNA protocol requires a co-culture of non-proliferating

cells other than patient’s cells to sustain reprogramming (feeder-cells), we evaluated

the possibility to remove such external cells to simplify the system and to simulate

a clinical-like approach. BJ fibroblasts were solely seeded at higher density in mi-

crofluidic platforms. With a dose-ramping of 100%-75%-50%-25% of conventional

static medium in the first 4 days we allowed cells to sustain factors uptake with a

tolerable stress before applying a full dose. Feeder-free hiPSC colonies were obtained

and showed expression of pluripotency markers.
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Figure 4.5.1 – In situ characterization of hiPSC. Fresh derived colonies inside each channel
have been analyzed for the expression of pluripotency markers after three days from the
latest transfection. A live staining for alkaline phosphatase (AP, Life technologies) was
performed (left). Once AP signal disappeared, cells were fixed (center) and processed for
immunofluorescent analysis (right). The colony in the middle of the channels is positive for
NANOG and OCT-4, nuclei are stained with Hoechst 33342.

4.5 Strategy B: pooling colonies for optimal differentia-

tion

In situ characterization. Once verified that microfluidic-derived hiPSC resulted

in stable pluripotent clones for various expansion passages (at least 12), we verified

the presence of pluripotency factors in fresh derived colonies in situ. As reported in

Figure 4.5.1, it is possible to perform assays directly in the reprogramming channels

and freshly obtained hiPSC express characteristic markers.

Pooling. Since our hiPSC directly express the pluripotent genes, we next isolated

and pooled freshly obtained colonies in new chips without a subclonal expansion

process. This was an required steo since a minimum cell density is required by

available protocols in order to properly induce defined differentiated cell types.

Differentiation. Since mmRNAs reprogramming technique relies on fast (24-48

hours) transient expression of exogenous factors, emerged clones have to express a

stabilized endogenous hiPSC pattern (namely, transcriptome) to proliferate. With

this strategy, we verified that non-expanded colonies are able to generate differen-

tiated cell types. It is possible that the full transcriptome of the same fresh and

expanded clone slightly varies due to the selection process made on the clonal expan-

sion. We are analyzing the actual transcriptome of clones before and after expansion.

If no significant chances are detected, expansion process could be considered if a cell
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Figure 4.5.2 – Specific differentiation of freshly generated hiPSC. Immunofluorescence
assay on chip with red-labeled proteins of terminally differentiated cells, nuclei are stained
in blue. On the left, cardiomyocytes expressing functional troponin proteins, sarcomeric
striatures are present evidencing contractile capabilities. On the right, functional hepatocite-
like cells expressing cytokeratin CK18, actin fibers in green evidence characteristic poligonal
shape of hepatocytes.

bank is required.

In hour hands, freshly derived hiPSC were able to differentiate as much as stan-

dard expanded clones.

4.6 Strategy C: one-step process for reprogramming and

programming

Strategy B was required since the density of rising hiPSC was not enough to perform

a differentiation protocol. We next investigated to increase the reprogramming effi-

ciency and perform differentiation protocols without clonal isolation. This strategy

would allow to obtain particular differentiated cells from a patient’s starting cells in

one-step without isolation or subculturing.

Substrate study. When microfluidic reprogramming was performed, we noticed

that reprogramming efficiency was lower that experienced with a conventional pro-

tocol. Delivered liposomal vesicles used to deliver mmRNAs normally fall by gravity

until they coalesce with cellular membranes. Due to an intrinsic toxic effect of trans-

fections, efficient delivery performed by microfluidics resulted in a high selective

pressure and stress on cells at the bottom. Since chemical functionalization of cul-

ture surface in microfluidics are performed in a finalized chip, adsorption of modified

proteins occured on PDMS. Cells that were able to escape the glass surface tended to
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Figure 4.6.1 – Enhanced reprogramming efficiency in microfluidics. (A) Favoring the cell
interaction with the glass against the PDMS surfaces, transfection efficiency was enhanced
(blue data) and reprogramming yieled up to 44 hiPSC colonies per channel, that equals to
a 16.3% (more than 5 times higher than the standard protocol). (B) Constrast phase image
of a fixed chip after reprogramming. Overimposed image of immunofluorescence analysis for
NANOG positive hiPSC (bynary image in green).

travel side walls and transfer on the roof where mild conditions and low transfection

efficiency can be found. This resulted in a partial and continuous loss of cells that

limited sustained delivery on cell at the bottom.

Substrate optimization/high reprogramming effciency. At this stage, we

reduced the concentration of protein for the long-term functionalization in order to

reduce the adsorption on PDMS and make this surface less appealable for cell growth.

As a remarkable result, we generated up to 44 single colonies in a single channel,

equivalent to a 16.3% of reprogramming efficiency (Figure 4.6.1). This efficiency was

never obtained with the induction of only Yamanaka-like factors and is more than

5-times higher than commercially proposed values (up to 3%).
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Figure 4.6.2 – One-step derivation of adult-like cells from patient’s cells. (A) Random
differentiation of fresh derived hiPSC with aspecific media and protocols. Different cell types
with various morphologies are present in the field. At the bottom, biomolecular RT-PCR
analysis revealed the presence of markers of the three germ layers, indicating the possibility
to generate the entire cellular set of the adult body. (B) Specific cardiac differntiation
at 15 days from the end of reprogramming. Dark and bright culture areas enriched in
cardiomyocyte cells. RT-PCR reveald prominent differentiation in the cardiogenic pathway
with the presence of FLK-1, NKX2.5, cTNT characteristic markers.

Differentiation. After canonical 16 days of daily transfection we cultured emerg-

ing clones for additional 3 days in order to growth against non reprogrammed cells.

Applying differentiation procedures, hiPSC were able to generate the three germ layer

in aspecific medium and matured in functional cardiac cells expressing troponin-T

using a specific protocol (Figure 4.6.2).

4.7 Conclusions

Advantages in substrate development and long-term microfluidic cell culture were

fundamental to approach the reprogramming of human cells at the microscale. The

transition from viral vectors to mmRNA offered a safe and defined approach to deliver

Yamanaka-like factors without the need of forced removal of exogenous material with

a subclonal expansion.

To describe at best the work performed to obtain such result, a list of key features

that has been implemented can be listed:
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Figure 4.7.1 – Scale down of minimum requirements in microfludics. Device area, cells and
reagents needed have been significantly reduced compared to standard procedures.

• defined substrates,

• robust microfluidics,

• clinical-grade mmRNA,

• patient’s non-invasive isolation,

• feeder-free reprogramming,

• scale-down of minimum requirements (Figure 4.7.1),

• increased efficiency,

• one-step reprogramming-programming process,

• fulfilling integration.

Thanks to these a charateristic, our platform has the potential to serve as new tool

for the extended reprogramming of cells derived from hundreds of patients. hiPSC

derived at a population scale can serve the study of both common and rare diseases.

Moreover, the cost reduction of the entire process (Figure 4.7.1) can attract the

pharmaceutical industry in discovery and developing drugs with more cost effective

procedures and avoid non fully predictive animal models before the clinical trials.



Chapter 5

Role of substrates on

reprogramming and hPSC

maintenance.

5.1 Mechanotransduction in reprogramming

In chapter 2, the interplay between cells and their substrate was described. Hydrogels

were optimized for large studies, clinical applications and biosensoring. Moreover,

in chapter 4, substrates and microfluidics were combined for the realization of a

breakthrough reprogramming approach at the microscale.

When the research focus on the study or the production of large quantities of

cells larger systems can be adopter such as the one realized in section 2.5. Since we

are now able to produce hydrogel on large culture vessels the mechanical role of the

matrix in the reprogramming process can be investigated at the larger scale. It have

been evidenced that substrates can have a role in the reprogramming process[24]

and may help in producing large quantities of hiPSC with a reduction of factors,

transfections and time to complete the reprogramming. A matrix with soft stiffness

has been demonstrated to sustain a pluripotent phenotype in mouse embryonic stem

cells without the use of factors normally required on conventional culture system

[22].

Since this research is at the beginning we report in this chapter the early results
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Figure 5.1.1 – Pluripotency and substrate stiffness. (A-C,E) Human PSC lines are cul-
tured on hydrogels with various stiffness or compositions. (A) Functionalizzation of poly-
acrylamide hydrogel allow proper attachment of PSCs. (B) Reducing the substrate stiffness
(~1 kPa), PSCs grow in more compact colonies compared to stiff substrates. (C) Poly-
acrylamide hydrogel with same nominal stiffness are functionalized with hyaluronic acid
(left) and fibronectin (right). HA leads to significantly more dense cell colonies optimal for
PSCs maintenance. (D) Hydrogels of pure methacrylated hyaluronic acid allow isotropic
grow of hPSC.

on mechanotransduction implications of pluripotency. Before performing a repro-

gramming on substrates, we investigated the main differences between adult cells

and hPSC on soft substrates.

Mechanotransduction in hPSC. In order to assess any implication of mechano-

pathways on hPSC, we first seeded our hiPSC and hES on hydrogel at various stiff-

nesses (0.7-80 kPa) (Figure 5.1.1A). We did not not recognized any preferential

stiffness for hPSC to maintain the expression of pluripotency marker OCT-4 in the

presence of a poly-acrylamide substrate, a Matrigel coating and standard culture

media for hPSC (Figure 5.1.1B). In each case, OCT-4 and SOX2 were expressed

in the large majority (>95%) of cells after 6 days. Similar data were confirmed by

Schaffer and colleagues [69]. However, within each colony, cell density was lower on

stiff hydrogels (80 kPa) compared to softer ones (0.7 kPa) (Figure 5.1.1B). As evi-

denced in Chapter 1, compact colonies with defined edges are a key characteristics

of hPSC.

Matrigel (BD biosciences) is an extracellular matrix mixture extracted from mice

and therefore it is not defined and subjected to variability. Thus,we wanted to
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understand the role of the ECM coating comparing the morphology of hPSC cultured

on an poly-acrylamide substrate at 4 kPa. When we functionalized the gel with

hyaluronic acid described in Chapter 2, we obtained compact colonies compared to

the one cultured on fibronectin. Not surprisingly, when we adopted a hydrogel based

on pure methacrylated hyaluronic acid used in a 3D application (2.6) with a bona fide

stiffness of <10 kPa, we obtained well defined circular colonies with compact cells.

This result recapitulate the previous findings present in literature [98, 123–125].

Biochemical composition of the ECM matrix is thus a key player of hPSC shaping.

Despite matrix stiffness has not evidenced a role in the expression of characteristic

pluripotency markers, it affects significantly the cell density within the colony. Since

a tight contact of hPSC is essential for theit survival an expansion as pluripotent cells,

matrix stiffness can have a role in pluripotency maintenance and reprogramming

process. As reported in Appendix B and A, higher cell density also affects the single

cell shape and its iternal architecture, leading to mechanotransduction pathways that

can trigger certain biological functions normally repressed.

Mechanotransduction in reprogramming. It has been recently shown in a

recent publicatio that substrate topology can affect the expression of certain DNA-

binding proteins (histones) through mechanotransduction pathways [8]. Histone ac-

tivity and the accessibilty of certain regions of the DNA are known fundamental

barriers in the reprogramming process [51, 52, 155].

Since we had the evidence that topology, stiffness and chemical composition of

the substrate can act in a common circuit acting on internal cellular components [156,

157], we wanted to perform a first experiment by reprogramming adult fibroblasts.

As shown in Figure 5.1.2A on the left, we recapitulated the mechano-associated

transition in cell shape of adult fibroblast comparing the shape of adapted single-cell

hES cultured in standard conditions. The normalized ratio between cell perimeter

and area (circularity) was used as a shape descriptor of cells. Fibroblasts cultured

on ⇠1 kPa poly-acrylamide hydrogels evidenced a circularity similar to hPSC. We

next performed a reprogramming experiment using poly-acrylamide hydrogels devel-

oped in standard poly-styrene culture vessels 2.5. We used a 1 kPa hydrogel, a 12

kPa (as a stiffness control) and murine fibroblasts (MEF) as standard support for
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Figure 5.1.2 – Reprogramming and substrate stiffness. (A) BJ fibroblast cells progres-
sively round on softer hydrogels (left image). Circularity is 4⇡(⇡r2)/(2⇡r)2 with r the cell
radius. Differentiated fibroblast on 1 kPa have a circularity similar to hPSC. Also, fibroblast
evidenced an high cell area / nucleos area ratio, similar to hPSC. Single cells are presented
at the bottom with nuclei stained in blue with Hoechst 33342. (B) BJ fibroblasts were
infected with a Sendai virus to promote the reprogramming process and transferred either
on conventional dishes (MEF) or on poly-acrylmaide hydrogels at different stiffness (1 and
12 kPa). Cell area was used as a shape descriptor and analyzed for 45 days. After 10 days,
BJs on MEF undergo a remarked reduction in cell area, which is readily observable during
the first days of culture on 1 kPa substrates.

reprogramming experiments with viral vectors. Yamanaka’s factors were delivered

using the commercially available Sendai virus. Cells on softer hydrogel evidenced

high circularity and reduced cell area, with a prominent high ratio between cell area

and nucleus area (Figure 5.1.2A-B). In particular cell area followed a common trend

for the three samples (Figure 5.1.2B). As expected in conventional reprogramming,

cells undergo a phenotypical and morphological transition (Mesenchymal-Epithelial

Transition, MET) with rounded and smaller cells. Ten days after the transfection,

cell reduce significantly their ashesion area. Cell cultured on 12 kPa hydrogels were

less spread from the beginning and followed the same trend on MEF during the 45

days of reprogramming. Cells cultured on 1 kPa hydrogel maintained a reduce and

round adhesion area throughout the whole experiment.

Although no hiPSCs were generated with soft hydrogels, it must be considered

that the reprogramming on MEF was not efficient, generating only 1 single stable

hiPSC clone (see also 4.2.1). Therfore, at this stage, we can not exclude that sub-

strates may enhance the reprogramming efficiency. A recent report has evidenced

that soft substrates can support the reprogramming process initiated by viral vectors

[23].
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Moreover, the maintenance of a high growth rate of adult stem cells on softer

hydrogels (⇠1 kPa or below) is still an open issue due to the inteference of newly

discovered mechanotranduction pathways (Appendix A, B).

These evidences indicate that soft hydrogel can readily promote a cell shape that

is required to complete the reprogramming process in standard conditions. Further

experiments have been planned to reveal new insights on the mechano-associated

reprogramming process. In order to improve the statistical analysis and experimental

throughput, we will adopt the mmRNA reprogramming technology seen in Chapter

4.
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5.2 Conclusions

Mechanotransduction behaviors have been extensively proved on adult cells espe-

cially when focusing on their differentiation and maturation process.

The role of mechano-associated phenomena in controlling hPSC biology is still

poorly understood. In this chapter we have described the early studies we performed

to understand the role of substrate mechanics on hPSC and especially on the repro-

gramming process. As evidendeced in Appendix A and B, since linage specific cells

can activate mechanotransduction processes, we wanted to dissect the role of sub-

strates in hPSC maintenance. Although ECM composition clearly proved to guide

hPSC phenotype, substrate stiffness had an impact at least on hPSC conformation

and colony organization. When we looked at the transition from an adult phenotype

towards a pluripotent target on different substrates, cell morphological descriptors

evidenced a common pattern compared to conventional reprogramming substrates.

In particular, softer hydrogel can istantly guide single-cells under reprogramming to

a defitive cell shape transition mimicking a late strandard reprogramming phase.

Since soft gels induce a mechano-responsive behavior reducing the replication ac-

tivity, cells under reprogramming with a reduced hPSC-like shape will be stimulated

in order to elicit an important reorganization of DNA activity in the early replication

stages.



Chapter 6

Perspectives for a human body on

a chip

The engineering of substrates for biological applications (Chapter 2) introduced to

new insights of biological pathways and offered new tools for the in vitro and in vivo

studies and applications. The development of cell culture in microfluidic channels

(Chapter 3) has reveald that a comprehensive reorganization of current culture pro-

tocols is necessary in order to take an advantage on the phenomena occurring at

the microscale. In order to accomplish sofisticated procedures for the reprogram-

ming process at the microscale, a deep integration of the achievements obtained in

substrate development and microfluidic cell cultures was fundamental.

Various groups are proposing micro-engineered systems that allow the realization

of challenging in vitro tissues and organoids [158]. Due to the extreme complexity in

reproducing organs on a chip, multidisciplinary knowledge and integration in biology,

chemistry, physics and engineering is indispensable.

In this perspective, we aim at developing in vitro tools for a better description of

biological phenomena and for the realization of biomimetic environments for func-

tional physiological and pathological tissues and organoids.

In the following paragraph, we propose a proof on concept that integrates some of

the techniques developed in this thesis for the development of an analytical device in

diabetes studies. Muscles are a major tissue implicated in diabetes[115] and healthy

and disease tissues can respond in different ways to physiological stimuli or drugs.
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The generation of highly differentiated muscle fibers in a microfluidic chip can result

in a platform with high temporal and spatial resolution for stimuli delivery. Since we

demonstrated that optimal myotube differentiation occurs on aligned cell patterns

[108], it is crucial to transfer topological feautures in finalized microfluidic platfrorms.

Here we propose an effective and simple method to promote the differentiation

of muscle precursors in patterned areas within a microfluidic culture chamber.

In situ tolopological control of microfluidic environments. When cells are

chaotically distributed, overall population is normally investigated to individuate a

biological behavior and it can be extremely difficult to dissect different phenomena

occurring in various sub-populations.

Topological control of cell cultures reported in section 2.7 can offer advantages

to screen the biodiversity over a common cell line and distill biological analysis from

biased phenomena. Open systems such as a glass coverslip or hydrogel film offer

an easy access to physically print the surface with adhesive patterns or introduce

repellent features. Sealed systems such microfluidic chips only allow an indirect

access to the main chamber through inlet and outlet ports, making impossible any

selective geometrical treatment.

Thanks to the optical transparency and limited thickness of of the platform it can

be possible to selectively photo-activate the surface with UV-light and a photomask.

Adjusting the dose of UV, we were able to selectively attach linear poly-acrylamide

chains on the silanized glass. Cells adhered on non-exposed areas presenting the

acryl terminus of the silane, eventually coated with ECM proteins.

Since defined geometries can alter cell behavior, we analyzed the efficacy of mi-

cropatterned aligned lanes in promoting myogenesis. When myoblasts were seeded

in micropatterned chips, they distributed and adhered in non-repellent areas. When

they reached confluence after few days, packed cells aligned along the major axis of

each lane and differentiated in mature myotubes.

These system are being used to analyzed the expression profiles of engineered

myotubes subjected to conditioned media from healthy and diabetic patients.
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Figure 6.0.1 – Cell patterns inside a microfluidic chip. (A) Adhesive/repellent patterns
were obtained through direct patterning technique reported in 2.7. Myoblast cells adhere
on 300 µm wide lanes and progressively align along the major axis and differentiate in
myotubes. (B) Each channel can be fixed and stained to perform assays. Here it is reported
the expression of myosin protein (MHC), a major functional cytoskeletal component of the
muscle. The immunofluorescent assay (left magnifications) reveals a defined sarcomeric
architecture with repeated bands of MHC.





Conclusions

This work focused on the development of a reprogramming platform for the high-

throughput derivation of human induced pluripotent stem cells (hiPSC).

Since hiPSC are highly sensitive cells and their derivation is subject to various

intrinsic and extrinsic factors, the regulation of internal pathways and cell behav-

ior, and the tight control of environmental culture conditions are crucial aspects.

Substrates and microfluidic technology were used in order to provide a microscaled

integrated solution for the reprogramming process.

Substrate development focused on the realization of cell culture supports with

tunable properties such as stiffness, chemistry and topology. First, we optimized cur-

rent available protocols to produce biocompatible hydrogels based on poly-acrylamide

with a tunable stiffness mimicking the physiological range of in vivo tissues. Consis-

tent large-scale experiments with over 5000 used samples served for the identification

of new cell behaviors associated with the mechanical properties of the culture sub-

strate. By changing the stiffness of the hydrogel, cell can dramatically change its

shape and internal architecture. Crucial proliferation-associated factors YAP/TAZ

were either blocked or activated overriding previously known biochemical pathways.

The same high-throughput technology was applied to a subsequent study in order

to investigate the mechano-associated players that transduce the environmental me-

chanical cues into internal biochemical regulations and cell behaviors. Structural

and enzymatic mediators were found to be responsible of the mechanical checkpoint

of YAP/TAZ. Altogether, these studies evidenced a fundamental role of the extra-

cellular matrix in determining the cell behavior and fate.

Poly-acrylamide hydrogels have also been used to realized biosensors within a

soft compliant cell culture substrate optimal for muscle cell differentiation. Chemical
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functionalization of poly-styrene cell culture vessels was performed to integrate soft

hydrogels for large-scale studies and analysis.

Biodegradable hydrogels based on hyaluronic acid were developed in order to pro-

vide a biomimetic environment for in vivo applications. Micro-engineered bundles

of aligned muscle fibers were generated in vitro on functionalized gelatin surfaces.

The hydrogel construct was integrated in ablated mice muscles to evaluate its re-

generation capability. Although a faster degradation was necessary to allow the full

viability and integration of engineered fibers, muscle regeneration was elicited by the

biodegradable hydrogel construct and further improvements are being applied.

The knowledge on substrate development and control of cell behavior were trans-

ferred on microfluidic cell culture environments. First, cell cultures on standard

supports were integrated in an ad hoc microfluidic platform to prove in our hand

the potential of an efficient delivery of biological species inside cells. Second, cell

cultures were directly integrated in microfluidic channels providing a stable adhesive

surface treatment for long-term cell cultures.

In order to provide also a favorable soluble environment, a liquid handling ma-

nagement software was realized to allow automated delivery of culture medium over

cells. The study of an optimal strategy to perform robust long-term microfluidic

cultures revealed that a periodic fast pulse of fresh media followed by a prolonged

pause allows the homogeneous culture of different cell types with correct phenotype.

Having developed a substrate-integrated microfluidic technology for long-term

cell cultures, we delivered on human cells modified messenger RNAs (mmRNA) trans-

lating for the reprogramming factors. The delivery of a mRNA encoding a fluorescent

protein revealed that microfluidic can efficiently introduce exogenous material in cells

to be reprogrammed.

hiPSC were obtained at the microscale from different human biopsies and their

characterization revealed the full potential to derive all somatic cell type present in

our body. Since our platform dramatically reduces the minimum requirements for a

single reprogramming, fresh hiPSC can be directly and effectively differentiated in

a one-step process towards functional adult cell types valuable to perform in vitro

screenings on human tissues. This results open new research perspectives extendible
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at a hundreds of people. New drugs could be developed with a cost-effective approach

for both common and rare diseases.

Concluding, the research on substrates and microfluidic cell culture technology

led to the definition of an integrated platform to control the behavior of adult human

cells. Passing through the efficient generation of hiPSC at the microscale, we gen-

erated new functional cell types in a one-step process usable for high-value human

assays at the population scale.
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A.1 Summary

Cells perceive their microenvironment not only through soluble signals but also in

term of physical and mechanical cues, such as extracellular matrix (ECM) stiffness

or confined adhesiveness. By mechanotransduction systems, cells translate these

stimuli into biochemical signals controlling multiple aspects of cell behavior, in-

cluding growth, differentiation and cancer malignant progression; but how rigidity

mechanosensing is ultimately linked to activity of nuclear transcription factors re-

mains poorly understood. Here we report the identification of the Yorkie-homologues

YAP and TAZ as nuclear relays of mechanical signals exerted by ECM rigidity and

cell-shape. This regulation requires Rho activity and tension of the acto-myosin cy-

toskeleton but is independent from the Hippo/LATS cascade. Crucially, YAP/TAZ

are functionally required for differentiation of mesenchymal stem cells induced by

ECM stiffness and for survival of endothelial cells regulated by cell geometry; con-

versely, expression of activated YAP overrules physical constraints in dictating cell

behavior. These findings identify YAP/TAZ as sensors and mediators of mechanical

cues instructed by the cellular microenvironment.

A.2 Introduction

Physical properties of the extracellular matrix (ECM) and mechanical forces are

integral to morphogenetic processes in embryonic development, defining tissue ar-

chitecture and driving specific cell differentiation programs [1]. In adulthood, tissue

homeostasis remains dependent on physical cues, such that perturbations of ECM

stiffness - or mutations affecting its perception - are causal to pathological condi-

tions of multiple organs, contributes to aging and cancer malignant progression [2].

Mechanotransduction enables cells to sense and adapt to external forces and phys-

ical constraints [3,4]; these mechanoresponses involve the rapid remodeling of the

cytoskeleton, but also require the activation of specific genetic programs. In partic-

ular, variations of ECM stiffness or changes in cell shape caused by confining the

cell’s adhesive area have profound impact on cell behavior across multiple cell types,

such as mesenchymal stem cells [5,6], muscle stem cells [7] and endothelial cells [8].
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The nuclear factors mediating the biological response to these physical inputs remain

incompletely understood.

A.3 Results

A.3.1 ECM stiffness regulates YAP/TAZ activity

To gain insight into these issues, we asked if physical/mechanical stimuli conveyed

by ECM stiffness actually signal through known signaling pathways. For this, we

performed a bioinformatic analysis on genes differentially expressed in mammary ep-

ithelial cells (MEC) cultivated on ECM of high vs. low stiffness [9]. Specifically, we

searched for statistical associations between genes regulated by stiffness and gene sig-

natures denoting the activation of specific signaling pathways (Supplementary Fig. 2,

Supplementary Table 1 and see Methods). We included signatures of MAL/SRF and

NF-kB as these factors translocate in the nucleus in response to changes in F-actin

polymerization and cell stretching [10]. Strikingly, only signatures revealing activa-

tion of YAP/TAZ transcriptional regulators emerged as significantly overrepresented

in the set of genes regulated by high stiffness (Supplementary Fig. 2). To test if YAP

(Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding mo-

tif, also known as WWTR1) activity is regulated by ECM stiffness, we monitored

YAP/TAZ transcriptional activity in human MEC cultured on fibronectin-coated

acrylamide hydrogels of varying stiffness (elastic modulus ranging from 0.7 to 40

kPa, matching the physiological elasticities of natural tissues6). For this, we assayed

by real-time PCR two of the best YAP/TAZ regulated genes from our signature,

CTGF and ANKRD1. The activity of YAP/TAZ in cells cultured on stiff hydrogels

(15-40 kPa) was comparable to that of cells grown on plastics, whereas culturing cells

on soft matrices (in the range of 0.7-1 kPa) inhibited YAP/TAZ activity, to levels

comparable to siRNA-mediated YAP/TAZ depletion (Fig.1a and data not shown).

We confirmed this finding in other cellular systems, such as MDA-MB-231 and HeLa

cells, where we used a synthetic YAP/TAZ-responsive luciferase reporter (4xGTIIC-

lux) as direct read-out of their activity (Fig. 1a and Supplementary Fig. 4). Next,

we assayed endogenous YAP/TAZ subcellular localization; indeed, their cytoplas-
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mic relocalization has been extensively used as primary read-out of their inhibition

by the Hippo pathway or by cell-cell contact (Supplementary Fig. 5 and Ref [11]).

By immunofluorescence on MEC and human mesenchymal stem cells (hMSC, an

established non-epithelial cellular model for mechanoresponses5,6), YAP/TAZ were

clearly nuclear on hard substrates but became predominantly cytoplasmic on softer

substrates (Fig. 1b, Supplementary Fig. 6 and 7). Collectively, these data indicate

that YAP/TAZ activity and subcellular localization are regulated by ECM stiffness.

A.3.2 YAP/TAZ are regulated by cell geometry

It is recognized that changes in ECM stiffness impose different degrees of cell spread-

ing [6,12]. We thus asked whether cell spreading is sufficient to regulate YAP/TAZ.

To this end, we used micropatterned fibronectin islands of defined size, on which cells

can spread to different degrees depending on the available adhesive area8. On these

micropatterns, the localization of YAP/TAZ changed from predominantly nuclear in

spread hMSC cells, to predominantly cytoplasmic in cells on smaller islands (Fig.

1c). Of note, the use of single-cell adhesive islands rules out the possibility that

cell-cell contacts could be involved in YAP/TAZ relocalization. We confirmed these

results using human lung microvascular endothelial cells (HMVEC, Fig. 1d), that

are well known to regulate their growth according to cell shape8. Cells seeded on stiff

hydrogels or large islands display an increased cell spreading but, at the same time,

experience a broader cell-ECM contact area. To test if YAP/TAZ are regulated by

cell spreading irrespectively of the total amount of ECM, we visualized YAP/TAZ

localization in hMSC grown on the tip of closely arrayed fibronectin-coated micropil-

lars [12]: on these arrays, cells stretch from one micropillar to another, and assume

a projected cell area comparable to cells plated on big islands (3200 µm2 on average,

Fig. 1e); however, in these conditions, the actual area available for cell/ECM inter-

action is only about 10% of their projected area (300 µm2 on average, corresponding

to the smallest islands used in Fig. 1c). YAP/TAZ remained nuclear on micropil-

lars (Fig. 1e), indicating that YAP/TAZ are primarily regulated by cell spreading

imposed by the ECM.
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Figure A.3.1 – YAP/TAZ are regulated by ECM stiffness and cell shape. a, Real-
time PCR analysis in MCF10A cells (CTGF and ANKRD1, coloured bars) and luciferase
reporter assay in MDA-MB-231 cells (43GTIIC-lux, black bars) to measure YAP/TAZ tran-
scriptional activity. Cells were transfected with the indicated siRNAs (siCo., control siRNA;
siYZ1 and siYZ2, two YAP/TAZ siRNAs; see Supplementary Fig. 3) and grown on plastic,
or plated on stiff (elastic modulus of 40 kPa) and soft (0.7 kPa) fibronectin-coated hydrogels.
Data are normalized to lane 1. n = 4. b, Confocal immunofluorescence images of YAP/TAZ
and nuclei (TOTO3) in human mesenchymal stem cells (MSC) plated on hydrogels. Scale
bars, 15 µm. Graphs indicate the percentage of cells with nuclear YAP/TAZ. (n = 3). c,
On top: grey patterns show the relative size of microprinted fibronectin islands on which
cells were plated. Outline of a cell is shown superimposed to the leftmost unpatterned area
(Unpatt.). Below: confocal immunofluorescence images of MSC plated on fibronectin islands
of decreasing sizes (mm2). Scale bars, 15 µm. Graph provides quantifications. (n = 8).
See also Supplementary Fig. 8. d, Confocal immunofluorescence images of YAP/TAZ in
HMVEC plated as in c. Scale bars, 15µm. See also Supplementary Fig. 9. e, On top: grey
dots exemplify the distribution of fibronectin on micropillar arrays, shown superimposed
with the outline of a cell. Below: representative immunofluorescence of YAP/TAZ in MSC
plated on rigid micropillars. Scale bars, 15µm. Graphs, quantification of the projected
cell area, total ECM contact area, and nuclear YAP/TAZ in MSC plated on unpatterned
fibronectin, micropillars and 300 mm2 islands. (n = 4). All error bars are s.d. (*P < 0.05;
**P < 0.01; Student’s t-test is used throughout). Experiments were repeated n times with
duplicate biological replicates.
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A.3.3 YAP/TAZ sense cytoskeletal tension

We then considered that cell spreading entails activation of the small GTPase Rho

that, in turn, regulates the formation of actin bundles, stress fibers and tensile ac-

tomyosin structures [2,3]. Indeed, cells on stiff ECM or big islands displayed more

prominent stress fibers compared to those plated on soft ECM or small islands (Sup-

plementary Fig. 9 and 10). As shown in Figure 2a, we found that Rho and the actin

cytoskeleton are required to maintain nuclear YAP/TAZ in hMSC. As a control,

inhibition of Rac1-GEFs, or disruption of microtubules, did not alter YAP/TAZ

localization (Fig. 2a). Similar results were obtained also in HMVEC and MEC

(not shown). Crucially, inhibition of Rho and of the actin cytoskeleton also in-

hibited YAP/TAZ transcriptional activity, as assayed by expression of endogenous

target genes (Fig. 2b) and by luciferase reporter assays (Fig. 2c). Conversely,

triggering F-actin polymerization and stress fibers formation by overexpression of

activated Diaphanous promoted YAP/TAZ activity (Supplementary Fig. 12). We

then asked whether YAP/TAZ are regulated by the ratio of monomeric/filamentous

actin, as others observed for MAL/SRF13. To increase monomeric G-actin, we over-

expressed the R62D mutant actin13, but this was insufficient to inhibit YAP/TAZ

(Fig. 2c). Moreover, increasing the amount of F-actin either by overexpressing the

F-actin stabilizing V159N actin mutant or by serum stimulation [13] had no effect

on YAP/TAZ activity (Supplementary Fig. 13) or nuclear localization (data not

shown). As a control, in the same experimental set-up, MAL/SRF activity was

instead clearly modulated (Supplementary Fig. 14). Taken altogether, these data

indicate that Rho and stress fibers, but not F-actin polymerization per se, are re-

quired for YAP/TAZ activity. Cells respond to the rigidity of the ECM by adjusting

the tension and organization of their stress fibers, such that cell spreading is accom-

panied by increased pulling forces against the ECM3,6,12. By inhibition of ROCK

and non-muscle myosin (NMM-II)4,6, we found that cytoskeletal tension is required

for YAP/TAZ nuclear localization (Fig. 2d) and activity (Fig. 2e and Supplementary

Fig. 16). Of note, YAP/TAZ exclusion caused by these inhibitions is an early event

(occurring within 2 hours) that can be uncoupled from destabilization of stress fibers

(see Supplementary Fig. 17). By comparison, the activity of MAL/SRF was only
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marginally affected by the same treatments (Supplementary Fig. 18). To address

more directly the relevance of cell-generated mechanical force without using small-

molecule inhibitors and irrespectively of the surface properties of the hydrogels, we

compared rigid vs highly elastic micropillars [12]; on the elastic substrate, cytoplas-

mic localization of YAP/TAZ was clearly increased (Fig. 2f). Collectively, the data

indicate that YAP/TAZ respond to cytoskeletal tension. We also tested if inhibition

of YAP/TAZ occurs by entrapping YAP/TAZ in the cytoplasm or by promoting their

nuclear exclusion. As shown in Supplementary Fig. 20a, blockade of nuclear export

with LeptomycinB rescued nuclear localization of YAP/TAZ in hMSC treated with

cytoskeletal inhibitors, suggesting that YAP/TAZ keeps shuttling between cytoplasm

and nucleus irrespectively of cell tension, and that the presence of a tense cytoskele-

ton promotes their nuclear retention. Moreover, YAP/TAZ relocalization was rapid

(occurring in as little as 30 min with LatrunculinA), reversible after small-molecule

washout (Supplementary Fig. 20b), and insensitive to inhibition of protein synthesis

with cycloheximide (data not shown), suggesting a direct biochemical mechanism.

A.3.4 Mechanical cues act independently from Hippo

YAP and TAZ are the nuclear transducers of the Hippo pathway [14]. In several

organisms and cellular set-ups, activation of the Hippo pathway leads to YAP/TAZ

phosphorylation on specific serine residues; in turn, these phosphorylations inhibit

YAP/TAZ activity through multiple mechanisms, including proteasomal degrada-

tion [14]. Intriguingly, similar to Hippo activation by cell-cell contacts (Fig. 3a),

TAZ protein was also degraded by culturing MEC cells on soft matrices (Fig. 3b) or

by treatment with inhibitors of Rho, F-actin and actomyosin tension (Fig. 3c and

Supplementary Fig. 21). Similar results were obtained with hMSC and HMVEC

(Supplementary Fig. 22 and data not shown). Is then the Hippo cascade responsible

for YAP/TAZ inhibition by mechanical cues? Several evidences indicate this is not

the case. First, we noted that phosphorylation of YAP on serine 127, a key target

of the LATS kinase downstream of the Hippo pathway [15], was not increased upon

treatment of hMEC and hMSC with cytoskeletal inhibitors (Fig. 3c and Supple-

mentary Fig. 22), at difference with its regulation by high confluence (see Fig. 3a).
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Figure A.3.2 – YAP/TAZ activity requires Rho and tension of the actin cy-
toskeleton. a, Confocal immunofluorescence images of YAP/TAZ in MSC treated with
the Rho inhibitor C3 (3 µgml�1), the F-actin inhibitor latrunculin A (Lat.A, 0.5 µgml�1),
the Rac1-GEFs inhibitor NSC23766 (100 µgml�1) or the microtubule inhibitor nocoda-
zole (Noco., 30 µgml�1). Scale bars, 15 mm. Graph provides quantifications (n = 10).
See also Supplementary Fig. 11. b, Real-time PCR of MCF10A treated with cytoskeletal
inhibitors as in a. Data are normalized to untreated cells (Co.) (n = 4). c, Luciferase as-
say for YAP/TAZ activity in HeLa cells transfected with the indicated expression plasmids
(Co. is empty vector, actin R62D encodes for a mutant unable to polymerize into F-actin)
and treated with latrunculin A (n = 4). Similar effects were observed in MDA-MB-231
(not shown). d, Confocal immunofluorescence images of MSC treated with the ROCK in-
hibitor Y27632 (50 µgml�1), or the non-muscle myosin inhibitor blebbistatin (Blebbist., 50
µgml�1). Scale bars, 15 µm. Graph provides quantifications (n = 9). See also Supple-
mentary Fig. 15. e, Luciferase activity of the YAP/TAZ reporter in HeLa treated as in d.
(n = 4). f, Confocal immunofluorescence images of MSC plated on arrays of micropillars
of different rigidities. On rigid micropillars (black lines) cells develop cytoskeletal tension
(blue arrow) by pulling against the ECM (orange arrow); cells bend elastic micropillars
and develop reduced tension exemplified by reduced size of the arrows. Scale bars, 15 µm.
Graph provides quantifications (n = 2). See also Supplementary Fig. 19. All error bars are
s.d. (*P < 0.05; **P < 0.01). Experiments were repeated n times with duplicate biological
replicates.
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Second, depletion of LATS1 and LATS2 (see Fig. 3f and Supplementary Fig. 23 for

positive controls) had marginal effect on YAP/TAZ inactivation by mechanical cues,

as judged by: i) YAP/TAZ nuclear exit induced by micropatterns or cytoskeletal in-

hibition in hMEC, hMSC or HMVEC (Fig. 3d, Supplementary Fig. 24, 25 and data

not shown); ii) TAZ degradation (Fig. 3e); iii) endogenous target gene expression in

cells plated on soft hydrogels (Fig. 3f) or treated with LatrunculinA (Supplemen-

tary Fig. 26). Finally, we compared wild-type or LATS-insensitive 4SA [16] TAZ

in MDA-MB-231 depleted of endogenous YAP/TAZ and reconstituted at near-to-

endogenous YAP/TAZ activity levels with siRNA-insensitive mouse TAZ (mTAZ)

vectors. As shown in Fig. 3g, both wild-type (WT) and 4SA mTAZ remain sensitive

to mechanical cues. Further supporting these results, we found that MDA-MB-231

cells are homozygous mutant for NF2/merlin (Supplementary Fig. 27), an essential

component of the Hippo cascade [14]. Collectively, these data suggest that LATS

phosphorylation downstream of the Hippo cascade is not the primary mediator of

mechanical/physical cues in regulating YAP/TAZ activity. We then asked if me-

chanical cues regulate YAP/TAZ not only in isolated cells, but also in confluent

monolayers, when cells reorganize their shape and structure and engage in cell-cell

contacts, leading to activation of Hippo/LATS signaling11. We first explored the

effects of cell confluence in a simplified experimental set-up, namely in MCF10A

cells rendered insensitive to Hippo activation by depletion of LATS1/2; in these con-

ditions, Rho and the cytoskeleton remain relevant inputs to support TAZ stability

(Supplementary Fig. 28). Moreover, in parental MCF10A, plating cells at high

confluence cooperate with soft hydrogels in inhibiting YAP/TAZ activity (Fig. 3h).

Thus, mechanical cues and Hippo signaling represent two parallel inputs converging

on YAP/TAZ regulation.

A.3.5 YAP/TAZ mediate cellular mechanoresponses

Data presented so far indicate YAP and TAZ as molecular “readers” of ECM elasticity

and cell geometry; but are YAP/TAZ relevant to mediate the biological responses to

these mechanical inputs? An appropriate cellular model to address this question are

hMSC, that can differentiate into osteoblasts when cultured on stiff ECM, mimicking
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Figure A.3.3 – ECM stiffness and cell spreading regulate YAP/TAZ indepen-
dently of the Hippo pathway. a–c, Immunoblotting for the indicated proteins in
MCF10A under the following conditions: a, plating on plastic at low (sparse) or high (dense)
confluence; b, plating on stiff (40 kPa) or soft (0.7 kPa) hydrogels; c, untreated (Co.) or
treated with C3 and latrunculin A (Lat.A). P-S127 is phospho-YAP. d, Quantification of
nuclear YAP/TAZ in MSC transfected with control or LATS1/2 siRNA A (siLATS A) and
plated on microprinted islands of different size (n = 4). Similar results were obtained with
HMVEC (not shown). e, Immunoblotting from MSC cells transfected with the indicated
siRNAs (Co., control siRNA; L, LATS1/2 siRNA A), plated on plastic and treated with C3
(0.5 or 3 µgml�1). Similar results were obtained by using blebbistatin or latrunculin A,
or by treating HMVEC and MCF10A (not shown). f, Real-time PCR analysis of MCF10A
transfected with the indicated siRNAs and cultured on hydrogels. Data are normalized to
the first lane (n = 3). g, Luciferase assay in MDA-MB-231 transfected as indicated and
treated with latrunculin A (Lat.A) or replated on soft hydrogels. (n = 8). h, RT– PCR
of MCF10A grown under sparse or confluent (dense) conditions on the indicated hydrogels.
Data are normalized to the first lane (n = 2). All error bars are s.d. (*P < 0.05; **P <
0.01). Experiments were repeated n times with duplicate biological replicates.
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the natural bone environment, while on soft ECM - or small islands - they differenti-

ate into other lineages, such as adipocytes [5,6]. A similar case applies to endothelial

cells, that respond differently to the same soluble growth factor by proliferating,

differentiating or involuting according to the degree of cell spreading against the

surrounding ECM8. We hypothesized that cell fates induced by stiff ECM and large

islands (i.e. where YAP/TAZ are active) should require YAP/TAZ function and,

conversely, cell fates associated to soft ECM and small islands (where YAP/TAZ are

inhibited) should require their inactivation. In line with this hypothesis, osteogenic

differentiation induced in hMSC on stiff ECM was inhibited upon depletion of YAP

and TAZ, and a similar inhibition was achieved either by culturing cells on soft ECM

or by incubation with C3 (Fig. 4a, b). We also monitored adipogenic differentiation,

a fate normally not allowed on stiff ECM; strikingly, YAP/TAZ knockdown enabled

adipogenic differentiation on stiff substrates, thus mimicking a soft environment (Fig.

4c and Supplementary Fig. 30). In the case of HMVEC, cells plated on small islands

undergo apoptosis, while cells on bigger islands proliferate, as assayed by TUNEL

staining and BrdU incorporation, respectively8. Upon YAP/TAZ depletion, cells on

bigger islands behaved as if they were on small islands; this is overlapping with the

biological effects of Rho inhibition (Fig. 4d). In line with the Hippo independency of

this regulation, knockdown of LATS1/2 was not sufficient to rescue osteogenesis upon

C3 treatment, or endothelial cell proliferation on small islands (Supplementary Fig.

32). Collectively, these data suggest that YAP/TAZ are required for cell differentia-

tion triggered by changes in ECM stiffness and for geometric control of cell survival.

We next tested if the sole YAP/TAZ activity can re-direct the biological responses

elicited by soft/confined ECM. Overexpression of activated 5SA-YAP with lentiviral

infection (to at least ten fold the endogenous levels, data not shown) remarkably

overruled the geometric control over proliferation and apoptosis in HMVEC (Fig.

4e), and rescued osteogenic differentiation of hMSC treated with C3 or plated on

soft ECM (Fig. 4f, g). Thus, cells on soft matrices or on small adhesive areas can be

tricked to behave as if they were adhering on harder/larger substrates by sustaining

YAP/TAZ function.
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Figure A.3.4 – YAP/TAZ are required mediators of the biological effects con-
trolled by ECM elasticity and cell geometry. a–c, MSC were transfected with the
indicated siRNA (control, siCo.; YAP/TAZ, siYZ1 and siYZ2), plated on stiff (40 kPa) or
soft (1 kPa) substrates and induced to differentiate into osteoblasts (a, b) or adipocytes (c).
C3 (0.5 mg ml21) was added and renewed with differentiation medium. a, Representative
alkaline phosphatase stainings and b, quantifications of osteogenic differentiation (n = 4).
c, Quantification of adipogenesis based on oil-red stainings (n = 2) (A.U., arbitrary units,
see methods). See Supplementary Figs 29 and 30 for controls. These results are consistent
with ref. 23. d, Proliferation (BrdU, upper panel) and apoptosis (TUNEL, lower panel)
of HMVEC plated on adhesive islands of different size; where indicated, cells were treated
overnight with C3 (2.5 µgml�1), or transfected with the indicated siRNAs (n = 5). Similar
results were obtained with siYZ2 (not shown). Representative stainings in Supplementary
Fig. 31. e, Proliferation (upper panel) and apoptosis (lower panel) of control and 5SA-
YAP-expressing HMVEC, plated on adhesive islands. f, g, Quantifications of osteogenesis
in MSC transduced with 5SA-YAP, and treated with C3 (50 and 150 ngml�1) (n = 3) (f)
or plated on hydrogels (n = 2) (g). Representative stainings in Supplementary Fig. 33. All
error bars are s.d. (*P < 0.05; **P < 0.01; n.s., not significant). Experiments were repeated
n times with duplicate biological replicates.
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A.4 Discussion

In sum, our findings indicate a fundamental role of the transcriptional regulators

YAP and TAZ as downstream elements in how cells perceive their physical microen-

vironment (Supplementary Fig. 1). Our data define an unprecedented modality of

YAP/TAZ regulation, that acts in parallel to the NF2/Hippo/LATS pathway and

instead requires Rho activity and the acto-myosin cytoskeleton. Interestingly, this

recapitulates aspects of MAL/SRF regulation13, but also entails profound differ-

ences: YAP/TAZ activity requires stress fibers and cytoskeletal tension induced by

ECM stiffness and cell spreading, but is not directly regulated by G-actin levels. The

detailed biochemical mechanisms by which cytoskeletal tension regulates YAP/TAZ

awaits further characterization, but it is tempting to speculate that stress-fibers

inhibit an unidentified YAP/TAZ-interacting molecule that, when released, would

promote their inactivation. Functionally, we showed that different cellular models

read ECM elasticity, cell shape and cytoskeletal forces as levels of YAP/TAZ activity,

such that experimental manipulations of YAP/TAZ levels can dictate cell behavior,

overruling mechanical inputs. This identifies a new widespread transcriptional mech-

anism by which the mechanical properties of the ECM and cell geometry instruct cell

behavior. This may now shed light on how physical forces shape tissue morphogen-

esis and homeostasis, for example in tissues undergoing constant remodeling upon

variation of their mechanical environmnent; indeed, alterations of YAP/TAZ signal-

ing have been genetically linked in animal models to the emergence of cystic kidney,

pulmonary emphysema, heart and vascular defects [17-20]. In cancer, changes in the

ECM composition and mechanical properties is the focus of intense interest, as these

have been correlated with progression and build-up of the metastatic niche [2]; in

light of their powerful oncogenic activities [14], YAP/TAZ might serve as executers

of these malignant programs. Genetically, YAP and TAZ have been linked to a uni-

versal system that control organ size14. The current view implicates Hippo signaling

as the sole determinant of YAP/TAZ regulation in tissues. However, our results sug-

gest physical/mechanical inputs as alternative determinant of YAP/TAZ activity.

Supporting our model, it has been observed that growth of epithelial tissues entails

the build-up of mechanical stresses at tissue boundaries21, and theoretical work pro-
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posed that these serve as positive feedback to homogenize cell growth, compensating

for uneven activity of soluble growth factors [22]. It is tempting to speculate that

proliferative tissue homeostasis may be achieved by a combination of growth fac-

tor signaling and localized control of YAP/TAZ activation by cell-cell contacts and

mechanical cues.
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B.1 Summary

Key cellular decisions, such as proliferation or growth arrest, typically occur at

spatially-defined locations within tissues. Loss of this spatial control is a hallmark

of many diseases, including cancer. Yet, how these patterns are established is in-

completely understood. Here we report that physical and architectural features of a

multicellular sheet inform cells about their proliferative capacity through mechanical

regulation of YAP and TAZ, known mediators of Hippo signaling and organ growth.

YAP/TAZ activity is confined to cells exposed to mechanical stresses, such as stretch-

ing, location at edges/curvatures contouring an epithelial sheet, or stiffness of the

surrounding extracellular matrix. We identify the F-actin capping/severing proteins

Cofilin, CapZ and Gelsolin as essential gatekeepers that limit YAP/TAZ activity in

cells experiencing low mechanical stresses, including contact inhibition of prolifera-

tion. We propose that mechanical forces are overarching regulators of YAP/TAZ in

multicellular contexts, setting responsiveness to Hippo, WNT and GPCR signaling.

B.2 Introduction

Spatially restricted patterns of cell proliferation shape embryonic development and

maintain adult epithelial tissues. How these local growth patterns are established

remains unclear. In the past decades, major emphasis has been placed on graded dis-

tribution of soluble growth factors or their restricted activity in “niches”. This view,

however, does not fully explain how the microenvironment can robustly template cell

behavior in time and space, with micrometer accuracy [1,2]. Moreover, soluble factors

alone can hardly account for some remarkable examples of ordered proliferation, dif-

ferentiation and self-organization of entire organs emerging in vitro from naïve cells

cultured in media saturated of mitogens and growth factors [3]. This suggests that

tissues are somehow endowed with the capacity to inform individual cells on their pro-

liferative competence, likely including the responsiveness to soluble cues. Although

the molecular nature of these informational systems is uncertain, an intriguing model

is that the architectural form of the tissue - its shape and three-dimensional geometry

- serves as template to initiate and self-sustain asymmetric patterns of cell prolifer-
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ation [4,5]. Key elements of such architectural signal are cell shape, cell geometry

and deformation generated by the pulling forces of the extracellular matrix (ECM)

and of neighboring cells, and the associated changes in cytoskeletal organization

and tension [6-9]. In this model, a specific tissue conformation would translate into

a pattern of mechanical forces potentially targeting individual cells with exquisite

detail. Supporting this “biomechanical” perspective, the physical properties of the

microenvironment are increasingly recognized as potent and pervasive regulators of

cell behavior, such as proliferation and differentiation [10]. A critical step forward

in understanding these processes has been the discovery that mechanical signals are

transduced by two related transcriptional coactivators, YAP and TAZ [11]. These

are powerful regulators of cell proliferation and survival, playing critical roles in or-

gan growth [12,13]. A number of human cancers hijack these properties to foster

their own growth, including induction of cancer stem cells and metastatic coloniza-

tion [14,15]. YAP and TAZ shuttle between the cytoplasm and the nucleus, where

they interact with TEAD transcription factors to regulate transcription. Classically,

the Hippo cascade has been regarded as the major regulatory input upstream of

YAP/TAZ [12]. Very recently, WNT and GPCR signaling pathways have also been

recognized as important regulators of YAP/TAZ [16,17]. Thinking along the connec-

tions between tissue architecture, cell mechanics and YAP/TAZ biology, we asked:

is the mechanical regulation of YAP and TAZ translating spatial force distribution

into patterned growth within multicellular layers? If so, how is positional informa-

tion transmitted to YAP/TAZ? Are the different inputs feeding on YAP/TAZ (e.g.

mechanical stimulation, Hippo, WNT or GPCR signaling) parallel or interdependent

regulations? Here we started to shed light on these issues by discovering that cell

proliferation in an epithelial monolayer is profoundly influenced by a mechanical and

cytoskeletal checkpoint that regulates YAP and TAZ. This tissue-level checkpoint is

enforced by the F-actin capping and severing proteins CapZ, Cofilin and Gelsolin.

These factors inhibit YAP and TAZ in cells that, within a monolayer, are located at

sites of low mechanical stress. Conversely, YAP/TAZ-mediated proliferative compe-

tence occurs in cells that exhibit higher contractility in response to stretching forces,

depending on the shape of the epithelial sheet or on the rigidity of the surrounding
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ECM. We propose that mechanical stresses are overarching regulators of YAP/TAZ

in multicellular contexts, also setting cell responsiveness to Hippo, WNT and GPCR

signaling.

B.3 Results

Mechanical regulation of cell proliferation through YAP/TAZ A classic paradigm

on the control of proliferation in multicellular aggregates is contact inhibition of

proliferation (CIP), a process by which cultured cells stop dividing when they become

confluent occupying the entire space allotted to them. This behavior recapitulates

the proliferative arrest of most epithelia typically leading to cell differentiation or

death. Interestingly, loss of CIP is considered a hallmark of cancer [18,13]. In CIP,

a unifying theme is the regulation of YAP and TAZ, that tend to remain nuclear in

cells growing at low density and relocate in the cytoplasm in confluent cultures [19].

CIP is associated with phosphorylation of YAP and TAZ, indicating the activation

of the Hippo pathway kinases [19]. However, the regulation of YAP/TAZ by contact

inhibition appears more complex. For example, recent data show that, at least in

MEFs or keratinocytes, the mammalian Hippo homologue MST1/2 and LATS1/2 are

dispensable for CIP [20]. Here we decided to explore a different scenario, in which

CIP incorporates a mechanical regulation of YAP and TAZ. To test this, we compared

immortalized human mammary epithelial cells (MEC) plated at different densities

(3000, 15000, 75000 cells/cm2) (Figure 1A). At the lowest plating density (hereafter

called “sparse”), cells exhibited no or minimal contact between neighboring cells. At

the intermediate plating density (“confluent”), cells were confluent with all-around

cell-cell contacts, while, at the highest density (“dense”), space constraints caused

cells to form a densely packed monolayer. Using anti-E-Cadherin immunofluorescence

to identify cell borders, we quantified that the projected cell area dropped more

than ten folds with increasing density, from 1400 µm2 in sparse cells, to 700 µm2

in confluent cells and down to 130 µm2 in dense cells (Figure 1A). As measured by

BrdU incorporation, confluent cultures displayed about a 30% reduction of S-phase

entry when compared to sparse cultures (Figure 1B). This degree of proliferative

inhibition is in agreement with the expected contribution of cell-cell contact and
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E-Cadherin engagement to CIP [21], and was paralleled by a partial YAP/TAZ

cytoplasmic relocalization (Figure 1C). That said, both nuclear YAP/TAZ levels and

proliferation remained clearly evident in confluent cultures (Figures 1B and 1C), with

YAP/TAZ activity being causal for S-phase entry (Figure 1B). This suggests that

cell-cell contact per se is not sufficient to induce either post-confluence inhibition

of proliferation, or robust YAP/TAZ inactivation. This is in contrast to the cells

seeded at high density (dense), which are overtly growth arrested and exhibit largely

cytoplasmic, transcriptionally inactive YAP/TAZ (Figures 1B, 1C, S1A). CIP is

reversible, as inducing a “wound” in the monolayer by scraping away a stripe of

cells caused the cells lying within a few cell diameters from the edge of the wound

to stretch without losing cell-cell contacts, re-localize YAP/TAZ to the nuclei and

proliferate (Figure S1B and data not shown). Similar results were observed by using

immortalized human HaCaT keratinocytes (Figures S1C-F and data not shown).

YAP/TAZ inactivation in the course of CIP has been associated with activation

of cell-cell adhesion machinery and activation of the Hippo pathway (Zhao et al.,

2007). We thus asked if the distinct degrees of YAP/TAZ inactivation observed in

confluent and dense cultures, were dependent on catenins and LATS. Consistently

with previous reports [21,20], knockdown of ↵-catenin, p120-catenin or LATS1/2

rescued YAP/TAZ transcriptional activity in confluent cultures, as measured by the

expression of YAP/TAZ target genes CTGF, CYR61 and ANKRD1 (Figures S1G-

I and data not shown). Surprisingly, however, the same depletions had marginal

effects on YAP/TAZ signaling in dense cultures (Figures S1G-I). The above results

suggest that, beside cell-cell contacts, the main determinant for YAP/TAZ inhibition

and post-confluent growth arrest is actually to attain a small cell size - intended

as adhesion to a small ECM substrate area (Figure 1A). Indeed, cells attaching

to a small area are known to experience low mechanical stresses, as they display

decreased integrin-mediated focal adhesions, reduced actin stress fibers, and blunted

cell contractility [22,8,9]. Importantly, these mechanical cues have recently been

shown to be essential for YAP/TAZ nuclear localization and activity [11,23]. In

this perspective, CIP would represent the response to a mechanical constraint: as

cell crowding progressively boxes individual cells into smaller areas, these would
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be subjected to the same YAP/TAZ-regulating mechanotransduction pathways that

affect isolated cells plated on small ECM islands. In line with this view, MEC

plated as single cells on micropatterned fibronectin islands of defined areas displayed

strong inhibition of YAP/TAZ nuclear levels and BrdU incorporation when individual

cell-size dropped below 300 µm2 (Figures 1D and 1E), independently of cell-cell

contacts. Similarly, decreasing mechanical cues by culturing cells on soft substrates

(i.e., fibronectin-coated acrylamide hydrogels) also caused cell rounding, YAP/TAZ

nuclear exclusion and proliferative inhibition (Figures 1F, 1G and S1J).

The remarkable phenotypic similarities between cells cultured in small, soft or

dense conditions clearly suggest that these apparently different modalities to regulate

YAP/TAZ may actually all correspond to the control of YAP/TAZ by mechanical

cues. To address more directly the notion that in a multicellular layer the control of

YAP/TAZ activity and cell proliferation occurs through mechanical cues, we devel-

oped a microdevice that reproduces some of the mechanical challenges experienced

by tissues, such as stretching (Figure 2A and S2A-C). This microdevice was built

by fabricating into polydimethylsiloxane silicone (PDMS) a microfluidic network of

hollow channels connecting larger “chambers” filled with saline solution. The surface

of PDMS was coated with ECM (fibronectin) to allow cell attachment. MECs were

seeded on this surface at high cell density causing cells to exclude YAP/TAZ from

nuclei and undergo CIP. Next, we slowly applied computer-controlled pressure to

the system, imposing cells to radially stretch as the PDMS membrane overlaying

each chamber inflated (Figure 2A). This applied strain increased the cell adhesive

surface to 150%, as quantified from measurements of the cell-projected area (Figure

2B). This was associated to a remodeling of the F-actin cytoskeleton with appear-

ance of phalloidin-positive actin bundles in stretched cells (Figure S2D). Remarkably,

stretched cells rapidly reactivated YAP/TAZ, as monitored by nuclear localization,

and re-entered S-phase (Figure 2C and 2D). Based on these experiments we con-

clude that mechanical forces acting on specific areas of an epithelial sheet reflect into

changes of shape and mechanics of the individual cells, and act as spatially localized

determinants of cell proliferation through YAP/TAZ regulation.
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Figure B.3.1 – High Cell Density, Small Cell Geometry, and Soft ECM All Lead
to Restriction of Cell Area, YAP/TAZ Relocalization, and Growth Arrest (A)
Cells plated at different densities display increasingly smaller cell-substrate adhesion areas.
MECs were seeded to obtain sparse cells and confluent or dense monolayers. After 2 days,
cells were fixed for immunofluorescence with anti- E-cadherin antibody (anti-E-CAD) to
visualize formation of cell-cell contacts by confocal microscopy. TOTO3 is a nuclear coun-
terstain. Scale bar, 20 mm. (Right) Average cell area in the three seeding conditions. Similar
results were obtained with HaCaT keratinocytes (Figure S1C). (B) MECs were plated as in
(A); after 2 days, cells were incubated for 1 hr with a pulse of BrdU to label cells undergo-
ing DNA duplication. Cells were fixed and processed for anti-BrdU immuno- fluorescence
(aBRDU). (Right) Quantitation of proliferation measured as the percentage of BrdU-positive
cells. Similar results were obtained with HaCaT keratinocytes (Figure S1D). Note minimal
residual proliferation in dense cells, even after YAP/TAZ depletion, suggesting that cell
proliferation in culture may not be totally dependent on YAP/TAZ. (C) MECs were plated
as in (A) and stained for immunofluorescence with anti-YAP/TAZ antibody (aYAP/TAZ).
TOTO3 is a nuclear counterstain. Scale bar, 20 µm. (Right) Proportion of cells dis- playing
preferential nuclear YAP/TAZ localization (N, black), even distribution of YAP/TAZ in
nucleus and cytoplasm (N/C, gray), or cytoplasmic YAP/ TAZ (C, white). Similar results
were obtained with HaCaT keratinocytes (Figure S1E) and with an in- dependent anti-YAP
antibody (not shown). (D and E). Restricting cell-substrate adhesion area to levels compara-
ble to those of dense cells is sufficient to cause YAP/TAZ nuclear exclusion and inhibition of
proliferation. MECs were seeded as individual cells plated on fibronectin-coated glass (large)
or on square microprinted fibronectin islands of 300 mm2 (small). In (D), cells were fixed
after 1 day for immunofluorescence with anti-YAP/ TAZ antibody (aYAP/TAZ). DAPI is a
nuclear counterstain. Scale bar, 20 µm. (Right) YAP/TAZ nucleo/cytoplasmic localization
was scored as in (C). In (E), cells were processed for BrdU incorporation as in (B). (F and
G) Effects of a soft ECM substrate on epithelial proliferation. Confocal immunofluorescence
images of YAP/TAZ of MECs plated on fibronectin-coated stiff (plastic) and soft (acry-
lamide hydrogels of 0.7 kPa) substrates. TOTO3 is a nuclear counterstain. Scale bar, 20
mm. On the right: YAP/TAZ nucleo/cytoplasmic localization was scored as in (C). In (G)
cells were processed for BrdU incorporation as in (B). Similar results were obtained using
acrylamide hydrogels of 40 kPa or plastics (Dupont et al., 2011 and data not shown). Data
are mean and SD. Experiments were per- formed at least three times with three biological
replicates each time. Quantitations were carried out by scoring at least 2,000 cells for each
sample. Pictures show representative results. See also Table S1 for siRNA sequences and
Figure S1.
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Figure B.3.2 – Stretching of an Epithelial Mono- layer Overcomes YAP/TAZ Inhibition
and Growth Arrest in Contact-Inhibited Cells (A) A monolayer stretching device. Cells
were seeded on the upper surface of a PDMS substrate to obtain a dense monolayer (see
also Figure S2A). Underneath the PDMS is a chamber filled of fluid (white space between
the PDMS and glass). At atmospheric pressure (dense, p = 0), the cell monolayer remains
flat; when pressure is applied to the fluid inside the chamber (stretched, p > 0), the increase
of the chamber volume causes a corresponding increase of the surface to which the monolayer
is attached. (B) MECs stably expressing membrane-bound EGFP (Mb-EGFP) and nuclear-
localized mCherry (NLS-Cherry) were seeded at dense conditions as in Figure 1A on top of
the stretching device. After 2 days, cells were imaged under the epifluorescent microscope
before (Co.) and immediately after stretching. Pressure was then maintained constant
during observation. Projected cell area was measured in the two conditions (dashed lines
in the lower pictures indicate the cell boundaries before and after stretching). The graph
shows the average quantitation of cell area. The ramping of pressure increase was set in
order to avoid destruction of cell-cell contacts (as monitored with Mb-EGFP; data not
shown). Scale bar, 20 mm. (C) MECs were plated on the stretching device as in (B).
After 2 days, cells were subjected to 6 hr of static stretching, fixed with the device still
under pressure, and then processed for immunofluorescence with anti-YAP/TAZ antibody
(aYAP/TAZ). DAPI is a nuclear counterstain. Scale bar, 20 mm. (Right) Proportion of
cells displaying preferential nuclear YAP/TAZ localization (N, black), even distribution of
YAP/TAZ between the nucleus and the cytoplasm (N/C, gray), or prevalently cytoplasmic
YAP/TAZ (C, white). Similar results were obtained after 3 hr of stretching (not shown).
(D) MECs were plated on the stretching device as described in (B). After 2 days, cells
were subjected to 6 hr of static stretching in the presence of BrdU to label cells undergoing
DNA duplication. Scale bar, 20 mm. (Right) Quantitation of proliferation measured as
the percentage of BrdU-positive cells. Throughout the panels, data are mean and SD.
Experiments were performed at least three times with at least three biological replicates
each time. Quantitations were carried out by scoring at least 2,000 cells for each sample.
Pictures show representative results. See also Figure S2.
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B.3.1 F-actin capping and severing proteins are YAP/TAZ inhibitors

We next sought to identify molecular players involved in YAP/TAZ regulation by

mechanical cues. F-actin regulatory proteins appeared as ideal candidates: treat-

ments that disrupt F-actin or cytoskeletal contractility oppose YAP/TAZ function

[11,23,19]; then, it is recognized that cells respond to external mechanical cues by

adjusting the tension and overall organization of their actin cytoskeleton by engag-

ing a plethora of actin-binding proteins [22]. Finally, cells plated on small ECM

islands, on soft ECM or in a dense monolayer are characterized by similar F-actin

organization, as they retain cortical F-actin, but all display reduced or absent F-

actin bundles (Figure S2D and data not shown). We thus reasoned that knockdown

of endogenous negative regulators of F-actin should restore cytoskeletal structures

required for YAP/TAZ activity in inhibitory mechanical conditions. We selected a

total of 62 genes identified as F-actin inhibitors in a genome-wide screen [24]. In

order to specifically identify genes relevant for YAP/TAZ regulation by mechanical

cues, we screened them using an unambiguous mechanotransduction assay, that is,

the rescue of YAP/TAZ-dependent transcription on soft ECM substrates. MECs

were transfected with two pairs of siRNAs for each F-actin inhibitor and seeded on

soft hydrogels (approximating an elastic modulus of 0.7 kPa). Cells were harvested

after 48 hours and analysed by qPCR for CTGF mRNA expression as read-out of

YAP/TAZ activity (Figure 3A). Although most siRNAs were ineffective, few siRNAs

reactivated CTGF expression to levels comparable to, or higher than, those of cells

growing on a stiff matrix (Figure 3B). These candidates were then validated by using

individual siRNAs and testing their effectiveness at activating multiple YAP/TAZ

endogenous targets (CTGF, ANKRD1, CYR61); among the candidates, Cofilin1/2,

Capzb and Gelsolin, well-established organizers of F-actin distribution and dynam-

ics [25], stood out as potent YAP/TAZ inhibitors (Figure 3C and S3A and data not

shown). Cofilin and Gelsolin (also known as Actin Depolymerizing Factors) increase

the turnover of F-actin by severing microfilaments; after severing, Gelsolin remains

attached to the newly formed barbed end, preventing filament annealing and poly-

merization. CapZ (also known as �-actinin or Capping Protein) shares with Gelsolin

such actin-capping function [25]. Most of what we know about Cofilin, Gelsolin
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and CapZ in mammalian cells is based on cell migration studies, particularly in the

context of dynamic cell protrusions, or from in vitro studies [25], while little data

is available on their role in other relevant biological processes. In sparse MECs,

depletion of Cofilin, CapZ and Gelsolin caused a general increase in F-actin stain-

ing, with particularly thickened stress-fibers, and increased peripheral protrusions

resembling filopodia and lamellipodia (Figure 3D and S3B). Supporting the notion

that F-actin capping and severing proteins do work through F-actin modification

to regulate YAP/TAZ, we found that CapZ depletion could not increase YAP/TAZ

activity in cells treated with LatrunculinA, an F-actin inhibitory drug (Figure S3C).

To further dissect which subset of the F-actin networks is relevant for YAP/TAZ

activity we treated cells with chemical inhibitors of formins (SMIFH2) or ARP2/3

(CK666; CK869; see Supplemental Information for details): these compounds pref-

erentially inhibit formation of F-actin bundles (formin-dependent), or of F-actin

branched networks that sustain lamellipodia formation (ARP-dependent). qPCR for

CTGF indicated that YAP/TAZ activity mostly depends on F-actin bundles (Fig-

ure 3E). Taken together, the results link mechanical regulation of YAP/TAZ activity

to F-actin capping/severing proteins and formation of stress fibers. We next used

F-actin capping/severing proteins as tools to further query the nature of YAP/TAZ

inhibition by cell density. Depletion of Cofilin, CapZ or Gelsolin rescued formation

of stress fibers as well as YAP/TAZ nuclear localization, TAZ protein stability and

YAP/TAZ-dependent gene expression in dense cells (Figures 4A-C, S4A and S4B).

These findings support the notion that control of YAP/TAZ by high cell density

entails a mechanical and cytoskeletal regulation.

B.3.2 Role of YAP/TAZ and F-actin inhibitors in mechanical pat-

terning of cell proliferation

Next, we wondered whether YAP/TAZ reactivation by depletion of F-actin capping

and severing proteins is also paralleled by a rescue of CIP. To address this ques-

tion, we employed microfabrication methods to stamp fibronectin-coated substrates

of defined shape and area. This set-up allows studying how patterns of mechanical

forces generate patterned growth within a monolayer: cells located at the borders
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Figure B.3.3 – CapZ, Cofilin, and Gelsolin Inhibit YAP/TAZ Activity (A and B) siRNA
screen for negative regulators of the F-actin cytoskeleton impinging on YAP/TAZ activ-
ity. (A) Schematic overview of the screening procedure. MECs were transfected with two
independent couples of siRNAs against each gene (siRNA 1+2 or siRNA 3+4). The day
after transfection, cells were replated as single cells on a soft ECM hydrogel (0.7 kPa) and
harvested after 2 more days for qPCR analysis. (B) Results of the screening, where each
point of the purple line corresponds to a single siRNA/gene. The orange diamonds indicate
the effects of controls and of selected siRNAs that were further validated (see text). Cfl,
Cofilin; Gsn, Gelsolin. The dotted line represents CTGF levels in cells transfected with
siControl (siCo.) but plated on a stiff ECM substrate. Here and throughout the figures,
CTGF levels are relative to GAPDH expression. (C) Loss of capping and severing proteins
rescues YAP/TAZ inhibition on soft ECM. CTGF (purple) and ANKRD1 (violet) expres-
sion in MECs are independent readouts of YAP/TAZ transcriptional activity. Cells were
transfected with single siRNA against each gene (A, B, or C). Stiff (white column) is a stiff
ECM substrate; soft (colored columns) is a 0.7 kPa ECM hydrogel. See Figure S3A for
knockdown efficiencies on endogenous proteins. (D) Loss of Capzb, Cfl1, and Gsn induces
formation of thicker actin bundles. Close-up confocal immunofluorescence of MECs trans-
fected with the indicated siRNA and stained for F-actin with phalloidin (green) and nuclei
(TOTO3, red). Scale bar, 20 µm. See Figure S3B for increased filopodia and lamellipodia
after Capzb, Cfl1, and Gsn knockdown. Consistent results were obtained with independent
siRNAs (not shown). (E) Regulation of F-actin dynamic and assembly by formin proteins is
required for YAP/TAZ activity. MECs were plated on a stiff ECM substrate and treated for
24 hr with increasing doses of the inhibitor of formin-homology 2 domains SMIFH2 (used
at 5, 15, 30 µM) or of the Arp2/3 inhibitors CK666 (5, 10, 50 mM) and CK869 (5, 10, 50
µM). Data are mean and SD. Experiments were performed three times with at least three
biological replicates each time. See also Figure S3 and Tables S1 and S2.
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of the island experience higher mechanical stress than cells located in the center

[26]. MECs were uniformly seeded at high density on circular islands and, after 48

hours, cell proliferation rate was assayed by BrdU incorporation (Figure S4C). As

shown in Figure 4D, the number of cells in S-phase greatly decreased in the center of

the island but persisted at the border, matching the distribution of physical forces

[26]. Knockdown of YAP and TAZ revealed that proliferation at the border was

YAP/TAZ dependent (Figure 4D). This growth pattern - as previously noticed [26]

- was driven by tensional forces, since inhibition of non-muscle myosin II with bleb-

bistatin, or of myosin light chain kinase with ML-7, greatly reduced proliferation at

the culture borders, phenocopying attenuation of YAP/TAZ (Figure 4D). Strikingly,

depletion of CapZ and Cofilin clearly prevented CIP in center cells. Importantly, this

occurred without increasing the growth of cells at the border, thus partially leveling

the growth differentials within the epithelial sheet (Figure 4D). The restoration of

proliferation by depletion of capping and severing proteins was dependent on YAP

and TAZ (Figure 4D). We obtained similar results by seeding cells on square-shaped

islands, where YAP/TAZ-dependent proliferation was concentrated at corners and

edges (Figures S4D, S4E and data not shown). The above results suggest that the

form of an epithelial monolayer generates patterns of tensional forces that trans-

late into differentials of YAP/TAZ activity, whose establishment requires F-actin

inhibitors. Yet, in vivo, distinct tissues not only exhibit specific shapes, but also

their ECM composition varies greatly, due to the content, crosslinking and topol-

ogy of collagen fibers [27]. To mimic such integration, we investigated the roles of

YAP/TAZ, and F-actin capping and severing proteins, on the behavior of MECs

growing in three dimensions (3D). For this, we used reconstituted ECM containing

a mix of basement membrane (BM; Matrigel) and collagenI (COL), whose concen-

tration can be changed to obtain soft and stiff BM/COL gels (COL 1.2 mg/ml or 3

mg/ml, respectively) [28] (see Figure S5A for validation of these gel compositions as

mechano-regulators of YAP/TAZ). After 8 days in culture, MECs growing embed-

ded in soft BM/COL gels formed growth-arrested acini (Figure 5A). When collagen

concentration was increased, we observed the formation of larger spheroids, actively

growing tubules and organoid-like structures (Figure 5A). By immunofluorescence,
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YAP/TAZ were predominantly evenly distributed in cells cultured in soft ECMs, but

were clearly nuclear in cells embedded in the stiffer ECM (Figure 5B). Transcriptional

activation of YAP/TAZ by increased ECM stiffness in 3D cultures was confirmed by

induction of endogenous markers, such as CTGF, CYR61 and ANKRD1 mRNAs

(Figure S5B). siRNA-mediated knockdown of YAP and TAZ caused severe reduc-

tion of the overall number and size of the 3D colonies, that in no case expanded

beyond small aggregates, regardless of substrate rigidity (data not shown). We next

sustained endogenous YAP/TAZ activity in cells embedded in the soft ECM through

siRNA-mediated knockdown of Cofilin or Gelsolin. Strikingly, this induced the for-

mation of bigger acini and caused the appearance of elongated or branched struc-

tures (Figure 5C) and was paralleled by YAP/TAZ-dependent induction of CTGF

and CYR61 mRNAs (Figure 5D). Using phospho-histone-3 as proliferation marker,

acini transfected with control-siRNA were mainly growth arrested, while Cofilin or

Gelsolin-depleted spheroids retained proliferative activity (Figure 5E). We conclude

that YAP/TAZ regulation by F-actin capping and severing proteins plays a critical

role in regulating the growth of epithelial cells in a 3D reconstituted ECM.
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Figure B.3.4 – Knockdown of F-Actin-Capping and -Severing Factors Rescues Contact
Inhibition of Proliferation (A) Loss of Capzb, Cfl1, or Gsn rescues YAP/TAZ nuclear lo-
calization in dense monolayers. MECs were transfected with the indicated siRNA and were
seeded to obtain sparse cells or a dense mono- layer. After 2 days, cells were fixed for
immunofluorescence with anti-YAP/TAZ antibody (aYAP/ TAZ). DAPI is a nuclear coun-
terstain. Scale bar, 20 µm. (Right) Proportion of cells displaying preferential nuclear
YAP/TAZ localization (N, black); even distribution of YAP/TAZ between the nucleus and
the cytoplasm (N/C, gray); or cytoplasmic YAP/ TAZ (C, white). Consistent results were
obtained with independent siRNAs (not shown). (B) CTGF expression in MECs transfected
and seeded as in (A). Loss of Capzb, Cfl1, and Gsn rescues YAP/TAZ transcriptional activ-
ity in dense monolayers. (C) Western blotting for TAZ and YAP in MECs transfected and
seeded as in (A). GAPDH is a loading control. (D) Panels show colorimetric stacked images
of BrdU incorporation, used to visualize spatial variations of proliferation in cell monolayers
of defined shape and dimensions. MECs were plated as monolayers on large microprinted
fibronectin islands (diameter, 350 µm ) and processed as described in the text and as in the
Figure S4C legend. The color scale indicates the extent of cell proliferation in a given posi-
tion of the monolayers. The proliferation rate decreases to nearly undetectable levels at the
center of the circle due to CIP (black/blue color), whereas cells continue proliferating along
the border of the cellular sheet (green/ red color). Cultures were treated with blebbistatin
(Blebbi, 50 µM) or myosin light-chain kinase inhibitor (ML-7, 10 µM) overnight before the
BrdU pulse. For experiments with siRNAs, cells were first transfected with the indicated
siRNA and were re- plated after 1 day. Similar results were obtained on islands of square
shape (Figures S4D and S4E). Data are mean and SD. Experiments were per- formed at
least twice with biological replicates each time. Quantitations were carried out by scoring
at least 2,000 cells for each sample. Pictures show representative results. See also Figure S4
and Table S1.

B.3.3 Cytoskeletal regulation of YAP/TAZ dominates over Hippo

signaling

We next sought to investigate the intersections between the control of YAP/TAZ ac-

tivity by cytoskeletal cues and the classical Hippo cascade, centered on the activity of

two kinases, MST1/2 (Hippo in Drosophila) and LATS1/2, the latter directly phos-

phorylating YAP/TAZ and causing their inhibition [12]. CIP has been associated to

increased YAP/TAZ phosphorylation mediated by LATS1/2 [19]; similar phosphory-

lation occurs in cells rounded after placing them in suspension, or upon disruption of

the F-actin cytoskeleton [29,23,19]. Fully confirming these associations, we also found

increased YAP/TAZ phosphorylation in cells treated with LatrunculinA, an F-actin

inhibitory drug (Figure 6A). YAP/TAZ phosphorylation, however, may not auto-

matically surrogate for biological function, and no previous studies supported this

biochemical observation with functional evidence [10]. To investigate the functional

role of LATS, we used independent pairs of validated siRNAs targeting both LATS1

and LATS2. We first controlled the efficacy of LATS-depletion by reconstituting
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Figure B.3.5 – 3D Matrix Stiffness Regulates Growth and Morphogenesis of Mammary
Epithelial Cells through YAP/TAZ (A) Mammary epithelial cells (MECs) were embedded
as a single cell in a matrix formed of a different mixture of Matrigel and CollagenI (see
Experimental Procedures). Soft matrix contained 1.2 mg/ml CollagenI, whereas stiff matrix
contained 3 mg/ml CollagenI [36]. After 8 days, cells were fixed and stained for phalloidin to
help visualize the morphology of multicellular structures. TOTO3 is a nuclear counterstain.
Scale bar, 100 µm. Bottom panels show bright fields at lower magnification. (B) 3D matrix
density regulates YAP/TAZ localization, as assayed by confocal immunofluorescence with
anti-YAP/TAZ antibody (aYAP/TAZ). MECs were plated as in (A) and were fixed after
6 days. TOTO3 is a nuclear counterstain. Scale bar, 100 µm. (C) Loss of Cfl1 and Gsn
promotes the formation of tubule-like structures in soft 3D matrix. MECs were transfected
with the indicated siRNAs and then embedded in soft matrix as in (A). After 8 days,
acini were fixed and stained for phalloidin. TOTO3 is a nuclear counterstain. Scale bar,
100 µm. (D) Loss of Cfl1 and Gsn increases YAP/TAZ transcriptional activity in soft
3D matrix. MECs were treated as in (C) and were harvested for qPCR of the YAP/TAZ
target genes CTGF and CYR61. (E) Loss of Cfl1 and Gsn promotes proliferation of cells
embedded in 3D soft matrix. MECs were treated as in (C) and were stained with anti-
pH3 antibody to mark mitotic cells. pH3 signal is shown merged with the TOTO3 nuclear
counterstaining. Scale bar, 100 µm. (Right) Quantitation of cell mitosis normalized to the
volume of the multicellular structures, as calculated from 3D z stacks reconstructions. Data
are mean and SD obtained from at least 20 structures per condition. Data are mean and
SD. Experiments were performed at least twice with biological replicates each time. Pictures
show representative results. See also Figure S5 and Table S1.
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NF2 expression, a bona fide upstream regulator of the Hippo cascade, in the NF2-

null breast cancer cell line MDA-MB-231 [11]. NF2 re-expression caused a dramatic

inhibition of TEAD luciferase reporter and LATS1/2 inactivation completely abol-

ished this effect, confirming the efficacy of our siRNAs (Figure 6B). Similarly, NF2

re-expression was completely ineffective in cells expressing only a LATS-insensitive,

phosphorylation mutant form of YAP or TAZ (Figure S6A and data not shown).

Next, we wondered if LATS1/2 were downstream of mechanical cues. If this were

the case, as in the above NF2 paradigm, loss-of-LATS1/2, or loss-of-YAP/TAZ phos-

phorylation, should also rescue YAP/TAZ activity in cells on soft ECM or dense

cultures. In stark contrast to this hypothesis, the results for mechanical regulation

were different: depletion of LATS1/2 could not rescue YAP/TAZ inhibition by a

soft environment (Figures 6C), indicating that F-actin and mechanical regulation

affect YAP/TAZ activity independently from their phosphorylation by LATS. In

line, cells expressing only LATS-insensitive YAP or TAZ mutants (5SA-YAP, 4SA-

TAZ) did not escape mechanical inhibition when cultured on soft hydrogels (Figure

S6B and S6C). Using CapZ inactivation as paradigm of cytoskeletal remodeling, we

also found that cells expressing 4SA-TAZ were still responding to depletion of CapZ

(Figure S6D). Finally, knockdown of CapZ left the YAP/TAZ phosphorylation lev-

els completely unchanged, as shown by Phos-TAG analysis (Figure 6D); collectively,

the results strongly suggest that YAP/TAZ control by the F-actin cytoskeleton and

Hippo signaling represent formally distinct regulations. An unexpected discovery

came when we simultaneously inactivated CapZ together with LATS1/2 in MECs

cultured in soft or dense conditions. The results actually showed that LATS1/2 are

effective inhibitors of YAP/TAZ only in the context of a mechanically competent

F-actin cytoskeleton. Several results support this conclusion: (i) combined depletion

of CapZ and LATS1/2 cooperated to fully induce nuclear localization of YAP and

TAZ in cells seeded on soft hydrogels and dense conditions (Figure 6E and 6F); (ii)

LATS1/2 depletion in either soft or dense MEC cultures was inconsequential per se

but potently synergized with CapZ depletion to maximize YAP/TAZ transcriptional

activity (Figure 6G and 6H); (iii) in large square (or round) fibronectin-coated is-

lands, LATS1/2 depletion alone could not rescue CIP (Figure 6I, S6E, S6F), and
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left proliferation of cells at the border still sensitive to inhibitors of cytoskeletal

tension (Figure S6E). However, combined depletion of CapZ and LATS1/2 fully

rescued the blockade of S-phase entry in cells located at the center of the epithe-

lial sheets triggering unabated proliferation evenly throughout the island (Figure

6I and S6F). We next tested how loss of YAP/TAZ regulation by the Hippo ki-

nases impacted on MECs growing in 3D within a soft or stiff ECM. To this end,

we compared MECs stably expressing near to endogenous levels of wild-type TAZ,

and LATS phosphorylation-insensitive 4SA-TAZ. As shown in Figure 6J, wild-type

TAZ expressing cells behaved similarly to their parental counterparts. 4SA-TAZ

expressing cells displayed increased protrusive activity in soft ECM, yet retained a

spheroid structure. Notably, in the more rigid ECM, 4SA-TAZ expressing cells did

not form tubular structures and invaded the matrix as single cells. As TAZ over-

expression has been shown to induce Epithelial-to-Mesenchymal Transition in cells

cultured on plastic in 2D [30], this 3D phenotype likely reflects fully unleashed TAZ

activity. Finally, we asked if the permissive effect of the cytoskeleton is specific for

the Hippo pathway or also applies to other regulatory inputs. To this end, we used

two inducers of YAP/TAZ, WNT and GPCR signaling [16,17], and monitored their

efficacy in soft vs. stiff extracellular conditions. As shown in Figure 6K, knockdown

of APC (mimicking WNT signaling by inactivation of the APC/Axin/GSK3 TAZ

destruction complex [16]) caused robust upregulation of YAP/TAZ-dependent tran-

scription in cells cultured on stiff substrates, but had minimal effect in cells seeded

on a soft matrix. Similarly, addition of TRAP6, a positive inducer of YAP/TAZ ac-

tivity through GPCR-signaling, could operate only in cells cultured on stiff, but not

on soft matrices (Figure 6L). Remarkably, depletion of capping and severing proteins

re-empowered YAP/TAZ activation by WNT and GPCR signaling (Figures 6K, 6L

and data not shown). Collectively, the results suggest that mechanical and physical

properties of the environment control not just Hippo signaling but also YAP/TAZ

responsiveness to signaling cascades initiated by soluble growth factors.
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Figure B.3.6 – Cytoskeletal Mechanics Is a Dominant Input for YAP/TAZ Activity. (A)
Disruption of the F-actin cytoskeleton induces YAP phosphorylation. Phos-TAG SDS-PAGE
analysis of MECs plated as confluent monolayer and treated with LatrunculinA (Lat.A, 100
µM) for 3 hr. Black and white arrowheads indicate hyperphosphorylated or nonphosphory-
lated YAP, respectively. Identity of YAP isoforms was defined based on extracts from cells
transfected with YAP siRNA and on l-phosphatase treatment (not shown). (B) LATS1/2
knockdown completely rescues YAP/ TAZ inhibition by NF2/Merlin. Luciferase reporter
assay (8XGTIIC) in MDA-MB-231 transfected with the indicated siRNA and without (Co.)
or with NF2 expression plasmid. See Figure S6A for similar results obtained with LATS-
insensitive 5SA-YAP mutant. Similar results were obtained in HeLa cells (not shown). (C)
LATS1/2 knockdown does not rescue YAP/ TAZ inhibition by soft ECM. Luciferase re-
porter assay (8XGTIIC) in MDA-MB-231 cells transfected with the indicated siRNA and
replated on stiff or soft ECM substrates. See Figure S6B for similar results obtained with
LATS-insensitive 5SA-YAP mutant. Similar results were obtained in HeLa cells (not shown).
Of note, inhibition of LATS by constitutive-activation of PI3K or AKT (Fan et al., 2013),
known for being downstream of integrin signaling, could not rescue YAP/TAZ inhibition by
soft ECM; and inhibition of PI3K, AKT, and mTOR by small-molecule inhibitors had no
effect on a stiff ECM (data not shown). (D) Capzb knockdown does not result in a decrease
of YAP phosphorylation. Phos-TAG SDS-PAGE analysis of MECs transfected with the in-
dicated siRNAs and plated as confluent mono- layers. Black and white arrowheads indicate
hyperphosphorylated or nonphosphorylated YAP, respectively. (E) MECs were transfected
with the indicated siRNAs and were plated on soft ECM substrates. After 2 days, cells
were fixed for immunofluorescence with anti-YAP/TAZ antibody. Scale bar, 10 µm. (Below
the pictures) Proportion of cells displaying preferential nuclear YAP/TAZ localization (N,
black), even distribution of YAP/TAZ between the nucleus and the cytoplasm (N/C, gray),
or prevalently cytoplasmic YAP/TAZ (C, white). Transfection of LATS1/2 siRNA alone had
no significant effects on YAP localization (not shown). Consistent results were obtained with
independent siRNAs (not shown). (F) MECs were transfected with the indicated siRNAs
and were seeded to obtain a dense monolayer. After 2 days, cells were fixed for immunofluo-
rescence with anti-YAP/TAZ antibody. Scale bar, 20 µm. (Below the pictures) Proportion
of cells displaying preferential nuclear YAP/TAZ localization (N, black), even distribution of
YAP/ TAZ between the nucleus and the cytoplasm (N/C, gray), or prevalently cytoplasmic
YAP/TAZ (C, white). (G) MECs were transfected with the indicated siRNAs and were
plated on stiff (white column) or soft (colored columns) ECM substrates. After 2 days, cells
were harvested for qPCR analysis. LATS knockdown has no effects on a soft ECM but
potently enhances CTGF transcription upon combined depletion of Capzb. Similar results
were obtained with ANKRD1 and CYR61. (H) MECs were transfected with the indicated
siRNAs and plated as sparse cells (white column) or dense monolayers (colored columns).
After 2 days, cells were harvested for qPCR analysis. Similar results were obtained with
ANKRD1 and CYR61.
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(J) MECs were transfected with YAP/TAZ siRNA (to avoid interference from endogenous
proteins) and reconstituted with siRNA-insensitive mouse TAZ (mTAZ). TAZ add-back was
carried out with both WT and LATS-insensitive 4SA mTAZ. Cells expressing empty vector
and transfected with control siRNA serve as controls. Cells were embedded as a single cell
in a matrix formed of a different mixture of Matrigel and CollagenI to obtain softer and
stiffer gels (see legend to Figure 5A and Experimental Procedures). After 6 days, cells were
fixed and stained for phalloidin to help visualize the morphology of multicellular structures.
Scale bar, 100 µm. (K and L) WNT and GPRC signaling efficiently promote YAP/TAZ-
dependent transcription on soft substrates only after Capzb depletion. (K) MECs were
transfected with control siRNA (siCo.), APC siRNA (siAPC) to activate WNT signaling,
or with Capzb siRNA (siCapzb). Cells were plated on stiff or soft ECM substrates and
were harvested after 2 days for qPCR of YAP/TAZ target genes (CTGF and ANKRD1).
(L) MECs were transfected with the indicated siRNAs and were plated on stiff or soft
ECM substrates. After 1 day, cells were serum starved overnight and were subsequently left
untreated or treated with 2 µM TRAP6 for 3 hr. Data are mean and SD. Experiments were
performed at least twice with biological replicates each time. Quantitations were carried
out by scoring at least 2,000 cells for each sample. Pictures show representative results. See
also Figure S6 and Table S1.

B.4 Discussion

How cell shape and tissue form connect with tissue function, growth and pattern-

ing is one of the most fascinating and least understood aspects of biology. Here we

provide evidence that tissue shape and three-dimensional ECM compliance pattern

the proliferative competence of an epithelial sheet. These inputs localize YAP/TAZ

activity at sites of high mechanical stresses, and inhibit it where mechanical forces

are minimal. Thus, YAP and TAZ regulation serves as link between tissue architec-

ture and a key cellular function, that is, proliferation. YAP/TAZ inhibition entails

a remodeling of the F-actin cytoskeleton mediated by F-actin capping and sever-

ing proteins, for which we reveal an essential role as proliferative checkpoints in

mammalian epithelial sheets through YAP/TAZ regulation. The presently described

connections appear to hold a number of implications for the biology of epithelial cells.

For organ size control, tissue regeneration and homeostasis cells must be constantly

informed of the size and shape of the whole organ (Discher et al., 2009; Huang and

Ingber, 1999; Nelson and Bissell, 2006). This suggests that cells are able to per-

ceive what happens many cell diameters away and respond to it with great spatial

accuracy. Mechanical forces are ideally suited to serve as messenger of this global

control, as it has been recently shown that forces display long-range and broad scale

effects (Halder et al., 2012; Guo et al., 2012). Using monolayers of defined shape

and size, here we show that patterns of mechanical stresses locally control YAP/TAZ
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activity. At sites of low mechanical forces, that is, in contact-inhibited center cells,

YAP/TAZ are inhibited by F-actin capping and severing proteins, as loss-of-CapZ or

Cofilin potently rescues YAP/TAZ nuclear localization, transcriptional activity and

proliferation. In contrast, cells at edges and corners of the same multicellular sheets

display YAP/TAZ dependent proliferation induced by cytoskeletal contractility and,

here, loss-of-CapZ or Cofilin has marginal effects.

Inactivation of capping and severing proteins is accompanied by reappearance of

F-actin stress fibers. Conversely, YAP/TAZ inactivation is phenocopied by inhibit-

ing formin and myosin, which by themselves are essential for stress fibers formation

and cellular contractility. These data collectively suggest that mechanical forces

promote YAP/TAZ activity at least in part by inhibiting capping and severing pro-

teins. However, this does not exclude a different scenario, one in which YAP/TAZ

are regulated independently by mechanical forces and capping/severing proteins; the

latters may operate to unbalance the distribution of microfilaments to different, per-

haps competing, F-actin pools (e.g. cortical F-actin, stress fibers and nuclear actin)

endowed with different YAP/TAZ activating capacities. In other words, while this

study unambiguously identifies endogenous F-actin capping and severing proteins as

YAP/TAZ inhibitors, a more detailed picture of their function will necessarily re-

quire the unraveling of the precise mechanisms by which F-actin affects YAP/TAZ-

dependent transcription as well as a more comprehensive understanding of cellular

rigidity sensing. Classical experiments using transformed mammary epithelial cells

grown as spheroids in three-dimensional ECM of distinct rigidities and compositions

unequivocally showed that the physical properties of the matrix could lead to tu-

mor cells “reversion” to a near normal phenotype, overriding oncogenic aberrations

[5]. Conversely, ECM stiffening, and ensuing cytoskeletal tension, cooperate with

oncogenes, and may even initiate aberrant proliferation [27]. Yet, how the microen-

vironment intercepts the malignant phenotype at the level of gene-expression is a

major question in cancer biology. Here we show that transformed mammary epithe-

lial cells grown in low-collagen 3D environments display low levels of YAP/TAZ ac-

tivity, while collagen-rich matrices induce YAP/TAZ nuclear localization, YAP/TAZ

target genes and YAP/TAZ dependent proliferation. These observations are consis-
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tent with the positive correlations between collagen content and tissue stiffness (as

determined by mammographic density) with breast cancer risk and metastasis [27].

Here we show that F-actin capping and severing proteins are instrumental for the

effects of a soft ECM, as their depletion induces YAP/TAZ activation and prolifer-

ation, phenocopying the attributes of a more rigid ECM environment. This work

also provides a unifying principle for how contact inhibition of proliferation is real-

ized. We propose a two-step model of this classic phenomenon [18]. As cells engage

in cell-cell adhesion - starting from a situation of unrestricted adhesive areas with

fully nuclear YAP/TAZ - the E-cadherin/catenins system triggers LATS activation

and YAP/TAZ phosphorylation, as previously reported [21,32], but this is insuffi-

cient for overt growth arrest. Then, as proliferation continues, cell crowding causes

reduction of cell size and low mechanical stress, now leading to a more effective

contact inhibition. We show that the regulation of YAP/TAZ by cell mechanics is

not only distinct from Hippo pathway-induced YAP/TAZ phosphorylation and in-

hibition, but in fact dominates over it. Remarkably, LATS1/2 inactivation is per se

inconsequential in cells experiencing a low mechanical stress. Moreover, depletion of

F-actin capping/severing proteins sustains YAP/TAZ activity without affecting their

phosphorylation. In fact, LATS-mediated inhibition of YAP/TAZ requires a mechan-

ically competent cytoskeleton, as the effect of LATS knockdown becomes manifest

only in the absence of F-actin capping/severing proteins. Our finding that LATS

and F-actin organization act independently to regulate YAP/TAZ is also supported

by genetic evidence in Drosophila [33,34]. In fly wing development, inactivation of

the CapZ homologue induces organ overgrowth similarly to Hippo mutations, and

the extent of this phenotype can be either counteracted or amplified, respectively

by overexpression or inactivation of LATS, altogether making unlikely an epistatic

relationship between the two inputs. Our data further suggest that the scale of acti-

vation of YAP/TAZ may be particularly broad, depending on the relative intensity

and duration of cytoskeletal and Hippo controls. There is ample genetic evidence for

the Hippo pathway as an intrinsic regulator of organ size; for example, inactivation

of the upstream Hippo kinase MST1/2, or of its cofactor Salvador/WW45, causes re-

markable tissue overgrowth in several organs, including liver, intestine and skin [35].
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According to our findings, the effect of a Hippo pathway mutation should not indis-

criminately affect all cells, but preferentially expand the cell populations experiencing

a mechanical stress. The existence of a second control layer for YAP/TAZ activity

overseeing the effects of an Hippo mutation is supported by in vivo observations:

in the liver, YAP/TAZ hyperactivation by Hippo deficiencies generates a functional

and histologically well-organized organ [35], a finding incompatible with global and

uncontrolled cell proliferation. Similarly, in the ↵-catenin knockout mouse model,

YAP activation remains spatially restricted to the basal layer of the skin, where YAP

protein is normally confined [20], suggesting that cell attachment to the appropriate

ECM is instrumental to locally sustain normal as well as aberrant YAP activation.

Finally, the idea that the cytoskeleton is a key input for YAP/TAZ in vivo is sup-

ported by recent genetic evidence: kidney development requires YAP activation by

the CDC42 Rho-GTPase, well known promoter of F-actin polymerization.

Besides the Hippo pathway, mechanical cues also dominate the cellular response

to soluble cues positively affecting YAP and TAZ activity. We show that YAP/TAZ

activation by WNT or GPCR signaling requires a mechanically stressed cytoskeleton,

or, in cells experiencing a soft ECM, inactivation of F-actin capping and severing

proteins. In the same line of thought, the fact that YAP/TAZ are stabilized and

act in stem and progenitor cells, typically lodged in specific tissue-niches [35], is an

enticing argument that the status of the ECM, the cell’s cytoskeletal organization

and tension may impart a “physical” competence for stemness and differentiation.

B.5 Experimental procedures

Details are provided in the Extended Experimental Procedures

Plasmids siRNA-insensitive FLAG-hYAP1 WT and 5SA were generated by PCR

and subcloned in pcDNA3. pXJ40-HA-Merlin/NF2 S518A is Addgene# 19701.

8xGTIIC-lux [11] is Addgene# 34615.

Cell cultures and Transfections MCF10A and MII cells were used with equal re-

sults, except for experiments shown in Figure 3 and 5 where we used only MII cells.

Micropatterned glass slides were from Cytoo. Fibronectin-coated hydrogels were as

previously described [11]. The monolayer stretching-device was fabricated by using
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standard soft-lithography techniques. For 3D assays, cells were embedded into mixes

of Growth Factor Reduced Matrigel (BD Biosciences) and CollagenI (TREVIGEN

CULTUREX 3D Culture Matrix Rat CollagenI). For assays on large square and

circular fibronectin-coated islands, 1.000.000 cells were plated in a 35mm dish con-

taining a single Cytoo glass slide. siRNA transfections were done with Lipofectamine

RNAi-MAX (Life technologies). Sequences of siRNA are provided in Table S1 and

S2. DNA transfections were done with TransitLT1 (Mirus Bio). siRNA and DNA

transfection were performed on sparse cells plated on tissue culture plastics before

replating on the various ECM substrates and islands. For Retroviral infections see

(Azzolin et al., 2012).

Antibodies and Bioassays Antibodies: anti-YAP/TAZ (sc101199), anti-CAPZB

(sc81804), anti-COFILIN1 (Epitomics 6663-1), anti-GELSOLIN (sc57509), anti-GAPDH

(Millipore mAb374), anti-LATS1 (CST) and anti-LATS2 (Abcam), anti-E-Cadherin

(BD Biosciences). For microscopy, luciferase, proliferation and real-time PCR assays

see Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION Supplemental Information includes Extended

Experimental Procedures, Supplemental References, six Figures, two Tables.
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C.1 Summary

The development of smart biomaterials able to quantitatively analyse the dynamic

of biological systems with high temporal resolution in biomimetic environments is

of paramount importance in biophysics, biology and medicine. In this context, we

develop a biosensing water-based soft biomaterial with tunable mechanical proper-

ties through the generation of an electro-conductive nano-element network. As a

proof of concept, in order to detect glucose concentration, we fabricate an elec-

troconductive poly-acrylamide glucose-oxidase loaded hydrogel modified with a low

amount of Single-Walled Carbon Nanotubes (SWNTs) (up to 0.85 wt%). Micro-

Raman maps and optical analysis show nanotube distribution in the samples at

different mass fraction. Electrochemical impedance spectra and their fitting with

equivalent circuit models reveal an electron conduction in charged hydrogels in ad-

dition to ionic conductivity. The effective resulting resistance of the nanostructured

network is comparable to the gold electrode one. These findings are also confirmed

by cyclic voltammetries. Interestingly, heterogeneous clustering of SWNTs shows

double electric mechanisms and efficiencies. GOx-SWNT doped hydrogels show a

glucose-concentration linear response in the range between 0.1 mM to 1.6 mM; all

together these results show high detection limits for glucose (down to 15 µM) and a

sensitivity of 0.63 µA/mM. In the perspective of monitoring cell dynamics, hydrogel

functionalization allows cell adhesion and long-term cell culture whereas atomic force

microscope is used for mapping the doped hydrogel stiffness. Myoblasts, cell sensi-

tive to mechanical substrate properties, show proper differentiation and phenotype

in SWNT-HYs with nominal physiological stiffness.

C.2 Introduction

Soft biomaterials are nowadays of great interest in various field such as biophysics,

biotechnology, biology and medicine [1-4]. Among different biomaterials, their soft

nature provides an artificial bi-dimensional and tri-dimensional environment which

closely resembles both biochemical and biomechanical cues found in cell and tissue

interactions in vivo [5, 6]. These features are achieved by latest progresses in the
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development of biomimetic substrates that require a deep integration of material

and biological sciences. In this context, polymeric hydrogels (HYs) have already

reached a prominent position among the other water-based biomaterials because of

their peculiar chemical and physical properties, which can be easily tuned by adjust-

ing HY composition and crosslinking. Among other properties like biocompatibility,

biodegradability, high permeability and smart chemistry, mechanical ones are very

important because make HYs ideal to provide structural and biological support to

cells and tissues, controlling the delivery of medium components and enrichment

of autocrine and paracrine factors [7]. For this reason, HYs have been relevant for

mechanotransduction applications,[8] specific topological targeting of cell adhesion

and proliferation and biomimetic scaffold development for in vitro tissues [9-14].

Several works report the possibility of promoting a proper tissue specification and

functional properties by tuning mechanical properties of substrate [15-18]. In this

perspective, even if soft materials have been successfully applied to induce biological

or biophysical responses related to their mechanical or chemical properties, there are

no evidence about the possibility of recording biological activities through soft sub-

strates. However, continuous analysis of living system has been recently exploited

through the use of stiff materials. For instance, metallic nanowires [19, 20] and

nanoparticle arrays [21] were used for metabolic biosensing as conductive supports

for bioelectronic applications [22]. Moreover, examples in which glass or metallic

multi-electrode arrays were used for electrophysiological studies have been reported

[23-25]. This experimental effort underlines the importance of developing biomaterial

capable of continuously and quantitatively analyzing cell activity. The possibility of

combining compliant substrates with no-invasive continuous detection is extremely

relevant to develop biological studies without affecting cell functionality. For in-

stance, electrophysiological studies on contractile cell (such as, skeletal muscle cells

or cardiomyocytes) on stiff substrates could be difficult to perform because of cell

easily detach from the substrate. Thus, we aim at developing a biosensor integrated

into a biomimetic soft material in order to quantitatively analyze the cell dynamics

with high temporal resolution. In particular, as a proof of concept, we aim at tar-

geting a metabolite, glucose that is important for cellular activity. Among different
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mechanisms of detection, we used electrochemical methodologies because of the high

sensitivity and specificity of electrochemical based devices. In fact, the specificity can

be achieved using enzyme mediated biosensors: several works have been published

on electrochemical biosensing devices using catalytic enzymes [26-28]. The major

challenge that needs to be solved is to obtain an electronic flow within the biomate-

rial without affecting the biophysical and biological properties of HY. Although HYs

are ionic conductors, due to the strong ion permeability in aqueous media, electron

flow is actually forbidden and no electric charge can be collected when using HY-

based electrodes. There are a lot of electron carriers usually used as dopants in poly-

meric biomaterials: particular attention may be given to noble metallic nanoparticles

(NPs), such as Au, Ag, Pd and Pt [29-33] but strong limitations occur when used in

biological systems due to the toxic effect induced by the large amount of NPs needed

to obtain an effective electron current [34, 35]. Carbonaceous particles are also used,

such as graphite, fullerenes and single-walled carbon nanotubes (SWNTs) [36-38].

The latter are very interesting due to their intrinsic peculiar electronic properties:

high conductivities can be achieved with very low additions of particles (down to 4%

with respect to 50% for metallic NPs) thus allowing the realization of quasi unmod-

ified doped materials [39, 40]. In our knowledge, only a few works concerning the

bulk modification of HYs are reported [41-44], however, works reporting the effect

of dopant loading on mechanical properties of soft-materials together with biocom-

patibility and cell behaviour (in terms of both proliferation and differentiation) are

never been reported yet. It would be extremely relevant for biological, physiological

and pathophysiological studies to develop a soft-biosensor with minimal amount of

dopant in order to preserve biomechanical and biochemical properties of the soft-

materials and the cell biocompatibility while performing physiological measurements

of metabolites in the physiological range (for instance, glucose concentration between

1-5 mM). For these reasons, we realized an electroconductive biomimetic HY in which

the electroconductivity was achieved by the creation of a SWNT electronic network

that could allow an electroconductive percolation across the biomaterial. The wiring

effect of nanotubes would promote the electron jumps between the enzymatic core

where the reaction takes place to the underlying collecting electrode. The biophys-
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ical properties of the modified HYs are not altered because very low concentrations

(less than 1% in weight) were used, whereas the catalytic behavior was tested by

glucose detection, as a case of study, by specific loading of Glucose Oxidase (GOx).

Doping uniformity and distribution were characterized by optic microscopy and Ra-

man spectroscopy, whereas electronic conductivity was verified by electrochemical

impedance spectroscopy (EIS) and cyclic voltammetry (CV). Biophysical and bio-

logical properties were verified by AFM force-distance curve on doped and undoped

materials and by measuring the viability and the phenotype maintenance of cultured

cells on the HY surface.

C.3 Results and discussion

C.3.1 Developing the sensor

In Fig. 1 it is shown a schematic representation of the steps involved in the prepa-

ration of the glucose bionsensor. A gold electrode fabricated as referred in Experi-

mental Section is modified with an in situ polymerized polyacrylamide SWNT doped

HY. SWNT-sodium cholate aqueous suspensions at different concentrations are used

for doping HYs (Fig. 1A-1B). Then GOx is loaded into doped and undoped HYs

biasing the working electrode in three electrochemical cell configurations (Fig. 1C):

the charged enzyme can be drifted into the HY. Glucose is oxidized by the enzyme

and indirectly detected potentiostatically in the cell as in Fig. 1D; the byproduct of

the reaction is the hydrogen peroxide that oxidizes when a potential of +0.7V ref.

Ag/AgCl is applied as reported elsewhere [45].

C.3.2 Hydrogel characterization

Raman spectroscopy is often used for characterizing carbon nanotube through SWNT

scattering upon laser excitations in the near-IR range [46]. Fig. 2 shows histograms

related to the G-band Raman intensity (about 1600 cm-1) of samples at different

SWNT mass fractions. Qualitative increasing trend in the doping level was found.

More detailed description about Raman measurements are reported in the Support-

ing Information (Fig. S5).
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Figure C.3.1 – Schematic representation of the steps involved in the preparation of the
biomimetic glucose biosensor. A clean, insulated gold electrode (A) is modified with an in
situ polymerized SWNT doped HY at different SWNT concentrations (SWNT HYs) (B);
then the electrode is biased with a positive voltage and the enzyme is loaded into the HY,
forming a GOx-SWNT doped HY (GOx-SWNT HYs) (C). By means of a potentiostatic
measurement, glucose is converted by the enzyme into hydrogen peroxide which can be
electrochemically discharged by GOx-SWNT HYs (D).

Figure C.3.2 – The car-
bon nanotube distribu-
tion within the samples at
different concentrations.
The histogram refers to
the SWNT Raman G-
band intensity. Error
bars are described in the
ESI. The inset graph rep-
resents an example of
Raman scattering for a
SWNT HY sample used in
the paper.
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In order to collect information about the resistivity of the SWNT doped mate-

rial, electrochemical impedance spectroscopy (EIS) was used. Conventional 4-probe

conductivity measurements did not lead to reproducible analysis because weak elec-

tric contact on soft substrate. EIS gives information about the electric behavior of

the interface of an electrodic system by fitting the experimental data with specific

equivalent circuit models; polarization resistance for the interface can be derived.

A Randles cell was used for modeling equivalent circuits as reported in literature

for organic electrodic interfaces [47]. A constant phase element (CPE) was used for

replacing the ideal double layer capacitance (C). Fig. 3 summarizes EIS results. In

Fig. 3A-C Bode phase plot for the samples at different SWNT mass fraction are

shown, whereas, in Fig. 3D the polarization resistances obtained by fitting are re-

ported as a function of SWNT mass fraction. Fig. 3A and Fig. 3C show a maximum

in the frequency spectrum. On the other hand, two principal time constants for the

electrodic system (i.e. two maxima in the spectrum) are shown for samples in Fig.

3B. For this reason, two different equivalent circuit models (with one or two RC

systems) are required to fit all the data; Rs is the unsupported resistance solution,

RPij is the polarization resistance indexed by i and j related to equivalent circuit I

or II. Numerical outcomes for fitting and a more detailed description of circuits used

are provided in the Supporting Information (Fig. S7). The resulting resistances are

reported as a function of SWNT mass fraction in Fig. 3D-i, Fig. 3D-iii and Fig.

3D-v; for higher dopant concentration, lower RP value was observed only for lowest

and at highest SWNT mass fraction samples (0.25 wt% and �0.64 wt%). Inter-

estingly, at intermediate mass fraction range, RP1II shows similar behavior to RP1I

whereas RP2II is almost constant. The additional RP2II in intermediate SWNT

mass fraction samples suggests the existence of a double electric behavior with pecu-

liar electroconductive properties; this behavior could be associated to dopant phase

separation and non uniform SWNT dispersion within the HY as shown in Fig. 3E,

(black areas are likely to represent clustering zones of material). Uniform dispersion

of SWNT within HY are associated with simple Randles cell (sample in the range of

0.25 wt%-Fig3D and �0.64 wt%-Fig.3F). The existence of a peak at low frequency

value in the electrodic system may alter the time of response and the sensitivity of
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Figure C.3.3 – Electrochemical impedance spectroscopy and optical analysis of SWNT
doped HYs. (A)-(C) Bode phase plots for doped HYs at different dopant concentrations;
circles are experimental values, whereas the solid line is the fitting using the circuits in
scheme (D)ii for (A) and (C) and the circuit in scheme (D)iv for (B). (D)i, (D)iii and (D)v
show the fitted resistance versus SWNT doping percentage. Error bars and numerical values
are available in the ESI. Symbols are noted in the manuscript. (E)-(G) show different optical
images related to the three different regimes identified by varying the dopant concentration.

a SWNT-HY based biosensor.

A deeper analysis on electrochemical faradic response was required to identify the

optimal dopant mass fraction for realizing electroconductive nanotube based biosen-

sors. Cyclic voltammetry (CV) is a simple strategy for detecting faradic current from

the electrode immersed into a redox probe solution (0.5 mM ferrocenemethanol in

PBS 1x solution) for a specific time (Fig. 4). Fig. 4A shows faradic peak current

of several CVs as a function of redox loading time. In all samples, the peak current

increases reaching a plateau after few hours. Interestingly, the largest peak current

value has been observed for sample with 0.85 wt% and 0.1 wt% SWNT mass fraction;
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these samples also show an immediate increasing in the peak current. On the other

hand, the sample at 0.5 wt% shows a delay in peak current increasing, reaching a

plateau value lower than all other samples, including the control (SWNT HY 0 wt%).

Fig. 4B show two different time points, at 6 min (left) and 150 min (right), respec-

tively: the ohmic response and the high capacitive current of SWNT HY 0.5 wt%

with respect to other samples confirms the sensor low-conductive behavior. On the

other hand, SWNT HY 0.85 wt% provides highest currents. These data confirm that

SWNT dispersed in the HY form an effective network of conductive materials that

support electron flow. Redox probe detection in control HY without SWNT was only

possible after diffusion of the probe within the hydrogel on the underneath electrode

surface. Similar effect was observed for intermediate SWNT mass fraction samples.

It seems that phase separation and clustering of SWNT previously observed, could

limit the diffusion of redox probe leading to lower faradic current detection. This

outcome highlights the goodness of EIS analysis by confirming the high catalytic

feature for charge transfer reactions previously found (Fig. 3D-iii) for highly doped

samples.

Mechanical and biocompatibility measurements

Surface stiffness is one of the most important parameters in determining cell-substrate

interaction [49-51]. For this reason, we aim at studying the effect of SWNT doping

on mechanical properties of HY samples. AFM distance-curve technique was used

for characterizing the stiffness of the samples as reported in literature for low elastic

modulus substrates [52-54]. Three HY samples without SWNT with defined Young’s

modulus (4.5 kPa (A), 17 kPa (B) and 40 kPa (C)) were fabricated in order to be used

as reference [10]. The hydrogel that are mostly used in physiological study of soft

tissues (stiffness ranging from 4.5 to 17 kPa) were doped with SWNT at 0.85 wt%

(A� and B� samples respectively). Due to the uncertainty of Poisson’s coefficient for

such substrates and due to the difficulty of choosing the correct force-distance curve

fitting model [54], stiffness was established as the phenomenological parameter for

determining HY mechanical properties. In Fig. 5, force-distance curves are shown.

Sample stiffness, i.e. the slope of the curve in the contact region, linearly increases
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Figure C.3.4 – Cyclic
voltammetry analysis of
SWNT HYs. (A) Time
dependence of faradic
peak current in ferrocene
methanol redox probe at
different SWNT loadings.
(B) Cyclic voltammo-
grams at 6 minutes (left)
and 150 minutes (right).
All potentials are refer-
enced to the Ag/AgCl
reference electrode.
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Nominal Young’s modulus ratio Measured stiffness ratio
A to B 3.5 4
B to C 2.5 2.6

A to A� - 2.4
B to B� - 2

Table C.3.1 – Force distance curve analysis results.

Figure C.3.5 – Force-distance
curves for HY and SWNT-HY sam-
ples at different nominal Young’s
moduli. Stiffness is represented by
the slope in the contact region.

with the nominal Young’s modulus as reported in tab. 1. Comparison between con-

trol and doped hydrogel show that the hydrogels without SWNT show a reduction

of stiffness of about 50%.

From these findings the SWNT network within the hydrogel leads to stiffer ma-

terials even at low SWNT mass fraction. However, even if this variation is quite

significant, it is negligible if compared to stiffness variation required to elect any

biological responses [8,9]; for instance, one order of magnitude variation from 15 kPa

is required in order to depress functional maturation of skeletal muscle precursor

cells [9]. These results are very relevant for the development of effective biosensors

that fully recapitulates biomechanical properties of in vivo tissues. Other funda-

mental aspects required for interfacing biosensor with living biological systems are

the biocompatibility and the maintenance of proper phenotype during proliferation

and differentiation process. For this purpose, murine muscle cell line, C2C12, were

cultured on doped HYs; skeletal muscle cell line could provide information not only

to viability but also to cell response to mechanical substrate as we previously demon-

strated [9]. Polyacrylamide hydrogels doped with SWNTs with 0 wt%, 0.1 wt% and

0.85 wt% were tested. Cell adhesion was complete within 4 hours after seeding,
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Figure C.3.6 – C2C12
live and dead viability
test. (A) and (C) Cells
are deposited on SWNT-
HY 0.1 wt%; (B) and (D)
Cells cultured on SWNT-
HY 0.85 wt%. (E) C2C12
on SWNT-HY 0.1 wt% re-
tained the proper expres-
sion of desmin, marked
with a red-labelled an-
tibody. (F) Confluent
cells spontaneously diffe-
rentiated into myotubes
which expressed myosin-
II, in green. Nuclei are
stained with Hoechst dye
(blue).

both in non-doped and doped HYs. Cells on doped HYs evidenced the same mor-

phology and behavior compared to unmodified HYs. After three days of culture, a

LIVE/DEAD assay was performed to evaluate the percentage of live and dead cells

(Fig. 6). The green fluorescent dye calcein evidenced viable cells and red nuclei

showed damaged and dead cells with the membrane-impermeant dye Eth-D1. Cell

viability and proliferation were not altered on 0.1 and 0.85 wt% SWNT HYs. Cell

proliferated reaching confluence, confirming that the SWNTs embedded in the gel

did not altered cell behaviour. Moreover, on SWNT doped HYs, cells maintained

proper expression of desmin, a typical skeletal muscle marker (Fig. 6e) and spon-

taneously differentiated into mature myotubes, the functional unit of muscle fibers

expressing myosin-II (Fig. 6f).

C.3.3 Glucose monitoring

In order to give the proof of concept that metabolite concentration can be mea-

sured under cell culture in biomimetic stiffness, a glucose biosensor was developed

for analysing glucose in physiological range between 1 and 5 mM. The realization
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Results
Vmax 4.0 ± 0.2 µA
KM 2.0 ± 0.4 mM

Sensitivity 0.63 µA mM�1

Detection limit 15 mM

Table C.3.2 – Fitting outcomes for the GOx–SWNT–HY 0.85 wt% biosensor. Vmax repre-
sents the maximum current produced by the biosensor for high glucose additions, whereas
KM represents the concentration for which the current is Vmax/2. The detection limit is
calculated following the considerations outlined in ref. 57

of the biosensor is achieved by GOx loading as described in Experimental section.

First of all we show that GOx-doped HYs without SWNT do not exhibit any de-

tectable electrical signal increasing the glucose concentration up to 160 mM (Fig.

S9 of Supporting Information). Fig. 7A shows potentiostatic measurement of glu-

cose concentration using GOx-SWNT HY 0.85 wt%; sequential glucose additions

are highlighted with vertical arrows in the figure. Fig. 7B shows quantification of

plateau current values for each glucose addition as function of glucose concentration.

Michaelis-Menten enzymatic kinetic model can be used to fit these experimental data

(tab. 2); linearity is achieved in the range between 0.1 mM to 1.6 mM (inset graph).

All together, these data show that an effective glucose potentiostatic detection

can be achieved through SWNT doped hydrogel at 0.85 wt% mass fraction. More-

over, the detection limit of 15 µM and the sensitivity of 0.63 µA/mM. The detection

limit value is in total agreement with other biosensors fabricated for blood glucose

detection which values vary in mM concentration range [27, 56-58]. These findings

show that the enzyme bioactivity is well preserved within the three-dimensional hy-

drogel environment. The production of hydrogen peroxide, as mediator in glucose

oxidation, can be easily and quantitatively detected by the three-dimensional network

of SWNT within the biomaterial. This behavior suggests that the percolative pat-

tern through SWNT clusters allows electron flow from hydrogel bulk to gold surface

electrode. In addition, the lower dopant concentration (compared to those reported

previously for other materials) and the choice of starting material (polyacrylamide

HY) allows the biomaterial to preserve biophysical and biological properties letting

the SWNT doped HY a reliable biomimetic soft material.
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Figure C.3.7 – Glucose
detection and biosensor
calibration. (A) Poten-
tiostatic measurements
of GOx-SWNT-HY 0.85
wt% in PBS 1 solution.
The arrows represent
points of glucose addi-
tion; (B) plateau current
values versus glucose
concentration. Circles are
experimental values of
the measurements given
in panel (A), and the
solid line represents the
fitting of the data with
the enzymatic Michaelis-
Menten kinetic equation.
Outcomes of the fitting
are shown in Table 1.
The inset graph shows
that linearity is achieved
in the range between 0.1
mM and 1.6 mM.
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Experimental

Chip preparation: Working electrode was realized by the patterned deposition of Au

nanometric thin film on clean glass slides through PECVD using a photosensitive

epoxidic mask (SU8, MicroChem, USA) that would be removed by Remover PG

(MicroChem, USA) after metallic deposition. In order to enhance gold adhesion, a

Ti nanometric seed layer was deposited before gold deposition. In order to ensure

a uniform and prolonged adhesion of hydrogel to glass, a specific functionalization

of the glass surface is necessary. The treatment protocol developed consists of glass

surface chemical modification with silane and glutaraldehyde (Sigma-Aldrich, Italy)

as reported in [48]. Supporting Methods are available. Electrochemical cleaning

procedure was used by performing repetitive scans to the working electrode from

0 V to 1.5 V vs Ag/AgCl in HSO at 0.1 V/s. Measurement was stopped when

reproducible scans have been obtained.

C.3.4 Water suspension of carbon nanotubes

100mg of CoMoCat SWCNTs (Sigma Aldrich, Italy) were added as received to 10mL

of milliQ water to form 1 wt% suspension of SWCNTs. Also 20mg/mL of Sodium

Cholate (SC, 99% Sigma-Aldrich, Italy) as surfactant agent were added to the mix-

ture. The suspension was then ultrasonicated for 30 min in ice bath and filtered to

remove clusters obtaining a dark black solution. The suspension was concentrated

by heating until a 1.33 wt% final concentration were reached.

C.3.5 HY Preparation

To realize SWNT HYs, acrylamide/Metilen-bis-acrylamide 29:1 solution (AA/BIS)

was used in addition to carbon nanotubes water mixtures at different final concen-

trations as reported in tab. 3.

C.3.6 Chemical polymerization

1/100 v/v Ammonium Persulfate, 5% solution (APS, Sigma-Aldrich, Italy) and

1/1000 v/v N,N,N,N-Tetramethylethylenediamine (TEMED, Sigma-Aldrich, Italy),

were added to the prepolymer solution. APS in water produces SO radicals that



166 APPENDIX C. ELECTROCONDUCTIVE MATERIALS

SWNT-HY 1.33 wt% SWNT in H2O AA-bis 100 wt% H2O
(wt%) (µL) (µL) (µL)

0.0 0.0 100 400.0
0.1 37.6 100 362.4
0.25 93.9 100 306.1
0.375 141.0 100 259.0
0.5 188.0 100 212.0
0.64 240.0 100 160.0
0.85 320.0 100 80.0

Table C.3.3 – Chemical compositions of SWNT–HY samples used in this work

start the reaction. TEMED catalyzes the reaction because it exists as free radical in

solution. The higher is the concentration of TEMED, the faster will be the polyme-

rization. The pre-polymer solution was degassed because oxygen could inhibit the

initiator. So the prepared solution was rapidly transferred to a silicon mold and then

covered with a coverslip. It takes about 15 min to reach the complete polymerization

of 0.5 mm tall cylindrical HY at room temperature.

C.3.7 Optical and Raman characterization

HY micrographs were taken with an inverted stereomicroscope (Olympus, Italy)

coupled with a photo camera, at a magnification of 10X. A Raman/SNOM confocal

spectrometer (Alpha 300S, WITec, Germany) equipped with a He-Ne laser (� =

633 nm) and a 10X lens was used to perform scans over a 15x15 µm area on three

humid hydrogels at three different SWNT concentrations (0.1 wt%, 0.5 wt% and 0.85

wt%). Spectra were integrated 10 times for each point in the G-band peak interval

(between 1585 cm�1 and 1597 cm�1). Then data were normalized on the maximum

peak intensity collected throughout the three HYs and plotted as a function of x-y

spatial coordinates obtaining three comparable microRaman maps of the surface of

the HYs. The measurement was repeated four times to obtain statistical analysis.

C.3.8 Electrochemical characterization

Electrochemical impedance spectroscopy measurements were performed using a po-

tentiostat/galvanostat (Autolab PGSTAT302N, Metrohm, EcoChemie, The Nether-

lands) managed by software NOVA 1.8 and equipped with a FRA2 module for fre-

quency analyzer. The classic three electrodes cell scheme was used: gold electrode
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acts as working electrode, a Ag/AgCl electrode (Amel Instruments, Italy) as the

reference electrode and a Mettler Toledo Pt cylindrical electrode is used as counter

electrode. Frequency scan range was established between 0.1 Hz to 100 kHz. Fit-

ting of data were performed using NOVA 1.8 software. Cyclic voltammetries were

conducted between 0 V and 0.5 V referred to the reference. Redox probe used was

ferrocene methanol (Sigma-Aldrich, Italy) at 0.5 mM concentration. Electrolytic

supporting solution was KNO 10 mM (Sigma-Aldrich, Italy). Potentiostatic mea-

surements were performed at +0.7 V vs Ag/AgCl electrode in PBS 1x (Invitrogen,

Italy). Concentrations from 0.1 mM to 160 mM of commercial sterilized glucose

(Glucosata solution) were used.

C.3.9 Biocompatibility tests - Seeding and Culture of C2C12 cells

Biocompatibility tests were done. Live/Dead and immunochemical assays were con-

ducted to assess viability and proper functionality of cell culture on doped HYs. (see

Supporting Information for further details). Polyacrylamide hydrogels doped with

SWNTs with 0 wt%, 0.1 wt% and 0.85 wt% were tested. To promote cell adhesion,

the surface was coated with a 0.1 mg/ml solution of laminin-collagen. Cells were

seeded at a density of 3x10 cell/mm and monitored with a phase-contrast micro-

scope for three days.

C.3.10 AFM analysis

AFM studies were performed with a commercial SPM (XE-Bio, Park Systems Corp.,

Suwon, Korea). The instrument has AFM and SICM systems on the stage of an

inverted optical microscope (Eclipse Ti, Nikon Corp., Tokyo, Japan). Manipulating

Park XEP data acquisition software, force-distance spectroscopy was performed on

HYs. The cantilever used for the force-distance spectroscopy was Biotools PNP-TR

(triangle cantilevers with a spring constant of 0.32 N/m and resonance frequency of

about 67 kHz, Nanotools, Germany). The cantilever was calibrated by measuring

the thermally induced motion of the sample free cantilever in Park XEP software.
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Conclusions

An electron conductive network is required to allow electron flow within soft bio-

material because of the insulating nature of polymeric hydrogels. In our work, we

show that a proper electron network could be successfully used to acquire electrons

from a redox enzymatic reaction that takes place within soft biomaterial. Loading of

highly conductive species like carbonaceous nanoparticles within soft hydrogel is the

easiest and the most effective approach to induce the formation of electron conduc-

tive percolative patterns. In particular, we developed an electrochemical biosensor

with good quality using single-walled carbon nanotubes as dopants. We also opti-

mize dopant percentage mass (up to 0.85 wt%) for high detecting efficiency (glucose

detection limit of 15 µM, linearity in the range between 0.1 mM to 1.6 mM and a

sensitivity of 0.63 µM/mM), consequently opening the range of potential interest-

ing applications as quantitative analysis on cell dynamics through the non invasive

direct measurement of metabolites. However, heterogeneous clustering of SWCNT,

which compromise overall biosensor quality, was observed within the material when

the mass fraction is varied in the intermediate range (0.25  wt% � 0.5) by optical

imaging and verified by EI spectra. It is worth to underline that, since optical images

and Raman spectroscopy can give qualitative and quantitative information about the

homogeneity of the doping, electrochemical impedance spectroscopy can be used to

monitor the efficiency of nanotube doping in terms of interface resistance by fitting

experimental data with simple equivalent circuit models. This strategy is compatible

with samples varying in size, compositions and structure and thus greatly extends

the range of potential applications that soft materials based devices could be used.

In the perspective of integrating the soft biosensor within cell culture technology

for dynamically monitoring metabolic activity of living systems under physiological

conditions, we show the biomechanical properties and the biocompatibility of doped

and undoped materials.
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D.1 Abstract

Advanced cell culture systems creating a controlled and predictable microenviron-

ment together with computational modeling may be useful tools to optimize the

efficiency of cell infections. In this paper, we will present a phenomenological study

of a virus- host infection system, and the development of a multilayered microfluidic

platform used to accurately tune the virus delivery from a diffusive-limited regime

to a convective- dominated regime. Mathematical models predicted the convective-

diffusive regimes developed within the system itself and determined the dominating

mass transport phenomena. Adenoviral vectors carrying the enhanced green fluo-

rescent protein (EGFP) transgene were used at different multiplicities of infection

(MOI) to infect multiple cell types, both in standard static and in perfused condi-

tions. Our results validate the mathematical models and demonstrate how the in-

fection processes through perfusion via microfluidic platform led to an enhancement

of adenoviral infection efficiency even at low MOIs. This was particularly evident

at the longer time points, since the establishment of steady-state condition guaran-

teed a constant viral concentration close to cells, thus strengthening the efficiency

of infection. Finally, we introduced the concept of effective MOI, a more appropri-

ate variable for microfluidic infections that considers the number of adenoviruses in

solution per cells for a certain time.

D.2 Introduction

The importance of performing efficient and controlled viral infections on mammalian

cell cultures has long been crucial to optimize the gene transfer procedures for basic

research and gene therapy [1-4]. The common denominator is the necessity of increas-

ing viral infection efficiency while preserving viability and biological processes of the

cultured cells. The use of adenoviruses, non-integrating viruses, preserve genomic

integrity and offer reduced risks for human safety. Moreover, process automatiza-

tion, low volumes of reagents, and reduced costs are desirable. Standard procedures

for culture infection involve virus dilution in the media to defined concentrations,

usually quantified by the multiplicities of infection (MOI), representing the number
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of viral particles per cell. Efficiency of transfection of some cell types may be low,

thus requiring high MOIs potentially resulting in toxic side effects on the cells. In

parallel, the advent and ever-increasing use of microscaled technologies and microflu-

idic devices for lab-on- a-chip applications has led to relevant improvements in the

study of complex biological systems [5-10]. Examples of applications of microflu-

idic platforms have been extensively reviewed [11,12] and point at the advantages

deriving from the miniaturization, integration, and automation of biochemical as-

says. Recent literature reflects increased interest in adopting microfluidic devices in

drug discovery process [13,14], molecular detection [15], and in clinical and medical

research [16]. In order to efficaciously control and exploit their potential, it is funda-

mental to understand the physics of mass- transport phenomena and of fluid flows at

the microscale [17,18] and the fabrication processes, and properties of typically used

materials [19-21] Despite the advantages and versatile applications deriving from mi-

crofluidic platforms, only few studies combining these devices and viral infections of

cultured cells can be found in the literature. Examples include some applications of

microfluidic bioreactors for the continuous production of retroviral vectors [22], or

the dielectrophoretic capture and imaging of viral particles on microelectrodes [23].

A microscale platform was developed to detect and quantify virus growth and spread

[24] and micropatterning has been used to characterize the in vitro propagation of

viruses in cell arrays [25] Cells were infected using virus gradients [26], but the bi-

ological readout showed a low number of cells within the microchannels, and virus

replication studies were performed on hepatocytes seeded within micro cell-culture

chambers [27]. However, neither rational studies on the influence of perfusion nor a

screening of the infection parameters were performed. Finally, most of these systems

suffered some of the major limitations deriving from culturing cells within standard

microfluidic channels such as lower growth rates, and the need for frequent changes of

media during the preliminary phases. Here, we develop a microfluidic platform that

can be easily and reversibly coupled to cell cultures, that allows performing multi-

parametric experiments and exerting a precise control over the soluble extracellular

microenvironment, thus increasing the efficiency of infection. Our microfluidic de-

vice is used for the optimization of the process of cell infection through an approach
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that combines mathematical modeling with the experimental validation. On one

hand, mathematical models evaluate the transport phenomena and the dominating

regimes within a defined system, while experiments, on the other, analyze static and

perfused microfluidic-driven infection processes, validating the modeled conditions

and demonstrating that our microfluidic platform allows increasing the infection ef-

ficiency when compared to static conditions, even at the lowest MOIs. Infections

are usually carried out in standard culture plates at defined MOIs and since the ef-

ficiency of infection is proportional to the virus adsorbed on the cellular membrane,

the minimization of the total volume of viral suspension is crucial to favor the contact

between viral particles and adhering cells. Viral particles are uniformly dispersed in

the solvent, and their transport from the bulk of the liquid to the cell surface is purely

driven by brownian-like diffusion. However, in microfluidic experimental setup, mass

transport of particles is driven by both diffusion and convection phenomena. In

particular, diffusion has a driving force represented by a difference in concentration

(�c), while convection results from a bulk velocity of the fluid. Consequently, con-

vection gives an additional contribution enhancing the transport of viral particles

to the cells, thus increasing the efficiency of infection. It will be crucial to define a

method to compare the results of static and microfluidicperfused conditions in terms

of infection efficiency. In order to have fair comparison between static and perfused

conditions, a proper experimental design has been proposed to maintain the same

concentration, MOI, and total volume of medium. This experimental design will

allow to highlight the influence of different intrinsic properties of the hydrodynamic

regimes (static and perfused) on infection efficiency. Mathematical modeling will

allow to analyze the theoretical variations of the ratio of virus fluxes in static and

perfused conditions and derives the optimal operative variables such as flow rates

and infection times.
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D.3 Materials and Methods

D.3.1 Cell culture

Mouse embryonic fibroblasts (MEFs) were purchased from Chemicon and were cul-

tured in 79% Iscove’s modified Dulbecco’s medium (IMDM, Invitrogen), 20% foetal

bovine serume (FBS, Invitrogen), and 1% penicillin/streptomycin (Invitrogen). Hu-

man foreskin fibroblasts (HFFs) were supplied by Dr. L. Barzon from the University

of Padova and were cultured in 89% Dulbecco’s modified eagles medium (DMEM,

Sigma-Aldrich), 10% FBS (Invitrogen), and 1% penicillin/streptomycin (Invitrogen).

Passaging of both cultures was performed with Trypsin 0.025%-EDTA (Invitrogen)

and cells were either re -plated on culture flasks for further expansion or seeded on

glass coverslips, both coated with 0.66% A-type pork gelatin (Sigma-Aldrich).

D.3.2 Microfluidic platform

The multilayered microfluidic platform (overall dimensions: 75 x50 mm) was de-

signed for an easy interface with the cell system, and fabricated using lithographic

techniques and molded in poly-dimethylsiloxane (PDMS)[28].The platform (Figure

1(A)) comprised: (i) a supporting glass slide with a PDMS slab carved to accommo-

date the cell culture coverslip, (ii) a membrane-based vacuum system for its reversible

sealing, and (iii) the microfluidic channels (width x height 0.2 x 0.1 mm) delivering

fluids to the cultured cells. The circular channel creating the suction sealing the two

layers, faces the PDMS slab in (i) and is thermally (and irreversibly) bonded to the

upper microfluidic layer (iii). The assembled platform formed a 16x16mm culture

chamber, area in which the cultured cells were exposed to the fluid streams from the

microfluidic channels. The height of the chamber could be varied as needed; for all

the experiments presented here we used 0.5mm high membranes. The platform was

entirely optically transparent, allowing in-line observations of the cultures by easy

interface with standard microscopes (Figure 1(B)). The micro-perfusion apparatus

(Figure 1(C)) was composed of the multilayered microfluidic platform, two syringe

pumps (PHD, Harvard Apparatus, Holliston, MA), and a vacuum control system

(membrane pump H35M and digital vacuum sensor, Vuototecnica, Italy). All con-
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Figure D.3.1 – Platform design and experimental setup. Panel A. The platform comprised:
i) a supporting glass slide with a PDMS slab carved to accommodate the cell culture cov-
erslip (f), ii) a membrane-based vacuum system for the reversible sealing of i, and iii) the
microfluidic channels delivering flu- ids to the cultured cells (inlets in (a) and exits in (b)).
The assembled platform formed a 12x12 mm culture chamber (c) where cells were exposed
to the fluid streams. The top layer embedded connections to the vacuum system (d) and to
a pressure-monitoring auxiliary service (e). Panel B reports an image of the assembled plat-
form, which was entirely optically transparent, operated flowing a color tracer (fluorescein)
in 2 of the 8 channels. Panel C. The micro-perfusion appara- tus was essentially composed
by the multilayered microfluidic platform, two syringe pumps, and a vacuum control system.
The interface with a fluorescence microscope equipped with an environmental chamber is
shown.

nections between components were made using Tygon tubings (0.5mm ID, 1.5mm

OD, Cole Palmer, USA).

A brief description of the experimental procedures follows. Before assembling and

coupling to the cell cultures, all components, connections, and tubings were rinsed

with water and then sterilized via autoclave treatment. Tubings were then rinsed

with sterile culture medium and incubated for at least 1 h prior to the platform

assembly. This preconditioning of the tubings’ walls reduced the potential loss of

viral particles due to undesired adsorption. Sterile 3 ml syringes to be connected to

the platforms outlets were filled with 500 µl of sterile PBS, to avoid the elastic effect

of air, and connected to the microtubes exiting the platform. Sterile 3 ml syringes to

be connected to the platforms inlets were filled with culture medium. The open cell

chamber was covered with 1 ml of culture medium and the syringe-pumps activated to
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Figure D.3.2 – Model validation. Panel A reports representative results of the mathe-
matical modeling showing concentration maps within the culture chamber. For a defined
molecular species with its diffusion coefficient and fixed systems geo- metrical specifications,
increases in the fluid flow rate change the shape of the compartment. Transport phenomena
span from diffusion- to convection-dominated regimes following increases in flow rate. Panel
B shows merged fluorescent images reconstructing the entire culture chamber, acquired dur-
ing the experimental runs performed using parameters equal to the modeled ones.

stabilize the fluid flow and eliminate any residual bubble. Finally, the glass coverslip

with the cultured cells was coupled to the lower layer, the entire platform assembled

and the vacuum system ensuring hydraulic sealing activated. The multiple inlet and

outlet channels allowed creating highly compartmentalized fluid regions within the

culture chamber, thus increasing the throughput of the system potentially consenting

to test several levels for a variable (i.e., virus MOIs) at a single time (Figure 2).

D.3.3 Fluid dynamics modeling

The Navier-Stokes equations for incompressible fluids were numerically solved us-

ing the finite elements method implemented in COMSOL Multiphysics (Burlington,

MA). The 2D domain of the culture chamber was geometrically modeled and a non-

structured mesh was automatically generated with triangular elements. Subsequent

grid refinements were required to ensure independency of the solution from the spatial

discretization. No-slip boundary conditions were used for the chamber and microflu-

idic conduits walls, a fixed velocity for the inlet channel and finally zero pressure

for the outlet. The fluid properties viscosity and density were taken from the liter-

ature [29]. To obtain concentration profiles within the chambers, the mass balance

equations for a convective-diffusive regime were solved again using COMSOL Multi-
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physics software (Burlington, MA, USA). Fluid velocity profiles were obtained from

the Navier-Stokes solutions. Defined concentrations were used as boundary condi-

tions at the different inlets, convective flux at the outlets and insulation/symmetry

elsewhere. The diffusion coefficient for the adenoviral vector (AdV) was calculated

from the Stokes-Einstein equation [30]. The diffusion coefficient of a virus particle,

approximated by a 90 nm hydrodinamic diameter, was assumed to be 6·10�12 m2s�1.

Fundamental assumptions of our modeling approach follows. Focusing on the resis-

tances within the media compartment, we assumed that the virus adsorption was

much faster (steady state assumption) than the mass transport. We also assumed

that all intracellular phenomena related to viral protein expression such as virus in-

ternalization, virus decay, and protein production, were not affected by the velocity

profile in the media compartment. Within these assumptions, the calculated virus

molar flux at cell membrane could be considered directly related to the efficiency of

infection. The ratio between virus molar fluxes of dynamic and static conditions is

defined as the theoretical relative efficiency, \phi_r. In this work, we compared �r as

a function of different parameters such as MOI, time of infection, and hydrodynamic

regime. In particular, hydrodynamic regime was described through the dimensional

Peclet number defined as Pe = ⌫H/D, where ⌫ is the velocity, H is a characteristic

length (chamber height in our case), and D is the diffusion coefficient. This dimen-

sionless variable identifies flow rate conditions at defined geometrical constraints into

specific diffusional or convective transport regimes. Empirical calculations were also

performed (fluxes were evaluated as a function of time, diffusion coefficient, volumes)

and used as a comparison to validate the mathematical modeling (data not shown).

Cell densities, MOIs, viral concentrations, and infection times were kept constant at

their optimized values. In addition, during the preliminary design and development

phases, experimental validation of the modeled fluid compartmentalization in multi-

channel platform was performed using fluorescein dye as a tracer. Figure 2 shows the

good agreement between model prediction and experimental analysis allowing model

prediction of small diffusing particles. Supplementary Figure AS1 reports additional

data quantifying the fluorescence levels of the experimental images (directly corre-

lated to concentration values) [31]. These plots can be compared to the analogous
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concentration curves obtained by the modeled concentration maps.

D.3.4 Infection protocols

D.3.4.1 Static condition

AdVs carrying the EGFP transgene were used at different MOI to infect multiple

cell lines, both in static or in perfused conditions. Briefly, AdV is based on the

Ad5 genome and lacking the E1 and E3 regions was constructed by homologous

recombination in E. coli using AdEasy vector system (Qbiogene, Carlsbad, CA). In

this vector, human cytomegalovirus promoter was used to drive expression of green

fluorescent protein. AdEGFP was propagated in E1- complementing HEK 293 cells,

purified by cesium chloride density centrifugation, and titrated by TCID50 endpoint

assay according to the AdEasy production protocol. Viral vector stocks were stored

at 5.0 · 109 pfu/ml concentration in 10% glycerol at -80 °C until use. The infection

efficiency was evaluated at different time-points post-infection quantifying the EGFP

expression on the live samples via image analysis. Cells were seeded on gelatin coated

coverslips 24 h before infection; the volume of the viral high-titer stock solution to

be used was calculated for any given cell density and experimental MOIs. The viral

stock solution was thawed and aliquots prepared and diluted to the final volume

with the required culture medium. Cell cultures were then incubated (37 °C, 5%

CO2, 95% humidity) with the viral solutions for defined times. Cells were rinsed

with warm PBS without Ca2+/Mg2+ (Gibco) and reincubated with culture medium.

Post-infection incubation time varied depending on the experiment. In time-course

runs, cells were re-incubated for up to 3 days. Images were acquired 48 h post

infection.

D.3.4.2 Microfluidic perfused conditions

All of the above described procedures were followed, with the sole difference that

the viral suspension was loaded in 3ml syringes and connected to the assigned inlet

channels. Particular attention had to be paid at calculating the exact viral par-

ticles number which would ensure correspondence between the static and perfused

infections.
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D.3.4.3 Measurement of the infection efficiency

At the established time points, cell cultures were incubated with Hoechst 33342 (In-

vitrogen) nuclear dye. After this assay, images of randomly chosen positions were

acquired (microscope Leica DMI 6000-B) on both fluorescence channels: blue for

Hoechst marking all cell nuclei and green for the cytoplasmic EGFP signal expressed

by the infected cells only. In order to obtain comparable set of data, the exposure,

gain, and intensity values should be the same in every image. Quantification of these

results was performed via image analysis on paired fluorescence pictures (blue and

green channels). A custom developed script listing the command lines was imple-

mented and run in MATLAB. Briefly, this script organized images in pairs, converted

them in grayscale, enhanced contrast and finally converted them in binary format.

Further processing allowed removing cell-debris, a potential source of quantification

errors. The binary image of the nuclei was used to automatically count the total

number of cells. After that, a pixel by pixel subtraction between the two binary

images produced a new matrix creating the final image showing only the nuclei of

successfully infected cells. Automated counting led to the obtainment of the number

of infected cells and of the global efficiency of infection (number of infected cells over

total number of cells).

D.4 Results

D.4.1 Model validation

The capability of the platform to generate well-defined concentration compartments

was first modeled and then validated using fluorescein as a dye tracer. The results of

the mathematical modeling are shown in Figure 2(a), where the sole culture chamber

is represented for ease of visualization. The shape of the compartment can be pre-

cisely defined by simply tuning the fluid flow rate. At the lowest flow rates, transport

by diffusion and convection competes determining a feather-like shaped concentra-

tion pattern. For increasing flow rates, convection becomes the dominant transport

phenomena and leads to the formation of sharp compartments. Figure 2(b) reports

the results of the experimental validation, performed using the same coefficients and
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geometrical specifications applied for the mathematical modeling. The extremely

close resemblance between the experimental concentration patterns and the modeled

ones validated the model predictions and the systems performance. A quantification

of this observation is available in supplementary Fig. AS1 [31].

D.4.2 Modeling of the cell infection process

Figure A3 summarizes representative results of the computational modeling of the

infection process. Again, is the theoretical relative efficiency of microfluidic perfused

versus static infection. The curves in panel A3(a) are parametric in Pe and reported

as a function of the square root of time. The horizontal line at �r =1 highlights

the threshold at which molar fluxes (and thus infection efficiencies) of perfused and

static processes are equal, thus allowing to identify the parameters characterizing

the variables-space where perfused-microfluidic (�r > 1) or standard static (�r < 1)

infection conditions are favored. For example, given the systems geometrical con-

straints and the duration of the infection process, increases in fluid flow rate (which

directly translate into increases in Pe number), will favor perfused-microfluidic pro-

cesses, which will result in higher infection efficiencies. Vice versa, at the lowest flow

rates where convection gives no significant contribution to the overall transport of

viral particles from the bulk of the liquid to the cell surface, standard static infections

prove to be more efficient. Panel 3(b) plots the values of �r as a function of Pe for a

fixed time (t = 90 min) of infection. Again, it is evident how for increasing flow rates,

perfused-microfluidic infections lead to higher yields with a trend plateauing for Pe

higher than 200 (corresponding to a 1 µl/min flow rate and 8 µm/s linear velocity).

Finally, panel 3(c) plots the times at which �r = 1 for Pe � 100, showing again how

for increasing Pe perfused-microfluidic infections could lead to higher yields than

standard static processes exposing the cells to potentially harmful viruses for shorter

times.

D.4.3 Cell infection

Several experiments have been performed in order to optimize the procedures and

parameters characterizing the infection process, both in static and microfluidic cul-
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Figure D.4.1 – Computational
modeling of the infection process.
�r is the theoretical relative effi-
ciency of microfluidic perfused ver-
sus static infection. Panel A re-
ports �r curves parametric in Pe
and as a function of the square
root of time. The horizontal line
at �r = 1 (equality of perfused
and static molar fluxes) separates
the variables space where perfused-
microfluidic (�r > 1) or standard
static (�r < 1) infection conditions
are favored. Panel B plots �r as
a function of Pe at a defined time
(t=90 min) of infection. Finally,
panel C plots the times at wich �r

= 1 for P > 100.
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ture. Cell line, cell density, cell passage, virus MOI, duration of the exposure to the

viral solution (incubation time), and Pe number, were among the screened variables.

From these preliminary experiments, we established optimal values and ranges: cell

seeding density was kept constant at 100 cells/mm2, MOI was varied from 10 to 100,

Pe levels for microfluidic cultures were 10 and 100, and infection times spanned from

90 min to 12 h. In reporting some of the most significant findings on HFF cells,

we highlight how: (a) increases in the incubation time led to increases in the infec-

tion efficiency (Figure A4(a)) (further discussion will be presented in the following

sections). (b) An inverse-relationship correlation was established between viral sus-

pension volume (at a given MOI) and infection efficiency: increases in the first led to

decreases in the latter (Figure A4(b)); however, no changes in infection efficiencies

were measured for increases in the viral suspension volume at constant viral particles

concentration (Figure A4(c)). (c) For a given infection time, observation of the cell

cultures over 3 days demonstrated how the efficiency increased over the first two days

and reached a plateau by day 3 (data not shown). Additional material is presented

in supplementary FigureA S2 [31]. Fundamental relations were established between

variables, to allow comparisons between the different culture and infection condi-

tions. In particular, to ensure constant virus concentration in static and microfluidic

infections, MOIs must be translated into concentrations as follows:

cv =
MOI ·NCellsStat

V olStat
=

MOI ·MCellsµFl

V olµFl
(D.4.1)

and

V olµFl = Q · t (D.4.2)

where cv is the virus concentration in culture medium, MOI is the number of

viral particles per cell, NCells is the total number of cells exposed to the viruses,

and Vol is the total volume of fluid used in the experiment. Q is the fluid flow rate

and t is the duration of the infection process. Subscripts Stat and Fl refer to static

and perfused-microfluidic infections, respectively. It is important to underline how

the possibility of compartmentalizing fluids within the microfluidic platform would
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divide the culture area in 4 sections, each containing 1/4 of the total number of cells

and exposing them to different MOIs; this thus need to be taken into account in

evaluating virus concentrations and other variables.

Rearranging the above equations, we can calculate the volume of the viral sus-

pension to be used in standard conditions as a function of the fluid flow rate, corre-

sponding to the chosen Pe value, of the microfluidic process:

V olStat =
NCellStat
NCellµFl

·Q · t (D.4.3)

We planned the experimental runs following these variables constraints and ob-

tained the results shown in Figure 5. Cell seeding density was constant at 100

cells/mm2. Experiments were performed at Pe=10 and Pe=100. Panels 5(a) and

5(c) refer to HFF cultures, 5(b) and 5(d) to MEF. Image acquisition was performed

48 h post infections on cells treated at MOI 100 for 90 min. At lower Peclet, static

infections led to significantly higher infection efficiencies when compared to the corre-

sponding microfluidic perfused ones for both cell lines, while differences were strongly

reduced at the highest Pe value. This is an expected trend described by our model,

as can be seen in the bottom graphs of Figure 5 (panels C and D), where the relative

efficiency of microfluidic perfused versus static infection is reported as a function of

the square root of time. Here, �r resulted in significant higher values at Pe=100

when compared to the ones at Pe=10 for both cell lines. In particular, the highest

�r values were detected on MEFs, a result that led us to the use of MEFs for the

following experiments. The relative infection efficiencies are in very good agreement

with the theoretical ones. Higher Pe always led to higher infection efficiencies (mea-

sured by the theoretical relative efficiency factor) and, under the same conditions,

MEFs showed higher infection efficiencies if compared to HFF. Regarding HFF, the

value at higher Pe is overestimated by the model. It is worth to remind that the

model describes the ideal case in which the delivery of viral particle is mainly limited

by the transport phenomena within the liquid domain. If our hypothesis fails, an

additional step normally faster than transport phenomena, such as virus adsorption

or internalization, could negatively affect the overall infection efficiency.

To further explore this issue we performed additional experiments, whose results
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Figure D.4.2 – Static infections
on HFF cultures. HFF were plated
at a 100 cells/mm2 density, and
all infections started 24 h after
seeding. MOIs were: 50 in panel
A, 100 in panel B, and 100, 200,
400 respectively for the data points
in panel C. In panel A, the plot-
ted data points demonstrate how
longer incubation times of cell cul-
tures with the viral suspension led
to increases in the infection effi-
ciency. In panel B, increases in
the viral suspension volume (at a
given MOI) led to reduced infec-
tion efficiencies; in parallel, panel
C demonstrates that no signifi-
cant changes in infection efficien-
cies were measured for increases in
the viral suspension volume at con-
stant viral particles concentration.
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Figure D.4.3 – Comparison between static and microfluidic infec- tions at different Peclet
numbers for two cell types. Cell density was kept constant at 100 cells/mm2; MOI was 100,
and infection time 90 min. Experiments were performed at Pe = 10 and Pe = 100. Panels
A and C refers to HFF cultures, B and D to MEF. Data were obtained via image analysis of
cell cul- tures 48 hours post infection. Panels C and D graph the mod- eled profiles for �r

(the theoretical relative efficiency of microfluidic perfused versus static infection) and allow
comparison with representative experimental results. Empty markers are for Pe = 10 and
filled markers for Pe = 100.
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are presented in Figure 6. First of all, we analyzed the effect of increasing infection

times at low MOIs. Panel 6A shows infection efficiencies measured following exposure

of cell cultures (MEFs) to adenoviruses at MOI 10 for times ranging from 90 min to 12

h, both in static and microfluidic perfused culture. Additional material is available in

Figure S3 [31]. The results highlighted how the use of microfluidics allowed obtaining

higher efficiencies for longer incubation times. This is due to the fact that, while in

static infections the concentration of viral particles surrounding a cell decreased

with time, resulting in plateauing efficiencies, the steady state that was established

perfusing the cultures ensured the maintenance of a constant concentration of viruses

around cells and further increases in the infection efficiency. Finally, we introduced

the new concept of “effective MOI”: as the standard MOI is the total number of

viral particles per cell which varies with time as viruses are transported to cells, the

effective MOI was defined as the number of viral particles surrounding a cell at a

certain time. This value is considered constant in perfused conditions, according to

the establishment of the steady state. Now, the two MOIs are related through the

fluid volumes used for the experiment (in turn determined by the chosen Pe number):

MOItotal = MOIeffective
Vi

Vch
(D.4.4)

where Vi is the viral suspension volume used for cell infection during a single exper-

iment and Vch is the volume of the cell chamber. The total and effective MOI are

equal in static conditions, where Vi corresponds to Vch, and different in experiments

with perfusion, where V iVch. Experiments performed using the effective MOI pro-

duced the results shown in Figure 6(b). Exposing cells to the viral suspension at an

effective MOI of 100 for 12 h led to favored efficiencies for the microfluidic perfused

processes, resulting in significantly higher infection efficiencies than those reached in

static conditions.

D.5 Discussion and conclusions

In this study, we present a rational approach to the issue of viral infection of cell

cultures, comparing theoretical modeling and experimental evidence. An accurate
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Figure D.4.4 – Comparison between static and microfluidic infec- tions for different infec-
tion times and at effective MOI. In Panel A the cells were exposed to the viral suspension
at MOI 10 for times ranging from 90 minutes to 12 hours, both in static and microfluidic
perfused culture. The use of mi- crofluidics allowed obtaining higher efficiencies for longer
in- cubation times. In Panel B, infections were performed at an effective MOI of 100 for
12 hours and led to significantly higher efficiencies in microfluidic infections compared with
those reached in static conditions.

analysis of the phenomenological behavior of an infection process on a cell culture, ex-

plored the effects of transport (diffusional and convective) in static and microfluidic-

perfused conditions. Rationalization of the infection steps and limiting phenom-

ena acting on the system highlighted the pros and cons of both conditions. Static

conditions, for example, represent the standard procedure and are thus routinely

performed with well established techniques; however, they tend to utilize high MOIs

in order to ensure high infection efficiencies, are diffusion-dependent and regulated

by unpredictable and continuously varying kinetics (since virus concentration in the

cells surroundings decreases uncontrollably due to virus degradation, consumption,

and internalization by the cells). Perfused infections, on the contrary, can be pre-

cisely controlled and the persistence of a steady state renders the system more stable

and predictable. At the steady state, the virus concentration at the cell membrane

is constant and maintained at the established optimal level, thus allowing the use

of lower MOIs to obtain higher infection efficiencies while reducing the risk of ex-

posing cultures to a hostile environment. In addition, we developed a relationship

between molar fluxes of viral particles and infection efficiencies, with molar fluxes

determined by the systems parameters and variables (geometry, flow rates, etc.).

Such variables have been translated into correlation terms that take into account

the necessity of having comparable entities for static and perfused conditions. Di-

mensionless forms, where applicable, were favored. This approach led us to a more

accurate experimental plan, where only one variable at a time was varied in parallel
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static and perfused infections; the obtained results were thus directly comparable.

Our static controls were performed using standard multiwell plates, fitting the glass

coverslips used as culture substrates. We want to point out how this choice, over

that of statically operating the microfluidic platforms, allowed us to use the same

total volumes reached in the perfused experiments; this is of paramount importance

in sight of obtaining infection efficiency data that could be compared between the

two conditions. Flow rate choices in the microfluidic experiments were translated in

corresponding infection volumes in static controls (V = Q * t), and a variable such

as MOI could then be independently changed. All together, these results show how

the microfluidic technology can be used for rational designing an infection process

with high intrinsic efficiency without the risk of viral associated-cytotoxic derived by

high MOI static treatment.
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E.1 Summary

Long-term cell culture in microfluidic devices is an essential prerequisite for “on a

chip” based biological and physiological studies. We investigated how medium de-

livery, from continuous to periodic perfusion, affects long-term cell cultures in a

microfluidic platform. Computational simulations suggested that different delivery

strategies result in different temporal profiles of accumulation and washing out of

endogenous (EnF) and exogenous (ExF) factors, respectively. Thus, cultures ex-

posed to the same overall amount of medium with different temporal profiles were

analysed in terms of homogeneity, cell morphology and phenotype. Murine and hu-

man cell lines (C2C12 and HFF) and mouse embryonic stem cells (mESC) were

cultured in microfluidic channels. Ad hoc experimental setup was developed to per-

form continuous and periodic medium delivery into the chip, tuning the flow rate,

the perfusion time, and the interval of perfusion while using the same amount of

medium volume. Periodic medium delivery with a short perfusion pulse ensured

cell homogeneity compared to standard cell culture. Conversely, a continuous flow

resulted in cell heterogeneity, with abnormal morphology and vesiculation. Only

dramatic and unfeasible increasing of perfused medium volume in the continuous

configuration could rescue normal cell behaviour. Consistent results were obtained

for C2C12 and HFF. In order to extend these results to highly sensitive cells, mESC

were cultured for 6 days in the microfluidic channels. Our analysis demonstrates

that a periodic medium delivery with fast pulses (with frequency of 4 times per day)

resulted in a homogeneous cell culture in terms of cell viability, colony morphology

and maintenance of pluripotency markers. According to experimental observations,

the computational model provided a rational description of the perfusion strategies

and of how they deeply shape cell microenvironment in microfluidic cell cultures.

These results provide new insight to define optimal strategies for homogeneous and

robust long-term cell culture in microfluidic systems, an essential prerequisite for lab

on chip cell-based applications.
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E.2 Introduction

The demand of tightly controlled cell microenvironments, high reproducibility and

high-throughput processing for multi-parametric analyses is undoubtedly increasing.

The exploding field of microfluidics offers attractive technologies, which can fulfil

these requests and extend conventional cell culture experiments for the study of bi-

ological systems, for a better insight of the physiology and for the development of

in vitro models. Hence, robust long-term microfluidic cell cultures are of paramount

importance to fully establish a highly controlled integrated system. Microfluidic

devices have become extremely relevant for cellular bioassays and tissue engineer-

ing [1]. Their reduced system dimensions allow an accurate control of the spatial

and temporal local system properties [2,3], a fast stimulation and detectable cell re-

sponse, and high-throughput arrays for multi-parametric analysis while reducing the

operating costs [4]. Various examples of long-term microfluidic cell culture are re-

ported in the literature [5–13]. Either continuous [6–10] or periodic [11–14] medium

delivery has been used to maintain cell cultures for prolonged time. Although the

complexity of microfluidic architecture has been extensively explored, and the ef-

fect of some operative variables has been analysed, the identification of an optimal

strategy for medium delivery is still an open issue. Despite being a fascinating tool

to tightly control medium composition, microfluidics showed some drawbacks when

coupled with cell culture systems. Even using the same overall amount of medium

in a time interval, it should be considered that different delivery strategies imply

different spatio-temporal profiles of metabolites and growth factors, which may sig-

nificantly influence overall cell behaviour and long-term culture stability. Due to

the high surface/volume ratio in microfluidics, frequent accumulation or washout of

extrinsic factors has been reported to end up with a long-term toxicity effect [11].

Especially for high demanding cells, nutrient supply and waste removal should be

finely balanced with the requirement of growth factors secreted by the cells. When a

continuous perfusion is applied, soluble factors can be depleted9 resulting in a culture

failure [11]. Additionally, the culture media flowing from the upstream region (inlet)

of a microfluidic chamber can accumulate or be deprived of various substances result-

ing in a different soluble environment affecting downstream cell culture behaviour [9,
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Figure E.2.1 – Microfluidics offers an
unlimited set of flow rate values within
a low shear stress range for cell cultures.
The same amount of medium (given by
the product between the flow rate and
the time of perfusion, and represented
by a rectangular area under a hyper-
bolic trend line) can be managed by
varying the flow rate and the perfusion
interval. Three different operative con-
ditions with the same experimental per-
fused medium volume are represented.
Each condition in the plot results in the
same area (e.g. same volume). Assum-
ing a 6-hour cycle, C1 results in a con-
tinuous flow regime, P1 and P2 result in
discontinuous flow regime.

15]. In this article, we aim at studying the effect of different strategies in medium

delivery on long-term cell culture. In particular, we used an approach, both experi-

mental and theoretical, to rationally understand how the spatio-temporal evolution

of extrinsic factors, both secreted by the cell or delivered from the media (referred

in this paper as endogenous factors and exogenous factors, respectively), is affected

by different isovolumetric conditions of medium delivery. In order to compare cell

responses, we analysed the effect of the delivery of the same amount of medium ac-

cording to different temporal profiles, as reported in Figure 1: continuous medium

flow (C1) and periodic delivery of either fast (P2) or slow (P1) pulses were applied in

a defined time interval. Moreover, we designed a multiple channel microfluidic chip

with a high length/width ratio to investigate upstream and downstream heterogene-

ity of microfluidic cell cultures.

E.3 Materials and Methods

E.3.1 Cell culture

C2C12 (ATCC) were cultured in 89% DMEM (1 g/L glucose) (Sigma-Aldrich), 10%

FBS (Life Technologies) and 1% penicillin/streptomycin (Life Technologies) at 37

°C and humidified 5% CO2. Passaging of both cultures was performed with 0.025%

trypsin-EDTA (Life Technologies) and cells were either re-plated on culture flasks

for further expansion or seeded inside microfluidic chambers, both coated with 0.6%
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A-type pork gelatin (Sigma-Aldrich). Nanog-GFP reporter mouse embryonic stem

cells (mESC, Millipore) were cultured in MilliTrace cell expansion medium on 0.1%

A-type pork gelatine according to the manufacturer’s guidelines. mESC colonies

were passaged and dissociated in single cells with Accutase (Millipore) for 3 min-

utes. Culture channels were fed injecting cell suspension via the outlet avoiding cells

in the medium reservoir. Regarding C2C12 and HFF, initial cell density within the

chip was 15 cell/mm2 and cultures were monitored during perfusion experiments un-

til confluence was reached. mESC were seeded at 100 cells/mm2 in order to promote

aggregation and formation of small colonies. Tubings were connected to the chip 12

hours after seeding to allow complete adhesion and spreading of cells. The NANOG-

GFP fluorescent construct was monitored in live mESC cultures. mESC were fixed

at day 6 in 4% paraformaldehyde and directly characterized within the channel by

immunofluorescence for SSEA-1 surface pluripotency marker (Santa-Cruz) in 3%

bovine serum albumin. An Alexa-594 conjugated secondary antibody (Life technolo-

gies) was used for SSEA-1 fluorescent labelling. Image analysis for quantification

of mESC colony size and marker fluorescence intensity was performed with ImageJ

analysis tools.

E.3.2 Microfluidic platform

The microfluidic platform was designed to accommodate five independent parallel

channels for cell culture (18 x 1 x 0.1 mm) with well-shaped reservoirs for fresh

medium upstream and tubing connection downstream (Fig. 2). The microfluidic

layer was fabricated using standard lithographic techniques16 and molded in PDMS

with a 10:1 base/curing agent ratio (Dow Corning). A supporting borosilicate glass

slide (Menzel-Glaser) was used to seal each channel after plasma treatment of sur-

faces. The micro-perfusion apparatus (Fig. 2) was composed of the microfluidic

platform, a set of PHD2000 syringe pumps in withdraw mode (Harvard Apparatus)

and glass syringes (Hamilton). All connections between components were made us-

ing Tygon tubings (0.5 mm ID, 1.5 mm OD, Cole Parmer). A brief description of

the experimental procedures follows. Before assembling and coupling to the cell cul-

tures, all components were extensively rinsed with milliQ water (Millipore) and then
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Figure E.3.1 – Schematic top-view and rendering of the microfluidic platform. The mi-
crofluidic platform consists on a PMDS layer (5 mm thick) with five parallel channels (18 x
1 x 0.1 mm) and a bottom glass slide which serves as sealing surface for cell culture adhesion
and proliferation. Wells (3 mm wide) serve as fresh medium reservoir upstream and Tygon
tubings are connected downstream through pinholes. Tubings ends are connected to a set
of syringes which are loaded on a withdraw pump.

sterilized via autoclave treatment. Finally, tubings were rinsed with sterile culture

medium and incubated for at least 1 hour prior to the platform assembly. Sterile sy-

ringes to be connected to the outlets of the platform were filled with sterile medium in

order to avoid the elastic effect of the air, and then connected to the pinholes exiting

of the platform. The entire chip was embedded in a Petri dish providing a water bath

to limit medium evaporation. We considered a continuous and a periodic medium

delivery. These strategies were defined by a parameter � = tperf/tcycle, which is the

ratio between the perfusion time and the duration of a single cycle. Three cases were

taken into account: a continuous strategy (C1), characterized by � = 1; and 2 peri-

odic strategies, one with a long medium pulse (P1/P1’), � = 0.25-0.5 and one with

a fast medium pulse (P2/P2’), � = 0.02-0.033. Pumps were controlled through the

serial port by a customized software developed in LabVIEW (National Instruments)

in order to setup the flow rate, the time of perfusion, the time of pause, and the num-

ber of cycles, and to establish different operative conditions inside culture channels.

Microfluidic cell cultures were monitored using image acquisition in a controlled envi-

ronment (37 and humidified 5% CO2, Pecon) on a motorized DMI6000B fluorescent

microscope stage (Leica). Glucose measurements were taken with a diabetes-grade

sensor (Abbott) and data were collected withdrawing downstream tubings at the end

of the continuous set up experiments.
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E.3.3 Computational model

In the microfluidic cell culture chip, cells adhere at the bottom of the channel, which

is perfused by fresh medium. Convection and diffusion regulate the species mass

transport. Because of the cell metabolism, there is a concentration gradient between

cells and the medium bulk, hence a flux of nutrients from the bulk to the cells; on the

other hand, cells secret factors causing an inward flux. Because microfluidic systems

are typically made in PDMS, an inward oxygen flux must be considered during the

overall experiment duration due to the high gas-permeability of the PDMS (Fig. 3a).

Two different operative conditions were analysed, continuous and periodic medium

delivery. The system was described by the mass transport equations and cell growth;

in addition the Navier-Stokes equation was applied during the medium perfusion. A

2D model was used since we assumed that all concentration profiles along the width

of the culture chamber are negligible. The medium fluid dynamics in the culture

chamber was described by the Navier-Stokes equations for incompressible fluids (Eq.

1):

⇢
D⌫

Dt
= �rp+ µr2⌫ + ⇢g (E.3.1)

where ⇢ is the medium density, v is the velocity field, p is the pressure, µ the

medium viscosity, and g the gravity. At the inlet a parabolic profile was imposed

consistent in the limit at low Reynolds number, while at the outlet the pressure was

set to zero. The convection-diffusion equation was used to study species temporal

concentration profiles and no reactions occurred in the medium. Since cells are seeded

at the bottom of the channel, their cellular activity (uptake and secretion) can be

assumed as a flux (outward and inward) at the cell/medium interface. The species

mass transport was expressed by:

�ci
�t

= �rNi (E.3.2)

In Eq. 2, cI is the species concentration, and Ni is the flux which considers both

convection and diffusion phenomena:
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Ni = ⌫ci �Dirci (E.3.3)

where Di is the species diffusion coefficient in medium at 37 °C. The mathemati-

cal model was coupled with phenomenological expressions for the oxygen flux at the

top of the chamber (N ext), and for the kinetics of uptake and secretion (Ri). The

inward oxygen flux through the PDMS follows [16]:

N ext
O2

= K0(pO2 � kO2cO2) (E.3.4)

where K0 is the global mass transfer coefficient (K0 = Pm/�, Pm is the oxygen

permeability in PDMS [18] and � is the PDMS thickness), pO2 is the oxygen partial

pressure in the incubator atmosphere and kO2 is Henry’s coefficient for oxygen. The

oxygen uptake was described as a Michaelis-Menten equation, as reported in litera-

ture for C2C12 cells [19] The glucose uptake was experimentally determined and it

was described with a first order kinetic equation.

RO2 =
VmaxcO2

cO2 +Km
(E.3.5)

RG = (k1cG + k2)⇢cell (E.3.6)

In Eq. 5, Vmax, and Km are the oxygen kinetic parameters and ⇢cell is the overall

cell density; whereas in Eq. 6, k1, and k2 are the glucose kinetic parameters. The

secretion rate of a generic endogenous factor was considered constant for each cell,

and described as a linear function of the cell number:2

REF = qEF⇢cell (E.3.7)

qEnF is the specific production rate. At the beginning, the culture chamber is

loaded with fresh cell media (cG = c0G) in equilibrium with the incubator atmosphere

(csat = pO2/kO2 ), the EnF concentration equals zero. Boundary conditions details

are reported in the Supplementary section. The cell growth was described with an

exponential law, in addition we took into account the contact inhibition:
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d⇢cell
dt

=

✓
1� ⇢cell

⇢cell

◆
(E.3.8)

Where ⇢max is the cell number at confluence, µ is the kinetic constant (µ =

log(2)/⌧d,21 where ⌧d is the doubling time). The initial condition was given by the

initial cell seeding density. Both the continuous and periodic cases were numerically

solved using the finite element method. The solution of the first case is straightfor-

ward; however the periodic case requires the solution of several cycles, each of them

is composed of two different models, a continuous state and a rest state. All algo-

rithms were implemented in COMSOL Multiphysics 3.5 (COMSOL Inc., Burlington,

MA); details are reported in the Supplementary section.

E.4 Results and discussion

E.4.1 Computational analysis of flow rate microfluidic microenvi-

ronment

As previously discussed, different phenomena relating to ExF and EnF are involved

at cell microenvironment. Accumulation of these extrinsic factors requires different

fluid dynamic conditions; high flow rate promotes high ExF concentrations, whereas

low or no flow rate favours the increase of EnF concentration. The computational

model was used to assist the development of an experimental setup and to define

proper medium flow rate. In order to provide a proof of concept of extrinsic factor

dynamics under different hydrodynamic conditions, the model describes the temporal

evolution of concentration profiles of three species: oxygen, glucose, and a represen-

tative endogenous factor secreted by cells (kinetics and mass transport parameters

are those of epithelial growth factor, a powerful mESC mitogen factor; see Table

S2). Figure 3b-c shows the behaviour of a continuously perfused microfluidic cul-

ture system, both under dynamic and steady state conditions; average dimensionless

species concentrations were considered. Figure 3b represents a typical case study

of a continuously perfused cell culture in a microfluidic system. Both oxygen and

glucose have a decreasing profile due to the cell growth that increases the consump-

tion rates of both metabolites. However, oxygen maintains high concentration due
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to the continuous inlet oxygen flux throughout the gas-permeable PDMS membrane

at the top of the system. On the other hand, EnF concentration increases in time

until reaching a steady-state when the EnF production rate equals the EnF washout

due to the medium convection. The cell growth follows the characteristic exponential

trend until confluence after about 3.5 days (data not shown). The analysis at steady-

state conditions (Fig. 3c) shows that the flow rates greatly influence the medium

composition within microfluidic channel: for instance, the higher flow rate results

in lower metabolites depletion but highest washing out of factors secreted by cells

(i.e. EnF). It is worth to underline that this phenomenon take place at relatively low

flow rate at which shear stress mechanical stimulation can be neglected; only higher

flow rates (> 102µL/h) produces shear stress capable to affect cell cultures (Fig.

S1). In order to evaluate the reliability of the computational model, a comparison

between numerical and experimental cell growth and glucose consumption rate for

murine C2C12 cells was performed. Glucose concentration was measure at different

time points by sampling under continuous perfusion experiments. Computational

results fairly described experimental data as reported in Fig. S3. It is clear that the

flow rate must be balanced to preserve the endogenous cell microenvironment and

avoiding the nutrients depletion. In our studies, we focused on the flow rates where

ExF and EnF concentration have intermediate values (Fig. 3c); we used a flow rate

equal to 0.6 µL/h as starting point for our experimental investigation; it is obvious

that this value is strongly related to the cell type.

E.4.2 Experimental comparison of continuous and periodic perfu-

sion on cell cultures

Three different operative conditions, corresponding to different values of � = tperf/tcycle

as reported in materials and methods, were exploited to investigate long-term cel-

lular behaviours inside culture channels (Fig. 1, 6a-b). Continuous and periodic

flows were applied maintaining a constant medium volume per cycle (Fig. 1). In

particular, a continuous flow at 0.6 µL/h (C1, continuous perfusion) was applied in

comparison with two periodic conditions, at 2.4 µL/h (P1, long medium pulse) and

30 µL/h (P2, short medium pulse) for 1.5 and 0.12 h, respectively. In each case, a
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Figure E.4.1 – Concentration profiles of extrinsic factors in a microfluidic channel. (a) Lon-
gitudinal section representation of the microfluidic channel. Arrows show the species fluxes:
the inward oxygen flux from the external atmosphere through the PDMS, Next

O2
, the fluxes

of oxygen and glucose from the bulk medium to the cell interface due to their metabolism,
NO2 and NGlut, and the endogenous factor secreted by cell, NEnF . (b) Temporal evolution
of species concentration in the continuously perfused system (flow rate 0.6 µl/h, seeding
density 20 cell/mm2 for oxygen (⇥), glucose (+) and EnF (*); . (c) Steady state behaviour
of the system as function of medium flow rate (at 80% of cell culture confluence).

volume of 3.6 µL was perfused during 6 h of a single cycle, corresponding to twice

the chamber volume. Murine C2C12 cells were seeded within microfluidic channel

and cultured for at least 5 days under controlled perfusion. Shear stress resulted

< 10�2 Pa at the maximum flow rate, which it is low for inducing any effect on

cultures as previously reported.21 Continuous flow (C1) resulted in a heterogeneous

cell growth between upstream and downstream side of each channel. Cell prolifera-

tion was reduced downstream (Figure 4a-b) where mortality dramatically increased

at day 5 (Fig. 4j). Upstream, C2C12 cultures reached confluence within the fourth

day, even though cells tended to form agglomerates. Moreover, cells were charac-

terized by perinuclear vesiculation and anomalous morphologies, such as elongated

and narrowed protrusions, which were detected along the whole channel (Fig. 4c).

Measurements at day four revealed glucose depletion down to 0.2 g/L in steady state

conditions. Cultures under a periodic flow at 2.4 µL/h, with a long medium perfusion

(P1), presented lower density downstream evidencing mild abnormalities all along

the channel (Fig. 4d-f). At day 5, the first two-thirds of the channel were confluent,

but the latter third underwent pronounced mortality (Fig. 4k). When a periodic
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flow with a short pulse of fresh medium was applied (P2, 30 µL/h for 0.12 h) cells

resulted homogeneously dispersed both upstream and downstream until confluence

(Fig. 4g-h). Abnormalities were totally absent (Fig. 4i) as well as in a conventional

tissue culture dish. Without switching to a myotube-differentiating medium, the fifth

day C2C12 myoblast were almost over-confluent (Fig. 4l) and few cells started to

detach or spontaneously differentiate as well as in static cultures controls. We next

investigated whether these different strategies of medium delivery could be gener-

ally addressed to other cell types. We extended the same conditions to human HFF

fibroblasts. Similarly to C2C12, HFF cultures were successfully maintained in P2

conditions whereas the low cell viability and vesiculation was observed in C1 and P1

conditions (Fig. 4m-o). It is worth to underline that HFF were robustly maintained

at confluence in P2 condition for at least 50 days without passaging (Fig. S 5).

In order to verify if the periodic medium delivery can robustly and efficiently

apply to cell culture that are well known to show high sensitivity to environment

condition, we applied the same strategy to mouse embryonic stem cells (mESC).

Since mESCs grow as dense and thick colonies to avoid dramatic reduction of medium

layer above the cells, we increased the height of microfluidic channel to 200 µm and,

consequently, we increase medium flow rates to completely change the medium within

the entire channel (as reported in Table 1). Experiments were performed maintaining

a constant perfusion rate of 2 µl/h (12 µL over a 6-hours cycle). Consistently with

previous data, continuously perfused (C1’) mESC culture exhibited highly different

behaviours between upstream and downstream region of the channel (Fig. 5a). In

particular, mESC colony size is remarkably reduced downstream, stemness markers

were observed only in compact colonies regardless of their size whereas SSEA-1-

negative cells were observed all over the channel. Applying the same volume per

cycle with a periodic slow pulse for 3 hours (C1’, Fig. 5b), the heterogeneity between

upstream and downstream regions is partially reduced whereas differentiated cells

were observed as in the previous condition; few colonies were able to expand normally

downstream. Consistently, applying a periodic flow with a short medium pulse of

12 µL (C2’), mESC culture was homogeneous between upstream and downstream

regions in terms of colony density, morphology, diameter distribution and stemness
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Figure E.4.2 – Microfluidic C2C12 cultures at 4 days. Three different regions of microfluidic
channel were analysed, the upstream, the middle-section, and the downstream. Upstream
and downstream conditions are reported for C1, P1 and P2. C1 presented marked heteroge-
neous growth (a-b) and cellular death especially downstream. Altered morphologies resulted
all along the channel with marked perinuclear vesiculation (c). P1 determined mild differ-
ences between upstream and downstream (d-e) but still influenced cellular morphology and
vesiculation (f). Applying the P2 medium delivery, cells grew uniformly along the channel
(g-h) and did not present alteration (i). Microfluidic C2C12 cultures at 5 days. C1 cultures
reached confluence even with abnormalities but an antithetic situation followed downstream
(j), especially compared to P2 downstream channel where culture was over-confluent (l).
Insets were taken at half-length of each channel. HFF cultures suffered downstream effects
and pronounced vesiculation (m-n) as well as C2C12 while in P2, cultures evidenced normal
phenotype (o). White bars are 75 µm (c, f, i), 250 µm (others).
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marker expression (SSEA-1 and NANOG) (Fig. 5c).
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Figure E.4.3 – Microfluidic mESC cultures at 6 days. As reported in Fig. 4 scheme, three
different regions of microfluidic channel were analysed, upstream, downstream and middle-
section. C1’ (a,d), P1’ (b) and P2’ (c,e) strategies are reported. Bright field, live green
fluorescent protein reporter and immunofluorescence (IF) analysis for pluripotency mark-
ers (NANOG-GFP, SSEA-1) are illustrated. (a,d) C1’ presented marked heterogeneous
up-/downstreamgrowth andmarked differentiation with SSEA-1 negative flattened cells (ar-
rows).(b) P1’evidenced mild heterogeneity with a still relevant number of differentiated cells
escaping mESC pluripotent colonies. (c,e) P2’ resulted in homogeneously and pluripotent
compact colonies. Scale bars are 250 µm (a-c, upstream/downstream), 125 µm (middle
section, left column), 25 µm (middle-section, right column), 600 µm (d-e).

Our results showed that the medium delivery strategy is extremely relevant for

the proper maintenance of cell homogeneity, viability and pluripotent phenotype

expression in microfluidic cell culture as depicted from the overall distribution of

mESC in microfluidic channel for continuous and optimized periodic medium deliv-

ery (Figures 5d and 5e, respectively). A quantification of mESC colony size and

pluripotency marker expression is reported in Figures 6a. mESC colonies cultured in

P2’ condition show significantly higher size and NANOG-GFP expression. In order,

P1’ and C1’ show progressive decrease of size and marker expression, with a hetero-

geneous upstream/downstream behaviour. Additional quantifications are reported

in supplementary Figures S 6 and S 7.

Medium volume and delivery frequency in periodic perfusion We next explored

whether a change in frequency and total volume over a cycle affects cell culture

quality. A comprehensive scheme of perfusion strategies is proposed in Figure 6b.

Regarding mESC, we first verified if the total volume of medium delivered per cycle

could be reduced. Using a short pulse periodic perfusion of 12 µL of medium over

a 12-hours cycle (Fig. 6c), differentiated cells appeared (morphologically flattened

and SSEA-1-negative cells) and colony area was significantly reduced at least down-

stream (Supplementary Fig. S 8 and S 9). It is likely that a minimum amount per

cycle is required to sustain proper mESC phenotype. Next, we asked if a high-quality

cell culture could be obtained by increasing the total amount of medium per cycle.

Continuous and periodic flows were applied by increasing the volume per cycle of 30

(C3’, 60 µl/h) and 4 (P1’, 16 µl/h) times respectively. C3’ condition corresponds

also to a 30-fold volume of P2’ one. Interestingly, colonies grew homogeneously

upstream/downstream with fair expression of pluripotency markers evidencing an

overall improvement in both cases (Fig. 6d-e). Despite size distribution differences
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between C3’, P4’ and P2’ is not significant (p>0.05), some colonies evidenced a

greater area in C3’ and P4’ (Supplementary Fig. S 8). NANOG-GFP reporter

showed a similar expression compared to P2’ (Supplementary Fig. S 9). It is worth

to underline that C3’ continuous perfusion resulted in a 30-fold medium volume (Fig.

6e) consumption. Then, we asked whether C2C12 could be successfully cultivated in

similar conditions. We applied a 50-fold continuous perfused volume compared to P1

(C3, Fig 6f). Consistent with mESC C3’ condition, C2C12 grew homogeneously over

the entire channel but surprisingly, they reached abnormal high cell density probably

due to the reduction of contact inhibition proliferation compared to C2 case (Fig. 4l);

consistently, we recently reported that C2C12 proliferation can be promoted by re-

ducing the endogenous factor accumulation thought cell micro-patterning techniques

regardless of cell density.30 Interestingly, spontaneous myotube formations were ob-

served only in 3-dimensional cell clusters (Fig.6f) where accumulation of endogenous

factors is likely to take place. Unfortunately, it is difficult to deeply study at which

flow-rate threshold we are expected that efficiently deliver of the ExF contained in

serum-supplemented medium can replace those secreted by cells and washed out by

the convective flux. Even using a chemically defined knockout-serum replacement

supplemented medium, we were not able to dissect the role of EnF and ExF; in par-

ticular, C2C12 grew slowly with any periodic perfusion conditions whereas mESC

behaviour was fully consistent with the use of FBS-supplemented medium (data not

shown). Additional experiments were performed with C2C12 and HFF (additional

setups in Table 1, data not shown). A 4-fold gain of the perfused volume per cycle

was tested by increasing P2 frequency and by extending P1 perfusion up to a con-

tinuous regime. A 4-fold of the medium volume used in P2 (P3) did not affect cell

culture of both cell lines. However, a continuous perfusion at 2.4 µl/h (C2) eviden-

ced the same abnormalities seen in C1 and P1, underlining an inadequate medium

delivery. Finally, abnormalities appeared even 12 h after a starting seeding of 200

cell/mm2, indicating no correlations between the culturing progression and the seed-

ing density. We also verified if the cell abnormalities seen in microfluidics can be

achieved in standard Petri culture maintaining the same cell density. Not surpris-

ingly, C2C12 evidenced vesiculation and altered morphology even in static cultures
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after 4 days in the same medium. Because the available medium volume per cell is

40-fold than the microfluidic system, and the average glucose concentration was still

significantly high (0.7 g/L), the altered morphology and vesiculation seem to be due

to a secreted factors or waste products from cells rather than a depletion of glucose

as it was seen for reduced total medium delivery (Fig. 6c for mESCs and data not

shown for C2C12) .

Regime Flow rate Perfusion Cycle Medium/cycle Optimal
(µl/h) (h) (h) (µl) strategy

C
2C

12
/H

FF

Continuous P1 0.6 6 6 3.4 - -
Periodic P1 2.4 1.5 6 3.4 -
Periodic P2 30.0 0.12 6 3.4 +++

Continuous C2 2.4 6 6 14.4 -
Continuous C3 30.0 6 6 180.0 +

Periodic P3 30.0 0.48 6 14.4 ++

m
E

SC

Continuous C1’ 6 6 6 12 - -
Periodic P1’ 3 3 6 12 -
Periodic P2’ 0.2 0.2 6 12 +++
Periodic P5’ 0.2 0.2 12 12 +
Periodic P4’ 3 3 6 48 ++

Continuous C3’ 6 6 6 360 +

Table E.4.1 – Perfusion strategies applied to murine (C2C12 and mESC) and human (HFF)
cell lines. A continuous or periodic regime have been applied with a constant total medium
perfused per cycle or with a doubled cycle period (P5’). Either the flow rate, the perfusion
time or the frequency of periodic flow were changed. Optimal strategy takes into account
culture quality and optimal reagent management.
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Figure E.4.4 – Quantification of size and NANOG-GFP fluorescence intensity within
colonies at different conditions; P2’ data are significantly different (ANOVA P < 0.05)
for both colony size and marker expression compared to C1’; mean and standard deviation
applied, n=25. (b) Comprehensive scheme of perfusion strategies per 6-hour cycle; plot
shows generic C1, P1, P2 strategies at a constant volume fitted by an hyperbolic curve;
other strategies (C2, P3, C3) have been applied to verify the effect of the total medium
perfused per cycle changing either the flow rate, the perfusion time or the frequency of peri-
odic flow (c-e) mESC cultures. (c) Doubling the cycle duration to 12 h, we applied half the
volume per cycle compared to P2’.A significant number of differentiated cells appeared all
over the channel (arrows).(d-e) Total medium volume per a 6-hour cycle has been increased
by 4 and 30 times compared to P1’ and P2’/C1’ respectively. Cultures have a homogeneous
distribution of colony size. (f) C2C12 cultured with 50 times the volume of P2/C3 with a
continuous perfusion. Scale bars are 250 µm (c-e, upstream/downstream and f), 125 µm
(c-e, middle section).

Altogether, these results evidenced that a time-limited periodic perfusion was

optimal to obtain proper cell behaviour, regardless of cell type. Even far from a

high shear stress values, prolonged continuous perfusion altered cell morphology and

culture behaviours. Cells did not benefit from an increase of the total medium

during a single cycle, although this condition provided fresh nutrients. A short

medium pulse offered the best condition for a long-term homogeneous and healthy

cell culture within the entire channel.

Computational analysis of periodic perfusion The experimental results clearly

demonstrated that periodic medium perfusion could strongly enhance the robust-

ness and the efficiency of long-term cell culture in microfluidic devices. However,

these biological evidences and their correlations with the dynamic evolution of the

microfluidic environment under discontinuous perfusion could be very complex and

difficult to understand. For instance, the complex balance between endogenous and

exogenous factors is deeply affected by inlet and outlet flux during perfusion and

by cellular consumption/production rates during un-perfused phases. The computa-

tional model was used to rationally describe the dynamic evolution of microfluidic

environment along the cyclic perfusion conditions; as previously, oxygen and glu-

cose were used to simulate metabolite requirement whereas one endogenous factor

was used as model of extrinsic cell secreted factor. In the periodic perfusion con-

figuration, the concentration of species oscillate within a range (Fig. 7a and b),

the fluctuations increase their amplitude following the increase in cell number until

the steady state, when cells reach the confluence. Figure 7a shows the concentra-

tion space for all considered species; the black line depicts the cyclic evolution of the
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species, which raises its magnitude until cells reach the confluence (red line). It must

be highlighted, that the limit-cycle for a periodic system is represented by a whole

cycle (red line). At this condition oxygen is almost constant (as already reported

in Fig. 3b), therefore we will focus on glucose and EnF that change more signifi-

cantly. The limit-cycle of two periodic perfusion conditions and the steady-state of

continuous perfusion (P1, P2 and C1, respectively) were compared measuring the

glucose and EnF concentration upstream and downstream (at 25% and 75% of the

channel length, Fig. 7b). Red and black lines depict the upstream and downstream

values, respectively. The continuous condition (C1) is represented by two circles on

the plot, whereas the limit-cycle of the periodic perfusion is as a closed curve (one

for each position along the channel), which shows the temporal evolution of glucose

and EnF trajectories for a single perfusion cycle. At P2 (30 µL/h), the culture cham-

ber conditions are more uniform, upstream and downstream curves are overlapped.

The rest phase starts from the maximum glucose concentration without EnF. The

system evolves following a descending trend (glucose decreases, EnF increases). The

perfused phase starts from a minimum glucose value (and a maximum EnF value)

and reaches the initial values of the rest phase. At P1 (2.4 µL/h), system behaviour

has a different trend than the previous one, with a transition from a convective to a

diffusive regime. Although the rest phase follows the same trajectory, maximum and

minimum values are, respectively, lower and greater than P2. For example in this

case the system cannot reach the maximum glucose concentration and the EnF is

always greater than zero. The starting and final slope of the perfusion phase plot is

remarkably higher than P2 (e.g. glucose increases rapidly whereas EnF remains al-

most constant). Finally, as reported by experimental data, the mathematical model

show that the lower is the flow rate, the less uniform are the upstream and down-

stream regions. On the other hand, because we found a transition from a convective

to a diffusive regime at P1, not surprisingly, the P1 perfusion shows higher hetero-

geneity of the culture area along the perfusion direction. Unlike the continuous case,

where cells are subjected to a constant steady state concentration of metabolite and

growth factors (Figure 7c and d at downstream), the discontinuous perfusion strat-

egy shows an oscillatory behaviour, which periodically exposes the cell cultures to



E.4. RESULTS AND DISCUSSION 215

highest level of both metabolites and extrinsic growth factors. This oscillatory be-

haviour described by the computational analysis could explain why the time-limited

periodic perfusion is more effective to perform long-term cell culture in microfluidic

environment.



216 APPENDIX E. MICROFLUIDIC PERFUSION STRATEGIES

Figure E.4.5 – (a) 3D
concentration space of
the system evolution, the
black line depicts the os-
cillatory behaviour of the
system, the red line de-
picts the limit-cycle. (b)
Glucose and EnF con-
centration condition at
cell confluence (steady
state) for three experi-
mental flow rate values
- C1, P1, P2. The
red colour shows the con-
centration upstream (x
= 4.5 mm), the black
colour downstream (x =
13.5 mm). (c) Glu-
cose and (d) EnF tempo-
ral downstream evolution
per cycle. In C1, cells
are exposed to a con-
stant glucose and EnF
levels, while in discontin-
uous cases are character-
ized by cyclic evolution of
species.
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E.5 Conclusions

In this work, we investigated how different strategies of medium delivery affect the

cell behaviour for a long-term cell culture in microfluidic systems. In particular,

continuous and periodic perfusion regimes were used to assess culture behaviour.

The mathematical model here developed, was used to rational describe the spatio-

temporal profile of different species, nutrients and endogenous factor, along with

the cell growth within a microfluidic environments. Moreover, the computational

analysis at steady-state perfusion was used to identify the experimental condition

at which the flow rates strongly affect extrinsic microfluidic signals. Experimental

results show that a stable and uniform long-term microfluidic culture with minimum

medium delivery can only be achieved in a periodic regime and with a short flow pulse

(below shear stress threshold) followed by a long rest period. Other strategies can

result in long-term toxic effects, low viability, upstream/downstream heterogeneity.

These results were consistently observed for murine myoblasts, human fibroblasts

and murine embryonic stem cells. The improper culture condition observed in con-

tinuous perfusion could be partially rescued by a 50-fold increased flow rate, leading

to unfeasible medium consumption and abnormal phenotypes for the case of C2C12.

In this condition mESC grew homogeneously along the channel with proper cell size

and marker expression compared do periodic flow P2’ but required more medium per

culture area than a Petri dish. Interestingly, the continuous subministration of fresh

media with pluripotent leukemia inhibitory factor (LIF) can sustain stemness. In

periodic flow, despite the pulse withdraws secreted factors from the cells microenvi-

ronment, the static incubation period is sufficient to recover the local secreted factors

and cell processes. On the other hand, continuous perfusion results in altered and

non-homogeneous culture conditions with negative downstream viability. The ma-

nagement of a microfluidic cell culture should take into account several issues; in this

work we study the effect of medium temporal delivery on the cell microenvironment

properties. Our experimental and simulated data show that periodic perfusion can

improve microfluidic cell culture compared to the continuous condition in term of

viability. Low perfusion gives heterogeneous system behaviour along the channel

(Fig. 4-6), on the other hand, only a fast cyclic perfusion results in a homogeneous
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cell culture proliferation throughout the whole system.
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In this Appendix are reported the detailed methods for the derivation of human

induced pluripotent stem cells in microfluidics. The full article is currently under

submission.

F.1 Material and methods

F.1.1 Cell culture and hIPS derivation

BJ fibroblast cell line was purchased from Miltenyi Biotech and cultured in EMEM

(Life Tecnologies) supplemented with 10% fetal bovine serum (Life Tecnologies),

NuFF-RQT (AMS Biotechnology) were seeded at 250 cells/mm2. All cell lines were

cultured at 37 °C and 5% CO2 atmosphere. Microfluidic cultures were perfused with

fresh medium 24 hours after cell seeding. Modified mRNAs (mmRNA) were provided

by Miltenyi Biotech and used according to the Stemgent mRNA reprogramming kit

protocol. Opti-MEM and RNAiMAX were purchased from Life Technologies.The

RNA transfection complex (RTC) was slowly added to different percentages of sup-

plemented Pluriton medium (PL) relative to the manufacturer’s standard with or

without B18R (eBioscience) and injected inside each microfluidic channel. Briefly,

a 100 ng/µl mmRNA stock solution of each factor (OCT-4, SOX2, KLF-4, c-MYC,

LIN28, NANOG, nGFP) is diluted 5-fold in Opti-MEM. RNAiMAX is diluted 10-

fold in Opti-MEM and added to an equal volume of mmRNA. After 15 minutes of

incubation, RTC is combined with PL++ (1:2500 PL Supplement and 200 ng/mL

B18R). uF-hIPS were collected either by coring the rubber of the microfluidic chip

with a biopsy punch or by a preferential detachment using a high flow rate corre-

sponding to a shear-stress of 250 dyne/cm2. hIPS were mechanically passaged on

mouse embryonic fibroblasts (MEF, Millipore) with daily changes of hIPS media

(DMEM/F12, 20% knockout serum replacement, 1% NEAA, 1% glutamine, 1% b-

mercaptoethanol (all Life Technologies), 20 ng/ml b-FGF (Peprotech)). Karyotype

was analyzed by xx (Brescia, Italy).
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F.1.2 Microfluidic platform

Microfluidic platforms were fabricated according to standard soft-lithographic tech-

niques and molded in poly-dimethylsiloxane (PDMS). Briefly, Sylgard 184 (Dow

Corning) was cured on a 200-µm-thick patterned SU-2100 photoresist (MicroChem)

in order to obtain a single PDMS mold with multiple independent channels. The

PDMS mold was punched and sealed on a 75x25 mm microscope glass slide (Menzel-

Glaser) by plasma treatment. Channels were rinsed with isopropanol and distilled

water to check proper flow. Autoclaved chips were eventually treated on the glass

bottom of each channel with a 5% water solution of (3-aminopropyl)-triethoxysilane

(APTES, Sigma-Aldrich) or 0.3% 3-(trimethoxysilyl)-propyl methacrylate (TMSPM,

Acros Organics) in ethanol for 5 minutes. Extracellular matrix proteins were either

adsorbed or chemically bound to the silanized bottom of each channel to provide

a durable coating for cell culture. Fibronectin (Sigma-Aldrich) was oxidized with

sodium meta-periodate (Sigma-Aldrich) in acetate buffer for 1 hour to produce an

amine-reactive variant (FnOX). Type-A pork gelatin (Sigma-Aldrich) was treated

with methacrylic anhydride (Sigma-Aldrich) in PBS buffer for 1 hour at 60 °C to

produce an acrylate-reactive variant (GelMA). A 10 µg/mL FnOX solution was in-

jected and reacted for 1 hour at room temperature in the dark. A TMSPM-GelMA

bonding was performed for 15 minutes by adding 0.1% ammonium persulphate and

N,N,N’,N’-tetramethylenethylenediamine (Sigma-Aldrich) prior to GelMA injection

within the each channel. Channels were extensively rinsed with DPBS prior to cell

seeding. The microfluidic chip was fully assisted by an automated medium delivery

through each culture channel. A periodic10 µL/min perfusion for 30 s was controlled

twice a day by Cavro pumps (Tecan) and a lab-made software interfacewritten in

Labview(National Instruments). Pluriton-RTC was pipetted inside each reservoir

and perfused inside the channels. Fresh PL was added to the reservoirs and auto-

matically perfused after the incubation period.

F.1.3 Immunostaining and RT-PCR

Cells were fixed in 4% (v/v) paraformaldehyde (Sigma-Aldrich) for 10 min and

stained with primary antibodies in 5% horse serum with 0.1% (v/v) Triton-X-100
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(Sigma-Aldrich). Membrane markers were stained without cell permeabilization.

Oct4 and SSEA-4 (Santa Cruz), Nanog (Reprocell), Tra-1-60 and Tra-1-81 (Mil-

lipore), Sox2 (Novus Biologicals). AFP and Brachyury-T (Sigma-Aldrich), b-III-

tubulin (Abcam). Nuclei were stained with Hoechst 33342 (Life Technologies). Im-

ages were acquired with a DMI6000B microscope (Leica). hIPS positive for alkaline

phosphatase were detected with AP-staining kit II (Stemgent) with a 10 minutes in-

cubation of the staining solution. RNA extraction was performed with iScript (Bio-

Rad). Microfluidic channels are perfused with D-PBS prior iScript injection and

solution is collected after 2 minutes. Total RNA was isolated with the RNeasymini

kit (Qiagen) and treated with DNase (Life Technologies). RNA (0.1 mg) was re-

versetranscribed into cDNAby RT (Life Technologies). PCR was performed with

Platinum Taq (Life Technologies). Electrophoresis was perfomed in a 2% (w/v)

agarose gel.

F.1.4 Differentiation protocols

Embryoid bodies. iPS colonies were treated with CTK ( ) for 30 s and mechani-

cally scratched with a serological pipette e resuspended in EB medium (DMEM/F12,

20% knockout serum replacement, 1% L-Glutammine, 1% NEAA, b-mercaptoethanol

(all Life Technologies). EB were cultured in ultra-low adhesive plates (Corning) for

20 days and then transferred on custom-made PDMS micro-wells with a matrigel

(BD) coated glass bottom. Characterization was performed after 5 days.

F.1.5 Straightforward differentiation in microfluidics.

Freshly derived uF-hIPS colonies were directly differentiated perfusing media other

than Pluriton every 12 hours.

Aspecific differentiation. EB media (without b-mercaptoethanol) was used to

randomly differentiate uF-hIPS colonies for 20 days.

Cardiac differentiation. Small molecules were used to promote cardiac differen-

tiation of hiPSC. RPMI with B27 (cardiac basal medium, CBM, Life Technologies)

were perfused twice in the first 24 hours with 10 µM Chir. CBM was used in the
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following 36 hours and CBM with 4 µM IWP-4 in the next 24 hours. CBM was used

thereafter for cardiac maturation.

Epatic differentiation. hiPSC colonies were maintained in Pluriton and ex-

panded over the channel width (1.4 mm). For hepatic differentiation cells were

treated with 100 ng/ml activin A and 0.5mM NaB for 3 days in RPMI/B27. Medium

was changed to KO-DMEM, 20%SR (both from Invitrogen), 1 mML-glutamine, 1%

NEAA, 0.1 mM b-mercaptoethanol, 1% DMSO (Sigma) for 6 days. Hepatic-like

cells were maturated with L15 medium (Sigma) supplemented with 8.3% FBS, 8.3%

tryptose phosphate broth, 10 µM hydrocortisone 21-hemisuccinate, 1 µM insulin (all

from Sigma) and 2 mM L-glutamine containing 10 ng/ml hepatocyte growth factor

and 20 ng/ml oncostatin M (both from R&D) for 6 days8.





Appendix G

Protocols

G.1 Functionalization of glass supports and hydrogel prepa-

ration

Glass functionalization for acrylc-based hydrogels is performed via silanes. General

guidelines for hydrogel production can be found here [111]. Optimization steps for

large scale production follows. Glass coverslip are oxidized with oxygen plasma (30

W for 1 minute, Harrick Plasma) and covered for 5 minutes with a thin film of

silane solution: a final 0.3% trimethoxy silyl propyl-methacrylate (Acros organics) is

dissolved in ethanol and 5% of acetic acid. Glasses are rinsed in ethanol to remove

unbound silane and then in distilled water. Once dry, coverslips can be used to

polymerize hydrogels. Large stocks of functionalized glasses can be stored at room

temperature and dark in a closed vessel for various days. Poly-acrylamide hydrogels

were produced by chemical radical polymerization with 1:1000 TEMED (Sigma-

Aldrich) and 1:100 v/v of 10% w/v ammonium persulphate (APS , Sigma-Aldrich).

30x30 cm glass supports previously treated with tridecafluoro-octyl-trichlorosilane

vapors were used for the production of hydrogel in large batches. Hydrogels were

rinsed for 10 minutes in distilled water and UV sterilized for 15 min. On sterile

Parafilm foils 50 µg/ml fibronectin (Sigma-Aldrich) drops were spotted and each

hydrogel was placed in contact with the solution at 37 °C for 2 hours.
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protein
cross-link pros cons suitable for

large-scale

sulfo-
SANPAH

variable
between

samples and
lots

use of native
proteins

expensive, needs UV
exposure no

6-
((acryloyl)amino)
hexanoic acid

effective and
consistent

directly incorporated
during

polymerization

expensive, cross-link
lost in the hydrogel

bulk
no

hydrazine/sodium
periodate

effective and
consistent

cheap, hydrogel
activation in large
stocks and used as

necessary

protein derivation
necessary, longer

procedure
yes

Table G.2.1 – Functionalization strategies for poly-acrylamide hydrogels. Protein cross-
linking was assessed by cell seeding after extensive washes of finalized substrates with fi-
bronectin. Pros and cons are reported for each technique and suitability for large-scale
hydrogel production is evidenced.

G.2 Functionalization of poly-acrylamide hydrogels

Functionalization of poly-acrylamide hydrogel have been performed with three tech-

niques: sulfo-SANPAH [111], 6-((acryloyl)amino) hexanoic acid [79] and hydrazine

[117]. As reported in Table G.2.1, hydrazine has revealed the most effective and

convenient method for a large scale functionalization of poly-acrylamide hydrogels.

Protocol is based on Damljanovic et al. 2005 [117]. Minor changes follow. Single

drops of 70% hydrazine hydrate (Sigma-Aldrich) are placed on each hydrogel and

leave to reach until dryness in a closed glass vessel. Reaction is usually performed

overnight. Two additional water rinses have been added before and after the neutral-

ization with 5% acetic acid to properly restore a neutral pH. Hundreds of hydrogel

are prepared at once and are kept in a closed vessel. Fibronectin has been used

instead of collagen since it can serve a broader selection of cell types. Since sodium

periodate is hygroscopic, must be prepared fresh and few milligrams are sufficient

for tens of hydrogels, we opted for preparing a stock solution, easier to dissolve in

the protein solution and we performed the reaction also overnight at 4 °C. 40 µl of

oxidized protein are placed on a Parafilm foil and treated hydrogels are turned on

each drop for 1 h. Hydrogel are rinsed three times with water and then sterilized

under 280 nm UV-light for 15 minutes.
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hydrogel integration hydrogel lamination
diazonium salts [159] yes yes

acryl-terminated silanes yes yes
methacrylic anhydride no -

amine-terminated
silane/glutaraldehyde [108] yes no

Table G.3.1 – Tested bridging molecules for hydrogel integration in PS Petri dishes. At
the end of the polymerization phase some hydrogel did non integrated with the PS surface
while others laminated because of swelling few hours after placing the hydrogel in water or
buffered solutions.

G.3 Functionalization of PS support

Various techniques and operative conditions have been tested for the polymerization

of hydrogel supports on commercially available poly-styrene dishes (Table G.3.1).

Poly-styrene has been treated with an oxygen plasma (Harrick Plasma) at 30 W for

5 minutes. A 1% v/v acqueous solution of 3-aminopropyl-trimethoxysilane (Sigma-

Aldrich) was used to aminate the surface for 1 h. After several rinses with water, a 1%

v/v glutaraldehyde (Sigma-Aldrich) was used to react with the amine terminus. A

degassed acrylamide/bis-acrylamide prepolymer was poored inside the functionalized

PS vessel to produce a ⇠1 mm thick layer. Polymerization was performed at room

temperature for 1 h with 1:1000 TEMED (Sigma-Aldrich) and 1:50 v/v of 10% w/v

APS (Sigma-Aldrich). Before rinsing the gel in water, hydrogels were dehydrated

under the hood for additional 2 hours.

G.4 3D biodegradable hydrogels

G.4.1 Methacrylated HA derivation

Hyaluronic acid of 700 kDa provided by Fidia Farmaceutici s.r.l. (Italy) is derived

with methacrylated termini on the primary hydroxyl group available on dimeric

unit of HA. HA is dissolved at 0.5% w/v in water and cooled on ice. Methacrylic

anhydride is added to reach a 10X molar excess of hydroxyl groups. Reaction is

conducted vigorously stirring the solution on ice overnight. Product is distilled in

water for 24 hours using a 10 kDa cut-off cellulose membrane.
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G.4.2 Methacrylated proteins derivation

Collagen I rat tail or type-A gelatin are dissolved in phosphate saline solution at pH

7.8 at 20% w/v in 60 °C water. A 2X excess of methacrylic anhydride is added for

2 hours at 40 °C. Solution is then diluited in PBS pH 7.4 at 5% w/v to stop the

reaction. Functionalized proteins are stored at 4 °C. Since abundant amines groups

tend interact with other groups promoting a physical gelation process at high con-

centration (>2%) and low temperatures (<10 °C), the modification of amines allow

the gelation only at lower temperatures. Gelatin methacrylation can be assessed by

producing a pure gelatin cross-linked hydrogel. 1:1000 TEMED (Sigma-Aldrich) and

1:100 10% w/v solution of ammonium persulphate (Sigma-Aldrich) are mixed within

a gelatin sample. A compact hard gel is produced in <10 minutes.


