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ABSTRACT 

 
Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in the 

Western World, accounting for about 30% of adult leukemia, and it is characterized by the 

clonal expansion and accumulation of mature CD19+/CD5+/CD23+ B lymphocytes in the 

peripheral blood, bone marrow and secondary lymphoid organs. Despite their apparent 

longevity in patients, in vitro CLL leukemic B cells rapidly undergo spontaneous apoptosis. 

The selective survival advantage is due both to intrinsic defects on apoptosis mechanism 

and to signals delivered by accessory cells at the active site of the disease. Previous studies 

demonstrated that mesenchymal stromal cells (MSCs), derived from bone marrow, and 

CD68+ nurse-like cells, derived from peripheral blood, are involved in CLL clone longevity 

and migration, suggesting a crucial role of MSCs on favouring disease progression. 

Therefore, in this thesis we evaluated the effect of MSCs, the main stromal 

population in the bone marrow of CLL patients, on the survival of leukemic B cells and 

their role in drug resistance. 

MSCs were isolated from the bone marrow of 46 CLL patients; their 

immunophenotypic characterization was based on the expression of CD105, CD73 and 

CD90 and the negativity of CD14, CD34, CD45 and CD31. Co-culturing MSCs and CLL 

B cells, we confirmed that MSCs are able to support malignant B cell survival, providing 

an in vitro culture system that closely approximates CLL microenvironment in vivo. We 

observed that different leukemic clones demonstrated a large variety in the pro-survival 

effect. Evaluating the cleavage pattern of PARP, we revealed two subsets of CLL clones 

with different sensitivity to MSCs pro-survival signals. Our results indicate that both cell-

cell contact and soluble molecules are actors in the relationship between malignant B cells 

and the MSCs, promoting CLL B cell survival and migration. 

Later, we evaluated the role of the MSCs on CLL B cells during the most common 

cytotoxic therapy used in clinical practice. Our data demonstrate that MSCs are able to 

protect leukemic B cells from apoptosis during Fludarabine and Cyclophosphamide 

treatment, both in vitro and in vivo. We tested MSCs protective role also during CLL B 

cells treatment with Ibrutinib, a novel inhibitor of Btk involved in the BCR signaling 

pathway, and we found that the treatment counteracts the MSC pro-survival effect. To 

better understand the effect of Ibrutinib on the cross-talk between CLL B cells and MSCs, 

we evaluated its role on leukemic B cell migration, also analyzing the expression levels of 
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CCR7 and CXCR4, two chemokine receptors that are central in the homing of the 

neoplastic clone. We demonstrated that malignant B cell migration is not significantly 

affected by the Btk inhibitor; since cell-cell contact with MSC is crucial for CLL B cell 

survival, we analyzed the adhesion of leukemic B cells to MSCs after treatment with 

Ibrutinib. We found a significant reduction in leukemic B cells and MSCs interactions 

mediated by the CD49d integrin. 

In this thesis, we demonstrate that MSCs enhance the survival of leukemic B cells 

through the release of soluble factors and cell-cell direct contact and that each CLL clone 

reveals a peculiar response to the anti-apoptotic signals delivered by MSCs. These 

observations could be relevant to identify patients more responsive to druggable targets on 

marrow microenvironment and also to find putative new strategies for CLL therapy. A 

better understanding on the complexity of the cross-talk between CLL cells and their 

microenvironment during CLL therapy could also help to define mechanisms of drug 

resistance and treatment failure, as well to plan randomized clinical trials comparing new 

compounds and their combinations with standard chemo-immunotherapy.  
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RIASSUNTO 

 
La Leucemia Linfatica Cronica (LLC) è considerate la più comune leucemia del 

mondo occidentale, rappresentando circa il 30% delle leucemie dell’adulto, ed è 

caratterizzata dalla proliferazione clonale e dall’accumulo nel sangue periferico, nel 

midollo osseo e negli organi linfatici secondari di linfociti B maturi CD19+/CD5+/CD23+. 

Nonostante i linfociti B leucemici mostrino un’aumentata sopravvivenza nei pazienti affetti 

da LLC, in vitro vanno rapidamente incontro ad apoptosi. Il vantaggio sulla sopravvivenza 

è legato sia a difetti intrinseci del meccanismo di apoptosi sia a segnali forniti da cellule 

accessorie, presenti nel sito attivo della malattia. Precedenti studi hanno dimostrato che le 

cellule mesenchimali stromali (MSC) e le cellule accessorie (“nurse-like”) derivate 

rispettivamente dal midollo osseo e dal sangue periferico, sono coinvolte nell’aumentata 

longevità e mobilità del clone leucemico, suggerendo un ruolo cruciale delle MSC nel 

favorire la progressione della malattia. 

In questa tesi abbiamo valutato l’effetto delle MSC, la principale popolazione 

stromale nel midollo osseo dei pazienti affetti da LLC, sulla sopravvivenza dei linfociti B 

neoplastici e il loro ruolo sulla resistenza ai farmaci.  

Le MSC sono state isolate da campioni di sangue midollare provenienti da 46 

pazienti affetti da LLC; la loro caratterizzazione immunofenotipica è stata effettuata sulla 

base dell’espressione di CD105, CD73 e CD90 e sulla negatività di CD14, CD34, CD45 e 

CD31. Allestendo co-colture di MSC e linfociti B leucemici, abbiamo confermato la 

capacità delle MSC di incrementare la sopravvivenza delle cellule B neoplastiche, fornendo 

un sistema di coltura in vitro che mima profondamente il microambiente della LLC in vivo. 

Abbiamo osservato una grande varietà sulla vitalità dimostrata dai diversi cloni leucemici 

e, mediante la valutazione del frammento clivato della proteina PARP, abbiamo identificato 

due differenti gruppi di cloni di LLC, con una diversa sensibilità ai segnali di stimolo 

provenienti dalle MSC. I nostri risultati indicano che sia il diretto contatto cellula-cellula 

che la presenza di molecole solubili sono coinvolte nell’interazione tra le cellule B 

leucemiche e le MSC, promuovendo la sopravvivenza e la migrazione della cellula B 

leucemica. 

Successivamente, abbiamo valutato l’effetto delle MSC sui linfociti B neoplastici 

durante un trattamento chemioterapico di uso comune nella pratica clinica. I nostri dati 

hanno dimostrato che le MSC sono in grado di proteggere le cellule B leucemiche 
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dall’apoptosi durante il trattamento con Fludarabina e Ciclofosfamide, sia in vitro che in 

vivo. Abbiamo esaminato il ruolo protettivo delle MSC anche durante il trattamento dei 

linfociti neoplastici con Ibrutinib, un nuovo inibitore della Btk, una chinasi coinvolta nella 

cascata del segnale del BCR, e abbiamo dimostrato che il trattamento delle cellule B con 

Ibrutinib è in grado di contrastare l’effetto anti-apoptotico delle MSC. Per meglio definire 

l’azione di Ibrutinib nell’interazione tra le cellule B di LLC e le MSC, abbiamo valutato il 

suo ruolo sulla mobilità dei linfociti B leucemici, analizzando inoltre i livelli di espressione 

di CCR7 e CXCR4, due recettori chemiochinici fondamentali nella migrazione del clone 

neoplastico. Abbiamo dimostrato che la migrazione delle cellule B neoplastiche non è 

significativamente influenzata dall’inibitore del Btk; inoltre, considerando che il diretto 

contatto cellula-cellula con le MSC è di notevole importanza per la sopravvivenza dei 

linfociti B leucemici, abbiamo analizzato l’adesione delle cellule B alle MSC dopo il 

trattamento con Ibrutinib, evidenziando che la loro adesione era significativamente ridotta. 

In questa tesi abbiamo dimostrato che le MSC incrementano la sopravvivenza delle 

cellule B neoplastiche attraverso il rilascio di fattori solubili e mediante il diretto contatto 

cellula-cellula, e che ogni clone leucemico rivela una peculiare risposta ai segnali anti-

apoptotici rilasciati dalle MSC. Queste osservazioni potrebbero essere determinanti al fine 

di identificare i pazienti più sensibili a trattamenti mirati a colpire il microambiente 

midollare ed a trovare potenziali nuove strategie terapeutiche per la LLC. Una migliore 

comprensione della complessità delle interazioni tra i linfociti leucemici e il loro 

microambiente nel corso del trattamento potrà inoltre aiutare a chiarire i meccanismi di 

chemioresistenza e refrattarietà, così come a pianificare studi clinici randomizzati che 

confrontino nuovi farmaci e la loro combinazione con i trattamenti chemio-immunoterapici 

già in uso. 
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INTRODUCTION 

 

1. Chronic Lymphocytic Leukemia 

1.1 Incidence and epidemiology  

Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder 

characterized by the clonal proliferation and accumulation of mature, typically CD5+ B 

cells within the blood, bone marrow (BM), lymph node and spleen (1). Recently, it has 

been reported that in CLL the capacity to generate clonal B cells might be acquired at the 

hematopoietic stem cell (HSC) stage, suggesting that the primary leukemogenic event 

might involve multipotent, self-renewing HSCs (2). CLL is the most prevalent leukemia in 

the Western world with an incidence of about 6-9% (3). The median age diagnosis lies 

between 67 and 72 years with an incidence increasing rapidly with age; more male than 

female are affected by this disease and only about 10% of CLL patients are reported to be 

younger than 55 years (4). The proportion of younger patients with early stage CLL and 

minimal symptoms seems to increase due to more frequent blood testing. The etiology is 

still unknown; moreover, there is an inherited genetic susceptibility, with an increased risk 

for family members of CLL patients (5). 

 

1.2 Diagnosis  

The World Health Organization (WHO) classification of hematopoietic neoplasias 

describes CLL as a leukemic lymphocytic lymphoma, distinguishable from small 

lymphocytic lymphoma (SLL) only by its leukemic appearance. The diagnosis of SLL in 

fact requires a number of B lymphocytes in the peripheral blood not exceeding 5,000µL. 

Other lymphoma entities to be separated from CLL are marginal zone lymphoma, 

lymphoplasmacytic lymphoma and mantle cell lymphoma (MCL). CLL is always a disease 

of neoplastic B cells, because the entity beforehand described as T cells Chronic 

Lymphocytic Leukemia (T-CLL) is now called T-cell pro-lymphocytic leukemia (T-PLL) 

(6). 



	 12	

The diagnosis of CLL requires the following criteria (7): 

- The presence of ≥ 5,000µL monoclonal B lymphocytes in the peripheral blood for 

the duration of at least 3 months. The clonality of the circulating leukemic B cells 

is confirmed by flow cytometry observing the restriction to expression of either 

kappa or lambda immunoglobulin light chains; CLL B cells co-express the T-cell 

antigen CD5 and B cell surface antigens CD19, CD20 and CD23 (Fig. 1). Typically, 

the expression levels of surface immunoglobulin, CD20 and CD79b are lower than 

normal B cells (8). 

 
Figure 1. Cytograms of a representative case of CLL. B lymphocytes analyzed (CD19+) are positive to CD5 
(panel A) and to CD23 (panel B), express one type of immunoglobuline light chain (λ, panel C), and surface 
IgM (sIgM), low density (panel D). 
 

- The leukemic B lymphocytes in the blood smear are small and mature, with a 

narrow border of cytoplasm, a dense nucleus lacking discernible nucleoli and a 

partially aggregated chromatin (Fig. 2). Gumprecht nuclear shadows, or smudge 

cells, found as cells debris, are other characteristic morphologic features found in 

CLL. Larger atypical lymphocytes (pro-lymphocytes) may be seen in the blood 

smear but they must not exceed 55%; the evidence of pro-lymphocytes in excess of 

55% would indicate a diagnosis of pro-lymphocytic leukemia (PLL).  
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In absence of lymphoadenopathy, organomegaly, cytopaenia and clinical 
symptoms, the presence of fewer than 5,000/µL monoclonal B lymhocytes is defined 
monoclonal B-lymphocytosis (MBL), which can be detected in 5% of subjects with normal 
blood count. Progression to CLL occurs in 1-2% of MBL cases per year (9). 

Figure 2. Peripheral blood smear of a CLL patient. Arrows indicate Gumprecht shadows typical of CLL.  

 

1.3 Clinical features 

 Currently, 70-80% of CLL patients present with a low tumor burden and are 
frequently diagnosed from a blood count performed for an incidental reason, while other 
patients may present an aggressive disease (10). The patients could be asymptomatic or 
present B symptoms (asthenia, weight loss, fever, night sweats) and lymphadenopathy, 
splenomegaly and hepatomegaly. In advanced disease, we could observe hemolytic anemia 
(11% of cases) or autoimmune thrombocytopenia (2%). Frequently, CLL patients show 
hypogammaglobulinemia that could induce acquired immunodeficiency and high risk for 
infections. The evolution of the disease to Richter’s syndrome (a diffuse large B cell 
lymphoma) or to PLL could be observed in some CLL cases with a poor prognosis. 

 

1.4 Clinical staging 

In everyday clinical practice, two widely accepted staging methods co-exist, the Rai 

and the Binet systems. The original Rai classification was modified to reduce from five to 

three the number of prognostic groups. Both Rai and Binet staging classify patients into 

three major prognostic clusters; these classifications are simple and cheap and require only 

physical examination and routine laboratory tests. The Binet staging system is established 
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on the number of involved areas, defined by the presence of enlarged lymph nodes (>1cm) 

or organomegaly and on the evaluation of anemia or thrombocytopenia (Tab. 1) (11). The 

areas of involvement considered are head and neck, the Waldeyer ring, axillae, groins, 

palpable spleen and liver. 

Table 1. Binet staging system. Hb: hemoglobin; plts: platelets 

STAGE DEFINITION MEDIAN SURVIVAL 

BINET A Hb ≥10g/dL, plts ≥100x109/L, <3 lymph node regions ≥10 years 

BINET B Hb ≥10.0 g/dL, plts ≥100x109/L, ≥3 lymph node regions >8 years 

BINET C Hb <10.0g/dL, plts <100x109/L 6.5 years 

 

The modified Rai staging system defines as low-risk disease patients with lymphocytosis 

(RAI 0); patients with lymphocytosis, enlarged nodes in any site or/and organomegaly are 

classified in an intermediate risk disease (RAI I, II). High risk stage includes patients with 

anemia or thrombocytopenia disease-related (Tab. 2, RAI III, IV) (12). 

Table 2: Rai staging system. Hb: hemoglobin; plts: platelets. 

STAGE DEFINITION 
MEDIAN 

SURVIVAL 

RAI 0 Lymphocytosis >15x109/L >10 years 

RAI I 

RAI II 

Lymphocytosis + lymphadenopathy 

Lymphocytosis + hepatomegaly/splenomegaly ± lymphadenopathy 
8 years 

RAI III 

RAI IV 

Lymphocytosis + Hb <11g/dL ± lymphadenopathy/organomegaly 

Lymphocytosis + plts <100 x109/L ± 

lymphadenopathy/organomegaly 

6.5 years 

 

1.5 Biological prognostic factors 

Additional biological markers are available to predict the prognosis of CLL patients, 

in particular at early stage. The study of these markers is performed by flow cytometry, 
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cytogenetic and molecular biology techniques. The main markers are: 

1) Somatic Hypermutations (SHM) of the Ig heavy chain variable region (VH) genes. 

Conventionally, patients with <2% somatic mutations from the most similar germline gene 

in both the expressed VH and VL genes were define unmutated (SHM-); mutated cases 

(SHM+) were defined as those in which the CLL cells displayed ≥2% differences in either 

the expressed VH or VL gene. About 50% of CLL patients present an unmutated 

immunoglobulin heavy chain variable region (IGVH) status (13). CLL cells have a higher 

genetic instability with a higher risk of unfavourable genetic mutations. Overall survival 

(OS) and time to treatment (TTT) are shorter in this CLL patients group (Fig. 3A). The 

stereotyped VH3.21 gene is an unfavorable prognostic marker independent of the IGVH 

mutational status. 

2) CD38 expression. CD38 is a transmembrane protein that supports B cell interaction and 

differentiation through the binding of CD31, a cell-adhesion molecule expressed by cells 

of the CLL microenvironment. Patients with higher CD38 expression have a faster 

progression and a shorter life expectancy (14). A previous study suggested that CD38 

expression has an independent prognostic value in CLL (Fig. 3B).  

Figure 3. CLL patients survival based on V gene mutation (A) and CD38 expression (B) (13). 

 

3) CD49d. The expression percentage of CD49d+ cells is an independent indicator of 

prognosis in CLL, with higher levels (≥30%) being correlated with a shorter survival. 

CD49d is an α subunit (α4) that together with CD29 (the β1 subunit) forms the integrin 

α4β1. α4β1 binds fibronectin and VCAM-1 and is involved in anchoring cells to tissues 

via extracellular matrix, which can result in cell survival and can also be a first step in cell 

pooled with the IgM! cases described above (bringing the total
number of patients studied to 63), the median survival for the
unmutated group (n " 29) was 8 years and for the mutated
group (n " 34) was not reached for the duration of follow-up
(P " .0001). Similar data were obtained for the CD38 groups:
median survival for the #30% CD38! (n " 19) was 9 years,

whereas median survival for the $30% CD38! group (n " 25)
was not reached (P " .0001).
Gender of the B-CLL cases based on either V gene mutation

or CD38 expression. The cohort of IgM! B-CLL patients in
this study consisted of 34 males and 13 females (M:F " 2.6:1).
However, the M:F ratio of the patients stratified by either V
gene mutation status or CD38 expression was very different
(Table 3). In the mutated group, males and females were
virtually equally distributed, whereas in the unmutated group, a
marked male predominance was found (M:F" 11:1; P " .003).
A similar disparity in gender distribution was seen when the
patients were compared based on the percentages of CD38!

B-CLL cells. The numbers of males and females among the
$30% CD38! group were almost equal (M:F" 1.1:1), whereas
males outnumbered females in the#30%CD38! group (M:F"
7.5:1; P " .031).

DISCUSSION

The preceding data indicate that Ig V gene mutation status
and CD38 expression are distinct and reliable prognostic
indicators of clinical course and outcome in B-CLL. Indeed,
those patients in either the unmutated or #30% CD38! groups
experienced a worse clinical course than those patients in the

Fig 3. Survival based on V gene mutation status and CD38 expression. (A) Kaplan-Meier plot comparing survival based on the absence
(‘‘unmutated’’: . . . . . ) or presence (‘‘mutated’’: ____) of significant numbers (H2%) of V gene mutations in 47 B-CLL cases (unmutated: 24 cases;
mutated: 23). Median survival of unmutated group: 9 years; median survival of mutated group not reached; P ! .0001; log-rank test). (B)
Kaplan-Meier plot comparing survival based on the detection ofH30% (. . . . . ) orF30% CD38" B-CLL cells (H30%: 17 cases;F30%: 19). Median
survival of theH30% CD38" group: 10 years;median survival of theF30% CD38" group: not reached (P! .0001; log-rank test).

Table 2. Comparison of Modified Rai Stage at DiagnosisWith Ig V
Gene Mutation Status and the Percentages of CD38" B-CLLCells

Stage Unmutated Mutated

Low* 22.7% (5/22) 52.4% (11/21)
Intermediate* 72.7% (16/22) 42.9% (9/21)
High 4.6% (1/22) 4.7% (1/21)

P " .123

#30% CD38!

B-CLL Cells
$30% CD38!

B-CLL Cells

Low† 20.0% (3/15) 50.0% (9/18)
Intermediate† 73.3% (11/15) 50.0% (9/18)
High 6.7% (1/15) 0.0% (0/18)

P " .138

*Comparison of V gene mutation status among patients in the low
and intermediate risk categories (P " .058; 2-tailed Fisher’s Exact test).
†Comparison of CD38 expression among patients in the low and

intermediate risk categories (P " .147; 2-tailed Fisher’s Exact test).
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migration. Cell migration function is very important for CLL cells survival and explains 

the prognostic relevance of CD49d expression (15).  

4) Intracytoplasmatic expression of protein kinase associated to TCR ζ chain of 70kDa, 

ZAP-70. Zeta-associated protein of 70kDa (ZAP-70) is a cytoplasmic tyrosine kinase 

working as a key signaling molecule for T lymphocytes and NK cells. ZAP-70 expression 

reflects an activation state of the malignant clone and may be associated with a CLL 

progression (16). ZAP-70 value could change over time in CLL; its analysis can be 

performed with flow cytometry, immunohistochemistry, western blotting and Real-Time 

PCR. Flow cytometry is the most useful for its diffusion and easiness of application. 

5) Molecular Cytogenetics. Using Interphase Fluorescent in Situ Hybridization (FISH), 

cytogenetic lesions can be identified in more than 80% of all CLL cases (17). Deletions on 

the long arm of chromosome 13, involving band 13q14 [del(13q14)] represent the single 

most frequently observed cytogenetic aberration, occurring in about 55% of all cases and 

it is characterized by a benign CLL course. Additional frequent chromosomal aberrations 

include deletions in the long arm of chromosome 11 [del(11q)]. These deletions usually 

encompass band 11q23 harboring the gene Ataxia teleangiectasia mutated (ATM), which 

encodes for the proximal DNA damage response kinase ATM. Patients with a del(11q) 

clone show a rapid CLL progression, bulky lymphadenopathy and reduced overal survival. 

Trisomy 12 is observed in 10-20% of CLL patients that demonstrated a shorter survival in 

respect to those with a normal FISH. There is an association between trisomy 12 and the 

presence of mutations in the Notch homolog 1, translocation-associated (NOTCH1) gene 

leading to a less favorable course of the disease. Deletions of the short arm of chromosome 

17 are found in 5-8% of never treated patients. These deletions usually consist in band 

17p13, including the main tumor suppressor gene TP53. Del(17p) patients show marked 

chemo-immunotherapy resistance (18). Mutations of TP53 are found in 4-37% of CLL 

patients and are associated with a very poor prognosis (19). Whole genome sequencing 

analyses identified additional recurrent mutations (20) (>5% cases at diagnosis) affecting 

NOTCH1 (21), splicing factor 3B subunit 1 (SF3B1) (22), baculoviral IAP repeat 

containing 3 (BIRC3) (23) and myeloid differentiation primary response (MYD88) genes. 

These mutations usually coexist with some of the genetic abnormalities analyzed by the 

FISH: SF3B1 mutations with del(11q), NOTCH1 with trisomy 12 and MYD88 with 

del(13q); generally, these associations resulted in a poor patient outcome. There was a clear 

relationship between NOTCH1 mutation and a shorter time to therapy with resistance to 
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treatment and Richter’s transformation. 

6) Serum markers. According to different studies, also CD23, thymidine kinase and 

β2−microglobulin may predict survival and progression-free survival. Nevertheless, their 

relative value in the management of CLL patients is not validated (24), (25), (26). 

 

1.6 Other test performed at diagnosis 

 In order to complete the risk assessment, the following examinations are also 

recommended (27): patient performance status, medical hystory, serum chemistry 

(including lactate dehydrogenase, bilirubin, serum immunoglobulins), direct antiglobulin 

test, the status of relevant infections (hepatitis B and C, cytomegalovirus, human 

immunodeficiency virus). Although a bone marrow biopsy is not required for diagnosis, it 

is recommended for the diagnostic evaluation of unclear cytopaenias, or FISH and 

molecular genetics if peripheral blood cell lymphocytosis does not allow adequate flow 

cytometry analysis. Imaging studies by computed tomography (CT) scans could help to 

asses the tumor load before starting treatment or to clarify unclear symptoms, but they 

should not generally be performed in asymptomatic patients for clinical staging. 

 

1.7 Indications to treatment 

 Patients at intermediate and high risk stages, according to the modified Rai 

classification, or stage B and C, according to the Binet classification, usually benefit from 

treatment but some of these patients can be only monitored until they have evidence for 

progressive or symptomatic disease. The absolute lymphocyte count should not be used as 

the only indication for starting therapy. Active disease should meet at least one of the 

following criteria (28): 1. evidence of progressive marrow failure (development or 

worsening of anemia and/or thrombocytopenia; 2. massive or progressive and symptomatic 

splenomegaly; 3. massive node or progressive and symptomatic lymph nodes; 4. 

progressive lymphocytosis increasing more than 50% in months or lymphocyte doubling 

time (LDT) of less than 6 months (excluding factors contributing to lymphocytosis or 

lymphadenopathy other than CLL); 5. autoimmune anemia and/or thrombocytopenia 

poorly responding to other standard therapy; 6. constitutional symptoms as unintentional 
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weight loss of 10% or more in the last 6 months, significant fatigue, fever higher than 38°C 

for more than 2 weeks and night sweats for more than 1 month without infections.  

 

2. Neoplastic B lymphocytes  

B lymphocyte participates in humoral immunity producing antibodies (Abs) in 

response to antigen (Ag) stimulation. B cell can differentiate from "naive" lymphocyte to 

cell secreting antibodies against specific antigens (plasma cells), or to "memory" long-lived 

stimulated B lymphocyte, which is ready for rapid response to a repeated exposure of the 

priming antigen. The B cell receptor (BCR) mediates B lymphocyte antigen recognition; 

BCR is a multimeric complex composed by the antigen-specific surface immunoglobulin 

(sIg) homodimer, linked to the plasmatic membrane through its constant region 

(crystallizable fragment, Fc). The sIg antigen binding fragment (Fab) is outward and 

noncovalently linked to Igα/Igβ (CD79a/CD79b) heterodimer, responsible of intracellular 

signal transduction (29) (Fig. 4). The Fab region comprehends variable regions (V) of sIg 

light and heavy chains that give BCR specificity for a specific antigen. In turn, V regions 

are composed by three hypervariable regions, called "complementarity determining 

regions" (CDR) that allow high affinity binding with the antigen. "Naive" B lymphocyte 

presents an amino acid sequence identical to "germline" sequence, while the "memory" B 

cell is characterized by a somatic hypermutation process that underlies the phenomenon of 

affinity maturation. The "naive" B lymphocyte, after specific antigen identification, turns 

on and proliferate inside lymphoid organs. Some of this progeny enters the lymphoid 

follicles to create the germinal centre (GC). In the GC, Ig genes undergo somatic point 

mutations leading to the formation of clones with different affinities for the antigen. Clones 

are selected through contact with follicular dendritic cells expressing antigen: lymphocytes 

that bind antigen with greater affinity survive, while others undergo apoptosis. CLL B cells 

are small "memory" B cells blocked in G0/G1 and characterized by specific surface 

markers: CD19 and CD21 are B-related, while CD5, CD23, CD25 and HLA-DR (Human 

Leukocyte Antigen D-related) are not specific for B lymphocytes. In particular, malignant 

B lymphocytes express markers typical of mature B cells localized in the mantle zone of 

secondary lymphoid follicles. CLL pathogenesis mechanisms comprehend a defective 

control of apoptosis, alterations in BCR-mediated signaling transduction and proliferative 

activity and the microenvironment. 
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Figure 4. Schematic representation of the BCR. The complex is composed by a sIg, and Igα and Igβ that mediate 
signal transduction after antigen binding. 

 

2.1 Control of apoptosis  

The dysregulation of the programmed cell death (apoptosis) is one of the main 

mechanisms in CLL pathogenesis, leading to the accumulation of CLL B cells. When CLL 

B cells were cultured in vitro, a substantial proportion of them spontaneously died by 

apoptosis (30). This evidence suggested that the CLL B cell defective apoptosis has to be 

ascribed not only to intrinsic defects of the neoplastic cells, but also to extrinsic factors. 

Malignant B cells retain the ability to respond to microenvironmental signals, but show a 

specific sensitivity to anti-apoptotic signals that favour their survival and become 

insensitive to pro-apoptotic signals (31). The balance between pro- and anti-apoptotic 

factors is very important. The principal apoptosis regulators are proteins of the Bcl-2 family 

(B-cell lymphoma-2 factors) that play a crucial role in this mechanism by inhibiting (Bcl-

2, Bcl-xL, Bcl-w, Bfl-1, and Mcl- 1) or promoting (Bax, Bak, Bcl-xS, Bid, Bik, and Hrk) 

apoptosis. Heterodimerization between pro- and anti-apoptotic members, and their relative 

levels, may determine the predisposition to respond to a given apoptotic stimulus. Other 

intrinsic factors, involved in apoptosis control, are del(17p) and del(11q), because of the 

mutation of two relevant tumor-suppressor genes, TP53 and Ataxia Teleangectasia Mutated 

(ATM) (32).  
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 The B-Cell Receptor (BCR) mediates antigen recognition. BCR is a 

multimeric complex composed by an sIg homodimer that is linked to plasmatic 

membrane24 through its constant region (crystallizable fragment, Fc); the sIg 

antigen binding region (Fab) is outward and noncovalently linked to Igα/Igβ 

(CD79a/CD79b) heterodimer, deputy to intracellular signal transduction42 (figure 

8). The Fab region comprehends variable regions (V) of sIg light and heavy 

chains that give BCR specificity for a specific antigen. In turn, V regions are 

composed by three ipervariable regions, called "complementarity determining 

regions" (CDR) that allow high affinity binding with the antigen.  

 

 
Figura 8. Schematic representation of the BCR. The complex is composed by a sIg, and Igα and Igβ that 
mediate signal transduction after antigen binding. 
 

 

 What differentiates a "naive" B lymphocyte from a "memory" B 

lymphocyte is the fact that the "naive" one presents an amino acid sequence 

identical to "germline" sequence, while the "memory" one is characterized by a 

different sequence. This is due to somatic hypermutation process that underlies 

the phenomenon of affinity maturation.  

 Once recognized a specific antigen, the "naive" B lymphocyte turns on and 

begins to proliferate inside lymphoid organs. Some of this progeny enters the 

lymphoid follicles and forms the germinal centre (GC) characterized by an intense 

proliferation. Here, Ig genes undergo point mutations that lead to the formation of 

clones with different affinities for the antigen. Clones are selected through contact 
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2.2 BCR-mediated signal transduction  

BCR is responsible to transmit signals that regulate B-cell fate decision and to 

mediate antigen processing leading to the presentation of antigen to T cells, which allows 

full activation of B cells in the effector phase (33). Antigen binding to the sIg induces 

activation of upstream kinases, including spleen tyrosine kinase (Syk) and the Src kinase 

Lyn, which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAM) in the 

cytoplasmatic tails of CD79a and CD79b. This activates the hematopoietic cell-specific 

Lyn substrate (HS1) protein (34) and the related F-actin polymerization ad other upstream 

kinases, including Syk, Bruton’s tyrosine kinase (Btk) and phosphoinositide 3-δ (PI3kδ) 

kinases and downstream pathways, including calcium mobilization, activation of 

phospholipase Cγ2, protein kinase C β (PKCβ), nuclear factor κB (NF-κB) signaling, 

mitogen-activated protein kinases and nuclear transcription. Activation of phosphatases, 

including Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 

(SHP1), SH2 domain containing inositol 5-phosphatases 1/2 (SHIP1/2) and negative co-

receptors (CD22, CD5) contributes to negative regulation of the BCR signaling response 

(Fig. 5). The precise mechanism triggering BCR activation (antigen-dependent or 

independent) is still controversial, but several line of evidence support the relevant role of 

BCR in CLL pathogenesis. The prognostic importance of mutational status of 

immunoglobulin heavy chain variable regions (IGVH) genes indicates that CLL BCR 

encounters antigens, which promote a degree of somatic hypermutations, which influence 

the clinical prognosis of the disease. Gene expression profile (GEP) studies demonstrated 

that BCR signaling is the key regulatory pathway activated in CLL cells in lymph nodes 

(35).  

Naive B cells are characterized by the presence of a functional surface 

immunoglobulin of the M isotype (sIgM); in secondary lymphoid organs naive B cells 

undergo further maturation, including expression of immunoglobulins of the D isotype 

(sIgD). Most of CLL B cells express both sIgM and sIgD isotypes. sIgM signaling has a 

dominant role and previous studies demonstrated a different responsiveness to IgM 

stimulation for CLL carrying unmutated IGVH genes (U-CLL) vs mutated IGVH (M-

CLL). U-CLL are more responsive to BCR triggering whereas cells from patients with M-

CLL are generally less responsive to BCR cross-linking. 
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Figure 5. The BCR signaling pathway. BCR triggering by an antigen induces activation of early kinases (Lyn and Syk), 
which transduce the signal to cytoskeletal activators, including HS1 protein, and to other early effectors of the signaling 
response, including Btk kinase. Through the BLNK adaptor, Btk activates PLCγ2, and subsequent downstream responses, 
including calcium signaling (Ca2+), PKC, NFκB and ERK kinase, and nuclear transcription factor (TF). The positive co-
receptor CD19 contributes to the activation of the PI3K–Akt pathway and to survival induction. The signaling response 
ultimately promotes activation of nuclear transcription, including CCL3 and CCL4 chemokine genes, which are then 
produced and secreted. The signaling response is tightly modulated by negative coreceptors (CD22, CD5) and 
phosphatases, including SHP1 and SHIP1/2 (41). 

Prolonged extracellular signal-regulated kinase (ERK) activation after sIgM triggering 

supports expression of the proto-oncogene Myc, promoting cell-cycle entry and CLL B cell 

growth (36). The role of sIgD signaling is less defined but anti-IgD responsiveness was 

described to impact prognosis (37). Both IgM and IgD BCRs have the same antigen 

specificity and both sIgM and sIgD derived signals govern overall BCR pathway activation. 

The BCR signaling patway is central to CLL activation and likely to be triggered by 

antigens expressed in the tissue microenvironment. Inhibitors targeting BCR-associated 

kinases, including ibrutinib and idelalisib, have changed the landscape of treatment for CLL 

patients. 

 

 

Fig. 2. The BCR signaling pathway. BCR triggering by an antigen induces activation of early kinases, including LYN and SYK [199], which then transduce the signal to cytoskeletal activators,
including HS1 protein [112,113], and to other early effectors of the signaling response, including BTK kinase [161]. Through the BLNK adaptor, BTK activates PLCγ2, and subsequent down-
stream responses, including calcium signaling (Ca2+), PKC, NFκB and ERK kinase [121,122], and nuclear transcription factors (TF). The positive co-receptor CD19 contributes to the acti-
vation of the PI3K–AKTpathway and to survival induction [182]. The signaling response ultimatelypromotes activation of nuclear transcription, including CCL3 andCCL4 chemokine genes,
which are then produced and secreted [35]. The signaling response is tightly modulated by negative coreceptors (e.g. CD22, CD5) and phosphatases, including SHP1 and SHIP1/2.

Fig. 3. Differences between M-CLL and U-CLL signaling pathways. M-CLL cells show constitutive phosphorylation of signaling proteins and reduced activation of the signaling response
after BCR triggering by external antigens [121,122], including β-(1,6)-glucans [138] and rheumatoid factors (RF) [131–133,139]. U-CLL cells express BCRs specific for autoantigens, includ-
ing non-muscle myosin heavy chain IIA (MYHIIA), vimentin, lupus associated ribonuclear protein Smith (Sm), single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), oxidized
low-density lipoprotein (oxLDL) as well as microbial antigens, including lipo-polysaccaride (LPS) [40,128–137]. U-CLL cells are generally highly responsive to antigenic stimulation
[10,120], as well as those expressing high levels of CD38 [10,117] and ZAP70 [119].

5E. ten Hacken, J.A. Burger / Biochimica et Biophysica Acta xxx (2015) xxx–xxx

Please cite this article as: E. ten Hacken, J.A. Burger, Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic
Leukemia: Implications for disease pathogenesis..., Biochim. Biophys. Acta (2015), http://dx.doi.org/10.1016/j.bbamcr.2015.07.009



	 22	

3. Cellular microenvironment in CLL 

Bone marrow (BM) precursors originate from pluripotent stem cells and are in close 

contact with stromal cells. BM precursors are able to differentiate into mature virgin B 

lymphocytes that migrate to peripheral lymphoid tissues searching for a foreign antigen 

that will trigger B cell activation, proliferation and a second wave of differentiation. The 

germinal center in secondary lymphoid organs provides the microenvironment for mature 

B cells in which they can keep close contact with specialized T cells and antigen-presenting 

cells. This cross-talk is regulated by chemokines, cytokines and adhesion structures and 

generate B memory cells, plasma cell precursors and to the apoptosis of dangerous or 

inefficient cells. As in normal B cells, the microenvironment plays an essential role also in 

the natural hystory of B cell malignancies. In the BM and secondary lymphatic tissues, 

CLL B cells engage complex cellular and molecular interactions with stromal cells and 

matrix, that are called as “the microenvironment” (38). Several studies are gradually 

defining the critical pathways for leukemic B cells and the microenvironment that could 

affect cell survival and response to therapy, which now provide a rationale for targeting the 

CLL microenvironment (Fig. 6). The main cellular actors are MSCs, monocyte-derived 

nurse-like cells (NLCs), endothelial cells and follicular dendritic cells, T and NK cells (39). 

Figure 6. Molecular interactions in the CLL microenvironment. Molecular interactions between CLL B cells and 
stromal cells in the BM and lymphoid tissue considered relevant for CLL B cells survival and proliferation, homing and 
tissue retention. BMSC: bone marrow mesenchymal stromal cell, NLC: nurse-like cell. (39). 
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3.1 Nurse-like cells 

NLCs share features similar to thymic nurse cells that nurture developing 

thymocytes, so they were designated as “nurse-like cells”. NCLs differentiate from 

monocytes into large, round and adherent cells attracting and protecting CLL B cells from 

apoptosis in a contact dependent manner. In CLL patients, NLCs can be detected in 

secondary lymphoid tissues and in the spleen (40). GEPs of CLL B cells after co-culture 

with NLCs, revealed an activation of BCR and NF-κB signaling pathways with similar 

gene signatures in leukemic B cells isolated from neoplastic lymph nodes. NLCs are 

involved in the chemotaxis and survival of CLL cells through the production of chemokines 

C-X-C motif ligand 12 (CXCL12), CXCL13, expression of TNF family members, B cell 

activating factor (BAFF) and a proliferation-inducing ligand (APRIL). NLCs also express 

vimentin and calreticulin that are able to activate BCR on CLL B cells and CD31, which is 

the ligand for CD38 (41). These findings suggest that NLCs could be a relevant model 

system for studying the lymphatic tissue microenvironment in B cell malignancies.  

 

3.2 Endothelial cells and follicular dendritic cells 

Endothelial cells and follicular dendritic cells (FDCs) are additional cellular 

elements with a crucial role for tissue homing and CLL B cell retention. CLL B cells bind 

on the surface of microvascular endothelial cells to β1 and β2 integrins and to BAFF and 

APRIL. The interaction between endothelin 1 (ET-1), exposed on B CLL cells, and the 

endothelin subtype A receptor (ETAR) on endothelial cells promotes cell survival and drug 

resistance (42). In vitro cultures with FDCs rescues CLL cells from apoptosis by direct cell 

contact, based on ligation of CD44 on leukemic B cells. The cross-talk between CLL B 

cells and FDCs dependent on CXCR5-CXCL13 and the lymphotoxin beta 

receptor/lymphotoxin alpha beta signaling pathways seems to be relevant for CLL cells 

retaining in lymphoid follicles and for the disease progression (43).  

 

3.3 T and NK cells 

The interaction between CD40, expressed on B cells, and CD40 ligand (CD40L) on 
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activated CD4+ T cells, is critical for the antigen presentation and the induction of normal 

B cell responses. CD40 ligation is also able to activate CLL B cells promoting their 

survival. In CLL the increased number of effector memory CD4+ and terminally 

differentiated CD8+ lymphocytes is associated with a more advanced disease stage. CD4+ 

and CD8+ cells display higher expression of exhaustion markers, including programmed 

cell death protein 1 (PD-1), while CLL B cells express high levels of PD-1 ligand (PD-L1); 

blocking antibodies, interfering with PD-1/PD-L1 axis, are able to prevent CLL 

progression and restore immune effector function (44). In CLL patients, T cells show an 

increased expression of the inhibitory receptor cytotoxic T-lymphocyte-associated protein 

4 (CTLA-4) and increased proliferation when CTLA-4 is blocked. 

In CLL patients a defective NK-cell function is also demonstrated. The reduction 

of NK cell cytotoxicity has been associated to low expression levels of the activating 

receptors natural killer cell p30-related protein (NKp30) and natural killer group 2 member 

D (NKGD2) (45). NK cells can produce also BAFF, interfering with NK-cell mediated 

lysis after rituximab therapy. 

  

3.4 Bone marrow MSCs 

In healthy subjects MSCs represent a small fraction of the stromal cell population, 

about 0.01-0.0001% of mononuclear cells, and decrease with age (1/104 in the newborn, 

0.5/106 in the older age) but MSCs are the dominant stromal cell population in CLL 

microenvironment. MSCs, after isolation from bone marrow and in vitro expansion in 

culture systems, remain in an undifferentiated state. When exposed to specific stimuli, 

MSCs are able to differentiate into the different mesodermal lineages, such as adipogenic, 

osteogenic, chondrogenic and myogenic, property attesting the nature of these stem cells 

(46). 

MSCs provide an attachment site and growth factors for normal haematopoiesis 

and, both in CLL, are thought to create in the BM a niche to support and protect CLL B 

cells (47). MSCs are of mesenchymal origin and are similar to α-smooth muscle actin 

(αSMA+)-positive mesenchymal stromal cells in other tissues, such as the secondary 

lymphoid tissues. The observation of a diffuse increase in αSMA+ cell incorporation 

throughout the stromal compartment of indolent subtype of CLL/SLL and follicular 

lymphoma (FL), rather than other aggressive B-cell lymphoma subtypes, invest MSCs with 

a crucial role on favouring malignant cells and disease progression (48). CLL B cells have 
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a high affinity for MSCs; in co-culture CLL cells have shown a rapid adhesion and 

migration toward MSCs (49). The protective effect of MSCs is largely dependent on close 

proximity between stromal cells and leukemic B cells. A murine in vivo model of CLL 

demonstrated that the murine BM microenvironment consists in similar capacity to protect 

CLL B cell from apoptosis and was also adequate to sustain the disease progression (50).  

MSCs constitutively secrete chemokines that organize CLL B cell migration and 

tissue homing and provide additional signals supporting leukemic B cells survival and 

promoting drug resistance. MSCs induce up-regulation in CLL B cells of ZAP70, CD38 

and the down-regulation of C-X-C motif receptor 4 (CXCR4) (51). MSCs have also been 

shown to down-modulate the expression of CD20 from the surface of malignant B cells, 

with possible implications for resistance to anti-CD20 antibody therapy (52). Moreover, 

MSCs promote in CLL B cells glutathione synthesis and induce glycolysis through 

NOTCH-mediated c-Myc activation, promoting cell survival and drug resistance (53). 

Several studies support the relevance of a bidirectional cross-talk between leukemic B cells 

and MSCs; CLL B cells release microvesicles enriched in activated signaling proteins and 

are able to activate the Akt pathway in MSCs. MSCs activation by malignant B cells results 

also in the induction of PKCβII expression and NF-κB pathway activation (54). Over the 

last years, several soluble factors, cytokines and chemokines released from MSCs have 

been described, involved in CLL B cell homing, survival and proliferation, which now 

provide a rationale for targeting the microenvironment.  

 

3.4.1 Immunophenotypic characterization 

Without a single distinctive marker, phenotypic characterization of human MSCs is 

based on their positivity for some antigens, not exclusive of the MSCs, and the absence of 

some antigens, typically expressed by cells of hematopoietic origin. MSCs express the 

following markers: CD44 (receptor for hyaluronic acid), CD90 and CD29 (adhesion 

molecules present on stromal cells) (55), CD105 [endoglin receptor type III of 

Transforming Growth Factor β (TGF-β)], CD73 (5’-ectonucleotidasi membrane, present in 

cultures derived from bone marrow stromal cells), STRO-1 (antigen present in non-

hematopoietic precursors of the bone marrow) and CD54. MSCs are negatives for CD34 

and CD45 (markers of hematopoietic precursors and of hematopoietic cells) and CD31 

(endothelial marker). 
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3.4.2 Expansion and functional characterization 

MSCs are isolated from cellular suspensions derived from ex vivo bone marrow and 

resuspended in liquid medium. Mononuclear cells are seeded in plates with a 10,000 

cells/cm2 density in modified Eagle Medium (α-MEM) or Dulbecco’s Modified Eagle 

Medium (DMEM), added of fetal bovine serum (FBS) and antibiotics. After 24 hours some 

round cells are already adherent to the plate, while the others remain in suspension and are 

removed after 7 days, with the first change of the medium culture. In the following days 

appear the first foci of proliferation, constituted by aggregates of highly proliferating cells 

that tend to mutual confluence, condition that leads to the stop of proliferation and to the 

spontaneous differentiation of the cells into pre-adipocytes. When the monolayer reaches 

the semi- confluence (70-80% of surface covered by the cells), the cells are detached with 

trypsin and seeded in other plates to expand the culture. After 5-7 weeks, it is possible to 

obtain a homogeneous population of adherent cells with fibroblastic appearance, which 

continues to proliferate up to 40 generations without spontaneously differentiating (56).  

In the presence of appropriate conditioned media, MSCs are able to differentiate 

into the different lines of mesodermal origin, such as the adipogenic, osteogenic, 

chondrogenic and myogenic, properties attesting the nature of these stem cells. The 

adipogenic differentiation is induced with medium containing dexamethasone (1µM), 

insulin and 3-isobutyl-1-methylxanthine, factors that activate the pathways of lipid 

synthesis. MSCs progressively accumulate lipidic drops in the cytoplasm, revealed by 

specific colors as Oil Red-O or Sudan Black (Fig. 7). 

Figure 7. MSCs cultures of adipogenic differentiation. a) Undifferentiated control for adipocytes; b) adipocytes; c) Oil 
Red-O colouration for adipocytes; d) electrophoresis of gene Proliferator Activated Receptor γ2 (Pparγ2), activated during 
adipogenic differentiation, and of gene house-keeping β-actin, obtained after reverse transcription of mRNA extracted 
from differentiated MSC and from control MSC. MSC: mesenchymal stromal cell; Differ. MSC: differentiated 
mesenchymal stromal cell.  
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The osteoblastic differentiation is induced with a culture medium containing 

dexamethasone in smaller quantities than that used in the adipogenic differentiation 

(0.1µM), ascorbic acid and β-glycerophosphate. The cells assume a polygonal shape and 

collect in the extracellular space a mineralized matrix refracting light at optical microscope. 

The mineralized matrix is revealed by intense colors, like von Kossa or alkaline 

phosphatase reactions (Fig. 8). 

Figure 8. MSCs cultures of osteogenic differentiation. a) Undifferentiated control for osteocytes; b) osteocytes; c) von 
Kossa colouration for osteocytes; d) electrophoresis of gene Core-binding factor alpha 1 (Cbfa1), activated during 
osteogenic differentiation, and of gene house-keeping β-actin, obtained after reverse transcription of mRNA extracted 
from differentiated MSC and from control MSC. MSC: mesenchymal stromal cell; Differ. MSC: differentiated 
mesenchymal stromal cell.  

 

3.5 Role of chemokines in CLL microenvironment 

 CLL B cell chemotaxis and homing to bone marrow and lymph nodes is finely 

regulated by the activation of chemokine receptors and adhesion molecules on the CLL 

cells. Chemokines, as a family of about 50 peptides, were first proposed as “chemotactic 

cytokines” in 1992, with a role in regulating homing of immune cells, leukocyte trafficking 

and maturation (57). CLL B cell migration towards stromal cells is promoted by the 

chemokine CXCL12 (previously called stromal cell derived factor 1 or SDF-1) (58), 

secreted both by MSCs and NLCs (Fig. 9). The CXCR4 chemokine receptor (CD184) is 

expressed on the surface of peripheral CLL B cells in response to CXCL12 gradients; 

CXCR4 is regulated by receptor endocytosis after CXCL12 binding leading to low CXCR4 

surface levels in lymph nodes and bone marrow were CXCL12 levels are high (59). CXCR4 

is close in proximity to CD38 on the surface of leukemic B cells and CD38 synergizes with 

	

MSC
MSC

differenziate

Cbfa1

β-actina

a) b)

c) d) MSC
MSC

differenziate

Cbfa1

β-actina

MSC
MSC

differenziate

Cbfa1

β-actina

a) b)

c) d)

β-actin 

Differ. MSC MSC 

Cbfa1 



	 28	

CXCR4 signaling to promote homing and chemotaxis to CXCL12 (60). CXCR4 

stimulation contributes to prolong CLL B cell survival in vitro and lead to the activation of 

ERK and to the 3 activation of signal transducer and activator of transcription 3 (STAT-3) 

signaling (61). On the other side, activated CLL B cells secrete high levels of the 

chemokines C-C motif ligand 3 (CCL3) and CLL4 following BCR stimulation or in co-

culture with NLCs (62). CCL3 and CCL4 presumably recruit T cells and monocyte or 

macrophages to tissue sites for interactions with CLL cells. High plasma levels of CCL3 

and CCL4 seems to be associated with an inferior clinical outcome in CLL patients. CCL21 

(also known as secondary lymphoid tissue chemokine) and CCL19, produced by the 

stromal cells of extrafollicular zones of lymph nodes, are also potent B-cell chemoattractant 

binding the receptor CCR7, expressed on lymphocytes. CCR7 expression is higher in 

patients with lymphoadenopathy (63).  

 

4. Treatment 

The right choice of the treatment for a CLL patient is based on the evaluation of the 

clinical stage of the disease, on the fitness of the patient, on the genetic risk of the leukemia 

and on the treatment line (first line vs second line and response vs non response of the last 

treatment) (64). 

4.1 First line treatment 

 In patients with active symptomatic disease or advanced stage, treatment should be 

started. Patients in good physical condition (“go go”) as defined by a normal creatinine 

clearance and a low score at the “cumulative illness rating scale” (CIRS) (65) should 

receive combination therapies such as Fludarabine and Cyclophosphamide (FLU/Cy) or 

FCR (Fludarabine, Cyclophosphamide and Rituximab). Fludarabine is a purine analogue 

exstensively studied in CLL; Fludarabine monotherapy produces superior overall response 

rates (ORR) compared with other treatment regimens containing alkylating agents or 

corticosteroids (66). Fludarabine induced more remissions than other conventional 

therapies like CHOP (Cyclophosphamide, Doxorubicine, Vincristine, Prednisone), CAP 

(Cyclophosphamide, Doxorubicine, Prednisone) or Chlorambucil, but did not improve 

overall survival when used as single agent (67), (68). A major advance was achieved using 

the combination of different treatment modalities and, particularly, the most studied 
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association chemotherapy in CLL is Fludarabine plus Cyclophosphamide. Different 

randomized trials showed that FLU/Cy combination improves the complete response (CR), 

OR and progression free survival (PFS) as compared to Fludarabine monotherapy. The 

FLU/Cy treatment resulted in a higher frequency of neutropenias but the rate of severe 

infections was not significantly increased (69), (70). In an open-label randomized trial by 

the German Chronic Lymphocytic Leukemia Study Group (GCLLSG), the activity and 

safety of FLU/Cy regimen (409 patients) was compared to that of FLU/Cy plus Rituximab, 

an anti-CD20 antibody (71). FCR was more effective than FLU/Cy in CR rate (44% vs 

22%), PFS (at 3 years 65% vs 45%, fig. 9) and OS (at 3 years 87% vs 83%). During FCR 

treatment, it was observed a higher rate of grade 3-4 neutropenia but not a significant 

increase in the infection rate and no differences in the health related quality of life. The 

presence of del(17p) was the strongest unfavourable prognostic variable for PFS and OS. 

Patients not eligible for FCR regimen, should be treated with a less toxic therapy, in order 

to control CLL and to prolong OS, mantaining a good quality of life. The association of 

Bendamustine and Rituximab (BR) should be considered as front-line therapy in fit but 

elderly patients. The BR regimen was investigated as first line therapy in 117 patients and 

resulted in an overall response rate of 88% with a CR rate of 23.1% and a partial response 

rate of 64.9% and less neutropenias than FCR regimen (72). 

Figure 9. Progression-free survival in all patients treated with chemoimmunotherapy (Fludarabine, Cyclophosphamide 
and Rituximab) and chemotherapy (Fludarabine and Cyclophosphamide) (18). 

 

 Patients with impaired physical condition (“slow go”) may treated either with 

Chlorambucil alone or in combination with an anti-CD20 antibody (Rituximab, 
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(fl udarabine, p=0·6; cyclophosphamide, p=0·8). 
Patients in Binet stages A and B received more treatment 
courses (mean 5·28 [range 0–6]) than did those in Binet 
stage C (4·52 [0–6]; p<0·0001). For any of the three 
drugs, the planned dose was reduced by more than 10% 
in 189 (47%) of 404 patients in the chemoimmunotherapy 
group and 108 (27%) of 396 patients in the chemotherapy 
group (p<0·0001). 207 of 800 patients had dose 
reductions (>10%) during the fi rst to third courses 

(chemotherapy 74 [19%] of 396; chemoimmunotherapy 
133 [33%] of 404; p<0·0001), and dose reductions 
occurred in 216 of 800 patients during the fourth to 
sixth courses (chemotherapy 79 [20%] of 396; 
chemoimmunotherapy 137 [34%] of 404; p<0·0001). 
These dose reductions were mostly because of treatment-
related haematological toxicity, particularly neutropenia 
and leucocytopenia (117 [62%] of 189 patients in the 
chemoimmunotherapy group vs 69 [64%] of 108 in the 
chemotherapy group; webappendix p 2).

Signifi cantly more patients were in complete 
remission in the chemoimmunotherapy group than in 
the chemotherapy group (table 2). More patients 
responded to treatment and more achieved a complete 
remission in all Binet stages (table 2). The proportion of 
patients who did not respond to treatment was lower in 
the chemoimmunotherapy group than in the 
chemotherapy group (39 [10%] vs 81 [20%]; p<0·0001).

PFS was longer in the chemoimmunotherapy group 
than in the chemotherapy group (median 51·8 months 
[95% CI 46·2–57·6] vs 32·8 months [29·6–36·0]; 
p<0·0001; fi gure 2A). At 3 years after randomisation, 
more patients remained progression free in the 
chemoimmunotherapy group than in the chemotherapy 
group (fi gure 2A; table 3). The risk of progression was 
reduced by 44% in the chemoimmunotherapy group 
compared with the chemotherapy group (HR 0·56 
[95% CI 0·46–0·69]). An improvement in PFS was 
noted in all stages. Patients with disease in Binet stages 
B and C showed similar median PFS of 32·5 months 
(28·4–36·6) and 33·0 months (25·0–41·2), respectively, 
when treated with chemotherapy (fi gure 2B). Treatment 
with chemoimmunotherapy improved the median PFS 
to 51·8 months (47·8–56·0) in 522 patients with Binet 
stage B disease (HR 0·50 [95% CI 0·39–0·65]; p<0·0001) 
and to 40·7 months (0·73 [0·51–1·04]; p=0·081) in 
252 patients with Binet stage C disease (fi gure 2B). 
Patients with Binet stage C disease who were given 
chemoimmunotherapy compared with those who were 
given chemotherapy showed an accumulation of several 
unfavourable factors (all p>0·05): age 65 years or older 
(44 [35%] of 126 vs 33 [26%] of 126), unmutated IGHV 
status (53 [54%] of 99 vs 45 [48%] of 94), elevated ZAP70 
concentrations (19 [42%] of 45 vs 15 [33%] of 45), and 
β2 microglobulin concentrations greater than 3·5 mg/L 
(47 [52%] of 91 vs 37 [44%] of 84). Dose reductions of 
more than 10% were more common in patients with 
Binet stage C disease in the chemoimmunotherapy 
group (34 [28%] of 122 vs 61 [49%] of 124; p=0·001), 
mostly because of neutropenia and leucocytopenia 
(21 [55%] of 38 vs 42 [62%] of 68). At 3 years after 
randomisation, fewer patients with Binet stage B disease 
and Binet stage C disease in the chemotherapy group 
than in the chemoimmunotherapy group were 
progression free (table 3). The small number of patients 
(n=40) in Binet stage A did not allow a meaningful 
analysis of this subgroup, but a non-signifi cant 

Figure 2: Progression-free survival in all patients (A) and in patients with Binet stage B and C chronic 
lymphocytic leukaemia (B)
Chemoimmunotherapy=fl udarabine, cyclophosphamide, and rituximab. Chemotherapy=fl udarabine and 
cyclophosphamide.
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Ofatumumab or Obinutuzumab), or with a dose-reduced Fludarabine containing regimen 

with a CD20 antibody. In these patients the main goal of the treatment is to control 

symptoms; nevertheless, the combination of Chlorambucil plus an anti-CD20 antibody 

prolongs the PFS when compared with monotherapy (73). Patients with active disease and 

the presence of adverse biological prognostic factors, like del(17p) or TP53 mutations, as 

first line treatment, should receive FCR or an alemtuzumab-containing therapy. The 

response is generally poor and short-lived; all yield response rates above 50%. In these 

patients, if possible, it should be considered the treatment with novel inhibitors (Ibrutinib, 

Idelalisib), the enrollment in clinical trials with new drugs or an allogeneic stem cell 

transplantation (HSCT) (6) (74). Manteinance therapy in CLL cannot be generally 

recommended, except for clinical trials. 

 

4.2 Second-line treatment 

As for the first-line treatment, therapy in relapsed patients should be starting only 

in the presence of active and symptomatic disease. First-line treatment is repeated if the 

relapsed or the progression occurs more than 24-36 months after the first therapy. If relapse 

occurs within 24-36 months after first-line therapy, or the disease is refractory to any 

previous treatment, the choice of therapy should be changed with other 

chemoimmunotherapy combinations. Whenever possible, refractory patients should be 

treated with newly approved drugs, like kinase inhibitors (Idelalisib or Ibrutinib), 

Lenalidomide or enrolled in clinical trials with other new compounds (75), (76). In fit 

patient with early relapse from chemoimmunotherapy and/or del(17p) or TP53 mutation 

should be considered also an HSCT (77). Less fit patients could be treated with BCR 

inhibitors or, if it is not present del(17p) or TP53 mutation, BR and FCR-Lite regimens 

(Fig. 6). 

 

4.3 New drugs for CLL treatment 

In recent years, the CLL treatment has undergone a major innovation due to the 

increasing number of very hopeful new drugs. The two main classes of novel agents are the 

BCR signaling inhibitors (78) and the Bcl-2 antagonist (79) (Fig. 10); these drugs are orally 



	 31	

bioavailable and demonstrated a good efficacy and tolerability compared with conventional 

chemoimmunotherapy. Furthermore, these drugs showed activity also in CLL patients with 

del(17p) or TP53 mutation.  

Figure 10. Survival signaling in CLL. Targeting of the BCR as a therapeutic strategy in CLL. Red symbols and letters 
indicate new drugs (6). 

 

 4.3.1 BCR signaling inhibitors 

BCR signaling plays an important role in the development, survival, proliferation, 

functional differentiation and migration of B cells. PI3Kδ,  Syk and Btk are essential for 

BCR signal transduction and their knockout in mouse models leads to impaired antigen-

driven maturation and expansion of B cells. In the last decade, an increasing number of B 

cell malignancies (lymphomas and CLL) were ascribed on BCR signaling for proliferation 

and survival (80). PI3Ks are divided into three classes and class I is composed by four 

different isoforms (α, β, γ and δ). PI3Ks regulate several cell functions, including survival, 

migration, chemokine receptor and integrin signaling activation. The predominant form 

expressed by hematopoietic cell is PI3Kδ, harvesting a critical role in B cell homeostasis 

and function. Syk activates signaling pathways downstream of the BCR, chemokine and 

integrin receptor, suggesting the involvment in tissue homing and retention of activated B 

cells (81). Btk is a non-receptor tyrosine kinase of the Tec family, rapidly activated by Lyn 

was 60%, including complete response of 16%. Median
progression-free survival in all patients was 13.6 months
[106]. The most relevant treatment-related side effects iere
viral infections. All patients had no changes in NK- or T-cell
counts.

Dasatinib. Dasatinib is a Src- and Abl- kinase inhibitor
that induces apoptosis in primary CLL cells [122]. In addi-
tion Dasatinib seems to increase the apoptotic effects of
various agents like fludarabine, chlorambucil, sorafenib, the
HSP90 inhibitor 17-DMAG, dexamethasone, or the BH3-
mimetic ABT-737 [122–127]. In a Phase II study, 6 of 15
patients in a Phase II study showed nodal remissions lack-
ing a decrease of more than 50% in lymphocyte count,
only 2 patients showed a partial remission [128]. In sum-
mary, dasatinib seems effective in reduction of nodular
tumor masses, but seems to lack efficacy on peripheral
blood lymphocytes.

Bcl-2 inhibitors. Proteins in the B cell CLL/lymphoma 2
(Bcl-2) family are key regulators of the apoptotic process
[129]. The Bcl-2 family comprises proapoptotic and prosur-
vival proteins. Shifting the balance toward the latter is an
established mechanism whereby cancer cells evade apo-
ptosis. Bcl-2, the founding member of this protein family, is
encoded by the BCL2 gene which was initially described in
follicular lymphoma as a protein in translocations involving
chromosomes 14 and 18 [130].

The Bcl-2 inhibitor ABT-263 (Navitoclax) and ABT-
199. ABT-263 is a small molecule Bcl-2 family protein
inhibitor that binds with high affinity (Ki! 1 nM) to multiple
anti-apoptotic Bcl-2 family proteins including Bcl-XL, Bcl-2,
Bcl-w, as well as Bcl-B and has a high oral bioavailability
[131]. Initial studies showed very promising results for this

drug as a single agent [96]. However, its therapeutic use
seemed somewhat limited by severe thrombocytopenias
being a prominent side effect. Therefore, the compound
was re-engineered to create a highly potent, orally bioavail-
able and Bcl-2-selective inhibitor, ABT-199 [101]. This com-
pound inhibits the growth of BCL-2 dependent tumors in
vivo and spares human platelets. A single dose of ABT-199
in three patients with refractory chronic lymphocytic leuke-
mia resulted in tumor lysis within 24 hr [101]. Together,
these data indicate that selective pharmacological inhibition
of BCL-2 shows promise for the treatment of BCL-2-
dependent hematological cancers, including CLL.

The BH3-mimetic AT-101. AT101 is an orally active
BH3-mimetic, which inhibits the anti-apoptotic activity of
Bcl-2, Bcl-XL and Mcl-1 and might be an active agent for
the treatment of CLL, as the resistance to apoptosis in CLL
cells is associated with high levels of Bcl-2 protein expres-
sion. AT101 was found to induce apoptosis in CLL cells in
vitro and to overcome drug resistance mediated by the
microenvironment [132]. It showed a good tolerability and
satisfactory efficacy in combination with weekly infusions of
rituximab in previously treated CLL patients [133,134].

Immunomodulatory drugs
Lenalidomide is a second generation thalidomide ana-

logue and an immunomodulatory agent with antiangiogenic
properties that is used in treatment of myelodysplastic syn-
drome and multiple myeloma and is currently investigated
in the treatment of CLL. It showed encouraging results in
the treatment of high risk patients including carriers of a
del(17p) [135]. In 58% of the patients lenalidomide causes
a so called tumor flare reaction, which leads to a sensation
of heat and burning in the lymph nodes and occurs only in

Figure 2. Targeting of the BCR signaling as a therapeutic strategy in CLL. Red symbols and letters indicate new therapeutics as discussed in the text. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

annual clinical updates in hematological malignancies

American Journal of Hematology 809
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and Syk kinases, resulting in the activation of NF-κB signaling, B cell proliferation and 

differentiation. It is essential for activation of several constitutively active pathways of CLL 

cell survival, including Akt and the ERK (82). Btk is also involved in regulation of 

migration and adhesion via CXCR4/CXCR5 and integrin signaling (83). Given the 

importance of BCR receptor signaling in CLL, an attractive strategy is to target inhibition 

of this kinase. 

Idelalisib: Idelalisib (CAL-101) is an oral PI3Kδ selective inhibitor promoting CLL cells 

apoptosis in a time and dose-dependent mode without inducing apoptosis in normal T cells 

or natural killer cells. Idelalisib reduces survival signals derived from the BCR, inhibits 

CLL cell chemotaxis and migration and also down-regulates secretion of chemokines in 

stromal co-cultures and after BCR triggering (84). Idelalisib was approved by the FDA in 

2014 for the treatment of relapsed/refractory CLL patients in combination with rituximab. 

Idelalisib has been tested as single agent or in combination with other conventional drugs 

and demonstrated excellent efficacy and tolerability. Idelalisib pivotal phase III study was 

conducted in heavily pretreated CLL patients; 220 patients were randomly assigned to 

receive rituximab/placebo or rituximab/idelalisib. The study resulted in an 85% reduction 

of the risk progression with a 12-months PFS of 66% in Idelalisib/Rituximab arm, 

compared with 13% for the placebo/Rituximab arm. PFS and response rates were not 

affected by adverse prognostic factors, including del del(17p)/TP53mut, ZAP70 expression 

or IGVH mutational status (85). 

Fostamatinib: Fostamatinib disodium is the first clinically available oral Syk-inhibitor; it 

induces apoptosis disrupting B cell receptor signaling. Fostamatinib induced partial 

responses in replapsed CLL patients in phase I/II study (86).  

Ibrutinib: Ibrutinib, previously called PCI-32765, is the first BCR inhibitor approved for 

treatment in CLL; it is a small orally active molecule that inhibits Btk, that plays a role in 

the signal transduction of the BCR, inducing apoptosis in CLL cells. Ibrutinib covalent 

binds to the cysteine-481 amino acid of the Btk enzyme; preclinical studies showed that it 

inhibits numerous processes, including ERK signaling, NF-κB DNA binding, cytosine-

phosphate-guanine (CpG)-mediated CLL-cell proliferation and tumor cell migration. 

Differently from most regimens used for CLL, Ibrutinib does not have toxic effects on 

normal T cells (87), (88). Previous studies fixed a dose of 420mg/day; patients with 

relapsed/refractory disease experienced a 90% ORR, with durable responses and an 
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estimated PFS of 69% at 30 months. The response was independent of clinical stage, 

previous therapies and adverse genomic risk factors, including 17p deletion (Fig. 11) (89). 

In the study of previously untreated patients over 65 years, the ORR was 84%, with an 

estimated PFS of 96% at 30 months. Treatment with Ibrutinib was generally well tolerated, 

with the most common adverse events being transient diarrhea (58%), fatigue (28%), 

infections (32%) and bleeding (61%). Ibrutinib usually causes a transient increase in blood 

lymphocyte levels, concurrent with a riduction in lymph node and speen size. This effect 

has been seen also with other agents targeting BCR and it is not consider a sign of 

progressive disease; continuing Ibrutinib therapy, this asymptomatic lymphocytosis is led 

to resolution (90). The optimal duration of therapy has not been yet determined, it could be 

resonable to continue treatment but we do not know yet the long-term effects and the 

resistance mechanisms need to be better clarified. 

 
Figure 11. Kaplan-Meier curves for PFS for 85 relapsed/refractory CLL patients, treated with Ibrutinib (left panel) and 
PFS according to cytogenetic status, with respect to the del(17p) and del(11q) deletions (right panel) (89). 

Dasatinib: Dasatinib is a Src- and Abl- kinase inhibitor that induces apoptosis in CLL cells. 

Dasatinib seems also to increase the apoptotic effects of Fludarabine, Chlorambucil, 

dexamethasone and other agents (91). In previous studies, Dasatinib showed efficacy in 

reduction of nodular tumor masses but it is less effective on peripheral blood lymphocytes.  

 

4.3.2 Bcl-2 inhibitors 

Proteins in the B cell lymphoma 2 (Bcl-2) family work as key regulators of the cell 

apoptosis. Bcl-2 family consists in pro-apoptotic and pro-survival proteins; cancer cells are 

able to evade apoptosis shifting the balance of Bcl-2 proteins toward the prosurvival effect 

(92). 
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Chronic Lymphocytic Leukemia (RESONATE; 
ClinicalTrials.gov number, NCT01578707) and A 
Multicenter, Open-label, Phase 3 Study of the 
Bruton’s Tyrosine Kinase Inhibitor PCI-32765 
Versus Chlorambucil in Patients 65 Years or 
Older with Treatment-naive Chronic Lympho-
cytic Leukemia or Small Lymphocytic Leukemia 
(RESONATE-2, NCT01722487).

Several validated high-risk characteristics of 
CLL, including 17p13.1 deletion, did not influ-
ence the objective response to ibrutinib. How-
ever, most events associated with disease pro-
gression occurred in patients with high-risk 
cytogenetic lesions (17p13.1 deletion or 11q22.3 

deletion), whereas only one patient without these 
risk factors had an event associated with disease 
progression. Patients with an unmutated immu-
noglobulin variable-region heavy-chain gene, 
perhaps owing to enhanced B-cell–receptor sig-
naling and dependence on this pathway, had 
earlier resolution of lymphocytosis and were 
more frequently classified as having a response 
according to traditional response criteria of the 
International Workshop on Chronic Lympho-
cytic Leukemia (P = 0.02); however, survival out-
comes were similar to those among patients 
without this unmutated gene. Greater than 90% 
occupancy of the pharmacodynamic probe and 
the similar response in the two dose groups 
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Figure 3. Kaplan–Meier Curves for Progression-free Survival and Overall Survival.

Panels A and B show the probability of progression-free survival and overall survival, respectively, for all 85 patients (top graphs) and 
 according to status with respect to the 17p13.1 and 11q22.3 deletions (middle graphs) and IGHV mutation status (bottom graphs). 
Tick marks indicate censored data.
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ABT199: ABT199 is a highly potent, orally bioavailable and Bcl-2 selective inhibitor that 

blocks the growth of Bcl-2 dependent tumors in vivo. ABT199 showed a promising effect 

for the treatment of Bcl-2 dependent hematological cancers, including CLL (93).  
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AIM OF THE STUDY 

 

CLL is a malignancy characterized by the accumulation of monoclonal mature B 

lymphocytes which are dependent on interactions with the tissue microenvironment for 

their survival and proliferation. Consequently, exploring and targeting the CLL 

microenvironment is of progressive increasing interest, also for the development of novel 

therapeutic strategies and for a better understanding of drug-resistance mechanisms. We 

focused our attention on MSCs derived from the bone marrow, which provide attachment 

site and growth factors for normal hematopoiesis and represent a critical component of the 

CLL microenvironment.   

The aim of this PhD project was to further investigate the role of MSCs in CLL 

pathogenesis and in the treatment of the disease. In particular, we planned to establish an 

in vitro culture system based on MSCs, shaping in vivo conditions for determining CLL 

niche interactions involved in neoplastic cell survival. Employing an in vitro system that 

closely approximate the in vivo bone marrow conditions, we tried to better explain the 

connection between CLL B cells and the microenvironment with the ultimate goal to 

identify patients who may benefit from compounds targeting CLL microenvironment. 

Finally, we studied the role of MSCs in the apoptosis of CLL cells during a conventional 

therapy in general practice, such the combination of Fludarabine and Cyclophosphamide, 

performing both in vivo and in vitro experiments. Furthermore, we analyzed the complexity 

of the cross-talk between malignant B cells and MSCs in the presence of a Btk inhibitor, 

Ibrutinib, actually considered a really promising and efficient drug in the treatment of CLL. 

In particular, we planned to examine CLL cells survival and ability of migration and 

adhesion after the Ibrutinib pre-treatment, in the presence of MSCs.  
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MATHERIAL AND METHODS 

 

1. Patients 

MSCs were isolated from 46 CLL patients (31 males and 15 females, median age 

60 years) referred to the Hematology and Clinical Immunology division of Padua 

University Hospital. The main disease characteristics of the patients are shown in table III, 

which reports the RAI classification, the percentage of bone marrow infiltration and the 

quote of CD19/5+ lymphocytes. In particular, 19 patients were classified in stage RAI 0, 

15 in stage 1, 10 in stage 2 and 2 patients in stage 3. None of the patients were in stage 4. 

The mean bone marrow infiltration was 47.4±22.6 and the amount of the CLL B cells in 

peripheral blood ranged from 1 to 98%. 

 Malignant B lymphocytes utilized in this study were obtained from 45 CLL patients 

(27 males, 18 females, median age 65 years) which clinical characteristics are listed in table 

IV. According to RAI system, 4 patients were classified in stage 4 and 7 in stage 2. Overall 

31 patients (69%) were in stage RAI 0 and 1; staging of 3 patients was not determined (nd). 

Cytogenetic most common lesions were identified using interphase FISH: deletion in the 

long arm of chromosome 13 (13q-), trisomy of chromosome 12 (12+), deletion in the long 

arm of chromosome 11 (11q-) and in the short arm of chromosome 17 (17p-) or a normal 

karyotype (N). Based on the number of SHM of the Ig VH genes, the cases were divided 

into two categories: 21 unmutated (UM) and 20 mutated (M). Conventionally, mutated 

status was defined as having a frequency of mutations greater than 2% from germline VH. 
In 4 patients SHM status was not available (na) or not determined. Using cytofluorimetric 

analysis, we detected also ZAP70 and CD38 expression. The cut-off used to determine 

ZAP70 was 20% and 30% for CD38. 
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Table III. Clinical characteristics of CLL patients studied for MSCs isolation. 
 

MSCs # RAI stage Age Sex  BM infiltration (% Ly)             CD19/5(%)        

MSC#1 0 75 M 34 71 
MSC#2 1 65 M 70 92 
MSC#3 1 78 M 87 92 
MSC#4 0 66 F 70 83 
MSC#5 1 70 M 90 98 
MSC#6 3 75 M 40 68 
MSC#7 0 50 F 18 1 
MSC#8 0 49 M 56 72 
MSC#9 2 60 F 5 2 

MSC#10 2 72 M 75 46 
MSC#11 1 68 M 13 11 
MSC#12 2 61 M 26 54 
MSC#13 2 55 M 6 8 
MSC#14 0 51 M 54 86 
MSC#15 2 47 M 78 86 
MSC#16 2 59 F 19 34 
MSC#17 0 66 M 40 75 
MSC#18 0 54 M 42 68 
MSC#19 0 51 M 27 40 
MSC#20 1 48 M 47 83 
MSC#21 1 55 M 52 70 
MSC#22 1 55 M 18 60 
MSC#23 0 49 M 62 81 
MSC#24 1 69 M 56 50 
MSC#25 0 51 M 37 54 
MSC#26 1 66 M 64 70 
MSC#27 1 60 F 43 56 
MSC#28 0 60 M 37 54 
MSC#29 1 70 F 70 50 
MSC#30 1 63 M 43 70 
MSC#31 0 63 M 55 67 
MSC#32 1 60 M 40 43 
MSC#33 0 56 F 52 45 
MSC#34 0 71 F 25 22 
MSC#35 0 49 F 62 69 
MSC#36 0 60 M 75 85 
MSC#37 0 58 F 60 43 
MSC#38 3 59 F 50 77 
MSC#39 2 72 F 75 85 
MSC#40 2 55 M 17 35 
MSC#41 2 63 M 90 93 
MSC#42 0 56 F 32 50 
MSC#43 1 57 M 34 91 
MSC#44 0 52 M 21 44 
MSC#45 2 67 F 73 81 
MSC#46 1 56 F 40 48 
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Table IV. Clinical characteristics of CLL patients 
 

CLL#  Age 
 

Sex  RAI 
stage  Cytogenetic IgVH mutational 

status (M/UM) ZAP70 CD38 

#01 64 M 0 na M pos neg 
#02 74 M 1 na M neg neg 
#03 56 F 2 13q- M nd nd 
#04 71 M 4 13q- UM pos pos 
#05 54 F 1 na M nd pos 
#06 68 F 1 11q- 12+ UM pos nd 
#07 79 F 1 13q- UM neg pos 
#08 89 M 2 na M nd nd 
#09 67 F 2 17p- 13q- nd nd nd 
#10 77 M 0 13q- M neg neg 
#11 69 M 0 N UM pos neg 
#12 59 M 0 13q- UM neg neg 
#13 45 M 1 13q- M pos neg 
#14 52 F 2 na UM pos pos 
#15 63 F 0 13q- M pos neg 
#16 81 M 1 12+ UM pos pos 
#17 92 F 1 17p- UM neg nd 
#18 45 M 4 17p- UM neg pos 
#19 63 F 1 13q- M nd nd 
#20 51 M 0 17p- 13q- M neg neg 
#21 79 M 1 13q- M neg neg 
#22 49 M 1 11q- 13q- 12+ UM pos pos 
#23 55 F 1 na M na na 
#24 61 M 1 11q- 12q- UM pos neg 
#25 59 M 0 N UM pos neg 
#26 66 M 1 N M pos neg 
#27 57 F 0 13q- UM pos neg 
#28 71 F 1 13q- M neg pos 
#29 50 M 2 13q- UM pos pos 
#30 67 M 0 13q- M pos pos 
#31 81 M 4 na M pos neg 
#32 53 M 4 11q- UM pos neg 
#33 85 M 0 N UM pos neg 
#34 62 M 0 N M pos nd 
#35 54 M 1 13q- M pos neg 
#36 61 F 0 11q- 13q- 12+ UM pos pos 
#37 54 F 1 11q- 12+ nd pos pos 
#38 67 F 0 nd UM nd nd 
#39 80 M 1 13q- M pos neg 
#40 69 F 2 11q- 13q-  UM neg pos 
#41 66 F 1 13q- M neg neg 
#42 78 F nd 13q- M neg neg 
#43 71 M nd 12+ na neg neg 
#44 53 M 2 11q- UM neg pos 
#45 49 M nd na na na pos 
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2. Isolation of MSCs from CLL bone marrow 

Bone marrow blood samples were obtained from 46 CLL patients, after written 

informed consent. We collected 1-2 ml of blood from each bone marrow aspirate; 

mononuclear cells, including MSCs, were obtained proceeding with a layering on 

Ficoll/Hypaque (F/H, GE Healthcare; Fairfield, Connecticut). This technique is based on 

the difference of density of mononuclear cells (lymphocytes and monocytes) with respect 

to the other blood elements. Mononuclear cells, with lower density, focus on the layer of 

F/H while the red blood cells and granulocytes are collected on the bottom of the tube. We 

proceeded with a centrifugation at 900g for 20 min at 20°C, without brake. The ring of 

mononuclear cells at F/H interface was aspirated and washed twice with saline by 

centrifugation at 400g for 10 minutes at 20°C (Fig. 12). The pellet was resuspended in an 

appropriate amount of saline and the cells were counted in a Burker chamber.  

 

 

Figure 12. Isolation of MSCs from bone marrow by stratification on Ficoll/Hipaque. By centrifugation on F/H, 
MSCs were isolated from bone marrow of CLL patients. Mononuclear cells (PBMC) and platelets were concentrated 
above the layer of F/H because they have lower density; on the contrary, the red blood cell (RBC) and polymorphonuclear 
neutrophil (PMN) have a higher density than the F/H and collect on the bottom of the tube. RT: room temperature. 

 

3. Ex vivo expansion of MSCs 

Mononuclear cells were cultured in 7 ml of Dulbecco’s Modified Eagle Medium 

(DMEM, Invitrogen; Paisely, UK) with 10% of FBS, 1% of PenStrep (Penicilline 

5000U/ml, Streptomicine 5,000µg/ml, Invitrogen) and 10µg/ml of Ciprofloxacine 

(Ciproxin, Bayer; Leverkusen, Germany) at 37°C in humidified atmosphere containing 5% 

CO2. Nonadherent cells were removed carefully after 7 days and fresh medium was 

replaced. When primary cultures became almost confluent, the culture was washed with 2 

ml of Phosphate Buffer Saline (PBS)1X and treated with 1 ml of 0.25% trypsin (Invitrogen) 
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in order to enlarge the culture. Detached cells were transfered in a medium with 10% of 

FBS and resuspended in DMEM to be seeded in plates with a 10.000 cells/cm2 density. 

 

4. Immunophenotyping of MSCs 

The immunophenotypic analysis was performed through flow cytometry, a 

technique allowing a multiparametric evaluation of antigenic characteristic of the single 

cells by the analysis of visible and fluorescent light emission. The immunophenotyping 

helps to identify surface and intracellular Ag using mAb conjugated with fluorochromes. 

The presence of a certain Ag is used as an indicator of cell lineage and maturation level. 

We used flow cytometer FACS Calibur (Becton Dickinson; Milan, Italy) and data obtained 

were processed using the program Cell Quest. For each analysis 20.000 events were 

acquired. The fluorochromes used were fluorescein isothiocyanate (FITC), which emits a 

fluorescence signal at 530nm (green), phycoerythrin (PE) emitting at 585nm, tri-color (TC) 

that emits at 667nm when hit by a monochromatic laser beam with λ equal to 488nm, and 

allophycocyanin (APC) that emits a fluorescence signal at 690nm when excited by a laser 

beam with λ of 635nm. MSCs were removed from plates using 500µl of Accutase solution 

(Sigma; Saint Louis, USA) and resuspended in 100µl of PBS1X. MSCs were stained with 

5µl of mAb for surface expression of CD14 (FITC, Becton Dickinson; Franklin Lakes, 

USA), CD31 (FITC, Becton Dickinson), CD34 (PE, Becton Dickinson), CD90 (Abd 

Serotech, Oxford, UK), CD73 (PE, Becton Dickinson) and with 2.5µl of mAb for 

expression of CD45 (FITC, Caltag-Invitrogen, Paisely, UK) and CD105 (PE, Caltag-

Invitrogen). 

 

5. Isolation of CLL B cells from peripheral blood samples  

B lymphocytes were isolated from peripheral blood of CLL patients. From a sample 

of heparinized venous blood, mononuclear cells were obtained proceeding with a layering 

on F/H. In patients with a quote of B lymphocytes less than 90% of peripheral blood 

mononuclear cells (PBMCs) isolated we used the RosetteSep kit (StemCell Technologies; 

Vancouver, Canada). The kit consists of a cocktail of antibodies directed against surface 
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antigens, expressed by hematopoietic cells (CD2, CD3, CD16, CD36, CD56, CD66b) and 

glycophorin A, expressed by red blood cells. This mixture of antibodies binds "not-B" cells 

and red blood cells creating immunorosette. CD19+ B lymphocytes are isolated from whole 

blood by negative selection. Each ml of blood was incubated with 50µl of RosetteSep at 

room temperature for 20 minutes. The samples were then diluted 1:2 with PBS1X + 2% 

FBS, gently agitated, and then layered over F/H. We proceeded with a centrifugation at 

900g for 30 minutes at RT, followed by the aspiration of the ring formed at the F/H interface 

containing B cells. It was resuspended in PBS1X + 2% FBS and centrifuged at 400g for 10 

minutes (Fig. 13). Finally, cells resuspended in PBS1X were counted in a Burker chamber. 

We used the RosetteSep kit also to isolate B lymphocytes from buffy coat, used as normal 

controls.	

	
Figure 13. Purification with RosetteSep kit. CD19+ B lymphocytes were isolated from whole blood of healthy donors 
by negative selection. 10ml of venous whole blood were incubated for 20 min at RT with 500µl of RosetteSep. 
Afterwards, through stratification on F/H, we get the CD19+ B cells, which are concentrated just above the layer of F/H, 
while the rest of the cells related to the rosettes were collected on the bottom of the tube. 

 

6. Culture conditions 

For co-culture experiments, purified leukemic and normal B cells (2x106/ml) and 

MSCs (1x105/well seeded into 12 well plates) were cultured in complete RPMI-1640 

(Sigma-Aldrich; Milan, Italy) at 37°C in a humidified atmosphere containing 5% CO2. B 

cells were added to MSCs layer at 20:1 ratio in complete RPMI-1640 medium. For 

spontaneous apoptosis assays, leukemic cells from the suspension were collected at 3, 5 

and 7 days. Therefore, we performed co-cultures of malignant B lymphocytes in direct 

contact with MSCs and in presence of MSCs separated by a 0.4	µm porous polycarbonate 

filter (transwell) that allows the exchange of soluble factors.	 

For analysis of in vitro drug-induced cell death, CLL B cells were treated with 

20µM Fludarabine (FLU, TEVA; Milan, Italy) and 5mM Cyclophosphamide (Cy, Baxter; 

Rome, Italy) for 3 and 12 hours; cells were then washed and plated alone and with MSCs 

for 3, 5 and 7 days. In other experiments, FLU and Cy were added directly in CLL B cells 
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and CLL B cells-MSCs co-cultures. At the same time, we cultured MSCs with leukemic B 

cells collected from 10 CLL patients undergoing the first cycle of FLU/Cy chemotherapy 

in vivo, before starting drug infusion and at the third day of treatment. Viability status was 

examined by staining with Annexin V at 3, 5 and 7 days. At least, we tested the effect of 

5µM Ibrutinib, a Btk inhibitor, on CLL B cells isolated from 12 patients cultured alone and 

with MSCs for 3, 5 and 7 days.  

 

7. Analysis by flow cytometry  

Apoptosis of different cell samples (CLL B cells and normal B lymphocytes) was 

assessed using the Annexin V Apoptosis Detection Kit (Immunostep; Salamanca, Spain). 

During the early stages of apoptosis, the plasma membrane undergoes profound changes 

indicating the status of apoptotic cell to macrophages, which ensure its elimination. 

Phosphatidylserine (PS), a negatively charged aminofosfolipide expressed normally only 

on the inner side of the plasma membrane, become exposed on the outer surface. Annexin 

V is a protein that, in the presence of high concentrations of Ca2+, recognizes and selectively 

binds PS, helping to identify apoptotic cells by phospholipid exposure on their surface.  

Aliquots of 5x105 cells were harvested, washed, and incubated for 10 min in the 

dark and at RT with anti-CD19 APC (Invitrogen). Then cells were washed and 100µl of 

binding buffer, a Ca2+-rich solution that optimizes the binding of Annexin V to the PS, plus 

5µl of Annexin V-FITC were added for further 10 minutes in the dark and at RT. After the 

incubation, 100µl of binding buffer were added and cells were analyzed by flow cytometer 

FACS Canto (Becton Dickinson). For each sample 20.000 events were collected using 

FACS Diva software. 

 

8. Polyacrylamide gel electrophoresis in SDS (SDS-PAGE) 

The polyacrylamide gel electrophoresis in SDS is one of the methods used to 

separate a mixture of proteins on the basis of their molecular weight. SDS is a ionic 

detergent that binds tightly to proteins causing their denaturation. In the presence of an 

excess of SDS, approximately 1.4 grams of detergent will bind to each gram of protein, 

providing a constant amount of negative charge per unit mass. Therefore, during 
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electrophoresis, all protein-SDS complexes move toward the anode, and thanks to the 

molecular sieve properties of the gel, their mobility is inversely proportional to their 

molecular weight. By the migration of standard proteins of known molecular weight 

simultaneously to samples, it is possible to determine the protein sample weights. 

SDS polyacrylamide gel was prepared following Laemmli method96. The electrophoretic 

plate consisted of two types of gel: 

- Stacking gel at pH 6.8, which concentrates the protein samples so that they are all aligned 

at the start of electrophoresis; 

- Running gel at pH 8.8, in which the real separation of proteins occurs. The plate size of 

10×8cm is fixed in the Hoefer Mighty Small-If 250 Scientific Instruments machine 

(Amersham Biosciences). The electrophoresis was run for about 2 hours at 25mA. 

 

9. Western Blotting 

The western blotting (WB) or immunoblotting is an immunoassay able to detect 

traces of a specific protein in a heterogeneous mixture, combining the high resolving power 

of gel electrophoresis with the specificity of the antibodies. The WB is a high sensitive 

technique, able to detect very small quantities of proteins. After SDS-PAGE, proteins were 

transferred onto a nitrocellulose membrane through an electric field, obtained applying the 

appropriate current of 350mA for 2 hours and 30 minutes. The buffer used for the transfer 

consists of: 25mM Tris, 192mM glycine, 20% methanol and 0.1% SDS with a final pH of 

8.0 (buffer A). After the transfer, the membrane was left overnight in the saturation buffer 

consisting of 50mM Tris-HCl, pH 7.5, 150mM NaCl and 5% bovine serum albumin (BSA) 

(buffer B), for non specific sites saturation. Follows the incubation for 2 hours and 30 

minutes at room temperature of the primary Abs, diluted in: 50mM Tris-HCl, pH 7.5, 

150mM NaCl, 1% BSA (buffer C).  

For our study we used the following antibodies: anti-	Poli-ADP-Ribose Polymerase 

(PARP), anti-Btk Tyr223, anti-Btk (Cell Signaling Technology Inc; Danvers, 

Massachusetts, USA) and anti-β-actin (Sigma-Aldrich). 

Three washes of 10 min, each at RT were subsequently performed, using buffer C 

supplemented with 0.1% Tween. Membranes were then incubated for 30 minutes with a 

secondary anti-IgG Ab, obtained against the animal species immunized for the primary Ab. 

The secondary Ab was conjugated with horseradish peroxidase (Amersham International 
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Biotechnology; Buckingamshire, UK) and diluted in buffer C. After three additional 

washes, the membrane was subjected to the detection antibody with the enhanced 

ChemiLuminescence system (ECL) (Pierce; Rockford, Illinois): the membrane was 

incubated for 1 minute with 1ml of luminol and 1 ml of H2O2, which in contact with the 

peroxidase and the Ag-Ab complex, give rise to an oxidation reaction with light emission. 

The membrane was relevated into ImageQuant LAS 500 (Amersham). The densitometric 

analysis was performed using the Image J program. 

 

10. Chemotaxis assay 

MSCs were cultured for 48h in complete RPMI-1640 medium (Sigma-Aldrich) at 

37°C in a humidified atmosphere containing 5% CO2 to obtain the MSC-conditioned 

medium (MSC-CM). The migration of pre-treated CLL B cells in response to MSC-CM 

was evaluated using 12-well Corning chemotaxis chamber (Corning Life Sciences; Acton, 

MA). 2.5x106 cells were incubated in 0.5ml RPMI medium with and without Ibrutinib for 

1h at 37°C. Then, cells were transferred into the top chambers of transwell culture insert 

with a pore size of 3µm. Filters were then placed onto wells containing complete RPMI 

medium or MSC-CM, and CLL B cells were allowed to migrate for 3h at 37°C. Migrated 

cells in the lower chamber were then collected and counted on a FACSCanto for 60 seconds 

in triplicates. 

 

11. Evaluation of CLL B cell adhesion to MSC layer 

CLL B cells were suspended to a concentration of 2x106 cells/ml with or without 

5µM Ibrutinib and incubated for 1h at 37°C in 5% CO2 in complete RPMI medium. After 

incubation, CLL cells were added to the MSC layers and the plates were incubated at 37°C 

in 5% CO2 overnight. Cells that had not adhered into the stromal cell layer were removed 

by vigorously washing 3 times with RPMI 1640 medium. The complete removal and the 

integrity of the stromal cell layer containing adherent B cells were assessed by phase-

contrast microscopy Olympus IX-81 and documented photographically. The layer of cells 

was detached by incubation with Accutase (Sigma-Aldrich); cells were stained with anti-

CD19 APC to exclude MSCs and counted by flow cytometry.  
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12. Flow cytometry analysis 

CLL B cells were cultured with and without MSCs and treated with 5µM Ibrutinib. 

5x105 cells for each assay were collected after 48h, leaving intact the adherent layer, and 

stained with anti-CD49d PE (BD Biosciences), anti-CCR7 FITC (R&D Systems Inc., 

Minneapolis, MN, USA), anti-CXCR4 PE (R&D Systems Inc.), and anti-CD19 APC (BD 

Biosciences) monoclonal antibodies. Cells were washed with PBS1X and incubated with 

saturating concentrations of the appropriate antibodies for 15 minutes at room temperature. 

20,000 total events were acquired using FACSCanto (Becton Dickinson) and the data were 

analysed by FACSDiva 7 software. Samples were gated on intact cells by forward light 

scatter (FSC) vs right-angle light scatter (SSC). For analysis, it was used a second gating 

step on CD19+ cells. Here, we used a difference between the Mean Fluorescence Intensity 

(MFI) of fully-stained samples and the Fluorescence Minus One controls. 

 

13. Statistical analysis 

Statistical analysis of apoptosis in patients analyzed was performed using Student's 

t test, paired Student's t test. Data were expressed as mean±standard deviation (SD) and 

were considered statistically significant when p values were <0.05. 
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RESULTS 

 

1. MSCs isolation from bone marrow of CLL patients 

MSCs were isolated from the bone marrow of 46 CLL patients afferent to the 

Hematology and Clinical Immunology division of Padua University Hospital. For each 

bone marrow sample, the mononuclear cells were seeded in plates with a 10,000 cells/cm2 

density. After 48 hours, we were able to observe the adhesion of some round cells in the 

plate; after 7 days, with the first change of the medium culture, the cells were extended, in 

a similar fibroblastic morphology. After 14 days, the cells created highly proliferating 

aggregates (Fig. 14A), with the achievement of the mutual confluence in 30/40 days (Fig. 

14B). All the cultures maintained a homogeneous morphology and an undifferentiated 

status in the different steps.  

 

Figure 14. MSCs cultures after 14 (A) and 30 (B) days. Mononuclear cells obtained from bone marrow samples were 
seeded in plates with DMEM. After 7 days, some cells with a similar fibroblastic morphology were adherent to the plate; 
the suspended cell were removed with the first change of medium. The first proliferation aggregates were observed after 
14 days and the culture obtained the confluence in 30-40 days (10X enlargement with Olympus BX60 microscope). 
 

2. MSCs immunophenotypic characterization 

The characterization of the expanded cell population was defined through flow 

cytometry analysis between third and fourth subculture; the immunophenotypic 

characterization was based on the expression of CD105, CD73 and CD90 and the negativity 

of CD14, CD34, CD45 and CD31. We were able to identify in our cell cultures the peculiar 

phenotype of MSCs, confirming that our cell population was homogeneous and not of 

hematopoietic derivation (Fig. 15).  

A B 
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Figure 15. Immunophenotypic characterization of MSCs. Representative case of MSC flow cytometry evaluation. 
The grey area represents the negative control; the white area indicates the positive expression of the marker. 

 

3. MSCs from CLL patients support in vitro neoplastic B cells survival 

We tested the effect of MSCs on the survival of leukemic B cells isolated from 30 

CLL patients, and normal B cells obtained from 11 healthy controls; B lymphocytes were 

incubated in direct contact with a confluent layer of MSCs (20:1 ratio). By Annexin V 

staining, we assessed B cell viability at 3, 5 and 7 days. We found that leukemic B cells 

underwent apoptosis when cultured in medium alone, but their survival was rescued when 

cultured with MSCs; CLL B cell viability after 7 days was 13.3%±13.2% in medium alone 

vs 59.2%±17.1% in co-culture with MSCs (p<0.0001) (Fig. 16A). Normal B cell viability 

after 7 days was 6.7%±4.3% in medium alone vs 34.9%±15.7% when co-cultured with 

MSCs (p<0.001) (Fig. 16B), indicating that MSCs display a major protective effect on 

neoplastic B cells. Therefore, we confirmed that MSCs are able to support CLL B cell 

survival providing an in vitro culture system that closely approximate CLL 

microenvironment in vivo. 

Figure 16. CLL and normal B cell viability cultured alone and with MSCs. Cell apoptosis was assessed by Annexin 
V test. The graph shows the percentage of cell viability after 3, 5 and 7 days, data are expressed as mean ±SD; ***p<0.001, 
****p<0.0001, Student’s t-Test.  

 

A B 

CD14 CD34 CD45 CD31 

CD73 CD90 CD105 
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4. Detection of PARP 89kDa fragment reveals two subsets of CLL clones 

On the basis of the high variability observed in CLL B cell viability co-cultured 

with MSCs (Fig. 17), we evaluated the cleavage pattern of PARP protein after 7 days of 

culture in a cohort of 27 untreated CLL patients.  

Figure 17. Percentage of CLL B cells viability before and after co-culture with MSCs. CLL B cells apoptosis was 
assessed by Annexin V test. The graph shows the percentage of cell viability of CLL B cells from different patients at 7 
days; p<0.0001, Student’s t-Test. 
 

We identified two different patterns of CLL clones with different sensitivity to 

MSCs pro-survival signals: 1) one observed in a group of 15 patients in which CLL clones 

displayed the cleaved PARP, but the full length protein in presence of MSCs (classified as 

“dependent” from microenvironmental stimuli) (Fig. 18, left panel); 2) a second pattern 

observed in a group of 12 CLL patients in which CLL clones displayed the full length 

PARP with and without the presence of MSCs (classified as “independent” from 

microenvironmental stimuli) (Fig. 18, right panel). 

Figure 18. Analysis of PARP protein expression in CLL B cells cultured with and without MSCs. CLL B cells were 
cultured alone and in the presence of MSCs for 7 days. The total cell lysates were subjected to SDS-PAGE, transferred 
to nitrocellulose membrane and detected sequentially with anti-PARP Ab, to highlight the apoptosis, and anti-β-actin Ab. 
The figures show two representative cases of CLL B cells “dependent” from microenvironmental stimuli (left panel) and 
two cases “independent” from MSCs signals (right panel).  
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We also analyzed the detection of PARP 89kDa fragment from co-cultures of the 

same CLL clone with different MSCs. Interestingly, the results indicated that CLL clone 

response to microenvironmental signals did not change in co-culture with MSC obtained 

from different patients (Fig. 19A). Conversely, co-culturing the same MSC line with 

different CLL clones, we demonstrated different patterns in the cleavage pattern of PARP 

(Fig. 19B), indicating that the heterogeneity of leukemic clones is likely to be related to 

intrinsic features of neoplastic B cells rather than to external stimuli. 

 

A) 

 

B) 

 
Figure 19. Analysis of PARP pattern in CLL B cells cultured in absence and in presence of MSCs for 7 days. The 
total cell lysates were subjected to SDS-PAGE, transferred to nitrocellulose membrane and detected sequentially with 
anti-PARP Ab, to highlight the apoptosis, and anti-β-actin Ab. A) The figures show two representative cases of a single 
neoplastic clone (CLL#) cultured with MSCs (MSC#) obtained from different CLL patients; in all the conditions, 
leukemic B cells displayed a similar response also in the presence of diverse MSCs types. B) Representative cases of 
CLL B cells (CLL#) from distinct patients exposed to the effect of the same MSC line (MSC#); in this condition, CLL 
clones displayed different responses in the presence of the same MSCs.  
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5. Cell-cell contact and soluble factors are involved in the cross-talk between MSCs 

and CLL B cells 

We cultured malignant B lymphocytes from 12 CLL patients alone, in direct contact 

to MSCs and in presence of MSCs separated by a 0.4µm porous polycarbonate filter 

(transwell) that allows the exchange of soluble factors. We demonstrated that CLL cell 

survival was increased in presence of MSCs in both conditions; in fact, after 7 days, CLL 

B cell viability was 13.8%±13.4% when cultured alone vs 61.5%± 18.3% in direct contact 

with MSCs (p<0.0001) and 47.5%±7.8% in presence of MSCs separated by transwell 

(p<0.0001). These results indicated that both cell-cell contact and soluble molecules are 

actors in the relationship between malignant B cells and the MSCs (Fig. 20).  

 

 
 
 
 
 
 
 
 
 
Figure 20. Histograms of cell viability percentage of CLL B cells cultured alone, with MSCs and co-cultured with 
MSCs in the presence of transwell. CLL B cells apoptosis was assessed by Annexin V test. Histograms show the 
mean±SD of the percentage; ****p<0.0001, Student’s t-Test. 

Considering that MSCs release a high amount of chemoattractants, we also tested 

the ability of MSCs to influence cell movement. We evaluated the migration of CLL B cells 

obtained from 21 patients in response to MSC-conditioned medium (MSC-CM) using a 12-

well Corning chemotaxis chamber. We found that the number of moved cells was 

2.809±1.318 in presence of MSC-CM vs 651±543 in medium alone (p<0.0001) (Fig. 21). 

Figure 21. CLL B cell migration toward MSC-CM. Migration tests were performed using a 12-well Corning 
chemotaxis chamber; migrated cells in the lower chamber were collected and counted on a FACSCanto; p<0.0001, 
Student’s t-Test. 
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6. MSCs protect CLL B cells during Fludarabine and Cyclophosphamide treatment, 

in vitro and in vivo 

We cultured MSCs with leukemic B cells collected from 10 CLL patients 

undergoing the first cycle of chemotherapy, before starting drug infusion and at the third 

day of treatment. Patients were treated according FLU/Cy regimen (3 days of therapy for 

each cycle). Using Annexin V staining, we tested the effect of MSCs on the survival of 

CLL B cells after 3, 5 and 7 days of co-cultures. After 7 days, the viability of CLL cells 

isolated before the chemotherapy was 55.2%±18.2% in presence of MSCs vs 9.4%±13.6% 

in absence of MSCs (p<0.0001) (Fig. 22A, left panel). After 7 days, CLL cells isolated 

from the same patients at the end of the first cycle of FLU/Cy, showed a viability of 

34.2%±21.6% with MSCs vs 13.1%±16.7% without MSCs (p<0.0001) (Fig. 22A, right 

panel). We observed that MSCs were able to enhance the survival of leukemic B cells and 

to maintain a significant pro-survival effect also during an in vivo cytotoxic therapy. 

At the same time, we performed an in vitro parallel experiment assessing the MSCs 

protective role on CLL B cells exposed to Fludarabine and Cyclophosphamide. In 

particular, CLL B cells isolated from 8 patients were pre-treated with FLU/Cy for 3 and 12 

hours and then cultured alone or in presence of MSCs for 3, 5 and 7 days. The cell viability 

at 7 days, after a 3 hours pre-treatment, was 27%±20% in culture with MSCs vs 3.6%±3.4% 

in alone culture (p<0.05) (Fig. 22B, left panel); the cell viability at 7 days, after a 12 hours 

pre-treatment, was 25.1%±20.3% in presence of MSCs vs 0.86%±0.69% in absence of 

MSCs (p<0.05); (Fig. 22B, right panel). CLL cell apoptosis levels were increased after a 

longer drug exposition, but MSCs were still able to maintain a significant pro-survival 

effect. 

In other in vitro experiments, FLU and Cy were added directly, at the same doses 

in CLL B cells and CLL B cells co-cultured with MSCs. The cell viability at 7 days resulted 

in 9.8%±4.5% in presence of MSCs vs 1.8%±1.3% in alone cultures (p<0.01), (Fig. 22C). 

Therefore, MSCs were able to protect CLL B cells from apoptosis during FLU/Cy 

treatment, both in vitro and in vivo. 
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Figure 22. MSCs protect CLL B cells from drug induced apoptosis. A) Viability percentage of CLL B cells cultured 
alone and with MSCs. CLL B cells were collected from 10 CLL patients before starting chemotherapy (left panel) and 
at the end of the first cycle of FLU/Cy treatment (right panel). B) Viability percentage of CLL B cells cultured alone 
and with MSCs after a 3 and a 12 hours in vitro pretreatment with FLU/Cy. CLL B cells were collected from 8 CLL 
patients and treated with 20µM fludarabine and 5mM cyclophosphamide for 3 hours (left panel) and 12 hours (right 
panel); cells were then washed and plated alone and with MSCs for 3, 5 and 7 days. C) Viability percentage of CLL B 
cells treated in vitro with FLU/Cy and cultured alone and with MSCs. CLL B cells were collected from 8 CLL 
patients, directly treated with 20µM Fludarabine and 5mM Cyclophosphamide and plated alone and with MSCs for 3, 5 
and 7 days. Viability was examined by staining with Annexin V. Histograms show the mean±SD of the percentage; 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 Student’s t-Test. 
 
 
 

	C) 
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7. MSCs are not able to support B leukemic cell survival after treatment with 

Ibrutinib 

Based on MSCs ability to protect CLL B cells from apoptosis induced by 

conventional therapy, we tested their protective role also during CLL B cell treatment with 

Ibrutinib, an inhibitor of Btk kinase involved in BCR signaling pathway. By Annexin V 

test we evaluated neoplastic B cell survival after 3, 5 and 7 days of co-culture with MSCs, 

finding that, after 7 days, malignant B cell viability was 85.7%±4.1% in absence of the 

kinase inhibitor vs 37.7%±14.7% with Ibrutinib (p<0.0001) (Fig. 23).  

 

Figure 23. Viability percentage of CLL B cells cultured with MSCs after treatment with ibrutinib. CLL B cells 
were collected from 12 CLL patients and plated with MSCs alone and with 5µM Ibrutinib for 3, 5 and 7 days. Viability 
status was examined by staining with Annexin V. Histograms show the mean±SD of the percentage; ****p<0.0001, 
Student’s t-Test.  

 

Our experiment showed that MSCs were not able to protect CLL cells from 

apoptosis after treatment with the Btk inhibitor. We confirmed these data by western 

blotting analysis of PARP protein finding that Ibrutinib was able to induce a cleavage of 

PARP despite the presence of MSCs (Fig. 24). We also verified that ibrutinib treatment 

resulted in the inhibition of Btk phosphorylation in Tyr223 both in CLL cells alone and in 

leukemic B cells co-cultured with MSCs.  

 
 

 

 

Alone Ibrutinib 
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Figure 24. Ibrutinib treatment counteracts the MSC pro-survival effect. CLL B cells were cultured alone and with 
MSCs and treated with 5µM Ibrutinib. The total cell lysates were subjected to SDS-PAGE, transferred to nitrocellulose 
membrane and detected sequentially with anti-PARP Ab, anti-Btk Tyr223, anti-Btk and anti-β-actin Ab. The figure shows 
a representative cases of CLL B cell.  

 

8. Ibrutinib treatment does not reduce CLL B cells migration to BM stroma 

To better understand the effect of Ibrutinib on the cross-talk between CLL B cells 

and MSCs, we evaluated its role on B leukemic cell migration toward MSC-CM. CLL B 

cells from 10 patients were incubated with and without Ibrutinib for 1h at 37°C and then 

transferred into transwell systems, containing MSC-CM. We counted the cells migrated in 

the lower chamber after 3 hours and we found that the treatment with the Btk inhibitor did 

not reduce CLL B cells movement. Migrated leukemic B cells were 8,858±7,920 toward 

medium alone vs 20,391±6,184 toward MSC-CM and 18,772±10,094 toward MSC-CM, 

after the pre-treatment with Ibrutinib; p<0.01 (Fig. 25).  

Figure 25. MSC-conditioned medium preserves CLL B cell migration after Ibrutinib treatment. Chemotaxis assay 
was performed using a 12-well Corning chamber; CLL B cells from 10 patients were incubated for 1h at 37°C with and 
without 5µM Ibrutinib and then transferred into the top chambers of the transwell system (pore size of 3µm). Cells were 
allowed to migrate for 3h at 37°C, then collected from the lower chamber and counted on a FACSCanto; histograms show 
the mean±SD, **p<0.01, Student’s t-Test.  
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Considering that cell migration is mediated by the interactions between chemokines 

with their receptors, by flow cytometry we evaluated the expression levels of two main 

receptors, CXCR4 and CCR7, on the surface of CLL B cells treated with Ibrutinib and 

cultured alone and with MSCs. In alone cultures, CXCR4 levels were 19,880±4,858 

without the Btk inhibitor treatment vs 24,442±6,105 with Ibrutinib exposure, and the 

difference was not statistically significative. CCR7 expression levels were 5,085±1,308 

without the treatment vs 4,498±890 with Ibrutinib (p<0.05). In co-culture with MSCs, 

CXCR4 levels were 8,561±5,513 without Ibrutinib vs 13,776±6,374 in presence of the drug 

(p<0.0001) (Fig. 26A); CCR7 levels were 5,229±1,237 in cultures alone vs 4.904±1.04 

with the Btk inhibitor treatment, without statistically significative difference (Fig. 26B). 

Data are expressed as MFI.  

 

A)	 

B) 

Figure 26. CLL B cells obtained from 12 patients were treated with 5µM Ibrutinib and cultured with and without MSCs. 
After 48h, the expression levels of CXCR4 (panel A) and CCR7 (panel B) were evaluated by flow cytometry using 
FACSCanto; data are expressed as Mean Fluorescence Intensity (MFI), mean±SD; *p<0.05, ****p<0.0001, Student’s t-
Test. 
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9. Ibrutinib treatment affects CLL B cell adhesion 

Having observed that the treatment with Ibrutinib did not affect CLL B cell 

movement in response to MSC stimuli, we also analyzed the adhesion of leukemic B cells 

to MSCs after treatment with the Btk inhibitor since cell-cell contact with MSC is crucial 

for CLL B cell survival. We found that the percentage of leukemic B cells adherent to 

MSCs was significantly reduced by Ibrutinib (7.7%±3.8% alone vs 3.3%±2.4, p<0.05); 

(Fig. 27).  

 

Figure 27. Percentage of cell adherent to MSCs with and without Ibrutinib. CLL B cells from 7 patients were treated 
with and without 5µM Ibrutinib and incubated for 1h at 37°C in 5% CO2 in complete RPMI medium. Cells not adherent 
were removed by washing 3 times with RPMI medium. The layer of cells was detached by incubation with Accutase; 
cells were than stained with anti-CD19 APC and counted by flow cytometry; mean±SD *p<0.05, Student’s t-Test.  

 

Using phase-contrast microscopy Olympus IX-81 we documented photographically that 

CLL cells adhesion to MSCs was reduced after Ibrutinib treatment (Fig. 28) 

 
Figure 28. Microscopy analysis of CLL B cell adhesion to MSCs with and without Ibrutinib. CLL cells from 7 
patients were treated with or without 5µM Ibrutinib and incubated for 1h at 37°C in 5% CO2 in complete RPMI medium. 
CLL B cell adhesion to MSCs was documented photographically using phase-contrast microscopy Olympus IX-81.  
 

 

 

		Alone	 		Ibrutinib	
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Considering these results, we also examined the expression of CD49d, the α4 

subunit of the α4β1 integrin heterodime involved in CLL migration and retention in lymph 

node and bone marrow microenvironment. The levels of CD49d on the surface of CLL B 

cells cultured with MSCs resulted lower after Ibrutinib treatment (MFI ratio 0.89±0.05, 

p<0.01); (Fig. 29). 

 
Figure 29. CD49d expression in CLL B cells. Leukemic B cells from 7 patients were co-cultured with MSCs for 24h 
alone and with 5µM Ibrutinib. CD49d expression was evaluated using FACSCanto. Data are expressed as MFI±SD; 
**p<0.01, Student’s t-Test.  
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DISCUSSION 

 

Chronic Lymphocytic Leukemia is the most common leukemia in adults and is 

characterized by the accumulation of clonal CD19+/CD5+/CD23+ B lymphocytes, due to 

uncontrolled growth and resistance to apoptosis. Intrinsic factors, such as genetic lesions, 

anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long 

been the main focus of CLL research. However, over the past years, it became increasingly 

clear that external signals from the microenvironment make pivotal contributions to CLL 

progression. In healthy subjects MSCs represent a small fraction of the stromal cell 

population, about 0.01-0.0001% of mononuclear cells, but are the dominant stromal cell 

population in CLL microenvironment. MSCs provide an attachment site and growth factors 

for normal haematopoiesis and, both in CLL, are thought to function in a similar fashion, 

creating a niche within the BM in which CLL B cells lodge and are nourished and protected 

from cytotoxic agents (38).  

In this project, MSCs from BM of 46 CLL patients were co-cultured with leukemic 

B cells in order to mimic the neoplastic in vivo microenvironment. Our results demonstrated 

that malignant B cells are susceptible to the antiapoptotic effect of MSCs, favouring 

neoplastic B cell survival in vitro for at least 7 days. This evidence is relevant considering 

that CLL B cells spontaneously undergo apoptosis once they are removed from the in vivo 

microenvironment and placed in suspension cultures without the supportive stromal cells. 

This effect was less relevant in normal B lymphocytes, suggesting the presence of a peculiar 

receptor structure which allows the neoplastic B cell to respond to pro-survival stimuli 

produced from the elements of the microenvironment in which it is localized. In fact, 

leukemic B cell expresses specific chemokine and cytokine receptors and responds 

selectively to soluble factors produced by the compounds of the microenvironment into the 

active sites of disease (39). Despite CLL B cells are characterized by a typical phenotype 

and cytogenetic abnormalities, the disease displays heterogeneous clinical courses, 

suggesting that each malignant clone could present intrinsic features that affect the 

interactions with the microenvironment. CLL natural history, including response to 

treatment and drug resistance, is determined both by causal and influential genes and by 

the relationships that malignant B cells entertain with their supportive microenvironments 
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(38). Therefore, studying the role of microenvironment we may provide essential strategies 

to treat and eradicate the disease. 

We observed a high variability in the viability of CLL B cells cultured with MSCs 

and, to better understand these data, we analysed the cleavage pattern of the PARP protein, 

indicator of caspase activity. The detection of PARP 89kDa fragment in CLL patients, after 

7 days of co-culture with MSCs, revealed two subsets of CLL clones with different 

sensitivity to MSCs pro-survival stimuli. The first group was classified as “dependent” 

from microenvironmental signals, when CLL B cells underwent spontaneous apoptosis in 

medium alone, but were rescued by the presence of MSCs. The second group, classified as 

“independent” from microenvironmental stimuli, identified CLL clones whose viability 

was high both when cultured in medium alone and in the presence of MSCs, indicating that 

these leukemic cells were able to survive independently from pro-survival signals coming 

from stromal cells. Further experiments allowed us to establish that the different behaviour 

displayed from neoplastic clones is likely to be related to intrinsic features of neoplastic B 

cells rather than to the variety of the microenvironment. These observations could be 

relevant to identify patients more responsive to druggable targets on marrow 

microenvironment and also to find putative new strategies for CLL therapy. In fact, it is 

likely that a clone “dependent” from microenvironmental stimuli will be more easily 

affected by a treatment that aims to interactions with it; on the other hand, a clone 

“independent” from the signals of the microenvironment probably will not show a 

particular sensitivity to therapies which target the CLL-microenvironment cross-talk. 

The increase of malignant B cell viability in the presence of MSCs might be 

mediated by soluble factors and/or cell-cell contact. Our data indicated that both cell-cell 

contact and soluble factors are relevant for the survival of malignant clone. We observed 

an increased migration of neoplastic B cells in the presence of the conditioned medium of 

MSCs, demonstrating that MSCs from CLL patients are able to produce factors that 

promote the recruitment of CLL B cell toward a favourable niche for the maintenance of 

the leukemic clone. Considering that MSCs constitutively secrete a high amount of 

chemokines, which organize CLL cell trafficking and homing (41), the identification of 

humoral and cellular factors responsible for the pro-survival effect in vivo could be useful 

also to find new therapeutical targets for CLL and possible promising approaches to 

manage the disease. 

CLL cell interactions with MSCs play a critical role in the disease pathogenesis, in 

particular in CLL survival, homing, proliferation but also in treatment failure. The cross-
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talk between MSCs and the leukemic B cell seems to play a key role in inhibiting apoptosis 

induced by drugs. We demonstrated that the presence of MSCs protects leukemic B cells 

from apoptosis after the in vivo exposure to Fludarabine and Cyclophosphamide, a 

chemotherapy regimen considered as the gold standard for first-line treatment in CLL 

patients (5). Furthermore, our results confirm the protective role of MSCs also performing 

in vivo experiments, with leukemic B cells collected from patients after the first cycle of 

FLU/Cy therapy. These data could partially explain the reason why in some CLL patients, 

maybe with a neoplastic clone more “dependent” on microenvironment stimuli, it is more 

difficult to obtain a complete or long-lasting response. These results, in fact, point out the 

protective role of microenvironment not only toward malignant B cells in vitro but also on 

apoptosis induced by the in vivo administration of chemotherapy, maybe causing therapy 

refractoriness or an unsatisfactory response to treatment. 

The management of CLL is undergoing profound changes; several new drugs have 

been approved for CLL treatment and many others are in advanced clinical development in 

the pipeline to be approved for this disease (6). The CLL microenvironment has gained 

extensive attention during the last few years, thanks to the progressive understanding of the 

mechanisms involved in CLL B cell proliferation and survival and to the introduction of 

several novel small molecule inhibitors, which target the CLL-microenvironment cross-

talk (81). Different drugs, used in CLL treatment, have been demonstrated to induce in 

vitro apoptosis of CLL B cells, whereas their effect is reduced when administered in vivo, 

probably due to the presence of pro-survival signals coming from the surrounding 

environment. Therefore, it is suitable to test the effect of new therapeutic agents in the 

presence of microenvironmental compounds (such as MSCs) which might interfere with 

the biological effects of the drugs, allowing the identification of subgroups of patients who 

may benefit from treatments targeting the cross-talk with supportive cells at the sites of the 

disease.  

Considering the relevance of the BCR in the support of the neoplastic B cell, we 

evaluated the role of MSCs during the treatment with Ibrutinib, a novel Btk inhibitor who 

targets proteins essential in signaling transduction mediated by the BCR. We tested the 

effect of the Btk inhibitor, known to reduce CLL B cell migration and to induce in vitro 
apoptosis (94), in our co-culture system. We found that Ibrutinib is able to induce leukemic 

cell apoptosis independently from MSCs presence, confirming its potential high efficacy 

in the treatment of CLL. By contrast, the Btk inhibitor did not affect B cell migration toward 
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a MSC-conditioned medium, rich in cytokines and chemokines, suggesting that malignant 

B cells do not lose their ability to move toward a protective niche in presence of Ibrutinib.  

To better understand these data, we studied some of the receptors involved in cell 

migration. CLL B cells express on their surface high levels of chemokine receptors; in 

particular CXCR4 and CCR7 are involved in BM and lymphoid tissues homing of the 

neoplastic clone (95). We observed that malignant B cells, co-cultured with MSCs and 

treated with Ibrutinib, displayed an increase of CXCR4 expression levels. The CXCR4 

chemokine receptor is expressed at high levels on the surface of CLL B cells and mediated 

chemotaxis, migration across vascular endothelium and actin polymerization in response 

to CXCL12 gradients, produced by MSCs (49). CXCL12 also induces a direct pro-survival 

effect on leukemic B cells. CXCR4 surface expression is regulated by its ligand CXCL12 

via receptor endocytosis. In the presence of MSCs, in CLL B cells not treated with 

Ibrutinib, CXCR4 is internalized into the cytoplasm, indicating the successful receptor-

ligand interaction. Although the exact mechanism of CXCR4 up-regulation is still not 

completely clear, our results indicated that the use of kinase inhibitor could induce 

modifications in chemokine receptors, in particular interfering with CXCR4-CXCL12 axis. 

Instead the expression of CCR7, the receptor for both CCL21 and CCL19, correlates with 

clinical lymphadenopathy, a clinical feature of more advanced disease (96) (97). Although 

little is known about the mechanisms determining lymph node enlargement in CLL, some 

studies suggested that CCR7 engagement by CCL21 and/or CCL19 stimulates CLL B cell 

entry into lymph nodes (96). Considering that Ibrutinib in vivo treatment rapidly decrease 

lymph node size, we evaluated CCR7 expression levels after the in vitro treatment with the 

Btk inhibitor. Our results demonstrated lower CCR7 levels after Ibrutinib exposure, 

suggesting a possible interaction with this receptor. Nevertheless, in co-culture with MSCs 

CCR7 was not affected by the Btk inhibitor treatment, suggesting that, probably, the in vivo 

effect of Ibrutinib on CCR7 is more complex and need further studies to be clarified. 

Since the direct cell-cell contact with stromal cells is crucial for CLL B cell survival, 

we tested the effect of Ibrutinib on neoplastic B cell adhesion to a MSCs layer. We found 

a significant reduction of CLL B cells adhesion through a down-modulation of CD49d 

expression, an integrin involved in anchoring cells to tissues via extracellular matrix. Our 

results suggest that Ibrutinib is not only able to reduce CLL B cell viability, but that it could 

also interfere with cell-cell contact, fundamental in cell survival but also as a first step in 

cell migration. Therefore, we could suppose that, in presence of Ibrutinib, MSCs are not 

able to further protect CLL B cells that could remain on peripheral blood and potentially 
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more exposed to pro-apoptotic stimuli. Ibrutinib is a potent drug and highly selective with 

great results in CLL therapy; however, it does not completely eliminate the malignant clone 

in CLL and results mainly in partial responses. A better understanding on the complexity 

of the cross-talk between CLL cells and their microenvironment could help to define also 

mechanisms of resistance to Ibrutinib and treatment failure, as well to plan randomized 

clinical trials comparing new inhibitors of BCR signaling and their combinations with 

standard chemo-immunotherapy.  

In conclusion, this project demonstrated that MSCs co-culture represents a 

reproducible in vitro system with functional similarities to in vivo bone marrow conditions, 

pointing out that the heterogeneity of the disease is reflected also in CLL B cell capacity to 

respond to favourable signals from MSCs (98). Our findings on the role of MSCs and their 

effect on neoplastic B lymphocytes during chemotherapy exposure open a new scenario to 

better identify the most effective drugs or drug combinations. Furthermore, we showed that 

Ibrutinib treatment, inactivating enzymes in the BCR signaling pathway, which are 

aberrantly activated in CLL, is able not only to inhibit CLL B cell proliferation and survival 

but also to interact with the cross-talk with the stromal cells, a necessary condition for the 

eradication of the disease. Additional in vivo and in vitro studies will accelerate the 

development of these new concepts and will help to define the best drug combinations.  
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