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Abstract 

This Ph.D. project was aimed to evaluate the potential of supercritical CO2 technologies for 

obtaining natural extracts rich in bioactive compounds from residual agricultural biomass and 

microalgae. Three different supercritical CO2 techniques have been investigated with the purpose of 

optimizing the operating conditions and assessing the possibility to obtain the desired products in a 

safe, green and efficient way. 

First, attention has been focused on supercritical CO2 extraction (SFE). Experimental work 

regarding essential fatty acids extraction from microalgae and the application of solubility and 

kinetic models to the data measured are reported. Another application concerns the SFE of different 

bioactive compounds from rocket salad. In this case, a sequential extractive approach is proposed, 

consisting in the extraction of two products by using different co-solvents: the first one rich in 

phenols and glucosinolates and the second step headed to extract lipids. A profitability analysis of 

the SFE process is also reported, where data from experimental results have been used together with 

large scale process simulations. Eventually, SFE is applied to asparagus for the effective recovery 

of phenolic compounds and is compared with Soxhlet and pressurized liquid extraction methods.   

Another investigation has been carried out to obtain a dried natural extract from cherries. In 

this case, the supercritical anti-solvent technique (SAS) has been investigated, which allows to 

precipitate compounds non soluble in CO2 previously extracted by a traditional solvent method. The 

operating conditions were optimized to obtain a precipitate rich in polyphenols and anthocyanins 

from cherries extracts. 

Eventually, it is presented a study about supercritical counter-current fractionation for the 

extraction of fat from soy skim, which is the aqueous residue after enzyme-assisted aqueous 

extraction of soybeans.  

In the conclusion, a summary of the potential of CO2 in natural extracts technology is outlined 

and some perspectives are discussed for industrial applications in the near future. 
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Riassunto 

La richiesta di estratti naturali e composti di origine vegetale sta aumentando a causa del loro 

crescente uso in alimenti funzionali, medicina naturale, additivi per la salute, prodotti cosmetici e 

applicazioni farmaceutiche. Questi settori richiedono prodotti ultra-puliti, verificabili, di alta 

qualità, apparecchiature affidabili e prezzi competitivi. 

Finora, sono state studiate numerose fonti vegetali come materie prime per la produzione di 

estratti naturali. L'idea della trasformazione dei rifiuti alimentari è sempre più presa in 

considerazione anche perché è vantaggiosa rispetto ai problemi di contaminazione, di gestione del 

processo e delle vie economiche. Inoltre, le fonti naturali emergenti come le microalghe contengono 

elevate quantità di composti di alto valore, la cui estrazione potrebbe essere ambientalmente ed 

economicamente vantaggiosa. 

In questo contesto, è necessario mettere a punto un metodo di estrazione  e/o separazione 

efficiente e “verde” non solo per elaborare gli alimenti non vendibili e i rifiuti e sfruttare le fonti 

naturali emergenti, ma anche per creare un prodotto molto richiesto nel mercato attuale. 

La tecnologia della CO2 supercritica è emersa come un’importante alternativa ai processi 

tradizionali con solventi organici e meccanici, grazie alla sua pressione critica moderata, che 

permette di contenere i costi di compressione, mentre la sua bassa temperatura critica consente 

l'estrazione di composti termosensibili senza degradazione. Altri vantaggi rispetto ai metodi di 

estrazione con solventi classici includono il fatto che la CO2 è inerte, non tossica e rispettosa 

dell'ambiente. Inoltre, nei processi supercritici, la CO2 viene facilmente rimossa dopo la 

depressurizzazione e permette cicli più veloci. D’altra parte, la natura polare della maggior parte dei 

composti naturali rende necessaria l'aggiunta di co-solventi alla CO2 supercritica, al fine di 

migliorare l'affinità del fluido verso composti polari, e il loro effetto è rilevante sulla composizione 

dell’estratto e di conseguenza sull'economia del processo. In questo caso, è importante utilizzare 

solventi ecologici, come acqua ed etanolo, al fine di mantenere i vantaggi dei processi supercritici. 

L’estrazione supercritica con la CO2 è il processo più studiato ed applicato tra quelli che 

usano la CO2 sotto pressione. Tuttavia, c’è un certo numero di tecnologie supercritiche che vengono 



Riassunto    

12 

 

studiate e sviluppate per altre applicazioni interessanti, come la precipitazione di composti polari 

(precipitazione supercritica con anti-solvente, SAS), che permette di ottenere precipitati secchi 

naturali, o la separazione di composti in miscele liquide (frazionamento supercritico in contro-

corrente) per l'ottenimento di composti bioattivi più puri. 

L’ottimizzazione dei processi e delle variabili operative per estrarre composti di interese dalle 

nuove fonti naturali sono importanti per garantire rese massime di alta qualità e rendere il prodotto 

finale adatto per l'uso nelle industrie alimentari, cosmetiche e farmaceutiche. Perciò, è fondamentale 

continuare la ricerca delle tecnologie con la CO2 supercritica per diversi materiali e generare nuovi 

dati che possano essere utili per il potenziale scale-up dei processi proposti. 

Per tutti questi motivi, l'obiettivo di questo progetto di ricerca è stato quello di valutare il 

potenziale delle tecnologie supercritiche con CO2 per ottenere in modo sicuro, verde ed efficiente 

nuovi estratti naturali ricchi di composti bioattivi da prodotti agricoli e microalghe. 

I temi affrontati da questa tesi sono organizzati e suddivisi in capitoli come segue. 

Il capitolo 1 è una discussione introduttiva sul mercato degli estratti naturali, la situazione dei 

diversi metodi di estrazione, le ricerche e gli ultimi risultati riportati per le tecnologie supercritiche 

con CO2. 

I capitoli 2, 3, 4 e 5 presentano i risultati sperimentali e la modellizzazione eseguite sulla 

estrazione con CO2 supercritica da diverse fonti naturali, con lo scopo di verificare l'efficacia di 

questo metodo per ottenere in modo competitivo estratti naturali ricchi di diversi composti bioattivi. 

Nel capitolo 2, viene mostrata l’estrazione di acidi grassi essenziali con CO2 supercritica da tre 

diverse specie di microalghe. Viene studiato l'effetto delle variabili operative sulla resa di estrazione 

totale e sulla solubilità. Vengono applicati i modelli matematici sviluppati da Sovová per descrivere 

le curve di estrazione sperimentali. Nel capitolo 3 viene riportata l'estrazione di frazioni arricchite in 

diverse classi di composti bioattivi. Secondo i risultati, si propone l'applicazione di un metodo di 

estrazione sequenziale, utilizzando prima CO2 + etanolo per l'estrazione dei lipidi e poi l’acqua 

come co-solvente per ottenere estratti ricchi in composti fenolici e glucosinolati. Il capitolo 4 

descrive la valutazione economica di un impianto su scala industriale per la produzione di estratti 

naturali ricchi di glucosinolati e composti fenolici di rucola. Il software Aspen Plus ™ V8.2 è stato 

impiegato per la simulazione del processo su larga scala, basandosi sulle misure sperimentali di 

laboratorio. Viene valutato l'effetto dei parametri operativi sui costi di processo. Il capitolo 5 è 

imperniato sul recupero dei composti fenolici da asparagi. Ulteriormente, viene esaminato l'effetto 

di miscele di co-solventi diverse sulla estrazione con CO2 supercritica per estrarre selettivamente 
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molecole di polifenoli. I risultati sono confrontati con l'estrazione attraverso un liquido sotto 

pressione (PLE) e con il metodo Soxhlet. 

Inoltre, è stato applicato il processo supercritico con anti-solvente (SAS), con l'obiettivo di 

ottenere un precipitato essiccato ricco di composti antiossidanti. Il capitolo 6 è focalizzato sul 

processo SAS con CO2 per ottenere precipitati che sono ricchi di polifenoli e antociani composti da 

ciliegie. Vengono confrontati il modo continuo e batch di funzionamento. Inoltre, sono discussi 

l'effetto della pressione e della composizione della CO2 sui rendimenti di precipitazione di 

polifenoli e antociani. 

Il terzo metodo che è stato studiato è il frazionamento in controcorrente per la separazione dei 

composti di interesse di una miscela liquida. Nel capitolo 7, viene riportata la verifica del impianto 

di frazionamento con CO2 in colonna continua riempita. A tal fine, è stato eseguito il recupero di 

butanolo da soluzioni acquose. L'influenza delle variabile operative, come il rapporto delle portate 

del solvente e la soluzione, la temperatura, la pressione e la composizione della soluzione è stato 

studiato sperimentalmente in termini di efficienza di separazione, percentuale tasso di rimozione del 

butanolo, rimozione totale e di concentrazione butanolo nell'estratto alla fine del ciclo continuo. Nel 

capitolo 8 è presentato l'uso della CO2 in controcorrente come mezzo per ridurre il grasso residuo 

nella soia dopo l'estrazione acquosa enzimatica assistita della soia. In particolare, vengono 

analizzati gli effetti del rapporto di solventi da alimentare, dell’aggiunta di etanolo come 

modificatore e dell'introduzione di un riempimento nella colonna. L'interpretazione dei risultati è 

stata effettuata mediante l’analisi statistico ANOVA. 

Infine, nelle conclusioni, sono discussi la sintesi della tesi e gli aspetti che dovrebbero essere 

messi a fuoco per garantire il futuro di questa tecnologia. 
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Introduction 

Nowadays, the demand for natural extracts and compounds of vegetable origin is growing due 

to their increasing use in functional foods, natural medicine, health additives, cosmetic products and 

pharmaceutical applications. These sectors require ultraclean, verifiable, high quality products, 

reliable supplies and competitive prices.  

So far, a number of vegetable sources have been investigated as raw materials for the 

production of the natural extracts. The idea of processing food wastes is increasingly taken into 

account as, on the other hand, gives benefits to pollution, food management and to the economy of 

food industry. Moreover, emerging natural sources such as microalgae contain high amounts of 

valuable compounds, whose extraction could be economically and environmentally advantageous.  

In this context, an efficient and green extraction and/or separation method is required not only 

to process the non-saleable and waste food and exploit the emerging natural sources, but also to 

create a highly demanded product in the current market.   

Supercritical CO2 technology has emerged as an important alternative to traditional solvent 

and mechanical processes for a number of years, since the CO2 moderate critical pressure allows for 

a modest compression cost, while its low critical temperature enables successful extraction of 

thermally sensitive compounds without degradation. Other advantages over classical solvent 

extraction methods include the fact that CO2 is inert, non-toxic and environmentally friendly. 

Additionally, in supercritical processes, CO2 is easily removed after depressurization and allows 

faster cycles. However, the polar nature of most natural compounds makes it necessary the addition 

of co-solvents to supercritical CO2, in order to enhance the fluid affinity towards them, and their 

effect is relevant on the extract composition and consequently the process economics. In this case, it 

is important to use environmentally friendly solvents, such as water and ethanol, in order to 

maintain the benefits of supercritical processes in this respect.  

Supercritical CO2 extraction is the most studied and applied process among supercritical CO2 

applications to process industry. However, there is a number of supercritical technologies that are 

being investigated and developed for other interesting applications such as the precipitation of polar 
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compounds (supercritical anti-solvent precipitation, SAS), which allows to obtain natural dried 

precipitates, or the fractionation of compounds from liquid mixtures (supercritical counter-current 

fractionation) for obtaining more pure bioactive products.  

Optimization of the processes and material parameters are important to provide maximum 

yields with highest quality and to make the final product suitable for use in foods, cosmetic and 

pharmaceutical industries. Thus, it is important to continue the investigation of supercritical CO2 

technologies for different materials and samples in order to generate new data that can be useful for 

the potential scale-up of the newly proposed processes. 

All the reasons above are the motivation of this research project, whose aim is to evaluate the 

potential of supercritical CO2 technologies to obtain new natural extracts rich in bioactive 

compounds from agricultural products and microalgae, in a safe, green and efficient way.  

The topics addressed by this thesis are organized and subdivided in chapters as follows. 

Chapter 1 is an introductory discussion on natural extracts market, a survey of extraction 

methods and latest results reported for supercritical CO2 technologies. 

Chapter 2, 3, 4 and 5 report the experimentation and modelling performed on supercritical 

fluid extraction from different natural sources, to verify the efficiency of this method to obtain 

natural extracts rich in different bioactive compounds in a competitive way.  

In Chapter 2, supercritical fluid extraction of essential fatty acids from three different species 

of microalgae is investigated. The effect of operating variables on the total extraction yield and 

solubility were studied. Mathematical models developed by Sovová were applied to describe the 

experimental extraction curves.  

In Chapter 3, the extraction of bioactive enriched fractions containing different classes of 

valuable compounds is reported. According to the results, the application of a sequential extractive 

approach is proposed using first CO2+ethanol for lipid extraction and then water as co-solvent for 

phenolic and glucosinolate containing extracts. 

Chapter 4 describes the economic evaluation of an industrial-scale plant for the production of 

natural extracts rich in glucosinolates and phenolic compounds from rocket salad. An industrial-

scale supercritical extraction plant is designed. The software Aspen Plus™ V8.2 was employed for 

process simulation which was tuned on laboratory experimental measurements. Afterwards, the 

effect of operative variables on the process costs is evaluated.  
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Chapter 5 is focused on the recovery of phenolic compounds from asparagus. The effect of 

different mixtures of co-solvents on supercritical fluid extraction for selectively extract diverse 

polyphenols molecules is examined. Results are compared with pressurized liquid extraction (PLE) 

and Soxhlet methods. 

Furthermore, supercritical anti-solvent process (SAS) is applied, with the objective of 

obtaining a dried precipitate rich in antioxidant compounds. Chapter 6 is focused on SAS process 

with CO2 to obtain precipitates from cherries extracts which are rich in polyphenols and 

anthocyanins compounds. Continuous and batch mode of operation are compared. Moreover, the 

effect of pressure and composition of CO2 on the polyphenols and anthocyanins yields is discussed. 

The third method that have been studied is counter-current fractionation for the separation of 

the compounds of interest of a liquid mixture. In Chapter 7, the testing of the counter-current CO2 

fractionation plant is reported. For that purpose, the recovery of butanol from aqueous solutions is 

performed. The influence of operating variables, such as solvent-to-feed ratio, temperature, pressure 

and feed solution composition was experimentally investigated in terms of separation efficiency, 

butanol removal rate, total removal and butanol concentration in the extract at the end of the 

continuous cycle.  

In Chapter 8 the use of counter-current carbon dioxide method investigated as a mean to 

reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. The 

effects of solvent-to-feed ratio, addition of ethanol as modifier and introduction of packing in the 

column are also analyzed. The interpretation of the results is carried out by ANOVA analysis. 

Finally, in the conclusions, the summary of the thesis and the aspects that possibly need to be 

focused for developing this technology in the near future are discussed.
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CHAPTER 1 

 State of the art 

1.1. Trends in the market for natural extracts from vegetable materials 

The natural extract industry is an emerging field of both research and business due to the 

growing markets of functional foods, natural medicine, health additives and cosmetic products. A 

natural extract can be defined as a substance rich in bioactive compounds, such as polyphenols, 

carotenoids, sterols or polyunsaturated fatty acids, that is normally extracted from vegetable 

materials [1,2]. Pharmaceutical, cosmetic and food are the main industries demanding these 

substances to be used as additives in their products and in the development of new ones. In this 

context, the selection of a safe, selective and efficient extraction method is a crucial issue for the 

mentioned sectors. 

The interest of food industries in the market of natural extracts is not only based on the 

product itself, but also on the potentials of their non-edible residues and wastes. Annually, billions 

of tons of non-edible residues are generated by food industries, that cause pollution, management 

and economic problems worldwide [3]. FAO, the Food and Agriculture Organization of the United 

Nations, estimates that globally around one-third of food produced for human nutrition gets lost or 

is wasted, which equates to approximately 1.6 billion tons per year [4]. Of this amount, 54% are lost 

in production steps, postharvest, handling and storage, and other 46 % are caused by steps 

downstream of entry in the industry, i.e., processing, distribution and consumption [3]. On a weight 

basis, approximately 30% of cereals, 40-50% of root crops, fruit and vegetables, 20% of oilseeds, 

meat and dairy products, and 35% of fish are currently wasted [3]. 

Another advantage for different industrial sectors related to the recovery of bioactive 

compounds is the production of a wide range of different commercial products, as well as raw 

materials for secondary processes, substitutes for traditionally used ingredients, or ingredients of 

new products [5]. Among these products, functional foods, nutraceuticals and essential oils are 

particularly interesting. A functional food can be defined as a food producing a beneficial effect in 

one or more physiological functions, increasing the welfare and/or decreasing the risk of suffering a 
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particular disease [6]. Nutraceuticals, usually employed as food supplements, are marketed as 

tablets and pills, and can also provide important health benefits [6]. Essential oil is the general 

classification for volatile oils that have traditionally been obtained by steam distillation of plants. 

They are interesting for numerous applications, such as flavours, fragrances, food ingredients, 

phytopharmaceuticals and cosmetics, thanks to the presence of bioactive compounds [7].  

The demand for single bioactive compounds is also remarkable. For example, Leatherhead 

Food Research (2009) estimates the current market of polyphenols is worth approximately $200 

million a year [8]. The marketing of carotenoids made around 1.07 billion dollars in 2010 [9]. The 

global market for omega-3 ingredients was estimated to be 24.87 kilo tons in 2013, and is expected 

to grow at a ACAGR (Compound Annual Growth Rate) of 13.7% from 2014 to 2020 [10] 

As regards the sources from which bioactive compounds can be obtained, several plants, food 

products and by-products have been investigated. One of the most popular is fish, whose extracts 

are sold as omega-3 fish oil supplements. The research has also been started about other natural 

sources, such as microalgae and macro algae [1], which are particularly rich in polyunsaturated fatty 

acids and carotenoids. 

To sum up, efficient extraction methods and commercially viable strategies for the provision 

of natural compounds need to be developed in order to explore and exploit the resources from 

industrial food wastes or new natural sources, and to probably obtain the novel products demanded 

by the market. 

1.2. Emerging technologies for the production of natural extracts 

The extraction of bioactive compounds from natural sources is conventionally performed by 

hydrodistillation, organic solvent extraction, maceration or other conventional separation technique 

that usually employ the use of an organic solvent to extract the compound of interest [11]. The 

drawbacks of these techniques are well known, such as the presence of trace amounts of organic 

solvents and the thermal degradation of sensitive compounds [12]. The imposed environmental 

regulations and the necessity of minimizing energy requirements have given impulse to investigate 

more environmentally friendly methods, such as pressurized-liquid extraction (PLE), supercritical 

fluid extraction (SFE), microwave, ultrasounds and pulsed electric field [3,13]. Among them, PLE 

and SFE are gaining popularity due to their ability to increase target molecule specificity and reduce 

waste solvent production, and have reached the industrial application stage [3]. Microwave, 

ultrasounds and pulsed electric field are mainly being considered as potentially applicable to 

enhance extraction yield when using SFE and PLE, and their effects are still under investigation. 
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The advantages of using supercritical fluids as solvents are numerous and include 

environmental, health, safety, and chemical benefits. Furthermore, the thermo-physical properties of 

supercritical fluids (high diffusivity, low viscosity, density, and dielectric constant) can be fine-

tuned by changes of operating pressure and/or temperature, and thus supercritical fluid extraction 

has a great potential as a promising, efficient, and clean alternative method if compared with the 

conventional methods of distillation and extraction [7,13]. Different substances have been examined 

as SFE solvents. For example, hydrocarbons such as hexane, pentane and butane, nitrous oxide, 

sulphur hexafluoride and fluorinated hydrocarbons [14]. However, as a supercritical solvent CO2 

has been used in more than 90% of SFE of compounds from natural sources [2], thanks to its 

favourable characteristics with respect to the previous ones.  

On the one hand, the critical point of CO2 (Tc= 31.1 °C, Pc= 7.38 MPa) allows application of 

relatively low operation temperatures so that thermally labile solutes are protected and the extracts 

better resemble the natural material. In addition, carbon dioxide is non-flammable, non-explosive, 

cheap, and easily accessible in high purity. Last but not least, CO2 is a gas at room temperature, so 

once the extraction is completed, and the system decompressed, a substantial elimination of CO2 is 

achieved without residues, yielding easily a solvent-free extract. At the industrial scale, when 

solvent consumption is high, CO2 is usually recycled to the extraction step. 

Unfortunately, the low polarity nature of CO2 limits its use for the extraction of polar 

compounds. However, this limitation can be overcome by the addition of small concentration of 

polar co-solvents such as methanol, ethanol or water, among others. In a recent review regarding 

SFE of vegetable matrices [7], it was reported that 38% of  441 publications include at least one 

experimental assay with modified CO2.  Ethanol was selected  in  53% of the works involving 

entrainers. Ethanol is an innocuous solvent both at human health and  environmental levels and this 

is a great advantage for  applications  in  food,  cosmetic  or  pharmaceutical  industries.  Methanol 

was used in 21% of the works reviewed by De Melo et al. [7], and is followed by water and 

dichloromethane, with 5% and 3%, respectively. Despite being more polar than ethanol, methanol 

raises hazard concerns to human health, a fact that discourages an extended use of it [7]. In cases 

where water can be technically employed with success as co-solvent, the drying stage can be softer 

and optimized, leading to energy and utility savings. Besides these savings, water is obviously an 

inexpensive co-solvent to include in a SFE process, being this a motive that fosters even more its 

potential inclusion in commercial SFE units [7]. 
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Figure 1.1. Schematic of supercritical CO2 extraction process (SFE) [16]. 

SFE extraction is generally carried out as a semi-continuous process. In Figure 1.1, a typical 

scheme of a SFE process, using a co-solvent (ethanol) for the extraction of polar compounds, can be 

seen. Vegetable materials, usually dry and disintegrated, are charged into an extraction vessel of 

cylindrical shape to obtain a fixed bed of particles. The supercritical solvent, fed to the extractor 

continuously by a high pressure pump at a fixed flow rate, dissolves the required substances [15]. 

The typical volume of the extractors is from 0.1 to 2 L at the laboratory scale and from 2 to 5 L on 

the pilot scale [15].  

The optimization of SFE requires the study of different parameters. Both solute solubility and 

diffusion are important to achieve an optimal solute flux. When using SFE to remove unwanted 

substances from food and natural products, such as pesticide removal from ginseng or 

desolventization of a vegetable oil, solute mass transfer from the food matrix dominated by 

diffusive-based processes becomes very important. The onset of the diffusion control region of SFE 

usually occurs after an optimal solvent/feed ratio has been determined. Below the optimal 

solvent/feed ratio, the extraction is thermodynamically driven by the solute’s solubility in the 

supercritical fluid; hence, low solvent/feed values are desired to minimize extraction time and 

production costs. [17]  
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In summary, the  effect  of  pressure  and  temperature  upon  solubility  can  be briefly  

described  in  this  way:  (i)  concerning  pressure,  it  increases the  supercritical  fluid  density,  

thus  increasing  its  solvent  power; (ii)  with  respect  to  temperature,  it  influences  the  solvent  

properties,  namely  density,  and  also  the  solute  properties,  mostly vapour pressure. Increasing 

temperature, density decreases (lower solubility) but vapour  pressure increases (higher solubility). 

Depending on this double influence upon solubility, the proper  selection of temperature requires a 

trade-off of these two opposing effects [7]. 

In PLE, a wide range of organic solvents has been used for the extraction of bioactive 

compounds from foods and herbs [18–25]. For example, two solvent mixtures (chloroform–

methanol 2:1, v/v, and hexane–isopropanol 3:2, v/v) were used for the extraction of oxysterols from 

spray-dried whole egg, vanilla cake and egg noodlesat different extraction temperatures and 

pressures (60°C at 15 MPa, 100°C at 15 MPa, 120°C at 20 MPa) [20]. The extraction of 

capsaicinoids from peppers was carried out with a mixture of methanol and water [19]. Methanol as 

a solvent was chosen for the extraction of tocopherols and tocotrienols in cereals [26]. Acetone–

water mixture was used for the extraction of phenolic compounds from parsley [27]. The extraction 

of isoflavones from soybean was performed with dimethyl sulphoxide- ethanol-water solvent 

mixture [28].  

Nowadays, the most common solvent used in PLE is water (also called subcritical water), 

according to the proposal initially done by Hawthorne and Miller in 1994 [29]. PLE can be carried 

out at a temperature between 100 to 374 °C (the latter being the water critical temperature) under 

high pressure (usually between 1 to 6 MPa), needed to maintain water in the liquid state [6]. The 

main advantages of this method are: low extraction times, high quality of the extracts (mostly for 

essential oils), low costs of the extracting agent, and environmentally friendly. Additionally, the 

attendant equipment costs are much cheaper than the construction of a SFE plant. However, the 

aqueous-derived extracts from subcritical water extraction will often require removal of water 

unless supercritical water extraction can be performed quickly, as noted by King [17]. 

Subcritical water extraction has been widely used to extract different compounds from several 

vegetable matrices. Likewise, rosemary has been one of the most deeply studied materials [6]. 

Subcritical water extraction of several plants such as laurel [29], fennel [30], oregano [31] and kava 

[32] have also been reported. Furthermore, subcritical water has been demonstrated to be an 

extremely versatile method by its application to the hydrolysis of vegetable oils to produce fatty 

acids [33], extraction of flavors, spices [34], and essential oils [35], and degradation of cellulosic 

and lignin-containing natural polymers to oligomeric carbohydrate mixtures, as well as 
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polyphenolic compounds [36]. In any case, the high temperature reported makes it impossible to 

apply PLE with water to the recovery of heat-sensitive products.  

Other techniques considered as non-thermal, such as ultrasound, pulsed electric field, and 

microwave assisted extraction have been evaluated as potentially applicable to enhance extraction 

from various compounds found in food wastes, when using PLE and SFE. In particular, the use of 

ultrasound power in food industries (UAE) has increased during the last years, since it represents a 

potentially efficient way of enhancing mass transfer. SFE process is an example in which  ultrasonic  

energy  has been demonstrated to be efficient as an auxiliary  technique without affecting, or even 

improving the main characteristics and quality of  the products [37].  

Microwave assisted extraction technique has gained popularity to recover low molecular 

weight organic compounds or small molecules from softer matrices such as food and plant sources 

[38,39]. The basic motivation of performing microwave assisted extraction is to exploit the energy 

provided by microwaves, which comes from electromagnetic radiation with frequencies from 0.3 to 

300 GHz. In order to avoid interference with radio waves, domestic and industrial  microwaves 

usually operate  at  2.45  GHz,  and occasionally at 0.915  GHz  in  the  USA  and  0.896  GHz  in  

Europe.  Microwaves are transmitted as waves that can penetrate biomaterials and interact with 

their polar molecules, like water, releasing heat [38–40]. Thus, the temperature of the starting 

material is raised, leading to an increase of extraction efficiency [3].  

Pulsed electric field (PEF) is a non-thermal method involving the release of high tension 

electric pulsed  (up  to  70  kV/cm),  for few  microseconds,  on  a  material  located  between  two  

electrodes [41–44]. The objective of this technique is to disrupt the structure of cell membranes to 

enhance  extraction. When the critical electric potential of cell membranes, which depends on the 

intensity of  the external  electric  field,  is  exceeded,  an  electric  collapse  occurs, leading to a 

transitory or definitive permeability of the membranes. This happens due to pore formation in the 

weak regions of the membrane, turning the vegetable substrate into a very porous material. In the 

recent years, a growing number of researches have been dealing with application of PEF to enhance 

the permeability  of  cell membranes  and  thus  improve  mass  transfer,  reducing the extraction 

time.  In  all  cases,  PEF  has resulted in important improvements in extraction yield,  by easing the 

release of phytochemicals [3]. As an example, the extraction of anthocyanins from grape by-

products assisted by pulsed electric fields was reported by Corrales et al. [45], concluding that the 

total phenolic content of the extracts is increased by 50% due to the effect of the high tension 

electric pulsed.  
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Hou et al. [46] compared the extraction techniques mentioned in this section (ultrasonic-

assisted extraction, pulsed electric field, microwave assisted extraction, pressurized liquid 

extraction), with the exception of SFE, on the recovery of ginsenosides from Panax ginseng. Results 

indicated that pulsed electric field yield was the highest one. All the pulsed electric field process 

took less than 1 s, much  faster than any other technique. The high efficiency, low process time and 

energy cost of pulsed electric field could be applied at the industrial scale to recover valuable  

compounds  from food  by-products. Corrales et al. [45], extracting  anthocyanins  from  grapes,  

also  noted  higher efficiency of  pulsed  electric field over UAE and  high  hydrostatic  pressure. 

Therefore,  pulsed electric  field  may also work  as  an  enhancement  strategy  for  SFE and PLE, 

even in sample pre-treatment. However, as well as microwave assisted extraction, PEF is limited to 

extractions from aqueous media, which are not common in SFE. Consequently, this technique 

would be more indicated to  improve subcritical processes, or SFE with water as co-solvent [3].  

1.3. Supercritical CO2 extraction of natural extracts: an overview 

The discovery of the solvent power of pressurized carbon dioxide was made in the 19
th

 

century [47], but its practical application for extraction of vegetable substances was first studied in 

the 1960s when more sensitive analytical methods indicated trace amounts of residual organic 

solvents in food samples and initiated concern about their impact on human health [15]. The first 

experiments of supercritical CO2 extraction of natural products were conducted in a limited number 

of laboratories, most intensively in Germany [48] and in Russia [49], about 50 years ago. 

Nowadays, coffee decaffeination and naturals extract are probably the most successful application 

of supercritical fluids and related compressed fluids  [17].  

Regarding research works, substances from more than 300 botanical materials have been 

extracted using supercritical CO2 in the last 15 years [7]. Supercritical fluids have been mainly 

applied to the extraction of seeds and leaves. Together, they represent 45% of the plant fractions of 

all the works considered in a recent review [7], being seeds the biggest fraction (28%), and leaves 

the second one (17%). They are followed by fruits (10%), roots (7%), flowers (5%), rhizomes (3%) 

and bark (2%) [7]. SFE extracts obtained from vegetable matrices are typically mixtures of the 

following family of compounds: triglycerides, fatty acids, fatty alcohols, terpenoids, phytosterols, 

tocopherols, tocotrienols, and phenolics [7]. 

Recently, several microalgae species have also been used to produce natural compounds of 

interest for the food industry using SFE [50–52]. For instance, the extraction of diolefines from 

Botrycoccus brauniicells has been reported [52]. The authors proved that the solubility of these type 

of compounds in CO2 increased with pressure, and found that 30 MPa provided its optimum value 
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with respect to yield and extraction speed. SFE has also been used to extract carotenoids from 

microalgae Chlorella vulgaris [51]. They informed that, when microalgae cells were crushed, the 

carotenoid extraction improved slightly. The optimum extraction conditions were 55 °C and 35 

MPa. 

Temperature, pressure, solvent flow rate and type of solvent are important process parameters 

while origin of the plant material, chemical composition and particle size of the material, different 

types of tissues (leaves, stems, seeds, etc.) and other variables, such as pre-treatment and storage 

conditions also affect yield and the composition of the extract in supercritical fluid extraction [12]. 

The  optimum  pressure and temperature  conditions  of  a SFE  process  are  those  that  best  suit  

the  trade-off between  kinetics and  equilibrium  behaviours. SFE from vegetable materials essays 

typically focus on pressures from 10 to 40 MPa [7]. Within this range, and taking into account the 

temperature normally considered (40–60 °C), densities range from 200 to 900 kg m
−3

[7]. 

Optimization of the process and material parameters are important to provide maximum 

yields with highest quality and making the final product suitable for use in foods, cosmetic and 

pharmaceutical industries [12]. Thus, it is important to continue the investigation of SFE for 

different samples in order to generate new data that can be useful for the potential scale-up of the 

newly proposed processes.  

1.4. Other supercritical CO2 processes for food applications 

SFE is the most studied and applied process among the supercritical CO2 ones. However, 

there is a number of supercritical CO2 technologies that are being investigated and developed for 

other interesting applications and deserve to be mentioned. A brief summary is presented in this 

section, with special attention to supercritical anti-solvent precipitation (SAS) and supercritical 

counter-current fractionation, which have been experimentally studied and are reported later in this 

thesis.  

The counter-current fractionation process consists of a separation column, where gaseous and 

liquid phases are contacted counter currently. It includes a separator at the top for separating solvent 

and extract, and devices for feeding reflux to the column, for recovering top product, for delivering 

feed to the column, for recovering product at the bottom of the column, and for recycling the 

solvent. The separation column consists of two separation cascades. In the upper one (enriching 

section) the bottom product compounds are separated from the top product compounds and rejected 

to the lower section (stripping section). In the stripping section the top product compounds are 

separated from the bottom product compounds and transported to the enriching section [62]. A  
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Figure 1.2. Schematic of counter-current process with supercritical fluid for the separation of two components [62]. 

schematic diagram of a typical with a supercritical CO2 counter-current process for the separation of 

two components is presented in Figure1.2. 

The advantages of using counter-current mode are the reduction of solvent consumption, 

increased throughput, and higher oil extract concentrations in the solvent and lower residual 

concentration in the raffinate (Brunner, 2009). In addition, counter-current fractionation of a liquid 

feed mixture can be implemented in a continuous mode (Pieck et al., 2015), whereas this cannot be 

the case for solid substances. 

Numerous food-related materials have been fractionated using the columnar approach, such as 

marine-derived oils [63,64], mixed glycerides [65,66], tocopherols [67], free fatty acids  [68] and 

phytosterols [69]. 

SAS is a method in which supercritical CO2 is used to precipitate selected, non-soluble 

compounds already dissolved in a suitable liquid solvent. CO2 at relatively high pressure acts as an  
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Figure 1.3. Schematic of supercritical anti-solvent (SAS) process [55]. 

anti-solvent decreasing the solubility of the solid in the mixture and causing a fast supersaturation 

[53]. To properly perform the SAS process, two requisites have to be respected: (i) the solute has to 

be soluble in the solvent and not soluble in supercritical CO2, (ii) the organic solvent and 

supercritical CO2 have to be completely miscible at the process conditions;  i.e., a supercritical 

solution has to be formed [54].   

Figure 1.3 shows a schematic of a typical semi-continuous SAS process. First, supercritical 

CO2 is pumped to the top of the high pressure vessel (precipitator) until the system reaches a 

constant temperature and pressure. Subsequently, the solution containing the substance of interest is 

sprayed as fine droplets into supercritical CO2 bulk phase through an atomization nozzle. The large 

volume expansion of the solution in vessel, due to the dissolution of supercritical CO2 in the liquid 

droplets and, subsequently, the super saturation due to reduction in solvent power, lead to the 

nucleation and formation of small and  monodisperse particles with the liquid phase. These particles 

are collected on a filter at the bottom of the vessel. The supercritical CO2 and organic solvent 

mixture flow down to a depressurized tank where suitable temperature and  pressure condition 

allow gas liquid separation. After collection of the particles, the spraying of  liquid solution is 

stopped. Furthermore, to remove residual solvent, pure supercritical CO2 continues to flow through 

the vessel until needed. [55] 
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SAS precipitation of bioactive compounds from food has been experimentally investigated in 

the last years. For instance, the precipitation of phenolic compounds from mango by-products [56] 

and from grape residues [57] have been reported. Other antioxidants compounds were obtained in a 

similar way from grape seeds [58], rosemary [53], marigold flowers [59], Lycium barbarum [60] 

and microalgae [61]. 

Other techniques have been developed for the production of particles and/or dried extracts 

bearing acronyms such as RESS (rapid expansion of supercritical solutions), GAS (gas antisolvent), 

PGSS (particles from gas-saturated solutions), CPF (concentrated powder form), as well as others 

based on either dissolution in an SCF or use of the medium to precipitate the targeted material as 

fine particles or encapsulates having usually very narrow particle-size distributions [17].  

RESS process consists of two steps;  (a) dissolution of the solid substance in a SCF and (b) 

formation of particles due to supersaturation. In the RESS process, supercritical CO2 is first pumped 

at desired pressure and temperature to extraction chamber containing solid substances through heat 

exchanger. Supercritical CO2 percolates and dissolves the solid substances in the extractor and the 

resulted solution  is then depressurized through a heated nozzle or capillary at supersonic  speed  

into a low pressure chamber. The supercritical solution is expanded adiabatically in the chamber, 

which leads to a rapid drop in temperature and pressure and spontaneous formation of 

droplets/particles.  During  the  rapid expansion of the supercritical solution, the density and solvent 

power decrease significantly,  resulting in super saturation of the solution and consequently 

precipitation of desire particles free of a residual solvent [55]. Unfortunately, RESS can be only 

applied to products that have enough solubility in CO2. 

GAS is an anti-solvent batch process where the precipitator is partially filled with the solution 

of solute of interest  and then the supercritical anti-solvent is pumped into the vessel, preferably 

from the bottom, until the fixed pressure is reached. Precipitates are obtained as the gas 

concentration in the solution increases with  pressure.  After a holding time, the expanded solution 

is made to pass through a valve to wash and clean the precipitated  particles. A clear disadvantage 

of this technique is the lack of control on the particle formation, which  prevent  the formation of 

mono dispersed particles. [55] 

In the “Particles Generated from Gas Saturated Solutions” (PGSS) process, CO2 is employed 

as a solute. A molten mixture composed of the lipid matrix forming materials and the bioactive 

molecule is saturated by CO2 at supercritical conditions. This remarkably reduces the viscosity of 

the molten mass allowing for its outflow to the expansion chamber through a micrometric nozzle 
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[62]. CPF involves contacting the liquid form of the bioactive material with the compressed fluid, 

and then expanding the mixture through a nozzle onto a solid carrier material. These two processes 

find favour in part due to the ability to operate them continuously, their GMP compatibility, and 

their low consumption of compressed fluid. [17] 

Another property of CO2 treatment of great interest in food technology is pasteurization and 

sterilization by high pressure CO2. The use of supercritical CO2 in preservation processes has also 

gained great interest in the scientific field. Since the 1980s, high pressure carbon dioxide process 

(HPCD) has been increasingly investigated as a promising technique to induce a 

pasteurizing/sterilizing effect when applied to both solid and liquid matrixes [63]. The process has 

been applied not only to liquid foodstuff but also to meats (chicken, pork, and beef), vegetables 

(celery, and spinach), seeds and food powders (alfalfa seeds, cocoa powder, and ginseng), fruits (cut 

pieces of pears, strawberries, honeydew melon, and cucumber), spices and herbs (chives, thyme, 

oregano, parsley, and mint), and fish (shrimp, and oyster) [63]. Both microbial and enzymatic 

deactivation have been demonstrated on liquid food substrates, such as fruit juices, milk, and 

alcoholic beverages after supercritical CO2 treatment [12]. 

1.5. Industrial supercritical CO2 applications  

Currently, there are more than 150 SFE plants operated throughout the world with an 

extraction volume equal or greater than 500 L, and many of these production plants are dedicated to 

the extraction of natural products, leading to the recovery of higher-added value compounds [17]. 

They are mostly distributed in Europe, the USA, Japan, and in the South East Asian Countries [64]. 

The first SFE applications in the food industry were decaffeination of coffee and isolation of 

hops extracts for flavouring beer, which led to the construction of sizeable plants for these dedicated 

purposes [17]. Today, literally all hops extraction for beer industry is done via supercritical CO2 

extraction, whereas coffee decaffeination competes with alternative extraction processes [17]. Other 

food processing SFE applications include the recovery of aromas and flavours from herbs and 

spices, the extraction and fractionation of edible oils, and the removal of contaminants [64].  

Nowadays, supercritical CO2 processes are oriented toward extracts or products with much 

higher added value that those developed using in the past 40 years [16]. For instance, the activity in 

producing fine particles for use in the pharmaceutical industry started in the late 1990s, but in recent 

years there has been a focus on incorporating this technology platform into foods and nutraceutical 

formulations [64].  



  State of the art 

 

33 

 

Despite supercritical CO2 technologies have been successfully applied in industries for almost 

four decades, there is still reluctance in some world regions to adopt them because of the wrong 

perception that they are not fully competitive [19] or because of safety reasons. High capital costs 

of supercritical CO2 equipment are usually mentioned among the drawbacks of the process [15]. 

However, the operating costs are usually lower than those of conventional extraction and can 

compensate the higher capital costs. In any case, accurate cost estimates would reduce the risk to 

reluctant companies of investing in the commercial application of SFE. Fully recognizing this, 

companies that sell industrial SFE plants such as Uhde High Pressure Technologies GmbH in 

Germany, Separex  S.A.S. in France, Thar Process Inc. in the USA, and Natex Prozesstechnologie 

GesmbH in  Austria, support industry with partial information on economics of SFE processes [65].  

It is worth mentioning that the performance of the economic evaluation of a supercritical 

separation process cannot be based uniquely on the statement of fixed and operating costs, which on 

the other hand is the method currently used for classical and well defined extraction processes 

where the product is widely accepted by the market without price fluctuations. Indeed, the products 

obtained after the supercritical process present special characteristics which make them different 

from current commercial products, or even in some cases, they constitute entirely new products that 

cannot be manufactured by conventional processes. These new products should fulfil the 

requirements of the market, which demands high quality, high knowledge about the chemical 

composition of the final product and exclusivity. Besides, the ease of the new product to adapt itself 

to changes in market demand, e.g. by modifying its formulation, is also highly desired. All these 

requirements make it especially difficult to determine the price of the new product, which is also 

commonly unknown for the market [13]. In this context, the economic evaluation of a supercritical 

process should be developed using a business plan analysis [11].  

The future of production of valuable compounds from vegetable and food residues using sub- 

and  supercritical fluids is definitely promising with the use of combined technologies, such as 

ultrasound,  microwaves, pulsed electric fields, membrane, high-pressure reactors, or integrated 

formation, among  others, which will lead to high quality products [17]. This will be able to lead to 

higher efficiency and lower  processing costs, making it viable the production of valuable 

compounds at industrial scale. Although  most of these techniques are successfully applied in 

laboratory or pilot scale, and many industrial  applications of SFE can be found, numberless other 

potential uses of SCFs are still to be explored. As well, more advancements should be made on the 

mentioned techniques in  order to make them feasible to process food wastes [3]. 
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Other future issues to be taken into account for the development of supercritical and high 

pressure extraction techniques are eventually summarized, based on a recent review work by King 

[17]: 

1. Optimizing continuous SCF processing systems should be headed to increase productivity. 

2. Removal of residual solvents and toxicants from food and nutraceutical products by SFE 

needs to be studied further with respect to new regulatory requirements. 

3. Cost and life-cycle analysis for supercritical CO2 technologies versus competitive 

technologies will be a future requirement and will complement research and development in this 

field. 

4. Production-scale supercritical CO2 needs further development in terms of its application to 

producing bioactive concentrates for the nutraceutical or functional food marketplace. 

5. Extraction versus reaction conditions to produce functional food ingredients using 

subcritical fluids such as water needs further investigation in terms of deriving bioactive 

components. 

Finally, it is also important and necessary to improve the marketing strategies, to inform 

consumers about the advantages of applying supercritical CO2 technologies to recover valuable 

products from food wastes, and therefore to gain market in this field [3]. 
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CHAPTER 2 

Production of essential fatty acids from 

microalgae by SFE
2
 

 

Supercritical CO2 extraction from microalgae is applied with the aim of obtaining an oil rich 

in α-linolenic (ALA) essential fatty acid and with a low ω6:ω3 ratio. The maximum extraction yield 

is obtained at 60 °C and 30 MPa with 0.4 kg/h of CO2 and 5% of co-solvent (ethanol). When the 

effect of pressure, temperature and density on the supercritical extraction yield and solubility are 

studied, the thermodynamic cross-over is found at a pressure close to 30 MPa, while the extraction 

cross-over occurs at around 25 MPa. The experimental solubility data are correlated by literature 

empirical models. Mathematical models developed by Sovová are applied to describe the 

experimental extraction curves. Soxhlet extraction of lipids is also carried out, obtaining a similar 

fatty acids profile but proving to be less selective than SCCO2 method. Among the three species of 

microalgae examined, results show that Scenedesmus obliquus oil is richer in ω-3 fatty acids and 

ALA than Chlorella protothecoides and Nannochloropsis salina lipids. The effect of the extraction 

parameters on ALA content and the fatty acid profile is also analysed, concluding that the ω-3 

percentage is favoured by lower temperatures, lower pressures and shorter extraction times.  

Abbreviations: ALA, α-linolenic acid C18:3ω3; LA, linoleic acid C18:2ω6; AA, arachidonic acid C20:4ω6; EPA, 

eicosapentaenoic acid C20:5ω3; DPA, docosapentanoic acid C22:5ω3; PUFA, polyunsaturated fatty acids; MUFA, 

monounsaturated fatty acids; SFA, saturated fatty acids; FFA, free fatty acids 

2.1.  Introduction 

Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 

fatty acids compared with the diet on which human beings evolved and their genetic patterns were 

established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA), and a very high 

ω6:ω3 ratio, promote the pathogenesis of many diseases, including cardiovascular ones, cancer, and 

inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA exert 

suppressive effects [1]. Therefore, also due to the difficulty of changing the nutritional habits of a 

                                                           
2
Part of this chapter has been published as: Solana, M., Rizza, C.S., Bertucco, A., Exploiting microalgae as a source of essential fatty 

acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus, Chlorella protothecoides and 

Nannochloropsis salina, 2014, The Journal of Supercritical Fluids 92, 311-318. 
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whole society, in the last years many products enriched with omega-3 as nutritional supplements or 

functional foods have been developed to integrate the diet and reach a good ω6:ω3 ratio in blood 

without changing the diet too much [2]. 

The major current food source of omega-3 is fish. However, global fish stocks are in danger 

and consequently its production may decrease in the future if large amounts of omega-3 are needed. 

In addition to this, some fishes, especially marine ones like salmon, sardine, tuna, anchovy, 

mackerel or hake, are sometimes contaminated with heavy metals, as copper or mercury, and 

organic pollutants as PCBs or dioxins, which have a toxic effect for human health [3]. Furthermore, 

they have a limited capacity for synthesis of PUFA, so most of them are simply accumulated from 

their microalgae diet [4]. The idea of using microalgae to obtain essential fatty acids is increasingly 

being taken into account.  

Besides producing lipids rich in PUFAs, microalgae offer important advantages over 

conventional oil crops. On the one hand, they can be cultivated under mild conditions, including 

short growth cycle with very simple nutrients supply, no field and season restrictions, and less 

extensive care  [5,6].  Additionally, there is no need of the use of chemicals such as herbicides or 

pesticides thus reducing costs and environmental impacts [7]. On the other hand, the growth of 

microalgae can effectively remove phosphates and nitrates from wastewater and have greater 

photosynthetic efficiency than terrestrial plants [6]. Specifically, microalgae growth actively utilizes 

and captures about 1.9 kg of CO2 for every kg of dry biomass produced [8]. 

Two of the most abundant fatty acids in microalgae are linoleic acid (18:2ω6; LA) and α-

linolenic acid (18:3ω3; ALA), which are considered the two parent essential fatty acids, since 

human body is able to synthesize the long chain PUFAs from them. In particular, omega-6 

arachidonic acid (C20:4ω6; AA) can be synthesized by humans from LA, and omega-3 fatty acids, 

such as eicosapentaenoic acid (C20:5ω3; EPA), docosapentaenoic acid (C22:5ω3, DPA) and 

docosahexaenoic acid (C22:6ω3, DHA), from ALA [2]. These essential oils have been traditionally 

obtained by steam distillation and hydrodistillation. However, these separation techniques suffer a 

number of problems due to the thermal degradation of some compounds of the essential oil and 

partial hydrosolubilization and hydrolysis, which can affect its quality [9]. Supercritical fluid 

extraction has already been demonstrated as a good method in the production of omega-3 oil and 

omega-6 concentrates, avoiding the use of high temperatures and organic solvents. In addition, 

since CO2 is gas at room temperature, it is easily removed when extraction is completed, thus it is 

safe for food applications and it can safely be recycled, which is an environmental benefit. Other 

advantage respect to other methods for lipid extraction is the lack of catalyst requirement [7].  
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The present study investigates the influence of supercritical fluid extraction conditions on the 

fatty acid profile of lipids from microalgae, with a focus on increasing the omega-3 ALA content. 

The results of three different species of microalgae are also compared. These data form the basis to 

analyse the feasibility of exploiting microalgae as a source of omega-3 rich oil, which could become 

an interesting option for pharmaceutical and food markets. 

2.2.  Materials and methods 

2.2.1. Chemicals and microalgae 

Carbon dioxide (4.0 type, purity greater than 99.99%) used as supercritical solvent was 

provided by Rivoira. Ethanol (≥99.8%), hexane (99.8%), methanol (99.8%) and chloroform (99%) 

were purchased from Sigma Aldrich.  

Scenedesmus obliquus 276-7, Chlorella protothecoides 33.80 and Nannochloropsis salina 

40.85 strains were obtained from SAG-Goettingen. The growth temperature was 24±1 °C, with 

artificial light (fluorescent tubes) under a continuous photon flux density of 150±10 μE m
−2

 s
−1

, 

measured by a photoradiometer (LI-COR, Model LI-189). C. protothecoides and S. obliquus, 

freshwater species, were grown in BG11 medium, following SAG indications. N. salina, a marine 

species, was cultured in sterilized sea salts with 22 g L
−1

 solution enriched with f/2 Guillard 

solution modified by adding an excess of 1.5 g L
−1

 of NaNO3. Medium was buffered with 40 mM 

Tris–HCl pH 8 to avoid alterations due to excess CO2 supply. Maintenance and propagation of 

cultures were performed using the same medium added with 10 g L
−1

 of Plant Agar (Duchefa 

Biochemie). These conditions had been previously optimized in our laboratory [10,11].  

After the harvest, the microalgae suspension was centrifuged at 24°C for 10 minutes and 4425 

rpm. The centrifuged microalgae were kept refrigerated at a temperature of -20°C until the oil 

extraction tests were performed.  

Before extraction, microalgae were oven dried at 37°C for two days, to reduce the water 

content to less than 20 wt%, since it is possible to extract oil from microalgae with water content in 

the biomass up to 20 wt% [12]. The water content of raw microalgae powder was evaluated in the 

following way: a mass of 0.1 g of microalgae powder was heated at 80°C in an air flow oven until 

the mass no longer changed. By measuring the mass before and after the drying, we calculated the 

water loss. The water content is expressed as percentage with respect to the initial mass. After being 

dried for two days, a moisture content of 8% was left in S. obliquus, 20% in C. protothecoides and 

16% in N. salina. The dried samples were ground and sieved before the tests, obtaining a particle 

size less than 0.5 mm.  
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Fig. 2.1. Schematic diagram of the supercritical extraction equipment. 
 

2.2.2. Soxhlet extraction 

Solvent extraction was carried out in a laboratory scale apparatus at ambient pressure. A 

mixture of methanol: chloroform 2:1 was used as solvent. The temperature of extraction was 

maintained at 105 °C during 18 hours. Then the solvent was removed by a rotary evaporator at 40 

°C and the extract was weighted.  

2.2.3. Supercritical fluid extraction 

A classical supercritical extraction process was specifically designed and constructed to carry 

out the microalgae oil extraction tests. Fig. 2.1 shows the schematic diagram of the equipment.  

The operating procedure was as follows: the stainless steel vessel (extraction cell) was filled 

with 0.5±0.1 g of dried microalgae powder and heated by a thermoresistance. The temperature of 

the internal flow was controlled before and after the extractor. The CO2 was compressed through a 

high pressure pump and pre-heated before flowing through the vessel. The pressure was controlled 

by two gauges. The co-solvent (ethanol) was pumped by a HPLC pump (model PU-1580) and 

mixed with the CO2 before the extractor.  

The choice of ethanol as a co-solvent was based on literature data [13,14,15]. The ethanol 

concentration was 5%. A constant CO2 flow rate of 0.4±0.05 kg/h was kept in every run. The 

designed extraction pressures were 15, 20, 25 and 30 MPa. The minimum temperature was 45°C, as 

the addition of 5% ethanol to CO2 increases the critical temperature of the mixture to 42.5°C [16].  

After the extraction, the supercritical mixture was expanded by a Medium-Flow High-

Pressure Metering Valve inserted in a water bath at 40 °C to avoid CO2 freezing caused by sudden 

expansion. Extract samples were periodically collected in 12 mL of ethanol. CO2 gas at atmospheric 

temperature passed through a flow meter before being vented. Finally, the system was 

depressurized. The lipids were collected after evaporating the co-solvent by a rotatory evaporator  
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Table 2.1. Relative oil extraction percentage from supercritical fluid extraction when compared with Soxhlet extraction. 

 
Method Extraction time (h) Temperature (°C) Extraction yielda (wt.%) FFA conversionb (wt.%) Lipid yieldc (wt.%) 

Soxhlet 18 105 29.03 51.13 14.84 

SCCO2 1.5 65 24.67 73.57 18.15 

a Extraction yield= (mass of microalgae extract/mass of insoluble solid)×100 
b FFA conversion= (mass of fatty acids/ mass of microalgae extract)×100 
c Lipid yield= (Extraction yield×FFA conversion)/100 

 

and weighted. At some operating conditions the experiments were made in duplicate to determine 

experimental error of the yield values, whose average resulted to be 6.00%.   

2.2.4. Analysis of FFA 

The fatty acids composition of the extracted oil was measured by gas chromatography. The 

method was performed according to reported procedures [17,18]. A GC Agilent Technologies 

(Model 7890) with a FID detector was used. The columns were Supelco (75 m × 180 µm × 0.14 µm 

film thickness) Model 23348-U and J&W (3.8 m × 250 × 0.25 µm film thickness) Model 190915-

431. The carrier gas was H2. 

2.3. Results and discussion 

2.3.1. Comparison between SCCO2 and Soxhlet extraction 

Table 2.1 summarizes the results of supercritical carbon dioxide extraction and conventional 

Soxhlet extraction with respect to extraction yield (wt.%), FFA conversion (wt.%) and lipid yield 

(wt.%). The extraction yield is expressed as the ratio between the mass of the total extract collected 

and the mass of the starting insoluble microalgae powder. It should be noted that the extraction 

yield not only includes the lipids, but possibly the pigments and waxes contained in the microalgae.  

The extraction yield of S. obliquus obtained by Soxhlet extraction was 29.0%, higher than the 

recovery of the oil extracted by supercritical technology. However, only a 51.1% of FFA were 

found in the Soxhlet extracted oil, in comparison with a 73.6% of the FFA obtained by supercritical 

extraction. Therefore, the total lipid yield obtained by Soxhlet extraction was lower than the one by 

SCCO2 (14.8% and 18.2%, respectively). Hence, Soxhlet results to be a less selective method that, 

apart from requiring toxic solvents, requires longer extraction times. 

 

2.3.2. Extraction curves and modelling 

Six fractions of the extracted oil were collected in order to obtain the overall extraction curve. 

It should be noted that the colour of the extract in the first samples was dark green, however the last 
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samples presented a yellow colour, what indicates that the chlorophyll was extracted at the 

beginning of the extraction. This can be due to the effect of using ethanol as co-solvent, that is one 

of the most extended solvents used to extract chlorophyll. 

Supercritical extraction curves were made by plotting yield against the ratio between solvent 

consumption and the insoluble microalgae biomass loaded into the extractor. The curve modelling 

was performed using the models published by Sovová in 2005 [19] and 2012 [20]. Three models 

were applied: the approximate one, the complete one and the simplified one based on the 

determination of characteristic times. The complete model, based on the concept of broken and 

intact cells, was initially developed to fit experimental data of supercritical fluid extraction of 

natural products. It independently simulates three extraction periods, the first one governed by 

phase equilibrium, the second one is a transition period and the third one is governed by internal 

diffusion within the particles. The adjustable parameters are the grinding efficiency, r, the product 

between the external mass transfer coefficient and the specific area between broken and intact cells, 

ksas, and the product between the internal mass transfer coefficient and the specific area between 

broken and intact cells, kfas. The approximate model makes a first estimation of the adjustable 

parameters r and ksas, that are used to optimize all the parameters of the complete model. The 

simplified equations based on the determination of characteristic times consider four extraction 

steps: internal diffusion, external mass transfer, hypothetic equilibrium extraction without mass 

transfer resistance and displacement of the solution from the extractor. In this model, the external 

mass transfer resistance, θf, the characteristic time of the internal mass transfer, ti, and the initial 

fraction of solute in the broken cells, G, are the unknown parameters. 

Mouahid et al. [21] already verified that the modelling by Sovová’s equations, initially 

developed for plants and vegetables, could be applied for the supercritical CO2 extraction of lipids 

from microalgae. These authors fitted the experimental extraction curves from the microalgae 

species Nannochloropsis oculata, Cylindrotheca closterium, Chlorella vulgaris and Spirulina 

platensis subjected to different pre-treatments. In this research, the kinetics at different temperatures 

and pressures from Scenedesmus obliquus are investigated to show that Sovová’s equations can also 

be applied with different solvent densities. The extraction curves obtained from Chlorella 

protothecoides and Nannochloropsis salina were also correlated by Sovová’s models. 

In agreement with Mouahid et al. results [21], only two periods were observed when the 

extraction curves from microalgae were plotted, instead of the three parts reported by Sovová [19]. 

Therefore, the first and the third equations of the complete model are enough to fit the experimental  
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Table 2.2. Parameters evaluated from experimental data on microalgae. 

M P  

(MPa) 

T  

(°C) 

  Approximate model   Complete model   Characteristic times (simplified 

model) 

        r ksas(×105) 
s-1 

AARD 
(%) 

  r ksas(×105)  
s-1 

kfa0 (×103) 

s-1 
AARD 
(%) 

  θf ti  
(min) 

G AARD 
(%) 

S.o 15 45  0.22 7.40 1.41  0.23 1.29 1.88 2.58  0.03 17.19 0.43 10.94 

S.o 25 45  0.34 8.35 0.88  0.36 18.96 1.84 3.60  0.03 10.46 0.74 9.66 

S.o 30 45  0.44 2.71 0.92  0.44 5.35 1.96 1.01  0.03 35.46 0.54 13.56 

S.o 15 55  0.18 7.01 1.25  0.18 12.13 1.96 0.76  0.03 21.70 0.42 18.14 

S.o 25 55  0.22 4.32 1.97  0.18 7.95 1.84 0.34  0.03 28.02 0.36 7.69 

S.o 30 55  0.25 5.31 2.40  0.20 9.99 1.81 1.46  0.03 23.20 0.41 4.04 

S.o 15 65  0.15 3.29 2.21  0.14 5.70 1.78 0.60  0.03 39.61 0.28 8.05 

S.o 25 65  0.38 6.01 1.96  0.25 17.46 1.83 2.76  0.03 16.08 0.67 13.26 

S.o 30 65  0.32 4.36 4.53  0.24 9.35 1.77 4.37  0.03 20.33 0.36 7.27 

C.p 30 45  0.25 2.78 2.99  0.16 6.38 2.04 1.33  0.03 51.47 0.41 14.09 

N.s 30 45   0.36 2.56 0.99   0.37 4.61 1.73 0.50   0.03 39.21 0.48 15.01 

M, microalgae; S.o, Scenedesmus obliquus; C.p, Chlorella protothecoides; N.s, Nannochloropsis salina; r, grinding efficiency; ks, solid-phase mass 

transfer coefficient; as, specific area between the regions of intact and broken cells; AARD, average absolute relative deviation; kf, fluid-phase mass 

transfer coefficient; a0, specific surface area per unit volume of extraction bed; θf, dimensionless external mass transfer resistance; ti, characteristic 

time of the solid phase mass transfer; G, initial fraction of extract in broken cells. 

 

extraction curves. Mouahid et al. [21] opted to use the equations of the approximate model, 

however in this work both the approximate and the complete models were applied in order to 

calculate the values of all the parameters, which are summarised in Table 2.2. As can be seen, the 

values of r, ksas are of the same order of magnitude as the values reported by Sovová [19] and 

Mouahid [21], for both the approximate and the complete model. The values of kfa0, obtained from 

the complete model, are of the same order of magnitude as those reported by Sovová [19]. The 

fitting results obtained by using the simplified equations based on the determination of the 

characteristic times are shown in Table 2.2.  

 
 

 

Fig. 2.2. SCCO2 extraction curve of lipids from Scenedesmus obliquus at 65°C and 20 MPa, experimental and 

modelling (equations of characteristic times). The curve represent e, the extraction yield (kgextract/kginsoluble solid) as a 

function of the time (min). 
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Fig. 2.3. SCCO2 extraction curves of lipids obtained at 30 MPa and 45°C from S. obliquus, C. protothecoides and N. 

salina, experimental and modelling (complete model). The curves represent e, the extraction yield (kgextract/kginsoluble solid) 

as a function of the CO2/microalgae mass ratio. 

 

Once again, the values of the adjustable parameters ti, θf and G are of the same order of 

magnitude as the values reported by Sovová [20] and Mouahid [21]. As an example, Fig. 2.2 

illustrates a fitted extraction curve by the equations based on the determination of characteristic 

times. The experimental data are those at 20 MPa and 65 °C. In this case, as well as in the others, 

the agreement between experimental data and modelling is satisfactory. The extraction curves fitted 

by the complete model are shown in sections 2.3.3 and 2.3.4.   

2.3.3. Comparison between the three species of microalgae 

The experimental curves of three different species of microalgae, S. obliquus, C. 

protothecoides and N. salina, are shown in Fig. 2.3 and compared with the results of the complete 

model. They were obtained at 30 MPa and 45°C, with a CO2 flow rate of 0.4±0.05 kg/h and 5% 

ethanol, during 90 minutes. The highest yield, 30.4%, was achieved with N. salina, followed by S. 

obliquus, 18.0%, and C. protothecoides, 13.0%. On the other hand, by comparing simulated and 

experimental curves from Fig. 2.3, it has been detected that the complete model ensures a good 

representation to experimental data. From Table 2.2, it can be seen that also the simplified and the 

characteristic times models behave correctly. 

2.3.4. Effect of pressure and temperature 

Temperature and pressure affect the supercritical CO2 process in a complex way due to their 

combined effect on solvent density and solute vapour pressure. The solute vapour pressure increases 

with temperature raising the solubility, while temperature has an opposite effect on the solvent 
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density and solubility. The pressure and temperature dependences of SCCO2 extraction of S. 

obliquus were investigated. As Fig. 2.4 shows, at 15 MPa the extraction yield decreases from 15.7% 

to 11.5% when raising the temperature from 45 °C to 65 °C. The same behaviour was observed for 

extractions at 20 MPa and temperature from 45 °C to 65 °C. However, at 30 MPa the yield 

behaviour is the opposite: an increase in temperature from 45 °C to 65 °C enhances the extraction 

yield from 18.0% to 24.8%. At 25 MPa the yield was found to be practically the same at three 

different temperatures investigated (45 °C, 55 °C and 65 °C). This pressure is called cross-over 

pressure and it suggests that a pressure higher than 25 MPa, the dominant effect which influences 

the yield is the vapour pressure, instead of the density. Such a phenomenon, supported by a number 

of experimental studies, is related to the fact that at lower pressures the expected increase in oil 

fugacity with the increase of T is overcome by the decrease in density of SCCO2 and therefore by 

the decrease of its solvent power [22]. Determination of crossover is interesting to better understand 

supercritical fluid phase phenomena in a region where the solubility is extremely sensitive to 

pressure [23, 24].  

Finally, it should be noted that, comparing modelled and experimental curves from Fig. 2.5 

and Fig. 2.6, the model can reproduce well the measured data obtained at different pressures and 

temperatures.  

 

 
 

Fig. 2.4. Effect of operating pressure on the yield of the extraction (kgextract/kginsoluble solid) from S. obliquus under 
different operating temperatures. 
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Fig. 2.5. SCCO2 extraction curves of lipids from Scenedesmus obliquus at constant pressure (15 and 30 MPa), 

experimental and modelling (complete model). The curves represent e, the extraction yield (kgextract/kginsoluble solid) as a 

function of the CO2/microalgae mass ratio. 

 

 

Fig. 2.6. SCCO2 extraction curves of lipids from Scenedesmus obliquus at 55°C, experimental and modelling (complete 

model). The curves represent e, the extraction yield (kgextract/kginsoluble solid) as a function of the CO2/microalgae mass 

ratio. 

 

2.3.5. Cross-over and solubility  

Once the extraction cross-over has been identified, it is interesting to verify that this 
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our experiments the feed-to-mass flow rate ratio (R) was 0.075 g min g
-1

, which appears to be low 

to ensure saturation of the supercritical solution. Therefore the value of the experimental solubility 

is lower than the one corresponding to phase equilibrium. However, since R was kept constant in all 

our experiments, we have reasonably assumed that the decrease of solubility with respect to phase 

equilibrium is constant. Hence, the effect of density on the experimental solubility can be examined 

and the thermodynamic cross-over can be semi-quantitatively calculated.   

At different conditions of pressure and temperature, the density of CO2 is determined by 

applying the Bender equation [25]:  

 P=RTρ+Bρ
2
+Cρ

3
+Dρ

4
+Eρ

5
+Fρ

6
+(G+Hρ

2
)ρ

3
exp(-a20ρ

2
) (2.1) 

where P is the pressure in MPa, R is the gas constant, T is the temperature in K and ρ is the 

density in g/cm3. B, C, D, E, F, G and H depend on the temperature and a20 is a constant as reported 

in reference [25]. 

Experimental solubilities in SCCO2 (g/kg) are calculated from the slopes of the linear part of 

the extraction curves representing the yield as a function of the CO2/microalgae mass ratio. 

Three semi-empirical density-based equations are applied to correlate the measured solubility 

data: Chrastil [26], del Valle-Aguilera [27] and Adachi-Lu [28] models.  

The Chrastil model correlates the solubility of the solute to the density of the pure solvent 

[26]:  

 S = ρAexp⁡(B +
C

T
) (2.2) 

where S is the solubility in g/kg, ρ is the density of the solvent in kg/m
3
, A is an association 

number, B is a function of the association number and molecular weights of the solute and the 

solvent, C is a function of the enthalpy of solvation and enthalpy of vaporization, and T is the 

temperature in K.  

The Del Valle-Aguilera model assumes the association number as constant, and independent 

of the solvent density or temperature [27]: 

 S = ρAexp⁡(B +
C

T
+

D

T2
) (2.3) 

In the Adachi-Lu model, the association number is changed to a second-order polynomial of 

the solvent density [28]: 

 S = ρA+Eρ+Fρ
2
exp⁡(B +

C

T
)    (2.4) 



Chapter 2   

52 

 

 
 

Fig. 2.7. Effect of density on solubility. Experimental data and comparison between the calculated curves by three semi-
empirical models. 

 

 
 
Fig. 2.8. Effect of operating pressure on solubility of microalgae in CO2 under different operating temperatures 
modelled by the Del Valle-Aguilera equation. 
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three models, as illustrated in Fig. 2.7. In fact, the values of E and F from Adachi-Lu model (Table 

3) are so small than they could be neglected and consequently the equation would become the 

Chrastil one.  

The experimental and modelled microalgae solubility data on SCCO2 at different pressures 

and temperatures are shown in Fig. 2.8. In this case, a thermodynamic cross-over is found at a 

pressure close to 30 MPa, higher than the already mentioned extraction cross-over pressure.  
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Table 2.3. Calculated parameters for the semi-empirical solubility models. 

Solubility models Model constants   AARD (%) 

  A B C D E F   

Chrastil 3.9265 17.7140 -14850.0000 - - - 9.09 

del Valle-Aguilera 3.7059 -19.0766 -2324.8000 10587.0000 - - 8.77 

Adachi 4.4849 -25.0568 -2041.1000  - 1.04×10-10 1.08×10-12 9.71 

AARD, average absolute relative deviation 

 

2.3.6. Comparison of the lipid content 

2.3.6.1. Influence of the extraction method on the fatty acids content 

As shown in Table 2.4, no significant differences were found between the lipids obtained by  

supercritical extraction and conventional Soxhlet extraction, even if the extraction temperature was 

much higher in the second case. In both extracts the main components were palmitic (C16:0), oleic 

(C18:1ω9), C16:3ω3, C16:4ω3, LA (C18:2ω6) and ALA (C18:2ω3) fatty acids. As presented in 

Table 2.5, the polyunsaturated content of the oil extracted by Soxhlet was 52.7%, with a total 

omega-3 content of 36.3% and an ω6:ω3 ratio of 0.31. Very similar values were found in the oils 

extracted at different conditions by supercritical fluid technology, as shown in Tables 2.4 and 2.5. 

Regarding the parent essential fatty acids, the Soxhlet extracted oil had a 18.1% of ALA and a 8.9% 

of LA. Once again, similar values were found in the oil extracted by supercritical CO2. Therefore, it 

can be concluded that the fatty acid composition does not change when the two extracting methods 

are used. 

2.3.6.2. Comparison of microalgae fatty acid profiles 

Nannochloropsis has traditionally been studied as a source of omega-3 polyunsaturated fatty 

acids [29, 30, 31] due to its high content in EPA (C20:5, ω3). Indeed, as shown in Table 2.4, N. 

salina lipids have a higher content of EPA (1.50%) than S. obliquus and C. protothecoides, where 

polyunsaturated fatty acids are 0.01% in the best conditions and 0.03%, respectively. Nevertheless, 

if we focused on the parent omega-3 fatty acid, N. salina has a very low content (0.3%), in 

comparison with S. obliquus (13.4%) and C. protothecoides (7.1%) at the same conditions of 

extraction, as illustrated in Table 2.4. Concerning the omega-6 fatty acids, the highest content of LA 

was observed in C. protothecoides (23.6%) and the lowest one in N. salina (1.2%). The LA content 

in S. obliquus was 9.3%. In addition, S. obliquus oil presents a low ω6:ω3 ratio, which is 0.35 at 30 

MPa and 45°C, in comparison with C. protothecoides and N. salina oils, extracted at the same 

conditions, where these values are 1.56% and 3.02%, respectively (Table 2.5). 
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Fig. 2.9a. Influence of the extraction time on essential fatty acids content. 

 

 
 

Fig. 2.9b. Influence of the temperature of extraction on essential fatty acids content. 

 

 
 

Fig. 2.9c. Influence of the pressure of extraction on essential fatty acids content. 
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2.3.6.3. Influence of supercritical extraction operating variables on the fatty acids content 

Extraction time, temperature and pressure play a crucial role in the economy of the process, as 

they heavily affect productivity. Therefore, once studied the total yield of the supercritical 

extraction, the fatty acid profile of the oil extracted at different conditions was analysed. 

By looking at Fig. 2.9a, one concludes that the maximum ALA yield is obtained at lower 

extraction times. However, LA content does not change significantly when extraction time 

increases. This result suggests that ALA is degraded due to its additional double bound with respect 

to LA.  

A decrease in temperature is relevant towards ALA extraction efficiency, whereas LA yield 

remains practically constant (Fig. 2.9b).  

A slight decrease of the ALA content is also appreciated when the pressure increases (Fig. 

9c). Once again, the LA fraction remains practically constant.  

It is also noted in Table 2.5 that the ω6:ω3 ratio and the PUFA percentage follows the same 

tendency that the ALA content. That is, the ω6:ω3 ratio increases and the PUFA content decreases 

when the extraction temperature, pressure and time are higher. 

 

Table 2.4. Major fatty acids content (expressed as percentage of total fatty acids) in microalgae lipids as a function of 

the extraction method, species and SFE conditions adopted.  

  S. obliquus   C.protothecoides   N.Salina 

   Soxhlet     SCCO2  SCCO2  SCCO2 

Pressure (MPa) 1   30 30 30   15 25   30 30 30  30  30 

Temperature (°C) 105   45 45 45  45 45  50 55 60  45  45 

Extraction time (min) 1080     30 60 90   30 30   30 30 30   90   90 

Saturated                  

C14:0  0.54   0.47 0.51 0.82  0.42 0.45  0.49 0.51 0.55  0.76  3.87 

C16:0  24.10   19.83 23.53 29.91  18.03 18.89  20.35 21.39 23.68  21.12  52.41 

C18:0  0.93   1.10 1.39 1.87  0.97 1.01  1.15 1.45 1.06  1.46  2.29 

                  

Monounsaturated                  

C16:1 ω9 3.00   2.65 2.73 4.11  2.15 2.45  2.78 2.77 3.19  4.80  0.24 

C16:1cis ω7  0.30   0.26 0.36 0.51  0.17 0.24  0.28 0.29 0.34  1.58  29.17 

C18:1 ω9  14.22   15.50 14.01 16.22  14.56 14.90  15.62 16.21 16.07  3.54  3.18 

                  

Polyunsaturated                  

C16:2 ω6 2.23   2.03 2.12 0.00  1.98 2.00  2.22 2.19 2.53  0.00  0.00 

C16:2  2.63   2.04 2.53 2.89  2.00 2.02  2.62 2.62 2.99  21.32  0.11 

C16:3 ω3 4.03   4.20 4.09 3.83  4.00 4.10  4.02 4.39 3.95  7.60  0.11 

C16:4 ω3  11.16   12.31 10.72 7.83  8.89 10.60  11.55 10.63 9.81  0.31  0.18 

C18:2 ω6  (LA) 8.91   9.80 8.45 9.34  10.33 10.10  9.59 9.47 9.61  23.59  1.19 

C18:3 ω3 (ALA) 18.08   20.10 17.02 13.40  21.47 21.01  19.36 18.86 17.18  7.12  0.30 

C18:4 ω3  2.22   2.50 2.15 1.40  3.00 2.75  2.47 2.30 1.94  0.04  0.08 

C18:5 ω3  0.74   0.01 1.92 0.00  0.00 0.01  1.11 0.95 0.83  0.00  0.00 

C20:5 ω3 (EPA)  0.01     0.59 0.00 0.00   0.01  0.14   0.01 0.00 0.01   0.03   1.50 
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Table 2.5. Microalgae lipid classes (%) as a function of the extraction method, species and SFE conditions adopted. 

  S. obliquus   C.protothecoides   N.salina 

  Soxhlet   SCCO2  SCCO2  SCCO2 

Pressure (MPa)    30 30 30  15 25  30 30 30  30  30 

Temperature (°C)    45 45 45  45 45  50 55 60  45  45 

Extraction time (min)       30 60 90   30 30   30 30 30   90   90 

SFA 27.38   22.75 26.90 34.59  20.33 21.33  23.40 24.65 26.71  25.68  61.25 

MUFA 19.95   20.25 19.78 23.69  20.99 20.86  20.93 21.27 22.00  13.12  33.89 

PUFA 52.67   57.44 53.32 41.80  58.84 58.08  55.67 54.08 51.28  61.77  5.66 

                  
Omega-3 36.32   40.90 36.01 26.59  41.86 41.10  38.63 37.24 33.76  15.13  0.77 

Omega-6 11.20   11.00 10.61 9.34  10.65 10.46  11.86 11.71 12.20  23.63  2.32 

Omega-6/Omega-3 0.31      0.27 0.29 0.35    0.25  0.25   0.31 0.31 0.36   1.56   3.02 

 

2.4. Final remarks 

On the basis of the results obtained in this chapter, Scenedesmus obliquus is the best source of 

ALA essential fatty acid among the three microalgae species studied. While SCCO2 and Soxhlet 

have shown to be comparable as far as the process yield and fatty acid composition of the extracts 

are concerned, SCCO2 is faster, more selective and does not require a toxic solvent. Studying 

pressure and temperature effects on the extraction yield and solubility, it was found that the cross-

over phenomenon occurs at a pressure close to 25 MPa. Consequently, the maximum extraction 

yield was obtained at 30 MPa and 65 °C. The mathematical model and the equations based on the 

characteristic times developed by Sovová fitted accurately the experimental extraction curves. 

Experimental solubility data were correlated by Chrastil, del Valle-Aguilera and Adachi-Lu 

empirical models and a thermodynamic cross-over pressure was found close to 30 MPa. Finally, 

comparing FFA analysis of the extracted oils, it was found that the omega-3 content is negatively 

affected by high temperatures, high pressures and long extraction times, and therefore the highest 

amount of ALA was found at 45°C and 15 MPa after 30 minutes of extraction. An economical 

evaluation assessment could be useful to calculate the most viable conditions for industrial 

applications.   
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CHAPTER 3 

Supercritical CO2 extraction of bioactive 

compounds from Eruca sativa leaves3 

Supercritical fluid extraction from freeze-dried Eruca sativa leaves is assessed with the aim of 

studying the feasibility to obtain bioactive enriched fractions containing different classes of 

valuable compounds. Total extraction yields and compositions using pure CO2 and CO2+selected 

co-solvents are compared. Overall extraction curves, fitted by the model of broken and intact cells 

developed by Sovová, are reported and the influence of the main parameters that affect the 

extraction process is analysed. The extract with the highest content in glucosinolates and phenols 

was collected at 30 MPa and 75°C using 8% (w/w) of water with respect to the CO2 flow rate, 

whereas the fraction richest in lipids was obtained using 8% (w/w) of ethanol as co-solvent at 45°C 

and 30 MPa. A process including a first step with supercritical CO2 extraction using water as co-

solvent followed by a second step, where a fraction rich in lipids is extracted using ethanol as co-

solvent, is proposed. SCCO2 results are compared with Soxhlet and other methods that combine 

organic solvents with ultrasounds. 

3.1. Introduction 

Rocket salad (Eruca sativa) is a vegetable considered as a good source of glucosinolates, 

phenolic compounds [1] and unsaturated fatty acids [2]. The potential beneficial effects of such 

natural products, with respect to several diseases (cancer, cardiovascular and neurological diseases) 

have been recently reported [3,4]. Indeed, some of the health promoting and cancer 

chemoprotective activity of Eruca sativa and the other cruciferous vegetables is widely believed to 

be associated to their content of minor dietary components such as glucosinolates [5]. It is also well 

known that polyphenols have antioxidant properties and several other specific biological actions in 

preventing and or treating diseases [6]. By other hand, erucic acid and other lipids obtainable from 

                                                           
3
 Part of this chapter has been published as: Solana, M., Boschiero, I., Dall’Acqua, S., Bertucco, A., Extraction of bioactive enriched 

fractions from Eruca sativa leaves by supercritical CO2 technology using different co-solvents, 2014, The Journal of Supercritical 

Fluids 94, 245-251. 
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cruciferous oil are promising materials due to the physic-chemical characteristics of long chain fatty 

acids [7]. Extraction of phenolic compounds from plant materials has been traditionally carried out 

by solvents such as methanol, ethanol, acetone and ethyl acetate [6]. Aqueous methanol at high 

temperatures has been predominantly used to extract glucosinolates [1,8]. However the use of 

methanol in food products is limited by strict legal statues [9] and the use of high temperatures 

causes the thermal degradation and hydrolysis of many compounds, thus affecting their quality. 

Supercritical carbon dioxide could be an alternative and environmentally friendly technique, that 

offers several advantages over classical solvent extraction methods, since is inert, non-toxic and 

allows faster extraction at lower temperature and relatively low pressure. In this study, the polar 

nature of glucosinolates, phenolic compounds and a number of lipids makes it necessary the use of 

co-solvents, so to enhance the fluid affinity towards polar compounds. Water and ethanol are 

generally recognised as safe (GRAS), and environmental benign, and can therefore be used in food 

extraction processes [10]. In consequence, the use of these co-solvents permit to extract polar 

compounds without losing the advantages of SCCO2 extraction, resulting in the development of an 

environmental friendly process to obtain in a safe way components of interest for food and 

pharmaceutical industries.  

Supercritical fluid extraction of phenols from other vegetables has been widely applied [10–

12]. However, only one study reporting the glucosinolate content of an extract obtained by SCCO2 

has been found, in which supercritical CO2 extractions from Canola meals both without and with 

ethanol as co-solvent are applied and compared with conventional methods [13]. This work 

investigates supercritical fluid extraction from rocket salad with the purpose of obtaining two 

extracts, the first one rich in phenols and glucosinolates and the second one rich in unsaturated 

lipids. These data form the basis to analyse the feasibility of extracting valuable compounds from 

Eruca sativa leaves, products which could become an interesting option for the pharmaceutical and 

food markets, as active ingredients in functional-foods or food supplements. To the best of our 

knowledge, supercritical CO2 assisted by water has never been applied for extracting glucosinolates 

from vegetables so far. Also, as far as we know, this is the first work on supercritical fluid extraction 

from rocket salad.  

3.2. Materials and methods 

3.2.1. Raw material 

Rocket salad leaves were supplied by the agri-company “La Marostegana”, located in 

Piazzola sul Brenta (Italy). Raw material was crushed with a kitchen grinder and stored at -25 °C. 
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Before the extraction tests, crushed rocket salad leaves were lyophilized for 72 hours, milled with a 

mortar and sieved with a metallic filter  (0.5 mm of pore diameter). The total content of water after 

lyophilisation was measured in the following way: a mass of 0.1±0.2 g of freeze-dried Eruca sativa 

was heated at 80°C in an air flow oven until the mass no longer changed. By measuring the mass 

before and after the drying, the water loss was calculated. The water content of the freeze-dried 

leaves, expressed as percentage with respect to the initial mass, resulted to be 4%. 

3.2.2. Chemicals 

CO2 (4.0 type, purity greater than 99.99%) as supercritical solvent was purchased by Rivoira. 

Ethanol (99.8%), used as co-solvent for SCCO2, and methanol (99.8%), used both as solvent for 

Soxhlet and co-solvent for SCCO2, were purchased from Sigma Aldrich. Water used as co-solvent 

was Milli-Q quality. Methanol, acetonitrile, formic acid and ethanol, used for the measures, were 

provided by Carlo Erba, Prolabo, J.T. Baker and Lab-Scan.  

3.2.3. Supercritical fluid extraction 

Supercritical extraction tests were performed by a laboratory scale equipment already reported 

[14]. The operating procedure was as follows: the extraction cell was filled with 0.50±0.05 g of 

freeze-dried Eruca sativa powder. A thermo-resistance around the extractor maintained the desired 

temperature, which was controlled in the internal flow before and after the vessel. CO2 was 

compressed through a high pressure pump and pre-heated before flowing through the extraction 

vessel. A constant CO2 flow rate of 0.3±0.05 kg h
-1

 was kept in every test. The co-solvent was 

pumped by an intelligent HPLC pump (Jasco PU-1580) and mixed with the CO2 stream before the 

extractor. After extraction, the supercritical fluid was expanded. The extract and the co-solvent were 

collected in 12 mL of a solvent (the same used as a co-solvent). CO2 gas at atmospheric temperature 

passed through a flow meter before being vented. The extract was filtered through a 0.20 µm filter 

(Ministart) and the co-solvent was evaporated by a rotary evaporator. The water content of the 

sample extracted using water as co-solvent was measured to ensure that it was totally evaporated.   

Before any experimental run, a pre-treatment consisting in a pure supercritical CO2 extraction 

during 15 minutes was carried out, in order to extract the low polarity CO2-soluble compounds. It 

has been reported that a pre-treatment of raw material with supercritical CO2 is essential to remove 

lipophilic and nonpolar substances and consequently makes polyphenols more available for the 

extraction [15]. In this case, the objective of the “CO2 extraction pre-treatment” was also to obtain a 

first fraction of lipids and to deactivate the enzyme myrosinase, a step which it is necessary in order 



Chapter 3   

64 

 

to achieve a better extraction of the components of interest [16]. During SC-CO2 extraction, the 

level of inactivation of the myrosinase enzyme depends on the extraction operating variables [17]. 

In kinetics evaluation, the extraction curve simulation was performed using the model 

published by Sovová in 2005 [18]. This model is based on the concept of broken and intact cells 

and simulates two extraction periods, the first one governed by phase equilibrium and the second 

one governed by internal diffusion in particles. The first step to develop this model, called complete 

model, consists in the application of a simplified approximate form of it in order to estimate the 

parameters. The parameters calculated by both the approximate and the complete models are 

reported in section 3.4.  

3.2.4. Soxhlet extraction 

Solvent extraction was carried out by a traditional Soxhlet apparatus. A mixture of methanol: 

water 7:3 was used as solvent. The temperature of extraction was maintained at 100 °C during 18 

hours. Then the solvent was evaporated by a rotary evaporator.  

3.2.5. Quantification of phenolic and lipids contents 

For the quantification of the phenolic content, the freeze-dried vegetal material (0.025±0.001 

mg) was extracted in an ultrasound system for 20 min with 7 mL of methanol 70%. The supernatant 

was removed after centrifugation. Liquids were collected and the volume was adjusted to 10 mL in 

a volumetric flask. The final water content of the solution was changed to 50% to increase 

chromatographic peak resolution. Solutions were filtered through 0.45 μm and used for the HPLC 

analysis. 

For the quantification of the lipids content, the freeze-dried vegetal material (0.050±0.001 g) 

was extracted with n-hexane (5 mL) in ultrasound bath for 10 minutes in a flask. Supernatant was 

removed after centrifugation and the liquid was dried under vacuum at 40°C. Residue was dissolved 

in methanol (2 mL). Solutions were filtered through 0.45 μm and used for the HPLC analysis. 

3.2.6. Analysis of the extracts 

Quali-quantitative analysis of glucosinolates, phenols and lipids in the extracts were obtained 

by HPLC-MS. The measurements were performed on a Varian 212 series chromatograph equipped 

with Prostar 430 autosampler and MS-500 Ion Trap as detector. MS spectra were recorded in 

positive and in negative ion mode (50–2000 Da). The APCI (Atmospheric Pressure Chemical 

Ionizationion) source was used for lipid analysis while the ESI (Electron Spray Ionization) was used 

for phenolic and glucosinolates. Fragmentation of the main ionic species were obtained during the 
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HPLC run by the turbo data depending scanning (tdds) function, yielding the fragmentation pattern 

of eluted compounds. As stationary phase Agilent Zorbax C-18 (2.1 × 150 mm) 3.5 μm was used.  

For glucosinolates and phenolics compounds, mobile phases solvent A (water 0.1% formic 

acid) and solvent B (methanol) were used. The elution gradient started at 80% A then decreased to 

0% A over 30 min. Quantification of phenolic constituents was obtained using rutin as reference 

compound. Calibration curves were obtained in the range 0.5-20 ug mL
-1

 at four different 

concentrations. Rutin calibration curve was (area Y vs concentration X)  Y= 134292 X + 512 

(R
2
=0.9998). For glucosinolates quantification, gluconapin was used as internal standard. 

Calibration curve was obtained preparing solutions with different ratio of gluconapin (IS) and 

glucoerucin from standard solutions at 1.04 mg mL
-1

 of glucoerucin and 1.02 mg mL
-1

 of 

glucoraphanin. Calibration curve (area ratioY vs concentration ratio X) was Y = 0.384 X + 0.012 

(R
2
=0.9998). 

For lipid analysis mobile phases were A (acetonitrile) and B (isopropanol), gradient elution 

was starting 100 % A then in 10 minutes to 40% A  isocratic until 20 minutes then 15% A at 22 

minutes and isocratic until 30 minutes. As reference compound caprilic dyglyceride was used and 

the calibration curve was obtained in the range 3-73 ug mL
-1

. Calibration curve (area Y vs 

concentration X) was Y= 4.3 10
-7

 X + 5.92 . (R
2
=0.9998). Analysis were all performed in triplicate. 

 

3.3. Results and discussion 

3.3.1. Effect of the co-solvent on the extraction yield and composition of the extract 

Preliminary extraction tests were performed with the aim of selecting the co-solvent that 

extracts better each one of the compounds of interest. First, three co-solvents were tested: water, 

ethanol and methanol. Then, SCCO2 extraction without any modifier was carried out. All the runs 

were performed at the same conditions: 30 MPa, 45°C, 0.3 kg h
-1

 of CO2 and 8% of co-solvent 

(w/w) with respect to the CO2 flow rate. Two extractions tests were performed for each co-solvent. 

Table 3.1 shows the average and the error bars of the extracted amounts on the base of the two 

measures.  

It should be noted that, as calculated by Peng Robinson equation of state and according to 

literature data [19], the 8% weight fraction of water is well above the solubility of water in CO2 at 

the operating conditions of the tests. Consequently, these extractions are carried in the presence of 

an aqueous liquid phase. In contrast, when 8% of ethanol or methanol are used as co-solvents at 

these conditions, they are fully solubilized in CO2 and hence there is only one phase.  
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Table 3.1: Extraction yield, total lipids content (TLC), total phenolic content (TPC) and total glucosinolates content 

(TGC) from supercritical fluid extraction at 45°C and 30 MPa using different co-solvents. 

Co-solvent Extraction yield
a
 (%) TLC (mg g

-1
) TPC (mg g

-1
) TGC (mg g

-1
)   

Water 29.20±0.61 0.00±0.00 0.64±0.08 1.82±0.02 

Ethanol 5.54±0.24 87.31±0.76 0.19±0.01 0.00±0.00 

Methanol 5.56±0.06 42.09±0.03 0.28±0.01 0.30±0.02 

None 1.50±0.07 24.85±0.38 0.00±0.00 0.00±0.00 

                      a Extraction yield= (mass of rocket salad extract/mass of dried rocket salad powder)×10 

 

Results, shown in Table 3.1, indicate that a much higher quantity of extract is obtained when water 

is used as co-solvent (29.2%), with respect to the values found using ethanol and methanol as co-

solvents, and with pure supercritical CO2. This could be due to the fact that the presence of water 

increases the density of the fluid mixture, causing swelling of the particles, and therefore improving 

diffusion process and solubilisation of several compounds [10]. Practically no differences were 

found between the yields obtained with ethanol and methanol as co-solvents. A low extraction yield 

(1.5%) was obtained with pure SCCO2, indicating that Eruca sativa leaves contains mainly polar 

compounds, which are not extractable without the use of a co-solvent.  

As regards the composition of the extract, the fraction recovered using water as co-solvent 

was the richest one in phenols and glucosinolates when compared with the other co-solvents or 

when the extraction was carried out without a modifier, probably due to the hydrophilic nature of 

such constituents. Particularly, the extract obtained by SCCO2+water contained 0.64 mg g
-1

 of 

phenolics  and 1.82 mg g
-1

 of glucosinolates at 45°C and 30 MPa, as shown in Table 3.1. No lipids 

were found in this fraction. Table 3.1 also shows that the fraction with the highest content in lipids 

was extracted using ethanol as co-solvent (87.31 mg g
-1

) while only traces of phenols were found in 

it. The extract obtained by SCCO2+methanol contained less lipids than the one obtained by SCCO2 

ethanol, but presented a higher content of phenols and glucosinolates. The sample obtained with 

pure SCCO2 contained 24.85 mg g
-1

 of lipids, whereas phenolic and glucosinolate compounds were 

no identified, as reported in Table 3.1.  

3.3.2. Supercritical CO2 extraction using water as co-solvent 

Once water was demonstrated to be the most efficient co-solvent to extract glucosinolates and 

phenols from Eruca sativa, the effect of the operative conditions on the extraction yields and 

compositions was studied.  
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In Figure 3.1a overall extractions curves, experimental and simulated ones, are plotted at 

temperatures between 45 and 75°C. The runs were performed at 30 MPa using 0.4 mL min
-1

 of co-

solvent (8% (w/w)). As illustrated in Figure 3.1a, the effect of temperature is very relevant, as the 

yield increases from 29.2% to 38.2% when the temperature is varied from 45°C to 75°C. This result 

can be due to the fact that at 30 MPa the pressure is higher than the called cross-over pressure, 

where the vapour pressure is the dominant effect which influences the yield, instead of solvent 

density. In addition, when the temperature of water is increased, its polarity decreases and becomes 

similar to that of methanol [9]. Therefore, the observed increase of the yield at higher temperatures 

could be also related to a more efficient extraction of less polar compounds that does not occur at 

lower temperatures.  

As represented in Figure 3.1b, four extraction tests were performed at pressures between 15 

and 30 MPa, maintaining the temperature at 65°C, with 0.4 mL min
-1

 of water as co-solvent. 

Contrary to expectations, no significant changes were found on the total extraction yield after 60 

minutes. The lowest extraction yield was obtained at 20 MPa and the highest one at 25 MPa, but 

there is not a clear tendency and indeed the results are quite similar. As suggested by Farias-

Compomanes et al. [20], “the low mass-transfer rates at the high pressures may be partially 

attributed to the low dispersion coefficient of the fluid”. With increasing pressure, the solvent 

density and viscosity increase, reducing the ability of the fluid to penetrate the raw material and to 

interact with the extractable components. This effect may have counteracted the increase in the fluid 

density and solvation power at the higher pressures, reducing the extraction yields.  

For the investigation of the influence of the co-solvent dosage, temperature and pressure were 

maintained at 65°C and 30 MPa, respectively. As shown in Figure 3.1c, a high increase of the 

extraction yield was found when the flow rate was raised from 0.4 to 0.5 mL min
-1

. However, when 

such a flow rate of water was tested, the system got clogged. This could be due to the saturation of 

CO2 with water, which is in liquid state at the extraction operative conditions, as mentioned above. 

The total content of glucosinolates and phenols at different extraction conditions was 

measured with the objective of selecting the optimum conditions to extract a fraction rich in these 

bioactive molecules. Table 3.2 shows the results, together with the density of CO2 at the different 

pressures and temperatures. The density was calculated by the equation of Bender [21]. From Table 

3.2 it can be seen that the phenolic content increased when the temperature of extraction was higher, 

following the same tendency of the extraction yield, mentioned above. The glucosinolate content 

increased when the temperature was varied from 55 to 75°C. Hence, the highest glucosinolate 

content (1.96 mg g
-1

) and the highest phenols content (1.48 mg g
-1

) were obtained at the maximum  
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a)                                                                            

 

b) 

 

c)                                                                            

 

Figure 3.1: SCCO2 extraction curves using water as co-solvent obtained at different operative conditions (temperature 

(a), pressure (b) and co-solvent dosage (c)), experimental and modelling. The curves represent e, the extraction yield 

(kgextract kg
-1

solid) as a function of q, the relative amount of passed solvent (kgsolventkg
-1

solid). 

temperature tested, 75°C. On the other hand, the pressure controlled the extraction selectivity of 

phenols and glucosinolates components of Eruca sativa, as shown Table 3.2, even if the extraction  
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Table 3.2: Effect of the operating conditions on the total phenolic content (TPC) and total glucosinolate content (TGC) 

on the extracts obtained by supercritical fluid extraction. 

Temperature (°C) 75 65 55 45 65 65 65  65 65 

Pressure (MPa) 30 30 30 30 25 20 15 30 30 

Densitya (kg m-3) 767 810 851 891 762 692 554 810 810 

Co-solvent dosage (mL min-1) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.3 

TPC (mg g-1) 1.48±0.13 1.42±0.18 1.07±0.08 0.64±0.18 1.23±0.13 1.04±0.11 1.01±0.14 1.31±0.16 1.11±0.13 

TGC (mg g-1) 1.96±0.03 1.87±0.06 1.54±0.00 1.82±0.02 1.83±0.94 0.76±0.35 0.45±0.02 1.07±0.03 0.11±0.04 

 

yield did not increase significantly when at higher pressure. Indeed, the fraction with the maximum 

content of bioactive molecules was extracted at the highest pressure studied, 30 MPa. Regarding the 

co-solvent dosage, the highest values of bioactive molecules content were found with 0.4 mL min-1 

of water. 

 

3.3.3. Supercritical CO2 extraction using ethanol as co-solvent 

The effect of temperature, pressure and co-solvent dosage on the extractions by 

SCCO2+ethanol was also investigated, with the objective of selecting the optimum conditions to 

extract a fraction with the highest content of lipids. First, tests were performed at temperatures 

between 45 and 65°C and a constant pressure of 30 MPa using 0.5 mL min
-1

 of ethanol (8% (w/w)). 

As Figure 3.2a illustrates, the overall extraction curves at different temperatures are very similar 

and the final yields are practically the same. Clearly, at these operative conditions of extraction the 

cross-over point is around 30 MPa. 

The influence of pressure on the extraction yield was studied at a constant temperature of 

45°C, with 0.5 mL min
-1

 of ethanol. Figure 3.2b shows clearly that the higher the pressure, the 

higher the solubility and therefore the extraction yield. This is much more pronounced at higher 

pressures. As widely studied by SCCO2 researchers, the higher densities ensured by higher 

pressures increase the solvent power leading to higher extraction efficiency. In this study, its highest 

value was observed at 30 MPa, which is the pressure limit for the equipment used.  

For the investigation of the influence of the co-solvent dosage, temperature and pressure of 

the tests were maintained at 45°C and 30 MPa, respectively. As shown in Figure 3.2c, 0.5 mL min
-1

 

(8% (w/w)) is the minimum flow rate of ethanol that allows to maximize the extraction yield.  

Since the values of the yield at different temperatures were practically the same, the lipid 

content of the samples extracted at 45°C and 65°C was measured in order to select the optimum 

temperature to obtain the fraction richest in lipids. The total lipids content of the sample extracted at  
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a)                                                                              

 

b) 

 

c)                                                                            

 

Figure 3.2: SCCO2 extraction curves using ethanol as co-solvent obtained at different operative conditions (temperature 

(a), pressure (b) and co-solvent dosage (c)), experimental and modelling. The curves represent e, the extraction yield 

(kgextract kg
-1

solid) as a function of q, the relative amount of passed solvent (kgsolventkg
-1

solid). 
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Table 3.3. Mass transfer parameters evaluated from experimental data at different operating conditions using the 

approximate and the complete models. 

C P  

(MPa) 

T  

(°C) 

CD 

(mL min
-1

) 

Approximate model   Complete model   

       r ksas(×10
5
)  

s
-1

 

AARD  

(%) 

  r ksas(×10
5
)  

s
-1

 

kfa0 

 s
-1

m
-1

 

AARD  

(%) 

  

water 15 65 0.4 0.18 5.59 3.17  0.14 10.30 1.89 1.31  

water 20 65 0.4 0.24 3.21 1.85  0.25 5.14 1.89 1.35  

water 25 65 0.4 0.36 2.32 1.46  0.36 3.99 1.89 1.31  

water 30 65 0.4 0.16 7.74 3.81  0.29 10.40 1.90 2.49  

water 30 45 0.4 0.32 3.22 1.97  0.32 5.48 1.80 2.06  

water 30 55 0.4 0.33 7.33 1.57  0.35 13.30 1.81 1.81  

water 30 75 0.4 0.26 4.55 1.25  0.27 7.44 1.88 1.16  

water 30 65 0.5 0.33 8.96 0.94  0.36 16.38 1.90 0.49  

water 30 65 0.3 0.39 6.39 1.27  0.40 12.05 1.80 0.94  

ethanol 15 45 0.5 0.20 11.10 0.93  0.21 19.43 1.81 1.89  

ethanol 20 45 0.5 0.27 8.63 0.67  0.29 14.92 1.81 0.90  

ethanol 25 45 0.5 0.22 12.46 0.78  0.20 22.84 1.81 1.65  

ethanol 30 45 0.5 0.26 11.49 1.22  0.29 19.82 1.79 1.49  

ethanol 30 55 0.5 0.18 14.04 0.88  0.24 22.96 1.80 0.28  

ethanol 30 65 0.5 0.41 5.29 0.47  0.42 10.28 1.79 0.22  

ethanol 30 45 0.3 0.22 11.19 1.12  0.25 19.04 1.85 1.38  

ethanol 30 45 0.4 0.17 15.97 1.31  0.20 27.57 1.82 1.02  

ethanol 30 45 0.6 0.17 17.32 0.57  0.22 29.03 1.82 0.26  

ethanol 30 45 0.7 0.29 7.10 1.13  0.30 12.26 1.79 0.68  

C, co-solvent; CD, co-solvent dosage; r, grinding efficiency; ks, solid-phase mass transfer coefficient; as, specific area 

between the regions of intact and broken cells; AARD, average absolute deviation; kf, fluid-phase mass transfer 

coefficient; a0, specific surface area per unit volume of extraction bed; θf, dimensionless external mass transfer 

resistance; ti, characteristic time of the solid phase mass transfer; G, initial fraction of extract in intact cells. 
 

45°C was 87.31 mg g
-1

, as mentioned above. However, the extract obtained at 65°C only contained 

44.8 mg g
-1

 of lipids, which indicates that the increase of temperature affected negatively the 

content of lipids. Considering this result and the ones obtained from the study of the yield, it can be 

concluded that the best conditions achieved by SCCO2+ethanol were 30 MPa, 45°C using 8% of 

ethanol with respect to the CO2 flow rate. 

 

3.3.4. Mathematical modelling of overall extraction curves 

The adjustable parameters for the model of broken and intact cells are presented in Table 3.3, 

together with the average absolute deviation obtained for each condition. The values of the 

parameters reported are of the same order of magnitude as the values reported by Sovová [18] for 

both the approximate and the complete model. The average absolute deviation are between 0.47 and 

3.81 in the approximate model and between 0.22 and 2.49 in the complete model. Hence the  
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Table 3.4: Comparison among the phenolic content (TPC), glucosinolate content (TGC) and lipid content (TLC) of the 

fractions recovered in two-step supercritical extractions using water and ethanol as co-solvents. 

 SCCO2: (First step 8% water- 

Second step 8% ethanol) 

 SCCO2: (First step 8% ethanol- 

Second step 8% water) 

 First fraction  Second fraction  First fraction  Second fraction 

TPC (mg g
-1

)  1.48±0.18  0.24± 0.03  0.19±0.01  0.81±0.09 

TGC (mg g
-1

) 1.96±0.03  0.00±0.00  0.00±0.00  1.06±0.03 

TLC (mg g
-1

) 0.00±0.00  43.21±0.62  87.31±0.76  0.00±0.00 

 

approximate model reproduced well our experimental data. A slight improvement was obtained with 

the complete one. 

 

3.3.5. Process proposal 

Two different two-step methodologies of supercritical fluid extraction were tested in order to 

optimize the process to extract two fractions from Eruca Sativa leaves. First, an experiment using 

water as co-solvent during 60 minutes at 30 MPa and 75°C, followed by an extraction using ethanol 

as modifier during 60 minutes at 30 MPa and 45°C was carried out. Then the extractions at the 

same conditions using first ethanol and then water as co-solvents were performed. In the first case, 

the raw material was dried in an oven at 37°C for three days before the second extraction. In the 

second experiment, the raw material was dried at 37°C in an oven for one day. The yield was 

calculated considering the weight of the raw material loaded into the extractor before the first 

extraction.  

Table 3.4 shows the phenols, glucosinolates and lipids content of the samples extracted by 

these two steps processes. Results obtained using the two different approaches clearly showed a 

different composition of the obtained extracts. In particular using 8% water in the first step there is 

a higher yield in more polar constituents namely polyphenols and glucosinolates, while using 

ethanol 8% in the first step we observed a lower yield of these compounds but an increased yield of 

lipids. Thus in order to extract compounds with different polarity different protocols may be useful. 

As an example, the methodology shown in Figure 3.3 is proposed to recover two fractions of extract 

from Eruca sativa leaves by supercritical technology. 

3.3.6. Comparison between supercritical fluid extraction, Soxhlet and other extraction methods 

Eruca sativa leaves present an ample variability of total glucosinolate and phenol contents 

[1]. Phenolic contents are affected by biotic stresses (insect attack and pathogen infection) and 

abiotic stresses (light, temperature, nutrient supplies, water availability, growing conditions and UV 

radiation) besides storage conditions, post-harvest treatments and the estimation methods. All these  



 Supercritical CO2 extraction of bioactive compounds from Eruca sativa leaves  

73 

 

 

Figure 3.3: Proposal of a two-step methodology for the extraction of two fractions rich in valuable compounds from 

rocket salad. 

Table 3.5: Comparison between SCCO2, Soxhlet and quantification methods in terms of total phenolic content (TPC), 

total glucosinolates content (TGC) and total lipids content (TLC),.  

Method TPC (mg g
-1

) TGC (mg g
-1

)   TLC (mg g
-1

) 

SCCO2 +water- SCCO2 +ethanol 1.48±0.18 1.96±0.03 43.21±0.62 

Soxhlet 0.16±0.04 1.57±0.28 0.00±0.00 

Quantification methods 1.96±0.16 0.756-2.459
a
 64.43±5.33 

                           
a
Literature data

[1]
 

 

factors, together with the biosynthesis of phenolic antioxidant compounds, affect the final 

concentration of polyphenols in plant tissues [22]. This made it necessary the quantification of 

phenolic content in the raw material used for the experiments. An ultrasound system with aqueous 

methanol was the technique used to extract the phenolic compounds. The lipid content was also 

measured, obtaining  the sample by n-hexane in an ultrasonication bath. The glucosinolate content 

is compared with the data published by Pasini et al. [1], that reported the results of 37 rocket salad 

accessions extracted by aqueous methanol at 75°C. Table 3.5 shows the results obtained using these 

extraction methods, together with the ones by Soxhlet and the composition of the extracts with 

SCCO2+co-solvents. The total content of lipids, glucosinolates and phenols was higher in the 

fraction obtained by SCCO2+co-solvents than by Soxhlet, as presented in Table 3.5. Comparing the 

total content of these bioactive molecules in the leaves extracted by SCCO2+water (1.48 mg g
-1

) 

with the total content of phenols extracted by ultrasound system with aqueous methanol (1.96 mg g
-

1
), 76% of the phenols were recovered by supercritical fluid extaction. In this extract, 77% of 

glucosinolates were recovered with respect to the maximum value found in Eruca sativa leaves by 

Pasini et al. [1]. Regarding the lipids content, 87.31 mg g
-1 

was the highest value obtained by 

SCCO2+ethanol, as shown in Table 3.1. It means that supercritical CO2 assisted by ethanol was 

more efficient than Soxhlet and the method that combines n-hexane (5 mL) and ultrasonication. 

This can be due to the effect of pressurized CO2, that opens the pores of the cells facilitating the 

access of the solvent in the core. 
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3.4. Final remarks 

In this chapter, supercritical fluid extraction from Eruca sativa leaves, using both pure CO2 

and SCCO2+co-solvents, was investigated. For the extraction of glucosinolate and phenolic 

compounds, water resulted to be the most efficient co-solvent, whereas the fraction richest in lipids 

was extracted by SCCO2+ethanol. The model of broken and intact cells developed by Sovová fitted 

well the experimental data. The effect of the operative conditions on the yield and composition of 

the extract presented a different behaviour when different co-solvents were tested. The extractions 

performed by SCCO2+water were favoured by higher pressures and higher temperatures. 

Accordingly, an extract containing a total phenolic content of 1.48 mg g
-1

 and a total glucosinolate 

content of 1.96 mg g
-1

 was obtained operating at 30 MPa and 75°C. Nevertheless, the lipids content 

of the extract obtained by SCCO2+ethanol was negatively affected by temperature and consequently 

the optimum conditions were found at 45°C and 30 MPa, resulting in a fraction with 87.3 mg g
-1

 of 

lipids. Thus the application of a sequential extractive approach was proposed using first 

CO2+ethanol for lipid extraction and then water as co-solvent for phenolic and glucosinolate 

containing extracts. The sequential extraction scheme can be attractive for the production of 

solvent-free products containing health promoting constituents that can be useful as active 

ingredients in functional-foods or food supplements. 
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CHAPTER 4 

SFE of natural extracts from rocket salad: 

process design and cost benefit analysis4 

A profitability analysis of a large scale supercritical fluid extraction (SFE) process to obtain 

natural extracts from rocket salad is presented in this chapter. An industrial-scale SFE plant is 

designed using process simulation techniques based on experimental data. Afterward, the effect of 

operative parameters on the process costs is evaluated. At the optimum conditions, the economic 

and financial analysis is performed, and the influence of the price of rocket salad on the price of the 

natural extract is assessed. Results indicate that the raw materials account for 67 % of the total 

production costs. The proposed industrial application could be economically viable with a pay-back 

period of 10 years if the price of the rocket salad extract is larger than 21.9 US$ kg
-1

, considering 

the current wholesale price in the market, or 17.0 US$ kg
-1

 if using non-saleable rocket salad. Both 

scenarios make the process economically sustainable and competitive with the current price of 

natural extracts obtained by organic solvent extraction process.  

4.1.  Introduction 

Plant extracts is a rapidly growing emerging industry due to the increased interest in the 

substitution of medicines by natural compounds for the prevention of diseases and the enhancement 

of our general health status. Main applications of the vegetable extracts include the fields of herbal 

medicine, food additives, functional food and cosmetics. These markets require ultraclean, 

verifiable, high quality products, reliable supplies and competitive prices [1]. Supercritical fluid 

technology is advantageously positioned as a sustainable and safe extraction option for the 

preparation of plant extracts and has been widely studied in a variety of applications during the last 

decades [2]. In many cases, the molecules of interest have high polarity such as most of the 

phenolic and glucosinolate compounds. The extraction of polar compounds by supercritical fluid 

                                                           
4
 Part of this chapter has been published as: Solana, M., Mirofci, K., Bertucco, A., Production of phenolic and glucosinolate extracts 

from rocket salad by supercritical fluid extraction: Process design and cost benefits analysis, 2016, Journal of Food Engineering 

168, 35-41. 



Chapter 4   

78 

 

extraction requires the presence of polar co-solvents due to the non-polar nature of CO2, and their 

effect is relevant on the extract composition and consequently the economics of the process.  

Studies on the economic viability of SFE processes have been reported by several authors 

along the years. Among others, Fiori investigated this problem for a supercritical extraction plant 

from exhausted grape marc to obtain grape seed oil [3]. This study concluded that the proposed 

industrial application could be economically interesting, obtaining a breakeven point of 5.9 US$ kg
-

1
 for the price of supercritically extracted grape seed oil. Comim et al. presented an economic 

analysis of a process to obtain extracts from banana peel oil, which resulted in a production cost of 

13.69 US$ kg
-1

 for extractions performed at 30 MPa and 50 °C during 35 min of process [4]. Leal et 

al. concluded that the cost of raw material of the SFE of sweet basil represented 80% of the process 

costs, prevailing over both energy and utilities costs [5]. A similar result was reported by Veggi et 

al., who investigated the production of phenolic-rich extracts from the Brazilian plants Pyrostegia 

venusta, Inga edulis, Heteropterys aphrodisiac and Phaseolus vulgaris L., confirming that the price 

of raw material has a great influence on the final production cost [6]. 

Rocket salad (Eruca sativa) is a vegetable particularly rich in natural compounds such as 

glucosinolates [7–9], phenolic compounds [7,8] and unsaturated fatty acids [10,11]. Thus it can be 

ideal as a starting material for the production of extracts to be used in the market of functional foods 

or nutraceutical. As regards its numerous health benefits, it is an excellent stomachic, stimulant, 

diuretic and antiscorbutic [12]. Recent studies have also shown  that  an  extract  from  rocket salad  

possesses  antisecretory,  cyto-protective  and  anti-ulcer  activities [13]. Moreover, the cultivation 

of rocket salad with respect to other food crops has a number of advantages, since it is a very hardy 

plant which requires little care, little irrigation and manuring [12], and it easily adapts to climate 

changes and different soil types [14]. Indeed, rocket grows spontaneously in places modified by 

humans: abandoned gardens, waysides, tips and among rubble [12].  

In our previous study, SFE from rocket salad and the content of the mentioned nutrients in the 

extracts is reported [15]. Accordingly, the use of rocket salad as a natural source of these 

compounds appears attractive and reasonably feasible. The present work aims to assess the scaling 

up, the feasibility and the profitability of the supercritical fluid extraction process to obtain natural 

extracts from rocket salad at a commercial level. The methodology presented herein could be easily 

extended to the supercritical fluid extraction of natural extracts from other vegetal materials. 
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Figure 4.1. Block flow diagram of the SFE process. 

4.2.  Methodology 

A conceptual design of an industrial scale application of the supercritical CO2 extraction 

process to obtain natural extracts from rocket salad rich in glucosinolate and phenolic compounds is 

proposed, based on real data published by our group [15]. In the previous work, a two-step process 

using first water and then ethanol as co-solvents was proposed, obtaining two extracts rich in 

phenolic and glucosinolate compounds and lipids, respectively. In the present study, the attention is 

focused on the first step of such a process, namely water is used as a co-solvent. In this case, the 

highest extraction yields were obtained at 75°C, 25 MPa and 10% (w/w) of water in the CO2 flow, 

whereas the highest content of phenolic and glucosinolates compounds was detected in the extract 

obtained at 75°C, 30 MPa and 8% of water (w/w). This natural extract presented 1.48±0.13 mg g
-1

 

of phenols and 1.96±0.03 mg g
-1

 of glucosinolates. In this work an economical evaluation is 

performed in order to investigate the cost benefit analysis of such a process and optimizing the 

operating conditions from the economical point of view. The large scale process has been 

developed using the simulation software Aspen Plus™ V8.2.  

4.2.1. Process model 

The SFE plant has been designed for a processing capacity of 100 kg h
-1

 of lyophilized rocket 

salad, which is assumed as the raw material. Considering that the water content of rocket salad is 

85.7 wt% [16] and the moisture of the lyophilized rocket salad of our experiments was 4 wt% [15], 

546.45 kg of rocket salad are required to obtain 100 kg of lyophilized rocket salad.  

As shown in Figure 4.1, the process consists of three main blocks: the extraction section, the 

CO2 separation, recovery and recycle, and the drying step. The components involved in this process 

are the solid material to be extracted (lyophilized and milled rocket salad), CO2 and water. The solid  
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a)                                                                      b) 

 

Figure 4.2. Comparison among the CO2 density at different pressures calculated by the equations of SRK, PSRK, Peng 

Robinson and Bender at 50°C (a) and 65°C (b). 
 

material was simplified due to the complexity of the composition of vegetal materials. Accordingly, 

the extractable solid material was approximated with the conventional component oil and the inert 

matrix was approximated with cellulose. Among the components present in Aspen Plus Process 

Simulator, cellulose and oil have been chosen to approximate the real material because of their 

macroscopic similarities with the real material components. We think this approximation does not 

affect the bulk properties of the process streams. By the other hand, the properties that could be 

affected by this approximation, such as solubility, have been experimentally measured using the 

real material, correlated to operating variables and inserted in the simulation. 

The extraction system includes two extractors operating in parallel, in order to ensure a 

continuous throughput. The extract, the solid not extracted and the loss of CO2 after extraction are 

considered as process outlets.  

Peng-Robinson model was chosen as thermodynamic method [17]. The consistence of this 

method for the calculation of density was evaluated by comparing the data obtained from Peng-

Robinson, PSRK [18] and SRK [19–21] with those of a more precise equation of state, the Bender 

equation [22]. Results, presented in Figure 4.2, indicate that Peng-Robinson is the most appropriate 

thermodynamic method for the calculation of the CO2 density at the supercritical state, at the 

conditions here described and under the comparisons here performed.  

The consistence of Peng-Robinson method to calculate the solubility of water in CO2 was also 

evaluated. Data of water solubility in CO2 obtained with this model were compared to experimental 

data from literature (Coan and King Jr., 1971; Hou et al., 2013; Wiebe, 1941). For this fitting the  
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Figure 4.3. Comparison between the water solubility in CO2 calculated by Peng-Robinson equation and experimental 

data. 
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Figure 4.4. Schematic diagram of the SFE industrial plant for the extraction of natural extracts from rocket salad. 

Range of operating conditions: X1: 45-75°, 15-30 MPa; V1: from extraction pressure to separation pressure (0-7.4 

MPa); S1: 75°C; S2: 75°C; VP: 0.01 MPa ;E1: 5°C; E2: 45-75°C; E3: 75°C; E4: 45-75°C; P1: 15-30 MPa; P2: 15-30 

MPa; C1: from separation pressure to CO2 storage pressure (6 MPa). If separation pressure> CO2 storage pressure C1 

will be substituted by an expansion valve. 

binary interaction parameters have been adjusted, resulting to be kij(1)=0.20, kij(2)=0 and kij(3)=0. 

From the results, shown in Figure 4.3, it can be concluded that Peng-Robinson is an appropriate 

thermodynamic model as regards the calculation of the water solubility in supercritical CO2 at the 

conditions of our interest.Figure 4.4 represents the schematic diagram of the process. In the 

following, the description of the models used to simulate and scale-up the process is summarized.  
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Table 4.1. Parameters a and b from the experimental curves obtained at different operating conditions. 

P (MPa) T (°C) a b 

30 75 61.65 196.55 

30 65 47.36 180.72 

30 55 36.29 137.39 

30 45 29.40 213.31 

25 65 50.57 188.94 

20 65 47.47 290.22 

15 65 56.33 415.79 

 

4.2.1.1.Extraction system 

A flow rate of 30,000 kg h
-1

 of CO2 at 25°C and 6 MPa (pressure of the CO2 storage of our 

experiments) is cooled down (E1) in order to prevent the cavitation of the pump. This liquid CO2 is 

pumped up (P1) to the extraction pressure. The co-solvent (water), stored at 0.1 MPa and 25°C, is 

pumped up to reach the extraction pressure by P2. The flow rate of water is 2400 kg h
-1

, thus 8% 

(w/w) of water with respect to CO2 is used, according to our experimental results.  The mixture of 

CO2 and water is heated (E2) to the extraction temperature before the extractor. A separation block 

has been used to simulate the extraction cell (X1) in Aspen Plus™ V8.2. An external calculator 

block calculates the split fraction of the extract and the remained solid at different times, according 

to the experimental extraction curves reported in our previous work [15]. They are represented by 

equation 4.1, where y=extraction yield (% kgextract/kgsolid), x=specific solvent consumption 

(kgCO2+water/kgsolid), and parameters a and b fitted on experimental data at different pressures and 

temperatures are listed in Table 4.1.  

y =
ax

b+x
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                      (4.1) 

It is worth noting that the applicability of the experimental data is not scale independent and 

consequently flow patterns would be changed by scaling up. This introduces uncertainty in our 

calculation. In any case, in this work a constant D/L ratio was kept, according to Duba at al. [27], 

who recently reported that the rate of SCCO2 extraction mainly depends on extractor D/L ratio.  

The losses of CO2 at the end of the extraction, during the opening and refilling steps (two extractors 

are operating in parallel), are simulated by a separation block. They are referred to the CO2 that 

remains in the extractor when the separation valve is closed, i.e. when the extraction pressure gets 

equal to the separator pressure. It means that once a cycle is finished, the first separation valve is 

closed, the extractor is depressurized and then it is cleaned and filled again with the raw material. 
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Table 4.2. Solubility of the extract in CO2 at 75°C calculated  by Chrastil equation. 

P (MPa) Density (g L
-1

) Solubility (gextract/ gCO2) 

15 466.4 9.83×10
-4

 

10 233.7 6.19×10
-5

 

8 166.4 1.59×10
-5

 

7 138.5 7.65×10
-6

 

6 113.3 3.42×10
-6

 

5 90.5 1.39×10
-6

 

4 69.6 4.87×10
-7

 

 

 In the meanwhile, the second extractor is operating. Therefore, the pressure and temperature 

of the CO2 that remains in the extractor are the same of the extraction. The losses were calculated 

from the porosity of the solid bed in the laboratory extraction cell: it was measured that the apparent 

density of the solid is 190 kg m
-3

, whereas its real density resulted to be 1554 kg m
-3

. With a density 

of CO2 at 7.2 MPa (separation pressure calculated hereafter) and 25°C equal to 1554 kg m
-3

, the 

holdup of CO2 in the extraction cell, which is consequently lost when it is opened after the 

extraction cycle, is about 3.6 kgCO2 kgsolid
-1

. Hence to treat 100 kg h
-1

 of lyophilized rocket salad the 

losses of CO2 are estimated to be 360 kg h
-1

. In addition, the losses of CO2 were calculated at the 

separation pressure (7.4 MPa), resulting to be 344 kg h
-1

 instead of 360 kg h
-1

. In summary, our 

calculation of CO2 losses can be considered as a conservative assumption which does not affect 

substantially the overall result. 

4.2.1.2.CO2 separation 

The expansion of the supercritical CO2 is carried out by means of valve V1. A heat exchanger 

(E3) is needed to prevent the freezing of CO2 due to depressurization.  

Before the separation block S1, the separation of CO2 from the extract is simulated. Chrastil 

equation (4.2) allows to calculate the solubility of the extract in CO2, where S is the solubility (g kg
-

1
) of extract in CO2, ρ is the density (g L

-1
), and T is the temperature of the block E3 (K).  

S = ρ4e(18−
14824

T
)
                                                             (4.2) 

 

The values of the parameters were calculated from the experimental data [15]. In Table 4.2, 

the solubility of the extract in CO2 at different pressures, calculated by the equation 4.2, is reported. 

After being separated from the co-solvent and the extract, CO2 is pressurized again (C1) to 6.0 

MPa to be recycled.  
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Table 4.3. Price of utilities. 

 Price (US$ GJ
-1

) 

Common Utilities 

Electricity (110V - 440V) 16.8 

Cooling Water (30°C to 45°C) 0.354 

Steam 

Low Pressure (5 bar, 160°C) 6.08 

Refrigeration 

Moderately Low (5°C) 4.43 

 

4.2.1.3.Drying 

The separation between water and the extract is carried out by a drying unit that is simulated 

by a separation block (S2). Water is assumed to be 99% recycled. To evaluate the duty that should 

be supplied to evaporate water and to condensate it again, a heat exchanger has been used (E4). The 

recycled water is sent to the co-solvent pump (P2) to reach the extraction pressure. 

4.2.2. Economic and financial evaluation 

The economical evaluation method used to assess the profitability of the proposed 

supercritical fluid extraction process is briefly presented in this section.  

4.2.2.1.Operating costs 

The operating costs are the expenses related to the operation of the plant. They can be divided 

in two categories: cost of utilities and cost of raw materials. The utilities needed for the operation of 

the SFE plant are: electricity, water, steam and refrigeration. The price of the utilities that have been 

considered in this study, reported by Turton at al. [28], are summarized in Table 4.3.  

As regards the raw materials, the price of CO2 and water are 0.279 and 0.0014 US$ kg
-1

, 

respectively (http://www.icis.com). Considering that the average wholesale price of rocket salad is 

0.25 € kg
-1

 (0.29 US$ kg
-1

) [30] and the pre-processing cost (milling and drying) is 0.03 US$ kg
-1

 

according to literature estimates [31,32], the price of rocket salad considered in this study is 0.32 

US$ kg
-1

. However, the price of rocket salad depends on some factors that are difficult to predict, 

and thus a sensitivity analysis to determine the influence of the price of rocket salad is presented in 

section 4.3.4.  

The solid remaining after extraction can be used as a matrix for the extraction of unsaturated 

fatty acids [15] or for animal feeding [33], among other uses. As a consequence, the wastewater 

treatment has not been included in the cost evaluation. 
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4.2.2.2. Capital costs 

As capital costs, the investment for equipment has been calculated using the equations proposed 

by Douglas [34]. Aspen Plus™ V8.2 evaluation options were used for sizing the pieces of 

equipment.  

The following equation was applied to calculate the cost of the heat exchangers: 

Cins⁡(US$) = (
(𝑀&𝑆)

280
) 101.3𝐴0.65(2.29 + 𝐹𝑐)                                               (4.3) 

where M&S is the Marshall &Swift index considered equal to 1469.6 (0.2% per year from the 

value of 1457.4 of 2010), A is the exchange area (ft
2
) and Fc is a corrective factor. For each 

extraction vessel, equation 4.4 was used: 

IC⁡reactor⁡(US$) = (
(𝑀&𝑆)

280
) 101𝐷𝑅

1.066𝐿𝑅
0.802(2.18 + 𝐹𝑐)                            (4.4) 

where DR is the diameter (ft) and LR is the length of the vessel.  

For compressors the following equation has been applied: 

IC⁡Comp(US$) = (
(M&S)

280
) 517.5(bhp)0.82(2.11 + Fc)                                                 (4.5) 

where bhp is the brake power (hp). 

In equations 3 to 5, Fc is 1.55 for the extractor vessels and 1.52 for the rest of the equipment. 

Pump, pipes, valve costs were neglected.  

4.2.2.3. Cost benefit analysis (CFA) 

The CFA of this process has been carried out considering an operation time of 8760 h year
-1

. The 

standard method proposed by Douglas [34] has been used, according to the hypotheses summarized 

in Table 4.4. The values of interest and taxation are according to similar analysis on SFE plants 

[35,36]. 

The total capital investment (TCI) and the total production cost (TPC) were estimated using the 

formulas proposed by Douglas [34]: 

TCI⁡(US$) = 2.36⁡(DCO)                                                                                                          (4.6) 

TPC⁡ (
US$

year
) = 1.03(RM + UT) + 0.186(DCO) + 2.13105(NOP) + 0.025         (4.7) 
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Table 4.4. Parameters used to evaluate the profitability of the SFE process. 

Life of the plant  10 years 

Period of start up 2 years 

Depreciation (DDB method) 7 years 

Taxation  20% 

Interest  5% 

Fixed capital land 1000000 US$ 

Residual value  150000 US$ 

                         

where DCO stands for direct costs onsite, RM for raw materials, UT for utilities, NOP for number 

of operators and INC for incoming. 

4.3. Results and discussion 

4.3.1. Operating costs 

First, the effect of the separation pressure on the operating cost at different extraction 

pressures was evaluated. As can be seen in Figure 4.5, the higher the separation pressure the lower 

the operating costs. Therefore, the critical CO2 pressure, namely 7.4 MPa, is the most economical 

separation pressure in the separation step for all the extraction pressures. It should be noted that the 

similar values of compositions obtained from the experimental extraction measures are the reason 

of the overlapping of the trends obtained at 25 and 30 MPa. 

The effect of extraction pressure on the operating costs at 65°C was investigated. As shown in 

Figure 4.6a, the lowest operating cost is obtained at 25 MPa, which corresponds to the highest 

extraction yield. It is worth noting that the content of phenolic and glucosinolate compounds at 25 

 

Figure 4.5. Effect of the separation pressure on the operating costs at different extraction pressures. 
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a)                                                                  b) 

 

Figure 4.6. Total operating costs (a) and distribution of the operating cost (b) at different extraction pressures and a 

constant temperature of 65°C. 

MPa is slightly lower than at 30 MPa, however results shown in Figure 4.6 indicate that the cost of 

pumping up to 30 MPa are not compensated by the benefits of the slightly higher content of such 

natural compounds. The percentage distribution of the operating costs at different extraction 

pressures is illustrated in Figure 4.6b. The pumping cost is lower at low extraction pressures. 

Clearly, the cost of raw materials is always the most significant one. 

The effect of extraction temperature on the operating costs at 25 MPa has also been 

investigated. As shown in Figure 4.7a, the higher the extraction temperature the lower the operating 

costs. There is a significant decrease from 45°C to 55°C due to the increase of the extraction yields 

in that range. In Figure 4.7b, the distribution of the operating costs at different temperatures is 

represented. Once again, the cost of raw materials is the most significant one. At 45°C the 

consumption of raw materials significantly increases due to the decreasing of the extraction yield. 

To sum up, the lowest operating costs were obtained at 25 MPa and 75 °C, at a separation 

pressure of 7.4 MPa. At these conditions, as reported in our previous work [15] between 1.23-1.48 

mg g
-1

 of phenolic compounds are present in the natural extract, together with 1.83-1.96 mg g
-1

 of 

glucosinolates.  

4.3.2. Capital costs 

The equipment costs were calculated using the equations proposed by Douglas [34]. The 

direct costs onsite (DCO) at the optimum conditions resulted to be 653,729 $, the number of 

operators necessary are 14 and the INC has been calculated to be 3,012,564 $/year. Table 4.5 shows 

the area and the cost of each piece of equipment. The distribution of the equipment cost is 

represented in Figure 4.8. As can be seen, the cost of the compressor is the most significant one, 
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a)                                                                         b) 

 

Figure 4.7. Total operating costs (a) and distribution of the operating cost (b) at different extraction temperatures and a 

constant pressure of 25 MPa. 

followed by the one of the heat exchangers. 

Eventually, a preliminary analysis of the total production cost distribution (i.e. capital plus 

operating) at the optimum conditions (25 MPa and 75°C) was considered. The equipment costs are 

annualized according to Douglas [34], using a capital charge factor (CCF) equal to 1/3. Results are 

shown in Figure 4.9, where it can be seen that the fixed capital (FCI) contribution is quite low 

compared to the operating cost. Above all, raw materials are the most expensive production cost 

(67%). Hot utilities affects the production cost more than cold utilities, while the influence of 

pumping is quite low. 

Table 4.5. Equipment area and cost of the equipment calculated by calculated by Aspen Plus Simulator and 

Douglas equations, respectively. 

 

E1 E2 E3 E4 X1 X1b C1 

Area (ft
2
) 259.07 188.56 120 39.14 3 × 12 3 × 12 

 Cost ($) 75,011 61,04045 45,503 21,966 47,210 47,210 308,547 

 

 

Figure 4.8. Equipment cost distribution for a SFE plant treating 100 kg h-1 of lyophilized rocket salad. Cost of heat 

exchangers= 203,551 US$; cost of vessels=141,631 US$; cost of compressor= 308,546 US$. Total equipment cost= 

653,729 US$. 
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Figure 4.9. Total process costs distribution at the optimum conditions: extraction pressure of 25 MPa and temperature 

of 75°C. 

4.3.3. Cost benefit analysis 

Finally, an analysis of the profitability of the process was carried out. The total capital 

investment and the total operating cost, calculated by the equations of Douglas [34], resulted to be 

1,542,802 US$ and 5,344,313 US$ year
-1

, respectively.  

Fiori et al.[35] reported that the indicative cost of a 10 kg h
-1

 plant is 1,600,000 €, 3,900,000 € 

for a 100 kg h
-1

 plant and 6,300,000 € for a 300 kg h
-1

 plant. Our plant investment cost is 

comparable to these values.  

Considering all the hypotheses mentioned above, the process would have a positive net 

present value at the end of life if the price of the extract is higher than 21.9 US$ kg
-1

. Nowadays, 

the market price of the natural extracts from vegetables such as broccoli or apple varies from 10 to 

80 $ kg
-1 

[37] . Therefore, the process under investigation can be considered quite interesting for 

future developments.  

4.3.4. Sensitivity analysis 

The price of the rocket salad used as raw material can be influenced by many factors, 

including the location of the plant, which affects the cost of transportation, or the variation of the 

price over time. Moreover, using as raw material the non-saleable rocket salad, whose expense is 

only the pre-processing cost, could be another option. It is therefore interesting to calculate the price 

of the extract in different scenarios. The cost benefits analysis was repeated for values of rocket 

salad prices in the range 0-1 US$ kg
-1

. As illustrated in Figure 4.10, the price of the rocket salad 

extract that makes the process economically viable after 10 years using non-saleable salad is 17.0 

US$ kg
-1

. On the contrary, for price of rocket salad equal to 1 US$ kg
-1

, the price of the extract 

would have to be increase to 33.2 US$ kg
-1

.  
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Figure 4.10. Evolution of the rocket salad extract price as a function of different prices of rocket salad. 

4.4. Final remarks  

A conceptual design of an industrial supercritical fluid extraction process that produces an 

extract rich in glucosinolates and phenolic compounds from freeze-dried rocket salad, using water 

and carbon dioxide as the solvents, has been developed. The base for calculation is a plant size able 

to treat 100 kg h
-1

 of lyophilized rocket salad. The software Aspen Plus™ V8.2 was employed for 

process simulation which have been turned on laboratory experimental measurements. The 

influence of the extraction pressure and the extraction temperature have been investigated, 

obtaining the lowest operating costs at 25 MPa and 75 °C. The effect of the separation pressure on 

the operating costs has also been studied, obtaining an optimum value at 7.4 MPa. A cost benefit 

analysis of the profitability of the process was made showing that with an interest of 5% and 10 

years of pay-back period, the net present value of the process would be positive if the selling price 

of the extract was higher than 21.9 US$ kg
-1

, based on the current wholesale price of rocket salad. 

In the best scenario, namely using non-saleable salad, the price of the extract would be 17.0 US$ kg
-

1
. The proposed method is general and can be applied for the extraction of natural extracts from 

other vegetal materials. 
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CHAPTER 5 

Comparison of extraction methods for 

obtaining phenols from asparagus5 

Supercritical fluid and pressurized liquid extractions are investigated for effective recovery of 

phenolic compounds from asparagus. By the one hand, the effect of different co-solvents on 

supercritical fluid extraction (SFE) is examined. Results confirm that the presence of water and 

ethanol is essential to obtain a phenolic enriched extract with high antioxidant activity. Operative 

conditions influence the extraction yield, whereas the phenolic composition of the extract does not 

vary significantly. By the other hand, the differences among various solvents on pressurized liquid 

extraction (PLE) is analysed. Once again, the mixture water-ethanol gives the best results in terms 

of phenolic content, which are comparable with SFE and Soxhlet ones. In total, fourteen phenolic 

derivatives were identified, being rutin the most abundant compound in all the extracts. Phenolic 

acids, mainly 3-O-feruloylquinic acid, represent a relevant percentage of the phenolic content of the 

asparagus extracts. The methods and solvents considered influence diversely the extraction of 

molecules with different structure. 

5.1. Introduction 

Extracts of vegetal materials rich in phenolic compounds have gained a growing interest due 

to their beneficial antioxidant properties. They are mostly used as functional ingredients for the 

food industry improving the quality and the nutritional value of foods. Other applications involve 

the production of paints, paper and cosmetic [1]. As a good source of phenolic compounds, 

asparagus can be considered a product of interest for such industries. 

The phenolic content of asparagus is mainly composed by flavonoids [2,3], which are the 

major dietary constituents of plant-based food. Over 4000 chemically varieties of flavonoids have 

                                                           
5
 Part of this chapter has been published as: Solana, M., Boschiero, I., Dall’Acqua, S., Bertucco, A., A comparison between 

supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L, 2015, 

The Journal of Supercritical Fluids 100, 201-208. 
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been reported to date. They are categorized into the class of flavonols, flavones, flavanols, 

flavanones and isoflavones,based on the additional presence of a C2–C3 double bond, hydroxyl, 

methoxy groups, glycoside, and different substituents of the molecules [4–7]. In food, flavonoids 

exit mainly as 3-O-glucosydes and polymers [8]. Among the major flavonoids, asparagus green 

spears are rich in rutin, the 3-O-rutinoside of the flavonol quercetin [2]. Rutin, also known as 

vitamin P, exhibits significant pharmacological activities, including anti-oxidant, anti-inflammatory, 

anti-diabetic, anti-adipogenic and neuroprotective [4]. Currently, over 130 registered therapeutic 

medicinal preparations are containing rutin in their formulations [4,9]. Asparagus also contain high 

levels of another quercetin glycoside, isoquercetrin, and phenolic acids as chlorogenic acid, p-

coumaric, caffeic and ferulic acids [2].  

Nowadays, the search for an extraction technique to obtain phenolic compounds is the focus 

of numerous researches. The objective of such studies is to find out an economical and safe method 

to obtain plant extracts with high antioxidant activity, which is directly correlated to their phenolic 

content [10]. Supercritical fluid extraction (SFE) is advantageously positioned as a sustainable and 

safe extraction option for the preparation of extracts from vegetal materials, with more than 300 

species reported in literature [11]. The polar nature of most natural compounds, such polyphenols 

makes it necessary the addition of co-solvents to supercritical CO2, in order to enhance the fluid 

affinity towards polar compounds. Water and ethanol are inexpensive and green co-solvents that are 

increasingly taken into account due to the opportunity of direct use in food and pharmaceutical 

products. Furthermore, the use of water-ethanol mixtures as co-solvents has been demonstrated to 

be more efficient in extracting phenolic compounds than the corresponding mono-component 

solvent system [12–17].  

Recently, the recovery of valuable compounds by means of extraction with pressurized liquids 

(PLE), also known as accelerated solvent extraction, has shown promising results [18–20]. A great 

advantage of this technique is that high pressure solvents remain in the liquid state, even when 

subjected to temperatures above their boiling points. These conditions enhance the solubility of 

target compounds in the solvent and the desorption kinetics from solid matrices [19]. Moreover, 

high pressure permits to accelerate the rate of extraction from sample matrix [4]. As a consequence, 

shorter extraction times with respect to traditional extraction techniques are needed [18].  

Based on the exposed context, this work aims to evaluate the effect of using environmental 

friendly techniques, such as SFE and PLE, on the extraction of enriched phenolic extracts from 

asparagus. The differences among the phenolic composition and the antioxidant activity of the 

extracts are discussed and compared with the ones obtained by traditional organic solvent extraction 
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method. This analysis can be useful to understand the selectivity of different solvents and methods 

towards different phenolic compounds. In addition, to the best of our knowledge, this is the first 

work in which phenolic compounds from asparagus have been extracted by SFE and PLE extraction 

methods.  

5.2. Materials and methods 

5.2.1. Raw material 

Asparagus (Asparagus officinalis L.) was purchased from a local market in Italy. Raw 

material was first milled by a knife mill and then stored at -25° until dehydration in a freeze-dryer 

was performed. Before the extraction tests, lyophilized asparagus were milled with a mortar to 

obtain a particle diameter less than 0.5 mm. 

5.2.2.  Chemicals 

CO2 (4.0 type, purity greater than 99.99%) was purchased by Rivoira. Ethanol (99.8%) and 

methanol (99.8%), used for the extraction tests, were purchased from Sigma Aldrich. Water was 

Milli-Q quality. Methanol, acetonitrile, formic acid ethanol and Rutin standard, used for the 

measures, were provided by Carlo Erba, Prolabo, J.T. Baker and Lab-Scan.  

5.2.3. Supercritical fluid extraction 

SFE tests were conducted in a laboratory scale equipment reported elsewhere [21,22]. Before 

extraction with co-solvents, a pre-treatment consisting in pure supercritical CO2 extraction during 

15 minutes at the same conditions of each test was carried out, in order to extract the low polarity 

CO2-soluble compounds. This pre-treatment is essential to remove lipophilic and nonpolar 

substances and consequently making polyphenols more available for the extraction [23].  

A constant CO2 flow rate of 0.25±0.05 kg/h was kept in every experimental run. Water, 

ethanol, methanol and mixtures of water and ethanol, in a proportion of 8% (w/w) with respect to 

the CO2 flow rate, were added to CO2 as co-solvents. Pressure was varied in a range 10-30 MPa and 

temperatures between 50 and 80°C were tested. The operating procedure was as follows: 0.50±0.05 

g of freeze-dried asparagus powder were place into a stainless steel extraction cell. CO2 was cooled 

at 5°C before being compressing by the high pressure pump. Pressurized CO2 was heated and 

mixed with the co-solvent, previously pumped by an intelligent HPLC pump (Jasco PU-1580). The 

mixture of supercritical CO2 and co-solvent passed through the extraction cell, where the extraction 

took place. A thermo-resistance maintained the desired temperature, which was measured in the 

internal flow before and after the vessel. After extraction, the mixture of solvents was expanded by 

a Medium-Flow High-Pressure Metering Valve inserted in a water bath at 40 °C to avoid CO2 
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freezing caused by sudden expansion. CO2 gas at atmospheric temperature passed through a flow 

meter before being vented. The extract and the co-solvent were collected in 20 mL of ethanol and 

they were afterwards separated by rotary evaporation. All experimental runs were carried out in 

duplicate. The average and the standard deviation were calculated on the base of the two measures. 

5.2.4.  Pressurized liquid extraction 

The same experimental setup to SFE system reported in section 5.2.3 was used for PLE 

experiments. In this method, only the HPLC pump was utilized. Before the test, the extraction cell 

was filled with 0.50±0.05 g of freeze-dried asparagus powder and the solvent was placed in a 

reservoir. Water, ethanol and a mixture of water and ethanol 1:1 were tested as solvents. After the 

temperature of the extraction (65°C) was reached, the solvent flow was started. The pressure was 

set at 10 MPa. A flow rate of 2 mL/min, controlled by a Medium-Flow High-Pressure Metering 

Valve, was maintained during 30 minutes. The extracts were evaporated by a rotatory evaporator to 

remove the solvent.  

5.2.5. Soxhlet extraction 

Solvent extraction was carried out by a traditional Soxhlet apparatus. Methanol was used as 

solvent. The temperature of extraction was maintained at 100 °C during 4 hours. Then the solvent 

was evaporated by a rotary evaporator.  

5.2.6. Phenolic analysis of the extracts 

Quali-quantitative analysis of phenolic compounds in the extracts were obtained by HPLC-

MS. The measurements were performed on a Varian 212 series chromatograph equipped with 

Prostar 430 autosampler and MS-500 Ion Trap as detector. MS spectra were recorded in negative 

ion mode, using ESI (Electron Spray Ionization) as ions source. Full scan spectra were acquired 

over the range 50-2000 m/z. Fragmentation of the main ionic species were obtained by the turbo 

data depending scanning (tdds) function, yielding the fragmentation pattern of eluted compounds. 

As stationary phase Agilent Eclipse Plus C-18 (2.1 × 150 mm) 3.5 μm was used. Elution was 

carried out with a water 0.1% formic acid (mobile phase A) and acetonitrile (mobile phase B) 

gradient as follow: start 90% A, 23 min 0% A, 23.3 90% A. The length of the run was of 28 min. 

Rutin was used as reference compound for the quantification of phenolic constituents in the range 

0.5-20 g mL-1 at four different concentrations. Rutin calibration curve was (area Y vs 

concentration X)  y = 244229 x + 725.  
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Figure 5.1. Effect of co-solvent nature on SFE curve at 65°C and 30 MPa. The curves represent the extraction yield (% 

kgextract/kglyophilized mass) as a function of the relative amount of passed solvent (kgsolvent/kglyophilized mass). 

 

5.2.7. DPPH assay 

The scavenging activity towards the 1,1-diphenyl-2-picrylhydrazyl (DPPH-Sigma aldrich) 

radical was measured modifying a previously used protocol [24,25]. Rutin was used as standard 

reference in order to compare obtained results with a known antioxidant compound. A linear range 

of concentration vs. % decrease of absorbance was observed and was used for the determination 

using rutin solutions in the range 0.26-52 g/mL. Methanol solution of asparagus extracts were 

used as the assay, and the relative % decrease of absorbance was calculated. The activity was 

expressed as mg/g equivalent of rutin. 

5.3. Results and discussion 

5.3.1.  SFE: Co-solvent effect on extraction yield and phenolic content 

The effect of organic and aqueous co-solvents on SFE yield and phenolic content was studied, 

setting the pressure at 30 MPa and the temperature at 65°C. As shown in Figure 5.1, the extraction 

yield is largely affected by the use of co-solvents of different nature, even if its proportion with 

respect to CO2 is low (8%). The maximum final yield (42.6 %) was obtained using water as a co-

solvent. Looking at Figure 5.1, one can notice that from the beginning of the extraction the amount 

of extract obtained by SFE with water is notably higher than when using other co-solvents. As 

already reported, the presence of water can increase the density of the fluid mixture, and it can also 

cause swelling of the solid particles, improving the internal diffusion process and therefore the 

solubilisation of several classes of compounds [26]. In addition, at the conditions of these tests, 

water is in the liquid phase and therefore extractions are carried out in the presence of two phases, 

supercritical and liquid, whereas ethanol and methanol are fully solubilized in supercritical CO2 

[21,27]. The acidification of liquid water by pressurized CO2 may help breaking chemical bonds 

and releasing soluble compounds [19]. 
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Figure 5.2. Effect of co-solvent nature on phenolic content (mg/glyophilized mass) at 65°C and 30 MPa.  

The lowest extraction yields were obtained using ethanol and methanol as co-solvents. High 

yields were achieved with mixtures of water-ethanol, nearer to the values of SFE and water than to 

the ones obtained by SFE and ethanol. Comparing the proportion of water and ethanol in the co-

solvent mixture, the best result in terms of extraction yield was achieved by using water-ethanol 

7:3. There were no significant differences between the tests with the mixtures water-ethanol 3:7 and 

1:1.   

Considering the phenolic content of the obtained extracts, the effect of different co-solvents 

on SFE was very significant. As shown in Figure 5.2, only 0.15 and 0.29 mg/g of phenolic 

compounds were recovered using methanol and ethanol, respectively. It is noteworthy that even if 

water provided the highest yield, the phenolic content was higher when ethanol was added, which 

suggests that water is able to dissolve a largest variety of compounds leading to lower selectivity 

[19].  

Clearly, adding mixtures of water-ethanol to supercritical CO2 favours the extraction of 

phenols, which can be due to the large polarity ranges of phenolic compounds [19]. The addition of 

water and ethanol in the same proportion gave the highest total content of phenols of the extract, 

namely 2.78 mg/g. Therefore, this mixture was chosen as co-solvent to study the effect of the 

operating conditions on the SFE yield and composition in the following sections.  

5.3.2.  SFE: Effect of pressure and temperature on extraction yield and phenolic content 

Once the mixture of water-ethanol 1:1 was proved to be the most efficient one to extract 

phenolic compounds, the influences of pressure and temperature on SFE yield and extract  
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Figure 5.3. Effect of pressure on SFE curve at 65°C using the mixture water-ethanol 1:1 as co-solvent. The curves 

represent the extraction yield (% kgextract/kglyophilized mass) as a function of the relative amount of passed solvent 

(kgsolvent/kglyophilized mass). 

composition were analysed. In Figure 5.3, overall extraction curves obtained at a constant 

temperature of 65°C and pressures in a range 10-30 MPa are plotted. As can be noted, the maximum 

yield (41.0 %) was obtained at 15 MPa. From 15 to 25 MPa the final yield of the extraction 

decreased at increasing pressure and it remained practically constant from 25 to 30 MPa. However, 

at 10 MPa the final yield was lower than at 15 MPa.  

As reported above, when water is used as co-solvent at 8%, this is present as a liquid phase 

and its acidification by CO2 has a significant effect on increasing the overall extraction yield. The 

same situation happens with water-ethanol 1:1. It is interesting to evaluate the influence of pressure 

on the liquid composition of CO2-water-ethanol mixtures. For this purpose, the composition of the 

liquid phase at different pressures was calculated. The thermodynamic model Predictive Soave-

Redlich-Kwong equation of state [28] was chosen as calculation method using Aspen Plus V8.2. 

Results, shown in Figure 5.4a, indicate that at 10 MPa the liquid phase has a higher proportion of 

ethanol with respect to pressures greater than 15 MPa. From 15 to 30 MPa it slightly changes. 

Hence, the lower proportion of water in the liquid phase at 10 MPa could be the reason of the 

unexpected decrease of the yield when decreasing the pressure.  

The influence of temperature on SFE yield was also studied in the range 50-80°C. In Figure 

5.5, overall extraction curves obtained at constant pressure (20 MPa) are represented. It can be seen 

that at 65°C the final yield of extraction (35.2%) was higher than at 50°C and 80°C (32.3 and 34.0 

%, respectively). Nevertheless the effect of temperature on extraction yield in the range studied was 

less significant than the effect of pressure. Figure 5.4b shows that the proportion of water and 

ethanol in the liquid phase is practically constant at different temperatures, which could be the 

motive of the similar yields obtained. 
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Figure 5.4a. System CO2-water-ethanol: water and ethanol content in the liquid phase at different pressures and 

constant temperature of 65 °C. 

 

Figure 5.4b. System CO2-water-ethanol: water and ethanol content in the liquid phase at different temperatures and 

constant pressure of 20 MPa. 

The phenolic composition of the extracts obtained from the SFE experiments reported above 

was analysed by HPLC-MS. Results revealed that pressure and temperature in the studied range do 

not have significant effect on the total phenolic content and composition of the extract. Hence, the 

media of the analysis of all the samples extracted at different conditions using the mixture water-

ethanol as co-solvent was calculated and the phenolic compounds extracted in a percentage higher 

than 1% are illustrated in Figure 5.6. Rutin was the predominant molecule, representing the 67% of 

the total phenolic content. A derivate of rutin, rutin-4’-glucoside, was found in a percentage of 10%.  

 
 

Figure 5.5. Effect of temperature on SFE curve at 20 MPa using the mixture water-ethanol 1:1 as co-solvent. The 

curves represent the extraction yield (% kgextract/kglyophilized mass) as a function of the relative amount of passed solvent 

(kgsolvent/kglyophilized mass). 
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Figure 5.6. Phenolic content (% kgphenolic compound/kgtotal phenolic content) in SFE extract using the mixture water-ethanol as co-

solvent from Asparagus officinialis. The percentage values corresponds to the media of the results obtained at the 

different conditions of pressure and temperature tested. 

The 9% of the total phenolic content of the extract corresponded to the phenolic acid 3-O-

feruloylquinic acid. Other phenolic compounds were detected in proportions lower than 5%. 

5.3.3. SFE: Effect of time on the composition of the extract 

The phenolic analysis of the samples collected every 10 minutes was compared with the yield 

extraction curve obtained at the same conditions, 15 MPa and 50°C. As shown in Figure 5.7, this 

study revealed that the extraction yield is proportional to the total phenolic content of each sample.  

The percentage of the major phenolic compounds found in the samples obtained after 20, 30, 

40, 50 and 60 minutes of extraction are presented in Figure 5.8. Rutin has not been included to 

better appreciate the trend of the other compounds, in any case its tendency was similar to Rutin-4’-

glucoside and Iso-rutinoside, thus it was found in practically the same proportion during the 60 

minutes of extraction. The last sample corresponds to the extract recovered during the 

depressurization of the equipment, that has not been considered in the extraction curves but it is 

interesting to know how the gradual decrease of pressure affect the composition of the extract and 

whether is worth to collect it. In total, around 5% of the phenolic content was found in that sample. 

As shown in Figure 5.8 this fraction was richer in the phenylpropanoids 3-O-feruloylquinic acid and 

caffeic acid 3-glucoside. The sample corresponding to the last 10 minutes of extraction was also  
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Figure 5.7. Comparison among the SFE curve in terms of phenolic content (mg/glyophilized mass) and yield of extraction (% 

kgextract/kglyophilized mass) as a function of the relative amount of passed solvent (kgsolvent/kglyophilized mass). The experimental 

conditions were: water-ethanol 1:1 as co-solvent, 15 MPa and 50°C. 

richer in these two compounds than the previous ones. This could be due to competition of these 

molecules with more polar components present in asparagus. If the extraction process had been 

continued for longer, these molecules probably would have been extracted after the exhaustion of 

the other competitive components, as suggested by Azevedo et al. [29]. 

5.3.4. Comparison of extraction methods  

The results of the analysis of the extracts obtained by SFE, PLE and Soxhlet are summarized 

in Table 5.1. Looking at the total phenolic contents of PLE extracts, once again the mixture of water  

 

Figure 5.8. Major phenolic compounds (% kgphenolic compound/kgtotal phenolic content) of the samples collected at different times 

of SFE using the mixture of water-ethanol 1:1 as co-solvent at 15 MPa and 50°C, and after the depressurization (de-P). 
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Table 5.1. Phenolic composition (mg/glyophilized mass) and antioxidant activity (rutin equivalent mg/g) of the asparagus 

extracts obtained by SFE, PLE and Soxhlet using different solvents (n.d=not detected). 

Group Compound Mw 

(g/mol) 

SCCO2+co-solvents PLE Soxhlet 

     Water Ethanol Methanol W:E 1:1 Water  Ethanol W:E 1:1 Methanol 

Flavonol 
aglycone 

Keampferol 286.23 0.01±0.00 n.d. n.d. 0.01±0.00 n.d. n.d. n.d. n.d. 

 Quercetin 302.24 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.01 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 

 Isoramnetin 316.26 0.01±0.00 n.d. n.d. 0.01±0.00 <0.01 0.01±0.00 <0.01 0.01±0.00 

 Total  0.04 0.02 0.02 0.04 0.02 0.03 0.02 0.03 

Flavonol 
glucosyde 

Isoquercetin 464.38 0.01±0.00 n.d. n.d. 0.01±0.00 n.d. n.d. n.d. n.d. 

 Keampferol 3-

O-rutinoside 

594.52 0.05±0.01 0.01±0.01 n.d. 0.08±0.03 0.04±0.00 0.06±0.00 0.06±0.00 0.07±0.00 

 Rutin 610.52 1.04±0.04 0.19±0.03 0.10±0.01 2.28±0.17 0.95±0.02 1.72±0.16 2.17±0.31 2.81±0.06 

 Iso-rutinoside 624.56 0.13±0.00 0.03±0.02 0.01±0.00 0.16±0.03 0.07±0.00 0.12±0.00 0.11±0.01 0.14±0.00 

 Rutin-4'-
glucoside 

772.66 0.17±0.00 0.01±0.00 n.d. 0.34±0.03 0.25±0.00 0.11±0.00 0.36±0.05 0.29±0.01 

 Iso3-O-

rutinoside-7-O-
glucoside 

786.68 0.02±0.00 n.d. <0.01 0.02±0.01 0.05±0.00 0.04±0.00 0.05±0.00 0.04±0.00 

 Rutin glucosyl 

rhamnoside 

918.80 <0.01 n.d. n.d. <0.01 n.d. n.d. n.d. <0.01 

 Total  1.42 0.24 0.11 2.89 1.36 2.05 2.75 3.35 

Organic 

acid 

Quinic acid 192.17 n.d. n.d. n.d. 0.05±0.03 0.11±0.01 0.05±0.00 0.11±0.00 0.05±0.00 

Phenylpro
panoid 

Caffeic acid 3-
glucoside 

342.30 0.03±0.00 n.d. n.d. 0.08±0.04 0.09±0.00 0.07±0.04 0.08±0.00 0.12±0.00 

 Chlorogenic 

acid 

354.31 0.01±0.00 n.d. n.d. 0.07±0.04 0.05±0.00 0.05±0.03 0.05±0.01 0.09±0.00 

 3-O-
Feruloylquinic 

acid 

368.34 0.16±0.02 0.02±0.00 0.02±0.00 0.29±0.05 0.25±0.01 0.26±0.01 0.20±0.07 0.36±0.01 

 Total  0.20 0.02 0.02 0.44 0.39 0.38 0.33 0.57 

Total  1.65±0.07 0.29±0.06 0.15±002 3.42±0.45 1.88±0.05 2.52±0.24 3.22±0.47 4.01±0.08 

Antioxidant activity (DPPH)   1.18 1.75 1.58 2.49 2.08 2.14 1.90 2.25 

 

and ethanol was more efficient than the use of only one solvent. Thus, 3.2 mg/g of phenolic 

compounds were found in the water-ethanol extract whereas 1.9 and 2.5 mg/g were extracted by 

water and ethanol, respectively. The difference with respect to SFE is that, by PLE, ethanol extracts 

more phenolic compounds than water and also differences between the total phenolic content 

extracted by different solvents are less significant. These results are in agreement with Paes et al. 

conclusions [19].  

Taking as a reference the traditional Soxhlet extraction using methanol as solvent, the total 

phenolic content extracted by SFE and PLE, both with water-ethanol 1:1, were 85.3 % and 80.3 %, 

respectively. The great advantage of SFE and PLE methods with respect to Soxhlet is the use of 
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green solvents, which is of utmost importance to the food industry. The comparison between SFE 

and PLE in economic terms appears to be the key factor for the choice of the most convenient 

method. Clearly, the investment and operating costs of a PLE plant are lower than the ones of a SFE 

plant, since in the first case the section of pressurizing CO2 is not needed, and the extraction is 

faster. Moreover, the amount of solvent required for the extraction is not a relevant factor as it can 

be recycled in both cases. Thus, since pressurized solvent extraction takes less time, is cheaper and 

has the advantages of SFE (green solvents and moderate temperatures), it should be considered as a 

promising alternative to extract phenolic or other polar compounds. More studies could be 

interesting to optimize this method and possibly obtain a higher phenolic yield.  

5.3.5. Influence of extraction method and solvent on phenolic compounds extraction 

In Table 5.1, phenolic compounds have been classified according to their groups and the 

molecular weight of each one is also reported. Four groups of molecules were found: flavonol 

aglycone, flavonol glycoside, organic acid and phenylpropanoids.  

It is noted that using water as co-solvent the extraction of aglycone favonol molecules does 

not change with respect to SFE with water-ethanol. In particular, kaempferol was extracted only by 

SFE with these co-solvents. Quercetin was found in the same proportion regardless of the method 

and solvent. Isoramnetin was extracted by SFE using water and water-ethanol, by pressurized 

ethanol and by Soxhlet. These results indicate that quercetin having relatively more polar OH 

substituents was better extracted by all the methods and solvents than isorhamnetin, having the 3’ 

O-CH3 group, and kaempferol, missing the 3’-OH group. Ko et al. [7] reported similar tendency 

concerning the extraction of flavonoids by subcritical water at different temperatures. They found 

that quercetin was optimally extracted at lower temperature than isorhamnetin and kaempferol.  

Higher amounts of flavonoid glycosides were found in all the extracts, such derivatives are 

organic compounds that have a sugar portion, which increase their polar nature [7], so they are more 

easily extracted by polar solvents than less-polar aglycones. Particularly, kaempferol 3-O-rutinoside 

and iso-rutinoside were extracted better by SFE with water-ethanol whereas rutin was found in 

higher quantity on the Soxhlet extract. Rutin-4'-glucoside and Iso3-O-rutinoside-7-O-glucoside,  

molecules possessing sugar residues and with the highest molecular weight, were better extracted 

by pressurized solvents. Traces of Rutin glucosyl rhamnoside and isoquercetin were found in some 

extracts obtained by SFE with water and SFE with water-ethanol. 
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Extraction of quinic acid was more efficient by PLE than by SFE and Soxhlet. The water 

presence was important since water, and the mixture water-ethanol as solvents resulted in the 

highest quinic acid extracted values.  

Phenylpropanoids were found with higher proportions in the extract obtained by Soxhlet. 

High values were obtained by SFE with water-ethanol and slightly lower proportions were extracted 

by pressurized solvents. Hence, there is a correlation between the time of extraction and the 

extracted phenylpropanoid amounts, possibly due to the competition of these molecules with more 

polar components, as mentioned above.  

To summarize, the higher phenolic content of Soxhlet with respect to SFE and PLE was 

owing to rutin and phenylpropanoids. Aglycone favonols and low molecular weight flavonoid 

glycosides were efficiently extracted by SFE with water-ethanol whereas PLE extraction resulted in 

the highest content of high molecular weight glycoside flavonoids and quinic acid.  

5.3.6. Influence of extraction method and solvent on the extract antioxidant activity  

The antioxidant activity of the extracts obtained by SFE, PLE and Soxhlet are shown in Table 

5.1. Focusing on SFE, it was higher in the extract obtained using the mixture water-ethanol as co-

solvent, which is significantly richer in phenolic compounds. These results are in agreement with 

Paes et al. [19]. Hence, the presence of water and ethanol is also essential to obtain an extract with 

high antioxidant activity. Looking at the results obtained from the mono-component co-solvents, is 

should be noted that even if the extraction yield and phenolic content of the extracts obtained by 

ethanol and methanol were much lower than the one collected with water, the antioxidant activities 

were higher. This result suggests that SFE with ethanol or methanol are very selective to the 

extraction of antioxidant compounds different from phenols such as polyunsaturated fatty acids.   

As regards the PLE extracts, the antioxidant activity was slightly higher in the ethanolic 

extract, however the  differences between the use of different solvents were not very significant. 

Similar results were obtained by other authors [19].  

5.4. Final remarks 

The extraction of phenolic compounds from asparagus and the antioxidant activity of the 

extracts were found to be affected by both the extraction method (SFE, PLE and Soxhlet) and the 

solvent used. In any case, Rutin was the predominant compound and the presence of phenolic acids 

was significant.  
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As regards the SFE extracts, the overall extraction yield and the phenolic content were largely 

influenced by the use of different co-solvents. The highest phenolic content was obtained using a 

mixture of water-ethanol 1:1 as co-solvent, and consequently the effect of pressure, temperature and 

extraction time with this co-solvent was evaluated. The maximum extraction yield (41.0 %) was 

obtained at 15 MPa and 65°C, being the effect of temperature on extraction yield less relevant than 

the effect of pressure. No significant differences were found on the phenolic composition of the 

extracts obtained at different pressures and temperatures. Longer extraction times favoured the 

extraction of phenolic acids.  

When PLE was performed, once again the mixture of water-ethanol 1:1 was more efficient as 

regard the phenolic content than the use of a single component solvent. The total phenolic content 

and the antioxidant activity were slightly lower than the ones obtained by SFE and Soxhlet. 

Nevertheless, since PLE is cheaper, faster and has the main advantages of SFE (environmental 

friendly at moderate temperatures), it can be considered as a good alternative for the extraction of 

natural compounds.  
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CHAPTER 6 

Precipitation of polyphenols and 

anthocyanins compounds from cherries 

extracts by SAS process  

Supercritical anti-solvent (SAS) process with CO2 is used to obtain precipitates from cherries 

extracts which are rich in polyphenols and anthocyanins compounds. The compounds of interest 

were first extracted from milled and lyophilized cherries, using methanol in an ultrasounds bath. 

Then, the methanolic solution was processed by supercritical anti-solvent CO2 at various operating 

conditions. Results showed that continuous mode is more efficient than batch. Moreover, 

polyphenols and anthocyanins yields of precipitation were favoured by lower pressures (in a range 

10-15 MPa) and higher compositions of CO2 (0.95-0.995). Overall, the maximum yields achieved in 

our work were 51.0±2.1% (polyphenols) and 86.1±2.0% (anthocyanins), operating in continuous 

mode at 12.5 MPa, 40°C and 0.995 of CO2 molar fraction. These results confirm that SAS is 

effective in producing dried extracts rich in polyphenols compounds, specially anthocyanins, from 

lyophilized cherries.  

6.1.  Introduction 

Polyphenols compounds are well known for their numerous health-promoting properties, such 

as their role in the prevention of cardiovascular diseases, cancer, neurodegenerative diseases, 

diabetes, or osteoporosis [1]. The attention in the last years has been focused on the benefits of 

flavonoids, a large class of phenolic compounds. Most prominent among the flavonoids are the 

anthocyanins, universal plant colorants responsible for the red, purple, and blue hues evident in 

many natural sources, that are of particular interest to the food colorant industry due to their ability 

to impart vibrant colours to the product [2].  

Polyphenols, and in particular anthocyanins, are commonly obtained from agricultural 

products as natural extracts and are intensively used in functional foods, cosmetic and 
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pharmaceutical industries. Natural extracts are typically marketed in the form of liquid, viscous 

preparations or powders resulting from the drying of a liquid extract [3]. The dried extract has some 

advantages over conventional liquid forms, such as lower storage costs and higher concentration 

and stability of active substances [4].  

Polyphenols compounds are practically insoluble in pure CO2 [5], and therefore a dried 

extract can be obtained by precipitation using supercritical anti-solvent (SAS) technique. Generally, 

SAS is defined as a method in which supercritical CO2 is used to precipitate selected, non-soluble 

compounds. CO2 at relatively high pressure acts as an anti-solvent decreasing the solubility of the 

solid in its mixture with an organic solvent. In this process, a fast supersaturation takes place [3]. 

The advantage of SAS is that it improves the production capacity and it is able to control the 

particle size distribution, whereas its disadvantage is that it generally uses an organic solvent [6,7]. 

However, this limitation is normally overcome by the fact that the complete removal of the solvent 

can be achieved by the anti-solvent [6].  

SAS involves the knowledge of: high-pressure phase equilibria of the binary or ternary 

system, jet mixing and mass transfer to and from the injected liquid phase [8]. Moreover, the initial 

concentration of the extract and the ratio of the solvent to the supercritical anti-solvent for a given 

solid solute are important for the evolution of the precipitation process [3,9,10]. Obviously, the 

value of pressure at which the operation is performed and the washing step are fundamental [6]. 

Thus, SAS is complex from both the theoretical and experimental points of view. 

SAS has already been applied to precipitate bioactive compounds from natural sources. In 

Table 6.1, the summary of studies reported in the last years similar to this one is presented. Two 

works refer the extraction of polyphenols compounds and posteriorly precipitation by SAS, the first 

one from mango by-products [11] and the second one from grape residues [12]. Other antioxidants 

compounds were obtained in a similar way from grape seeds [13], rosemary [3], marigold flowers 

[14], Lycium barbarum [15] and microalgae [16]. 

In our work, cherries were chosen as the vegetable material because of their higher amount of 

polyphenolic and anthocyanins content with respect to other vegetables. For instance, the phenolic 

content of cherries were reported to be in the range 290-316 mg/100 g [17,18], whereas other 

agricultural products such as asparagus and rocket salad contain 80.9 mg/100g [19] and 132 mg/100 

g [20], respectively. Moreover, non-saleable cherries were used, with the purpose of having a more 

economically viable and environmentally friendly process. 
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As regards the extraction solvents reported in literature, methanol with 1% of HCl and 1% of 

butylated hydroxytoluene (BHT) was used to extract and analyse phenolic compounds from cherries 

[21]. Ballisteri et al. [22] applied a methanol solution containing 0.5% of HCl. Serra et al. [18] 

extracted a high-valuable product from the cherry culls by supercritical CO2 using ethanol as co-

solvent. However, the complexity of SAS process limits the chosen of extraction solvents, and their 

thermodynamic behaviour should be carefully analysed. 

In this work, SAS processing of non-saleable cherries for the precipitation of polyphenols and 

anthocyanins compounds extracts is presented for the first time. On the one hand, the comparison of 

different solvents for the extraction of the compounds of interest is shown. On the other hand, the 

main operating parameters affecting the SAS process is investigated and discussed. 

Table 6.1. Summary of SAS studies to obtain antioxidant compounds reported in the last 5years. 

Author Source Compounds Pre-treatment Extraction SAS Results 

Meneses, 

2013 

[11] 

Mango by-

products 

Polyphenols 

compounds  

Dehydration 

and grinding  

0.5 ascorbic acid and 50 mL of 

acetone solution for 6 h 

Centrifugation 

Rotatory evaporator 

Aqueous solution dissolved 1:4 

deionized water 

Purification step 

XCO2=0.98 

8-15 MPa 

35-45 °C 

90% of the 

total phenolic 

compounds 

present in the 

ethanolic 

extract were 

recovered 

Floris,  

2010 

[12] 

Grape 

residues 

 

Polyphenols 

and 

anthocyanins 

Lyophilisatio

n 

 

Stirred in tartaric buffer  

Filtered 

Adsorption and desorption 

(with methanol) 

XCO2=0.97 

Up to 20 MPa 

40 °C 

Recovery= 

88.3 %  of 

phenolic 

compounds 

and 99.8 % of 

anthocyanins 

Visentin, 

2012 

[3] 

Rosemary Antioxidants 

 

No specified Microwave 450 W, 5 min (de-

oiled) 

Stirred in ethanol 

Filtered (Millipore 0.45 μm) by 

vacuum 

Polymer dissolved in the extract 

2.5:1 

XCO2=0.94 

8-12 MPa 

25-50 °C 

Recovery= 

90% 

Boonnou

n, 2013 

[14] 

Marigold 

flowers 

Lutein Grinding and 

dried 

Stirred 500 mL hexane 4 h 

Rotatory evaporator 

Dried in an oven 

KOH, ethanol 4h 

Na2SO4, diethyl eter 

Water 

Vacuum oven 

XCO2=0.93-0.95 

8-12 MPa 

55 °C 

Composition 

no measured 

Lin, 2014 

[15] 

Lycium 

barbarum 

Zeaxanthin 

palmitates 

(carotenoid) 

De-

glycosided   

Ultrasonication stirred in water 

Filter paper 20-25 μm 

Freeze dried 

Ultrasonication stirred in THF 

Vacuum evaporation 

Solution 5 mg mL-1 

CO2= 15 L min-1 

Sol=0.2 mL min-1 

12.5-17 MPa 

55 °C 

Recovery = 

71% 

Liau, 

2010 

[16] 

Microalgae Carotenoids Freeze-dried Soxhlet with CH2Cl2 for16 h 

 

CO2= 12 L min-1 

Sol=1.2 mL min-1 

20 MPa 

40 °C 

The contents 

of Zeaxanthin 

were 

enhanced 

from 11.12 

mg g-1 to 674 

mg g-1   
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6.2.  Materials and methods 

6.2.1. Raw material 

Non-saleable cherries were provided by a local market in Italy. Raw material was first de-

hulled, milled by a knife mill and then stored at -25° until dehydration in a freeze-dryer was 

performed.  

6.2.2. Chemicals 

CO2 (4.0 type, purity greater than 99.99%) was purchased by Rivoira. Reagents for extraction 

(methanol, ethanol, DMSO and acetone) and analysis (methanol, acetonitrile, formic acid and 

ethanol) were provided by Carlo Erba, Prolabo, J.T. Baker and Lab-Scan. 

6.2.3. Extraction 

The freeze-dried vegetal material was extracted in an ultrasound system for 30 min with 

methanol. The supernatant was removed after centrifugation. Liquids were collected for subsequent 

treatment by SAS. 

6.2.4. Supercritical anti-solvent precipitation  

The flow diagram of the apparatus built for the SAS experiments is illustrated in Figure 6.1. 

The operating procedure is as follows: CO2, stored in a reservoir tank (R), is first cooled down to 

avoid the cavitation of the high pressure pump (P). After being pressurized up to the operating 

pressure, it is heated up (HE) to the required temperature. Once the flow rate of CO2 is constant and 

the operating parameters are stable, the solution is pumped by a chromatographic pump (P) into the 

precipitator at the desired flow rate. After 30 minutes of continuous CO2 and solution flow, the 

pumping of the solution is stopped and the washing step takes place, where only CO2 flows for 20 

minutes. Then, the system is depressurized and the precipitator (PR) is opened. The precipitate is 

collected from the filter (porous metallic frit with a screen size of 1 μm) and solved in methanol for 

analysis.  

For the experiments in batch mode, the precipitation vessel is loaded with a given quantity of 

the liquid solution and then the pressure is increased by CO2, which allows to start anti-solvent 

precipitation. Finally, a flow of CO2 is fed at a constant flow rate from the top of the chamber for 30 

minutes, followed by 20 more minutes for the washing step. After depressurization of the system, 

the precipitator is opened and the particles are collected.  
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Figure 6.1. Schematic of the supercritical anti-solvent (SAS) apparatus. R: reservoir, HE: heat exchanger, C: container, 

M: manometer, TC: temperature controller, P: pump, PR: precipitator, F: flow meter. 

6.2.5. Polyphenolic analysis of the extracts and precipitates 

Quali-quantitative analysis of polyphenols in the extracts were obtained by HPLC-MS. The 

measurements were performed on a Varian 212 series chromatograph equipped with Prostar 430 

autosampler and MS-500 Ion Trap as detector. MS spectra were recorded in positive and in negative 

ion mode (50–2000 Da). The ESI (Electron Spray Ionization) was used. Fragmentation of the main 

ionic species were obtained during the HPLC run by the turbo data depending scanning (tdds) 

function, yielding the fragmentation pattern of eluted compounds. As stationary phase Agilent 

Zorbax C-18 (2.1 × 150 mm) 3.5 μm was used. 

6.3.  Results and discussion 

Polyphenols and anthocyanins precipitation yields (Yp and Ya, respectively) were calculated 

by using:  

 

𝑌𝑝 =
𝑐𝑝𝑉

𝑐𝑠𝑝𝑉𝑠
∗ 100                  (6.1)          

 

𝑌𝑎 =
𝑐𝑎𝑉

𝑐𝑠𝑎𝑉𝑠
∗ 100                  (6.2) 
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Table 6.2. Concentration of polyphenolic compounds (mg g
-1

) in the extracts obtained using different solvents. 

Polyphenolic 

compounds (mg g
-1

) 

EtOH  MeOH  DMSO DMSO  

EtOH 

DMSO 

EtOH  

7:3 

DMSO 

EtOH 

3:7 

Acetone Acetone 

DMSO 

1:1 

EtOH 

Acetone 

 1:1 

Anthocyanins 0.15 0.91 0.95 1.05 0.89 0.86 0.02 0.38 0.18 

Daidzein and derivates 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

Ferulic and derivates 0.18 0.87 0.65 0.96 0.86 0.94 0.00 0.00 0.00 

Chlorogenic 0.06 0.98 0.78 0.85 1.00 0.94 0.00 0.00 0.00 

Rutin 0.03 0.23 0.23 0.23 0.19 0.16 0.00 0.00 0.00 

Total polyphenols 0.42 3.00 2.62 3.10 2.94 2.90 0.02 0.38 0.18 

 

where Cp is the polyphenols concentration of the precipitate collected after SAS (mg mL
-1

), V is the 

volume of methanol used to solve the precipitate for analysis (mL), Csp is the polyphenols 

concentration in the initial solution (mg mL
-1

), Vs is the volume of solution injected (mL), Ca is the 

anthocyanins concentration of the precipitate collected after SAS (mg mL
-1

) and Csa is the 

anthocyanins concentration in the initial solution (mg mL
-1

). 

6.3.1. Solution: comparison of solvents and initial concentration  

A large number of solvents for extracting phenolic compounds from vegetable materials has 

been reported in literature. For SAS applications, it is important to take into account not only the 

extraction yield but also the physicochemical properties of the mixture solvent/anti-solvent as well 

as its mixing and flow behaviour. As shown in Table 6.1, ethanol, acetone, ascorbic acid, CH2Cl2 

and methanol are among the extraction solvents that have been demonstrated to be suitable for the 

subsequent application of the SAS process.  

In our work, extractions with different solvents were carried out with the aim of selecting the 

most effective one for the extraction of polyphenols and anthocyanins compounds from cherries and 

further SAS precipitation. As shown in Table 6.2, the highest polyphenols and anthocyanins 

extraction yields were achieved using methanol, dimethyl sulfoxide (DMSO) or mixtures of DMSO 

and ethanol. According to the results in Table 6.2, preliminary anti-solvent precipitation tests were 

performed with the extracts obtained using these solvents. No particles were found when using 

DMSO or mixtures of DMSO and ethanol. Hence, methanol was chosen as the solvent to extract the 

compounds of interest for all the runs that are reported in the following sections. In Figure 6.2, a 

chromatogram showing the polyphenolic compounds profile from cherries extracted by methanol is 

presented.  

The concentration of the initial solution is another parameter that affects the SAS process [3]. 

Initially, two solutions were prepared, starting from 3% and 9% (w/w) of lyophilized cherries. 
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Figure 6.2. Chromatogram showing the phenolic compounds from cherries extracted by methanol. 

Considering that the extraction yield (w/w) is around 35-40%, the second solution contained 

approximately 3% of solids, which is the content that have previously been used by other authors 

for SAS [3,13,23]. Indeed, preliminary SAS tests demonstrated that this solution is much more 

effective that the one prepared with 3% of lyophilized cherries. Thus, solutions obtained from 9% of 

lyophilized cherries in methanol were prepared for the subsequent experiments.  

6.3.2. Equilibrium system CO2-methanol 

The knowledge of solubility data of the liquid solvents and solids in supercritical CO2 is very 

important for the proper selection of SAS process temperature and pressure and the interactions 

between thermodynamic constrains and mass transfer mechanisms controlling the process 

performance [24]. Typical SAS precipitation experiments are operated at pressure above the binary 

mixture critical point [8]. 

According to the work by Floris et al.[12], who also used a methanolic solution, pressure in 

the range 10-15 MPa was selected (at 40 ºC) as an acceptable compromise between supercritical 

operation and the lowest possible solubilities of the polyphenolic compounds in high pressure CO2. 

In Figure 6.3, the equilibrium curve obtained from experimental data reported in literature for the  
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Figure 6.3. Equilibrium system CO2-methanol at 40°C and location of our experimental data. 

system CO2-methanol [25] is shown, and the location of the points at the conditions we chose for 

our experiments is evidenced. As mentioned by Martin et al. [23], it should be taken into account 

that the presence of vegetable extract in the CO2-methanol mixture may change the vapour-liquid 

equilibrium data of the binary system. 

6.3.3. Batch vs. continuous operation 

Initially, two experiments were performed with the aim of comparing batch and continuous 

modes of operation. The advantages of using continuous mode at industrial scale are evident. 

Nevertheless, at laboratory scale, batch operation is frequently useful to prove the operation of a 

new process and/or new application and have a first estimation of the operating variables values. In 

the case of SAS processes, this seems to be especially important due to the number of parameters 

that are essential for the success of the test, such as the kind of injection device [6], the compound 

concentration in the initial solution [26] or the molar fraction of CO2 to trigger precipitation [10,26].  

Batch and continuous mode of operation were tested at 40 ºC and 10 MPa. For batch 

experiments, 250 mL of solution and a CO2 flow rate of 5 L min
-1 

were used. A molar fraction of 

0.95 was set for continuous test. It should be noted that in batch, the pressure increased during the 

30 minutes of experiments up to 15 MPa. As presented in Table 6.3, the highest polyphenols and 

anthocyanins yields  were obtained when using continuous mode.  
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Table 6.3. Comparison between batch and continuous mode of SAS operation in terms of anthocyanins and 

polyphenols yield at 40 º and 10 MPa. 

  Batch Continuous 

Polyphenols yield (%) 39.00±2.21 44.10±0.30 

Anthocyanins yield (%) 29.17±2.29 38.52±2.41 

 

 

6.3.4. Effect of pressure on anthocyanins and polyphenols yield 

The effect of pressure on anthocyanins and polyphenols yield operating in continuous mode 

was then investigated. The temperature was maintained constant at 40 ºC in all the experiments and 

the CO2 molar fraction was fixed at 0.95. Figure 6.4 shows clearly that the higher the pressure, the 

lower the anthocyanins and polyphenols yields. The best result (Yp= 44.1%, Ya= 38.5%)  was 

obtained at 10 MPa, which corresponds to the close condition to the binary mixture critical point. 

This result seems to be related to the fact that the higher the pressure, the higher the solubility of the 

extracts, and therefore the compounds of interest are solubilized by supercritical CO2 during the 

washing step are lost in the solvent collected instead of being stopped by the filter.  

6.3.5. Effect of CO2 molar fraction on anthocyanins and polyphenols yield 

In SAS processes, one of the problems is to find the appropriate ratios of the anti-solvent to 

the supercritical solvent flow rates for a given solid solute (this is referred to as the CO2 molar 

fraction) [10,26]. This effect was studied at two different precipitation pressures: 12.5 and 15 MPa. 

Results, shown in Figures 6.4 and 6.5, confirm the high influence of the supercritical anti-solvent to 

solvent ratio on the SAS process, even if the range of the CO2 molar fraction studied is quite limited 

(0.95-0.995). Clearly, the higher the CO2 flow rate injected in the precipitation vessel, the higher the 

yield of the polyphenolic compounds. 

 

Figure 6.4. Effect of pressure on anthocyanins and polyphenols yield of SAS. 
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Figure 6.5. Effect of CO2 molar fraction on anthocyanins and polyphenols yield of SAS at 15 MPa. 

 

Figure 6.6. Effect of CO2 molar fraction on anthocyanins and polyphenols yield of SAS at 12.5 MPa. 

 

 Looking at Figure 6.5, it is also noted that at a CO2 molar fraction of 0.95 the polyphenols 

yield was higher than the anthocyanins one, but at values of CO2 molar fraction from 0.98 the 

opposite tendency was found. This trend is also noticeable at 12.5 MPa (Figure 6.6), with the cross-

over shifted to molar fraction values around 0.99. It means that, among the phenolic compounds 

present in the methanolic extracts, the process is selective towards anthocyanins at higher 

supercritical anti-solvent ratios. Overall, the highest yields were 51.0±2.1% (Yp) and 86.1±2.0% 

(Ya), operating in continuous mode at 12.5 MPa, 40°C and 0.995 of CO2 molar fraction, as can be 

seen in Figure 6.6. An image of the precipitate obtained in this experiment is presented in Figure 

6.7. 
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Figure 6.7. SAS of a precipitate from cherries obtained in the experiment performed at 12.5 MPa, 40°C and 0.995 of 

CO2 molar fraction. 

6.4.  Final remarks 

Polyphenols and anthocyanins compounds from cherries were successfully precipitated using 

supercritical anti-solvent (SAS) process with CO2. Among different solvents tested, methanol was 

demonstrated to be the most efficient one for obtaining an extract rich in the compounds of interest, 

while being appropriate for the precipitation by SAS. Continuous mode of operation, at 10 MPa and 

a CO2 molar fraction of 0.995 were the optimum conditions for obtaining the highest polyphenols 

and anthocyanins yields. The maximum yields achieved in our work were 51.0±2.1% (polyphenols) 

and 86.1±2.0% (anthocyanins). Hence, non-saleable cherries can be considered as raw material for 

producing dried precipitates rich in polyphenols and anthocyanins by extraction with methanol and 

subsequent SAS process. 
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CHAPTER 7 
Testing of equipment: Recovery of butanol 

by counter-current CO2 fractionation6  

A counter-current CO2 fractionation method was studied as a means to recover butanol (also 

known as 1-butanol or n-butanol) and other compounds that are typically obtained from biobutanol 

fermentation broth from aqueous solutions. The influence of operating parameters, such as solvent-

to-feed ratio, temperature, pressure and feed solution composition was experimentally investigated 

in terms of separation efficiency, butanol removal rate, total removal  and butanol concentration in 

the extract at the end of the continuous cycle. Results show that the highest separation efficiency 

(351.5) is obtained at 35 °C and 10.34 MPa, with a removal rate of 0.0011 kg h
-1

. At these operating 

conditions, 92.3 % of the butanol present in the feed solution was removed and a concentration of 

787.5 g L
-1

 of butanol in the extract was obtained, starting from a feed solution of 20 g L
-1

. 

Selectivity was calculated from experimental data, concluding that our column performs much 

better than a single equilibrium stage. When adding ethanol and acetone to the feed solution, 

ethanol was obtained in the water rich fraction (raffinate) whereas the highest concentration of 

acetone was found in the butanol rich fraction (extract).  

 

7.1.  Introduction 

The increase of oil prices and the depletion of fossil fuels have promoted the development of 

biofuels such as biobutanol and bioethanol [1]. Efforts to re-commercialize biobutanol are gaining a 

remarkable attention; its potential to substitute for both ethanol and biodiesel in the biofuel market 

are estimated to be worth $247 billion by 2020 [2]. In addition, butanol is an important feedstock 

for the chemical industry, being used in the production of paint, solvents and plasticizers [3]. In this 

context, the optimization of the processes to produce and recover biobutanol is of utmost 

importance. 

                                                           
6
 Part of this chapter has been sent to Separation and Purification Technology as: Solana, M., Qureshi, N., Bertucco, A., Eller, F., 

Recovery of butanol by counter-current carbon dioxide fractionation with its potential application to butanol fermentation. 
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First of all, biobutanol needs to compete in cost (priced on an energy basis) with ethanol [4]. 

Biobutanol has a higher energy density, is less volatile, less explosive and less hygroscopic (thus 

does not pick up water) than ethanol. Moreover, butanol can easily mix with gasoline in any 

proportion, can be used in internal combustion engines, can be transported in existing pipe lines, 

and is less corrosive [5–7]. However, at present, improving the economics of the butanol production 

is crucial for its re-commercialization and competition with ethanol [8].  

Renewable butanol is produced from the fermentation of carbohydrates in a process often 

referred to as the acetone-butanol-ethanol (ABE) fermentation [4]. Butyric and acetic acids are first 

produced by Clostridium acetobutylicum or C. beijerinckii (acidogenesis), and in the subsequent 

phase (solventogenesis) butanol, acetone and ethanol are formed [8]. The concentration of  butanol 

typically reached in the fermenter is rather low (10–20 g L
-1

) because this compound is toxic to the 

butanol-producing microorganisms [9]. Distillation is traditionally carried out to recover butanol 

from the fermentation broth. However its cost is high, due to the low concentration of butanol and 

to the fact that water is the major component, with a boiling point below that of butanol (100 
o
C vs 

117.7 
o
C) [1].  

A decrease in product recovery cost and purification from the dilute fermentation broth is 

included among the four recommendations to revive butanol fermentation and make it a 

commercially viable biofuel [10,11]. The methods so far proposed for the recovery of butanol 

include adsorption, liquid-liquid extraction, gas stripping, vacuum fermentation and pervaporation 

[8,12–20]. Conventional distillation method can still be improved but non-conventional methods are 

required to significantly reduce energy duty and the associated cost [4].  

The alternative we propose in this work consists of using counter-current CO2 fractionation to 

recover butanol from the fermentation broth. Carbon dioxide could be an appropriate solvent for the 

extraction of high molecular weight alcohols from aqueous solutions because high molecular weight 

alcohols, such as butanols, are less hydrophilic and less volatile than lower molecular weight 

alcohols. Further, the vapor pressure of butanol (bp=117.7 °C) is significantly less than the vapor 

pressure of methanol or ethanol, making the separation of the solute from CO2 easier [21]. 

Moreover, CO2 is inert, non-toxic and can be safely recycled, resulting in an economic and 

environmental benefit. Counter-current operation facilitates the separation since it reduces the 

amount of solvent necessary, increases the throughput, and enables higher extract concentration in 

the solvent and lower residual concentrations in the raffinate than does single stage or multistage 

cross current operation [22]. 
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To the best of our knowledge, only one study reports the recovery of butanol from aqueous 

solutions by using CO2 [21]. These authors reported that, using supercritical CO2 in a mechanically 

agitated extraction column at 10 MPa and 40°C, approximately 0.02 wt% of butanol concentration 

in the raffinate and 85–90 wt% butanol in the extract can be obtained. 

In this study our objective is to investigate the effects of CO2 extraction process parameters on 

separation of butanol from aqueous solutions containing also acetone and ethanol with the ultimate 

aim to apply this technology to ABE fermentation. 

 

7.2.  Materials and methods 

7.2.1. Materials 

Butanol, acetone and absolute ethanol were supplied by Fisher scientific (Fair Lawn, NJ, 

USA). Carbon dioxide was provided by ILL-MO products Co. (Jacksonville, IL, USA). Analytical 

grade acetone, butanol, ethanol, and n-propanol were obtained from Sigma Chemicals (St. Louis, 

MO, USA). 

7.2.2. Fractionation column 

The basic design of the counter-current fractionation laboratory scale unit has been described 

elsewhere [23,24]. In this work, the gas booster pump was substituted by a syringe pump. The 

column was packed with seventy six vertically-stacked packing Pall Ring pieces, 316-stainless 

steel, of 0.016 m diameter (AMACS Process Tower Internals. Houston, TX). A schematic of the 

complete apparatus used for this study is shown in Figure 7.1.  

Initially, the system was pressurized and the column was heated at the experimental pressure 

and temperature. When equilibrium was reached, the feed solution was pumped at 1 mL min
-1

 and 

the extract collection was started. The extract flask was submerged in dry ice to avoid the losses of 

butanol (or acetone and ethanol as week when applicable) by evaporation. CO2 entered from the 

bottom of the column and the butanol aqueous solution was fed from the top, so as to allow counter 

current contact of CO2 with the feed solution. Experiments lasted 300 minutes. Continuous feed 

solution flow was maintained for 200 minutes (continuous cycle), whereas only CO2 was pumped 

during the last 100 minutes. The raffinate was accumulated in the reservoir pump and was drained 

every 100 minute intervals. One sample of the extract was collected after 200 minutes, namely at 

the end of the continuous cycle.  



Chapter 7   

128 

 

 

 

Figure 7.1. A schematic of CO2 counter-current fractionation system for recovery of butanol. 

Tests at 10.34 and 25.16 MPa were performed. Temperature was varied in a range between 

25-50 °C. Considering that CO2 critical temperature and pressure are 31.1°C and 7.39 MPa, 

respectively, for the experiments performed at 25°C CO2 was at liquid state, whereas for the tests at 

35 and 50 °C it was at supercritical conditions. CO2 flow rate was varied from 1.25 to 7.5 mL min-

1. 

 Each experimental run was replicated twice. The average and the standard deviation were 

calculated on the basis of the measures of the two tests. 

7.2.3. Analytical method  

The compositions of extract, raffinate and feed were determined by gas chromatography as 

reported elsewhere [16,25]. 
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7.3.  Results and discussion 

Separation efficiency was calculated as follows:  

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑋/(1−𝑋)

𝑍/(1−𝑍)
                                                                               (7.1) 

where X= weight fraction of butanol in the extract, and Z= average of  weight fraction of 

butanol in the raffinate and in the feed. 

Removal rate was calculated using the following equation:    

𝑅𝑒𝑚𝑜𝑣𝑎𝑙⁡𝑟𝑎𝑡𝑒⁡(𝑘𝑔𝑏𝑢𝑡𝑎𝑛𝑜𝑙⁡ℎ
−1) = (𝐹𝑒𝑒𝑑⁡𝑐𝑜𝑛𝑐. −𝑅𝑎𝑓𝑓𝑖𝑛𝑎𝑡𝑒⁡𝑐𝑜𝑛𝑐. ) × 𝐹𝑒𝑒𝑑⁡𝑓𝑙𝑜𝑤⁡𝑟𝑎𝑡𝑒⁡                             (7.2) 

Specific removal, i.e. the removal per unit of solvent used, was calculated as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐⁡𝑟𝑒𝑚𝑜𝑣𝑎𝑙⁡⁡(𝑘𝑔𝑏𝑢𝑡𝑎𝑛𝑜𝑙⁡𝑘𝑔𝐶𝑂2
−1 ) =

𝑅𝑒𝑚𝑜𝑣𝑎𝑙⁡𝑟𝑎𝑡𝑒

𝐶𝑂2⁡𝑓𝑙𝑜𝑤⁡𝑟𝑎𝑡𝑒
                                                                                       (7.3)            

CO2 space velocity was evaluated by: 

𝐶𝑂2⁡𝑠𝑝𝑎𝑐𝑒⁡𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦⁡(𝑚𝑖𝑛
−1) =

𝐶𝑂2⁡𝑓𝑙𝑜𝑤⁡𝑟𝑎𝑡𝑒⁡

𝑉𝑜𝑙𝑢𝑚𝑒⁡𝑜𝑓⁡𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟⁡
                                                    (7.4) 

The total removal of butanol with respect to the feed solution at the end of the continuous 

cycle was calculated as:  

𝑇𝑜𝑡𝑎𝑙⁡𝑟𝑒𝑚𝑜𝑣𝑎𝑙⁡(%) = (1 −
𝑅𝑎𝑓𝑓𝑖𝑛𝑎𝑡𝑒⁡𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛⁡

𝐹𝑒𝑒𝑑⁡𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛⁡
) × 100                                                                             (7.5)

  

Overall selectivity of butanol in the separation unit was evaluated by: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑋/(1−𝑋)

𝑌/(1−𝑌)
                            (7.6) 
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Figure 7.2. Effect of solvent-to-feed ratio on separation efficiency and butanol removal rate (kg
 
h

-1
) at constant pressure 

(10.34 MPa) and temperature (25 °C).  

 

where X= fraction of butanol in the extract, and Y= fraction of butanol in the raffinate (Note 

that the same result is obtained when calculating selectivity from weight or molar fractions). 

7.3.1. Effect of solvent-to-feed ratio 

Solvent-to-feed ratio is an important parameter that affects the yield and the economics of the 

fractionation process. The influence of solvent-to-feed was studied at constant pressure (10.34 MPa) 

and temperature (25 °C) with ratios at 1.25, 2.5, 5 and 7.5. The average concentration of butanol in 

the feed solution was 20.1±1.0 g L
-1

. Separation efficiency, removal rate and total removal were 

calculated from the analysis measures.  

As illustrated in Figure 7.2, the effect of solvent-to-feed ratio between 1.5-5 on separation 

efficiency is not very significant. However, when the solvent-to-feed ratio was increased from 5 to 

7.5, the efficiency decreased from 120.8 to 69.0. The removal rate increased from 0.0010 to 0.0011 

kg h
-1 

when the solvent-to-feed-ratio was changed from 1.25 to 2.5, and it slightly increased when 

the flow rate was increased from 2.5 to 7.5. 

The highest butanol concentration in the extract (603.2 g L
-1

) was obtained at a solvent-to-

feed ratio of 1.25 and it decreased as the solvent-to-feed ratio increased, as shown in Table 7.1. It 

means that increasing the CO2 flow rate, it extracts more water, decreasing the concentration of  
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Table 7.1. Effect of solvent-to-feed ratio on butanol concentration in extract (g L
-1

) and total removal (%) after the 

continuous cycle.  

 

Solvent to feed rate 

 

Butanol concentration in extract 

(g L
-1

)  

Total removal  

(%) 

1.25 603.15±13.22 76.87±7.72 

2.5 571.15±42.21 93.01±0.79 

5 548.00±82.80 94.01±2.83 

7.5 423.06±39.26 96.14±0.17 

                   Values are mean±S.D of duplicate experiments. 

 

butanol. Nevertheless, the total removal of butanol from the feed solution was lower at 1.25 than at 

higher solvent-to-feed ratio. From 2.5 to 7.5 the total removal increased slightly.  

Considering the results presented in this section, a solvent-to-feed ratio of 2.5 was chosen to 

perform the experiments reported in the following sections. This result is in agreement with the 

work reported by Laitinen at al. [21], who used a solvent-to-feed ratio of 2.7.  

 

Figure 7.3 shows the influence of the CO2 space velocity (min
-1

) on the specific removal of 

butanol (kgbutanolkgCO2
-1

) considering the CO2 consumption. As expected, the higher the CO2 space 

velocity, the lower the removal of butanol for the same values of CO2 consumption.   

 

7.3.2. Effect of pressure and temperature 

Studies of pressure and temperature effects of CO2 processes are essential, since the solving 

power of CO2 can vary significantly when these operating variables are changed. On the one hand, 

two tests were performed keeping constant pressure (10.34 MPa) and varying the temperature from 

25 °C (liquid CO2) to 35 °C (supercritical CO2). On the other hand, results obtained at constant 

density of CO2 (0.842 g mL
-1

) and diverse temperature and pressure are analyzed. In the latter, 

liquid CO2 at 25 °C and 10.34 MPa versus supercritical CO2 at 50°C and 25.16 MPa were used. In 

all the runs, CO2 flow rate was kept constant at 2.5 mL min
-1

 and the feed solution was pumped at 1 

mL min
-1

. The average concentration of butanol in water in the feed solution was 20.0±1.0 g L
-1

.  

Looking at Table 7.2, it can be seen that there are no significant differences on the values of 

removal rate either when temperature is increased or when both temperature and pressure are 

changed. It is noteworthy that the separation efficiency was much higher in the experiment 

performed at 35 °C (351.5). This can be due to the higher temperature with respect to 25 °C or to 

the lower density with respect to the other two tests.  
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Figure 7.3. Effect of CO2 space velocity on specific removal (kgbutanol kgCO2
-1

) at constant pressure (10.34 MPa) and 

temperature (25 °C).  

 

With regards to the total removal of butanol from the feed solution at the end of the 

continuous cycle, values in the range 92.3-96.9 % were obtained. At the highest temperature and 

pressure, 50 °C and 25.16 MPa, the removal value was slightly higher. The highest concentration of 

butanol in the extract was 787.5 g L
-1

, obtained at 35°C and 10.34 MPa.  

Based on these results, it can be concluded that supercritical CO2 at 35°C and 10.34 MPa is 

more efficient to recover butanol than liquid CO2. Increasing pressure and temperature up to 50 °C 

and 25.16 MPa, the total removal is slightly increased, but the separation efficiency is much lower 

than at 35°C and 10.34 MPa.   

Table 7.2. Separation efficiency, removal rate (kg h
-1

), concentration in extract (g L
-1

) and total removal (%) using 

liquid CO2 (25 °C and 10.34 MPa) and supercritical CO2 (50 °C and 25.16 MPa).  

Temperature  

(°C) 

Pressure  

(MPa) 

Separation  

efficiency  

Removal rate 

(kg h-1) 

Butanol concentration in 

extract (g L-1) 

Total removal  

(%) 

25 10.34 123.49±34.34 0.0011±0.0002 571.15±42.21 93.01±0.79 

35 10.34 351.48±5.74 0.0011±2.04×10-5 787.50±3.54 92.33±0.71 

50 25.16 119.15±6.09 0.0012 ±4.16×10-5 552.4±17.11 96.90±0.90 

            Values are mean±S.D of duplicate experiments. 
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Figure 7.4. Influence of butanol concentration in feed (g L
-1

) on separation efficiency and removal rate of butanol (kg h
-

1
). Experiments were performed at 25 °C and 10.34 MPa. 

 

7.3.3. Butanol concentration 

The concentration of butanol in the fermentation broth of batch reactors can vary from 12-20 

g L
-1

 depending on microbial strain and fermentation conditions [26–29]. In the effluents of 

immobilized cell continuous reactors [30] and integrated reactors where product is recovered 

simultaneously [31] it can be lower than 12 gL
-1

. In a recent work [31], the concentration of 

biobutanol produced from corn stover varied from 3.2 to 9.1 g L
-1

 when using different conditions. 

Hence, it is important to study a wide range of butanol concentrations in the feed solution and their 

influence on butanol recovery. For this purpose, experiments with butanol concentrations in the 

range 6.7-74.9 g L
-1

 were performed. Although 74.9 g L
-1

 butanol concentration is never reached in 

butanol bioreactors, this concentration is often obtained in the recovered aqueous phase in the 

product recovery experiments. Butanol separation from this aqueous phase is essential and it results 

in high product recovery rates. Recycle of this phase has been discussed below. In all the runs, the 

operating parameters were 10.34 MPa, 25 °C, 2.5 mL min-1 of CO2 and 1 mL min-1 of feed 

solution.  

Results, represented in Figure 7.4, show that the lower the butanol concentration in the feed 

solution, the higher the separation efficiency. This result suggests that counter current CO2 

fractionation would be especially effective when low concentrations of butanol are obtained in the 

fermentation broth. As predicted, the removal rate increased at higher concentrations of butanol. 

As shown in Table 7.3, starting from a solution of 74.9 g L
-1

, a
 
concentration of 712.5 g L

-1
 of 

butanol was obtained in the extract, removing 85.6% of the butanol present in the feed solution. 

However, the butanol concentration in the extract and the total removal rate did not follow a clear 

trend.  
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Table 7.3. Butanol concentration in extract (g L
-1

) and total removal (%) at different concentrations of butanol in the 

feed solution.  

Butanol  

concentration in feed  (g L-1) 

Butanol concentration in extract  

(g L-1) 

Total removal  

(%) 

6.7±0.6 526.99±58.28 84.46±2.38 

13.1±0.7 609.2±48.01 77.15±1.50 

20.8±1.1 571.15±42.21 93.01±0.79 

74.9±5.3 712.5±80.26 85.63±4.93 

                       Values are mean±S.D of duplicate experiments. 

7.3.4. Comparison with equilibrium data 

 

The values of butanol selectivity calculated from the results presented above and the phase 

equilibrium data of the system CO2-water-butanol reported in literature [32] are illustrated in Figure 

7.5. According to the data reported by these authors, our column is clearly performing much better 

than a single equilibrium stage. In other words, the number of ideal separation stages provided by 

the column is consistently higher. 

 

7.3.5. Butanol, acetone and ethanol 

As mentioned above, acetone and ethanol are also formed in fermentation broth when 

biobutanol is produced. In the work published by Qureshi et al. [31], concentrations of acetone in a 

range 1.90-11.58 g L
-1 

and concentrations of ethanol from 0.24 to 1.11 g L
-1

 are reported. The aim 

of the study presented in this section was to find out if the major proportion of these compounds 

would be separated from butanol or would be obtained in the extract. The experiments were carried 

out at 10.34 MPa, 35 °C, 2.5 mL min
-1

 of CO2 and 1 mL min
-1

 of feed rate.  

 

Figure 7.5. System CO2-water-butanol: selectivity of butanol calculated from reported data (60 and 70°C) and 

comparison with the selectivity calculated from our experimental results. 

. 

 

0 0.005 0.01 0.015 0.02 0.025
0

500

1000

1500

2000

2500

X
butanol

S
el

ec
ti

v
it

y

 

 

Our experimental data

Literature T= 60°C

Literature T= 70°C



 Testing of equipment: Recovery of butanol by counter-current CO2 fractionation 

 

135 

 

Table 7.4. Concentration of butanol, acetone and ethanol (g L
-1

) in the feed, raffinate and extract samples collected after 

the continuous cycle at 35 °C and 10.34 MPa. 

Concentration in feed (g L-1)   Concentration in raffinate (g L-1)   Concentration in extract (g L-1) 

Butanol Acetone Ethanol  Butanol Acetone Ethanol  Butanol Acetone Ethanol 

19.83±2.83 - -  1.49±0.12 - -  787.50±3.54 - - 

20.09±1.48 6.37±1.37 -  1.74±0.15 1.14±0.11 -  740.73±10.47 24.01±1.34 - 

19.34±0.99 4.71±0.38 1.01±0.07   1.61±0.08 0.57±0.04 0.75±0.01   829±85 69.09±0.81 0.00±0.00 

Values are mean±S.D of duplicate experiments. 

 

Table 7.4 shows the concentrations of the three compounds measured in the feed, raffinate 

and extract. In the experiment starting from the mixture of butanol and acetone, these two 

compounds were mostly collected in the extract flask, at concentrations of 740.7 and 24.0 g L-1, 

respectively. Only 1.74 g L-1 of butanol and 1.14 g L-1 of acetone were found in the raffinate 

However, when ethanol was added to the feed solution, traces of it were measured in the  extract. 

It should be noted that, in all the runs performed in this study, the extract collected presented 

two phases, the aqueous and the organic ones (butanol). Prior to the analysis, the solution was 

stirred until the two phases were mixed in order to find out the total concentration of butanol in the 

extract without any loss of accuracy. Consequently, in large scale recovery units the organic phase 

(top layer) would be easily decanted off or separated. This phase contains small amount of water 

and can be dehydrated by removing it using molecular sieves such as silicalite. The aqueous phase 

contains approximately 78 g L
-1

 butanol which can be recycled to the separation unit for further 

concentration. 

There are a number of reactor types which can be used to produce butanol including: i) free or 

suspended cell batch reactors [26]; ii) immobilized cell continuous reactors [30,33]; and iii) 

membrane cell recycle reactors [34]. In suspended cell batch reactors butanol productivities of the 

order of 0.50 g L
-1 

h
-1

 or less are achieved [29]. Application of CO2 extraction to remove butanol 

from these reactors would require much smaller recovery units as removal rates of butanol that were 

observed in the present studies were of the order of 8-9 g L
-1 

h
-1

.  The reactor productivities in most 

immobilized cell continuous reactors and membrane cell recycle reactors are of the order of 6.5 g L
-

1 
h

-1
 [30,33]. These high productivity reactors can also be integrated with the CO2 extraction process 

simply due to high rates of butanol removal. In some cases reactor productivities over 15 g L
-1 

h
-1

 

have been reported [35], however, these can also be integrated with butanol recovery by CO2 

extraction. In such a case, the overall capital and operational costs would still be lower as compared 

to the systems which offer low productivities.   
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As mentioned in the introduction section of this article, the methods that have been studied for 

butanol removal from fermentation broths include adsorption, gas stripping, liquid-liquid extraction, 

vacuum fermentation, and pervaporation. Among these methods vacuum fermentation and 

pervaporation appear to be promising. However, in the present studies on CO2 extraction, superior 

butanol separation efficiencies (351.5) than pervaporation (209; [36]) have been achieved. Also, the 

butanol concentration in the range of 787.5-829 g L
-1

 have been obtained while using CO2 

extraction process. These values are greater than the butanol concentration obtained employing 

pervaporation. Additionally, pervaporation requires membranes which are costly and have limited 

working life. With these advantages, it is clear that CO2 extraction process can be applied to 

effectively recover butanol or ABE from fermentation broth.  

7.4. Final remarks 

In this work, the recovery of butanol from aqueous solutions by counter-current CO2 

fractionation was studied. Results show that the effect of solvent-to-feed ratio on separation 

efficiency and removal rate is significant, obtaining the highest separation efficiency at 2.5. The 

specific removal (kgbutanol kgCO2
-1

) decreased at increasing the CO2 space velocity. When studying 

the effect of pressure and temperature, the highest separation efficiency was obtained at 35 °C and 

10.34 MPa, with a butanol concentration of 787.5 g L
-1 

in the extract. At these operating conditions, 

92.3 % of the butanol present in the feed solution was removed. Different concentrations of butanol 

in the feed solution were tested, concluding that the higher the concentration of butanol in the feed 

solution, the higher the removal rate but the lower the separation efficiency. The comparison of 

phase equilibrium data of the system CO2-water-butanol with the experimental data presented in 

this work showed that our column provides a consistent number of ideal separation stages. 

Experiments with the other compounds typically obtained in the ABE process were also performed. 

Ethanol was collected in the raffinate whereas the highest concentration of acetone was obtained in 

the butanol-rich fraction (the extract). The results obtained in this study form the basis to consider 

counter-current CO2 as an alternative method to recover butanol from butanol or acetone-butanol-

ethanol (ABE) fermentation broths. 
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CHAPTER 8 

Extraction of fat from soy skim by counter-

current carbon dioxide fractionation7 

This chapter aims to investigate the use of counter-current carbon dioxide method as a means 

to reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. 

Extractions with liquid CO2 at 25 °C and 10.34 MPa and supercritical CO2 at 50 °C and 25.17 MPa 

are compared. The effects of solvent-to-feed ratio, addition of ethanol as modifier and introduction 

of packing in the column are also analysed. Results show that the highest reduction of fat content is 

obtained without modifier and with packing in the column. At these conditions, the total fat content 

present in soy skim was reduced from 4.4 to 0.7 %, with the protein content practically unaffected. 

ANOVA was performed to determine effects on fat and protein in soy skim. The fatty acid profile 

was also analysed, with C18:2 being the predominant fatty acid present in all the soy skim samples. 

Gel electrophoresis indicated that supercritical CO2 settings did not affect protein structure; 

however, higher pressure, temperature, and CO2 flow significantly increased protein solubility 

within pH 2 to 10 compared with untreated samples. 

8.1. Introduction 

Soybean oil is typically produced by direct solvent extraction with a petroleum distillate 

containing about two-thirds n-hexane [1]. However, the increasing concern about safety and 

environmental emissions produced by organic solvents makes it essential to search for other 

extraction and separation techniques. Enzyme-assisted aqueous extraction is one of the potential 

alternatives that is increasingly considered for processing soybean oil. This method uses water and 

enzymes to recover free and emulsified oil [2,3], based on the insolubility of oil in water instead of 

                                                           
7
 Part of this chapter has been sent to The Journal of Supercritical Fluids as: Solana, M., Teel, J., Hojilla, M., Bertucco, A.,Eller, F., 

Counter-current carbon dioxide extraction of fat from soy skim. 
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the dissolution of oil [4]. The advantage of enzyme-assisted aqueous extraction, in addition to safety 

and environmental benefits, is that oil and protein are extracted simultaneously [1,5].  

Additionally, the oil requires less refining because of its low content of phospholipids [3,4] 

and also the protein damage is less [1]. Moreover, the capital investment of enzyme-assisted 

extraction is lower with respect to conventional solvent extraction [1].  

The enzyme-assisted extraction method is typically performed in two steps. First, oil and 

protein are extracted from the high-fiber solids. Then, the extraction mixture is centrifuged to 

produce oil-rich fraction (free oil and cream emulsion), oil- and protein-lean spent solids, and a 

protein- and sugar-rich aqueous phase (skim) [6]. The skim is a valuable co-product that is not 

produced in other extraction processes [5]. A typical soy skim contains about 11% dry matter, of 

which 56–60% is partially hydrolyzed proteins and a small amount is oil [1,2]. The presence of oil 

and the nature of the hydrolysis not only make it difficult to purify the skim protein,  but also cause 

a substantial loss of oil product. Indeed, process economic analysis demonstrated that creating value 

from the skim fraction is decisive to the economic feasibility of enzyme-assisted extraction 

processes of soybeans [5]. So far, the simplest and most economical method to purify soy proteins 

is isoelectric precipitation. Nevertheless, the oil has a high binding capacity of soybean protein, 

which limits purity that can be achieved [5].  

The alternative method to purify the soybean proteins that we propose in this work involves 

separating the oil from the skim fraction through counter-current CO2 extraction. Previous research 

demonstrated that CO2 can effectively solubilize soybean oil [7]. CO2 is an ideal solvent to be used 

for food applications since is inert and non-toxic, and no high temperatures that could damage 

thermo-labile compounds are needed. Besides, CO2 counter-current fractionation is an 

environmentally friendly process in which CO2 can be safely recycled after product separation.  

Some applications of CO2 counter-current separation method applied to oils that have been 

reported include purification of raffinate rice oil from rice bran [8], fractionation of fish oils [9], 

extraction of olive oil [10] and fractionation of lemon oil [11]. The advantages of using counter-

current mode are the reduction of solvent consumption, increased throughput, and higher oil extract 

concentrations in the solvent and lower residual concentration in the raffinate [12]. In addition, 

counter-current fractionation of a feed mixture can be implemented in a continuous mode [13].

In this work, the influence of the main operating parameters affecting the extraction of fat 

from soy skim by counter-current CO2 separation was investigated. The amounts, electrophoretic  
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Figure 8.1. Schematic of CO2 counter-current extraction apparatus.  

patterns, and solubility behaviours of proteins in the soy skim samples before and after the 

extraction were determined, in order to detect any alterations by the CO2 treatment. The results 

reported herein would support the development of an environmental and safe process to obtain and 

separate the oil and the proteins from soybean and soy skim.  

8.2. Materials and methods 

8.2.1. Materials 

Soy skim was provided by Center for Crops Utilization Research, Iowa State University, 

Ames, IA. Carbon dioxide was provided by ILL-MO products Co. (Jacksonville, IL). Absolute 

ethanol was supplied by Fisher scientific (Fair Lawn, NJ).  

C11 TAG, chloroform, hydrochloric acid, diethyl eter, hexane, toluene, methanol, BF3-in-

methanol, sodium hydroxide, sodium sulphate were supplied by Fisher scientific (Fair Lawn, NJ, 

USA).  
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8.2.2. Counter-current extraction apparatus 

The basic design of the counter-current CO2 plant has been previously published [14,15]. The 

stainless steel column is 1.83 m long and 10.2 cm of outer diameter. The original system was 

modified to include ethanol supply for this study. The gas booster pump was substituted with a 

syringe pump. Figure 8.1 shows the scheme of the complete apparatus. In some experiments, the 

column was packed with seventy-six vertically-stacked packing pieces, 316-stainless steel Pall 

Ring, of 0.016 m (AMACS Process Tower Internals. Houston, TX).  

The operating procedure was as follows: the system was pressurized up to the experimental 

pressure and the column was heated up to the temperature of the run. When a steady temperature 

and pressure were reached, the pumping of the feed solution and the extract collection were started. 

In the experiments in which ethanol was used as modifier, the ethanol pump was also activated at 

the same time. CO2 entered from the bottom of the column and the soy skim solution was delivered 

from the top of the column, so as to allow counter current contact of CO2 with the feed solution. 

The raffinate was accumulated in the reservoir pump. Continuous feed solution flow was 

maintained for 200 minutes, whereas only CO2 was pumped during 100 minutes more. One sample 

of the extract and one of the raffinate were collected every 100 minutes. 

Runs at 10.34 and 25.16 MPa were performed, and temperatures of 25 and 50 °C were tested. 

Considering that CO2 critical temperature and pressure are 31.1°C and 7.39 MPa, respectively, for 

the experiments performed at 25°C CO2 was at a liquid state, whereas for the tests at 50 °C it was at 

supercritical conditions. CO2 flow rate was varied from 2.5 to 10 mL min
-1

. The feed solution was 

pumped at 1 mL min
-1

 in all the runs. Tests with and without modifier (ethanol) were carried out. 

For a number of experiments, the packing was introduced in the column.  

8.2.3. GC-FAME analysis 

The soy skim samples were hydrolysed, transesterified and fatty acids profile determined -as 

described by House et al. [16]. 

8.2.4.  Moisture, crude fat, and crude protein contents 

Moisture, crude fat, and crude protein contents were determined by following AOCS standard 

methods Ba 2a-38, Am 5-04 and Ba 4e-93, respectively (AOCS, 2009). Samples were weighed 

before and after drying for 3 hours at 103 °C to determine moisture content.  Dried samples were 

then extracted with petroleum ether at 90 °C for 60 min in an Ankom XT15 Fat Extractor (ANKOM 

Technology, Macedon, New York)..  Samples weighing 0.2 g were analyzed for nitrogen content 

using a Leco FP-528 Dumas-Type Elemental Analyzer (LECO Corp., St. Joseph, Michigan). A 
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conversion factor of 6.25 was used to calculate percent protein. Determinations were performed in 

triplicate. 

8.2.5. Gel electrophoresis 

SDS-PAGE was done according to the method of Hojilla-Evangelista et al. (2013). Reduced 

proteins from the defatted, freeze-dried soy skim samples were prepared to provide 4 mg 

protein/mL and then loaded (15 µL) onto a 4-12% pre-cast gradient gel. Protein standards with 

molecular weight range 6.5-200 kDa were also included in the gel. Native gel electrophoresis was 

done by following the procedure of Hojilla-Evangelista and Evangelista (2006). Sample 

concentrations were 4 mg protein/mL in 500 μL of commercial Tris-glycine native sample buffer 

(pH 6.8, Invitrogen Corp., Carlsbad, CA).  Loading volume was 20 µL onto pre-cast Novex
TM

 Tris-

glycine 8-16% gradient gel.  Protein standards (20 to 1236 kDa) were included in the gel. 

8.2.6. Protein solubility 

Protein solubility curves were generated by following the method of Myers et al. (1994). 

Aqueous solutions containing 1% protein (dry basis) were stirred for 10 minutes and adjusted to pH 

2, 4, 5.5, 7, 8.5, or 10 by addition of 1.0 M HCl or 1.0 M NaOH. Solutions were then centrifuged at 

6000 rpm (4186  x g) for 20 minutes. The amount of protein in the supernatant was determined by 

the Biuret method at 540 nm using a Shimadzu UV-2600 UV/Vis Spectrophotometer. A standard 

curve was created from solutions of bovine albumin (Sigma A-3059).  Determinations were done in 

duplicate. 

8.2.7. Statistical analysis 

The mean and the standard deviation were calculated on the basis of the four (fat content) and 

six (protein content) measures obtained from the two runs. Analysis of variance (ANOVA) of the 

results was performed using Statistix 7 software (Analytical Software, Tallahassee, FL, USA) and 

means were compared using least significant difference (LSD) test at P=0.05. 

8.3. Results and discussion 

The study of the influence of different parameters on the reduction of the fat content of soy 

skim is presented in this section. In particular, the effect of the solvent-to-feed ratio, CO2 state, 

packing of the column and use of ethanol as modifier is discussed. Additionally, the proteins 

content of the samples is reported.  

The fat and protein content of the soy skim solution without any treatment was measured in 

order to compare it with the solutions obtained as raffinate after the CO2 treatment. In the following, 

this sample will be called control sample.  
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Table 8.1. Influence of pressure, temperature, modifier and packing of the column on the soy skim fat content after the 

treatment and comparison with the control sample. 

Pressure (MPa) Temperature (°C) Modifier Packing Soy skim fat (%) 

25.16 50 yes no 1.83±0.39 

25.16 50 no  no 1.09±0.01 

10.34 25 yes yes 3.29±0.09 

10.34 25 no yes 1.59±0.31 

25.16 50 yes yes 2.33±0.94 

25.16 50 no yes 0.83±0.17 

Control sample 

   

4.29±0.15 
                                Values are mean±S.D of two measures of duplicate experiments. 

 

Figure 8.2. Effect of solvent-to-feed ratio on the fat extraction from soy skim using liquid and supercritical CO2, and 

comparison with the control sample. 

8.3.1. Effect of CO2 state  

The influence of CO2 state on the extraction of fat from soy skim was studied keeping 

constant the density of CO2 (0.842 g mL
-1

). Results are shown in Table 8.1 and Figure 8.2. The 

operating conditions of liquid CO2 were 10.34 MPa and 25 °C, whereas the tests with supercritical 

CO2 were carried out at 25.16 MPa and 50 °C. CO2 was pumped at 5 mL min
-1 

in all the runs.  

ANOVA indicated that there is a significant effect of the CO2 treatment on the extraction of 

fat from soy skim (P=0.0004), but no significant differences were found among the tests performed 

at different conditions of pressure and temperature. From Figure 8.2, it can be seen that, regardless 

of the CO2 flow rate, the reduction of soy skim fat was slightly higher when supercritical CO2 was 

used, however this difference was not statistically significant.  
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8.3.2. Effect of solvent-to-feed ratio  

The average content of soy skim fat after the treatment as a function of the solvent-to-feed 

ratio is summarized in Figure 8.2, together with the fat content of the control sample. In all the runs, 

the feed solution flow rate was kept at 1 ml min
-1

. Three different CO2 flow rates were tested: 2.5, 5 

and 10 ml min
-1

. First, the effect of the solvent-to-feed ratio was studied at 10.34 MPa and 25 °C. 

Then, this effect was analyzed using CO2 at 25.16 MPa and 50 °C. ANOVA indicated that there are 

significant effects of solvent-to-feed ratio on fat content after the CO2 treatment (P=0.0005). The 

highest reduction of fat content (from 4.3 to 1.0 %) was achieved at a solvent-to-feed ratio of 2.5 

with supercritical CO2, as represented in Figure 8.2. However, at these conditions of pressure and 

temperature, the differences of fat content using diverse flow rates were negligible. As regards the 

tests with liquid solvent, the fat content decreased significantly when the solvent to feed ratio was 

increased from 2.5 to 5. It slightly decreased at increasing the CO2 flow rate from 5 to 10 mL min
-1

. 

In conclusion, the minimum solvent to feed ratio to achieve the highest reduction of soy skim fat is 

5 with liquid CO2, whereas the effect of solvent-to-feed ratio is not significant with supercritical 

CO2. 

8.3.3. Effect of the column packing 

In an attempt to enhance mass transfer efficiency by improvement of flow conditions inside 

the column, stainless steel packing was placed in the fractionation column. Results are presented in 

Table 8.1. Experiments at liquid and supercritical CO2 conditions were performed at a constant CO2 

flow rate of 5 mL min
-1

.  

ANOVA indicated that there are significant effects of adding the packing to the column on the 

fat content in the raffinate (P=0.0002). At 25.16 MPa and 50 °C without modifier, the soy skim fat 

was reduced from 1.09 to 0.83 % when the packing was introduced in the column, as shown in 

Table 8.1.  

8.3.4. Effect of modifier  

Ethanol in a proportion of 5 % (mass) with respect to a CO2 flow rate  of 5 ml min
-1

 was 

added as a modifier to CO2 with the aim of increasing the polarity of the solvent and studying its 

effect on the extraction of fatty acids from soy skim. Tests at liquid and supercritical CO2, with and 

without packing, are compared. A constant CO2 flow rate of 5 mL min
-1

 was maintained in all the 

runs. 
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Figure 8.3. Gas chromatogram of fatty acid profile of soy skim.   

ANOVA indicated that there are no significant effects of adding the modifier on the fat 

content in the raffinate, but there are differences with respect to the no treated sample (P=0.0018). 

As shown in Table 8.1, the addition of the modifier to the solvent resulted in a lower decrease of fat 

content, probably because of the apolar nature of the fatty acids present in the soy skim. 

When both modifier and packing in the column were tested, the soy skim fat content in the 

sample increased from 1.09 to 2.33 %, as shown in Table 8.1. This can be due to the lower density 

of ethanol with respect to CO2, that difficult the flow of solvent through the packing of the column 

or to the affinity at the ethanol to partition into the aqueous phase. 

8.3.5.  Fatty acid composition 

The fatty acid composition of all the samples obtained before and after the treatment was 

analyzed. Results showed that counter-current CO2 is not selective towards the different fatty acids, 

since the fatty acid composition did not vary significantly. A chromatogram of one of the samples is 

shown in Figure 8.3. It can be seen that soy skim is rich in C18:2 (51.2 %) fatty acid. The presence 

of C12:0 (2.7 %), C15:1 (0.8 %), C16:0 (14.8 %), C18:0 (5.2 %), C18:1 Z (18.5 %) and C18:3 (6.8 

%) is also significant. This fatty acid profile is the typical one of soy bean oil [17]. 
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Table 8.2. Protein content of soy skim before (control sample) and after the treatment at different operating conditions.  

Test Pressure (MPa) Temperature (°C) Solvent-to-feed ratio  Modifier Packing Protein content (%) 

1 10.34 25 2.5 no no 62.30±1.09 

2 10.34 25 5 no no 60.98±0.28 

3 10.34 25 10 no no 60.85±1.24 

4 25.16 50 2.5 no no 59.15±1.32 

5 25.16 50 5 no no 56.57±1.17 

6 25.16 50 10 no no 57.65±2.60 

7 25.16 50 5 yes no 62.78±1.93 

8 10.34 25 5 no yes 59.09±0.49 

9 25.16 50 5 no  no 56.57±1.17 

10 25.16 50 5 no yes 57.28±1.51 

11 10.34 25 5 yes yes 56.43±0.61 

12 25.16 50 5 yes yes 58.33±1.00 

Control sample 59.91±0.72 

Values are mean±S.D of three measures of duplicate experiments. 

8.3.6.  Effect of CO2 treatment on the protein content 

The protein content of the samples collected after the treatments reported above is shown in 

Table 8.2. A significant F-test was obtained from ANOVA analysis for packing (P=0.0006). It 

seems the packing caused a slight decrease in protein, probably as a result of protein sticking to the 

packing inside the column. In any event, the decrease was relatively small. There were no 

differences in protein between the levels of the factors CO2 state, solvent to feed ratio, or modifier.  

Gel electrophoresis results (native and reduced gels) showed no differences in the protein 

band patterns, indicating that the treatments used did not have effect on protein structure. 

8.3.7.  Protein solubility 

Figure 8.4 shows the protein solubility of the samples before and after the CO2 treatment at 

different values of pH. It is noteworthy that soy skim contact with liquid CO2 (tests 1, 2, 3) resulted 

in slightly higher protein solubilities at pH higher or equal to 7. Protein solubilities were similar to 

the control at pH values of 2, 4, and 5.5.   

Soy skim contact with supercritical CO2 increased protein solubility at all the values of pH, 

especially at a CO2 flow rate of 10 mL min
-1 

(test 6).  The  effect of modifier or packing was not 

significant, in any case the protein solubility was higher than the control for all the values of pH. 
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Figure 8.4. Protein solubility (%) of the samples before and after the CO2 treatment at different values of pH. The 

numbers that are shown in the legend corresponds to the tests that are enumerated in Table 2, where the conditions of 

each experiment are specified. 

 

8.4. Final remarks  

Counter-current CO2 extraction of fat from soy skim was studied and the effects of the main 

parameters were investigated. ANOVA analysis indicated that the effect of CO2 state is not 

significant. The influence of solvent-to-feed rate in the range 2.5-10 was significant with liquid 

CO2, however no relevant effect was found at supercritical conditions. The introduction of packing 

in the column improved the results, whereas using ethanol as a modifier resulted in a decrease in 

soy skim fat. After the extraction at the optimum conditions (25.16 MPa, 50 °C, with packing and 

without modifier) the fat content of soy skim was reduced from 4.4 to 0.8%. The fatty acids profile 

of soy skim oil was not significantly altered by the CO2 treatment, being also the typical one of soy 

bean oil. A slightly decrease of the protein content was found in the experiments with packing. The 

protein levels of factors CO2 state, solvent-to-feed ratio, or modifier were unaffected by CO2 

extraction. In conclusion, counter-current CO2 extraction is an efficient method to reduce the fat 

content of soy skim without altering the protein content and could be considered as an alternative to 

the methods that are currently being applied in the industry. 
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Conclusions 

Nowadays the potential of supercritical CO2 technologies in the food industry is astonishing 

for a number of reasons: efficiency, selectivity and green quality, among others. However, the 

economic viability of these technologies is under discussion, as well as their efficiency when applied 

to new sources and the production of novel products. 

This thesis has been focused on the study of three supercritical CO2 technologies for the 

production of bioactive compounds from natural sources. Extraction, precipitation and counter-

current fractionation processes have been successfully performed by SFE, SAS and a continuous 

packed column. 

First, extraction from different species of microalgae, rocket salad and asparagus have been 

demonstrated to achieve high yields when using co-solvents, including mixtures of them. The effect 

of the operative conditions on the yield and composition of the extracts presented a different 

behavior when different co-solvents were tested. A model typically applied in supercritical fluid 

extraction, the broken and intact cells model of Sovová, has been successfully applied to the 

experimental data obtained from new sources and with the addition of co-solvents. 

As regards microalgae essential fatty acids extraction, supercritical CO2 and Soxhlet have 

shown to be comparable as far as the process yield and fatty acid composition of the extracts are 

concerned, whereas SFE is faster, more selective and does not require a toxic solvent. Studying 

pressure and temperature effects on the SFE yield and solubility, it was found that the cross-over 

phenomenon occurs at a pressure close to 25 MPa. Consequently, the maximum extraction yield 

was obtained at 30 MPa and 65 °C. Comparing FFA analysis of the extracted oils, it was found that 

the omega-3 content is negatively affected by high temperatures, high pressures and long extraction 

times. 

The use of supercritical CO2 for the extraction of new bioactive compounds has also been 

demonstrated. Particularly, an extract rich in glucosinolates from rocket salad have been obtained 

by supercritical CO2 using water as co-solvent. Water resulted to be the most efficient co-solvent 

also for the extraction of phenolic compounds from rocket salad, whereas the fraction richest in 

lipids was extracted by SCCO2+ethanol. According to these results, a sequential extraction scheme 
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was proposed, in which the two extracts are produced by using first water and then ethanol as co-

solvent.  

Considering the experimental results obtained on the supercritical extraction of bioactive 

compounds from rocket salad, a large scale process has been developed for the production of 

natural extracts using water as co-solvent. A cost benefit analysis of the profitability of this process 

has been made showing that with an interest of 5% and 10 years of pay-back period, the net present 

value of the process would be positive if the selling price of the extract is higher than 21.9 US$ kg
-1

, 

based on the current wholesale price of rocket salad. In the best scenario, namely using non-saleable 

salad, the price of the extract would be lower (17.0 US$ kg
-1

). These results showed that the SFE 

extract price is competitive with the current price of natural extracts in the market.  

The last study regarding supercritical fluid extraction concerned the comparison of three 

extraction methods (SFE, PLE and Soxhlet) to produce phenolic compounds from asparagus. It was 

concluded that the extraction of different phenolic compounds and the antioxidant activity of the 

extracts are affected by both the extraction method  and the solvent used. As regards the SFE 

extracts, the highest phenolic content was obtained using a mixture of water-ethanol 1:1 as co-

solvent. No significant differences were found on the phenolic composition of the extracts obtained 

at different pressures and temperatures, whereas longer extraction times favoured the extraction of 

phenolic acids. 

Moreover, polyphenols and anthocyanins compounds from non-saleable cherries have been 

successfully precipitated using supercritical anti-solvent (SAS) process with CO2. Results showed 

that continuous mode is more efficient than batch, and that polyphenols and anthocyanins yields of 

precipitation are favoured by lower pressures and higher compositions of CO2. 

Counter-current CO2 fractionation plant was first tested. For that purpose, the recovery of 

butanol from aqueous solutions was performed. The comparison of phase equilibrium data of the 

system CO2-water-butanol with the experimental data showed that our column provides a consistent 

number of ideal separation stages. The effect of the operating parameters, such as solvent-to-feed 

ratio, temperature, pressure and feed solution composition, were found to be significant on the 

separation efficiency. 

 Once counter-current fractionation plant had been tested, counter-current extraction of fat 

from soy skim was investigated for the first time. Results showed that counter-current CO2 is an 

efficient method to reduce the fat content of soy skim without altering the protein content and the 

fatty acids profile. ANOVA analysis indicated that the effect of CO2 state is not significant. The 
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influence of solvent-to-feed rate was significant with liquid CO2, however no relevant effect was 

found at supercritical conditions. The introduction of packing in the column improved the results, 

whereas using ethanol as a modifier resulted in a decrease in soy skim fat.  

In summary, the future of production of valuable compounds from vegetable and food waste 

and separation of the compounds of interest using supercritical technologies is definitely promising, 

the possibilities to improve the results are numerous, and should be the subject of further 

investigations. It is specially important to continue the investigation on supercritical technologies 

for different samples in order to generate new data and probably obtain new products, that can be 

useful for the potential scale-up of the so newly proposed processes.  
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