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Sommario	
Il	 principale	obiettivo	delle	 attività	di	 ricerca	qui	presentate	 riguardano	 lo	 svi-

luppo	di	nuovi	processi	e	materiali	per	applicazioni	 in	edilizia	adattate	alle	esi-

genze	 dell'Arabia	 Saudita	 in	 base	 alle	 informazioni	 scambiate	 con	 i	 partner	 di	

KACST	(King	Abdulaziz	City	of	Science	and	Technology).  

L'attività	di	 ricerca	è	stata	 focalizzata	sullo	sviluppo	di	una	vasta	gamma	di	

componenti	ceramici	mediante	sintercristallizzazione	di	vetri	prodotti	da	rifiuti	

(ceneri	volanti	e	scorie)	con	o	senza	l'aggiunta	di	fondenti	come	rottame	di	vetro	

o	silicati.	Le	materie	prime	sono	state	miscelate	in	rapporti	adeguati	alla	produ-

zione	 di	 composizioni	 ceramiche	 adatte	 all’utilizzo	 in	 edilizia;	 ad	 esempio	 pia-

strelle	vetroceramiche,	pannelli	alleggeriti	e	aggregati	leggeri.	

Vetroceramiche	e	ceramiche,	dense	e	porose,	sono	state	realizzate	come	so-

stituti	alle		pietre	naturali	e	ai	ceramici	tradizionali.	Vetroceramici	densi	presen-

tano	 proprietà	 eccezionali	 (durezza,	 resistenza	 meccanica,	 durabilità),	 mentre	

vetroceramiche	porose	presentano	ridotte	densità	e	conducibilità	termica.	Inol-

tre	sinterizzando	fritte	vetrose	sono	stati	ottenuti	smalti	altamente	riflettenti	con	

bianchezza	corrispondente	al	marmo	di	Thassos.	Tutti	i	materiali	sviluppati	sono	

basati	sull'utilizzo	di	risorse	naturali	o	materiali	di	scarto	provenienti	dall’Arabia	

Saudita.	Inoltre,	sono	state	sviluppate	diverse	tecniche	per	la	schiumatura	diretta	

di	vetroceramiche,	portando	alla	realizzazione	di	materiali	altamente	porosi	con	

celle	 principalmente	 chiuse.	 Utilizzando	 tecniche	 alternative	 sono	 state	 invece	

sviluppate	vetroceramiche	con	una	prevalenza	di	celle	aperte.	
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Abstract	
The	main	goal	of	 the	herewith	presented	research	activities	was	 to	develop	 in-

novative	processes	and	materials	for	building	applications	adapted	to	the	needs	

of	Saudi	Arabia	according	to	the	information	exchanged	with	the	partners	from	

KACST	(King	Abdulaziz	City	of	Science	and	Technology).	

The	research	activity	focused	on	the	development	of	a	wide	range	of	ceramic	

components	 via	 sinter-crystallization	 of	 glasses	 produced	 from	waste	 (fly	 ash,	

slag,	 sludge)	with	or	without	 the	addition	of	vitrification	aids,	 such	as	cullet	or	

silicates.	The	 raw	materials	have	been	mixed	 in	 the	appropriate	 ratios	 to	yield	

ceramic	compositions	 that	 could	be	used	 in	 the	building	 industry	 (e.g	glass	ce-

ramic	tiles,	porous	panels,	lightweight	aggregates).	Monolithic,	porous	or	dense,	

sintered	glass	ceramics	and	ceramics	were	manufactured	as	substitutes	for	natu-

ral	stones	or	traditional	ceramics.	Dense	glass	ceramics	have	outstanding	prop-

erties	 (hardness,	mechanical	 strength,	 durability),	while	 porous	 glass	 ceramics	

provide	 low	 density	 and	 thermal	 conductivity.	 Furthermore	 highly	 reflective	

glazes,	also	matching	the	whiteness	of	Thassos	marble,	were	manufacture	sinter-

ing	glass	frits.	

All	 the	 developed	 materials	 are	 based	 on	 the	 use	 of	 natural	 resources	 or	

waste	 materials	 from	 Saudi	 Arabia.	 Moreover,	 several	 techniques	 for	 direct	

foaming	of	glass	ceramics	have	been	developed,	leading	to	highly	porous	ceram-

ics	with	mainly	closed	cells.	Alternative	techniques	have	been	developed	for	the	

production	of	open-celled	ceramics.	
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General	Introduction	

I	 –	 Dense	 and	 Porous	 Waste	 Derived	 Glass	
and	Glass	Ceramics	
Melting	several	types	of	inorganic	waste	into	glasses	(“waste	glasses”)	is	a	well-

known	 technique	 for	 immobilizing	 pollutants.[1]	 Although	 recommended	 for	

highly	hazardous	residues,	like	radioactive	waste,	the	vitrification	method	is	cur-

rently	rather	discouraged,	due	to	the	high	energy	consumption,	so	that	 less	ex-

pensive		treatments	such	as	disposal	in	landfills	or	immobilization	in	cement	ma-

trices	may	become	more	attractive	[2-4].		

The	realization	of	marketable	products	 from	waste	glasses	may	counterbal-

ance	their	 intrinsic	processing	costs	and	glass	ceramics	manufactured	sintering	

powdered	glasses	 is	one	of	 the	most	 interesting	application	[5-7].	 If	 the	parent	

glass	is	not	refined,	prior	to	be	finely	ground,	the	costs	and	the	duration	of	vitrifi-

cation	may	be	drastically	reduced.	Firstly,	shortening	the	melting	treatments	the	

volatilization	of	heavy	metals	from	the	glass	melt	are	limited,	with	an	improved	

sealing	of	hazardous	pollutants.	Secondly,	sintered	glass	ceramics	are	based	on	

surface	 crystallization	 (sintering	 with	 concurrent	 crystallization,	 i.e.	 “sinter-

crystallization”),	largely	favored	for	small	glass	granules	(free	glass	surfaces	are	

preferred	 sites	 for	 devitrification)	 [8-10]:	 catalysts	 in	 the	 glass	 formulation	 or	

long	nucleation/crystal	growth	treatments	are	not	needed	and	crystallization	is	

achieved	in	very	short	times	 	[11],	even	in	the	case	of	crystal	phases	which	are	

hardly	obtained	by	conventional	nucleation	and	crystal	growth	treatments	(e.g.	

feldspar	and	feldspathoid	crystals)	[12-13].	

A	proper	balance	 of	 viscous	 flow	 sintering	 and	 crystallization	 is	 pivotal	 for	

the	obtainment	of	dense	glass	ceramics.	In	fact,	an	intense	surface	crystallization	

of	glass	powders	may	hinder	the	densification,	leading	to	very	porous	materials.	

A	possible	solution	is	provided	adopting	a	sintering	temperature	well	above	the	

crystallization	temperature,	by	applying	high	heating	rates	and	forcing	the	glass	

to	 sinter	before	extensive	crystallization	 [14].	A	more	economically	convenient	

alternative	is	the	“co-sintering”	with	a	secondary	glass	not	prone	to	crystalliza-
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tion	acting	as	sintering	aid,	i.e.	common	soda-lime	scrap,	or	recycled	pharmaceu-

tical	borosilicate	glass	etc.,	may	improve	the	densification	and	also	promote	the	

chemical	inertia	of	the	obtained	glass	ceramics	[15].	

Glass	 ceramics	 tiles	 from	 waste,	 obtained	 by	 conventional	 nucleation-and-

growth	mechanisms	[16-20]	or	by	sinter-crystallization	[21-27],	have	been	pro-

duced	by	several	research	groups.	Also	stoneware-based	tiles	containing	waste-

derived	glass	have	been	produced	[28-30].	

Although	dense	glass	and	glass	ceramics	posses	remarkable	strength	and	op-

tical	 properties,	 glass	 and	 glass	 ceramic	 foams	were	 sintered	 for	 thermal	 and	

acoustical	insulation	[31-35].	

Glass	foams	are	produced	in	limited	quantities	due	to	high	processing	costs,	

and	are	used	 in	substitution	 for	organic	 foams	when	high	mechanical	strength,	

incombustibility,	thermal	and	chemical	stability	are	required.	Furthermore	when	

the	 foams	 are	 produced	with	 a	 closed	 cell	 structure	 the	material	 is	watertight	

and	an	efficient	barrier	against	humidity.	The	production	of	glass	foams	may	fol-

low	two	distinct	processes:	the	first,	dating	back	to	the	1930s,	consists	of	the	di-

rect	fluxing	of	gases	into	molten	glass;	the	second	one,	less	expensive,	is	based	on	

the	 viscous	 flow	 sintering	 of	 fine	 glass	 powders,	 which	 creates	 a	 pyroplastic	

mass	which	is	foamed	by	the	action	of	specific	powder	additives,	foaming	agents,	

owing	to	decomposition	or	oxidation	reactions.	The	decomposition	reactions	in-

volve	carbonates	and	sulfates,	while	oxidation	reactions	are	due	to	the	 interac-

tion	of	carbon-containing	species	(C,	SiC)	and	polyvalent	 ions	(Fe,	Mn,	Ce)	with	

oxygen,	coming	mainly	from	the	atmosphere	of	the	sintering	furnace.	The	adop-

tion	of	a	 sintering	approach	paved	 the	way	 for	 the	use	of	glass	not	 specifically	

designed	for	foam	production;	significantly,	the	sintering	approach	led	to	the	ex-

tensive	use	of	cullet	for	this	application.	Soda-lime	glass	is	a	common	raw	mate-

rial;	however,	a	number	of	recent	investigations	showed	that	it	is	possible	to	fab-

ricate	foams	using	other	glasses,	such	as	cathode-ray	tube	glass	(CRT)	[36].	The	

low	characteristic	 temperature	of	 these	glasses	enables	 foaming	at	particularly	

low	temperature	(even	below	750°C),	through	the	decomposition	of	added	calci-

um	carbonate.		

The	foaming	of	waste-derived	glasses	is	more	complicated	by	the	previously	

discussed	tendency	of	these	glasses	to	crystallize	upon	heating.	The	high	specific	
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surface	of	the	foam	enhances	the	surface	nucleation	and	growth	of	crystals	dur-

ing	the	foaming	process,	originating	problems	in	the	homogeneity	and	reproduc-

ibility	of	 the	overall	 foam	morphology.	This	 issue	may	be	overcome	by	using	a	

combined	approach,	i.e.	by	foaming	mixtures	of	soda-lime	glass	and	the	glass	un-

dergoing	 crystallization	 [37],	 or	 again	 of	 soda-lime	 glass	 and	 selected	 wastes	

[38].	In	this	case	the	crystallization	may	actually	be	useful,	since	it	enhances	the	

mechanical	properties.	A	similar	situation	is	found	when	using	mixtures	of	soda-

lime	glasses	with	cullet	more	difficultly	 recycled	but	quite	prone	 to	crystalliza-

tion,	 e.g.	 glass	 residue	 from	 the	 manufacturing	 of	 glass	 fibers,	 having	 a	 CaO-

Al2O3-SiO2	composition	similar	to	that	of	many	waste	glasses	used	for	the	prepa-

ration	of	glass	ceramics	[39].	

The	 effective	 crystallization	 of	 waste	 glasses	 may	 be	 even	 advantageous	

when	foams	characterized	by	an	open	porosity	are	desired,	e.g.	 for	filtering	ap-

plications.	Open-celled	glass	ceramics	may	be	obtained	by	mixing	glass	powders	

with	polymeric	microspheres	or	by	the	infiltration	of	slurries	onto	polyurethane	

sponges,	 followed	 by	 the	 burn-out	 of	 the	 sacrificial	 polymers	 and	 sinter-

crystallization	[40].		

II	–	Waste	Derived	Glass	Ceramics	Belonging	
to	the	CaO-Al2O3-SiO2	System	
Most	 waste-based	 glass	 ceramics	 belong	 to	 the	 CaO-Al2O3-SiO2	 system	 [8,	41]	

due	to	the	chemical	composition	of	the	most	relevant	types	of	 inorganic	waste:	

metallurgical	 slags,	 fly	 ashes	 from	municipal	 solid	 waste	 incineration	 or	 from	

coal	combustion	and	contaminated	sediments.		

To	limit	the	costs	for	the	realization	of	waste	derived	glass	to	be	used	to	form	

sintered	glass	ceramics	the	following	conditions	should	be	fulfilled:	

• Maximization	of	“waste	absorption”.	The	glass	should	be	produced	mini-

mizing	the	contents	of	valuable	raw	materials	and	consequently	recycling	

the	 highest	 content	 of	waste.	 By	 combining	 different	 types	 of	wastes	 is	

possible	 to	 limit	 the	 employment	 of	 mineral.	 Furthermore,	 combining	

several	types	of	waste	can	provide	a	way	to	control	possible	fluctuations	

of	the	chemical	composition	of	the	waste	materials.	
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• Relatively	low	characteristic	temperatures	of	the	glass.	

• Glass	composition	suitable	for	fast	sinter	crystallization.	

• Formation	 of	 crystal	 phases	 leading	 to	 good	mechanical	 properties,	 e.g.	

needle-like	silicate	crystals,	mutually	interlocked.	

• Control	of	secondary	features,	e.g.	the	present	work	frequently	focused	on	

a	combination	of	waste	leading	to	an	overall	composition	with	a	relatively	

low	amount	of	coloring	oxides,	such	as	Fe2O3	or	Cr2O3;	

Predictions	about	 characteristic	 temperatures	 and	 crystals	 formation	after	 sin-

tering	 are	 quite	 complex.	 A	 good	 solution	 may	 be	 referring	 to	 the	 literature;	

more	 specifically	 to	 compositions	 similar	 to	 those	 for	Russian	 “Slag-sitalls”,	 i.e.	

waste	derived	 glass	 ceramics	 [see	 ref.	 1,	 2]	well	 known	 to	be	used	 as	building	

materials.	Slag-sitalls	 crystallize	effectively	when	 the	starting	glass	 is	heated	at	

about	1000°C,	developing	wollastonite	(CaO⋅SiO2)	as	the	main	crystalline	phase,	

coupled	with	alumino-silicates	such	as	anorthite	(CaO⋅Al2O3⋅2SiO2)	and	gehlenite	

(2CaO⋅Al2O3⋅SiO2).	Interestingly,	the	compositions	for	Slag-sitalls	are	quite	simi-

lar	 to	 those	 for	other	very	 important	glass	ceramics	 for	architectural	purposes,	

e.g.	Japanese	“Neoparies”	[8].	Neoparies	are	the	most	remarkable	industrial	glass	

ceramics	 manufactured	 by	 the	 “sinter-crystallization”	 approach:	 glass	 is	 fabri-

cated	 in	 the	 form	of	granules,	 subsequently	viscous	 flow	sintered	with	 concur-

rent	 crystallization.	The	 fabrication	of	 glass	 granules	 is	 very	easy	and	very	ad-

vantageous	when	using	waste	raw	materials,	since	they	can	be	obtained	by	pour-

ing	a	glass	melt	 in	water,	 just	after	homogenization,	without	expensive	refining	

step;	in	addition,	crystallization	may	be	obtained	very	rapidly	(in	1h	or	less,	at	an	

adequate	sintering	temperature),	on	the	basis	of	surface	nucleation,	even	in	the	

presence	of	glasses	with	a	very	low	amount	of	oxides	that	could	act	as	nucleating	

agents	(i.e.	oxides	with	a	poor	solubility	in	glass,	such	as	TiO2,	ZrO2	etc.).		
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III	–	Raw	materials	provided	
The	raw	materials	provided	by	KACST	were	the	following	(see	Tab.	1):	

Tab.	1:	List	of	raw	materials	to	be	used	in	the	experiments	

	

Of	these	materials	only	a	part	was	used	for	the	experiments.		

IV	–	Thesis	summary	
The	present	investigations	were	divided	into	6	main	topics	and	are	fully	de-

scribed	in	the	next	Chapters.	

Chapter	1.		 The	main	 topic	of	 this	chapter	refers	 to	 the	development	of	

porous	glass	ceramics	for	building	applications	(light	weight	aggregates	and	in-

sulating	panels).	The	 investigations	 focused	on	a	self-foaming	mixture	of	waste	

glass	 and	 a	 basalt	 rock	 discarded	 from	 the	 cement	 industry.	 The	 influence	 of	

composition,	particle	dimension,	firing	temperature	and	heating	rate	were	stud-

ied	 in	 order	 to	 manufacture	 samples	 with	 different	 porosity	 and	 mechanical	

No.	 Name	of	Raw	Materials		
01	 Steel	plant	fly	ash	
02	 Slag		
03	 Basalt	scoria		
04	 Clay		A	
05	 Clay		E	
06	 Cement	Fly	Ash	02	
07	 Cement	Fly	Ash	03	/04	
08	 Cement	Fly	Ash	05	
09	 Cement	Fly	Ash	06	
10	 Cement	Fly	Ash	07	
11	 Stainless	steel	waste	
12	 Tiles		ceramics	waste	
13	 Clay		Pipe	waste	
14	 Bricks	waste	
15	 Limestone	(CaCO3)	
16	 Air	Pollution	Control	(APC)	residues	
17	 Coal	waste	
18			 Cullet	(glass	waste)	
19	 Municipal	burned	paper	waste	
20	 Building	waste	
21	 Silica	sand	
22	 White	clay	
23	 Dolomite	
24	 Magnesia	
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strength	according	to	the	designed	application.	Moreover	the	self-foaming	mech-

anism	was	investigated	in	accordance	with	micro-structural	studies	(XRD,	chem-

ical	titration,	DTA,	TGA,	porosities	determination,	µ-CT).		

The	produced	cellular	glass	ceramics	were	produced	in	larger	amounts	to	inves-

tigate	 a	 possible	 application	 as	 lightweight	 aggregates	 for	 the	 realization	 of	

lightweight	structural	concrete.	

This	topic	was	finalized	with	a	publication	[42]	and	a	patent	application	[43].	

Chapter	2.	 In	 spite	 of	 environmental	 issues	 hydraulic	 fracturing	 was	

widely	used	in	the	US	for	the	extraction	of	oil	using	proppants.	At	this	purpose,	

the	 development	 of	 a	method	 for	 the	 realization	 of	 lightweight	 ceramic	 prop-

pants	 for	 fracking	 applications	 is	 described.	Glass	 ceramic	proppants	were	ob-

tained	firing	natural	basalt	in	oxidizing	or	reducing	atmosphere.	Furthermore	a	

minor,	but	 interesting	effort	 is	represented	by	the	realization	of	black	glass	ce-

ramics	based	on	sintered	natural	basalt	scoria.		

Chapter	3.		 Describes	 the	 results	 achieved	 to	 fabricate	 monolithic	 sin-

tered	glass	ceramics	as	substitute	 for	natural	 stones	or	 traditional	ceramics.	 In	

particular	a	composition	and	method	were	designed	for	manufacturing	a	white	

glaze	and	a	substrate	glass	ceramics	for	building	applications	(ceramic	tiles)	us-

ing	waste	 and	 natural	materials.	 Firstly,	 a	waste	 derived	 frit	with	 a	 controlled	

amount	of	iron	oxide	(low	content	-	high	content),	to	be	applied	as	a	glass	ceram-

ic	glaze,	was	produced.	Secondly,	a	ceramic	substrate	with	a	composition	suita-

ble	for	a	single	step	process	at	a	low	firing	temperature	(1150°C)	was	produced.	

The	match	 between	 the	 coefficients	 of	 thermal	 expansion	 of	 the	 substrate	 and	

the	glaze	was	achieved	by	mixing	the	glaze	with	additives	and	whitening	agents.		

This	 topics	were	 finalized	with	 a	 scientific	 publication	 [44]	 and	 two	patent	

applications	[45,	46].	

Chapter	4.		 In	 this	 chapter	 is	 described	 a	 method	 for	 manufacturing	 a	

white	 glass	 ceramic	 composite	 and	 a	 colored	 glass	 ceramic	 composite	 mixing	

whitening	additives	and	waste	glass.		

The	proposed	method	was	successfully	finalized	with	a	patent	[47].	

Chapter	5.	 In	order	to	provide	a	thermal	barrier	in	an	arid	environment,	

highly	reflective	coatings	were	deposited	on	porous	substrates	made	of	natural	

raw	materials	from	Saudi	Arabia.	Although	highly	reflective	coatings	inhibit	heat	
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absorption	 from	 the	 incoming	 sunlight,	 the	 body	 of	 conventional	 ceramic	 tiles	

warms	 up	 to	 environmental	 temperature	 through	 conduction,	 convection	 and	

radiation.	A	strategy	to	reduce	the	penetration	of	this	heat	into	the	building	is	to	

use	a	highly	porous	substrate,	which	reduces	the	thermal	conductivity	of	the	tile,	

coupled	 with	 a	 highly	 reflective	 glaze.	 The	 approach	 leads	 to	 the	 concept	 of	

“cool”	tiles,	which	should	improve	the	thermal	efficiency	of	buildings.	

Chapter	6.	 Realization	of	glass	ceramics	from	low	cost	natural	raw	ma-

terials	with	a	specific	interest	in	the	obtainment	of	samples	resembling	the	color	

of	Thassos	marble.		
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Chapter	 1	 –	 Cellular	 Waste	 Derived	
Glass	Ceramics	

1.1	 Introduction	
1.1.1	 Glass	Ceramic	Foams	a	General	Introduction	
Glass	foams	are	appreciated	for	their	lightness	and	capacity	of	thermal	and	acoustic	

insulation	 combined	 with	 good	mechanical	 properties,	 far	 superior	 than	 those	 of	

polymeric	foams.	Moreover,	as	they	are	incombustible	and	waterproof	[1],	they	are	

increasingly	considered	for	use	as	lightweight	filling	or	insulating	materials	in	civil	

engineering.	

The	production	of	glass	foams	commonly	relies	on	the	viscous	flow	sintering	of	

fine	glass	powders,	which	creates	a	pyroplastic	mass	in	turn	foamed	by	the	action	of	

specific	powder	additives	(foaming	agents),	when	heating	at	850-1000°C.	Foaming	

occurs	because	of	the	release	of	CO,	CO2	or	SO3	gases,	generated	from	the	decompo-

sition	or	oxidation	of	 the	additives.	Decomposition	 reactions	 typically	derive	 from	

the	presence	of	carbonates	or	sulphates,	whereas	oxidation	reactions	are	associated	

to	the	interaction	of	carbon-containing	species	(C,	SiC)	with	oxygen,	mainly	derived	

from	 the	 atmosphere	within	 the	 sintering	 furnace	 [1].	 In	 all	 cases,	 the	 gases	may	

represent	an	environmental	problem	(toxicity,	greenhouse	effect,	etc.),	in	clear	con-

tradiction	with	the	“green	character”	of	glass	foams,	associated	to	the	use	of	many	

different	types	of	crushed	recycled	glass,	including	glasses	deriving	from	the	vitrifi-

cation	of	inorganic	waste	[2-7].		

1.1.2	 Glass	Ceramic	Foams	Studied	in	Laboratory		
After	preliminary	studies	fundamental	for	determining	the	sintering	conditions	(fir-

ing	 temperature	 and	powder	 size)	 and	 experimental	 set-up	determination,	we	 re-

searched	self	foaming	cellular	glass	ceramics	obtained	by	sintering	mixtures	of	bas-

alt	scoria	and	soda	lime	cullet	for	15	min	at	1050	and	1100°C.	The	effect	of	polyva-

lent	ions	(Fe3+/Fe2+)	on	porosity	(from	53	to	86	vol%)	and	crystallization	was	stud-

ied	 for	 different	 mixtures	 subjected	 to	 different	 thermal	 treatments.	 Due	 to	 the	

range	of	mechanical	strength	values	(crushing	strength	from	2	to	50	MPa)	and	total	
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porosity	achieved,	these	porous	glass	ceramics	could	be	applied	as	building	materi-

als,	as	lightweight	aggregate	for	concrete	or	as	lightweight	panels.	The	study	focused	

on	the	development	of	glass-based	foams	from	mixtures	exploiting	oxygen	as	foam-

ing	gas	instead	of	greenhouse	gases.	The	release	of	oxygen,	caused	by	the	reduction	

of	ferric	oxide	into	ferrous	oxide,	has	been	already	reported	as	effective	for	the	de-

velopment	of	expanded	materials	[8-9];	the	present	work	greatly	extends	previous	

investigations	and	provides	evidence	 for	the	significant	 tunability	of	 the	approach,	

which	 leads	 to	 partially	 crystallized	 products	 with	 total	 porosity	 and	 crushing	

strength	varying	in	a	wide	range	of	values,	depending	on	the	balance	between	glass	

and	scoria	or	on	the	sintering	conditions.	

1.1.4	 Glass	Ceramic	Foams	as	Light	Weight	Aggregates	(LWA)	
The	 large	demand	of	 concrete	 in	 the	building	 industry	originated	products	with	 a	

very	high	 strength,	 resistance	 to	highly	 corrosive	 environments	 and	also	with	 im-

proved	specific	strength	when	lightness	and	high	strength	are	required.	Lightweight	

concrete	 (LWC)	was	developed	both	 for	structural	and	 thermal	 insulating	applica-

tions	and	can	be	manufactured	according	to	very	different	processes.	Cellular	con-

crete	is	an	example	of	foamed	LWC	used	mostly	for	non-	and	semi-structural	appli-

cations	[10].		

Differently	from	cellular	concrete,	LWA	are	used	in	concrete	to	substitute	tradi-

tional	aggregates	and	to	form	lightweight	aggregate	concrete	(LWAC).	In	literature	

there	 are	 many	 LWAC	 used	 for	 the	 realization	 of	 structural	 concrete,	 in	 fact	 the	

structural	efficiency	(specific	strength)	is	more	important	than	a	mere	consideration	

of	 absolute	 strength.	 A	 decreased	 density	 for	 the	 same	 strength	 level	 reduces	 the	

self-weight,	foundation	size,	and	construction	costs.	Some	LWACs	were	realized	us-

ing	organic	precast	aggregates	of	 styrene–butadiene	rubber	 [11],	or	even	oil	palm	

shells	 [12].	 However	 most	 frequently	 LWAs	 are	 inorganic	 lightweight	 rocks	 like	

pumice	[13],	or	expanded	materials	like	perlite	[14]	and	clay.	

1.1.5	 Light	Weight	Concrete	using	Cellular	Glass	Ceramics	
In	the	present	chapter	is	also	described	the	process	to	manufacture	a	relatively	large	

amount	of	cellular	glass	ceramics	using	a	pilot	scale	tunnel	furnace	at	SASIL	(Biella)	

in	collaboration	with	personnel	from	CIRCE	(Centro	Interdipartimentale	di	Ricerca	

per	lo	Studio	dei	Materiali	Cementizi	e	dei	Leganti	Idraulici).	We	then	realized	tradi-
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tional	concrete	samples	to	be	compared	with	LWAC	substituting	30	vol%	of	the	tra-

ditional	aggregates	with	cellular	glass	ceramics.	The	investigation	of	the	properties	

of	the	LWAC	is	at	a	preliminary	stage	and	only	limited	amount	of	data	are	available	

for	comments	and	interpretation	of	the	results.	However	the	results	obtained	were	

valuable	and	herewith	presented.	

1.2	 Materials	and	Methods	
1.2.3	 Selection	of	Compositions	and	Thermal	Treatments	
A	simple	notation	 is	used	 for	 the	definition	of	 the	proportions	of	 raw	materials	 in	

each	composition:	 for	example,	 instead	of	writing	40	wt%	of	cullet	and	60	wt%	of	

basalt,	we	will	use	the	sample	label:	C4B6.	The	compositions,	C4B6,	C5B5,	and	C6B4	

were	selected	in	order	to	explore	a	reasonably	wide	variation	of	the	proportions	be-

tween	cullet	and	basalt.	For	these	compositions	the	samples	were	heated	by	direct	

firing,	DF,	for	a	soaking	time	of	15	minutes,	at	either	1050°C	or	1100°C.		

The	 heating	 rate	 strongly	 affects	 the	 characteristics	 of	 the	 final	 components,	

therefore,	for	composition	C5B5	the	effect	of	four	different	heating	rates	was	inves-

tigated.	For	composition	C5B5	the	firing	of	samples	was	performed	in	two	distinct	

ways.	In	the	first	case,	glass/scoria	samples	were	treated	at	1050-1100°C	by	direct	

insertion	in	a	muffle	furnace,	with	a	holding	time	of	15	min.	At	the	end	of	the	holding	

time,	 the	 samples	 were	 rapidly	 cooled,	 at	 approximately	 60°C/min,	 below	 900°C	

(with	 the	muffle	 switched	 off	 and	muffle	 door	 partially	 open),	 and	 then	 naturally	

cooled	 to	 room	 temperature	 (inside	 the	muffle).	 In	 the	 second	case,	 for	a	 selected	

formulation,	the	samples	were	fired	at	1100°C	for	15	min	operating	with	3	different	

heating	 rates	 (10°C/min,	 20°C/min	 and	 40°C/min);	 the	 cooling	was	 performed	 in	

the	same	conditions.		

We	should	observe	that	that	the	DF	procedure	is	suitable	for	the	production	of	

light	weight	aggregates,	LWA,	while	the	progressive	heating	is	suitable	for	the	pro-

duction	of	insulating	panels,	IP.	
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Tab.	2	–	Chemical	analysis	(oxide	contents	in	wt%	and	mol%)	of	the	waste	glass	cul-
let,	basalt	scoria	and	mixtures	C4B6,	C5B5	and	C6B4.	

1.2.2	 Starting	Materials	
	

	
	

Tab.	2	reports	the	chemical	compositions	of	the	starting	materials,	inferred	from	X-

ray	fluorescence	analysis	(XRF,	Philips	PW2400,	Eindhoven,	The	Netherlands).	Both	

soda-lime	 glass	 cullet	 (C)	 and	 basalt	 scoria	 (B)	were	 considered	 after	 ball	milling	

and	 sieving	 to	 a	 size	 below	 90	 μm.	 Both	 powders	 were	 subjected	 to	 differential	

thermal	 analysis	 (DTA-TGA,	 DSC	 404,	 Netzsch	 Gerätebau	 GmbH,	 Selb,	 Germany,	

10°C/min	heating	rate).	

1.2.3	 Experimental	Set	Up	
The	 raw	 materials	 were	 subjected	 to	 X-ray	 powder	 diffraction	 (XRPD)	 using	 a	

Bragg–Brentano	 θ-2θ	 diffractometer	 equipped	 with	 a	 real	 time	 multiple	 strip	

(RTMS)	 detector	 (PANalytical	 X’Pert	 PRO,	 Almelo,	 The	 Netherlands),	 employing	

CuKα	 radiation	 (0.15418	 nm)	 and	working	 at	 40	 kV	 and	 40	mA.	 Data	 acquisition	

was	performed	by	operating	a	continuous	scan	from	3.01°	[2θ]	to	79.99°	[2θ],	with	a	

virtual	step	scan	of	0.02°	[2θ].	The	diffraction	patterns	were	analyzed	by	means	of	

the	X’Pert	HighScore	Plus	3.0	software	(PANalytical),	using	data	from	the	PDF-4	da-

tabase	(International	Centre	for	Diffraction	Data	–	ICDD,	Newtown	Square,	PA,	USA).	

Mineralogical	quantitative	phase	analysis	(QPA),	based	on	the	Rietveld	method	[15],	

	
	 Cullet	 Basalt	Scoria	 C4B6	 C5B5	 C6B4	

	 Wt%	 Mol%	 Wt%	 Mol%	 Wt%	 Wt%	 Wt%	
SiO2	 71.7	 71.2	 47.1	 52.9	 57.3	 59.8	 62.3	
TiO2	 0.1	 0.1	 1.9	 1.6	 1.2	 1.0	 0.8	
Al2O3	 0.7	 0.4	 14.7	 10.5	 9.1	 7.7	 6.3	
Fe2O3	 0.1	 0.0	 12.3	 4.8	 7.5	 6.2	 5.0	
MnO	 0.0	 0.0	 0.2	 0.2	 0.1	 0.1	 0.1	
MgO	 3.3	 4.9	 11.0	 16.1	 7.9	 7.2	 6.4	
CaO	 10.1	 10.7	 7.7	 9.2	 8.7	 8.9	 9.2	
Na2O	 13.2	 12.7	 3.2	 3.7	 7.3	 8.3	 9.3	
K2O	 0.1	 0.0	 1.0	 0.7	 0.6	 0.5	 0.4	
P2O5	 0.0	 0.0	 0.5	 0.3	 0.3	 0.3	 0.2	
SO3	 0.22	 0.2	 0.03	 0.0	 0.1	 0.1	 0.1	
L.O.I.	 0.5	 	 0.9	 	 -	 -	 -	
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was	performed	using	 the	TOPAS	 software	 (Bruker	AXS,	Karlsruhe,	Germany).	 The	

contents	of	crystalline	and	amorphous	phases	were	determined	using	the	combined	

Rietveld–RIR	method	[16].	The	observed	patterns	were	modeled	through	a	pseudo-

Voigt	function,	fitting	the	background	by	14	Chebyshev	polynomials.	For	each	phase,	

the	 lattice	parameters,	Lorentzian	crystal	 sizes	and	scale	 factors	were	 refined	and	

residual	 preferred	 orientation	 effects	were	modeled	with	 the	March	Dollase	 algo-

rithm	[17].	

Furthermore,	the	basalt	scoria	was	microstructurally	and	microchemically	char-

acterized	by	 Scanning	Electron	Microscopy	 coupled	with	 energy	dispersive	X-rays	

fluorescence	microanalysis	 (SEM-EDS),	 using	 an	 instrument	 equipped	with	 a	LaB6	

cathode,	a	four	quadrant	solid	state	BSE	detector	for	imaging	and	a	LEAP+	Si(Li)	de-

tector	 for	 microanalysis	 (CamScan	 MX2500,	Waterbeach,	 UK;	 EDAX,	 Mahwah,	 NJ,	

USA).	The	analytical	conditions	were:	accelerating	voltage:	20	kV;	filament	current:	

1.80	A;	emission	current:	20	μA;	aperture	current:	300	nA;	working	distance:	20-30	

mm.	 Qualitative	 interpretation	 of	 spectra	 and	 semiquantitative	 chemical	 analyses	

were	performed	through	SEM	Quant	Phizaf	software	(EDAX,	Mahwah,	NJ,	USA).	

1.2.4	 Green	Bodies	Preparation	
In	order	 to	execute	 the	experiments	 in	 the	most	 reproducible	way	possible,	 about	

200	ml	of	basalt	were	ball	milled	(250	ml	is	the	volume	of	the	jar)	and	employed	for	

all	the	experiments.	In	spite	of	the	fact	that	the	cullet	employed	is	more	homogenous	

than	basalt,	a	similar	procedure	was	used	to	produce	about	100	grams	of	powdered	

cullet.	All	the	ground	raw	materials	were	sieved	and	the	fraction	larger	than	90	µm	

was	further	ground	until	was	fine	enough	to	be	sieved.	Cullet	(C)	and	basalt	scoria	

(B)	powders	were	first	dry	mixed	at	300	rpm	in	a	ball	milling	jar	for	30	minutes	in	

different	proportions,	as	reported	in	Tab.	2	(C:B	equal	to	4:6,	5:5	and	6:4),	and	then	

added	with	7	wt%	distilled	water	without	any	binder.	For	each	 formulation,	pow-

ders	were	uniaxially	cold	pressed	in	a	rectangular	die	(50	mm	×	34	mm)	at	30	MPa.	

The	resulting	green	bodies	were	cut	into	square	pellets,	dried	at	80°C	overnight.	On-

ly	for	the	mixture	C5B5,	additional	rectangular	bars	were	prepared	and	dried	over-

night.	

For	 the	 DF	 experiments,	 the	 green	 body	was	 cut	 into	 about	 15	 (about	 1	 cm2)	

squared	 pieces	 and	 dried	 at	 80°C	 overnight.	 For	 the	 progressive	 heating	 experi-
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ments,	one	green	body	of	 composition	C5B5,	was	cut	 into	about	15	 (about	1	cm2)	

squared	 pieces	 and	 dried	 at	 80°C	 overnight.	 For	 the	 progressive	 heating	 experi-

ments,	one	green	body	(17	cm2)	was	also	kept	intact	and	dried	at	80°C	overnight.	

1.2.5	 Firing	
The	direct	firing	experiments	were	carried	out	for	all	the	compositions	C4B6,	C5B5,	

and	 C6B4	 at	 two	 different	 firing	 temperature,	 1050°C	 and	 1100°C,	 following	 this	

procedure:	

• 15	sample	(1	cm2)	were	placed	on	a	cordierite	honeycomb	refractory.	

• The	muffle	was	heated	at	the	firing	temperature	and	hold	for	30/60	minutes	

in	order	to	heat	effectively	the	refractories	of	the	oven	and	thus	limiting	the	

drop	in	temperature	during	the	insertion	of	the	samples.	

• The	samples	were	directly	inserted	into	the	muffle.	

• After	15	minutes	the	door	of	the	muffle	was	opened	letting	the	temperature	

drop	until	900°C	with	a	rate	approximately	of	60°C/min.	

• The	oven	was	then	naturally	cooled	until	room	temperature.	

	

The	 progressive	 heating	 experiments	 were	 carried	 out	 only	 for	 composition	

C5B5,	 firing	 the	 specimens	 at	 1100°C	 for	 15	 minutes	 at	 3	 different	 heating	 rate	

(10°C/min,	20°C/min,	and	40°C/min),	following	this	procedure:	

• The	green	body	tile	(17	cm2)	and	5	samples	(1	cm2)	were	placed	on	a	cordi-

erite	 honeycomb	 refractory	 and	 inserted	 into	 the	muffle	 at	 room	 tempera-

ture.	

• The	muffle	was	heated	applying	the	selected	heating	rate.		

• The	firing	temperature	was	hold	for	15	minutes.	

• The	door	of	the	muffle	was	opened	letting	the	temperature	drop	until	900°C	

with	a	rate	approximately	of	60°C/min.	

• The	oven	was	then	naturally	cooled	until	room	temperature.	

1.2.6	 Oxidation	Tests	and	Firing	
The	oxidation	of	basalt	scoria	powders	was	studied	on	pellets	obtained	by	uniaxial	

pressing	(at	40	MPa)	fine	powders,	with	no	glass	addition,	in	a	cylindrical	mold	(di-

ameter	of	13	mm).	The	pellets	were	fired	for	30	minutes	at	4	different	temperatures	
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(1050-1200°C)	and	quenched	in	air.	The	FeO	content	was	determined	after	dissolu-

tion	 of	 the	 samples	 in	 a	 solution	 of	 sulphuric	 acid	 (32%)	 and	 hydrofluoric	 acid	

(13.3%),	 and	 subsequent	 titration	 with	 potassium	 permanganate;	 Fe2O3	 was	 ob-

tained	by	difference	to	the	total	content	of	iron	oxide	measured	by	XRF	(Fe2O3	tot).		

1.2.7	 Characterization	Techniques	
Water	absorption,	WAB,	was	determined	using	the	boiling	method,	according	to	the	

UNI	EN	 ISO10545-3	standard	protocol.	The	geometric	or	bulk	density,	ρb,	was	ob-

tained	by	considering	the	mass	to	volume	ratio	for	3–6	selected	cellular	glass	ceram-

ics;	the	apparent	density,	ρa,	and	density	of	the	solid,	or	true	density,	ρt,	were	evalu-

ated	 by	means	 of	 a	 gas	 pycnometer	 (Micromeritics	 AccuPyc	 1330,	 Norcross,	 GA),	

employing	glass	ceramic	samples	“as	fired”	or	crushed	into	fine	powder,	respective-

ly.	The	three	density	values	were	used	to	compute	the	amounts	of	open	and	closed	

porosity.	

Some	 pellets	were	 investigated	 using	 a	 high	 resolution	 X-ray	micro-computed	

tomography	 scanner	 (Bruker	microCT-Skyscan	1172)	 operating	 at	 66	kV	 and	149	

µA.	To	scan	the	entire	object	volume,	preserving	at	the	same	time	a	sufficient	level	of	

spatial	resolution,	the	acquisitions	of	radiographs	were	carried	out	for	each	pellet	in	

two	 separate	 scans	 (upper	 and	 lower)	 that	were	 then	automatically	 connected	by	

the	instrument	software.	The	nominal	spatial	resolution	(pixel	size)	was	5.59	µm	for	

all	the	investigated	samples.	A	total	number	of	1800	radiographs	per	scan	were	ac-

quired	over	a	360°	rotation	(angular	step	0.2°,	exposure	time	ranging	from	930	to	

975	ms).	At	each	angular	position,	8	frames	were	collected	and	averaged	together	in	

order	 to	 improve	 the	 recorded	 signal-to-noise	 ratio.	 The	 reconstruction	 of	 cross-

sectional	slices	from	2D	X-ray	projections	was	carried	out	using	a	modified	FDK	al-

gorithm	 [18]	 for	 cone-beam	 geometry,	 implemented	 in	 the	 Skyscan	 NRecon	 soft-

ware.	Corrections	for	the	beam	hardening	effect	and	ring	artifacts	(i.e.	circular	fea-

tures	in	the	slices	caused	by	anomalous	responses	from	some	pixels	of	the	detector)	

were	 also	 applied	 during	 the	 reconstruction	 process	 in	 order	 to	 improve	 image	

quality	[19-20].	

Crushing	and	 four-point	bending	 (40	mm	outer	span,	20	mm	inner	span)	 tests	

were	performed	using	an	Instron	1121	UTM	(Instron,	Danvers,	MA,	crosshead	speed	

of	1	mm/min)	on	pellets	(10	mm	×	10	mm	×	8	mm)	and	bars	(4	mm	×	5	mm	×	50	
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mm)	cut	 from	 tile	 samples,	 respectively.	Before	bending	 tests,	 the	bars	were	used	

for	 the	determination	 of	 the	 elastic	modulus,	 by	means	 of	 the	dynamic	 resonance	

method	(GrindoSonic	Mk5,	Leuven,	B).		

Finally,	 the	mineralogical	 composition	was	 determined	 on	 ground	 samples	 by	

XRD	and	Rietveld	quantitative	phase	analysis,	 adopting	 the	 same	analytical	proce-

dure	used	for	the	characterization	of	the	raw	materials.	

1.2.8	 Lightweight	 Aggregates	 Manufacturing	 Using	 a	 Pilot	
Scale	Tunnel	Furnace		

To	 investigate	 the	 application	of	 the	 studied	 cellular	 glass	 ceramics	 in	 lightweight	

concrete	 a	 relatively	 large	 amount	of	 aggregates	was	produced	using	 a	pilot	 scale	

tunnel	 furnace	 (Nanetti	ER-15	S)	 at	 SASIL	 (Biella).	The	aggregates	were	produced	

using	basalt	scoria	(<90	µm)	from	Saudi	Arabia	and	glass	cullet	(<90	µm)	processed	

at	 SASIL.	The	 glass	 cullet	 employed	was	 the	 fraction	discarded	 from	 the	 recycling	

process	 due	 to	 the	 large	 contamination	 of	 inorganic	 impurities.	 The	 quantitative	

XRD	analysis	performed	on	the	cullet	powders,	Fig.	1,	shows	that	crystalline	impuri-

ties	are	in	the	order	of	9	wt%.	

Composition	C6B4	was	selected	and	the	powders	were	mixed	in	plastic	bags	adding	

0.2	wt%	of	graphite,	to	increase	the	reducing	conditions,	and	7	wt%	of	water	to	in-

crease	the	plasticity	of	the	mixture.		

The	 powders	were	 uniaxially	 pressed	 applying	 a	 load	 of	 0.5	MPa,	 the	 green	 body	

was	then	cut	in	fragments	of	about	1-3	cm2	and	placed	on	top	of	inox	plates	(18/10)	

coated	with	a	thin	layer	of	alumina	powders.	The	samples	were	then	fast	fired	hold-

ing	 the	 samples	 at	 1100°C	 for	 about	 10	 min.	

	

Fig.	1	–	Quantitative	XRD	analysis	on	the	cullet	powders	showing	the	high	percent-
age	of	 impurities.	 The	most	 intense	peaks	 are	 originated	by	 the	 internal	 standard	
employed.	



	

	

	

29	

1.2.9	 Lightweight	Aggregates	Concrete		
The	mix	design	of	the	traditional	aggregates	(carbonates	gravel	from	local	quarries)	

was	realized	according	the	Bolomey’s	curve,	whereas	the	LWAs	were	used	to	substi-

tute	30	vol%	of	 the	 larger	 fraction	of	 the	aggregates.	Aggregates	with	a	maximum	

diameter	of	25mm	were	introduced	in	a	concrete	mixer	adding	2aII	425r	Portland	

cement	(300	kg/m3)	using	a	ratio	water/cement	of	0.58.	

According	to	the	standard	EN-12390,	6	cylindrical	samples	(L=200	mm,	Ø=100	mm)	

both	using	traditional	and	lightweight	aggregates	were	realized	to	characterize	the	

mechanical	properties.	The	capping	was	performed	using	a	mixture	of	cement	and	

sand	1:1.	After	1	day	of	 curing	 the	 samples	were	placed	 in	water	 for	27	days	 (pH	

~13)	to	keep	the	samples	hydrated.	After	28	day	the	samples	were	left	in	open	air	

for	the	determination	of	the	mass	and	density,	successively	the	elastic	modulus	and	

compressive	 strength	 were	 evaluated	 on	 3	 samples	 per	 set	 according	 to	 the	 EN	

12390-13	 and	 EN	 12390-3	 respectively	 using	 a	 Galdabini	 SUN	 60.	 The	 tensile	

strength	was	 then	 evaluated	by	means	 of	 the	Brazilian	 test	 (EN	12390-6)	 using	 a	

hydraulic	press	(full	scale	12	tons).	

1.3	 Results	and	Discussion	
1.3.1	 Starting	Materials	Characterization	
The	DTA	and	TGA	analysis	of	cullet,	shown	in	Fig.	2,	revealed	an	exothermic	peak	at	

about	300°C	and	a	slight	mass	loss	attributed	to	the	decomposition	of	organic	impu-

rities	present	 in	 the	starting	scraps.	From	the	DTA	curve	(Fig.	 2a),	 the	TG	of	glass	

cullet	 was	 determined	 to	 be	 ~560°C;	 the	 broad	 exothermic	 peak	 at	 740°C	 is	 at-

tributed	 to	 the	 sintering	 of	 fine	 powders	 (since	 crystallization	 of	 soda	 lime	 glass	

powders	upon	heating	is	not	effective).	
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Fig.	2	–	DTA	(a)	and	TGA	(b)	curves	for	basalt,	cullet	and	B5C5	mixture	

	
Tab.	3	–	Mineralogical	quantitative	phase	analysis	of	the	basalt	scoria	at	room	tem-
perature	and	after	 firing	at	 increasing	 temperature	(wt%),	obtained	by	 full	profile	
fitting	of	the	experimental	XRD	patterns	according	to	the	Rietveld	method	(Rwp,	R-
factor	of	the	weighted	profile	for	each	refined	pattern	is	reported).	FeO	concentra-
tion	(wt%),	Fe2+/Fe3+	ratio	and	forsterite	unit	cell	volume	(Å3)	for	each	temperature	
is	also	reported.	

	
	 	 Room	T	 1050°C	 1100°C	 1150°C	 1200°C	

Rwp	 	 4.22	 4.34	 4.22	 2.70	 2.75	
Amorphous	 wt%	 32.01	 14.06	 21.86	 35.71	 78.52	
Andesine	 wt%	 39.94	 50.62	 47.67	 36.39	 12.09	
Augite	 wt%	 10.67	 12.45	 11.54	 4.39	 -	
Forsterite	 wt%	 15.14	 13.76	 9.65	 13.08	 3.54	
Spinel	 wt%	 2.25	 1.14	 0.81	 -	 -	
Hematite	 wt%	 -	 7.20	 7.54	 8.51	 1.32	
Maghemite	 wt%	 -	 0.76	 0.92	 1.84	 4.53	
FeO	 wt%	 6.64	 1.08	 1.11	 1.75	 1.89	
Fe2+/Fe3+	 -	 1.50	 0.11	 0.11	 0.19	 0.21	
Forsterite	cell	volume	 Å3	 294.60	 290.92	 290.46	 290.77	 290.80	
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As	determined	by	mineralogical	quantitative	phase	analysis	(Rietveld	refinements),	

shown	in	Tab.	3,	the	basalt	scoria	mainly	consisted	of	plagioclase	(andesine),	olivine	

(forsterite),	 clinopyroxene	 (augite)	 and	 spinel	 (titano-magnetite).	 The	 refinement	

was	performed	utilizing	an	andesine	structure	with	a	Ca/Na	molar	ratio	of	0.98	[21],	

a	ferrous	forsterite	structure	with	a	Mg/Fe	molar	ratio	of	4.48	(unit	cell	volume	of	

294.60	 Å3)	 [22],	 a	 titanian	 augite	 structure	 [23]	 and	 a	 titanomagnetite	 structure	

[24].	A	significant	amorphous	fraction	was	also	present	(one	third	of	the	total	mass)	

in	the	as	received	raw	material.	The	Fe2+/Fe3+	ratio	was	estimated	to	be	1.50;	Fe2+	

ions	could	be	located	in	the	M1	and	M2	sites	of	augite,	in	the	octahedral	site	of	fer-

rous	forsterite	and	in	the	tetrahedral	and	octahedral	sites	of	spinel,	while	Fe3+	ions	

could	be	located	in	the	M1	site	of	augite	and	in	the	tetrahedral	and	octahedral	sites	

of	spinel.		

SEM	microstructural	analyses	on	scoria	particles	showed	their	fine-grained,	ve-

sicular	and	hypo-crystalline	nature.	The	texture	was	porphyritic,	with	micropheno-

crysts	 of	 plagioclase,	 olivine,	 clinopyroxene	 and	 sporadic	 spinel	 characterized	 by	

subhdral	shapes	and	dimensions	between	50	and	200	μm	(Fig.	3a).	The	groundmass	

(Fig.	3b)	had	an	intersertal	texture,	with	tabular	plagioclase	microlites	surrounded	

by	glass	and	cryptocrystalline	phases.	The	vacuoles	were	characterized	by	irregular	

to	spherical	shape	and	size	from	few	tens	of	microns	to	1	mm.	EDS	analyses	(Fig.	3c,	

d,	 e,	 f)	 confirmed	 the	chemical	 compositions	of	plagioclases,	olivines	and	clinopy-

roxenes	determined	by	XRD	(andesine,	ferrous	forsterite	and	titanian	augite,	respec-

tively),	while	spinel	crystals	resulted	to	be	frequently	zoned	and	possessed	hetero-

geneous	composition,	typical	for	chromite-titanomagnetite	and	chromite-spinel	se-

ries.	The	glass	matrix	shows	a	silicoaluminate	composition,	with	relevant	amounts	

of	 calcium	 and	 iron	 and	minor	 amounts	 of	 magnesium,	 titanium	 and	 alkalis.	 The	

mineralogical,	chemical	and	textural	characteristics	of	the	analyzed	volcanic	materi-

als	are	typical	for	basalt	scoriae	from	the	lava	fields	(harrats)	of	the	Arabian	conti-

nental	alkali	basalt	province	[25].	
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Fig.	 3	 –	SEM-EDS	microanalyses	on	a	basalt	 scoria	particle:	a)	Backscattered	elec-
tron	image	(BEI)	at	low	magnification,	showing	the	porphyritic	texture;	b)	BEI	of	the	
groundmass,	showing	the	intersertal	texture;	c,	d,	e,	f)	EDS	microanalysis	of	olivine,	
clinopyroxene,	spinel	and	glass,	respectively	(point	analyses	locations	are	indicated	
in	the	BEI's)	

As	reported	in	Tab.	3,	the	basalt	scoria	had	significant	variations	of	both	mineralog-

ical	and	chemical	characteristics	after	firing	at	different	temperatures.	The	thermal	

treatments	at	1050°C	and	1100°C	caused	a	decrease	in	glass	content,	more	marked	

at	lower	temperatures	and	counterbalanced	by	a	significant	increase	in	plagioclase	

and	hematite	and	a	less	significant	clinopyroxene	increase.	Such	analytical	evidenc-

es	indicate	that	partial	melting	phenomena	occur	in	the	glass	glass	matrix	and	crys-

tallization	of	Al-rich	silicates	–	e.g.	plagioclase	over	clinopyroxene	–	is	favored	due	to	

the	 peraluminous	 nature	 of	 the	material.	 Furthermore,	 the	 oxidizing	 firing	 condi-
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tions	 favored	oxidation	processes	of	 the	Fe2+	 ions	 in	 the	glass	matrix,	with	 conse-

quent	crystallization	of	hematite.	Spinel	and	olivine	were	also	interested	by	iron	ox-

idation	phenomena,	according	 to	well	known	processes	 [26-27]:	 the	spinel	under-

went	partial	conversion	into	Ti-rich	maghemite	[28],	more	effective	at	higher	tem-

peratures,	while	olivine	underwent	a	depletion	of	structural	iron	clearly	testified	by	

a	d-spacing	variation	of	(hkl)	planes.	For	this	reason,	it	was	referred	to	a	new	struc-

tural	model,	consisting	of	olivine	[29],	with	a	Mg/Fe	molar	ratio	of	9.53.	The	struc-

tural	 change	 caused	 an	 unit	 cell	 contraction,	 with	 consequent	 cracking	 of	 olivine	

crystals	 and	 precipitation	 of	 extracted	 iron	 in	 form	 of	 iron	 oxides	 inside	 the	 mi-

crocracks,	as	 seen	by	SEM-EDS	analyses	 (Fig.	 4).	A	greater	unit	 cell	 contraction	 is	

observable	at	1100°C	(290.46	Å3	vs	290.92	Å3),	indicating	a	higher	degree	of	Fe	oxi-

dation	and	consequent	extraction	from	the	olivine	crystal	structure.	Such	analytical	

evidence	 is	 consistent	 with	 previous	 analytical	 studies	 and	 can	 be	 related	 to	 the	

temperature-dependent	thermodynamic	stability	of	olivines	[27].	The	changes	in	Fe	

oxidation	state	are	characterized	by	a	steep	drop	in	the	Fe2+/Fe3+	ratio	to	a	value	of	

0.11.	

After	firing	at	1150°C,	a	partial	melting	of	silicate	phases,	 in	particular	clinopy-

roxene,	 is	observable,	with	 formation	of	glass	phase.	The	degree	of	Fe	oxidation	 is	

still	high,	as	testified	by	the	hematite	formation	and	by	the	total	conversion	of	spinel	

into	maghemite.	 The	 residual	 olivine	 is	 also	 interested	by	 limited	Fe	oxidation,	 as	

shown	by	the	lower	unit	cell	contraction	(290.77	Å3),	still	related	to	thermodynamic	

factors	[27].	Nevertheless,	the	overall	degree	of	Fe	oxidation	is	 lower	than	the	one	

observed	 for	 the	 lower	 heating	 temperatures,	 as	 testified	 by	 the	 higher	 Fe2+/Fe3+	

ratio	of	0.19.	At	1200°C,	the	degree	of	melting	of	the	silicate	phases	is	significantly	

accentuated,	in	particular	for	clinopyroxene,	with	relevant	formation	of	glass	phase.	

Furthermore,	 the	 Fe	 oxidation	 process	 led	 to	 a	 preferential	 crystallization	 of	ma-

ghemite	over	hematite,	being	the	hematite	amount	lower	with	respect	to	the	other	

samples	and	the	maghemite	presence	not	fully	justifiable	with	the	spinel	oxidation	

process.	On	the	whole,	the	degree	of	Fe	oxidation	is	lower	than	the	other	samples,	as	

testified	by	the	higher	Fe2+/Fe3+	ratio	of	0.21.	
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Fig.	4	–	SEM-EDS	microanalyses	on	a	relict	olivine	crystal	after	firing	at	1050°C.	a)	
BEI,	showing	the	effect	of	iron	oxidation	(cracking	of	the	crystal	and	precipitation	of	
iron	oxides);	b)	EDS	microanalysis	of	the	olivine	relict,	with	clear	iron	depletion;	c)	
EDS	microanalysis	of	 iron	oxide	dendrites	(Mg	and	Si	are	due	to	the	 interaction	of	
the	electron	beam	with	the	surrounding	olivine	relict).	

All	 the	Fe	oxidation	phenomena	are	consistent	with	the	TGA	analysis	of	 the	scoria	

(Fig.	2b),	which	revealed	a	mass	increase	starting	above	700°C,	with	the	exception	

of	the	treatment	at	1200°C;	in	fact,	the	chemical	titration	revealed	a	decrease	of	the	

Fe2+/Fe3+	 ratio	 from	 1150°C	 to	 1200°C.	 This	 discrepancy	 between	 the	 chemical	

analysis	and	the	TGA	is	reputed	to	be	apparent,	since	it	could	be	simply	due	to	the	

fact	that	the	TGA	was	recorded	by	applying	a	heating	rate	of	10°C/min	whereas	the	

titration	was	measured	for	samples	directly	fired	at	selected	temperatures.	Moreo-

ver,	as	the	diffusion	coefficient	of	oxygen	in	a	basalt	melt	is	less	than	1.65·10-6	cm2/s	

[30],	atmospheric	oxidation	is	not	effective	after	the	formation	of	the	melt	unless	the	

layer	of	the	melt	is	very	thin.	

The	prediction	of	the	redox	state	of	iron	ions	into	the	mixture	is	even	more	com-

plicated	by	the	fact	that	the	soda	lime	cullet	softens	at	a	relatively	low	temperature,	

thus	limiting	the	surface	area	of	the	basalt	which	is	exposed	to	the	atmospheric	oxy-

gen	and	by	 the	 fact	 that	both	basalt	and	cullet	have	a	different	 redox	equilibrium.	

The	redox	reaction	between	polyvalent	ions,	such	as	iron,	and	oxygen	may	be	writ-

ten	in	terms	of	the	ionic	species	present	 in	the	system,	as	proposed	by	several	au-

thors	[31-33]:	

	

FeO!
!!!" ! = 𝐹𝑒!! + !

!
O! + n− !

!
O!!	 (Eq.1)	

	

The	 equilibrium	 between	 ferrous	 and	 ferric	 oxides	 complexes	 is	 regulated	 by	 the	

atmospheric	oxygen	O2	whereas	according	to	Toop	and	Samis,	[34,	35]	a	“free”	oxy-
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gen	anion	(O2-)	 is	bonded	only	 to	modifier	 ions	and	 is	related	 to	 the	bridging	(O0)	

and	nonbridging	oxygen	(O-)	ions	by:	

	

2𝑂! = 𝑂!! + 𝑂!	 (Eq.2)	

	

It	 is	worth	mentioning	 that	Eq.2	 is	 a	 shorthand	notation	 for	 the	various	 reactions	

that	 involve	more	 complex	entities	with	various	proportions	of	bridging	and	non-

bridging	oxygens.	

1.3.2	 Glass	Ceramic	Foams	Characterization	
Considering	the	chemistry	of	the	starting	materials,	shown	in		

	
	

Tab.	2,	the	introduction	of	cullet	reduces	the	content	of	network	glass	modifier	and	

the	same	occurs	to	the	concentration	of	O2-.	Furthermore	a	number	of	studies	per-

formed	on	glass	melts	confirmed	that	for	achieving	the	thermodynamic	equilibrium	

between	polyvalent	ions	and	environmental	oxygen,	several	hours	or	even	days	are	

required	 [31,	36-41].	 The	 thermal	 treatment	 applied	 to	 the	 selected	mixtures	was	

far	 from	 the	equilibrium,	 as	when	 the	B	and	C	mixtures	 softened,	oxygen	gas	was	

virtually	cut	off	from	the	bulk	of	the	melt.	These	two	effects	shifted	the	equilibrium	

to	 the	right	of	Eq.1	and	provided	oxygen	evolution,	 in	 turn	causing	 the	 foaming	of	

glass/basalt	mixtures,	by	reduction	of	Fe3+	to	Fe2+.		

It	was	reported	by	Fincham	and	Richardson	[42]	that	sulfur	solubility	under	re-

ducing	conditions	 increases	with	 increasing	 temperature	and	decreasing	pO2,	 thus	

meaning	that	more	reducing	conditions	are	required	at	lower	temperatures	to	main-

tain	the	same	sulfur	solubility	in	reduced	melts.	[31]	This	effect	is	called	reboil	when	

bubble-free	materials	exhibit	bubble	formation	upon	reheating	from	the	solid	state	

[43].	Similarly,	cullet	contains	not	negligible	amount	of	sulfur,	hence	the	previously	

mentioned	 reduction	 of	 solubility	may	 justify	 the	 slight	 smell	 of	 sulfur	 perceived	

when	crushing	the	specimens.	
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Tab.	 4	 –	 Mineralogical	 quantitative	 phase	 analysis	 of	 the	 C5B5	 mixture	 at	 room	
temperature	 and	 after	 firing	 at	 1100°C	 with	 different	 heating	 ramps	 (wt%),	 ob-
tained	 by	 full	 profile	 fitting	 of	 the	 experimental	 XRD	 patterns	 according	 to	 the	
Rietveld	method	(Rwp,	R-factor	of	the	weighted	profile	for	each	refined	pattern	is	re-
ported).	Forsterite	unit	cell	volume	(Å3)	for	each	thermal	treatment	is	also	reported.	

	
	 Room	T	 1100°C,	10	°C/min	

1100°C,	20	
°C/min	

1100°C,	40	
°C/min	 1100°C,	DF	

Rwp	 	 3.25	 3.13	 3.27	 3.19	
Amorphous	 66.00	 68.79	 71.01	 69.89	 68.29	
Andesine	 19.97	 0.67	 0.29	 0.17	 -	
Augite	 5.33	 25.41	 23.21	 24.37	 26.11	
Forsterite	 7.57	 3.49	 3.84	 4.11	 3.95	
Spinel	 1.13	 0.29	 0.28	 0.24	 0.27	
Hematite	 -	 0.19	 -	 -	 -	
Maghemite	 -	 0.76	 0.73	 0.71	 0.74	
Quartz	 -	 0.42	 0.64	 0.52	 0.64	
Forsterite	cell	
volume	 294.60	 291.36	 291.96	 291.89	 292.42	

	

The	mineralogical	composition	obtained	by	Rietveld	quantitative	phase	analysis	of	

C5B5,	fired	at	1100°C	with	different	heating	rates,	is	reported	in	Tab.	4.	Significant	

variations	 in	 the	mineralogical	profile	of	 the	samples	occurred	with	respect	 to	 the	

mixture	at	room	temperature.	A	slight	increase	in	the	content	of	amorphous	phase	–	

markedly	dominant	over	 the	 crystalline	 fraction	–	 is	 always	observable,	while	 the	

most	evident	variation	 in	the	composition	of	 the	crystalline	 fraction	 is	 the	marked	

decrease	 in	plagioclase	amount,	 slightly	correlated	 to	 the	heating	rate.	The	plagio-

clase	decrease	is	counterbalanced	by	a	significant	increase	in	clinopyroxene	concen-

tration,	caused	by	the	introduction	in	the	mixture	of	a	silicate-rich	material	propor-

tional	 to	 the	amount	of	scoria.	The	 transition	 from	basic	 to	 intermediate	composi-

tion	 as	 regards	 silica	 content,	 from	 peraluminous	 to	 peralkaline	 conditions	 as	 re-

gards	alumina	saturation,	and	the	drastic	increase	in	calcium	concentration,	caused	

the	dissolution	of	alumina-rich	phases	–	e.g.	the	plagioclase	-	and	the	precipitation	of	

calcium-rich	 ones	 –	 e.g.	 the	 clinopyroxene	 –	 during	 the	 thermal	 process.	 Further-

more,	the	presence	of	low	but	clearly	recognizable	quartz	amounts	suggests	a	slight	

systematic	silica	oversaturation	of	the	mixture.	

As	for	the	other	Fe-bearing	phases,	a	partial	oxidation	of	spinel,	with	maghemite	

formation,	is	always	observable,	associated	with	a	decrease	in	olivine	concentration.	

As	for	the	thermal	treatment	of	the	scoria	samples,	an	oxidation	process	of	ferrous	
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iron	in	relict	olivine	is	observable,	testified	by	the	unit	cell	contraction	of	the	phase.	

The	unit	cell	contraction	is	always	smaller	with	respect	to	the	one	in	the	pure	scoria	

sample	treated	at	the	same	temperature,	with	values	around	291	Å3	for	the	mixtures	

treated	with	heating	ramps,	and	it	is	larger	in	the	samples	that	were	directly	fired.	

These	 analytical	 evidences	 suggest	 a	 lower	 oxidation	 of	 iron	 with	 respect	 to	 the	

thermally	 treated	 scoria,	 also	 confirmed	 by	 the	 detection	 of	 hematite	 only	 in	 the	

sample	 heated	 at	 10°C/min.	 Furthermore,	 the	 directly	 fired	 sample	 apparently	

shows	lower	degree	of	oxidation	with	respect	to	the	other	ones.	

SEM-EDS	analyses	(Fig.	 5)	confirmed	the	analytical	evidences	deduced	by	XRD	

analyses.	The	foams	were	constituted	by	a	dense	glass	matrix,	with	clinopyroxene,	

olivine	and	spinel	primary	crystals.	Plagioclase	primary	crystals	were	almost	totally	

absent,	whereas	diffuse	newly-formed	microcrystals	of	clinopyroxene	were	present	

in	the	groundmass,	often	preferentially	nucleated	around	relict	phases.	As	observed	

for	the	thermally	treated	scoria	samples,	the	olivine	oxidation	process	is	clearly	ob-

servable,	as	testified	by	the	presence	of	fractured	crystals	with	precipitation	of	ex-

tracted	iron	in	form	of	iron	oxides	inside	the	microcracks	(Fig.	5b,	d).	Nevertheless,	

relict	 olivine	 crystals	 were	 less	 stressed	 with	 respect	 to	 the	 one	 observed	 in	 the	

thermally	 treated	 scoria	 samples,	with	 lower	occurrence	of	 iron	oxides	dendrites:	

such	evidence	is	in	agreement	with	the	lower	degree	of	olivine	oxidation	observed	

by	XRD	analyses.	Furthermore,	the	olivine	crystals	in	the	directly	fired	sample	were	

less	oxidized	with	respect	to	the	ones	of	 the	other	foams	(Fig.	 5d),	confirming	the	

lower	degree	of	reaction.	
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	Fig.	5	–	SEM	images	of	C5B5	foams	fired	at	1100°C	with	a	10°C/min	ramp	(a,	b)	and	
by	direct	insertion	(c,	d).	a,	c)	low	magnification;	b,	d)	high	magnification	of	the	high-
lighted	areas.	Oxidized	olivine	(OI)	and	spinel	crystals	(Spl)	are	indicated	

As	 reported	 in	Tab.	 5,	 bubbles	 formation	was	 strongly	 promoted	by	direct	 firing,	

determining	a	total	porosity	of	86%,	of	which	only	8%	was	closed.	By	decreasing	the	

heating	 rate	 to	 10°C/min,	 the	 total	 porosity	 decreased	 to	 53%,	 of	which	 only	 8%	

was	open.	By	applying	heating	rates	of	20	and	40°C/min,	intermediate	total	porosi-

ties	were	achieved.	The	 specimens	produced	by	applying	a	progressive	heating	at	

40°C/min,	 showed	 a	 water	 absorption	 after	 boiling	 of	 about	 0.3	 wt%,	 which	 de-

creased	 to	 0.1	wt%	 for	 the	 samples	 treated	with	 a	 heating	 rate	 of	 10°C/min	 and	

20°C/min.		

X-ray	computed	micro-tomography	(X-µCT)	measurements	were	carried	out	on	

the	C5B5	set	of	samples,	in	order	to	evaluate	the	effect	of	different	heating	rates	on	

the	 pore	 space	 properties	 (open	 and	 closed	 porosity	 fractions,	 pore	 size	 distribu-

tion).	 The	 results	 were	 then	 compared	 with	 those	 previously	 obtained	 from	 gas	

pycnometry	on	the	same	samples.	As	opposed	to	other	techniques	for	the	investiga-

tion	of	porosity,	X-µCT	offers	 the	great	 advantage	of	directly	 visualizing	 in	3D	 the	

pore	space,	providing	at	the	same	time	important	information	about	size,	shape	and	

position	 of	 the	 pores.	 X-µCT	 experiments	 also	 allowed	 to	 extract	 some	 relevant	

morphometric	indices	of	the	three-dimensional	porous	structure,	such	as	the	struc-

ture	thickness,	that	can	be	correlated	with	the	mechanical	properties	of	the	foams.	
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The	analysis	of	the	pore	size	distribution	was	carried	out	only	on	the	closed	porosity	

fraction	 of	 each	 sample;	 the	 results	are	 reported	 in	 the	histograms	of	 Fig.	 6e.	 For	

clarity	 of	 representation,	 the	 graphs	were	 limited	 to	 a	maximum	 diameter	 of	 the	

pores	of	1	mm;	only	a	 few,	very	 large	coalesced	pores	were	excluded	 from	the	re-

sults	 in	 this	way.	 The	 increase	 of	 the	 heating	 rate	 from	10	 to	 40°C/min	 seems	 to	

have	a	clear	effect	on	the	size	of	the	pores.	In	particular,	a	shift	of	the	main	peak	of	

the	distribution	towards	larger	values	(an	effect	of	the	coalescence	of	pores)	and	a	

broadening	of	the	distribution	curve	are	observed.	Again,	also	for	what	concerns	the	

pore	size	distribution,	the	samples	prepared	with	heating	rates	of	20	and	40°C/min	

are	very	similar.	As	expected,	the	pellet	obtained	by	direct	 firing	is	completely	dif-

ferent	and	cannot	be	directly	compared	with	 the	other	 three.	 In	 fact,	only	a	minor	

fraction	of	pores	 is	reported	in	the	relative	pore	size	distribution	histogram,	being	

the	porosity	of	the	sample	almost	completely	open.	However,	as	confirmed	by	X-µCT	

slices	(Fig.	6e),	the	maximum	size	of	the	pores	is	limited	in	this	case	to	significantly	

lower	values	(<	500	µm).	

Tab.	5	–	Characterization	data	for	foam	samples	fired	at	1100°C	for	15	minutes	at	
different	heating	rates	(data	between	square	brackets	obtained	from	X-ray	
computed	micro-tomography;	*=data	obtained	from	bars	cut	from	panel	samples)	

	

Sample	type	 	 C5B5	 	 C4B6	 	 C6B4	 	
15	min	at:	(°C)	 	 1100	 	 1050	 	 1050	 	 1100	 	 1050	 	
Heating	rate	(°C/min)	 	 10	 	 20	 	 40	 	 DF	 	 DF	 	 DF	 	 DF	 	 DF	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
WAB	(wt	%)	 	 <0.2	 	 <0.2	 	 0.3	 	 >100	 	 93	 	 24	 	 78	 	 42	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Density	(g/cm3)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Bulk	[ρb]	 	 1.27	±	0.08	 	 1.03	±	0.05	 	 1.05	±	0.03	 	 0.37	±	0.02	 	 0.53	±	0.08	 	 0.88	±	0.09	 	 0.51	±	0.05	 	 0.44	±	0.01	 	
Apparent	[ρa]	 	 1.38	±	0.01	 	 1.15	±	0.01	 	 1.18	±	0.01	 	 1.70	±	0.05	 	 1.49	±	0.07	 	 1.80	±	0.03	 	 1.39	±	0.04	 	 0.79	±	0.04	 	
True	[ρt]	 	 2.70	±	0.01	 	 2.69	±	0.01	 	 2.69	±	0.01	 	 2.69	±	0.01	 	 2.69	±	0.01	 	 2.68	±	0.01	 	 2.68	±	0.01	 	 2.62	±	0.01	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Porosity	(%)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Total	porosity	[TP]		 	 53	±	3	[44]	 	 62	±	2	[53]	 	 61	±	1	[53]	 	 86	±	1	[73]	 	 80	±	3	 	 67	±	3		 	 81	±	2		 	 83	±	1		 	
Closed	porosity	[CP]	 	 8	±	6[1]	 	 10	±	4	[3]	 	 11	±	3	[7]	 	 78	±	1	[72]	 	 65	±	6	 	 51	±	5		 	 63	±	4		 	 44	±	3		 	
Open	porosity	[CP]	 	 45	±	6	[43]	 	 52	±	5	[50]	 	 50	±	3	[46]	 	 8	±	1	[1]	 	 16	±	6		 	 16	±	6	 	 18	±	4	 	 39	±	4	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Elastic	modulus	(GPa)*	 	 26.9	±	0.5		 	 19	±	2	 	 18.6	±	0.6	 	 -	 	 -	 	 -	 	 -	 	 -	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Strength	(MPa)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Bending	strength	[σflex]*	 	 17	±	4	 	 11	±	1	 	 13	±	2	 	 -	 	 -	 	 -	 	 -	 	 -	 	
Crushing	strength	[σcr]	 	 50	±	10	 	 22	±	7	 	 18	±	6	 	 2.5	±	0.7	 	 5	±	2	 	 15	±	7	 	 4	±	1	 	 2	±	1	 	
Mean	struct.	Thickness	
(µm)	
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Fig.	6	–	Results	from	X-ray	microtomography:	a,b,c,d)	reconstructed	cross-sections	
of	selected	samples	from	the	C5B5	series;	e)	pore	size	distribution	of	the	closed	po-
rosity	fractions;	f)	3D	rendering	of	a	pellet	(C5B5,	10°C/min	heating	rate	-	a	portion	
of	the	sample	was	virtually	cut	out	to	display	the	interior).	

The	results	from	X-µCT,	as	shown	by	Tab.	5,	are	in	good	agreement	with	those	from	

gas	pycnometry.	However,	it	is	easy	to	notice	that	the	values	of	total	porosity	meas-

ured	with	X-µCT	are	always	significantly	lower	compared	to	those	obtained	with	gas	

pycnometry.	This	can	be	explained	in	terms	of	the	limited	spatial	resolution	of	the	

technique,	which	makes	the	fraction	of	pores	smaller	than	a	few	microns	practically	

not	detectable.	Sub-microns	spatial	resolutions	could	be	obtained,	though	on	signifi-

cantly	 smaller	 samples,	 using	 synchrotron-based	 X-ray	 computed	 micro-

tomography.	A	3D	rendering	of	one	of	the	investigated	pellet	is	shown	in	Fig.	6f.	The	

actual	appearance	of	glass	ceramic	samples	is	visible	in	Fig.	7,	showing	a	C5B5-type	

sample	heated	at	10°C/min.	
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Fig.	 7	 –	Microstructure	of	 a	C5B5-type	 sample	 fired	at	1100°C	 (10°C/min	heating	
rate).	

The	structure	thickness	(also	referred	to	as	 the	trabecular	thickness	 in	biomedical	

applications)	was	calculated	using	3D	algorithms	for	the	investigated	samples.	The	

determination	of	this	index	[44]	is	based	on	the	fitting	of	maximal	spheres	inside	an	

object	(the	foam	walls	in	this	specific	case).	The	mean	structure	thickness	evaluated	

in	3D	is	calculated	as	the	volume	weighted	average	of	the	local	thicknesses	and	rep-

resents	an	important	parameter	for	comparing	the	wall	thickness	of	porous	solids.	

However,	also	the	distribution	of	thicknesses	has	to	be	considered	to	better	define	

the	mechanical	properties	of	such	materials.	The	values	of	the	mean	structure	thick-

ness	obtained	for	the	investigated	samples	are	reported	in	Tab.	5.	The	sample	pre-

pared	 by	 direct	 firing	 showed	 the	 lower	 value	 of	mean	 structure	 thickness	 (47.4	

µm),	as	a	consequence	of	its	very	large	amount	of	porosity.	Significantly	higher	val-

ues	 were	 obtained	 for	 the	 other	 samples,	 showing	 a	 slight	 increase	 of	 the	 mean	

structure	 thickness	with	 the	 increasing	heating	rate.	However,	 the	mean	structure	

thickness	was	evaluated	as	54.2	µm	for	the	sample	obtained	by	heating	at	10°C/min,	
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whereas	 almost	 identical	 values	 were	 obtained	 with	 heating	 rates	 of	 20	 and	

40°C/min	(57.9	and	58.1	µm,	respectively).	

The	limited	mean	structure	thickness	and	the	high	porosity	determine	low	crush	

strength	 values	 for	 the	 directly	 fired	 samples	 (2.5	 MPa).	 Nevertheless	 a	 reduced	

mean	structure	thickness	might	provide	higher	strength	as	observed	for	the	sample	

obtained	by	heating	at	10°C/min.	Indeed	the	high	concentration	of	pores	with	a	size	

less	than	100	µm	determines	the	struts	thickness	reduction	without	worsening	the	

mechanical	properties.	

The	decomposition	of	the	organic	residues	present	in	the	cullet,	may	be	benefi-

cial	for	the	enhancement	of	the	porosity	when	applying	a	fast	heating	rate.	However,	

the	experiments	conducted	with	a	heating	rate	of	10°C/min	provided	the	lowest	TP,	

probably	because	the	decomposition	of	the	organic	residues	present	in	the	raw	ma-

terials	started	well	below	the	softening	of	the	mixture	and	even	below	the	TG	of	cul-

let.	On	the	contrary	by	applying	a	fast	heating	to	the	samples,	the	specimen	surface	

softened	and	created	a	sealing	layer	which	embedded	all	the	gases	released	within	

the	material.	The	decomposition	of	the	organics	to	form	CO	and	CO2	may	not	be	lim-

ited	to	the	oxygen	trapped	within	the	pores	of	the	green	body,	but	also	from	the	ox-

ygen	evolution	occurring	at	high	temperatures	upon	reduction	of	Fe3+	to	Fe2+.	Con-

temporary	it	is	not	well	understood	if	the	enhancement	of	porosity	at	the	increasing	

of	 the	heating	rate	 is	given	by	the	 limited	exposition	at	 the	environmental	oxygen.	

For	 example,	 samples	 fired	with	 a	 heating	 rate	 of	 10°C/min	 took	 110	minutes	 to	

reach	1100°C,	while	samples	directly	fired	were	kept	only	for	15	minutes	at	1100°C.	

The	longer	the	time	spent	by	the	sample	at	high	temperature,	and	the	easier	is	for	

the	gas	bubbles	to	coalesce,	producing	an	inhomogeneous	morphology	and	increas-

ing	 the	mean	 pore	 size.	 At	 the	 same	 time,	 the	 kinetic	 of	 crystallization	 and	 phase	

transformation	 played	 a	 pivotal	 role,	 along	 with	 the	 viscosity	 of	 the	 amorphous	

phase,	in	the	dynamics	of	the	microstructural	development.	Low	heating	rates	might	

favor	 the	 reaction	and	 re-crystallization	of	 the	 system,	 thereby	 increasing	 the	vis-

cosity	and	reducing	 the	viscous	 flow	and	possibility	of	coalescing	 the	bubbles.	For	

this	reasons,	it	was	important	to	observe	the	pore	size	for	the	whole	sample	without	

restricting	the	investigation	to	limited	areas.		

In	Fig.	8	are	shown	two	other	slices	of	samples	heated	with	a	rate	of	10°C/min	

and	20°C/min,	and	showing	the	evidence	of	coalescence	of	gas	bubbles.			
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Fig.	 8–	 Coalescence	 of	 the	 pores	 for	 the	 samples,	 of	 composition	 C5B5	 fired	 at	
1100°C	for	15	minutes,	heated	with	a	rate	of	10°C/min	and	20°C/min.	

Mineralogical	Analysis	

The	changes	occurring	in	the	C5B5	samples	depending	on	the	heating	rates,	stimu-

lated	 further	 tests	 on	 the	 effect	 of	 composition	 and	 temperature.	 The	 results	 of	

treatments	at	1050	and	1100°C,	in	terms	of	mineralogical	composition,	are	summa-

rized	in	Tab.	6,	while	density	and	strength	data	are	reported	again	in	Tab.	5.	A	pro-

gressive	decrease	in	plagioclase	concentration	with	increasing	temperatures,	coun-

terbalanced	by	an	increase	in	clinopyroxene,	is	confirmed.	The	presence	of	the	cal-

cium	silicate	phase	is	related	to	the	intermediate	and	peralkaline	composition	of	the	

mixtures,	 highly	 enriched	 in	 calcium,	whereas	 its	 occurrence	 at	 low	 temperatures	

only	is	related	to	its	thermal	stability	field.	Traces	of	quartz	are	detectable	in	all	the	

samples,	 indicating	a	slight	silica	oversaturation	 for	all	 the	mixtures.	Furthermore,	

spinel	 and	 olivine	 underwent	 Fe	 oxidation	 processes	 in	 all	 the	 samples,	with	ma-

ghemite	formation	and	olivine	unit	cell	contraction	due	to	iron	extraction.	As	for	the	

C5B5	mixtures	 treated	with	different	heating	 ramps,	 the	unit	 cell	 contraction	was	

always	 lower	 with	 respect	 to	 the	 ones	 observed	 for	 the	 thermally	 treated	 scoria	

samples,	 suggesting	 lower	 overall	 degrees	 of	 iron	 oxidation.	No	 clear	 correlations	

between	the	measured	olivine	unit	cell	contraction	and	temperature	or	composition	

variations	were	observable.	
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Tab.	 6	 –	Mineralogical	 quantitative	 phase	 analysis	 of	 C4B6,	 C5B5	 and	 C6B4	mix-
tures	at	room	temperature	and	after	 firing	at	1050°C	and	1100°C,	obtained	by	full	
profile	 fitting	 of	 the	 experimental	 XRD	patterns	 according	 to	 the	Rietveld	method	
(Rwp,	R-factor	of	the	weighted	profile	for	each	refined	pattern	is	reported).	The	for-
sterite	unit	cell	volume	(Å3)	resulting	from	the	refinement	after	each	thermal	treat-
ment	is	also	reported.	

	

Mechanical	properties	and	potential	applications	

As	previously	observed,	directly	fired	samples	show	mostly	open	pores,	whereas	the	

samples	fired	using	a	defined	heating	rate	featured	mostly	closed	cells.	As	illustrated	

by	Fig.	6e,	the	samples	with	closed	cells	had	also	a	practically	continuous	pore	cell	

distribution,	 while	 the	 open	 porosity	was	 associated	 to	 a	 defined	maximum	 pore	

size	(a	sort	of	threshold	level)	and	was	generally	much	more	uniform.	These	differ-

ences	could	be	ascribed	to	the	mechanism	of	pore	 formation	 itself.	Operating	with	

direct	firing,	lots	of	pore	nuclei	formed	almost	simultaneously;	on	the	contrary,	op-

erating	 at	 defined	 heating	 rates,	 some	 pores	 could	 form	 and	 collapse	 during	 the	

heating	period.	Larger	pores,	 for	defined	heating	rates,	 likely	 incorporated	smaller	

ones;	this	effect	(cell	coalescence)	is	well	known	to	cause	a	reconstruction	of	the	cell	

struts,	which	become	increasingly	thicker,	and	in	turn	contain	secondary	pores	[3].	

In	Fig.	6c,	as	an	example,	some	very	large	pores	are	present	and	surrounded	by	very	

thick	and	porous	struts.	

The	 presence	 of	 open	 porosity	 generally	 implies	 a	 degradation	 of	 mechanical	

properties;	thick	and	porous	struts,	however,	make	closed-cell	foams	practically	as	

weak	as	open-celled	foams	[3].	As	a	general	approach,	it	may	be	noted	that	a	com-

	
	

C4B6,	T	
room	

C4B6,	
1050°C	

C4B6,	
1100°C	

C5B5,	T	
room	

C5B5,	
1050°C	

C5B5,	
1100°C	

C6B4,	T	
room	

C6B4,	
1050°C	

Rwp	 	 3.15	 3.32	 	 3.20	 3.19	 	 3.12	
Amorphous	 59.20	 58.10	 61.17	 66.00	 68.31	 68.29	 72.80	 74.08	
Andesine	 23.96	 7.85	 2.86	 19.97	 2.57	 -	 15.97	 0.57	
Augite	 6.40	 24.38	 27.84	 5.33	 20.35	 26.11	 4.27	 17.31	
Forsterite	 9.08	 6.53	 6.70	 7.57	 5.86	 3.95	 6.06	 4.91	
Spinel	 1.35	 0.76	 0.25	 1.13	 0.44	 0.27	 0.90	 0.36	
Hematite	 -	 0.45	 -	 -	 -	 -	 -	 -	
Maghemite	 -	 0.68	 0.97	 -	 0.71	 0.74	 -	 0.48	
Quartz	 -	 0.33	 0.20	 -	 0.31	 0.64	 -	 0.24	
Wollastonite	 -	 0.93	 -	 -	 1.44	 -	 -	 2.04	
Forsterite	cell	
volume	 294.60	 291.57	 292.17	 294.60	 292.79	 292.42	 294.60	 291.04	
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ponent	with	uniformly	distributed	open	cells	is	mechanically	as	efficient	as	one	with	

closed	 cells,	 which	 are	 not	 homogenously	 distributed,	 and	 with	 thick	 struts.	 The	

Ashby’s	plot	[45]	in	Fig.	9a	may	be	seen	as	a	confirmation	of	this	interpretation:	the	

studied	samples	are	nicely	aligned	in	terms	of	specific	crushing	strength	(the	line	in	

the	graph	represents	materials	with	the	same	ratio	between	crushing	strength	and	

density,	σc/ρ),	except	for	C5B5-type	samples	fired	at	10°C/min	(well	above	the	line,	

meaning	 that	 they	 are	 mechanically	 more	 efficient).	 Interestingly,	 the	 specific	

strength	of	these	glass	ceramic	foams	is	higher	or	equal	to	that	of	variants	of	light-

weight	concrete,	suggesting	their	use	as	new	lightweight	aggregates	in	the	building	

industry.	

The	 plots	 of	 bending	 strength	 and	 elastic	modulus	 for	 denser	 samples,	 in	 the	

form	of	panels	and	fired	with	a	defined	heating	rate,	also	indicate	the	suitability	of	

these	materials	for	possible	applications	in	the	building	industry;	in	fact,	the	indices	

for	 the	 design	 of	 lightweight	 panels	 [45],	 i.e.	 the	 specific	 flexural	 strength	 index	

(σflex1/2/ρ,	Fig.	9b)	and	the	specific	Young’s	modulus	index	(E1/3/ρ,	Fig.	9c),	well	ex-

ceed	 the	 values	 for	 most	 non-technical	 ceramics,	 including	 traditional	 ceramics	

(brick	and	 tiles),	natural	stones	(granite)	and	concrete.	Considering	 the	 low	water	

absorption	(not	exceeding	0.3	wt%),	C5B5-based	panels	could	be	applied	in	the	so-

called	ventilated	façades,	 i.e.	a	new	generation	of	cladding	components	that	can	be	

applied	on	the	surface	of	large	buildings,	aimed	at	improved	the	thermal	insulation,	

as	an	alternative	to	conventional	porous	ceramics	(fired	at	higher	temperature	and	

requiring	the	addition	of	specific	foaming	agents	to	develop	a	homogenous	cellular	

structure)	[46,47],	especially	if	coated	with	a	glaze	[48,49].	
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Fig.	 9	 –	 Ashby’s	 plots	 of	 developed	 glass	 ceramic	 foams	 compared	 with	 non-
technical	 ceramics	 and	 glasses	 (a)	 compressive	 strength;	 b)	 flexural	 strength;	 c)	
Young’s	modulus);	the	lines	correspond	to	guidelines	for	lightweight	design.	

NOTE:	It	is	not	well	understood	how	the	nucleation	of	acicular	clinopyroxenes	in	the	

amorphous	matrix	may	 influence	 the	mechanical	 strength.	 Although	 the	mixtures	

richer	in	scoria	are	richer	in	clinopyroxene,	neoformation	of	clcinopyroxene	is	high-

er	 in	 the	samples	 rich	 in	cullet,	 since	 the	 formation	of	 the	phase	 is	 favored	by	 the	

higher	presence	of	calcium	in	the	resulting	mixture.	Surprisingly,	samples	C4B6	and	

C5B5	fired	at	1100	and	1050°C	respectively,	presented	approximately	the	same	po-

rosity	values	and	comparable	strength,	but	different	mineralogical	composition.	 In	

fact,	 samples	 C5B5	 show	 lower	 clinopyroxene	 formation	 and	 a	 relative	 enhance-
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ment	 of	 the	 amorphous	 phase.	 This	might	 suggest	 that	 the	 crystallization	 slightly	

modifies	the	strength	of	the	studied	foams.	However,	samples	C5B5	and	C6B4	fired	

at	1100	and	1050°C	 respectively,	have	approximately	 the	 same	 total	porosity	 and	

crushing	strength,	despite	the	much	higher	OP	evaluated	for	sample	C5B5	(high	OPs	

are	known	for	being	detrimental	 for	the	mechanical	strength).	Samples	C5B5	fired	

at	1100°C	are	more	crystallized	than	samples	C4B6	fired	at	1050°C	and	show	higher	

clinopyroxene	formation,	but	lower	olivine	content.	As	previously	reported	the	oli-

vine	 oxidation	 process	 determine	 relevant	 fracturing	 of	 crystals	 (Fig.	 5b,	 d)	 that	

may	reduce	the	strength	of	the	foams.	A	possible	explanation	of	the	detriment	of	the	

mechanical	properties	of	sample	C6B4	fired	at	1050°C,	may	be	found	in	the	percent-

age	of	olivine	formed	and	into	its	volume	cell	contraction.		

The	 introduction	 of	 cullet	 reduces	 the	 content	 of	 network	 glass-modifiers	 and	

consequently	by	equation	(2)	the	same	occurs	to	the	concentration	of	the	free	oxy-

gen	ion	O2-	which	shifts	the	equilibrium	to	the	right	of	equation	(1)	and	provides	ox-

ygen	evolution	by	reduction	of	Fe3+	to	Fe2+.		

It	is	worthy	to	mention	that	the	viscosity	of	the	mixture	may	vary	strongly	with	

the	 composition.	 For	 example	 at	 1050°C	 the	 percentage	 of	 the	 amorphous	 phase	

goes	from	58	wt%	for	C4B6	to	72	wt%	for	C6B4.	Reasonably	at	the	increasing	of	the	

amorphous	phase	the	viscosity	of	the	mixture	decreases	thus	favoring	an	enhance-

ment	of	the	porosity.	

Then	it	is	not	trivial	to	determine	if	the	enhancement	of	porosity	at	the	increas-

ing	of	wt%	of	cullet	is	due	to	the	reduction	of	the	alkali	content	only	or	if	other	ef-

fects	give	a	contribute.		

The	decrease	of	density	by	 increasing	the	 firing	temperature	may	be	explained	

for	all	the	studied	mixtures	considering	that	by	increasing	the	temperature,	reaction	

(1)	is	favored	and	the	viscosity	decreases.	

1.3.2	 Lightweight	Concrete	Characterization	
The	traditional	aggregates	were	substituted	in	a	limited	percentage	(30	vol%)	con-

sidering	that	the	amorphous	aluminosilicates	are	strongly	corroded	at	high	pH	val-

ues	and	the	samples	were	cured	in	water	for	28	with	a	pH	of	13,	which	might	be	det-

rimental	 for	 the	 mechanical	 properties.	 Secondly	 aggregates	 produced	 using	 the	

tunnel	furnace	presented	a	relatively	large	size	distribution	and	only	a	small	fraction	
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could	be	used	according	to	the	Bolomey’s	and	Fuller’s	curves.	Fuller’s	curve	is	gen-

erally	used	for	pastes	with	an	improved	packing	of	the	aggregates	whereas	the	Bo-

lomey’s	curve	is	used	for	pastes	with	an	improved	workability.	In	particular	the	ex-

pression	for	the	Bolomey’s	curve	is:	

𝑃 = 100
𝐴 + 100− 𝐴 𝑑

𝐷 − 𝐶

100− 𝐶 	

where	P	is	the	percentage	of	aggregate	passing	through	a	sieve	with	an	opening	d,	D	

is	the	diameter	of	the	larger	aggregates	used,	C	is	the	fraction	of	cement	and	A	is	the	

workability	coefficient.	We	decided	to	realize	a	semifluid	paste	selecting	the	param-

eter	A=10	 and	 25mm	 for	 the	maximum	 size	 of	 the	 aggregate.	 The	 plot	 in	Fig.	 10	

shows	the	distribution	of	 the	aggregate	and	sands	sizes	used	to	obtain	 the	experi-

mental	Bolomey’s	curve.	

In	Fig.	11a	is	shown	a	standard	specimen	set	up	with	the	strain	gauges	used	to	

evaluate	 the	deformation	 for	 the	elastic	modulus	and	compression	strength	deter-

mination.	The	sample	failure	reported	in	Fig.	11b	shows	the	lateral	cracks	formed	in	

the	external	walls	of	the	specimens	due	to	the	lateral	expansion	during	compression	

(tensile	failure)	that	are	satisfactory	according	to	the	requirements	reported	in	the	

standard	 EN	 12390	 (Fig.	 11c).	 The	 Brazilian	 test	 set	 up	 is	 reported	 in	 Fig.	 12a,	

whereas	the	typical	failure	of	samples	for	both	the	sets	are	shown	in	Fig.	12b	and	c.		

	

Fig.	 10	 –	Aggregates	and	sands	size	distributions	used	 to	obtain	 the	experimental	
Bolomey’s	curve.	
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	Fig.	 11	–	a)	Experimental	set	up	for	the	determination	of	the	elastic	modulus	and	
compressive	strength.	b)	Failure	of	a	LWAC	sample	in	compression.	c)	Satisfactory	
failures	of	standard	specimens	according	to	EN	12390.	

According	to	the	Italian’s	law	requirements	concrete	is	considered	structural	when	

the	failure	of	the	standard	cylinder	samples	occurs	at	15/20	MPa	(C15/20).	The	ma-

terials	developed	using	the	traditional	aggregates	presented	a	strength	values	at	the	

upper	 limit	of	 the	C25/30	(see	Tab.	7)	whereas	the	LWAC	samples	were	closer	to	

the	lower	limit	of	the	class.	Although	the	LWAC	samples	were	15%	lighter	and	12%	

weaker	 in	 compression	 than	 when	 using	 the	 traditional	 aggregates	 the	 specific	

strength	resulted	4%	higher.	It	is	rather	interesting	to	observe	that	a	similar	differ-

ence	(13%)	occurred	for	the	tensile	strength	and	only	the	elastic	modulus	was	lower	

of	about	17%	for	the	LWAC.	The	low	elastic	modulus	resulted	from	the	low	elastic	

modulus	of	 the	LWA	(<	20	GPa,	see	Tab.	 5)	comparing	with	the	traditional	aggre-

gates	(~70	GPa).	

	

Fig.	12	–	a)	Brasilian	test	set	up.	b)	Failure	of	a	sample	using	traditional	aggregates.	
c)	Failure	of	a	LWAC	sample.	

	
	

	 	

	 	

	 	 	

a	 b	 c	

a	 b	 c	
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Tab.	7	–	Mechanical	properties	of	concrete	samples	using	traditional	and	LWA.	

*	Standard	table	of	strength	requirements	provided	by	EN	12390.	

	

1.4	 Conclusions	
Cellular	Glass	Ceramics	Manufactured	in	Laboratory	Conditions	

The	addition	of	cullet	to	basalt	scoria	enabled	the	fabrication	of	highly	porous	glass	

ceramic	 foams	 with	 good	 mechanical	 strength	 at	 relatively	 low	 temperature	 and	

with	 fast	 firing.	Total	porosity	ranged	 in	a	wide	range	of	values,	depending	on	the	

composition	and	processing	schedule	adopted,	and	components	with	either	closed	

cells	and	low	water	absorption	values,	or	with	open	cells	were	fabricated.	No	foam-

ing	agents	were	necessary,	and	the	self-foaming	mechanism	was	related	to	 the	re-

dox	reactions	occurring	between	different	iron	oxide	species.	The	choice	of	the	most	

appropriate	processing	will	depend	on	the	type	of	application	pursued	for	the	spe-

cific	components	produced.	For	instance	the	data	here	presented	demonstrate	that	

C5B5-based	 light	 weight	 aggregates	 obtained	 by	 applying	 a	 heating	 rate	 of	

10°C/min	could	be	used	to	realize	lightweight	concrete	considering	that	the	specific	

strength	 of	 these	 glass–ceramic	 foams	 is	 higher	 or	 equal	 to	 that	 of	 typical	 light-

weight	 concrete.	 Furthermore	 C5B5-based	 panels	 obtained	 by	 applying	 a	 heating	

rate	of	40°C/min	or	20°C/min	could	be	applied	 in	 the	so-called	ventilated	 façades	

considering	their	high	specific	flexural	strength	index,	the	limited	water	absorption	

and	that	porous	materials	may	further	improve	the	thermal	insulation.			

	
Apparent	
density	

Compression	
strength	

Specific	
compression	
strength	

CoV	 Elastic	modulus	
Tensile	
strength	 CoV	

	 [kg/m3]	 MPa	 MPa/(g/cm3)	 %	 GPa	 MPa	 %	

Traditional	 2431	 29.9	±	0.5	 12.3	 1.5	 33.2	 3.9	±	0.1	 1.4	
Light	weight	 2055	 26.4	±	1.1	 12.8	 4	 24.3	 3.4	±	0.3	 7.5	
C	25/30*	 	 25	 	 	 30.5	 3.3	 	
C30/35*	 	 30	 	 	 32	 3.8	 	
Traditional	
LWAC	

Difference_%	
-15	 -12	 +4	 	 -17	 -13	 	
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Lightweight	Aggregates	and	Concrete	

When	changing	type	of	cullet	and	firing	conditions	passing	from	a	muffle	to	a	tunnel	

furnace	and	using	a	process	not	well	optimized,	the	control	of	the	porosity	is	rather	

complicated.	 The	 cellular	 glass	 ceramics	manufactured	 at	 SASIL	 were	 affected	 by	

larger	 pores	 and	 by	 a	 substantial	 difference	 from	 the	 results	 obtained	 during	 the	

preliminary	experiments	performed	in	laboratory.	Although	the	pore	size	distribu-

tion	of	the	aggregates	strongly	varied	from	the	results	obtained	in	laboratory	condi-

tions,	LWA	in	sufficient	amount	were	produced	for	manufacturing	LWAC.	The	con-

crete	using	conventional	materials	was	 in	the	class	C25/30	of	structural	concretes	

and	its	strength	lowered	of	12%	when	substituting	30	vol%	of	aggregates	with	the	

LWA.	Although	the	main	focus	of	the	actual	regulations	is	the	absolute	compression	

strength	and	when	using	LWAC	the	value	was	lowered	(still	in	the	class	C25/30)	the	

specific	strength	of	the	LWAC	was	improved	of	about	4%.	This	result	is	encouraging	

and	demonstrates	that	optimized	LWA	could	compete	with	traditional	aggregates.		

Future	 investigations	 will	 be	 carried	 on	 by	 personnel	 from	 CIRCE	 to	 investigate	

lighter	LWAC	by	substituting	a	higher	fraction	of	LWA.	
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Chapter	 2	 –	 Basalt	 derived	 glass	 ce-
ramics	

2.1	 Introduction	
Basalt	is	a	gray	to	black,	fine-grained	volcanic	rock	that	forms	large	lava	flows	on	

oceanic	 islands	 and	 is	 also	 common	 at	many	 continental	 sites.	 Chemically	 it	 is	

composed	 of	major	 oxides:	 SiO2,	 Al2O3,	 FeO,	 CaO,	MgO,	 and	 to	 a	 lesser	 degree	

Fe2O3,	Na2O,	K2O,	TiO2,	MnO,	and	P2O5,	with	many	other	 trace	 ingredients.	The	

two	major	minerals	that	are	always	present	are	monoclinic	pyroxene	and	plagio-

clase	feldspar,	but	magnetite,	olivine,	and	glass	are	often	present	as	well	as	other	

accessory	minerals.	

Many	 authors	 [1,	2]	 reported	 that	 basalts	 are	 easily	 melted	 at	 1400°C	 or	

above	 and	 are	 readily	 cooled	 to	 a	 glass.	 Upon	 reheating	 and	 keeping	 the	

Fe2O3/FeO	ratio	sufficiently	high	(>0.5)	fine-grained	glass	ceramics	were	formed.	

The	 major	 crystalline	 phase	 in	 these	 glass	 ceramics,	 and	 sometimes	 the	 only	

crystal	specie	is	monoclinic	pyroxene:	a	complex	solid	solution	of	CaMgSi2O6	(di-

opside),	 CaFeSi2O6	 (hedenbergite),	 MgSiO3,	 (enstatite),	 FeSiO3,	 NaFeSi2O6	 (ac-

mite),	CaAl2SiO6,	CaTiAl2O6,	and	MnSiO3.	The	authors	[1]	described	that	the	role	

of	iron	oxide	in	the	nucleation	has	been	attributed	to	a	clustering	of	Fe3+	in	the	

glass	that	upon	heating	yields	magnetite	(Fe3O4)	as	the	nucleating	agent.	Some-

times	 the	 magnetite	 persists	 and	 can	 be	 seen	 as	 nuclei	 within	 clinopyroxene	

crystals	 or	 clusters;	 in	 other	 cases	 it	 is	 resorbed	 by	 soda	 to	 produce	 acmite	

(NaFeSi2O6)	and	other	species	capable	of	solid	solution	in	pyroxene.	

Basalts	exist	as	compact	rocks,	porous	tuffs	and	scoria.	The	rocks	are	formed	

during	slow	cooling	of	lava,	resulting	in	high	crystallinity	and	hardness.	Disinte-

gration	 and	milling	 of	 these	 rocks	 is	 energy	 intense	 and	 requires	high	mainte-

nance,	then	re-melting	of	basalts	is	carried	out	in	special	shaft	furnaces	working	

with	 crushed	 rock	pieces	with	 size	of	10–20	cm.	On	 the	 contrary	 the	vesicular	

structure	of	 tuffs	and	scoria	 reduces	 the	costs	 for	milling,	Karamanov	et	al.	 [3]	

obtained	a	ceramic	tile	with	a	bending	strength	of	100	MPa	sintering	a	powdered	

basalt	tuff	at	1100°C.	In	the	work	was	provided	the	proof	of	concept	that	the	cost	
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for	the	production	of	sintered	basalt	should	be	significantly	lower	than	one	of	the	

“traditional”	petrurgical	glass	ceramics	(refused	rock	industry)	[1]	and	competi-

tive	to	that	of	the	traditional	tiling	ceramic	materials	(as	porcelain	stoneware	or	

earthenware).	Basaltic	compositions	or	iron-rich	silicates	have	been	employed	in	

the	petrurgy,	to	produce	building	tiles,	pipes	and	bends	and	glassy	insulation	fi-

bers.[1]	

In	the	present	chapter	the	basalt	scoria	already	introduced	in	Chapter	1	was	

investigate	to	find	a	new	use	as	a	starting	material	for	the	manufacturing	of	ce-

ramic	tiles	or	proppant.	

2.1.1	 Ceramic	Proppants		
Owing	to	the	increasing	cost	of	petroleum-based	products	and	the	decline	of	pe-

troleum	supplies,	economical	interest	in	oil	shale	resources	is	arising,	as	testified	

by	 the	 intensive	 research	 on	novel	mining	 techniques,	 e.g.	 high-volume,	 “slick-

water	hydraulic	fracturing”	also	known	as	“fracking”[4].	An	example	of	fracking	

is	the	extraction	of	shale	gas	accomplished	by	pumping	high-pressure	water	with	

additives	resulting	in	the	formation	of	fissures	in	the	rocks	that	favor	the	gas	es-

cape.	However	when	the	pumping	of	 the	 fracturing	 fluid	 is	 interrupted,	 the	 fis-

sures	may	close	and	decrease	the	conductive	pathway	to	the	wellbore.	To	avoid	

this	inconvenience	and	to	enhance	the	exploitation	of	the	well,	propping	agents	

or	proppants	are	employed.	Proppants	are	selected	on	the	basis	of	economic	and	

practical	 considerations	 to	optimize	 the	 flow	 conductivity	 and	 to	minimize	 the	

losses	in	the	fracture	during	production	[5].	

The	proposed	method	for	sintering	proppants	and	the	choice	of	the	starting	

material	aims	to	develop	a	cheap,	acid/base	resistant,	strong	and	reliable	mate-

rial	in	alternative	to	the	most	common	materials	employed	for	the	manufacture	

of	proppants.	The	novel	employment	of	basalt	is	the	sintering	of	basalt	powders	

to	manufacture	 proppants	without	 a	melting	 step.	The	 scoria	 could	 be	 consid-

ered	as	a	glass	naturally	quenched	in	air	that	can	be	used	to	sinter	glass	ceramic.		
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Fig.	13	–	Proppant	application	range	vs.	closure	stress	(from	Predict	K,	2007)	

A	 large	 variety	 of	 proppants	 are	 available,	 from	 natural	 occurring	 sand	 to	 the	

man-made	ceramics	or	calcined	bauxite.	Sands	are	employed	for	applications	re-

quiring	lower	closure	stressesa	than	those	of	more	performing	man-made	ceram-

ics	as	reported	in	Fig.	13.	

The	most	important	characteristics	of	proppants,	tested	according	to	the	ISO	

13503-2	standard	are:	

• Roundness	 and	 sphericity	 –	 the	 proppant	 should	 be	 almost	 smooth	

(without	 asperity)	 and	 spherical.	 The	 surface	 stresses	 are	more	uni-

form	on	well-rounded,	spherical	particles,	 in	 fact	 they	are	capable	of	

carrying	higher	loadings	than	a	less-rounded	particle.	

• Density	 –	 the	proppants	density	 influence	 the	choice	of	 the	composi-

tion	of	the	fracturing	fluid.	Relatively	high-density	proppants	require	

high-viscosity	fluids	for	the	suspension	and	the	transport	in	the	frac-

ture.	

• Resistance	to	acid	attacks	–	acid	solubility	evaluation	is	used	to	deter-

mine	the	suitability	of	a	proppant	for	the	use	in	acid	environments.	

																																																								
a		 Closure	 pressure	 or	 closure	 stress	 is	 defined	 in	 the	 Schlumberger	 Oilfield	

Glossary	 as	 “an	 analysis	 parameter	 used	 in	 hydraulic	 fracture	 design	 to	 indicate	 the	

pressure	at	which	the	fracture	effectively	closes	without	proppant	in	place”.	
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• Proppant	strength	–	the	determination	of	the	highest	stress	level	that	

proppants	can	bear	is	fundamental	when	a	hydraulic	fracture	is	creat-

ed.	 The	 proppant	 strength	 is	 a	 significant	 parameter,	 in	 fact	 succes-

sively	to	the	fracture	formation	the	pressure	of	the	fracturing	liquid	is	

decreased	and	the	proppants	have	to	withstand	the	stresses	that	tend	

to	close	the	fracture.		

• Proppant	crushed	and	fine	particles	generation	–	 the	 fragmentation	of	

proppants	 after	 failure	 strongly	 affect	 the	 permeability	 of	 the	 pack.	

The	 crushed	particles	 that	 are	 smaller	 than	100	mesh	 (149	µm)	 are	

generally	considered	to	be	fines.	

2.1.2	 Proppants	Granulation	
Over	 the	 past	 decades,	 increasing	 interest	 and	 progress	were	 accomplished	 in	

understanding	the	fundamental	processes	that	 influence	granulation.	The	three	

key	stages	for	the	process	of	wet	granulation	are:	

1. Wetting	and	nucleation.	

2. Consolidation	and	coalescence.	

3. Attrition	and	breakage.	

These	three	phenomena	are	competitive	and	occur	simultaneously.	After	the	

collapse	of	a	grain	due	to	impact	or	friction	new	fragments	are	created	and	act	as	

triggers	for	the	growth	of	new	particles.	Fig.	14	shows	the	comparison	between	

the	traditional	model	and	the	modern	approach.	

	

Fig.	14	–	Traditional	granulation	(a)	and	modern	approach	(b).	
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The	green	proppants	or	green	granules	were	prepared	using	the	previously	pre-

pared	mixtures	(see	above)	and	the	equipment	of	Fig.	15.		

	

Fig.	 15	 –	 Experimental	 setup:	 at	 the	 bottom	 left	 of	 the	 image	 is	 a	 food	mixer	
equipped	with	a	selection	of	the	angular	velocity	(rpm)	and	working	angle,	in	the	
middle	a	teflon	plate	where	the	green	granules	are	formed,	at	the	top	a	burette	
for	humidity	control	of	the	granules.	

2.1.3	 Basalt	as	Construction	Material	
Studying	the	realization	of	ceramic	proppants,	it	was	found	that	basalt	was	suit-

able	to	shape	black	and	strong	glass	ceramics.	For	this	reason	it	was	decided	to	

investigate	the	feasibility	of	using	sintered	basalt	as	a	construction	material.	Sin-

tered	basalt	 forms	glass	 ceramic	 tiles	having	water	absorption	and	mechanical	

strength	 close	 to	 those	of	 commercial	 glass	 ceramics.	 Considering	 the	valuable	

chemical	 durability	 of	 natural	 basalt	 the	 same	 is	 expected	 for	 sintered	 basalt	

tiles,	thus	suggesting	the	possible	realization	of	hardwearing	tiles	used	for	pav-

ing.	In	literature	a	large	number	of	publications	concerning	basalt	glass	ceramics	

or	 fibers	may	 be	 found,	 but	 only	 few	 refers	 to	 natural	 basalt	 sintered	without	

previously	melting	 the	 raw	material.	Therefore,	we	 thought	 that	 it	would	have	

been	very	interesting	to	perform	an	innovative	work	concerning	sintered	basalt	

as	novel	construction	material.	Furthermore	the	information	acquired	on	study-

ing	basalt	as	construction	material	may	extend	the	understanding	of	the	thermal	
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processes	that	could	be	used	to	improve	the	mechanical	strength	of	basalt-based	

proppants.	

2.2	 Materials	and	Methods	
2.2.1	 Basalt	Based	Proppants	Manufacturing	
The	granulator	was	tilted	at	a	working	angle	of	45	deg	and	set	at	160	rpm	for	10	

minutes.	To	produce	the	aggregates,	the	mixtures	were	placed	in	the	drum	of	the	

granulator	and	moistened	by	adding	20	wt%	of	PVA	solution	(5	wt%)	drop	by	

drop.	Very	fast	agglomeration	was	limited	increasing	the	speed	to	250	rpm,	and	

a	spatula	was	used	to	fragment	the	coarse	granules.	After	2	minutes	the	granula-

tor	was	stopped	and	the	granules	were	dried	in	air	for	20	minutes.	After	water	

evaporation,	the	granules	were	sieved	below	1	mm	and	over	1.32	mm,		placed	on	

a	 refractory	 previously	 covered	 with	 alumina	 powder	 and	 dried	 overnight	 at	

80°C.	

The	burning	out	of	 the	polymer	was	accomplished	at	300°C	 for	30	minutes	

applying	a	heating	rate	of	10°C/min.	The	proppants	sintering	was	performed	at	

1160°C	 for	 15	 minutes	 afterwards	 the	 samples	 were	 directly	 cooled	 at	 room	

temperature.	

A	pivotal	role	on	the	strength	of	basalts	 is	played	by	the	oxide	state	of	 iron	

hence	we	studied	the	effect	of	a	slightly	reducing	atmosphere	during	the	fast	fir-

ing	 of	 the	 proppants.	 It	was	 thus	 chosen	 to	 cover	 the	 refractory	with	 alumina	

powder,	then	with	graphite	powder,	then	to	place	the	green	aggregates	over	the	

refractory	 and	 then	 to	 cover	 again	 the	 granules	 with	 graphite.	 The	 graphite	

mixed	with	the	aggregates	was	confined	in	a	circular	area	in	the	refractory	and	

was	 covered	 with	 a	 kyanite	 crucible	 turned	 upside	 down.	 The	 refractory	 was	

then	placed	in	the	kiln	at	1160°C	in	air	for	20	minutes	and	finally	directly	cooled	

at	room	temperature.	Considering	the	very	quick	heating	the	crucible	limited	the	

warming	up	of	the	specimen,	thus	we	found	that	5	minutes	more	were	required	

to	obtain	aggregates	with	sphericity	equivalent	to	the	previous	experiment.	This	

technique	created	a	small	chamber	where	the	thermal	decomposition	of	graphite	

was	confined	and	the	proppants	were	not	exposed	to	environmental	oxygen.	The	
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crucible	turned	up	was	placed	also	for	safety	reasons	because	graphite	exposed	

at	the	environmental	oxygen	at	1160°C	burns.	

In	the	text	the	sintered	basalt	proppants	are	labeled	with	B	whereas	the	sin-

tered	proppants	in	reducing	atmosphere	are	labeled	RB.	

2.2.2	 Basalt	as	Construction	Material	
The	basalt	 scoria	was	ball-milled	 in	 an	agate	 jar	 and	 sieved	 to	obtain	particles	

with	a	size	below	90	µm.	Successively,	4	samples	were	prepared	by	ball	mixing	

25	grams	of	basalt	powder	at	300	rpm	for	30	minute	in	an	agate	jar	with	1.7	g	of	

polyvinyl	alcohol	(PVA)	solution	at	7	wt%.	The	mixture	was	pressed	at	40	MPa	in	

a	50x50	mm2	mold	and	dried	overnight.	Preliminary	studies	showed	that	an	op-

timal	sintering	interval	for	the	basalt	powder	goes	from	1150	to	1160°C	and	that	

the	heating	rate	strongly	influences	the	final	shape	of	the	sintered	body.	To	study	

the	effect	of	the	thermal	treatment	it	was	decided	to	sinter	3	samples	at	1160°C	

by	applying	respectively	a	2,	5	and	10°C/min	heating	rate.	A	fourth	sample	was	

fired	at	1150°C	by	applying	a	5°C/min	heating	 rate.	The	samples	were	 fired	at	

the	selected	temperature	for	60	minutes	and	a	preliminary	30-min	step	at	300°C	

to	burn	out	the	PVA.		

The	Young's	module	of	the	fired	samples	was	determined	using	the	resonant	

frequency	in	the	flexural	mode	of	vibration	(GrindoSonic	Mk5,	Leuven,	Belgium).	

The	 geometrical	 density	 was	 calculated	 measuring	 the	 dimension	 of	 the	 bar	

specimens	using	a	caliper	and	the	mass	weight	with	a	laboratory	scale.	In	order	

to	remove	surface	flaws,	all	samples	were	carefully	polished	to	a	6	μm	finish	be-

fore	testing,	using	abrasive	papers	and	diamond	paste.	Four-point	bending	tests	

(30	 mm	 outer	 span	 and	 8	 mm	 inner	 span)	 were	 performed	 using	 an	 Instron	

1121	UTS	 instrument	 (Instron,	Danvers,	MA)	 on	 at	 least	 8	 specimens	 for	 each	

sample	type	with	the	cross-head	speed	of	1	mm/min	until	fracture.	The	edges	of	

the	bars	were	beveled	using	fine	abrasive	papers	and	diamond	paste.		
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2.3	 Results	and	discussion	
2.3.1	 Basalt	Based	Proppants	
On	the	basis	of	the	Krumbien-Sloss	chart,	Fig.	16,	the	sphericity	and	roundness	

of	 ceramic	 proppants	 were	 evaluated	 to	 be,	 respectively,	 around	 0.9	 and	 0.9.	

High	 roundness	 reduces	point	 loads	 in	 correspondence	of	 the	 asperities	of	 the	

surface	 roughness,	 and	 good	 sphericity	 improves	 the	 control	 of	 flow	 and	 the	

packing	of	proppants	during	fracturing.	

As	already	described	in	Tab.	3	(Chapter	1)	the	basalt	scoria	presented	a	crys-

tallinity	of	68%	that	slightly	decrease	to	about	65%	after	heating	at	1150°C	for	

60	 min.	 Among	 the	 most	 significant	 mineralogical	 transformations	 occurring	

spinel	and	forsterite	are	oxidized	and	newly	formed	hematite	and	maghemite	are	

observed.	Differently	 from	the	previous	 investigation	here	 the	aggregates	were	

exposed	to	high	temperature	for	a	shorter	time	thus	we	expect	a	lower	oxidation	

(higher	 Fe2+/Fe3+).	 The	 mineralogical	 transformations	 and	 the	 limited	 amor-

phous	phase	determined	strongly	influenced	the	powders	sintering.	As	previous-

ly	mentioned	 in	 the	 introduction	 the	 obtainment	 of	 spheres	 is	 relevant	 to	 im-

prove	the	packing	of	the	proppants	and	then	to	prop	more	efficiently	and	from	

preliminary	studies	it	was	found	that	when	exposed	for	more	than	15	minutes	at	

1160°C	the	aggregates	were	excessively	softening	reducing	the	final	sphericity.	

	

	
	

Fig.	 16	 –	On	 the	 left,	 the	Krumbien-Sloss	chart	of	Roundness	 (X)	Vs	Sphericity	
(Y).	On	the	right,	stereo	microscope	images	of	basalt	based	proppants.	
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The	strength	values	reported	in	Tab	1	referred	to	proppants	having	a	relatively	

large	diameter	range	due	to	 the	complexities	on	the	control	of	 the	granulation.	

The	commercial	LWC	proppants	Versprop®	produced	by	Saint	Gobain	were	used	

as	benchmark	to	compare	the	mechanical	strength	of	our	proppants.	According	

to	 the	data	sheet,	Versaprop®	have	an	average	diameter	of	0.74	mm.	As	an	ap-

proximation	the	Weibull	modulus	of	our	materials	were	considered	independent	

of	the	volume.	Then	the	characteristic	strength	of	the	materials	was	transformed	

using	the	following	relationship:	

	
where	σ1	is	the	strength	of	a	proppant	of	volume	V1,	σ2	is	the	strength	of	a	prop-

pant	of	volume	V2	and	m	is	the	Weibull	modulus.	According	to	the	standard	UNI	

EN	ISO	13503-2-2010	a	known	mass	of	proppants	is	placed	inside	a	cylindrical	

steel	container	(d	=	50.8	mm),	this	is	subjected	to	a	compressive	force.	A	deter-

mination	of	 the	highest	stress	 level	at	which	proppant	generates	no	more	 than	

10%	crushed	material,	rounded	down	to	the	nearest	6.9	MPa	(1000	psi),	repre-

sents	the	maximum	stress,	σm,	that	the	material	can	withstand	without	exceeding	

10%	 crush.	 This	 constraint	 imposes	 a	 surviving	 probability	 for	 proppants	 of	

90%.		

Going	 into	 details,	 σm	 is	 the	 ratio	 between	 the	maximum	 applied	 load,	 Fm,	

over	the	area	of	the	cylinder,	Acylinder:	

	
Considering	that	Fm	is	applied	on	a	monolayer	of	Np	proppants,	a	single	proppant	

bears	only	a	small	fraction	of	the	maximum	load.	The	maximum,	F90,	that	a	single	

proppant	having	a	 surviving	probability	of	90%	can	withstand	 is	derived	 from	

the	Hiramatsu	and	Oka	formula	which	gives:	

	
The	close-packing	of	proppants	is	far	from	being	ideal	due	to	their	limited	sphe-

ricity;	 then	 the	numerical	 density,	 δ,	 of	 a	monolayer	was	 assumed	 to	be	 about	
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0.64.b	The	number	of	proppants	contained	in	the	cylinder	is	function	of	the	area	

of	 the	 cylinder,	 the	 numerical	 density	 and	 the	 area	 occupied	 by	 a	 single	 prop-

pant,	Aproppant:	

	
Substituting	the	previous,	the	final	relationship	between	σm	and	σ90	is:	

	
Finally,	σ90	was	derived	from	the	Weibull	statistic	providing	the	results	reported	

in	Tab.	8.	In	spite	of	the	limits	on	the	production,	which	forced	us	to	test	prop-

pants	having	dimensions	much	bigger	than	those	commercially	available,	it	was	

demonstrated	that	the	materials	produced	in	the	current	project	are	indeed	not	

far	from	the	proppants	commercially	available	in	terms	of	achievable	strength.		

	

	

Fig.	 17	–	a)	Basalt	proppants	at	 low	magnification.	b)	Significant	embedding	of	
alumina	powder	at	the	surface	of	the	basalt	proppants.	

																																																								
b)	 In	 geometry,	 close-packing	of	 equal	 spheres	 is	 a	 dense	 arrangement	 of	 con-

gruent	spheres	in	an	infinite,	regular	arrangement.	The	highest	average	densi-

ty	 that	 is,	 the	 greatest	 fraction	 of	 space	 occupied	 by	 spheres,	 that	 can	 be	

achieved	by	a	regular	lattice	arrangement	is	≈	0.74048.	



	

	

	

65	

It	should	be	noted,	however,	that	the	previous	considerations	about	the	theoreti-

cal	 strength	 of	 smaller	 size	 proppants	 contain	 some	 approximations	 that	 can	

strongly	influence	the	correspondence	between	the	theoretical	and	real	data,	but	

we	believe	that	the	results	help	us	anyway	to	understand	which	characteristics	

influence	more	the	properties	of	the	final	products.	

Fig.	18	–	a)	Low	magnification	micrographs	of	basal	proppants	fired	in	reducing	
b)	No	embedding	of	alumina	powder	at	the,	but	significant	bubbles	formation.	

In	Fig.	17	are	reported	the	micrographs	collected	at	the	stereomicroscope	of	the	

basalt	proppants;	a	significant	embedding	of	alumina	powder	at	the	surface	can	

be	observed.	These	 imperfections	may	affect	 the	mechanical	properties.	 In	Fig.	

18	are	reported	the	micrographs	collected	at	the	stereomicroscope	of	the	basalt	

proppants	 fired	 in	 reducing	atmosphere;	 in	 this	 case	 there	 is	no	embedding	of	

alumina	 powder	 at	 the	 surface,	 but	 bubbles	 were	 formed	 in	 the	 bulk	 of	 the	

spheres.	

An	interesting	functionality	of	the	basalt	proppant	was	linked	to	the	presence	

of	magnetite,	which	 conferred	 a	weak	 attraction	 to	 a	 permanent	magnet.	 This	

functionality	may	be	used	 for	 separating	 the	proppants	 from	other	substances,	

e.g.	in	a	continuous	liquid/solid	stream.	

The	 compressive	 strength	was	measured	compressing	one	by	one	20	 to	25	

individual	specimens	per	type	of	basalt	proppants	(B,	and	reduced	basalt	prop-

pants	RB	respectively).	In	Fig.	19	is	reported	the	Weibull	plot	for	both	B	and	RB	

proppants	 and	 in	Tab.	 8	 the	mechanical	 data.	 Obviously,	 the	 bubbles	 strongly	

decreased	 the	 mechanical	 strength	 of	 RB	 specimens.	 In	 spite	 of	 the	 alumina	

granules	embedded	at	 the	surface	of	 samples	B,	 their	specific	 strength,	σ0,	was	
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considerably	high.	Moreover	the	σ90,	which	correspond	to	the	strength	at	which	

the	survival	probability	was	90%	(failure	probability	10%),	was	77.5	MPa	for	B	

proppants	with	an	average	diameter	of	1.02	mm.	

Using	the	same	considerations	previously	described,	we	calculated	the	char-

acteristic	strength	of	proppants	having	an	equivalent	diameter	of	0.74	mm,	using	

Weibull	statistics.	The	characteristic	strength	of	proppants	having	an	equivalent	

diameter	of	0.74	mm	calculated	using	the	Weibull	statistics	gave	a	strength	en-

hancement	of	about	20%,	which	resulted	comparable	to	the	commercial	Versa-

prop®	proppants.	The	results	for	the	RB	proppants	were	less	promising,	consid-

ering	that	the	characteristic	strength	was	quite	low	even	for	Ultra	Light	Weight	

(ULW)	proppants.		

	

	

	

Fig.	19	–	Weibull	plot	for	both	B	and	RB	proppants;	the	straight	line	sets	the	fail-
ure	probability	of	10%,	limit	required	for	the	definition	for	the	crash	classifica-
tion	according	to	the	standard	UNI	EN	ISO	13503-2-2010.	
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Tab.	 8	–	Weibull	modulus,	m,	characteristic	strength,	σ0,	 for	proppants	charac-
teristic	 strength	 for	 a	 surviving	 probability	 of	 90%,	 σ90,	 maximum	 stress,	 σm,	
both	 in	Mpa	and	psi	and	crash	classification	according	 to	 the	 standard	UNI	EN	
ISO	13503-2	2010.	

*	calculated	values	using	the	Weibull	statistics	for	proppants	having	d	=	0.74	

mm.	

2.3.2	 Basalt	as	Construction	Material	
As	clearly	shown	in	Fig.	20,	the	heating	rate	strongly	modifies	the	final	shape	of	

the	sintered	 tile.	Specifically,	a	 loss	of	 the	 final	 shape	 is	observed	at	 the	higher	

heating	rates	owing	to	an	improved	viscous	flow	sintering.	The	different	shapes	

observed	probably	result	from	the	evolution	of	the	crystal	phases	during	firing.	

Crystallization	is	promoted	until	1050-1150°C	and	successively	the	silicate	crys-

tal	phases	together	with	the	remaining	glassy	phase	start	to	melt	leading	to	vis-

cous	flow	sintering.	A	low	heating	rate	enhances	the	formation	of	crystal	phases,	

consequently	at	the	firing	temperature	the	high	viscosity	due	to	the	presence	of	

the	 crystals	 limits	 the	 sintering	 by	 viscous	 flow.	 The	 sample	 heated	 at	 1150°C	

with	a	heating	rate	of	5°C/min	showed	a	much	lower	loss	of	shape	than	the	sam-

ple	 fired	at	1160°C	at	 the	same	heating	rate,	and	provided	a	result	close	to	the	

sample	fired	at	1160°C	with	a	heating	rate	of	2°C/min.	

	

Composition	
	

T	
°C	

m	
	

σ0	
MPa	

σ90	
MPa	

σm	
MPa	

σm	
MPa	

Crash	classification	
	

B	 1160	 5.62	 115.7	 77.5	 70.2	 10200	 10K	
B*	 1160	 5.62	 137.5	 92.1	 83.4	 12094	 12K	
RB	 1160	 2.63	 65.5	 27.9	 25.2	 3660	 3K	
RB*	 1160	 2.63	 100.8	 42.8	 38.8	 5620	 5K	
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Fig.	 20	 –	 a)	 basalt	 glass	 ceramic	 fired	 at	 1160°C	 for	 60	 minutes	 applying	 a	
2°C/min	heating	rate.	b)	basalt	glass	ceramic	fired	at	1160°C	for	60	minutes	ap-
plying	 a	 5°C/min	 heating	 rate.	 c)	 basalt	 glass	 ceramic	 fired	 at	 1160°C	 for	 60	
minutes	 applying	 a	 10°C/min	 heating	 rate.	 d)	 cut	 basalt	 glass	 ceramic	 fired	 at	
1150°C	for	60	minutes	applying	a	5°C/min	heating	rate.	

The	sintered	basalt	glass	ceramics	exhibited	physical	properties	similar	to	that	of	

commercial	glass	ceramics	used	for	paving,	which	in	turn	possess	largely	better	

properties	than	traditional	natural	stones,	as	shown	in	Tab.	9.	In	particular,	the	

basalt	glass	ceramics	obtained	 in	 this	work	 feature	 the	same	or	higher	 flexural	

strength	(>47	MPa)	than	the	other	reference	materials.[6]		
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Tab.	9	–	Characterization	data	for	sintered	basalt	glass	ceramic	samples	for	60	
minutes	at	different	heating	rate.	*	ref	[6]	

We	should	also	stress	 the	 fact	 that	 the	produced	glass	ceramics	possess	a	very	

low	water	 absorption,	 making	 them	 suitable	 candidates	 for	 high	 performance	

paving	material.	

2.4	 Conclusions	
2.4.1	 Basalt	as	Propping	Agent	
From	 the	present	 investigation	we	 found	 that	 the	 granulation	 is	 a	 critical	 step	

that	requires	a	specific	equipment	to	avoid	defects	during	production.	However	

the	manufacture	of	 spherical	 glass	 ceramics	proppants	 instead	of	 ceramics	be-

cause	the	viscous	flow	at	1160°C	allowed	for	an	almost	perfect	spheroidization.	

Although	 basalt	 proppants,	 fired	 only	 for	 15	minutes	 at	 1160°C,	 gave	 specific	

strengths	 that	 are	 probably	 close	 or	 even	 higher	 than	 the	 commercial	 Versa-

prop®	proppants	to	compare	their	properties	 it	would	be	 important	to	test	 the	

commercial	proppants	using	the	same	procedure.	A	possible	improvement	of	the	

mechanical	 strength	 can	be	 achieved	 avoiding	 the	use	 of	 alumina	powder	 as	 a	

substrate	and	using	the	same	technology	currently	used	for	proppants	manufac-

turing,	i.e.	substituting	the	kiln	furnace	with	a	rotary	kiln.	

Another	process	that	could	be	investigated	is	an	intermediate	procedure	be-

tween	B	and	RB	 firing.	Placing	B	granules	on	a	 refractory	 substrate	previously	

covered	with	graphite	and	alumina	may	give	a	lower	embedding	of	alumina	into	

a	proppant’s	surface.		

	

	 E	 ρ	 σ	 Wab	
	 GPa	 g/cm3	 MPa	 Wt%	
Basalt	1160°C	60	min	2°C/min	 74	±	6	2.72	±	0.04	 47	±	4	 0.48	±	0.05	
Basalt	1160°C	60	min	5°C/min	 80	±	5	2.68	±	0.04	 64	±	16	 0.94	±	0.09	
Basalt	1160°C	60	min	10°C/min	83	±	7	2.69	±	0.04	 61	±	6	 0.31	±	0.07	
Basalt	1150°C	60	min	5°C/min	 84	±	4	2.73	±	0.02	 70	±	9	 0.29	±	0.09	
Neoparies	glass	ceramics*	 51-86	 2.70-2.72	 41-50	 	 	 	
Cryston	glass	ceramics*	 95	 2.76	 49	 	 	 	
Marble*	 27-82	 2.70	 13.7-16.7	 	 	 	
Granite*	 42-60	 2.60	 13.5-14.7	 	 	 	
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2.4.2	 Basalt	as	Construction	Material	
From	an	 industrial	 point	 of	 view,	 it	may	be	 interesting	 to	 reduce	 the	 sintering	

time	by	applying	a	 faster	heating	rate	at	a	 lower	 temperature	 to	observe	 if	 the	

resulting	sample	holds	the	shape	uniformly.	A	further	issue,	which	might	be	ex-

plored	is	the	realization	of	a	functional	tile	performing	magnetic	properties,	due	

to	the	presence	of	iron	oxide	in	the	glass	ceramics,	by	firing	the	sample	in	a	re-

ducing	atmosphere.	

As	 previously	 discussed	 basalt	 embeds	 effectively	 the	 alumina	 powder	 bed	

placed	between	 the	 refractory	 and	 the	 sample.	 To	 avoid	 such	 inconvenience	 it	

was	found	that	dolomite	and	limestone	might	be	a	cheaper	alternative	to	alumi-

na	powder.	Limestone	probably	formed	a	calcium	silicate	or	calcium	aluminosili-

cate	layer	that	prevents	the	sample	to	stick.	However	even	if	limestone	was	the	

most	effective	alternative	to	alumina,	it	must	be	considered	that	calcined	calcite	

produces	lime	that	is	caustic	when	hydrated.	

A	 further	 experiment	 could	 be	 performed	by	 fast	 firing	 a	mixture	 of	 basalt	

and	 alumina	platelets	 to	 investigate	 if	 such	 combination	 enhances	 the	 fracture	

toughness	of	the	basalt	glass	ceramic.	Alumina	platelets	are	relatively	economic	

and	largely	used	in	the	abrasive	industry	
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Chapter	 3	 –	 Double	 Layer	 Glass	 Ce-
ramics	From	Waste	Materials	

3.1	 Introduction		
3.1.1	 Vitrification	–	Pros	and	Cons	
Vitrification	has	proved	to	be	the	safest	technology	for	the	treatment	and	reme-

diation	of	non-combustible	hazardous	waste,	 among	 the	various	disposal	 tech-

nologies	 [1].	 The	 process	 implies	 the	 thermal	 destruction	 of	 waste	 and,	 when	

properly	 formulated,	 the	 resulting	 glass	 features	 a	 high	 chemical	 inertness,	 so	

that	it	can	be	landfilled	without	any	particular	concerns.	Despite	the	soundness	

of	vitrification	technology,	confirmed	by	numerous	scientific	studies	and	exper-

imental	tests	[2],	this	approach	has	found	difficulties	in	establishing	itself,	being	

particularly	cost	and	capital	 intensive.	In	the	case	of	 inorganic	waste	for	which,	

differently	from	radioactive	waste,	environmental	safety	is	not	an	absolute	prior-

ity	over	cost,	a	vitrification	treatment	may	be	justifiable	only	if	the	obtained	glass	

could	 be	 reused	 in	 high	 value	 applications.	 The	most	 significant	 application	 of	

waste-derived	 glasses	 is	 undoubtedly	 represented	 by	 glass	 ceramics,	 starting	

from	 the	 well-known	 Russian	 “Slag	 Sitals”	 (developed	 nearly	 50	 years	 ago),	

based	on	the	vitrification	of	metallurgical	slags.	Slag	Sitals	may	be	considered	a	

sort	of	prototype	for	glass	ceramics	derived	from	glasses	belonging	to	the	CaO-

Al2O3-SiO2	 (CAS)	 system	 [3],	 since	 they	 combine	 good	 mechanical	 properties	

(bending	strength,	abrasion	resistance)	and	chemical	stability,	suitable	for	their	

main	application	in	the	construction	industry	for	buildings	façades.	

The	production	of	high	value	glass	ceramics	is	associated	to	additional	costs	

in	the	overall	treatment	of	inorganic	waste:	as	an	example,	Slag	Sitals	imply	the	

rolling	of	waste-derived	glass	into	sheets,	following	the	melting	procedure,	and	a	

secondary	 ceramization	 treatment.	 Recent	 investigations	 have	 been	 applied	 to	

waste-derived	CAS	glasses	in	order	to	reduce	the	transformation	costs.	In	partic-

ular,	sintering	of	glass	powders,	leading	to	“sinter-crystallized”	glass	ceramics,	is	
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receiving	 a	 growing	 interest	 [4].	 Glass	 powders	may	be	 easily	 obtained	 by	 the	

grinding	of	glass	fragments	possessing	high	internal	stresses,	such	as	those	pro-

duced	by	pouring	a	glass	melt	in	water	to	produce	a	frit.	With	this	approach,	en-

ergy	savings	are	associated	to	both	the	vitrification	and	ceramization	steps,	since	

waste	glasses	may	be	poured	just	after	homogenization,	i.e.	avoiding	the	expen-

sive	refining	step,	and	crystallization	may	occur	very	rapidly	(in	1h	or	less,	at	an	

adequate	 sintering	 temperature),	 on	 the	 basis	 of	 surface	 nucleation,	 even	 for	

glasses	with	a	very	low	amount	of	oxides	that	could	act	as	nucleating	agents	(i.e.	

oxides	with	a	poor	solubility	in	glass,	such	as	TiO2,	ZrO2	etc.).	[5]	

The	direct	sintering	of	mixtures	of	inorganic	waste	including	recycled	glasses,	

acting	 as	 fluxing	 agents,	 is	 an	 important	 alternative.	 The	 products	 cannot	 be	

nominally	considered	as	glass	ceramics,	since	there	is	no	vitrification,	i.e.	a	stage	

in	which	the	starting	raw	materials	are	mixed	and	converted	into	a	glass,	 is	 in-

volved.	However,	a	rich	literature	supports	the	classification	of	such	products	as	

“sintered	glass	ceramics”,	owing	to	the	generally	observed	phase	evolution	[6-7].	

In	 fact,	 the	 recycled	 glass	 component,	 besides	 promoting	 the	 densification	 by	

viscous	 flow	 sintering,	 reacts	 with	 the	 waste,	 leading	 to	 silicate	 and	 alumino-

silicate	 crystals	 similar	 to	 those	 developed	 by	 devitrification	 of	 waste	 glasses.	

The	process,	evidently	resembling	that	of	traditional	ceramics,	offers	remarkable	

energy	savings,	due	to	the	absence	of	a	high	temperature	(>1350-1400°C)	melt-

ing	stage	and	its	simplicity.	The	impact	on	the	chemical	stabilization	of	waste	is	

quite	 controversial:	 on	one	hand,	 if	 treatments	 at	moderate	 temperatures	pre-

vents	some	pollutants	from	decomposition	and	escape	as	gasses	(as	an	example,	

fluorine	gas	from	F-containing	waste	[8]),	on	the	other	one	the	chemical	homo-

geneity	of	a	sintered	body	is	much	lower	than	that	of	a	glass	obtained	from	melt-

ing	(pollutants	may	selectively	accumulate	in	regions	not	completely	dissolved	in	

the	liquid	phase	provided	by	the	flux).		
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Fig.	21	–	Schematic	representation	of	three	routes	for	the	production	of	ceramic	
materials	employing	selected	natural	and	waste	raw	materials.	

3.1.2	 Limiting	the	Vitrification	
As	illustrated	by	Fig.	21,	the	present	chapter	aims	at	combining	direct	sintering	

of	waste	mixtures	and	sintering	of	waste-derived	glasses,	with	the	development	

of	layered	hybrid	glass	ceramics	(HGC).	The	good	mechanical	properties	and	the	

homogeneous	microstructure	 of	 sinter-crystallized	 glass	 ceramics	 (GC)	 are	 ex-

ploited	 in	a	glaze,	white	or	colored,	deposited	on	a	porous	base	body	obtained	

from	direct	 sintering	 (SB).	The	production	process	described	hereafter	has	 the	

aim	 of	 combining	 direct	 sintering	 of	 waste	 mixtures	 and	 sintering	 of	 waste-

derived	glasses,	with	 the	 creation	of	 layered	HGC	 (see	Fig.	 21).	Vitrification	of	

waste	 is	sustainable,	since	 it	 is	applied	only	to	a	 limited	amount	of	 the	starting	

materials;	 the	 single	 firing	 reduces	 the	 costs	 associated	 to	 the	 deposition	 of	 a	

glaze.	Owing	to	the	negligible	water	absorption	(at	the	glazed	side)	and	the	lim-

ited	density,	the	developed	layered	glass	ceramics	could	be	a	valid	alternative	to	

the	lightweight	tiles	currently	developed	for	building	façades.		
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3.2	 Materials	and	Methods	
3.2.1	 Starting	Materials	
The	starting	waste	raw	materials	for	the	production	of	the	sintered	body	and	the	

glass	ceramics	in	this	study	were	a	basalt	waste	and	fly	ash	residues	from	a	ce-

ment	plant	in	the	Riyadh	region	of	Saudi	Arabia,	soda	lime	cullet	(the	fraction	of	

recycled	material	that	is	difficult	to	reuse	in	conventional	glass	production	owing	

to	its	impurities),	and	panel	glass	from	dismantled	cathode	ray	tubes	(CRTs).	The	

other	 starting	 natural	 raw	materials	were	 ball	 clay,	 limestone,	 and	 silica	 sand	

from	the	Riyadh	region.	Tab.	10	reports	the	data	for	X-ray	fluorescence	analysis	

(Philips	XRF	Sequential	Spectrometer	PW2400,	Eindhoven,	The	Netherlands)	of	

the	 starting	 raw	materials	 and	 the	 percentages	 of	 raw	materials	 employed	 for	

the	preparation	of	the	samples.		

	

Tab.	10	–	Chemical		composition	of	the	starting	raw	materials	and	formulation	of	
the	investigated	glass	ceramics.	

	

Oxide	 Silica	
sand	 Limestone	 Clay	 Fly		

ash	1	
Fly		
ash	2	 Basalt	 Cullet	 CRT	panel	

glass	 SB/GC1	 GC2	

Chemical	
composition	(wt%)	
SiO2	 98.6	 2.3	 41.6	 14.2	 12.8	 47.4	 71.9	 57.3	 55.7	 60.3	
Al2O3	 0.6	 0.9	 39.1	 4.8	 4.5	 15.9	 0.7	 3.8	 12.8	 11.3	
P2O5	 	 	 0.1	 	 	 0.5	 	 	 	 0.1	
Na2O	 0.1	 	 0.1	 0.1	 1.2	 3.4	 13.3	 12.8	 2.6	 2.2	
K2O	 	 0.1	 0.1	 0.5	 14.5	 1.0	 0.1	 7.2	 4.1	 0.4	
MgO	 	 0.6	 0.2	 0.7	 0.6	 9.6	 3.3	 	 0.8	 2.6	
CaO	 	 52.7	 0.5	 58.3	 50.4	 7.7	 10.1	 	 22.0	 18.6	
BaO	 	 	 	 	 	 	 	 7.9	 	 	
SrO	 	 	 	 	 	 	 	 8.4	 	 	
Cr2O3	 	 	 	 	 	 0.1	 	 	 	 	
Fe2O3	 	 0.3	 1.3	 2.8	 2.2	 11.4	 0.1	 0.2	 1.0	 3.4	
TiO2	 0.4	 	 2.9	 0.3	 0.2	 1.9	 	 0.4	 1.0	 1.1	
MnO2	 	 	 	 	 	 0.2	 	 	 	 	
ZnO	 	 	 	 	 	 	 	 0.6	 	 	
ZrO2	 	 	 	 	 	 	 	 1.4	 	 	
L.O.I.	 0.3	 43.1	 14.1	 18.3	 13.6	 0.9	 0.5	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
Formulation	(wt%)	
SB/GC1	 25	 10	 25	 	 25	 	 15	 	 	 	
GC2	 30	 	 15	 25	 	 20	 10	 	 	 	
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3.2.2	 Samples	Preparation	
Sintered	 body	 (SB)	 –	 The	 raw	materials	 of	 composition	 SB	were	 firstly	 inde-

pendently	ground	into	a	fine	powder	using	a	ball	mill,	and	then	sieved	below	90	

µm.	About	300	grams	in	total	of	the	ground	raw	materials	were	mixed	thorough-

ly	in	a	food	mixer,	adding	30	wt%	of	water.	After	mixing,	the	homogeneous	mix-

ture	was	dried	in	an	oven	at	80°C	for	24	h	and	then	ground	again,	keeping	only	

the	 powder	 with	 a	 diameter	 below	 90	 µm.	 Sintering	 experiments	 were	 per-

formed	on	samples	SB	prepared	by	pressing	15	grams	of	the	dry	powder	mixture	

in	a	rectangular	die	(cross-section	of	50	mm	×34	mm)	at	a	pressure	of	30	MPa.	

The	samples	were	further	dried	at	120°C	for	30	minutes	and	then	fired	at	1000,	

1100,	1150	and	1250°C	for	60	minutes	with	a	heating	rate	of	10°C/min.	

Glass	ceramic	frits	(GC)	–	Glasses	from	mixtures	GC1	and	GC2	were	obtained	by	

melting	at	1300°C	for	2	h	and	poured	in	cold	water.	The	frits	were	then	collected,	

dried	at	80°C	and	then	ball	milled	in	an	agate	jar	and	sieved	to	obtain	particles	

with	a	size	below	90	µm.	

Dilatometric	 and	differential	 thermal	 analysis	 (DSC	404,	Netzsch	Gerätebau	

GmbH,	 Selb,	 Germany,	 10°C/min	 heating	 rate)	 were	 performed	 on	 both	 fine	

powders	(<	90	µm)	and	coarse	powders	(>	90	µm)	of	glass	GC1	in	order	to	infer	

the	conditions	for	optimum	processing.	Preliminary	sintering	experiments	were	

performed	on	disks	(30	mm	diameter)	obtained	uniaxially	pressing	at	40	MPa	2	

grams	of	powder.	The	discs	were	fired	directly	at	900,	950,	1000°C	temperatures	

for	30	and	60	minutes.	After	selection	of	 the	preferred	 firing	 temperature,	 two	

samples	were	obtained	by	uniaxially	pressing	15	grams	of	the	dry	powder	GC1	in	

a	 rectangular	 die	 (cross-section	 of	 50	mm	×	 34	mm)	 at	 a	 pressure	 of	 30	MPa	

without	adding	binders.	The	samples	were	fired	at	950°C	for	30	minutes	with	a	

heating	rate	of	40°C/min.	

Hybrid	 glass	 ceramic	 (HGC)	 –	 A	 hybrid	 glass	 ceramics	 (HGC)	 was	 obtained	

firstly	by	lightly	pressing	(at	10	MPa)	15	grams	of	the	dry	powder	mixture	SB	in	

a	rectangular	die	 (cross-section	of	50	mm	×	34	mm)	and	subsequently,	on	 this	

substrate,	3	grams	of	a	glass	frit	were	deposited	(0.176	g/cm2).	Then,	the	layered	

sample	was	uniaxially	pressed	at	30	MPa.	We	found,	in	fact,	that	pressing	firstly	

the	substrate	at	30	MPa,	followed	by	the	deposition	of	the	frit	and	second	press-

ing	at	30	MPa,	led	to	a	limited	adhesion	between	the	frit	and	the	substrate,	prob-
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ably	 because	 of	 limited	 interpenetration	 between	 the	 glaze	 and	 the	 substrate	

during	pressing.		

The	glass	frit	for	HGC	was	produced	by	mixing	GC1	frit	with	some	additives	in	

order	to	obtain	a	white	color	and	to	find	the	perfect	match	in	terms	of	physical	

properties	(e.g.	coefficient	of	thermal	expansion)	between	this	top	layer	and	the	

substrate.	The	GC1	frit	(40	wt%)	was	mixed	with	a	whitening	agent	(ZrSiO4,	0.8	

µm	mean	particle	size,	Industrie	Bitossi	SpA,	Vinci,	Italy,	20	wt%)	and	a	flux	(CRT	

panel	glass,	40	wt%).	The	GC2	frit	with	no	additive	was	employed,	as	an	alterna-

tive,	for	the	firing	of	a	HGC	sample	of	green	color.	The	HGC	samples	were	fired	at	

1150°C	for	60	minutes,	with	a	heating	rate	of	10°C/min.	

3.2.3	 Characterization	Techniques	
The	Young's	modulus	of	glass	ceramic	samples	was	determined	using	the	reso-

nant	frequency	in	the	flexural	mode	of	vibration	(GrindoSonic	Mk5,	Leuven,	Bel-

gium).	Four	point	bending	tests	(30	mm	outer	span,	8	mm	inner	span)	were	per-

formed	using	an	Instron	1121	UTS	(Instron,	Danvers,	MA)	on	at	 least	15	speci-

mens	with	dimensions	of	3.8	mm	×	2.7	mm	×	46	mm	size.	 In	order	 to	 remove	

surface	flaws,	all	samples	were	carefully	polished	to	a	6-μm	finish	before	testing,	

by	using	abrasive	papers	and	diamond	paste.	The	edges	of	the	bars	were	baveled	

by	using	 fine	abrasive	papers	and	diamond	paste.	The	cross-head	speed	was	1	

mm/min	speed	until	 fracture.	The	HGC	samples	were	tested	by	positioning	the	

SB	layer	on	the	compression	(upper)	side	and	the	GC	layer	on	the	tensile	(lower)	

side.	

The	morphological	features	of	sintered	samples	were	characterized	by	Scan-

ning	Electron	Microscopy	(SEM-ESEM	Quanta	200,	FEI	Company,	Eindhoven,	The	

Netherlands).	The	 crystalline	phase	assemblage	was	 investigated	on	powdered	

samples	by	X-ray	diffraction	(Bruker	D8	Advance,	Karlsruhe,	Germany),	employ-

ing	 CuKα	 radiation	 (0.15418	 nm)	 and	 collecting	 data	 in	 the	 range	 2θ=10–60°	

(0.05°	steps,	3	s	counting	time).	The	identification	was	performed	by	means	of	a	

semi-automatic	software	package	(Match!,	Crystal	Impact	GbR,	Bonn,	Germany),	

supported	by	data	from	PDF-2	database	(ICDD-International	Centre	for	Diffrac-

tion	Data,	Newtown	Square,	PA).	
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3.3	 Results	and	Discussion	
3.3.1	 Sintering	 of	Waste-derived	Glass	 and	Direct	 Sintering	

of	Waste		
As	reported	above,	Fig.	21	illustrates	the	three	different	routes	followed	for	the	

production	 of	 the	 various	 samples	 using	 the	 selected	 raw	materials.	 The	 first	

route	 refers	 to	 the	 formation	 of	 a	 dense	 glass	 ceramic	 body	 by	 sinter-

crystallization	of	a	waste-derived	glass	frit.	The	second	one	consists	of	the	direct	

firing	of	an	uniaxially	pressed	green-body,	and	the	third	one	corresponds	to	the	

production	of	a	hybrid	glass	ceramic	glazed	body	based	on	the	two	previous	mix-

tures.	 In	 this	 case,	 the	 glass	 ceramic	 frit	was	 employed	as	 a	 glaze	 to	provide	 a	

dense,	 aesthetically	 pleasing	 layer	 on	 the	 surface	 of	 the	 brown-colored	 fired	

body	derived	from	natural	and	waste	raw	materials.	

As	 shown	 in	Fig.	 22,	 the	 composition	 selected	 for	 samples	SB/GC1	 is	quite	

similar	to	that	of	the	previously	cited	Slag	Sitals.	 In	our	samples,	the	content	of	

iron	oxide	was	much	decreased,	 in	order	 to	achieve	a	 light	coloration;	 the	con-

tent	of	TiO2,	 that	 could	 act	 as	nucleating	 agent,	was	 also	very	 low,	 considering	

that	the	glass	from	the	same	composition	(GC1	frit)	was	expected	to	crystallize	

by	surface	nucleation.	

	

Fig.	22	–	Comparison	between	the	investigated	glass	composition	and	Slag	Sitalls	
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Thermal	 Analysis	 –	 The	 DTA	 analysis	 for	 the	 GC1	 frit	 (see	 Fig.	 23)	 clearly	

shows	that	 the	 investigated	glass	 is	prone	to	surface	crystallization;	 in	 fact,	 the	

main	crystallization	exothermic	peak	is	more	intense	for	fine	powders	(<	90	µm)	

than	 for	coarser	ones	and,	more	 importantly,	 the	crystallization	temperature	 is	

also	lowered	for	fine	powders	at	about	1000°C.	A	secondary	crystallization	peak,	

located	at	~900°C	for	the	coarse	powder,	is	also	shifted	to	a	lower	temperature	

with	decreasing	particle	size.		

Both	 the	DTA	and	dilatometric	plots	enable	 to	establish	 the	glass	 transition	

temperature	(TG),	at	about	700°C.	The	remarkable	difference	between	the	glass	

transition	and	the	crystallization	temperature	(~300°C)	is	useful	for	promoting	

the	sinter-crystallization	process,	i.e.	the	possibility	to	successfully	densify	glass	

powders	via	viscous	 flow	and	simultaneously	achieve	a	high	crystallization	de-

gree.	The	sintering	temperature	was	selected	at	1000°C,	to	enhance	crystalliza-

tion,	and	this	temperature	was	high	enough	also	for	achieving	a	remarkable	den-

sification,	since	viscous	flow	starts	above	TG;	more	precisely,	viscous	flow	sinter-

ing	is	generally	optimized	50-100°C	above	the	dilatometric	softening	point	[9].	In	

our	case	the	dilatometric	softening	occurs	at	~770°C	(see	Fig.	23),	that	is	far	be-

low	1000°C.	

	
Fig.	23	–	DTA	and	dilatometric	plots	for	GC1	glass	
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Fig.	24	–	X-ray	diffraction	patterns	of	GC1	and	SB	samples:	a)	GC1	glass,	sinter-
ing	 for	 30	min;	 b)	 GC1	 glass,	 sintering	 for	 60	min;	 c)	 SB,	 sintering	 for	 60	min	
(heating	rate:	10°C/min)	

Mineralogical	 Composition	 –	The	effectiveness	of	 surface	nucleation,	 for	GC1	

frit,	is	confirmed	by	Fig.	24a	and	Fig.	24b,	which	show	that	crystals	started	de-

veloping	already	after	30	minutes	at	900°C,	and	after	1h	at	1000°C	little	evidence	

remained	 of	 the	 presence	 of	 a	 residual	 amorphous	 phase.	 The	 first	 crystalline	

phase	to	appear,	after	the	heat	treatment	at	900°C,	was	wollastonite	(β-CaSiO3,	

PDF#27-0088),	 followed	 by	 the	 crystallization	 of	 and	 Ca-Na	 feldspar	 (sodium	

exchanged	anorthite	or	bytownite,	Ca0.85Na0.14Al1.83Si2.16O8,	PDF#76-0832).	Both	

phases	are	typical	of	waste-derived	CAS	glass	ceramics	[3].	Anorthite	crystalliza-

tion	was	actually	optimized	at	950°C,	if	we	consider	that	its	peak	is	well	visible	

for	a	holding	time	of	30	min	(see	Fig.	24a);	for	a	longer	treatment	(60	min)	the	

precipitation	of	 this	phase	was	well	 recognizable	even	at	900	and	1000°C	 (see	

Fig.	24b).	
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Tab.	11	–	Summary	of	density	and	shrinkage	values	for	sintered	samples	[n.d.	=	
not	determined;	*:	samples	with	no	regular	shape;	**:	samples	were	glued	to	the	
refractory	substrate	after	firing]	

Type Sintering T 
(°C) 

Time 
(min) 

Density 
(g/cm3) 

Linear Shrinkage 
(%) 

GC1 

900 30 2.63 + 0.02 21 
900 60 2.65 + 0.02 21 
950 30 2.65 + 0.02 25 
950 60 2.66 + 0.02 25 
1000 30 2.65 + 0.02 n.d. * 
1000 60 2.68 + 0.02 n.d. * 

SB 

1000 60 1.94 + 0.04 2 
1100 60 1.87 + 0.04 3 
1150 60 1.83 + 0.04 7 
1200 60 n.d. ** n.d. ** 

	

As	reported	by	Tab.	11,	the	difference	in	density	and	shrinkage	was	not	particu-

larly	 significant	 in	 samples	 sintered	 in	 different	 conditions;	 however,	 we	 ob-

served	that	the	samples	heat	treated	at	1000°C	displayed	an	even	excessive	vis-

cous	 flow,	 resulting	 in	 the	 loss	of	 the	original	disc	shape.	Considering	 the	opti-

mized	 crystallization	 of	 both	 wollastonite	 and	 anorthite	 and	 the	 retention	 of	

shape,	we	 chose	 950°C	 as	 the	 reference	 temperature	 for	 the	manufacturing	 of	

larger	 samples.	Rectangular	 tile	 samples	 (cross-section	of	50	mm	×	34	mm)	of	

composition	GC1	were	fired	at	950°C	for	30	minutes,	applying	a	heating	rate	of	

40°C/min,	which	are	conditions	suitable	for	an	industrial	process.		

The	mechanical	properties	of	bars	cut	from	the	tiles,	as	reported	in	Tab.	11,	

were	of	the	same	order	of	magnitude	of	those	of	similar	CAS	waste-glass	sinter-

crystallized	glass	ceramics,	and	compare	favorably	with	the	data	typical	for	tra-

ditional	ceramics	[10].	In	particular,	the	good	strength	is	associated	with	a	negli-

gible	water	absorption,	in	turn	due	to	the	smooth	and	compact	surface,	as	shown	

by	Fig.	25a.	It	should	be	noted	that	a	similar	smooth	and	impermeable	surface	is	

achieved	 in	 conventional	 stoneware	 ceramics	 only	 if	 sintered	 much	 above	

1000°C	 [11].	The	 compact	 surface	 is	 accompanied	by	a	homogeneous	distribu-

tion	of	micro-crystals,	as	shown	by	Fig.	25b	(polished	surface).	The	total	residual	

porosity,	evaluated	by	gas	pycnometry,	is	of	the	order	of	5	vol%.	
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Fig.	 25	 –	Microstructural	 details	 of	 sintered	materials	 from	 GC1	mixture:	 a,b)	
sintered	glass	ceramic	(GC1);	c,d)	ceramic	from	direct	sintering.	

The	 phase	 evolution	 of	 SB	 samples	 heat	 treated	 at	 different	 temperatures	 is	

shown	in	Fig.	24c.	At	1000°C,	the	sintering	had	just	started	to	occur	(see	the	lim-

ited	 shrinkage	 value	 in	Tab.	 11	 and	 the	 interactions	between	 the	 constituents	

are	evident.	Intense	quartz	peaks,	associated	with	the	use	of	silica	sand,	were	ac-

companied	 by	 peaks	 related	 to	 a	 calcium	 silicate,	 i.e.	wollastonite	 (β-CaO⋅SiO2,	

PDF#	27-0088),	 and	 a	 calcium	 alumino-silicate,	 i.e.	 gehlenite	 (2CaO⋅Al2O3⋅SiO2,	

PDF#79-2421),	another	typical	phase	in	waste-derived	CAS	glass	ceramics	[3].		

The	phase	assemblage	changed	with	increasing	sintering	temperature,	due	to	

the	 progressive	 dissolution	 and	 reaction	 of	 some	 components.	 At	 1150°C,	 the	

peaks	associated	to	gehlenite	practically	disappeared,	whereas	 those	related	to	

quartz	much	decreased.	The	liquid	phase	promoted	by	the	softening	of	the	soda-

lime	glass	gradually	incorporated	silica	from	sand,	and	partially	crystallized	into	

a	specie	with	a	relatively	high	silica	content	(while	alumina-rich	gehlenite	disap-



	

	

	

83	

peared,	 wollastonite	 exhibited	 a	 slight	 increase	 of	 intensity	 of	 the	 associated	

peaks).	The	significant	softening	of	the	glass	component	was	also	testified	by	an	

enhanced	 shrinkage	 (7%).	 For	 the	 highest	 sintering	 temperature,	 1200°C,	 the	

only	phase	detected	was	pseudo-wollastonite	(α-CaO⋅SiO2,	PDF#74-0874,	a	high	

temperature	variant	of	calcium	silicate),	indicating	that	the	other	crystalline	spe-

cies	 dissolved	 in	 the	 residual	 glass.	 In	 other	 words,	 the	 assemblage	 of	 crystal	

phases	 resembled	 that	 of	 conventional	 glass	 ceramics	 (only	 “newly-formed”	

crystals)	 even	 without	 preliminary	 vitrification	 of	 components.	 However,	 the	

loss	of	shape	at	this	temperature	(the	sample	actually	remained	glued	to	the	re-

fractory	substrate	upon	firing)	forced	us	to	consider	treatments	below	1200°C.	

The	mechanical	properties	of	SB	sample	sintered	at	1150°C	were	quite	lower	

than	those	of	GC1	glass	ceramic	and	are	justified,	above	all,	by	the	presence	of	a	

significant	amount	of	residual	porosity,	of	the	order	of	35	vol%.	Part	of	porosity	

is	open,	as	testified	by	the	remarkable	water	absorption	of	8%	and	illustrated	by	

Fig.	25c.	Fig.	25d	confirms	the	substantial	microstructural	similarity	of	directly	

sintered	bodies	with	conventional	glass	ceramics.	

	

3.3.2	Layered	Hybrid	Glass	Ceramics	
The	main	aim	of	the	fabrication	of	hybrid	glass	ceramics	was	the	preparation	of	a	

low-cost	waste-derived	 tile,	 from	direct	sintering,	with	a	 limited	water	absorp-

tion	(at	least	at	the	surface	exposed	to	the	environment,	when	the	tile	is	mount-

ed),	provided	by	a	glass	ceramic	top	layer,	preferably	of	white	color.	Since	glazes	

from	 pure	 GC1	 glass	 featured	 an	 unpleasant	 yellow	 color,	 despite	 the	 limited	

content	of	Fe2O3,	zircon	(ZrSiO4)	was	used	as	whitening	agent,	in	form	of	micro-

powders	 mixed	 with	 the	 glass	 frit,	 as	 common	 for	 commercial	 glass	 ceramic	

glazes	[12].	While	GC1	glass,	after	firing	at	the	same	temperature	(1150°C)	used	

for	the	substrate,	had	a	very	similar	coefficient	of	thermal	expansion	(7.6	10-6°C-1	

for	the	coating	compared	to	7.7	10-6°C-1	for	the	substrate),	there	was	a	significant	

mismatch	 with	 zircon	 (4.9	 10-6°C-1	 [13]);	 in	 order	 to	 compensate	 this,	 panel	

glass	was	considered	as	a	 further	additive	 (9.9	10-6°C-1	 [14]).	Moreover,	being	

itself	a	waste,	panel	glass	was	consistent	with	the	overall	approach	of	obtaining	

low-cost	waste-derived	materials.	
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Predicting	the	coefficient	of	thermal	expansion	of	a	composite	material	is	not	

straightforward	 [15],	 but	 a	 GC1	 frit/panel	 glass/zircon	 weight	 balance	 of	

40/40/20,	was	found	to	be	the	most	appropriate	choice	(expected	coefficient	of	

thermal	expansion	close	to	8	10-6°C-1).	Samples	fired	at	1150°C,	with	a	base	body	

coated	 with	 a	 GC1/panel	 glass/zircon	 composite	 frit	 (GC1/panel	

glass/zircon=40/40/20,	by	weight)	were	effectively	crack-free	and	possessed	a	

continuous,	dense	and	brilliant	white	layer	on	the	top	surface,	as	testified	by	Fig.	

26a.	While	 the	water	 absorption	 became	negligible,	 the	mechanical	 properties	

did	 not	 practically	 change,	 compared	 to	 the	 uncoated	 sintered	 body	 (see	Tab.	

12).	This	was	reasonably	due	 to	 the	 fact	 that	also	 the	glaze,	although	perfectly	

interprenetrated	with	the	base	body,	contained	some	bubbles,	as	shown	by	Fig.	

26c.	The	development	of	the	pores	could	be	favored	by	the	presence	of	the	panel	

glass,	a	highly	oxidized	glass	known	to	release	dissolved	oxygen	upon	sintering	

[14].	 The	 limited	 mechanical	 properties	 could	 be	 justified	 also	 by	 the	 almost	

complete	 absence	 of	 crystalline	phases,	 as	 illustrated	by	Fig.	 26e	 and	Fig.	 27;	

besides	un-dissolved	zircon	(ZrSiO4,	PDF#72-0402),	only	weak	traces	of	wollas-

tonite	were	visible.	
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Fig.	 26	 –	Microstructural	 details	 of	 layered	 hybrid	 glass	 ceramics:	 a)	 sintered	
glass	 ceramicHGC1;	 b)	 sintered	 glass	 ceramic	 HGC2;	 c)	 interface	 between	 the	
GC1	and	SB	layers;	d)	interface	between	the	GC2	and	SB	layers;	e)	magnification	
of	the	interface	between	the	GC1	and	the	SB	layers;	f)	pyroxene	crystals	embed-
ded	in	a	glass	matrix	at	the	surface	of	the	layer	GC2.	
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Fig.	27	–	X-ray	diffraction	patterns	of	glaze	materials	

GC2	glass	was	prepared	from	a	selected	mixture	of	waste,	 in	the	compositional	

range	 of	 Slag	 Sitals	 (as	 for	 GC1),	 but	 without	 the	 constraint	 of	 having	 a	 low	

amount	of	Fe2O3.	This	choice	led	to	a	brilliant	olive	green	color,	when	applied	as	

glaze,	without	additives,	as	visible	in	Fig.	26b.	As	demonstrated	by	the	same	Fig.	

26f	 and	Fig.	 27,	 GC2	 actually	 also	 led	 to	 a	 crystallized	 layer,	with	 a	 pyroxene	

(ferrous	 diopside,	 (Ca0.92Fe0.08)(Al0.14Fe0.33Mg0.53)Si2O6,	 PDF#74-2424)	 as	 the	

main	crystal	phase.	This	specific	phase	is	obviously	consistent	with	the	enhanced	

iron	content	in	the	glass	ceramic	formulation.	The	partial	crystallization,	the	ab-

sence	of	bubbles	and	the	close	matching	of	coefficient	of	thermal	expansion	(7.2	

10-6°C-1)	had	a	positive	effect	on	the	mechanical	properties	of	the	component.	

	
	

	

	
	

	

	



	

	

	

87	

Tab.	 12	–	Physical	and	Mechanical	characterization	data	 for	 the	different	sam-
ples	

Samples	 Sintering	
temperature	

Residual	
porosity	

Water			ab-
sorption	

Density	ρ	 Elastic			
modulus,	E	

4-pt	bending	
strength,	σ	

σ	1/2	/ρ	

°C	 %	 %	 g/cm3	 GPa	 MPa	 MPa0.5⋅cm3/g	

GC1	 950	 5	 <0.5	 2.63	±	0.02	 84	±	6	 73	±	8	 3.3	

Sintered	
Body	 1150	 35	 8	 1.83	±	0.04	 41	±	3	 27	±	5	 2.8	

Zr-HGC	*	 1150	 32	
<0.5,	on	

glazed	sur-
face	**	

1.89	±	0.05	 48	±	5	 26	±	4	 2.7	

HGC2	 1150	 30	
<0.5,	on	

glazed	sur-
face	**	

1.99	±	0.03	 60	±	4	 40	±	10	 3.2	

*	20%	Zircon	40%	panel	glass	40%	GC1.	

**	Data	inferred	from	measurements	on	frits	sintered	at	the	same	conditions.	
	

Due	to	the	enhanced	mechanical	properties	(see	Tab.	 12),	 the	second	series	of	

layered	glass	ceramics	could	find	interesting	applications	as	structural	materials.	

In	 fact,	although	lighter	than	GC1	glass	ceramic,	 the	hybrid	glass	ceramic	HGC2	

possessed	 an	 almost	 identical	 specific	 strength	 (which	 is	 the	 index	 ruling	 the	

mechanical	efficiency	of	panels,	as	proposed	by	Ashby	[15]).	In	addition,	this	val-

ue	was	quite	close	to	that	of	lightweight	stoneware	tiles	(2.9	MPa0.5⋅cm3/g),	pre-

viously	 developed	 for	 high	 values	 applications	 such	 as	 the	 so-called	 ventilated	

façades	[16].	Zr-HGC	(first	series)	could	be	used	for	tiles	subjected	to	moderate	

loads,	although	 improvements	by	revision	of	 formulations	(type	and	content	of	

additives)	will	be	the	object	of	future	investigations.	

3.4	 Conclusions	
A	selected	mixture	of	waste	and	low	cost	minerals	was	converted	into	glass	ce-

ramic	 components	 either	 by	 vitrification	 and	 subsequent	 crystallization	 or	 by	

direct	sintering.	The	proposed	method	provides	a	cost	effective	method	to	manu-

facture	 economically	 competitive	 materials	 for	 building	 applications	 using	 a	

large	amount	of	waste	materials	of	which	only	a	limited	amount	requires	a	melt-

ing	step	before	firing.	

A	sinter-crystallization	approach	led	to	strong	glass	ceramics,	under	particu-

larly	simple	conditions	(pressing	of	fine	powders	and	sintering	at	950°C	for	only	
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30	min).	Furthermore,	 the	surface	porosity	of	a	glass	ceramic	body	from	direct	

sintering	was	sealed	by	a	glass	ceramic	glaze,	developed	from	the	same	starting	

mixture	of	waste	and	minerals;	

The	characteristics	of	waste-derived	glass	ceramic	glaze	were	tailored	by	the	

addition	of	 secondary	 components	 (panel	 glass	 from	dismantled	CRTs,	 zircon).	

Owing	 to	 their	 characteristic	 specific	 strength,	 the	 developed	 layered	 glass	 ce-

ramics	could	find	applications	in	the	building	industry	as	lightweight	tiles.	
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Chapter	4	–	Soda	Lime	Glass	Based	
White	Tiles	

4.1	 Introduction	 -	 Choice	 of	 Whitening	
Agents	
In	the	present	chapter	we	investigated	a	method	to	manufacture	white	ceramics	

recycling	 soda	 lime	glass	discarded	 from	a	 local	 factory	 in	Saudi	Arabia.	 In	 the	

glaze	technology	there	are	two	general	methods	of	dispersing	particles	in	glazes.	

The	 first	 is	mechanical	dispersion	obtained	grinding	or	mixing	 the	whole	glaze	

composition	with	a	fine	powder	that	promotes	a	higher	opacity.	In	this	case,	the	

crystalline	phase	must	be	stable	enough	to	be	protected	from	dissolution	in	the	

glass	at	high	temperatures.	The	second	method	is	the	controlled	nucleation	and	

growth	of	crystal	phases	in	the	glassy	phase	[1,	2].	

The	production	of	white	tiles	was	realized	sintering	a	mixture	of	cullet	and	a	

whitening	agent	(10-30	wt%).	We	employed	four	different	whitening	agents.	The	

first	was	metakaolin,	which	 is	 a	 reaction	 product	 deriving	 from	 the	 heating	 of	

kaolin.	The	second	was	silica	sand	(α-quartz)	and	limestone	(CaCO3)	in	stoichio-

metric	ratio	1:1	 in	order	 to	 favor	 the	 formation	of	β-wollastonite	(CaSiO3).	The	

third	was	a	commercial	frit	produced	by	Bitossi	(Italy),	for	glazes	based	on	con-

trolled	wollastonite	formation.	The	fourth	whitening	agent	was	CaF2,	which	is	a	

mineral	used	for	the	realization	of	optical	glass	of	low	refraction	index,	opal	glass	

and	in	glazes.	Calcium	fluoride	has	been	used	for	several	hundred	years	for	bub-

ble	 removal	 from	 glass	melts	 in	 the	 fining	 processes	 and	many	 other	 applica-

tions,	e.g.	to	improve	the	kinetics	of	slag-iron	separation	in	steelmaking.	

The	sintering	of	cullet	mixed	with	a	whitening	agent	(10-30	wt%)	under	the	

appropriate	conditions	enables	the	production	of	an	opaque	glass	composite	us-

ing	a	ceramic	processing.	The	whitening	agent	used	provided	a	white	opacity	to	

the	material	because	of	scattering	and	reflection	of	 the	 light	 that	 is	 incident	on	

the	material.	Among	 the	 factors	controlling	 the	opacity	are	 included	 the	differ-

ence	in	refractive	index	between	the	glass	and	opacifier,	the	number,	size,	shape	
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and	distribution	of	the	opacifier	particles,	the	incident	light	wavelength	and	the	

thickness	of	the	material.	

The	traditional	routes	for	glass	ceramic	manufacturing	require	to	produce	a	

frit	melting	a	parent	 glass	of	 appropriate	 composition	 that	 is	 successively	pro-

cessed	to	obtain	a	controlled	formation	of	crystal	phases.	The	different	approach	

proposed	in	this	work	is	focused	on	the	limitation	of	the	thermal	treatments	and	

raw	materials	costs.	In	fact,	using	soda	lime	cullet	was	possible	to	avoid	the	glass	

melting	directly	going	to	the	green-body	forming	and	the	sintering	steps.		

  

4.1.1	 Some	Further	Remark	About	CaF2	
The	choice	of	CaF2	is	related	to	the	fact	that	fluorine	is	the	most	electronega-

tive	element	of	 the	periodic	 table	and	 it	 replaces	 the	oxygen	 ions	making	non-

bridging	bond	of	Si-F.	Important	effects	due	to	the	CaF2	content	on	the	structural	

property	are	provided	as	reported	in	literature	by	many	works.	CaF2	decreases	

the	viscosity	and	 the	glass	 transition	 temperature	 reducing	 the	polymerization	

degree	of	the	silicate	network.	FTIR	studies	display	the	diminishing	of	intensity	

of	the	vibrations	related	to	the	Si-O	bound,	this	effect	is	explained	as	the	increase	

of	non-bridging	oxygen	to	silicon	atoms	ratio	(NBO/Si).	Fluorine	ions	replace	ei-

ther	 bridging	 (O0)	 or	 non-bridging	 (O-)	 oxygen	 modifying	 the	 electronic	 envi-

ronment	of	silicon	atoms	because	of	higher	electronegativity	of	fluorine	relative	

to	oxygen	[3-6].	

The	 fluorine	 ion	 modifies	 the	 silica	 tetrahedral	 structure,	 because	 of	 the	

higher	electronegativity	of	 fluorine	relative	to	oxygen,	changing	the	bond	angle	

Si-O-Si.	 In	 fact	 the	electronic	 clouds	of	 the	Si-O	valence	bonds	are	 attracted	by	

fluorine	ions.	The	repulsion	forces	F	among	the	bonding	electron	pairs	in	the	sili-

ca	tetrahedra	are	identical,	but	the	substitution	of	oxygen	with	fluorine	ion	cre-

ate	a	distortion	which	modify	the	angles	of	the	tetrahedra,	as	depicted	schemati-

cally	 in	 Fig.	 28	 using	 a	 simple	 two-dimensional	 representation.	 The	 SiO2	 and	

[SiO3F]	tetrahedron	top	view	shows	the	Si-O-Si	bond	angle	changes	from	120°	in	

silica	to	a	greater	value	in	fluorinated	silica.	
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Fig.	28	–	The	figure	represent	the	top	view	of	a	pure	silica	tetrahedron	on	the	left	
and	a	fluorinated	silica	tetrahedron	on	the	right.	The	repulsive	forces	are	repre-
sented	by	the	letter	F	and	the	black	arrows	empathize	the	angle	between	the	va-
lence	bound	electronic	clouds.	

The	role	of	fluorine	ions	on	the	glass	network	is	widely	studied,	but	fewer	works	

were	dedicated	 to	 the	 reaction	between	soda	 lime	cullet	 and	CaF2	at	 relatively	

low	 temperatures.	 In	 some	 silicate	 glasses	 fluorine	 probably	 promotes	 the	 de-

crease	in	the	energy	barrier	necessary	for	crystallization	as	effect	of	the	increas-

ing	of	the	NBO/Si	ratio	[7-9].	

4.2	 Materials	and	Methods	
In	order	to	improve	the	plasticity	of	the	glass	powder	and	to	increase	the	green	

body	strength,	7-10	wt%	of	water	without	binders	was	added	to	the	powders.		

Disk	 samples	preparation	 –	 The	 composition	was	mixed	 at	 200	 rpm	 for	 30	

minutes	in	an	agate	 jar	and	successively	uniaxially	cold	pressed	in	a	cylindrical	

mold	(Ø	=	20	mm)	at	a	pressure	of	10	MPa.	All	 the	disks	were	fired	applying	a	

10°C/min	heating	rate	with	a	holding	 time	of	30	minutes	 to	different	 tempera-

tures.		

Tile	 samples	 preparation	 –	 12	 grams	 of	 moistened	 raw	 powder	 mixture	

(80%wt	of	cullet	and	20%wt	of	CaF2)	was	uniaxially	cold	pressed	in	a	mold	50	

mm	x	50	mm,	at	a	pressure	of	50	MPa.	The	green	body	was	successively	trans-

ferred	 on	 a	 refractory	 slab	 and	 dried	 at	 80°C	 overnight.	 The	 produced	 sample	
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was	then	fired	in	air	in	an	oven	at	900°C	for	30	minutes	applying	a	5°C/min	heat-

ing	rate.	

	The	green	body	was	successively	transferred	on	a	refractory	slab	and	dried	

at	80°C	overnight.	In	the	present	investigation	no	binder	was	used	to	avoid	the	

burning	out	step	before	sintering.	The	samples	were	handled	carefully	because	

the	green	body	strength	is	strongly	related	to	the	capillary	forces	which	hold	to-

gether	 the	 particles	when	 the	 green	 body	 is	wetted	 by	 the	 solvent	 and	 during	

drying,	this	capillary	force	disappears	because	the	liquid	evaporates	[10].	During	

drying,	the	capillary	force	of	the	solvent	may	be	replaced	by	the	cohesive	force	of	

a	binder.		

The	sample	was	subjected	to	a	preliminary	mechanical	characterization,	after	

being	cut	into	small	bars	(3	mm	x	3	mm	x	43	mm,	approximately).	All	bars	were	

carefully	polished	 to	a	6	μm	 finish	and	beveled	at	 the	edges,	by	using	abrasive	

papers	 and	 diamond	 paste.	 The	 Young’s	 modulus	 was	 measured	 by	 non-

destructive	 resonance	 frequency	 testing	 (GrindoSonic	 Mk5,	 Leuven,	 Belgium).	

Four	 point	 bending	 tests	 (40	 mm	 outer	 span,	 20	 mm	 inner	 span)	 were	 per-

formed	 on	 10	 samples	 by	 using	 an	 Instron	 1121	 UTS	 (Instron,	 Danvers,	 MA),	

with	a	crosshead	speed	of	1	mm/min.	

4.3	 Results	and	Discussions	
4.3.1	 Visual	Appearance	and	Water	Absorption	 	
The	preliminary	experiments	were	focused	on	the	verification	of	the	aesthetical	

appearance	and	the	water	absorption	of	white	opaque	glass	ceramics	produced	

varying	the	whitening	agent	percentage	and	the	firing	temperature.		

The	photographs	of	the	resulting	samples,	collected	in	Fig.	29,	are	not	suffi-

cient	 for	 the	 interpretation	of	 the	 color,	 but	 show	 that	 a	 good	quality	 of	white	

color	was	indeed	obtained.		

The	water	absorption	tests	(Tab.	13),	accomplished	after	2h	soaking	in	boil-

ing	water,	were	employed	for	the	selection	of	the	preferred	composition	and	fir-

ing	temperature,	in	order	to	produce	a	larger	specimen	for	the	mechanical	tests.	

In	fact	a	low	water	absorption	is	representative	of	a	low	open	porosity	and	effec-

tive	sintering.	
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The	 commercial	 frit	 (wollastonite)	 produced	 by	 Bitossi	was	 employed	 as	 a	

sort	of	standard	for	the	comparison	of	the	whiteness	of	the	samples	produced.	It	

was,	in	fact,	our	intention	to	use	cheap	natural	raw	materials	instead	of	commer-

cial	frits.	The	whitened	samples	were	all	satisfactory	from	an	aesthetical	point	of	

view,	but	all	of	them	presented	greater	water	absorption	when	fired	at	the	high-

est	temperature	(950-1000°C).	The	composition	prepared	mixing	limestone	and	

silica	gave	a	pleasant	color,	but	also	a	very	high	percentage	of	water	absorption;	

this	composition	was	not	further	investigated	considering	that	the	additive	em-

ployed	 probably	 increased	 the	 apparent	 viscosity	 of	 the	 sample	 thus	meaning	

that	a	higher	sintering	temperature	should	be	used.	Excellent	results	concerning	

the	 water	 absorption	 were	 achieved	 using	 metakaolin	 (0.2%)	 and	 CaF2	 (0.3-

0.4%)	 at	 900°C,	which	 are	 very	 close	 to	 zero	 although	 the	 best	 result	was	 ob-

tained	using	30%	of	the	commercial	frit	(<0.1%).		

Fig.	29	–	White	glass	ceramics	composed	prevalently	of	cullet	95	-70	wt%	and	a	
whitening	 agen.	 The	 samples	 of	 larger	 diameter	 (20%	 CaCO3	 +	 SiO2)	 were	
pressed	in	a	mould	with	Ø=31	mm.	
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Tab.	13	–		Water	absorption	values	of	the	glass	ceramics	
 

	

*	commercial	frit	

4.3.2	 Mineralogical	Analysis		
The	samples	selected	for	further	characterization	were:	

•	 10	wt%	of	metakaolin	and	90	wt%	of	cullet;	

•	 20	wt%	of	CaF2	and	80	wt%	of	cullet.	

	 The	X-ray	diffraction	analysis	of	the	metakaolin	glass	ceramic	present-

ed	a	prevalently	amorphous	structure,	that	is	justified	by	the	fact	that	90%	of	the	

starting	material	was	amorphous	glass.		Among	the	four	different	crystal	phases	

identified,	the	most	expected	was	the	anorthite	formation	from	the	reaction	be-

tween	metakaolin	and	the	glass	matrix:	

Al2O3·2SiO2	(metakaolin)	+	CaO	(glass	matrix)	→	CaO·Al2O3·2SiO2	(anorthite).	

The	 remaining	 crystal	 phases	were	 calcium	 silicates	 such	 as	wollastonite	 (Ca-

SiO3)	 and	 devetrite,	 which	 is	 a	 sodium-calcium	 silicate.	 The	 remaining	 peaks	

were	attributed	to	the	α-quartz	pattern,	but	due	to	a	shift	of	the	peaks	positions	

they	 are	 probably	 associated	 to	 a	 solid	 solution	 of	 a	 quartzoid	 derivative	with	

alkali	or	alumina	substitutions	in	the	crystal	lattice.	

	

Whitener	 Wt	
%	

T	
°C	

Water	absorption	
%	

Wollastonite*	 10	 900	 0.7	
Wollastonite*	 10	 950	 9.6	
Wollastonite*	 30	 900	 <0.1	
Wollastonite*	 30	 950	 1.1	
CaCO3+SiO2	 20	 900	 38.8	
CaCO3+SiO2	 20	 1000	 6.6	
Metakaolin	 10	 900	 0.2	
Metakaolin	 10	 950	 15.4	
CaF2	 5	 900	 0.3	
CaF2	 10	 900	 0.5	
CaF2	 20	 900	 0.4	
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Fig.	30	–	XRD	pattern	of	the	glass	ceramic	composed	of	90%	of	cullet	and	10%	of	
metakaolin	fired	at	900°C	for	30	minutes	

The	X-ray	diffraction	analysis,	reported	in	Fig.	31,	of	the	sample	containing	CaF2	

(20	wt%)	gave	a	completely	different	result	consisting	in	the	formation	of	a	high-

ly	crystalline	glass	ceramic.	We	can	therefore	observe	that	the	presence	of	a	fluo-

rine-containing	specie	influence	the	crystal	phases	formation	in	the	form	of:	

• Fluorite,	CaF2	

• Agrellite,	NaCa2Si4O10F;	

• Cuspidine,	Ca4Si2O7F2;	

• A	 solid	 solution	 of	 Na-Ca	 silicates	 in	 the	 form	 of	 albite-calcian	

NaCaAlSi3O8	and	Na2CaSiO4;	

• β-wollastonite	(CaSiO3);	
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Fig.	31	–	XRD	pattern	of	the	glass	ceramic	composed	of	80	wt%	of	cullet	and	20	
wt%	of	CaF2	fired	at	900°C	for	30	minutes	

The	presence	of	a	large	amount	of	fluorite	in	the	diffractogram	is	probably	given	

by	 two	different	mechanisms.	The	 first	mechanism	concerns	 the	droplet	phase	

separation	at	high	temperatures,	which	is	well	known	in	the	opaque	silicate	glass	

production.	Metastable	immiscibility	is	observed	in	many	glass	systems	and	is	a	

technique	for	achieving	a	controlled	precipitation	of	nuclei	that	start	the	crystal	

growth	 in	 glass	 ceramics.	 The	 second	mechanism	 concerns	 a	 saturation	 of	 the	

reactions	 taking	 place	 between	 cullet	 and	 CaF2.	 The	 most	 interesting	 crystal	

phase	formed	was	agrellite,	that	in	nature	is	present	as	a	white	translucent	min-

eral	with	a	5.5	hardness	[11].	Agrellite	presents	a	structure	quite	close	to	fluor-

canasite	 (Na4K2Ca5Si12O30F4),	 these	 amphiboles	 were	 reviewed	 by	 Beall	 et	 al.	

[12]	for	their	remarkable	mechanical	strength	(e.g.	a	stoichiometric	fluorcanasite	

glass	ceramic	is	dense	and	highly	crystalline,	with	a	microstructure	of	interpene-

trating	lamellae	that	confers	to	the	material	a	flexural	strengths	of	300	MPa	and	

toughness	values	up	to	5	MPa·m1/2).	Moreover,	the	production	method	for	fluor-

canasite,	and	also	agrellite,	glass	ceramics	were	patented	(U.S.	patent	4,386,162)	

according	to	a	totally	different	route.	The	main	difference	between	their	 inven-
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tion	and	the	process	studied	in	this	work	is	the	absence	of	a	melting	step	in	our	

process,	because	we	used	a	direct	sintering	of	the	starting	mixture.	

To	study	more	in	details	the	CaF2	glass	ceramic,	the	DTA	and	TGA	analysis	of	

the	mixture	composed	of	80	wt%	of	cullet	and	20	wt%	of	CaF2	are	reported	 in	

Fig.	32.	The	analysis	show	the	exothermic	peak	of	sintering	and	crystallization	at	

750°C	 and	 850°C	 respectively.	 Both	 the	 effects	 are	 exothermic	 due	 to	 the	 fact	

that	sintering	involves	surface	energy	reduction	and	therefore	the	crystallization	

of	an	amorphous	phase	releases	heat.	The	crystallization	band	ends	at	~900°C,	

while	at	960°C	a	strong	endothermic	peak	 is	shown.	This	endothermic	effect	 is	

associated	with	a	crystal	phase	transformation	or	possibly	to	fluorine	gas	evolu-

tion,	although	no	evident	mass	 loss	was	recorded.	Samples	based	on	CaO-CaF2-

SiO2	are	in	fact	involved	in	undesired	production	of	inorganic	fluorine	gases	ac-

cording	to	the	following	reaction:		

2 CaF2 + SiO2 ↔ 2 CaO + SiF4 (g) 
	

Fig.	32	–	DTA	curves	at	10°C/min	of	a	mixture	composed	of	80	wt%	of	cullet	and	
20	wt%	of	CaF2	
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Tab.	14	–	Dynamic	Young's	modulus,	4-pt	flexural	tests,	and	geometrical	density	
values.		

*	The	dynamic	Young's	modulus	require	a	further	investigation	because	the	test	
for	porous	materials	require	larger	samples	

The	mechanical	strength	(Tab.	14),	at	the	4-pt	bending	test,	of	about	54	MPa	for	

a	glass	ceramic	with	a	low	density	and	low	water	absorption	is	a	remarkable	re-

sult	that	can	compete	with	materials	already	used	in	the	building	industry.	

4.3.3	 Colored	Glass	Ceramics	
A	further	study	was	accomplished	concerning	colored	samples,	with	the	20	wt%	

CaF2,	 80	 wt%	 cullet	 composition,	 which	 were	 prepared	 mixing	 four	 pigments	

produced	 by	 Sacmi	 (Italy).	 The	 pigments	 are	 transition	metal	 silicates	 of	 blue,	

yellow,	orange,	and	red	colors.	The	realization	of	these	colored	samples	required	

a	 high	 percentage	 of	 pigments	 (about	 5	 wt%).	 From	 a	 large	 scale	 production	

point	of	view,	 it	 is	meaningless	to	consume	high	amounts	of	pigments	 for	glass	

ceramics	colored	in	bulk,	as	a	more	reasonable	application	of	these	colored	ma-

terial	 is	glazing.	However,	 for	high	wear	applications,	coloration	 in	bulk	 is	pre-

ferred.		

By	combining	different	pigments	it	was	possible	to	create	particular	motives	

and	to	widen	the	range	of	colors	achievable.	In	Fig.	33	is	shown,	for	example,	a	

green	sample	produced	 from	the	combination	of	yellow	and	blue.	 It	 is	also	 im-

portant	to	take	into	account	that	the	pigments	are	applied	in	a	white	matrix	that	

weakens	 the	 dyeing	 effects.	 These	 results	 are	 comparable	 to	 the	 U.S.	 patent	

5,070,044,	that	is	approximately	the	coloring	process	of	canasite	glass	ceramics	

of	the	previously	reported	U.S.	patent	4,386,162.	

 

	 E	
GPa	

σ4-pt	
MPa	

ρ	
g/cm3	

Water	absorption	
%	

Ceramic	substrate	 34*	 54	±	6	 1.83	±	0.04	 0.4	
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Fig.	 33	–	Colored	glass	ceramics	composed	of	80	wt%	of	cullet	and	20	wt%	of	
CaF2	mixed	with	a	pigment.	

4.4	 Conclusions	
The	present	investigation	provided	a	method	for	manufacturing	an	environment	

friendly	glass	ceramic	that	is	cost	effective	and	has	excellent	mechanical	proper-

ties.	The	low	firing	temperatures	and	the	low	cost	of	waste	materials	provide	an	

interesting	result,	then	considering	that	the	materials	employed	are	available	in	

Saudi	Arabia	 the	 glass	 ceramics	 realized	 are	 of	 industrial	 interest	 for	 the	 local	

ceramic	companies.	

The	mechanical	strength	of	54	MPa	for	a	low	density	ceramic	with	a	low	wa-

ter	absorption	is	an	encouraging	result	that	could	be	further	improved	in	future	

studies.	Although	it	was	not	well	understood	why	the	investigated	samples	pre-

sented	 a	 higher	 open	 porosity	 when	 fired	 at	 higher	 temperatures	 it	 was	 pre-

ferred	to	focus	the	research	activities	on	other	directions	instead	of	continuing	in	

the	improvement	of	the	white	tiles	from	soda	lime	cullet.	

A	mechanical	strength,	at	the	4-pt	bending	test,	of	about	54	MPa	for	a	glass	

ceramic	with	a	 low	density	 and	 low	water	 absorption	 is	 an	encouraging	 result	

that	could	be	further	improved	increasing	the	translucence	and	luminescence	for	

the	production	of	luminescent	panels,	in	a	similar	way	of	those	marketed	under	

the	name	of	Veluna™,	produced	by	Technical	Glass	Products	(TGP)	[13].	
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Chapter	 5	 –	White	 Sintered	 Glass	 Ce-
ramic	 Tiles	With	 Improved	 Thermal	 In-
sulation	Properties	for	Building	Applica-
tions	

5.1	 Introduction	
The	improvement	of	the	thermal	efficiency	of	buildings,	especially	when	exposed	to	

arid	 environments,	 represents	 a	 challenge	 concerning	 the	 reduction	of	 the	overall	

costs	for	cooling.	Cool	roofing	involves	strategies	to	increase	the	solar	reflectance	in	

the	 visible	 and	near	 infrared	wavelengths	or	 to	 enhance	 the	 thermal	 emittance	 at	

wavelengths	close	to	10µm	of	roofs	in	urban	areas.	Cool	roofs	also	mitigate	summer	

urban	heat	 islands,	 lowering	 the	 citywide	ambient	air	 temperature	and	 increasing	

human	comfort.	[1,	2,	3]	

A	valuable	example	of	a	cool	roofing	solution	is	represented	by	a	functional	en-

gobe	with	a	high	albedo	(i.e.	with	a	high	diffuse	reflectivity	or	reflecting	power)	de-

veloped	by	Ferrarin	et	al.	[4],	that	can	be	applied	to	conventional	ceramic	tiles	used	

for	roofing.	Studies	performed	by	Synnefa	et	al.	demonstrated	that	the	use	of	reflec-

tive	coatings	can	reduce	the	temperature	of	a	white	concrete	tile	surface	under	hot	

summer	conditions	by	4°C	during	the	day,	and	by	2°C	during	the	night.	[5]	The	sur-

face	of	 the	concrete	tiles	was	warmer	than	the	ambient	air	by	only	2°C	during	the	

day,	and	cooler	than	the	ambient	air	by	5.9°C	on	average	during	the	night.		

Although	a	coating	with	a	high	albedo	is	valuable,	a	ceramic	tile	may	warm	up	to	

environmental	 temperature,	 by	 contact	with	 the	 air	 through	 conduction,	 transfer-

ring	the	heat	into	the	building.	A	strategy	to	reduce	this	inconvenience	is	the	use	of	a	

porous	substrate	that	reduces	the	thermal	conductivity.	Thus	the	combination	of	a	

high	reflective	glaze	and	a	porous	substrate,	as	shown	in	Fig.	34,	is	a	suitable	strate-

gy	for	obtaining	“cool”	tiles	with	improved	thermal	management	properties	[6].	
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Fig.	 34	 –	 Schematic	 representation	of	 an	 insulating	 tile	 engineered	using	 a	highly	
reflective	coating	deposited	on	a	substrate	possessing	a	low	thermal	conductivity.	b)	
Spectrum	of	the	solar	radiation	on	the	earth.		

The	porosity	of	the	substrate	needs	to	be	tailored	to	provide	sufficient	mechanical	

strength	and	 the	 lowest	 thermal	conductivity	possible.	The	matching	of	 the	coeffi-

cients	of	thermal	expansion	between	glaze	and	substrate	is	simpler	when	the	chem-

ical	composition	of	the	two	layers	is	similar,	and	therefore	in	this	work	we	consid-

ered	glass	compositions	suitable	 for	 the	production	of	both	dense	and	porous	sin-

tered	glass-ceramics.	Dense	tiles	can	be	considered	for	paving	applications	whereas	

porous	tiles,	both	glazed	and	unglazed,	can	be	used	for	cladding.		

Porous	tiles	with	a	density	and	water	absorption	below	2	g/cm3	and	2	wt%,	re-

spectively,	were	specifically	investigated	thus	obtaining	a	compromise	between	me-

chanical	 strength,	 low	 thermal	 conductivity	 and	 limiting	 the	 absorption	 of	 water	

that	might	favor	the	formation	of	fungi	and	decrease	the	frost	resistance.	In	order	to	

realize	white	glass	ceramics,	natural	raw	materials	possessing	a	 limited	amount	of	

impurities	(i.e.	transition	metals)	were	selected.	Whiteness	and	opacity	are	provided	

by	the	refractive	index	difference	between	the	glassy	matrix	and	the	crystal	phases.		
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Tab.	15	–	Chemical	composition	of	NP	glass	and	NeopariesTM.	

5.2	 Materials	and	Methods	
Neoparies™	glass-ceramics	[7]	were	chosen	as	a	reference	material.	A	glass	with	

chemical	 composition	 resembling	 that	of	Neoparies	was	 reproduced	using	natural	

raw	materials	from	Saudi	Arabia	and	a	limited	amount	of	pure	chemicals	(~11	wt%,	

in	the	form	of	3wt%	ZnO,	3%	borax	and	5.4%	K2CO3),	as	reported	in	Tab.	15.	The	

chemical	composition	of	the	raw	materials	was	evaluated	by	means	of	X-ray	fluores-

cence	(Philips	XRF	sequential	spectrometer	PW	2400,	Eindhoven,	The	Netherlands).	

Different	to	Neoparies,	BaO	was	substituted	by	increasing	the	mol.%	of	CaO,	while	

the	silica	content	was	slightly	reduced.	

The	raw	materials	were	first	dried	and	homogenized	by	ball	milling	in	an	agate	

jar	for	30	minutes	at	300	rpm	and	finally	melted	in	kyanite	(Al2SiO5)	refractory	cru-

cibles	at	1400°C	 for	90	minutes	 in	static	air.	The	molten	glass	did	not	corrode	the	

crucible,	 thus	 not	 affecting	 the	 chemical	 composition	 of	 the	 parent	 glass.	 After	

achieving	complete	melting	of	the	raw	materials,	the	melt	was	poured	into	water	to	

produce	 a	 glass	 frit.	 The	 drastic	 quenching	 provided	 a	 number	 of	 fragments	 that	

were	successively	dried	at	80°C	overnight,	ball	milled	(30	minutes	at	400	rpm)	and	

sieved	to	obtain	particles	with	a	size	below	90	μm.	

Dilatometric	 and	 differential	 thermal	 analysis	 (DTA/TGA,	 STA	 409;	 Netzsch-

Gerätebau	 GmbH,	 Selb,	 Germany,	 operated	 at	 10°C/min	 in	 static	 air)	 were	 per-

formed	both	on	powders	below	90	μm	and	coarser	particles	(above	2-3	mm),	to	in-

	 NP	glass	 Neoparies™	
Oxide	 (wt%)	 (mol%)	(wt%)	 (mol%)	
Al2O3	 7.7	 4.8	 7.0	 4.4	
B2O3	 1.3	 1.2	 1.0	 0.9	
BaO	 0.0	 0.0	 4.0	 1.7	
CaO	 20.3	 22.8	 17.1	 19.6	
Fe2O3	 0.4	 0.1	 0.0	 0.0	
K2O	 2.5	 1.7	 2.0	 1.4	
MgO	 0.7	 1.1	 0.0	 0.0	
Na2O	 2.5	 2.5	 3.0	 3.1	
SiO2	 57.4	 60.1	 59.3	 63.6	
TiO2	 0.7	 0.6	 0.0	 0.0	
ZnO	 6.5	 5.0	 6.5	 5.2	

	
Clay	
(wt%)	

Cullet	
(wt%)	

Limestone	
(wt%)	

Silica	
(wt%)	

Pure	chemicals	
(wt%)	

Amount	in	NP	glass	 14.8	 9.9	 29.6	 34.5	 11.4	
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vestigate	 the	 effect	 of	 the	 particle	 size	 on	 the	 crystallization	 behavior	 (surface	 in-

duced	vs	bulk	nucleation).	

The	investigation	of	the	evolution	of	the	density	as	a	function	of	the	amount	of	

foaming	agent	added	was	performed	by	adding	Si3N4		(samples	labeled	SN)	and	mix-

tures	 of	 Si3N4	 and	 gypsum	 (CaSO4·2H2O)	 used	 as	 oxidizer	 in	 a	 molar	 ratio	 Gyp-

sym/Silicon	Nitride	of	3:1	 (samples	 labeled	G3SN1)	or	6:1	 (sample	 labeled	G6SN1).	

For	the	preparation	of	dense	samples,	the	pure	frit	was	used	whereas	for	the	prepa-

ration	of	porous	samples	the	foaming	additives	were	introduced	in	the	range	0.5	to	

4	wt%	with	respect	 to	 the	amount	of	dry	 frit,	and	the	mixtures	were	cold	pressed	

mixture	in	a	13	mm	steel	mold	at	a	pressure	of	40	MPa.	

The	water	absorption,	WAB,	apparent,	ρa,	bulk,	ρb,	densities	of	the	fired	samples	

were	evaluated	according	to	the	UNI	EN	ISO10545	norm,	by	means	of	the	Archime-

des	method.	The	true	density,	ρt,	was	evaluated	on	powdered	samples	of	size	below	

90	μm	by	means	of	helium	gas	pycnometer	(Micromeritics	AccuPyc	1330,	Norcross,	

GA)	

After	selection	of	optimum	compositions,	larger	samples	were	realized	using	25	

g	of	 the	dry	frit	powder	uniaxially	cold	pressed	in	a	steel	mold	of	50×50	mm2	at	a	

pressure	of	40	MPa.	To	obtain	a	porous	 substrate	 coated	with	 the	dense	glass	 ce-

ramic,	3	g	of	the	dry	frit	powder	were	lightly	pressed	(at	10	MPa)	and	then	22	g	of	

the	 glass	 frit	mixed	with	 the	 selected	 foaming	 agent	were	 further	 deposited.	 The	

layered	sample	was	then	uniaxially	pressed	at	40	MPa.	The	produced	samples	were	

then	fired	in	air	at	950°C	for	30	minutes	applying	a	10°C/min	heating	rate.		

The	 Young's	modulus	 of	 the	 glass-ceramic	 samples	was	 determined	 using	 the	

resonant	 frequency	 method	 in	 the	 flexural	 mode	 of	 vibration	 (GrindoSonic	 Mk5,	

Leuven,	Belgium).	 Four-point	 bending	 tests	 (40	mm	outer	 span	 and	20	mm	 inner	

span)	 were	 performed	 using	 an	 Instron	 1121	 UTS	 instrument	 (Instron,	 Danvers,	

MA)	on	at	least	15	specimens	for	each	sample	type,	with	dimensions	of	about	4	×	2.5	

×	47	mm3.	In	order	to	remove	surface	flaws,	all	samples	were	carefully	polished	to	a	

6	μm	finish	before	testing,	using	abrasive	papers	and	diamond	paste.	The	edges	of	

the	 bars	were	 beveled	 using	 fine	 abrasive	 papers	 and	 diamond	 paste.	 The	 cross-

head	speed	was	1	mm/min	until	fracture.	The	double	layer	samples	were	tested	by	

positioning	 the	porous	 layer	on	 the	compression	(upper)	side	and	 the	dense	 layer	

on	the	tensile	(lower)	side.		
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Ground	glass–ceramics	were	 investigated	by	powder	X-ray	diffraction	(Bruker	

D8	Advance,	Karlsruhe,	Germany),	employing	CuKα	radiation	(0.15418	nm)	and	col-

lecting	data	in	the	range	2θ	=	10–70°	(0.05°	steps	and	5	s	counting	time).	The	identi-

fication	 was	 performed	 by	means	 of	 a	 semi-automatic	 software	 package	 (Match!,	

Crystal	 Impact	 GbR,	 Bonn,	 Germany),	 supported	 by	 data	 from	 PDF-2	 database	

(ICDD-International	 Centre	 for	 Diffraction	Data,	 Newtown	 Square,	 PA).	 A	 selected	

dense	and	polished	sample	was	investigated	using	Vickers	indentation	(Officine	Gal-

ileo	DG	901,	Florence,	Italy),	and	the	microhardness	(HV)	was	assessed	by	averaging	

20	indentations	produced	at	low	load	(5N).		

Polished	 surfaces	of	 the	 samples	were	 characterized	by	 scanning	 electron	mi-

croscopy	(SEM-ESEM	Quanta	200,	FEI	Company,	Eindhoven,	The	Netherlands).	The	

cell	size	distribution	was	evaluated	from	the	acquired	SEM	images	using	the	image	

processing	software	ImageJ	(Carl	Zeiss,	Oberkochen,	Germany).	The	area	of	the	cells,	

evaluated	by	means	of	ImageJ,	was	converted	into	the	area	of	a	circle	of	equivalent	

surface.	The	values	obtained	by	 image	analysis	were	converted	to	3D	values	using	

the	stereological	equation	φsphere	=	φcircle/0.785,[8]	to	determine	the	actual	cell	size.	

The	 thermal	 diffusivity	 was	 evaluated	 at	 25°C	 using	 the	 laser	 flash	 method.	

Samples	were	 in	 the	 form	of	disks	with	10	mm	diameter	and	thickness	of	about	2	

mm.	 A	 neodymium-glass	 laser	 operating	 at	 1.053	 μm	 which	 delivers	 a	 standard	

pulse	of	30	J	in	450	μs	was	used	to	heat	up	the	front	face	of	the	cylindrical	sample.	

The	absorbed	heat	diffuses	throughout	the	sample,	and	a	liquid-nitrogen-cooled	in-

frared	detector	(Hg-Cd-Te)	was	used	to	monitor	the	evolution	of	the	back	face	tem-

perature.	Samples	were	coated	with	a	thin	graphite	layer	to	increase	the	emissivity	

of	the	receiving	and	emitting	faces.	Thermal	diffusivity	was	calculated	by	using	the	

Degiovanni’s	expression,	[9]	which	takes	into	account	the	heat	losses	from	the	sam-

ple	during	the	experiment	compared	with	the	simpler	Parker	expression	which	only	

considers	 adiabatic	 conditions.[10]	The	 thermal	 diffusivity	 (α)	was	measured	 in	 a	

direction	perpendicular	to	the	disk	faces,	and	the	thermal	conductivity	was	then	cal-

culated	by	using	the	relation:		

λ	=	αρc	

where	ρ	 is	 the	bulk	density	 and	 c	 is	 the	 specific	 heat	 of	 the	material.	 The	 specific	

heat	was	 calculated	using	 the	 rule	 of	mixtures	 according	 to	 the	 glass	 composition	

given	in	Table	1.	The	rule	of	mixtures	applied	to	the	elementary	oxide	composition	



	

	

	

107	

for	silicate	glasses	gives	values	which	are	in	very	good	agreement	with	experimental	

measurements	[11].	

The	 reflectance	was	 evaluated	 by	means	 of	 a	 UV-Vis	 spectrophotometer	 (570	

Jasco,	 Japan)	equipped	with	 integrating	sphere	(ISN-470).	The	white	standard	em-

ployed	was	a	BaSO4	plate.		

5.3	 Results	and	Discussion	
The	selection	of	a	reference	commercial	glass-ceramic	system	(NeopariesTM)	and	of	

specific	 foaming	 agents	 needs	 a	 preliminary	 discussion.	 The	 formation	 of	 specific	

crystal	phases	is	beneficial	for	improved	wear	and	chemical	durability,	when	think-

ing	of	materials	 that	 should	be	applied	both	as	 cladding	and	 floor	 tiles.	Neoparies	

are	 well-known	 for	 featuring	 such	 optimum	 phase	 assemblage,	 combined	 with	 a	

white	color,	for	formulations	that	do	not	contain	any	pigments.	In	addition,	they	are	

developed	 by	 viscous	 flow	 sintering	 with	 concurrent	 crystallization	 (“sinter-

crystallization”)	of	glass	powders,	i.e.	by	a	process	in	which	the	introduction	of	addi-

tives	(foaming	agents,	reinforcing	phases)	is	particularly	simple.	[7]	

Fig.	35	–	Dilatometric	plot,	for	a	rod,	and	DTA	plots,	for	fine	powders	(below	90	μm)	
and	coarse	fragments	(above	2-3	mm)	of	NP	glass.	
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Concerning	 the	 development	 of	 porous	 samples,	 although	 a	 variety	 of	 foaming	

agents	are	available	and	well	studied,	only	a	few,	such	as	CeO2	and	Si3N4,	are	suitable	

for	 generating	 porosity	 without	 affecting	 the	 final	 color.	 CeO2	 has	 been	 already	

shown	to	be	an	effective	foaming	agent	in	porcelain	stoneware,	due	to	the	reduction	

to	CeO	and	oxygen	gas	evolution	at	high	 temperature.	 [12]	However,	 the	sintering	

temperature	of	Neoparies-like	compositions	is	in	the	950-1100°C	range,	well	below	

the	 temperatures	 suitable	 for	 using	CeO2.	 Although	 they	 are	more	 expensive	 than	

CeO2,	Si3N4	powders	can	lead	to	gas	generation	in	the	desired	temperature	range;	in	

particular,	they	release	nitrogen	gas	and	leave	a	silica	residue	when	fired	in	an	oxi-

dizing	environment	even	at	temperatures	as	low	as	800-850°C.	[13-14]	The	oxida-

tion	of	 Si3N4	powders	 is	mainly	 attributed	 to	 the	 reaction	with	 the	environmental	

oxygen	diffusing	through	the	porosity	available	inside	the	pressed	powders.	During	

sintering,	the	permeability	decreases	and	the	environmental	oxygen	becomes	insuf-

ficient	 to	 fully	 oxidize	 the	 Si3N4	 powders.	 Therefore,	 in	 the	present	 study	 gypsum	

was	added	to	enhance	the	oxidation	of	Si3N4.	

Fig.	36	–	Total,	open	and	close	porosity	of	NP	glass	ceramic	samples	foamed	using	
different	foaming	agents.		

In	 Fig.	 35	 are	reported	 the	dilatometry	and	DTA	data	 for	 fine	powders	(below	90	

μm)	and	coarse	fragments	(above	2-3	mm)	of	NP	glass.	The	DTA	plots	for	coarse	and	

fine	NP	glass	powders	are	in	excellent	agreement	with	the	dilatometric	plot	for	a	NP	

glass	 rod,	 and	 show	 that	 the	 glass	 transition	 temperature	 (TG)	 occurs	 at	 ~670°C.	

Coarse	and	fine	glass	powders	remarkably	differ	from	each	other	in	terms	of	the	ex-

othermic	peak,	attributable	to	a	crystallization	event.	Coarse	glass	powders	do	not	

exhibit	any	exothermic	effect,	whereas	a	 large	peak,	centered	at	~940°C	(TSC,	with	

SC	standing	for	“surface-activated	crystallization”),	is	present	for	the	fine	glass	pow-

	



	

	

	

109	

ders.	 The	data	 therefore	 are	 a	 proof	 that	 surface	nucleation	 occurs	 in	 the	 system,	

which	is	the	basis	for	the	production	of	sintered	glass-ceramics	[15-16].	Moreover,	

crystallization	occurs	at	a	temperature	higher	than	the	dilatometric	softening	point	

(706°C),	that	is	widely	recognized	as	the	minimum	temperature	at	which	significant	

sintering	occurs	by	viscous	flow.	[17]		

Considering	 the	 relatively	 large	 gap	 between	 the	 dilatometric	 softening	 point	

and	the	crystallization	temperature	(TSC-TD>200°C),	NP	glass	was	expected	to	 lead	

to	 dense	 sinter-crystallized	 glass-ceramics	 when	 fired	 at	 TSC	 (rounded	 at	 950°C).	

This	was	effectively	verified,	with	samples	from	pure	NP	glass	exhibiting	a	bulk	den-

sity	of	2.56	±	0.04	g/cm3	after	heat	treatment	at	950°C,	very	close	to	the	true	density	

of	2.68	±	0.02	g/cm3,	indicating	that	a	residual	porosity	not	exceeding	4.5	vol%	was	

present	in	the	sample.	The	true	density,	ρt,	was	not	affected	by	the	presence	of	the	

foaming	agents	and	was	2.68	±	0.02	g/cm3	for	the	set	of	samples	analyzed.	

From	the	porosity	data	reported	in	Fig.	36,	we	can	note	the	efficient	foaming	ac-

tion	of	 Si3N4.	 Indeed,	 even	at	 a	very	 low	amount	 such	as	0.25	wt%,	 silicon	nitride	

generated	a	total	porosity	(TP)	of	32	vol%,	that	further	increased	to	a	peak	value	of	

36.7	vol%	for	a	0.5	wt%	of	foaming	agent	added.	Higher	percentages	of	Si3N4	proba-

bly	 increased	 the	apparent	viscosity	of	 the	glass	phase,	 thus	 limiting	a	 further	ex-

pansion.	Although	for	both	fired	samples,	mixing	0.25	or	0.5	wt%	of	Si3N4	yielded	a	

density	below	2	g/cm3	and	water	absorption	 less	than	2	wt%	(see	Tab.	16)	 ,	only	

the	 composition	with	 the	 highest	 porosity	was	 selected	 to	manufacture	 a	 tile	 and	

further	 study	 of	 the	material	 properties,	 in	 order	 to	 produce	 samples	with	 better	

thermal	insulation	characteristics.	

An	enhancement	of	foaming	was	achieved	by	the	addition	of	gypsum	to	the	mix-

ture.	 Gypsum	 completely	 dehydrates	 in	 the	 interval	 120-180°C	 transforming	 into	

anhydrite	 (III),	 in	 turn	 decomposing	 into	 CaO	 and	 SO3	 at	 a	 temperature	 above	

1180°C	 [18].	When	coupled	with	a	reducing	agent,	however,	 this	calcium	sulphate	

may	transform	to	calcium	sulphite	and	sulphide,	with	release	of	oxygen.	This	redox	

coupling	is	actually	exploited	for	improving	the	oxidation	of	SiC	in	commercial	glass	

foams	[14].	By	analogy,	in	our	system	Si3N4	was	expected	to	be	oxidized	not	only	by	

reaction	with	atmospheric	oxygen,	but	also	by	reaction	with	oxygen	released	from	

gypsum.	
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Both	mixtures	G3SN1	and	G6SN1	formed	a	limited	amount	of	porosity	when	the	

foaming	agent	was	added	in	a	small	percentage	(below	1	wt%),	suggesting	that	the	

introduction	of	Si3N4	needs	to	be	sufficiently	high	to	enable	the	generation	of	porosi-

ty.	 In	 fact,	 performing	 some	 preliminary	 investigations	 we	 found	 that	 0.5-2	 wt%	

gypsum	additions	did	not	decrease	the	final	density.	Furthermore,	in	the	G3SN1	and	

G6SN1	 samples	 the	 role	of	 gypsum	 is	 to	oxidize	 Si3N4	particles	 and	when	 the	 total	

amount	of	 foaming	agent	 is	used	 in	percentages	of	0.25	or	0.5	wt%,	only	traces	of	

silicon	nitrides	were	introduced.	However	we	can	observe	that	for	systems	contain-

ing	1	wt%	Si3N4	and	above,	 the	addition	of	gypsum	in	both	 formulations	(samples	

G6SN1	and	G3SN1)	contributed	to	the	expansion	(allowing	to	obtain	a	total	porosity	

greater	than	40	vol%),	but	the	main	effect	was	to	increase	the	amount	of	open	po-

rosity.	The	presence	of	open	porosity	led	to	high	values	for	the	water	absorption	(in	

some	cases	>	20	wt%),	but	the	detrimental	effect	of	its	presence	could	be	limited	by	

the	application	of	a	dense	glaze	on	the	tile	surface.	

Tab.	16	–	Water	absorption	(WAB),	bulk	density	(ρb)	and	apparent	density	(ρb)	val-
ues	 for	 different	mixtures.	 Samples	 directly	 inserted	 in	 the	 furnace	 at	 950°C	 and	
heated	for	3h.	

	

Sample	 Si3N4	
(wt%)	

WAB	
(wt%)	

ρb	
(g/cm3)	

ρa	
(g/cm3)	

SN	 0.25	 1.5	±	0.1	 1.80	±	0.03	 1.85	±	0.03	
0.50	 1.4	±	0.1	 1.68	±	0.01	 1.72	±	0.01	
1.00	 3.5	±	0.2	 1.73	±	0.02	 1.84	±	0.01	
2.00	 3.5	±	0.3	 1.78	±	0.00	 1.90	±	0.01	
3.00	 2.8	±	0.7	 1.79	±	0.00	 1.89	±	0.02	
4.00	 2.2	±	0.2	 1.90	±	0.01	 1.98	±	0.00	

G6SN1	 0.25	 0.1	±	0.1	 2.55	±	0.01	 2.55	±	0.01	
0.50	 0.1	±	0.0	 2.38	±	0.03	 2.38	±	0.03	
1.00	 14.6	±	0.0	 1.76	±	0.00	 2.37	±	0.01	
2.00	 17.7	±	0.2	 1.72	±	0.01	 2.48	±	0.00	
3.00	 17.7	±	0.0	 1.74	±	0.00	 2.52	±	0.00	
4.00	 21.9	±	0.2	 1.62	±	0.00	 2.51	±	0.00	

G3SN1	 0.25	 <	0.1	 2.42	±	0.05	 2.42	±	0.05	
0.50	 0.9	±	0.6	 2.01	±	0.04	 2.05	±	0.02	
1.00	 16.0	±	0.1	 1.71	±	0.01	 2.35	±	0.01	
2.00	 20.8	±	0.7	 1.58	±	0.03	 2.36	±	0.02	
3.00	 24.5	±	0.5	 1.52	±	0.01	 2.42	±	0.00	
4.00	 20.3	±	0.2	 1.63	±	0.01	 2.43	±	0.01	
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After	these	preliminary	tests,	further	studies	were	performed	on	larger	samples	se-

lecting	an	amount	of	foaming	agent	of	0.5	wt%	(SN	sample)	and	2	wt%	(G3SN1	sam-

ple),	respectively.	The	first	sample	was	manufactured	without	applying	a	glaze,	be-

cause	of	its	low	water	absorption.	The	second	sample	possessed	the	highest	amount	

of	porosity,	and	the	mixture	with	2	wt%	of	foaming	agent	was	preferred	in	order	to	

limit	 the	 amount	 of	 additive	 and	 considering	 that	 a	 sufficiently	 low	 density	 value	

was	already	obtained	 for	 that	amount	of	 foaming	agent.	Because	of	 its	high	water	

absorption,	a	glaze	with	the	same	composition	of	the	body	was	applied	to	this	sam-

ple.	

As	determined	by	XRD	analysis	(Fig.	37),	controlled	surface	crystallization	of	β-

wollastonite	 (CaSiO3	PDF	 #751396)	 and	 hardystonite	 (Ca2ZnSi2O7	 PDF	 #721603)	

occurred	after	heating	at	950°C	for	30	minutes;	the	presence	of	residual	glass	is	also	

evident	 form	 the	patterns.	Hardystonite	 is	part	of	 the	melilite	group	crystal	 struc-

tures	of	general	 formula	X2YZ2O7,	where	X	is	Ca2+	or	Na+,	Y	 is	Mg2+,	Zn2+	Al3+	or	B3+	

and	Z	sites	are	a	combination	of	B3+,	Al3+	and	Si4+.	Considering	the	chemistry	of	the	

studied	glass	ceramic,	ion	substitutions	probably	occurred	in	the	hardystonite	crys-

tals	with	Al3+	and	B3+	occupying	the	Y	and	Z	sites	[19-20].	

Fig.	37	–	XRD	patterns	of	sintered	glass	ceramics.	a)	Dense	sample	of	composition	
NP	fired	at	950°C	for	30	min.	b)	Cellular	glass	ceramics	of	composition	NP	foamed	
using	different	foaming	agents,	sintered	at	950°C	for	30	min.		
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Comparing	the	relative	intensity	of	the	diffraction	peaks	of	β-wollastonite	and	har-

dystonite,	we	can	observe	that	the	porous	samples	presented	a	higher	hardystonite	

to	β-wollastonite	ratio.	A	likely	reason	for	this	is	that	the	pores	could	favor	the	het-

erogeneous	nucleation	of	hardystonite.	No	evidence	of	Si3N4	or	CaSO4	 traces	were	

found	 in	 the	XRD	patterns,	 thus	suggesting	 that	 the	decomposition/reaction	prod-

ucts	of	the	introduced	additives	were	dissolved	in	the	glass	ceramic.	

Fig.	38	reports	the	back	scattered	image	(BEI)	and	SEM-EDS	analysis	of	the	NP	

glass	ceramic,	showing	the	nucleation	and	growth	of	hardystonite	and	wollastonite	

crystals	in	regions	richer	in	Zn	or	Ca,	respectively.		

	

Fig.	38	–	SEM-EDS	microanalyses	of	a	dense	NP	sample	after	firing	at	950°C	for	30	
min.	a)	BEI,	 showing	 the	phase	separation;	b)	EDS	microanalysis	of	 the	darker	re-
gion,	showing	Zn	depletion	and	higher	Ca	content;	c)	EDS	microanalysis	of	the	light-
er	region,	showing	Ca	depletion	and	a	higher	Zn	content.	

In	Fig.	 39a	 is	 reported	a	 top	view	of	 the	dense	NP	glass	 ceramic,	 showing	 the	

formation	of	the	hardystonite-	and	wollastonite-rich	regions.	A	residual	total	porosi-

ty	of	4.5	vol%	was	calculated	from	the	ρb	and	ρt	density.	In	Fig.	39b	a	perfect	inte-

gration	between	the	dense	coating	applied	on	the	porous	substrate	realized	adding	

2	 wt%	 of	 the	 foaming	mixture	 containing	 gypsum	 (sample	 G3SN1)	 is	 shown.	 The	

same	 crystalline	microstructure	 found	 in	 the	 bulk	material	 is	 also	 present	 in	 the	

struts	of	the	porous	samples	(see	Fig.	39c	and	d).		

	



	

	

	

113	

	

Fig.	39	–	BEI	of	the	dense	glass	ceramics.	a)	Dense	glass	ceramic.	b)	Cross	section	of	
the	glaze	applied	to	a	foamed	substrate	(sample	G3SN1).	c)	Detail	of	the	microstruc-
ture	of	sample	SN;	b)	Detail	of	the	microstructure	of	a	foamed	sample	using	(sample	
G3SN1).	

Differently	from	pure	glass	foams,	the	studied	cellular	glass	ceramics	present	a	low	

sphericity	of	the	cells,	as	observed	in	the	SEM	images	and	in	the	graphical	represen-

tations	of	 the	outlines	of	 the	cells	reported	 in	Fig.	 40.	The	equivalent	cell-size	(di-

ameter)	 distribution	was	 evaluated	 by	 fitting	 the	 processed	 data	with	 Lorentzian	

curves	 by	means	 of	 image	 analysis,	 as	 reported	 in	Fig.	 40c	 and	 f.	 The	 Lorentzian	

curves	 peak	 at	 4.3	 and	 4.0	 μm	 for	 the	 samples	 foamed	 using	 different	 foaming	

agents	 (samples	 SN	and	G3SN1,	 respectively),	 indicating	 that	 the	 cell	 size	distribu-

tions	 of	 the	 samples	were	 nearly	 equivalent.	 However,	 sample	 G3SN1	 possessed	 a	

	 	

	 	
	 	

a)	 b)	

c)	 d)	
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lower	porosity	resulting	 in	a	density	of	1.94	g/cm3,	higher	 than	 that	of	 sample	SN	

that	had	a	density	of	1.85	g/cm3.	The	difference	 in	 the	density	 values	 reported	 in	

Tab.	16	and	Tab.	17	was	originated	by	the	different	heating	treatment	applied.	In	

fact,	 the	samples	reported	in	Tab.	16	were	produced	by	directly	 inserting	them	in	

the	kiln,	whereas	the	samples	of	Tab.	17	were	obtained	by	applying	a	heating	rate	of	

10°C/min.	The	heating	rate	affected	both	density	and	water	absorption,	 in	fact	dif-

ferently	 to	 samples	G3SN1,	 sample	SN	had	a	water	 absorption	value	higher	 than	2	

wt%,	 thus	 indicating	 that	 the	application	of	a	glaze	 should	be	considered	 for	both	

the	mixtures	to	protect	the	porous	substrate.		

	

Fig.	40	–	a-d)	BEI	at	low	magnification	used	to	evaluate	the	cell	size	distribution	of	
SN	and	G3SN1	porous	samples.	b-e)	Outlines	of	the	cells	after	image	processing.	c-f)	
Histogram	plot	of	 the	cell	 size	and	Lorentzian	 fit	 to	evaluate	 the	cell	 size	distribu-
tion.	

Tab.	 17	–	Bulk	density	(ρb),	elastic	modulus	E,	bending	strength	(σ)	and	hardness	
(HV)	of	dense	and	porous	glass	ceramic	tiles.	Samples	heated	at	10°C/min	to	950°C,	
3h	at	950°C.	

	

	 ρb	 E	 σ	 HV	 Wab	
Sample	 (g/cm3)	 (GPa)	 (MPa)	 (GPa)	 (wt%)	
NP	 2.56	±	0.04	 80	±	3	 97	±	8	 6.7	±	0.3	 <0.2	
SN	 1.85	±	0.05	 39	±	2	 58	±	6	 -	 3.1	
G3SN1*	 1.94	±	0.02	 49	±	2	 61	±	6	 -	 1.9	
*glazed	
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Although	the	bending	strength	of	bars	cut	 from	the	tiles	of	the	dense	samples	was	

considerably	 higher,	 the	 porous	 glass	 ceramics	 possessed	 mechanical	 properties	

similar	 to	 those	 of	 dense	 commercial	 sinter-crystallized	 glass	 ceramics	 of	 similar	

composition,	 and	 compare	 favorably	with	 the	 typical	 properties	 of	 traditional	 ce-

ramics.	[21]	In	particular,	the	porous	samples	had	a	high	strength	associated	with	a	

density	decreased	by	about	25-28%	with	respect	to	the	dense	samples,	and	we	can	

posit	that	the	glazed	side	prevents	the	water	absorption	considering	the	negligible	

absorption	displayed	by	the	dense	sample.	For	the	dense	samples,	the	total	residual	

porosity,	evaluated	by	gas	pycnometry,	was	of	4.5	vol%.	

The	thermal	conductivity	measured	at	25°C	for	an	almost	dense	NP	glass	is	1.38	

W·m-1·K-1.	This	value,	which	 is	consistent	 for	a	glass	 is	 the	same	as	 literature	data	

reported	for	Neoparies	(1.4	W·m-1·K-1)	[22].	The	values	for	porous	samples	SN	and	

G3SN1	are	respectively	0.64	and	0.61	W·m-1·K-1.	These	values	were	compared	with	

analytical	predictions	using	 the	Hashin	&	Shtrikman	upper	bound	and	percolation	

theory.	The	Hashin	&	Shtrikman	(HS)	upper	bound	gives	the	highest	limit	for	an	iso-

tropic	two	phase	material	by	considering	isolated	inclusions	placed	in	a	continuous	

matrix.	[23]	The	following	expression	is	used	for	the	calculation:	

𝜆!"",!""#$ !"#"$ = 𝜆! +
𝑣!

1
𝜆! − 𝜆!

+ 𝑣!
3𝜆!

	

where	λs	and	λp	are	the	thermal	conductivities	of,	respectively,	the	solid	phase	and	

the	pores,	vs	and	vp	are	the	corresponding	volume	fraction	of	these	phases.	The	HS	

upper	 bound	 describes	 well	 a	material	 with	 a	 closed	 porosity.	 In	 the	 percolation	

theory	the	continuous	nature	of	each	phase	is	taken	into	account,	depending	on	its	

volume	fraction.	Landauer’s	expression	was	used	for	the	calculation	given	by:	

𝜆!"" =
1
4
𝜆! 3𝑣! − 1 + 𝜆! 2 − 3𝑣! + 𝜆! 3𝑣! − 1 + 𝜆! 2 − 3𝑣!

! + 8𝜆!𝜆!
!
! 	

This	model	describes	well	a	material	with	an	open	porosity	and	a	non	organized	sol-

id	skeleton,	up	to	70%.	[24]	It	has	been	shown	that	the	thermal	conductivity	of	po-

rous	materials	with	an	organized	solid	skeleton,	like	foams,	is	better	described	with	

the	upper	limit	of	the	HS	expressions	[25,	26].	
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Fig.	41	–	a)	Thermal	conductivity	at	room	temperature	as	a	function	of	the	pore	vol-
ume	 fraction.	 Comparison	 with	 the	 values	 calculated	 with	 the	 Hashin–Shtrikman	
upper	 bound	 and	 Landauer	 expressions;	 b)	 UV-Vis-NIR	 spectra	 for	 dense	 and	
foamed	SN	samples,	and	AM	1.5	Global	solar	irradiance	according	to	the	ASTM	G173	
standard.	

Experimental	 results	 for	porous	SN	and	G3SN1	samples	were	compared	with	pre-

dictions	with	the	analytical	models	in	Fig.	41a,	using	a	solid	phase	thermal	conduc-

tivity	of	1.38	W·m-1·K-1,	which	is	the	value	measured	for	the	dense	NP	glass.	A	good	

agreement	is	obtained	between	experimental	data	and	predictions	with	Landauer’s	

relation.	For	G3SN1	sample,	which	exhibits	29%	of	open	porosity	(and	40%	of	total	

porosity)	 this	 agreement	 is	 not	 surprising	 since	 the	 percolation	 theory	 describes	

well	a	material	with	an	open	porosity.	For	the	porous	SN	sample,	this	agreement	is	

more	surprising,	since	the	major	part	of	the	porosity	is	closed	(35%	of	closed	pores	

for	a	total	porosity	of	37%).	Indeed	if	we	extrapolate	using	the	HS	upper	bound,	this	

yields	a	value	of	1.2	W·m-1·K-1	for	fully	dense	material.	We	can	assume	that	variation	

in	composition	may	affect	this	end	point	value.	The	solid	phase	conductivity	of	the	

porous	samples	should	be	found	between	1.2	and	1.4	W·m-1·K-1.		

The	Standard	Reference	Spectra	ASTM	Global	reported	in	Fig.	41b	displays	the	

simulated	spectral	irradiance	AM	1.5	Global	of	sun	light	for	a	37°	tilted	surface,	and	

is	herewith	used	to	show	the	wavelengths	interval	where	the	sun	light	 is	the	most	

intense.	In	fact	to	reduce	the	heat	absorption	from	the	sunlight,	it	is	of	fundamental	

importance	to	reduce	both	the	absorption	from	the	visible	light	range	(390-700	nm)	

and	from	the	near	infrared	(NIR	750–1400	nm).	In	Fig.	41b	are	also	shown	the	re-

flectance	values	of	a	dense	NP	and	a	porous	SN	sample	without	the	glaze	layer	ap-

plied.	We	can	see	that	 the	porosity	slightly	decreases	the	reflectance	as	a	result	of	
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light	scattering,	and	a	clear	absorption	of	the	UV	radiation	is	due	to	the	small	band	

gap	of	the	non	bridging	oxygens	present	in	the	glass	network	and	due	to	the	modifi-

ers	introduced	in	the	glass	ceramic	composition.	[27]	The	reflectance	was	quite	high	

in	the	visible	and	near	infrared	regions	where	the	greatest	fraction	of	the	solar	irra-

diance	power	is	distributed.		

The	white	color	presented	by	 the	manufactured	samples	assures	a	high	reflec-

tance	 in	 the	 visible	 region,	 considering	 that	 the	 high	 density	 of	 scattering	 centers	

provided	by	the	crystal	phases	limits	the	heat	absorption	from	the	incoming	visible	

sun	light	producing	a	greater	reflectance	and	a	higher	opacity.	[28]		

5.4	 Conclusions		
Dense	 glass	 ceramics	were	 obtained	 sintering	 a	 frit	 powder	 at	 950°C	with	 a	 con-

trolled	precipitation	of	wollastonite	and	hardystonite	 crystals	 in	order	 to	obtain	a	

highly	 reflective	 color	with	 a	 limited	 absorption	 of	 the	 sunlight	 radiation.	We	 ob-

tained	lightweight	substrates	foaming	the	starting	frit,	the	induced	porosity	reduced	

the	 thermal	 conductivity	 from	 1.38	 to	 0.61-0.64	 W·m-1·K-1.	 The	 high	 reflectance	

coupled	to	 the	 low	thermal	conductivity	 indicates	 that	 the	developed	porous	glass	

ceramics	are	suitable	to	be	employed	as	an	advanced	barrier	to	heat,	providing	an	

efficient	thermal	insulation	for	buildings.		

The	 distribution	 and	 the	 amount	 of	 porosity	 can	 be	 tuned	 by	 using	 engineered	

amounts	of	Si3N4	and	gypsum	as	foaming	agents.	The	two	components	have	a	syner-

gistic	effect	in	defining	a	reduction/oxidation	couple	and	have	the	fundamental	ad-

vantage	of	not	degrading	the	white	color	of	the	glass-ceramics.	

The	 application	 of	 the	 glaze	 further	 improves	 the	 reflectance	 of	 the	 material,	

prevents	the	incorporation	of	dust	and	water	thus	favoring	a	longer	durability.	Fur-

thermore,	considering	the	lightweight	and	the	high	albedo,	these	porous	tiles	could	

be	applied	as	cladding	materials	for	improved	building	insulation,	whereas	consid-

ering	their	high	strength	described,	 these	 lightweight	materials	could	also	be	used	

for	paving.	 In	the	 future,	we	can	envision	that	engineered	ceramic	tiles	with	a	 low	

thermal	conductivity	could	compete	with	wood	 for	paving,	providing	an	 improved	

thermal	insulation	between	the	ground	or	different	floors	in	a	building	and	even	for	

a	 higher	 comfort	 when	 walking	 barefoot.	 The	 higher	 thermal	 conductivity	 of	 the	

dense	 tiles	 limits	 the	 benefits	 for	 thermal	 insulation	 applications,	 however	 they	
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could	be	used	for	paving	when	strength	requirements	are	more	important	than	the	

thermal	insulation	properties.	
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Chapter	 6	 –	White	 Frits	Mixed	 With	
Whitening	Agents	

6.1	 Introduction	
In	the	present	chapter	is	described	a	method	to	realize	a	dense	glass	ceramic	re-

sembling	the	color	of	a	natural	stone	from	the	Greek	island	of	Thassos.	The	char-

acteristic	 snow	 like	 white	 stones	 from	 Thassos	 are	 most	 frequently	 called	

Thassos	marbles	whereas	the	chemical	composition	is	rich	in	Mg	and	it	would	be	

more	 appropriate	 to	 refer	 to	 a	 Thassos	 dolomite	 rather	 than	marble.	 Thassos	

marble	was	used	in	the	past	to	clad	the	most	important	mosques	of	the	Islamic	

world	in	Mekka	and	Medina	(Saudi	Arabia).	The	quarries	of	the	island	of	Thassos	

were	recently	closed	 for	environmental	and	political	choices	made	by	 the	 local	

administrations	and	a	new	need	 for	commercial	products	resembling	 the	same	

color	of	the	natural	stone	mined	in	Thassos	arose.		

We	 investigated	 frits	providing	white	colors	starting	 from	natural	and	pure	

raw	 materials	 resembling	 the	 color	 of	 Thassos	 marble	 and	 of	 a	 commercial	

product	provided	by	 IRIS.	A	 systematic	 study	of	 the	 effect	 of	whitening	 agents	

mixed	with	frits	is	also	provided.	

6.2	 Materials	and	Methods	
The	whiteness	is	strictly	correlated	to	the	reflectance	of	the	surface	and	was	then	

evaluated	by	means	of	a	UV-Vis	spectrophotometer	570	Jasco	equipped	with	in-

tegrating	 sphere	 (ISN-470	 and	 BaSO4	 white	 standard).	 For	 the	 colorimetric	

measurements,	 the	 color	 matching	 functions	 were	 chosen	 for	 the	 CIE	 1964	

standard	observers.	The	spectral	reflectances	were	measured	at	10	nm	intervals	

in	the	range	360-740	nm	with	a	Minolta	CM-2600	colorimeter	at	the	Photometry	

and	Light	Engineering	Laboratory	of	the	University	of	Padova.	The	XYZ	tristimu-

lus	values	were	computed	using	a	MATLAB	routine,[1]	using	the	ASTM	Table	5	

color-matching	functions	from	the	ASTM	standard	(ASTM,	2001).	
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6.2.1	 Neoparies™	like	Compositions	
In	Chapter	5	was	described	a	method	 to	realize	a	both	dense	and	porous	glass	

ceramic	starting	from	the	composition	of	Neoparies™	[2]	using	natural	materials	

from	KSA	and	a	limited	amount	of	pure	chemicals.	The	pure	chemicals	were	in-

troduced	 because	 the	 composition	 of	 Neoparies™,	 NP,	 requires	 ZnO,	 K2O,	 and	

B2O3	that	were	not	present	in	the	raw	materials	supplied	by	KACST.	Subsequent-

ly,	 the	 composition	 NP	 was	 changed	 to	 substitute	 ZnO	 and	 introduce	 another	

modifying	oxide	present	in	the	raw	materials	supplied	by	KACST.	We	thus	inves-

tigated	the	substitution	of	ZnO	with	MgO	in	molar	ratio	close	to	1:1	in	a	typical	

Neoparies™	 composition,	 and	 to	 keep	 the	 same	molar	 ratio	 between	 network	

former,	 modifier	 and	 intermediate	 ions.	 The	 composition	 NP	 and	 its	 modified	

composition	 called	 White	 Marble,	 WM,	 are	 reported	 in	 Tab.	 18.	 Successively	

MgO	 was	 introduced	 in	 higher	 percentages	 together	 with	 ZnO	 (composition	

WM2)	in	order	to	favor	the	controlled	crystallization	of	Mg	rich	crystal	phases.	In	

composition	WM2	 the	 only	 pure	 chemical	 used	 is	 ZnO	whereas	 K+	 was	 intro-

duced	using	a	Na-K	rich	feldspar.	

Contrary	to	Neoparies™,	it	was	chosen	to	not	introduce	BaO,	to	limit	the	use	

of	pure	chemicals,	and	to	use	large	amounts	of	natural	raw	materials	that	are	af-

fected	by	a	relatively	high	amount	of	Fe2O3	impurities.	It	is	well	known	and	wide-

ly	discussed	that	iron	ions	afford	to	the	glaze	a	yellowish	coloration.	For	this	rea-

son,	 it	was	chosen	 to	 investigate	also	 the	use	of	a	commercial	 frit	produced	by	

Endeka	with	pure	starting	materials.	This	frit	is	composed	by	SiO2	(50–60	wt%),	

ZrO2	(8–14	wt%)	and	fluxing	elements	such	as	Na2O,	K2O,	PbO	and	B2O3	(20–25	

wt%)	 as	major	 components	 and	 stabilizing	 elements	 such	 as	 ZnO,	 Al2O3,	 CaO,	

BaO,	 MgO	 as	 minor	 components	 (7–9	 wt%	 maximum).	 The	 commercial	 frit	

shown	 precipitation	 of	 ZrSiO4	 which	 gives	 the	 so	 called	 “white	 of	 zirconium”,	

here	called	white	opaque	WO.	[3]			
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Tab.	18	–	Chemical	composition	of	glasses	NP,	WM,	WM2	and	NeopariesTM. 

	 NP	 WM	 Neoparies™	
Oxide	 wt%	 mol.%	wt%	mol.%	wt%	mol.%	
Al2O3	 7.7	 4.8	 7.1	 4.3	 7.0	 4.4	
B2O3	 1.3	 1.2	 1.2	 1.1	 1.0	 0.9	
BaO	 0.0	 0.0	 0.0	 0.0	 4.0	 1.7	
CaO	 20.3	 22.8	 19.4	 21.2	 17.1	 19.6	
Fe2O3	 0.4	 0.1	 0.4	 0.1	 0.0	 0.0	
K2O	 2.5	 1.7	 3.5	 2.3	 2.0	 1.4	
MgO	 0.7	 1.1	 3.4	 5.1	 0.0	 0.0	
Na2O	 2.5	 2.5	 2.4	 2.4	 3.0	 3.1	
SiO2	 57.4	 60.1	 62.0	 63.2	 59.3	 63.6	
TiO2	 0.7	 0.6	 0.6	 0.4	 0.0	 0.0	
ZnO	 6.5	 5.0	 0.0	 0.0	 6.5	 5.2	
	

	 wt%	 wt%	
Clay-E	 14.8	 10.8	
Cullet	 9.9	 9.0	
Limestone	 29.6	 21.6	
Silica	sand	 34.5	 34.3	
Dolomite	 0.0	 11.7	
Feldspar	 0.0	 6.3	
ZnO	 5.4	 0.0	
Borax	 3.0	 2.7	
K2CO3	 3.0	 3.6	
	

ZrO2	and	ZrSiO4	are	materials	of	great	value	used	by	the	glaze	industry	to	manu-

facture	white	opaque	frits.	[3]	However,	it	has	been	established	that	to	observe	

opacity	ZrO2	and	ZrSiO4	have	to	be	added	above	a	threshold	amount,	thus	requir-

ing	large	amounts	introductions	to	achieve	an	adequate	opacity.	[4]	The	result-

ing	zircon	crystals	have	a	significantly	higher	refraction	 index	(2.05–2.40)	than	

the	glassy	matrix	(1.50–1.70)	and	thus	effectively	scatter	light.	[5]	Although	the	

“white	of	zirconium”	glazes	form	fine	white	glass	ceramics,	the	cost	of	the	start-

ing	materials	is	quite	high	and	many	researchers	are	focused	in	valuable	alterna-

tives.	[6]	

Vitrification	–	For	the	production	of	both	NP,	and	WM	200	grams	of	the	dry	raw	

powder	mixture	was	 put	 in	 a	 crucible	 and	 heated	 at	 900°C,	 to	 decompose	 the	

carbonates.	Then	the	mixture	was	heated	at	1400°C	in	a	kyanite	refractory	cru-

cible	 in	 air,	 and	 kept	 in	 temperature	 for	 90	minutes.	 After	 achieving	 complete	

melting	of	the	raw	materials,	the	melt	was	poured	into	water	to	produce	a	glass	
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frit.	 The	 frit	was	 then	 collected,	 dried	 at	 80°C	 overnight	 and	 then	 ground	 and	

sieved	to	obtain	particles	with	a	size	below	90	microns.	

Samples	 preparation	 and	 characterization	 –	 The	 preliminary	 studies	 were	 per-

formed	on	disks	made	with	1.5	g	of	the	dry	frit	powder	mixture,	uniaxially	cold	

pressed	in	a	mold	at	a	pressure	of	40	MPa.	The	produced	sample	was	then	fired	

in	air	by	inserting	it	directly	into	an	oven	preheated	at	selected	temperatures	for	

30	or	60	minutes.	After	cooling,	 the	samples	were	polished	and	analyzed	 thor-

ough	XRD,	and	examined	visually.	

The	same	procedure	was	used	for	whitened	samples,	where	the	NP	and	WM	

dry	powders	were	mixed,	Tab.	 19,	with	different	whitening	agents:	ZnO,	CaF2,	

TiO2,	ZrSiO4	and	Al2O3.	The	results	of	the	white	colors	are	described	successively	

in	the	paragraph,	dedicated	to	the	spectrophotometer	analysis.	

Tab.	 19	 –	 List	 of	 the	 frits	 fired	 at	 selected	 temperatures	mixed	with	 different	
whitening	agents:	ZnO,	CaF2,	TiO2,	ZrSiO4	and	Al2O3. 

	

6.2.2	 Frits	from	pure	chemicals	
Composition	WM	was	reproduced	using	pure	starting	materials,	WMP,	in	order	

to	 drastically	 reduce	 the	 chromophore	 ions	 content.	 According	 to	 Torres	 et.	

al.,[7],	we	also	investigated	the	production	of	a	spinel-based	glass	ceramic	mate-

rial	 from	 a	 glass	 with	 composition	 in	 the	 system	 ZnO–MgO–B2O3–Al2O3–SiO2	

(composition	 SP).	 Spinel	 crystals	 are	 characterized	 by	 a	 high	 hardness	 (7.5-8	

Label	 Frit	 ZnO	
wt%	

CaF2	
wt%	

TiO2	
wt%	

ZrSiO4	
wt%	

Heating	 t	
(min)	

T	
(°C)	

WM-1ZnO-DF-60min	 WM	 1	 	 	 	 DF	 60	 1000	
WM-2.5ZnO-DF-60min	 WM	 2.5	 	 	 	 DF	 60	 1000	
WM-5ZnO-DF-60min	 WM	 5	 	 	 	 DF	 60	 1000	
WM-1ZnO-1CaF2-DF-60min	 WM	 1	 1	 	 	 DF	 60	 1000	
WM-2.5ZnO-1CaF2-DF-60min	 WM	 2.5	 1	 	 	 DF	 60	 1000	
WM-5ZnO-1CaF2-DF-60min	 WM	 5	 1	 	 	 DF	 60	 1000	
WM-1TiO2-DF-60min	 WM	 	 	 1	 	 DF	 60	 1000	
WM-2.5TiO2-DF-60min	 WM	 	 	 2.5	 	 DF	 60	 1000	
WM-5TiO2-DF-60min	 WM	 	 	 5	 	 DF	 60	 1000	
WM-1	ZrSiO4-DF-60min	 WM	 	 	 	 1	 DF	 60	 1000	
WM-2.5	ZrSiO4-DF-60min	 WM	 	 	 	 2.5	 DF	 60	 1000	
WM-5	ZrSiO4-DF-60min	 WM	 	 	 	 5	 DF	 60	 1000	
WM-20	ZrSiO4-DF-1050°C	 WM	 	 	 	 20	 DF	 60	 1050	
WM-20	ZrSiO4-DF-1100°C	 WM	 	 	 	 20	 DF	 30	 1100	
WM-10°C-min-30min	 WM	 	 	 	 	 10°C/min	 30	 1000	
WM-10°C-min-60min	 WM	 	 	 	 	 10°C/min	 60	 1000	
NP-1TiO2-DF-60min	 NP	 	 	 1	 	 DF	 30	 950	
NP-2.5TiO2-DF-60min	 NP	 	 	 2.5	 	 DF	 30	 950	
NP-5TiO2-DF-60min	 NP	 	 	 5	 	 DF	 30	 950	
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Mohs)	and	high	refractive	index	(1.7),	and	are	therefore	of	great	potential	inter-

est	 for	 the	 realization	of	white	 opaque	 glass	 ceramics.	 The	 compositions	WMP	

and	SP,	are	reported	in	Tab.	20.	

Vitrification	 –	For	the	production	of	both	WMP	and	SP	compositions,	200	grams	

of	the	dry	raw	powder	mixture	was	put	in	a	crucible	and	heated	at	900°C,	to	de-

compose	the	carbonates.	The	mixtures	were	then	heated	in	a	kyanite	refractory	

crucible	in	air,	and	kept	at	temperature	for	90	minutes.	Mixture	WMP	was	melt-

ed	at	1400°C,	while	SP	was	melted	at	1450°C.	After	achieving	complete	melting	

of	the	raw	materials,	the	melt	was	poured	into	water	to	produce	a	glass	frit.	The	

frit	was	 then	collected,	dried	at	80°C	overnight	and	 then	ground	and	sieved	 to	

obtain	particles	with	a	size	below	90	microns.	

Samples	 preparation	 and	 characterization	 –	 The	 preliminary	 studies	 were	 per-

formed	on	disks	made	with	1.5	g	of	the	dry	frit	powder	mixture,	uniaxially	cold	

pressed	in	a	mold	at	a	pressure	of	40	MPa.	The	produced	sample	was	then	fired	

in	air	by	inserting	it	directly	into	an	oven	preheated	at	selected	temperatures	or	

by	 applying	 a	 10°C/min	 heating.	 The	 samples	were	 fired	 at	 selected	 tempera-

tures	in	the	range	950-1100°C,	for	30,	60	or	120	min.	The	same	procedure	was	

used	for	whitened	samples,	where	the	WM	and	WMP	dry	powders	were	mixed	

using	different	whitening	agents:	ZnO,	CaF2,	ZrSiO4,	MgO	and	Al2O3.	The	whiten-

ing	SP-mix	is	a	mixture	of	δ-Al2O3	and	MgO,	formulated	in	order	to	reproduce	the	

composition	of	MgAl2O4	spinel.		

A	 large	 size	 ceramic	 tile	 (e.g.	 150×80	 cm2)	may	 be	 fast	 fired,	 but	 certainly	

with	a	heating	rate	much	lower	than	what	was	used	for	a	direct	firing	in	labora-

tory	conditions.	However,	both	direct	firing	and	progressive	heating	treatments	

are	useful	to	map	how	the	color	is	modified	by	the	thermal	treatment.	
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Tab.	20-	Chemical	composition	of	glasses	WMP	and	SP 

	

6.3	 Results	and	Discussion	

6.3.1	 Reflectance	Analysis	on	Glass	Ceramics	Without	Addi-
tives	

In	Fig.	42a	are	reported	the	reflectances	recorded	on	samples	WM	showing	the	

effect	of	 the	heating	 rate	and	 firing	 temperature.	All	 the	 spectra	are	 character-

ized	by	an	intense	reflectance	decrease	peaked	at	about	455	nm	corresponding	

to	the	absorption	of	the	wavelengths	of	blue	light	that	result	in	the	perception	of	

a	slightly	yellowish	coloration	at	the	human	eye.	At	wavelengths	lower	than	550	

nm	the	reflectance	forms	a	plateau	that	continues	in	the	NIR	(near	infrared).		

It	is	clearly	observed	(Fig.	42a)	the	effect	of	the	heating	rate	and	firing	tem-

perature	on	 samples	WM.	More	 specifically	glass	 ceramics	with	a	 limited	gloss	

were	obtained	directly	heating	samples	WM	at	900°C	for	60	min,	in	fact	the	low	

reflectance	 (plateau	 ~77%)	 is	 probably	 an	 effect	 of	 both	 light	 absorption	 and	

	 WMP	 SP	
Oxide	 wt%	 mol.%	 wt%	 mol.%	
Al2O3	 7.1	 4.3	 22.5	 14.4	
B2O3	 1.0	 0.9	 8.1	 7.6	
CaO	 19.6	 21.3	 1.0	 1.2	
Fe2O3	 0.02	 0.01	 0.01	 0.01	
K2O	 3.6	 2.3	 3.5	 2.4	
MgO	 3.6	 5.4	 9.5	 15.3	
Na2O	 2.4	 2.3	 3.0	 3.2	
SiO2	 62.5	 63.3	 49.0	 53.2	
TiO2	 0.2	 0.2	 0.1	 0.1	
ZnO	 0.0	 0.0	 3.4	 2.7	

	

	 wt%	 wt%	
Kaolin*	 19.8	 57.5	
Cullet**	 11.0	 5.7	
CaCO3*	 25.3	 -	
Silica	sand**	 35.2	 11.5	
MgO*	 2.4	 6.9	
ZnO*	 -	 2.3	
Borax*	 2.2	 8.0	
K2CO3*	 4.1	 3.4	
Boric	Acid*	 -	 4.6	
*	reagent	grade	
**	KSA	materials	
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transmission	 resulting	 from	 the	 low	 density	 of	 scattering	 centers,	 i.e.	 crystal	

phases.	After	directly	firing	at	950°C,	the	plateau	of	the	reflectance	increases	at	

~82.5%	whereas	when	directly	firing	at	1000°C	a	global	increment	(~2%)	of	the	

reflectance	was	observed.	Although	the	difference	between	the	samples	fired	at	

950	and	1000°C	is	limited,	from	this	preliminary	experiments	it	is	concluded	that	

to	obtain	an	optimized	white	opaque	color,	samples	should	be	fired	at	a	tempera-

ture	of	1000°C.	Moreover	to	design	the	thermal	treatment	providing	the	highest	

whiteness	and	opacity	the	effect	of	the	heating	rate	was	investigated	applying	a	

rates	of	5,	10	and	20°C/min.	It	was	then	observed	that	the	lower	the	heating	rate	

the	higher	 the	reflectance,	however	 the	effect	of	 the	rate	 is	much	smaller	com-

pared	to	the	influence	of	the	firing	temperature,	in	other	words	samples	WM	are	

suitable	for	both	fast	and	slow	firing	when	sintered	at	~1000°C.	

Considering	the	highest	purity	of	the	raw	materials	used,	samples	WMP	were	

expected	to	show	a	reflectance	(Fig.	42b)	comparably	higher	than	samples	WM.	

The	main	difference	between	the	two	sets	of	samples	was	the	removal	of	the	ab-

sorption	 in	 the	 blue	 region	 and	 to	 a	 reflectance	 showing	 a	 broader	 flat	 curve.	

Moreover	the	reflectance	of	sample	WMP	fired	at	1000°C	is	even	lower	than	for	

sample	WM.	This	might	be	explained	considering	that	by	using	pure	starting	the	

amount	of	 impurities	was	obviously	 lower	and	 is	well	known	that	purities	and	

defects	in	general	are	preferential	sites	for	the	nucleation	of	crystallites.		

Samples	SP	(Fig.	42c)	showed	the	absorption	in	the	blue	region	already	ob-

served	for	samples	WM	given	by	the	impurities	embedded	in	the	sample	howev-

er	 the	effect	of	 the	heating	rate	was	 totally	different.	 In	 fact	by	applying	a	pro-

gressive	 heating	 rate	 of	 10°C/min	 the	 overall	 reflectance	 values	 were	 lower	

comparing	with	samples	directly	fired	at	the	same	final	temperature	of	1000°C.			
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Fig.	42	–	UV	reflectance	samples	fired	applying	different	heating	rates	and	firing	
temperatures.	a)	Samples	WM.	b)	Samples	WMP.	c)	samples	SP.	d)	comparison	
among	samples	WM,	WMP,	SP	and	NP.	

The	 correlation	 between	 reflectance	 and	 thermal	 treatment	 is	 not	 straightfor-

ward	and	requires	some	specification.	As	reported	many	times	 in	 this	work,	 to	

obtain	a	white	color,	a	high	density	of	scattering	centers	provided	by	the	crystal	

phases	is	required.	The	crystallization	of	a	glass	frit	in	the	CAS	(calcium-alumino-

silicate)	system	was	found	more	effective	for	fast	thermal	treatments	[8].	In	fact	

crystallization	could	be	somewhat	enhanced	by	the	availability	of	a	remarkable	

amount	of	free	glass	surfaces	when	the	sample	is	directly	fired.	On	the	contrary,	

a	sample	heated	at	10°C/min,	could	experience	some	sintering	before	starting	to	

crystallize;	consequently,	the	reduction	of	the	specific	surface	inhibits	the	nucle-

ation	of	crystal	phases.	This	explanation	is	valid	for	the	frit	SP	whereas	for	sam-

ples	WM	and	WMP	 the	nucleation	 and	 growth	 is	 probably	 less	 affected	by	 the	

loss	of	free	glass	surface	during	fast	treatments.		
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In	Fig.	 42d	are	reported	the	reflectances	of	 the	samples	WM,	WMP,	SP	and	

NP	that	provided	the	most	promising	results.	Samples	SP	presented	the	 lowest	

reflectance	compared	to	the	other	frits	employed.	WMP	and	NP	presented	simi-

lar	values	at	high	wavelength	however	WMP	samples	were	not	affected	by	 the	

light	absorption	at	low	wavelengths.	Importantly	sample	NP	presented	a	reflec-

tance	well	below	WM,	thus	justifying	the	efforts	in	the	design	of	the	new	compo-

sition.	

6.3.2	 Mineralogical	analysis	on	glass	ceramics	without	addi-
tives	

In	 the	present	work	 the	mineralogical	 analysis	description	 is	 in	 support	of	 the	

previous	paragraph	were	the	reflectances	were	described.	However	the	intensity	

of	the	XRD	patterns	were	often	not	high	enough	to	provide	sufficient	information	

or	 to	 allow	a	 reliable	 quantitative	 analysis,	 thus	 the	 following	descriptions	 are	

mere	qualitative	comments	about	the	crystal	phases	formed.		

In	Fig.	43	are	reported	the	diffractograms	of	samples	WM	and	WMP	directly	

fired	at	950-1000°C	for	60	minutes.	The	samples	devitrified	forming	wollastonite	

(CaSiO3)	and	diopside	(CaMgSi2O6)	crystals.	The	samples	WM	and	WMP	fired	at	

950°C	 presented	 a	 very	 similar	 pattern	 whereas	 sample	 WM	 fired	 at	 1000°C	

showed	a	higher	 intensity	of	 the	peaks	attributed	 to	 the	diopside	 crystals.	The	

precipitation	 of	 wollastonite	 as	main	 crystal	 phase	 and	 diopside	 as	 secondary	

crystal	phase	was	expected	considering	the	chemical	composition	of	the	parent	

glass.	
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Fig.	43	–	XRD	analysis	of	samples	from	direct	firing	at	950	and	1000°C	(60	min)	
for	samples	WM	and	950°C	(60	min)	for	sample	WMP.	

As	 predicted	 from	 the	 Mg	 rich	 and	 peraluminous	 composition	 of	 samples	 SP,	

coriderite	 (Mg2Al4Si5O18)	 and	 spinel	 (MgAl2O4)	 formation	 occurred	 at	 1000°C,	

however	comparing	the	diffraction	peaks	intensities	lower	precipitation	of	crys-

tal	phases	was	identified	in	the	sample	fired	at	1050°C.		The	controlled	precipita-

tion	of	spinel	and	cordierite	crystals	could	be	enhanced	increasing	the	Mg	and	Al	

content	in	the	parent	glass,	however	according	to	preliminary	investigations	the	

compositional	change	requires	a	melting	temperature	higher	than	1450°C.	In	our	

research	a	great	attention	was	spent	 in	 the	 limitation	of	 the	overall	 costs	 for	a	

possible	application,	it	was	then	preferred	to	choose	glass	compositions	that	are	

easily	melted	at	1400°C	or	below.	In	other	words	to	produce	a	spinel	rich	glass	

ceramic	the	silica	content	should	be	reduced	in	sake	of	alumina	content	resulting	

in	an	undesired	high	melting	temperature.		
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Fig.	44	–	XRD	analysis	of	samples	from	direct	firing	at	1000	and	1050°C	(60	min)	
for	samples	SP.	

6.3.3	 Reflectance	analysis	on	glass	ceramics	with	additives	
Although	the	main	focus	of	this	research	was	to	identify	a	sample	with	a	bright	

white	color,	a	more	general	interpretation	of	the	optical	properties	in	the	UV-NIR	

region	is	described	in	this	paragraph.		

All	the	samples	of	composition	WM	here	discussed	were	directly	sintered	at	

1000°C	for	60	minutes	if	not	differently	described	(	

Tab.	19).	For	the	sake	of	brevity,	the	reflectance	spectra	of	samples	NP	were	

not	 reported	 because	 the	 results	 achieved	 with	 composition	 WM	 were	 more	

promising.	Probably,	the	better	quality	of	samples	WM	is	that	the	raw	materials	

employed	were	slightly	less	polluted	by	chromophore	ions.		

In	Fig.	45a	are	represented	the	reflectance	measurements	for	the	samples	of	

composition	WM	mixed	with	ZnO	and	CaF2.	 In	particular,	 the	best	results	were	

achieved	 for	 composition	WM	mixed	with	5	wt%	of	ZnO	and	1	wt%	CaF2.	The	

highest	reflectance	value	achieved	by	the	samples	shown	in	Fig.	45a	was	about	

90%,	but	the	absorption	around	400	nm	was	still	present.	
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Fig.	 45	 –	 a)	 reflectance	of	 specimens	WM	mixed	with	ZnO	and	CaF2;	b)	 reflec-
tance	of	specimens	WM	mixed	with	TiO2;	d)	reflectance	of	specimens	WM	mixed	
with	ZrSiO4.	

Frit	WM	mixed	with	TiO2,	Fig.	45b,	one	of	the	most	common	whitening	agents,	

was	expected	to	give	the	whitest	samples;	in	fact	the	refractive	index	of	TiO2	goes	

from	2.49	 for	anatase	 to	2.61	 for	 rutile.	The	higher	 the	difference	between	 the	

refractive	index	of	the	matrix	and	that	of	the	crystals,	the	better	the	scattering	of	

light.	The	intense	decrease	of	reflectance	observed	for	this	samples	was	probably	

due	 to	 the	 formation	of	 iron	 titanates,	which	are	used	as	brown	pigments.	An-

other	important	feature	of	TiO2	was	an	undesired	high	of	the	UV	light.	In	general	

the	wavelength	of	 the	edge	 is	believed	 to	be	due	 to	 the	 transition	of	 a	 valance	

electron	of	a	network	anion	to	an	excited	state.	Conversion	of	a	network	anion	

from	the	bridging	state	to	a	non-bridging	state	will	lower	the	energy	required	for	

the	electronic	excitation,	and	shift	the	ultraviolet	edge	to	lower	frequencies.	The	

addition	 of	 alkali	 oxides	 to	 silica,	 therefore,	 results	 in	 a	 shift	 of	 the	 ultraviolet	

edge	toward	the	visible	region	of	the	spectrum	[9]	and	in	our	experiments	TiO2	

particularly	increases	the	UV	absorption.	

The	reflectance	measurements	of	Fig.	 45c	 show	that	with	 the	 increasing	of	

zircon	from	1	to	20	wt%	the	reflectance	in	the	NIR	was	strongly	enhanced.	Fur-

thermore,	1	wt%	of	zircon	was	a	more	effective	whitening	agent	in	comparison	

to	the	sample	WM	having	5	wt%	of	ZnO	and	1	wt%	of	CaF2.	

6.3.4	 Colorimetric	 Analysis	 –	 Comparisons	 With	 Thassos	
Marble	

In	Tab.	 21	 are	reported	 the	 tristimulus	values	 (X,Y	and	Z)	and	CIELAB	coordi-

nates	 (L*,	 a*	 and	 b*)	 calculated	 from	 the	 spectral	 reflectances	 acquired	 on	 the	

white	 sintered	 glass	 ceramics.	 From	 a	 colorimetric	 point	 of	 view,	 Thassos	 is	 a	
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white,	slightly	yellow-green,	marble.[10-11]	Comparing	the	CIELAB	coordinates	

of	the	fired	samples	and	of	Thassos	marble,	some	important	understanding	and	

conclusion	can	be	made.	

As	 easily	observed	 from	Tab.	 21	 and	Fig.	 47,	most	of	 the	WMP	specimens	

displayed	a	higher	lightness	then	Thassos	marble.	The	achievement	of	a	sample	

with	 high	 lightness	 is	 the	 most	 difficult	 issue	 to	 solve.	 To	 match	 the	 color	 of	

Thassos	 marble,	 we	 might	 reduce	 the	 iron	 content	 of	 composition	 WM	 going	

closer	to	composition	WMP.	

Directly	sintering	at	1000°C	for	60	minutes	composition	WM	mixed	with	2.5	

and	5	wt%	of	ZnO	produced	specimens	with	both	L*	and	a*	close	to	the	charac-

teristics	of	Thassos	marble.	By	halving	the	iron	content	and	introducing	ZnO	in	

composition	WM,	we	might	indeed	go	very	close	to	the	realization	of	a	glass	ce-

ramic	resembling	the	color	of	Thassos	marble.	

Probably,	the	successful	results	achieved	using	the	SP-mix	was	related	to	its	

reactivity.	 Indeed,	 preliminary	 XRD	 analysis	 showed	 an	 improvement	 of	 the	

crystallization	when	using	the	SP-mix.	However,	we	did	not	report	here	an	XRD	

analysis	 due	 to	 the	 very	 preliminary	 stage	 reached	 by	 this	 study.	 This	 result	

simply	suggests	that	future	compositions	should	be	modified	in	order	to	further	

improve	the	crystallization.	

The	whiteness	of	the	WMP	glass	ceramic	was	proved	to	increase	when	using	

boric	acid.	Boric	acid	may	have	reduced	 the	refractive	 index	of	 the	amorphous	

phase	thus	increasing	the	difference	between	the	refractive	indexes	of	the	amor-

phous	and	crystal	phases.	

Composition	SP	 should	be	modified	 to	 improve	 the	devitrification	upon	 fir-

ing,	in	fact	the	produced	samples	were	translucent	and	considering	the	promis-

ing	 results	 achieved	 for	 composition	WM	 and	WMP,	 this	 composition	may	 be	

dropped	in	further	research	efforts.	

The	 commercial	 Thassos-like	 (Fig.	 46)	 white	 stoneware	 produced	 by	 IRIS	

was	found	to	be	very	close	to	the	color	of	Thassos	marble,	but	the	a*	(green)	and	

b*	(yellow)	values	are	unbalanced.	Then	a	future	target	may	be	the	development	

of	a	modified	WM	composition	which	provides	L*	between	93.0	/	93.5	and	b*	<	3	

using	some	inorganic	pigment	to	adjust	a*	if	required.	
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Fig.	 46	 –	 a)	Commercial	Thassos-like	glass	ceramic	 tile.	b)	WM2	glass	ceramic	
sintered	at	1000	°C	for	60	min.	c)	Thassos	marble.	Note:	the	color	of	the	samples	
is	actually	whiter,	but	it	is	difficult	to	capture	this	using	a	camera.	

The	possibility	of	reducing	b*	should	be	investigated	further,	knowing	that	Fe2+	

ions	 provide	 in	 glasses	 red/yellow	 colors	 3	 times	 stronger	 than	 Fe3+	 ions.	 By	

adding	Mn3+	ions	to	the	glass	ceramic	iron	oxidize	according	to	the	reaction:	Fe2+	

+	 Mn3+	 →	 Fe3+	 +	 Mn2+.	 However	 the	 reaction	 may	 be	 affected	 by	 solarization	

problems.	We	might	explore	the	use	of	the	decolorizing	agents,	such	as	selenium	

oxide	or	other	compounds	of	selenium	(e.g.	zinc	selenite	or	calcium	selenite).	

In	 conclusion,	 we	 may	 state	 that	 glass	 ceramics	 with	 color	 characteristics	

reasonably	similar	to	that	of	Thassos	marble	have	been	produced.	However,	fur-

ther	work	is	required	in	order	to	confirm	and	improve	the	results	and	adapt	the	

composition	of	 the	glass	ceramics	 to	 the	requirements	of	 industrial	production	

and	the	use	of	natural	(not	laboratory)	raw	materials.	
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Fig.	47	–	CIELAB	coordinates	representation	for	all	the	samples	reported	in	Tab.	
21.	 The	 red	 spots	 refer	 to	 the	 CIELAB	 coordinates	 interval	 given	 for	 Thassos	
marble	 [10]	whereas	 the	red	ellipses	describe	 the	set	of	points	which	approxi-
mately	resemble	the	typical	colors	of	Thassos	marbles.	

Tab.	21	–	White	glass	ceramic	tristimulus	values	(X,Y	and	Z)	and	CIELAB	coordi-
nates	(L*,	a*	and	b*).	The	color	matching	functions	were	chosen	for	the	CIE	1964	
standard	observers	and	D65	light	source	was	used. 
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Composition	 Whitening	 Heating	 T	 t	 X	 Y	 Z	 L*	 a*	 b*	
	 wt%	 type	 	 °C	 min	 	 	 	 	 	 	

Thassos*	 	 	 	 	 	 	 	 	
92.0-
93.6	 -1	 1-4	

Thassos**	 	 	 	 	 	 	 	 	 92.9	 -0.8	 2.9	
IRIS		
(ceramic	Thassos)	 	 	 	 	 78.8	 83.2	 83.9	 93.1	 -0.2	 3.8	
Milk	glass	 	 	 	 	 	 73.5	 78.2	 83.8	 90.9	 -1.3	 0.1	
WO	(Endeka)	 10	 Al2O3	 10°C/min	1100	60	 86.7	 91.8	 96.8	 96.7	 -0.6	 1.1	
WM	 	 	 10°C/min	1000	30	 71.2	 75.7	 74.3	 89.7	 -1.2	 5.3	
WM	 	 	 10°C/min	1000	60	 75.1	 79.8	 78.8	 91.6	 -1.0	 5.1	
WM	 	 	 10°C/min	950	 60	 76.7	 81.3	 79.8	 92.3	 -0.9	 5.5	
WM	 1	 ZnO	 DF	 1000	60	 75.4	 79.9	 78.0	 91.6	 -0.8	 5.7	

WM	 2.5	 ZnO	 DF	 1000	60	 77.6	 82.3	 80.2	 92.7	 -0.9	 5.9	
WM	 5	 ZnO	 DF	 1000	60	 77.5	 82.2	 79.8	 92.7	 -0.9	 6.2	
WM	 1-1	 ZnO-CaF2	DF	 1000	60	 75.8	 80.1	 76.3	 91.7	 -0.4	 7.3	
WM	 2.5-1	ZnO-CaF2	DF	 1000	60	 75.5	 79.9	 75.5	 91.7	 -0.5	 7.7	
WM	 1	 ZrSiO4	 DF	 1000	60	 71.1	 75.3	 73.0	 89.5	 -0.5	 6.0	
WM	 2.5	 ZrSiO4	 DF	 1000	60	 69.5	 73.4	 70.8	 88.6	 -0.3	 6.3	
WM	 5	 ZrSiO4	 DF	 1000	60	 78.3	 82.8	 81.9	 92.9	 -0.3	 5.0	
WMP	 	 	 10°C/min	950	 120	70.5	 74.4	 80.0	 89.1	 -0.1	 -0.1	
WMP	 	 	 10°C/min	1000	60	 77.8	 81.8	 85.8	 92.5	 0.5	 1.4	
WMP	 2.5	 MgO	 10°C/min	950	 120	70.7	 73.7	 76.5	 88.8	 1.6	 2.0	
WMP	 5	 MgO	 10°C/min	950	 120	72.9	 76.0	 78.4	 89.9	 1.6	 2.4	
WMP	 7.5	 MgO	 10°C/min	950	 120	73.6	 76.9	 78.0	 90.3	 1.4	 3.4	
WMP	 2.5	 H3BO3	 10°C/min	950	 120	75.3	 79.2	 83.4	 91.3	 0.4	 1.2	
WMP	 5	 H3BO3	 10°C/min	950	 120	78.4	 82.7	 87.0	 92.9	 -0.1	 1.2	
WMP	 7.5	 H3BO3	 10°C/min	950	 120	81.0	 85.6	 89.6	 94.1	 -0.3	 1.5	
WMP	 5	 SP-mix	 10°C/min	1000	120	78.9	 83.1	 86.3	 93.0	 0.3	 2.0	
WMP	 10	 SP-mix	 10°C/min	1000	120	81.2	 85.4	 88.8	 94.1	 0.4	 2.0	
WMP	 20	 SP-mix	 10°C/min	1000	120	82.8	 87.1	 88.6	 94.8	 0.4	 3.4	
WMP	 5	 SP-mix	 10°C/min	1050	120	79.8	 84.1	 87.3	 93.5	 0.1	 2.1	
WMP	 10	 SP-mix	 10°C/min	1050	120	81.4	 85.8	 89.0	 94.2	 0.1	 2.1	
WMP	 5	 SP-mix	 10°C/min	1100	120	76.3	 80.3	 80.0	 91.8	 0.4	 4.6	
WMP	 10	 SP-mix	 10°C/min	1100	120	82.4	 87.2	 90.0	 94.8	 -0.4	 2.4	
WMP	 20	 SP-mix	 10°C/min	1100	120	84.3	 89.0	 92.0	 95.6	 -0.2	 2.4	
SP	 	 	 DF	 1000	60	 71.3	 75.9	 76.7	 89.8	 -1.3	 3.6	
SP	 	 	 DF	 1050	60	 71.1	 75.5	 76.0	 89.6	 -1.1	 3.9	
SP	 	 	 10°C/min	1000	60	 69.1	 73.1	 72.5	 88.5	 -0.6	 4.7	
*	Ref	[10]	
**	Ref	[11]	
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6.4	 Conclusions	
The	choice	of	the	starting	materials	is	fundamental	to	achieve	a	highly	white	col-

or;	when	the	starting	materials	are	polluted	by	heavy	metal	no	white	colors	are	

possible.	The	target	is	the	production	of	a	colorless	frit,	which	then	can	crystal-

lize	producing	crystals	giving	a	white	color.	Zircon	was	proved	to	be	an	effective	

whitening	 agent,	 especially	 in	high	 amounts	 and	 the	 same	was	 for	mixtures	 of	

ZnO	and	CaF2.	Contrarily	to	what	expected	TiO2	lowered	the	whiteness	enhanc-

ing	a	yellowish	color.	

Coloration	of	glasses	by	3d	 transition	metals	 ions	(Fe2+/3+,	Cr3+/6+)	 is	due	 to	

electronic	transitions	between	normally	degenerate	energy	levels	of	d-electrons.	

The	anions	coordinating	the	transition	metals	influence	the	energy	level	of	these	

electronic	transitions	(described	by	the	crystal	field	theory)	affecting	the	colora-

tion	of	the	glass	matrix	and	crystal	phases.	To	further	reduce	the	coloring	effect	

of	the	transition	metals	a	systematic	study	of	the	chemical	composition	of	glass	

using	analytic	techniques	should	be	added	to	the	UV	spectroscopy,	furthermore	

decoloring	agents	(Se,	Mn,	As)	could	be	introduced	to	neutralize	the	effect	of	the	

impurities	present	in	the	starting	materials.	
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