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 Abstract 

Computational investigation of the stability of natural slopes within a coupled hydro-mechanical 

approach becomes more and more attractive due to an increasing number of slope movements caused 

by heavy rainfall events. Seasonal cycles of summer drying and winter-spring wetting affect the 

stability and serviceability of natural and man-made slopes, threatening lives and property worldwide. 

Heavy rainfall will increase the soil moisture content and lead to a reduction in suction and a 

consequent weakening of the soil. As a result, the slope may fail either in a diffused or in a localized 

pattern.  

The localization process is a classical mode of mechanical instability and is described as the 

concentration of shear strains in narrow bands within the soil strata. As it is well-known, the width of 

those bands cannot be properly computed using the standard continuum mechanical approach with 

unstable materials (in the sense of Drucker). In the framework of the standard finite element method 

the computation of shear band phenomena reveals a strong mesh dependency of the numerical 

solution and the objectivity of the computational results is blown. Each mesh refinement results in an 

overall different outcome and the width of the localization band has the size of the element of the 

adopted mesh. In the literature two main categories of methodologies can be found for regularizing 

this problem. One is to simulate the formation and propagation of such discontinuities via suitable 

enrichment functions and is the concept of the so-called extended finite elements. The other solution 

is to exploit enhanced continuum theories. These theories contain an internal length scale which is an 

additional material parameter related to the shear band width and removes the spurious mesh 

sensitivity of the numerical simulation results.  

The present work is focused on the second category. In this context, viscoplasticity and non-local 

theories are adopted to effectively study strain localization mechanism, assuming the soil as a 

multiphase porous medium. This means that the localization analysis is considered as a fully coupled 

hydro-mechanical problem with the material consisting of an elasto-viscoplastic skeleton and open 

pores filled with incompressible liquid water and compressible gas. Both regularization techniques are 

physically sound. Rate dependency is experimentally motivated as the mechanical response of 

granular materials seems to be rapid, but not instantaneous and a viscoplastic constitutive model is 

able to reproduce creep and relaxation processes. The physical interpretation of the non-local theory 

stems from the fact that no real material is an ideal continuous medium and the evolution of the 

microstructure at one point influences the surrounding points when irreversible strains take place.  

Two types of viscoplastic models are applied; the Perzyna and the Duvaut-Lions. The former is 

extended with respect to the non-local integral approach. In the first part of this work, the generalized 

effective stress is limited by the Drucker-Prager yield criterion. The models are implemented and 

numerically validated in the finite element code Comes-geo and further verified by simulating an 

experimental plane-strain biaxial test and a benchmark slope failure problem. This work is in essence 
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aimed at answering key questions, such as: what are the most significant influential factors in the 

development of strain localization for each regularization technique and what is the role of suction 

and drainage conditions; is the viscosity of the soil affected by the presence of water and how does 

this fact influence the regularizing capabilities of the method; how do the internal lengths introduced 

by viscosity and non-locality interact with each other and under which circumstances is the one 

method preferable to the other? 

The second half of this work comprises the extension to viscoplasticity of the existing advanced 

elastoplastic constitutive model for unsaturated sands developed by Buscarnera and Nova. This model 

allows for hydraulic bonding and debonding effects and therefore the main mechanisms of 

unsaturated materials are captured. The elastoplastic version of the model is first implemented in the 

finite element code Comes-geo and validated with results from the literature. The model is then 

extended to viscoplasticity and is also implemented and validated in the code. The proposed 

viscoplastic formulation, as further novelty, is enhanced with the dependence of the constitutive 

parameters on the relative density. To validate the elastoplastic model in the finite element code 

Comes-geo a series of tests are simulated: triaxial shear tests at different suction and net confining 

pressure, oedometric tests with drying and wetting paths and triaxial and plane-strain compression 

tests in drained and undrained conditions. The viscoplastic model is also validated through oedometric 

tests, creep tests and triaxial compression tests on different sand densities. The onset of shear strain 

localization is then studied and the finite element results are compared with the results of a theoretical 

stability analysis. The verification of the viscoplastic model is finalized with the simulation of a 

triaxial compression test.   

The main motivation for the present work stems from these premises and this thesis presents an 

efficient tool to simulate strain localization with regularization techniques, which do not need to 

increase the number of the state variables of the numerical model, taking into account fully coupled 

hydro-mechanical analysis and using advanced constitutive model for unsaturated sands.  

This dissertation has been performed for the first two years in the University of Padova (Italy) and 

for the last year at Baugrund Dresden (Germany), geotechnical design and construction company 

within the Marie Curie Initial Training Network project MuMoLaDe (Multiscale Modelling of 

Landslide and Debris flow, 7th Framework Programme of the European Union, project n. 289911, 

http://www.mumolade.com/). This practice is in the scope of linking academia and industry and the 

transfer of knowledge. In this framework, the advanced elastoplastic and elasto-viscoplastic models 

for unsaturated soils are implemented and validated in PLAXIS commercial finite element analysis 

software. The validation included single element tests of drained and undrained triaxial loading and 

triaxial tests at different suction levels. The implementation is verified and the effectiveness of the 

model is displayed by numerical simulations of a partially saturated slope failure of the laboratory 

scale.  
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  Sommario 

Lo studio numerico della stabilità dei pendii con un approccio idro-meccanico accoppiato è sempre 
più importante e necessario nella pratica ingegneristica a causa del continuo aumento dei fenomeni 
franosi, che determinano perdite di vite umane e danni all’ambiente naturale e costruito. In genere, tali 
fenomeni sono provocati da eventi metereologici violenti, che determinano la riduzione delle forze 
capillari intergranulari e della resistenza del materiale costituente i pendii. Inoltre, anche cicli 
stagionali di essicazione estiva e imbibizione invernale e primaverile favoriscono l’instabilità di 
pendii naturali e artificiali. 

Il collasso dei pendii avviene con un meccanismo diffuso oppure localizzato; in quest’ultimo caso 
avviene mediante la formazione di zone di ampiezza limitata dette bande di taglio in cui si 
concentrano le deformazioni del materiale. Quando si simula numericamente il collasso causato dalla 
formazione di bande di taglio e si utilizza la meccanica classica del continuo di Cauchy con un 
modello costitutivo per materiale instabile nel senso di Drucker, è noto che la larghezza delle bande di 
taglio non può essere calcolata né definita nel modello. In particolare, lo studio numerico di fenomeni 
di localizzazione delle deformazioni con il metodo degli elementi finiti evidenzia una forte 
dipendenza della soluzione numerica e della larghezza delle bande di taglio dalla mesh utilizzata, con 
perdita della soluzione all’infittimento della mesh. Infatti, accade che la larghezza delle bande di 
taglio risulta fissata dalla dimensione dell’elemento finito utilizzato, tendendo a zero al tendere a zero 
della dimensione dell’elemento finito. Di conseguenza, per poter simulare in modo obiettivo fenomeni 
di localizzazione delle deformazioni, è necessario modificare (o regolarizzare) il continuo di Cauchy.  

In letteratura si trovano due classi principali di regolarizzazione a cui ricorrere per risolvere questo 
problema. Il primo propone di simulare la formazione e la propagazione delle bande di taglio 
utilizzando campi discontinui di spostamento, dando origine al metodo degli elementi finiti estesi 
(extended finite element method). Il secondo propone di arricchire il modello continuo a livello 
cinematico oppure a livello costitutivo (enhanced continuum theories), in modo da fornire al modello 
una lunghezza di scala interna da cui dipende la larghezza della banda di taglio, eliminando in questo 
modo il problema della mesh dipendenza citata in precedenza. 

Questa tesi di dottorato è svolta scegliendo di arricchire il continuo di Cauchy a livello costitutivo e 
individua nella viscoplasticità locale e non-locale l’approccio utile allo studio della localizzazione 
delle deformazioni nei suoli. Inoltre, per tenere conto delle interazioni fra la parte solida e quella 
fluida, i suoli sono analizzati come mezzi porosi multifase. Di conseguenza, l’analisi della 
localizzazione delle deformazioni nei suoli è compiuta considerando il materiale dei pendii come un 
mezzo poroso costituito da uno scheletro solido elasto-viscoplastico e pori contenenti acqua liquida e 
aria umida. La scelta delle due tecniche di regolarizzazione sopra citate è stata dettata dal loro 
significato fisico, in quanto la risposta meccanica dei materiali granulari non è istantanea a causa dei 
processi viscosi o di rilassamento. Inoltre, l’introduzione della teoria non-locale deriva dalla 
considerazione che nessun materiale reale è un continuo nel senso matematico, a causa 
dell’evoluzione della microstruttura in un punto materiale che influenza i punti del suo intorno quando 
si sviluppano deformazioni irreversibili. 
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In questa tesi sono utilizzati due approcci viscoplastici: quello di Perzyna e quello di Duvaut-Lions. 
Il primo è stato esteso con l’approccio non-locale. Nella prima parte di questo lavoro di tesi i modelli 
viscoplastici sono sviluppati utilizzando il criterio di snervamento di Drucker-Prager, implementati 
nel codice agli elementi finiti Comes-geo, validati e verificati numericamente simulando test 
sperimentali di compressione biassiale in stato piano di deformazione e un test numerico di collasso di 
un pendio. Questa parte del lavoro ha lo scopo di rispondere alle seguenti domande-chiave sulla 
localizzazione delle deformazioni nei mezzi porosi viscoplastici: quali sono i fattori più importanti 
che influenzano lo sviluppo della bande di taglio e qual è il ruolo delle pressioni capillari e delle 
condizioni di drenaggio; se la viscosità dei suoli è influenzata dalla presenza dell’acqua e se influenza 
le proprietà di regolarizzazione del metodo locale o non-locale; come interagiscono la lunghezza di 
scala interna indotta dalla viscosità e quella introdotta dalla non-località; quando un metodo è 
preferibile ad un altro. 

La seconda parte di questo lavoro di tesi ha per oggetto lo sviluppo di un nuovo e avanzato modello 
viscoplastico a partire dal modello costitutivo elasto-plastico per le sabbie parzialmente sature 
proposto da Buscarnera e Nova. Questo modello permette di simulare i principali meccanismi del 
comportamento micromeccanico di materiali parzialmente saturi, ovvero la coesione idraulica 
(hydraulic bounding) e gli effetti di decoesione (debonding) nelle sabbie. Questa parte del lavoro è 
stata svolta in due fasi; nella prima fase si è discretizzato e implementato il modello elasto-plastico nel 
codice agli elementi finiti Comes-Geo, successivamente validato utilizzando risultati di letteratura. In 
particolare sono state simulate: test di taglio a vari valori di pressione capillare (suzione) e pressione 
di confinamento, test di compressione edometrica con percorsi di desaturazione e saturazione e test di 
compressione drenata e non drenata in condizione di stato piano di deformazione. Nella seconda fase, 
questo modello è stato esteso alla viscoplasticità, in modo da tener conto del comportamento viscoso 
delle sabbie, implementato nel codice Comes-Geo e validato simulando prove di laboratorio di 
letteratura. La formulazione viscoplastica proposta è stata poi arricchita formulando la dipendenza dei 
parametri costitutivi dalla densità relativa. Il modello viscoplastico di base e quello arricchito sono 
stati validati simulando prove di compressione edometrica, prove di viscosità e prove di compressione 
triassiale a vari valori di densità. Inoltre, con il modello arricchito, è stata simulata una prova di 
localizzazione su sabbie dense e sciolte e i risultati numerici ottenuti sono stati confrontati con i 
risultati dell’analisi di stabilità.  

Con questa tesi si è sviluppato uno strumento numerico efficiente per la simulazione della 
localizzazione delle deformazioni con metodi regolarizzati che non necessitano di aumentare il 
numero di variabili di stato e che utilizza modelli costitutivi avanzati considerando il comportamento 
idro-meccanico accoppiato delle sabbie parzialmente sature. 

Questo lavoro è stato svolto presso l’Università degli Studi di Padova (Italia) durante i primi due 
anni di dottorato e presso l’unità di ricerca e sviluppo della società di progettazione e costruzione 
Baugrund Dresden (Germania) durante il terzo anno di dottorato; l’attività è stata svolta all’interno del 
progetto Marie Curie Initial Training Network MuMoLaDe (Multiscale Modelling of Landslide and 
Debris flow), 7th Framework Programme of the European Union, progetto n. 289911, 
http://www.mumolade.com/. I modelli costitutivi avanzati elasto-plastico e viscoplastici sono stati 
inoltre implementati e validati anche nel codice commerciale agli elementi finiti Plaxis durante la 
collaborazione con Baugrund Dresden. 
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 Chapter 1: Introduction and Overview 

1.1 Motivation and State of the Art 
Localization of deformation into shear bands is one of the most interesting bifurcation problems in 

solid mechanics as it is considered to be the precursor of failure. As is well known, the occurrence of 

those bands within the soil strata can eventually lead to the activation of dramatic slope failures, 

Figure 1.1.  

 
Figure 1.1: Strain Localization: experimental evidence [12] and real massive landslide obstructing 

highway in Taiwan. 
 

In the early 1900s, Mohr gave his perspective by pointing to the following general property of 

localized deformation: 

"…The deformations observed in a homogeneous body after the elasticity limit [is reached] are not 

confined in the smallest domains of the body. They consist more or less in that, parts of the body of 

finite dimension displace with respect to each other on two sets of slip bands…" 

In order to properly characterize the mechanisms of strain localization, investigation is needed both 

numerically and experimentally. Experimental studies of strain localization in varieties of 

geomaterials have been performed extensively for the last decades, e.g. Vardoulakis (1980), Tatsuoka 

et al. (1990) and Desrues et al. (1996). It is shown that shear banding can take place in both 

contractive and dilative specimens, but for the latter the onset of localization is delayed until 

cavitation takes place in the pore-fluid (Mokni and Desrues (1998)). Moreover, it was found that 

strain localization is affected by various factors, such as the mean diameter of the particles, the 

confining stress, the density and the shear conditions and that in axisymmetric tests strain localization 

may remain more or less hidden inside the specimen and therefore a single well-defined shear band 

rarely develops (Lade, 1982 and Alshibli et al., 2003). Therefore, most of the experimental campaigns 
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on localization have been performed in biaxial apparatus, where this latter process is clearly 

evidenced. 

From a mechanical standpoint, localization in geomaterials is analysed as a material instability 

which starts to grow within a small part of a body and then may propagate until the global behaviour 

is strongly affected. In such a case, the constitutive relationship violates the stability criterion (Hill, 

1958) which states that the inner product of the stress rate and the strain rate must be positive. 

As it is well known, this inner product becomes negative when, in a uniaxial tension or compression 

test, the slope of the homogenized axial stress-axial strain curve is negative; the so-called strain 

softening phenomenon. However, apart from softening behaviour, the use of a non-associated flow 

rule may contribute to material instability as well, as clearly indicated by Rudnicki and Rice (1975). 

As a consequence of the aforementioned behaviour, the homogeneous deformation state which can be 

observed at the beginning of the loading, swaps into an inhomogeneous state indicated by the 

occurrence of shear bands, Figure 1.2 (Desrues and Viggiani, 2004). 

Furthermore, the loss of positive definiteness of the second order work criterion is governed by the 

symmetry properties of the stiffness matrix (D) and according to Imposimato and Nova (1998) the 

Hill’s criterion can be violated for the first time when the determinant of the symmetric part of the 

stiffness matrix becomes zero. It is interesting to observe that when the flow rule is non-associated, 

the loss of positive definiteness of the symmetric part of the stiffness matrix (detDs = 0) will occur 

while the determinant of the stiffness matrix is still positive (detD > 0). This is because non-

associativeness implies non-symmetry of the stiffness matrix and this in turn implies that the 

uniqueness of the incremental response can be lost even in the hardening regime, i.e. before the 

conventional limit locus under stress control is attained.  

 
Figure 1.2: Stress-strain response of dense Hostun sand (test shf06) and stereophotogrammetry-based 

incremental fields of shear strain (top row) and volumetric strain (bottom row) [40]. 
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The bifurcation analysis is a widely recognized theory for strain localization, which specifies the 

condition for the emergence of a shear band within a homogeneous stress and strained media. It is 

important to underline that this classical theory has three major drawbacks.  First of all it analyses the 

emergence but not the development of shear band. Secondly, it does not guarantee that the shear band 

will actually emerge and finally, it does not give the thickness of the shear band and it precludes post-

localization analysis (Bardet, 1990). Moreover, classical theory of plasticity applied to the simulation 

of localization phenomena leads to ill-posed problems due to the absence of an internal length scale. 

More specifically, in quasi-static rate-boundary value problem the governing partial differential 

equations are elliptic prior to localization and exclude discontinuous solutions. At the onset of 

localization, as a consequence of material instability, these equations are changing type from elliptic 

to hyperbolic. Slip-lines and shear-bands are thus identified with the characteristic lines of the 

governing hyperbolic partial differential equations (Exadaktylos & Vardoulakis, 2007). Ellipticity is a 

necessary condition for well-posedness of the rate boundary value problem, in the sense that a finite 

number of linearly independent solutions are admitted, continuously depending on the data and not 

involving discontinuities (Benallal et al., 1991). Mathematically, loss of ellipticity occurs when the 

tangent modulus ceases to be positive and the acoustic tensor becomes singular (that is the 

determinant of the acoustic tensor is equal to zero). It is emphasized that ellipticity is a local condition 

and is one of the three conditions that are necessary for the well-posedness of the rate boundary value 

problem. The other two conditions are the satisfaction of the boundary complementing condition and 

the satisfaction of the interfacial boundary condition when the solid is heterogeneous. 

Similarly, in dynamic problems, the governing equations of motion cease to be hyperbolic and 

become elliptic. In this case, the domain is split up into an elliptic part, in which waves have 

imaginary wave speeds and are not able to propagate (standing waves), and into a hyperbolic part with 

propagating waves (Sluys, 1992). Thus, the initial value problem becomes ill-posed and can no longer 

be a proper description of the underlying physical problem. Because of the inability of the standing 

waves to propagate, localization is then possible in a so-called set of measure zero, with no energy 

consumption.  

As a consequence, in computations using finite element methods, the finite element model attempts 

to simulate the localization zone of zero thickness resulting in pathological dependence on 

discretization and in excessive mesh sensitivity. Obviously, such a behaviour leads to unphysical 

results, as from experimental investigations it can be seen that the width of the shear band is directly 

connected with a micro-structural length scale. For example, Roscoe (1970) based on direct 

experimental observations, proposed that the width of shear bands is about 10 times the averaged 

grain diameter.  It is emphasized that the same problem is present in all discretization methods, for 

instance in the (meshless) finite difference method the spacing of nodes determines the width of a 

simulated localization zone. 
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To overcome this pathological mesh sensitivity and to ensure objectivity of the numerical results, 

the ill-posed problem has to be regularized and, therewith, to be transferred into a well-posed 

problem.  Two main categories of methodologies can be found in the literature.  

The first is to simulate the formation and propagation of such discontinuities via suitable enrichment 

functions and is the concept of the so-called extended finite elements, XFEM, (e.g. Babuška and 

Melenk 1997). The XFEM takes the advantage of the partition of unity property of finite elements, 

which allows a global enrichment to be incorporated locally. The standard approximation is enriched 

in a region of interest by a suitable global function multiplied by a linear combination of the standard 

shape functions associated with the nodes in that region.  

The other solution is to exploit enhanced continuum theories. These theories contain an internal 

length scale which is an additional material parameter related to the shear band width and removes the 

spurious mesh sensitivity of the numerical simulation results. 

Along these lines, various modifications and generalizations of standard continuum plasticity have 

been proposed to avoid the mesh-sensitivity problem in localization simulation of single phase 

materials. One of these is the so-called gradient plasticity, where higher order gradients of the plastic 

strain are considered in the material model, e.g. Mühlhaus and Aifantis (1991), de Borst and 

Mühlhaus (1992), Sluys et al. (1993) and Voyiadjis et al. (2001). The constitutive model involves the 

second gradient of the plastic strain measure in the yield or potential function and results in a well-

posed set of partial differential equations.  

In contrast to this mainly numerical motivated regularization technique, a regularization of the ill-

posed localization problem can also be obtained by a detailed consideration of the material properties; 

Needleman (1988), Loret and Prevost (1990), Sluys (1992) and Oka et al. (1995) and (2002) 

introduced rate-dependence in their constitutive models. As indicated by the above authors and by Wu 

and Freund (1984) and Sluys and de Borst (1991), rate-dependence naturally introduces a length scale 

parameter, even though the constitutive equations do not contain a material parameter with dimension 

of length. It is noteworthy, that for dynamic analysis the width of the localization band can be 

predicted a priori as a function of material parameters, Sluys (1992). The stress waves, that produce 

loading and unloading paths, travel at a celerity which depends only on the material parameters, thus 

the band width depends on the stress wave celerity and the viscous effects. Moreover, Wang (1997) 

investigate the width of the localization zone in viscoplastic solid under dynamic loading and he 

alleged that, in the absence of imperfections, the key parameters which determine the width of the 

localization band are the viscosity and the softening modulus. An increase of viscosity or a less 

negative value of softening (for less brittle behaviour) leads to a widening of the localization zone. In 

contradiction, in quasi-static analysis (inertia effects are not considered) the velocity governing the 

loading and unloading, is no longer the stress wave celerity but the external load velocity. Therefore, 

the band width is not governed exclusively by the material parameters but it mostly depends on the 

load velocity. Indeed, Needleman (1988) demonstrated that in case of one-dimensional problems the 
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load velocity plays a crucial role in the resulting band width. Moreover, as it is discussed in Diéz et al. 

(2000) when the load velocity decreases, the viscoplastic solution tends to the elastoplastic one. Thus, 

if loading velocity is very small the band width is very narrow and the viscoplastic solution has the 

same deficiencies as the elastoplastic one (e.g. pathological mesh dependent results). Nevertheless, for 

quasi-static or dynamic problems, viscoplastic models still considered as a powerful tool for the 

regularization procedure.   

In the case of granular material, the micropolar properties of the underlying microstructure can be 

taken into account with the application of the Cosserat or micropolar theory. This approach goes back 

to the Cosserat brothers in 1909. A first application of the Cosserat theory to the regularization of ill-

posed localization problems is demonstrated in papers by Mühlhaus (1986), Mühlhaus and 

Vardoulakis (1987) and de Borst (1991). The basic idea of this extended continuum theory is to assign 

to each material point rotational degrees of freedom in addition to the standard translational degrees of 

freedom.  The regularizing effect is due to the additional quantities of couple stress and curvature, 

which are related to each other by a constitutive relation containing usually an internal length scale. 

However, the application of the Cosserat theory significantly increases the numerical effort of solving 

a boundary-value problem, because of the introduction of the rotations as additional degrees of 

freedom.  

Finally, another possibility for the regularization is the averaging of strain measures over a finite 

region, which yields to the so-called integral or non-local continua, e.g. Bažant and Lin (1988), 

Brinkgreve (1994) and Jirásek (2002). The non-local theory is based on the idea that the response of 

the material at a point is determined not only by the state at that point but also by the state of its 

neighboring points. In this approach, the averaging function contains the internal length by which the 

influence of the regularization method on the numerical solution is established. Moreover, the 

application of the non-local model is not restricted with respect to certain types of boundary-value 

problems or specific materials. An excellent overview on the physical motivations of non-locality and 

related numerical issues can be found in Bažant and Jirásek (2002). 

An increasing number of papers related to strain localization problems in multiphase porous media 

have been published in recent years due to the importance of considering the fluid-solid interaction for 

the better understanding of the phenomenon. The general behaviour of the medium depends not only 

on the skeleton response (solid phase) to a given loading path, but also on the interactions occurring 

between the different phases of the medium (i.e. water, gas, oil). Capillary effects, temperature 

variations, chemical reactions induce specific behaviours, which have to be modeled by multiphysical 

constitutive laws. The numerical tools for the modeling of post failure problems have thus to be 

extended to this multiphysic context and questions concerning the interactions between localization 

and physical processes (like cavitation) can be answered. 

According to Schrefler et al. (1996), Zhang et al. (1999) and Schrefler et al. (2006) in the numerical 

simulation of strain localization on multiphase materials an internal length scale may be naturally 
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introduced through Darcy’s law and the related constitutive relationship for permeability. It has been 

shown by the same authors that this internal length scale may confer a regularization effect on the 

numerical solution in dynamic localization analysis only for axial waves, whereas this is not valid 

under quasi-static conditions where the internal length scale associated with permeability disappears. 

Reliable experimental observations have been difficult and the physical understanding of the nature of 

the problem is not yet satisfactory. 

In the framework of multiphase porous media the aforementioned regularization techniques such as 

gradient plasticity models (e.g. Zhang and Schrefler (2000)), rate-dependent constitutive models (e.g. 

Loret and Prevost (1991), Liu (2003), Ehlers et al. (2004)) or micropolar continua (Ehlers and Volk 

(1998)) are usually adopted. The integral or non-local continuum, to the best of the author’s 

knowledge, has not been commonly used as an alternative solution for regularization in the context of 

multiphase porous media. 

Apart from the still posed question of the mesh dependency on the development of shear bands, 

another important issue is the constitutive modelling of the mechanical behaviour of variably 

saturated soils in the context of coupled hydro-mechanical analysis.  

A large number of constitutive models can now be found in the literature that consider fundamental 

issues associated with the unsaturated soil behaviour, like the volume change and shear strength 

behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse 

upon wetting depending on the stress level, and it is also possible that a soil might experience a 

reversal in the volumetric behaviour during wetting (initial expansion followed by collapse). Shear 

strength of soils also changes dramatically with changes on the degree of saturation, and a related 

engineering problem is slope failures caused by rainfall. There are several state of the art reviews over 

the last years  for studying the topic (see e.g. Cui and Sun (2009), Gens (2010), Sheng (2011) etc.) 

that usually provide a thorough discussion of the stress state, the advantages and disadvantages of 

specific constitutive models as well as the latest developments in the area of unsaturated soil 

modelling.  

It is now generally accepted that two independent constitutive stress quantities are necessary for the 

description of the mechanical behaviour of partially saturated soils. One of the most commonly used 

pair is the net total stress (σ – pg) and the suction (pg – pw), e.g. Alonso et al. (1990), Wheeler and 

Sivakumar (1995), Cui and Delage (1996). Another common choice is the average skeleton stress (σ' 

= σ – 1[(1– Sw)pg + Swpw) together with the suction, e.g. Jommi and di Prisco (1994), Bolzon et al. 

(1996), Jommi (2000), Sheng et al. (2004), Borja (2006), Della Vecchia et al. (2013).   

Borja (2004) has combined this effective stress formulation with the strain localization theory, 

elucidating the key role of suction and drainage conditions on the mechanics of shear failure. More 

recently, Borja et al. (2013) emphasized the importance of mechanical and hydrologic heterogeneities 

on triggering strain localization, using a ‘nonstandard’ critical state model for sand. Buscarnera and 

Nova (2011) and Mihalache and Buscarnera (2014) combined an elastoplastic constitutive model for 
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unsaturated soils with the concept of controllability, providing a unified strategy for tackling both 

diffused and localized failure modes on the material point level. 

Concluding this state of the art, it is clear that the understanding of the fundamental mechanisms of 

localization phenomena is a wide field in the current research and it is also the motivation of the 

present work. 

1.2 Basic Features 
The goal of this contribution is to develop efficient numerical techniques and constitutive models 

for the objective simulation of strain localization in the framework of coupled hydro-mechanical 

analysis. To accomplish this task, throughout this thesis viscoplasticity is adopted as regularization 

technique in the post bifurcation regime.  

The consideration of rate-dependency has been proved to be an appropriate solution, by introducing 

implicitly a characteristic length through the viscous parameter, without adding extra degrees of 

freedom in an existing finite element code. Moreover, according to experimental evidence (e.g., di 

Prisco and Imposimato (1996)), the mechanical response of granular materials is very rapid but not 

instantaneous, setting the physical background for the application of viscoplasticity. However, di 

Prisco et al. (2002) admit that in case of weakly rate-sensitive materials artificial viscosities have to be 

chosen to obtain objective finite element results. To ensure a regularized numerical solution 

physically based and following di Prisco et al. (2002), the viscoplastic model is expanded with respect 

to another regularization technique, namely the non-local approach. The physical interpretation of the 

non-local approach stems from the fact that no real material is an ideal continuous medium and the 

evolution of the microstructure at one point influences the surrounding points when irreversible 

strains take place. Moreover, to the author’s knowledge, the non-local approach has not been 

commonly used in the context of the multiphase porous media, which intrigued its application in the 

context of this thesis. 

Classical viscoplasticity (which from this point on will be referred as local to distinguish from non-

local) and its non-local version are formulated and implemented in the finite element code Comes-geo 

(Gawin and Schrefler (1996), Gawin and Sanavia (2009), Gawin and Sanavia (2010), Sanavia et al. 

(2006) and Sanavia et al. (2008)) based on the multiphase porous media model developed in Lewis 

and Schrefler (1998) and are then applied to a plane-strain compression test in case of dense Hostun 

RF sand. The examined problem was first simulated in Sanavia et al. (2006) where a rate-independent 

behaviour for the soil skeleton was assumed. The goal was to emphasize the benefits of using a 

multiphase model to study phase change phenomena, such as that of cavitation (experimentally 

observed in Mokni and Desrues (1998)) at strain localization and therefore a suitable mesh was used 

to avoid excessive mesh dependency. Herein, the mesh dependence of the elastoplastic solution of the 

previous work is first illustrated and the regularizing effect of local and non-local viscoplastic models 

on the respective numerical simulations is investigated. Two types of viscoplastic models are applied; 
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the Perzyna (1966) and the Duvaut-Lions (1972). The validation of the implementation is presented 

and an extensive discussion about the parameters important for the strain localization development 

and the formation of localization pattern follows. The models are then used to investigate the hydro-

mechanical coupling in a slope stability problem. 

The second aim of this research is to use advanced constitutive models for sands to study strain 

localization at a constitutive level. The part of this work has been done in collaboration with Professor 

Claudio di Prisco from Politecnico di Milano and Assistant Professor Federico Pisanò from Delft 

University of Technology. An advanced elastoplastic constitutive model for sands allowing for 

hydraulic bonding and debonding effects (Buscarnera and Nova (2009)) is implemented and validated 

in the finite element code Comes-geo. The model is then extended to viscoplasticity and the novelty 

of the formulation is enhanced with the dependence of the constitutive parameters on the relative 

density. This enrichment allows for modeling the transition from dense to loose states and vice versa. 

The viscoplastic model is also implemented in the Comes-geo code and validated with results from 

the literature. The verification of the viscoplastic model is finalized with the simulation of triaxial 

compression tests; the onset of shear strain localization is studied and the finite element results are 

compared with the results of a theoretical stability analysis.  

Finally, the advanced elastoplastic and elasto-viscoplastic models for unsaturated soils are 

implemented and validated in PLAXIS commercial finite element analysis software. This practice is 

in the scope of linking academia (UNIPD) and industry (BAUGRUND DRESDEN) and the transfer 

of knowledge within the MuMoLaDe research project. 

1.3 Thesis Layout 

The thesis is divided into seven main chapters with the following content. 
 

In Chapter 2 the mathematical model for describing the thermo-hydro-mechanical behaviour of 

variably saturated porous medium is presented. This includes the balance equations and the 

constitutive assumptions. The set of equations resulting from the introduced model are then 

discretized in both space and time. A brief description of the finite element code Comes-geo is also 

given. 

The mathematical model is completed in Chapter 3 with the constitutive models adopted for the 

solid skeleton of the multiphase medium. The mechanical behaviour of the soil is described in the 

framework of elasto-viscoplasticity and the generalized effective stress is limited with a Drucker-

Prager yield criterion as a first approximation. The basic features on the theoretical background of 

local (Perzyna and Duvaut-Lions) and non-local viscoplasticity (only Perzyna) are presented along 

with the algorithmic treatment of the constitutive equations. The chapter closes with the merits and 

drawbacks of each regularization model. 

Chapter 4 shows the validation and the regularization capabilities of the three implemented models 

by simulating strain localization in a biaxial plane-strain compression test from the literature. Mesh 
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sensitivity analysis is conducted and the influence of factors such as, loading rate, soil permeability, 

suction, draining conditions and internal lengths interaction on the initiation and formation of 

localization pattern is presented in detail. The remaining part of the chapter is devoted to the 

numerical investigations of a slope failure by means of porous media mechanics. 

Chapter 5 of the thesis is subdivided into two main parts. The first part describes the main features 

of an existing elastoplastic constitutive model capable of capturing the behaviour of variably saturated 

soils. The validation of the implementation in Comes-geo code is performed through single element 

analyses and comparison of the results with data taken from the literature. The second part includes 

the derivation, formulation and implementation of the viscoplastic model developed during this 

research as an extension of the previous described elastoplastic model. The viscoplastic model is 

validated through creep tests and triaxial compression tests on different sand densities. Particular 

emphasis is given to the definition of viscous nucleus. These analyses also highlight the model 

features. The chapter closes with the verification of the viscoplastic model with a numerical example 

and a considerable effort is made to illustrate the ability of the model to describe the onset of the 

localized failure. 

This thesis is concluded with the implementation and validation of the advanced elastoplastic and 

elasto-viscoplastic models for unsaturated sands in PLAXIS commercial finite element analysis 

software in Chapter 6. The effectiveness of the viscoplastic model is displayed by numerical 

simulations of a partially saturated slope failure of the laboratory scale.  

Finally, Chapter 7 introduces a brief summary, conclusions, and proposals for future developments 

of the presented research work. 
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 Chapter 2: Mechanics of Porous Media: Mathematical Model and 
Numerical Treatment 

2.1 Introduction 
The mathematical model to simulate the thermo-hydro-mechanical behaviour of fully and partially 

saturated porous media was developed within the Hybrid Mixture Theory (HMT) by Lewis and 

Schrefler (1998) and Schrefler (2002) using averaging theories according to Hassanizadeh and Gray 

(1979, 1980) with balance laws upscaled from micro-scale to macro-scale and thermodynamic 

statements at the macroscopic level. An alternative would be the adoption of the Thermodynamically 

Constrained Averaging Theory (TCAT) of Gray and Miller (2013, 2014) which upscale also 

thermodynamics from the micro-scale but the formalism makes a rather difficult comparison. Hybrid 

Mixture Theory is maintained in this thesis because it was deemed sufficient for our purpose. 

This chapter is concerned with the description of partially saturated porous media mainly at the 

macroscopic level. Therefore, fundamentals of mechanics of multiphase porous media are briefly 

introduced. This includes the averaging process principles and the balance relations in a general and a 

specific form presented both for dynamic and quasi-static loading conditions. The mathematical 

modelling is completed by introducing the constitutive relations, which are able to describe the fluids 

response whereas the constitutive equations for the solid skeleton of the material are presenting in 

Chapters 3 and 5. The discretization of the governing equations both in space and time and the 

linearization of the final set of equations close this chapter. 

2.2 Preliminaries and Assumptions 
In the framework of realistic description of natural geomaterials it is necessary to proceed from an 

unsaturated soil based on a multiphase model. Therefore, the variably saturated porous medium is 

treated as a multiphase system composed of the solid skeleton (s) and open pores filled with liquid 

water (w) and gas (g). The gas phase is assumed to behave as an ideal mixture of dry air (non-

condensable gas, ga) and water vapour (condensable gas, gw). At the macroscopic level the porous 

material is modelled by a substitute continuum of volume Ω with boundary Γ that simultaneously fills 

the entire domain, instead of the real fluids and the solid which each fill only a part of it.  

In this substitute continuum each constituent π = 1,2, …, k  has a reduced density which is obtained 

by means of the volume fraction concept. Volume fractions are given by the ratio of the volume of the 

constituents to the volume of the control space:  

( ) ( )π π
m

1, ,
dv

t dv dv t dv
dv

πη = = γ∫ rx  (2.1) 

In Equation (2.1) dv is the volume of the representative elementary volume, REV, of the porous 

medium and dvπ is the volume occupied by the constituent π in dv, x is the vector of the spatial 
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coordinates, t is the current time, ( ), tπγ r  is a phase distribution function, Equation (2.2), while r 

indicates the position of a microscopic volume element dvm. 

( )
π1 per

,
0 per

dv
t

dv
π

α

∈
γ =

∈ α ≠ π





r
r

r
 (2.2) 

It is recalled that a REV (Figure 2.1) is an averaging volume that can be centered at each point in the 

system and always contain both the solid phase and the porous space. The size of the REV is an 

important choice. Average quantities have to be independent of the size of the REV and continuous in 

space and time. Thus the size of the REV has to be small enough to be considered as infinitesimal (i.e. 

the partial derivatives appearing in the governing equations must make sense) and, at the same time, 

must be large enough, with respect to the heterogeneities of the material, to provide average quantities 

without fluctuations (Figure 2.2). 

 
Figure 2.1: Typical averaging volume dv of porous medium consisting of three constituents [93]. 

 

 
Figure 2.2: Averaged value of ζ versus size of the average volume dv [93]. 
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 To obtain meaningful average values, the characteristic length l of the average volume must satisfy 

the inequality d << l << L and l depends on the specific material which constitutes the medium. 

Typical values of the size of the REV can be found in Lemaitre and Chaboche (1988) i.e. 0.5mm for 

metals and 10mm for wood. Usually there are no boundary conditions associated with a REV, except 

in the case of the megascopic level or in the case of a medium with periodic structure. 

In the following, averaged quantities are obtained by integrating a microscopic quantity over the 

volume, dv, of a REV resulting in a field of macroscopic variables where the average volume, dv, is 

associated with material points. In particular, the following average operators are defined and applied 

to a function, ζ(r,t), which is a microscopic field variable.  

First the volume average operators are illustrated. The phase average is: 

( ) ( ) ( ) m
1

, , ,
dv

t t t dv
dv

π
π

ζ = ζ γ∫x r r  (2.3) 

and the intrinsic phase average is: 

( ) ( ) ( ) m
1

, , ,
dv

t t t dv
dv

π π
ππ

ζ = ζ γ∫x r r  (2.4) 

From the definition of volume fraction (Equation (2.1)) it follows that: 

( ) ( ) ( ), , ,t t tππ
π π

ζ = η ζx x x  (2.5) 

The mass average operator, with ρ(r,t) microscopic mass density as weighting function, is: 

( )
( ) ( ) ( )

( ) ( )

m

m

, , ,
,

, ,
dv

dv

t t t dv
t

t t dv

π

π
π

ρ ζ γ

ζ =
ρ γ

∫

∫

r r r
x

r r
 (2.6) 

The area average operator is: 

( ) ( ) ( ) m
1

, , ,
da

t t t da
da

π πζ = ζ ⋅ γ∫x r n r  (2.7) 

with n the outward normal unit vector of an area element mda . 

2.3 Microscopic Balance Equations 
The microscopic situation of any π phase is described by the classical balance equations of 

continuum mechanics. At the interfaces with other constituents, the material properties and 

thermodynamic quantities may present step discontinuities.  

For a generic conserved variable, ψ, the conservation equation within the π phase may be written as: 

( ) ( )div div b G
t

∂ ρψ
+ ρψ − − ρ = ρ

∂
r i  (2.8) 
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where ṙ is the local value of the velocity field of the π phase at a fixed point in space, i is the flux 

vector associated with ψ, b is the external supply and G is the net production of ψ.  

The particular balance laws will be obtained by substituting the proper variables for ψ, i and b 

depending on the type of phenomenon being considered. The general balance law Equation (2.8) is 

not valid at a surface of discontinuity and in particular at the interfaces. At the interface between two 

constituents π and α, the jump condition holds: 

( ) ( ) 0πα απ
π αρψ − + ⋅ + ρψ − + ⋅ =      w r i n w r i n   (2.9) 

where w is the velocity of the interface, nαπ is the unit normal vector pointing out of the π phase and 

into the α phase with nπα =  ̶ nαπ and │π symbol indicates that the preceding terms in the square 

brackets must be evaluated with respect to the π phase.  

No thermomechanical properties are attributed to these interfaces. This assumption does not exclude 

the possibility of exchange of mass, momentum or energy between the constituents. Moreover the 

local thermodynamic equilibrium hypothesis is assumed to hold because the time scale of the 

modelled phenomena is substantially larger than the relaxation time required to reach equilibrium 

locally.  

The general form of conservation equations for mass, momentum, energy and entropy is given by 

Equation (2.8). The variables introduced in Table 2.1 may be substituted into Equations (2.8) and 

(2.9) to obtain individual microscopic balance equations for each microscopic quantity. As an 

example by replacing the corresponding values of the first row of Table 2.1 into Equation (2.8), the π-

phase mass balance equation is derived: 

( )div 0
t

∂ρ
+ ρ =

∂
r  (2.10) 

Table 2.1: Thermodynamic properties for the microscopic mass balance equations. 
Quantity ψ i b G 

Balance of mass 1 0 0 0 

Balance of linear momentum ṙ tm g 0 

Balance of energy E+0.5 ṙ·ṙ tm ṙ  ̶  q g·ṙ + h 0 

Entropy inequality λ Φ s φ 

 

In Table 2.1, E is the specific intrinsic energy, λ the specific entropy, tm the microscopic stress 

tensor, q a heat flux vector, Φ the entropy flux, g the external momentum supply related to 

gravitational effects, h the intrinsic heat source, s an intrinsic entropy source and φ denotes an 

increase of entropy. The constituents are assumed to be microscopically non polar, hence the angular 

momentum balance equation has been omitted.  

The microscopic equations are then integrated over the REV, using spatial averaging operators, to 

give the macroscopic balance equations. 
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2.4 Macroscopic Balance Equations 
In this section the macroscopic balance equations for mass, linear momentum, angular momentum 

and energy as well as the entropy inequality for a deforming porous material are presented. The 

starting points are the microscopic balance equations (Equation (2.8)) where, for each constituent, the 

generic thermodynamic variable, ψ, is replaced by appropriate microscopic quantities, suitable for a 

microscopic non-polar material. The macroscopic equations have been obtained by systematically 

applying the averaging procedures to the microscopic balance equations. 

For a proper description of the non-isothermal unsaturated porous medium we need to take into 

account not only heat conduction and vapour diffusion, but also heat convection, liquid water flow 

due to pressure gradients or capillary effects and latent heat transfer due to water phase change 

(evaporation and condensation) inside the pores. Furthermore the solid is deformable, resulting in 

coupling of the fluid, the solid and the thermal fields. 

 The constituents are assumed to be isotropic, homogeneous, immiscible except for dry air and 

water vapour, and chemically non-reacting. At micro level, solid and liquid water are incompressible, 

while gas is compressible. All fluid phases are in contact with the solid phase. Dissolution of air in 

water is here neglected. Because of the local thermodynamic equilibrium hypothesis, the temperatures 

of each constituent at a point in the multiphase medium are taken to be equal. This does not mean that 

the temperature is uniform throughout the medium but only that at each point one temperature is 

sufficient to characterize the state. Momentum exchanges due to mechanical interaction are 

independent of the temperature gradient.  

It is noteworthy that in this section the formulation is still material free and no specific assumptions 

for the material behaviour have been introduced so far, except for the earlier general assumptions. 

Appropriate constitutive relations will be introduced in section 2.5. For the sake of brevity, the 

kinematic description is omitted here. For the interested reader it can be found in Lewis and Schrefler 

(1998).  

In the following, stress is defined as tension positive for the solid phase, while pore pressure is 

defined as compressive positive for the fluids. 

2.4.1 Mass Balance Equations 
The volume fractions, ηπ of the constituents are defined as follows:  

For solid: 

 ηs = 1- n where n = (dvw +dvg)/dv is the porosity and dvπ is the volume of constituent π within a 

REV. 

For water:  

ηw = nSw where Sw = dvw/(dvw +dvg) is the degree of water saturation. 

For gas:  

ηg = nSg with Sg = dvg/(dvw + dvg) the degree of gas saturation. 
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Figure 2.3: Soil composition. 

 

It follows immediately that 

g w 1S + S =  (2.11) 

• Solid phase 

The macroscopic mass balance equation for the solid phase reads: 

( )
( )

s s
s

1 ρ
ρ 1 div 0s

D n
n

Dt

 −  + − =v  (2.12) 

where ρs is the intrinsic phase averaged solid density and sv  is the mass averaged solid velocity. The 

same simplified notation will be used for the other constituents, once π is accordingly specified.  

It is reminded that the intrinsic phase averaged density of a phase is linked to its phase averaged 

density ρπ by ρπ = ηπρπ and that the operator Ds / Dt is the material time derivative with respect to the 

solid skeleton (and is defined in the same way for other π phases). 

• Liquid phase: water 

The macroscopic mass balance equation for water has the following form: 

w w
w w w wρ ρ ρ (ρ)D div e

Dt
+ =v  (2.13) 

where the term ρw ew (ρ) is non-zero, because water may change into vapour or vice versa. Hence we 

have that: 

w wρ (ρ)e m= −   (2.14) 

and is the quantity of water per unit time and volume, lost through evaporation. 

• Gaseous phase: dry air and vapour 

The gaseous phase here is a multi-component material, composed of two different species: dry air 

and vapour. These species are miscible and therefore have the same volume fraction nSg. For vapour 

(π = gw) the mass balance equation is written as: 
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g
gw gw gw gw g

g g g( ρ ) div( ρ ) ρ divD nS nS nS m
Dt

+ + =u v   (2.15) 

where  πg π gπ = = −u v v v , is the macroscopic diffusive dispersive velocity. 

We introduce now the diffusive-dispersive mass flux of component gw as follows (Eringen and 

Suhubi (1964)): 

gw gw gw
g gρnS=J u  (2.16) 

which allows us to write Equation (2.15) as: 

g
gw gw g

g g( ρ ) div( ) ρ divgw
g

D nS nS m
Dt

+ + =J v   (2.17) 

The mass balance equation for dry air is given by Equation (2.18) with appropriate superscripts and 

subscripts (π = ga), and an exchange term equal to zero. 

ga
ga ga ga

g g( ρ ) ρ div 0D nS nS
Dt

+ =v  (2.18) 

The mass balance equation for the whole gaseous phase (mixture of vapour and dry air) is obtained by 

summing the macroscopic balance equations of the two species and using appropriate definitions for 

bulk properties of the gaseous phase (Hassanizadeh (1986)): 

g
g g g

g g( ρ ) ρ divD nS nS m
Dt

+ =v   (2.19) 

where the density of gas ρg is the sum of the densities of dry air ρga and vapour ρgw. 

2.4.2 Linear Momentum Balance Equation 
The linear momentum balance equation for the π phase has the following general form: 

( ) ( )π π π π π
π π

ˆdiv ρ ρ ρ 0+ − + = +  t g a e r t  (2.20) 

where tπ is the macroscopic stress tensor in the π phase, ḡπ is the external momentum supply, ρπāπ is 

the volume density of the inertia force, ρπ tπ is the volumetric exchange term of linear momentum with 

other phases due to mechanical interaction and ρπeπ(ρ ṙ) is due to phase changes or chemical 

reactions.  

In the following we make a further assumption that ρπeπ(ρ ṙ) ≠ 0 only for the fluid phases. Therefore 

the linear momentum balance equation for the solid phase is according to Equation (2.21) while for 

the fluid phase has the form of Equation (2.20). 

( )s s s s
s s

ˆdiv ρ ρ 0+ − =+t g a t  (2.21) 

The average linear momentum balance equations are subjected to the constraint: 
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( )π π
π

ˆρ ρ 0
π

+ =  ∑ e r t  (2.22) 

2.4.3 Angular Momentum Balance Equation 
As indicated in section 2.3, all phases of the semi-saturated porous medium are considered 

microscopically non-polar. The volume averaged angular momentum balance equations shows that, 

for non-polar media, partial stress tensor is symmetric also at macroscopic level (Hassanizadeh and 

Gray (1979)): 

( )Τπ π=t t  (2.23) 

2.4.4 Energy Balance Equation 
The macroscopic energy balance equation for the generic π phase can be written as: 

π
π

π π π π π
π π πρ : ρ div ρ

D E
h R

Dt
= − ++t D q  (2.24) 

where 

( ) ( )π π π π π
π π

ˆρ ρ ρ ρR e E e E Q= − +    (2.25) 

represents the exchange of energy between π phase and other phases of the medium due to phase 

change and mechanical interaction; πq is a macroscopic heat flux vector, hπ results from the heat 

sources and Dπ is the spatial rate of the deformation tensor. Eπ accounts for the specific internal 

energy of the volume element. Equation (2.24) coincides with the energy balance equation in the 

mixture theory as shown in de Boer et al. (1991).  

The energy balance equations have the form: 

( ) ( ) ( )π π π π π π π π π
π

π

1ˆ ˆρ ρ ρ ρ 0
2

e E e e Q⋅ + ⋅ + ⋅ + = +  
∑ r v v v t v  (2.26) 

and physically mean that the total balance of energy exchange between all the phases is zero. Phase 

change and the corresponding supply terms will be considered in the following, only for the fluid 

phases. 

2.4.5 Balance of Entropy  
Exploitation of entropy inequality is a tool for developing constitutive equations in a systematic 

manner, leading to a consistent thermodynamic description of the material behaviour at macro-scale. 

The use of entropy inequality further assures that the second law of thermodynamics is not violated. 

The procedure was proposed by Coleman and Noll (1963) and has been exploited by Sampaio and 

Williams (1979) and recently by Gray and Hassanizadeh (1979) for the development of constitutive 
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equations for unsaturated flow in dry or partially saturated soil, including interfacial phenomena. The 

second law of thermodynamics states that the sum of the entropies of all bodies taking part in the 

process is increased for irreversible process. In the limit, i.e. for irreversible processes, the sum of the 

entropies remains unchanged (in other words the entropy production is zero).  

Unlike the other balance principles, the entropy is expressed by an inequality, which serves as a 

mathematical restriction on the constitutive equations governing the reversible (e.g. elastic 

deformation) and the irreversible (e.g. plastic deformation due to internal dissipative mechanisms) 

processes in the system. 

Recalling the formulation in Table 2.1 the microscopic balance equation receives the following 

form: 

( ) ( )div div φs
t

∂ ρλ
+ ρλ − − ρ = ρ

∂
r Φ  (2.27) 

This equation may be transformed in the usual manner, also making use of the mass balance equation 

to obtain: 

div φs
t

D
D

λ
ρ − − ρ =ρΦ  (2.28) 

Substituting the entropy flux, Φ, and the entropy source, s, with the energy flux vector q and the 

energy source h respectively and both divided by the absolute temperature, θ (de Boer et al. (1991)), 

Equation (2.28) is written as: 

1 1
div φ

θ θ
h

t
D
D

λ
ρ + − ρ =ρq  (2.29) 

According to the second law of thermodynamics, the entropy is zero for reversible processes, whereas 

for irreversible processes is positive: 

φ 0ρ ≥  (2.30) 

Equations (2.29) and (2.30) yield the entropy inequality for single component media: 

1 1
div 0

θ θ
h

t
D
D

λ
ρ + − ρ ≥q  (2.31) 

The entropy inequality for the mixture, which is the quantity of interest here, finally becomes: 

( )
π

π
π π π π

π π ππ π
π

1 1
div 0

θ θ
λ λD

e h
Dt

ρ + ρ ρ + − ρ ≥
       

∑ q  (2.32) 

Again, this corresponds to the form used in the mixture theory as shown in de Boer et al. (1991).  

A visual summary of the general form of macroscopic balance equations is presented in Table 2.2. 

Inserting the terms of Table 2.2 into the form [Accumulation term] = - div [Flux] + [Source] results in 
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the balance equations described in this section (§2.4). Before making further transformations of the 

macroscopic balance equations, the constitutive equations for the constituents are introduced. 

Table 2.2: A general form of macroscopic balance equations. 
Balance  

Equation 

Accumulation 

term 

Fluxes Volumic  

source 

Mass of solid 

skeleton 
( )s s1 ρD n

Dt

 −   ( )sDeformation :  ρ 1 div sn− v  No source 

Mass of dry air 
g

ga
g( ρ )D nS

Dt
 ( )

ga g
g

ga ga
g

Advective :  ρ div

Diffusional :  div ρ

nS

nS

v

u
 No source 

Mass of vapour 
g

gw
g( ρ )D nS

Dt
 ( )

gw g
g

gw gw
g

Advective :  ρ div

Diffusional :  div ρ

nS

nS

v

u
 Evap./Cond.: ṁ 

Mass of liquid 

water 

w wρD
Dt

 wAdvective :   ρ wdiv v  Evap./Cond.: ṁ 

Linear 

momentum 
No term πStress tensor :  t

 

π
π

π
π

Mass forces : ρ

Inertia forces : ρ

−

+

g

a
 

Energy 
π

π

πρ
D E

Dt  

π

π π  :

Heat cond.:  
t D

q
 

π
π

π
π

Heat source :  ρ

Exhange energy :  ρ

h

R  

2.5 Constitutive Equations 
To complete the description of the mechanical behaviour, the constitutive equations have to be 

specified. The balance equations developed in the previous sections allow for the introduction of quite 

elaborate constitutive theories, especially if the balance equations presented in the previous sections 

for the bulk material are extended to the interfaces, as done by Gray and Hassanizadeh in [68-69] for 

the aspects concerning multiphase flow. For the solid phase, second-grade material theories are also 

possible, where the gradients of relevant thermodynamic properties, such as densities, are considered 

as independent variables (de Boer et al. (1991)). However, since this thesis is application oriented, i.e. 

we aim at the quantitative solution of real engineering problems, we make a different choice.  

Constitutive models which are based on quantities currently measurable in laboratory or field 

experiments, and which have been extensively validated both with reference to known exact solutions 

and to experiments, are selected. Many of these constitutive models correspond to linearization of 

more complex arguments.  

The properties of the fluid phases are presented first, and the solid phase is only briefly outlined 

here, as Chapters 3 and 5 are mainly devoted to this subject. 
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2.5.1 Stress Tensor in the Fluid Phases 
By applying entropy inequality (Equation (2.32)) for the bulk material, it can be shown that the 

stress tensor in the fluid phases, appearing in Equation (2.20)is: 

π π πη p= −t I  (2.33) 

where I is the identity tensor. This operator is equivalent to the Kronecker symbol δ. Quantity pπ is the 

macroscopic pressure of the π phase. The volume fraction ηπ appears in Equation (2.33) because tπ is 

the force exerted on the fluid phase per unit area of multiphase medium. It should be noted that the 

stress vector in the fluid phase does not have any dissipating part. The macroscopic effects of 

deviatoric stress components will be accounted for in linear momentum balance equations through 

momentum exchange terms. 

2.5.2 Gaseous Mixture of Dry Air and Water Vapour 
The moist air in the pore system is usually assumed to be a perfect mixture of two ideal gases, i.e. 

dry air and water vapour. Hence the ideal gas law, relating the partial pressure pgπ of species π, the 

mass concentration ρgπ of species π in the gas phase and the absolute temperature T, is used. The 

equations of state of a perfect gas, applied to dry air (ga), vapour (gw) and moist air (g) are: 

ga ga
a

gw gw
w

g gw

ρ T

ρ T

ρ ρ ρga

p R / M

p R / M

=

=

= +

 (2.34) 

g ga gwp p p= +  

1gw ga

g g g
w a

ρ 1 ρ 1
ρ ρ

M
M M

−
 

= + 
 

 
(2.35) 

where Mπ is the molar mass of constituent π and R is the universal gas constant. The second Equation 

of (2.35) expresses Dalton's law (Moran and Shapiro 1993). For the averaging process it is reminded 

that dry air, vapour and moist air occupy the same volume fraction nSg. 

2.5.3 Sorption Equilibrium 
If an oven-dry porous medium is exposed to moist air, the weight of such solid increases because 

the moisture is adsorbed on the inner surfaces of the pores starting with the finest ones. In the cases of 

interest here, the water is present as a condensed liquid that (because of the surface tension) is 

separated from its vapour by a concave meniscus (capillary water). There is then a relationship 

between the relative humidity, the water content (saturation) and the capillary pressure (also known as 

matrix suction) in the pores. 

The capillary pressure is defined as the pressure difference between the gas phase and the liquid 

phase, by the capillary pressure equation: 
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c g wp p p= −  (2.36) 

where pw is the pressure of liquid water. Gray and Hassanizadeh (1991) showed that Equation (2.36) 

is not just a definition but a derived relationship between two independent quantities (pc and pg - pw) at 

equilibrium.  

A model of the capillary pressure in a gas/water system is shown in Figure 2.4. If the end of a 

narrow capillary tube is placed in a wetting fluid net adhesive forces draw the fluid into the tube. The 

wetting phase rises in the capillary above the original interface or free surface until adhesive and 

gravitational forces are balanced (Equation (2.37)).  

2 w c2 cos ρ g 0RT R pπ θ π− =  (2.37) 

Because the wetting and non-wetting (gas) fluids have different densities, they also have different 

pressure gradients. Capillary pressure is defined as the difference in pressure across the meniscus in 

the capillary tube. In other words, capillary pressure is the amount of extra pressure required to force 

the non-wetting phase to displace the wetting phase in the capillary and can be calculated as follows: 

c
wρ g
T

p
R

=  (2.38) 

Since the pores in a soil are different in sizes the capillary tubes are different in diameter, causing 

different surface tension values. The smaller the tube is and therefore the smaller the radius, the larger 

the surface tension occurs. 

For the relationship between the relative humidity (RH) and the capillary pressure in the pores, 

Kelvin-Laplace law is assumed to be valid as: 

cgw
w

gws wRH = exp
ρ T
p Mp

p R
=

 
 
 

 (2.39) 

The water vapour saturation pressure pgws, which is a function of the temperature only, can be 

obtained from the Clausius-Clapeyron equation indicated in section 2.5.4, or from empirical formulas 

such as the one proposed by Hyland and Wexler (ASHRAE, 1993). 

 The aforementioned considerations are applicable if the water is present in the pores, as a 

condensed liquid (capillary region). When, instead, the water is present as one or more molecular 

layers adsorbed on the surface of a solid because of the Van der Waals and/or other interactions, the 

capillary pressure no longer has an obvious meaning, even if it can be retained, referring to the 

broader concept of water potential or moisture stress. In this case, a direct relationship between the 

water content and the relative humidity is assumed to hold such as the BET equation (ASHRAE, 

1993). 
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Figure 2.4: Capillary rise in a small tube. 

 

The capillary pressure-saturation relationship is obtained through experimental tests. Numerous 

approaches (empirical and physical models) have been suggested for mathematical representation of 

this relationship. Frequently used empirical models are that by Brooks and Corey (1966), Safai and 

Pinder (1979), van Genuchten (1980) and Fredlund & Xing (1994). All these models are not capable 

to predict hysteresis or scanning curves in the suction water content relationship and for each drainage 

or imbibition cycle different set of parameters has to be provided.  

Two of the above mentioned equations are explained in the following and will be used in the 

numerical analyses of this thesis. 

- Safai and Pinder (1979) 

Safai and Pinder suggested the following relationship for relating water saturation to matric suction: 

( ){ }r r
w w

s s

θ θ
= 1 1+ h

θ θ
S

−αν
+ − β

 
 
 

 (2.40) 

In Equation (2.40) α, β (in cm-1), ν are parameters characteristic of the soil. The residual moisture 

content of the soil is given by θr and θs is the saturated moisture content. hw is the pressure head (in 

cm) and is related to the fluid pressure (pw) in the water phase by: 

w

w
w

h =
p
γ

 (2.41) 

where γw is the specific weight of water. 

To show the shape of the curve in Figure 2.5 experimental results from drainage for dense Hostun 

sand as found in Lins (2009) are fitted using the abovementioned equation. It is noted that the shape 

of the soil-water characteristic curve is related to the void ratio of the sample and to the hydraulic 

loading path direction i.e. whether it is drainage or imbibition path. 
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- Van Genuchten (1980) 

A well-known and frequently used sigmoidal type equation is that given by van Genuchten (1980) 

and is similar in form with the one of Safai and Pinder: 

( ){ } mn
w + α s1S

−
= ⋅  (2.42) 

where s  is suction (in kPa) and a ( in kPa-1), n, and m are curve fitting soil parameters. Burdine (1953) 

suggested that m be calculated as m = 1 – 2/ n and Mualem (1976) suggested that m be calculated as 

m = 1 – 1/n. These assumptions reduce the accuracy of the suction-water content curve fit but allow 

the relative hydraulic conductivity function to be represented as a closed-form equation. 

 
Figure 2.5: SWCC for dense Hostun sand: Experimental results from Lins (2009) and fitted results 

using Safai and Pinder (1979) model. 

2.5.4 Clausious-Clapeyron Equation 
As indicated above, this equation links the water vapour saturation pressure with temperature: 

w gwgws gws0

0

1 1( ) exp
M H

p T p
R T T

 ∆  
= − −  

   
 (2.43) 

where T0 is a reference temperature, pgws is the water vapour saturation pressure at T, pgws0 is the water 

vapour saturation pressure at T0 and ΔHgw is the specific enthalpy of evaporation. The equation is 

obtained from the second law of thermodynamics and is valid in the vicinity of T0. 

2.5.5 Darcy’s Law 
Darcy's law, generalized to allow for relative permeability, is assumed valid for the transport of both 

water and gas in slow phenomena: 
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rπ
πs ( grad ρ )k p

μ
π π π

πη = − +
kv g  (2.44) 

In Equation (2.44) k is the permeability tensor of the medium (also called intrinsic permeability), μ is 

the dynamic viscosity and krπ is the relative permeability, a dimensionless parameter varying from 

zero to one.  

At a macroscopic level we assume that the resulting permeability, k π is the product of the intrinsic 

permeability times the relative permeability: 

π rπk=k k  (2.45) 

The intrinsic permeability varies with the void ratio and with the degree of saturation. For many 

situations the change of void ratio may be of secondary importance and the intrinsic permeability may 

be satisfactory defined as a function of the degree of saturation. For each particular porous medium, 

the relations krπ (Sw) are either predicted by models based on some more or less realistic capillary 

assumption or experimentally determined in laboratory as well as field conditions.  

Numerous equations have been proposed by several researchers to predict the relative hydraulic 

conductivity function from the soil-water characteristic curve. A suitable closed-form equation was 

given by Safai and Pinder (1979) and is adopted here: 

( ){ }brw
w1+ hk a

−α

=  (2.46) 

where α, b and a

 

(in cm-1) are parameters characteristic of the soil 

The relative permeability of the water equals to unity at fully saturated states and reduces to zero 

before the saturation reaches the value zero. The water saturation at which the relative permeability 

goes to zero is termed the residual water saturation or displacement residual water saturation. 

Among the relationships used here are those proposed by Brooks and Corey (1966) for the wetting 

phase, Equation (2.47), and for the non-wetting phase (air), Equation (2.48), respectively:  

2 3
rw

ek S
+ λ
λ=  (2.47) 

where w wc
e

wc1
S SS

S
−

=
−

 is the effective saturation, Swc is the irreducible saturation and λ the pore size 

distribution. 

( )
2

2ra
e e1 1k S S

+λ
λ

 
= − − 

 
 (2.48) 

Typical curves of relative permeability of water and air for sand are presented in Figure 2.6. 
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Figure 2.6: Relative hydraulic conductivity curves for sand using Brooks and Corey (1966) relations. 

2.5.6 Fick’s Law 
Diffusive-dispersive mass flux is governed by Fick's law; it postulates that the flux goes from region 

of higher concentration to regions of lower concentration, with a magnitude that is proportional to the 

concentration gradient: 

π
π π ρρ grad

ρ
a

a a a

 
= −  

 
J D  (2.49) 

where π
aD  is the effective dispersion tensor, π is the diffusing phase and a is the phase in which 

diffusion takes place (a = w, g). a
πD  is a function of the tortuosity factor, which accounts for the 

tortuous nature of the pathway in soil; because of mechanical dispersion, a
πD  is also correlated with 

seepage velocity.  

For dry air and water vapour (binary system) we have in particular that: 

g g
g g g gw w
g g g2 g 2 g

g g

ρ grad ρ grad
a w

a wa a
g

M M M Mp p
M p M p

   
= − = − = −   

   
J D D J  (2.50) 

It is worthwhile to emphasize that gas diffusion can take place even in the absence of a gas pressure 

gradient, i.e. when its mass weighted velocity gv , is zero.  

2.5.7 Fourier’s Law 
A constitutive assumption for the heat flux is the generalized Fourier's Law: 

eff gradT= −q χ  (2.51) 
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where χeff is the effective thermal conductivity tensor and q  is the heat flux of the multiphase medium, 

sum of the partial heat fluxes πq . For isotropic media the generalized Fourier’s Law becomes the 

well-known empirical Fourier's Law: 

eff gradq T= −χ  (2.52) 

where χeff is the effective thermal conductivity and can be determined theoretically or experimentally. 

For instance, in case of porous building materials the following linear relationship may be used, 

which represents with sufficient accuracy the data by Bomberg and Shirtliffe (1978): 

w w

eff dry g1 4
(1 )
nS

n
 ρ

χ = χ + − ρ 
 (2.53) 

2.5.8 Stress Tensor in the Solid Phase 
From the entropy inequality written in Hassanizadeh and Gray (1990) for unsaturated flow, 

including interfacial phenomena, it can be shown that the total stress tensor of the solid phase is 

defined as: 

( )( )s s s
e1 n p= − −t t I  (2.54) 

where ps is the solid phase pressure and is actually the pressure exerted on the solid phase by the 

surrounding fluid: 

s w g
w g  p p S p S= +  (2.55) 

and the effective stress is given by: 

( ) s
e1 n′ = −σ t  (2.56) 

Introduction of Equation (2.55) into (2.54) yields: 

( ) ( )s s w g
e w g1 n S p S p= − − +  t t I  (2.57) 

The volume fraction (1 - n) indicates that ts is the stress exerted on the solid phase per unit area of a 

multiphase medium. For Sw = 1 Equation (2.57) resembles the Terzaghi stress concept.  

The sum of Equation (2.57) and (2.33) written for gas and for water gives the total stress σ acting on 

a unit area of a multiphase medium: 

( ) ( )
( ) ( )

s w g w g
e w g w g

s w g
e w g

1

   1

s w g n S p S p S n p S n p

n S p S p

= + + = − − + − −

= − − +

  σ t t t t I I I

t I
 (2.58) 

This can be put in the usual soil mechanics form, by means of Equation (2.56), as: 

( )w g
w gS p S p= ′ − +σ σ I  (2.59) 

or in terms of effective stress: 
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( )w g
w gS p S p′ = + +σ  σ I  (2.60) 

or using the Equation (2.36): 

( )g
w

cp S p′ = + −σ  σ I  (2.61) 

From Equation (2.60) it follows that the relationship between effective stress and total stress, in 

partially saturated porous media, is no longer independent of the soil type because of the saturations. 

Whereas in fully saturated soils (where Sg = 0 and Sw = 1), the effective stress principle (Equation 

(2.60)) is unique for all soil types. 

An expression of the form of Equation (2.60) was obtained by Bishop and Blight (1963) using a 

phenomenological approach and the same equation was obtained by Schrefler et al. (1990) using 

volume averaging.  

The effective stress is responsible for all major deformations in the skeleton and is linked to the 

strain rate tensor Ds by means of a constitutive relationship: 

( )s s
T 0

D
Dt

′
= −  

σ
D D D  (2.62) 

where 

( )s
T T , ,T= ′D D D σ  (2.63) 

is a fourth-order tensor and s
0D represnts the increment of all other strains not directly associated with 

stress changes.  

Assuming small strains, it follows that: 

s  dt=D ε  (2.64) 

2.6 General Field Equations 
In this section the general field equations obtained by introducing the constitutive equations of 

section 2.5 into the transformed macroscopic balance laws, are presented. The averaging symbol 

(overbar) is omitted in the remainder of this thesis, because all quantities belong to the macroscopic 

situations.  

2.6.1 Mass Balance Equations 

2.6.1.1 Solid phase 

The macroscopic mass balance equation for the solid phase (Equation (2.12)), divided by ρs is 

( )
s

s s
s

s

1
1 div 0

n D D n
n

Dt Dt
− ρ

− + − =
ρ

v  (2.65) 
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2.6.1.2 Liquid phase 

Upon introduction of the relative velocity and the material time derivative with respect to the 

moving solid Equation (2.13) for liquid water becomes: 

( )
s w

ws w w s wsgrad div
D

m
Dt

ρ
+ ρ + ρ = −⋅ +v v v   (2.66) 

Introduction of intrinsic phase averaged densities with the appropriate volume fractions, use of vector 

identity written for water and division by Swρw allows us to transform the last equation into: 

ss s
ws sw

w
w w w

1
div( ) div

w
w

w w w

D SD n n D n m
nS n

Dt Dt S Dt S S
ρ

+ + + ρ + = −
ρ ρ ρ

v v


 (2.67) 

Summation with Equation (2.65), to eliminate 
sD n

Dt
 gives: 

ss s s
s wsw

ws
w w w

1 1
div div( )

w
w

w w w

D Sn D n D n m
nS

Dt Dt S Dt S S
− ρ ρ

+ + + + ρ = −
ρ ρ ρ ρ

v v


 

(2.68) 

Introduction of the material derivatives of the solid and water densities and along with Equation 

(2.55) gives: 

s s s s
s

s w
s w

s
wsw

w
w w

w
w g

w g

w

α 1
( ) (α ) αdiv

1
div( )

 

w
w w

n D D T D D T
n n

K Dt Dt K Dt Dt

D S

p
p S p S

n m
nS

S Dt S S

−
− β − + ++ − β

+ + ρ = −
ρ ρ

 
 
 

v

v


 

(2.69) 

 

where pw, pg and T are independent variables and ( )sw s wαwS n nβ = − β + β   . 

For incompressible grains (α = 1 and 1/Ks = 0) this equation may be simplified as follows: 

ss s
s wsw w

sw w
w

w

w
1

div div( )w
w w

nS D SD D T m
n nS

K Dt Dt t
p

S
D

− β + + ρ+ = −
ρ ρ

v v


 (2.70) 

2.6.1.3 Gaseous phase 

The mass balance equation for gas as a mixture of dry air and vapour is presented in the following. 

In the same mode of the liquid phase, starting from Equation (2.15) we obtain: 
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( )s g a w
s s g a w

2 s
g g

s s

s s
c g gsw

g sg g

w
g

w

s

g g

g g

1
α α

α div

α 1
div( ) (α )

g

Sp p
S S S

S

D p M p Mnn D n D RS
K Dt K Dt Dt

D Sn D T m
p n nS n

K D
S

t Dt

θ
+

− −
+ + + +

ρ

−
− + + ρ − β − =

ρ ρ

 
  

 
 
 

v

v


 (2.71) 

where pw, pg  and T are independent variables 

For incompressible solid grains this equation may be simplified to: 

( )s g a w
s s a w

sw
s g

g gs
gg

g g

g

g

1

(α ) div

1
div( )

gD p M p MnD S D T Rn n
Dt Dt Dt

S
S

m
S

S

n

θ
+

− − β − + +
ρ

+ ρ
ρ ρ

 
  

=

v

v


 (2.72) 

For heat transfer analysis, in partially saturated porous media, it is more convenient to consider the 

mass balance equation for dry air separately from that of vapour (Gawin et al. (1995)) and to sum the 

mass balance equations for water species, liquid water and water vapour. In this way, the mass rate of 

water evaporation, m , disappears from the mass balance equations. An evolution equation needed 

and this will be given by the energy balance equation. Note that, in this way, no constitutive model for 

the mass rate of water evaporation is needed. 

2.6.1.4 Gaseous phase: dry air 

The mass balance equation for dry air is transformed in the following equation: 

g
g

g ga
ga ga g

g

( )
div div 0

D n
n

D

S
S

t

ρ
+ + ρ =J v  (2.73) 

The resulting equation is divided by ρgaSg and summed with Equation (2.65) we obtained: 

s s g s ga
2 s ga
g ga ga

s s

s s
c

w
g

w g g

ga gsw
g sga

s

g

g

α α 1
α div div

α 1
div( ) (α ) 0g

nn D n D D
S

K Dt K Dt Dt

D S

Sp p
S S S

S
n D T

p n nS n
K t

S
Dt D

− − ρ
+ + + + +

ρ ρ

−
− + + ρ − β − =

ρ

 
 
 

v J

v

 (2.74) 

For incompressible solid grains this equation is simplifies to: 

s s s ga
s ga ga gsw

s gga ga
g

g g ga

1 1
(1 ) div div div( )g

nD S D T D
n n nS

Dt D D
S

t

S
S

t
ρ

− − β − + + + + ρ =
ρ ρ ρ

v J v

 

(2.75) 

Introducing now the constitutive equations for ρga (Equation (2.34)) and for ga
gJ  (Equation (2.50)), 

one obtains: 
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s gaa
s s

sw
s ga

ga
g ga gsa w

g gga 2 g

g
g

ga

(1 ) div

1 1
div grad div( ) 0

g

g

S
S S

M
D pnD S D T Rn n

Dt Dt Dt

M M p
nS

M p

θ
− − β − + +

ρ

ρ + ρ =
ρ ρ

 
  

  
−   

   

v

vD

 (2.76) 

2.6.1.5 Gaseous phase: vapour 

The way to derive the mass balance equation for vapour is identical to that of dry air and for the 

case of incompressible solid grains it results in: 

s gww
s s

sw
s gw

gw
g gw gsa w

g ggw 2 g gw g

g

w

g(1 ) div

1 1
div grad div( )

g

g

M
D pnD S D T Rn n

Dt Dt Dt

M

S

M p m

S S

nS
M p

θ
− − β − + +

ρ

ρ + ρ =
ρ ρ ρ

 
  

  
−   

   

v

vD


 (2.77) 

This equation is now multiplied by ρgw and added to the mass balance equation of liquid water 

(Equation (2.70)), in turn multiplied by ρw. This sum gives the mass balance equation for the water 

species, liquid and vapour, without mass rate of water evaporation as: 

s gww
s s s

gw gw sw w
swg w

w

gw
g gw gs wsa w

g g w2 g

w

gdiv

div grad div( ) div( ) 0

( ) ( )
w

w w
g

w

g

M
D p

D S n SD T D Rn S n
Dt Dt K Dt Dt

M M p
nS nS

M

S

p

p
S θρ

ρ − ρ − β + ρ + ρ + +

ρ + ρ + ρ =

 
  

  
−   

   

v

v vD

 (2.78) 

where: 

gw
swg s w w w(1 )( )w w

gSn S n Sβ = β − ρ + ρ + β ρ  (2.79) 

In these equations Darcy's law for the fluid velocities relative to the solid has still to be introduced. 

This law was introduced in Section 2.5.5 Darcy's law and will be derived again in its generalized form 

in the next section from the linear momentum balance equations. 

2.6.2 Linear momentum balance equation 

2.6.2.1 Fluids 

A more suitable form for the linear momentum balance equation for the fluid-phases is now 

obtained by introducing kinematic equations and constitutive relationships. 

s s s gradπ π π π= + + ⋅a a a v v  (2.80) 

where aπs is the relative acceleration. 

Introduction in Equation (2.20) of (2.80) and (2.33) and the intrinsic phase averaged density yields: 
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( )s s s sgrad div( ) e ( ) R 0pπ π π π π π π π π π π π π π π−η ρ + + ⋅ − η + η ρ ρ + η ρ − η =a a v v Ι r g v  (2.81) 

By neglecting the term that depends on the gradient of the fluid velocity, the effects of phase change 

and by applying a vector identity, for the divergence of the stress tensor in the fluid-phase, the relative 

velocity of the fluid is obtained: 

s 1 s sR grad( ) [ ( )]pπ π π − π π π πη = η − ρ − −+v g a a  (2.82) 

r
s s sgrad[ ( )]k

p
µ

π
π π π π πη = − ρ − −+

k
v g a a  (2.83) 

Finally, neglecting the soil acceleration and the relative acceleration terms, it yields Darcy's law in the 

form of Equation (2.44): 

r
s grad( )k

p
µ

π
π π π πη = − ρ+

k
v g  (2.84) 

Due to the simplifications introduced, this law is valid as a first approximation for slow flow of a 

macroscopically inviscid fluid through a porous medium with incompressible grains. 

2.6.2.2 Solid-phase 

Taking into account Equations (2.54), (2.55) and (2.56), the linear momentum balance equation for 

the solid-phase becomes: 

( )( ) ( )
( )

w g s
w g

s s w w ws g g wg

div 1 1

1 0

n S p S p n

n

′ − − + + − ρ

− − ρ + η + η =

  σ I g

a R v R v
 (2.85) 

2.6.2.3 Multiphase medium 

Through summing the momentum balance equations, written for water and gas-phase in section 

2.6.2.1, with that of the solid phase in section 2.6.2.2, by taking into account the definition of total 

stress, assuming continuity of stress at the fluid-solid interfaces and by introducing the averaged 

density of the multiphase medium 

( ) s w g
w g1 n nS nSρ = − ρ + ρ + ρ  (2.86) 

the linear momentum balance equation for the whole multiphase medium is obtained: 

s w ws ws w g gs gs g
w ggrad grad div 0[ ] ] ( )nS p nS−ρ − + − ρ + + + ρ =⋅ ⋅a a v v a v v σ g[  (2.87) 

2.6.3 Energy balance equation 
The energy balance equation for the single phase is: 
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( )divp
D

C h R e H
Dt

π π
π π π π π π π π π πθ

ρ = ρ − + ρ − ρ ρq  (2.88) 

The specific enthalpy of the phase π, is a function of the absolute temperature and the pressure  

( , )H Hπ π π π= ρ θ  (2.89) 

and p
p

H
C

π
π

π

∂
=

∂θ

 
 
 

 is the specific heat at constant pressure. 

For the continuum multiphase, imposing the thermodynamic equilibrium, the energy balance equation 

can be written as: 

( ) ( ) ( )w w g g
w g vapgrad div gradp p p effeff

T
C C C T T m H

t
∂

ρ + ρ ρ ⋅ − χ = − ∆
∂

+v v   (2.90) 

where: 

( ) s w g
s w g  p p p peff

C C C Cρ = ρ + ρ + ρ  

s w g
effχ = χ + χ + χ  

gw w
vapH H H∆ = −  

2.6.4 Governing equations 
The governing equations that will be used in the context of this thesis are briefly presented in the 

following sections for the dynamic and quasi-static conditions. 

2.6.4.1 Dynamic case 

Neglecting the relative acceleration of the fluids, the convective terms and the dynamic seepage 

forcing term in the governing equations of Lewis and Schrefler (1998), a reduced form of the balance 

equations for the porous medium has been obtained and the respective balance equations are shown 

next. For more details the interest reader is referred to Passarotto (2013) and Cao et al. (2015). 

Linear momentum balance equation 

The linear momentum balance equation of the mixture for the reduced formulation is: 

sdiv 0( ) + ρ − ρ =σ g a  (2.91) 

where ρ(x, t) is the averaged density of the multiphase medium defined as, ρ = [1 − n] ρs + n Sw ρw + n 

Sg ρg and n the porosity, as(x, t) is the acceleration of solid phase, g is the acceleration of gravity, ρs(x, 

t) the density of the solid grain, ρw(x, t) the density of liquid water and ρg(x, t) the density of gas. 

The total Cauchy stress σ(x, t) of variably saturated porous media can be expressed through the 

concept of generalized effective stress (Schrefler (1984)) as: 
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( )w g
w gα S p S p= ′ + +σ σ I  (2.92) 

where σ΄(x, t) is the generalized effective Cauchy stress tensor, I the second order identity tensor and 

α the Biot coefficient defined as α = 1 − Kt / Ks, with Kt(x, t) being the bulk modulus of the porous 

medium. Assuming incompressibility of the solid grain at microscopic level, Ks −→ ∞, the Biot 

coefficient equals to 1. 

Mass balance equations 

The sum of the mass balance equation for the water species and the solid for the reduced 

formulation is written as: 

( ) ( )

( )

( )

rw rg
w w w gw gw gw

w g

gw
g gw w gw sa w

g w g2 g
g

w gw w gw
sw s g w

gw w ww
g

w

div grad div grad

div grad div

0

k k
p p

M M p
S S

M p

n S T n n S

nS
nS p

K

µ µ
ρ − + ρ + ρ − + ρ

− ρ + ρ + ρ α

− ρ β + ρ β α − + ρ − ρ

+ ρ + ρ =

   
   
   

  
  
   

      
 
 
 

v

k k
g g

D



 

 (2.93) 

 

where, kw(x, t) and kg(x, t) are the intrinsic permeability tensors of liquid water and gas, krw(x, t) and 

krg(x, t) the liquid water and gas relative permeability, μw(x, t) and μg(x, t) the liquid water and gas 

viscosity, βsw = Sw [1 − n] βs with βs the thermal expansion coefficient for solid articles; Kw is the bulk 

modulus of water, gw
gD (x) the effective diffusivity tensor of water vapour in the gas phase, and Ma(x), 

Mw(x) and Mg(x, t) the molar mass of dry air, liquid water and the gas mixture, respectively (see 

Equation (2.94)). 

1gw ga

g g g
w a

1 1
M

M M

−
ρ ρ

= +
ρ ρ

 
 
 

   (2.94) 

Similarly, the sum of the mass balance equation for dry air and for solid in the reduced formulation 

reads: 

( )

( )

rg ga
ga g g g gaa w

gg 2 g
g

ga s ga ga ga
g g w s g

div grad div grad

div 0

M Mk p
p

M p

S nS nS n S T

µ
ρ − + ρ + ρ

+ρ α ρ − ρ − ρ β α − =

    
    
     

+v

k
g D

 

 (2.95) 

where ga
gD (x) is the effective diffusivity tensor of dry air in water vapour. The mass balance equation 

of solid phase has been summed to that of the other phases to eliminate the time derivative of the 
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porosity (Lewis and Schrefler (1998)). In Equations (2.93) and (2.95), the advective fluxes have been 

described by using Darcy’s law for liquid water and gas, while the diffusion of vapour in the gas 

phase has been modelled with Fick’s law (see Section 2.5.5 and 2.5.6, respectively). 

Energy balance equation 

The energy balance equation of the porous medium for the reduced formulation is: 

( ) ( )

( ) ( )

( ) ( )

rw rg
w w w w g g g g

w g

w w w sw
vap w vap

w

rw
w gw w w w

sw vap w vap vapw

grad grad

div grad div

div grad 0

p p

p effeff

k k
C p C gradp T

nS
C T T p H S H

K

k
T H n S H p H

µ µ

∆ ∆

∆ ∆ ∆
µ

ρ − + ρ + ρ − + ρ ⋅

+ ρ − χ − ρ − ρ α

+β − ρ − ρ − ρ − + ρ =

 
 
 

 
 
 

v

k k
g g

k
g

 



 (2.96) 

where ΔHvap(x, t) is the latent heat, (ρCp)eff (x, t) the effective heat capacity of the porous medium, 
w x)(pC and g x)(pC are the specific heat of liquid water and the gas mixture respectively, and χeff (x, t) is 

the effective thermal conductivity of the porous medium. 

2.6.4.2 Quasi static case 

Equilibrium equation 

The equilibrium equation of the mixture in terms of generalized effective Cauchy’s stress tensor 

σ′(x, t) assumes the form: 

div 0( )g c
wp S p′ − − + ρ =  1 gσ  (2.97) 

where as for the dynamic case ρ = [1 − n] ρs + n Sw ρw + n Sg ρg is the mass density of the overall 

medium, n(x, t) is the porosity, Sw(x, t) and Sg(x, t) are respectively the water and gas degree of 

saturation, g is the gravity acceleration vector and 1 is the second order identity tensor. The form of 

Equation (2.97) assumes incompressible grains, which is common in soil mechanics.  To consider 

compressible grains, the Biot coefficient should be set in front of the solid pressure (this becomes 

important when dealing with rock and concrete). 

Mass balance equations 

The mass balance equation for the mixture of solid phase, liquid water and its vapour is: 
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[ ] [ ]
w

gwa
g

g

ρ
ρ ρ + ρ + ρ 1 div + 1

div ρ grad + div ρ grad( ) + grad( ) + ρ

+div ρ grad( ) + ρ β = 0
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w gw w gww

w w w

gw rw
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∂

               
    
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 

   
 

u

k
g

k
g

D  (2.98) 

where kπ(x, t) = kπ(x, t)1 is the intrinsic permeability tensor of the porous matrix in π-fluid saturated 

condition, which is assumed to be isotropic, krπ(x,t) is the fluid relative permeability parameter and 

µπ(x, t) is the dynamic viscosity of the fluid, with π= w, g.  gw
gD  is the effective diffusivity tensor of 

water vapour in the gas phase contained within the pore space and βswg = βs(1 − n)·(Sg ρgw+ ρwSw) 

with  βs(x,t) the cubic thermal expansion coefficient and Ma, Mw and Mg(x,t) are the molar mass of dry 

air, liquid water and gas mixture, respectively. 

Similarly, the sum of the mass balance equation for the dry air and that of the solid phase is: 

[ ] [ ]

[ ] [ ]
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gα gα

gα g
gα gαa
g

gα

ρ + ρ 1 div + 1
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∂

   
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    
           

u

k
D g  (2.99) 

Enthalpy balance equation 

The enthalpy balance equation of the mixture has the following form: 

( )

( )

w rww w g c w
w

g rgg g g
vap vapg

ρ + grad( )+grad( )+ρ grad
t

+ρ grad( )+ρ grad div χ grad =  

ρp peff

g
p eff

T kC C p p T
μ

kC p T T m ΔH
μ

 
  
     

 
  
     

∂
− ⋅

∂

− ⋅ − −

k g

k g 

 (2.100) 

where, ρ(Cp)eff is the effective thermal capacity of the porous medium, w ( ), pC tx  and ( )g , pC tx are the 

specific heat of the water and gas mixture respectively, and χeff(x, t) is the effective thermal 

conductivity of the porous medium. The right hand side term of Equation (2.100) considers the 

contribution of the evaporation and condensation.  

2.7 Initial and Boundary Conditions 
The final mathematical model consists of the following balance equations: mass conservation of 

solid skeleton, mass conservation of dry air, mass conservation of the water species, enthalpy 
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conservation of the whole medium and linear momentum of the multiphase system. They are 

completed by an appropriate set of constitutive and state equations, as well as some thermodynamic 

relationships. 

The governing equations of the model are expressed in terms of the chosen state variables: gas 

pressure pg, capillary pressure pc, temperature T and displacement vector of the solid matrix u.For the 

model closure the initial and boundary conditions are needed. The initial conditions specify the full 

fields of primary state variables at time instant t = t0, in the whole analyses domain Ω and on its 

boundary Γ, (Γ = π π
qΓ ∪ Γ , π = g, c, T, u): 

g g
0p p= , c c

0p p= , 0T T= , 0=u u  on ( Ω ∪ Γ ) (2.101) 

The boundary conditions (BCs) can be of Dirichlet’s type on Γπ for t ≥ t0: 

g gˆp p=     on Γpg 

c cˆp p=     on Γpc 

ˆT T=        on ΓT 

ˆ=u u        on Γu 

(2.102) 

or of Cauchy’s type (the mixed BCs) on q
πΓ  for t ≥ t0: 

ga gs ga ga
g( )dnS qρ + ⋅ =v J n                                                                  on g

qΓ  

w ws gw gs gw gw w gw gw
w g( ) ( )d cnS nS q q β ∞ρ + ρ + ⋅ = + + ρ − ρv v J n               on c

qΓ  

w ws 4 4
w vap 0( ) ( ) ( )T

eff cnS H gradT q a T T eχ σ ∞∞ρ ∆ − ⋅ = + − + Τ − Τv n        on q
TΓ  

′ ⋅ =σ n t                                                                                            on u
qΓ  

(2.103) 

where n is the unit normal vector, pointing toward the surrounding gas, qga, qgw, qw and qT are, 

respectively, the imposed fluxes of dry air, vapour, liquid water and the imposed heat flux, t  is the 

imposed traction, gw
∞ρ  and T∞  are the mass concentration of water vapour and the temperature in the 

far field of undisturbed gas phase, e is emissivity of the interface, σ0 the Stefan-Boltzmann constant, 

while αc and βc are convective heat and mass exchange coefficients.  

The boundary conditions with only imposed fluxes are called Neumann's BCs while the purely 

convective boundary conditions for heat and moisture exchange are also called Robin's BCs. 

2.8 Finite Element Formulation 
Discretization in space of the governing equations in their weak form is performed by means of the 

finite element method (Zienkiewicz and Taylor (2000)). The unknown primary variables are 

expressed in the whole domain by global shape functions matrices and the nodal value vectors: 
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g g( ) ( )pp t t= N p ,      c c( ) ( )pp t t= N p  

( ) ( )tT t t= N T ,       ( ) ( )ut t=u N u  
(2.104) 

In particular, the finite element model is derived by applying the Galerkin procedure for the spatial 

integration and the Generalized Trapezoidal Method for the time integration of the weak form of the 

balance equations of section 2.6.4. After spatial discretization within the isoparametric formulation 

the following non-symmetric, non-linear and coupled system of equation is obtained: 

( ) ( ) ( ) 0ij ij tt
∂

+ − =
∂
xC x K x x f x  (2.105) 

with 

0
0
0 0 0 0

gg gc gt gu
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ij

tc tt tu

 
 
 =
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 
 

C C C C
C C C

C
C C C
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0
0
0

gg gc gt

cg cc ct
ij

tg tc tt

ug uc ut uu

 
 
 =
 
 
  

K K K
K K K

K
K K K
K K K K

, 

g

c
t

t

u

 
 
 =
 
 
 

f
f

f
f
f

 (2.106) 

where 
T

, , ,g c =  x p p T u  and the non-linear matrix coefficients Cij (x), Kij (x) and fj (x) are defined in 

detail in Sanavia et al. (2006). 

Finite differences in time are used for the solution of the initial value problem over a finite time step 

Δt = tn+1 – tn. Following the Generalized Trapezoidal Method, Equation (2.105) is rewritten at time tn+1 

using the relationships: 

1n n

nt tθ

+

+

−∂ 
 ∂ ∆ 

x xx = ,  1(1 )n n nθ θ θ+ +− +x = x x   with θ =[0, 1] (2.107) 

where n is the time step number, xn and xn+1 are the state vectors at times tn and t n+1, thus obtaining: 

[ ] ( )1 1( ) 1 0n n n nn n
t t t θθ θ

θ θ+ + ++ +
= + ∆ −  − − ∆  − ∆ = G x C K x C K x f  (2.108) 

Linearized analysis of accuracy and stability suggest the use of θ ≥ ½ and herein an implicit one-step 

time integration (θ = 1) has been performed. 

After time integration the non-linear system of equation is linearized, thus obtaining the equations 

system that can be solved numerically (in compact form): 

1

1

1 1
( )

k
n

k k

n n
+

+

+ +

∂
∆ ≅ −

∂ x

G x G x
x

 (2.109) 

with the symbol ( ) 1

1

k

n

+

+
•  indicating the current iteration (k+1) in the current time step (n+1) and with 

the following form for the Jacobian matrix:  
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g c
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 ∂ ∂ ∂ ∂ 
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∂ ∂ ∂ ∂∂  =  ∂ ∂ ∂ ∂ ∂ 
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 ∂ ∂ ∂ ∂ 
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p p T u

p p T uG
x

p p T u

p p T u

 (2.110) 

The increment vector of the primary variables is: 

1 1 1 1 1

Tg c( ) ,( ) , ,
n n n n n

k k k k k
+ + + + +

 ∆ = ∆ ∆ ∆ ∆ x p p T u  (2.111) 

Owing to the strong coupling between the mechanical, thermal and the pore fluids problem, a 

monolithic solution of Equation (2.109) is preferred using a Netwon-Rapshon scheme. Finally, the 

solution vector 
T

, , ,g c =  x p p T u is updated by the incremental relationship: 

1 1 1

1
n n n

k k k
+ + +

+ = + ∆x x x  (2.112) 

The convergence and error analysis of the method applied here can be found in Gawin and Schrefler 

(1996). 

During computations a problem arises when the medium is fully saturated because in this case the 

gas pressure, pg, is undefined and the capillary pressure, pc, has no physical meaning. On the other 

hand, the state of the liquid water in the medium is described by two variables (since in such situation 

there are only two degrees of freedom on top of solid displacements: liquid pressure and temperature). 

The problem is treated with a formal modification of the relationship between saturation and 

capillary pressure: when the saturation becomes equal to one, the sign of the capillary pressure is 

formally set negative and the value equal to the pressure in the liquid above gas pressure. The fully 

saturated state is detected by monitoring the sign of the capillary pressure: when such a condition is 

reached, the dry air conservation equation is dropped and the gas pressure is set to equal to the 

atmospheric pressure. Thus we perform "switching", element by element, from fully saturated to 

partially saturated state equations (or vice versa) when capillary pressure reaches the bubbling 

pressure value (also called air entry value). 

In practice, capillary and gas pressure oscillations may arise when this switch is performed. As 

already pointed out in Gawin et al. (1995), these oscillations are possibly due to the sudden switch of 

element behaviour (there is a change in governing equations) in a part of the domain, which in turn 

causes different convergence to solution in fully saturated and partially saturated zone of the domain 

and produces oscillations in the Newton iteration procedure (Forsyth and Simpson (1991)). Another 

reason is occurrence in the matrices C and K (Equation (2.105)) of very small diagonal terms related 

to gas pressure (because of very low value of gas relative permeability), which create numerical 
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problems. An efficient way of avoiding the mentioned oscillations is assumption of a lower limit for 

the value of relative permeability of gas phase (e.g. 0.0001), what seems to be physically admissible. 

Based on the described discretization, the Comes-geo research computer code has been developed.  

• The Comes-geo code 

Geomaterials (soils, rocks, concrete) are the most common examples of porous media. The general 

purpose codes, currently available in the market, do not deal with more than a single fluid phase. 

Therefore it is not possible to carry out realistic numerical studies of porous materials structures in 

partially saturated conditions as: seismic analysis of soil dams where in the upper part wide zones, 

containing pores filled with air and water, are present; stability analysis of soil slopes; simulation of 

the subsidence phenomena in presence of gas extraction from deep reservoirs (in this case water and 

different gases are present in the pores). 

Comes-geo is a software, written in Fortran90, for the solution of the non-linear and non-

symmetrical system of equations governing heat and mass transfer in a deformable porous medium. 

The model makes use of the generalized effective stress concept together with the capillary pressure 

relationship. 

The problem unknowns are the following: temperature, capillary pressure, gas pressure and 

displacements. These data allow the calculation of interesting derived outputs (i.e. saturation, stress-

strain fields). To reach the solution of the problem using the considered model, four balance equations 

are imposed: mass of the dry air, mass of the water species (both liquid water and vapour; phase 

changes are considered); energy conservation of the mixture and the linear momentum of the 

multiphase medium. They are completed by an appropriate set of constitutive and state equations, as 

well as some thermodynamic relationships, as reported in the previous sections of this chapter. 

Comes-geo allows any finite element analysis in plane-strain and axialsymmetric conditions, using 

four nodes bilinear elements or Serendipity eight nodes elements or Lagrange nine nodes elements. 

The system of algebraic equations obtained through the space-time discretization is solved 

following the flowchart given in Figure 2.7. The subroutine VARCA2 is the main subroutine which 

contains the Newton-Raphson loop. In VARCA2, there is the loop over the elements within which 

ABFOR5 is called: this subroutine computes, for each element, the left and the right hand side vector 

of the linearized system of equations. Through ABFOR5 the necessary subroutines are called in order 

to compute the constitutive and thermodynamic relationships for the description of thermo-hydro-

mechanical state of the porous medium: 

WATPROP: defines the physical properties of liquid water; 

PRVAP: evaluates the vapour pressure, the vapour density and the relative humidity; 

MATPROP: computes the material properties of the soil and calls also the subroutine which evaluates 

gas and water relative permeability and the one which evaluates the saturation for the porous material; 
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FORMBE: computes the strain–displacement matrix; 

FORMDE: computes the elastic stress-strain matrix and calls the subroutine of the constitutive model 

for soils in which the effective stress and the stress-strain tensor are computed; 

PRMEFF: evaluates the effective diffusivity of vapour inside the pores of partially saturated medium 

and its effective thermal conductivity. 

Finally, ABFOR calls BFLUX5, which contains the boundary conditions formulation for gas 

pressure, capillary pressure, temperature and displacements. 

The BMMFRONT is the frontal solver: the function of this subroutine is to assemble the 

contribution of each element to the global load vector and to solve the resulting set of simultaneous 

equations by Gaussian direct elimination. Once the convergence is achieved, the primary variables are 

updated and the mechanical stresses and strains are computed. 

 
Figure 2.7: Comes-geo flowchart with the main subroutines. 
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2.9 Concluding Remarks 
In this Chapter, the porous medium was postulated to be composed of a mixture of three interacting 

constituents: solid, liquid water and gas. By using the concept of volume fractions, appropriate 

average quantities for describing the behaviour of a porous medium were developed and balance laws 

for the mixture were derived in the light of HMT. These equations, combined with appropriate 

constitutive equations, constitute the general governing field equations that can be utilized to simulate 

the dynamic or quasi-static behaviour of fully or partially saturated porous media.   
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 Chapter 3: Constitutive Modelling of Solid Phase from the Regularization 
Perspective: Governing Equations and Numerical Aspects  

3.1 Introduction 
The mechanical behaviour of the solid skeleton of the multiphase system is here described in the 

framework of elasto-viscoplasticity. This implies a time-delayed inelastic response of the material, 

which is accordingly referred to as rate-sensitive or time-dependent. 

The observed behaviour of real materials is generally time dependent; that is the stress response 

always depends on the rate of loading and the time scale considered. In soil mechanics, the 

mechanical behaviour of granular materials is usually assumed as time-independent. Experimental 

evidence (e.g. di Prisco and Imposimato, (1996), Pham Van Bang et al. (2007)) however, shows that 

the mechanical response of granular material is rapid but not instantaneous. Microfabric 

rearrangement, associated with the development of irreversible deformations, takes place with time 

which depends on the type of the material taken into consideration and may vary between few 

minutes (sand) and several days (clay) (di Prisco and Imposimato, (1996)). These experimental 

observations motivate the application of viscoplasticity in such materials on a physical basis and led 

to consider viscoplasticity as an appropriate constitutive framework and as a tool for the theoretical 

interpretation of several unstable phenomena (e.g. Oka et al., (1994), di Prisco and Imposimato 

(1997)). 

Apart from the physical soundness, the use of viscoplasticity is supported by a further numerical 

motivation, that it can be viewed as a regularization technique of the elasto-plastic ill-posed problem. 

The occurrence of localization raises the problem of the objectivity of numerical results and in 

viscoplastic model a length scale emerges (although the constitutive equations do not explicitly 

contain a parameter with the dimension of length) that mitigates the mesh dependence effects arising 

from such a bifurcation response. 

Nowadays, the main approaches for modelling rate effects are those proposed by Perzyna (1966) 

and Duvaut and Lion (1972). A third model, the so-called consistency model has been more recently 

proposed in Wang et al. (1997) and Heeres et al. (2002). At variance with standard elasto-plasticity, 

both Perzyna’s and Duvaut-Lion’s models allow the stress point to lie outside the yield locus, whereas 

in the former such states are not permitted. Therefore, the well-known Kuhn-Tucker conditions are 

not applicable in viscoplastic models. By abolishing the consistency rule, the yield function may be 

positive or negative without any constraint. If the external loading remains constant, the stresses 

return to the yield surface as a function of time and because of this feature viscoplastic theories are 

often called overstress laws, Figure 3.1. The two approaches basically differ in the definition of the 

viscoplastic strain rate they adopt. Conversely, consistency models maintain the usual consistency 

constraint for the stress point, while the material time-sensitiveness is modelled by assuming a rate-

dependent evolution of the plasticity locus. 
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Henceforth, Perzyna’s and Duvaut-Lion’s viscoplasticity will be considered and the main features in 

terms of analytical formulation and numerical treatment are summarized in Section 3.3 and 3.4, 

respectively. In Section 3.5 a non-local viscoplastic approach of Perzyna is explored to deal with 

weakly rate sensitive materials, where viscoplasticity is not sufficient to suit numerical requirements. 

After a brief introduction on the key points of non-local method, this section reviews the non-local 

formulation and its FEM implementation. The merits and drawbacks of each regularization model are 

summarized in the last section of this chapter.  

 
Figure 3.1: The concept of overstress viscoplastic model (from [94]). 

 

3.2 Yield Criterion for Granular Soil 
The elasto-viscoplastic behaviour of soil is described by the classical rate-dependent theory for 

geometrically linear problems. The yield function restricting the generalized effective stress is 

assumed in the form of Drucker-Prager to take into account the dilatant/contractant behaviour of 

sands: 

( ) vp2p , , ξ 3α p β c hξ3f ff ′ ′= + − +  s s
 

(3.1) 

In Equation (3.1) p' = (1/3)trσ' is the mean pressure, ||s|| is the norm of the deviatoric part of the 

stress tensor, c is the suction dependent cohesion (Equation (3.2)), αf and βf are two material 

parameters related to the friction angle, φ, of the soil defined by Equation (3.3), h (Figure 3.2) is the 

hardening (h > 0) or softening (h < 0) modulus and ξvp is the equivalent viscoplastic strain (with the 

superscript p, instead of vp, stands for the equivalent plastic strain in elastoplasticity i.e. ξp).  

According to Fredlund et al. (1978), c is the intercept of the extended Mohr-Coulomb failure 

envelope with the shear stress axis at a specific matric suction and zero net normal stress and it can be 

referred to as the ‘total cohesion intercept’: 

c b
0c c tanφp= + ⋅  (3.2) 

where c0 is the apparent saturated cohesion, pc is the capillary pressure (or matric suction) and φb is 

the angle of friction accounting for the matric suction contribution to the shear strength. It is 
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remarkable that at very high suctions as the soil becomes completely dry, the increase of apparent 

cohesion due to suction tends to zero (Escario and Juca (1989)). 

 
Figure 3.2: Different types of material behaviour: hardening, perfectly plastic and softening behaviour 

(post bifurcation response). 
 

The flow rule is of non-associated type and takes the direction of the plastic strain rate to be normal 

to the plastic flow potential function. A non-associated flow rule has been shown to be capable of 

fitting experimental data more accurately than an associative model, which generally overpredict the 

amount of plastic dilatation, and therefore is adopted here.  

The plastic potential function, g (p',s,ξ), has the same expression as for the yield function (Equation 

(3.1)) but with the dilatancy angle, ψ, substituting the friction angle, φ, in Equation (3.3).  

2 sinφ 6cosφ3α = 2     ,      β = 2
3 sinφ 3 sinφf f− −  

(3.3) 

Of course, there is the possibility of having the same parameters for αf, βf and αg, βg, encompassing in 

such a way also the case of an associated flow rule. 

The Drucker–Prager yield criterion is a simple modification of the J2 von Mises criterion, in which 

the hydrostatic stress component is also included to introduce pressure-sensitivity. The yield surface 

in the principal stress space is represented by a circular cone around the hydrostatic axis, Figure 3.3. 

 

 
Figure 3.3: Drucker-Prager yield surface. 
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3.3 Elasto-Viscoplastic Model of Perzyna 
A widespread strategy to include rate-dependent plastic material behaviour in a continuum 

mechanical model is the approach suggested by Perzyna in the middle of 60s of the last century. The 

mathematical structure of the viscoplastic constitutive equations can be easily explained by means of 

a one-dimensional treatment using the rheological model in Figure 3.4.  

 
Figure 3.4: Rheological model for one-dimensional viscoplastic solid [140]. 

 
The model consists of a spring with elastic constant E, which is serially connected to the inelastic 

part. The inelastic part contains a dashpot with constant η and a coulombic frictional device with 

constant σy. Let σ be the applied stress on the device, and let ε be the total strain. As in rate-

independent plasticity we assume the additive decomposition of the total strain: 

e vpε ε ε= +  (3.4) 

where εe is the strain in the spring and εvp is the viscoplastic strain in the inelastic element, so that: 

( )e vpσ ε ε ε= Ε = Ε −
 

(3.5) 

As in standard plasticity the solid remains elastic when the stress σ is smaller than the absolute value 

of the yield stress σy. Hence, the loading function is defined as: 

( ) yσ σ σf = −  (3.6) 

The extra stress, σex, that may occur and can only be carried by the dashpot, is given as: 

( ) ( )y y
ex y

y y

if   

 if   

σ σ σ σ
σ σ σ sign σ

σ σ σ  σ

   

 

− ≥
=

−≤
= −

+  

  
 
    

(3.7) 

The daspot reacts according to the viscous relation: 

vp
exσ ε= η  (3.8) 

in which η is the viscosity parameter. We can rewrite Equation (3.8) with Equation (3.7) which yields: 

( ) ( ) ( )vpε σ sign σ
1

if     0
η

σ     f f= ≥

 
(3.9) 

In the following, direct notation is adopted and more information on the adopted convention can be 

found in Nomenclature. 
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Equation (3.9) is the one-dimensional viscoplastic constitutive equation of the Perzyna type. Instead 

of a viscosity parameter η we can define a time constant τ = η / E. One can refer to τ as the relaxation 

time of the model and its physical significance is illustrated in the example (relaxation test) below.  

At time t = 0 an instantaneous strain ε0, which is held constant throughout time, is applied on the 

device in Figure 3.4. The strain jump is chosen such that ε0 > σy / E and viscoplasticity is initiated. 

The stress σ0 = Eε0 at t = 0 is larger than the yield stress. To compute the stress history, we need to 

integrate the constitutive model as follows.  

The rate form of Equation (3.5) reads: 

( )vpσ ε ε= Ε − 
 

(3.10) 

substituting τ = η / E and from Equation (3.9) results in: 

( )vp 1
y yε Ε σ σ σ σ

1
if    

τ
     −= ≥−

 
(3.11) 

Combining Equations (3.10) and (3.11) gives: 

y
1 1

σ σ ε σ+ = Ε +
τ τ


 

(3.12) 

A closed-form solution of the Equation (3.12) can be obtained using the integrating factor method. 

Assuming as integrating factor the et/τ and since in this relaxation test ε( ) = 0t  one obtains: 

( ) / τ
0 y yσ( ) = Εε σ e + σtt −−

 
(3.13) 

The stress response is plotted in Figure 3.5. The material data are as follows: Young’s modulus E = 

1000 N/mm2, σy = 1 N/mm2, the imposed strain is ε0 = 0.0015 and varying the relaxation time τ. The 

absolute time t can be regarded as short or long when compared to τ. So, the ratio of the viscosity η in 

the dashpot over the stiffness E in the spring is therefore called the relaxation time.  

 
Figure 3.5: Relaxation test: stress response with varying relaxation time. 

 
Next, the extension to three-dimensional model is treated along with some algorithmic aspects 

concerning its numerical implementation.  
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3.3.1 Analytical Formulation in Rate Form 
In the representation of stress and strain states, use will be made of the following invariant 

quantities: 

1 3
p tr( )            q

3 2
′ := ′ :=σ s

 
(3.14) 

where p' is the mean pressure, q the deviatoric stress and s is the deviatoric part of the stress tensor: 

1
tr( )

3
:= ′ − ′s σ σ 1

 
(3.15) 

and: 

v s v s
2 2

ε ε      ε ε
3 3

:= : := := : :=ε 1     e ε 1     e  
 

(3.16) 

where ε is the strain tensor,  εv the volumetric strain, εs the deviatoric strain  and e is the deviatoric 

part of the strain tensor: 

1 1
tr( ) ,     tr( )

3 3
:= − := −e ε ε 1 e ε ε 1  

 
(3.17) 

with 1 being the second order identity tensor. 

Analogous to the additive decomposition in elastoplasticity, the total strain rate in an elasto-

viscoplastic material is decomposed into an elastic (εe) and a viscoplastic part (εvp): 

e vp= +ε ε ε    (3.18) 

where the superimposed dot denotes time derivative. Considering linear elasticity (which is also 

adopted in the Duvaut-lions model and in non-local approach as presented in the following Sections 

3.4 and 3.5), the stress rate is related to the strain rate via the following constitutive relation: 

( )e vp:′ = −σ D ε ε  
 

(3.19) 

where double dots “ : ” denote the doubly contracted tensor product and De is the fourth-order 

elasticity tensor, which can be formulated in general form as:  

e
devΚ 2G= ⊗ +D 1 1 I  (3.20) 

In Equations (3.20), Idev is the fourth-order deviatoric tensor (defined in Nomenclature), K stands for 

the bulk modulus, while G denotes the shear modulus.  

Their connections to the Young’s modulus, E, and to the Poisson’s ratio, ν, are: 

( ) ( )
E E

K G
3 1 2ν 2 1 ν

             = =
− +

 (3.21) 
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In the viscoplastic model according to Perzyna, the viscoplastic strain rate is determined by the 

gradient of a plastic potential function calculated at the current stress point and is directly linked to the 

yield function through the viscous nucleus: 

( )vp g
γΦ f

∂
=

∂ ′
ε

σ


 
(3.22) 

with f and g being the yield function and the plastic potential respectively (associative flow is invoked 

by f = g), Φ the viscous nucleus and γ the “fluidity parameter” which depends on the viscosity, η, of 

the material (γ=1/η) and can be constant or a function of the stress or strain rate. 

 The positive constitutive parameter γ influences the strain rate and consequently the rapidity with 

which the asymptotic strain value is reached. In Figure 3.6 some axial strain-time curves, associated 

to the same instantaneous axial stress increments but to different γ values, are schematically drawn. 

By increasing the γ value, the initial curve slopes become steeper: when γ → ∞ the mathematical 

response is instantaneous. 

 
Figure 3.6: Theoretical material’s strain response obtained by introducing different values of γ [45]. 

 
Moreover, the time dependency is introduced by modifying the flow rule and by abolishing the 

consistency rule. The plastic potential defines the direction of the viscoplastic strain rate tensor while 

the yield function influences its modulus by means of the viscous nucleus. 

The viscous nucleus quantifies the “overstress” (i.e. f(σ') > 0) and the choice of its form determines 

the regularizing effect of the viscoplastic model. A linear relation for the viscous nucleus is obviously 

the simplest and probably quite adequate to describe the behaviour of many materials and therefore 

the following linear form will be assumed: 

N

0
Φ f

f
 
  
 

=
 

(3.23) 

In Equation (3.23), f0 is introduced as a fixed reference value making the viscous nucleus 

dimensionless and N is a calibration parameter, N ≥ 1 (herein N = 1 for the sake of simplicity). In the 

literature (e.g. Desai and Zhang (1987), Sluys (1992), Wang et al. (1997), Dìez et al. (2000) etc.), f0 is 

commonly chosen as the initial yield stress however the normalization of the yield locus should be 
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done with respect to the isotropic mean pressure when dealing with frictional (cohesionless) materials 

(e.g. Pisanò (2011)). In above equation, “ < • > ” are the McCauley brackets, such that: 

( )
( ) ( )

( )
Φ   if   Φ 0

Φ
0          if   Φ < 0

f f
f

f

≥
=



  

(3.24) 

When f < 0 only elastic strains are possible, otherwise both elastic and viscoplastic effects are exhibit. 

Moreover, according to Simo (1989), the overstress function Φ must fulfill the following conditions 

so that a rate-independent elastoplastic model is recovered if viscosity reaches zero: 

[ ]
[ ]

( )

 is continuous in 0, ,
 is convex in 0, , 

0 0

∞
∞

=

Φ
Φ
Φ  

(3.25) 

It is also remarkable that in the viscoplastic approach the plastic multiplier, λ, in the flow rule 

(Equation (3.22)), is directly given by Equation (3.26) instead of the Kuhn-Tucker conditions; thus it 

allows for overstress, the amount of which depends on the values chosen for the viscoplastic material 

parameters (η and N). 

( )λ γΦ f=  (3.26) 

Now, invoking the viscoplastic model of Perzyna with the plastic potential function and applying the 

chain rule of partial differentiation, the flow rule specifies to: 

( )vp g p g
γΦ

p
: :f

∂ ∂ ′ ∂ ∂
= +

∂ ′ ∂ ′ ∂ ∂ ′

 
 
 

s
ε

σ s σ
  (3.27) 

and leads to: 

{ }vp
gλ α= +ε 1 n  (3.28) 

where n = s / ǁsǁ is the unit normal field.  

Accordingly, the equivalent viscoplastic strain rate is defined in terms of the viscoplastic strain rate, 

as follows: 

vp vpξ = ε   (3.29) 

and considered the definition of the Euclidean norm of a second order tensor, one obtains: 

( ) ( ) ( ){ } ( )
1/2vp

g g gγΦ α : α γΦ 3α 1f fξ = + + = +1 n 1 n  (3.30) 

3.3.2 Integration Algorithm 
To illustrate the computational implementation of the viscoplastic regularization procedure 

discussed previously, this section presents the algorithm for the viscoplastic model of Perzyna 

combined with a Drucker-Prager yield surface (assuming non-associated flow rule and linear isotropic 



Chapter 3: Constitutive Modelling of Solid Phase from the Regularization Perspective: Governing Equations 
and Numerical Aspects 

57 

hardening). In Table 3.1 the numerical algorithm for Perzyna’s viscoplastic model is outlined, 

highlighting the essential steps of the numerical implementation. 

3.3.2.1 Fully Implicit Backward Euler Scheme 

In displacement-based finite element method the update of stresses takes place at Gauss points. 

Assuming that at time tn the value of total and viscoplastic strains is known, the stress state is known 

as well. Then suppose that an increment in total strain (Δε) is given which drives the state to time tn+1 

= tn + Δt. The incremental strain, Δε = εn+1 − εn, is used to update the stress at time tn+1.  

A trial and error strain driven process is adopted, in which an elastic trial step is first assumed by 

freezing the viscoplastic flow (Equation (3.31)) to distinguish between elastic and viscoplastic 

loading.  

 
vp,trial vp vp,trial vp

          n+1 n n+1 nξ ξ= =ε ε  (3.31) 

Then, the trial stress (Equations (3.32) and (3.33)) is tested to see if it is inside or outside the yield 

surface (Equation (3.34)).  

tr el, tr vp
n+1 n n+1 n+1 np p Ktr Ktr( )′ = ′ + ∆ = −ε ε ε  (3.32) 

tr el, tr vp
n+1 n n+1 n+1 n2G 2G( )= + ∆ = −s s e e e  

(3.33) 

( )tr tr tr vp
n+1 n+1 n+1 n3α p β 2 / 3 c hξf ff = ′ + − +s  (3.34) 

If it falls within or is on the yield surface the process is elastic and the trial state (•)tr represents the 

actual final state of the material. Otherwise, the process is viscoplastic and the viscoplastic strain 

increment is computed by integrating Equation (3.28) with the unconditionally stable Backward Euler 

scheme: 

{ }vp vp
n+1 n n+1 g n+1Δλ α += +ε ε 1 n  (3.35) 

The unit normal nn+1 is determined exclusively in terms of the trial elastic stress (Simo and Hughes 

(1998)): 

tr
n+1 n+1

n+1 tr
n+1 n+1

= =
s s

n
s s

 (3.36) 

In the absence of the consistency rule, the inelastic multiplier is directly computed as: 

tr
n+1

n+1
20

g g

Δλ
η 29α α K 2G β h 3α 13Δ f f

f
f
t

=
+ + + +

 
(3.37) 

Subsequently, from the knowledge of Δλn+1, the components of the stress tensor and the equivalent 

viscoplastic strain can be updated: 
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tr
n+1 n+1 n+1 gp p 3KΔλ α′ = ′ −  (3.38) 

tr
n+1 n+1 n+1 n+12GΔλ= −s s n  (3.39) 

tr
n+1 n+1 n+1 n+1 n+1 g n+1 n+1p 3KΔλ α 2GΔλ′ = ′ + = ′ − −σ 1 s σ 1 n  (3.40) 

( )vp vp 2
n+1 n n+1 gξ ξ Δλ 3α 1= + +  

(3.41) 

Finally, the algorithmic procedure is completed with the derivation of the algorithmic (consistent) 

viscoplastic tangent modulus, which is presented in the next section. 

It is noteworthy that, by selecting αf = αg = 0 and βf = 1 the algoritmh reduces to the one of the von 

Mises model reported in Simo and Hughes (1998). 

 Table 3.1: Numerical algorithm for local Perzyna model. 
1. Compute trial elastic state 

tr vp
n+1 n+1 np Ktr( )′ = −ε ε  ;   

tr vp
n+1 n+1 n2G( )= −s e e  

2. Check viscoplastic flow potential 

( )tr tr tr vp
n+1 n+1 n+1 n= 3α p + β 2 / 3 c hξf ff ′ − +s  

IF: tr
n+1 0f ≤  → elastic step → tr

n+1 n+1Set   (•) (•)=  & EXIT 

else go to 3 

3. Compute Δλn+1: 

 

tr
n+1

n+1
20

Δλ
η 29α α K 2G β h 3α 13Δ f g f g

f
f
t

=
+ + + +

 

4. Update viscoplastic strain and stress 

( )vp vp
n+1 n n+1 n+1Δλ αg= + +ε ε 1 n  

( )vp vp 2
n+1 n n+1 gξ ξ Δλ 3α 1= + +  

n+1 n+1 n+1p′ = ′ +σ 1 s  

5. Compute consistent viscoplastic tangent moduli, → Eq. (3.47)  

 

3.3.2.2 Consistent Tangent Operator 

Consistent tangent matrix, which leads to faster convergence rate in case of Newton–Raphson 

algorithms (Simo and Taylor (1985)), is derived for the viscoplastic formulation. In viscoplasticity, 

‘the use of consistent tangent moduli is not only desirable but also necessary’ as remarked in Ju 

(1990). This necessity stems from the fact that in viscoplastic models a continuum tangent stiffness 

operator does not exist, as a result of abolishing the consistency condition which prevents a direct 

incremental relationship to be established between the stress and the total strain increments.  
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By differentiating the algorithm discussed in the previous section, one obtains the algorithmic 

consistent viscoplastic tangent moduli. In particular, the linearization of the computed Cauchy stress 

tensor gives: 

vp n+1 n+1
n+1 el,tr

n+1 n+1

∂ ′ ∂ ′
= =

∂ ∂

σ σ
C

ε ε
 (3.42) 

and using Equation (3.40), one obtains: 

tr

vp n+1 n+1 n+1 n+1
n+1 n+1 g n+1 n+1el,tr el,tr el,trel,tr

n+1 n+1 n+1
n+1

Δλ Δλ
3KΔλ α 2G 2GΔλ

∂ ′
= − ⊗ − ⊗ − ⊗

∂

∂ ∂ ∂
∂ ∂ ∂

σ n
C 1 n

ε ε ε ε
 (3.43) 

in which the partial derivatives are defined as follows: 

tr

n+1

el,tr e

n 1

e
d v

+

Κ 2G⊗ +
∂

∂
= =1 1 I

σ
D

ε
 (3.44) 

{ }
tr

n+1 n+1
n+1el,tr el,tr

n+1 n+1

Δλ 1 1
3α K 2G

d d f
f

+
∂ ∂

= =
∂ ∂

1 n
ε ε

 
(3.45) 

{ }
tr

n+1 n+1 n+1
n+1 n+1el,tr tr el,tr tr

n+1 n+1 n+1 n+1

n+1 n

dev

de +1tr tr
n+1 n+1

v

2G

2G 2G

1: :− ⊗

− ⊗                           

∂ ∂ ∂
= =

∂ ∂ ∂

=      

I
n n s

I n n
s s

I n n
s s

ε ε
 (3.46) 

The consistent viscoplastic tangent operator takes the final form: 

g gvp n+1 n+1
n+1 dev tr

n+1n+1

2n+1 n+1 n+1 n+1
tr

n+1 n+1 n+1n+1

9α α K 6KGα2GΔλ
1 K 2G 1

d d

6KGα Δλ1
4G

d d

f

f

= − ⊗ + − − ⊗

− ⊗ − − ⊗

  
       

 
 
 
 

s
C 1 1 Ι 1

ss

s s s
1

s s ss

 (3.47) 

In Equations (3.45) and (3.47) 2
g g

η 2
d 9α α K 2G β h 3α 1

Δt 3
0

f f
f

= + + + +  and it can be inferred that the 

viscoplastic modulus tends to the elastoplastic limit as viscosity (η) tends to zero. 

3.4 Elasto-Viscoplastic Model of Duvaut-Lions 
A different viscoplastic model, which its elaboration is more closely connected to the rate-

independent plasticity theory, has been proposed by Duvaut- Lions on 1972.   
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A strong advantage of the Duvaut-Lions model is that once it has been implemented in a FEM code 

it can then be used for any existing elastoplastic models. This feature arises naturally from the 

dependence of the viscoplastic solution on the existence of the elastoplastic one.  

Furthermore, Duvaut-Lions model becomes more attractive when a yield surface with an apex or a 

non-smooth one is considered, as it avoids the difficulties encountered by the Perzyna-type model in 

such non-smooth corner regions (see, e.g., Simo et al. (1988b), Ju (1990)). In fact, as the viscosity 

parameter approaches zero, the Perzyna type models do not reduce to the rate-independent plasticity 

formulation in the case of non-smooth multi-surface models. To remedy this shortcoming an 

alternative viscoplastic formulation was proposed by Duvaut-Lions. 

3.4.1 Evolution Equations 
The Duvaut-Lions model is based on the difference in response between the viscoplastic material 

and the rate-independent one. This is in contrast with the model proposed by Perzyna in which the 

value of the yield surface determines the viscoplastic strain rate. 

 In the case of the Duvaut-Lions formulation the viscoplastic strain rate is related to the difference 

between the current viscoplastic stress, σ', and the contribution of the elastoplastic material, ′σ , which 

can be viewed as a projection of the current stress to the yield surface (also called as inviscid back-

bone model (Sluys (1992)): 

( )1vp e1
 

τ
− 

 = ′− ′ε D σ σ  (3.48) 

Ιn a similar fashion the hardening rate is given as: 

( )1
q q q

τ
= − −  (3.49) 

where the overbarred quantities represent solutions of the inviscid elastoplastic problem. The 

quantities q consern internal hardening variables associated with the grotwh of the yield surface.  

In Equations (3.48) and (3.49), τ is the relaxation time of the material and, in general, is strain and 

strain-rate dependent. 

3.4.2 Derivation of Duvaut-Lions Algorithm 
The viscoplastic strain rate, Equation (3.48), is time discretized through the Backward Euler 

algorithm:  

( )1vp e
n+1 n+1 n+1

Δ
Δ

τ
t − 

 = ′  − ′ε D σ σ  (3.50) 

Similarly, the hardening law is defined as: 
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n+1 n n+1 n+1

n n+1 n+1

n n+1

1 1
q q Δ q q

τ τ
Δ Δ

q q q
τ τ

τ Δt
q q

τ + Δ τ + Δ

t

t t

t t

= + − +

        = − +

        = +

 
 
 

 (3.51) 

Then, the tangential stiffness relation (Equation (3.19) is recalled: 

( )
( )

( )

vp
n+1 n+1 n+1

1e
n+1 n+1 n+1

n+1 n+1 n+

e

e e

1
e

Δ Δ Δ

Δ
Δ

τ

:

:

τ
:

Δ
Δ

:
t

t

− 
 

′ = −

           = −

          

′  − ′

′  −  − ′=

εσ D ε

D ε D

D ε

D σ σ

σ σ

 (3.52) 

After some algebra one obtains the following expression for the new stress state: 

( )e
n+1 n n+1 n+1

τ Δ
Δε +

τ + Δ τ + Δ
t

t t
′ = ′ + ′σ σ D σ  (3.53) 

In the case of the Duvaut-Lions model the stress update is carried out in two steps. Firstly, the inviscid 
elastoplastic stress is computed, using a classical return mapping algorithm and then the viscoplastic 
update of Equations (3.50), (3.51) and (3.53) is applied (Table 3.2) . In fact as also stated by Schwer 
(1994), to convert an existing elastoplastic constitutive algorithm to a viscoplastic one, a simple stress 
update loop through the integration points is required at the end of the existing routine. After their 
update, both viscoplastic stress and strain are stored for each integration point, to be used in the 
subsequent time steps. 

The algorithmic tangent operator at t = tn+1 is given in Equation (3.54) and involves the evaluation of 
both the elastic and the rate-independent operators (Ju (1990)). Moreover, it indicates that in the 
limiting condition Δt/τ→0 the viscoplastic model reduces to the elastic case, while for Δt/τ→∞ to the 
elastoplastic one. This illustrates that in the Duvaut-Lions formulation, appropriate limiters between 
the time interval and the relaxation time must be taken into account to obtain objective (viscoplastic) 
predictions of the failure zone when dealing with strain localization problems.  

e epvp
n+1 n+1

Δτ
ττ+Δ
t

t= +   C D D  (3.54) 

Herein, the elasto-viscoplastic model of Duvaut-Lions constitutes an extension of the elastoplastic 

version of Drucker-Prager model where a special treatment of the corner region (for the apex of the 

cone) was taken into account.  Description of the elastoplastic model is given in the sequel for a better 

overview of the reader and a more comprehensive presentation can be found in Sanavia et al. (2006).  

Algorithmic formulation for elastoplasticity 

The plastic flow direction, based on the yield function of the Drucker-Prager elastoplasticity model, 

is defined by the non-associated flow rule: 
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{ }p
gλ α= +ε 1 n  (3.55) 

The loading/unloading conditions can be expressed in the Kuhn-Tucker form as: 

λ 0,      0,      λ = 0f f≥ ≤   (3.56) 

The problem of the calculation of strain and stress is typically solved by an operator split into an 

elastic predictor and a plastic corrector.  

The trial elastic state (•)tr is based on freezing the plastic flow at time tn+1. If this trial state is 

admissible it does not violate the inequality tr
n+1 0f ≤  and the stress state is hence already computed. 

Otherwise, the return mapping or plastic corrector algorithm is applied to compute the inelastic 

multiplier, Δλn+1, satisfying the consistency condition.   

( )tr tr p 2
n+1 n+1 g n+1 n+1 n+1 n n+1 g

tr 2
n+1 n+1 g g

23α p 9α α KΔλ 2GΔλ β 2 / 3 c hξ Δλ β h 3α 13

2Δλ 9α α K 2G β h 3α 13

f f f f

f f

f

f

= ′ − + − − + − +

        = − + + + 
 
 

s
 (3.57) 

The plastic multiplier can be derived from the consistency condition, fn+1 = 0: 

tr
n+1

n+1
2

g g

Δλ
29α α K 2G β h 3α 13f f

f
=

+ + +
 (3.58) 

From the knowledge of Δλn+1 the plastic strain is computed by the backward Euler integration of 

Equation (3.55): 

{ }p p
n+1 n n+1 g n+1Δλ α += +ε ε 1 n  (3.59) 

and the stress tensor can be updated as well: 

n+1 n+1 n+1p′ = ′ +σ 1 s  (3.60) 

The method is then extended to take into account a special treatment of the corner region based on the 

concept of multi-surface plasticity developed in Hofstetter and Taylor (1991). It is mentioned that the 

return mapping algorithm developed without any special treatment of the apex region, leads to 

physically meaningless results (i.e. ||sn+1|| < 0) for a certain range of trial elastic stress. This happens 

when the following relationship obtained from the updated deviatoric components of the stress tensor 

is violated:  

tr
n+1 n+1 n+1= 2GΔλ 0− ≥s s  (3.61) 

Without getting into details, violation of the abovementioned inequality and the consistency condition 

define the inequality for which the return mapping needs to be modified:  
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tr
n+1gtr tr 2 p

n+1 n+1 g

2β3α K 3p > h 3α 1 c hξ
2G 3α 2G

f

f

′ + + + +
  
 
  

s
s  (3.62) 

To simplify matters, if the inequality (3.62) holds, the classical return mapping will produce a 

physical solution and no special treatment is needed. As soon as the inequality in (3.62) is violated, 

the procedure described below is followed for the update of stress and strain at each gauss point. 

 In this case, the stress region characterized by Equation (3.62) may be treated like a corner region 

in non-smooth multi-surface plasticity. To this end a second yield function f2 is introduced in addition 

to Equation (3.1) as: 

( ) p
2

2p , ξ 3α p β c hξ3f ff ′ ′= − +    (3.63) 

in which ||s|| = 0 and the plastic evolution equations need to be modified following Κoiter’s 

generalisation, introducing a second plastic multiplier λ2.  

Δλ1,n+1 occurs from Equation (3.61) with the condition sn+1 = 0 and Δλ2,n+1 is obtained enforcing the 

constancy condition f2 = 0 and is computed iteratively via a Newton scheme. Once the two plastic 

multipliers have been computed the components of the Cauchy stress tensor σ', the elastic strain 

tensor εe and the plastic strain tensor εp, can be updated.  

In particular, the Cauchy stress tensor in case of the non-corner region is: 

tr trn+1
n+1 n+1 g n+1 n+1tr

n+1

2GΔλ
p 3Kα Δλ 1′ = ′ − + −

 
 
  

σ s
s

 (3.64) 

and for the corner zone is: 

[ ]tr
n+1 n+1 g 1 2 n+1

p 3Kα Δλ Δλ′ = ′ − +σ  (3.65) 

The plastic strain is computed from Equation (3.59) for the non-corner zone. Otherwise, is given from 

the following equation: 

[ ] [ ]p p
n+1 n g 1 2 1 n+1n+1 n+1

α Δλ Δλ Δλ= + + +ε ε 1 n  (3.66) 

Finally, the computed algorithmic tangent moduli for the two cases are respectively: 

• for the non-corner zone: 

tr
g gep n+1 n+1

n+1 tr tr
1 1n+1 n+1

tr tr tr
2n+1 n+1 n+1 n+1

tr tr tr tr
1 1n+1 n+1 n+1 n+1

9α α K 6KGα2GΔλ
1 K 2G 1

c c

6KGα Δλ1
4G

c c

f

f

= − ⊗ + − − ⊗

− ⊗ − − ⊗

  
       

 
 
 
 

dev
s

D 1 1 Ι 1
s s

s s s
1

s s s s

 (3.67) 

with ( )2
1 g g

2
c 2G 9Kα α β h 1 3α

3f f= + + +  
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• for the corner zone: 

[ ]
ep tr2
n+1 2 n+1

g 1 2 n+1

c K
c K

2Gα Δλ Δλ
= ⊗ + ⊗

+
D 1 1 1 s  (3.68) 

in which the coefficient c2 equals to: 

 [ ] [ ] [ ] [ ]2 2

n+1 n+1

2
2 g 1 2 1 g 1 2 g 1 2n+1 n+1

2 2
c α β h Δλ Δλ 3α K Δλ 3α Δλ Δλ α β h Δλ Δλ

3 3f f f= + + + + +  

Table 3.2: Numerical algorithm for local Duvaut-Lions model. 
1. Compute trial elastic state 

tr p
n+1 n+1 np Ktr( )′ = −ε ε ;  

tr p
n+1 n+1 n2G( )= −s e e  

2. Check flow potential 

( )tr tr tr p
n+1 n+1 n+1 n3α p β 2 / 3 c hξf ff = ′ + − +s  

IF: tr
n+1 0f ≤  → elastic step → tr

n+1 n+1Set   (•) (•)=  & EXIT 

else go to 3 

3. Compute elastoplastic stress and strain n+1σ , n+1q , p
n+1ε  → Eq. 

(3.64) or (3.65) and (3.59) or (3.66) 
4. Update viscoplastic strain and stress 

( )e
n+1 n n+1 n+1

τ Δ
Δε

τ + Δ τ + Δ
t

t t
′ = ′ + + ′σ σ D σ  

( )1vp vp e
n+1 n n+1 n+1

Δ
τ
t − 

 = + ′ − ′ε ε D σ σ  

n+1 n n+1
τ Δt

q q q
τ + Δt τ + Δt

= +  

5. Compute consistent viscoplastic tangent moduli, → Eq. (3.54) 

in combination with Eq. (3.20) & (3.67) or (3.68) 

3.5 Non-Local Enhancement of the Viscoplastic Approach 
It is very well known fact that, in the case of slightly viscous materials, the regularizing effect of 

viscosity vanishes, so that the employment of more advanced constitutive theories is recommended. 

Along this direction, a non-local enhancement of the initial viscoplastic model of Perzyna presented in 

Section 3.3 is introduced and analyzed in terms of regularizing performance.  

Non-local models can be grouped into gradient type models that apply differential operators, and 

into integral type models that use weighted spatial averages. On expanding a non-local model in 

Taylor series and omitting the high-order derivatives, one obtains a strain-gradient model; hence, a 

strain-gradient model can be seen as a particular case of a non-local one. This thesis is dealing only 

with the integral type of non-locality and always in combination with the viscoplastic approach. 
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Furthermore, it is evident from the literature that formulations based on non-local averaging are 

widely used in single phase materials, whereas they have not been fully investigated in the context of 

multiphase porous media motivating the non-local application within the context of this thesis. 

3.5.1 Preface and Definitions 
The first publications with the integral-type models date back to the late sixties of the last century 

and focus on non-local formulations for elasticity e.g. Kröner (1967) and Eringen and Edelen (1972). 

The extension of the integral-type non-local models to plasticity was proposed by Eringen. He 

developed non-local formulations of isotropically hardening plasticity in strain space (Eringen 

(1981)), perfect plasticity with associated flow, and deformation theory of plasticity (Eringen (1983)). 

The model was first applied as a regularization method in the context of damage models by Pijaudier-

Cabot and Bažant (1987) and for strain-softening problems by Bažant et al. (1987). In Strömberg and 

Ristinmaa (1996) a detailed description of a possible numerical solution procedure for an integral-type 

non-local plasticity model within the FE method is presented. Initially conceived for concrete and 

rock-like materials, the integral non-local approach has been then extended to granular soils as well 

(see e.g. di Prisco et al. 2002). 

Generally speaking, the non-local theory is based on the idea that the response of the material at a 

point is determined not only by the state at that point but also by the state of its neighboring points. In 

the application of non-local averaging, the local results of a specific integration point will be averaged 

by considering the results of the integration points in a certain radius resulted from the characteristic 

length (points in neighborhood). For this reason this method is known as non-local integral type 

averaging method. 

Following Jirásek (2002) in non-local approach, a certain variable is substituted with its non-local 

counterpart obtained by weighted averaging over a spatial neighborhood of each point under 

consideration. If f(x) is a “local” field, the corresponding non-local field is defined as: 

vf( ) = α( , ) f( )d∫x x ξ ξ ξ  (3.69) 

where α(x,ξ) is a given non-local weight function of the point under consideration located at x and the 

neighboring (or distributing) points located at ξ and V is the volume of the entire body.  

For an infinite body the weight function depends only on the distance r = ǁx − ξǁ and can be 

expressed as α(x,ξ) = α0(ǁx − ξǁ) where α0 is a function of r. For a finite body, the weight function is 

usually adjusted such that the non-local field corresponding to a constant local field remains constant 

even in the vicinity of a boundary. This is guaranteed if the weight function satisfies the normalizing 

condition: 

v α( , ) d = 1   V∀ ∈∫ x ξ ξ x  (3.70) 

This condition can be achieved by imposing that the weight function is expressed by: 
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( )
( )

0

0v

α
α( , ) =

α  d∫

x - ξ
x ξ

x - ζ ζ
 (3.71) 

where α0 is the basic weight function. 

Key points for the formulation and implementation of an integral non-local approach are the shape 

function for the averaging, the non-local variable and its discretization. In the following, these factors 

are discussed in detail. 

 

Basic shape function 

The weight function always contains at least one parameter with the dimension of length which 

incorporates, in the simplest possible way, information about the microstructure and controls the size 

of the localized plastic zone (Jirásek and Rolshoven (2003)).  

For the basic weighting function, α0, several choices can be found in the literature on non-local 

theories. Some of the most commonly used averaging functions are: 

• Gaussian function (Jirásek (2002)): 

2
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α (r) exp
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 (3.72) 

where l is the internal length of the non-local continuum. 

• Bell-shaped truncated polynomial function (Rolshoven and Jirásek (2003)): 
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where R is the interaction radius representing a parameter linked to the internal length. 

• Exponential Gaussian bell-shaped function (Ammann (2005)): 

0 2
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α ( ) = exp

l
1

l π
− ⋅ −

− − 
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x ξ x ξ
x ξ  (3.74) 

• Bi-linear exponential function (Lu et al. (2012)): 

0

r
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 (3.75) 

where R is the radius of effective zone which can be determined by l. 

The Gauss-like weight function (Equation (3.72)) has an unbounded support, which means that the 

nonlocal interaction theoretically takes place at an arbitrary long distance. Since the decay of α0 with 
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increasing r = l is very fast, in practical applications it is possible to truncate the function at a finite 

distance.  

The bell-shaped function (Equation (3.73)) has a bounded support and vanishes at distances r 

exceeding the interaction radius R. In this equation the scaling factor c depends on the dimension of 

the problem and equals to 16R/15 for one dimension, πR2/3 for two dimensions and 32πR3/105 for 

three dimensions (Rolshoven and Jirásek (2003)).  

A bi-linear exponential function with bounded support was selected by Lu et al. (2012). The 

influence area in which the non-local variable was weighted, had a radius R = 6l. 

Ammann (2005) used an exponential Gaussian bell-shaped function (Equation (3.74)) which has a 

maximum at y = x, it is symmetric about this point and depends on the internal length scale l.  

In Figure 3.7 this function is plotted within an 1-D example for different values of l, at the position 

x = 0.1m. It can be observed that the influence of the weighting function increases with increasing 

values of the internal length scale. In the same figure (Figure 3.7b), it is emphasized that for relative 

small values of the internal length, the representative volume results in the constant value 1.0, except 

close to the boundaries where the value decreases to 0.5. As a result, values of fields that are to be 

averaged at points close to the boundaries are more weighted (Figure 3.8), since they do not get 

contributions from the points outside the boundaries (Strömberg and Ristinmaa (1996)). 

Modifications on the description of the non-local field so as to overcome boundary problems have 

been proposed by Bažant et al. (2010) and Giry et al. (2011).  

  
(a) (b) 

Figure 3.7: 1-D example of the (a) weight function and (b) representative volume adopted in Ammann 
(2005) varying the internal length l. 

 
The same author showed that using the aforementioned averaging procedure, for small enough 

values of the internal length, the non-local function equals to the local one. 
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Figure 3.8: The weight function over the representative volume as a function of x, for constant 

l=0.04m and varying ξ. 
 

 

A comparison between the four abovementioned weight functions is presented in Figure 3.9. For an 

identical scale parameter l, the bi-linear exponential function and the Gauss distribution function are 

similar, while the unbounded bell-shaped function gives a wider influence zone. 

  
(a) (b) 

Figure 3.9: Comparison between the weight functions used by (a) Jirásek (2002) and Lu et al. (2012) 
and (b) Ammann (2005) and Rolshoven and Jirásek (2003). Parameters l and R are set to 0.02m for 

fixed position x=0.1m. 
 

Non-local variable 

In non-local theories, an internal length enters as a material parameter by allowing a dependency on 

the so-called non-local variables in the constitutive equations. A non-local variable is a weighted 

average of the local variable over all the material points in the body, and the length parameter 

determines how the value of the variable at a certain point is weighted. 

The way non-locality is introduced into the constitutive equations is dominant because an 

inappropriate treatment of the non-local variable, may lead to instability of the numerical analysis. 

According to Jirásek (2002), the choice of the variable to be averaged remains to some extent 

arbitrary, whereby at least one basic requirement has to be satisfied:  
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1. The generalized model should exactly agree with the standard “local” elastic continuum as long as 

the material behaviour remains in the elastic range. Except for the case of homogeneous strain, 

non-local strain differs from the local one, leading to a different model behaviour already for 

purely elastic deformations. For this reason, it is not possible to simply replace the local strain by 

nonlocal strain and apply the usual constitutive law.  

2. The model should give a realistic response in simple loading situations such as uniaxial tension.  

In a fully integral non-local model, a relation is established between average stresses and average 

strains. Instead of considering a fully non-local stress-strain relationship, it is convenient to consider 

only a particular strain measure as non-local, whereas general stresses and strains remain local 

(Bažant et al. (1987)). This enables a near-local treatment of the constitutive equation.  

In rate-independent plasticity theory, such a model obtained by formulating the hardening parameter 

as a non-local quantity. A disadvantage of rate-independent non-local models is that the determination 

of the plastic multiplier results in an integro-differential equation due to the consistency rule. 

Strömberg and Ristinmaa (1996) proposed an integration algorithm using a Backward-Euler method, 

in which the consistency condition resulted in a Fredholm integral equation of the second kind for the 

determination of the plastic multiplier. The authors declared that in non-local theory is not possible to 

derive a point-wise relation between the stress rate and strain rate as in local theory, because in the 

former the consistency condition is an integral equation that involves all the material points within the 

body. Indeed, this would give complex numerical procedures, however the procedures can be 

simplified by adopting suitable approximations of the hardening parameter in terms of total strains 

instead of plastic strains as for example in Brinkgreve (1994). 

Another choice for the non-local variable is the scalar value of the plastic strain tensor (the 

equivalent or accumulated plastic strain) which is incorporated in the softening law, or the plastic 

strain itself. However, as it has been first demonstrated by Brinkgreve (1994), a classical non-local 

model is not always effective as a regularization method and a modified (also called over-non-local 

model in Luzio and Bažant (2005), Lu et al. (2012) and mixed local and non-local model in 

Strömberg and Ristinmaa (1996)) non-local model has to be adopted.  

di Prisco et al. (2002) combined the non-local approach with rate-dependency and chose the yield 

function as non-local variable. This combination excludes the problems arising with the consistency 

condition in rate-independent non-local models. Moreover, if the viscoplastic constitutive law is of 

Perzyna type, it is very convenient to be extended to non-local approach, by redefining the flow rule 

and assuming that the viscous nucleus depends on the non-local yield function. The simplicity of the 

proposed method is further highlighted by the addition, on the original viscoplastic approach, of a 

single constitutive parameter to account for the non-local effects. This parameter can be calibrated by 

either experimentally estimating the shear band thickness during a biaxial test or by assuming that 

such thickness is empirically correlated to the mean grain size of the material.  
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Discretization of the non-local variable 

The non-local variable of Equation (3.69) is evaluated using Gauss quadrature. The Gaussian 
integration process allows the spatial integrals of a polynomial to be replaced with finite sums over a 
discrete set of integration points. In each element we perform Gauss integration. For details on this 
point the interest reader refers to Zienkiewicz and Taylor (2000). The numerical integration of spatial 
averaging is schematized in Figure 3.10.  
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in which i is the integration point under consideration, j is the jth Gauss point of element e; el is the 
total number of elements inside the interaction volume defined by a sphere centered at x with radius R 

(Figure 3.10), n is the number of Gauss points of this element inside the interaction volume; e
jω   and 

e
jJ  are, respectively, the weight and Jacobian matrix at Gauss point j of element e.  

 
Figure 3.10: Area where the average is calculated. Gauss point P is the point under consideration 

where the non-local variable is calculated. 
 

 
The above expression can be rewritten in compact form as: 

iNG

ij j
j

f = w f∑i  (3.77) 

where NGi is the total number of Gauss points inside the non-local interaction volume at point i and 
the weight wij for the interaction between points i and j has the form: 
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3.5.2 Algorithmic Aspects 
The non-local enhancement of the viscoplastic model is obtained by modifying the viscoplastic flow 

rule of Perzyna (presented in Section 3.3) and assuming the yield function as a non-local variable. 

Thus, the viscous nucleus in the flow rule is also redefined. 

( )vp g
γΦ f

∂
=

∂ ′
ε

σ
  (3.79) 

where f is the non-local yield function defined as (Equation (3.69)): 

v( ) = α( , ) ( )df f∫x x ξ ξ ξ  (3.80) 

and is evaluated using Gauss quadrature as in Equation (3.76). 

For the basic weighting function, α0, a Gaussian weighting function with a bounded support is 

selected (Figure 3.11): 
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The algorithmic treatment of the non-local approach and its implementation can be divided in two 

main steps.  

In the first step the factors e
jω , e

jJ  and ( )e
i jα −x ξ of Equation (3.76) are computed. These factors 

depend on the finite element mesh itself and not on the material model considered. Therefore, this 

step is applied only once at the beginning of the analysis and the values of the calculated factors can 

be reused in the subsequent iterations, whenever the non-local formulation is activated. This fact has 

twofold advantage as it allows for non-local extension to more sophisticated yield criteria and in 

addition reduces significantly the computational burden.  

Moreover, carrying out an integration over the whole domain with a relatively small value for the 

internal length l, may lead to the summation of zero values. This is because in such a case, the sphere 

of influence of the weighting function is only in the closest neighborhood of the regarded integration 

point. To prevent such an inefficient strategy, at the beginning of the calculation, the set of elements, 

which have an influence on the non-local quantity, are determined by calculating the distance between 

the respective points and comparing the distance with some reference value, which depends on the 

internal length. 

Table 3.3  describes the first step of the numerical integration process. This procedure has been 

implemented as a separate subroutine in Comes-geo code and it therefore allows for non-local 

extension to more sophisticated yield criteria only by minor modifications in the local model. 
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Figure 3.11: 1-D example of Gaussian weighting function for different values of the internal length 
scale l (l=0.02, 0.04 and 0.08m).  The influence of the weighting function increases with increasing 

values of the internal length scale. 
 

Table 3.3: Calculation of non-local factors at Gauss points. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second step the non-local quantity and the integration of the non-local elasto-viscoplastic 

constitutive equations are computed.  

In non-local context an implicit scheme is difficult to be applied, as the integration of the 

constitutive equations is no longer a local stage (Strömberg and Ristinmaa (1996)). For this purpose 

an explicit integration scheme is adopted only for the integration of non-local viscoplastic constitutive 

equations (whereas the rest of the algorithm operates implicitly) and the non-local values at the 

current time step are calculated from the local values of the previous time step. The employment of 

this semi-implicit algorithm implies the loss of unconditional stability, but overcomes the spatial 
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coupling in Equation (3.83). Due to its explicit nature, the stability of the algorithm is maintained 

using a relatively small time step.   

Using forward Euler method for the integration of Equation (3.79) one obtains: 

{ }vp vp
n+1 n n+1 g nΔλ α += +ε ε 1 n  (3.82) 

in which the increment of the inelastic multiplier is obtained by integrating the non-local version of 

Equation (3.26): 

( )n+1 n
0

Δt
Δλ

η
f

f
=  (3.83) 

Having computed Δλ , strain and stresses can be updated in a similar manner as shown in Section 

3.3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Flowchart of the non-local implementation in Comes-geo code. 
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Since this procedure uses the local values of the previous time step for the calculation of non-local 

values at the current time step, the local variable has to be stored and ensure that this information will 

be available in the next time step. In fact the local yield function, f, is a column matrix that collects the 

local values at all Gauss points. 

Figure 3.12 summarizes the algorithm of non-local formulation, which extends the local stress 

update of the viscoplastic model of Perzyna. 

3.6 Concluding Remarks 
This Chapter contains the analytical formulation and the numerical treatment of the adopted 

regularization techniques that complete the multiphase model described in Chapter 2.  

Having the combination of a regularized finite element solution and the multiphase material model 

describing the behaviour of soils, we will have a numerical tool capable of simulating strain 

localization phenomena in a realistic base.  

Following this goal three viscoplastic models are theoretically employed and numerically 

implemented in the finite element Comes-geo code: 

• Local viscoplastic model of Perzyna 

• Local viscoplastic model of Duvaut-Lions  

• Non-local viscoplastic model of Perzyna 

For simplicity, a Drucker-Prager yield criterion was assumed and a more sophisticated yield 

criterion will be introduced in Chapter 5.  

The merits and drawbacks of each regularization model are summarized in Table 3.4. 

Table 3.4: Advantages and disadvantages of regularization models. 

Viscoplastic model Advantages Disadvantages 

Local Perzyna New functional 

relationships, Φ( f ) can be 

easily added 

In multi-surface plasticity as 

η→0 do not reduce to the 

rate-independent plasticity  

Duvaut-Lions Easily adopted to existing 

elastoplastic material 

models 

Regularization in a weak 

sense as viscoplastic solution 

lies between elastic and 

inviscid solution 

Non-local Perzyna A characteristic length is 

explicitly introduced 

(shear zone thickness 

depends on the R value) 

A minimum mesh density is 

necessary to activate the 

nonlocal interaction  
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 Chapter 4: Numerical Validation and Applications 

4.1 Introduction 
The analysis of strain localization is of importance in engineering practice because localization is a 

precursor to sudden failure. Localized deformations in the form of narrow shear bands can be 

considered as a bifurcation from a smoothly varying pattern of deformation, which arises as a result of 

instability in the inelastic behaviour of the material. A strain-softening behaviour is expected to 

induce localization phenomena and, as is well-known, this poses the issue concerning the objectivity 

of the numerical results. When rate-independent elastoplastic solids are considered, the solutions of 

localization problems are mesh dependent and the width of the shear band is set by the finite element 

size. 

In order to properly characterize the mechanisms of strain localization without mesh dependency, 

local and non-local viscoplasticity are introduced in the framework of multiphase porous media, as 

discussed in Chapter 3.  

In this Chapter, the validation of the model’s implementation in the Comes-geo code is presented 

along with two characteristic applications of strain localization to explore the regularization 

capabilities of the applied models.  

More specifically, fully-coupled hydro-mechanical analysis of shear failure is performed for a case 

of an experimental plane-strain compression test and for a benchmark slope instability problem. These 

examples aimed at answering key questions, such as: what are the most significant influential factors 

in the development of strain localization for each regularization technique and which is the role of the 

fluid components in localization; is the viscosity of the soil affected by the presence of water and how 

does this fact influence the regularizing capabilities of the method; how do the internal lengths 

introduced by viscosity and non-locality interact with each other and under which circumstances is the 

one method preferable to the other? 

This Chapter is structured as follows: In Section 4.2 the numerical results coming out from the 

simulation of a plane-strain compression test using local and non-local viscoplasticity are presented 

followed by the numerical simulation of a slope failure in Section 4.3. The conclusions drawn from 

these investigations are given in Section 4.4. 

4.2 Strain Localization on Initially Saturated Dense Hostun Sand 
In this section the regularization methods presented in Chapter 3, are applied to a plane-strain 

compression test and their effect on the respective numerical solution is discussed. It is about a biaxial 

compression test of initially water saturated globally undrained dense Hostun RF sand, inspired by the 

experimental work of Mokni and Desrues (1998). In globally undrained situations, relative drainage 

may appear between zones of the domain i.e. between shear bands and blocks as far as localization is 

concerned.  
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This example was previously studied by Sanavia et al. (2006), assuming a rate-independent 

behaviour for the description of the mechanical behaviour of sand. The goal was to emphasize the 

benefits of using a multiphase model to study phase change phenomena, such as that of cavitation at 

strain localization and therefore a suitable mesh was used to avoid excessive mesh dependency.  

For clarity, a brief description of the simulated example, providing general assumptions and details, 

follows. 

To begin with, mesh sensitivity of the numerical results is examined by using three different finite 

element discretizations. The meshes consist of 85, 340 and 1360 elements respectively, for a 

rectangular sample of homogeneous soil of 34 cm height and 10 cm width, sketched in Figure 4.1. 

The finite element mesh consists of eight node quadrilateral isoparametric elements with reduced 

Gaussian (2 x 2) integration scheme to eliminate shear locking (Owen and Hinton (1980)). The 

bottom of the sample is fixed and rough whereas the boundaries are impervious and adiabatic. 

Hydrostatic distribution of water pressure is assumed as initial condition. 

 
Figure 4.1: Description of the geometry, boundary and loading conditions. 

 
Quasi-static loading conditions are assumed and gravity acceleration is taken into account. Axial 

compression is applied to the specimen by imposing vertical velocity (1.2 mm/s) on the top. No weak 

elements are specified since the boundary value problem inherently generates a non-uniform stress 

field. A non-associated plastic flow rule is adopted to simulate the material nonlinear response and the 

values of the mechanical and hydraulic properties used in the computations are presented in Table 4.1. 

The constitutive relationships for the water degree of saturation (Equation (2.40)) and the water 

relative permeability (Equation (2.46)) are of the type of Safai and Pinder. For the gas relative 

permeability the relationship of Brooks and Corey has been selected (Equation (2.48)). 
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Finally, for the sake of simplicity, the strain softening phenomenon is assumed to occur 

isothermally. In other words, the strain softening is executed at constant temperature and no 

temperature gradient is developed in the material during the deformation (uniform temperature 

distribution, no heat transfer due to conduction). It is important to note that thermal effects can cause 

the softening in plasticity regime, but they are out of scope of this study.  

Table 4.1: Soil parameters used in the computation. 
Parameter Symbol Value SI unit 

Young modulus  E 30 MPa 

Linear softening modulus h -1 MPa 

Initial apparent cohesion  c0 0.5 MPa 

Angle of internal friction  φ 30 (°) 

Dilatancy angle  ψ 20 (°) 

Poisson ratio  ν 0.4 [-] 

Initial porosity n 0.2 [-] 

Solid density  ρs 2000 kg/m3 

Intrinsic water permeability  k 1.0E-14 m2 

Water unit weight  γw 10 kN/m3 

Gravity acceleration  g 9.81 m/s2 

Soil viscosity  η variable s 

SWCC parameter α 1 [-] 

SWCC parameter ν 5 [-] 

SWCC parameter β 0.0005 cm-1 

4.2.1 Plastic Mesh Dependence  
The numerical results for the rate-independent plasticity model are first presented, where 

pathological mesh dependency is observed. For an evaluation of the posedness of the respective 

problem, FE calculations are carried out with different meshes. 

The equivalent plastic strain profiles plotted in Figure 4.2 for the vertical centre cross-section of the 

specimen depicts that the width of the shear zone is bounded within the size of one element and the 

maximum value of the equivalent plastic strain significantly differs.  

The contours of equivalent plastic strain reflect the difference in the computations with varying 

meshes; three different meshes are used and three different solutions are obtained; the numerical 

results indicate the accumulation of inelastic strains in narrow zones after 27 s, for the course and the 

intermediate mesh, as can be observed in Figure 4.2 a and b. The shear bands develop from the 

bottom surface because of the higher stress state due to gravity load and the constrained conditions. 
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When a finer mesh is used (20x68 mesh), the strong mesh dependence is shown with concentration of 

the equivalent plastic strain in the corners of the sample without propagation in shear bands. A non-

acceptable numerical error develops and the analysis failed to converge at t= 9s as soon as strain 

localization appears. 

 
(a)                                       (b)                             (c)                            (d)  

Figure 4.2: Equivalent plastic strain (a) profiles and contours for (b) course (5 × 17) and (c) 
intermediate mesh (10 × 34) at t = 27 s and (d) fine mesh (20 × 68) at t=9s. 

4.2.2 Viscous Regularization – Perzyna’s Model 
The local viscoplastic model of Perzyna described in Section 3.3 is now used to simulate the same 

plane-strain compression test.  

• Validation in Comes-geo 

The numerical validation of the model in the Comes-geo code is first presented and is conducted in 

two stages.  

In the first stage, a nil value of viscosity is used. This is because for rather small values of viscosity 

elastoplastic limit is approached (Needleman (1988)). In Figure 4.3 are plotted the equivalent inelastic 

strains in the vertical section at the centre of the sample for both elastoplastic (solid black line) and 

elasto-viscoplastic (dashed red line) constitutive models. The comparison of the results shows the 

coincidence between the elastoplastic and the considered viscoplastic solution for nil viscosity value. 

The second stage of validating the implementation of Perzyna’s model in Comes-geo code regards 

the reproduction of the creep process. To this end, a creep test on loose Hostun sand published in di 

Prisco and Imposimato (1996) is simulated. A single element test is performed under drained 

conditions and the sample is gradually loaded until a deviatoric stress of 75 kPa is reached (Figure 

4.4a). Then, the load is kept constant in time.  

Figure 4.4c clearly shows that the material strain response to the instantaneous stress increment is 
delayed in time. Under a constant load (in the time period 200-1000 min) the axial strain slowly but 
continuously increases. The same curve is also reproduced in a semi-logarithmic scale Figure 4.4d. It 
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is important to underline that, this time-dependent behaviour is not due to the water flow within the 
sample (i.e. to the consolidation phenomenon), but uniquely to the material mechanical properties (the 
chosen viscous parameters are γ=1·10-8 s-1 and N=1). 

 
Figure 4.3: Equivalent inelastic strain profile for elastoplastic model and elasto-viscoplastic model in 

case of nil viscosity, for the intermediate mesh (10 × 34). 
 

  
(a) (b) 

  
(c) (d) 

Figure 4.4: Creep test: (a) Axial load-time history and (b) effective stress path; material strain-time 
response: comparison between the experimental and the numerical results in (c) linear scale and (d) 

semi-logarithmic scale. 
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• Influence of viscosity 

Coming back to the undrained plane-strain compression test on dense Hostun sand, a second value 

of viscosity, η= 30 s is used to detect mesh insensitive results, as depicted in Figure 4.5. In contrast to 

the elastoplastic solution, the mechanical response becomes more stable and the shear band width 

remains unaltered upon mesh refinement (Figure 4.5c and Figure 4.5d). In addition, the peak value of 

equivalent viscoplastic strain coincides for the intermediate and fine meshes whereas slightly deviates 

for the coarse mesh (Figure 4.5a).  

 
(a) 

   
(b) (c) (d) 

Figure 4.5: Equivalent viscoplastic strain profiles (a) and contours for (b) coarse mesh (5 × 17), (c) 
intermediate mesh (10 × 34) and (d) fine mesh (20 × 68), in case viscosity η=30 s. 

 

The influence of varying the viscosity on the solution of the numerical simulation is illustrated in 

Figure 4.6, for a constant finite element mesh with 340 elements. A dependence of the shear zone on 

the viscosity is obtained, due to overstress coming along with the viscoplastic approach. Increasing 

the value of viscosity results in an increase of the shear band width and a simultaneously decrease of 

the maximum value of the equivalent viscoplastic strain. In addition, the larger the value of viscosity 
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is, the larger is the delay on the response of the viscoplastic model. Furthermore, for a rather large 

value of viscosity equal to 100 s (Figure 4.6f) the equivalent viscoplastic strains are distributed over 

the whole sample whereas for small value of viscosity, viscoplastic strains are mostly detected inside 

the shear bands.  

 
       (a)                                           (b)                                             (c) 

 
       (d)                                           (e)                                             (f) 

Figure 4.6: Equivalent viscoplastic strain contours varying viscosity (a) η=0 s, (b) η=5 s, (c) η=10 s, 
(d) η=20 s, (e) η=50 s and (f) η=100 s, for the intermediate mesh (10 × 34). 

 

4.2.2.1 Major Factors Affecting Mesh Objectivity and Shear Band Evolution 

In this subsection the factors having an important influence on the evolution of localization bands, 

always in conjunction with viscosity, are addressed and discussed in detail.  
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• Influence of Loading Velocity 

To examine the influence of loading velocity on the viscous regularization of quasi-static process 

numerical simulations with velocity equal to 0.2 mm/s and 1.2 mm/s are performed. 

  
Figure 4.7: Distribution of the equivalent viscoplastic strains in the vertical centre section of the 

specimen for three meshes and loading velocity v=0.2 mm/s for viscosity (a) η=30 s and (b) η=110 s. 
 

The importance of the considered viscous parameter and the crucial influence of the loading 

velocity on the material response, are evidence through Figure 4.7 and Figure 4.8. In particular, 

Figure 4.7a clearly shows the dependence upon mesh refinement of both the shear band width and 

maximum value of viscoplastic strain, when decreasing the loading velocity six times while keeping 

the viscous parameter (η=30 s) constant.  

 
                            (a)                                         (b)                                            (c) 

Figure 4.8: Equivalent viscoplastic strain contours in case v=0.2 mm/s and viscosity η=110 s for (a) 
coarse mesh (5 × 17), (b) intermediate mesh (10 × 34) and (c) fine mesh (20 × 68), respectively. 
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Indeed, when the load velocity decreases significantly, the viscoplastic solution tends to the 

elastoplastic and strong mesh-sensitivity and loss of mesh objectivity follows.  In contrast to this 

mesh-dependent behaviour, the results coming from the simulations with increasing viscous 

parameter up to 110s show much better characteristics (Figure 4.7b and Figure 4.8). In these figures 

the equivalent viscoplastic strains in the vertical centre section of the sample and the corresponding 

contours are presented for the three discretizations, for η=110s and v=0.2mm/sec. No fundamental 

difference can be detected for results obtained from meshes with 340 or more elements. This leads to 

infer that the band width in quasi-static analysis is not exclusively governed by viscosity, but it also 

depends on the load velocity. 

Figure 4.9 shows exemplary plot profiles of the computed volumetric strain and capillary pressure 

distribution for the applied loading velocities (v=1.2mm/s and 0.2mm/s) and the corresponding 

viscosity values that preserve regularization (η=30s and 110s respectively). The plotted results are 

obtained for the same deformation of the specimen thus in different time step values as the loading 

velocity changes.  

  
(a) (c) 

  

(b) (d) 

Figure 4.9: Profiles for volumetric strain (top) and capillary pressure (bottom) computed with v=1.2 
mm/s and η=30 s (a), (b) and computed with v=0.2 mm/s and η=110 s (c) and (d), respectively. 
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According to laboratory observations, under globally undrained conditions, the increment of the 

void ratio due to volumetric plastic deformations will cause the water pressure to drop.   

In both cases the positive values of the volumetric strains are accompanied by the development of 

capillary pressure desaturating the inelastic zones. Moreover, Figure 4.9 shows similar volumetric 

strain distribution for the two applied loading rates. The results indicate consistency between the 

developed viscoplastic deformation and the capillary pressure, as the higher values of the later are 

detected within the localization zone, as expected. Regularized behaviour is apparent also for the fluid 

part with the coarser mesh showing again slightly different results. 

It is noteworthy that positive values of capillary pressure are observed on the upper part of the 

sample, while the volumetric strains are negative indicating absence of dilatancy. However in the 

adjacent sections excessive dilatant behaviour occurs explaining the development of capillary 

pressure. This excessive dilatant behaviour owes to the fact that when very large values of viscosity 

are considered to regularize the solution, the development of viscoplastic strains is delayed or rather 

suppressed and so higher deformation of the specimen are necessary to obtain the shear band. Dilatant 

behaviour occurs also outside of the shear zone and consequently almost all the sample becomes 

partially saturated at the end of the analysis. 

• Influence of Permeability 

A case of different permeability value under the same applied loading (v=1.2 mm/s) and the same 

viscosity (η=30 s) is studied to investigate the influence of soil permeability on the development of 

strain localization. The results are presented here only for the finer mesh. 

  
                              (a)                          (b) 

Figure 4.10: Contours for the (a) equivalent viscoplastic strain and (b) capillary pressure, for the fine 
mesh (20 × 68), viscosity η=30 s and permeability k=10-3 m/s. 
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Comparison between Figure 4.5d with the initial (lower) permeability (k=10-7 m/s) and Figure 4.10a 

with k=10-3 m/s, shows a diffused failure mode in the specimen with higher permeability. The plastic 

zone spreads over the whole structure owing to the fact that the pore fluid can easily escape from the 

domain into neighboring locations.  

  
                          (a)                           (b) 

Figure 4.11: Contours for the (a) equivalent viscoplastic strain and (b) capillary pressure, for the fine 
mesh (20 × 68), viscosity η=10 s and permeability k= 10-3 m/s. 

 

The value of permeability affects the coupling between the solid and the fluid phases and in 

conjunction with the viscosity parameter influences the development of strain localization. In fact 

interpreting the figures above, it can be seen that permeability plays a role in defining the width of the 

inelastic zone acting as an additional internal length parameter.  

  
(a) (b) 

Figure 4.12: Profiles of (a) equivalent viscoplastic strain and (b) capillary pressure in the vertical 
centre section of the specimen, for permeability k = 10-3 m/s and varying viscosity for (20 × 68) mesh. 
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Similar analyses were performed also for more permeability values within the presented limits and 

the results showed the same trend; therefore they are not presented for brevity. 

This spreading of the plasticity zone caused by using higher permeability tends to disappear with 

reducing the value of viscosity thus approaching the elastoplastic limit. This is clearly demonstrated in 

Figure 4.11 and Figure 4.12 where the permeability is kept fixed to the higher value of 10-3 m/s and 

the viscosity is set equal to 10 s. In this case the viscoplastic zone is concentrated inside the shear 

bands and their width is mainly governed by viscosity. Further decrease of viscosity drives to mesh 

dependent solution, similar to the one depicted in Figure 4.2d, regardless of the value of permeability. 

These results are in consistency with previous theoretical studies in Zhang et al. (1999), Zhang and 

Schrefler (2004). According to these authors, due to the presence of the gradient term in the fluid 

continuity equation through Darcy’s law, an internal length scale is naturally introduced under 

dynamic loading. This internal length is mainly depended on permeability. However, this is not valid 

under quasi-static loading where without a regularization tool there is no internal length parameter 

naturally introduced by the multiphase model.  

In particular, the numerical results presented in this sub-section showed that in quasi-static process 

the internal length scale given by the liquid water motion is evident only when the viscous effects are 

intense. Based on this, the more viscous the material, the stronger is the coupling with the value of 

permeability. 

• Loading Rate Effect: Quasi-Static vs. Dynamic 

Most factors affecting soil behaviour are equally important under both dynamic and quasi-static 

loading conditions. However, the significant characteristic of the dynamic response is the inertia force 

and its importance increases with the load application rapidity. To understand the dependency of the 

viscous regularization on the rate of the applied displacement the same example utilized in the 

previous sections is solved using the model described in Section 2.6.4.1. Dr. T. D. Cao. 

A vertical displacement increment of 1.2 mm/s is applied on the top surface of the dense Hostun 

sand sample. Figure 4.13 and Figure 4.14 shows the equivalent viscoplastic strain profiles for a 

horizontal section at y=0.1 m and for  a vertical centre section respectively, for two values of viscosity 

η=20 s and η=30 s. The value of 30 s seems to regularize the problem giving results that are mesh 

insensitive and objective. It should be noted that the same viscosity value leads to regularized solution 

also in the Quasi-Static solution. 

The contours of the positive volumetric strain (Figure 4.15a,b,c) emphasizes the dilatant behaviour 

of the shear bands as positive values develop inside the inelastic zones. As a consequence, water 

pressure decreases inside the shear bands up to the development of capillary pressure (Figure 

4.15d,e,f), desaturating the plastic zones. 

 To investigate further the effects of dynamics, Figure 4.16 presents a comparison with the 

corresponding quasi-static solution. In particular, Figure 4.16 shows the time histories of equivalent 
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viscoplastic strain, capillary pressure and liquid water saturation, inside the shear band at coordinates 

x=5 cm and y=10 cm. The dynamic solution is delayed in terms of equivalent viscoplastic strain as 

smaller values are observed in comparison with the corresponding of the quasi-static analysis. 

Moreover, a significant difference is depicted between the dynamic and quasi-static solution for the 

fluid variables (capillary pressure and water degree of saturation). For the dynamic solution the 

capillary pressure occurs higher than in the quasi-static and a more profound decrease of the degree of 

saturation is observed. The response allows us to infer that the dynamic solution is smoother than the 

quasi-static one, which is attributed to the stabilizing effect of the mass matrix.  

  

(a) (b) 

Figure 4.13: Dynamic loading: Profiles of equivalent viscoplastic strain for (a) η=20 s and (b) η=30 s 
in the horizontal section (y=0.1 m) of the specimen, for the three meshes. 

 

  
(a) (b) 

Figure 4.14: Dynamic loading: Profiles of equivalent viscoplastic strain for (a) η=20 s and (b) η=30 s 
in the vertical centre section of the specimen, for the three meshes. 
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                        (a)                                            (b)                                       (c) 

 
                         (d)                                         (e)                                            (f) 

Figure 4.15: Dynamic loading: (a), (b), (c) volumetric strain and (d), (e), (f) capillary pressure 
contours in case viscosity is η=30 s for the three meshes, respectively. 
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(a) (b) 

 
(c) 

Figure 4.16: Comparison between dynamic and quasi-static solution inside the shear band for (a) 
equivalent viscoplastic strain, (b) capillary pressure and (c) liquid water saturation for (10 × 34) mesh. 

 

• Effect of Drainage 

From laboratory observations it is well known that the impose of drained or undrained conditions 

influences the onset and development of strain localization in the specimen. The fluid flow cause 

significant differences in the mechanical response depending on the drainage conditions. 

In order to examine the effect of drainage conditions on viscous regularization, the exact same 

sample described on the introduction of Section 4.2  is used applying drained instead of undrained 

constrain. 

From Figure 4.17, it can be observed that under drained conditions the formation of the shear band 

differs. In the undrained conditions the shear band reached the bottom of the specimen whereas in the 

drained conditions it is mostly concentrated in the middle. However the most important observation is 

that for viscosity greater or equal to 5 s a diffused deformation occurs and a regularized response is 

obtained for viscosity approximately 0.5 s. This is in contrast with the undrained conditions in which 

a viscosity of 30 s is needed for regularization purposes.  
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Thus in drained conditions a quite smaller value of viscosity seems to be needed to preserve 

regularization. Conclusively the value of viscosity for regularization of the problem is greatly affected 

by the response of the liquid phase. 

 
                       (a)                                           (b)                                          (c) 

Figure 4.17: Drained conditions: Equivalent viscoplastic strain contours for viscosity (a) η=0.5 s, (b) 
η=1 s and (c) η=5 s, for the (10 × 34) mesh. 

 

4.2.3 Viscous Regularization – Duvaut-Lions Model 
In this section the viscoplastic model of Duvaut-Lions as described in Section 3.4 is applied and the 

regularization effect of model’s formulation is examined.  

As it has been mentioned the model possesses the same deficiencies of the inviscid material 

formulation when the limiting condition Δt/τ→∞ (where τ the relaxation time of the material) is 

reached. Moreover, for Δt/τ→0 the viscoplastic prediction approaches the elastic solution. These 

limits set the boundaries within which the viscoplastic solution affects the overall mesh dependent 

behaviour of the examined problem.  

Herein, the relaxation time is varied over a very wide rage (from 1·10-5s up to 5·104s), keeping all 

the other parameters the same as in the initial numerical example. 

The numerical validation of the implementation of the model in Comes-geo code, is presented in 

Figure 4.18. This figure shows the contours of the volumetric and the equivalent plastic strain with 

varying the ratio Δt/τ towards the two limiting bounds (Figure 4.18a and Figure 4.18e). In case Δt/τ is 

set equal to 2·10-7, (Figure 4.18b), the elastic solution is obtained and the volumetric strain is identical 

to the elastic case, Figure 4.18(a). In reverse, for a large value of Δt/τ, (Figure 4.18d) the equivalent 

viscoplastic strain approaches the inviscid elastoplastic case, Figure 4.18e. The viscoplastic mesh 

insensitive solution is obtained for the intermediate value of Δt/τ=0.033, for which the localization 

zone of the viscoplastic deformations exceeds the element size as indicated in Figure 4.18c. 
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The following figures illustrate the localization properties of the viscoplastic Duvaut-Lions model. 

To control rate effects one can either vary Δt while fixing τ, or vary the relaxation time while fixing 

Δt. Figure 4.19 shows the effect of varying the relaxation time in terms of equivalent viscoplastic 

strain and water degree of saturation when the intermediate mesh with 10x34 elements is used. 

Increasing the value of relaxation time τ, results in a delayed or rather suppressed response of the 

plastic deformation, which means lower values of equivalent viscoplastic strain for a given 

deformation level. Consistent response is also obtained for the water degree of saturation due to the 

coupling between solid and fluid phases (Figure 4.19b). 

 
(a)                (b)                           (c)                         (d)                        (e)      

Figure 4.18: Contours for numerical validation of Duvaut–Lions model (a) elastic solution and 
viscoplastic solution with (b) Δt/τ = 2 · 10-7, (c) Δt/τ = 0.033 and (d) Δt/τ = 1000 and (e) elastoplastic 

solution for the intermediate (10 × 34) mesh. 
 

  
(a) (b) 

Figure 4.19: Profiles varying Δt/τ for (a) equivalent viscoplastic strain and (b) water degree of 
saturation. 

 

The regularization capabilities of Duvaut-Lions viscoplasticity are illustrated in Figure 4.20 when 

the three different meshes are considered. The profiles in this figure show the distribution of 

equivalent plastic strain, capillary pressure and water degree of saturation respectively, along a 
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vertical section cut in the middle of the examined specimen, for Δt/τ=0.033. The mesh refinement has 

no influence on the results obtained by meshes with 10x34 or more elements. The width of 

localization zone is almost identical and desaturation, following the pattern of viscoplastic strains, is 

depicted mainly in the same area.  

It is also remarkable that the viscoplastic Duvaut-Lions model approximates the solution obtained 

by applying Perzyna’s model when the relaxation time equals to 1/η. 

  

(a) (b) 

 
(c) 

Figure 4.20: Profiles at Δt/τ = 0.033 for (a) equivalent viscoplastic strain, (b) capillary pressure and 
(c) water degree of saturation for three meshes. 

 

4.2.4 Non-local Regularization  
Discussing the regularization effect of the non-local approach three values of the internal length 

scale 7.5, 10 and 20 mm are used. The first value agrees with the thickness of the shear band 

experimentally measured by Mokni and Desrues in undrained plane-strain test on dense Hostun RF 

sand (SHFND02). The other two values are used to consider the influence of the non-local 

contribution on the solution by varying the internal length scale.  
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As far as the viscosity parameter is concerned, a value (η=10 s) resulting in a mesh dependent 

solution with the local viscoplastic model of Perzyna is firstly adopted to emphasize the effectiveness 

of the non-local application. Table 4.2 summarizes the set of non-local analyses performed with 

constant viscosity value. As with the simulations with the local viscoplastic regularization methods, 

calculations are carried out on different meshes consisting of 340 up to 5440 finite elements. For the 

coarse mesh (5 x 17) the distance between the gauss points is larger than the examined internal length 

(and subsequently the interaction radius R) and therefore this mesh will not be used in the nonlocal 

formulation. It can be observed that for small values of the non-local internal length l, the non-local 

solution approaches the local one. This effect is shown in Figure 4.21 where the difference between 

the non-local and the local solution tends to disappear for smaller values of l and is a form of 

numerical validation of the non-local model in the code.  

Table 4.2: Non-local viscoplastic analyses for constant viscosity, η=10 s. 

Meshes 10 x 34 20 x 68 40 x 136 

Non local  internal length l (m) 

0.0001     
0.002     

0.0075 0,0075 0.0075 
0.01 0.01  0.01 
0.02 0.02   0.02 

 

 
Figure 4.21: Non-local approach: distribution of equivalent viscoplastic strain, varying the internal 

length l for constant viscosity, η=10 s (10 × 34 mesh). 
 

Again a mesh-insensitive behaviour can be recognized in Figure 4.22 where the contours for the 

equivalent viscoplastic strain are shown for the three meshes (top 10x34; middle 20x68; bottom 

40x136) with varying internal length l. Starting the calculations with a spatial resolution of 340 

elements each mesh refinement leads to almost equal results; increasing the values of the internal 

length the shear zone width increases up to the value of l and the maximum value of the viscoplastic 

strains decreases. This is not the case for the local viscoplastic analysis, in which the localization band 

width is limited to the size of the element once the discretization is refined.  
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Figure 4.22: Non-local approach: equivalent viscoplastic strain contours, changing the internal length 
l, keeping constant η=10 s for (a) 10 × 34 mesh, (b) 20 × 68 mesh and (c) 40 × 136 mesh. Comparison 

with corresponding local solution. 

(a) 

(b) 

(c) 
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In Figure 4.23, the time evolution of equivalent viscoplastic strain in the mid-point of the shear zone 

(coordinates: 0.05, 0.1) is illustrated, with different values of l and the three meshes examined. The 

response of the numerically simulated sample using different meshes is consistent for all meshes with 

element size less than the length scale l. If the element size is greater or equal to the characteristic 

nonlocal length scale, as in case of 10x34 mesh in Figure 4.23a and b, a non-adequate number of 

integration points fall in the shear zone and the solution deviates from the one depicted for sufficiently 

fine discretizations (Figure 4.23, meshes 20x34 and 40x136). This fact is recognized as the main 

obstacle in applying a non-local approach, because a minimum mesh density is necessary to activate 

the nonlocal interaction (Rolshoven and Jirásek (2003)). 

  
(a) (b) 

 
(c) 

Figure 4.23: Non-local approach: time evolution of equivalent viscoplastic strain in the midpoint of 
shear band (coordinates: 0.05, 0.1) for (a) l=7.5 mm, (b) l=10 mm and (c) l=20 mm. 

 

• Effect of Suction 

In this subsection, the emphasis lies on the relation between water suction and strain localization 

occurrence within the non-local approach. 

 In Figure 4.24, the volumetric response as well as the time evolution of capillary pressure (which is 

actually the suction), vapour pressure and water degree of saturation within (Point A→ coordinates: 
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0.01, 0.03) and outside (Point B → coordinates: 0.05, 0.03) the shear band is illustrated, for two 

discretizations. For brevity, only the case with l=7.5mm is presented. 

It is observed that, due to the contraction of sand at the beginning of the loading, negative capillary 

pressure is built initially. As soon as localization takes place the material dilates inside the shear zone 

whereas outside the shear zone it remains compressed as revealed by the negative values of the 

volumetric strain (Figure 4.24a). Pore water pressure decreases up to the development of capillary 

pressure (Figure 4.24b and Figure 4.25) accompanied by desaturation in the strain localized zones 

(Figure 4.24c and Figure 4.26).  

As further novelty of the applied non-local model, cavitation (phase change of the liquid water to 

vapour) occurs at the point the water pressure decreases below the vapour saturation pressure (Figure 

4.24d). Vapour can dilate almost freely and this results to pore volume increase in the specimen. In 

such conditions, the undrained specimen cannot be constrained to isochoric deformation.  

It should be noted that once more the response of the points is identical regardless of the 

discretization. 

   

(a) (b) 

  
(c) (d) 

Figure 4.24: Non-local approach: (a) volumetric strain versus normalized vertical displacement, time 
evolution of (b) capillary pressure, (c) water degree of saturation and (d) vapour pressure, for points A 

(inside the shear band) and B (outside the shear band), for 20 × 68 and 40 × 136 meshes (l=7.5 mm 
and η=10 s). 
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                   (a)                                                (b)                                                  (c) 

Figure 4.25: Non-local approach: capillary pressure contours for (a) 10 × 34 mesh, (b) 20 × 68 and (c) 
40 × 136 mesh for l=7.5 mm and η=10 s. 

 

 
                                             (a)                                                  (b)                                                   

Figure 4.26: Non-local approach: liquid water saturation contours for (a) 10 × 34 mesh and (b) 20 × 
68 mesh for l=7.5 mm and η=10 s. 

 

4.2.4.1 Internal Lengths Interaction  

In Figure 4.27 the interaction between the characteristic lengths coming out from viscosity and non-

locality is investigated. In Figure 4.27a, b and c the results for the simulations on the fine mesh 

(20x68) with different values of viscosity and constant internal length are illustrated. Increasing the 

viscous parameter the width of shear zone increases for all the internal lengths examined.  
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 4.27: Non-local approach: equivalent viscoplastic strain in the horizontal section (y = 0.1 m) 
for varying (a), (b), (c) viscosity and (d), (e), (f) internal length (20 × 68 mesh). 

 

In the same way, in Figure 4.27d, e and f viscoplastic strains are presented for different values of the 

internal length and constant viscosity. For small viscosity value (η=5 s), variation of the internal 

length leads to significant impact on the shear band width and the maximum value of the viscoplastic 

strain. This behaviour tends to disappear as viscosity increases. Indeed, in case viscosity is equal to 15 

s the difference between the non-local solutions is almost negligible and the viscous regularization 

seems to dominate the non-local one. This leads to infer that the internal length implicitly introduced 
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by viscosity is larger than the internal lengths explicitly entered by the non-local contribution and 

therefore the solution coincides.  

This is a very interesting result of the coupled use of viscosity and non-locality. This coupled 

implementation allows for the regularization of the solution with either one of the techniques when 

the other may become insufficient. The internal length may lead to loss of benefit from the non-local 

approach and in this case viscosity can be modified to obtain mesh insensitive results. On the other 

hand, the value of viscosity may describe the behaviour of the material but not lead to regularized 

solution. In this case the value of the internal length can be adjusted to benefit from the non-local 

approach. 

4.3 Hydro-Mechanical Coupling in a Plane-Strain Slope Stability Test 
Landslides and slope failures are of utmost important because they may cause loss of human life, 

injuries and economic devastation. There is a wide variety of types of landslides and slope failures, 

depending on the triggering mechanisms, the propagation and the materials involved. They are caused 

by changes of effective stress induced by external forces and/or variation of the pore pressure, 

variation of the material properties and changes in geometry. In some cases the failure mechanism 

consists of a clearly defined localized zone and the objective modelling of the initiation and 

propagation of such events is the motivation of this research. 

A  hydro-mechanical analysis of a benchmark slope stability problem, inspired by Regueiro and 

Borja (2001), is now presented to demonstrate the importance of adopting some kind of regularization 

technique for the numerical simulation of shear band evolution.  

A process of progressive strain imposed at the boundary of a simple slope consisting of 

homogeneous soil is considered. The dimensions and boundary conditions of the problem are shown 

in Figure 4.28 whereas the soil parameters adopted in the analysis are indicated in Table 4.3.  

The initial stress field of this slope is reproduced by increasing the gravity acceleration up to 9.81 

m/s2. At the end of the gravity loading stage, the resulting displacements and strains are reset to zero. 

Next, a downward displacement with a constant rate of 10-3 m/s is imposed on a portion of 4 m on the 

top slope surface (Figure 4.28). Two meshes with 400 and 1600 eight node quadrilateral isoparametric 

elements are used to analyze the problem. No weak elements are specified since the boundary value 

problem inherently generates a non-uniform stress field where, as expected, the element adjacent to 

the corner of the vertical load localizes first.  

Two cases have been simulated, assuming the slope either fully or partially saturated. The 

constitutive relationship for the water degree of saturation is that of Safai and Pinder. For the water 

and gas relative permeability, the relationship of Brooks and Corey in isothermal conditions is 

selected. Plane-strain condition is assumed in the computations. The analyses are performed using: the 

elastoplastic model, the local elasto-viscoplastic model of Perzyna with viscosity η=100 s and the 
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non-local elasto-viscoplastic model with an internal length of l=0.8 m, to evidence the thickness of the 

shear zone.  

 
Figure 4.28: Slope stability problem. Geometry and boundary conditions. 

 

Table 4.3: Material parameters for slope stability problem. 
Parameter Symbol Value SI unit 

Young modulus  E 10 MPa 

Linear softening modulus h -10 kPa 

Initial apparent cohesion  c0 40 kPa 

Angle of internal friction  φ 10 (°) 

Dilatancy angle  ψ 3 (°) 

Poisson ratio  ν 0.4 [-] 

Initial porosity n 0.3 [-] 

Solid density  ρs 2000 kg/m3 

Intrinsic water permeability  k 1.0E-10 m2 

Water unit weight  γw 10 kN/m3 

Gravity acceleration  g 9.81 m/s2 

Soil viscosity  η 100 s 

SWCC parameter α 1 [-] 

SWCC parameter ν 1.8 [-] 

SWCC parameter β 0.00007 cm-1 

 

Starting from a fully saturated state which describes the hydraulic conditions of the examined slope, 

the results for the three applied models are compared in Figure 4.29  in terms of equivalent (visco) 

plastic strain and in Figure 4.30 with the force-displacement plots.  
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The failure initiates in the element just to the right of the applied force and propagates in a manner 

depended on the angle of friction. When the elastoplastic constitutive model is used to solve this 

initial boundary value problem, a classical mesh dependent numerical solution is observed with the 

model being unable to simulate the failure process of the slope when the mesh is refined (Figure 

4.29d). As is shown in Figure 4.29b, when the elasto-viscoplastic formulation of Perzyna is adopted, 

even if the number of elements is increased, the shear band formation and the force-displacement 

relationship (Figure 4.30b) are not affected by the element size. However, the peak value of the 

viscoplastic strain field depends on the element size of the mesh (Figure 4.29e). Finally, the non-local 

elasto-viscoplastic model is able to predict a clearly defined shear band and the slope’s strain-

softening response (Figure 4.30c) independently of the mesh adopted (Figure 4.29f). 

  
(a) (d) 

  
(b) (e) 

  

(c) (f) 

Figure 4.29: Equivalent visco-plastic strain contours as calculated using the elastoplastic, the local 
elasto-viscoplastic and the non-local elasto-viscoplastic model for a mesh consisting of 400 elements 

(a), (b) and (c) and for a mesh consisting of 1600 elements (d), (e) and (f), respectively. 
 

As shown in Figure 4.29, the elastoplastic model can lead to the formation of a shear band failure 

for the coarser mesh used (with 400 elements). However, for the finer mesh (with 1600 elements) the 

solution is not acceptable and the analysis terminates with the concentration of plastic deformations in 

the vicinity of one, approximately, finite element. As in geotechnical engineering problems the size of 

the finite element mesh cannot be predefined in an ad-hoc manner, the need of the regularization 
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methods is clearly illustrated in this case. When applying the aforementioned regularization 

techniques, an objective solution is obtained regardless of the mesh adopted. This means that the shear 

band formation and the failure of the slope is the one expected, also for coarse and fine meshing. 

  
(a) (b) 

 
(c) 

Figure 4.30: Force-displacement plots for the (a) elastoplastic model, (b) local elasto-viscoplastic 
model and (c) non-local elasto-viscoplastic model, for the two meshes. 

 

After examining on the above the regularization capabilities of the applied models in the slope 

instability problem, in the following the response is studied under partially saturated conditions. For 

clarity, only the results for the non-local model are presented herein. 

Figure 4.31 shows the results for the non-local Perzyna model for a coarser (with 400 elements) and 

a finer (with 1600 elements) mesh. In particular, the equivalent viscoplastic strain is plotted on the 

deformed mesh and the capillary pressure and water degree of saturation on the undeformed mesh at 

the same time step.  

The equivalent viscoplastic strain (Figure 4.31a) has a lower maximum value in comparison to the 

fully saturated case (Figure 4.29c). This can be attributed to the strengthening of the material by the 
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presence of suction. Moreover, it is evident that the water suction occurs more pronounced into the 

localized shear zone (Figure 4.31b). 

In Figure 4.32 the force-displacement plot is presented for the two meshes. It becomes directly 

apparent from the failure load that there is a significant influence of the variation of water saturation. 

In fact, comparing with the previous case (Figure 4.30c), there is an increase of the maximum load 

prior to failure of about 20% which is explained by the stabilizing effect of capillary pressure in the 

partially saturated zone.  

  

(a)  

  

(b)  

  

(c)  

Figure 4.31: Non-local Perzyna model: (a) equivalent visco-plastic strain on the deformed mesh, (b) 
capillary pressure and (c) water degree of saturation for coarser (400 elements) and a finer (1600 

elements) mesh. 
 

As a closing remark, it is observed that despite the influence of the liquid phase on the response of 

the slope the non-local regularization is preserved. 
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Figure 4.32: Force-displacement plot for the non-local elasto-viscoplastic model, for the two meshes. 

 

4.4 Concluding Remarks 
This Chapter discusses numerical aspects of strain localization analysis in multiphase porous media 

when local and non-local viscoplastic constitutive models are used for regularization purposes. The 

models are applied and their effectiveness is tested through a couple of numerical examples: an 

experimental plane-strain compression test on dense and isochoric sand and a slope failure problem. 

The initiation and the propagation of the shear band are effectively described by means of FEM 

analysis, regardless of the mesh size adopted. The strain localization process realistically occurs 

within the shear band failure mode and its size is governed by the viscosity parameter and the internal 

length variable, which can be directly estimated by experimental tests. 

Factors affecting the evolution of localization phenomena have been investigated in conjunction 

with viscous effects and the main conclusions can be drawn in the following: 

1. The shear band width is not exclusively governed by the viscous parameter, but depends also on 

the applied loading velocity and soil permeability. These two factors delimit the value of viscosity 

which regularizes the numerical solution.  

2. For a material characterized by a specific value of viscosity the effect of loading velocity is crucial 

for the regularization of the numerical solution. A relative low loading velocity demands high 

values of viscosity to obtain true mesh independence upon mesh refinement. The relationship 

between the loading velocity and the viscous regularization is linear and this can be attributed to 

the employed viscous nucleus. 

3. Theoretical studies have underlined that in quasi-static processes, without a regularization tool, 

there is no internal length parameter naturally introduced by the multiphase model. In this work it 

is shown, that soil permeability plays a role in defining the width of the inelastic zone and interacts 

with viscoplasticity activating an internal length only when the regularizing influence of rate-
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dependency is high.  As soon as Perzyna’s viscoplastic model approaches the elastoplastic limit 

the influence of permeability disappears and mesh sensitivity reemerges.  

4. The viscosity governs the response of the specimen, causing a significant delay in the development 

of plastic strains and affects the evolution of water pressure due to the coupling between the solid 

and the fluid phase. Moreover, a different viscosity values seems to be needed to preserve 

regularization when drainage conditions change.  

5. Viscoplasticity, in conjunction with the non-local approach governs the regularization process for 

high values of viscosity. On the contrary, the (explicit) internal length defined in the non-local 

approach overrides the influence of the viscoplastic internal length for small values of viscosity. 

Between these limiting conditions an interaction of the two length scales is observed. 

As a final remark, it is worth to point out that viscoplasticity is an effective regularization method; 

however it does not lead to mesh insensitive results independently of the problem inputs. Soil 

permeability and loading velocity are of utmost importance and should be considered when 

viscoplasticity is used as a regularization technique of strain localization problem in the framework of 

multiphase porous media. Furthermore, viscosity and soil permeability are physical properties of the 

material and there is the possibility (depending on the examined material) when their real values is 

used, the regularization to be lost. In that case, the non-local approach is advisable. 
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 Chapter 5: An Elasto-Viscoplastic Constitutive Model for Unsaturated Soil 
Behaviour 

5.1 Introduction 
Mechanics of unsaturated soils has been an active field of research in the last few decades. Efficient 

constitutive models that take into account the partial saturation of soil are necessary to solve a number 

of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls.  

Even though the long-time debate on the most appropriate stress framework for unsaturated soils 

has eventually came to an end, evidencing the need for complete hydro-mechanical stress framework 

(Gens 1995; Jardine et al. 2004), several forms of adequate stress variables are still possible.  

The stress parameter introduced by Bishop (1959) is primarily a function of the degree of saturation 

and was the first effort of explaining from a theoretical standpoint the mechanical behaviour of 

unsaturated soils. This simple approach was soon demonstrated to be unsuccessful on reproducing 

some features of the behaviour of partially saturated soils, such as wetting induced collapse, and the 

attention was focused on rather different hypotheses.  

Fredlund and Morgenstern (1978) suggested that two pair of stress state variables should be adopted 

when describing partially saturated soil behaviour. Along these lines, there are constitutive models 

written in terms of the net total stress and the suction such as Barcelona Basic Model family (Alonso 

et al. 1990) or others (Wheeler and Sivakumar (1995), Cui and Delage (1996)) and constitutive 

models using the generalized effective stress and the suction as the two independent stress variables 

e.g. Jommi and di Prisco (1994), Bolzon et al. (1996), Nuth and Laloui (2008). Even though the 

original definition of the Bishop’s generalized effective stress is due to Schrefler (1984), one of the 

first constitutive frameworks making use of this unified effective stress is that of Jommi and di Prisco 

(1994) and later reported by Jommi (2000) defined as the average soil skeleton stress. 

Moreover, recently researches on partially saturated rockfill material (Oldecop and Alonso 2007) 

clearly show the effects of partial saturation states on the time dependent behaviour (particularly on 

creep phenomena) of geomaterials. Despite the significant practical interest, only few studies have 

focused on the coupling between partial saturation states and time effects on the behaviour of 

geomaterials. 

In this Chapter an elasto-viscoplastic constitutive model for unsaturated soils is proposed and 

validated on the basis of experimental data. The model constitutes an extension of the model of 

Buscarnera and Nova (2009) which was based on the strain hardening elastoplastic approach proposed 

by Nova (2000), Tamagnini et al. (2002), and Nova et al. (2003) for modelling chemical degradation 

effects and the constitutive approach suggested by Jommi and di Prisco (1994). The novelty of the 

proposed viscoplastic formulation is enhanced with the dependence of the constitutive parameters on 

the relative density as an alternative of using the state parameter concept. 
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The work of the present Chapter is organized in two parts. The first part (Sections 5.2 and 5.3) 

focuses on the implementation in Comes-Geo code of the Buscarnera and Nova elastoplastic model 

for unsaturated soil, as part of this thesis. A description of the procedure is given and the validation of 

the implementation based on benchmark tests from the literature is presented. In the second part of 

this Chapter (Sections 5.4 − 5.6) the aforementioned model is extended to viscoplasticity. The detailed 

analytical formulation of the viscoplastic model and its implementation in Comes-Geo is discussed 

along with the validation of the code. 

5.2 UNsand: An Elastoplastic Strainhardening Model for Soil Allowing for Hydraulic 

Bonding-Debonding Effects  
Following the constitutive approach suggested by Jommi and di Prisco (1994), Buscarnera and 

Nova (2009) presented an elastoplastic strain-hardening constitutive model for unsaturated soil 

behaviour based on energy conjugated stress variables in the framework of superposed continua. The 

purpose was to develop a model able to deal with possible mechanical instabilities within a consistent 

energy framework.  

The model shares the same conceptual structure of the elastoplastic laws proposed to deal with 

bonded geomaterials subject to weathering or diagenesis (e.g. Nova et al. (2003)) and is capable of 

modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. 

To start with the description of the model, it is assumed that the material behaviour is isotropic. 

Moreover, all hydraulic effects, either due to a variation in suction or in degree of saturation, have 

simply been assumed to be isotropic. The stress responsible for straining the solid skeleton was in fact 

assumed to be defined as: 

( )w g
w wS p S p′ = − − 1−σ  σ I I  (5.1) 

The constitutive modelling is based on an enlarged constitutive law, which considers the modified 

suction, s* = n·s (n is the porosity of the material), as a further stress variable and the opposite of the 

rate of the degree of saturation as the corresponding hydraulic strain variable. The model neglects the 

hydraulic hysteresis effects and is formulated for general three-dimensional stress states.  

The model as proposed by Buscarnera and Nova had to be amended to adapt in the finite element 

code Comes-geo. Thus, in the following are presenting the parts of the model that were actually 

implemented in the code.   

5.2.1 Stored energy function and hyperelastic behaviour 
Elasticity models are commonly incorporated into elastoplastic constitutive models through a 

hypoelastic formulation. However, extension of a hypoelastic formulation to the case of nonlinear 

elastic soil response could result, in some cases, in nonconservative models. For example, the 

formulation of Simpson (1973), in which the elastic bulk and shear moduli are linear functions of the 
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effective confining stress and related through a constant Poisson’s ratio, leads to a model that does not 

conserve energy (Zytynski et al. (1978)). On the other hand, hyperelastic materials are those for which 

a stored energy function exists, and hence, are conservative. 

Therefore, herein a hyperelastic reversible solid behaviour is assumed based on the existence of a 

stored energy function ( )eψ ψ= ε , such that:  

( )e

e

ψ∂
′ :=

∂

ε
σ

ε
 (5.2) 

Assuming small deformation, the strain rate is additively decomposed in an elastic, reversible part eε  

and a plastic, irreversible part pε . Thus in turn, the hyperelastic constitutive equation in rate form can 

be written as: 

e p′ = −  σ D ε ε    (5.3) 

where De is the fourth-order elastic stiffness tensor, given by: 

( )2 e
e

e e

ψ∂
:=

∂ ⊗ ∂

ε
D

ε ε
 (5.4) 

In the development of the model, the stored energy function proposed in Borja et al. (1997), 

Tamagnini et al. (2002) and Nova et al. (2003) has been adopted. Accordingly, the function ( )eψ ε  is 

given by the following two-invariant expression: 

( ) ( ) ( ) ( ) ( )2e e e e e e
v s v 0 v s

3ψ = ψ ε ,ε = ψ ε + G + ψ ε εˆ2 k
α 

  
ε    (5.5) 

where: 

( )
( )

( )
( )

e
ev

r v r

e
2v e

r ve e
r v v r

εˆ ˆkp exp 1 ,    ε k or p p
k̂

ψ ε
ˆp ε k

ˆp ε + ,   ε k or p pˆ2k

  
′− ≥ ≥  

 
:= 

−
′< <



  (5.6) 

This model produces pressure dependent elastic bulk and shear moduli. In Equations (5.5) and (5.6) 

and 0 , ˆG k,α are constitutive parameters, pr is a reference mean stress, while e e
v sε , ε  are the elastic 

volumetric strain and the second invariant of the elastic strain deviator, respectively (defined in the 

same way as in Equation (3.16)). When p' < pr the hyperelastic law predicts a linear elastic behaviour, 

whereas when p' ≥ pr a fully non-linear pressure dependent behaviour is obtained. As a consequence, 

the parameter pr can be selected in accordance to this observation. The absence of dependence on 

suction in Equation (5.5) implies that the suction stress does not influence the elastic response. By 

taking the first and the second derivative of Equation (5.5) with respect to εe, the following 

expressions for the stress and the elastic stiffness tensor are obtained: 
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( ) ( )
e

2e e
s ε 0e

ψ 31 ε θ + 2 G + ψˆ ˆ2k k

∂ α α   ′ := = +   ∂    

ε
σ 1 e

ε
  (5.7) 

and:  

( ) ( )2e e e e
s ε 0 ε

3 11 ε K + 2 G + ψ + 2 θˆ ˆ ˆ32k k k
α α α       = + ⊗ − ⊗ ⊗ + ⊗             

D 1 1 I 1 1 1 e e 1  (5.8) 

where, 1 tr( )
3

:= −e e ee ε ε 1 is the deviatoric elastic strain and: 

( ) ( )

( )

e
ev

e r v r
v

ε e e
ev

r v r

ˆp exp 1 ,    k or p p
k̂θ

ˆp ,                  k or p p
k̂

ε εψ ε
ε ε ε

  
′− ≥ ≥  ∂   := = 

∂  ′< <


 (5.9) 

 

( )

( )

e
evr
v r

ε
ε e

er
v r

p ˆexp 1 ,    k or p pˆ ˆθ k kK
p ˆ,                         k or p p
k̂

ε ε

ε
ε

  
′− ≥ ≥  ∂   := = 

∂  ′< <

 (5.10) 

Another relevant feature of the hyperelastic model is related to the possibility of having volumetric-

deviatoric coupling, governed by the parameter α on the last term on the RHS of Equation (5.8). This 

coupling effect disappears when α=0. In the latter case constant elastic shear modulus (G0) is 

recovered (see Equation (5.5)).  

5.2.2 Yield function and plastic potential 
The model adopts yield surface and plastic potential expressions proposed by Lagioia et al. (1996). 

Plastic Potential 

The plastic potential is described by the following expression: 

1g g 2g gK /C K /C
g g sg A B p p 0− ′ ′= − =  (5.11) 

where sp′ is a dummy parameter (as only the derivatives of the equation are used) and: 

( )
( )

( )
( )

( )
( )

( )
( )

g g g g
1g 2

g g g

g g g g
2g 2

g g g

m 1 4 1 m
K 1 1

2 1 m m 1

m 1 4 1 m
K 1 1

2 1 m m 1

α α

α

α α

α

 − − := + − 
− −  

 − − := − − 
− −  

 (5.12) 

and: 



Chapter 5: An Elasto-Viscoplastic Constitutive Model for Unsaturated Soil Behaviour 

115 

( )

( )
( )( )

g
1g g

g
2g g

g g 1g 2g

1 qA 1
K M S p

1 qB 1
K M S p

C 1 m K K

:= +
′

:= +
′

:= − −

 (5.13) 

The function Mg(S) appearing in Equation (5.13) is given by the expressions suggested by Gudehus 

(1973): 

( ) ( ) ( )
3

cg eg
g 3/22

cg

2cM M tr( )M S ,       c ,       S sin(3θ) 6
1 c 1 c S M tr( )

= = := =
+ − −   

s

s
 (5.14) 

in which Mc and Me are the values of M(S) in triaxial compression and triaxial extension conditions, 

respectively and S is a function of the Lode angle θ. 

Yield Surface 

The analytical expression for the yield surface has been assumed to be characterized by the same 

expression as for the plastic potential, i.e: 

1 2K /C K /C
sA B p p 0f f f f

f ff − ′ ′= − =  (5.15) 

where the Equations (5.12)-(5.14) hold also in this case. Having different constitutive parameters 

mf, αf, Mef and Mcf, a non-associated flow rule is adopted and therefore different choices for the shape 

of the two surfaces. The variable sp′ in Equation (5.15) is the internal variable defining the size of the 

yield surface and responsible for its evolution in the skeleton stress space. In the present formulation 

of the constitutive model it has been neglected the possibility of including a mechanical bonding 

contribution (Castellanza (2002)). As a consequence, the only internal variable is the preconsolidation 

stress sp′ . The set of parameters of the constitutive model are summarized in  

Table 5.1. Figure 5.1 shows a 3D visualization of the yield surface in the principal stress space. 

 
Figure 5.1: 3D visualization of the yield surface in the principal stress space [109]. 
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5.2.3 Hardening law 

The hardening law for the preconsolidation stress, sp′  the only internal variable considered in the 

model, is constituted by two separate contributions, a mechanical one and a hydraulic one (Figure 

5.2). The analytical expression of the hardening law in rate form is: 

( )p p
s s s v s s sw s wp p ε ξ ε r p  S′ ′ ′= ρ + −     (5.16) 

where ρs, ξs and rsw are hardening constitutive parameters ( 

Table 5.1). 

The first term in Equation (5.16) represents the mechanical contribution to the hardening law.  

  
(a) (b) 

Figure 5.2: Yield surface in saturated and unsaturated conditions depicted in the (a) skeleton stress 
space and (b) net stress space [25]. 

 

  

(a) (b) 

Figure 5.3: Contraction of yield surfaces upon wetting in the (a) skeleton stress space and (b) net 
stress space [25]. 

 

The second term is the mathematical form of the hydraulic bonding effect highlighting the 

dependence of the internal variable on the degree of saturation and therefore the expansion or 
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contraction of the yield surface upon drying or wetting process (Figure 5.3). It is thus clear that a 

hydraulic process can change the onset of yielding and the amount of plastic strains. 

As in Tamagnini et al. (2002) the mechanical contribution of the hardening law can be rewritten as: 

( )s s s s sw s w
ˆ ˆp p T ξ N r p  S

g 2 gˆ ˆT = tr ,   N = dev
3

′ ′ ′= λρ + −

∂ ∂   
   ∂ ′ ∂ ′   σ σ

 

 (5.17) 

 

Table 5.1: List of constitutive parameters. 
Hyperelastic law 

1 k̂  slope of the swelling line in the lnυ-lnp' plane 

2 0G  shear modulus for p' =0 

3 α  coupling parameter 

4 rp  reference pressure 
Yield surface 

5 mf shape of yield function 

6  αf shape of yield function 

7 Mcf slope of the line in the q-p plane for which  
p 0f∂ ⁄∂ = in compression triaxial (σ1>σ2= σ3) 

8 Mef  slope of the line in the q-p plane for which  

p 0f∂ ⁄∂ = in extension triaxial (σ1=σ2> σ3) 
Plastic potential surface 

9 mg shape of plastic potential 

10 αg shape of plastic potential 

11 Mcg slope of the line for which p
vε 0= in the triaxial plane (compression) 

12 Meg slope of the line for which p
vε 0= in the triaxial plane (extension) 

Hardening law 

13 sρ  p=1/ Β in which Bp is the logarithmic volumetric compliance under 
isotropic loading 

14 sξ  is the dilatancy at failure 

15 swr  hydraulic hardening parameter 
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5.2.4 General formulation of the constitutive equation in rate from 
Plastic strains are governed by the classical incremental flow rule for plastic deformations: 

( )p g ,∂ ′
= λ

∂ ′

σ q
ε

σ
  (5.18) 

where g(σ',q) is the plastic potential function and λ is the plastic multiplier.  

The hardening law is expressed in an incremental form as follows: 

( ) ( )w, S ,= λ ′ − ′q h σ q σ q  η  (5.19) 

where h(σ',q) and η(σ',q) are the mechanical and hydraulic function, respectively, influencing the 

evolution of the internal variables.  

The loading and unloading conditions are expressed in terms of the Kuhn-Tucker complementarity 

conditions: 

( ) ( )λ 0,      , 0,      λ , = 0f f≥ ′ ≤ ′σ q σ q   (5.20) 

In case of plastic loading, the following consistency condition must be satisfied: 

( ), 0,f ′ =σ q  (5.21) 

Taking into account the constitutive Equation (5.3) and the hardening law Equation(5.19), whenever 

plastic loading occurs then: 

e e
w

g
    S

f f
f

f f f f

= ′ +
′

∂
= − λ + λ −

′ ′ ∂ ′

∂ ∂
⋅ ⋅

∂ ∂
∂ ∂ ∂ ∂

⋅ ⋅ ⋅ ⋅
∂ ∂ ∂ ∂

σ q
σ q

D ε D h      
σ σ σ q q



   η

 (5.22) 

Imposing Equation (5.21), the plastic multiplier is expressed as follows: 

e
w

c

1
S

H + H
f f

λ = −
′

 ∂ ∂
⋅ ⋅ ∂ ∂ 
D ε  

σ q
  η  (5.23) 

where the symbol < > denotes the McCauley brackets, and 

H
f

= −
∂
∂

h
q

 (5.24) 

is the hardening modulus and 

e
c

g
H

f ∂
=

′ ∂ ′

∂
⋅

∂
D

σ σ
 (5.25) 

is the critical hardening modulus. 

It can be noted that it is possible to decompose the plastic multiplier in two contributions, a 

mechanical one and a hydraulic one: 
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hλ = λ + λ  
m  (5.26) 

This means that plastic strain may develop even in the case of trial state, provided that the hydraulic 

debonding induced by a wetting process determines a sufficiently high contribution to the plastic 

multiplier. 

Substituting Equation (5.23) into the stress rate (i.e. Equation (3.19)) one obtains: 

( )σσ σw w+ S′ = −σ D ε D    (5.27) 

where 

e e e
σσ

c

1 g
H + H

f
= −

′ ′

∂ ∂   ⊗   ∂ ∂   
D D D D

σ σ
 (5.28) 

is the mechanical (continuum) elastoplastic constitutive matrix and 

e
σw

c

1 g
H + H

f
= −

′

 ∂ ∂
⋅ ⋅ ⋅ ∂ ∂ 

D D
q σ

η  (5.29) 

represents the mechanical effects of a hydraulic change of the saturation degree.  

It should be noted that for the soil water retention curve the expression suggested by Van Genuchten 

(1980) was adopted. For validation purposes this relation is implemented in Comes-geo and the 

mathematical expression is given in Equation (2.42). However any other more suitable expressions 

could be employed. 

The elastoplastic model as presented in Section 5.2 has been implemented in Comes-geo code with 

an explicit integration type algorithm. For the tangent of the linearized system of equations the 

elastoplastic continuum tangent operator was adopted. 

It is noted that for brevity the implemented elastoplastic model for unsaturated soils is denoted as 

UNsand.   
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5.3 Validation of the Implementation of UNsand Model in Comes-geo F.E. Code 
This section presents the validation of the implementation of the elastoplastic constitutive model for 

unsaturated soil behaviour in Comes-geo FEM code. The numerical validation is performed through 

single element analyses by using a single finite element with four nodes and 2 x 2 gauss points.  

The validation process is carried out by simulating triaxial and oedometric tests with phases of 

drying and wetting and drained and undrained loading under axisymmetric and plane-strain 

conditions. Moreover, a series of drained and undrained triaxial tests with different initial densities are 

simulated. The results are compared with both numerical and experimental results taken from the 

literature. 

5.3.1 Triaxial Tests at Constant Suction 
To begin with a series of triaxial shear tests at constant suction, as in the work of Buscarnera and 

Nova (2009), are simulated.  

The complete set of parameters along with the initial conditions and details for the soil water 

retention curve, are taken from Buscarnera and Nova (2009) and are detailed in Table 5.2. In this 

example a non-associated plastic flow rule is adopted.  

The first simulation is a triaxial shearing of a saturated and unsaturated material. For the latter, the 

stress path followed is characterized by a first drying path, AB, up to a suction of 50 kPa under 

constant mean net stress and a second triaxial shearing path, BD, under constant suction (i.e. 50 kPa) 

and constant radial net stress (Figure 5.4).  

Table 5.2: List of parameters adopted for triaxial shear tests at constant suction. 
Elastic 
parameters 

Yield surface 
parameters 

Plastic 
potential  

Hardening 
parameters 

SWCC 
parameters 

Initial state Initial Sw  & 
void ratio 

α=0.0 αf=0.63 αg=0.63 rs=1/0.038 α=0.43 p0=10 kPa Sw0=1.0 

k=0.002 mf=0.95 mg=0.95 ξs=0.0 n=1.30 q0=0 kPa e0=1.90 

G0=32MPa  Mcf=0.90 Mcg=1.37 rsw=3.86 m=0.22 ps0=10 kPa  

pr=10 kPa Mef=0.70 Meg=1.07     
 

Figure 5.5 shows the comparison of the saturated and unsaturated material in terms of deviatoric 

stress and volumetric strain with respect to deviatoric strain, for the published results by Buscarnera 

and Nova (black line) and the simulated with Comes-geo code (red line). The finite element results 

are in excellent agreement with the published and show the increase in stiffness and strength due to 

the hydraulic bonding effect caused by water menisci.  

In sequence, similar simulations varying suction and net pressure are performed following the 

results given in Buscarnera and Nova and the experimental observations by Bilotta et al. (2005). 

Three different net confinement pressures and two suction levels are applied (Table 5.3). All tests are 

simulated imposing a first drying path at a low net confinement to establish a first suction equilibrium 
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stage. Afterwards, a constant suction triaxial compression stage is imposed under constant radial net 

stress. 

  
(a) (b) 

Figure 5.4: UNsand validation - Stress path (a) in the skeleton and (b) net stress space for the 
unsaturated material. 

 

  
(a) (b) 

Figure 5.5: UNsand validation - Comparison of the results of a triaxial test under saturated (s=0 kPa) 
and unsaturated (s=50 kPa) conditions: (a) deviatoric stress and (b) volumetric strain versus deviatoric 

strain. 

 

Table 5.3: Triaxial tests at varying suction and net confinement pressure. 

Simulation No  pnet [kPa] s [kPa] 

1 10 20 

2 10 50 

3  30 20 

4 30 50 

5 50 20 

6 50 50 
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The results of the six simulations are depicted in Figure 5.6 and a very good agreement is verified. It 

is noteworthy that for specimens tested at a given mean net stress, higher suctions imply lower 

compressibilities and specimens tested at higher net confinements experience higher volumetric 

strains (Figure 5.6b).   

 
(a) 

 
(b) 

Figure 5.6: UNsand validation - Comparison of the results for the six simulations with varying suction 
and net confinement pressure: (a) deviatoric stress and (b) volumetric strain versus deviatoric strain. 

 

5.3.2 Oedometric Test with Drying-Wetting Paths 
The second example is an oedometric test performed on an ideal non-expansive material, imposing 

several drying and wetting paths. This validation test was also taken from the work of Buscarnera and 

Nova (2009). The soil properties used in the finite element analyses are listed in Table 5.1. In this 

example the flow rule is assumed to be associated.  

As shown in Figure 5.7 the test is conducted starting from a saturated condition characterized by an 

isotropic stress of 200 kPa. An initial oedometric path, AB, is performed followed by a drying path, 

BC, up to a suction of 100 kPa at constant vertical net stress. Afterwards, a one-dimensional loading 

path, CE, under constant suction is applied. A final wetting stage, EF, follows holding fixed the 
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vertical net stress at 460 kPa, until a fully saturated state is reached. The stress path is given in Figure 

5.8. 

Table 5.4: List of parameters adopted for the oedometric test. 
Elastic 
parameters 

Yield surface 
parameters 

Plastic 
potential  

Hardening 
parameters 

SWCC 
parameters 

Initial state Initial Sw  & 
void ratio 

α=0.0 αf=0.63 αg=0.63 rs=1/0.1 α=0.0025 p0=200 kPa Sw0=1.0 

k=0.01 mf=0.95 mg=0.95 ξs=0.0 n=1.42 q0=0 kPa e0=0.90 

G0=20MPa  Mcf=0.75 Mcg=0.75 rsw=5.35 m=0.6 ps0=200 kPa  

pr=200 kPa Mef=0.6 Meg=0.6     
 

 
Figure 5.7: UNsand validation – Path followed in the oedometric test. 

 

In this example two points will be raised and discussed. The first concerns the drying path BC. The 

presence of a plastic stage is evident in Figure 5.9 right at the onset of drying path. An elastic strain 

follows after 20 kPa of suction, until the point C. This behaviour is related to the fact that the 

hydraulic hardening is controlled by the degree of saturation, rather than by suction. As a result, since 

the soil is saturated at point B, a suction increase will generate an increase in mean stress together 

with negligible hardening and, hence, plastic loading up to a point when the degree of saturation is 

sufficiently low to generate appreciable hardening.  

The second point deals with the ability of the model to describe the most relevant features of 

unsaturated soils such as the so-called wetting induced collapse. The volumetric compaction process 

is clearly shown in Figure 5.10; the specimen shows a significant reduction of the void ratio even 

though the vertical net stress is kept constant.  

Finally, in Figures Figure 5.8-Figure 5.10, a perfect much between the Comes-geo results (red line) 

and those published by Buscarnera and Nova (black line), is obtained.  
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(a) (b) 

Figure 5.8: UNsand validation – Results from the oedometer simulation: (a) effective stress path and 
(b) stress path in the net stress space. 

 

 

  
(a) (b) 

Figure 5.9: UNsand validation – (a) Yield surface size evolution (data provided by C. Mihalache) 

and (b) evolution of equivalent plastic strain with suction for the drying path, BC. 
 

 

 
Figure 5.10: UNsand validation – Void ratio with respect to vertical net stress. 
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5.3.3 Drained and Undrained Plane-Strain Compression Tests on Loose Hostun Sand 
In the previous sections the validation process included tests with complex loading paths and the 

finite element results indicated that both drying and wetting paths were properly and correctly 

captured. 

 To finalize the validation of the implementation, in this section standard drained and undrained 

compression tests under axisymmetric and plane-strain conditions are simulated for the case of a loose 

Hostun sand. The set of parameters that has been used for the following simulations is given in Table 

2, according to Mihalache and Buscarnera (2014) and Ciceri (2014).  

The Comes-geo results are compared with those published in Mihalache and Buscarnera (2014) for 

the triaxial compression tests (labeled as TXD and TXU for drained and undrained conditions 

respectively) in Figure 5.11 and for the plane-strain compression tests (labeled as PSD and PSU 

accordingly) in Figure 5.12 .  

Table 5.5: List of model parameters for loose Hostun sand. 
Elastic 
parameters 

Yield surface 
parameters 

Plastic 
potential  

Hardening 
parameters 

SWCC 
parameters 

Initial state Initial Sw  & 
void ratio 

α=0.0 αf=0.9906 αg=0.051 rs=1/0.0074 α=0.8 p0=300 kPa Sw0=1.0 

k=0.0046 mf=1.146 mg=0.98 ξs=0.0 n=1.8 q0=0 kPa e0=0.945 

G0=14MPa  Mcf=0.52 Mcg=1.28 rsw=5.45 m=1.9 ps0=300 kPa  

pr=1 kPa Mef=0.442 Meg=1.0     
 

  

(a) (b) 

Figure 5.11: UNsand validation – Comparison of the results of drained and undrained triaxial 
compression tests: (a) effective stress paths and (b) evolution of deviatoric stress with axial strain. 
 

In both cases, the comparison shows a proper match thus validating the implementation of the 

model in Comes-geo.  
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(a) (b) 

Figure 5.12: UNsand validation – Comparison of the results of drained and undrained plane-strain 
compression tests: (a) effective stress paths and (b) evolution of deviatoric stress with axial strain. 

5.3.4 Drained and Undrained Triaxial Compression Tests on Hostun Sand 
In this section are presented the results for drained and undrained triaxial compression tests for 

loose, medium-dense and dense Hostun sand as in Gajo and Wood (1999). This last series of 

numerical simulations was mainly performed to ‘double-check’ the implementation of the model in 

Comes-geo code before the extension to viscoplasticity. These tests constitute the main core of the 

validation process of the viscoplastic model as it will be presented in Section 5.5. Therefore, the 

following results are not further discussed here and more details are given in the aforementioned 

section.  

In the figures below the solid black line, denoted as ‘driver’, indicate the results from the numerical 

simulations performed by C. Mihalache (PhD student under the supervision of prof. Buscarnera) using 

material point driver. These data were provided in personal communication with C. Mihalache. The 

comparison indicates a perfect match with the results of the simulation in Comes-Geo. 

 

  
(a) loose sand (p0=300 kPa, e0=0.945)  
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(b) medium-dense sand (p0=300 kPa, e0=0.800)  

  
(c) dense sand (p0=200 kPa, e0=0.578)  

Figure 5.13: UNsand validation – Model simulations of drained triaxial compression tests: evolution 
of deviatoric stress and volumetric strain with axial strain for (a) loose, (b) medium-dense and (c) 

dense Hostun sand. 
 

 

 

 

  
(a) loose sand (p0=200 kPa, e0=0.940)  
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(b) medium-dense sand (p0=200 kPa, e0=0.830)  

  
(c) dense sand (p0=200 kPa, e0=0.666)  

Figure 5.14: UNsand validation – Model simulations of undrained triaxial compression tests: effective 
stress paths and evolution of deviatoric stress with axial strain for (a) loose, (b) medium-dense and (c) 

dense Hostun sand. 
 

5.4 Extension to Viscoplasticity - The VISCUNsand Model 
The second part of this Chapter is devoted to the proposed viscoplastic model for unsaturated soils. 

This section contains the analytical formulation of the viscoplastic model and its implementation in 

the Comes-geo code. The validation of the model and a few applications are discussed in Sections 5.5 

and 5.6 respectively.  

In the same manner as for the elastoplastic model, the elasto-viscoplastic model for unsaturated soils 

is denoted for simplicity as VISCUNsand. 

5.4.1 Analytical Formulation of the Model 
The basic elements of the considered elasto-viscoplastic model can be recognized as follows: 

• The yield function that encompasses the elastic domain, expands with increasing suction and 

contracts upon wetting. 

• A plastic potential function, which determines the relative magnitudes of the viscoplastic strains at 

each point of the yield surface as well as the position of the critical state line. 
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• The hardening/softening law which is constituted by two separate contributions. The first one 

describes the changes in the internal variables associated with viscoplastic deformations, while the 

second one accounts for the hydraulic hardening/softening process induced by a change on the 

water degree of saturation.  

• The hyperelastic law that defines the elastic behaviour within the yield surface.  

• The flow rule that describes the evolution of the viscoplastic strain. 

As already mentioned the viscoplastic model constitutes an extension of the model of Buscarnera 

and Nova (2009) described in Section 5.2. Thus, from the above elements only the last one, the flow 

rule, changes and will be discussed here whereas the other elements remain the same as in Sections 

5.2.1-5.23.  

Flow rule: 

According to Perzyna's approach, the evolution of viscoplastic strain is assumed to be delayed with 

time and is controlled by the following flow rule: 

( )vp g
γ Φ f

∂
=

∂ ′
ε

σ
  (5.30) 

with f and g being the yield function (Equation (5.15)) and the plastic potential (Equation (5.11)) 

respectively. 

As already described in Section 3.3, Φ is the viscous nucleus and γ the “fluidity parameter” which 

depends on the viscosity, η, of the material and equals to γ=1/η. 

For the viscous nucleus, two definitions are adopted; a linear and exponential: 

Linear viscous nucleus (i.e. Pisanò (2011)): 

( )
a

Φ
p
ff

 
 
 
 
 

=
′

 (5.31) 

Exponential viscous nucleus (i.e. di Prisco and Imposimato (1996)): 

( ) aΦ e ff =  (5.32) 

where a is a constitutive parameter and f is the normalized yield function. In both cases the 

normalization of the yield function is done with respect to the isotropic mean pressure, which is 

necessary when dealing with cohesionless materials such as sands. 

Derivatives of plastic potential with respect to effective stress: 

For completeness sake, the mathematic derivation useful for the implementation of the model is 

presented here below.  

The chain rule of differentiation gives: 

g g p g q g S
p q S

′∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂σ σ σ σ
 (5.33) 
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• Derivative of g with respect to p': 

{ }

( ) ( )

1g g 2g g
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g g g g

1g 2g

g g

K /C K /C
g g s

K K K K
C C C C
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K K
C C 1 1

g g g g
g g

g A B p p
p p

pA B A B p
p p

q 1A B 1 A B
p C M S

−

− −

−
− −

∂ ∂ ′ ′= −
′ ′∂ ∂

    ′∂ ∂     ′       = +   ′ ′  ∂ ∂      

         = + − + ′  



 (5.34) 

• Derivative of p' with respect to σ': 

( )p 1 1tr
3 3

′∂ ∂  ′= = ′ ′∂ ∂  
σ 1

σ σ
 (5.35) 

• Derivative of g with respect to q: 
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 (5.36) 

The derivative in Equation (5.14) is needed for the { }q gA∂  and { }q gB∂ : 
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and: 
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 (5.38) 

In similar way: 
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{ } ( )
( )

( ) ( )

3

g 3 3
2g g

3

1 c1 1 81 SB 1
27 Sq K M S p 2 q1 c 1 c
2 q

 
 −  ∂  = +  ′∂   + − −
  

 (5.39) 

Substituting Equations (5.38) and (5.39) into (5.36) it follows: 
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 (5.40) 

• Derivative of q with respect to σ': 
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• Derivative of g with respect to S: 
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and: 
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Substituting Equations (5.43) and (5.44) into (5.42) one obtains: 
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• Derivative of S with respect to σ': 
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(for detailed computation see Appendix A). 

5.4.2 Dependence of Constitutive Parameters on Relative Density 
It is very well known fact that granular materials exhibit mechanical behaviour which is both 

density-dependent (pycnotropy) and pressure-dependent (barotropy). The Nova constitutive model 

and all the attempts so far with it disregard this dependence and need different set of constitutive 

parameters for each density and effective confining pressure. 

As an alternative of using the state parameter concept, the proposed viscoplastic formulation, as 

further novelty, is enhanced with the dependence of the constitutive parameters on the relative 

density. The main scope is to describe with one only set of material parameters the behaviour of a 

specific type of sand for different densities.  

Herein, the transition from dense to loose states and vice versa is modeled by introducing a linear 

dependence of the constitutive parameters on the relative density, Dr, as has been originally proposed 

in di Prisco et al. (2002).  

Based on the evolution of the volumetric strain, the void ratio and the relative density are updated at 

each time step (Equation (5.47); (5.48)), allowing the interpolation of the material parameters between 

loose and dense properties (Equation (5.49)). In particular, a linear interpolation function between the 

values of the dense (pDi) and the loose (pLi) parameters is chosen. 

vde (1 e(t)) dε ,    e(t + dt) e(t) de= − + ⋅ = +  (5.47) 

max
r

max min

e e(t dt)D (t + dt)
e e

− +
=

−
 (5.48) 

i Li Di Li rp p (p p ) D (t + dt)= + − ⋅
 

(5.49) 

The constitutive parameters assumed to be linearly dependent on the current value of Dr are the 

initial shear modulus, G0, and the hardening parameters, ρs ,ξs, and rsw. 

However, it should be noted that, based on the analyses results, as presented in the following 

Section 5.5, a non-linear relation is proposed for the dilatancy at failure (ξs) and plastic 
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compressibility (ρs). This relation came out after a trial and error procedure and gave the most 

favorable results that will be shown next. 

5(e e )max min
s sL sD sL+ ( )ξ ξ ξ ξ Dr −

= −  (5.50) 

5.4.3 Algorithmic Treatment 
For the applications of the theory discussed in the previous sections within the context of the FE 

method, a suitable computational strategy should be defined to integrate numerically (at the Gauss 

point level) the evolution equations in time, from a given initial state. In the following a Forward 

Euler algorithm (Figure 5.15) is adopted for simplicity and therefore the state at current time step 

(tn+1) depends on the state at the previous time step (tn). 

It is assumed that at time tn the state of the material ( nε ,
vp
nε , n′σ ) is known at any quadrature point 

in the adopted finite element discretization. Then, suppose that an increment in total strain (Δεn+1) is 

given, which drives the state to time tn+1 = tn + Δt. The computational problem to be addressed is thus 

the updating of the state variables at time tn+1, through the integration of the differential-algebraic 

system, summarized for completeness bellow: 

( )e vp:′ = −σ D ε ε  
 (5.51) 

( )vp g
γ Φ f

∂
=

∂ ′
ε

σ
  (5.52) 

( )s s s s sw s w
ˆ ˆp p T ξ N r p  S′ ′ ′= λρ + −   (5.53) 

with  

g 2 gˆ ˆT = tr ,   N = dev
3

∂ ∂   
   ∂ ′ ∂ ′   σ σ

 (5.54) 

The first step in the algorithm is to calculate the elastically induced trial state by freezing the 

viscoplastic flow. The trial stress is computed from Equation (5.55). Then, it is tested if the trial state 

is inside or outside the yield surface, tr
n+1 0f ≤ . If it falls within or is on the yield surface the process is 

elastic and the trial state represents the actual final state of the material. 

e e,trial
n+1

trial
n+1 e

ψ

=

∂ =  ∂ 
′

ε ε

σ
ε

 (5.55) 

If the trial state lies outside the yield locus the process is declared viscoplastic and the inelastic 

parameter λ is determined through Equation (5.56): 

( )n+1 n

ΔtΔλ Φ
η

f=  (5.56) 
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From the knowledge of Δλn+1 the viscoplastic strain and the hardening parameter are computed by the 

explicit integration of Equations (5.52) and (5.53), respectively. Subsequently, the components of the 

stress tensor can be updated. 

vp vp
n+1 n n+1

n

+ Δλ g∂=
′∂

ε ε
σ

 (5.57) 

Similarly, the hardening parameter is given by: 

( )s n+1 s s,n s sw s,n r
ˆ ˆΔp Δλ p T ξ N r p  ΔS′ ′ ′= ρ + −  (5.58) 

The corresponding numerical algorithm is summarized in Table 5.6, highlighting the essential steps of 

the numerical implementation. 

Table 5.6: Numerical algorithm for the  VISCUNsand model. 
1. Given strain field εn and strain increment Δεn+1 

n+1 n n+1ε ε Δε= +  
2. Trial elastic state 

e e,trial
n+1

trial
n+1 e

ψ

=

∂ =  ∂ 
′

ε ε

σ
ε

 

3. Check viscoplastic flow potential 

IF: tr
n+1 0f ≤  → elastic step → tr

n+1 n+1Set   (•) (•)=  & EXIT 

else go to 4 

4. Compute Δλn+1: 

 

( )n+1 n

ΔtΔλ Φ
η

f=  

5. Update viscoplastic strain and stress 

vp vp
n+1 n n+1

n

+ Δλ g∂=
′∂

ε ε
σ

 

( )s,n+1 s,n n+1 s s,n s sw s,n r
ˆ ˆp p Δλ p T ξ N r p  ΔS′ ′ ′ ′= + ρ + −  

e
n+

l
1n+1 n n+1

n

= Δε
g

Δλ′ ′ + −
∂

∂ ′

 
 
 

σ σ
σ

D  

It is noted that the consistent tangent matrix in explicit viscoplasticity is the elastic (Equation (5.8)) 
as derived in Equation (5.59). As a final remark, non-locality can be introduced straightforward by 
simply converting the yield function to a non-local variable, following the procedure described in 
Section 3.5. 

n+1
nvp n+1

n+1 el,trialel,trial

el
n n+1

n+1
n+1

el

g
Δλ

C

Δε′ + −
∂

∂
∂ ′ ∂ ′

= = =
∂∂

 
 

 




σ σ

ε

σ D

D
ε

 (5.59) 
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Figure 5.15: Geometric interpretation of the Euler integration scheme (Wang et al. (1997)). Explicit 

method is obtained for θ=0 and implicit for θ=1, respectively. 

5.5 Validation, Calibration and Performance of VISCUNsand Model in Comes-geo 

F.E. Code 
The implementation of the viscoplastic model for unsaturated soils is validated through single-

element analyses. A set of oedometer, creep and triaxial tests under different hydraulic conditions is 

performed to prove the efficiency of the code. Suction controlled triaxial tests, similar to those 

presented in Section 5.3.1, are given in Appendix B for brevity. 

5.5.1 Oedometric Test with Drying-Wetting Paths 
The first simulated example is the oedometric test with varying drying and wetting paths, presented 

in Section 5.3.2 for the elastoplastic model. This test is repeated to prove that also the viscoplastic 

model can describe complex hydraulic paths as well as the wetting induced collapse phenomenon.  

 The results are shown in Figures Figure 5.16Figure 5.17 and the viscosity parameters used for the 

simulation are γ=0.1 s-1 and α=1.0. The superposition confirms the correct implementation and the 

ability of the model to describe the most characteristic features of unsaturated soil behaviour. 

  
(a) (b) 

Figure 5.16: VISCUNsand validation – Results from the oedometer simulation: (a) effective stress 
path and (b) stress path in the net stress space. 
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Figure 5.17: VISCUNsand validation – Void ratio with respect to vertical net stress. 

5.5.2 Creep Tests on Loose and Dense Hostun Sand 
The second simulated example refers to creep tests. Through these tests the time dependency of 

loose and dense Hostun sand will be observed and reproduced in the framework of elasto-

viscoplasticity. The experimental data for the loose Hostun sand were found in the work of di Prisco 

and Imposimato (1996) while for the dense Hostun sand in the work of Pham Van Bang et al. (2007).  

At the same time through these simulations, the material parameters, including viscosity, for both 

loose and dense Hostun sand are calibrated. The calibrated parameters will be used in the subsequent 

section to examine the model’s behaviour for different densities. 

As far as the creep test on loose Hostun sand (Dr = 20 %) is concerned, the material parameters are 

listed in Table 5.7 and Table 5.8. A non-associated plastic flow rule is used. The drained triaxial load 

controlled test is carried out by increasing the axial load while keeping constant the radial stress, up to 

the stress level corresponding to the mobilized friction angle (Figure 5.18a). In Figure 5.18b the axial 

load time history is illustrated: the time periods between two following load steps are constant, but the 

load increment values are variable.  

Table 5.7: Creep test on loose Hostun sand − List of model parameters. 
Elastic 
parameters 

Yield surface 
parameters 

Plastic 
potential  

Hardening 
parameters 

SWCC 
parameters 

Initial state Initial Sw  & 
void ratio 

α=0.0 αf=0.99 αg=0.24 rs=1/0.009 α=0.8 p0=100 kPa Sw0=1.0 

k=0.0046 mf=1.1 mg=1.1 ξs=0.0 n=1.8 q0=0 kPa e0=0.945 

G0=14MPa  Mcf=0.52 Mcg=1.28 rsw=5.45 m=1.9 ps0=100 kPa  

pr=1 kPa Mef=0.44 Meg=1.0     

Figure 5.19 shows the time-dependent behaviour of the material in both linear and semi-logarithmic 

scale. The experimental results are denoted with open symbols whereas the results of the numerical 

analysis are depicted with a red solid line. It is clearly shown that in the time period 200-1000 min 

where the load is kept constant, the axial strain slowly but continuously increases. It is important to 
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underline that, this time-dependent behaviour is reproduced both with the linear and the exponential 

viscous nucleus for the viscosity values presented in Table 5.8.    

Table 5.8: Creep test on loose Hostun sand – Calibration of viscous parameters. 

Viscous Nucleus γ [s-1] a [-] 

Linear 4·10-9 1.0 

Exponential 2·10-14 28.90 
 

  

(a) (b) 

Figure 5.18: VISCUNsand validation – Results from the creep test on loose Hostun sand: (a) effective 
stress path and (b) axial load-time history. 

 

  
(a) (b) 

Figure 5.19: VISCUNsand validation – Results from the creep test on loose Hostun sand: axial strain 
versus time in a (a) semi-logarithmic and (b) linear scale. 

 

The creep test by Pham Van Bang et al. was performed on air-dried dense Hostun sand (Dr = 81 %).  

An isotropic consolidation brings the sample to the desired isotropic stress (i.e. 80 kPa) and then a 

drained triaxial compression path follows.  At this path, the experimental procedure included three 

additional stages: the specimen was loaded at a constant stress rate until a specific point is reached, 
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then a creep period was imposed and small cycles were applied after the creep, as shown in Figure 

5.20.  

 
Figure 5.20: VISCUNsand validation – Creep test on dense Hostun sand (Pham Van Bang et al. 

(2007)). 
 

The model material parameters and the calibrated viscosities for the two viscous nucleus definitions 

are given in Table 5.9 and Table 5.10 respectively. 

Table 5.9: Creep test on dense Hostun sand − List of model parameters. 
Elastic 
parameters 

Yield surface 
parameters 

Plastic 
potential  

Hardening 
parameters 

SWCC 
parameters 

Initial state Initial Sw  & 
void ratio 

α=0.0 αf=0.63 αg=0.63 rs=1/0.0005 α=0.8 p0=80kPa Sw0=1.0 

k=0.0046 mf=1.4 mg=1.4 ξs=0.49 n=1.8 q0=0 kPa e0=0.71 

G0=45MPa  Mcf=1.2 Mcg=1.28 rsw=0.32 m=1.9 ps0=80 kPa  

pr=1 kPa Mef=1.0 Meg=1.0     
 

Table 5.10: Creep test on dense Hostun sand – Calibration of viscous parameters. 

Viscous Nucleus γ [s-1] a [-] 

Linear 1·10-8 1.0 

Exponential 2·10-10 28.90 
 

The global stress-strain curve is presented in Figure 5.21a with the location of the four creep 

periods. The axial strain creep periods obtained after primary loading are plotted in Figure 5.21b both 

for experimental and numerical observations. The viscoplastic model reproduces in a satisfactory 

manner the creep periods between the loading stages, however a small deviation is displayed in the 

global stress-strain behaviour. This discrepancy can be attributed to the different conditions followed 
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in the simulations compared to the experimental procedure. For the sake of simplicity, in the 

numerical simulation the performance of small circles after the creep periods was excluded.  

Finally, by comparing the creep behaviour of loose and dense Hostun sand, it is observed that the 

amount of creep strain is more pronounced for the loose sample which is in accordance with the 

literature. This fact is also highlighted in the values of viscosity parameter (γ increases with increasing 

density). 

  

(a) (b) 

Figure 5.21: VISCUNsand validation – Results from the creep test on dense Hostun sand: (a) stress-
strain curve and (b) time evolution of axial creep strain for primary loading. 

 

5.5.3 Drained and Undrained Triaxial Compression Tests on Loose, Medium and 

Dense Hostun Sand 
In this section it will be discussed the ability of the viscoplastic model to represent the mechanical 

behaviour of granular soils over a wide range of void ratio. As a reminder to the reader, the 

VISCUNsand model has been enhanced with density-dependent constitutive parameters. The same 

dependency has also been applied to the UNsand model however emphasis is here given only to the 

viscoplastic model.  

 For calibrating the constitutive parameters and validating the model, standard triaxial tests 

performed on Hostun sand in different laboratories are used. The data were collected from the work of 

Gajo and Wood (1999) and Daouadgji et al. (2010) and are presented in Table 5.11 and Table 5.12 

respectively.  

The main scope is to perform all these tests using only one set of material parameters for the 

viscoplastic model. Due to the large scatter of the experimental data, the calibration process was 

performed iteratively in combination with the viscosity values from the creep tests on Hostun sand 

(presented in the previous section). The complete set of material constants is detailed in Table 5.13 

and Table 5.14. The initial conditions in terms of mean stress (p0), preconsolidation stress (ps0) and 

void ratio (e0) depend on each test examined based on Table 5.11 and Table 5.12.  
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Table 5.11: Characteristics of the triaxial compression tests as in Gajo and Wood (1999). 

Test name Ends Drainage p0 [kPa]   e0 [-] 

hos011 Smooth Drained 300 0.574 

hos027 Smooth Drained 200 0.578 

hosfl10 Smooth Drained 300 0.800 

hosfl11 Smooth Drained 300 0.897 

d4 Smooth Drained 300 0.945 

hosfl14 Smooth Drained 50 0.838 

hflw10 Smooth Drained 600 0.822 

batr02 Rough Undrained 200 0.940 

batr06 Rough Undrained 200 0.830 

alert9 Rough Undrained 200 0.666 

 

Table 5.12: Characteristics of the triaxial compression tests on loose Hostun sand as in Daouadji et al. 
(2010). 

Test name Drainage p0 [kPa] 

CD-1 Drained 100 

CD-2 Drained 300 

CD-3 Drained 750 

ICU-1 Undrained 100 

ICU-2 Undrained 300 

ICU-3 Undrained 750 
 

Table 5.13: Parameters adopted for the simulations. 
Elastic 
parameters 

Yield surface 
parameters 

Plastic 
potential  

SWCC 
parameters 

Initial state Initial Sw   

α=0.0 αf=0.99 αg=0.24 α=0.8 q0=0 kPa Sw0=1.0 

k=0.0046 mf=1.10 mg=1.10 n=1.8   

pr=1 kPa Mcf=0.52 Mcg=1.28 m=1.9   

 Mef=0.44 Meg=1.0    
 

Accounting for the interaction between the loading rate and viscosity and their effect on the 

numerical results, the loading rate was kept constant to delimit the influential parameters. A realistic 
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loading rate was used. According to prof. J. Desrues (information provided in personal 

communication) a loading rate 1 to 2 mm/min was applied on specimens with slenderness ratio 

H/D=1 and H=D=100 mm, depending on the test type. Thus the loading strain rate of the experiments 

presented in the tables above was 1%/min for the drained and 2 %/min for the undrained tests.  

In the following, apart from the comparison of the simulations with the experimental results, it is 

also discussed the effect of the viscous nucleus definition on the numerical predictions.  

Table 5.14: Parameters used for different densities. 

Test Name G0 [kPa] Bp [-] ξs [-] rsw [-] eD [-] 

TXD-Loose  14000 0.0090 0.00 5.45 0.945 

TXD-Medium  17000 0.0045 0.095 0.32 0.800 

TXD-Dense  45000 0.0005 0.480 0.32 0.578 

TXU-Loose  14000 0.0090 0.00 5.45 0.940 

TXU-Medium  17000 0.0045 0.095 0.32 0.830 

TXU-Dense  45000 0.0005 0.480 0.32 0.666 
 

5.5.3.1 Linear Viscous Nucleus 

In this subsection the comparison between the experimental data and the numerical results is 

presented for the loose, medium-dense and dense Hostun sand and is discussed in the context of the 

viscosity value influence. Herein, a linear viscous nucleus is adopted for the description of the 

material’s mechanical response during the time evolution.  

Loose Hostun sand  

The triaxial compression tests under both drained and undrained conditions for the loose Hostun 

sand are shown in Figure 5.22. For the drained behaviour the viscous parameter (γ=4·10-9 s-1), as 

calibrated in the drained creep test (see Section 5.5.2) was used.  

 However, it is evident, from Figure 5.22a,b that this value of γ cannot predict the experimental 

observations. In fact, based on the dilatant behaviour one might say that the response resembles more 

to a dense sand. This behaviour is weird since the creep and the drained triaxial tests are conducted for 

exactly the same material, using the same set for the material parameters. Trying to interpret this 

tendency the accuracy of the calibrated viscous parameters and the loading rate effect were examined. 

To ensure the accuracy of the calibrated value, the creep test was repeated varying this time the 

viscosity value to examine the effect on the numerical results. In Figure 5.23, the variation of the 

solution of the creep test for different values of the viscosity parameter is presented. For γ=4·10-9 s-1 

an almost perfect match with the experimental values is obtained whereas for a small decrease of the 
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fluidity parameter (from 4·10-9 to 2·10-9) the solution deviates greatly from the expected result. These 

results confirm that the calibrated value is of the order of 10-9 and in particular γ=4·10-9 s-1. 

 
 

(a) (b) 

  
(c) (d) 

Figure 5.22: VISCUNsand validation – Loose Hostun sand: (a) drained conditions and (b) undrained 
conditions. 

 

Afterwards, the influence of the loading rate on the numerical predictions was examined. The 

results are depicted in Figure 5.24 for four different loading rates and applying the calibrated viscosity 

value γ=4·10-9 s-1. It is evident that for this value of viscosity, the drained triaxial test response is 

captured only for very small and unrealistic loading rate (10-4 mm/min), compared to the real loading 

velocity of the experiment.  

The definition of the viscous nucleus seemed like the only reasonable solution for elucidating this 

behaviour. Along these lines, the exponential viscous nucleus was introduced and the results are 

presented in the following subsection.  

However, in order to further investigate the influence of the viscous parameter on the consistency of 

the solution with the experimental results, a parametric analysis is performed for both drained and 

undrained conditions.  

In Figure 5.22, the open symbols denote the experimental data, the red line the numerical results for 

the calibrated from the creep tests value and the black line denotes the simulation results using a value 
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of viscosity such that both drained and undrained behaviour is well reproduced. A viscosity parameter 

γ=2·10-3
 s-1 shows the best match with the experimental data. 

Table 5.15: Re-examined creep test on loose Hostun sand varying viscosity parameter. 

Test No η [s] γ [s-1] a 

1 100·106 1·10-8 

1 
2 250·106 4·10-9 

3  300·106 3.3·10-9 

4 500·106 2·10-9 
 

 
Figure 5.23: VISCUNsand validation – Axial strain evolution for the repeated creep test in loose 

Hostun sand varying the viscosity parameter.  
 

  
(a) (b) 

Figure 5.24: VISCUNsand validation –Comparison of four different loading rates for the simulated 
drained behaviour of a loose Hostun sand with γ=4·10-9 s-1. 
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Medium-dense Hostun sand  

To the author’s knowledge, no relevant creep tests on medium-dense Hostun sand were found in the 

literature and thus no value for viscosity can be initially estimated. Figure 5.25 shows the comparison 

for both drained and undrained triaxial compression tests on medium dense Hostun sand for two 

viscosities; one that properly captures the experiments and one that strongly deviates. The value of the 

viscosity parameter that approaches what was experimentally observed is γ=4·10-4
 s-1. 

  
(a) (b) 

  
(c) (d) 

Figure 5.25: VISCUNsand validation – Medium Hostun sand: (a) drained conditions and (b) 
undrained conditions. 

 

Dense Hostun sand  

As in the case of the loose sand, also for the dense Hostun sand, the calibrated viscosity value does 

not reproduce in a proper manner the experimental data. The scatter however is much smaller than in 

the case of the loose sand.  

Moreover, a value of the viscosity parameter γ=4·10-6
 s-1 (black solid line in Figure 5.26) gives a 

better approximation for both drained and undrained conditions. 
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(a) (b) 

  
(c) (d) 

Figure 5.26: VISCUNsand validation – Dense Hostun sand: (a) drained conditions and (b) undrained 
conditions. 

 

In summary, for each density a viscosity value was iteratively defined to approach the experimental 

observations. The same viscosities were applied for drained and undrained conditions and their values 

are as follows: 

• Loose Hostun sand: γ=2·10-3
 s-1 

• Medium-dense Hostun sand: γ=4·10-4
 s-1 

• Dense Hostun sand: γ=4·10-6
 s-1 

5.5.3.2 Exponential Viscous Nucleus 

Herein, the viscoplastic model is validated by comparison with experimental results obtained from 

triaxial tests on Hostun sand covering a wide range of density and stress level. An exponential 

definition for the viscous nucleus is assumed to overcome the obstacle previously discussed regarding 

the calibration of the viscosity values.  

Comparisons of the observed and simulated drained behaviour of Hostun sand are first presented 

followed by comparisons on the undrained behaviour. In each figure (except if defined otherwise), the 

open symbols indicate the experimental observations, the dashed black lines the numerical 

simulations with the model proposed by Gajo and Wood (1999) for a comparison with the viscoplastic 
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model proposed in this thesis denoted with black solid lines. Moreover, in the figures below the red 

solid line with the ‘with Dr’ legend corresponds to the solution of the viscoplastic model applying the 

suggested Equation (5.50) for non-linear density. To simplify matters, these results came out 

assuming that the parameters ξs and Bp are non-linearly dependent on density whereas the rest of the 

material parameters vary linearly with density according to Equation (5.49). It is recalled that this 

expression occurred after a trial and error procedure, performing iteratively all the drained and 

undrained compression tests. For brevity and for the sake of completeness, an example of comparison 

between the linear and the non-linear function for the influence of relative density is given in Figure 

5.27. 

  
(a) (b) 

Figure 5.27: VISCUNsand validation – Exponential viscous nucleus: Indicative comparison between 
the linear and non-linear function for the effect of Dr. 

 

It should be noted that in the case of the undrained tests no volumetric change (due to isochoric 

constrain) occurs and therefore no evolution of the sample’s density. Thus, no effect for Dr is 

depicted.  

TXD on loose Hostun sand 

Figure 5.28 and Figure 5.29 shows the comparison for ordinary drained triaxial compression tests 

for two samples of loose sand with different initial void ratios but a single confining pressure.  

The volumetric strains are very well represented by the model and the maximum strength is 

perfectly reproduced for the very loose sand but is slightly underestimated for the hosfl11 sample in 

Figure 5.29a. In the latter, it is evident, that the results are improved in the case of non-linear density-

dependence.  

Another important aspect here is that the results are obtained using the viscosity value as calibrated 

from the creep test (Table 5.16), highlighting the crucial role of the viscous nucleus definition in the 

framework of viscoplasticity.   
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Table 5.16: Initial density and viscous parameters for the TXD test on loose Hostun sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

d4 300 0.945 2·10-14 28.90 

hosfl11 300 0.897 2·10-14 28.90 
 

  

(a) (b) 

Figure 5.28: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on loose (e0=0.945) Hostun sand. 

 

  

(a) (b) 

Figure 5.29: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on loose (e0=0.897) Hostun sand. 

 

Drained tests at different confining pressures on loose samples are shown in Figure 5.30. The three 

CD tests, namely, CD-1, CD-2 and CD-3, have effective mean pressures of 100, 300 and 750 kPa, 

respectively. The stress-strain curves of these tests are shown in Figure 5.30a for the same void ratio 

(e0=1.0). The full symbols are for the experimental data from Daouadji et al. (see Table 5.12) and with 

solid lines are the simulated viscoplastic results, applying the calibrated viscosity parameters (γ=2·10-

14, a=28.90), and the non-linear relation for the density dependence.  

The stress-strain behaviour is well captured for the three confining pressures. The simulated 

volumetric strain of the loose sample at high confining pressure (CD-3 of Figure 5.30b) slightly 
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deviates from the experimental however the results are very satisfactory. Finally, it can be seen that 

the critical state is reached when both the deviator stress and the volumetric strain approach constant.  

  
(a) (b) 

Figure 5.30: VISCUNsand validation – Exponential viscous nucleus: Effects of the mean stress on 
drained triaxial compression tests with the same initial loose density.  

TXD on medium-dense Hostun sand 

The drained behaviour of medium-dense granular material is presented in Figure 5.31 for 300 kPa 

effective mean pressure. The initial density of the examined material and the viscous parameters 

applied are given in Table 5.17. The viscosity value used is γ = 2∙10-12 s-1. 

 The results are in good agreement with the experimental and the response is captured well 

qualitatively, both for the deviatoric stress – strain (Figure 5.31a) and the volumetric strain – axial 

strain (Figure 5.31b) diagrams. The maximum deviator stress is perfectly matched in Figure 5.31a and 

also, for increasing axial strain, the dilation of the material is described effectively by the analysis, as 

evidenced by Figure 5.31b. 

Table 5.17: Initial density and viscous parameters for the TXD test on medium Hostun sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

hosfl10 300 0.800 2·10-12 28.90 

hosfl14 50 0.838 2·10-12 28.90 

hflw10 600 0.822 2·10-12 28.90 
 

The influence of the effective mean stress on drained triaxial compression tests of medium-dense 

sand is illustrated in Figure 5.32 for two values, 50 kPa and 600 kPa. It is observed that the increase of 

the mean stress alters the maximum deviator stress and the response is described properly by the 

examined model. The volumetric strain response is very well approximated for the higher mean stress 

whereas for the lower confining pressure is much less dilatant than the measured one. 
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(a) (b) 

Figure 5.31: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on a medium-dense Hostun sand. 

 

  
(a) (b) 

Figure 5.32: VISCUNsand validation – Exponential viscous nucleus: Effects of the mean stress on 
drained triaxial compression tests of medium-dense Hostun sand. 

 

TXD on dense Hostun sand 

The drained behaviour of dense Hostun sand is tested for two values of effective mean pressure, 200 

kPa and 300 kPa. The initial density and viscosity for the examined dense sand are given in Table 

5.18. A constant value of viscosity (from calibration of the creep test) is applied in both cases, equal 

to 2∙10-10 s-1. 

Table 5.18: Initial density and viscous parameters for the TXD test on dense Hostun sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

hos027 200 0.578 2·10-10 28.90 

hos0l1 300 0.574 2·10-10 28.90 
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(a) (b) 

Figure 5.33: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on a dense (e0=0.574) Hostun sand. 

 

In Figure 5.33 and Figure 5.34 the response of the material for 300 kPa and 200 kPa effective stress 

accordingly, is presented. It becomes apparent that the effect of relative density is more favorable in 

the q-ε plane and the behaviour is better approximated, forming also a softening branch. 

  
(a) (b) 

Figure 5.34: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on a dense (e0=0.578) Hostun sand. 

TXU on loose Hostun sand 

The undrained behaviour of loose Hostun sand is examined for an effective mean pressure of 100, 

200, 300 and 750 kPa. 

In Figure 5.35 the undrained response for the loose sand is depicted for the VISCUNsand model, in 

comparison with experimental results for 200 kPa of confining pressure. The general trends are 

correctly captured. The peak deviator stress is very well represented however the residual strength is 

overestimated.  

In Figure 5.36 the numerical results indicate appropriate agreement with the experimental and the 

qualitative response is perfectly described both for the deviator stress – strain and the excess pore 

pressure – strain diagrams for the three confining pressures. It is noted that Figure 5.36b gives the 
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evolution of the excess pore pressure normalized by the initial effective mean pressure versus axial 

strain. As the density of the sample is very low, the material has a tendency to contract. Thus for the 

chosen three effective mean pressures, the pore pressure always increases.  

  
(a) (b) 

Figure 5.35: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on loose Hostun sand for p0=200 kPa. 

 

  
(a) (b) 

Figure 5.36: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on loose Hostun sand for p0=100, 300 and 750 kPa. 

 

However, it is noted that these results occurred for a viscosity value 2∙10-5 s-1 (Table 5.19) different 

from the value obtained with the calibration, which was also used to simulate the drained triaxial 

behaviour for loose sand. As an attempt to interpret this fact, in Figure 5.37 are compared the results 

using the calibrated viscous parameters from the drained tests (black line) and those fitting better the 

experimental results (red line). Moreover, in Figure 5.38 the overstress ratio for these two simulations is 

depicted.  

Table 5.19: Initial density and viscous parameters for the TXU test on loose Hostun sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

batr02 200 0.940 2·10-5 24.90 
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(a) (b) 

Figure 5.37: VISCUNsand validation – Exponential viscous nucleus: Comparison with the undrained 
behaviour of a loose sample and the simulated results using γ=2·10-14 s-1 and a=28.9 (black line) and 

γ=2·10-5 s-1 and a=24.9 (red line). 
 

  

(a) (b) 

 

(c) 

Figure 5.38: VISCUNsand validation – Exponential viscous nucleus: Plots of f/p' ratio versus axial 
strain for (a) γ=2·10-5 s-1 and a=24.9 and (b) γ=2·10-14 s-1 and a=28.9 and (c) comparison of (a) and 

(b) case. 
 

To better fit the experimental results of the undrained test another set of viscous parameter is 

required (γ=2·10-5 s-1 and a=24.9) and in that case the values of the viscous nucleus ratio f/p' are much 
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lower than those occurred with the viscous parameters as in drained tests (Figure 5.38). It is also 

interesting that the set of viscous parameters for the drained triaxial tests (γ=2·10-14 s-1 and a=28.9) 

leads to a similar overstress ratio in both drained and undrained conditions (Figure 5.38b and Figure 

5.39).  

  
(a) (b) 

Figure 5.39: VISCUNsand validation – Exponential viscous nucleus: Plots of f/p' ratio versus axial 
strain with viscous parameters γ=2·10-14 s-1 and a=28.9 for (a) d4 and (b) hosfl11, TXD tests. 

 
The same behaviour is also observed for medium-dense and dense sand, denoting a different effect 

of viscosity on the yield surface depending on the drainage conditions. This variation shows the great 

influence of the definition of the viscous nucleus and highlights the need for further investigations. 

TXU on medium-dense Hostun sand 

A medium-dense sample tested in undrained compression is shown in Figure 5.40. The initial 

density and the viscosity parameters adopted for the simulation are summarized in Table 5.20. The 

comparison between model simulations and experimental measurements is almost perfect. Both the 

simulated stress path and post peak stress-strain behaviour are absolutely consistent with the 

measurements.   

In the same way as in the case of the undrained triaxial compression tests on loose sand, a 

comparison between the simulated results using two set of viscous parameters, is given in Figure 5.41, 

leading to the same conclusions as above.  

Table 5.20: Initial density and viscous parameters for the TXU test on medium Hostun sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

batr06 200 0.830 2·10-4 6.90 
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(a) (b) 

Figure 5.40: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on medium Hostun sand. 

 

  
(a) (b) 

 
(c) 

Figure 5.41: VISCUNsand validation – Exponential viscous nucleus: (a), (b) Comparison with the 
undrained behaviour of a medium sample and the simulated results using γ=2·10-12 s-1, a=28.9 (black 

line) and γ=2·10-4 s-1, a=6.9 (red line) and (c) f/p' ratio versus axial strain. 

TXU on dense Hostun sand 

The undrained behaviour of a dense Hostun sand is presented in Figure 5.42 applying the properties 

listed in Table 5.21. The model is again consistent with the experimental data, capturing very well the 

characteristics of the undrained behaviour for the specific density.  
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(a) (b) 

Figure 5.42: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on dense Hostun sand. 

 

 
 

(a) (b) 

 
(c) 

Figure 5.43: VISCUNsand validation – Exponential viscous nucleus: (a), (b) Comparison with the 
undrained behaviour of a dense sample and the simulated results using γ=2·10-10 s-1, a=28.9 (black 

line) and γ=4·10-4 s-1, a=1.0 (red line) and (c) f/p' ratio versus axial strain. 
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Table 5.21: Initial density and viscous parameters for the TXU test on dense Hostun sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

alert9 200 0.666 4·10-4 1.0 
 

The calibration and the validation of the viscoplastic model, through comparison of the simulations 

with experimental results, showed the sufficiency to reproduce with a satisfactory accuracy the 

drained and undrained behaviour of Hostun sand over a wide range of density and confining 

pressures, using a single set of constitutive parameters except for the viscous parameters.  

To obtain the behaviour using the linear viscous nucleus a common value of viscosity is used for 

both drained and undrained conditions which however is not the one occur from the calibration. On 

the other hand, when applying an exponential viscous nucleus the calibrated viscosity value is 

sufficient to reproduce the drained behaviour, whereas for the undrained behaviour a different value is 

required.  

In the following tables the viscosity values are summarized for the linear and exponential viscous 

nucleus respectively.  

Table 5.22: Viscosity parameters varying soil density for linear viscous nucleus. 

Test Name η [s] γ [s-1]   a 

TXD & TXU - Loose  5·102 2·10-3 1.0 

TXD & TXU - Medium  2,5·102 4·10-4 1.0 

TXD & TXU - Dense  2.5·104 4·10-6 1.0 

Table 5.23: Viscosity parameters varying soil density for exponential viscous nucleus. 

Test Name η [s] γ [s-1]   a 

TXD - Loose  5·1013 2·10-14 28.9 

TXD - Medium  5·1011 2·10-12 28.9 

TXD - Dense  5·109 2·10-10 28.9 

TXU - Loose  5·104 2·10-5 24.9 

TXU - Medium  5·103 2·10-4 6.9 

TXU - Dense  2,5·103 4·10-4 1.0 

5.5.4 Undrained Plane-Strain Compression Test on Loose Hostun Sand 
In this section, to further demonstrate the efficiency of the model, the results of an undrained biaxial 

test on loose Hostun sand performed by Mokni and Desrues (1998) are predicted with the proposed 
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model. A confining pressure of 800 kPa was applied and the same set of material parameters was 

used. The viscosity parameters were taken according to Table 5.23, following the discussion of the 

previous section.  

In Figure 5.44 the comparison between the experimental data and the simulation results is shown in 

terms of the stress path and effective stress, pore-pressure and effective stress ratio versus axial strain.  

Table 5.24: Initial density and viscous parameters for the undrained plane-strain test on loose Hostun 
sand. 

Test name p0 [kPa] e0 [-] γ [s-1] a [-] 

SHFND05 800 0.945 2·10-5 24.9 
 

  

(a) (b) 

  
(c) (d) 

Figure 5.44: VISCUNsand validation – Results for the undrained plane-strain compression test on 
loose Hostun sand. 

 

The behaviour of the model is satisfactory as the general trends are well captured. However, the 

model does not experience the sudden reduction of the stress ratio with the axial strain as was 

experimentally observed. According to Mokni and Desrues this sudden drop corresponds to the onset 

of localization. This phenomenon is further analyzed and discussed from both theoretical and 

numerical perspective in the next section. 
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5.6 On the Simulation of Undrained Shear Banding 
Failure of geomaterials specimens tested in the laboratory is often accompanied by the localization 

of strains in narrow bands. According to experimental observations, distinct shear bands often occur 

in dense sand specimens under both drained and undrained conditions. In this section one of the 

experiments on Hostun sand previously presented with single finite element analyses, will be 

simulated as a boundary value problem with proper discretization. The scope of this example is to 

demonstrate the performance of the viscoplastic model as well as to illustrate the onset of localization 

and the evolution of the shear band at post-failure conditions.  

The undrained triaxial compression test on a medium-dense Hostun sand is the case study. The main 

material parameters are summarized in Table 5.13 whereas the initial density and the viscosity 

parameters adopted for the simulation are listed in Table 5.20. A sketch of the considered boundary 

value problem is shown in Figure 5.45. The experimental test is conducted by considering the half of 

the sample due to symmetry. The problem domain is a rectangular specimen 5 cm wide and 10 cm 

high modeled with 50 eight-node quadrilateral elements. On the top and left sides, the normal stress 

was kept constant (p0 = 200 kPa), for the first phase of isotropic compression. The self-weight of the 

material is not considered and the specimen is assumed to be homogeneous at this stage. On the 

second phase, on the upper boundary the vertical displacement rate is imposed to be constant, on the 

right side the normal stress is kept constant (after the isotropic compression), while, on the left 

boundary horizontal displacements are not allowed.  

 
Figure 5.45: Boundary conditions of the triaxial compression test.  

 

Figure 5.46 shows the contour of the equivalent viscoplastic strain at 0.05 of axial strain at the end 

of the analysis, where the shear bands are fully formed. Two pair of shear bands initiated from the 

corners of the top and bottom surfaces of the specimen, on the right vertical boundary, and gradually 

propagated along the diagonal direction of the sample.  
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Figure 5.46: Equivalent viscoplastic strain contour.  

 

In more detail in Figure 5.47 the evaluation of the deviatoric stress and equivalent viscoplastic strain 

with axial strain is plotted for a node inside the shear zone (node 39) with coordinates x = 3 cm y = 7 

cm. In the same figure, the comparison of the experimental data (open symbols) with the numerical 

solution evidence that the behaviour at the post-bifurcation regime is well captured. 

The peak of the deviatoric stress for the simulation coincides with the bifurcation point of the 

experiment and at the same time the equivalent viscoplastic strain begins to develop. This can be 

regarded as the initiation of the localized failure. Unfortunately, a stability criterion for rate-sensitive 

materials that could be implemented in a finite element code is still missing in literature, due to the 

lack of the tangent stiffness operator in Perzyna-type constitutive equations.  

 
Figure 5.47: Stress-strain response and evolution of equivalent viscoplastic strain with axial strain.  
 

Herein, taking into account that the elasto-viscoplastic response tends to the elastoplastic limit at 

vanishing rate-sensitiveness (i.e. increasing γ and/or a) and thus with increasing material density and 

that the elastoplastic stiffness matrix contains information (i.e. hyperelastic tangent and partial 
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derivatives of the yield function and plastic potential with respect to stress), that are anyway used in 

the viscoplastic formulation, an attempt is made to plot the determinant of the symmetric part of the 

stiffness matrix for the viscoplastic model. To this end, the determinant of the symmetric part of the 

stiffness matrix is reported in a normalized form. The normalization is done using a reference value 

obtained at a stability point at the beginning of the analysis.  

It is recalled that violation of the Hill’s criterion at material point level, is associated with possible 

bifurcations of the stress-strain response and that this criterion is violated for the first time when the 

determinant of the symmetric part of the stiffness matrix becomes zero (Imposimato and Nova 

(1998)).  

Figure 5.48 shows the stress-strain response and the evolution with strain of the normalized 

determinant of the symmetric part of the stiffness matrix (detDs). As can be observed, the normalized 

determinant vanishes at the same point with the deviatoric peak of the undrained simulation, thus 

indicating loss of stability of the incremental solution. An also interesting fact is that negative 

determinants are detected in the localization zones in Figure 5.49. 

 
Figure 5.48: Evolution of deviator stress and normalized detDs with axial strain.  

 

 
Figure 5.49: Contour of the normalized detDs.  
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5.7 Concluding Remarks 
This chapter is dedicated to the constitutive modelling of unsaturated soils in the framework of 

elasto-viscoplasticity. The Nova model, that was recently enhanced to account for hydraulic bonding 

and debonding effects by Buscarnera and Nova, is adopted and extended to rate-dependent granular 

material. To model the pycnotropy behaviour of these materials, a dependence of the constitutive 

parameters on the relative density is incorporated into the viscoplastic formulation.  

The elastoplastic model is  first implemented and validated in the Comes-geo code through several 

examples from the literature, that enable the most relevant features of partially saturated soil 

behaviour to be reproduced.  

Afterwards, the viscoplastic model is formulated and implemented in the code. The validation of the 

viscoplastic model is done with a series of tests on variably saturated conditions as well as standard 

triaxial and plane-strain tests on sand with varying density. The latter tests are conducted to validate 

the density-dependence of the model, using only one set of material parameters. An interesting 

outcome concerned the influence of the definition of the viscous nucleus on the description of the 

material’s mechanical response, suggesting further investigation.  

At the end of this chapter a localization failure problem is studied with the viscoplastic model, 

showing the ability of the model to describe well both the initiation and propagation of this 

bifurcation mode.  
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 Chapter 6: Implementation of the Constitutive Models for Unsaturated Soil 
Behaviour in PLAXIS 

6.1 Introduction 
In this section the implementation of the elastoplastic (UNsand) and the elasto-viscoplastic 

(VISCUNsand) constitutive model for unsaturated soils in the commercial FE code PLAXIS - 

PlaxFlow is presented. This approach within the context of the thesis is aiming at linking academia 

and industry application. 

A set of single element numerical examples is utilized, as also in Sections 5.3 and 5.5 of this thesis, 

to validate the implementation and examine the effectiveness of the models. Triaxial shear tests at 

constant suction levels and drained and undrained triaxial compression tests are simulated to illustrate 

the capabilities of the model within the code. An application inspired by a laboratory experiment 

aiming to investigate the influence of various groundwater conditions on slope stability, closes this 

chapter. 

6.2 PLAXIS User-Defined Soil Models 
In PLAXIS there is the capability to implement user-defined soil models in Fortran-code compiled 

to dll-files. These constitutive models simulate the soil behaviour at a single material point, i.e. the 

resulting stress increment due to an applied strain increment. The global behaviour is governed by the 

Finite Element Method as implemented in PLAXIS. 

For a given material point at a certain stress level, there are four necessary operations followed, so 

as to embody the constitutive model code in the PLAXIS workflow algorithm (PLAXIS, 2012a): 

• Initialization of state variables 

• Calculation of stresses for the given strain increment 

• Creation of elastic material stiffness matrix 

• Creation of effective material stiffness matrix. 

PLAXIS provides a set of parameters as input to the user-defined subroutine, which are the stresses 

(Bishop’s effective stress), strains, suction and time increments at the previous time step and the state 

variables of the constitutive model. The routine is expected to return a set of output parameters, the 

current stresses and state variables. 

The flow of the subroutine is governed by an input parameter from PLAXIS main code called 

IDTask. There are six IDTasks defined and for each, PLAXIS assigns different tasks that the global 

calculation needs at different stages in the process. The two most important is the IDTask 1, 

initializing the model and the state variables, and the IDTask 2, calculating the stress increment for 
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the given strain increment through the applied constitutive model (PLAXIS, 2012a). For IDTask equal 

to 3 and 6 the material stiffness matrix is defined, as discussed in Section 5.2.4 and 5.4.3 of this thesis. 

It should be noted that both the UNsand and VISCUNsand models are implemented, thus a variable 

called iMod is utilized to define which model is used. The selected option in the user interface 

activates the corresponding model and dll-file, giving the appropriate value in the iMod variable. For 

iMod equal to 1 the VISCUNsand model is used whereas for value equal to 2 the UNsand model is 

activated. 

A set of 9 state variables is defined for the implementation of the models: 4 for the plastic strains 

and one for each of the equivalent plastic strain, the viscoplastic strain, the preconsolidation stress, the 

degree of saturation increment and the void ratio. These state variables are calculated at each time step 

and stored for the subsequent step.  

The UNsand and VISCUNsand model’s subroutine is called for IDTask equal to 2 and the stresses 

and plastic strains are updated. The same subroutines as developed for the Comes-Geo code are used, 

with the necessary modifications to adapt to the PLAXIS workflow. A set of indicative numerical 

examples and tests are presented in the following to illustrate the efficiency of the implementation in 

PLAXIS - PlaxFlow. 

6.3 Numerical Validation and Example 
The elastoplastic strain hardening model for soil allowing for hydraulic bonding-debonding effects 

as presented in Buscarnera and Nova (2009) and the extended viscoplasticic proposed in this thesis, 

are implemented in PLAXIS - PlaxFlow finite element code. The validation of the implementation is 

carried out by performing a series of the so-called single element tests. Axisymmetric conditions are 

assumed and the material is considered to be weightless to have a uniform stress field inside the 

geometry. The mesh consists of two six node triangular elements with three Gauss integration points 

to reduce the error due to discretization to a minimum. 

6.3.1 Triaxial shear tests at constant suction 
The first simulation is focused on the comparison between the predictions of the model used for a 

saturated material and the results obtained for the same material subjected to a drying path up to 50 

kPa. The latter test starts with fully saturated conditions and zero suction, followed by a drying path 

with suction increase under constant mean net stress, until the desired value i.e. 50 kPa is reached. In 

the second shearing stage the soil sample is loaded up to failure by applying an increasing vertical net 

stress while suction and radial net stress remain constant.  

Figure 6.1a shows the geometry, the mechanical boundary conditions and the finite element mesh 

being used for the validation. The hydraulic boundary conditions are shown in Figure 6.1b. The 

symbol h denotes the total hydraulic head whereas ψ denotes the negative pore water pressure head. A 
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constant suction profile is generated in accordance to these boundary conditions and its value 

dependent on ψ value.  

The constitutive parameters adopted in this test are given in  

Table 6.1 and the soil water characteristic curve (SWCC) is showed in Figure 6.2. The results are 

compared to those provided by Buscarnera and Nova (2009).  

 
(a)                                                                    (b) 

Figure 6.1: Geometry, finite element mesh and boundary conditions as used in the single element tests 
(a) mechanical boundary conditions (b) hydraulic boundary conditions. 

 

Table 6.1: Parameters adopted for the simulation. 
Elastic 
parameters 

Yield 
surface 
parameters 

Plastic 
potential 
parameters 

Hardening 
parameters 

Initial state Initial Sr and 
void ratio 

SWCC 
parameters 

α=0.0 αf=0.63 αg=0.63 rs=1/0.038 p0=10 kPa Sr0=1.0 Sres=0.05 

k=0.002 mf=0.95 mg=0.95 ξs=0.0 q0=0 kPa e0=1.90 Ssat=0.98 

G0=32MPa  Mcf=0.90 Mcg=1.37 rsw=3.86 ps0=10 kPa  gn=1.29 

pr=10 kPa Mef=0.70 Meg=1.07    ga=4.3 

      gl=-0.225 
 

 
Figure 6.2: SWCC adopted for the analysis. 
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In Figure 6.3 the stress path of the simulated example in the skeleton and net stress space is 

presented. The specimen is initially fully saturated and a first stage of drying is applied at constant 

mean net stress (AB). A triaxial shearing stage follows until the critical state line is reached (BC). The 

results illustrate the coincidence of the implemented model in PLAXIS with the results by Buscarnera 

and Nova. 

     
(a)                                                                              (b) 

Figure 6.3: Stress path (a) in the skeleton and (b) net stress space. 
 

   
(a)                                                                           (b) 

Figure 6.4: Comparison of tests results on a saturated specimen (suction=0 kPa) in a triaxial test 
simulation: (a) deviatoric stress versus deviatoric strain and (b) volumetric strain versus deviatoric 

strain. 
 

As it is evident from Figure 6.4 and Figure 6.5, the stiffness and strength of the soil increases with 

suction due to the effect of the hydraulic bonding, which occurs by the water menisci. In the same 

Figures is depicted the very good agreement between the results of the implementation in PLAXIS 

and the corresponding data from the literature. 

In the following Figure 6.6 to Figure 6.7, six simulations are presented for varying suction and net 

pressure. Three different net confinement pressures and two suction levels are applied (Table 6.2). All 

tests have been simulated imposing a first drying path at a low net confinement to establish a first 

suction equilibrium stage. Then a constant suction triaxial stage is imposed under constant radial net 
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stress. The results indicate coincidence between the simulated example and the data from Buscarnera 

and Nova. 

 
(a)                                                                               (b) 

Figure 6.5: Comparison of tests results on an unsaturated specimen (suction=50 kPa) in a triaxial test 
simulation: (a) deviatoric stress versus deviatoric strain and (b) volumetric strain versus deviatoric 

strain. 
 

Table 6.2: Triaxial tests at varying suction and net confinement pressure. 

s [kPa]  pnet [kPa] 

20 
10 
30 
50 

50 
10 
30 
50 

 

  
(a)                                                                           (b) 

Figure 6.6: Triaxial tests at suction=20 kPa for varying net confinement pressure: (a) deviatoric stress 
versus deviatoric strain and (b) volumetric strain versus deviatoric strain. 
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(a)                                                                           (b) 

Figure 6.7: Triaxial tests at suction=50 kPa for varying net confinement pressure: (a) deviatoric stress 
versus deviatoric strain and (b) volumetric strain versus deviatoric strain. 

 

It should be noted, that these tests have been also simulated with the VISCUNsand model and the 

outcome was the same as for the UNsand model. Therefore, for the sake of brevity and to avoid 

repeatability, the results with the VISCUNsand model will not be presented here. 

6.3.2 Drained/undrained triaxial compression tests on loose, Hostun sand 
Following, drained and undrained loading has been simulated under axisymmetric conditions. The 

element is considered fully saturated and at first a confining pressure of 300 kPa is applied. Drainage 

is allowed to simulate the consolidation stage and then shearing is applied in the next stage by 

increasing the vertical net stress.  

The hydraulic boundary conditions define the drainage type during shearing; for the drained loading 

seepage is allowed from the boundaries whereas for the undrained conditions the boundaries are 

considered impermeable. The hydraulic boundary conditions for the drained (TXD) and undrained 

(TXU) loading are shown in Figure 6.9a and Figure 6.9b, respectively. 

 The material is a loose Hostun sand and is fully saturated prior to the shearing load (subsequently 

the suction value is zero). The material parameters for the adopted constitutive model are given in 

Table 6.3 and the soil water characteristic curve is showed in Figure 6.8. In Figure 6.10 a comparison 

with the results from Mihalache and Buscarnera (2014) is presented.  

Perfect matching between the implementation results and those from literature is observed. 
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Table 6.3. Parameters adopted for the simulation of TXD and TXU tests. 
Elastic 
parameters 

Yield 
surface 
parameters 

Plastic 
potential 
parameters 

Hardening 
parameters 

Initial state Initial Sr and 
void ratio 

SWCC 
parameters 

α=0.0 αf=0.9906 αg=0.051 rs=1/0.0074 p0=300 kPa Sr0=1.0 Sres=0.05 

k=0.0046 mf=1.146 mg=0.98 ξs=0.0 q0=0 kPa e0=0.945 Ssat=0.98 

G0=14MPa  Mcf=0.52 Mcg=1.28 rsw=5.45 ps0=300 kPa  gn=1.29 

pr=1 kPa Mef=0.442 Meg=1.0    ga=4.3 

      gl=-0.225 
 

 
Figure 6.8: SWCC adopted for the TXU and TXD tests. 

 
 

 
(a)                                                                                    (b) 

Figure 6.9: Boundary conditions as used in the single element tests in case of (a) drained conditions 
and (b) undrained conditions. 
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(a)                                                                          (b) 

Figure 6.10: Comparison of the results of drained and undrained triaxial compression tests: (a) 
effective stress paths and (b) evolution of deviatoric stress with axial strain. 

6.3.3 Slope Failure problem 
A slope failure problem is examined to illustrate the effectiveness of the viscoplastic model. The 

geometry of the problem is inspired by a small scale experimental slope of Germer and Braun (2011) 

as presented in Figure 6.11. The VISCUNsand model is used and the calibrated material parameters 

for the adopted constitutive model are given in Table 6.4. The soil water characteristic curve is of van 

Genuchten type, as incorporated in PLAXIS (with PlaxFlow). 

 
(a) 

 
(b) 

Figure 6.11: Geometry and boundary conditions as used in the slope failure problem (a) mechanical 
boundary conditions (b) hydraulic boundary conditions. 
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Table 6.4: Parameters adopted for the simulation of the slope failure problem. 
Elastic 
parameters 

Yield 
surface 
parameters 

Plastic 
potential 
parameters 

Hardening 
parameters 

Initial state Initial Sr and 
void ratio 

SWCC 
parameters 

α=0.0 αf=0.99 αg=0.51 rs=1/0.007 p0=10 kPa Sr0=1.0 Sres=0.05 

k=0.002 mf=1.14 mg=0.98 ξs=0.0 q0=0 kPa e0=1.90 Ssat=0.98 

G0=15MPa  Mcf=0.52 Mcg=1.28 rsw=5.45 ps0=100 kPa  gn=1.8 

pr=1 kPa Mef=0.44 Meg=1.00    ga=8.0 

      gl=-0.444 
 

In Figure 6.11a, the mechanical boundary conditions are presented. The bottom side of the slope is 

restrained for vertical and horizontal displacement whereas the vertical sides are restrained for the 

horizontal displacement. An increasing load is imposed at the top of the slope. The hydraulic 

boundary conditions are presented in Figure 6.11b. A constant suction is applied by appropriate 

prescribed head conditions. The vertical boundaries are considered closed to obtain the desired 

suction level. The mesh consists of six node triangular elements with three Gauss integration points. 

6.3.3.1 Effect of viscosity on the failure mechanism 
The slope is loaded by increasing the vertical load on the edge. The failure mechanism is examined 

for three values of viscosity η equal to 20e3, 40e3 and 80e3 s. A constant suction of 20 kPa is applied, 

resulting in a water degree of saturation of approximately 73%. By the time of the formation of the 

failure mechanism, the outer edge of the slope moves as one body on the failure zone, as depicted in 

Figure 6.12. Obviously, the points closer to the imposed load shows greater deformation, as expected, 

but the failure mode is transmitted along the height of the slope. 

 
Figure 6.12: Characteristic deformation of the slope mesh for the vertical load (η=20e3 s). 

 
In Figure 6.13 the response of the slope for viscosity η=40e3 s is presented. In Figure 6.13a the total 

shear strain evolution is concentrated in a slipping zone and in addition a failure zone develops 

starting by the end of the loading close to the edge of the slope. This response is expected due to the 

lower mean pressure in this area and the concentrated stress because of the inclined edge. The 
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equivalent viscoplastic strain of Figure 6.13b follows the same mode of response as the shear strain 

and it is concentrated in the slipping zone. 

 
(a) 

 
(b) 

Figure 6.13: (a) Total shear strain, γ, and (b) equivalent viscoplastic strain for η=40e3 s. 
 

In the following Figure 6.14 the response at the same time interval is presented for the three values 

of viscosity used. It is evident that for increasing viscosity (Figure 6.14a to Figure 6.14c) at the same 

time step, the concentration of the shear deformations is delayed. This owes to the effect of viscosity 

on the yield surface. For a later time step though, the formation of the shear band is complete also for 

higher viscosity, as occurs by comparing Figure 6.14b with Figure 6.13a.  In Figure 6.13a the solution 

is presented in a later time step, at which the shear band is more properly formed for the same 

viscosity as in Figure 6.14b.  
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(a) 

 
(b) 

 
(c) 

Figure 6.14: Total shear strain for (a) η=20e3 s, (b) η=40e3 s and (c) η=80e3 s at t=28s. 
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6.3.3.2 Effect of degree of saturation 
The effect of degree of saturation on the response of the slope, from the scope of displacement 

concentration, is examined. A variation of the degree of saturation and consequently of the capillary 

pressure with the height of the slope is applied, by modifying the head parameter in PLAXIS. The 

degree of saturation on the free surface of the slope is considered 100%, simulating a rain event. The 

mechanical and hydraulic conditions are the same as presented in Figure 6.11 and a maximum 

capillary pressure of 20 kPa is applied at the bottom of the slope. At the top surface nil capillary 

occurs due to the material being fully saturated. 

 
(a) 

 
(b) 

Figure 6.15: (a) Suction and (b) Degree of Saturation varying with depth. 
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(a) 

  
(b) 

Figure 6.16: Total shear deformation for (a) varying degree of saturation with depth and (b) constant 
degree of saturation at the time of the same maximum shear strain value for η=40e3 s. 

 

In Figure 6.16 the response of the slope in terms of total shear strain is presented for viscosity equal 

to 40e3 s. The influence of the degree of saturation is illustrated by comparing the case of the slope 

with varying degree of saturation from 73% to 100% with height (Figure 6.16a) and the case of the 

partially saturated slope with constant suction 20 kPa and degree of saturation 73% throughout the 

domain (Figure 6.16b). The results are given at the time of the same maximum shear strain. It 

becomes apparent that the increase of the degree of saturation leads to a more immediate development 

of shear strain concentration in the failure slipping zone and the expected failure mode appears more 

pronounced and complete. This is expected due to the hydraulic debonding effect; increasing water 

content the capillary forces acting between the soils particles decrease and as a consequence the soil 

loses its strength.  
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6.4 Concluding Remarks 
In this Chapter the implementation of the UNsand and VISCUNsand constitutive models for 

unsaturated soils in the PLAXIS – PlaxFlow commercial FEM code is discussed. A brief description 

of the procedure is given and the validation is presented through a set of experimental tests. The 

validation shows in general a perfect agreement with the data from the literature. The capabilities of 

the model are illustrated through a small scale slope problem and the effect of viscosity and degree of 

saturation is discussed. Increase of the viscosity value leads to a delay on the development of the 

concentration of the deformations in the slipping zone failure mode, whereas the increase of degree of 

saturation has the opposite effect. 

This work was complete in Baugrund Dresden during the last year of the thesis. It is aimed in 

linking academia with industry and it gives the opportunity to the engineers of practice to use more 

advanced and sophisticated models for unsaturated soil problems. 
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 Chapter 7: Summary, Conclusions and Future Aspects 

7.1 Summary and Conclusions 
This dissertation concerns the topic of the numerical modelling of strain localization in variably 

saturated porous geomaterials. Shear localization is soils is a common failure mechanism e.g. in 

landslides, originated either by an increase in stress or by a decrease in suction due to water 

infiltration. In the framework of the standard finite element method, the occurrence of strain 

localization raises the problem of the objectivity of numerical solution and regularization techniques 

are necessary to mitigate the mesh dependence effects arising from this bifurcation mode.  

In the present work, the localization phenomena in granular materials have been studied adopting 

regularization techniques taking into account fully coupled hydro-mechanical behaviour and using 

also developed advanced constitutive models for unsaturated sands. In particular, the novelty of this 

thesis followed three main directions; an extensive study of local viscoplastic regularization in 

multiphase porous media with application also in dynamics, the study of non-local viscoplastic 

regularization in multiphase porous media and the investigation of a new advanced viscoplastic model 

for unsaturated sands, further enhanced to account for density-dependency. The final result is a finite 

element tool capable of simulating the initiation and propagation of strain localization on a realistic 

base. 

This research work is summarized in the following fundamental components, all equally critical for 

an exhaustive understanding of the topic: 

• Viscoplasticity and non-local theories have been adopted as regularization techniques to 

effectively study the localized failure mechanism, assuming the soil as a multiphase porous 

continuum. Viscoplasticity has been confirmed to be an excellent approach for avoiding 

mesh-dependency issues, since a material internal length is naturally introduced as a 

consequence of the rate-sensitiveness. However, this beneficial effect tends to vanish when 

weakly viscous materials are considered, as for example, in case of dense sands. This 

difficulty is overcome with the non-local integral approach and the novelty of this 

formulation stemmed by its application in the context of multiphase porous media (Lazari et 

al. (2015)). Two types of viscoplastic models have been analytically formulated and 

implemented in Comes-geo finite element code; the Perzyna and the Duvaut-Lions. The 

former has been extended with respect to the non-local integral approach. For all the three 

models the generalized effective stress has been limited by the Drucker-Prager yield 

criterion with linear isotropic hardening/softening and non-associated flow rule. The non-

local method has been formulated in a way convenient for extension to more sophisticated 

yield criteria. 
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• Two types of failure problems in soils have been simulated to validate and verify the 

developed numerical algorithms and procedures; an experimental plane-strain compression 

test of globally undrained initially water saturated sand and a benchmark slope failure 

problem. These cases helped in figuring out the merits and drawbacks of each model as well 

as the influential parameters for the evolution of strain localization. Viscosity, loading 

velocity, drainage conditions, suction, permeability and internal lengths interaction have 

been shown to play a significant role on the formation and development of the localization 

pattern. Mesh insensitive and objective results have been obtained with the width of the 

shear bands governed by the viscosity parameter and the internal length variable, which can 

be directly estimated by experimental tests. It is also shown that loading velocity and soil 

permeability affect the value of viscosity which preserves regularization and that a different 

viscosity value seems to be needed when drainage conditions change, confirming that the 

fluid-soil interaction affects the formation and evolution of shear banding. A new finding, 

that extends the theoretical studies on the topic, is that in quasi-static process, permeability 

interacts with viscoplasticity activating an internal length when the regularizing influence of 

rate-dependency is high.  The application of the non-local formulation illustrated that the 

internal length defined in this approach overrides the influence of the viscoplastic internal 

length for small values of viscosity whereas the opposite trend is observed for high values 

of viscosity. Moreover, it is shown that the use of non-local approach is pivotal when the 

soil viscosity is not sufficient for regularizing the numerical solution.   

• A new and advanced viscoplastic model for unsaturated soils has been developed. The 

model constitutes an extension to viscoplasticity of the elastoplastic model for unsaturated 

soils recently published by Buscarnera and Nova. Moreover, to model the pycnotropy 

behaviour of granular materials, a dependence of the constitutive parameters on the relative 

density was further proposed and incorporated into the viscoplastic formulation. Due to the 

complexity of the model, first the elastoplastic model was implemented in the Comes-geo 

code and validated through single-element analyses. The validation showed a perfect 

agreement with the data from the literature.  

Then, the viscoplastic model was formulated and implemented in the code Comes-geo. Its 

validation was done with experimental tests with variably saturated conditions that enable 

the most relevant features (i.e. wetting induced collapse) of partially saturated soil 

behaviour to be reproduced. Then, a series of standard triaxial and plane-strain tests on sand 

at different densities were conducted to validate the density-dependence of the model using 

only one set of material parameters. The results showed the capability of the new model to 

reproduce with a satisfactory accuracy the drained and undrained behaviour of Hostun sand 

over a wide range of density and confining pressures. An interesting outcome concerned the 

influence of the definition of the viscous nucleus on the description of the material’s 
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mechanical response, suggested further investigation. On the one hand, using a linear 

viscous nucleus a common value of viscosity was used for both drained and undrained 

conditions which however was not the one from the calibration. On the other hand, when 

applying an exponential viscous nucleus, the calibrated viscosity value was sufficient to 

reproduce the drained behaviour, whereas for the undrained behaviour a different value was 

required. As a further step, a localization failure problem was studied with the viscoplastic 

model, showing the ability of the model to describe well both the initiation and propagation 

of strain localization.  

• Finally, the last contribution of this thesis concerned the implementation and validation of 

the elastoplastic and the viscoplastic constitutive models for unsaturated soils in the 

commercial FEM code PLAXIS - PlaxFlow. In the validation process the simulated results 

were in consistent with the data from the literature. After the validation, the capabilities of 

the viscoplastic model were illustrated through a small scale slope problem and the effect of 

viscosity and degree of saturation on slope’s stability was discussed. It was shown that an 

increase of the viscosity value causes a delay on the development of the concentration of the 

deformations in the slipping failure zone. On the other hand, the increase of degree of 

saturation leads to the opposite behaviour, because the soil loses its strength due to the 

hydraulic debonding effect.  

In conclusion, theoretical and numerical issues have been addressed in this thesis, with the aim of 

highlighting some of the factors affecting strain localization phenomena in granular porous material. 

As has been discussed throughout the dissertation, the description of localization processes is still a 

major issue in soil mechanics with a particular application to slope stability. In this work shear 

banding has been studied from the regularization perspective, developed fully coupled hydro-

mechanical analyses, based on a physically and well accepted constitutive framework. It has been 

shown that the choice of the viscosity value is not trivial either when adopted for regularization 

reasons or for description of the mechanical soil behaviour and a special concern should be taken. 

7.2 Future Aspects 
The presented findings can serve as a base for future studies and the finite element tool developed is 

now ready to be applied to study landslides. In particular, further research should be carried on the 

following topics: 

• The formulation of the viscous nucleus should allow for a consistent approximation of the 

solution and the experimental data, for a wide range of material densities, drainage and 

loading conditions. The examined viscous nuclei possess the drawback of requiring a 

different value of viscosity from the calibrated one, depending on the material density and 

mainly the drainage conditions. Further research should be carried towards the formation of 

an appropriate viscous nucleus for porous/soil materials. 
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• A more consistent experimental investigation program should provide appropriate viscosity 

values for different soil densities. 

• In the current approach an explicit integration scheme was adopted for both the elastoplastic 

and viscoplastic models for unsaturated soils. For future research, an unconditional stable 

implicit integration scheme could be examined. Moreover, the models could be enhanced to 

take into account thermal coupling and chemical reaction of the solid and liquid phases. 
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Appendix A 

Derivative of S with respect to σ'  

The invariant, S, is introduced, defined as (Dafalias and Herrmann (1986)): 

( ) { }
1

133 3
3

1S tr J
3

 = = 
 

s  

Thus, for the calculation of the derivative of the third invariant of deviator stress, J3, with respect to 

the effective stress σ'ij, the following procedure is applied (for simplicity the components of the 

generalized effective stress will be referred to without using tonal notation): 

- Stress 2nd order tensor in 3D: 

11 12 13

ij 21 22 23

31 32 33

σ σ σ 
 σ = σ σ σ 
 σ σ σ 

 

- The first invariant is expressed as: 

1 11 22 33I = σ + σ + σ  

- The second invariant is expressed as: 

2 11 22 22 33 33 11 12 12 13 13 23 23I = σ σ + σ σ + σ σ − σ σ − σ σ − σ σ  

- The third invariant is expressed as: 

13 22 31 12 23 31 13 21 32 11 23 32 12 21 33 11 223 33Det( )ijI = σ = σ σ σ σ σ σ σ σ σ σ− + + − σ σ σ− σ+σ σ σ σ  

- The first invariant of deviator stress is expressed as: 

1 0J =  

- The second invariant of deviator stress is expressed as: 

2
2

2 23
IJ I= −  

- The mean pressure is expressed as: 

11 22 33p ( ) / 3= σ + σ + σ  

- The Kronecker delta is expressed as: 

ij

1 0 0
0 1 0
0 0 1

δ
 
 =  
 
 
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- The deviator stress tensor is expressed as: 

s pij ij ijδ= σ +  

- The third invariant of deviator stress tensor is expressed as: 

3 3
3 11 22 13 22 31 13 21 32 22 23 32

2 2 3 2
12 23 31 21 22 33 22 13 31 23 32 33 22 33 33 11 22 33

2 2
11 12 21 22 13 31 23 32 22 33 33

1Det(s ) (2 2 18 27 9
27

9 (3 ( 2 )) 3( 3 3 ) 3 2 3 ( )

3 (3 3 6 4 ))

ijJ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

= = + − + + +

+ − − − −

σ σ

− + − + +

− + − + −

 

Finally, the derivative of the third deviator stress invariant to σij is obtained as: 

22 2
3 13 31 23 32 11 33 22 33 3311 12 21 11 22 22

11

22 2
3 13 31 23 32 11 33 22 33 3311 12 21 11 22 22

22

2 2
3 1311 12 21 11 22 22

33

2 2 42 2
9 3 9 9 3 3 9 9 9

2 4 22 2
9 3 9 9 3 3 9 9 9

2 4
9 3 9 9

J

J

J

∂
= + − − + − − + −

∂

∂
= − + −

σ σ σ σ σ σ σ σ σσ σ σ σ σ σ
σ

σ σ σ σ σ σ σ σ σσ σ σ σ σ σ
σ

+ − + + − −
∂

∂
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∂
σ σσ σ σ σ σ σ

σ

2
31 23 32 11 33 22 33 33
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23 31
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∂
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∂
σ

σ σ
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∂

∂
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∂
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Appendix B 

Triaxial tests at varying suction and net confinement pressure with VISCUNsand 

model. 

The triaxial shear tests with different suction levels and net confinement pressures have been 

investigated with the VISCUNsand model. For brevity, the results were not presented in Section 5.5. 

However, for the sake of completeness of model’s validation at different hydraulic conditions, the 

simulation results are summarized below.  

The material parameters are as in Table 5.2 and the set of the analyses performed are listed in Table 

5.3. To be able to compare the viscoplastic results with the elastoplastic, published in Buscarnera and 

Nova (2009), suitable viscosity parameters were adopted.  

It is noted that the elasto-viscoplastic response tends to the elasto-plastic limit at vanishing rate-

sensitiveness. Thus, the viscosity parameters used for the simulations are γ=0.1 s-1 and α=1.0.  

The results illustrate the coincidence of the viscoplastic model with the results by Buscarnera and 

Nova. 

  
(a) (b) 

VISCUNsand validation: Comparison of the results of a triaxial test under saturated (s=0 kPa) and 
unsaturated (s=50 kPa) conditions: (a) deviatoric stress and (b) volumetric strain versus deviatoric 

strain. 
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(a) 

 
(b) 

VISCUNsand validation - Comparison of the results for the six simulations with varying suction and 
net confinement pressure: (a) deviatoric stress and (b) volumetric strain versus deviatoric strain. 
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Nomenclature 

Conventions 
In this thesis direct notation is adopted: Boldface letters will denote vector or 2nd order tensors, 

boldface capital letters will denote 4th order tensors and lightface (and/or italic) letters will be used for 

scalar quantities.  

 

• Mathematical notations – Operations: 

tra  Trace of a 

deta   Determinant of a 

deva               Deviatoric part of a 
Ta    Transpose of a 

a-1   Inverse of a  

a     Euclidian norm of a;  :=a a a for second-order tensor, 

                         while 2=a a  for vectors 

⊗a b     Dyadic (or tensor) product of a  and b 

a : b    Double dot product (or double contraction) between a and b, (a : b=aijbij) 

  

• Some important derivative rules for second order tensor a are: 

∂
=

∂
a a
a a

, 

-1 T(tr ) ( )
k

kk∂
=

∂
a a
a

, 

(tr )∂
=

∂
a

a
1  

 

• Stress 2nd order tensor in 3D: 

11 12 13

ij 21 22 23

31 32 33

σ σ σ 
 σ = σ σ σ 
 σ σ σ 

 

and  in vector form: 
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11

22

33

12

13

23

σ 
 σ 
 σ

=  
σ 

 σ  σ 

σ  

1         vertical (axial, in-plane) 

2          horizontal (axial, out of plane) 

3          horizontal (axial, in-plane) 

 

• Strain 2nd order tensor in 3D: 

11 12 13

ij 21 22 23

31 32 33

ε ε ε 
 ε = ε ε ε 
 ε ε ε 

 

and in vector form: 

11

22

33

12

13

23

ε 
 ε 
 ε

=  
ε 

 ε  ε 

ε  

1         vertical (axial, in-plane) 

2          horizontal (axial, out of plane) 

3          horizontal (axial, in-plane) 

Deviatoric part of ε: 1 tr( )
3

= ε − εe 1    

v
11 12 13

v
ij 21 22 23

v
31 32 33

3

e
3

3

 ε ε − ε ε
 
 ε

= ε ε − ε 
 
 ε

ε ε ε −  
 

 

and the volumetric strain: 

v 11 22 33ε = ε + ε + ε  

Rewrite deviatoric strains in vector form: 

11 v

22 v

33 v

12

13

23

/ 3
/ 3
/ 3

ε − ε 
 ε − ε 
 ε − ε

=  
ε 

 ε  ε 

e  
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• 2nd order identity tensor (1) and dyadic product: 

1
1
1
0
0
0

1

 
 
 
 

=  
 
 
  
 

,  ( )

1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0

1 1 1 0 0 0
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00

1 1

   
   
   
   

⊗ = ⊗ =   
   
   
     

  

 

 

• 4nd order identity tensor: 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1/ 2 0 0
0 0 0 0 1/ 2 0
0 0 0 0 0 1/ 2

Ι

 
 
 
 

=  
 
 
  
   

• 4th order deviatoric tensor:  1
3devΙ Ι 1 1= − ⊗  

2 / 3 1 / 3 1 / 3 0 0 0
1/ 3 2 / 3 1 / 3 0 0 0
1/ 3 1 / 3 2 / 3 0 0 0
0 0 0 1/ 2 0 0
0 0 0 0 1/ 2 0
0 0 0 0 0 1/ 2

− − 
 − − 
 − −

=  
 
 
  
 

devΙ  

Symbols 

Dga
g  : effective diffusivity tensor of dry air in water vapour [m2s-1]; 

Dgw
g  : effective diffusivity tensor of water vapour in dry air [m2s-1]; 

k  : intrinsic permeability tensor [m2]; 
rk π  : relative permeability of  π-phase (π = ga, gw); 

  vapm  :  rate of mass due to phase change [kgm-3 s-1] 

  aM  : molar mass of dry air [kg2 kmol-1]; 

  wM  : molar mass of water [kg2 kmol-1]; 

  gM  : molar mass of gas [kg2 kmol-1]; 

RH  : relative humidity; 
cp  : capillary pressure [Pa]; 
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gp  : gas pressure [Pa]; 

wp  : liquid water pressure [Pa]; 

gap  : dry air partial pressure [Pa]; 

gwp  : water vapour partial pressure [Pa]; 

gwsp  : saturated water vapour partial pressure [Pa]; 

q  : stress like internal variable [Pa]; 

R  : gas constant (8314.41Jkmol-1K-1) 

wS  : liquid phase volumetric saturation [-]; 

gS  : gas phase volumetric saturation [-]; 

n  : total porosity [-]; 

t  : time [s]; 

T  : absolute temperature [K]; 

crT  : critical temperature of water [K]; 

u   : displacement vector of solid matrix [m] 
sπv  : relative velocity of  π-phase (π = g, w) with respect to solid phase [ms-1]; 

gw
gv   : diffusion velocity of water vapour in dry air [ms-1] 

ga
gv  : diffusion velocity of dry air in water vapour [ms-1] 

w
pC  : specific heat of liquid phase [Jkg-1K-1]; 

g
pC  : specific heat of gas mixture [Jkg-1K-1]; 

s
pC  : specific heat of solid phase [Jkg-1K-1]; 

pC  : effective specific heat of porous medium [Jkg-1K-1]; 

wK  : Bulk modulus of the water [Pa]; 

sK  : Bulk modulus of the solid [Pa]; 

gK  : Bulk modulus of the gas [Pa]; 

g  : gravity acceleration [m/s2]; 

( )p eff
Cρ : effective thermal capacity of porous medium [JL-3K-1]; 

Ds              : symmetric part of the stiffness matrix; 

sp           : preconsolidation pressure [Pa]; 

k̂            : slope of the swelling line in the lnυ-lnp' plane [-];  
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swr          : hydraulic hardening parameter [-]; 

rp           : reference pressure [Pa]; 

Bp               : logarithmic volumetric compliance under isotropic loading [-]; 

G            : shear modulus [Pa] 

Greek Symbols 

ca   : convective heat exchange coefficient [Wm-2K-1]; 

sβ  : cubic thermal expansion coefficient of solid [K-1]; 

wβ  : cubic thermal expansion coefficient of water [K-1]; 

swβ  : combine ( solid + liquid) cubic thermal expansion coefficient  [K-1]; 

cβ   : convective mass exchange coefficient [ms-1]; 

swgβ   : combine (solid + liquid + gas) cubic thermal expansion coefficient [K-1]; 

effχ  : effective thermal conductivity of the porous medium [Wm-1K-1]; 

vapH∆  : enthalpy of vaporization per unit mass [Jkg-1]; 

t∆  : time step [s]; 

γ           : fluidity parameter [s-1] 
eε   : elastic strain tensor [-]; 
gwρ  : mass concentration of water vapour in gas phase [ kgm-3]; 

gaρ  : mass concentration of dry air in gas phase [ kgm-3]; 

ρ  : apparent density of porous medium [ kgm-3]; 

gρ  : gas phase density[ kgm-3]; 

wρ  : liquid phase density[ kgm-3]; 

sρ  : solid phase density[ kgm-3]; 

πµ  : dynamic viscosity of the constituent of  𝜋𝜋-phase (𝜋𝜋 = g, w) [Pa.s]; 

λ   : consistency parameter [-]; 

σ   : Cauchy stress tensor [Pa]; 

'σ  : effective stress tensor [Pa]; 

οσ   : Stefan-Boltzmann constant [5.670 · 10-8Wm-2K-4]; 

ξ   : equivalent visco-plastic strain [-]; 

cψ   : water potential [Jkg-1]; 
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η           : soil viscosity [s]; 

sξ          : dilatancy at failure [-] 

 

Acronyms 
 

CSL  : Critical State Line 

SWCC : Soil Water Characteristic Curve 

FEM : Finite Element Method 

REV : Representative Elementary Volume 

HMT : Hybrid Mixture Theory 

VISCUNsand : Viscoplastic model for Unsaturated soils 

UNsand : Elastoplastic model for Unsaturated soils 

TXU : Triaxial Undrained Compression test 

TXD  : Triaxial Drained Compression test 

PSU : Plane-Strain Undrained Compression test 

PSD : Plane-Strain Drained Compression test 

TCAT : Thermodynamically Constrained Averaging Theory 

 



 

205 

List of Figures 

Figure 1.1: Strain Localization: experimental evidence [12] and real massive landslide obstructing 
highway in Taiwan. ................................................................................................................................. 3 

Figure 1.2: Stress-strain response of dense Hostun sand (test shf06) and stereophotogrammetry-based 
incremental fields of shear strain (top row) and volumetric strain (bottom row) [40]. ........................... 4 

Figure 2.1: Typical averaging volume dv of porous medium consisting of three constituents [93]. .... 16 

Figure 2.2: Averaged value of ζ versus size of the average volume dv [93]. ........................................ 16 

Figure 2.3: Soil composition. ................................................................................................................ 20 

Figure 2.4: Capillary rise in a small tube. ............................................................................................. 27 

Figure 2.5: SWCC for dense Hostun sand: Experimental results from Lins (2009) and fitted results 
using Safai and Pinder (1979) model. ................................................................................................... 28 

Figure 2.6: Relative hydraulic conductivity curves for sand using Brooks and Corey (1966) relations.
 .............................................................................................................................................................. 30 

Figure 2.7: Comes-geo flowchart with the main subroutines. .............................................................. 45 

Figure 3.1: The concept of overstress viscoplastic model (from [94]). ................................................ 50 

Figure 3.2: Different types of material behaviour: hardening, perfectly plastic and softening behaviour 
(post bifurcation response). ................................................................................................................... 51 

Figure 3.3: Drucker-Prager yield surface. ............................................................................................. 51 

Figure 3.4: Rheological model for one-dimensional viscoplastic solid [140]. ..................................... 52 

Figure 3.5: Relaxation test: stress response with varying relaxation time. ........................................... 53 

Figure 3.6: Theoretical material’s strain response obtained by introducing different values of γ [45]. 55 

Figure 3.7: 1-D example of the (a) weight function and (b) representative volume adopted in Ammann 
(2005) varying the internal length l. ...................................................................................................... 67 

Figure 3.8: The weight function over the representative volume as a function of x, for constant 
l=0.04m and varying ξ. ......................................................................................................................... 68 

Figure 3.9: Comparison between the weight functions used by (a) Jirásek (2002) and Lu et al. (2012) 
and (b) Ammann (2005) and Rolshoven and Jirásek (2003). Parameters l and R are set to 0.02m for 
fixed position x=0.1m. .......................................................................................................................... 68 

Figure 3.10: Area where the average is calculated. Gauss point P is the point under consideration 
where the non-local variable is calculated. ........................................................................................... 70 



Finite Element Regularization for Post Localized Bifurcation in Variably Saturated Media 

206 

Figure 3.11: 1-D example of Gaussian weighting function for different values of the internal length 
scale l (l=0.02, 0.04 and 0.08m).  The influence of the weighting function increases with increasing 
values of the internal length scale. ........................................................................................................ 72 

Figure 3.12: Flowchart of the non-local implementation in Comes-geo code. ..................................... 73 

Figure 4.1: Description of the geometry, boundary and loading conditions. ........................................ 78 

Figure 4.2: Equivalent plastic strain (a) profiles and contours for (b) course (5 × 17) and (c) 
intermediate mesh (10 × 34) at t = 27 s and (d) fine mesh (20 × 68) at t=9s. ....................................... 80 

Figure 4.3: Equivalent inelastic strain profile for elastoplastic model and elasto-viscoplastic model in 
case of nil viscosity, for the intermediate mesh (10 × 34). ................................................................... 81 

Figure 4.4: Creep test: (a) Axial load-time history and (b) effective stress path; material strain-time 
response: comparison between the experimental and the numerical results in (c) linear scale and (d) 
semi-logarithmic scale. ......................................................................................................................... 81 

Figure 4.5: Equivalent viscoplastic strain profiles (a) and contours for (b) coarse mesh (5 × 17), (c) 
intermediate mesh (10 × 34) and (d) fine mesh (20 × 68), in case viscosity η=30 s. ........................... 82 

Figure 4.6: Equivalent viscoplastic strain contours varying viscosity (a) η=0 s, (b) η=5 s, (c) η=10 s, 
(d) η=20 s, (e) η=50 s and (f) η=100 s, for the intermediate mesh (10 × 34). ...................................... 83 

Figure 4.7: Distribution of the equivalent viscoplastic strains in the vertical centre section of the 
specimen for three meshes and loading velocity v=0.2 mm/s for viscosity (a) η=30 s and (b) η=110 s.
 .............................................................................................................................................................. 84 

Figure 4.8: Equivalent viscoplastic strain contours in case v=0.2 mm/s and viscosity η=110 s for (a) 
coarse mesh (5 × 17), (b) intermediate mesh (10 × 34) and (c) fine mesh (20 × 68), respectively. ..... 84 

Figure 4.9: Profiles for volumetric strain (top) and capillary pressure (bottom) computed with v=1.2 
mm/s and η=30 s (a), (b) and computed with v=0.2 mm/s and η=110 s (c) and (d), respectively. ....... 85 

Figure 4.10: Contours for the (a) equivalent viscoplastic strain and (b) capillary pressure, for the fine 
mesh (20 × 68), viscosity η=30 s and permeability k=10-3 m/s............................................................. 86 

Figure 4.11: Contours for the (a) equivalent viscoplastic strain and (b) capillary pressure, for the fine 
mesh (20 × 68), viscosity η=10 s and permeability k= 10-3 m/s. .......................................................... 87 

Figure 4.12: Profiles of (a) equivalent viscoplastic strain and (b) capillary pressure in the vertical 
centre section of the specimen, for permeability k = 10-3 m/s and varying viscosity for (20 × 68) mesh.
 .............................................................................................................................................................. 87 

Figure 4.13: Dynamic loading: Profiles of equivalent viscoplastic strain for (a) η=20 s and (b) η=30 s 
in the horizontal section (y=0.1 m) of the specimen, for the three meshes. .......................................... 89 

Figure 4.14: Dynamic loading: Profiles of equivalent viscoplastic strain for (a) η=20 s and (b) η=30 s 
in the vertical centre section of the specimen, for the three meshes. .................................................... 89 

Figure 4.15: Dynamic loading: (a), (b), (c) volumetric strain and (d), (e), (f) capillary pressure 
contours in case viscosity is η=30 s for the three meshes, respectively. ............................................... 90 



List of Figures 

207 
 

Figure 4.16: Comparison between dynamic and quasi-static solution inside the shear band for (a) 
equivalent viscoplastic strain, (b) capillary pressure and (c) liquid water saturation for (10 × 34) mesh.
 .............................................................................................................................................................. 91 

Figure 4.17: Drained conditions: Equivalent viscoplastic strain contours for viscosity (a) η=0.5 s, (b) 
η=1 s and (c) η=5 s, for the (10 × 34) mesh. ......................................................................................... 92 

Figure 4.18: Contours for numerical validation of Duvaut–Lions model (a) elastic solution and 
viscoplastic solution with (b) Δt/τ = 2 · 10-7, (c) Δt/τ = 0.033 and (d) Δt/τ = 1000 and (e) elastoplastic 
solution for the intermediate (10 × 34) mesh. ....................................................................................... 93 

Figure 4.19: Profiles varying Δt/τ for (a) equivalent viscoplastic strain and (b) water degree of 
saturation. .............................................................................................................................................. 93 

Figure 4.20: Profiles at Δt/τ = 0.033 for (a) equivalent viscoplastic strain, (b) capillary pressure and 
(c) water degree of saturation for three meshes. ................................................................................... 94 

Figure 4.21: Non-local approach: distribution of equivalent viscoplastic strain, varying the internal 
length l for constant viscosity, η=10 s (10 × 34 mesh). ........................................................................ 95 

Figure 4.22: Non-local approach: equivalent viscoplastic strain contours, changing the internal length 
l, keeping constant η=10 s for (a) 10 × 34 mesh, (b) 20 × 68 mesh and (c) 40 × 136 mesh. Comparison 
with corresponding local solution. ........................................................................................................ 96 

Figure 4.23: Non-local approach: time evolution of equivalent viscoplastic strain in the midpoint of 
shear band (coordinates: 0.05, 0.1) for (a) l=7.5 mm, (b) l=10 mm and (c) l=20 mm. ......................... 97 

Figure 4.24: Non-local approach: (a) volumetric strain versus normalized vertical displacement, time 
evolution of (b) capillary pressure, (c) water degree of saturation and (d) vapour pressure, for points A 
(inside the shear band) and B (outside the shear band), for 20 × 68 and 40 × 136 meshes (l=7.5 mm 
and η=10 s). .......................................................................................................................................... 98 

Figure 4.25: Non-local approach: capillary pressure contours for (a) 10 × 34 mesh, (b) 20 × 68 and (c) 
40 × 136 mesh for l=7.5 mm and η=10 s. ............................................................................................. 99 

Figure 4.26: Non-local approach: liquid water saturation contours for (a) 10 × 34 mesh and (b) 20 × 
68 mesh for l=7.5 mm and η=10 s. ....................................................................................................... 99 

Figure 4.27: Non-local approach: equivalent viscoplastic strain in the horizontal section (y = 0.1 m) 
for varying (a), (b), (c) viscosity and (d), (e), (f) internal length (20 × 68 mesh). .............................. 100 

Figure 4.28: Slope stability problem. Geometry and boundary conditions. ....................................... 102 

Figure 4.29: Equivalent visco-plastic strain contours as calculated using the elastoplastic, the local 
elasto-viscoplastic and the non-local elasto-viscoplastic model for a mesh consisting of 400 elements 
(a), (b) and (c) and for a mesh consisting of 1600 elements (d), (e) and (f), respectively. ................. 103 

Figure 4.30: Force-displacement plots for the (a) elastoplastic model, (b) local elasto-viscoplastic 
model and (c) non-local elasto-viscoplastic model, for the two meshes. ............................................ 104 

Figure 4.31: Non-local Perzyna model: (a) equivalent visco-plastic strain on the deformed mesh, (b) 
capillary pressure and (c) water degree of saturation for coarser (400 elements) and a finer (1600 
elements) mesh. ................................................................................................................................... 105 



Finite Element Regularization for Post Localized Bifurcation in Variably Saturated Media 

208 

Figure 4.32: Force-displacement plot for the non-local elasto-viscoplastic model, for the two meshes.
 ............................................................................................................................................................ 106 

Figure 5.1: 3D visualization of the yield surface in the principal stress space [109]. ......................... 115 

Figure 5.2: Yield surface in saturated and unsaturated conditions depicted in the (a) skeleton stress 
space and (b) net stress space [25]. ..................................................................................................... 116 

Figure 5.3: Contraction of yield surfaces upon wetting in the (a) skeleton stress space and (b) net 
stress space [25]. ................................................................................................................................. 116 

Figure 5.4: UNsand validation - Stress path (a) in the skeleton and (b) net stress space for the 
unsaturated material. ........................................................................................................................... 121 

Figure 5.5: UNsand validation - Comparison of the results of a triaxial test under saturated (s=0 kPa) 
and unsaturated (s=50 kPa) conditions: (a) deviatoric stress and (b) volumetric strain versus deviatoric 
strain. ................................................................................................................................................... 121 

Figure 5.6: UNsand validation - Comparison of the results for the six simulations with varying suction 
and net confinement pressure: (a) deviatoric stress and (b) volumetric strain versus deviatoric strain.
 ............................................................................................................................................................ 122 

Figure 5.7: UNsand validation – Path followed in the oedometric test. ............................................. 123 

Figure 5.8: UNsand validation – Results from the oedometer simulation: (a) effective stress path and 
(b) stress path in the net stress space. .................................................................................................. 124 

Figure 5.9: UNsand validation – (a) Yield surface size evolution (data provided by C. Mihalache) . 124 

Figure 5.10: UNsand validation – Void ratio with respect to vertical net stress. ................................ 124 

Figure 5.11: UNsand validation – Comparison of the results of drained and undrained triaxial 
compression tests: (a) effective stress paths and (b) evolution of deviatoric stress with axial strain. 125 

Figure 5.12: UNsand validation – Comparison of the results of drained and undrained plane-strain 
compression tests: (a) effective stress paths and (b) evolution of deviatoric stress with axial strain. 126 

Figure 5.13: UNsand validation – Model simulations of drained triaxial compression tests: evolution 
of deviatoric stress and volumetric strain with axial strain for (a) loose, (b) medium-dense and (c) 
dense Hostun sand. .............................................................................................................................. 127 

Figure 5.14: UNsand validation – Model simulations of undrained triaxial compression tests: effective 
stress paths and evolution of deviatoric stress with axial strain for (a) loose, (b) medium-dense and (c) 
dense Hostun sand. .............................................................................................................................. 128 

Figure 5.15: Geometric interpretation of the Euler integration scheme (Wang et al. (1997)). Explicit 
method is obtained for θ=0 and implicit for θ=1, respectively. .......................................................... 135 

Figure 5.16: VISCUNsand validation – Results from the oedometer simulation: (a) effective stress 
path and (b) stress path in the net stress space. ................................................................................... 135 

Figure 5.17: VISCUNsand validation – Void ratio with respect to vertical net stress. ...................... 136 



List of Figures 

209 
 

Figure 5.18: VISCUNsand validation – Results from the creep test on loose Hostun sand: (a) effective 
stress path and (b) axial load-time history. ......................................................................................... 137 

Figure 5.19: VISCUNsand validation – Results from the creep test on loose Hostun sand: axial strain 
versus time in a (a) semi-logarithmic and (b) linear scale. ................................................................. 137 

Figure 5.20: VISCUNsand validation – Creep test on dense Hostun sand (Pham Van Bang et al. 
(2007)). ............................................................................................................................................... 138 

Figure 5.21: VISCUNsand validation – Results from the creep test on dense Hostun sand: (a) stress-
strain curve and (b) time evolution of axial creep strain for primary loading. ................................... 139 

Figure 5.22: VISCUNsand validation – Loose Hostun sand: (a) drained conditions and (b) undrained 
conditions. ........................................................................................................................................... 142 

Figure 5.23: VISCUNsand validation – Axial strain evolution for the repeated creep test in loose 
Hostun sand varying the viscosity parameter. .................................................................................... 143 

Figure 5.24: VISCUNsand validation –Comparison of four different loading rates for the simulated 
drained behaviour of a loose Hostun sand with γ=4·10-9 s-1. .............................................................. 143 

Figure 5.25: VISCUNsand validation – Medium Hostun sand: (a) drained conditions and (b) 
undrained conditions. .......................................................................................................................... 144 

Figure 5.26: VISCUNsand validation – Dense Hostun sand: (a) drained conditions and (b) undrained 
conditions. ........................................................................................................................................... 145 

Figure 5.27: VISCUNsand validation – Exponential viscous nucleus: Indicative comparison between 
the linear and non-linear function for the effect of Dr. ....................................................................... 146 

Figure 5.28: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on loose (e0=0.945) Hostun sand. ............................................................................................... 147 

Figure 5.29: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on loose (e0=0.897) Hostun sand. ............................................................................................... 147 

Figure 5.30: VISCUNsand validation – Exponential viscous nucleus: Effects of the mean stress on 
drained triaxial compression tests with the same initial loose density. ............................................... 148 

Figure 5.31: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on a medium-dense Hostun sand. ............................................................................................... 149 

Figure 5.32: VISCUNsand validation – Exponential viscous nucleus: Effects of the mean stress on 
drained triaxial compression tests of medium-dense Hostun sand. .................................................... 149 

Figure 5.33: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on a dense (e0=0.574) Hostun sand. ............................................................................................ 150 

Figure 5.34: VISCUNsand validation – Exponential viscous nucleus: Drained triaxial compression 
tests on a dense (e0=0.578) Hostun sand. ............................................................................................ 150 

Figure 5.35: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on loose Hostun sand for p0=200 kPa. ........................................................................................ 151 



Finite Element Regularization for Post Localized Bifurcation in Variably Saturated Media 

210 

Figure 5.36: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on loose Hostun sand for p0=100, 300 and 750 kPa. .................................................................. 151 

Figure 5.37: VISCUNsand validation – Exponential viscous nucleus: Comparison with the undrained 
behaviour of a loose sample and the simulated results using γ=2·10-14 s-1 and a=28.9 (black line) and 
γ=2·10-5 s-1 and a=24.9 (red line). ....................................................................................................... 152 

Figure 5.38: VISCUNsand validation – Exponential viscous nucleus: Plots of f/p' ratio versus axial 
strain for (a) γ=2·10-5 s-1 and a=24.9 and (b) γ=2·10-14 s-1 and a=28.9 and (c) comparison of (a) and 
(b) case. ............................................................................................................................................... 152 

Figure 5.39: VISCUNsand validation – Exponential viscous nucleus: Plots of f/p' ratio versus axial 
strain with viscous parameters γ=2·10-14 s-1 and a=28.9 for (a) d4 and (b) hosfl11, TXD tests. ........ 153 

Figure 5.40: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on medium Hostun sand.............................................................................................................. 154 

Figure 5.41: VISCUNsand validation – Exponential viscous nucleus: (a), (b) Comparison with the 
undrained behaviour of a medium sample and the simulated results using γ=2·10-12 s-1, a=28.9 (black 
line) and γ=2·10-4 s-1, a=6.9 (red line) and (c) f/p' ratio versus axial strain. ....................................... 154 

Figure 5.42: VISCUNsand validation – Exponential viscous nucleus: Undrained triaxial compression 
tests on dense Hostun sand. ................................................................................................................ 155 

Figure 5.43: VISCUNsand validation – Exponential viscous nucleus: (a), (b) Comparison with the 
undrained behaviour of a dense sample and the simulated results using γ=2·10-10 s-1, a=28.9 (black 
line) and γ=4·10-4 s-1, a=1.0 (red line) and (c) f/p' ratio versus axial strain. ....................................... 155 

Figure 5.44: VISCUNsand validation – Results for the undrained plane-strain compression test on 
loose Hostun sand. .............................................................................................................................. 157 

Figure 5.45: Boundary conditions of the triaxial compression test. ................................................... 158 

Figure 5.46: Equivalent viscoplastic strain contour. ........................................................................... 159 

Figure 5.47: Stress-strain response and evolution of equivalent viscoplastic strain with axial strain. 159 

Figure 5.48: Evolution of deviator stress and normalized detDs with axial strain. ............................. 160 

Figure 5.49: Contour of the normalized detDs. ................................................................................... 160 

Figure 6.1: Geometry, finite element mesh and boundary conditions as used in the single element tests 
(a) mechanical boundary conditions (b) hydraulic boundary conditions. ........................................... 167 

Figure 6.2: SWCC adopted for the analysis. ....................................................................................... 167 

Figure 6.3: Stress path (a) in the skeleton and (b) net stress space. .................................................... 168 

Figure 6.4: Comparison of tests results on a saturated specimen (suction=0 kPa) in a triaxial test 
simulation: (a) deviatoric stress versus deviatoric strain and (b) volumetric strain versus deviatoric 
strain. ................................................................................................................................................... 168 



List of Figures 

211 
 

Figure 6.5: Comparison of tests results on an unsaturated specimen (suction=50 kPa) in a triaxial test 
simulation: (a) deviatoric stress versus deviatoric strain and (b) volumetric strain versus deviatoric 
strain. ................................................................................................................................................... 169 

Figure 6.6: Triaxial tests at suction=20 kPa for varying net confinement pressure: (a) deviatoric stress 
versus deviatoric strain and (b) volumetric strain versus deviatoric strain. ........................................ 169 

Figure 6.7: Triaxial tests at suction=50 kPa for varying net confinement pressure: (a) deviatoric stress 
versus deviatoric strain and (b) volumetric strain versus deviatoric strain. ........................................ 170 

Figure 6.8: SWCC adopted for the TXU and TXD tests. ................................................................... 171 

Figure 6.9: Boundary conditions as used in the single element tests in case of (a) drained conditions 
and (b) undrained conditions. ............................................................................................................. 171 

Figure 6.10: Comparison of the results of drained and undrained triaxial compression tests: (a) 
effective stress paths and (b) evolution of deviatoric stress with axial strain. .................................... 172 

Figure 6.11: Geometry and boundary conditions as used in the slope failure problem (a) mechanical 
boundary conditions (b) hydraulic boundary conditions. ................................................................... 172 

Figure 6.12: Characteristic deformation of the slope mesh for the vertical load (η=20e3 s). ............. 173 

Figure 6.13: (a) Total shear strain, γ, and (b) equivalent viscoplastic strain for η=40e3 s. ................ 174 

Figure 6.14: Total shear strain for (a) η=20e3 s, (b) η=40e3 s and (c) η=80e3 s at t=28s. ................. 175 

Figure 6.15: (a) Suction and (b) Degree of Saturation varying with depth. ........................................ 176 

Figure 6.16: Total shear deformation for (a) varying degree of saturation with depth and (b) constant 
degree of saturation at the time of the same maximum shear strain value for η=40e3 s. ................... 177 

  



Finite Element Regularization for Post Localized Bifurcation in Variably Saturated Media 
 

212 



 

213 

List of Tables 

Table 2.1: Thermodynamic properties for the microscopic mass balance equations. ........................... 18 

Table 2.2: A general form of macroscopic balance equations. ............................................................. 24 

Table 3.1: Numerical algorithm for local Perzyna model. .................................................................... 58 

Table 3.2: Numerical algorithm for local Duvaut-Lions model. .......................................................... 64 

Table 3.3: Calculation of non-local factors at Gauss points. ................................................................ 72 

Table 3.4: Advantages and disadvantages of regularization models. ................................................... 74 

Table 4.1: Soil parameters used in the computation. ............................................................................ 79 

Table 4.2: Non-local viscoplastic analyses for constant viscosity, η=10 s. .......................................... 95 

Table 4.3: Material parameters for slope stability problem. ............................................................... 102 

Table 5.1: List of constitutive parameters. .......................................................................................... 117 

Table 5.2: List of parameters adopted for triaxial shear tests at constant suction. .............................. 120 

Table 5.3: Triaxial tests at varying suction and net confinement pressure. ........................................ 121 

Table 5.4: List of parameters adopted for the oedometric test. ........................................................... 123 

Table 5.5: List of model parameters for loose Hostun sand. .............................................................. 125 

Table 5.6: Numerical algorithm for the  VISCUNsand model. ....................................................... 134 

Table 5.7: Creep test on loose Hostun sand − List of model parameters. ........................................... 136 

Table 5.8: Creep test on loose Hostun sand – Calibration of viscous parameters. ............................. 137 

Table 5.9: Creep test on dense Hostun sand − List of model parameters. .......................................... 138 

Table 5.10: Creep test on dense Hostun sand – Calibration of viscous parameters. ........................... 138 

Table 5.11: Characteristics of the triaxial compression tests as in Gajo and Wood (1999). ............... 140 

Table 5.12: Characteristics of the triaxial compression tests on loose Hostun sand as in Daouadji et al. 
(2010). ................................................................................................................................................. 140 

Table 5.13: Parameters adopted for the simulations. .......................................................................... 140 

Table 5.14: Parameters used for different densities. ........................................................................... 141 

Table 5.15: Re-examined creep test on loose Hostun sand varying viscosity parameter. .................. 143 

Table 5.16: Initial density and viscous parameters for the TXD test on loose Hostun sand. .............. 147 

Table 5.17: Initial density and viscous parameters for the TXD test on medium Hostun sand. ......... 148 

Table 5.18: Initial density and viscous parameters for the TXD test on dense Hostun sand. ............. 149 

Table 5.19: Initial density and viscous parameters for the TXU test on loose Hostun sand. .............. 151 

Table 5.20: Initial density and viscous parameters for the TXU test on medium Hostun sand. ......... 153 

Table 5.21: Initial density and viscous parameters for the TXU test on dense Hostun sand. ............. 156 

Table 5.22: Viscosity parameters varying soil density for linear viscous nucleus. ............................ 156 



List of Tables 

214 

Table 5.23: Viscosity parameters varying soil density for exponential viscous nucleus. ................... 156 

Table 5.24: Initial density and viscous parameters for the undrained plane-strain test on loose Hostun 
sand. .................................................................................................................................................... 157 

Table 6.1: Parameters adopted for the simulation. .............................................................................. 167 

Table 6.2: Triaxial tests at varying suction and net confinement pressure. ........................................ 169 

Table 6.3. Parameters adopted for the simulation of TXD and TXU tests. ........................................ 171 

Table 6.4: Parameters adopted for the simulation of the slope failure problem. ................................ 173 

 

 

 


	FINITE ELEMENT REGULARIZATION FOR POST LOCALIZED BIFURCATION IN VARIABLY SATURATED MEDIA
	Acknowledgements
	Abstract
	Sommario
	Contents
	1. Chapter 1: Introduction and Overview
	1.1 Motivation and State of the Art
	1.2 Basic Features
	1.3 Thesis Layout

	2. Chapter 2: Mechanics of Porous Media: Mathematical Model and Numerical Treatment
	2.1 Introduction
	2.2 Preliminaries and Assumptions
	2.3 Microscopic Balance Equations
	2.4 Macroscopic Balance Equations
	2.4.1 Mass Balance Equations
	2.4.2 Linear Momentum Balance Equation
	2.4.3 Angular Momentum Balance Equation
	2.4.4 Energy Balance Equation
	2.4.5 Balance of Entropy

	2.5 Constitutive Equations
	2.5.1 Stress Tensor in the Fluid Phases
	2.5.2 Gaseous Mixture of Dry Air and Water Vapour
	2.5.3 Sorption Equilibrium
	2.5.4 Clausious-Clapeyron Equation
	2.5.5 Darcy’s Law
	2.5.6 Fick’s Law
	2.5.7 Fourier’s Law
	2.5.8 Stress Tensor in the Solid Phase

	2.6 General Field Equations
	2.6.1 Mass Balance Equations
	2.6.1.1 Solid phase
	2.6.1.2 Liquid phase
	2.6.1.3 Gaseous phase
	2.6.1.4 Gaseous phase: dry air
	2.6.1.5 Gaseous phase: vapour

	2.6.2 Linear momentum balance equation
	2.6.2.1 Fluids
	2.6.2.2 Solid-phase
	2.6.2.3 Multiphase medium

	2.6.3 Energy balance equation
	2.6.4 Governing equations
	2.6.4.1 Dynamic case
	2.6.4.2 Quasi static case


	2.7 Initial and Boundary Conditions
	2.8 Finite Element Formulation
	2.9 Concluding Remarks

	3. Chapter 3: Constitutive Modelling of Solid Phase from the Regularization Perspective: Governing Equations and Numerical Aspects
	3.1 Introduction
	3.2 Yield Criterion for Granular Soil
	3.3 Elasto-Viscoplastic Model of Perzyna
	3.3.1 Analytical Formulation in Rate Form
	3.3.2 Integration Algorithm
	3.3.2.1 Fully Implicit Backward Euler Scheme
	3.3.2.2 Consistent Tangent Operator


	3.4 Elasto-Viscoplastic Model of Duvaut-Lions
	3.4.1 Evolution Equations
	3.4.2 Derivation of Duvaut-Lions Algorithm

	3.5 Non-Local Enhancement of the Viscoplastic Approach
	3.5.1 Preface and Definitions
	3.5.2 Algorithmic Aspects

	3.6 Concluding Remarks

	4. Chapter 4: Numerical Validation and Applications
	4.1 Introduction
	4.2 Strain Localization on Initially Saturated Dense Hostun Sand
	4.2.1 Plastic Mesh Dependence
	4.2.2 Viscous Regularization – Perzyna’s Model
	4.2.2.1 Major Factors Affecting Mesh Objectivity and Shear Band Evolution

	4.2.3 Viscous Regularization – Duvaut-Lions Model
	4.2.4 Non-local Regularization
	4.2.4.1 Internal Lengths Interaction


	4.3 Hydro-Mechanical Coupling in a Plane-Strain Slope Stability Test
	4.4 Concluding Remarks

	5. Chapter 5: An Elasto-Viscoplastic Constitutive Model for Unsaturated Soil Behaviour
	5.1 Introduction
	5.2 UNsand: An Elastoplastic Strainhardening Model for Soil Allowing for Hydraulic Bonding-Debonding Effects
	5.2.1 Stored energy function and hyperelastic behaviour
	5.2.2 Yield function and plastic potential
	5.2.3 Hardening law
	5.2.4 General formulation of the constitutive equation in rate from

	5.3 Validation of the Implementation of UNsand Model in Comes-geo F.E. Code
	5.3.1 Triaxial Tests at Constant Suction
	5.3.2 Oedometric Test with Drying-Wetting Paths
	5.3.3 Drained and Undrained Plane-Strain Compression Tests on Loose Hostun Sand
	5.3.4 Drained and Undrained Triaxial Compression Tests on Hostun Sand

	5.4 Extension to Viscoplasticity - The VISCUNsand Model
	5.4.1 Analytical Formulation of the Model
	5.4.2 Dependence of Constitutive Parameters on Relative Density
	5.4.3 Algorithmic Treatment

	5.5 Validation, Calibration and Performance of VISCUNsand Model in Comes-geo F.E. Code
	5.5.1 Oedometric Test with Drying-Wetting Paths
	5.5.2 Creep Tests on Loose and Dense Hostun Sand
	5.5.3 Drained and Undrained Triaxial Compression Tests on Loose, Medium and Dense Hostun Sand
	5.5.3.1 Linear Viscous Nucleus
	5.5.3.2 Exponential Viscous Nucleus

	5.5.4 Undrained Plane-Strain Compression Test on Loose Hostun Sand

	5.6 On the Simulation of Undrained Shear Banding
	5.7 Concluding Remarks

	6. Chapter 6: Implementation of the Constitutive Models for Unsaturated Soil Behaviour in PLAXIS
	6.1 Introduction
	6.2 PLAXIS User-Defined Soil Models
	6.3 Numerical Validation and Example
	6.3.1 Triaxial shear tests at constant suction
	6.3.2 Drained/undrained triaxial compression tests on loose, Hostun sand
	6.3.3 Slope Failure problem
	6.3.3.1 Effect of viscosity on the failure mechanism
	6.3.3.2 Effect of degree of saturation


	6.4 Concluding Remarks

	7. Chapter 7: Summary, Conclusions and Future Aspects
	7.1 Summary and Conclusions
	7.2 Future Aspects

	Bibliography
	Appendix A
	Appendix B
	Nomenclature
	Conventions
	Symbols
	Acronyms

	List of Figures
	List of Tables

