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SUMMARY 

Salmonella enterica serovar Typhimurium is a Gram negative gastrointestinal 

pathogen responsible for food poisoning worldwide. Upon entry into the host, 

Salmonella must overcome the robust line of defense provided by the innate immune 

system and by microbiota-mediated colonization resistance. It is a fascinating 

example of pathogen able not only to evade immune response, but also to exploit 

multiple aspects of it to colonize intestine. S. Typhimurium has evolved strategies 

allowing to thrive in the inflamed gut at the expense of the resident microbiota, 

taking advantage of the dramatic environmental conditions induced by inflammation. 

To understand the complex dynamics of interaction among S. Typhimurium-host-

microbiota, is extremely important for the possible implications in the development 

strategies resulting in the reduction of colonization and/or frequency of 

salmonellosis. This thesis aimed at investigating the contribution of virulence, 

inflammation and microbiota to S. Typhimurium infection using piglet as model for 

salmonellosis. Firstly, we evaluated the capability of S. Typhimurium to exploit 

inflammation to promote its own colonization in vivo and in vitro. Our findings have 

shown that lipopolysaccharide (LPS) treatment-induced inflammation enhances the 

progression of S. Typhimurium, making the pathogen more capable to colonize at 

higher numbers both piglets and porcine enterocytes (IPEC-J2) and 

monocytes/macrophages cells. Secondly, we investigated the impact of Salmonella 

virulence on the porcine intestinal microbiota. To this end, we compared the effects 

on the microbiota induced by two different strains of Salmonella, a wild type strain 

and its isogenic attenuated mutant. We observed the existence of a link among 

virulence, inflammation and microbiota composition. S. Typhimurium wild type 

induces a strong inflammation which results in the reduction of some members of 

microbiota (i.e. SCFA-producing bacteria), normally involved in the maintaining of 
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intestinal homeostasis and in the inhibition of pathogen growth. On the contrary, S. 

Typhimurium attenuated strain determines a milder inflammation and is correlated to 

an increase of protective species of microbiota which could shift the competition 

between the pathogen and microbiota in favour of the latter explaining the reduced 

ability of the attenuated strain to colonize host. 

Finally, we focused on the physiological alterations of porcine cecum caused by wild 

type and attenuated S. Typhimurium strains. Our results suggest that host could adopt 

a “nutriprive mechanism” in which deprives environment of nutrients and energy 

sources, creating intestinal conditions that are detrimental for Salmonella growth. 

Moreover, the minor reduction of metabolic and energetic status of the host upon 

infection with Salmonella wild type in comparison with the attenuated strain could 

indicate that Salmonella wild type is more capable to oppose to the nutriprive 

mechanism.  

Overall, by investigating the interaction dynamics among S. Typhimurium-host-

microbiota, we have provided insights that the three factors are strictly interrelated 

and multiple aspects of each of them contribute to determine the outcome of 

infection.  
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  RIASSUNTO 

Salmonella enterica serovar Typhimurium è un batterio Gram negativo, patogeno 

enterico responsabile di una tossinfezione alimentare a diffusione mondiale. In 

seguito alla penetrazione nell’ospite, Salmonella deve superare la robusta linea di 

difesa rappresentata dal sistema dell’immunità innata e dalla resistenza alla 

colonizzazione mediata dal microbiota. Salmonella è un affascinante esempio di 

patogeno capace oltre che di eludere la risposta immunitaria, anche di sfruttarne i 

molteplici aspetti per colonizzare l’intestino. Ha sviluppato, infatti, strategie di 

virulenza che gli consentono di prosperare nell’intestino infiammato a discapito del 

microbiota residente, traendo vantaggio dalle condizioni ambientali fortemente 

alterate indotte dall’infiammazione.  

Comprendere le complesse dinamiche di interazione tra S. Typhimurium-ospite-

microbiota, è estremamente importante per le possibili implicazioni nello sviluppo di 

strategie vòlte a ridurre la colonizzazione e/o la frequenza della salmonellosi. Scopo 

di questa tesi è stato caratterizzare il contributo della virulenza, dell’infiammazione e 

del microbiota all’infezione da Salmonella, utilizzando il suino come modello 

sperimentale per la salmonellosi.   

In primo luogo, abbiamo valutato l’abilità di S. Typhimurium di trarre vantaggio 

dall’infiammazione per favorire la propria colonizzazione, in vivo e in vitro. I nostri 

risultati hanno mostrato che l’infiammazione indotta dal trattamento con 

lipopolisaccaride (LPS) migliora la progressione dell’infezione, rendendo il patogeno 

capace di colonizzare con una carica più elevata sia i suinetti sia gli enterociti (IPEC-

J2) e i monociti/macrofagi di origine suina.  

Successivamente, abbiamo valutato l’impatto che la virulenza del patogeno ha sul 

microbiota intestinale suino. A tale scopo, abbiamo comparato gli effetti causati da 

due differenti ceppi di Salmonella, un ceppo wild type e il suo mutante isogenico 
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attenuato, sulla composizione del microbiota. Abbiamo osservato l’esistenza di un 

collegamento diretto tra virulenza, infiammazione e composizione del microbiota. S. 

Typhimurium wild type induce una forte risposta infiammatoria che determina la 

riduzione di membri del microbiota (ad es. i batteri che producono SCFA) 

normalmente implicati nel mantenimento dell’omeostasi intestinale e nell’inibizione 

della crescita dei patogeni. Al contrario, il ceppo attenuato di S. Typhimurium causa 

una debole infiammazione che è invece associata ad un aumento di specie protettive 

del microbiota e ciò potrebbe spostare la competizione tra patogeno e microbiota in 

favore di quest’ ultimo, spiegando così la ridotta abilità di questo ceppo a colonizzare 

l’ospite. 

Infine, la nostra attenzione si è focalizzata sulla risposta dell’ospite ed in particolare 

sulle modificazioni pato-fisiologiche che verificano a livello del cieco in seguito ad 

infezione con i due ceppi di S. Typhimurium, wild type e attenuato. I nostri risultati 

suggeriscono l’induzione di un “meccanismo nutriprivo” attraverso il quale l’ospite 

riduce la disponibilità di nutrienti e di fonti di energia per creare condizioni 

intestinali che risultano svantaggiose per la crescita di Salmonella. Inoltre, è stata 

osservata una minore riduzione dello stato metabolico ed energetico dell’ospite dopo 

infezione con S. Typhimurium wild type rispetto a quella indotta dal ceppo attenuato 

che potrebbe indicare una maggiore capacità del ceppo wild type a contrastare il 

meccanismo nutriprivo.  

In conclusione, studiando le dinamiche di interazione tra S. Typhimurium-ospite-

microbiota, abbiamo fornito ulteriori evidenze del fatto che i tre fattori sono 

strettamente correlati e che l’esito dell’infezione è il risultato del contributo fornito 

dai molti aspetti che li caratterizzano. 
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Chapter 1 

INTRODUCTION 

 

1.1 Salmonella 

Salmonella was discovered in 1884 by Theobald Smith and Daniel Elmer Salmon 

who first isolated Salmonella choleraesuis from pigs with hog cholera (Salmon & 

Smith, 1886). Salmonellae are Gram negative, road-shaped (0.7-1.5 x 2.0-5.0 µm), 

flagellated, facultative anaerobic bacteria belonging to the Enterobacteriaceae 

family. The genus Salmonella consists of only two species: S. enterica and S. 

bongori. S. enterica is further divided into six subspecies and more than 2600 

serovars differentiated according to somatic, flagellar and virulence (O, H and Vi, 

respectively) antigens (Cooke et al., 2007). According to the ability to infect a 

different range of hosts, Salmonella serovars can be classified into three groups 

(Singh, 2013):  

• host-restricted serovars, that include S. Typhi and S. Paratyphi A, B and C in 

humans, and S. Gallinarum and S. Pullorum in poultry, are responsible for a systemic 

infection which often results to be fatal;  

• host-adapted serovars, such as S. Choleraesuis and S. Dublin, that cause highly 

severe systemic infection in pigs and cattle respectively; however, they also may 

accidentally cause disease in other hosts;  

• broad host range serovars that rarely produce systemic infections but are able to 

cause a gastrointestinal disease in a wide range of animals. These serovars are 

collectively called non typhoidal Salmonella (NTS) and include some of the most 

common strains such as S. Enteriditis and S. Typhimurium. They represent an 
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important zoonotic hazard because of developing strategies to invade different hosts 

without any greater resistance  

This dissertation is focused on NTS and in particular on S. enterica serovar 

Typhimurium. 

 

1.2 The Infectious Cycle of Salmonella 

Salmonella infections are basically acquired by ingestion of contaminated 

food and water. Following ingestion, bacteria encounter the low pH of the stomach to 

which a reduced number of them survives exploiting an acid tolerance response. The 

remaining bacteria, gain access to the small intestine and invade the intestine wall, 

spreading to mesenteric lymph nodes and then to the systemic circulation. 

Salmonella has different pathways to invade the intestinal mucosa (Fig. 1) (Khan, 

2014). 

Salmonella invasion preferentially occurs via microfold (M) cells located in the 

follicle-associated epithelium (FAE), sorrounding the Peyer’s patches (PP). The M 

cells are specialized phagocytic cells able to target luminal antigens and to transport 

them to the basolateral side, where they can interact with lymphoid cells 

(macrophages, dendritic cells (DC), neutrophils) in the gut-associated lymphoid 

tissues (Broz et al., 2012). Salmonella can also invade non-phagocytic epithelial 

cells, promoting its own internalization trough the type III secretion system (T3SS-1) 

encoded by the Salmonella Pathogenicity Island 1 (SPI-1). This process involves 

secretion of SPI-1-encoded virulence factors, which induce large-scale cytoskeletal 

rearrangements, leading to ruffling and extension of the enterocyte membrane and 

hence allowing bacteria to be engulfed and dragged inside the host cell (Brawn et al., 

2007). An additional route of invasion might be via CX3CR1+ macrophages and 

DCs. DCs are professional antigen-presenting cells (APC) that protrude 
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prolongations between adjacent enterocytes to capture luminal antigens and to 

present them, in association with major histocompatibility complex (MHC) 

molecules, to T cells (Niess et al., 2005). However, following phagocytosis, 

Salmonella develops around it a membrane-bound vacuole called the Salmonella-

containing vacuole (SCV), and promotes its replication by secreting additional 

virulence factors encoded by SPI-2 (Brawn et al., 2007). The pathogen is able to 

spread systematically throughout the reticuloendothelial system. However, in healthy 

individuals, Salmonella infection is limited to the intestine, leading a diarrhea with a 

significant neutrophil influx into intestinal lumen. In these patients, gastroenteritis is 

self-limiting and pathogen is eliminated within 14 days (Khan, 2014). 

 

 

 

 

  

 

 

 

 

 

Fig. 1. Schematic representation illustrating the routes of invasion of S. 

Typhimurium. S. Typhimurium can cross the intestinal epithelial by invading 

enterocytes, M cells or dendritic cells protruding prolongations to sample the 

intestinal lumen. 
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1.3 Epidemiology 

Human infections caused by Salmonella spp. are a significant public health concern. 

The epidemiology of infections is influenced by the type of Salmonella serovar 

involved. Host-restricted serovars, such as S. Typhi and S. Paratyphi, are responsible 

for enteric fever, an acute and life-threatening febrile illness primarily connected 

with low-income countries, which globally causes 22 millions of cases per year and 

200,000 deaths (Crump et al., 2004).  

The enteric fever is transmitted via the fecal-oral route and it is facilitated by 

inadequate sanitation and poor hygienic conditions. In fact, high incidence estimates 

are reported in the developing world, particularly in south-central Asia and south-

east Asia (more than 100 cases per 100,000 inhabitants per year), while in Europe, 

North America, Australia and New Zealand is registered a low incidence (less than 

10 cases per 100,000 inhabitants per year) and it is mainly a disease related to 

travelers visiting endemic areas. Countries with medium incidence are observed in 

Africa, South America and the rest of Asia (10-100 cases per 100,000 inhabitants per 

year). The emergence and spread of antibiotic-resistant S. Typhi and S. Paratyphi 

strains in developing countries, increases the risk of complications and death 

(Sanchez-Vargas et al., 2011). 

Conversely, NTS are a leading cause of acute food-borne zoonosis 

worldwide. Transmission to humans generally occurs by either ingestion of 

contaminated food and water or by direct contact, person-to-person or animal-to-

person, via the fecal-oral route. The rapid dissemination of pathogens due to the food 

production and distribution systems, and the problem of multidrug resistant NTS 

strains pose an important public health concern (Sanchez-Vargas et al., 2011). NTS 

cause a self-limiting enterocolitis which rarely requires intervention; however, 

disease can evolve to septicemia in less than 10% of patients. Approximately 93.8 
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million human cases of gastroenteritis and 155,000 deaths occur globally each year 

(Majowicz et al., 2010). Moreover, in sub-Saharan Africa, NTS are also an important 

cause of invasive bloodstream infection with an estimated mortality rate of 20-25%, 

particularly in children with malnutrition, malaria and/or HIV infection (Wick, 2011; 

Feasey et al., 2012).  

 

1.4 Non typhoidal Salmonellae in food-producing animals 

Most NTS serovars are important foodborne pathogens of zoonotic origin. 

They can infect a wide range of farm and wild animal. Poultry, pigs, and cattle are 

considered the most important farm animal reservoirs for human infections; however, 

rodents, birds, reptiles, fish and insects can also play an important epidemiological 

role (Wales et al., 2010).  

Salmonella serovars have a widespread geographical and epidemiological 

distribution; however, they differ in their pathogenic potential between humans and 

animals as well as in prevalence. For instance, despite NTS are common in reptiles 

and amphibians, very few human cases of salmonellosis are due to these animals 

(Hoelzer et al., 2011).  

Salmonella colonize the gastrointestinal tract causing an acute enterocolitis 

that can be followed by a chronic infection, given the ability of the pathogen to 

establish a persistent colonization. Persistently colonized animals are asymptomatic 

and indistinguishable from uninfected animals, constituting an important risk factor 

for humans (Hoelzer et al., 2011). In addition, environmental contamination by 

manure and waste products from food production represents another significant 

source of infection, and it is favored by the ability of Salmonella to survive for long 

periods in soil and water (Silva et al., 2014).  
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The human health risk associated with animals is influenced by multiple 

factors including age group, herd management system and health status. For 

example, large-scale intensive farm conditions determine more easily the rapid 

spread of Salmonella among animals and contamination of food products (Hugas and 

Beloeil, 2014). However, the improvement of good hygienic measures and the 

implementation of management practices can reduce the risks of infection animal-to-

person (Hoelzer et al., 2011). 

Nevertheless, ingestion of contaminated food is thought to be the 

predominant risk factor for salmonellosis. A wide variety of foods, mostly of animal 

origin, are frequent sources of Salmonella infection in humans; they include pork 

meat, poultry, eggs, raw milk and dairy products. In recent years, the role of food of 

vegetable origin, as potential vehicles of gastrointestinal infection, has been 

highlighted. Vegetables and fruits can be contaminated with Salmonella in both the 

pre-harvest (i.e. utilization of organic wastes as fertilizer or contaminated water for 

irrigation) or post-harvest steps (during storage) of the processing chain (Heaton and 

Jones, 2008).  

The monitoring and surveillance plans are crucial in sustaining food safety 

standards; moreover, the ability of Salmonella to exploit different sources of 

infection creates public health challenges (Newell et al., 2010). 
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Chapter 2 

 

SALMONELLA-HOST INTERACTIONS 

The intestinal mucosa is the largest surface of mammalian body in direct contact with 

the external environment, and it is exposed to a wide variety of potentially harmful 

enteric microbes. The host is protected from the invading pathogens by several types 

of barriers, including physical, chemical and immunological ones, which exert 

mechanisms of protection to maintain the integrity of the intestinal epithelium and to 

limit inflammation-associate damage (Patel & McCormick, 2014).  

 

2.1  Salmonella interaction with the intestinal mucosal epithelia 

A thick layer of mucus that covers the luminal lining of the intestinal 

epithelium, antimicrobial peptides and immunoglobulins are the first obstacles to 

Salmonella entry (Patel & McCormick, 2014).  

• Mucus is primarily composed of mucins. Mucins are highly glycosylated 

transmembrane proteins secreted by Goblet cells which aggregate to form a 

gelatinous barrier aiming to constitute a physical barrier against the bacterial 

invasion as well as to protect intestinal mucosa from dehydration and mechanical 

damage. (Broz et al., 2012). Nevertheless, mucus is permeable to low molecular 

weight components allowing the transport of nutrients. The production of mucins can 

occur constitutively to a low level, or can be modulated in response to microbial 

component and inflammation. However, the mechanisms regulating their secretion is 

unknown (Kim & Khan, 2013).  

• In addition to mucins, specialized epithelial cells called Paneth cells secrete 

antimicrobial peptides (AMPs) of  ̴ 20-40 amino acids in length. AMPs take part in 
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the front line of chemical defense against bacteria and function targeting the bacterial 

membrane and disrupting its integrity (Broz et al., 2012). Four families of AMPs 

have been identified: defensins, cathelicidins, histatins and lactoferrin (Patel & 

McCormick, 2014). Defensins are small cationic proteins that directly bind the 

microbial cell membrane forming large pores that cause the loss of essential ions and 

nutrients. Cathelicidins are also cationic proteins that act as potent lipopolysaccaride 

(LPS)- neutralizing factors. Lactoferrin is a multifunctional protein that functions 

sequestering iron and destabilizing microbial membranes. Histatins are involved in 

the generation of reactive oxygen species (ROS) and induce apoptosis by inhibiting 

mitochondrial respiration (Kavanagh & Dowd, 2004). All AMPs are generated as 

inactive prepropeptides and need to be processed into its active form; their 

production is upregulated in response to bacteria (Patel & McCormick, 2014).  

• Finally, also secretory IgA (SIgA), produced by plasma cells in the in lamina propria 

and transcytosed in the mucus layer, serve as line of defense against Salmonella. 

Through a process called immune exclusion, SIgA prevent the microbial adhesion to 

epithelial receptors on the luminal side of the intestinal epithelium, while facilitate 

the clearence of antigens from the basolateral side (Mantis et al., 2011).  

 

In the lumen outside the mucus layer reside another important mucosal barrier 

against Salmonella: the resident microbiota. Microbiota constitutes a heterogeneous 

ecosystem containing up  ̴1014 bacteria, which physically block pathogen access to 

the epithelial layer by competing for nutritional resources and attachment sites. 

Additionally, microbiota promote resistance to infection through the production of 

bacteriocins and end-products of metabolism, called shorty chain fatty acids 

(SCFAs), by individual species of bacteria (Patel & McCormick, 2014). The 

anaerobic environment of the intestine is dominated by fermentative bacteria which 
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produce acetate, propionate and butyrate. They are involved in maintenance of the 

intestinal homeostasis and metabolism. Moreover, recently, mainly butyrate has 

shown a Salmonella invasion-suppressive activity through the down regulation of 

SPI1 genes. In addition, butyrate can affect Salmonella interaction with the intestinal 

epithelium inducing expression of cathelicidins (Sun & O’Riordan et al., 2013). 

Finally, the integrity of the epithelial barrier plays another important 

protective role against the pathogen. The integrity is guaranteed by the interaction of 

tight junctions (TJ) with components of cytoskeleton; however, S. Typhimurium can 

alter this barrier interfering with tight junction proteins such as Rho-GTPase and 

occludin. The resulting modifications contribute to increase the membrane 

permeability, allowing Salmonella to cross the epithelial cell monolayer (Ashida et 

al., 2012). 

 

2.2  Immune response to Salmonella 

Despite the protection provided by the barriers described above, Salmonella is 

capable of penetrating the intestinal epithelium through M cells or enterocytes (Broz 

et al., 2012). Here, the pathogen encounters the monocyte-derived phagocytic cells of 

the gut-associated lymphoid tissue (GALT): macrophages and dendritic cells, which 

act controlling Salmonella infection through phagocytosis-mediated killing and the 

induction of inflammation (Broz et al., 2012).  

The direct interaction between Salmonella and host cells includes the 

recognition of components of the pathogen, called pathogen associated molecular 

patterns (PAMPs), by pattern recognition receptors (PRRs) localized on epithelial 

cells and inflammatory cells (Santos et al., 2009). Toll-like receptors (TLRs) and 

NOD-like receptors (NLRs) are examples of PRRs and they can recognize a wide 

range of PAMPs. TLR4 and TLR5 are involved in S. Typhimurium infections; they 
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detect LPS and flagellin, respectively. The binding of ligands to their respective 

TLRs or NODs triggers the activation of inflammatory response through the NF-κB 

signaling pathway, leading to cytokines and chemokines production (Patel & 

McCormick, 2014).  

The secretion of IL18 and IL-23 by mononuclear cells (macrophages and 

DC), promote a T cell-dependent amplification of inflammatory responses. These 

cytokines amplify inflammation stimulating T cells to produce INF-γ, IL-22 and 

IL17 (Broz et al., 2012). In addition to T cells, also natural killer (NK) cells are 

source of IL-22 in the intestine. Moreover, IL-6 and transforming growth factor 

(TGF)-β, produced by macrophages, can initiate the differentiation of naïve T cells 

into Th17 cells (Santos et al., 2009). Macrophages can also produce IL1-β and IL-18 

via NLRC4-Caspase-1 axis induced by the recognition flagellin-NLRC4 (Raupach et 

al., 2006). 

Finally, the release of antimicrobial products orchestrated through the IL-

23/IL-22 and the influx of neutrophils into the intestinal lumen mediated via the IL-

23/IL-17 axis contribute to diarrhea, which limits the presence of nutrients that 

normally support commensal bacteria growth as well as that of Salmonella (Broz et 

al., 2012). 
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Fig. 2. Schematic representation showing the immune response to S. 

Typhimurium. Upon the invasion, S. Typhimurium encounters the monocyte-

derived phagocytic cells of the gut-associated lymphoid tissue (GALT): macrophages 

and dendritic cells, which act controlling Salmonella infection through phagocytosis-

mediated killing and the induction of inflammation. DC: dendritic cells; NK: Natural 

Killer cells; AMPs: antimicrobial peptides; SCV: Salmonella containing vacuole. 

 

 

 

2.3 Salmonella overcomes the intestinal barriers 

In spite of several barriers of the mucosal surface and the notable 

inflammatory response mounted by the host immune system, S. Typhimurium is able 

to thrive in the intestinal lumen increasing its numbers (Santos et al., 2009). It has 

evolved strategies to interfere with and to manipulate host defensive mechanisms in a 
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highly sophisticated manner in order to survive and replicate in the inflamed gut 

(Patel & McCormick, 2014).  

Host immune response has a double role in S. Typhimurium infections 

because it limits Salmonella colonization and dissemination but, at the same time, 

Salmonella has adapted to take advantage of host immunity at the expense of 

microbiota (Stecher et al., 2007; Lupp et al., 2007; Behnsen et al., 2015). For this 

reason, it is not surprising that Salmonella actively induces inflammation for its own 

purposes.  

A further confirmation of these evidences came from a relatively recent study 

conducted by Stecher et al. (2007); it has shown that an avirulent mutant of S. 

Typhimurium, with a defective inflammatory capability, is unable to colonize the 

murine healthy intestine and is outcompeted by the microbiota. However, in presence 

of mixed infections with wild-type S. Typhimurium, which is able to induce 

inflammation and therefore to alter microbiota, the defective colonization of the 

avirulent mutant is reverted (Stecher et al., 2007).  

 

2.4 S. Typhimurium exploits inflammation to compete with intestinal 

microbiota 

The aim of an inflammatory response is to reduce the colonization of 

pathogens and eventually eliminate them through the release of antimicrobial 

mediators. The inability of the innate immune response to completely discriminate 

pathogens from commensal bacteria, implies that inflammation may damage both of 

them (Stecher, 2015). However, Salmonella has developed many strategies to escape 

host responses and to compete successfully with the microbiota.  

Three different hypothesis have been proposed to explain how inflammation 

could contribute to break colonization resistance (Stecher, 2015):  
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1. The “food hypothesis” suggests the induction of an altered nutrients availability or 

adhesion receptor sites upon S. Typhimurium infection, that can be used by the 

pathogen at the expense of commensals bacteria (Le Bouquénec & Schouler, 2011; 

Fischbach et al., 2006; Stecher, 2015). For example, phosphatidylethanolamine is the 

most abundant phospholipid in the cell membrane of enterocytes. It is metabolized to 

ethanolamine, a non-fermentable compound which is not utilizable as carbon source 

by the most of the microbiota that is based on a fermentative metabolism (Behnsen et 

al., 2015). By contrast, S. Typhimurium is able to catabolize ethanolamine by using 

tetrathionate. During inflammation, thiosulfate is oxidized in tetrathionate by the 

reactive oxygen species (ROS) produced by the host, and tetrathionate can be used 

by S. Typhimurium as a terminal electron acceptor that support anaerobic respiration 

of ethanolamine. This ability to utilize inflammation-induced compounds confers a 

growth advantage for S. Typhimurium over the competing microbiota (Thiennimitr et 

al., 2011). Similarly, S. Typhimurium can use high-energy nutrients, such as mucins 

and galactose-containing glyco-conjugates released as result of inflammation, to 

outgrow the microbiota (Stecher et al., 2008). 

2. The “differential killing hypothesis”: the release of antibacterial factors induced by 

Salmonella infection may selectively inhibit growth of members of the microbiota, 

while enteric pathogens would remain unaffected (Stecher et al., 2015). For example, 

an efficient mechanism of the host immune response is to limiting the access for 

Salmonella to metal ions by releasing the metal-chelating proteins lipocalin-2 and 

calprotectin. Lipocalin-2, secreted by epithelial cells and neutrophils, blocks bacterial 

iron acquisition by specifically binding to iron-scavenging siderophore called 

enterobactin, showing a bacteriostatic effect on those microbes that depend only on 

enterobactin to acquire iron (Flo et al., 2004). However, S. Typhimurium expresses a 

glycosylated derivative of enterobactin, known as salmochelin, which is not bound 
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by lipocalin-2 and its production allows to the pathogen to overcome iron starvation 

(Fischbach et al., 2006). Similarly, calprotectin sequesters zinc in the intestine 

limiting its availability to microbes. S. Typhimurium uses a high-affinity zinc 

transporter (znuABC) to resist to calprotectin and to acquire zinc overcoming 

calprotectin-mediated zinc chelation (Liu et al., 2012).  

3. The “oxygen hypothesis”: the reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) produced by neutrophils in response to S. Typhimurium infection, 

create a highly oxidative environment which is inhospitable for many members of 

microbiota, but not for Salmonella. (Winter et al., 2010; Stecher, 2015). In fact, 

while in the microbial community, the number of obligate decreases in favor of the 

facultative anaerobes, S. Typhimurium is able to resist to ROS and RNS in different 

ways. For example, recently, it is demonstrated that Salmonella has an efflux pump 

that is involved in the detoxification of ROS, contributing to the survival and 

replication of the pathogen (Bogomolnaya et al., 2013). Similarly, Salmonella has 

developed strategies of resistance to nitrosative stress including the protective role of 

Cu,Zn-superoxide dismutase (SOD) in reducing periplasmic formation of 

peroxynitrite (De Groote et al., 1997). 
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     Chapter 3 

 

MICROBIOTA 

3.1 The mammalian gastrointestinal microbiota 

The mammalian gastrointestinal tract is colonized by approximately 1014 

bacteria forming a complex and dynamic microbial community called microbiota 

(Isaacson & Kim, 2012). It is mainly populated by anaerobic bacteria, while aerobic 

and facultative species are present in lower numbers; Firmicutes, Bacteroidetes, and 

Proteobacteria represent the major phyla among intestinal eubacteria (Sommer & 

Bӓcked, 2013).  In contrast to pathogens, commensal bacteria have made the host 

their one-and only home creating an extraordinary example of symbiotic mutualism 

in which both, commensals and host, benefit each other (Ahmer & Gunn, 2011; 

Ivanov & Honda, 2012). Host immune system is likely to distinguish between 

commensal and pathogenic bacteria, inducing tolerance to microbial epitopes 

(Srikanth & McCormick, 2008).  

Mammals are born sterile. Colonization by microbiota begins immediately 

after the birth and continues to develop and change during the entire life. Initially, 

the gastrointestinal tract is populated by bacteria with high multiplication rates; later, 

microbiota becomes more complex and dominated by specialized species (Falk et al., 

1998). Microbiota structure and composition are not constant but differ among and 

within individuals in relation to internal and environmental factors such as genetic 

factors, age, diet and exposure to microbes (Ivanov & Honda, 2012).  

In recent years, microbiota has begun to receive growing attention since its 

remarkable role in the health and well-being of humans and animals.  
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3.2 Role of the intestinal microbiota  

The intestinal microbiota affects several aspects of host physiology being 

involved in protective, biochemical, metabolic, trophic and immunological functions 

(Littman & Pamer, 2011). Resident bacteria provide an efficient barrier against the 

invading pathogens; this ability, also known as “colonization resistance”, is the result 

of the direct microbe-microbe interactions such as competition for nutrient 

availability and for attachment sites. Specific members of microbiota can also 

stimulate the mucosal immune system and the release of antibacterial peptides 

(Barman et al., 2008).   

The absence or the alteration of microbiota can affect the intestinal 

environment, also causing modifications of digestive enzyme activity and baseline 

cytokines production (Srikanth & McCormick, 2008). Moreover, germfree mice 

show a rudimentary intestinal immune system and are highly susceptible to enteric 

pathogens (Ahmer & Gunn 2011). All these evidences demonstrate the important 

role of microbiota in influencing the maturation of the mucosa-associated lymphoid 

tissue as well as in preventing pathogens invasion (Srikanth & McCormick, 2008).   

In addition to the protective and immunological functions, microbiota offers 

essential metabolic contributions by the production of key vitamins (i.e. vitamin K, 

biotin and folate) and SCFAs, which have trophic effects on the intestinal epithelium. 

It is also involved in the fermentation of unused energy substrates (i.e. pectins, 

cellulose), and in the xenobiotics and bile acids metabolism (Srikanth & McCormick, 

2008).   

These observations have increased interest in the study of the effects of 

enteric pathogens on the intestinal flora, and the possible implications in the 

development of strategies reducing colonization and/or the frequency of infectious 

disease.  
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3.3 Animal models for studying Salmonella infections and interactions 

with the microbiota 

The use of animal models to study the interaction between host–pathogen has 

revealed significant insight into the role played by commensals towards mediating 

resistance against disease.  

Mice are the animal model most commonly used by researchers, for reasons 

of convenience and cost. Conventional mice are not appropriate as model for 

Salmonella gastroenteritis because they do not get diarrhea upon infection, rather a 

systemic form that is actually closer to human typhoid fever. To resemble human 

disease, mice can be treated with antibiotics, most commonly streptomycin 

(streptomycin-treated mice), in order to eliminate microbiota prior to infection with 

Salmonella (Ahmer & Gunn, 2011).  

Gnotobiotic mice have a conditioned microbiota composition. Of those, 

germ-free mice are completely lacking of microbiota, mono-associated mice are 

characterized by a single known bacterial species, and poly-associated mice are 

colonized with several known microbial communities (Falk et al., 1998). However, 

also these models are not completely suitable for the evaluation of the strategies used 

by S. Typhimurium to survive in the inflamed gastrointestinal environment, because 

of the lack of an intact microbiota (Elfenbein et al., 2013).  

For all these reasons, the use of an animal which is a natural host of S. 

Typhimurium and has an intact microbiota, is optimal to study the interactions 

among Salmonella, microbiota and the vertebrate host during infection. The great 

similarity between humans and pigs in the gastrointestinal tract and in the disease 

caused by S. Typhimurium, make pig an ideal model for salmonellosis and 

gastrointestinal research (Zhang et al., 2013).  
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3.4 Intestinal microbiota in pigs 

The microbial community of the porcine gastrointestinal tract has 

traditionally been studied by culture-dependent microbiological methods; however, 

in recent years, the advent of molecular techniques has allowed a better 

characterization of swine microbiota composition (Isaacson & Kim, 2012).  

The piglet gastrointestinal tract is without microorganisms at birth. The 

contact with the skin of the mother as well as with the environment, starts the 

intestinal bacterial colonization and in a short time, aerobes and facultative anaerobes 

become the predominant species of the flora (Conway, 1997). However, within 48 h 

after birth, these bacteria are gradually substituted by obligate anaerobes. At this 

time and for the whole suckling period, microbiota is dominated by Lactobacilli 

and Streptococci, which are able to use lactose as substrate (Swords et al., 1993).  

A critical stage in the life cycle of pig is the weaning period. In fact, 

stressing factors, such as the separation from its mother and the introduction of a 

solid food, can contribute to alter the microbiota composition as well as the 

intestinal functionality (Roca et al., 2014). As consequence, immediately after 

weaning, it is possible to observe a decrease of Lactobacillus and an increase of 

coliforms bacteria. At this moment, pig becomes highly susceptible to 

overgrowth of pathogens. However, after this intense period of perturbation, 

microbiota re-stabilizes and develops in the normal adult flora (Hopwood & 

Hampson, 2003).  

In 2011, Kim et al. published a longitudinal study on swine microbiota 

composition. They showed that two phyla, Firmicutes and Bacteroidetes, accounted 

for approximately 90% of all bacteria present in the porcine gastrointestinal tract. 

Later on, the abundance of Firmicutes and bacteria belonging to non-classified group 

increased, while decreased that of Bacteroidetes. The most abundant genus was 
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Prevotella, a member of Bacteroidetes, constituting up 30% of all bacteria present in 

pigs of 10 weeks of age. However, in pigs of 22 weeks of age, Prevotella decreased 

to 3,5-4% of the bacteria, while Anaerobacter (Firmicutes) increases. Finally, over 

time, other abundant species included Streptococcus, Lactobacillus, Megasphaera, 

Blautia, Oscillibacter, Faecalibacterium, Pseudobutyrivibrio, Roseburia and 

Butyricoccus (Kim et al., 2011).  

All these data have contributed to demonstrate that microbiota composition 

varies over time. It is a dynamic process in which different microbial populations 

succeed each other until reaching a climax community where bacteria are in stable 

association with the host (Isaacson & Kim, 2012).  

 

3.5 Salmonella-porcine microbiota interactions 

It has been known, from studies conducted in mice, that S. Typhimurium 

alters intestinal microbiota (Stecher et al., 2007; Barman et al., 2008). However, 

there is paucity of information on the effects of Salmonella infection on the swine 

microbiota, because of the majority of investigations have been addressed to 

characterize the effects of nutritional and dietary additives, antibiotics and production 

practices on the porcine intestinal microbiota (Isaacson & Kim, 2012).   

A recent study has demonstrated that S. Typhimurium is able to disrupt the 

intestinal microbiota of pigs both experimentally and naturally-infected. There was a 

correlation, as regards the changes in microbiota composition, between the two types 

of pigs, and the major modifications have been observed in the cecum, colon and 

feces (Borewicz et al., 2015).  

Bearson et al. (2013) have compared the porcine microbiota composition to 

the Salmonella-shedding status of pigs. Profiling microbiota before and after S. 

Typhimurium, the authors have observed the presence of a higher proportion of 
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Ruminococcaceae family in the “will be” low shedders pigs before infection, 

suggesting that Ruminococcaceae could influence Salmonella colonization through 

the production of SCFA, whose anti-inflammatory properties and the action of 

inhibition of the pathogens are well known (Tedelind et al., 2007; Bearson et al., 

2013). On the contrary, “will be” high shedders pigs have shown an increase of 

Phascolarcobacterium and Coprobacillus. After Salmonella infection, high-shedders 

pig showed a decrease in Prevotella and a significant increase of Coriobacteriaceae 

family, with the latter that it is known to be involved in inflammatory diseases in 

mice and humans (Clavel et al., 2010). 
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Chapter 4 

 

             PROTEOMIC STUDY 

4.1 Introduction of systems-level analysis to study the host-pathogen 

interplay  

Advances in understanding the molecular mechanisms underlying host-

pathogen interactions are important for the development of new diagnostic and 

therapeutic strategies. The functional interface between pathogenic microbes and 

their host involves thousands of proteins belonging to both of them (Zhang et al., 

2005).  

Over the years, the utilization of classical methods (genetic and biochemical) 

contributed to identify bacterial virulence factors and their host targets, elucidating 

many aspects of infection biology. However, these approaches alone are not able to 

completely explain the complexity of host-pathogen interactions; for this reason, it 

has become important the introduction of systems-level analysis providing an 

overview of the dynamic host-pathogen interplay (Yang et al., 2015).  

Within the last decade, proteomic technologies have provided a useful tool 

for this purpose, allowing the understanding of both, the S. Typhimurium physiology 

and the host pathophysiological changes, that occur during infections (Arce et al., 

2014).  

 

4.2 Protein identification by proteomic analysis. 

Proteomes were traditionally investigated using protein microarrays and 

protein staining with two-dimensional gel electrophoresis (2DE); the latter technique 

resolves protein mixture into individual protein spots through the coupling of two 
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perpendicular separation techniques: isoelectric focusing and protein’s molecular 

mass. However, these approaches, in particular 2DE, were limited in sensitivity to 

characterizing the complex biological samples (Yang et al., 2015).  

Over the years, advances in adapting mass spectrometry (MS) to 

biomolecules have allowed to overcame the intrinsic limitations of these techniques 

supporting their weaknesses; the utilization of 2DE gel electrophoresis associated 

with MS characterization of individual protein spots has functioned as pioneer for 

proteomic studies (Yang et al., 2015).  

In the last decade, further progresses have been made in the proteomic field 

through the development of a MS-based high-sensitivity high-throughput approach. 

This technology is based on liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS) and provides an enzymatic digestion of protein mixture 

prior to liquid chromatography (Cravatt et al., 2007).  

The current proteomic technologies are capable of measuring many samples 

in a short time allowing us to increase insights on host-pathogen interactions. In fact, 

today, a large number of studies uses this technique to evaluate the proteome of both 

pathogen and host (Rodland et al., 2008). 

 

4.3 Analysis of Salmonella-host interaction through proteomics 

During infections, bacterial pathogens have to modify their own proteome to 

survive in the altered host environment. On the other hand, host will modulate its 

gene and protein expression aiming to oppose to the bacterial infection (Jenner and 

Young, 2005). For this reason, it is very important to investigate the modifications of 

host cellular processes that occur in response to infection. 

Most of the previous proteomic studies of Salmonella have focused on the 

characterization of virulence factors (Shi et al., 2006; Shi et al., 2009) and on the 
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detection of changes occurring in Salmonella under in vivo mimicking conditions or 

in the response to growth in presence or absence of oxygen (Sonck et al., 2009; 

Encheva et al., 2009). On the contrary, little information is available on the host 

proteome upon bacterial infection, probably because host cells and tissues are much 

more complex than the bacterial ones, and the few reported studies regarding 

infections in vitro of isolated cell lines (Yang et al., 2015).  

However, recently, several authors have carried out proteomic studies aiming 

to evaluate the response of different intestinal sections (ileum, colon, lymph nodes) 

to Salmonella using an in vivo porcine model. The results suggested a perturbation of 

normal host functions after S. Typhimurium infection involving pathways related to 

rearrangements of cytoskeleton, metabolism and inflammation (Collado-Romero et 

al., 2012; Martins et al., 2012; Arce et al., 2014; Collado-Romero et al., 2015).  

In none of these studies it was possible to correlate host proteome 

modifications directly to Salmonella virulence factors; however, it can be inferred 

that these changes might be caused by the pathogen itself. In fact, the significant 

alteration of the metabolism of carbohydrates, lipids and vitamins observed after 

infection, might be explained with the ability of S. Typhimurium to utilize nutrients 

present in the intestinal mucosa for its own growth (Arce et al., 2014). 
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Chapter 5 

 

Aim of the thesis 

S. Typhimurium is a Gram-negative bacteria able to infect a broad range of 

hosts causing both acute and chronic diseases. It is considered a successful pathogen 

having acquired evolutionary strategies to cope with most of the host immune 

defenses and, more importantly, to use the inflammatory response aiming to 

overcoming intestinal microbiota. Therefore, characterizing the S. Typhimurium-

host-microbiota interaction is critical to deepen the knowledge about the mechanisms 

involved in the pathogenicity of this bacteria. 

In this work, we used pig as ideal model for salmonellosis. Besides to be a 

natural host of S. Typhimurium, pig is free from the intrinsic limitations of the 

streptomycin-treated mouse colitis model, namely do not produce naturally 

gastroenteritis and the lack of an intact microbiota.  

Aims of this thesis were to: 

Objective 1. evaluate the ability of S. Typhimurium to exploit inflammation to favor 

an active infection in pig; 

Objective 2. investigate how S. Typhimurium virulence affects porcine intestinal 

microbiota composition, comparing the effects induced by two different Salmonella 

strains, a wild type and an attenuated strain. 

 

Furthermore, as the amount of knowledge concerning the host physiological 

changes that occur during S. Typhimurium infection is scarce, additional aim of this 

thesis was to: 
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Objective 3. describe the pathophysiological alterations observed at intestinal mucosa 

level upon infection with wild type and attenuated Salmonella strains. 
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Chapter 6 

Salmonella Typhimurium exploits inflammation to its own advantage 

in piglets 

 

 

  Adapted from originally published article: 

Chirullo B, Pesciaroli M, Drumo R, Ruggeri J, Razzuoli E, Pistoia C, Petrucci P, 

Martinelli N, Cucco L, Moscati L, Amadori M, Magistrali CF, Alborali GL and 

Pasquali P (2015) Salmonella Typhimurium exploits inflammation to its own 

advantage in piglets. Front. Microbiol. 6:985. 

http://dx.doi.org/10.3389/fmicb.2015.00985   The article is protected by copyright 

and is an open-access article distributed under the terms of the Creative Commons 

Attribution License (CC BY). 
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Abstract 

Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic 

infections that, in humans, induce self-limiting gastroenteritis. The aim of this study 

was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to 

exploit inflammation fostering an active infection. Due to the similarity between 

human and porcine diseases induced by S. Typhimurium, we used piglets as a model 

for salmonellosis and gastrointestinal research. This study showed that STM14028 is 

able to efficiently colonize in vitro porcine mono-macrophages and intestinal 

columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases 

with LPS pre-treatment. This increase was then reversed by inhibiting the LPS 

stimulation through LPS antagonist, confirming an active role of LPS stimulation in 

STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased 

cytokines blood level and body temperature at 4h post infection, which is consistent 

with an acute inflammatory stimulus, capable to influence the colonization of 

STM14028 in different organs and tissues. The present study proves for the first time 

that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its 

benefit in piglets. 

 

Introduction 

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a pathogenic 

Gram-negative bacterium of great clinical significance, responsible for foodborne 

zoonotic infections. The human disease is characterized by self-limiting 

gastroenteritis that occasionally can cause fever, systemic infection, and severe 

inflammation of the intestinal mucosal epithelium (Haagsma et al., 2008; Pires et al., 

2011).  
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The architecture of the mucosal epithelium contains several barriers that 

prevent or block infection by pathogenic bacteria. Mechanisms of protection are 

exerted by all of these barriers in order to maintain the integrity of the epithelial cell 

monolayer and limit inflammation-associated damage (Patel and McCormick, 2014). 

S. Typhimurium, however, is able to overcome these barriers and therefore to 

colonize the intestinal epithelium inducing inflammation and a marked host immune 

response. The inflammatory response in the gut is induced by the interaction of S. 

Typhimurium with host cells including epithelial cells and antigen-presenting cells 

(APCs), like macrophages and dendritic cells. The inflammation is characterized by 

the secretion of several cytokines, including interleukin (IL)-23 and IL-18, which in 

turn stimulates T cells to produce IL-17, and IL-22 in the gut mucosa (Srinivasan et 

al., 2007; Godinez et al., 2008, 2009; Raffatellu et al., 2008). 

 S. Typhimurium acquired an evolutionary adaptation to overcome 

antimicrobial defenses in the lumen of the inflamed intestine and, more importantly, 

to exploit inflammation in order to outcompete the intestinal microbiota (Lupp et al., 

2007; Stecher et al., 2007; Barman et al., 2008; Lawley et al., 2008; Sassone-Corsi 

and Ra atellu, 2015). The capability of S. Typhimurium to grow in the inflamed 

mucosal environment relies upon the acquisition of essential nutrients and 

anaerobically respired tetrathionate to successfully outgrow the resident microbiota 

(Ra atellu et al., 2009; Winter et al., 2010; Liu et al., 2012; Behnsen et al., 2015). 

 Most of the current studies about S. Typhimurium infection have been 

conducted in mice, which naturally do not develop gastroenteritis, but rather a 

systemic infection. An experimental mouse model using antibiotic treatment in order 

to eliminate microflora and to induce colitis, has been recently established (Ahmer 

and Gunn, 2011). However, this model is based on the lack of an intact microbiota, 

which limits a comprehensive evaluation of the complex interactions of S. 
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Typhimurium within the gastrointestinal environment (Elfenbein et al., 2013). Here, 

we utilized pigs as model for gastrointestinal research with the aim of evaluating 

whether S. Typhimurium is able to exploit inflammation favoring an active infection. 

Our findings provide evidence that the LPS administration induces inflammation that 

favors a significant increase in colonization of tonsils, cecum, and spleen by S. 

Typhimurium. 

 

Materials and Methods 

Salmonella spp. Cultures  

A wild-type strain of Salmonella Typhimurium ATCC 14028 (STM14028) was used 

throughout the study. The strain was grown overnight at 37°C in Brain Heart 

Infusion broth (Oxoid Ltd, UK), harvested by centrifugation at 1500 × g for 10 min 

and then washed twice in ice-cold (+4°C) phosphate buffer solution (PBS) (Sigma-

Aldrich, Italy). 

 

In vitro STM14028 Colonization  

Porcine peripheral blood mononuclear cells (PBMCs) were isolated from whole 

blood by Ficoll centrifugation and resuspended in complete RPMI-1640 medium 

(Sigma-Aldrich, St. Louis, MO) supplemented with 10% fetal bovine serum (FBS, 

Gibco-BRL, USA), 2mM L-glutamine, Gentamicin (100µg/ml). Mono-macrophage 

cells were isolated from porcine PBMCs, by a 4h plastic adherence procedure at 

37°C in 5% CO2 atmosphere, followed by extensive washing with PBS (2 times per 

day for the first 5 days) to eliminate the lymphocyte contamination. After 7–10 days 

mono-macrophage cells were obtained, the purity of which was ≥90% as determined 

by FACS (anti-CD14 Mil-2mAb AbCAM cat. 23919-1, and anti-pig macrophages 

mAb, AbD Serotec, cat MCA2317F). Cells were then collected, resuspended in 
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complete medium, and transferred into 200µL per wells of 96-well round-bottom 

microtiter plates. The IPEC-J2 cell line, porcine intestinal columnar epithelial cells 

established from normal jejunum of a neonatal unsuckled pig (ACC 701), were 

grown in Minimum Essential Medium (MEM) (Sigma-Aldrich, St. Louis, MO) 

enriched with Fetal Calf Serum (FCS, Gibco-BRL, USA) (10% v/v), 2mM 

glutamine, and antibiotics (50µg/mL penicillin, 50µg/mL streptomycin, and 

10µg/mL neomycin), at 37°C in 5% CO2 atmosphere. Mono-macrophages and 

IPECJ2 cell line were employed for in vitro studies. Both types of cells were seeded 

in 96-well plates at a density of 1 × 105 cells per well and treated overnight with 

purified lipopolysaccharides (LPS) (1µM/mL; from Escherichia coli 0111:B4, 

L4391; Sigma-Aldrich) alone or in combination with a natural antagonist of LPS, the 

RS-LPS (100µM/mL; tlrl-prslps, Invivogen, San Diego, USA).The following day, 

cell cultures were rinsed and STM14028 was diluted in RPMI-10% FBS, added to 

the cells at a multiplicity of infection (MOI) of 100:1 and incubated for 1h at 37°C in 

5% CO2. After 1h, the cell cultures were rinsed and incubated in a culture medium 

containing gentamicin sulfate(100µg/ml) to kill extracellular bacteria but not the 

internal ones, and subsequently incubated for 3 and 24h. Viable intracellular bacteria 

were recovered by lysing the cells, at both 3 and 24h post treatment time point, in 

distilled water with 0.1% of Triton X-100 for 10min. The quantification of bacteria 

was performed by plating serial dilutions on agar triptose plates. 

 

In vivo Studies  

Animals  

Fourteen commercial hybrid pigs aged ∼30 days were utilized in the experiment. All 

the pigs used throughout the study were the offspring of Salmonella-free sows 

(negative for Salmonella by both serological and bacteriological tests). Before the 
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onset of the experiment, the piglets were proved to be Salmonella free by culture of 

feces of each animal. Animals were weighed and randomly allocated to two groups 

of 6 (A and B) and one group (C) of two pigs. Each group was maintained in 

separate isolation units under natural day–night rhythm with access to feed and water 

ad libitum. Groups A and B were intragastrically administered with 20 ml of sodium 

bicarbonate bu er containing 109 CFU of S. Typhimurium ATCC 14028. At the 

same time, Group A was intraperitoneally challenged with 12.5µg/kg BW of 

lipopolysaccharides from S. enterica serovar Typhimurium (L2262, Sigma Aldrich 

SRL, Milan, Italy). Group C received only sterile sodium bicarbonate buffer and 

served as naïve control group. Collection of individual fecal samples (0, 1 day after 

challenge), blood sampling and registration of rectal temperature (0, 4h, 1 and 2 days 

after challenge) were performed as well. Pigs were visually monitored by an 

independent veterinary officer in charge of the study for 6h after the inoculum and 

then twice a day. Two days after the challenge, pigs were weighed again, and then 

euthanized using a captive bolt pistol and exsanguination. Samples of tonsils, liver, 

spleen, mesenteric lymph nodes, ileum, cecum, and colon were collected from each 

pig for the evaluation of bacterial burden. All the experiments were authorized by 

national authority and were conducted according to the Italian national regulations 

enforced at the time of this study (Italian legislative Decree 116/92). 

 

Microbiology  

The microbiological analysis of fecal and organ samples were conducted according 

to the ISO 6579:2002/Amendment 1:2007 protocol. Briefly, samples were weighed 

and homogenized as 10% suspension in Buffered Peptone Water (BPW) (Oxoid Ltd., 

UK). This initial solution was then used to perform a decimal dilution series carried 

out by systematically transferring an aliquot of 1 ml of each successive dilution in 9 
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ml of BPW. All BPW-diluted samples were incubated at 37°C for 18 ± 3h. Cultures 

(0.1 ml) were subsequently seeded on Modified Semisolid Rappaport-Vassiliadis 

(MSRV) agar plates (Oxoid Ltd., UK) and incubated at 41.5°C for 24h for the 

selective enrichment of Salmonella. A loopful of growth from each MSRV plate was 

streaked onto Xylose-Lysine-Desoxycholate Agar (Oxoid Ltd., UK) and Brilliant 

Green Agar (Oxoid Ltd., UK) plates and hence incubated at 37°C overnight. Typical 

colonies were confirmed serologically as Salmonella by polyvalent antiserum 

(Salmonella Test Serum; Siemens Healthcare Diagnostics, Italy) and API rapid 20 E 

(Api Rapid 20E; Biomerieux, Italy). This is a semi-quantitative approach that allow 

the determination of the concentration of Salmonella in a sample within a tenfold 

band. 

 

Flow Cytometry of Lymph Nodes Cells  

Cell treatment was performed according to an established procedure (Razzuoli et al., 

2012), with minor modifications. Briefly, frozen lymph nodes cells were thawed at 

38°C and washed with FACS-Buffer (0.1% sodium azide + 2% fetal calf serum in 

PBS). Then, they were divided into aliquots (106 cells each) and reacted with 

monoclonal antibody (mAb) CD21 (Southern Biotech, cat. 4530-02), Mil-2 

(AbCAM, cat. 239191), PMN (AbD Serotec, cat. MCA2599F), or FACS buffer only 

(control) for 30min at 4°C, respectively. Cells were washed, and again incubated for 

30min at 4°C in FACS buffer containing goat anti-mouse IgG-FITC (Invitrogen, 

Molecular Probes®, cat: A10683). After washing in FACS buffer, cells were 

resuspended in 100µL of the same buffer and 1:4 diluted. Samples were analyzed in 

a GUAVA MILLIPORE flow cytometer (Millipore Software). The typical forward 

and side scatter gate was set to exclude dead cells from the analysis. The percentage 

of positive cells beyond the threshold fluorescence channel was assessed in each 
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sample on 10,000 events and compared between mAb-treated and control cells. For 

each antibody, results were expressed in terms of net percentage of positive cells. 

 

Analysis of Cytokines  

In order to evaluate the serum concentration of IL-1 beta and TNF-alpha ELISA kits 

were used (cat. N. PLB00B and PTA00 respectively, R&D Systems, Inc. 

Minneapolis, MN 55413, USA,). These assays employ the quantitative sandwich 

enzyme immunoassay technique using monoclonal antibodies, specific for porcine 

IL-1 beta or porcine TNF- alpha, pre-coated onto a microplate. The intensity of the 

color measured is at 450nm. 

 

Statistical Analysis  

For the in vitro and in vivo assays, the statistical significance of differences between 

study groups was analyzed using ANOVA and Student’s t-test; p < 0.05 was chosen 

as threshold for significance. These symbols were used to indicate the statistical 

significance: ∗P < 0.1; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. 

 

Results 

Salmonella Infection Induces an Innate Immune Response  

In order to verify the involvement of the innate immune response during Salmonella 

infection in piglets, phenotypic analysis in ileo-cecal lymph nodes was performed in 

piglets orally infected with STM14028 and euthanized 48h later. As depicted in 

Figure 1A, it was possible to observe a higher increase in the percentage of CD14+ 

(mainly monocytes) and polymorphonuclear cells with a minor involvement of 

CD21+ B cells. Moreover, the STM14028-infection was confirmed by the bacterial 

count in di erent organs (Figure 1B). These findings are consistent with a rapid 
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recruitment of neutrophils and monocytes/macrophages toward lymph nodes, crucial 

for the effective response to lipopolysaccharides stimulus or concomitant bacterial 

infection. These data suggest a prompt involvement of the innate immune response in 

the regional lymph nodes draining the gut, after an oral infection with STM14028. 

 

LPS Treatment Increases STM14028 Colonization in Isolated Mono-macrophages 

and IPEC-J2 Cells  

In order to assess if STM14028 exploits inflammation in vitro, we used LPS, which 

is known to stimulate the production of inflammatory molecules either in 

monocytes/macrophages (Fang et al., 2004) or in IPEC-J2 cells (Razzuoli et al., 

2013). Monocytes/macrophages and IPEC-J2 cells were thus primed overnight with 

purified LPS alone and/or in combination with a natural antagonist of LPS (RS-LPS) 

capable to inhibit the LPS-stimulation interacting with the TLR-4/MD-2 complex 

recognized by LPS. Afterwards, the cells were infected with STM14028.  

We observed that STM14028 was able to efficiently colonize 

monocytes/macrophages and IPEC-J2 cells at both 3 and 24h post STM14028-

infection (Figures 2A–D). A previous treatment with purified LPS significantly 

increased STM14028 colonization in both cell types at 3 and 24h after infection. 

When RS-LPS antagonist was used, this markedly inhibited LPS stimulation causing 

a colonization level similar to the one obtained by STM14028 infection alone 

(Figures 2A–D). Overall, these results suggest that LPS stimulation can create 

conditions in which STM14028 is more efficiently phagocytized by cultivated cells, 

within it can find suitable conditions to multiply. 
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LPS Induces Inflammation in Piglets, Which in Turn Favors STM14028 

Colonization  

To evaluate the influence of inflammation during Salmonella infection in vivo, we 

established a protocol of inflammation, injecting parenterally LPS in group A and 

STM14028 by oral route in groups A and B. Piglets in group C were kept untreated 

and served as control animals. Then, an assessment was made of whether 

inflammation induced by LPS had favored the progression of Salmonella infection.  

LPS was able to induce a rise in body temperature in piglets of group A 

already at 4h post STM14028-infection (Figure 3) compared to the control (C) and 

the STM14028-infected group (B), reaching body temperature similar to those of 

group A only at 24 and 48h post infection. No significant differences in body weight 

were measured among the three groups throughout the 48h of analysis (data not 

shown).  

Moreover, a remarkable increase of circulating pro-inflammatory cytokines 

has been found (Figure 4). TNF-alpha was in fact detected in the blood of all 

animals but it was produced in a higher amount in group A compared to the groups B 

and C, at 4h post STM14028-infection, without significant differences within groups 

at 24 and 48h post infection. IL-1 beta blood level was higher in group A than in 

groups B and C at 4h post STM14028-infection. At 24h post infection we detected a 

reduction of the IL-1 beta blood concentration in group A with a concomitant slightly 

increased level in group B. Finally, the IL-1 beta level completely reversed its trend 

in groups A and B at 48h post infection, with higher concentration of IL1-b in group 

B compared to group A (Figure 4).  

These results confirm the induction of a pro-inflammatory status mediated by 

LPS immediately after its administration. Noteworthy, in group B the level of pro-



43 
 

inflammatory cytokines required 48h after infection to reach a concentration similar 

to that measured in group A.  

Piglets of the three groups were euthanized 48h after the treatments, and 

STM14028 infection was assessed in different organs and tissues in order to evaluate 

the capability of colonizing either locally in the gut milieu, or systemically. As 

depicted in Figure 5, piglets treated with LPS and infected with STM14028 showed 

a significant increase in colonization of tonsils, cecum, and spleen, whereas in 

mesenteric lymph nodes, colon, ileum and liver no significant difference in 

STM14028 colonization was observed (Figure 5).  

On the whole, these findings provide substantial evidence that LPS is able to 

induce an inflammatory response, which favors STM14028 survival and colonization 

in the intestinal and systemic compartments. 

 

Discussion 

Intestinal inflammation, induced by both chemical treatments and infectious 

agents, is known to be associated with a profound dysbiosis of the colonic microbial 

community structure (Lupp et al., 2007). Many pathogens use inflammation and the 

accompanying dysbiosis for their advantage in order to overcome colonization 

resistance (Stecher et al., 2007). In this context, several studies based on the use of 

the streptomycin treated mouse colitis model, which is characterized by absence of 

resident microbiota (Ahmer and Gunn, 2011), highlighted the emerging concept that 

inflammation of the mucosal epithelium plays a role in environmental fitness of S. 

Typhimurium. It has been shown, indeed, that unlike avirulent strains, wildtype S. 

Typhimurium is capable of out-competing commensal microbiota in re-colonization 

experiments after treatment with antibiotics. Furthermore, S. Typhimurium exploits 

inflammation to promote its own colonization, out-competing the resident microbiota 
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(Stecher et al., 2007). This model however, despite the important contribution to the 

study of the pathogens microbiota interaction in an inflammatory environment, 

presents several limitations. In particular, the inability of the Salmonella mouse 

model to reproduce gastroenteritis and, even more importantly, the elimination of the 

competing flora represent crucial differences with respect to natural Salmonella 

infection in humans. In this work, an experimental model was used based on piglets 

infected with a wild type strain of S. Typhimurium, STM14028, representing an ideal 

animal model potentially capable to overcome the intrinsic limitations of the current 

streptomycin-treated mouse colitis model.  

It was initially observed that, after oral infection with STM14028, the 

immune response is rapidly activated, involving the innate compartment with a 

marked increase of polymorphonuclear and mono-macrophage populations in ileo-

cecal lymph nodes (Figure 1). This confirms the involvement of the principal 

populations engaged in the response to Salmonella infection, already known to be 

relevant for the response to the LPS stimulation. Moreover, these results extend those 

of recent studies about the increased expression of pro-inflammatory cytokines 

(Knetter et al., 2015) and raised lymphocytic infiltration of the gut mucosa after S. 

Typhimurium oral infection of piglets (Gradassi et al., 2013).  

It was investigated whether the induction of inflammation by LPS pre-

treatment of mono-macrophages and porcine intestinal epithelial IPEC-J2 cells 

makes these cells more susceptible to STM14028 infection. The results indicate that 

these cells, primed with LPS, were more prone to the colonization by STM14028 

when compared to the LPS untreated control cells. Otherwise, the use of the RS-LPS 

antagonist, binding the TLR-4/MD-2 complex, inhibits the LPS stimulation. This 

significantly reduced the STM14028 intracellular colonization down to the values of 

LPS-untreated cells (Figure 2).  
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The higher colonization of STM14028 in LPS-treated cells could be 

considered unexpected due to the effect of LPS stimulus. It can however be 

hypothesized that our results are the consequence of high capability of bacterial up-

take. It has been well-established, in fact, that for many facultative intracellular 

pathogens, as well for Salmonella, the key to successful infection lies in the 

interaction between bacteria and host macrophages. Salmonella is able to mount 

specific strategies to escape killing and survive within phagocytes (Fields et al., 

1986; Groisman and Saier, 1990; Gulig et al., 1998; Ruby et al., 2012). Moreover, 

recent reports have revealed fascinating insights to explain how Salmonella exploits 

host response. In particular, the internalization of Salmonella in macrophages via 

TLR, able to bind Salmonella LPS, is a crucial factor to favor Salmonella virulence 

in that it facilitates the acidification of the phagosome, which in turn provides a 

protective niche for Salmonella (Arpaia et al., 2011). In addition, in mouse models, it 

has been observed that LPS present on live Salmonella provides an essential signal, 

via functional TLR-4, for macrophages to produce NO and TNFα (Royle et al., 

2003). This may be exploited by Salmonella to modify macrophage functions and 

promote growth and/or dissemination throughout the host.  

Finally, the main effort was to assess whether the inflammation induced LPS-

treated piglets was able to influence the colonization of STM14028. Piglets treated 

with LPS and infected with STM14028 showed a significant increase in body 

temperature (Figure 3) and the production of IL-1beta and TNF-alpha in the blood 

(Figure 4) at 4h post infection. These results indicate that the onset of the LPS-

mediated acute inflammation leads to cytokines production and body temperature 

rise, already at 4h post infection, promoting significant increase of tonsils, cecum, 

and spleen STM14028-colonization, compared to the control group (Figure 5).  
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These results are in line with studies showing that the parenteral 

administration of dead Gram-negative bacteria or lipopolysaccharide exacerbated the 

growth of virulent S. enterica in mice (Hormaeche, 1990). It is also possible to 

envisage that the increased advantage of Salmonella in inflamed systemic 

environment can also be justified by mechanisms other than a compromised barrier 

integrity or dysbiosis. Moreover, Foster et al. demonstrated that the intravenous 

administration of an attenuated Salmonella strain can exacerbate the growth of 

virulent strains, which involves IL-10 production and requires TLR-4, and its 

signaling pathways involving the adaptor molecules, the TIR-domain containing 

adapter-inducing interferon-β (TRIF), and the Myeloid differentiation primary 

response gene 88 (MyD88) (Foster et al., 2008). A dysregulated type I IFN response 

in tissues can affect fundamental regulatory circuits of innate immunity in 

macrophages, which turns IL-10 into a potent pro-inflammatory cytokine (Sharif et 

al., 2004). In addition, IL-10 and IFN-γ associated responses may cause a gain of 

pro-inflammatory activity, as shown in human models of endotoxemia (Lauw et al., 

2000).  

On the whole, these results, using piglets as model, demonstrate for the first 

time that in acute enteric salmonellosis, S. Typhimurium exploits the inflamed milieu 

to its own advantage. 
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FIGURE 1 | STM14028 infection induces an increase of innate immunity cell 

compartment and colonizes different organs of piglets orally infected. (A) The 

prevalence of CD14+, CD21+, and polymorphonuclear (PMN) cells was determined in ileo-

cecal lymph nodes, 48h post-infection with STM14028. The differences were statistically 

significant (***P ≤ 0.001, multiple comparisons t-test). (B) STM14028 count in ileo-cecal 

lymph nodes (ICLN), spleen, colon, and cecum of infected piglets. Data represent mean with 

error bars as SEM of six piglets per group. 
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FIGURE 2 | STM14028 colonization of mono-macrophages and IPEC-J2 cells at 3 and 

24h post infection (A–D). STM14028 colonization increases with LPS pre-treatment and is 

reduced by RS-LPS antagonist to the values of LPS-untreated cells (*P ≤ 0.1; **P ≤ 0.01, 

One-Way Anova Turkey’s multiple comparisons test, data from one representative 

experiment out of three with similar results). 
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FIGURE 3 | LPS-treatment of piglets induces a rise in body temperature 4h after 

infection with STM14028. The body temperature was measured at different time points on 

three different groups of piglets: treated with LPS and infected with STM14028 (group A); 

only STM14028 infected (group B); naïve control group (group C). At 4h post infection, 

group A showed a significant rise in body temperature compared to the B and C groups. Data 

refer to one out of two separate experiments performed with comparable results. The 

differences between groups were statistically significant (****P ≤ 0.0001; *P ≤ 0.1; **P ≤ 

0.01 multiple comparisons-Fisher’s Least Significant Difference test). 
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FIGURE 4 | LPS-treated piglets show an increased inflammation 4h post STM14028 

infection. IL-1beta and TNF-alpha production was measured at different time points on 

blood samples from three different groups of piglets: treated with LPS and infected with 

STM14028 (group A); only STM14028 infected (group B); naïve control group (group C). 

At 4h post infection, group A showed a significant increase in production of both cytokines 

compared to the B and C groups. The differences between the groups were statistically 

significant (*P ≤ 0.1; **P ≤ 0.01, multiple comparisons-Fisher’s Least Significant Difference 

test). 
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FIGURE 5 | LPS treatment raises STM14028 colonization of tonsils, cecum, and spleen 

of piglets. Recovery of STM14028 from different organs at 48h post infection of piglets 

treated with LPS and infected with STM14028 (LPS+STM group) or only infected with 

STM14028 (STM group). LPS-treatment increases the colonization of tonsils, cecum, and 

spleen but does not influence the colonization of mesenteric lymph nodes, colon, ileum, and 

liver of piglets after STM14028 infection. Data refer to one out of two separate experiments 

performed with comparable results. The differences between the groups were statistically 

significant (*P ≤ 0.01, Mann–Whitney unpaired t-test). 
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Chapter 7 

Salmonella enterica serovar Typhimurium exploits inflammation to 

modify swine intestinal microbiota 
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Abstract 

Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal 

pathogen responsible for foodborne disease worldwide. It is a successful enteric 

pathogen because it has developed virulence strategies allowing it to survive in a 

highly inflamed intestinal environment exploiting inflammation to overcome 

colonization resistance provided by intestinal microbiota. In this study, we used 

piglets featuring an intact microbiota, which naturally develop gastroenteritis, as 

model for salmonellosis. We compared the effects on the intestinal microbiota 

induced by a wild type and an attenuated S. Typhimurium in order to evaluate 

whether the modifications are correlated with the virulence of the strain. This study 

showed that Salmonella alters microbiota in a virulence-dependent manner. We 

found that the wild type S. Typhimurium induced inflammation and a reduction of 

specific protecting microbiota species (SCFA-producing bacteria) normally involved 

in providing a barrier against pathogens. Both these effects could contribute to impair 

colonization resistance, increasing the host susceptibility to wild type S. 

Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is 

characterized by a reduced ability to colonize the intestine, and by a very mild 

inflammatory response, was unable to successfully sustain competition with the 

microbiota. 

 

Introduction 

Nontyphoidal salmonellae (NTS) as Salmonella enterica serovar Typhimurium are a 

leading cause of acute food-borne zoonoses worldwide being responsible for 

hundreds of millions of cases of gastroenteritis and bacteremia annually 

(Hohmann,2001). Pigs are important reservoir of infection for humans as they are 
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asymptomatic carriers of broad host-range serovars of Salmonella (Funk and 

Gebreyes, 2004; Pires et al., 2011). The intestine is considered to be the biological 

niche of Salmonella with the intestinal mucosa having a central role in regulating the 

immune response to bacteria (Hallstrom and McCormick, 2011). However, 

Salmonella has developed strategies to overcome and cope with most of the immune 

defenses developed by the host (Behnsen et al., 2015). Examples of the strategies 

used by Salmonella to evade mucosal innate immunity include the ability to resist to 

the reactive oxygen species generated during inflammation (Bogomolnaya et al., 

2013), in order to produce energy by an anaerobic respiration chain which uses an 

electron acceptor specifically generated in the gut under oxidative stress (Winter et 

al., 2010) and to resist to the sequestration of essential nutrients such as iron and zinc 

(Raffatellu et al., 2009; Liu et al., 2012). As a matter of fact, the ability to resist to 

the antimicrobial host responses characterizing gut inflammation promotes the 

growth of Salmonella in the intestinal lumen over the competing microbiota. During 

the past few years, there has been an expanding interest concerning the role played 

by intestinal microbiota in the susceptibility to enteric pathogens. Microbiota 

contributes to the digestion of dietary substances and to the synthesis of essential 

food supplements such as vitamins, and to the development or maintenance of the 

mucosal immune system (Littman and Pamer, 2011). Moreover, it acts as a barrier 

against invading bacteria both physically, blocking pathogen access to the epithelial 

layer, and also by outcompeting for nutrients reducing the survival and invasiveness 

of enteric pathogens (Hallstrom and McCormick, 2011; Sassone-Corsi and 

Ra atellu, 2015). However, it has been known that S. Typhimurium requires 

intestinal inflammation to circumvent “colonization resistance” provided by the 

intestinal microbiota (Santos et al., 2009). It has been shown that Salmonella can 

alter the normal composition of the gut microbiota, and this influence is associated 
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with Salmonella virulence factors that induce inflammatory mucosal host responses 

(Barman et al., 2008). Furthermore, animals with disrupted microbiota have an 

increased susceptibility to infection (Barman et al., 2008; Juricova et al., 2013). Most 

of the studies examining salmonellosis have been carried out in murine models that 

naturally do not develop gastroenteritis. To resemble the disease in humans, mice can 

be subjected to antibiotic treatment in order to eliminate microbiota and to develop 

colitis (Ahmer and Gunn, 2011). Therefore, due to the lack of an intact microbiota, 

murine models are not suitable for the comprehension of the mechanisms used by 

Salmonella to thrive in the gastrointestinal environment (Elfenbeinetal.,2013). To 

circumvent this limitation, we chose the pig as a model for our study. The advantage 

of the pig lies in the great similarity between humans and pigs in the gastrointestinal 

tract and in the disease caused by Salmonella as well as being a natural host of 

Salmonella (Zhang et al., 2013). We hypothesized that the Salmonella virulence 

degree is a determining factor in influencing the capability of the pathogen to 

overcome protective microbiota. To explore this, we compared the e ects on the 

intestinal microbiota of S. Typhimurium wild type to that of an attenuated 

Salmonella strain lacking the ZnuABC transporter. Our findings provide evidence 

that the microbiota modifications induced by Salmonella are correlated with the 

virulence of the strain. Moreover, Salmonella could overcome colonization resistance 

through the reduction of microbiota members normally involved in the intestinal 

homeostasis and in the inhibition of pathogen growth. 

 

MATERIALS AND METHODS 

Salmonella spp. cultures 

The wild-type strain S. Typhimurium ATCC 14028 (hereafter STMwt) and its 

isogenic attenuated znuABC mutant (hereafter STM∆znuABC; Ammendola et al., 
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2007), were used throughout the study. Strains were grown overnight at 37◦C in 

Brain Heart Infusion broth (Oxoid Ltd., Basingstoke, UK), harvested by 

centrifugation and washed twice in ice-cold phosphate buffer solution (PBS) (Sigma-

Aldrich, Milan, Italy). 

 

Animals and samples collection  

Thirty-one post weaned piglets old 28 days, from Salmonella-free sows (routinely 

monitored with microbiological and serological tests), were used in the experiment. 

Group A (9 piglets) received sterile sodium bicarbonate buffer and it was used as 

naïve control group. Groups B and C (11 piglets each) were orally infected with 

20ml of sterile 10% sodium bicarbonate buffer containing 2 × 109 CFU of 

STM∆znuABC (Group B) or 2 × 109 CFU of STMwt (Group C). At 0, 1, 2, 7, and 12 

days post infection (dpi), rectal temperature was recorded and serum and fecal 

samples were collected to evaluate TNF-α, IL1-α, haptoglobin, and CRP production 

and to detect fecal excretion of Salmonella, respectively. Four piglets of group A and 

5 for groups B and C were sacrificed at 1 dpi, while 5 piglets of group A and 6 for 

groups B and C at 12dpi. Portions of spleen, ileum, cecum, colon, ileocecal lymph 

nodes, and tonsil of the soft palate were taken for microbiological analysis, histology, 

and for mRNA isolation. Feces and cecal and colonic contents were collected to 

analyze the microbiota composition. All the experiments were authorized by national 

authority and conducted according to European Directive (2010/63/EU; approval 

number 54/2012). 

 

Microbiology  

Fecal shedding and organs colonization of STMwt and STM∆znuABC were determined 

according to the ISO 6579: 2002/Amendment 1:2007 protocol. Briefly, samples were 
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weighed and homogenized in nine parts of Buffered Peptone Water (BPW) (Oxoid 

Ltd., UK). This initial solution was then used to perform a decimal dilution series 

carried out by systematically transferring an aliquot of 0.5ml of each successive 

dilution in 4.5ml of BPW. All BPW-diluted samples were incubated at 37°C for 18 ± 

3h. 0.1ml of cultures were subsequently seeded on Modified Semisolid Rappaport 

Vassiliadis (MSRV) agar plates (Oxoid Ltd., UK) and incubated at 41.5°C for 24h 

for the selective enrichment of Salmonella. A loopful of growth from each MSRV 

plate was streaked onto Xylose-Lysine-Desoxycholate Agar (Oxoid Ltd., UK) and 

Brilliant Green Agar (Oxoid Ltd., UK) plates and hence incubated at 37°C overnight. 

Suspect Salmonella colonies were subjected to biochemical identification by the 

BBL Enterotube II (BD Franklin Lakes, USA) and serological identification using 

Salmonella group-specific antisera (Remel, Lenexa, USA). This is a semi-

quantitative approach that allows the quantification of Salmonella in a sample within 

a tenfold band (detection limit 1 CFU/g feces). 

 

Histology 

Tissue samples of cecum were fixed in formalin, embedded in paraffin wax and 

stained with hematoxylin and eosin according to standard procedures.  

 

Immune mediators production  

TNF-α, IL1-α, haptoglobin and C-reactive Protein (CRP) production was measured 

in serum samples from animals bled at 1 and 12 dpi using a sandwich ELISA 

(Porcine Quantikine ELISA Kit, R&D System, Mn, USA), according to the 

producer’s instructions.  
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Gene expression  

Total RNA was extracted from sections of the cecum, colon, and ileocecal lymph 

nodes using the PureLink RNA Mini Kit (Ambion, Life Technologies). Reverse 

transcription of 1µg of RNA was performed for each individual sample using Tetro 

cDNA Synthesis Kit (Bioline) and 5µl of cDNA were used for real-time reaction 

using SensiMix II Probe Kit (Bioline). Primers for cytokines (RPL-32, IL-1α, IL-1β, 

TNF-α, and IFN-γ) were designed using PrimerQuest Design Tool (Integrated DNA 

Technologies, IDT; see Supplementary Table 1). Fold changes in gene expression 

were calculated using the ∆∆Ct method in comparison to the results for the reference 

housekeeping gene RPL32. 

 

Fecal 16S rDNA Metagenomics Next-Generation Sequencing  

Bacterial genomic DNA (gDNA) was extracted from feces, cecal, and colonic 

contents using QIAmp DNA Stool Mini Kit (Qiagen, Hilden, Germany). Fifty 

nanograms of gDNA were used to amplify by PCR the hypervariable V3-V4 regions 

of the 16S rDNA using bacteria/archeal primers 515F/806R with Illumina overhang 

adapters (Caporasoetal.,2012). One nanogram of PCR amplicon was used for each 

sample to prepare the sequencing library according to the Illumina Nextera XT DNA 

Sample Preparation Kit. During this procedure, using a limited cycle PCR, Illumina 

sequencing adapters, and dual-index barcodes were added to the amplicon. All the 

libraries were subsequently normalized and pooled by 24 prior to sequencing 

according to manufacturer’s instructions (Illumina Nextera XT DNA Library 

Preparation Guide). Each pool of 24 samples was sequenced on Illumina MiSeq 

using a 2 × 250 paired-end (PE) setting on a standard MiSeq flow cell. Sequencing 

reads were trimmed and all the reads with a quality score below the Q20 parameters 

were discarded from the analysis. Then, all the PE reads were joined using the 
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join_paired_ends scripts of QIIME utilities (Caporaso et al., 2010) to create longer 

fragments. The Lederhosen pipeline (based on UCLUST software and green genes v 

13.5 16S database) was used to create the OTU table for each sample. The OTU 

tables were provided as input for the MatR package to remove. 

 

Quantitative real-time PCR of 16S rRNA gene sequences 

q-PCR was performed using bacterial groups-specific 16S rRNA primers (see 

Supplementary Table 2) to determine the amount of bacteria in the study groups. 

However, this method is an approximation of microbial abundance as a great amount 

of bacteria features many copies of the 16S gene. Therefore, both variation in the 

abundance of organisms and genomic copy number variation can influence the 

quantitative prediction of 16S gene abundances. Real time PCRs were carried out on 

SensiMix SYBR Low-ROX Kit (Bioline). The amplification program started with an 

initial step at 95°C for 10min, followed by 40 cycles of 15s each at 95°C, 15s at 

55°C-63°C (depends on the Tm of primers), and 15s at 72°C. The 16S gene copy 

numbers per µl of DNA, from each sample, were determined by using standard 

curves generated from fragments of 16S rRNA genes of reference bacteria specific 

for each group cloned into plasmid (Promega) as templates. The plasmid was purified 

by using the Wizard Plus SV Minipreps DNA purification kit (Promega) and its 

concentration was quantified by using a NanoDrop® ND1000 Spectrophotometer. 

With the molecular weight data of the plasmid and insert sequences, the copy 

number (g/molecule) was calculated according to the equation defined by Whelan et 

al. (2003). For each microbial population, the corresponding plasmid was chosen to 

create a 10-fold standard curve ranged from 108 to 102 copies. Copy numbers of 16S 

rRNA genes per µl of sample (feces, caecal, and colonic contents) were transformed 

into logarithms to achieve normal distribution, and the mean ± standard deviation 
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was calculated. To estimate the copy number of Enterobacteriaceae other than 

Salmonella, for each sample the Salmonella 16S gene copy number was subtracted 

from the total Enterobacteriaceae 16S gene copy number. 

 

Statistical analysis 

Statistical analysis was performed using GraphPad 6.0 software for Windows 

(GraphPad Software Inc.; San Diego; CA). Microbiota analysis by q-PCR were 

estimated using one-way analysis of variance (One-way ANOVA). Fecal shedding, 

organs colonization, and cytokines expression were analyzed using non-parametric 

Mann–Whitney test. Differences in body temperature and differences between 

groups in the TNFα, IL1-α, haptoglobin, and CRP production were estimated using 

non-parametric Dunn’s test. Moreover, non-parametric Kruskal–Wallis was used to 

test the presence of significant differences among the sample groups analyzed for 

each different taxonomical level considered (Phylum, Family, Genus) and 

Benjamini-Hochberg FDR was applied to correct multiple testing. A P ≤ 0.05 was 

considered statistically significant. Non-parametric Dunn’s test was also used to 

estimate differences in alfa diversity. 

 

RESULTS 

Pathogenicity of Salmonella Typhimurium is positively correlated to bacterial 

virulence  

Piglets infected with STM∆znuABC (group B) and STMwt (group C) had a transient 

increase in body temperature at 1 dpi compared with naïve controls (group A). At 2 

dpi, only the group C (STMwt) continued showing a significantly higher body 

temperature than group A (Figure 1A). Moreover, differences in the levels of 

Salmonella fecal shedding were observed among the study groups. Animals infected 
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with STMwt and STM∆znuABC started to shed bacteria the day after experimental 

infection and reached the peak of excretion at 2 dpi. However, unlike group C 

(STMwt) that continued shedding a similar amount of bacteria throughout the whole 

period of observation, group B (STM∆znuABC) showed a sharp decline over time 

(Figure 1B). To further assess the inflammatory response induced by STMwt and 

STM∆znuABC, piglets were bled at different time points and haptoglobin, CRP, IL1-α, 

and TNF-α levels were measured in sera. Group C (STMwt) had an early immune 

response characterized by a significant increase of haptoglobin and IL1-α at 2 dpi, 

and TNF-α at 2 and 7 dpi, followed by a late production of CRP which reached a 

significant level at 12 dpi. Conversely, group B (STM∆znuABC) did not show any 

different production of haptoglobin, CRP, IL1-α, and TNF-α when compared with 

the naïve (group A; Figure 2). Piglets of different groups were euthanized at 1 and 

12 dpi to assess bacterial colonization of organs. As shown in Figure 3, colonization 

occurred as early as 1 dpi, either in gut or in systemic organs. However, piglets 

infected with STMwt (group C) showed a significant higher degree of colonization 

than piglets infected with STM∆znuABC (group B) in the gut organs (p < 0.05) at 1 dpi 

(Figure 3) and in the colon (p < 0.05) at 12 dpi (Supplementary Figure 1). Organs 

samples taken from naïve animals (group A) were negative. These findings confirm 

that STMwt and STM∆znuABC have a differential colonization efficiency. Moreover, 

STM∆znuABC did not show a significant systemic inflammation. We could infer that 

these results are a direct consequence of the intrinsic incapability of STM∆znuABC to 

induce an inflammatory response but, in alternative, they could be due to the lower 

colonization of STM∆znuABC which is not sufficient to give rise to a systemic immune 

response 
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Histology 

We compared the cecum histopathological findings from control, STM∆znuABC and 

STMwt-infected piglets at 1 and 12 dpi. At 1 dpi, sections from control piglets did not 

show inflammatory infiltrate (Figure 4A); conversely, piglets infected with 

STM∆znuABC and STMwt showed neutrophilic infiltrate in the lamina propria and 

submucosa (Figures 4B, C). The neutrophilic infiltrate appeared moderate and 

multifocal in the STM∆znuABC (Figure 4B), with crypt abscess formation, whereas 

marked and diffused in the STMwt infected piglets (Figure 4C). On the other hand, 

the neutrophil inflammation was mild at 12 dpi and present in a multifocal pattern in 

piglets infected with STM∆znuABC, while inflammation was mild and diffuse in piglets 

infected with STMwt (data not shown). Overall, a histological investigation indicated 

the presence of inflammatory infiltrate only in STMwt and STM∆znuABC. A higher 

degree of inflammation was observed in piglets infected with STMwt. 

 

Influence of Salmonella infection on the expression of pro-inflammatory 

cytokines  

Pro-inflammatory (IL1-α, IL1-β, TNF-α) and regulatory (IFNγ) cytokines were 

observed so as to evaluate the early immune response in the ileocecal lymph nodes, 

colon, and cecum at 1 and 12 dpi (Figures 5A–H; Supplementary Figures 2A–H, 

3A,B). At 1 dpi, we observed a tendency of the pro-inflammatory cytokines to 

increase in all organs analyzed; however, only the increase of IL1-β (p < 0.05) in the 

cecum and in the colon, and IL1-α (p < 0.05) in the lymph nodes of group C (STMwt) 

were statistically significant (Figures 5A–C; Supplementary Figures 2A–C, 3A–C). 

At 12 dpi, overall expression of IL1-α, IL1-β, and TNF-α returned to baseline levels 

(Figures 5E–G; Supplementary Figures 2E–G, 3E–G). Moreover, TNF-α (p < 0.01), 

IL1-β (p < 0.01), and IL1-α (p < 0.05) were significantly down-regulated in the colon 
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of piglets infected with STM1znuABC (group B; Supplementary Figures 2E–G), and 

IL1-α (p < 0.05) also in the lymph nodes of group C (STMwt; Supplementary Figures 

3E–G). 

 

S. Typhimurium alters composition of the microbiota in the post-weaned piglets 

model  

Aiming to more specifically analyze the impact of STMwt and STM∆znuABC on some 

of the most representative bacterial members, we used quantitative real time PCR (q-

PCR). As depicted in Figure 6, consistent changes in the microbiota were present 

primarily in the cecal contents at 1 day post-Salmonella infection, with a significant 

increase of total 16S rRNA gene copies (representative of total bacterial numbers) in 

piglets infected with STMwt (group C; p < 0.05) compared to naïve animals (group 

A) and piglets infected with STM∆znuABC (group B; p < 0.05). Differences in the 

Lactobacillus/Lactococcus group were statistically significant between groups B and 

C (p < 0.05) and very close to significance between groups A (naïve) and C (STMwt) 

in the cecum (Figure 6A). In the feces (Supplementary Figure 4), the 

Lactobacillus/Lactococcus group showed significant differences at 1, 2, 7, and 12 dpi 

(p < 0.05) between groups A and C, and only at 12 dpi between groups B and C (p < 

0.05; Supplementary Figure 4). A decrease in the Eubacterium rectale/Clostridium 

coccoides group was evident in group C (p < 0.05) at 12 dpi in the cecum and at 2 

dpi in the feces (p < 0.01; Figure 6B; Supplementary Figure 4C). No differences 

among the three experimental groups were observed for Bacteroides in any of the 

samples analyzed. Conversely, at 1 dpi an evident increase in the Bifidobacterium 

group was observed in all the districts investigated between groups A and C (p < 

0.01 for cecal content and p < 0.001 for colon and feces) and between groups B and 

C (p < 0.01; Figure 6A; Supplementary Figures 4B, 5A). At 12 dpi, the 
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Bifidobacterium group showed a sharp reduction in groups B (p < 0.001) and C (p < 

0.001) in the cecal content and in group B (p < 0.05) in the colonic one when 

compared to group A (naïve; Figure 6B; Supplementary Figure 5B). The levels of 

the Enterobacteriaceae other than Salmonella decreased significantly in both groups 

of animals infected with Salmonella strains in the cecal and colonic contents at 12 

dpi (Figure 6B; Supplementary Figure 5B). A higher level of Salmonella, consistent 

with the microbiological findings, was observed in group C (STMwt) compared to 

group B (STM∆znuABC) in all the intestinal samples, while Salmonella was never 

detected in group A (naïve; Figure 6; Supplementary Figures 4, 5). These results 

show that S. Thyphimurium is able to alter intestinal microbiota in pigs inducing 

modifications correlated to its virulence. 

 

Bacterial diversity of the fecal microbiota after Salmonella infection 

Massive parallel sequencing of the 16S rDNA hypervariable V3-V4 region was 

performed on fecal samples available from the three experimental groups A, B, and 

C. The sequencing yielded a total of 177198 reads passing quality control (median 

reads per sample 11030). OTU classification yielded a median of 5742 OTUs per 

sample. Sequencing reads are available at http://www.ncbi.nlm.nih.gov/bioproject/ 

PRJNA302126 (BioProject accession ID: PRJNA302126). We evaluated the 

bacterial diversity of the fecal microbiota associated with Salmonella strains by 

estimating alpha- and beta-diversity. Shannon index demonstrated that the fecal 

microbiota diversity in piglets infected with STM∆znuABC (group B) and STMwt 

(group C) was significantly higher than the naïve animals (group A), at 0 and at 2 dpi 

respectively (p < 0.01). However, group C showed a significant lower alfa diversity 

at 12 dpi than group A (Figure 7A). Using Fisher’s alpha, an index not influenced by 

the sample size and less affected by the abundance of the most common species than 
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Shannon’s index, we found a higher diversity in piglets belonging to group C 

compared to group B at 2 dpi (p < 0.05). At the same time, Fisher’s alpha confirmed 

the significant lower alfa diversity in group C at 12 dpi compared to group A (p < 

0.05; Figure 7B). The beta diversity was calculated using both unweighted Unifrac 

and Bray-Curtis dissimilarity; principal component analysis (PCoA) was performed. 

As shown in Figure 8A, using Unifrac, four out of five samples belonging to group 

C (STMwt) clustered separately along the principal coordinate 1 (PCA1) at 12 dpi. In 

addition, a clear separation of group B (STM∆znuABC) from the rest of the samples is 

noticeable along the principal coordinate 2 (PCA2). The PCoA using Bray-Curtis 

dissimilarity did not allow any clear separation of the groups, although all the five 

samples belonging to group C (STMwt), at 2 dpi, clustered at the extreme right along 

the principal coordinate 1 (PCA1; Figure 8B). On the light of these data, it can 

inferred that Shannon and Unifrac results, in which it seem to be differences among 

groups at time 0, could be biased by small sample size. Therefore, the microbiota 

composition of the different groups could be considered similar at time 0. 

 

Salmonella strains-associated alterations in fecal microbiota by NGS  

In order to compare how the composition of the fecal bacteria differed among 

treatment groups, the Kruskal–Wallis test and the Benjamini-Hochberg FDR method 

were used to identify differentially abundant taxa. The distribution of reads into 

phyla revealed that the bacterial communities of all samples consisted primarily of 

Firmicutes and Bacteroidetes. Microbiota analysis showed that 7 phyla, 112 families, 

404 genera, and 15 phyla, 143 families, and 719 genera differed across groups A, B, 

and C, respectively at 2 and 12 dpi. Figures 9A,B and Supplementary Figure 6 

represent heatmaps showing the genus-level clustering according to frequency within 

each sample (abundance ratio greater than 0.1) at times 0, 2, and 12 dpi; abundant 
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genera were color coded red, and white color coding indicated missing genera. The 

most remarkable difference reported in the piglets infected with STMwt (group C) 

compared with naïve (group A) is that they showed an abundant presence of lactic 

acid-producing bacteria and a reduction of short chain fatty acids (SCFAs)-producing 

bacteria (Figures 9A,B). Analysis of data also revealed that piglets infected with 

STMwt (group C) initially showed a decrease in Prevotella at 2 dpi compared to the 

naïve (group A). In addition, at 12 dpi, a more abundant presence of Prevotella, 

Phascolarcobacterium, and Eubacterium was evident in group C (STMwt) rather than 

in groups A and B. Moreover, clustering analysis highlighted the differences in the 

sample distributions according to the treatment type. At 2 dpi, the most represented 

genera displayed a perfect clusterization of each single sample into its belonging 

study group (Figure 9A). Similarly, at 12 dpi, each piglet grouped into its belonging 

treatment group, except 2 samples (5 and 12) clustered in a different study group 

(Figure 9B). Moreover, at 12 dpi, groups A (naïve) and B (STM∆znuABC) are more 

similar to each other, while group C (STMwt) featured more relevant effects (Figure 

9B). No significant differences were detected when each single group was analyzed 

longitudinally according to the three collection times. These data show that infection 

with different strains of S. Typhimurium is associated with different alterations of 

fecal microbiota. 

 

DISCUSSION 

The importance of pigs as a source of Salmonella in the food chain is well-known. 

However, while Salmonella pathogenicity has been widely studied in mice, our 

knowledge on the modality of interaction of this pathogen with pigs is still limited. It 

has been known that different and multiple factors can influence the dynamics of 

Salmonella colonization in swine, including pathogen features (virulence 
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mechanisms, exposure dosage), pig immune responses and the complex interplay 

between the pathogen and the intestinal microbiota (Bearson et al., 2013). In this 

study, we used a post-weaned piglet model to compare differences in the host 

colonization, inflammatory response, and modification of the intestinal microbiota 

induced by STMwt and STM∆znuABC in order to elucidate the interplay among host, 

pathogen and gut microbiota. STM∆znuABC was chosen due to the fact that our 

previous studies have revealed that this strain is strongly attenuated either in mice or 

in pigs (Ammendola et al., 2007; Pasquali et al., 2008; Pesciaroli et al., 2013). 

Moreover, studies carried out in a mouse model showed that ZnuABC-mediated zinc 

uptake confers resistance to the antimicrobial protein calprotectin and promotes 

Salmonella growth over the competing intestinal microbiota (Liu et al., 2012). Here, 

we demonstrate that a different organs colonization, intestinal inflammation and 

modification of porcine microbiota are correlated with the different virulence of 

Salmonella strains. The inflammatory response evaluated through the expression of 

the immune mediators, and corroborated by histological findings, has shown that 

STMwt induces a prompt increase of serum markers of inflammation during the early 

stage of infection (1 dpi). Moreover, at the same time point, the expression of tissue-

associated markers showed a tendency to increase even if only IL1-β in cecum and 

colon (p < 0.01) and IL1-α in ileocecal lymph nodes (p < 0.01) reach statistical 

significance. The prompt induction of host response could be due to the rapid and 

high-level replication of STMwt as showed by our microbiological data. On the 

contrary, at 1 dpi, the histological and immunological analysis revealed a mild 

intestinal inflammation and a poor systemic response induced by STM∆znuABC 

confirming characteristics of attenuation in growth and virulence of this strain. As a 

whole, these observations indicate that the host is able to mount a rapid innate 

immune response following Salmonella infection within a few hours after gut 
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colonization. The magnitude of the response and the severity of the clinical 

manifestations provide evidence that the host response and lesions are correlated and 

dependent to S. Typhimurium virulence. It is known that, similarly to what happens 

in vitro and in murine models of infection (Barthel et al., 2003; Stecher et al., 2007; 

Barman et al., 2008), S. Typhimurium strains induce an acute inflammatory response 

in the intestinal mucosa also in piglets (Bearson et al., 2013). Several studies have 

proved how S. Typhimurium takes advantages of inflammation to compete with the 

resident microbiota and to colonize the inflamed gut in mice (Lupp et al., 2007; 

Stecher et al., 2007; Barman et al., 2008; Winter et al., 2010) and piglets (Chirullo et 

al., 2015). In our study, we investigated the impact of S. Typhimurium on the porcine 

intestinal microbial communities. We found that S. Typhimurium infection modifies 

either the number or the composition of gut resident bacteria. In particular, these 

changes were associated with STMwt, while the attenuated STM∆znuABC seemed to be 

less fit to sustain competition with the microbiota. These observations are in 

agreement with the studies performed in mice, where attenuated Salmonella mutants 

do not colonize intestine as well as wild-type strains as they are not able to trigger an 

efficient inflammatory response (Stecher et al., 2007; Lawley et al., 2008; Raffatellu 

et al., 2009; Winter et al., 2010). The major changes in the microbiota composition 

are mainly related to the significantly more abundant presence of 

Lactobacillus/Lactococcus group after STMwt infection. This observation is in 

agreement with the results obtained by Videnska et al. (2013), which showed a 

significant increase of Lactobacillaceae in chicken cecal microbiota after S. 

Enteritidis infection. A possible explanation could be attributable to the 

microaerophilic growth of Lactobacilli, which may allow them to survive under 

conditions of increased redox potential due to the production of reactive oxygen 

species by granulocytes infiltrating the site of inflammation as occurs in a highly 
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inflamed gut (Videnska et al., 2013). Indeed, there is evidence that lactic acid 

accumulation could contribute to impair the intestinal defense barrier and increase 

the osmotic load in the intestinal lumen (Ling et al., 2014). The utilization of next-

generation high-throughput sequencing allowed a wider description of the intestinal 

microbiota. In our study, clustering analysis shows that the microbiota composition 

changed after infection with Salmonella strains and the characteristics of the 

modifications were correlated with the virulence of the strain used. Our analysis 

reveals a different abundance of the most represented genera in piglets infected with 

STMwt when compared with STM∆znuABC and naïve piglets. In fact, microbiota of 

piglets infected with STMwt was characterized by an overall reduction of SCFA-

producing bacteria (Ruminococcaceae including Faecalibacterium, Roseburia, 

Butyrivibrio, and Clostridium genera). SCFAs such as acetate and butyric acid are 

produced by microbial fermentation of carbohydrates and provide beneficial 

immunomodulatory and anti-inflammatory properties (Ling et al., 2014). In 

particular, butyric acid contributes to the inhibition of Salmonella in an acidic 

environment (Bearson et al., 2006), decreases invasion of intestinal cells by down-

regulating expression of Pathogenicity island 1 (Gantois et al., 2006) and reduces the 

Salmonella-induced proinflammatory response of enterocytic cells in vitro (Malago 

et al., 2005). In line with these observations, previous studies showed that 

Faecalibacterium, which is correlated with butyrate production, also exhibits anti-

inflammatory effects counterbalancing intestinal microbiota dysbiosis (Sokol et al., 

2008). Hence, the reduced abundance of SCFA-producing bacteria induced by 

STMwt could explain the enhanced inflammatory status observed in the 

gastrointestinal tract of piglets treated with this Salmonella strain; and it could be of 

interest to investigate the mechanisms leading to a reduction of this potentially 

protective component of the intestinal microbiota. Moreover, upon infection with 
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Salmonella strains, microbiota composition also showed changes in Prevotella, 

Phascolarcobacterium and Eubacterium. Similarly, to what elsewhere reported 

(Bearson et al., 2013), we observed a decrease of Prevotella in piglets infected with 

STMwt at 2 dpi. However, the limitation of available information about the biological 

function of such genera makes difficult to extrapolate any significant meaning to our 

findings. At the same time, it should be acknowledged that the alpha and beta 

diversity patterns across the three groups within the three time points analyzed 

presented several discrepancies that can be attributable to the sensitivity of the next-

generation sequencing technology and to the relative small sample size. However, 

both alpha-diversity indices converge on a significant lower alpha-diversity in group 

C compared to group A at dpi 12. At the same time, the significant difference found 

in the whole microbiome composition at time 0 between group A and group B, 

highlighted by Shannon alpha index and Unifrac beta-diversity PCoA, may raise the 

possibility that the inability of the mutant strain to colonize the intestine could be 

related to the composition of the microflora. Although we cannot discard this 

hypothesis, the present data does not allow any speculation and further studies using 

a larger sample size and, possibly, a more detailed time-course is warranted. Overall, 

our data show that the results of the interaction among Salmonella, the intestinal 

microbiota and the gut response are influenced by the specific characteristics of the 

three factors. The virulence of Salmonella and the alteration of microbiota 

composition is crucial in determining the outcome of the infection. 
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FIGURE 1 | STM1znuABCQ4 (group B) Q5 shows a lower virulence in piglets 

compared to the STMwt (group C). (A) Mean values and standard deviation (SD) bars of 

body temperature of study groups in different time points. In the table on the bottom the 

levels of significance were reported among groups at different time points. Different letters 

at each time point represent significant different results (P ≤ 0.05, Dunn’s test). (B) Mean 

values and SD bars of CFU/g of STM1znuABC and STMwt shed in feces. Results of piglets 

infected with STM1znuABC were compared to results of STMwt and differences were 

statistically significant when P ≤ 0.05, Mann–Whitney test 
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FIGURE 2 | (A–D) S. Typhimurium induces an inflammatory response correlated to the 

virulence of the bacterial strain. Haptoglobin, TNF-α, IL1-α, and C-reactive protein levels in 

serum of animals were determined by ELISA. The asterisks indicate statistical significance: 

*P ≤ 0.05 and **P ≤ 0.01 (multiple comparisons-Dunn’s test). 
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FIGURE 3 | STM
wt

 induces a higher organs colonization than STM
∆znuABC

 at 1 dpi. 

Piglets were orally infected with 2 × 109 CFU of STM∆znuABC (group B) or STMwt (group C), 

and bacterial burdens were determined at 1 dpi. Differences between groups B and C were 

estimated using non-parametric Mann–Whitney test and were considered significant when P 

≤ 0.05. Organ samples taken from naïve animals (group A) were negative. Error bars 

represent one SD from the mean. 

 

FIGURE 4 | (A–C) Photomicrographies showing histological changes of the cecum. (A) 

Naïve control piglets; (B) piglets infected with STM∆znuABC: multifocal and moderate 

neutrophilic infiltrate (arrows), crypt abscess formation; (C) piglets infected with STMwt: 

marked and diffuse neutrophilic infiltration. 
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FIGURE 5 | (A–H) Cytokines expression reveals that unlike STMwt, STM∆znuABC strain is 

not able to induce a strong host immune response. TNF-α, IL1-α, IL1-β, and INF-γ 

expression was measured in the cecum at 1 and 12 dpi by real time RT-PCR. Gray bars and 

black bars represent STM∆znuABC-infected (group B) and STMwt-infected piglets (group C), 

respectively. The asterisk indicates statistical significance *P ≤ 0.05, Mann–Whitney test. 
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FIGURE 6 | STM
wt 

and STM
∆znuABC

 differently modify cecal microbiota of piglets. 

Piglets were sacrificed at 1 and 12 dpi (A,B). Bacterial genomic DNA was isolated from 

cecal content and qPCR analysis measured the abundance of specific commensal bacterial 

groups. White bars represent uninfected controls (group A). Gray and gray-black bars 

represent STM∆znuABC- (group B) and STMwt- (group C) infected piglets, respectively. P-

values were calculated using One-way ANOVA with Bonferroni’s post-test. Significant 

differences between groups are indicated by *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. Eub, 

all bacteria; Lacto, Lactobacillus/Lactococcus group; Clost, Eubacterium 

rectale/Clostridium coccoides; Bact, Bacteroides sp.; Bifido, Bifidobacterium; Prev, 

Prevotellaceae; Ent, Enterobacteriaceae other than Salmonella; STM, S. Typhimurium. 
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FIGURE 7 | Structural comparison of fecal microbiota among groups A, B, and C. The 

Shannon index (A) and Fisher’s alpha (B) were used to estimate diversity of the fecal 

microbiota in naïve animals (group A) and in STM∆znuABC- (group B) and STMwt- (group C) 

infected piglets. Boxes represent median, and first and third quartiles; whiskers indicate 

minimum and maximum values. The asterisks indicate statistical significance *P ≤ 0.05 and 

**P ≤ 0.01, Dunn’s test. 
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FIGURE 8 | Principal Coordinate analysis plot (PCoA) of unweighted UniFrac 

distances (A) and Bray-Curtis dissimilarity (B) for the fecal microbiota across the three 

study groups. PCA, principal coordinate 
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FIGURE 9 | (A,B) Heatmap indicating genus-level changes in the microbiota composition 

of piglets Naïve (group A), and piglets infected with STM∆znuABC (group B) or with STMwt 

(group C) at 2 and 12 dpi. The relative abundance of the most represented genera is indicated 

by a gradient of color from white (low abundance) to red (high abundance). The hierarchical 

clustering analysis of the samples, based on the similarity of the microbiota composition, are 

displayed on the left. Animals 1–5: group A (Naïve), green; animals 6–10: group B 

(STM∆znuABC), blue; piglets 11–15: group C (STMwt), orange. 
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SUPPLEMENTARY MATERIALS 

Supplementary Table 1. Oligonucleotide sequences and DNA probes for the detection of 
porcine cytokines. F and R indicate primers forward and reverse. 

mRNA target Oligonucleotides (5’-3’) 

 F: CCTACTGCACTTCGAGGTTATC 

TNF-α R: ACGGGCTTATCTGAGGTTTG 

 Probe: 56-FAM/CTGGCCCAA/ZEN/GGACTCAGATCATCG/IBFQ 

 F: AGACCAGTCTCCTCTTCTTCT 

IL1-α R: CCTGCCTTGTGGCAATAAAC 

 Probe: 56-FAM/TACTTCAAA/ZEN/TCAGCCGCCCATCCA/IBFQ 

 F: GACCTTAGGGATCAAGGGAAAG 

IL1-β R: CCATGTCCCTCTTTGGGTATC 

 Probe: 56-FAM/TGATGAAAG/ZEN/ATAACACGCCCACCCT/IBFQ 

 F: TCAAAGATAACCAGGCCATTCA 

IFN-γ R: CAGTTTCCCAGAGCTACCATTTA 

 Probe: 56-FAM/AGGAGCATG/ZEN/GATGTGATCAAGCAAGA/IBFQ 

 F: CTCAGTGAGTTAAGGATCCAGTG 

RPL32 R: CGAGCCCACTATTCATTTCAAC 

 Probe: 56-FAM/TGTGGCAGA/ZEN/TGTGGTTTAGACCCC/IBFQ 

 

 

Supplementary Table 2. Real-time PCR primers used in this study. The primer sets were 
tested for sensitivity and specificity against a panel of genomic DNAs and showed minimal 
or no cross-reactivity. 

 

 

 

 

 

 

 

Group Primer Sequence (5’ to 3’) References 
Eubacteria UniF340 

UniR514 
ACTCCTACGGGAGGCAGCAGT 
ATTACCGCGGCTGCTGGC 

M. Barman D. Unold, K. Shifley, 
E. Amir, K. Hung, N. Bos, and N. 
Salzman et al. Infect Immun. 
76:907–15, 2008. 

Lactobacillus/Lactococcus 
 

LabF362 
LabR677 

AGCAGTAGGGAATCTTCCA 
CACCGCTACACATGGAG 

Eubacterium rectale/ 
Clostridium coccoides 

UniF338 
C.cocR491 

ACTCCTACGGGAGGCAGC 
GCTTCTTAGTCAGGTACCGTC
AT 

Bacteroides BactF285 
UniR338 

GGTTCTGAGAGGAGGTCCC 
GCTGCCTCCCGTAGGAGT 

Enterobacteriaceae UniF515 
Ent826R 

GTGCCAGCMGCCGCGGTAA 
GCCTCAAGGGCACAACCTCCA
AG 

Salmonella Sal454 
Uni785R 

TGTTGTGGTTAATAACCGCA 
GACTACCAGGGTATCTAATCC 

Bifidobacteria 
F-Bifid 09c 
R-Bifid 06 

CGGGTGAGTAATGCGTGACC 
TGATAGGACGCGACCCCA 

J. P. Furet, O. Firmesse, M. 
Gourmelon, C. Bridonneau, J. 
Tap, S. Mondot, J. Doré, and G. 
Corthier, FEMS Microbiol Ecol. 
68:351-62, 2009. 

Prevotella 
PrevF 
PrevR 

CGGGTTGTAAACTGCTTTTAT
GAAG 
TTTATTGGGTTTAAAGGGAGC
G 

S. M. D. Bearson, H. K. Allen, B. 
L. Bearson, T. Looft, B. W. 
Brunelle et al, Infect Genet Evol. 
16:330-40, 2013. 
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Supplementary Figure 1. STM
wt

 induces a higher colonization than STM
∆znuABC 

at 12 

dpi. Piglets were orally infected with 2×109 CFU of STM∆znuABC (group B) or STMwt (group 

C) and bacterial burdens were determined at 12 dpi. Differences between groups B and C 

were considered significant when P≤0.05 (*), Mann Whitney test. Error bars indicate one SD 

from the mean.  
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Supplementary Figure 2 (A-H). TNF-α, IL1-α, IL1-β and INF-γ expression was measured 

in the colon at 1 and 12 dpi, by real time RT-PCR. Grey bars and black bars represent 

STM∆znuABC- (group B) and STMwt-infected piglets (group C), respectively. The asterisks 

indicate statistical significance *P≤0.05 and **P≤0.01), Mann-Whitney test. 
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Supplementary Figure 3 (A-B). TNF-α, IL1-α, IL1-β and INF-γ expression in the ileocecal 

lymph nodes at 1 and 12 dpi, was measured by real time RT-PCR. Grey bars and black bars 

represent, STM∆znuABC-(group B) and STMwt -infected piglets (group C), respectively. The 

asterisk indicates statistical significance *P≤0.05, Mann-Whitney test. 
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Supplementary Figure 4 (A-E). Quantitative analysis of specific commensal bacterial 

groups in the feces of piglets infected with STM∆znuABC or STMwt at different timepoints. 

White bars represent uninfected controls. Grey bars and grey-black bars represent 

STM∆znuABC- (group B) and STMwt-infected piglets (group C), respectively. P-values were 

calculated using one-way ANOVA with Bonferroni’s post-test. Significant differences 

between groups are indicated by *P≤0.05, **P≤0.01 and ***P≤0.001. Eub, all bacteria; 

Lacto, Lactobacillus/Lactococcus group; Clost, Eubacterium rectale/Clostridium coccoides; 

Bact, Bacteroides sp.; Bifido, Bifidobacterium; Prev, Prevotellaceae; Ent, 

Enterobacteriaceae other than Salmonella; STM, S. enterica serovar Typhimurium. 
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Supplementary Figure 5 (A-B). Quantitative analysis of specific commensal bacterial 

groups in the colonic content of piglets infected with STM∆znuABC or STMwt, at 1 and 12 dpi. 

White bars represent uninfected controls. Grey bars and grey-black bars represent 

STM∆znuABC- (group B) and STMwt-infected piglets (group C), respectively. P-values were 

calculated using one-way ANOVA with Bonferroni’s post-test. Significant differences 

between groups are indicated by *P≤0.05), **P≤0.01) and ***P≤0.001. Eub, all bacteria; 

Lacto, Lactobacillus/Lactococcus group; Clost, Eubacterium rectale/Clostridium coccoides; 

Bact, Bacteroides sp.; Bifido, Bifidobacterium; Prev, Prevotellaceae; Ent, 

Enterobacteriaceae other than Salmonella; STM, S. enterica serovar Typhimurium. 

 

 

 

 

 

 

 



95 
 

 

Supplementary Figure 6. Heatmap indicating genus-level changes in the microbiota 

composition of piglets naive (group A), and piglets infected with STM∆znuABC (group 

B) or with STMwt (group C) at 2 and 12 dpi. The relative abundance of the most 

represented genera is indicated by a gradient of color from white (low abundance) to 

red (high abundance). The hierarchical clustering analysis of the samples, based on 

the similarity of the microbiota composition, are displayed on the left. Animals 1-5: 

group A (Naïve), green; animals 6 -10: group B (STM∆znuABC), blue; piglets 11-15: 

group C (STMwt), orange. 
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Chapter 8 

Salmonella Typhimurium infection primes a nutriprive mechanism 

in piglets 

 

From originally published article: 

Miarelli M, Drumo R, Signorelli F, Marchitelli C, Pavone S, Pesciaroli M, Ruggieri 

J, Chirullo B, Ammendola S, Battistoni A, Alborali GL, Manuali E, Pasquali P. 

Salmonella Typhimurium infection primes a nutriprive mechanism in piglets. Vet 

Microbiol. 2016 Apr 15;186:117-25. Epub 2016 Mar 4.  

http://dx.doi.org/10.1016/j.vetmic.2016.02.006   
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Abstract 

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important cause 

of acute food- borne zoonoses worldwide, typically carried by pigs. It is well known 

that Salmonella has evolved a wide array of strategies enabling it to invade the host, 

but little information is available on the specific host responses to Salmonella 

infections. In the present study, we used an in vivo approach (involving piglets 

infected with a virulent or an attenuated S. Typhimurium strain) coupled to 

histological and proteomic analysis of the cecum mucosa, to highlight the host 

pathways activated during S. Typhimurium infection. We confirm the complex host-

pathogen interaction. Our data showed that the metabolic and the cytoskeleton 

organization functions were the most significantly altered. In particular, the 

modifications of energy metabolic pathway could suggest a “nutriprive” mechanism, 

in which the host reduce its metabolic and energetic status to limit Salmonella 

infection. This study could represent a preliminary approach, providing information 

useful to better understand the host-Salmonella interaction.  

1. Introduction 

 Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-

negative bacterium able to colonize the lower intestinal tract of a wide range of 

animals, including humans (Fedorka-Cray et al., 1995). It is an important cause of 

acute food-borne zoonoses worldwide and responsible of numerous cases of human 

gastroenteritis and bacteremia annually. Pigs are typically asymptomatic carriers of 

S. Typhimurium and this commensal-like state establishes a significant reservoir of 

infection (Bearson and Bearson, 2011). Approximately 15% (range 7%-20%) of all 

cases of enteric salmonellosis in industrialized countries originate from pork 

products (Burel et al., 2013), therefore, a better control of Salmonella infection in 

pigs is important to reduce health risks for humans. Proteome approaches are a useful 
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tool to investigate the host–pathogen interaction, allowing the detection of 

pathophysiological alterations that occur during infection (Encheva et al., 2007; Arce 

et al., 2014). Most of previous studies have investigated the translational changes 

occurring in S. Typhimurium during infection (Sonck et al., 2009), while little 

information is available on the host response. However, recently, some studies have 

focused on the dynamic response of porcine mesenteric lymph nodes, ileum and 

intestinal mucosa to S. Typhimurium infection (Martins et al,. 2012; Collado-Romero 

et al., 2012). The aim of the present study, was to highlight the alterations induced by 

two different strains of Salmonella, a fully virulent and an attenuated strain, in the 

porcine cecum proteome. The attenuated S. Typhimurium strain, lacking the high 

affinity zinc transporter ZnuABC, (Ammendola et al., 2007) was chosen because it 

represents a promising mucosal vaccine against salmonellosis in pigs (Gradassi et al., 

2013; Pesciaroli et al. 2013; Ruggieri et al., 2014). The identified differentially 

expressed proteins were investigated by bioinformatic tools in order to identify the 

molecular pathways and the biological functions which are altered during infection. 

Our results provide general information that may be useful to better understand the 

host- S. Typhimurium interaction. 

2. Materials and methods 

2.1. Salmonella spp. cultures 

Virulent S. Typhimurium ATCC 14028 (STMwt) and its isogenic attenuated 

znuABC mutant (STM∆znuABC) (Ammendola et al., 2007) were grown overnight at 

37°C in Brain Heart Infusion broth (Oxoid Ltd, Basingstoke, UK), harvested by 

centrifugation and washed twice in ice-cold phosphate buffer solution (PBS) (Sigma-

Aldrich, St. Louis, MO). 

2.2. Animals and samples collection 
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Thirty-one post-weaned piglets of 28 days of age were enrolled in the study. 

All were the offspring of Salmonella-free sows (negative for Salmonella by 

serological and microbiological tests); similarly, the study animals had proved to be 

Salmonella-free. Piglets were divided into three groups, each of which were allocated 

in separate rooms in biosafety level facility of the Istituto 

Zooprofilattico Sperimentale della Lombardia e 

dell’Emilia Romagna, and pellet fed was administered ad libitum. A total of 9 

animals composed the naïve group (control) which was inoculated by oral route with 

sterile sodium bicarbonate buffer. Two groups of 11 piglets were orally infected with 

2×109 CFU of STM∆znuABC (STM∆znuABC) or 2×109 CFU of STMwt (STMwt), 

respectively.  

Four naïve control piglets and 5 animals of each of the two groups of infected 

piglets were euthanized using a captive bolt pistol and exsanguination at 1 day post 

infection (dpi); 5 piglets of naïve and 6 piglets of groups STM∆znuABC and STMwt 

were euthanized at 12 dpi. Samples of ileum, cecum and colon were fixed in 10% 

neutral buffered formalin for subsequent histological analyses. In addition, sections 

of cecum were frozen by immersion in liquid nitrogen and stored at -80° for 

subsequent proteomic analyses. All the experiments were authorized by national 

authority and were conducted according to European Directive (2010/63/EU). The 

approval number is: 54/2012. 

2.3. Histology 

 Formalin-fixed tissues were embedded in paraffin wax and stained with 

haematoxylin and eosin according to standard procedures. Features taken in 

consideration: the presence of eosinophilic, neutrophilic and lympho-plasmacytic 

infiltrate in the lamina propria and in the submucosa. It was also evaluated the 

severity of the intestinal epithelial damage. 
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2.4. Protein extraction, two dimensional gel electrophoresis and image analysis 

Pools containing equal amounts (50 mg) of each of the cecum samples were prepared 

for the three experimental groups, immediately after thawing, generating 6 sample 

pools. Protein extraction was performed as previously described (Signorelli et al., 

2010), with minor modifications. Briefly, samples were homogenized in lysis buffer 

(7M urea, 2M thiourea, 2% CHAPS, 1% DTT, and inhibitor cocktail (Sigma-

Aldrich, St. Louis, MO), sonicated on ice, shaken for 1 h at 15°C and centrifuged for 

5 min at 20000 x g at 15°C. Total protein concentration was quantified by 2D Quant 

Kit (GE Heathcare, Niskayuna, NY). Pellet was precipitated using cold acetone; then 

it was dried and resuspended in lysis buffer.  

 Samples (100 µg/strip) were loaded on rehydrated IPG strips (11 cm, pH 3-10, 

NL, Bio-Rad) for isoelectric focusing using a Protean IEF cell (Bio-Rad 

Laboratories, Inc., Hercules, CA) for a total of approximately 27 kVh. After 

focusing, the IPG strips were gently soaked for a total of 15 min in equilibration 

solution (6 M urea, 50 mM Tris-HCI buffer pH 8.8, 30% v/v glycerol, 2% w/v SDS 

and 0.002% bromophenol blue) containing 2%, w/v DTT, followed by 2 step 

incubation in equilibration solution containing 2.5% w/v iodoacetamide for a total of 

15 min. Second-dimension gel electrophoresis was carried out in a 4-15% 

polyacrylamide Ready Gel precast gels using the CRITERION™ Cell (Bio-Rad). 

Equilibrated strips were placed onto gels and run at a constant voltage of 200V for 

about an hour. Gels were stained overnight in cCBB (colloidal Coomassie Brilliant 

Blue (Neuhoff et al., 1988). Each pool was analyzed in triplicate. 

The proteins were visualized by gel scanning with the Molecular Imager Pharos FX 

scanner (Bio-Rad Laboratories). To identify valid spots, PD Quest advanced program 

software (Bio-Rad Laboratories) was used. Spots were automatically detected on the 

basis of the spot parameters chosen such as the faintest, smallest, and largest spot on 
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the gel scan, and only those well-resolved were taken into account. Spot 

photodensity was normalized for the total quantity of all valid spots. Spots 

photodensities of the STM∆znuABC and STMwt groups were compared with the control 

group, separately.  

2.5. Statistical analysis of spot data 

The spots with a photodensity fold change larger than 2 and a p-value below 

0.05 (t-test), between at least a paired spot (control and sample, at 1 dpi or at 12 dpi), 

were considered differentially expressed and identified by mass spectrometry (MS). 

Significant differences in spot photodensity were confirmed by one-way analysis of 

variance of data (ANOVA). ANOVA was performed with GLM procedure, using the 

SAS 9.1 statistical software (SAS, Statistical Analysis with SAS/STAT® Software 

V9.1. SAS Institute Inc. 2009), considering each animal group as factor. Data are 

expressed as estimate mean and compared by Duncan’s test with p < 0.05 as 

significant level.  

2.6. Protein identification by mass spectrometry 

 Protein spots were excised manually from the gels, and destained with 50 

mM ammonium bicarbonate pH 8.0 in 50% acetonitrile. Gel pieces were re-

suspended in 50 mM ammonium bicarbonate pH 8.0 containing 100 ng of trypsin, 

incubated for 2 h at 4° C and then overnight at 37°C. The supernatant containing the 

resulting peptide mixtures was removed and the gel pieces were re-extracted with 

acetonitrile. The 2 fractions were then collected, freeze-dried, and analyzed by LC-

MS/MS using the LC/MSD Trap XCT Ultra (Agilent Technologies, Palo Alto, CA) 

equipped with an 1100 HPLC system and a chip cube (Agilent Technologies). Mass 

spectral data were used to search a non-redundant protein database (National Center 

for Biotecnology Information – NCBI mammals database) using an in-house version 

of the Mascot software (Matrix Science, Boston, MA, USA). Each spectrum from 
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mass spectrometry was searched against the mammalian protein database. Proteins of 

the bacterial origin were not identified.  

2.7. System biology analysis 

To gain information about the biological significance of the identified 

proteins, we used the bioinformatic tools. Integrated functions and interactions of the 

proteins were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(http://www.genome.jp/kegg/pathway.html) (Kanehisa et al., 2004), Search Tool for 

the Retrieval of Interacting Genes/Proteins (STRING v 10) (http://string-db.org/) 

(Szklarczyk et al., 2015) and Database for Annotation, Visualization and Integrated 

Discovery (DAVID v6.7) (http://david.abcc.ncifcrf.gov/) (Huang et al., 2009). 

KEGG is a database resource for understanding high-level functions of the biological 

system. STRING is a meta-resource that aggregates known and predicted interaction 

data between proteins derived from four sources: genomic context, high-throughput 

experiments, co-expression and previous knowledge.  We set up the STRING 

organism both as H. sapiens and S. scrofa (using both the official gene symbols) and 

we set up the confidence score (the approximate probability that a predicted link 

exists between two enzymes) at the medium value (40%). DAVID bioinformatics 

resources consist of an integrated biological knowledgebase and analytic tools aimed 

at systematically extracting biological meaning from large gene/protein lists. The 

program compares a list of genes with functional annotation databases, including GO 

(gene ontology) terms, KEGG pathways, and SPPIR (Swiss-Prot and Protein 

Information Resource) keywords. By comparing the prevalence of proteins 

belonging to these categories in their respective database and in the input gene list, 

DAVID generates a p-value highlighting significantly overrepresented annotation 

terms (Dennis et al., 2003). The full H. sapiens and S. scrofa genomes were set as the 

reference list, however for a full analysis H. sapiens was used because all genes of 
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our input list were recognized (14 of 14), while the S. scrofa (7 of 14) and the 

classification stringency was set to medium (default value). We used the functional 

annotation tools to determine overrepresented annotation groupings among our input 

genes.  

3. Results 

3.1. Salmonella Typhimurium induces histological changes with a magnitude 

paralleling its virulence 

We compared the cecum, colon and ileum histopathological findings from control, 

STM∆znuABC and STMwt infected piglets, at 1 and 12 dpi. At 1 dpi, sections from 

control piglets showed only a mild eosinophilic and lympho-plasmacytic infiltrate 

(Fig. 1 a-c); conversely, STM∆znuABC and STMwt infected piglets showed neutrophilic 

infiltrate in the lamina propria and submucosa (Fig. 1 d-i). The ileum and cecum 

were the most affected intestinal sections, showing crypt abscess formation and 

crypts distortion. An apparent more severe grade of neutrophilic inflammation was 

detected in animals treated with virulent strain (Fig. 1 g-i). Moreover, flattened 

surface epithelium with diffuse enterocyte loss in piglets infected with STM∆znuABC 

was observed (Fig. 1 d-f); on the other hand, STMwt infected piglets showed an 

increased epithelial damage ranging from foci of erosion to ulceration with 

accumulation of abundant necrotic debris in the gut lumen (Fig. 1 g-i). At 12 dpi, all 

the groups of piglets showed mild eosinophilic and lympho-plasmacytic infiltrate 

(Fig. 2), but only piglets infected with STMwt and with STM∆znuABC also presented 

neutrophilic infiltrate (Fig. 2 d-i). The neutrophil inflammation was mild and in a 

multifocal pattern in piglets infected with STM∆znuABC (Fig. 2 d-f), while mild and 

diffuse in piglets infected with STMwt (Fig. 2 g-i). Moreover, enterocyte loss was 

observed in piglets infected with STM∆znuABC (Fig. 2 d-f) while more severe epithelial 
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damage characterized by epithelial cell degeneration and extensive erosion of 

mucosa were highlighted in piglets infected with STMwt (Fig. 2 g-i).  

3.2. Salmonella Typhimurium induces cecum proteome changes 

 Using the proteomic approach, we identified the protein profiles expressed in 

the cecum of piglets infected with the attenuated or the virulent strain of S. 

Typhimurium. Differences in spot photodensity (fold change larger than 2 and 

P<0.05 (t-test)) between gels from infected samples and control, either at 1 dpi or at 

12 dpi were identified in fourteen spots (Fig. 3) which were processed by LC-

MS/MS analysis. The corresponding proteins are listed in the Table 1. At 1 dpi, we 

detected that 6 and 3 proteins were changed when piglets were infected with 

STM∆znuABC and STMwt strains, respectively (Fig. 4A); while at 12 dpi, 10 and 5 

proteins changed in piglets infected with STM∆znuABC and STMwt strains, respectively 

(Fig. 4B). On the whole, we observed an overall predominance of proteins that 

decreased their abundance in both infected groups compared to the control at 1dpi. 

On the contrary, at 12 dpi, the proteins showed either increase or decrease when 

compared to the control. In addition, very few proteins were induced by both S. 

Typhimurium strains, as evidenced by the overlapping areas in Figure 5. According 

KEGG classification, the 14 proteins detected were grouped in the following 

categories: 5 in metabolism, 4 in cellular processes, 2 in environmental information 

processing, 2 in genetic information processing; albumin is not precisely classified in 

KEGG database, being involved in many cellular pathways. STRING v10 network in 

Figure 8.6 showed that the 14 identified proteins formed two functional tightly 

connected clusters, including 5 proteins (GAPDH, ATP5B, TPI1, UQCRC1, CKB, 

where GAPDH had a central role), and 9 proteins (ACTB, ALB, GSN, MYL9, 

ANXA2, ANXA5, HSPB1, HARS, COL6A3, where ACTB had a central role), 

respectively. DAVID v6.7 software package for functional analysis revealed that the 
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dysregulated proteins were involved in acetylation processes (71%), in duplication 

processes (29%) and 86% of them were phosphoproteins. Moreover, the more 

enriched Functional Gene Ontology categories were: soluble fraction as cellular 

component (29%), generation of precursor metabolites and energy (29%) as 

biological processes, calcium ion binding (36%) as molecular function (Table 2). The 

main functions of the identified proteins are reported in Table 3.  

4. Discussion 

 In this study we aimed to obtain insights into the in vivo response of the 

porcine intestinal mucosa after infection with an attenuated and a virulent S. 

Typhimurium strains. For this purpose, at 1 and 12 dpi, we investigated the 

histological features of three different sections of intestinal tract (cecum, colon and 

ileum) and we analyzed the cecal proteins which were dysregulated during 

Salmonella infection. Our histological results support the concept that S. 

Typhimurium induces mucosal lesions with severity paralleling its virulence. In 

addition, we found eosinophils infiltration in the lamina propria of the intestine in 

piglets, irrespective to the experimental groups. We think, however, that this 

phenomenon has a negligible significance because it is a frequent finding in young 

healthy pigs (Tsukahara et al., 2010).  

Proteomic analysis showed that energy metabolism and cytoskeleton related 

proteins are significantly perturbed after Salmonella infection. In fact, we observed 

the down regulation of enzymes such as ATP5B, UQCRC1 and CKB involved in 

oxidative phosphorylation, and of GAPDH, involved in gluconeogenesis/glycolysis, 

which could suggest a reduction of the metabolic status of the host. In fact, these 

alterations could be the attempt of the host to create environmental conditions that 

are detrimental for the pathogen. Our findings are in agreement with data already 

reported in literature. A study focused on the response of the murine colon mucosa to 
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Salmonella infection has revealed the shut-off of oxidative phosphorylation and the 

down regulation of genes involved in many metabolic pathways (Liu et al., 2012); 

moreover, Appelberg (Appelberg, 2006) has observed that macrophages use a 

“nutriprive” mechanism to deprive intracellular pathogens of nutrients inhibiting 

their growth. At the same time, it is known that pathogens can induce and modulate 

metabolic responses in the host aiming to provide an increased nutrient supply useful 

for their own invasion (Eisenreich et al., 2013). In line with these evidences, our 

observation that piglets infected with STMwt showed a minor down-regulation of 

proteins involved in metabolic pathways in comparison to STM∆znuABC-infected 

piglets, could indicate that in the first, the nutriprive mechanism is less efficient, 

because STMwt is more able to oppose itself to it. System biology analysis also 

revealed the enrichment of three functional categories: acetylation, duplication and 

phosphoprotein which take part in modulation of many enzymes of the pathways of 

carbon, nitrogen and energy metabolism. In such context, we also could expect a 

lowering of protein synthesis, which might explain the down regulation of HARS, an 

enzyme involved in the proteins synthesis. It is well documented that Salmonella 

uses effectors to manipulate the cytoskeletal machinery of the host in order to induce 

its own internalization (Guiney and Lesnick, 2005; Hallstrom and McCormick, 2011; 

Ramos-Morales, 2012). They cause a remarkable series of events culminating in a 

marked rearrangement of the epithelial actin filaments (Criss et al., 2001) and in the 

formation of actin-rich membrane ruffles extensions enveloping Salmonella, for 

bacterial internalization (Patel and Galán 2005). In our study, we observed a 

substantial down regulation of several structural and regulatory proteins involved in 

actin cytoskeleton rearrangements. For example, at 1dpi, ACTB showed a reduction 

in piglets infected with STMwt and STM∆znuABC; this finding is in agreement with the 

results obtained by Prado Martins et al. (Prado Martins et al., 2012), which showed a 
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decrease of abundance of ACTB in porcine mesenteric lymph nodes after Salmonella 

Typhimurium infection. A possible explanation could be attributable to the binding 

of actin by a specific effector of Salmonella (SipA) determining the reduction in the 

concentration of its monomeric conformation (Galan and Zhou, 2000). Similarly, the 

down regulation of GSN could be attributable to the ability of SipA to interfere with 

cellular mechanisms of actin turnover (McGhie et al., 2004), and the reduction of 

MYL9, a protein involved in the maintaining of the cellular integrity and in cellular 

adhesion, could contribute to increase the intestinal permeability (Park et al., 2011). 

In the same way of the proteins of metabolic pathways, cytoskeleton related proteins 

showed a major down regulation in STM∆znuABC-infected piglets compared to STMwt-

infected piglets (Fig. 4A). This observation could indicate that STMwt is faster than 

STM∆znuABC in inducing and carrying out its own internalization process probably 

because it has a completely efficient set of effectors, so that while the STM∆znuABC-

infected cells are still working in ruffles formation, STMwt-infected cells are 

recovering their original shape. Salmonella is also able to decrease the transcellular 

resistance by altering the adhesive glycoproteins responsible for the attach of the 

cells to the collagen of the extracellular matrix (Ramos Morales et al., 2012). A 

previous study has demonstrated that Salmonella exposure causes modifications of 

extracellular matrix in the bird’s gut consisting in the degradation of pre-existing 

matrix proteins with the consequent collagen release (Berndt et al., 2009). Our data 

seems to be in agreement with these evidences suggesting that the increased 

COL6A3 could represented the free quota of proteins resulting by the matrix 

degradation caused by Salmonella.  

In addition to cytoskeleton related proteins, we also observed changes in 

ANXA2 abundance. ANXA2 functions as a platform for dynamic actin-driven 

membrane processes such as the membrane ruffling and the internalization of 
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bacteria (Gerke and Moss, 2002; Hayes et al., 2006). It is mostly found in a complex 

with p11, and the ANXA2-p11 complex has a higher affinity for membranes than 

ANXA2 alone (Jolly et al., 2014). At 1 dpi, the prominent reduction of ANXA2 

observed, could suggest that the monomeric ANXA2 is reduced because the largest 

quota of the protein is bind to p11 to contribute to the ruffling of the membranes. In 

conclusion, we found that cytoskeleton modification is another of the most 

significantly perturbed process during Salmonella infection, as also corroborated by 

bioinformatic findings: the enrichment of calcium binding cluster showed by 

DAVID, because it is known that calcium is important during the process of invasion 

and internalization of Salmonella (Furukava, R. et al., 2003), and the central role 

played by ACTB displayed by STRING (Fig. 6). 

Finally, we have also found alterations of HSPB1, which is known to be 

induced by environmental stress and involved in anti-apoptotic signaling (Charette et 

al., 2000; Collado Romero et al., 2012). At 1 dpi, the decrease of HSPB1 could 

represent the defense attempt of the host to reduce the bacterial infection causing 

apoptosis. On the contrary, at 12 dpi, the high increase of HSPB1 as well as that of 

most of the proteins mentioned above, in piglets infected with STM∆znuABC, could 

indicate that the infection is substantially resolved and that the normal physiological 

processes are being restoring.  

5. Conclusion 

 This study allowed to investigate the response of porcine cecum to two 

different strains of Salmonella Typhimurium, aiming to characterize the molecular 

pathways involved during infection. Our results indicate a significant modification of 

metabolic pathway and of cytoskeleton. We revealed a “nutriprive” mechanism by 

which the host tries to control Salmonella infection depriving pathogen of energy and 

nutrients; moreover, the alterations of cytoskeleton related proteins reflect the active 
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modulation of the cellular factors due to the pathogen invasion. In the whole, the 

observations reported in this study provide insights that may be useful to better 

understand the interaction of Salmonella with vertebrate hosts.  
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Fig. 1. Photomicrographies showing histological findings of the ileum, cecum and colon 

from control piglets and STM∆ZnuABC, STMwt strain infected piglets at 1 dpi. Control piglets: 

mild lymphocytic and eosinophilic infiltrate in the lamina propria of ileum, cecum and colon 

(a, b, c). STM ∆ZnuABC infected piglets: diffuse neutrophilic infiltrate in the ileum and cecum 

lamina propria and submucosa (d, e) and diffuse and moderate lymphoplasmacytic infiltrate 

in the lamina propria of colon with scattered foci of neutrophilic inflammation (f (arrow)). 

Epithelial cell degeneration, necrosis of lymphoid follicles with focal ulceration of mucosa in 

the ileum (d, arrow) and enterocyte loss in the cecum and (e, f) can also be seen. STMwt 

infected piglets: diffuse neutrophilic infiltrate in the lamina propria and submucosa with 

dilated crypts filled with neutrophils (crypt abscess) in the ileum and cecum (g (arrow), i 

(arrow)), and moderate lymphocytic inflammation in colon (i). Diffuse enterocyte loss in all 

intestinal tracts (g, h, i) and focal erosion in the ileum (g (arrows)) can also be seen. (bars 

100 µm).  
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Fig. 2. Photomicrographies showing histological findings of the ileum, cecum and colon 

from control piglets and STM ∆znuABC, STMwt strain infected piglets at 12 dpi. Control piglets: 

diffuse mild lymphoplasmacytic and eosinophilic inflammatory infiltrate in the ileum, cecum 

and colon. STM∆znuABC infected piglets: diffuse eosinophilic and lymphocytic infiltration and 

mild neutrophilic multifocal inflammation in the ileum (d); diffuse mild neutrophilic 

infiltration in the cecum (e); diffuse moderate lymphoplasmacytic infiltration with scattered 

foci of neutrophilic inflammation and isolated dilated crypts filled with neutrophils (crypt 

abscess) in colon (f). Epithelial cell degeneration, enterocyte loss with scant accumulation of 

necrotic debris in the lumen can be seen in the ileum, cecum and colon. STMwt infected 

piglets: diffuse marked lymphoplasmacytic inflammation and neutrophilic infiltration in a 

multifocal pattern in the ileum (arrows, g); diffuse mild neutrophilic and lymphocytic 

infiltration in the cecum (h), moderate lymphocytic inflammation in the colon (i). Diffuse 

epithelial cell degeneration with ulcerative area in the ileum (g), and flattened surface 

epithelium with extensive areas of erosion can also be seen in the cecum and colon (h, i). 

(bars 100 µm).  
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Fig. 3. Two-dimensional gel image of one individual sample of pooled piglet cecum tissue.  

The numbers on top of the gels indicate the isoelectric point and the numbers on the left give 

the position of the proteins in the molecular mass standard. Circles indicate the protein spots 

selected for LC/MS_MS identification. The numbers correspond to protein listed in Table 1. 
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Fig. 4. Fold change of the 14 identified proteins at 1 dpi (A) and 12 dpi (B). from attenuated 

(STM∆znuABC) and virulent (STMwt) strains infected piglets, compared to uninfected piglets 

(c). Y axis represents the ratio of spot photodensity (= fold change) of infected versus 

control piglets. The ratio was classified as positive if it the protein concentration increased 

after inoculation, negative if it decreased after infection. 
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Fig. 5. VENN diagram depicts the differentially expressed proteins in cecum from attenuated 

(STM∆znuABC) and virulent (STMwt) strains infected piglets at 1 dpi (A) and 12 dpi (B). The 

overlapping area of the two circles contains the commonly identified proteins either in 

attenuated or virulent strain infected piglets at the two time-points considered. 
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Fig. 6. Visual representation of the STRING v10 network. The figure shows interactions 

between the 14 differentially expressed proteins, obtained by setting H. sapiens as genome 

(by setting S. scrofa, only GSN was excluded). Each identified protein corresponded to a 

node. Solid or dotted line between nodes represents respectively a direct and indirect protein 

association. Stronger associations are represented by thicker lines. The network showed two 

tightly connected clusters, forming two functional modules. The first module included 5 

proteins: GAPDH, ATP5B, TPI1, UQCRC1 and CKB, where GAPDH had a central role; the 

second module included 9 proteins: ACTB, ALB, GSN, MYL9, ANXA2, ANXA5, HSPB1, 

HARS and COL6A3, where ACTB had a central role.
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Table 1 

 
List of dysregulated proteins in the cecum of piglets infected with Salmonella attenuated strain (STM∆ZnuABC) and virulent strain(STMwt), at one day (1 dpi) and twelve days (12 dpi) post infection. 
 
Spot 
noa. 

gi Numberb Mass Dac pIc Sequence 
coverage 
(%) 

Mascot 
score 

Name Gene 1 dpi    12 dpi    

        STM∆ZnuABC vs c STMwt vs c  STM∆ZnuABC vs c STMwt vs c  
        Ratiod p-value Ratiod p-value Ratiod p-value Ratiod p-

value 

Metabolism               

1 gi|262263205 26879 6.54 52 489 Triosephosphate isomerase 1 TPI1 1.44 0.310 1.79 0.084 2.33 <.0001 1.25 0.336 

                
2 gi|329744642 36041 8.51 36 456 Glyceraldeyde-3-phosphate  

 
dehydrogenase 

GAPDH -1.00 0.997 1.58 0.086 -2.79 <.0001 -2.19 0.000
4 

3 gi|89574051 45198 4.99 34 513 Mitochondrial ATP synthase H+ 
transporting F1 complex beta 
subunit 
 

ATP5B -2.18 0.049 -1.34 0.328 -1.21 0.599 -1.02 0.958 

4 gi|335299041 53349 5.76 10 104 Cytochrome b-c1 complex 
subunit 1, mitochondrial 

UQCRC 1 -1.83 0.102 -1.12 0.683 -2.93 0.023 -2.21 0.050 

5 gi|343790893 42916 5.47 7 579 Creatine kinase, brain CKB -2.05 0.274 -1.20 0.718 2.60 0.006 -1.10 0.855 

Cellular processes               

6 gi|264748 19740 4.80 7 474 Myosin regulatory light chain, 
LC20 

MYL9 -2.20 0.279 -1.43 0.546 1.37 0.405 -2.92 0.155 

7 gi|60389477 42174 5.30 36 482 Β-actin ACTB -4.18 <.0001 -2.08 0.002 1.78 00.48 2.81 0.000
3 

8 gi|121118 85065 5.93 16 455 Gelsolin 
 

GSN -1.23 0.644 -1.40 0.481 2.63 0.036 -1.27 0.767 

9 gi|335303566 344591 6.47 3 463 PREDICTED: collagen alpha-
3(VI) chain isoform 1 

COL6A3 -1.25 0.629 2.18 0.012 2.00 0.266 2.75 0.064 

Environmental information processing             

10 gi|335293906 36169 4.94 56 715 PREDICTED: annexin 5-like 
 

ANXA5 -1.61 0.429 1.66 0.178 2.51 0.0003 -1.40 0.359 

11 gi|54020966 38795 6.49 66 1155 Annexin A2 ANXA2 -3.46 <.0001 -2.77 <.0001 -3.30 0.009 -1.02 0.919 
Genetic information processing             

12 gi|50916342 14268 5.94 27 168 Heat shock protein 27kDa, 
partial 
 

HSPB1 -1.72 0.2619 -1.43 0.4167 2.91 0.017 1.53 0.452 

13 gi|311250313 57837 5.79 6 157 PREDICTED: histidyl-tRNA 
synthetase, cytoplasmic-like 

HARS -2.54 0.054 -1.09 0.770 1.00 1.000 -1.28 0.575 

14 gi|164318 71348 5.92 23 676 Albumin partial 
 

ALB -1.65 0.229 -1.42 0.360 2.81 0.034 1.53 0.500 

a Refers to the proteins labeled in Fig. 3 
b NCBI accession number 
c Theoretical value 
d Ratio (=fold change) is classified as positive if the protein concentration increased after infection, negative if it decreased after infection 
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aSwiss_Prot_Protein_Information_Resource; 

bGene_Ontology_Term_Cellular_Component; 

cGene_Ontology_Term_Biological_Process; 

dGene_Ontology_Term_Molecular_Function 

 

 

 

 

 

 

 

Table 2  

Functional classification of dysregulated proteins in the cecum of piglets infected with STM∆ZnuABC and STMwt. 

Functional 
annotation 

Functional 
cathegory 

n°of input 
protein 

%  of input 
protein 

Input protein p-value Benjamin 

SP_PIRa acetylation 

10 71 

ATP5B, TPI1, ACTB, 
ANXA2, ANXA5, 
GAPDH, HSPB1, HARS, 
MYL9, UQCRC1 

7.1E-6 
8.3E-4 

 duplication 4 29 
ALB, ANXA2, 
ANXA5,GSN 

4.3E-4 2.5E-2 

 phosphoprotein 12 86 

ATP5B, TPI1, ACTB, 
ANXA2, ANXA5, 
GAPDH, HSPB1, HARS, 
MYL9, UQCRC1, GSN, 
CKB 

7.4E-4 2.8E-2 

GOTERM_CCb 
soluble 
fraction 

4 29 
TPI1, ANXA2, ACTB, 
HSPB1 

2.7E-3 2.8E-1 

       
GOTERM_BPc 

 

generation of 
precursor 
metabolites 
and energy 
 

 

     4 29 ATP5B, TPI1, GAPDH, 
UQCRC1 

3.0E-3 5.9E-1 

GOTERM_MFd 

 
calcium ion 
binding 

 

     5 36 ATP5B, ANXA2, 
ANXA5, GSN, MYL9 

1,1E-2 6.7E-1 
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Table 3 

List of main functions of the dysregulated proteins in the cecum of piglets infected with Salmonella attenuated strain 

(STM∆znuABC) and virulent strain (STMwt). 
 

a Refers to the proteins labeled in Fig. 3 

b As given in *NCBI, ** UniprotKB/Swiss-Prot 

 

 

Spot 
number a 

Name Gene Putative functionsb 

1 Triosephosphate isomerase 1 TPI1 * glycolytic enzyme that catalyzes the interconversion 
dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. 

2 Glyceraldehyde-3-phosphate    
dehydrogenase 

GAPDH *glycolytic enzyme that catalyzes the convertion of D-
glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl 
phosphate.  
Participates in nuclear events including transcription, RNAtransport, 
DNA replication and apoptosis. Modulates the organization and 
assembly of the cytoskeleton. 

3 Mitochondrial ATP synthase H+ 
transporting F1 complex beta 
subunit  

ATP5B *enzyme of the respiratory chain. Produces ATP from ADP in the 
presence of a proton gradient across the membrane which is 
generated by electron transport complexes 

4 Cytochrome b-c1 complex  
subunit 1, mitochondrial 

UQCRC1 *enzyme of the respiratory chain. Component of the ubiquinol-
cytochrome c reductase complex (complex III or cytochrome b-c1 
complex), which is part of the mitochondrial respiratory chain. This 
protein may mediate formation of the complex between cytochromes 
c and c 1. 

5    Creatine kinase, brain 
 

CKB **reversibly catalyzes the transfer of phosphate between ATP and 
various phosphogens (e.g. creatine phosphate). Creatine kinase 
isoenzymes play a central role in energy transduction in tissues with 
large, fluctuating energy demands. 

  6    Myosin regulatory light chain, 
LC20 

  MYL9 **plays an important role in regulation of both smooth muscle and 
nonmuscle cell contractile activity via its phosphorylation.   

  7    β-actin   ACTB *beta actin is an isoform of globular actin (G-actin), the globular 
monomeric form. Polymerization of globular actin (G-actin) leads to 
a structural (F-actin) in the form of a two-stranded helix. 

  8    Gelsolin 
 

  GSN *calcium-regulated, actin-modulating protein that binds to the plus 
(or barbed) ends of actin monomers or filaments, preventing 
monomer exchange. It can promote the assembly of monomers into 
filaments (nucleation) as well as sever filaments already formed. 

  9 PREDICTED: collagen alpha-
3(VI)  chain isoform 1 

  COL6A3 *is a constituent of collagen fibrils constituting of extracellular 
matrix, an intricate lattice that forms in the space between cells and 
provides a structural support. 

 10    PREDICTED: annexin A5-like    ANXA5 * belongs to the annexin family of calcium-dependent phospholipid 
binding proteins some of which have been implicated in membrane-
related events. Furthermore annexins participate in regulating 
membrane-cytoskeleton dynamics.  

 11    Annexin A2   ANXA2 * belongs to the annexin family of calcium-dependent phospholipid 
binding proteins some of which have been implicated in membrane-
related events.  Furthermore annexins participate in regulating 
membrane-cytoskeleton dynamics. 

12    Heat shock protein 27 kDa, 
partial 

HSPB1 *is a molecular chaperones that suppress protein aggregation and 
protect against cell stress, 

13 PREDICTED: histidyl-tRNA 
synthetase, cytoplasmic-like 

HARS *enzyme that charges tRNAs with the  histidyne  amino acids, plays 
an accessory role in the regulation of protein biosynthesis. 

14   Albumin partial ALB *functions primarily as a carrier protein for steroids, fatty acids, and 
thyroid hormones and plays a role in stabilizing extracellular fluid 
volume.  
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Chapter 9 

DISCUSSION 

9.1 General discussion 

S. Typhimurium is a pathogen of great clinical relevance, representing one of 

the principal causes of food borne illness. The disease is characterized by a severe 

inflammation of the intestinal epithelium associated with a significant neutrophils 

influx into intestinal lumen, resulting in a usually self-limiting enterocolitis. Despite 

a marked host immune response and the altered environmental conditions 

encountered by the pathogen in the inflamed gut, S. Typhimurium can colonize 

intestine to high number (Behnsen et al., 2015).  

 

9.1.1 S. Typhimurium promotes an active infection exploiting LPS-induced  

  inflammation 

Inflammation plays a key role in the host response aiming to reduce the colonization 

and eventually eliminate pathogens. A growing body of evidences about S. 

Typhimurium draw a fascinating picture of a pathogen that is able to survive in the 

inflamed gut and to exploit inflammatory response gaining a competitive advantage 

over the intestinal microbiota (Borewicz et al., 2015).  

Salmonella inflammation-adapted lifestyle was driven by acquisition of new 

genetic traits by horizontal gene transfer at distinct evolutionary times. 

Approximately 100-140 million years ago, the genus Salmonella acquired SPI-1 

encoding for the T3SS-1, essential for the invasion of intestinal epithelium, after its 

separation from the related Escherichia coli lineage. Later on, 70-100 million of 

years ago S. enterica genus separeted from S. bongori and acquired SPI-2, whose 
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genes are required for replication and survival (Vernikos et al., 2007; Santos et al., 

2009). The successful assimilation of virulence traits through SPI-1 and SPI-2 

enabled Salmonella serovars to trigger intestinal inflammation and to thrive in the 

inflamed intestine (Santos et al., 2009). 

It is known that there are many differences between vertebrate hosts regard 

the response to S. Typhimurium (Santos et al., 2001). Most of the studies about the 

central role played by inflammation on the fitness of S. Typhimurium have used mice 

for experimental infections, including streptomycin-treated mouse model 

characterized by an altered microbiota (Stecher et al., 2007; Liu et al., 2012). 

However, both the inability of mouse to reproduce gastroenteritis and the lack of an 

intact microbiota, make instrumental the utilization of a more suitable animal models 

for advancing in our comprehension on Salmonella pathogenesis. For this reason, we 

used pig, the natural host of S. Typhimurium, as model for salmonellosis in our 

whole work.  

In Chapter 6 of this thesis, we sought to explore if inflammation favors an 

active infection of Salmonella (STM14028) using an in vivo pig model and in vitro 

porcine cell lines. In both cases, inflammation was induced by LPS, which is known 

to be an activator of immunity and a potent stimulator of pro-inflammatory cytokines 

production (Meng & Lowell, 1997).  

• In vivo experiment has shown the induction of an early host response post 

STM14028 infection in LPS-treated piglets; the increased cytokines level and body 

temperature registered already at 4 hours after infection, are consistent with the acute 

inflammatory stimulus induced by LPS. This data is confirmed by the observation 

that LPS-no treated piglets reach relevant inflammation level only at 48 h post 

infection (Fig. 3 and Fig. 4, Chapter 6).  
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LPS treatment enhances also the progression of S. Typhimurium, making the 

pathogen more capable to colonize at higher numbers either the gastrointestinal tract 

and systemic organs (Fig. 5, Chapter 6). This result agrees with previous studies 

carried out on mice, showing that the administration of LPS can exacerbate the 

growth of S. enterica (Hormaeche, 1990). LPS-induced inflammation, as well as that 

induced by chemical treatments or by infectious agents themselves, breaks the 

balance intestinal determining a profound perturbation of microbiota, which in turn 

creates the favorable conditions for S. Typhimurium colonization (Lupp et al., 2012).  

• Similarly, our in vitro experiments have revealed an increased STM14028 

colonization, at 3h and 24h after infection, in LPS-pretreated porcine 

monocytes/macrophages and IPEC-J2 cells. In contrast, when LPS stimulation was 

inhibited using its natural antagonist, the RS-LPS, cells showed a reduced 

colonization with values similar to the ones of LPS untreated cells (Fig. 2A-D, 

Chapter 6). These data suggest that LPS is able to facilitate the intracellular 

penetration of S. Typhimurium in both enterocytes (IPEC-J2) and 

monocytes/macrophages cells.  

Previous studies conducted by using intestinal epithelial cells (Caco-2) monolayers 

have shown that LPS has no direct effects on the enterocytes structure (Wells et al., 

1993; Yeung et al., 2013); thus, the LPS-induced bacterial uptake has to involve 

mechanisms other than an increased ruffling and micropinocytosis. On the contrary, 

we can speculate that LPS might promote TLR4-mediated internalization. Neal et al. 

(2006) have demonstrated that human endothelial kidney (HEK)-293 cells, which 

lack of TLR4, are not able to promote the bacterial uptake; however, they acquired a 

phagocytic phenotype following transfection with functional TLR4, indicating the 

important role of TLR4-associated internalization (Neal et al., 2006). 



127 
 

In monocytes/macrophage, bacteria are internalized through phagocytosis. The high 

colonization level by S. Typhimurium observed in monocytes/macrophages cells 

could seem an unexpected result, given their phagocytic function. Actually, S. 

Typhimurium, as well as many facultative intracellular pathogens, has developed 

mechanisms to escape macrophages killing and to favor intra-macrophage 

multiplication (Belon et al., 2015). For example, Salmonella exploits TLRs 

activation on macrophages to establish a successful infection. In fact, the maturation 

and the acidification of the Salmonella containing vacuole (SCV) via TLR, is 

required to induce SPI-2 genes, which are involved in survival and replication of the 

pathogen (Arpaia et al., 2012). 

 

9.1.2 S. Typhimurium modifies microbiota in a virulence-dependent manner 

 It is well known that Salmonella infection consists in an interactive tripartite 

relationship between pathogen, host response and the resident microbiota. The 

intestinal microbiota is involved in the maintaining of intestinal homeostasis through 

a balanced symbiosis with the host, and contributes to many biological functions 

including the resistance to pathogens invasion (Stecher et al. 2007). S. Typhimurium 

utilizes specific virulence factors for inducing the inflammatory host response, 

which, in turn, modifies microbiota composition breaking colonization resistance and 

favoring the pathogen colonization (Stecher et al. 2007). 

In Chapter 7, we investigated if and how virulence of S. Typhimurium 

influences the shift of porcine intestinal microbiota composition upon experimental 

infection. For this purpose, we compared the effects of two different strains of 

Salmonella, a wild type and an attenuated strain deleted of the whole znuABC 

operon. Our data suggest a positive correlation among Salmonella virulence, the 

degree of intestinal inflammation and the colonization. We saw that S. Typhimurium 
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wild type induces a robust inflammatory response and results in a major colonization 

in gut; on the contrary, the attenuated strain causes a milder inflammation and is 

associated with a reduced organs colonization (Fig. 2, Fig. 4 Fig. 5 and 9, Chapter 7).  

The different virulence of the two strains is also reflected in a different 

alteration of the microbiota composition. The analysis of microbiota has showed the 

reduction of SCFA-producing bacteria (Ruminococcaceae and Clostridium genera) 

and lactate-fermenting bacteria (Megasphaera), and the increases of lactic acid-

producing bacteria (Lactobacillus genus) in S. Typhimurium wild type-infected 

piglets. These alterations of microbiota could explain the high colonization level of 

the fully virulent strain of Salmonella. In fact, our data are in agreement with 

previous studies which have revealed that the depletion of Ruminococcaceae and the 

increase of Lactobacillus make the host more susceptibile to enteric infections 

(Antharam et al., 2013; Ling et al., 2014). It seems, in fact, that the alteration of these 

bacterial genera may cause the dysfunction of epithelial intestinal barrier and the 

increase of osmotic load in the intestinal lumen, determining diarrhea (Antharam et 

al., 2013). It is well known, in fact, the protective effect of SCFAs in 

counterbalancing intestinal dysbiosis (Gantois et al., 2006; Sokol et al., 2008). We 

have also observed a reduction of lactate-fermenting bacteria such as Megasphaera. 

It can be speculated that this alteration may act in parallel with the increase of 

Lactobacillus genus, contributing to the accumulation of lactic acid/lactate and thus, 

to the increase of osmotic pressure in the gut. 

In contrast, the increase of SCFA-producing and lactate-fermenting bacteria 

observed in S. Typhimurium attenuated-infected piglets, may contribute to enhance 

intestinal defense barriers allowing to the microbiota to successfully compete with 

the pathogen. Taken together, the increased SCFAs production and the impossibility 
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of S. Typhimurium attenuated to acquire zinc in the environment, could explain the 

reduced ability of this strain to colonize host. 

Overall, our data show that S. Typhimurium infection modifies specific 

members of microbiota, the SCFAs- and lactate-producing/fermenting bacteria, 

which are key determinants of colonization resistance against invading pathogen. 

These changes seem to be related with the virulence of S. Typhimurium. We can 

conclude that there is a direct relationship among virulence, inflammation and 

microbiota composition; the degree of virulence of Salmonella strains influences the 

intestinal inflammation, determining the ability of Salmonella to compete with the 

microbiota in order to establish infection.  

 

9.1.3 Effects of S. Typhimurium infection on the porcine cecal mucosa 

The studies about the host-pathogen functional interface support our 

understanding of Salmonella complex pathogenesis. The using of high throughput 

technologies has allowed to detect global dynamics that occur in the host during 

infection (Rodland et al., 2008).  

In Chapter 8, we have sought to capture the pathophysiological alterations 

induced by wild type and attenuated S. Typhimurium strains in the porcine cecum, 

through the utilization of a proteomic approach.  

Our findings have shown a modulation of the normal host functions upon 

Salmonella infection; metabolism, cellular processes, environmental and genetic 

information processing are the most significantly perturbed biological functions 

(Table 1, Chapter 8). In particular, the identified proteins belonging to metabolism 

are involved in oxidative phosphorylation and gluconeogenesis/glycolysis which are 

crucial pathways for the production of nutrients and energy. In addition, it is also 

observed the perturbation of an enzyme involved in protein synthesis. Overall, their 
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downregulation suggests a reduction of metabolic and energetic status of the host 

that may be seen as a defense strategy against the nutrient theft by Salmonella. In 

response to S. Typhimurium, host could adopt a “nutriprive mechanism” in which 

deprives environment of nutrients, creating intestinal conditions that are detrimental 

for Salmonella growth. This hypothesis is in agreement with the study of Appelberg 

(2006) that demonstrates that in addition to the microbial killing via ROS/RNS, 

macrophages exert their antimicrobial activity also preventing access to essentials 

nutrients and growth factors for the pathogen survival (Appleberg, 2006).  

At the same time, it is well known that during infection, S. Typhimurium 

itself, interferes with and modulate the metabolic processes of the host trying to steal 

nutrients for its bioenergetic and biosynthetic requirements (Eisenreich et al., 2008). 

This evidence could be useful to explain our data regarding the minor alteration of 

metabolism proteins after infection with Salmonella wild type in comparison with the 

attenuated strain. Probably, thanks to its pathogenicity, Salmonella wild type would 

be more capable to oppose to the nutriprive mechanism of the host and to modulate 

metabolic responses. 

Our findings have also shown that cytoskeleton related proteins are another 

biological category significantly downregulated by S. Typhimurium infection (Fig. 

4A, Chapter 8). This biological category includes structural and regulatory proteins 

involved in the maintaining of the cellular integrity and in cell-cell adhesion. In line 

with data present in literature (Collado-Romero et al., 2012; Martins et al., 2012; 

Arce et al., 2014), we can speculate that their modulation is probably associated with 

functions, such as cytoskeleton rearrangements and destruction of membrane 

integrity, requested for a successful S. Typhimurium invasion.   
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Moreover, later during infection, the function of the most of proteins seem to 

be restored especially in Salmonella attenuated-infected piglets (Fig. 4B, Chapter 8), 

suggesting that the infection is being resolving. 

Finally, our general pattern reveals the global effects of Salmonella infection 

on the porcine cecum contributing to shed light on the molecular mechanisms used 

by the pathogen to cause disease.  

 

9.2 Conclusions 

In this study we investigated the interactions among S. Typhimurium, the vertebrate 

host and the resident microbiota.  

Using piglet as model for salmonellosis, we demonstrated that: 

• Salmonella induces a host inflammatory response which is correlated with its degree 

of virulence; 

• intestinal inflammation is actively exploited by the pathogen to promote its own 

intestinal colonization;  

• the degree of inflammation could contribute to the progression and to the outcome of 

salmonellosis through the modulation of microbiota; 

• proteomic analysis of the intestinal mucosa response to S. Typhimurium has shown a 

significant modulation of the normal host functions, metabolic pathway and 

cytoskeleton-involving processes in particular; 

• in response to S. Typhimurium, host seems to use a “nutriprive” mechanism to 

reduce the availability of nutrients and energy in the intestine inflamed and to inhibit 

Salmonella infection.  

Overall, we can conclude that the interaction among S. Typhimurium, the host and 

intestinal microbiota represents one of the most dynamic and intricate biological 
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system existing in nature. The outcome of each infection is the result of this 

interactive tripartite relationship.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



133 
 

9.3 References 

Ahmer BM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. 

Frontiers in Microbiology. 2011. 2:101. doi: 10.3389/fmicb.2011.00101.  

 

Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. Intestinal 

dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and 

nosocomial diarrhea. Journal of Clinical Microbiology. 2013. 51(9):2884-92.  

 

Appelberg R. Macrophage nutriprive antimicrobial mechanisms. Journal of 

Leukocyte Biology. 2006. 79(6):1117-28.  

 

Arce C, Lucena C, Moreno A, Garrido JJ. Proteomic analysis of intestinal mucosa 

responses to Salmonella enterica serovar typhimurium in naturally infected pig. 

Comparative Immunology, Microbiology and Infectious Diseases. 2014. 37(1):59-67. 

 

Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, 

Peterson SN, Monack DM, Barton GM. TLR signaling is required for Salmonella 

typhimurium virulence. Cell. 2011. 144(5):675-88. doi: 10.1016/j.cell.2011.01.031. 

 

Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions 

in the gut epithelial barrier. Nature Chemical Biology. 2011. 8(1):36-45.  

 

Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, Salzman N. Enteric 

salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. 

Infection and Immunity. 2008. 76(3):907-15.  

 

Bearson SM, Allen HK, Bearson BL, Looft T, Brunelle BW, Kich JD, Tuggle CK, 

Bayles DO, Alt D, Levine UY, Stanton TB. Profiling the gastrointestinal microbiota 

in response to Salmonella: low versus high Salmonella shedding in the natural 

porcine host. Infection Genetics and Evolution. 2013. 16:330-40.  

 

Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M. Exploiting host immunity: the 

Salmonella paradigm. Trends in Immunology. 2015. 36(2):112-20.  

 



134 
 

Belon C,  Soscia C,  Bernut A,  Laubier A,  Bleves S, Blanc-Potard AB. A 

Macrophage Subversion Factor Is Shared by Intracellular and Extracellular 

Pathogens. PLoS Pathogen. 2015. 11(6): e1004969. 

doi:  10.1371/journal.ppat.1004969. 

 

Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y, Vazquez-

Torres A, Andrews-Polymenis H. The ABC-type efflux pump MacAB protects 

Salmonella enterica serovar typhimurium from oxidative stress. MBio. 2013. 

4(6):e00630-13. doi: 10.1128/mBio.00630-13. 

 

Borewicz KA, Kim HB, Singer RS, Gebhart CJ, Sreevatsan S, Johnson T, Isaacson 

RE. Changes in the porcine intestinal microbiome in response to infection with 

Salmonella enterica and Lawsonia intracellularis. Plos One. 2015. 10(10):e0139106. 

doi: 10.1371/journal.pone.0139106 

 

Brawn LC, Hayward RD, Koronakis V. Salmonella SPI1 Effector SipA Persists after 

Entry and Cooperates with a SPI2 Effector to Regulate Phagosome Maturation and 

Intracellular Replication. Cell Host and Microbes. 2007. 1(1):63-75. 

 

Broz P, Ohlson MB, Monack DM. Innate immune response to Salmonella 

typhimurium, a model enteric pathogen. Gut Microbes. 2012. 3(2):62-70.  

 

Chirullo B, Pesciaroli M, Drumo R, Ruggeri J, Razzuoli E, Pistoia C, Petrucci P, 

Martinelli N, Cucco L, Moscati L, Amadori M, Magistrali CF, Alborali GL and 

Pasquali P (2015) Salmonella Typhimurium exploits inflammation to its own 

advantage in piglets. Front. Microbiol. 6:985. doi: 10.3389/fmicb.2015.00985  

 

Clavel T, Duck W, Charrier C, Wenning M, Elson C, Haller D. Enterorhabdus 

caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse 

model of spontaneous colitis, and emended description of the genus Enterorhabdus 

Clavel et al. 2009. International Journal of Systematic and Evolutionary 

Microbiology. 2010. 60(Pt 7):1527-31. doi: 10.1099/ijs.0.015016-0. Epub 2009 Aug 

14. 

 



135 
 

Collado-Romero M, Martins RP, Arce C, Moreno Á, Lucena C, Carvajal A, Garrido 

JJ. An in vivo proteomic study of the interaction between Salmonella typhimurium 

and porcine ileum mucosa. 2012. Journal of Proteomics. 75, 2015-26.  

 

Collado-Romero M, Aguilar C, Arce C, Lucena C, Codrea MC, Morera L, Bendixen 

E, Moreno Á, Garrido JJ. Quantitative proteomics and bioinformatic analysis provide 

new insight into the dynamic response of porcine intestine to Salmonella 

Typhimurium. Frontiers in Cellular and Infection Microbiology. 2015. 5:64. doi: 

10.3389/fcimb.2015.00064. 

 

Conway PL. 1997. Development of intestinal microbiota. In: Mackie RI, Whyte BA 

and Isaacson RE. Eds. Gastrointestinal Microbiology vol. 2: Gastrointestinal 

microbes and host interactions. Chapman and Hall, New York. 

 

Cooke FJ, Threlfall EJ, Wain J. Current trends in the spread and occurrence of 

human salmonellosis: molecular typing and emerging antibiotic resistance. 2007. p 

1-29. In Rhen M, Maskell D, Mastroeni P and Threlfall J (ed.). Salmonella: 

Molecular Biology and Pathogenesis. Horizon Bioscience, Norfolk, UK. 

 

Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry-

based proteomics. Nature. 2007. 450(7172):991-1000. 

 

Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bullettin of the 

World Health Organization. 2004. 82(5): 346-53. 

De Groote MA, Ochsner UA, Shiloh MU, Nathan C, McCord JM, Dinauer MC, 

Libby SJ, Vazquez-Torres A, Xu Y, Fang FC. Periplasmic superoxide dismutase 

protects Salmonella from products of phagocyte NADPH-oxidase and nitric 

oxide synthase. Proceedings of the National Academy of Science of the USA. 1997. 

94(25): 13997–14001. 

Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, Petrucci P, 

Martinelli N, Moscati L, Manuali E, Pavone S, Picciolini M, Ammendola S, Gabai 

G, Battistoni A, Pezzotti G, Alborali GL, Napolioni V, Pasquali P and Magistrali CF 

(2016) Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify 



136 
 

Swine Intestinal Microbiota. Front. Cell. Infect. Microbiol. 5:106. doi: 

10.3389/fcimb.2015.00106 

 

Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to 

infection by intracellular bacterial pathogens. Frontiers in Cellular and Infection 

Microbiology. 2013. 3:24. doi: 10.3389/fcimb.2013.00024.  

 

Elfenbein JR, Johanna R, Endicott-Yazdani T, Porwollik S, Bogomolnaya LM, 

Cheng P, Guo J, Zheng Y, Yang HJ, Talamantes M, Shields C, Maple A, Ragoza Y, 

DeAtley K, Tatsch T, Cui P, Andrews KD, McClelland M, Lawhon SD, Andrews-

Polymenis H. Novel Determinants of Intestinal Colonization of Salmonella Enterica 

Serotype Typhimurium Identified in Bovine Enteric Infection. Infection and 

Immunity. 2013. 81, 4311–20.  

 

Encheva V, Shah HN, Gharbia SE. Proteomic analysis of the adaptive response of 

Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. 

Microbiology. 2009. 155(Pt 7):2429-41.  

 

Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the 

gastrointestinal ecosystem: what we know and need to know from gnotobiology. 

Microbiology and Molecular Biology Reviews. 1998. 62(4):1157-70. 

 

Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-

typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. 

Lancet. 2012. 379(9835):2489-99. 

 

Fischbach MA, Lin H, Liu DR, Walsh CT. How pathogenic bacteria evade 

mammalian sabotage in the battle for iron. Nature Chemical Biology. 2006. 2(3):132-

8. 

 

Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem 

A. Lipocalin 2 mediates an innate immune response to bacterial infection by 

sequestrating iron. Nature. 2004. 432:917–921. 

 



137 
 

Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A, Hinton 

JC, Van Immerseel F. Butyrate specifically down-regulates salmonella pathogenicity 

island 1 gene expression. Applied and Environmental Microbiology. 2006. 

72(1):946-9. 

 

Heaton JC, Jones K. Microbial contamination of fruit and vegetables and the 

behavior of enteropathogens in the phyllosphere: a review. Journal of Applied 

Microbiology. 2008. 104(3):613-26.  

 

Hoelzer K, Moreno Switt AI, Wiedmann M. Animal contact as a source of human 

non-typhoidal salmonellosis. Veterinary Research. 2011. 42:34. doi: 10.1186/1297-

9716-42-34. 

 

Hopwood DE, Hampson DJ. Interaction between the intestinal microflora, diet 

and diarrhoea, and their influences on piglet health in the immediate post-

weaning period. In: Weaning the pig. Concepts and consequences. Pluske JR, 

LeDividich J and Verstegen MWA. 2003. pp. 199-218. Eds. Wageningen 

Academic Publishers, The Netherlands. 

 

Hormaeche CE. Dead salmonellae or their endotoxin accelerate the early course of a 

Salmonella infection in mice. Microbial Pathogenesis. 1990. 9:213-18.  

 

Hugas M, Beloeil P. Controlling Salmonella along the food chain in the European 

Union - progress over the last ten years. Euro Surveillance. 2014. 19(19). pii 20804.  

 

Jenner RG, Young RA. Insights into host responses against pathogens from 

transcriptional profiling. Nature Reviews. Microbiology. 2005. 3:281–294.  

 

Isaacson R, Kim HB. The intestinal microbiome of the pig. Animal Health Research 

Reviews.  2012. 13(1): 100-109. 

 

Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell 

Host & Microbe. 2012. 12(4):496-508.  

 



138 
 

Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. 

Journal of Pharmacy and Pharmacology. 2004. 56(3):285-9. 

 

Khan CMA. The dynamic interactions between Salmonella and the microbiota, 

within the challenging niche of the gastrointestinal tract. International Scholarly 

Research Notices. 2014. 2014:1–23.  

 

Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. 

Longitudinal investigation of the age-related bacterial diversity in the feces of 

commercial pigs. 2011. Veterinary Microbiology. 153:124-133. 

Kim JJ and Khan WI. Goblet Cells and Mucins: Role in Innate Defense in Enteric 

Infections. Pathogens. 2013. 2(1): 55–70. doi:  10.3390/pathogens2010055. 

Le Bouguénec C & Schouler C. Sugar metabolism, an additional virulence factor in 

enterobacteria.   2011. International Journal of Med Microbiology. 301(1): 1-6.  

 

Ling Z, Liu X, Jia X, Cheng Y, Luo Y, Yuan L, Wang Y, Zhao C, Guo S, Li L, Xu 

X, Xiang C. Impacts of infection with different toxigenic Clostridium difficile strains 

on faecal microbiota in children. Scientific Reports. 2014. 4:7485. doi: 

10.1038/srep07485. 

 

Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic 

host immune responses. Cell Host Microbe. 2011. 10:311-323. doi: 

10.1016/j.chom.2011.10.004 

 

Liu JZ, Jellbauer S, Poe AJ, Ton V, Pesciaroli M, Kehl-Fie TE, Restrepo NA, 

Hosking MP, Edwards RA, Battistoni A, Pasquali P, Lane TE, Chazin WJ, Vogl T, 

Roth J, Skaar EP, Raffatellu M. Zinc sequestration by the neutrophil protein 

calprotectin enhances Salmonella growth in the inflamed gut. 2012. Cell Host 

Microbe. 11: 227-239. 

 

Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay 

BB. Host-mediated inflammation disrupts the intestinal microbiota and promotes the 

overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007. 2(2): 119-129. 



139 
 

 

Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TE, Fazil 

A, Hoekstra RM & International Collaboration on Enteric Disease ‘Burden of 

Illness’ Studies. The global burden of nontyphoidal Salmonella gastroenteritis. 

Clinical Infectious Diseases. 2010. 50: 882-889. 

 

Mantis NJ, Rol N, B. Secretory IgA's Complex Roles in Immunity and Mucosal 

Homeostasis in the Gut. Mucosal Immunology. 2011. 4(6): 603–611.  

 

Martins RP, Collado-Romero M, Martínez-Gomáriz M, Carvajal A, Gil C, Lucena C, 

Moreno A, Garrido JJ. Proteomic analysis of porcine mesenteric lymph-nodes after 

Salmonella typhimurium infection. Journal of Proteomics. 2012. 75(14):4457-70.  

 

Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced macrophage activation and 

signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. Journal 

of Experimental Medicine. 1997. 185(9):1661-70. 

 

Miarelli M, Drumo R, Signorelli F, Marchitelli C, Pavone S, Pesciaroli M, Ruggieri 

J, Chirullo B, Ammendola S, Battistoni A, Alborali GL, Manuali E, Pasquali P. 

Salmonella Typhimurium infection primes a nutriprive mechanism in piglets. Vet 

Microbiol. 2016 Apr 15;186:117-25. doi: 10.1016/j.vetmic.2016.02.006.  

 

Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, 

Schreiber A, Hackam DJ. Enterocyte TLR4 mediates phagocytosis and translocation 

of bacteria across the intestinal barrier. Journal of Immunology. 2006. 176(5):3070-9. 

 

Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, 

Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-

borne diseases - the challenges of 20 years ago still persist while new ones continue 

to emerge. International Journal of Food Microbiology. 2010. 139 Suppl 1, S3-15. 

 

Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, 

Ploegh HL, Fox JG, Littman DR, Reinecker HC. CX3CR1-mediated dendritic cell 



140 
 

access to the intestinal lumen and bacterial clearance. Science. 2005. 307(5707):254-

8. 

 

Patel S, McCormick BA. Mucosal Inflammatory Response to Salmonella 

Typhimurium Infection. Frontiers in Immunology. 2014. 5:311.  

 

Raupach B, Peuschel SK, Monack DM, Zychlinsky A. Caspase-1-mediated 

activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune 

defenses against Salmonella enterica serovar Typhimurium infection. Infection and 

Immunity. 2006. 74(8):4922-6. 

 

Roca M, Nofrarías M, Majó M, Pérez de Rozas AM, Segalés J, Castillo M, Martín-

Orúe SM, Espinal A, Pujols J, Badiola I. Changes in Bacterial Population of 

Gastrointestinal Tract of Weaned Pigs Fed with Different Additives. BioMed 

Research International. 2014. 2014: 269402. doi: 10.1155/2014/269402. 

 

Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, 

Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-

pathogen interactions in Salmonella. Future Microbiology. 2008. 3(6):625-34.  

 

Salmon DE, Smith T. The bacterium of swine-plague. American Monthly 

Microscopical Journal. 1886. 7:204-205. 

 

Sánchez-Vargas FM, Abu-El-Haija MA, Gómez-Duarte OG. Salmonella infections: 

an update on epidemiology, management, and prevention. Travel Medicine and 

Infectious Disease. 2011. 9(6):263-77.  

 

Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Baumler AJ. Animal 

models of Salmonella infections: gastroenteritis vs. typhoid fever. Microbes and 

Infection. 2001. 3:1335-44. 

 

Santos RL, Raffatellu M, Bevins CL, Adams LG, Tükel C, Tsolis RM, Bäumler AJ. 

Life in the inflamed intestine, Salmonella style. Trends in Microbiology. 2009. 

17(11):498-506.  



141 
 

 

Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck 

AD, Purvine SO, Manes NP, Smallwood HS, Wang H, Forbes J, Gros P, Uzzau S, 

Rodland KD, Heffron F, Smith RD, Squier TC. Proteomic analysis of Salmonella 

enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification 

of a novel protein that contributes to the replication of serovar typhimurium inside 

macrophages. The Journal of the Biological Chemistry. 2006. 281(39):29131-40. 

 

Shi L, Ansong C, Smallwood H, Rommereim L, McDermott JE, Brewer HM, 

Norbeck AD, Taylor RC, Gustin JK, Heffron F, Smith RD, Adkins JN. Proteome of 

Salmonella Enterica Serotype Typhimurium Grown in a Low Mg/pH Medium. 

Journal of Proteomics & Bioinformatics. 2009. 2:388-397. 

 

Singh V. Salmonella Serovars and Their Host Specificity. Journal of Veterinary 

Science & Animal Husbandry 2013. 1(3): 301. doi: 10.15744/2348-9790.1.301. 

 

Silva C, Calva E, Maloy S. One Health and Food-Borne Disease: Salmonella 

Transmission between Humans, Animals, and Plants. Microbiology Spectrum. 2014. 

2(1): Oh-0020-2013. 

 

Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux 

JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart 

P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P. 

Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified 

by gut microbiota analysis of Crohn disease patients. Proceedings of the National 

Academy of the Science of the U S A. 2008. 105(43):16731-6.  

 

Sommer F, Bӓckhed F. The gut microbiota – masters of host development and 

physiology. Nature Reviews Microbiology. 2013. 11(4): 227-38.  

 

Sonck KA, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De 

Keersmaecker SC. The proteome of Salmonella Typhimurium grown under in vivo-

mimicking conditions. Proteomics. 2009. 9(3):565-79.  

 



142 
 

Srikanth CV, McCormick BA. Interactions of the Intestinal Epithelium with the 

Pathogen and the Indigenous Microbiota: A Three-Way Crosstalk. Interdisciplinary 

Perspectives on Infectious Diseases. 2008. 2008: 626827. doi: 10.1155/2008/626827 

 

Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, 

Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt 

WD. Salmonella enterica serovar typhimurium exploits inflammation to compete 

with the intestinal microbiota. PLoS Biology. 2007. 5(10):2177-89. 

 

Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, Hardt 

WD. Motility allows S. Typhimurium to benefit from the mucosal defence. Cellular 

Microbiology. 2008. 10(5):1166-80.  

 

Stecher B. The Roles of Inflammation, Nutrient Availability and the Commensal 

Microbiota in Enteric Pathogen Infection. Microbiology Spectrum. 2015. 3(3). doi: 

10.1128/microbiolspec.MBP-0008-2014. 

 

Sun Y and O’Riordan MXD. Regulation of Bacterial Pathogenesis by Intestinal 

Short-Chain Fatty Acids. Advances in Applied Microbiology. 2013. 85: 93–118.  

 

Swords WE, Wu CC, Champlin FR, Buddington RK. Postnatal changes in selected 

bacterial groups of the pig colonic microflora. Biology of the Neonate. 1993. 63(3): 

191-200. 

 

Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the 

short-chain fatty acids acetate and propionate: a study with relevance to 

inflammatory bowel disease. World Journal of Gastroenterology. 2007. 13(20):2826-

32. 

 

Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, 

Sterzenbach T, Roth JR, Bäumler AJ. Intestinal inflammation allows Salmonella to 

use ethanolamine to compete with the microbiota. PNAS. 2011. 108(42): 17480-5.  

 



143 
 

Vernikos GS, Thomson NR, Parkhill J. Genetic flux over time in the Salmonella 

lineage. Genome Biology. 2007. 8(6):R100. 

 

Wales AD, Carrique-Mas JJ, Rankin M, Bell B, Thind BB, Davies RH. Review of 

the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella 

in mites, flies and litter beetles. Zoonoses and Public Health. 2010. 57(5): 299-314. 

 

Wells CL, Jechorek RP, Olmsted SB, Erlandsen SL. Effect of LPS on epithelial 

integrity and bacterial uptake in the polarized human enterocyte-like cell line Caco-2. 

Circolation Shock. 1993. 40(4):276-88. 

 

Wick MJ.  Innate Immune Control of Salmonella enterica Serovar Typhimurium: 

Mechanisms Contributing to Combating Systemic Salmonella Infection. Journal of 

Innate Immunity. 2011. 3(6): 543-9. 

 

Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, 

Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ. Gut 

inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010. 

467: 426-429. 

 
Yang Y, Hu W, Hu K, Zeng X, Liu X. Mass spectrometry-based proteomic 

approaches to study pathogenic bacteria-host interactions. Protein & Cell. 2015. 

6(4): 265-274. 

 

Yeung CY, Chiang Chiau JS, Chan WT, Jiang CB, Cheng ML, Liu HL, Lee HC. In 

vitro prevention of salmonella lipopolysaccharide-induced damages in epithelial 

barrier function by various lactobacillus strains. Gastroenterology Research and 

Practice. 2013. 2013:973209. doi: 10.1155/2013/973209.  

 

Zhang CG, Chromy BA, McCutchen-Maloney SL. Host-pathogen interactions: a 

proteomic view. Expert Review of Proteomics. 2005. 2(2):187-202. 

 

Zhang Q, Widmer G, Tzipori S. A pig model of the human gastrointestinal tract. Gut 

Microbes. 2013. 4:193-20 



144 
 

RESEARCH EXPERIENCES 

School of Veterinary Medicine and Science - University of Nottingham, Sutton 

Bonington Campus, UK September-December 2013. Investigation of the swine 

immune response to the oral administration of a live attenuated strain of Salmonella 

enterica serovar Infantis by monitoring the clinical conditions of the animals (body 

temperature, fecal shedding) and by the use of histological and immunological 

assays. It was also evaluated the ability of the same strain to induce protection 

against infection with a virulent strain of Salmonella enterica serotype Choleraesuis 

and / or Typhimurium. 

AWARDS 

Winner of a fellowship for a Short-Term Scientific Missions provided by MedVetNet 

Association. 1st February- 1st April. Institute for Microbiology, Department of 

Infectious Diseases, University of Veterinary Medicine Hannover (TiHo). Hannover 

(Germany). Acquisition of the technique of isolation of bone marrow cells and their 

differentiation into dendritic cells. Study of the interaction of dendritic cells with 

different strains of Salmonella enterica serovar Typhimurium. 

 

 

 

 

 

 

 

 



145 
 

AKNOWLEDGMENTS 

 

First and foremost, I gratefully acknowledge my supervisor Paolo Pasquali for his 

time and guidance throughout my PhD. He has always been available to advise me 

and to clarify my doubts. I want to thank Prof. Gianfranco Gabai who has always 

been kind and ready to provide me time and help.  

I am deeply grateful to Dr. Chiara Magistrali and Valerio Napolioni for their support, 

assistance, care and precious friendship. I want to thank my ISS group which has 

contributed to my personal and professional growth. In particular, I am deeply 

grateful to Dr. Michela Tarantino, Claudia Pistoia, Paola Petrucci and Dr. Barbara 

Chirullo for being true friends as well as colleagues. In these years, we have laughed 

a lot and overcame moments of difficulty. We have shared every kind of emotion and 

I would never change the time spent with each of you. Special thanks to Dr. Maria 

Miarelli for our stimulating exchange of ideas. I want to thank Dr Giovanni L 

Alborali, Dr Jessica Ruggeri, Dr Giovanni Pezzotti and Dr Michele Pesciaroli, Dr 

Andrea Battistoni and Dr. Serena Ammendola for their support and assistance.  

I am grateful to all the persons who have collaborated in this project because without 

their help, this thesis would never have been written. 

Thanks to all the co-authors that have given their consent to use the articles as part of 

my PhD thesis. 

Last but not least, a special thanks to my family for their love, dedication and 

support; they have lead me to be the person who I am.  

 

 



ERRATA CORRIGE  

The present document integrated the PhD thesis of Drumo Rosanna, entitled: “Study of 

host-pathogen-microbiota interactions on a Salmonella enterica serovar 

Thyphimurium piglet model”. 2016. Scuola di Dottorato di Ricerca in: Scienze 

Veterinarie. Università degli Studi di Padova.  

 
 

Chapter 1 

• Page 9, line 2: At the end of the line, add “(Singh, 2013).” 

• Page 13, line 4: Instead to “(Hugas and Beloeil, 2014)” insert “(Hoelzer et al., 

2011)”. 

• Page 13, line 11: After “they include pork meat, poultry, eggs, raw milk and dairy 

products” add “(Hoelzer et al., 2011)”. 

• Page 13, line 11: “In recent years, the role of food of vegetable origin, as potential 

vehicles of gastrointestinal infection, has been highlighted” should be replaced with 

“Recently, the role of food of vegetable origin (most commonly salads and tomatoes), 

as potential vehicles of Salmonella for humans, has been highlighted (Freitas Neto et 

al., 2010).” 

Chapter 2 

• Page 15, line 7: After “Cathelicidins are also cationic proteins that act as potent 

lipopolysaccaride (LPS)- neutralizing factors” add “(Patel & McCormick, 2014)” 

• Page 15, line 8: After “Lactoferrin is a multifunctional protein that functions 

sequestering iron and destabilizing microbial membranes” add “(Legrand et al., 

2008)”. 

• Page 17, line 8: Instead to “(Broz et al., 2012)” insert “(Godinez et al., 2008)”. 

 



Chapter 9 

• Page 126, line 8: Instead to “(Lupp et al., 2012)” read “(Lupp et al., 2007)”. 

• Page 127, line 10: Instead to “(Arpaia et al., 2012)” read “(Arpaia et al., 2011)”. 

• Page 130, line 11: Instead to “(Eisenreich et al., 2008)” read “(Eisenreich et al., 

2013)”. 

• The following references should be added to the “References” section (section 

9.3, Pag.133): 

Freitas Neto OC, Penha Filho RAC, Barrow P, Berchieri Junior A. Sources of human 

non-typhoid Salmonellosis: a review. Brazilian Journal of Poultry Science. 2010. 12(1): 

1-11. 

 

Godinez I, Haneda T, Raffatellu M, MD, Paixão TA, Rolán HG, Santos RL, Dandekar S, 

Tsolis RM, Bäumler AJ. T cells help to amplify inflammatory responses induced by 

Salmonella enterica serotype Typhimurium in the intestine. Infection and Immunity. 2008. 

76(5): 2008–2017. doi: 10.1128/IAI.01691-07. 

 

Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, Mazurier J. Lactoferrin structure 

and functions. Advances in Experimental Medicine and Biology. 2008. 606:163-94.  

 

• The following reference should be removed from the “References” section 

(section 9.3), Pag.137, line 18: “Hugas M, Beloeil P. Controlling Salmonella 

along the food chain in the European Union - progress over the last ten years. Euro 

Surveillance. 2014. 19(19). pii 20804”.  

 

 
 
 


