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ABSTRACT 

 

Rainfall is one of the most common triggering factors of landslides. Due to the usual large 

extension of rainfall events, hydrologically-driven instability can be triggered over large areas and 

frequently results in a diffuse, flow type of failure which occurs abruptly, involving a shallow soil 

deposit of different grading and origin. Considering the destructiveness of this type of landslides, 

the forecast of this risk consists a fundamental issue. 

This PhD thesis is primarily motivated by the need for a better understanding of the slope's 

mechanical response to rainfall infiltration and for a more accurate and realistic prediction of the 

location and time of the slope failure occurrence with regards to physical, mathematical and 

numerical modelling. To this end, the modelling of rainfall induced landslides is considered as a 

coupled variably saturated hydro-mechanical problem. For the numerical simulations the 

geometrically linear finite element code Comes-Geo is used, in which soils are considered as non-

isothermal elasto-plastic multiphase solid porous materials. 

Furthermore, this PhD manuscript is dedicated to the concept of material instability in multiphase 

geomaterials, with particular reference to rainfall-induced landslides. A recently proposed criterion, 

the second order work criterion, based on Hill’s sufficient condition of stability (Hill, 1958) has 

been implemented on the abovementioned code. It consists in studying the sign of the second order 

work at the material point level and it is used for the detection of the onset of the local failure. The 

definition of the second order work criterion is reviewed and three different expressions are 

presented additionally, which could be used in the case of variably saturated porous materials; the 

second order work is expressed in terms of effective stress, of total stress and thirdly by taking into 

account the hydraulic energy contribution for the case of partially saturated soils. 

The abovementioned modelling framework in conjunction with Hill's criterion is applied for the 

finite element analysis of three initial boundary value problems: a plane strain compression test on 

dense sand and isochoric granular material where strain localisation is observed; the failure 

initiation of a well-documented flowslide (Sarno-Quidinci event, southern Italy 1998); a large scale 

slope stability experimental test subjected to rainfall infiltration (University of Padua, 2014). 

 

Keywords: Landslides; Rainfall infiltration; Multiphase porous material; Material instability; Hill's 

criterion; Localised mode of failure; Diffuse mode of failure. 

 





 

SOMMARIO 

 

La pioggia è una delle maggiori cause delle frane. A causa della grande estensione dei fenomeni 

piovosi, l’instabilità idro-geologica può verificarsi su aree estese, e spesso si trasforma in una 

rottura di tipo diffusa causando colate che avvengono improvvisamente, coinvolgendo strati 

superficiali di suolo di diversa origine e classificazione. Considerando la capacità distruttiva di 

questo tipo di eventi, la valutazione del rischio corrispondente è di fondamentale importanza. 

Questa tesi è motivata principalmente dalla necessità di una migliore conoscenza della risposta di 

un pendio all’infiltrazione della pioggia e da una predizione più precisa e realistica dell’istante e del 

luogo del distacco di frane mediante opportuna modellazione fisico-matematica e numerica. A 

questo scopo, la modellazione delle frane causate dalla pioggia avviene considerando questi eventi 

come un problema idro-meccanico accoppiato in condizioni di saturazione variabile. Per le 

simulazioni numeriche è stato utilizzato il codice agli elementi finiti “Comes-Geo”, in cui il 

materiale costituente i pendii è analizzato come un solido poroso multifase elasto-plastico in 

condizioni non-isoterme. 

In questa tesi inoltre è discusso il problema dell’instabilità dei geomateriali multifase, con 

particolare applicazione alle frane indotte dalla pioggia. A tal fine, il criterio del lavoro del secondo 

ordine, basato sulla condizione sufficiente di stabilità di Hill (1958), è stato implementato nel 

codice di calcolo agli elementi finiti sopra menzionato. Esso consiste nello studio del segno del 

lavoro del secondo ordine a livello di punto materiale ed è utilizzato nella tesi per rilevare la rottura 

locale. La formulazione analitica di questo criterio è stata modificata per i solidi porosi proponendo 

tre diverse espressioni che possono essere utilizzate per i materiali porosi multifase in condizione di 

saturazione variabile; il lavoro del secondo ordine è stato espresso in funzione della tensione 

efficace (i), della tensione totale (ii) e considerando il contributo dell’energia idraulica nel caso di 

terreni parzialmente saturi (iii). 

L’approccio modellistico sopra menzionato e il criterio di Hill sono stati applicati all’analisi agli 

elementi finiti di tre problemi di collasso di suoli: un test di compressione biassiale (in stato piano 

di deformazioni) di una sabbia densa e un materiale granulare isocorico, in cui è stata osservata 

sperimentalmente la localizzazione di deformazioni, il distacco di una frana ben documentata della 

zona di Sarno-Quindici (Italia meridionale, 1998), un test di stabilità di un pendio sperimentale di 

grande scala soggetto a  pioggia (Università degli Studi di Padova, 2014). 

 

Parole chiave: Frane, infiltrazione piovosa; materiale poroso multifase; instabilità di materiale; 

criterio di Hill; rottura localizzata; rottura diffusa. 
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Introduction 1 

1 Introduction 

1.1 General context of the thesis 

Hydrologically-driven slope instability represents a major threat to human life and property. 

Due to the usual large extension of rainfall events this type of slope failure can be triggered 

over large areas and generally involves shallow soil deposit of different grading and origin 

(Cascini et al. 2009). Considering the destructiveness of these landslides, the understanding 

and the hydro-mechanical modelling of the mechanisms occurring inside the source areas are 

a fundamental issue for the mitigation of the posed risk to life and facilities. 

The most common approach for the numerical modelling of rainfall induced slope failure 

in engineering practice is to uncouple the fluid flow and slope stability problems and treat them 

in a sequential fashion. In this sense, a seepage analysis is performed first (assuming a rigid 

solid skeleton) for the calculation of the water pressure distribution, which is then followed by 

a limit equilibrium analysis for the slope stability problem. 

However, the behaviour of a soil slope under rainfall conditions is closely related not only 

to the distribution of pore-water pressure but also to the stress state during infiltration. Pore- 

water pressure changes due to rainfall infiltration and seepage, will lead to changes in stresses 

and consecutively deformation of the soil. In reverse, stress changes will modify the seepage 

process, because soil hydraulic properties such as porosity, permeability and water storage 

capacity are affected by the changes in stresses. Therefore, the seepage and stress-strain 

analysis are considered to be strongly linked in unsaturated soils under rainfall conditions 

(Zhang et al. 2005). 



2 Introduction 

More exact solutions to the coupled governing equations for deformation and seepage 

should be obtained when the soils in the slope are considered as deformable and in variably 

saturated conditions. For this reason, during this research work the modelling of rainfall 

induced landslides is considered as a coupled unsaturated hydro-mechanical problem. For the 

numerical simulations the geometrically linear finite element code Comes-Geo developed at 

the University of Padova, Italy, is used, in which soils are considered as non-isothermal elasto-

plastic multiphase solid porous materials as developed in (Sanavia et al. 2006; Sanavia et al. 

2008; Sanavia 2009) following the works of (Lewis & Schrefler 1998) and (Hassanizadeh & 

Gray 1979a; Hassanizadeh & Gray 1979b; Gawin & Schrefler 1996). 

The second matter, which is addressed in this thesis, is the concept of material instability in 

multiphase geomaterials. As it is well known, slope failure is the ultimate outcome of 

instability mechanisms acting within the soil strata. These mechanisms can lead to a localized 

or diffuse mode of failure. In fact, these are the two main types of failure attributed to shallow 

rainfall induced landslides; the shear failure, meaning the formation of shear bands due to strain 

localization which cause soil slips and flowslide (related sometimes to static liquefaction 

processes), with no shear band formation resulting in flow-type failures (Eichenberger 2013).  

Although the first type of failure can be described using localization theory, diffuse failure 

mode cannot be described either by classical empirical methods or plasticity theories (Lignon 

et al. 2009). Therefore, there is the need for a more generalized criterion to be used which will 

be able to capture the instability independently of the failure mode. To this end, the second 

order work criterion, based on Hill’s sufficient condition of stability in elasto-plastic solids 

(Hill 1958), has been applied for multiphase porous elasto-plastic solids and is being examined 

in this research study to investigate the stability of initial boundary value problems. It consists 

in computing the sign of the second order work for each material point of the domain, enabling 

to judge the potential instability of a spatial domain in which a set of local negative values 

occur and giving information for the detection of the onset of the failure. The argument for that 

is that the second order work criterion is considered as a more generalized criterion since it has 

been proved mathematically that it is the first bifurcation criterion to be reached along a loading 

path (Laouafa & Darve 2002) with respect to failure by divergence instabilities. What has been 

proved to be mathematically valid is being tested also numerically hereafter, also numerically 

in this thesis, on different cases of multiphase finite element analyses. 



Introduction 3 

1.2 Thesis objectives and contributions 

The content of this thesis which is outlined in the next section contributes to the following 

objectives: 

1. Identification of key physical processes and factors governing rainfall-induced 

landslides. 

2. Numerical modelling of progressive failure and hydro-mechanically coupled 

phenomena in rainfall-induced landslides. 

3. Numerical investigation of the second order work criterion when applied for the 

multiphase finite element analysis of initial and boundary value problems. 

4. Numerical investigation and comparison between the different expressions of the 

second order work criterion which could be used in the case of variably saturated 

porous materials. 

5. Numerical investigation on the use of advanced constitutive models in conjunction 

with second order work criterion. 

1.3 Outline of the thesis 

The content of this thesis is organised as follows: 

In Chapter 2, which constitutes a review on the description of instability and failure in 

geomaterials, the definitions of these two concepts are proposed as well as that of the 

bifurcation, in a general context. Some representative examples of failure modes are described 

then, both for the case of experimental tests and for large-scale problems with particular 

reference to rainfall-induced landslides. Finally, the main criterions for the study of 

geomaterials stability are presented with extended reference to the second order criterion which 

has been proved mathematically to be a more generalised criterion.  

Chapter 3, provides an overview of the physical processes and the governing factors of the 

failure mechanisms in non-cohesive soil slopes subjected to rainfall. Furthermore, a review is 

presented of the existing numerical methods for the study of slope stability problems. Based 

on the review of the physical processes, a suitable modelling approach is chosen for the 

numerical simulations performed in chapter 6. 

In Chapters 4 and 5, the mathematical and numerical model is presented, which is selected 

for the coupled thermo-hydro-mechanical processes taking place in partially saturated 
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deforming porous media. Firstly, the governing equations of the T-H-M model following 

(Lewis & Schrefler 1998), are presented. Subsequently, the description of the discretization in 

space and in time domain of the governing equations follows and of the F.E.M. modelling 

approach used for the solution of the initial boundary problem.  

In Chapter 6, the numerical results of the multiphase analyses of three initial and boundary 

value problems are presented and discussed. In particular it concerns the analyses of a plane 

strain compression test on dense sand and isochoric grain matter where strain localisation is 

observed and the failure initiation of a well-documented flowslide (Sarno-Quidici events, 

southern Italy 1998); in both abovementioned analyses the different expressions of the second 

order work criterion are employed and investigated. Finally, a large scale slope stability 

experimental test subjected to rainfall infiltration (University of Padova, 2014) is simulated 

with a classic and an advanced constitutive model in conjunction with the second order work 

criterion.  

Chapter 7 provides general conclusions and summarises the principal achievements of this 

thesis. Furthermore, perspectives for future research are highlighted. 
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2 Stability in Geomaterials and Second order work criterion 

2.1 Introduction 

Landslides or questions related to slope stability are usually considered in the framework of 

plastic limit analyses. Recent progress has made it possible to describe some failure modes in 

the framework of the theories of bifurcation of the strain mode by plastic strain localization 

and the shear-banding phenomenon (Darve & Laouafa 2000). In this context, the definitions 

of instability, bifurcation and their relation to failure of geomaterials are provided in this 

chapter. Furthermore, a brief description of the major failure modes which prevail in 

geomaterials is given, as observed in the laboratory as well as in-situ in the case of shallow 

rainfall-induced landslides. Finally, the question of stability analysis is reconsidered by taking 

into account three different instability criterions with an extended reference to the second order 

work ctiterion which is being investigated throughout this thesis. 

2.2 Definitions 

In the context of geomechanics there are three main concepts that are widely met: failure, 

instability and bifurcation (or loss of uniqueness). Hereafter an attempt is made to clarify their 

meanings and their definitions. 

The notion of failure 

By definition, a system is said to be in a state of failure (or collapse) when a small increase 

in load results in high deformation rate and a loss of load capacity in a very short time. 

According to (Daouadji et al. 2011) failure appears as a phenomenon associated with the 
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existence of some limit stress states which cannot be passed by the material for any possible 

monotonous loading path. At such a limit stress state if an additional load is imposed, the state 

of the material changes suddenly with the occurrence of large deformations, cracks, 

fragmentation, etc. Indeed it becomes impossible to apply this additional load. This brutal 

change is called roughly ‘failure’. 

The notion of instability 

In physics stability is defined in the following way: it is the property of a system in which 

any departure from an equilibrium state gives rise to forces or influences which tend to return 

the system to equilibrium. This is also known as static stability.  

Figure Fig. 2.1 shows three different configurations of stability: In the stable configuration, 

a ball always rolls toward the equilibrium point at the bottom of the valley. In the indifferent 

or neutral configuration, the ball can roll anywhere and remain equally stable or unstable. In 

the unstable equilibrium condition, the ball is stable only if it remains perfectly balanced at the 

top of the hill.  

 

Fig. 2.1 Equilibrium configuration: (a) indifferent or neutral, (b) stable, (c) unstable equilibrium condition (Lammers & 

Zurcher 2011). 

Conversely, a commonly admitted definition of instability is the following: a system is 

reputed unstable, if and only if an infinitesimal pertubation induces finite changes in the 

state of a system; which corresponds to the Lyapunov (Lyapunov 1907) definition of stability, 

adapted in the field of interest (solid mechanics and geomechanics) by the following statement: 

a small variation in any loading parameter or in any variable characterizing the mechanical 

state of the geomaterial will induce only a small variation of the response variables.  
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The notion of bifurcation (or loss of uniqueness) 

According to (Nicot & Darve 2011) bifurcation is a widely used notion in physics: the first 

intuitive definition establishes the existence of more than one response path from a given 

state for the same loading path (Leger & Potier-Ferry 1993; Nguyen 1987). The system may 

follow different bifurcated branches, departing from the fundamental response path. Another 

definition can also be given: a bifurcation is the sudden change in the nature of the response of 

the system under continuous evolution of the internal variables (or loading parameters). 

According to (Nicot & Darve 2011) this definition is particularly relevant, as it relates the 

notions of both bifurcation and failure. Indeed, failure can be regarded as a state from which a 

transition from a quasistatic regime to a dynamical regime is possible under certain constant 

loading parameters. 

 

Overall, the failure of materials is certainly complex, but is inarguably related to material 

instability and a loss of uniqueness problem, although the converse may not be true (Daouadji 

et al. 2011; Laouafa et al. 2011). In fact, taking into account the above definitions, failure can 

manifest itself as a sudden transition from a static regime to a dynamic one with an exponential 

growth of strains and for this it can be seen as a bifurcation phenomenon. Furthermore, as a 

property of bifurcated states, the attending failure will depend on perturbations and 

imperfections in the system. Because of this dependence on small perturbations, failure can 

also be viewed as an instability phenomenon in the basic Lyapunov sense (Lyapunov 1907). 

Indeed, for a given bifurcation state on the stress–strain curve, any additional and vanishingly 

small loading will lead to infinitely large responses (Daouadji et al. 2011). 

2.3 Examples of failure modes in geomaterials 

The two material failure modes that are of basic interest when considering geomaterials are: 

the localized and the diffuse mode of failure. These two modes of failure are widely met in the 

laboratory while carrying out conventional laboratory tests as well as in-situ (e.x. landslides). 

2.3.1 Homogeneous laboratory tests 

The most conventional laboratory tests to model the material behaviour of soil samples 

assumed to be homogeneous, up to failure are the triaxial tests. The localised failure mode can 
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be seen through a triaxial test performed on a dense sand for example, where the deviatoric 

stress (q) – axial strain (ε1) curve presents a peak. At this peak, there has been transition from 

a homogeneous strain pattern to a discontinuous one, characterized by the appearance of a 

system of bands in which strains concentrate and shear bands develop (Nicot & Darve 2011), 

as illustrated in Figure Fig. 2.2. 

 

Fig. 2.2 Example of localization with shear plane along a triaxial test; after J.L. Colliat-Dangus Doctoral Thesis, cited by 

(Desrues & Chambon 2002)  

 

 

Fig. 2.3 Example of liquefaction after an undrained triaxial test due to a “perturbation” after the deviatoric stress peak q 

(Servant et al. 2005) 

On the other hand, the diffuse failure mode is characterised by a sudden collapse and 

corresponds to a more homogeneous occurrence of failure without any substantial occurrence 
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of cracking or localised deformation. The case of (static) liquefaction is considered a type of a 

diffuse failure mode. The undrained triaxial test performed on (very) loose sand allows to 

highlight this mode of failure. If the test is strain-controlled it is possible to be continued until 

the loss of the effective stresses (without a significant acceleration of the deformations). If the 

test is stress-controlled (i.e. the axial force is controlled) the sample collapses abruptly at the 

peak deviatoric stress but always with no evidence of localisation occurrence (Khoa 2005; 

Darve et al. 2007). Such an example of collapse is presented in Figure Fig. 2.3. 

2.3.2 Rainfall- induced landslides types 

At large scales, the localised and the diffused failure mode are the two main mechanisms 

that also seem to prevail for shallow rainfall-induced landslides which are mainly studied in 

this thesis.The three main types of shallow rainfall-induced landslides that are widely met in 

practice are: the soil slips (or slides), slides turning into flow and the flowslides. 

Flow-type landslides are most often attributed to the mechanism of static liquefaction. Static 

liquefaction occurs in saturated or initially slightly unsaturated, collapsible soils submitted to 

undrained or drained loading conditions leading to an unstable stress state, in which large 

strains and excess pore pressures develop simultaneously while the shear strength of the soil 

decreases (Lade & Pradel 1990; Lade 1993). In this case slope failure occurs abruptly with 

rapid post-failure acceleration (Iverson 2000). 

Slides or soil slips are mainly attributed to shear failure and localised strain softening in 

slopes, caused by inhomogeneous suction reductions and stress states could then lead to a 

progressive global slope failure (Eichenberger 2013). In this case soil slopes can respond 

slowly to rainfall and move at very low speeds (Swanson & Swanston 1977). 

Slide-to-flow is the case where both failure modes coexist (Fig. 2.4). It is the case when 

localised failures occurred due to restricted seepage, which can lead to global shear failure and 

a subsequent flow-type post failure stage, (e.g. (Take et al. 2004), (Lee et al. 2008)). As 

mentioned also in (Cascini et al. 2010) slide –to –flow failure comes as a result of complex 

mechanisms characterised by a decreasing in the shear strength due to local hydraulic 

conditions. At the adjacent zones the shear stresses increase due to unbalanced driving forces 

both in loose and dense soil and further slides occur. The latter is characterised by a high initial 

acceleration that can consequently turn into a flow. 
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Fig. 2.4 Coexistence of localization pattern within a chaotic displacement field at East Gate Mudslide, Glacier National 

Park, Canada (Nicot & Darve 2011) 

2.4 Material instability or bifurcation in geomaterials 

In this thesis, we are interested only in instabilities which may arise from specific 

characteristics of the material behaviour. Instabilities which are related to geometric effects, 

(e.x. beam buckling) or to dynamic effects (effects of mass and inertia) are not addressed in 

this thesis. In this section we present a summary of the major criterions used for the analysis 

of the material stability. 

2.4.1 Plastic limit criterion 

The problems of stability analysis have been generally studied using a plasticity criterion 

with the assumption of a flow rule for the behaviour of the material. 

Let us recall within the elasto-plasticity theory context, the general constitutive expression 

linking the stress increments dσ and the strain increments dε : 

:d dσ M ε  (2.1) 

where M  is the fourth order tangent constitutive tensor.  

From a theoretical point of view, the notion of failure corresponds to the existence of limit 

states. In the classical views a limit stress state is reached asymptotically and it is not possible 

to go through this stress state. If so, a limit stress state will be characterised in elasto-plasticity 

by an undefined deformation for a nil incremental stress:  
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0d σ  and dε  undefined (2.2) 

Conditions (2.2) imply for incrementally linear constitutive relations: 

det 0M  (2.3) 

where the above condition corresponds to the ‘limit plastic condition’ or loss of uniqueness of 

the solution (i.e. defines a limit surface in the six-dimensional stress space). 

: 0d M ε  (2.4) 

The last condition is related to the flow rule, i.e. this equation gives the direction of dε  (but 

not its norm) when the plasticity criterion is reached. 

2.4.2 Rice localisation criterion 

However, the experiments have shown that some failure modes with localization patterns 

(shear banding phenomenon or compaction–dilatation band formation) do not fulfil the 

plasticity criterion (Daouadji et al. 2011). This localised failure mode which is characterised 

by a shear band formation, due to strain localization has been well described by Rice (Rice 

1976) taking into account the continuity of the stress vector through the band and the 

kinematics of the shear band and establishing a proper localization criterion.  

 

Fig. 2.5 Existence of a discontinuity, orientation, and normal direction (Nicot & Darve 2011). 

The Rice criterion corresponds to the vanishing of the determinant of the acoustic tensor: 

det ( ) 0t nMn  (2.5) 
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where vector n  indicates the normal to the discontinuity direction (Fig. 2.5). 

2.4.3 Hill’s sufficient condition of stability 

It has been shown that material instabilities can lead to diffuse modes of failure inside the 

plastic limit condition, which are characterized by the lack of localization patterns and for this 

reason cannot be detected neither by a plastic limit criterion nor by a localization criterion 

(Darve et al. 2004; Nicot et al. 2011). A characteristic example of this kind of failure can be 

illustrated through an undrained triaxial test on loose sand. If a small additional force is applied 

at the stress peak value, a sudden failure occurs with no localisation pattern strictly inside the 

Mohr-Coulomb plastic limit condition (Fig. 2.6). 

 

Fig. 2.6 CIU stress path of saturated, loose sand (Darve et al. 2004) 

In 1958, Hill (Hill 1958) proposed the following sufficient condition of stability for an 

elastoplastic body: 

0
V

d dV
 

 
 


u

s
x

   0d
 

  
 

u

x
 (2.6) 

where V  is the volume of the body at time t, s  the component of the nominal stress tensor 

(the transpose of the first Piolat–Kirchoff tensor), and  /d  u x  the gradient velocity. In the 
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case of a small strain assumption and by neglecting geometrical effects, the condition (2.6) 

reads: 

0
V

d d dV  σ ε    0d ε  (2.7) 

with dσ  the incremental Cauchy stress tensor, and dε  the incremental strain tensor. 

At the material point level Hill’s condition of stability is expressed through the second order 

work criterion as follows: a mechanical stress–strain state is considered as stable if, for any 

couple ( , )d dσ ε  linked by the rate-independent constitutive relation the second order work 
2W  

is strictly positive: 

 2

2  R \ 0  with : ,  : 0nd d d W d d    ε ε M σ σ ε  (2.8) 

where n is the dimension of the stress (or strain) space and M  is the tangent constitutive tensor. 

Different interpretations of this criterion have been provided by considerable amount of 

studies with the aim to give to it an additional physical meaning. These studies have led to the 

notions of controllability and sustainability.  

The controllability notion which was introduced by Nova (Nova 1994), related Hill’s 

criterion with the boundary and loading conditions (control conditions) imposed to a porous 

solid. It was developed by examining the conditions in which a prescribed loading program 

involving specific loading parameters (also referred to as control parameters) can be applied 

to a system, from a given mechanical state after a given loading history. If the considered 

loading program can be applied, then this program is said to be controllable. Following the 

definition given by Nova (Nova 1994), starting from a given mechanical state, a loading 

program can be applied if and only if at each step it produces a unique incremental response 

to the incremental loading governed by the control parameters. Finally, loss of controllability 

of a certain loading path can be described as loss of uniqueness of the incremental solution and 

has been investigated in a number of studies (see for instance (Vardoulakis et al. 1978; 

Vardoulakis & Sulem 1995; Petryk 1993; Darve et al. 1995; Bigoni & Hueckel 1991; Chambon 

& Caillerie 1999)). 

The notion of loss of sustainability was introduced by Nicot (Nicot & Darve 2007; Nicot 

et al. 2007) and relates the second order work criterion with the transition from a stationary 

regime to a dynamic one, without any external input and accompanied with a burst of kinetic 
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energy. In more detail, Nicot (Nicot & Darve 2007) showed the link between the violation of 

condition (2.6) and an increase of the kinetic energy of the medium from a zero value; a system 

made up of a volume V of a given material, in equilibrium at time t under a prescribed external 

loading, is considered. The instanteneous evolution of the system, in equilibrium configuration 

C at time t, is governed by the following equation that includes dynamical effects: 

( )
( ) 0C

V

E t dS dV


 



  

 
u

σ n u σ
x

 (2.9) 

where 
CE represents the system’s current change in kinetic energy related to the incremental 

displacement field u . σ  is the Cauchy stress tensor and n is the current normal to the 

boundary (Γ) at the point considered. 

Differentiating the above equation leads to the following relation according to (Nicot & 

Darve 2007; Nicot et al. 2007; Nicot & Darve 2011) : 

2 22 ( )CE t t B W    (2.10) 

where 
2B  is a second-order boundary term involving loading parameters (parameters defining 

how the loading is applied on the boundary of the system) and 2 0
V

W dV   σ ε  denotes 

the second-order work of the system, associated with the incremental evolution ( , ) σ ε . This 

expression of the second-order work assumes that geometrical changes can be omitted over 

the incremental evolution considered. If this assumption does not hold, a Lagrangian 

formulation must be adopted to express the second-order work, replacing the Cauchy stress 

tensor with the Piola–Kirchoff stress tensor (Nicot & Darve 2007; Nicot et al. 2007). 

In the case of constant control parameters, the term 2B  vanishes and Equation (2.10) finally 

reads as: 

22 ( )CE t t W    (2.11) 

Consequently, when Hill’s condition is violated, the kinetic energy of the system can evolve 

with a second-order rate with respect to time (Prunier et al. 2016) representing the bifurcation 

in the response of the system from a quasi-static to a dynamic regime. Hence the notion of loss 

of sustainability links the notions of both bifurcation and failure as indeed failure can be 
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regarded as a state from which a transition from a quasistatic regime to a dynamical regime is 

possible even under certain constant loading parameters (Nicot & Darve 2011). 

 

Based on the above concepts, the vanishing of the second order work indicates potential 

instability. 

As it is proved below the second order work criterion coincides with the vanishing of the 

determinant of the symmetric part of the constitutive tensor as:  

2 : : : : :t t t sW d d d d d d  ε σ ε M ε ε M ε  (2.12) 

with  
1

2

s t M M M  (2.13) 

Thus, for incrementally linear constitutive relations and eigenvalues varying in a continuous 

manner from the virgin state during the loading process, condition (2.8) is equivalent to: 

det 0s M  (2.14) 

For associated materials (the flow rule coincides with the yield surface), the constitutive 

matrix M  is symmetric. Thus the unstable states will coincide with the plastic limit states. In 

the case of non-associated materials, the second order work becomes zero (which first vanishes 

together with the symmetric part of the stiffness tensor M) before the vanishing of the 

determinant of the tensor itself (because of the non-symmetry of the tensor) and of the 

determinant of the acoustic tensor (Lignon et al. 2009; Laouafa & Darve 2002; Daouadji et al. 

2011). Hence, it can be stated that it is the first bifurcation criterion reached along a loading 

path and for this reason is considered as a more generalized criterion. 

There is still an open question regarding the type of stress that should be used in equation 

(2.8) when studying the stability of a multiphase porous body. There is the debate on using 

effective or total stress; furthermore, in the case of a partially saturated medium, the hydraulic 

contribution for the stability of the porous body can be raised. In fact, the stability of a material 

specimen is related to the skeleton stability. The specimen collapses if the skeleton collapses. 

However, the skeleton stability depends on the pore pressures applied to the particles. The fluid 

phases are therefore involved in the specimen stability, similarly to the so-called weak phases, 

surrounding force chains, which actively participate to the strength of a dry granular specimen 
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(Sibille et al. 2015). Thus, three different expressions are presented hereafter for the second 

order work, which could be used in the case of variably saturated porous materials. 

Firstly, it is written in terms of effective stress, where ( , )tσ x  is the generalized Cauchy 

effective stress, as it seems to be the most natural choice when modelling variably saturated 

geomaterials: 

2 :W d d σ ε  (2.15) 

Subsequently, the second order work is expressed in terms of total stresses: 

2 2: ( ) : ( )
tot

g c c g

w w v vW d d d p S p d W d S p d dp d          1σ ε σ ε  (2.16) 

as the total energy of a porous system, from which the second order work criterion is derived, 

involves total stress. Turning back to the physical origin of the second-order work, stemming 

from an energy conservation equation that embeds force balance, the total stress stands as the 

natural stress candidate. It is worth noting that in the previous equation, the total stress has also 

been written in terms of generalized effective stress (Schrefler 1984). 

Finally, the extended expression of the second order work for the case of a partially saturated 

medium is presented, as it was proposed by (Buscarnera & Prisco 2012).  

 

Fig. 2.7 Arbitrary volume schematic of an unsaturated geomaterial (Buscarnera & Mihalache 2014) 

Starting from the re-definition of the second order work energy input to the material which 

involves the identification of the perturbations acting at the boundary of an arbitrary volume 

of unsaturated soil (Fig. 2.7) it concludes to the following expression: 
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2 2:
unsat

c c

w wW d d ndp dS W ndp dS   σ ε  (2.17) 

where c g wp p p   is the capillary pressure, with gp  the gas pressure and wp  the liquid water 

pressure, n  is the porosity of the material and wS  the liquid water degree of saturation. 

The expression (2.17) indicates that the second-order work input in a partially saturated 

medium depends simultaneously on two components: a first one that is mechanical in nature 

(i.e., it is directly associated with the skeletal deformations) and a second one that depends 

exclusively on the evolution of the hydraulic state (Buscarnera & Mihalache 2014). 
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3 Physical processes in rainfall-induced landslides and 

numerical modelling methods 

3.1 Introduction 

In this chapter, after the description of the fundamental aspects concerning partially 

saturated soils, an overview of the current state of knowledge on the physical processes and 

the failure mechanisms which take place in partially saturated slopes subjected to rainfall 

infiltration is presented. Subsequently, the governing factors which are necessary to be taken 

into account along with the main existing modelling options for the study of the phenomenon 

are presented. 

3.2 Unsaturated soil mechanics 

Partial saturation plays an important role for the hydraulic and mechanical behaviour of 

steep soil slopes subjected to rain infiltration. To this end, in this section the basic notions 

related to unsaturated soil mechanics are discussed. A more extensive description of the porous 

media mechanics which includes also the case of partially saturated soils, is given in the 4th 

chapter. 

3.2.1 Matric suction in the soil 

The term “unsaturated” or “partially saturated” soils refers to the soils where the pore space 

is simultaneously occupied by two fluid phases: the liquid and the gas phase (Figure Fig. 3.1), 

in contrast with the saturated soils where the pore space consists only of the liquid phase and 

behave in the same way as the dry soils where the effective stress concept is introduced by 

(Terzaghi 1936). 
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The voids of the soil skeleton are filled partly with water and partly with moist air (mixture 

of dry air and water vapour), which is referred to as gas. The degree of water saturation Sw is 

given as the ratio between the pore space occupied by the water Vw and the total pore volume 

Vv : 

 
w

w

v

V
S

V
  (3.1) 

 

Fig. 3.1 Schematic composition of soil 

The water and gas phase form interphases of negligible thickness (Fredlund & Rahardjo 

1993), which possess their own physical properties and tensile stress states originating from 

the surface free energy of the bulk fluid. These interphases curve to form capillary menisci 

when in contact with solid grains. The curvature of an interphase, which leads to a contact 

angle θcont < 90° between soil grains and water, is a result of an excess of adhesive forces 

between the solid and the wetting fluid (water) over cohesive forces in the wetting fluid 

(Tarantino 2010).  

This is well demonstrated through the capillary tube analogy (Figure Fig. 3.2): when a tube 

of capillary size is dipped in a larger container filled with water, the water in the capillary tube 

rises above the water level in the container to a height that depends on capillary size. Although 

strictly speaking, the water still finds its level, it does so in such a way as to maintain an overall 

minimum surface energy. In this situation, the adhesion force allows water to rise up in the 
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capillary tube while gravity acts in the opposite direction. The water rises until there is a 

balance between these two opposing forces. 

 

Fig. 3.2 Capillary tube analogy 

The differential force between adhesion and gravity is the capillary force. This force per 

unit area is the capillary pressure. The vertical force equilibrium of the capillary meniscus 

shown in Fig. 3.2 is written as: 

2 capg w

w cap

cap

T
gh p p

R
     (3.2) 

where wg  is the specific weight of water, caph  is the capillary height, Tcap the surface 

tension and 
cos

t
cap

ct

r
R


  the radius of curvature of the capillary meniscus. 

In analogy to the capillary tube model, the difference between pore gas and pore water 

pressure is termed capillary pressure: 

c g wp p p   (3.3) 

As far as non-cohesive soils are concerned, the micromechanical mechanism which governs 

their macroscale response is the generation and vanishing of capillary menisci during 

saturation and desaturation. However, in the case of clayey soils, the dominant mechanism for 

the generation of negative pore water pressures at relatively low values of water content is the 

short range water adsorption effects (Lu & Likos 2004). Both, capillary and osmotic adsorption 
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mechanisms are generated by the solid matrix. Due to their common origin, the suctions 

generated by capillary pressure and water adsorption are grouped together to define the matric 

suction: 

c

adss p s   (3.4) 

For the higher ranges of degree of saturation considered in rainfall-induced landslides (Sw 

> 0.5) and non-cohesive soil types, matric suction is assumed to be governed by the capillary 

component, while short-range adsorption effects become negligible. 

3.2.2 Soil water retention curve 

According to (Fredlund 1998), the soil water characteristic curve is a relationship between 

the amount of water in the soil and soil suction. The amount of water in the soil is generally 

quantified in terms of volumetric water content, θ, but is sometimes represented in terms of 

gravimetric water content, w, or degree of saturation Sw. Total suction, ψ, is compressed for 

both matric, s and osmotic suction, π. It is primarily the matric suction component that is of 

interest with regard to the engineering behavior of unsaturated soils. Laboratory data have 

indicated that a change in total suction is essentially equivalent to a change in the matric suction 

for many unsaturated soil situations. The high suction range of the soil-water characteristic 

curve is required primarily when studying evaporative processes near the ground surface.  

The water retention curve is characterized by a main wetting and a main drying curve, which 

delineate the domain of possible attainable states and along which the retention behavior is 

irreversible (Wheeler et al. 2003). Along a drying path, the degree of saturation held in a soil 

is higher than along a wetting path for the same level of matric suction.  

Typical features of the drying and wetting portions of the soil-water characteristic curves 

are defined in Fig. 3.3. 

In the “boundary effect stage” almost all the soil pores are filled with water. The air-entry 

value of the soil identifies the pressure at which air enters the largest pores of the soil and is 

sometimes referred to as “bubbling” pressure. The coefficient of the permeability up to the air-

entry value is equal to the saturated coefficient of permeability, ks. Flow, takes place through 

the voids in manner similar to that of the saturated soil. 
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The soil starts to desaturate in the “transition stage”. The flow of water is in the liquid phase 

as suction increases. The soil desaturates significantly during this stage and a dramatic change 

in unsaturated soil properties takes place. The water content in the soil reduces significantly 

with increasing suction. As soil suction increases, flow occurs through increasingly smaller 

size pores. The connectivity of the voids or pores continues to reduce with increased values of 

suction and, as a result, 

 

Fig. 3.3 Definitions of variables associated with the soil water retention curve (Fredlund 1998) 

the unsaturated coefficient of permeability reduces with increased values of suction and due to 

this, the unsaturated coefficient of permeability reduces by several orders of magnitude. Also, 

the wetted area reduces as desaturation continues. The contribution of suction to the increase 

in shear strength decreases with desaturation during this stage. As a result, there is a non-linear 

variation in the shear strength of the soil with respect to soil suction beyond the air-entry value 

of the soil. 

Large increases in suction eventually lead to a relatively small change in water content (or 

degree of saturation). This stage is referred as the “residual stage of desaturation”. There 

appears to be a fraction of the “relatively immobile” water in the pores of the soil at this stage, 

and there is little or no flow through the pores. The water content of the soil at the 

commencement of this stage is generally referred to as the “residual water content”. The wetted 

contact area has reduced significantly, and changes in soil suction may not significantly 
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contribute towards an increase in the shear strength of the soil. The various stages along the 

soil-water characteristic curve provide a physical model for understanding the unsaturated soil 

property functions. Both the coefficient of permeability and the shear strength behaviour of an 

unsaturated soil have a close relationship to the soil-water characteristic curve.  

3.2.3 Relative permeability functions for partially saturated soils 

 Darcy’s law remains applicable to describe the flow through partially saturated soils, 

generalized to allow for relative permeability to be taken into account. The relative 

permeability 
rk 

 (where π= w,g accounting for water or gas) is a dimensionless parameter 

varying from zero to one.  

The relations  r

wk S
 are either predicted by models based on some more or less realistic 

capillary assumption or experimentally determined in laboratory as well as field conditions. 

For typical curves of relative permeabilities to water and also air the reader is referred to Corey 

(Corey 1957). 

The relative permeability goes to zero before the saturation reaches the value zero. The 

water saturation at which the relative permeability goes to zero is termed the residual water 

saturation or displacement residual water saturation. 

Relationships used in the following are e.g. those by Brooks and Corey (Brooks & Corey 

1966): 
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 is the effective saturation, wcS  is the irreducible saturation, λ the pore size 

distribution index, 
bp  the bubbling pressure (air-entry value). 
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3.2.4 Effective stresses in unsaturated soils 

The main question when modelling the partially saturated soil behaviour concerns the 

appropriate combination of the stress state variables, which are the external mechanical stress 

σ, the pore-water pressure pw and the gas pressure, pg (or air pressure pga if we take into account 

only dry air neglecting vapour pressure). Two out of the three independent stress state variables 

are necessary and sufficient for the definition of the stress state of an unsaturated soil (Fredlund 

& Morgenstern 1977). 

The two common approaches used for hydro-mechanical constitutive modelling are the 

independent stress variable approach and the effective stress approach. In the first case, the 

volumetric and strength behaviour of partially saturated soils is analysed by using the sum of 

two independent contributions, the applied net stress 
ga

net p    and the matric suction s 

(e.g. (Alonso et al. 1990)). While in the second case (effective stress approach), soil 

deformation is directly related to effective stress σ΄, which is expressed as a function of matric 

suction. In this work the effective stress approach is used as it offers several advantages from 

a modelling point of view which are mentioned later on. 

Following Terzaghi’s principle of effective stress (Terzaghi 1936), Bishop (Bishop 1959) 

proposed an effective stress for partially saturated soils combining total stress σ, pore (dry) air 

pressure pga and pore water pressure pw in a single expression: 

  ga ga w

netp p p s       σ σ 1 1 σ 1  (3.7) 

where σ is the total stress tensor, 1 is the identity tensor and χ is Bishop’s parameter, which 

varies between 0 for dry soil and 1 for saturated soil. Different mathematical formulations have 

been proposed for Bishop’s parameter, either as a function of suction alone or suction and 

degree of saturation, as extensively reviewed in (Nuth & Laloui 2008). According to (Schrefler 

1984) a straightforward assumption is to replace χ by the degree of saturation Sw : 

 ga ga w

w net wp S p p S s      σ σ 1 1 1  (3.8) 

The use of Schrefler’s effective stress in the hydromechanical constitutive framework 

presented in Eq. (3.8) has the following implications for geomechanical modelling of 

unsaturated soils (Nuth & Laloui 2008): 
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1) The ability to shift from unsaturated to saturated states as Terzaghi’s effective stress is 

recovered for Sw= 1; 

2) The inclusion of hydraulic couplings in the stresses and in the case where the soil water 

retention curve model is hysteretic, inclusion of hydraulic hysteresis effects on 

mechanical behaviour since matric suction and degree of saturation appear in the 

effective stress definition;  

3) Under the hypothesis of a unique critical state line for partially saturated soils using 

Schrefler’s effective stress, unsaturated residual shear strength is reproduced even by a 

constitutive model for saturated soils. 

The above three points constitute major advantages of the effective stress approach over 

the independent stress variable approach. A more thorough analysis on the effective stress 

approach is detailed in section 4.6 . 

3.3 Hydraulic mechanisms in rainfall–induced landslides  

Rainfall-induced landslides generally occur as a result of pore water pressure changes and 

seepage forces for which the main following hydraulic mechanisms can be responsible: 

3.3.1 Groundwater table rise or formation of a perched water table from surface infiltration 

This mechanism is favoured in slopes with stratified soil layers and with permeability 

contrasts. For example, shallow slips can take place in steep slopes with shallow soil deposits 

overlaying a more consistent, less permeable bedrock. The latter is mainly responsible for the 

build-up of the pore water pressures which will lead to the reduction of the effective stresses 

and of the shear strength as well as to the formation of a perched water table exerting downhill 

seepage forces to the soil mass (Johnson & Sitar 1990). The failure mechanism associated with 

the formation of a seepage layer or a groundwater table rise is often referred to as “bottom-up” 

mechanism (Springman et al. 2012). 

3.3.2 Loss of matric suction from surface infiltration 

Loss of matric suction plays one of the most important triggering mechanisms of rainfall-

induced landslides. Especially in the case of steep slopes, for example, and even more for steep 

slopes of sandy or silty soils, safety factors may yield well below unity if the contribution of 

matric suction is not taken into consideration. Loss of matric suction in a slope subjected to 
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infiltration, is referred to as the “top-down” saturation mechanism after (Springman et al. 

2012). 

3.3.3 Exfiltration (spring) from the bedrock 

A fractured bedrock can act as a source and deliver water to the overlying soil causing a 

pore-pressures build-up at the interface between the soil and the bedrock. This process is 

known as exfiltration and is schematically illustrated in Fig. 3.4. The role played by bedrock 

groundwater flow in the triggering of landslides has been highlighted in many cases through 

in situ measurements and hydrogeological analyses coupled with geomorphological analyses 

as for example in (Johnson & Sitar 1990; Anderson et al. 1997; De Vita et al. 2006; Cascini et 

al. 2000; Cascini et al. 2008). 

 

Fig. 3.4 Schematic diagram of groundwater circulation and of the hydraulic interactions between bedrock and the upper 

soil layer ((Askarinejad 2013) modified after Johnson & Sitar 1990) 

3.4 Transient hydraulic response of slopes to rainfall infiltration 

In this section the hydrologic processes (Fig. 3.5) that take place at hill slope scale are 

discussed.  
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According to (Take et al. 2004), the hydrologic equilibrium of a slope compromises four 

independent processes: 

Unsaturated infiltration 

Soil slopes are typically unsaturated. In the case where rainfall intensity is lower than the 

infiltration capacity at the soil surface the total amount of rainfall will infiltrate into the soil 

percolating quasi vertically downwards into the soil under the influence of gravity until it 

reaches a less permeable substratum or a groundwater table. In this case, suction will decrease 

but the slope (or the soil layers) might not necessarily become saturated. The observation of 

the development and propagation of this distinctive wetted zone is commonly described with 

the “wetting front” term. The wetting front is defined as the visible limit between the 

unsaturated zone that has not changed its water content yet and the zone which has experienced 

an increase in water content due to water infiltration. 

Saturated transmission 

In the latter case (where the underlying soil layer is less permeable) the infiltrating water 

will form a thin seepage layer (formation of water table) which will follow the contours of the 

low permeability material. As the flow quantity must increase with distance along the slope 

catchment area due to the integration of the rainfall infiltration applied over this area, the depth 

of the seepage layer will correspondingly increase in the down-slope direction. 

Storage 

If, the slope of the low permeability substratum decreases, a localised zone of high transient 

pore water pressure will be created within upper layer. By definition, one area of the slope in 

which the hydraulic gradient must change significantly is the toe of the slope. This is also 

arguably the most critical region of the slope from a stress perspective (Take et al. 2004). 

Leakage 

The exit gradient of the seepage flow will also influence the transient pore water pressures 

within the slope, and most particularly within the permeable layer. The elevated pore water 

pressures from such a scenario will be temporary, localised, and mostly dependent on the 

rainfall intensity, duration, and antecedent conditions. 

When the transient pore water pressures reach a permeable layer, infiltrating rain water will 

be preferentially transmitted downslope within the permeable layer. If the inclined layer is 

close-ended, the leakage (or outflow) from the layer can be exceeded by the rate of 
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transmission of the seepage water, thereby ensuring a local transient build-up of pore water 

pressures. 

 

 

Fig. 3.5 Physical processes in the hydrologic cycle of natural slopes (Lu & Likos 2004) 

 

Additionally, in the case where the rainfall intensity is higher than the infiltration capacity, 

the soil controls the amount of water infiltrating at the surface and the surplus of water results 

in runoff. The infiltrability is a time-dependent value controlled by the soil’s saturated 

coefficient of permeability, the water relative permeability function and water retention 

properties. As rainfall stops, evaporation starts to be the dominant process which leads to the 

re-increase of matric suctions from the top down. Cycles of wet and dry periods lead to 

formation of wetting fronts which are followed then by drying fronts in the soil. 

3.5 Controlling factors for rain infiltration and pore water pressure changes in 

unsaturated slopes 

Slope stability analysis, especially for the case of rainfall-induced landslides, involves many 

parameters which are related to soil properties, slope geometry, groundwater conditions, initial 

conditions and rainfall characteristics.  
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According to (Rahardjo et al. 2007), the slope geometry and the initial water table determine 

the initial safety factor. The worst combination for safety factors constitute slopes with a high 

slope angle, a high slope height and a shallow initial depth of groundwater table and the actual 

failure conditions are much affected by rainfall characteristics and properties of the soils in the 

slope. Thus, attention should be paid to soil properties and rainfall characteristics when dealing 

with rainfall-induced landslides. 

Soil hydraulic properties related to rainfall-induced slope failure include the soil–water 

retention behaviour (i.e. the air entry value and the slope of the soil-water characteristic curve) 

and the unsaturated permeability function. It has been shown that the saturated permeability of 

soil is considered as one of the most important soil properties in rainwater infiltration. 

According to (Tsaparas et al. 2002), for the same rainfall, the higher the value of ksat, the greater 

the increment of pore water pressures from the initial conditions, the wetting front advances 

more rapidly, water table mounding is favoured and suction recovery after rainfall stops is 

faster. Hence the safety factor of the slope with a higher value of ksat is smaller. Additionally, 

for a relatively low value of ksat, pore water pressures increase strongly close to the surface 

while deeper layers remain unaffected. However, as for the same rainfall intensity (I), the effect 

of ksat, on the reduction of safety factor can be different, it is suggested, according to (Kasim 

1997; Zhang et al. 2004), to use the ratio I/ ksat rather than I in order to investigate the effect of 

soil hydraulic properties. 

The effects of rainfall intensity, rainfall duration, and antecedent rainfall are the also the key 

factors when studying infiltration and slope stability analysis. It is generally accepted that the 

intensity of the rainfall is the primary factor which controls the magnitude of suction losses 

and the evolution of the groundwater table (Rahardjo et al. 2007). However, rainfall intensity 

and duration are dependent parameters. For a certain return period, the rainfall intensity and 

duration follow a certain relationship, called the intensity–duration–frequency (IDF) curve (i.e. 

the relationship between the rainfall intensity and duration for various return periods), which 

can be determined from statistical analysis of regional rainfall data. Based on this, the critical 

rainfall intensity and duration for a rainfall-induced slope failure can be determined; for more 

details see (Pradel & Raad 1993; Cho & Lee 2002). Finally, antecedent rainfall is also another 

factor which affects the slope stability under rainfall as suction will decrease due to rain flux 
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and the slope might be marginally safe before the major rainfall (Rahardjo et al. 2007; Tsaparas 

et al. 2002). 

3.6 Stress paths in soil slopes 

In the following a reference scheme (Fig. 3.6) is proposed by (Cascini et al. 2010) which 

outlines the major differences among slides, slides turning into flow, and flowslides and takes 

into account both direct rainfall infiltrating the slope surface and spring from the bedrock. 

In particular, Fig. 3.6 provides the effective stress paths in terms of the stress invariants q, 

p, for which the effective stress tensor is defined as in equation (3.8). In Fig. 3.6 the 

displacement (δ), resisting force (Fr) and driving force (Fd) curves versus time are also 

presented. 

As analyzed by (Cascini et al. 2010), for slides, (Fig. 3.6b), soil mechanical behaviour is 

controlled, in drained conditions, by the hydrologic response up to the failure onset. Resisting 

force (Fr) decreases up to the value of the driving force (Fd) along a slip surface that includes 

the zone where the spring from the bedrock is located, (Point A in Fig. 3.6) [Fig. 3.6b, t=t1]. 

Drained conditions also remain, both for loose and dense soils, during the postfailure stage and 

small accelerations develop [Fig. 3.6b, t>t1]. 

In loose saturated soils, the above process is associated with a volume reduction of the soil. 

If the pore-water pressure cannot freely dissipate, partially or totally undrained conditions 

develop during the post-failure stage and a flowslide occurs [Fig. 3.6d, t=t1]. Particularly, in 

the spring zone (Point A in Fig. 3.6), pore water pressures build up and the soil follows a stress 

path 0 to 1, leading to a catastrophic failure [Fig. 3.6d, t>t1]. Actually, the soil cannot sustain 

the imposed deviatoric stress q which leads to acceleration along the stress path from 1 [Fig. 

3.6d, t>t1]. 

Alternatively, slides can turn into flows (Fig. 3.6c), as a result of complex mechanisms 

characterized by a decreasing in the shear strength due to local hydraulic boundary conditions 

that can lead to fail the portion of the slope related to the spring zone [Fig. 3.6b, t=t1]. Above 

this zone (Point B in Fig. 3.6), the mobilized shear stresses increase, both in loose and dense 

soils, due to the unbalanced driving forces along an upslope potential slip surface [Fig. 3.6c, 

t>t1] and a further slide can occur [Fig. 3.6c, t=t2]. The latter is characterized by a high initial 

acceleration and it consequently turns into a flow [Fig. 3.6c, t>t2]. 
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Fig. 3.6 Reference schemes adopted for the shallow landslides induced by rainfall directly infiltrating the slope surface 

and spring from the bedrock (Cascini et al. 2010) 

Major differences between a flowslide (Fig. 3.6d) and a slide turning into flow (Fig. 3.6c) 

can be also outlined focusing on pore-water pressures at failure. For the analyzed schemes, 

pore water pressures reach the highest values at Point A (spring zone) due to both rainfall and 

local hydraulic boundary conditions (i.e., spring from bedrock) and the lowest values at Point 

B (above the spring zone) being related only to the rainfall. Finally, the pore water pressure 

values at failure can be negative at Point B (Fig. 3.6c) and slides turning into flow can also 

occur in portions of the slope characterized by unsaturated conditions. 
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What has to be taken also into account is the type of failure. In the cases presented in (Fig. 

3.6b and c), drained failure takes place at the critical state line, and it can be of localized type 

(Pastor et al. 2002; Pastor et al. 2004). 

On the contrary, fully or partially undrained post-failure stage of very loose materials (Fig. 

3.6d) is of diffuse type (Fernandez Merodo et al. 2004; Darve & Laouafa 2000), and generation 

of pore water pressures has to be carefully considered by using suitable constitutive and 

mathematical models.  

3.7 Modelling options for the simulation of the failure onset of the rainfall-

induced landslides  

The most common approach for the numerical modelling of slope failure in engineering 

practice is to uncouple the fluid flow and slope stability problem and treat them in a sequential 

fashion. In this sense, a seepage analysis is performed first (assuming a rigid solid skeleton) 

for the calculation of the water pressure distribution, which is then followed by a limit 

equilibrium analysis for the slope stability problem, as for example in (Cascini et al. 2005). 

However, as mentioned in (Cascini et al. 2010), in order to properly reproduce rainfall-induced 

landslides and the onset of the phenomenon, it is necessary to use: i) a mathematical model 

describing the coupling between pore fluids and soil skeleton; ii) a suitable constitutive 

relationship able to describe the unsaturated soil behavior; and iii) a numerical model where i) 

and ii) are implemented. 

In this section, a brief overview of the modelling options that can be used in practice to 

study slope stability problems and more in particular the failure onset of rainfall-induced 

landslides, is presented. 

3.7.1 Limit equilibrium analysis 

In practice, the most conventional method for analysing slope stability is the limit 

equilibrium method (Taylor DW. 1948). As discussed also in (Laouafa & Darve 2002), much 

research has been carried out in this field since the first attempt by Culmann in 1866 to treat 

the slope stability problem mathematically. The most popular methods include the ordinary 

methods of slices proposed by Fellenius (Fellenius 1936), Bishop’s modified method (Bishop 

1955), Janbu’s generalized procedure of slices (Janbu 1968), the Morgenstern and Price 

method (Morgenstern & Price 1965) and Spencer’s methods (Spencer 1967). All these 
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methods are presented in Duncan’s review (Duncan 1996) and presented in a general 

framework by (Espinoza et al. 1992). 

Let us consider a simple slope as presented in Fig. 3.7. 

If the potential sliding surface is decomposed into n slices as depicted in Fig. 3.7(a), then 

the analysis based on static limit equilibrium leads to a total of 6n-2 unknowns [Fig. 3.7 (b)]. 

From the static equilibrium conditions (3 equations per slice) of each slice, we obtain 3n 

equations. Additional assumptions have to be made in order to obtain a statically well-defined 

problem. It is commonly assumed in this theory that the normal and shear forces acting on the 

base of each slice follow the Mohr–Coulomb failure criterion, which induces n supplementary 

equations. The needed additional equations are then equal to 2n-2. The differences between 

the conventional methods lie in the auxiliary constraints assumed in order to solve the problem. 

 

  

(a) (b) 

Fig. 3.7 Slope, slices and general unknowns in conventional methods (Laouafa & Darve 2002) 

 

A common parameter introduced in the equilibrium methods is the so called factor of 

safety (FOS). This non-dimensional scalar is defined as follows: 

 
     ( )

     ( )

maxshear strength of the soil
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shear strength required for equilibrium




  (3.9) 
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The FOS could be defined as the factor by which the shear strength of the slope soil has to 

be reduced in order to bring the slope to the state of failure. For a given problem, the slope is 

considered to be stable as soon as FOS is greater than one. 

Although these methods are widely used in practice, they have certain shortcomings and 

inaccuracies including (Laouafa & Darve 2002): 

 The factor of safety is a local parameter that is assumed constant along the slip line. 

 The sliding mass of soil is assumed to be rigid. The sliding mechanism creates 

complex stress and strain distributions inside the sliding mass and the remaining 

soil, which are not taken into account. 

 Stress path dependency and stress-strain history are not considered. 

 Velocity and strain (at the material point level or global level) are not taken into 

account. 

 The sliding mechanism is supposed to affect instantaneously the whole sliding 

surface (all material points belonging to the slip surface) at the same time which 

excludes the possibility, in other words, of an initiation at some stage of loading and 

progressive development of the sliding surface. 

 These methods do not involve time evolution of any mechanical or physical 

quantities. 

 The normal stress distribution is not well reproduced (Tavenas et al. 1980) and the 

conventional analyses consistently ignore the incremental genesis of the slope 

(Chowdhury 1981) and thus can never give the true stress distribution. 

 The shape of the sliding or the slip surface is in general a priori assumed. 

 The soil is assumed not to have a stress–strain behaviour with softening. 

 The stability of the slope is only checked by the mean of a shear strength criterion, 

while there exist other modes of failure at lower stress levels. 

3.7.2 Finite element method analysis 

According to (Laouafa & Darve 2002), numerical non-linear analysis based on the finite 

element method in conjunction with accurate constitutive models describing soil behaviour 

constitutes the other modelling alternative in slope stability analysis. This numerical method 
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can be applied to a wider and more complex geotechnical field including transient problems, 

thermo-hydro mechanical coupling and non-linear static and dynamic problems. 

Slope stability analysis using the finite element method has received wide attention in 

research community. For reviews, see (Duncan 1996) and (Griffiths & Lane 1999).  

Here the approach can be coupled or also uncoupled. An uncoupled stress-strain model can 

be obtained based on the simplifying assumption that the deformation rate is neglected from 

the mass balance equations as described in (Cascini et al. 2010). In this case the pore pressure 

influences the mechanical behavior but in turn the latter does not influence the former. More 

exact solutions to the coupled hydro-mechanical analysis are obtained when the soils in the 

slope are considered deformable and in variably saturated conditions. For this reason, in this 

work the modelling of rainfall induced landslides is considered as a coupled variably saturated 

hydro-mechanical problem. For the numerical simulations the geometrically linear finite 

element code Comes-Geo developed at the University of Padova, Italy, is used, in which soils 

are considered as non-isothermal elasto-plastic multiphase solid porous materials as developed 

in (Sanavia et al. 2006; Sanavia et al. 2008; Sanavia 2009) following the works of (Lewis & 

Schrefler 1998) and (Hassanizadeh & Gray 1979a; Hassanizadeh & Gray 1979b; Hassanizadeh 

& Gray 1980). The mathematical and numerical model are extensively detailed in chapters 4 

and 5. 

In addition, in this case of slope stability analysis we can distinguish two main trends as 

mentioned in (Laouafa & Darve 2002). The first aims at describing the mechanism of failure 

by a plasticity criterion and the second is based on the bifurcation of the strain field into a 

localised mode (localisation theory). 

The FE method overcomes the shortcomings already discussed by reducing considerably 

the number of assumptions. The factor of safety, as emphasized by (Griffiths & Lane 1999), 

emerges naturally from the FEM analysis without any assumption of a particular mechanism 

on sliding. 

Although the robustness of FEM analysis and its ability to predict slope stability are well 

recognised, the question of the sliding or failure criterion and its definition remain. There is no 

unique definition of a global failure. Zienkiewicz and Taylor, (Zienkiewicz & Taylor 1989) 

for example, utilized the non-convergency of the iterative algorithm to define the failure, which 

represents a purely numerical definition. One of the principal features of a finite element 
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analysis of slope stability, except for those including the localisation of strains, is that at a local 

level (i.e. at a material point level), the failure is driven by a plastic failure criterion. This 

failure criterion is in some approaches reduced by a scalar (shear strength reduction method in 

(Matsui & San 1992), (Griffiths & Lane 1999)) during the analysis until the chosen global 

failure criterion is fulfilled. 

However, non-associated materials such as soils and rocks, exhibit unstable stress states 

strictly inside the failure domain. These states are reached before the plastic limit and one can 

find at these specific states a set of perturbation loads which lead to large responses. The 

material response for such loading will not obey to any plastic flow rule, as expected on the 

failure surface. In other words, strictly inside the set of admissible stresses defined by the 

failure envelope, there exists at least one loading (stress controlled, strain controlled or mixed) 

such that no bounded response exists.  

The second trend in finite element analysis of slope stability is based on the localisation of 

deformation in a narrow band (Leroy & Ortiz 1989; Leroy et al. 1987; Regueiro & Borja 1999). 

This phenomenon (Rudnicki & Rice 1975; Rice 1976) constitutes a particular material 

instability which leads, at a given time step of loading, to a bifurcation of the solution. A certain 

class of landslides can be well described and explained using localisation theory. When the 

sliding process is driven by the inception of a narrow band (localised deformation into a shear 

band), the finite element model will be able to detect the singularity of the phenomenon and 

one can expect to perform accurate modelling of the mechanical problem. However, the 

material instability could lead to diffuse modes of failure and not only localised modes. Such 

cases can be predicted by a material stability analysis based on the sign of the second order 

work as it has been analysed in chapter 2 and it will be shown in the case studies which are 

presented in chapter 6. 
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4 Mechanics of porous media: mathematical model 

4.1 Introduction 

In this chapter the governing equations for the fully dynamic behaviour of a partially porous 

medium are developed (Lewis & Schrefler 1998). In particular, the voids are considered to be 

filled with water and moist air. The description of multiphase systems made of 

interprenetrating continuous bodies, such as porous media, is today based either on mixture 

theory integrated by the concept of volume fractions, or on averaging methods and from a 

classical viewpoint on Biot’s theory. Since the averaging theories offer the possibilities of a 

better understanding of the microscopic situation and its relation to the macroscopic one, which 

is, however, the natural domain of all continuum mechanical models, we use in the following 

the averaging theory based on spatial averaging operators. Within this theory we make use of 

macroscopic variables which correspond to real measurable quantities directly linked to 

laboratory practice, e.g. in soil mechanics. It is noted that, under appropriate assumptions, the 

averaging theory yields the same equations as the classical mixture theory, as shown in (de 

Boer et al. 1991). Care has to be taken, however, in the linear momentum balance equation as 

explained in section 4.3.3. 

For the reader mainly interested in the resulting governing equations and their numerical 

solution we derive these equations again in section 4.6 using Biot's theory. This also permits 

us to establish a link between the classical, phenomenological approach and the description of 

the real microscopic composition of the multiphase system. Furthermore, it shows the essential 

correctness of Biot's findings. 

Tensorial notation is used throughout this chapter. 
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4.2 Averaging principles 

Here only a short summary of the principles necessary for the development of the governing 

equations is given. For a full account of the averaging theories the reader is referred to (de 

Boer et al. 1991) and (Bear & Bachmat 1984). Sections 4.1 and 4.3 follow, in particular, the 

work by Hassanizadeh and Gray (Hassanizadeh & Gray 1979a), (Hassanizadeh 1986) and by 

de Boer et al. (de Boer et al. 1991). 

We introduce the following definitions (Lewis & Schrefler 1998): 

 microscopic level: we consider the real non-homogeneous structure of the porous 

medium domain (Fig. 4.1). The scale of inhomogeneity is of the order of magnitude of 

the dimensions of a pore or a grain, say d. Attention is focused on what happens at a 

mathematical point within a single phase and the field variables describing the status 

of a phase are defined only at the points occupied by that phase. For the practical 

description of the processes taking place in a porous medium, this level is not useful 

since microscopic quantities are generally not measurable. Only their average values 

are measurable. 

 macroscopic level: the real multiphase system that occupies the porous medium 

domain is replaced by a model in which each phase is assumed to fill up the entire 

domain. This means that at every point all phases are supposed present at the same time 

(overlapping continua). This is the level of interest of continuum mechanics, where we 

investigate the continuous distribution of the constituents through a macroscopic 

control space. At this level, we usually deal with homogeneous media, but non-

homogeneities may still be present, e.g. strata. Their scale is of the order of magnitude 

comparable with the order of magnitude of the entire domain, say L. 

 megascopic level: at this level the conditions are similar to those of the previously 

defined level. The difference depends on the fact that some macroscopic 

inhomogeneities are eliminated by averaging and/or on the fact that the mathematical 

model is stated in a domain which has less dimensions than the real domain, e.g. 2-D 

problem with field values averaged over the thickness (Bear & Corapcioglu 1981; 

Simoni & Schrefler 1989). Typical applications of this level are found in the simulation 

of land subsidence problems of regional scale. 
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Fig. 4.1: Typical averaging volume dv of a porous media consisting of three constituents 

4.2.1 Averaging process 

We consider here a multiphase system occupying a total volume, V, and bounded by 

surface, A. According to (Lewis & Schrefler 1998), the constituents π=1,2,….,k have the 

partial volumes Vπ. Each point of the total volume, V, is considered to be the centroid of a 

representative elementary volume (R.E.V.) or average volume element, dv. The position of the 

centre of an R.E.V. in a global coordinate system is described by position vector x while r 

indicates the position of a microscopic volume element, dvm, see Figure Fig. 4.1. The volume 

of constituent π within a R.E.V, called average volume element dvπ, is obtained by defining a 

phase distribution function, γπ: 

1   r  
(r, )

0  r      

for dv
t

for dv







 

 
 

 
 (4.1) 

where r = x + ξ  and the integration refers to the microscopic local coordinate system with its 

origin in x (Fig. 4.1). 

Similarly we write for the part of area dαπ of the R.E.V, occupied by constituent π: 

   ,, m

da

da t t da  x r  
(4.2) 



42 Mechanics of porous media: mathematical model 

where mda  is the microscopic area element. 

The knowledge of dvπ enables the introduction of the concept of volume fraction, ηπ, which 

is of paramount importance in multiphase systems: 

   
1

, , m

dv

dv
t t dv

dv dv


    x r  (4.3) 

with 
1

1









  . 

 In fact, as indicated under the heading "macroscopic level" in paragraph 4.1, substitute 

continua fill the entire domain simultaneously, instead of the real fluids and the solid which 

each fill only part of it. These substitute continua have a reduced density which is obtained 

through the volume fractions. 

 

Fig. 4.2 Averaged value z versus size of the average volume dv 

In the following, averaged quantities are obtained by integrating (averaging) a microscopic 

quantity over the volume, dv, or the area, dα, of an R.E.V. A field of macroscopic variables 

results from this, where the average volume, dv, and the average area, dα, is associated with 

material points. 
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The importance in the choice of size of an R.E.V. is self-evident. Average quantities have 

to be independent of the size of the average volume and continuous in space and time. Thus 

an R.E.V. has to fulfil the following requirements: 

 dv has to be small enough to be considered as infinitesimal, i.e. the partial 

derivatives appearing in the governing equations must make sense  

 dv must be large enough, with respect to the heterogeneities of the material to give 

average quantities without fluctuations depending on the size of the R.E.V., Figure 

Fig. 4.2. 

To obtain meaningful average values, the characteristic length, l, of the average volume 

must satisfy the inequality: d l L  , where l is dependent on the specific material which 

constitutes the medium. 

Some typical values of l are given in (Lemaitre & Chaboche 1988)  

 

Table 1: Characteristic length l for some materials 

 l (mm) 

metals 0.5 

plastic 1.0 

wood 10 

 

The following average operators are now defined and applied to a function, ζ, which is a 

microscopic field variable. 

Volume average operators  

 Phase average: 

     
1

, , , m

dv

t t t dv
dv




   x r r  (4.4) 

 Intrinsic phase average:  

     
1

, , , m

dv

t t t dv
dv

 


   x r r  (4.5) 

From the definition of volume fraction (4.3) it follows that: 
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     , , ,t t t


 
  x x x  (4.6) 

Mass average operator, with  , t r  microscopic mass density as weighting function: 

 
     

   

, , ,
,

, ,

m
dv

m
dv

t t t dv
t

t t dv







  


 





r r r
x

r r
 (4.7) 

with constant microscopic mass density the following equation holds: 

 
   

1
, ,

,
t t

t



 
 


x x

x
 (4.8) 

Area average operator 

     
1

, , ,  m

da

t t t da
da


   x r n r  (4.9) 

with n the outward normal unit vector of an area element dαm and ζ has a tensorial nature. 

In the following, averages of velocity, external body force, internal energy, external supply 

of heat, internal entropy, external supply of entropy and total production of entropy are 

obtained through the mass average operator (Hassanizadeh & Gray 1979a).  

4.2.2 Microscopic balance equations 

We now consider the classical balance equations of continuum mechanics which are used 

to describe the microscopic situation of any π phase (Lewis & Schrefler 1998). At the interfaces 

with other constituents, the material properties and thermodynamic quantities may present step 

discontinuities. 

For a generic conserved variable, ψ, the conservation equation within the π phase may be 

written as: 

 
   div div

t


  


   


r i b G  (4.10) 

where r  is the local value of the velocity field of the phase in a fixed point in space, i  is the 

flux vector associated with ψ, b  is the external supply of ψ and G  is the is the net production 

of ψ. 
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At the interface between two constituents π and α, the jump condition holds:  

    0  .   .  




            w r i n w r i n  (4.11) 

where w  is the velocity of the interface,  
n  is the unit normal vector pointing out of the π 

phase and into the α phase, with   n n  and   indicates that the preceding term [...] must 

be evaluated with respect to the π phase. 

No thermomechanical properties are attributed to these interfaces. This assumption does not 

exclude the possibility of exchange of mass, momentum or energy between the constituents. 

Moreover the local thermodynamic equilibrium hypothesis is assumed to hold because the 

time scale of the modelled phenomena is substantially larger than the relaxation time required 

to reach equilibrium locally. 

4.2.3 Macroscopic balance equations 

Instead of deriving the macroscopic balance equation separately for each quantity to which 

the conservation law applies, in (Lewis & Schrefler 1998) it is derived for the generic quantity 

ψ as in (de Boer et al. 1991) and (Bear & Bachmat 1984) and the law is specialised afterwards 

for specific quantities: mass, linear momentum, angular momentum and energy. Note that the 

balance equations are written in a material free manner. The constitutive equations are 

introduced successively. 

A general, average macroscopic balance equation is obtained from the microscopic balance 

equation (4.12) by multiplying it with the distribution function  , t r  and by integrating 

this product over the volume element, dv, and over the total volume, V. In this elaboration of 

the balance equations, macroscopic quantities are obtained through the previously defined 

averaging operators. 

This averaging procedure yields that ((de Boer et al. 1991) and (Bear & Bachmat 1984)) : 
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 (4.12) 

As suggested in, (Hassanizadeh & Gray 1979a; Hassanizadeh & Gray 1979b; Hassanizadeh 

& Gray 1980) and (de Boer et al. 1991), it is possible obtain the following form of the general 

balance equation for the macroscopic thermodynamic property   associated with the phase: 
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or in more concise form: 
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where 
i  is the flux vector associated with   ,b   is the external supply of  , 


  is 

the volume average value of mass density. 

This last balance equation contains two further interaction terms, which describe chemical 

and physical exchanges. 

Exchange of due to mechanical interactions between the constituents is given by: 

1
  m

da

da
dv 

 

 
 

  I n i  (4.15) 

Phase change of a constituent or possible mass exchange between the constituent π and the 

other constituents α is given by: 

   
1

m
da

e da
dv



 
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 
 

   w r n  (4.16) 

4.3 Macroscopic balance equations for a non-isothermal partially saturated 

porous medium 

In this section, the macroscopic balance equations for mass, linear momentum, angular 

momentum and energy (enthalpy) are obtained and then specialised for a deforming porous 

material where heat transfer and flow of water (liquid and vapour) and of dry air is taking 

place. The starting points are the microscopic balance equations (4.12), where, for each 

constituent, the generic thermodynamic variable, ζ, is replaced by appropriate microscopic 

quantities, suitable for a microscopic non polar material (Lewis & Schrefler 1998). 

For the proper description of the non-isothermal unsaturated porous medium we need to 

take into account not only heat conduction and vapour diffusion, but also heat convection, 

liquid water flow due to pressure gradients or capillary effects and latent heat transfer due to 

water phase change (evaporation and condensation) inside the pores. Furthermore the solid is 

deformable, resulting in coupling of the fluid, the solid and the thermal fields. All fluid phases 

are in contact with the solid phase. 

The constituents are assumed to be immiscible except for dry air and vapour, and chemically 

non reacting. Because of the local thermodynamic equilibrium hypothesis, the temperatures of 

each constituent at a point in the multiphase medium are taken to be equal. This does not mean 
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that the temperature is uniform throughout the medium but only that at each point one 

temperature is sufficient to characterize the state. 

Momentum exchanges due to mechanical interaction are independent of the temperature 

gradient. 

In the following, the stress is defined as tension positive for the solid phase, while pore 

pressure is defined as compressive positive for the fluids. 

It should be noticed that in this section the formulation is still material free, i.e. no specific 

assumptions for the material behaviour have been introduced so far, except for the quite general 

ones, indicated above. For the development of the macroscopic balance equations in the 

following sections, we still need to specify kinematics. 

4.3.1 Kinematic equations 

As indicated in section 4.2 a multiphase medium can be described as the superposition of 

all π phases, whose material points, Xn, can be thought of as occupying simultaneously each 

spatial point x in the actual configuration. The state of motion of each phase is, however, 

described independently. Based on these assumptions, the kinematics of a multiphase medium 

is dealt with next. 

In a Lagrangian or material description of motion, the position of each material point, xπ, 

at time, t, is function of its placement in a chosen reference configuration, and of the current 

time, t : 

 ,t  x x X  (4.17) 

To have this mapping continuous and bijective at all times, the Jacobian, J, of this 

transformation must be non-zero and strictly positive, since it is equal to the determinant of the 

deformation gradient tensor, 
F : 

 
1

                   Grad Grad   

 F  x F X  (4.18) 

Because of the non-singularity of the Lagrangian relationship (4.17), it is possible to write 

its inverse and obtain Eulerian or spatial description of motion: 

 ,t  X X x  (4.19) 
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It is also assumed that functions which describe the motion have continuous derivatives. If 

the path of the particle of the π phase is known, its velocity and acceleration are, in the material 

description: 

 , t

t

 







x X
V  (4.20) 

 

 2

2

, t

t

 







x X
A  (4.21) 

The corresponding spatial expression can be obtained by introducing equation (4.36) into 

the above two equations. But, if only the spatial description is given for the velocity field in 

the form: 

( , )t  v v x  (4.22) 

to evaluate its time derivative with material coordinates held constant, we introduce the 

description of motion of equation (4.17) into the last equation. By applying the chain rule of 

differentiation, it follows: 

grad
t


  
  



v
v v

 
a      (4.23) 

The material time derivative of any differentiable function,  ,f t
x , given in its spatial 

description and referring to a moving particle of the phase is:  

D f f
grad f

Dt t


 


  



π
v   

(4.24) 

If superscript α is used for the operator 
D

Dt
, we obtain: 

D f f
grad f

Dt t


 

 
  


v     

(4.25) 

the time derivative is taken moving with the α phase. 

Subtraction of equation (4.24) from equation (4.25) yields the following relation: 
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D f D f
grad f

Dt Dt

 
 

    v    
(4.26) 

where      v v v  is the velocity of the α phase with respect to the π phase. This velocity 

is called the diffusion velocity (Hassanizadeh & W.G. 1980). 

The operator 
D

Dt
 is a scalar operator and may be applied either to a vector quantity or a 

scalar quantity. If 
f  is a vector property per unit volume referring to the π phase, the total 

time derivative of its integral over a volume, V, is given by: 

      
v v v

d
dV grad div dV div dV

dt t t

 
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         
    

  
f f

f f v f v f v     (4.27) 

For a scalar property, f  : 

 
v v

d f
f dV div f dV

dt t


   

  
 

  v  (4.28) 

In the above equations, velocities and accelerations of the π phase are considered as mass 

averaged quantities since these are the quantities usually measured in a field situation or in 

laboratory practice. In porous media theory it is customary to describe the motion of the fluid 

phases in terms of mass averaged velocities relative to the moving solid. Their motion is 

described with reference to the actual configuration assumed by the solid skeleton. The 

velocities and accelerations of each fluid particle can then be written with reference to the ones 

of corresponding solid points, once the relative velocities are introduced. We specify the 

superscripts π now as s for soil, w for the liquid phase and g for the gas phase (dry air plus 

vapour) and write for the relative velocities of water and gas phase respectively: 

ws w s v v v  (4.29) 

gs g s v v v  (4.30) 

Water and gas acceleration are given from (4.23), (4.25), (4.29) and (4.30) as: 
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 a a     

s
ws

w s s ws wsD
grad
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    

v
v v v  

(4.31) 

 

 a a    

s
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g s s gs gsD
grad

Dt
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v
v v v  

(4.32) 

The deformation process of the solid skeleton can be described by the velocity gradient 

tensor, Ls, which, referred to spatial co-ordinates, is given by (Chen & Tsui 1992) and 

(Molenkamp 1986) : 

 s s s sgrad  L v D W  (4.33) 

Its symmetric part Ds, is called the eulerian strain rate tensor, being related to pure straining 

while its skew-symmetric component Ws is the spin tensor. 

4.3.2 Mass balance equations  

In the averaging procedure, volume density parameters ηπ (volume fractions) appear which 

are expressed in terms of commonly used variables in multiphase flow. 

For solid phase: 1s n    , where 

w gdv dv
n

dv


  is the porosity. 

For water: 
w

wn S   , where 

w

w w g

dv
S

dv dv



 is the degree of water saturation. 

For gas: 
g

gn S   , where 

g

g w g

dv
S

dv dv



 is the degree of gas saturation. 

It follows immediately that: 

1w gS S   (4.34) 

Solid phase  

In the microscopic situation, the variables for solid in equation (4.12) assume the following 

values: 
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1, 0, 0, 0b G    i    (4.35) 

and the microscopic mass balance equation results in: 

  0 div
t





 


r  (4.36) 

The averaged macroscopic solid mass balance equation is: 

   
s

ss
s sdiv e

t


  


 


v  (4.37) 

where s  stands simply for 


 , the phase averaged solid density and 
s

v  is the mass 

averaged solid velocity. The same simplified notation will be used for the other constituents, 

once π is accordingly specified. 

From (4.24) we have: 
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v  (4.38) 

By introducing the latest in the previous equation we obtain: 

0 

s

s
s

s

D
div

Dt


 v  (4.39) 

By introducing intrinsic phase averaged densities through equation (4.8) we have finally: 

 
 

1
1 0

s
s

s
s

D n
n div

Dt





  v  (4.40) 

where the shorthand 
s

s s
   has been introduced for the intrinsic phase averaged density. 

 

Liquid phase water 

As for the solid phase we have: 

   
w

ww
w wdiv e

t


  


 


v   (4.41) 
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    

w

w ww
w w

D
div e

Dt


   v  (4.42) 

Finally: 

  w

w e m     (4.43) 

is the quantity of water per unit time and volume, lost through evaporation. 

 

Gaseous phases: dry air and vapour 

The gaseous phase here is a multi-component material, composed of two different species: 

dry air and vapour. These species are miscible. We first write the mass balance equations for 

both species. 

Their microscopic mass balance equations are again given by equation (4.36) if we neglect 

net production of mass of each species, due to chemical reactions with the other species 

(Hassanizadeh 1986). 

The macroscopic mass balance equation for dry air is given by equation (4.37) with 

appropriate super/subscripts and with exchange term zero. We introduce intrinsic phase 

averaged densities and use super/subscript ga to indicate dry air. Because the two species, dry 

air and vapour, are miscible, they have the same volume fraction gnS : 

    0  
ga

ga ga

g gn S div n S
t

 


 


v  (4.44) 

Similarly we write for vapour, using super/subscript: 

         
gw

gw gw gw gw

g g gn S div n S n S e m
t

   


  


v  (4.45) 

We now derive the mass balance equation for the whole gaseous phase. This is obtained by 

summing the macroscopic balance equations of the two species and using appropriate 

definitions for bulk properties of the gaseous phase (Hassanizadeh 1986) : 

     
g

g g

g gn S div n S m
t

 


 


v  (4.46) 

with 
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g ga gw     (4.47) 

and 

 1g ga gw ga gw
ga gw ga gw

g
c c 


   v v v v v  (4.48) 

where gc    is the mass fraction of component π, subject to: 

1, ,  c gw ga




   (4.49) 

We introduce further the macroscopic diffusive dispersive velocity 
u , ,ga gw   defined 

as (Hassanizadeh 1986) : 

g g    u v v v  (4.50) 

and subject to : 

0ga ga gw gw g c 



    u u u  (4.51) 

Transformation of (4.46) as in the case of the mass balance equation for the solid phase 

yields for gas: 

  
    

g
g

gg g

g

D n S
n S div m

Dt


 v  

(4.52) 

With a procedure similar to the previous one we obtain the following form of the mass 

balance equation for vapour: 

       

g

g
gw gw gw gw

g g g

D
n S div n S n S div m

Dt
    u v  

(4.53) 

We introduce now the diffusive-dispersive mass flux of component gw as (Eringen & 

Suhubi 1964) : 

 gw gw gw

g gn S J u  (4.54) 

and now we can write: 
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      

g

g
gw gw gw

g g g

D
n S div n S div m

Dt
   J v  

(4.55) 

4.3.3 Linear momentum balance equation 

The linear momentum balance equation for the solid phase is as following: 

  ˆs s s s

s sdiv     t g t 0 a  (4.56) 

For the liquid phase: 

    ˆdiv     

         t g e r t 0 a  (4.57) 

where 
1

m

dv

dv
dv

 



 


 g g  is the external momentum supply, which is assumed to be related 

to gravitational effects, grad
t


   
   



v
v v va  , is the π phase acceleration and the term 

1ˆ  
k

m m
da

da
dv



  

  

  I t t n  accounts for the exchange of momentum due to mechanical 

interaction of π phase with the other α phases. 

4.3.4 Angular momentum balance equation 

As indicated in section 4.3, all phases of the semi-saturated porous medium are considered 

microscopically non-polar. The following microscopic variables are necessary for the balance 

equation (4.10) when angular momentum balance is considered: 

m

 

 

 



ψ r r

i r t

b r g

G 0

  

  

  
 (4.58) 

Following a procedure similar to the earlier balance equation, or with an appropriate method 

chosen for the development of the average angular momentum equation (de Boer et al. 1991) 

and (Hassanizadeh & Gray 1979b), that for non-polar media, also at macroscopic level, it can 

be shown that the partial stress tensor is symmetric: 
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 
T t t  (4.59) 

and that the sum of the coupling vectors of angular momentum between the phases vanishes. 

4.3.5 Balance of energy equation 

For the energy balance, the following components must be taken into account in the 

generic microscopic balance equation (4.12): 

1

2

0

m

E

h

G

   



 

r r

i t r q

b g r

=  

+

=

 (4.60) 

where  ,E tr  is the specific intrinsic energy,  , tq r  is the heat flux vector and  ,h tr  is 

the intrinsic heat source. 

The energy balance equation can be written as follows: 

:
D E

h div R
Dt




    

       t D q  (4.61) 

where    ˆR e E e E Q    

       
 

 . 

The equilibrium between all the phases can be written: 

     
1ˆ ˆ 0
2

e E e e Q        




   
 

        
 

 r v v v t v  (4.62) 

and physically means that the total balance of energy exchange between all the phases is zero. 

4.3.6 Entropy inequality 

Exploitation of entropy inequality is a tool for developing constitutive equations in a 

systematic manner, leading to a consistent thermodynamic description of the material 

behaviour at macroscale. The use of entropy inequality further assures that the second law of 

thermodynamics is not violated. The procedure was proposed by (Coleman & Noll. 1963). It 

is, for instance, exploited in (Sampaio & Williams 1979), and by (Gray & M. Hassanizadeh 
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1991) for the development of constitutive equations for unsaturated flow in dry or partially 

saturated soil, including interfacial phenomena. 

The variables in the microscopic balance equation (4.12) are now: 

=

b s

G

 









i Φ
 (4.63) 

where λ is the specific entropy Φ the entropy flux vector and s an intrinsic entropy source. 

The net production φ denotes an increase of entropy. The balance equation then becomes : 

     div div s
t
   


   


r Φ  (4.64) 

Starting from this last equation, λπ the averaged specific entropy of constituent π, and the 

entropy supply due to mass exchange are determined in order to obtain the entropy inequality 

for the mixture: 

  
1 1

0
D

e div h
Dt




   

   



    

 

 
      

  
 

 q  (4.65) 

where 
1

m

dv

dv
dv

 



 


   , 
q  is the flux of entropy for unit of temperature and

h


Φ

 is 

the source of entropy for each phase. 

Again, this corresponds to the form used in the mixture theory as shown in (de Boer et al. 

1991). Before further transformations of the macroscopic balance equations are made, the 

constitutive equations for the constituents are introduced. 

4.4 Constitutive equations 

To complete the description of the mechanical behaviour, it is needed to specify the 

constitutive equations. The balance equations developed in the previous sections allow for the 

introduction of quite elaborate constitutive theories, especially if the balance equations 

presented in the previous sections for the bulk material are extended to the interfaces, as done 

by Gray, and Hassanizadeh in (Gray & M. Hassanizadeh 1991) and (Gray & S. M. 
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Hassanizadeh 1991) for the aspects concerning multiphase flow. For the solid phase, second-

grade material theories are also possible, where the gradients of relevant thermodynamic 

properties, such as densities, are considered as independent variables (Ehlers 1989). However, 

since this work is application oriented, i.e. we aim for the quantitative solution of real 

engineering problems, a different choice is made. 

Following (Lewis & Schrefler 1998), the constitutive models which are selected are based 

on quantities currently measurable in laboratory or field experiments, and which have been 

extensively validated both with reference to known exact solutions and to experiments. Many 

of these constitutive models correspond to linearization of more complex arguments. 

We deal first with the properties of the fluid phases, and only briefly mention the solid phase 

here, because this is the main aspect of this thesis and then this will be seen later. 

4.4.1 Stress tensor in the fluid phases 

By applying entropy inequality for the bulk material (Hassanizadeh & Gray 1980), (Gray & 

M. Hassanizadeh 1991), it can been shown that the stress tensor in the fluid phases, is : 

 p   t I  (4.66) 

where I is the identity tensor p  is the macroscopic pressure of the π phase. 

The volume fraction,  , appears in equation (4.66) because 
t  is the force exerted on the 

fluid-phase per unit area of multiphase medium. It should be noted that the stress vector in the 

fluid phase does not have any dissipating part. The macroscopic effects of deviatoric stress 

components will be accounted for in linear momentum balance equations through momentum 

exchange terms. 

4.4.2 Gaseous mixture of dry air and water vapour 

The moist air in the pore system is usually assumed to be a perfect mixture of two ideal 

gases, i.e. dry air and water vapour. Hence the ideal gas law, relating the partial pressure, 
gp 

, of species π, the mass concentration, g , of species π in the gas phase and the absolute 

temperature, θ, is used. 

The equations of state of a perfect gas, applied to dry air (ga), vapour (gw) and moist air 

(g) are: 
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θ /   

θ /   

ga ga

a

gw gw

w

p R M

p R M








 (4.67) 

 

1

1 1
  

g ga gw

g ga gw

gw ga

g g g

w a

p p p

M
M M

  

 

 



 

 

 
  
 

 
(4.68) 

where M  is the molar mass of constituent π and R is the universal gas constant. The second 

of equations (4.68) expresses Dalton's law (Moran & Shapiro 1993). It is reminded that for the 

averaging process dry air, vapour and moist air occupy the same volume fraction, nSg. 

4.4.3 Sorption equilibrium 

If an oven-dry porous medium is exposed to moist air, the weight of such solid increases 

because the moisture is adsorbed on the inner surfaces of the pores starting with the finest ones. 

In the cases of interest here, the water is usually present as a condensed liquid that, because of 

the surface tension, is separated from its vapour by a concave meniscus (capillary water). There 

is then a relationship between the relative humidity, the water content (saturation) and the 

capillary pressure in the pores. 

The capillary pressure is defined as the pressure difference between the gas phase and the 

liquid phase, by the capillary pressure equation: 

 
c g wp p p   (4.69) 

where pw is the pressure of the liquid-phase (water). 

In (Gray & S. M. Hassanizadeh 1991), it is shown that c g wp p p   is not just a definition, 

but a derived relationship between two independent quantities pc and g wp p , at equilibrium. 

For the relationship between the relative humidity (R.H.) and the capillary pressure in the 

pores, Kelvin-Laplace law is assumed to be valid: 

 
 

. . exp   
 

cgw

w

gws w

p Mp
R H

p R

 
   

 
 (4.70) 
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The water vapour saturation pressure, pgws, which is a function of the temperature only, can 

be obtained from the Clausius-Clapeyron equation indicated below, or from empirical formulas 

such as the one proposed by Hyland and Wexler (Organisation ASHRAE 1993). 

Assuming zero contact angle between the liquid phase and the solid phase, as is usually 

accepted for pore water, the capillary pressure can be obtained through the Laplace equation 

from the pore radius, r : 

 
2

 cp
r


  (4.71) 

where   is the surface tension. 

These considerations are applicable if the water is present in the pores, as a condensed liquid 

(capillary region). When, instead, the water is present as one or more molecular layers adsorbed 

on the surface of a solid because of the Van der Waals and/or other interactions, the capillary 

pressure no longer has an obvious meaning, even if it can be retained, referring to the broader 

concept of water potential or moisture stress. In such a case, a direct relationship between the 

water content and the relative humidity is assumed to hold such as the BET equation 

(Organisation ASHRAE 1993). 

4.4.4 Clausius-Clapeyron equation 

As indicated above, this equation links the water vapour saturation pressure with 

temperature : 

   0

0

 1 1
exp  

w gwgws gws
M H

p p
R


 

   
    

  
 (4.72) 

where 0  is a reference temperature, gwsp  is the water vapour saturation pressure at  , 0gwsp  

is the water vapour saturation pressure at 0 ,  gwH  is the specific enthalpy of evaporation. 

The equation is obtained from the second law of thermodynamics and is valid in the vicinity 

of 0 . 

In the following, we denote T as the temperature difference above a reference value such 

that 0T -   . 
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4.4.5 Pore size distribution 

As it turns out from equations (4.70) and (4.71), the problem is to know the pore size 

distribution of the considered porous medium, to relate the size of the largest pore filled (from 

which the capillary pressure depends) with the actual water content. This relationship is 

obtained through experimental tests, usually centrifuge tests, sorption isotherm measurements 

or mercury porosimetry. 

The question is somewhat complex, because both the Laplace equation (4.71) and the 

Kelvin equation (4.70) are obtained from a force equilibrium, evaluated in a cylindrical 

capillary tube, and the porous medium is considered as a bundle of capillary tubes that do not 

intersect. The real porous media are more correctly represented as three-dimensional networks 

of sites (or bodies) interconnected by narrower bonds (or throats) and then intrusion, extrusion, 

adsorption and desorption are subjected to hysteresis. In this case, the actual value of capillary 

pressure can be only interpreted as a measurable quantity describing complex adsorbed water-

solid matrix interaction. The determination of pore size distribution from sorption isotherms, 

results of centrifuge tests and mercury porosimetry should then be done following the 

percolation theory approach, (Bomberg & Shirtliffe 1978). 

The Rayleigh distribution or the log-normal distributions are often a good estimation of the 

pore size and often such distribution can be bi-modal or multi-modal. 

For soils, we need the Kelvin-Laplace equation (4.70), the Clausius-Clapeyron equation 

(4.72) and the capillary pressure relationship: 

  ,  cS S p T   (4.73) 

which is directly obtained in laboratory. 

In later chapters, where the constitutive models are introduced, will show different 

relationships for the pore size distribution and one of them gives: 

  ,  ,c

vS S p T    (4.74) 

where v  is the volumetric strain. 

4.4.6 Equation of state for water 

From the mass conservation in differential form: 
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   

0

w
w wD V

Dt


  

(4.75) 

It can be possible to obtain: 

 
1 1

w w w
w w

wwo

w

D D p DT

Dt K Dt Dt





   (4.76) 

where w  is the thermal expansion coefficient, 
1

w

w

K
C

  the bulk modulus of water and with 

wC  the compressibility coefficient and where : 

 
1 1w

wo w

wp K









 (4.77) 

 

 
1 w

wwo T







 


 (4.78) 

4.4.7 Darcy's law 

Darcy's law, generalized to allow for relative permeability: 

    
r

s k
grad p


   


 


  

k
v g  (4.79) 

is assumed valid for the transport of both water and gas in slow phenomena; k is the 

permeability of the medium, μ is the dynamic viscosity, rk   the relative permeability, a 

dimensionless parameter varying from zero to one. 

For each particular porous medium, the relations  r

wk S
 are either predicted by models 

based on some more or less realistic capillary assumption or experimentally determined in 

laboratory as well as field conditions. For typical curves of relative permeabilities to water and 

air the reader is referred to Corey (Corey 1957). 
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The relative permeability goes to zero before the saturation reaches the value zero. The 

water saturation at which the relative permeability goes to zero is termed the residual water 

saturation or displacement residual water saturation. 

Relationships used in the following are e.g. those by Brooks and Corey (Brooks & Corey 

1966) : 

 

 2 3

rw

ek S







  
(4.80) 
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b
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e
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S 

  
(4.81) 

where 
1

w wc
e

wc

S S
S

S





 is the effective saturation, wcS  is the irreducible saturation, λ the pore 

size distribution index, bp  the bubbling pressure. 

4.4.8 Fick's law 

Diffusive-dispersive mass flux is governed by Fick's law: 

    grad


  

  






 
   

 
J D  (4.82) 

where 


D  is the effective dispersion tensor, π is the diffusing phase, α is the phase in which 

diffusion takes place (α=w, g). 


D  is a function of the tortuosity factor, which accounts for the 

tortuous nature of the pathway in soil; because of mechanical dispersion, 


D  is also correlated 

with seepage velocity. 

For dry air and water vapour (binary system) we have in particular, by the first of equations 

(4.68) and from the relation g ga gw     : 
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 (4.83) 

It is worthwhile to emphasise that gas diffusion can take place even in the absence of a gas 

pressure gradient, i.e. when its mass weighted velocity g
v  is zero. 

4.4.9 Stress tensor in the solid phase and total stress  

From the entropy inequality written in (Gray & M. Hassanizadeh 1991) for unsaturated 

flow, including interfacial phenomena, it can be shown that the stress vector in the solid phase 

is : 

   1s s s

en p  t t I  (4.84) 

the pressure in the solid phase is : 

   s w g

w gp p S p S   (4.85) 

and  

  ' 1  s

en σ t  (4.86) 

is the effective stress tensor. 

Introduction of (4.85) into (4.84) yields : 

   1     s s w g

e w gn S p S p    
 

t t I  (4.87) 

The volume fraction (1-n) indicates that s
t  is the stress exerted on the solid phase per unit 

area of a multiphase medium. 

The sum of (4.87) and of (4.66) written for gas and for water gives the total stress, σ , acting 

on a unit area of a multiphase medium: 
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σ t t t t I

I I t I
 (4.88) 
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This can be put in the usual soil mechanics form as: 

  w g

w gS p S p  σ σ I  (4.89) 

or 

  w g

w gS p S p   σ σ I  (4.90) 

From this last equation, it follows that the relationship between effective stress and total 

stress, in partially saturated porous media, is no longer independent of the soil type because of 

the saturations, while in fully saturated soils, where Sg=0 and Sw=1, the effective stress 

principle is unique for all soil types. 

An expression of the effective stress principle was obtained by (Bishop & Blight 1963) 

using a phenomenological approach. 

The effective stress is responsible for all major deformations in the skeleton and is linked 

to the strain rate tensor, Ds, by means of a constitutive relationship: 

  0

' s s

T

D

Dt
  
 

σ
D D D  (4.91) 

where 

  , ', ,s c

T T p TD D D  (4.92) 

is a fourth order tensor and 0

s
D  represents the increment of all other strains not directly 

associated with stress changes.  

4.4.10 Solid density 

When considering the solid phase as compressible, a relationship for the material time 

derivative of the solid density can be obtained from the mass conservation equation in 

differential form: 

 
 

0

s
s sD V

Dt


  

(4.93) 

By assuming that the solid density is a function of ps, of temperature and of the first invariant 

of the effective stress, and defining the Biot’s constant (Biot & Willis 1957) as: 
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 1 T

s

K

K
    (4.94) 

we obtain: 

      
1 1 1
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1

s s s
s s
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D D p DT
n n div

Dt n K Dt Dt
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      

  
 

v  (4.95) 

where KT is the bulk modulus of the skeleton, Ks is the bulk modulus of the of the grain 

material, βs is the thermal expansion coefficient for the solid. 

In soils volumetric strain is relatively insignificant and can be ignored (α=1), but it is 

important in rock mechanics and in concrete, where the compressibility of the solid phase is 

comparable to that of the skeleton. 

4.4.11 Fourier's Law 

A constitutive assumption for the heat flux is the generalized Fourier's Law: 

  eff grad T q χ  (4.96) 

where effχ  is the effective thermal conductivity tensor and q  is the heat flux of the multiphase 

medium. 

For isotropic media the generalized Fourier’s Law becomes the well-known empirical 

Fourier's Law : 

   effq grad T   (4.97) 

where eff  is the effective thermal conductivity. 

The effective thermal conductivity can be predicted theoretically as well as determined 

experimentally. 

For porous building materials, for instance, the following linear relationship may be used, 

which represents with sufficient accuracy the data by (Bomberg & Shirtliffe 1978) : 

 
 

w

1 4 
1
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eff dry s

nS
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
 



 
    

 (4.98) 
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4.5 General field equations 

The macroscopic balance laws are now transformed, and the constitutive equations 

introduced, to obtain the general field equations, according to (Lewis & Schrefler 1998), which 

will be used in the subsequent sections. The averaging symbol, overbar, will be omitted in the 

remainder of this thesis, because all quantities belong to the macroscopic situations. 

4.5.1 Mass balance equation 

Solid phase 

The macroscopic mass balance equation for the solid phase (4.40), divided by s  is : 

 

  
1

1  0

s s
s

s

s

n D D n
n div

Dt Dt






   v  (4.99) 

Liquid phase 

Upon introduction of the relative velocity (4.29) and the material time derivative with 

respect to the moving solid (4.26) equation (4.42) for liquid water becomes: 

 
 

   

s

ws s wsw
w w

D
grad div m

Dt


      v v v  

(4.100) 

Introduction of intrinsic phase averaged densities with the appropriate volume fractions, use 

of vector identity written for water and division by  w

wS   allows us to transform last equation 

into: 

 
  1

      
 

ss s
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w ws sw
ww w w
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D SD n n D n m
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Dt Dt S Dt S S
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Summation with (4.99), to eliminate 

s

D n

Dt
 gives: 
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Introduction of (4.76) and (4.95) for the material derivatives of the solid and water densities 

and of (4.85) gives : 
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(4.103) 

where pw, pg and T are independent variables. 

For incompressible grains ( 1   and 
1

0
sK
 ) this equation may be simplified as follows: 
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K Dt Dt Dt
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     v v  (4.104) 

with  sw w s wS n n         . 

 

Gaseous phase 

The mass balance equation for gas as a mixture of dry air and vapour is dealt with next. In 

the same mode of the liquid phase, starting from (4.52) we obtain: 

 

 

   

2

1

 

1 1

s
ga gws s

w g a w
gs

w g g g g

s s

s s

c g gsw
g g s gg g

s

D p M p M
nSn D p n D p R

S S S S div
K Dt K Dt Dt

D Sn DT
p S n div nS n S m

K Dt Dt

  





  

 

 
       

 
      
 

v

v

 (4.105) 

where pw, pg and T are independent variables. 

For incompressible grains ( 1   and 
1

0
sK
 ) this equation may be simplified as follows: 
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For heat transfer analysis, in partially saturated porous media, it is more convenient to 

consider the mass balance equation for dry air separately from that of vapour (Baggio et al. 

1993), (Gawin et al. 1995) and to sum the mass balance equations for both water species, liquid 

water and water vapour. In this way, the mass rate of water evaporation, m , disappears from 

the mass balance equations. An evolution equation needed and this will be given by the energy 

balance equation. Note that, in this way, no constitutive model for the mass rate of water 

evaporation is needed. 

 

Gaseous phase:dry air 

The mass balance equation for dry air is transformed in the following equation: 
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(4.107) 

The resulting equation is divided by 
ga

gS  and summed with (4.99) we obtained: 
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For incompressible solid grains this equation is simplified as: 

 

   

 

1
1   

1
   

s s s

gs ga gww
s g g a wg

g gs

gg g

nSD S DT D
n n S S div p M p M

Dt Dt Dt R

m
div n S


 


 

 
      

 

 

v

v

 (4.109) 

Introducing now the constitutive equations for g  and for 
ga

gJ  to obtain: 
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 (4.110) 

 

Gaseous phase:vapour 

The way to derive the mass balance equation for vapour is identical to that of dry air and 

results, for the case of incompressible solid grains, in: 
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This equation is now multiplied by gw  and added to the mass balance equation of liquid 

water, in turn multiplied by w . This sum gives the mass balance equation for the water 

species, liquid and vapour, without mass rate of water evaporation as: 
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where   1  gw w w

swg s g w w wn S S n S          . 

In these equations Darcy's law for the fluid velocities relative to the solid has still to be 

introduced. This law was introduced in section 4.4.7 and will be derived again in its generalized 

form in the next section from the linear momentum balance equations. 



Mechanics of porous media: mathematical model 71 

4.5.2 Linear momentum balance equation 

Fluids 

A more suitable form for the linear momentum balance equation for the fluid-phases is now 

obtained by introducing kinematic equations and constitutive relationships. 

Equations (4.31) and (4.32) allow us to write for acceleration, 
a  : 

a a a  
s s s grad      v v   (4.113) 

where s
a  is the relative acceleration. 

Introduction in (4.57) of (4.113), the momentum exchange term and of the intrinsic phase 

averaged density yields: 
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By neglecting the term dependent on the gradient of the fluid velocity, the effects of phase 

change and by applying a vector identity, for the divergence of the stress tensor in the fluid-

phase, we obtain the relative velocity of the fluid as : 
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Finally, neglecting the soil acceleration and the relative acceleration terms, it yields Darcy's 

law in the form (4.79) : 
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Due to the simplifications introduced, this law is valid as a first approximation for slow flow 

of a macroscopically inviscid fluid through a porous medium with incompressible grains. 
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Solid phase 

Taking into account equations (4.84), (4.85), (4.86), the linear momentum balance equation 

for the solid-phase becomes: 
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 (4.118) 

 

Multiphase medium 

By summing the momentum balance equations, written for water and gas-phase 

respectively, with that of the solid phase (4.118), by taking into account the definition of total 

stress, assuming continuity of stress at the fluid-solid interfaces and by introducing the 

averaged density of the multiphase medium: 

  1     s w g

w gn n S n S        (4.119) 

we obtain the linear momentum balance equation for the whole multiphase medium: 
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4.5.3 Energy balance equation 

The energy balance equation for the single phase is: 
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where  ,H H p     is the specific enthalphy of the phase π and 
p

p

H
C
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specific heat at constant pressure. 

For the continuum multiphase, with the impose of thermodynamic equilibrium, the energy 

balance equation is: 
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where 
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4.6 Physical approach: extended Biot’s theory 

The governing equations, using Biot's theory (Biot 1941b), (Biot 1941a), (Biot 1955), (Biot 

1956a), (Biot 1956b), (Biot 1963) are again derived but extended to the case of non-isothermal 

two-phase flow in deforming porous media. This extension was made in (Schrefler et al. 1995), 

(Schrefler & Zhan 1993) for the case of slow phenomena. Also, inertia forces are taken into 

account, as was done in (Zienkiewicz et al. 1990) for the isothermal case with the air phase at 

atmospheric pressure. 

The physical approach works directly with macroscopic variables. However, the distinction 

between a macroscopic and microscopic domain is not as clear as in the previous sections, 

because macroscopic variables are sometimes directly used in the microscopic domain (Lewis 

& Schrefler 1998). 

For the sake of simplicity, small displacements are assumed for the solid phase. The 

governing equations in the form needed for finite strain analysis are those of the previous 

section. For all queries regarding the assumed hypotheses the interested reader is referred to 

the first part of this chapter. 

4.6.1 The physical model 

The voids of the skeleton are filled partly with water and partly with moist air (mixture of 

dry air and water vapour), which is referred to as gas. The degree of water saturation Sw is 

given as the ratio between the pore space occupied by the water and the total pore volume in a 

representative elementary volume element: 

 

w

w w g

dv
S

dv dv



 (4.124) 

In the following equations the super or subscript π refers to the generic phase, π =s to the 

solid phase, π =w to water and π =g to gas. The volume of the R.E.V. is dv, while the partial 
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volumes are dvs, dvw and dvg. Their sum is dv while the sum of the respective fluid volumes 

is dvT=dvw+dvg. The definition of the degree of gas saturation Sg is : 

 

g

g w g

dv
S

dv dv



 (4.125) 

and both degrees of saturation sum to one i.e. : 

 1w gS S   (4.126) 

The porosity n is defined as the ratio between the volume of voids and the total volume of 

the R.E.V. : 

 

w gdv dv
n

dv


  (4.127) 

As in the first part of this chapter, the stress is defined as tension positive for the solid phase, 

while pore pressure is defined as compressive positive for fluids. The water pressure pw and 

the gas pressure pg are related through the capillary pressure pc : 

 
c g wp p p   (4.128) 

The relation (4.128) is determined experimentally and usually shows hysteresis 

characteristics, which are ignored in this case. Equation (4.128) is numerically inverted to 

obtain: 

  ,  ,c p

vS S p T    (4.129) 

The constitutive law of the solid phase is introduced through the concept of effective 

stress : 

 '  sp σ σ I  (4.130) 

which stipulates that the main characteristics of the solid phase constitutive relation can be 

written in terms of σ where σ is the total stress tensor, I the second order unit tensor and ps is 

the average pressure of both the water and air surrounding the grains. In the case of immiscible 

two-phase flow we need a simple averaging technique for the calculation of ps as described in 
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section 4.2. Thus the modified effective stress principle may be obtained as stated previously. 

The effective stress resulting from equation (4.129) is also referred to as Bishop's stress: 
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where σ  is the macroscopic total stress tensor. 

For the fluid phases, the stress tensor is given by: 

  p   σ I  (4.132) 

where 
π

σ  is the intrinsic phase averaged stress tensor in the π phase and   is the shear 

stress. 

Under the assumption that the shear stress   is negligible in fluids, we obtain: 

  1   s g w

g wn n S p S p     σ σ I  (4.133) 

The term in square brackets of equation (4.132) represents the intrinsically averaged (or 

mean) pressure ps of the fluid phases i.e. : 

    s g w

g wp S p S p   (4.134) 

This weighted pore pressures produce a stress state in the grains, but, for the moment, we 

assume these will not undergo any deformation due to this stress, i.e. we introduce the 

hypothesis of incompressible grains. The deformation of the solid skeleton, which depends on 

the effective stress, will be a function of the grain rearrangement only. 

Equation (4.133) can be modified to: 
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where the overbar for the total stress has been omitted. 

The stress tensor is split into two components: the pore pressure effect and the part which 

deforms the solid skeleton, i.e. the effective stress. This latter is given by: 
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    1    s sn p   σ σ I  (4.136) 

Equation (4.135) results in a splitting of the stress tensor similar to that of Terzaghi's 

principle, which, in presence of several fluid phases reads: 

      w g

w gS p S p   σ σ I  (4.137) 

For greater generality, a corrective term known as Biot's constant, has to be introduced to 

account for the deformability of the grains (Biot & Willis 1957). Therefore a more general 

expression of the effective stress is assumed as follows: 

   + w g

w gS p S p ''
σ σ I  (4.138) 

where the corrective coefficient α will be determined in section 4.6.2. Note that this equation 

differs substantially from the previous one: for the determination of α we need the constitutive 

equations of the solid phase. This effective stress is indicated in this chapter by    as in 

(Zienkiewicz et al. 1990). 

Another, more intuitive way of deriving equation (4.136) follows (Bishop 1959) and 

(Skempton 1961). Here the microscopic and macroscopic aspects are somewhat mixed. We 

consider for this purpose the mean stresses, i.e. : 

 ˆ  
3

tr 
σ

 (4.139) 

and 

 ˆ  
3

tr


 
σ

 (4.140) 

If the pores (Fig. 4.3) are filled with water and air, then due to the surface tension effect we 

have: 

 
w gp p  (4.141) 

If the degree of saturation is relatively low, the water is present as menisci and the 

corresponding pressure acts over an area χ per unit gross area, (Aitchison & Donald 1956). 

Consequently, the equivalent pore pressure is given by: 
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  1  w gp p    (4.142) 

and the equivalent pore pressure may be written as: 

 g g wp p p   (4.143) 

or 

   1  w g wp p p    (4.144) 

For the fully saturated case, Bishop suggested the following expression for the mean 

effective stress ̂   : 

 ˆ ˆ g g wp p p       
 

 (4.145) 

For the full stress tensor, this equation assumes the form: 

   g g wp p p     
 

σ σ I  (4.146) 

 

Fig. 4.3: Contact area between two grains in the partially saturated case 

The coefficient χ is not the same as for problems involving shear strength and consolidation 

(Skempton 1961). For a given degree of saturation the coefficient χ must be determined 

experimentally for both types of problems. 

In general the pressure is implied as being an absolute value, but in many soil mechanics 

problems relative pressures are used and pg is often assumed to be equal to the atmospheric 

pressure. If this is the case and the atmospheric pressure is assumed as the reference pressure 

then the effective stress principle becomes: 

das

da

pore water

pressure pw

pore air

pressure pg
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    wp  σ σ I  (4.147) 

The comparison between (4.137) and (4.146) is noteworthy. The former may be written as 

a function of the degree of saturation Sw : 

  =  '   g g w

wp S p p   
 

σ σ I  (4.148) 

and coincides with equation (4.146) if wS  . 

The coefficient χ is related to the area of contact between solid and fluids, whereas the 

degrees of saturation Sπ depend on the volume occupied by the π phase. We define the volume 

fraction as: 

 
dv

dv


   (4.149) 

and cross sectional area fraction as: 

 
da

da


   (4.150) 

For the case of microstructurally isotropic constituents, such that   is independent of the 

orientation of the surface, and assuming that:  

       (4.151) 

it can be shown that (Morland 1972) : 

 
    (4.152) 

This conclusion coincides with the basic supposition of Delesse's law, see section 4.2.1. 

If this assumption regarding the area and volume fraction is valid, then little difference 

exists between the definition of Bishop's coefficient χ and the degree of water saturation Sw. 

Bishop's equation (4.145) has been experimentally validated by means of a triaxial tests carried 

out on soil samples (Skempton 1961). 

The assumption: 
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 wS   (4.153) 

is acceptable for many materials as shown experimentally in (Bishop & Blight 1963). 

However, other expressions may also be used, e.g. by Gudehus for clay (Gudehus 1995) : 

  2S S    (4.154) 

If the solid phase is completely surrounded by a single wetting fluid phase, which is the 

only one in direct contact with the porous medium, then Li and Zienkiewicz (Li & Zienkiewicz 

1992) use equation (4.137) with 1  , as in the case of a fully saturated porous medium. This 

assumption is widely used when the two fluids are water and bitumen: only water is in contact 

with the solid grains. 

A new expression for the effective stress principle in fully saturated conditions only, 

involving four parameters, has been proposed by Lade and de Boer (Lade & de Boer 1997) 

and experimentally tested. This formulation, based on principles of mechanics is valid for all 

types of materials. A distinction is made between the compressibilities of the grain particles 

and the skeleton due to total stresses and pore pressures. 

Two distinct expressions are then obtained for effective stresses in granular material and in 

solid rock with interconnected pores respectively. For various special conditions these 

expressions become similar to the expressions found in the literature, in particular to the 

expression used here with Biot's constant α. Lade and de Boer (Lade & de Boer 1997) conclude 

that Terzaghi's proposed effective stress principle works well for stress magnitudes 

encountered in most geotechnical applications, but significant deviations occur at very high 

stresses. 

4.6.2 Constitutive equations 

For a full account of the constitutive relationships used the reader is referred to section 4.4, 

and only a few equations, needed for the remaining part of this section, are recalled. In 

particular an expression for Biot's constant α is derived, which was omitted in section 4.4. 

The averaged pore pressure ps of the fluids occupying the void space induce a hydrostatic 

stress distribution in the solid phase. The ensuing deformation is a purely volumetric strain: 
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s
s

v

s

p

K
 ε   (4.155) 

where 
sK  is the averaged bulk modulus of the solid grains. 

As stated previously, the effective stress causes all relevant deformation of the solid 

skeleton. The constitutive relationship may be written as:  

 T c s

vd d d d d      
 

σ D ε ε ε ε  (4.156) 

where d σ  is the stress responsible for all deformations, except for the grain compressibility 

dε  represents the total strain of the solid, 
TD  is the tangent constitutive tensor: 

 , ,T T
D D σ ε ε  (4.157) 

 cd g dtε σ  accounts for the creep strain, 
odε  represents all other strains in the solid 

skeleton not directly dependent on effective stress. 

A modified effective stress σ  will now be introduced which will also account for grain 

compression. This allows the use of Biot's constant α. Omitting, for brevity, 
cdε  and 

odε  we 

obtain: 

     
3

s
s

T v T T

s

dp
d d d  = d    

K
    
 

σ D ε ε D ε D I  (4.158) 

Consequently, the effective stress equation written in incremental form becomes: 

 
3

s
s s

T

s

dp
d d  dp d     dp

K
     σ σ I σ D I I  (4.159) 

where σ  represents the stress responsible for all deformation of the solid. 

For the following developments we use indicial notation and the Kronecker Symbol δ 

instead of the unit tensor I. 

It can be immediately verified that equation (4.158) can be written as given by (Zienkiewicz 

& Shiomi 1985): 
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1 1
  

3 3

s

ij ij mn nm mn mnkl kl ij

s

d d D dp
K

      
 

   
 

  (4.160) 

For an isotropic, elastic material:  

3
9

1 2
mn mnkl kl T

E
D K 


 


 (4.161) 

where E is the Young's modulus, ν is the Poisson's ratio, KT is the bulk modulus of the overall 

skeleton. 

Hence equation (4.160) can be written as: 

  1    =    s sT
ij ij ij ij ij

s

K
d d d p d dp

K
     

 
     

 
  (4.162) 

where α is Biot's constant. 

The resultant expression of the constitutive relationship is therefore: 

  Td d σ D ε  (4.163) 

The intrinsic pore pressure pπ of the π fluid phase causes a purely volumetric strain of that 

phase, which is represented by: 

v

p

K






 ε  (4.164) 

4.6.3 Governing equations 

In the following a material coordinate system is employed for the solid phase and a spatial 

coordinate system for the fluid phases; convective terms, unless specified otherwise, are 

neglected. Because of this choice of reference systems the fluid velocities are conveniently 

referred to the solid phase by means of the relative velocities for water and gas respectively:  

ws w s v v v  (4.165) 
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gs g s v v v   (4.166) 

and the accelerations, without convective terms, are:  

a a a
w s ws

= +  (4.167) 

 

a a a
g s gs   (4.168) 

where aws is the acceleration of water relative to the solid phase and ags the relative acceleration 

of gas. 

Linear momentum balance equation of the multiphase medium 

The linear momentum balance equation for the multiphase system is the sum of the 

dynamics equations for the individual constituents, but relative to the solid phase via equations 

(4.167) and (4.168) : 

 0s w ws g gs

w gn S n S div       σ g a  a  a =  (4.169) 

where 

  1 s w g

w gn n S n S         (4.170) 

is the averaged density of the multiphase systems, s  is the intrinsic density of the solid phase, 

i.e. the density referred to the volume occupied by the solid phase only, as opposed to the 

volume occupied by the multiphase system, w  is the intrinsic density of water, g  the 

intrinsic density of gas, g an acceleration usually related to gravitational effects. 

The linear momentum balance equation for each fluid phase yields the generalized form of 

Darcy's law, where the dissipative terms arising in a multiphase flow system at the interfaces 

are taken into account through the relative permeabilities:  

  
rw

ws w w s ws

w

w

k
nS grad p 


     
 

k
v g a a  (4.171) 
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  
rg

gs g g s gs

g

g

k
nS grad p 


     
 

k
v g  a a  (4.172) 

where k is the intrinsic permeability, krw and krg the relative permeabilities of water and gas, 

w  and g  are the dynamic viscosities. 

The relative permeabilities vary between 0 and 1 and are a function of the degree of 

saturation; the dynamic viscosities are temperature dependent. In the generalized form of 

Darcy's law for the gas phase the body forces are usually neglected. The L.H.S. of equations 

(4.171) and (4.172) are multiplied by the volume fractions nSπ because Darcy's law is 

expressed in terms of volume averaged relative velocities. These are the velocities measured 

from experiment work. 

 

Mass balance equations 

The summation of mass balance equations of mass and fluid, with opportune arrangements 

and yields the so-called continuity equation of the fluid phase i.e. : 

 
 

 
1 1

   
s

s s

s

n Sn n m
div nS

t t S t S S


 

  

  

 


   

  
     

  
v v  (4.173) 

We consider first the continuity equation for water. Introduction of the constitutive 

relationships for the time derivatives of water density and solid density, of the pressure in the 

solid phase, and multiplication by Sw allows the continuity equation for water and then with 

the introduction of Darcy's law and of the definition of capillary pressure yields: 

 

 

2

1

w g
sw

w w g w

s w s

c w
sw w

s

rw
w w w s ws

w w

w

nSn p n p
S S S S div

K K t K t

ST n
S p n

t K t

k m
div grad p

 





 
  

    
   

  

   
   

  

 
         

 

v 

k
 g a a

 (4.174) 

In the same way the continuity equation for gas is obtained:  
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  

 

2

1

sw g
c w

w g g g

s s s

g

g gs

s g g g

rg
g g g s gs

g g

g

Sn p n p n
S S S n p S

K t K t K t

nS p MT
n S S div

t t R

k m
div grad p

  

  
 

 
  

      
   

   

  
         

           
  

v

g

  

k
 a a

 (4.175) 

Energy balance equation 

By subtracting the kinetic energy from a global energy balance, the balance equation of 

thermal energy may be written for constituent π as (Bird et al. 1960) : 

     sE div E div p div grad R
t

             


      


v q v τ v    (4.176) 

where E  is the specific internal energy, τ is the deviatoric part of the stress tensor, p  the 

hydrostatic part of the stress tensor. 

The L.H.S. represents the rate of accumulation of internal energy in a control volume. The 

R.H.S. terms express respectively the rate of internal energy change due to convection and to 

conduction, the reversible rate of internal energy increase due to pressure, the irreversible rate 

of internal energy increase by viscous dissipation and the contribution of heat sources. 

In small strain the energy balance equation becomes: 

    
E

grad E div p div grad R
t


            


       


v q v τ v  (4.177) 

The irreversible part of the internal energy increase by viscous dissipation is neglected in 

what follows. It is convenient to express this equation in terms of temperature and heat capacity 

instead of internal energy (Bird et al. 1960). This is done through the concept of enthalpy. 

Hence with sufficient accuracy for geomechanical applications the energy balance equation 

can be rewritten as: 

 
p

T
C grad T div R

t


       

 
     

 
v q   (4.178) 

for π=s,w, which for the purpose of the energy balance only may be considered as 

incompressible, and 
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g g
g g g g g g g g

p

T p
C grad T div grad p R

t t

 
  

       
  

v q v  +   (4.179) 

where 
g

pC  is the specific heat at constant pressure. 

Some insignificant terms which are related to the mechanical work induced by density 

variations due to temperature changes of the water and solid phases have been neglected. 

Gas pressure changes are usually very slow and their gradients small in geomaterials, hence 

the time derivatives of gas pressure, as well as the convective terms, are negligible with respect 

to other terms in equation (4.179). Also, because gas pressure changes are usually small when 

compared to atmospheric pressure, the specific heat at constant pressure may be utilised instead 

of specific heat at constant volume. 

A local equilibrium state is assumed to hold i.e. : 

s w gT T T T     (4.180) 

We also introduce the constitutive equation for heat fluxes, and add together equations 

(4.178) and (4.179), and introduce the appropriate heat sources to obtain the following form of 

the energy balance equation: 

     w w w g g g

p p p eff vapeff

T
C C C grad T div grad T m H

t
   


      


v v       (4.181) 

where vapH  is the latent heat of evaporation. 

The convective heat flux in the solid phase has been neglected. 

4.7 Quasi – static case 

The relationships shown in 4.6.3 are now presented for quasi static conditions. In poor 

words, the equations are rewritten by not taking into account the terms in which appear the 

acceleration, so is possible neglect the terms aw, as, aws, ag and ags used in the relationship 

(4.167) and (4.168). 

For this work of PhD, the equations used are those in quasi static condition. 

4.7.1 Equilibrium equation of the multiphase medium 

The equation (4.169) becomes: 
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0=div σ g  (4.182) 

where, as already mentioned above: 

  1 s w g

w gn n S n S         (4.183) 

is the averaged density of the multiphase systems, s  is the intrinsic density of the solid phase, 

i.e. the density referred to the volume occupied by the solid phase only, as opposed to the 

volume occupied by the multiphase system, w  is the intrinsic density of water, g  the 

intrinsic density of gas, g an acceleration usually related to gravitational effects. 

4.7.2 Mass balance equations 

The equations (4.174) and (4.175) become: 
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 
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In the same way the continuity equation for gas is obtained: 
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  
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 (4.185) 

4.7.3 Energy balance equation 

The equation (4.181) does not change for the quasi static case but, by using Darcy’ law, can 

be rewritten in a complete mode as follows: 



Mechanics of porous media: mathematical model 87 

 

     

   

rw

w

r

k

k

w w g c w

p peff

g
g g g g

p eff vapg

T
C C grad p grad p g grad T

t

C grad p g grad T div grad T m H

  


  


 
         

 
         

 

k

k

  

   

 (4.186) 

4.7.4 Further developments of the model 

The same equations see for this model, hence the linear momentum balance equation, the 

mass balance equations and the energy balance equation, were developed  by considering air 

dissolved in water by Gawin and Sanavia. For further information, see (Gawin & Sanavia 

2010) and (Gawin & Sanavia 2009). 

4.8 Boundary and initial conditions 

For the model closure the initial and boundary conditions are needed. The initial conditions 

specify the full fields of primary state variables at time t=t0, in the whole analysed domain B 

and on its boundary B : 

 
qB B B g,c,T,       u     (4.187) 
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     on  (4.188) 

The boundary conditions (BCs) can be of Dirichlet’s type on B  for t≥t0: 
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 (4.189) 

or of Cauchy’s type (the mixed BCs) on 
qB  for t≥t0: 
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   onga gs ga ga q

g d gnS v q     B    J n  (4.190) 

    onw ws gw gs gw gw w gw gw q

w g d c cnS v nS v q q     B           J n  (4.191) 

     4 4

0 onw ws T w q

w vap eff c TnS H gradT q q T T e T T     B             v n  (4.192) 

on q

u    B  σ n t  (4.193) 

 

where n(x,t) is the unit normal vector, ( , )gaq tx   is the imposed fluxes of dry air, ( , )gwq tx  is 

the imposed fluxes of vapour, ( , )wq tx  is the imposed fluxes of liquid water, ( , )Tq tx  is the 

imposed imposed heat flux, ( , ) tt x  is the imposed traction vector related to the total Cauchy 

stress tensor ( , ) tσ x , ( ),gw t x  is the mass concentration of water vapour, ),(T t x  is the 

temperature in the far field of undisturbed gas phase, ,( )e tx  is the emissivity of the interface, 

 0 , tσ x  is the Stefan-Boltzmann constant,  ,c t x  is the convective heat exchange 

coefficients,  ,c t x  is the convective mass exchange coefficients. 

The boundary conditions with only imposed fluxes are called Neumann’ BCs. The purely 

convective boundary conditions for heat and moisture exchange are also called Robin’ BCs. 
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5 The code Comes-Geo 

5.1 Introduction 

The COMES-GEO finite element code carries out the hydro-thermo-mechanical analysis of 

porous materials with interconnected pores in which the flow of one or more fluid phases takes 

place. 

The interactions between fluid and solid phases are taken into account. Geomaterials (soils, 

rocks, concrete), are the most common examples of such porous media. The majority of the 

codes which are currently available in the market, do not deal with more than a single fluid 

phase. Therefore it is not possible to carry out realistic numerical studies of porous materials 

structures in partially saturated conditions as: 

1. stability analysis of soil slopes; 

2. seismic analysis of soil dams where in the upper part wide zones, containing pores 

filled with air and water, are present; 

3. simulation of the subsidence phenomena in presence of gas extraction from deep 

reservoir. In this case water and different gases are present in the pores. The gas 

reservoirs in the northern Adriatic Sea are an important example in Italy. 

The COMES-GEO code, developed by the University of Padova, is able to deal with these 

problems and also with many others applications in environmental geomechanics. 

The problem unknowns are the following: temperature, capillary pressure, gas pressure and 

displacements. These data allow the calculation of interesting derived outputs (e.g. saturation, 

stress-strain fields). 

To reach the solution of the problem using the considered model, four balance equations are 

imposed (see chapter 4): mass of the dry air, mass of the water species (both liquid water and 
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vapour; phase change is considered); energy conservation of the mixture and the equilibrium 

equation of the multiphase medium. They are completed by an appropriate set of constitutive 

and state equations, as well as some thermodynamic relationships. 

COMES-GEO allows finite element analysis in plane strain and axialsymmetric conditions, 

using four node bilinear elements or Serendipity eight node elements or Lagrange nine node 

elements. 

The source is written in FORTRAN 90. 

5.2 Finite element method 

Numerical solution to the mathematical system presented in chapter 4, is obtained by using 

the finite element method. In what follows, we describe the particular method employed for 

the spatial discretization of the numerical system. 

More specifically, we have applied the Galerkin form of the method of weighted residuals 

(MWR) to produce an integral representation of the governing equations. 

These relations are then specialized to finite element method. 

For further information see (Sanavia et al. 2006). 

5.2.1 Method of Weighted Residuals: discretization in space 

To apply the MWR to the particular problem at hand, we assume that the region of interest 

Ω is divided into a number of simply shaped regions, the finite elements, as shown in Fig. 5.1. 

 

Fig. 5.1 Schematic division in simply regions 
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x
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Within each element, a set of nodal points is established at which the dependent variables 

pg, pc, T, ux and uy are evaluated, where 

1. pg is the pressure of gas (dry air, vapour or any other perfect gas) expressed in Pa 

2. pc is the capillary pressure (or matric suction) expressed in Pa 

3. T is the temperature expressed in K 

4. ux and uy are the displacement expressed in m 

For the purpose of developing the equations for these nodal unknowns, an individual 

element is separated from the assemblage. 

Within each element, it is assumed that the dependent variables can be expressed in terms 

of approximating function to shape functions by: 

( ) ( )g p gp t t N p  (5.1) 

( ) ( )c p cp t t N p  (5.2) 

( ) ( )tT t t N T  (5.3) 

( ) ( )ut tu N u  (5.4) 

where the upper line indicates the nodal values. Substitution of the relations (5.1)(5.2)(5.3) and 

(5.4) into the partial differential equations see in chapter 4, and boundary conditions, will result 

in a set of residual equations due to the approximate nature of relations (5.1)(5.2)(5.3) and 

(5.4). 

The MWR is then used to reduce the residual expression to zero in a weighted integral 

sense through the introduction of: 

 d d
 

   x x x xN R N R 0  (5.5) 

where  , , ,T

g cx p p T u , Nx are weighting or test functions, R is the residual for a field 

equation, Rx(b.c.) is the residual for the boundary condition 

The integral or weak form of the heat and mass transfer equations (and of the other ones 

required to complete the model), obtained by means of the Galerkin procedure (weighted 



92 The code Comes-Geo 

residuals), (Zienkiewicz & Taylor 1989; Zienkiewicz & Taylor 1991), can be expressed in 

matrix form as (Gawin et al. 1996; Schrefler & Gawin 1996): 

 

gg g gc c gT gu gg g gc c gT g

cg g cc c cT cu cg g cc c cT c

Tg g Tc c TT Tu Tg g Tc c TT T

uu ug g uc c uT u

       

       

       

    

C p C p C T C u K p K p K T f 0

C p C p C T C u K p K p K T f 0

C p C p C T C u K p K p K T f 0

C u C p C p C T f 0

 (5.6) 

The above non-symmetric, non-linear and coupled system of ordinary differential equations 

can be rewritten in compact form as: 

        C x x K x x f x 0  (5.7) 

where  , , ,T

g cx p p T u  and the non-linear (matrix) coefficients C(x), K(x) and f(x) are 

obtained by assembling the sub-matrices indicated in (5.6). 

5.2.2 Linearization. Discretization in time 

Finite differences in time, (Zienkiewicz & Taylor 1989; Zienkiewicz & Taylor 1991), are 

used for the solution of the initial value problem over a finite time step: 

 1n nt t t    (5.8) 

where n is the time step number. 

Following the Generalised Trapezoidal Method as shown for instance in (Lewis & Schrefler 

1998), equation (5.7) is rewritten at time tn+1 using the relationships: 

 
1n n

nt t








 

x xx
 (5.9) 

 

    11      with θ 0 1n n n ,      x x x  (5.10) 

where nx  is the state vector at time tn, 1nx  is the state vector at time tn+1, Δt is the time step 

length, thus obtaining: 
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       1 1 1n n n nn n
t t t  

    
        G x C K x C K x F 0  (5.11) 

Linearized analysis of accuracy and stability suggests the use of 1/ 2  . In the present work 

implicit one-step time integration has been performed ( 1  ). 

After time integration the non-linear system of equation is linearized, thus obtaining the 

equations system that can be solved numerically (in compact form): 

  
1

1

1

1 n
i
n

i i

n 








  

 x

G
x G x

x
 (5.12) 

where   1

1




i

n  indicates the current iteration (i+1) in the current time step (n+1). 

The Jacobian matrix has the following form: 

 

1
i
n

g g g g

g c

c c c c

g c

T T T T

g c

u u u u

g c

G G G G

G G G G

G G G G

G G G G



    
 
   

 
    
 
     

      
 
    

 
    
     

x

p p T u

p p T uG

x

p p T u

p p T u

 (5.13) 

Owing to the strong coupling between the mechanical, thermal and the pore fluids problem, 

a monolithic solution of (5.12) is preferred using a Newton scheme, so it can be written: 

 

    

     

     

1 1 1 1

1 1 1 1 1

1
1 1 1 1

1 l l l l

n n n n n

l l l l l

n n n n n

l
l l l ln n
n n n n

t

t

   

    


   

 
      

  
       

 
    

 

C x x x C x x
x

K x x K x f x x
x x

x x
C x K x x f x

 (5.14) 

Finally, the solution vector  , , ,T

g cx p p T u  is then updated by the incremental 

relationship: 
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1

1 1 1

l l l

n n n



   x x x  (5.15) 

For the convergence and error analysis of the method applied here the interested reader is 

referred to (Gawin & Schrefler 1996). 

5.3 Finite element library 

Three basic elements are utilized in the COMES-GEO code: the isoparametric quadrilateral 

elements with four and eight node Lagrangian elements and the eight node Serendipity 

element. 

Within a particular element, the state variables are approximated using linear or quadratic 

shape functions: 

( ) ( )g g p gp p t t  N p  (5.16) 

( ) ( )c c p cp p t t  N p  (5.17) 

( ) ( )tT T t t  N T  (5.18) 

( ) ( )ut t u u N u  (5.19) 

Basic concepts of Finite Element Method element construction and isoparametric element 

formulation are thoroughly described e.g. by Zienkiewicz (Zienkiewicz & Taylor 1989) . 

The interpolation functions for any elements shown below can be found in (Zienkiewicz & 

Taylor 1989). 

5.3.1 Four node quadrilateral elements 

The basic four node quadrilateral element used in the code has 20 degrees of freedom as 

shown in Fig. 5.2 : 
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Fig. 5.2 Four node quadrilateral element 

5.3.2 Eight node quadrilateral elements 

The basic four node quadrilateral element used in the code has 40 degrees of freedom as 

shown in Fig. 5.3 : 

 

Fig. 5.3 Eight node quadrilateral element 

5.3.3 Nine node quadrilateral elements 

The basic nine node quadrilateral element used in the code has 45 degrees of freedom as 

shown in Fig. 5.4 : 
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Fig. 5.4 Nine node quadrilateral element 

5.4 Numerical integration 

As far as the numerical integration is concerned, the classical Gauss method is implemented 

in the code.  

In this method the required matrix integrals, used in F.E.M., are in practice evaluated 

numerically using, for the case treated here: 

    
,

, ,ij i j

i j

r s drds r sF F  (5.20) 

The above formula is directly applicable to the calculation of matrices of rectangular 

elements, in which all integration limits are -1 to +1. Thus we can apply the one-dimensional 

integration formulas successively in each direction. As the analytical evaluation of multi-

dimensional integrals, in this procedure, successively, the innermost integral is evaluated by 

keeping the variables corresponding to the other integrals constant. 

Therefore, we have for a two dimensional integral: 

    
1 1 1

1 1 1

, ,i i

i

r s drds r s ds
  

  

  F F  (5.21) 

or 

    
1 1

,1 1

, ,i j i j

i j

r s drds r s
 

 

  F F  (5.22) 
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In COMES-GEO code we have the possibility to use different orders of integration. The 

possible numerical integration are presented in the following table, but for the kind of problems 

resolved using COMES-GEO, fully coupled and strongly non-linear, it is suggest to use eight 

node quadrilateral elements with a 3×3 numerical integration. 

Table 2 Type of element and order of integration 

Type of element Order of integration Note 

 

2×2 

There is not 

stabilization in case of 

reduced interpolation 

(i.e. with 1 gauss point) 

 

3×3 also 2×2 is available 

 

5.5 Matrix solution procedure 

When the solution algorithms of the theory section are applied to a given iteration or time 

step, the general result is a matrix equation of the form: Ax = b. 

In the problem considered here the A matrix is large (e.g. several thousand equations), 

sparse, banded, and generally non-symmetric. 

The solution of the equations system (4.14) may be approached by a direct method. 

The solution procedure used in COMES-GEO is a form of Gauss elimination developed by 

Irons, called frontal solution method. In particular it is a super-fast frontal elimination routine 

using diagonal pivoting reduced fill-in version which assembles the contribution of each 

element to form the global stiffness matrix and global load vector and to solve the resulting set 

of simultaneous equations by Gaussian direct elimination (Bianco et al. 2003). 

The main feature of the frontal solution technique is that it assembles the equations and 

eliminates the variables at the same time. 
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In fact the basic premise of the frontal method is that the process of assembling the system 

matrix A, from the individual element matrices and the reduction of A by standard Gauss 

elimination may be efficiently intertwined. 

In processing each element in sequence, the frontal procedure passes through the following 

steps: 

1. assembly of element equations into global matrix A; 

2. check each equation in the assembled system to determine if all contributions to this 

equation have been made; 

3. condense from the system (by Gaussian elimination) the equations for all degrees of 

freedom that have been completely assembled; 

4. return to step 1. for the next element. 

By combining the assembly and reduction process, computer storage is effectively 

minimized since only the currently “active” (i.e. incompletely assembled) degrees of freedom 

are retained in the core storage. 

Following the reduction of the matrix A to an upper triangular form, a back-substitution 

algorithm completes the solution process for the vector x. 

Since the frontal method is structured around the individual element, it is especially 

adaptable for general purpose code with an element library. 

The processing of higher order elements (e.g. quadratic basis functions) is also handled 

efficiently by frontal method. 

The frontal procedure in COMES-GEO employs diagonal pivoting reduced fill-in. In our 

case it is a total pivoting which is related to the numerical stability in a strong manner, and 

works on rows and columns to find the “pivot”. The pivoting technique allows improving the 

convergence of the numerical system. 

5.6 Convergence and error analysis 

The discretization in space of the balance equations (and of the other ones required to 

complete the model) with the standard Galerkin method (weighted residuals), results in a non-

symmetric, non-linear and coupled system of ordinary differential equations as shown in the 

section 5.2: 
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        C x x K x x f x 0  (5.23) 

where  , , ,T

g cx p p T u , and the non-linear (matrix) coefficients C(x), K(x) and f(x) are 

obtained by assembling the sub-matrices indicated in (4.6). 

We assume consistency and convergence of the finite element discretization in space. The 

time discretization is accomplished through a fully implicit finite difference scheme (backward 

difference): 

1n n   Ax Bx F 0   (5.24) 

where 

    1 1n n t   A C x K x  (5.25) 

 1nB C x  (5.26) 

 1n t F f x  (5.27) 

We focus our attention on the global error: 

1 1 1

L L

n n n   e x x  (5.28) 

where 1nx  is the exact solution of the equation (5.24), L is the number of performed 

iterations for the time step n+1. 

To simplify calculations, we assume that there are not round-off errors generated by the 

algorithm, except those introduced by the initial values at time t0. 

If we replace 1nx  and nx   in equation (5.24) by the corresponding exact values, we 

obtain: 

 1 1n n n   Ax Bx F r  (5.29) 

where rn+1 is the local truncation error of equation (5.24). 

The calculated numerical solution 1

L

nx  satisfies equation (5.24), so we can subtract equation 

(5.24) written for 1

L

nx  and L

nx  respectively from the equation (5.29). 

This results in: 
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 1 1

L L

n n n  Ae Be r  (5.30) 

Neither symmetry nor positive definiteness of the matrices is assumed here. 

By a recursive application for the index n, we have from equation (5.29) that: 

 
     

     

1
1 1 0 1

1 01 1 1
0

1 1 1

11 1

n
L

n n n
k

n k nn k n k n


  

  


  

    

   

 

e AB AB e AB

AB A r A r

 (5.31) 

The total error 1

L

ne  is influenced by the local truncation error rk, being k  n+1 and by the 

initial round-off error 
0

0e  made at the starting step, because then for n=0 and L=0 : 

 
0 0

0 0 0 e x x  (5.32) 

where 0 0x x  is the exact solution of the equation (5.24). 

Thus 

 
1 1 n  A B  (5.33) 

is the sufficient stability condition for applied solution procedure where   is the spectral 

norm. 

The stability condition and the consistency property: 

  2

k t r 0  (5.34) 

together with the iteration convergence, indicated below, are sufficient for the above procedure 

to be globally convergent. 

Considering the non-linearity of the system of equations (5.24) the solution is obtained with 

a Newton-Raphson type procedure (5.14) and (5.15). 
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6 Numerical results and numerical investigation of the 

second order work criterion 

6.1 Introduction 

In this chapter, the numerical results of three multiphase finite element analyses are 

presented and discussed: shear failure is being studied through an example of a finite element 

analysis of a plane strain compression test on globally undrained water saturated dense sand 

and isochoric grain matter (Sanavia et al. 2006), followed then by the finite element analysis 

of a real case study from southern Italy (Sarno-Quindici flowslide events due to rainfall, May 

5-6 1998) and of an experimental slope subjected to rainfall infiltration which was carried out 

at the University of Padova (Lora 2015).  

For the numerical simulations the geometrically linear finite element code Comes-Geo 

developed at the University of Padova, Italy, is used (which has been described in chapter 5) 

in which soils are considered as non-isothermal elasto-plastic multiphase solid porous 

materials, (the mathematical model has been described in chapter 4- hereafter the quasi-static 

case is examined neglecting grain compressibility) as developed in (Sanavia et al. 2006; 

Sanavia et al. 2008; Sanavia 2009) following the works of (Lewis & Schrefler 1998) and 

(Hassanizadeh & Gray 1979a; Hassanizadeh & Gray 1979b; Hassanizadeh & Gray 1980). The 

constitutive models which have been used for the mechanical behavior of the soil are: the 

Drucker-Prager constitutive model as developed in (Sanavia et al. 2006), and additionally for 

the third case, the more advanced Pastor-Zienkiewicz constitutive model (Pastor et al. 1990) 

has been used in the final analysis.  
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For the detection of the instability at the material point level, the second order work criterion 

(detailed in chapter 2) based on Hill’s sufficient condition of stability is employed. The three 

different expressions of the second order work criterion developed in chapter 2 for variably 

saturated porous materials, are also investigated, where: the second order work is expressed in 

terms of effective stress, of total stress and thirdly by taking into account the hydraulic energy 

contribution (Buscarnera & Prisco 2012) for partially saturated soils.  

The results described in the following, can be found published in (Kakogiannou et al. 2016; 

Kakogiannou et al. 2015). 

6.2 Finite element analysis of a globally undrained dense sand sample 

In this section a simulation of rapid desaturation, due to cavitation, of an initially water 

saturated porous media is analyzed with the finite element code Comes-Geo (Sanavia et al. 

2006; Sanavia et al. 2008; Sanavia 2009). The example was previously solved by (Sanavia et 

al. 2006) and is re-analyzed here. It is inspired by the globally undrained plane strain biaxial 

compression test on water saturated dense sands where strain localization and cavitation of the 

pore water (change of the liquid phase to vapor) were experimentally observed (Mokni & 

Desrues 1998). The original contribution in this section is the use of the second order work 

criterion to detect the unstable material points of the domain and the prediction of the failure 

mechanism. 

A rectangular sample of homogeneous soil (Hostun dense sand) of 34 cm height and 10 cm 

width (Fig. 6.1) has been discretized using a regular grid of 340 bi-quadratic isoparametric 

finite elements (with the dimension of the finite elements similar to that of the experimental 

shear band, to fix the width of the localized zones) with reduced Gaussian (2x2) integration 

scheme (widely used in localization analysis). The material is initially saturated with liquid 

water; hydrostatic distribution of water pressure, with the free surface located at the top of the 

specimen and geostatic effective stress are assumed as initial conditions. These initial 

conditions are obtained in Comes-Geo computing the hydro-mechanical state in equilibrium 

with the given boundary conditions and the gravity loads. 

The boundary of the sample is impervious and adiabatic. Imposed vertical displacements 

are applied on the top surface with the constant velocity of 1.2 mm/s until strain localization is 
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observed. Vertical and horizontal displacements are constrained at the bottom surface. Plane 

strains and quasi-static loading conditions are assumed. 

 

Fig. 6.1 Description of the geometry, boundary and loading conditions 

The initial temperature in the sample is constant and fixed at the ambient value (i.e. 20oC). 

Gravity acceleration is taken into account during the computation. The mechanical behavior 

of the soil skeleton is described within the classical rate-independent elasto-plasticity theory 

for geometrically linear problems. The yield function F(x,t) restricting the effective stress state 

is assumed in the form of the Drucker-Prager yield surface with isotropic linear 

hardening/softening behavior and non-associated plastic flow as developed in (Sanavia et al. 

2006) and is used here for the sake of simplicity: 

   
2

, , 3
3

F FF p p c h         s s  (6.1) 

in which  
1

:
3

p  σ 1  is the mean effective Cauchy stress, s  is the 2L  norm of the deviator 

effective Cauchy stress tensor  , tσ x ,  ,c tx  is the soil cohesion, sum of the effective 

cohesion  c' x  in water saturated conditions and the apparent cohesion tanc bp  , (where 
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 b x  is the internal soil friction angle associated with the capillary pressure), linked through 

the relation: tanc bc c' p    (Fredlund et al. 1978).  F x  and  F x  are two material 

parameters related to the internal friction angle   x of the soil: 

2
sin

6cos3
2 2

3 sin 3 sin
F F




 
 

 
 

           
(6.2) 

and h  x  and  , t x  the hardening/softening modulus and the equivalent plastic strain 

variable, respectively. The expression of the potential surface Q(x,t) is defined in (Sanavia et 

al. 2002) (it is similar to equation (6.1), with the parameters α and  dependent on the dilatant 

angle instead of the angle of internal friction used in equation (6.2)). The return mapping 

algorithm and the consistent tangent operator for the singular behavior of the Drucker–Prager 

yield surface in the apex zone are developed in (Sanavia et al. 2006) following (Sanavia et al. 

2002) using the concept of multi-surface plasticity. 

The material parameters used in the computation are listed in Table 3. In the analysis, the 

dilatant behavior of dense sands is simulated selecting a positive value of the angle of dilatancy 

(ψ=20º). 

Table 3 Material parameters assumed for dense sand (Sanavia et al. 2006) 

Definition Label  Dense sand 

Solid grain density ρs [kg/m3] 2000 

Young modulus E [Pa] 3.0E+07 

Poisson’s ratio ν [-] 0.4 

Friction angle φ[°] 30.0 

Cohesion in water 

saturated conditions 
c [Pa] 5.0E+05 

Angle of dilatancy ψ[°] 20 

Softening modulus h [Pa] -1.0E+06 

Hydraulic 

conductivity 
k [m/s] 5E-7 

Initial porosity n [-] 0.2 
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The results of the simulation after 27 seconds of loading are presented in the following. The 

accumulation of plastic strains can be observed in narrow zones (shear bands) where the 

contour of the equivalent plastic strain (i.e. the L2 norm of the plastic strain tensor) is depicted 

(Fig. 6.2a); it can be noted that the shear bands are not centrally located in the specimen 

because they develop from the lower corners, which are the zones with higher stress 

concentration due to the initial geostatic stress, the vertical displacement load applied to the 

top surface and the constraints applied to the bottom surface (Sanavia et al. 2006). Other two 

minor shear bands develop in the upper part of the specimen. The contour of the second order 

work, W2 (discretized equation (2.15)), is presented in Fig. 6.2b, where only the nil and 

negative values are plotted. As can be observed, the unstable zones ( 2W 0 ) are detected 

inside the shear bands. Subsequently, in Fig. 6.2c, the positive values of the volumetric strains, 

which are due to the dilatant behavior of the dense sand in plasticity, are plotted and it is 

observed that they are also detected within the shear bands where the equivalent plastic strains 

are accumulated. Consequently, pore water pressure decreases, up to the development of 

capillary pressure (Fig. 6.3a).  

 

      (a)                      (b)   (c) 

Fig. 6.2 Numerical results after 27s of loading (values plotted at the Gauss points):a Equivalent plastic strain contour [-]; 

b Negative values of the second order work W2 contour [Pa]; c Positive values of the volumetric strain contour [-] 

Subsequently, desaturation in the strain localization zones develops (Fig. 6.3b), as 

experimentally observed (Mokni & Desrues 1998), due to the formation of a vapor phase as 

the water pressure decreases below the water saturation pressure ( 2338.8 Pagwsp   at 

20 CT  ). This effect is captured by the model, because of the coupling between the thermo-
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hydro and mechanical parts, as it is shown in Fig. 6.3c, with the vapor phase appearing only 

inside the dilatant plastic zones. 

 

(a)         (b)                 (c) 

Fig. 6.3 Numerical results after 27s of loading (values plotted at the nodal points): a Capillary pressure contour [Pa]; b 

Water degree of saturation contour [-]; c Vapor pressure contour [Pa] 

Finally, the contour plot of the second order work written in terms of effective stress, W2 

(equation (2.15) - Fig. 6.2b), is compared with the contour of the second order work written in 

terms of total stress, W2tot (equation (2.16)- Fig. 6.4a) and taking into account the hydraulic 

energy contribution, W2unsat, (equation (2.17) - Fig. 6.4b). The pattern of the shear band is quite 

well detected in all three cases, with similar lower values, even if it is observed that the whole 

shear band cannot be captured (see Fig. 6.2a). In the case of the expression W2 in terms of 

effective stress slightly more unstable points are detected and even lower values are reached 

according to the results. 

Hereafter, the evolution of the second order work W2, of the water saturation degree, of the 

equivalent plastic strain, of the capillary pressure and the volumetric strain is presented at the 

Gauss points of four different elements (Fig. 6.5): at the center of the specimen (element 105), 

near the base where the shear band initiates (element 20), in the elastic zone (element 27) and 

at the top of the shear band (element 162, where the minimum values of the equivalent plastic 

strain are depicted). The location of the Gauss points is shown in Fig. 6.5a, within the contour 

of equivalent plastic strain drawn in a lower part of the specimen. 
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(a) (b) 

Fig. 6.4 Numerical results of the second order work [Pa] after 27s of loading (values plotted at the Gauss points): a in 

terms of total stresses W2tot; b expression for partially saturated soils W2unsat 

It is observed that the evolution of the equivalent plastic strain starts after 7 seconds of 

loading (Fig. 6.5d) and, consequently, the volumetric strain becomes positive due to the 

dilatant plastic behavior of the material (Fig. 6.5f). Negative value of the volumetric strain is 

observed only for the point in the elastic domain (element 27, Fig. 6.5f). At the same time the 

capillary pressure starts to increase. Positive values for the capillary pressure greater than the 

air entry value (equal to 2.0 kPa), which correspond to desaturation, are only obtained later on 

at the material points of elements 20 and 105 located within the plastic zones which cavitates 

(Fig. 6.5e). For the same elements (105 and 20) the second order work (in terms of effective 

stresses, W2) at the material point level becomes negative, starting from 15s as shown in Fig. 

6.5b, after the development of a certain amount of plastic strain. 

A comparison of the results obtained from the different expressions derived for the second 

order work (equations (2.15) - (2.17)), at the material point of the element 105, follows in Fig. 

6.6a. As it can be seen, the results of the three expressions are quite similar. A closer look 

shows that the expression of the second order work written in terms of effective stresses (W2) 

and the one accounting for the partially saturated conditions (W2unsat) give the same results 

until the point of desaturation (after 24s of loading). After that point, W2unsat gives slightly 

higher values. The second order work in terms of total stresses (W2tot) becomes zero slightly 

after W2 (at 17s of loading) and obtains greater values comparing to the other two expressions.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 6.5 a Material points location; b evolution of the W2 (equation 2.15); c of the water saturation degree; d of the 

equivalent plastic strain; e of the capillary pressure; f of the volumetric strain, at these points 

What is more important, is that the comparison with Fig. 6.5 identifies four zones: a first 

stable one during the elastic behavior, a second zone in which the second order work decreases 

down to negative values when plasticity occurs, a third one in which the second-work increases 

when capillary pressure develops up to cavitation and finally, a fourth zone in which the 

second-work decreases rapidly because of cavitation. 
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(a) (b) 

 
 

(c) (d) 

Fig. 6.6 a Comparison between the results obtained from the three different expressions of the second order work in the 

middle of the shear band; b evolution of the W2unsat -W2 difference; c evolution of the W2tot - W2 difference; d evolution of 

the W2tot - W2unsat difference 

The results of the three expressions are compared in Figures Fig. 6.6b and Fig. 6.6c, where 

the difference of the W2unsat and of the W2tot relatively to W2 is plotted. The difference W2unsat 

- W2 (Fig. 6.6b) is slightly positive only after the moment of desaturation, showing that W2 is 

slightly more negative than W2unsat because the term –ndpcdSw is always positive (or nil in 

water saturated conditions, see equation (2.17)). It is observed that also the difference W2tot - 

W2 is positive (Fig. 6.6c) but the time histories of the two variables are quite similar. Then, 

Fig. 6.6d compares W2tot with W2unsat showing similar trends of Fig. 6.6c.  

Additionally, the von Mises constitutive model has been also tested on the same analysis. 

As this model is reduced from the Drucker-Prager one, equation (6.1), by setting the 

coefficients F and F to zero and one, respectively and assuming associated plastic flow, the 

values of the elasto-plastic model parameters (Young modulus, Poisson’s ratio, initial yield 

and softening modulus) are those reported in Table 3. 
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(a) (b) 

 

(c) 

Fig. 6.7 Numerical results after 0.77 s of loading using the von Mises constitutive model: a equivalent plastic strain 

contour [.]; b nil and negative values of the second order work W2 [Pa] contour; c evolution of the equivalent plastic strain 

and of W2 in the middle of the shear band 

Also the values of the parameters for the porous material (solid grain density, hydraulic 

conductivity and porosity) are those of Table 3. In this case it is observed that the second order 

work W2 captures the whole shear band (Fig. 6.7b) and that the equivalent plastic strain starts 

appearing at the same time step with the first negative value of the second order work at the 

material point level (Fig. 6.7c). This is explained by the fact that von Mises plasticity considers 

associated plastic flow; in the case of associated plasticity, since the tangent stiffness matrix 

M of the solid is symmetric, the second order work criterion (det Ms = 0) will give the same 

results as the limit criterion (det M = 0), (Darve et al. 2004). 

In summary, the analysis of the strain localization test simulated in this section shows that 

the three expressions of the second order work (equations (2.15) - (2.17)) give similar results 

in terms of spatial and temporal distribution, especially for W2 and W2unsat.  
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Moreover, the second order work criterion is able to capture the instability induced by 

cavitation of the pore water. The comparison between the results obtained from the Drucker 

Prager and the von Mises constitutive model evidences the role of the volumetric plasticity, 

which delays instability up to the development of a certain amount of plastic strains, because 

the first indication of instability (negative second order work) is obtained later than the 

beginning of the plastic strains.  
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6.3 Finite element analysis of the Sarno flowslide 

At the beginning of May 1998, landslides of the flow-type occurred along the slopes of the 

Pizzo d’Alvano carbonate massif (Campania region, southern Italy) because of a severe rainfall 

event throughout the area (Cascini 2004; Cascini et al. 2008). The case addressed in this section 

occurred on May 5-6 1998 and constitutes one of these hundred slope instability events. In the 

sample area shown in Fig. 6.8, the section A-A has been analyzed which is of 400 m length, 

with a variable thickness between 2 and 5 m and composed by 3 type of materials: upper ashy, 

pumice and lower ashy. 

 

Fig. 6.8 Field site plan- geometry and stratigraphy of the section A-A (Cascini et al. 2008) 

 

The mechanical behavior of the solid skeleton is simulated also in this case by using the 

elasto-plastic Drucker-Prager constitutive model with isotropic linear softening behavior and 

non-associated plastic flow, as described in section 6.2. The values of the mechanical and 

hydraulic properties of each material layer which were used in the analysis are summarized in 

Table 4. These values were selected in agreement with (Sorbino & Foresta 2002; Bilotta et al. 

2005). From the list of the material parameters, we can deduce that the pumice layers should 

be the first collapsible layers because of the lower value of cohesion in water saturated 

condition and Young modulus; they are also those with the higher permeability and hence the 
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liquid water infiltrated with the rainfall and from the bedrock will penetrate easier and faster 

in the pumice layers, reducing their cohesion in unsaturated condition. 

Table 4 Geotechnical characterization of soil layers 

Definition Label  Lower Ashy  Upper Ashy Pumice 

Solid grain density ρS [kg/m3] 2393 2169 2039 

Young modulus E [Pa] 5E+05 4E+05 2E+05 

Poisson’s ratio ν [-] 0.316 0.294 0.30 

Friction angle φ[°] 32.0 36.0 37.0 

Friction angle 

associated with 

capillary pressure 

φb[°] 25.0 25.0 25.0 

Cohesion in water 

saturated conditions 
c [Pa] 4.7E+03 4.7E+03 3.3E+02 

Angle of dilatancy ψ[°] -4.75 -5.5 5 

Softening modulus h [Pa] 6.5E+04 8.0E+04 1.1E+04 

Hydraulic 

conductivity 
k [m/s] 1E-06 1E-05 1E-04 

Initial porosity n [-] 0.664 0.584 0.69 

 

The rain-gauges located at the toe of Pizzo d’Alvano massif recorded a cumulated rainfall 

value of more than 160 mm, for the period April 27 – May 5, 1998. The daily rainfall for the 

analyzed period is shown in Fig. 6.9. However, according to (Cascini et al. 2003) the 

cumulated rainfall must have been higher than the one measured at the toe, as the rain gauges 

which were installed at the top of the massif frequently gave higher values.  

For the discretization of the geometry of the slope (Fig. 6.8) a rather coarse mesh has been 

used (as shown in Fig. 6.10), composed of 1565 nodes and 480 eight node quadrilateral 

isoparametric elements with a Gaussian integration of 3x3 order. In Fig. 6.10b the elements at 

toe are presented as an example of the spatial discretization adopted in the computation; the 

size of these elements are variable in the range 0.11-0.34 m in height and about 9m in length. 

This choice, with high aspect ratio, was made on the base of reducing the computational cost 

(min 2h – max 52h/day of rain) and because the hydro-mechanical behavior (water flux and 

displacements) develops mainly along the axial direction (moreover, it is also observed that 
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the numerical solution is convergent and consistent with the flowslides observed in situ, as 

described below in this section). When meshing the geometry of the stratigraphic section of 

Fig. 6.8, the toe of the slope was cut with a vertical side to avoid the generation of highly 

distorted finite elements in the toe region (see Fig. 6.10c).  

Vertical and horizontal displacements are constrained at the bottom surface, which is also 

assumed impervious. The vertical boundary at toe of the discretized domain is not constrained 

to displacements, because it can move with the deformation of the slope, as can be seen in the 

Fig. 6.10c, and, similarly, it is assumed impervious because the water flow at toe at the 

occurrence of the flowslide is unknown. This condition is realistic up to the saturation of the 

thickness of the slope at toe; then, when the condition of water saturation is reached, it 

overestimates the liquid water accumulation at toe and represents an upper bound for the 

numerical solution. 

This choice can be reasonable as a first approximation and influences the numerical solution 

only during the 8th day of rain; during this period, the failure at toe of the slope was observed 

in situ. In fact, the numerical computation shows that: (i) the displacement of the vertical 

boundary at toe of the mesh remains very small and the behavior of the materials up to the first 

third of the 8th day of rain remains in the elastic regime (Fig. 6.17a); (ii) the saturation of the 

thickness at toe occurs during the 8th day of rain (Fig. 6.18b) at which, simultaneously, the 

computed displacements increase continuously with high rate (Fig. 6.17a).  

As a first step of the simulation, the stress state is computed in equilibrium with the gravity 

load, the boundary conditions and the initial hydro-thermal conditions (Fig. 6.11), which, 

because of the low thickness of the slope, are a uniform capillary pressure of 10kPa (reasonable  

 

28 April: 40 mm/24h 

29 April: 8 mm /24h 

30 April –1-2 May: 5 mm /24h 

3 May: 0 mm /24h 

4 May: 40 mm /24h 

5 May: 80 mm /24h 

(a) (b) 

Fig. 6.9 a Rainfall recorded at the toe of Pizzo d’Alvano massif (Cascini et al. 2003); b Rainfall loading function on the 

upper surface 
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value for the slope in the days before the rainfall, which were not rainy – see Fig. 6.9a), a 

uniform gas pressure at atmospheric value of 101.325 kPa and a uniform temperature at 

ambient value of 293.15 K.  

 

 

 

 

(a) (b) 

  

 

(c) 

Fig. 6.10 a Discretisation of the section A-A; b finite element discretization at the basis of the slope; c stratigraphic 

section of the slope at toe. The vertical line indicates the vertical boundary of the mesh at toe (figure 6.10b) 
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Fig. 6.11 Distribution of the deviatoric stress after the equilibrium with the initial and boundary hygro-thermal 

conditions 

After applying the rainfall load history, the results at the end of May 6 are presented below. 

In Fig. 6.12 it is observed that the displacements are mainly concentrated at the lower part of 

the slope (near the toe, affecting a zone of 15m length), with a maximum value of about 2 m. 

  

(a) (b) 

Fig. 6.12 a Displacement contour [m]; b displacement vectors at the end of May 6 (lower part of the slope) 

The displacements are due to the accumulation of the plastic strain at the toe, as it is 

presented in the contour plot of the equivalent plastic strain variable on Fig. 6.13. In particular, 

as it was expected, the higher values are detected within the pumice layers which are the less 

resistant and the most permeable. The extent of the plastic zone and of the zone of 

displacements coincides with the zone of the increased degree of saturation thus showing 

clearly the localized effect of the infiltrated water. 



118 Numerical results and numerical investigation of the second order work criterion 

 

  

(a) (b) 

Fig. 6.13 a Equivalent plastic strain [-]; b water saturation [-] contour at the end of May 6 (lower part of the slope) 

Apart from the localized effect at the lower portion of the slope, where the upslope 

groundwater flow is collected, the multiphase analysis reveals also the effect of the temporary 

spring from the bedrock observed after the event (Cascini et al. 2000). To this end, a flux 

condition was imposed at the basis of the pyroclastic deposits (Fig. 6.8, central part of the 

slope) with a volumetric inflow rate equal to 2.893 m3/s from May 2. 

The results presented in Figures Fig. 6.14-Fig. 6.15 at the end of May 5 highlight the 

important role of the local water circulation inside the bedrock showing, in particular, that the 

area around the spring zone has been saturated (Fig. 6.15b), causing loss of soil strength and 

development of plastic strains at the base of the pyroclastic soils (Fig. 6.15a). This leads to the 

increase of the displacements (Fig. 6.14a, b), sliding and instabilizing this zone (Fig. 6.15a, c, 

respectively) earlier than at the toe, as observed in situ during the flowslide events. These 

results are confirmed by the analysis of the W2 value (equation (2.15)) showing that the 

strongest indication of W2 at the outlet occurs five hours before the toe (the white regions in 

Fig. 6.15c represent zones with value of W2 larger than -1.0E-10 Pa). 

In order to understand better the main failure mechanism at the toe of the slope, we present 

hereafter the evolution of the above contour quantities in time, as this was captured on the 

different nodes (Fig. 6.16).  
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(a) (b) 

Fig. 6.14 a Displacement contour [m]; b displacement vectors at the end of May 5 (spring zone) 

 

  

(a) (b) 

  

 

(c) 

Fig. 6.15 a Equivalent plastic strain [-] contour; b water saturation [-] contour; c second order work W2 [Pa] contour at 

the end of May 5 (spring zone) 
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The calculated surface displacements, which are displayed on Fig. 6.17a, indicate a strong 

and continuous increase in nodal displacements during the 8th day of rain infiltration (May 

6th) when the slope approaches failure. At the same time large irreversible deformations occur 

at the toe of the slope with the largest values to be detected on the layers of the pumice (nodes 

7, 15) as expected due to its low strength. 

 

Fig. 6.16 Node location for the analysis at the lower part of the slope 

 

  

(a) (b) 

Fig. 6.17 a Evolution of the displacements [m]; b the equivalent plastic strain [-] at the lower part of the slope 

 

The contour of the equivalent plastic strain at the moment of failure is mainly due to the 

fact that by that time this zone has become fully saturated as it can be observed from the Fig. 

6.18a. The evolution of the water table starts from the bottom on the 4th day (node3) until it 

reaches the surface layers (nodes 19, 15) at the beginning of the 8th day. 

This allows us to understand and analyze the mechanical response of the slope to rain 

infiltration: with increasing water content, the capillary forces acting between the soil particles 

decrease up to saturation of the pores (Fig. 6.18a) and pore water pressure develops (Fig. 

6.18b). This de-bonding effect of wetting is taken into account in the model through the 
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effective stress in the form ' g w cp S p    σ σ 1  (Schrefler 1984), which decreases during 

rain infiltration and as a consequence the soil reduces its strength. When the point of significant 

excess pore water development is reached, there be little or no effective confining stress acting 

on the soil and the soil state may approach a zone of instability in which the shear strength 

decreases.  

  

(a) (b) 

Fig. 6.18 a Evolution of the water saturation [-]; b the relative water pressure [kPa] at the lower part of the slope 

  

(a) (b) 

Fig. 6.19 a Evolution of the mean stress [kPa]; b deviatoric stress [kPa] at the lower part of the slope 

Figures Fig. 6.19a, b describe this phenomenon in particular in the pumice layers (nodes 7 

and 15), where it is observed that the capillary pressure (negative relative water pressure) 

vanishes up to the development of liquid water pressure (Fig. 6.18b), the mean pressure 

decreases down to zero and the deviatoric stress starts to decrease, suggesting a probable 

achievement of liquefaction (this state is then not described by the Drucker-Prager constitutive 

model adopted in this simulation because the loss of stiffness due to liquefaction is not modeled 
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and the mean pressure starts to increase – Fig. 6.19a). This point would merit further 

investigation using a more advanced constitutive model able to describe the liquefaction state 

in soils both at stress and at stiffness level (e.g. the Pastor-Zienkiewicz model (Pastor et al. 

1990) and its extension to variably saturated conditions, (Bolzon et al. 1996; Manzanal et al. 

2011)). 

As far as the results of the second order work W2 are concerned, at the beginning of May 6 

(8th day) we have the strongest indication of instability at the toe as shown on the Fig. 6.20a. 

The negative values are concentrated in the pumice layers, at the upper ashy soil and at the 

base of the toe affecting a zone of about 21m in length.  

 

(a) 

  
(b) (c) 

Fig. 6.20 a Second order work contour in terms of effective stresses at the beginning of May 6th (lower part of the 

slope); Comparison between the evolution of the second order work W2 and the displacement rate b; and the equivalent 

plastic strain c, at the material point level in the lower pumice layer at toe 

In Figures Fig. 6.20b and Fig. 6.20c the evolution of the second order work W2 (equation 

(2.15)) is plotted in comparison with the evolution of the displacement rate and of the 

equivalent plastic strain at the material point level of the lower pumice layer (a gauss point of 
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element 281, Fig. 6.20a, close to node 7 in the lower pumice layer, Fig. 6.16). It is observed 

that the second order work W2 becomes negative during the sharp increase of the displacement 

rate (Fig. 6.20b) and the continuous development of plastic strain (Fig. 6.20c) and 

displacement (Fig. 6.17a). This behavior is observed also in other points, e.g. in a Gauss point 

at 4.5m on the left of node 7. Few points of Fig. 6.20b-c deviate from the averaged 

interpolation line of the numerical results, but the general trend is not modified. It is observed 

also in the analysis of this section that the indication of the potential local instability from the 

W2 comes later (difference of almost one day) than the beginning of plastic strains 

development, similarly to what is observed for the strain localization test. It can be also seen 

that the contour plot area of negative second order work (Fig. 6.20a) coincides with that of the 

equivalent plastic strain at the toe of the slope (Fig. 6.13a) and the magnitude is greater than 

that corresponding to high displacements (Fig. 6.12a).  

  

(a) (b) 

Fig. 6.21 Second order work contour at the beginning of May 6th (lower part of the slope): a in terms total stresses, 

W2tot; b expression for partially saturated soils, W2unsat 

 

Finally, the numerical results of the second order work W2tot and W2unsat as expressed from 

equations (2.16) and (2.17), respectively, are presented in Fig. 6.21. When compared with the 

contour plot of the second order work in terms of effective stresses W2 (Fig. 6.20a) it can be 

observed that the results of all the expressions are similar, especially for the part of the slope 

which is saturated, with a greater extent for the W2unsat variable (Fig. 6.21b). The comparison 

of the values between them shows that they are slightly different, with the expression of the 
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second order work accounting for the partially saturated conditions (W2unsat) to be giving lower 

values. 
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6.4 Finite element analysis of an experimental slope 

The experiment which was carried out in the University of Padua (Lora 2015), (Lora et al. 

2016a; Lora et al. 2016b) reproduces a stability problem of a large-scale slope due to rain 

infiltration.  

 

 

Fig. 6.22 Geometry and stratigraphy of the slope (longitudinal section) and representation of the measurement positions 

(Lora 2015) 

 

To this end, a steady rainfall intensity equal to 150mm/h is applied until the mobilization of 

the soil. The slope consists of two soil layers: a shallow permeable layer of loose sand 

overlying a dense clayey soil substratum. The height varies linearly from 3.5m to 0.5m, such 

that a sloping angle of 32o can be assigned to the soil. The dimensions of the model and the 

stratigraphy are presented in Fig. 6.22. The values of the mechanical properties of each 

material layer, which were used in the computation when the Drucker-Prager model is 

employed, are presented in Table 5. 

 

The Pastor-Zienkiewicz constitutive model (Pastor et al. 1990), which is developed within 

the framework of the Generalized Plasticity (Zienkiewicz & Mroz 1984), is additionally 

employed for the description of the mechanical behaviour of the loose sand layer.  
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Table 5 Soil parameters used in the computation for the DP model 

Definition Label Loose Sand Clay 

Density ρs [kg/m3] 2718 2680 

Friction angle φ[°] 34.0 22.0 

Cohesion c [Pa] 1.0E+03 1.0E+04 

Initial Young 

modulus 
E [Pa] 2.5E+06 1.0E+07 

Poisson’s ratio ν [-] 0.3 0.3 

Angle of dilatancy ψ[°] 0 4 

Hardening modulus h [Pa] 4.8E+03 0.0 

Initial porosity n [-] 0.569 0.384 

 

Generalized Plasticity Theory introduces the dependence of the constitutive tensor relating 

increments of stress and strain on the direction of the increment of stress via a unit tensor n 

which discriminates the states of loading (L) and unloading (U):  

 : ,Ld dC       : 0ed loading n σ  (6.3) 

 : ,Ud dC       : 0ed unloading n σ  (6.4) 

where 
edσ  is the elastic stress increment obtained if the material behaved elastically, 

:e ed dσ D ε  and e
D  is the elastic constitutive tensor. The neutral loading corresponds to the 

limit case for which : 0ed n σ  . 

After imposing the condition between loading and unloading states, we arrive to : 
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 (6.5) 

where 
e

C  is a fourth order tensor characterising the elastic behavior of the material, /L UH  are 

two scalar functions defined as loading (L) and unloading (U) plastic modulus and /gL Un  are 

two unit tensors defining the plastic flow direction in loading (L) and unloading (U). 

From equation (6.5) it follows that the total strain increments can be divided into elastic and 

plastic components as:  
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The main advantage of Generalised Plasticity Theory is that all ingredients can be postulated 

without introducing any yield or plastic potential surface. 

The Pastor-Zienkiewicz constitutive model (Pastor et al. 1990), in the following referred as 

PZ model, suitably defines the three directions n  
gLn  

gUn  and the scalar functions /L UH  to 

reproduce the main aspects of sand behavior.  

Starting with the definition of the elastic components of the strain increment, expressed in 

the space of invariants p, q, θ, the model introduces two elastic moduli e
K and 

e
G  dependent 

on the confining pressure as: 

'
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The elements characterizing the plastic strain increment 
pd  are defined in a simple manner 

as follows. First of all, the direction of the plastic flow is expressed in funtion of dilatancy as: 
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where the dilatancy 
gd  which is defined as the ratio between the increments of plastic 

volumetric and shear strain is given by: 

  1g gd a M     (6.10) 

In the above gM  is the critical state line (CSL) in the q-p’ space and a  is a constant of the 

material determined from the dg –η plot. 
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The expression of dilatancy in the previous equation for 
gM   is 0gd   fulfilling one of 

the basic premises of the Critical State Theory. 

The loading-unloading direction given by the unit vector n  is obtained in a similar way: 
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where   1f fd a M     . 

It is important to note that the associative behavior can be recovered by choosing 
g fM M

. The third ingredient is the plastic modulus, which was postulated directly without introducing 

any hardening law and consistency condition as:  

'
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where dev  is the accumulated shear plastic deformation, 0H  is a multiplying factor related to 

plastic strains at the beginning of the loading process, ,v sH H  refer respectively to volumetric 

and deviatoric strain hardening, DMH  is a function which incorporates material memory in a 

simple manner, f  defines an asymmetric cone in the space of stress invariants which acts as 

a limit between admissible internal states and impossible external states and 1 0, , ,a    are 

material parameters assumed to be constant during loading process.  

The values of the mechanical properties that were used for this model are presented in 

Table 6. 
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Table 6 Additional soil parameters (Bahda 1997) used in the computation with the PZ model 

Parameters Loose Sand 

Mf [-] 0.569 

Mg[-] 1.35 

a  [-] 0.45 

β0 [-] 2.25 

β1 [-] 0.2 

Η0 [-] 4000 

The estimates of the retention functions for the loose sand layer were inferred by fitting the 

retention tests data as well as by an inverse modelling, applied to the measurements data which 

were obtained from the landslide test. The curves (the continuous and dashed black lines in 

Fig. 6.23) were obtained in accordance to the Brooks and Corey (Brooks & Corey 1964) and 

van Genuchten (van Genuchten 1980) models. 

 

 
                   (a)                                    (b) 

Fig. 6.23 Retention curves of the loose sand layer: (a) the relation of the effective saturation with the pressure head; (b) 

the relation of the relative conductivity with the effective saturation (Lora 2015) 

The Brooks and Corey (Brooks & Corey 1964) model appeared to approach better the field 

data especially in terms of water pressure head and therefore it was the expression that was 

implemented on the numerical code: 
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where r

s r

 

 


 


 is the effective saturation, with r and s the residual and the saturated 

volumetric water content respectively; h  is the water pressure head and bh the bubbling 

pressure; ( )K  and S are the hydraulic conductivity in partially saturated conditions, 
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respectively;   and l
 
are shape parameters. 

Regarding the clayey layer, the only measured hydraulic parameter was the hydraulic 

conductivity in saturated conditions. Other unknown parameters concerning the retention 

curves are assigned from the literature (Carsel & Parrish 1988). The values of the parameters 

used for the Brooks & Corey retention and relative permeability curves are presented in Table 

7. 

Table 7 Parameters used for the Brooks & Corey retention and relative permeability curves (Brooks & Corey 1964) 

Definition Label Loose Sand Clay 

Residual water 

content 
θr[-] 0.05 0.05 

Saturated water 

content 
θs[-] 0.578 0.47 

Intrinsic 

permeability 
k [m2] 2.091E-11 2.98E-13 

Matric potential-air 

entry value 
hb[cm] -4.805 -23.015 

Parameter λ λ [-] 0.65 1.57 

Parameter l l[-] 0.1008 0.06156 

 

 

Fig. 6.24 Description of the discretization of the slope, initial and boundary conditions 

In Fig. 6.24 the mesh which has been created, is presented along with the initial and 

boundary conditions applied to the slope. The finite element mesh is composed of 468 eight-

noded quadratic quadrilateral elements. Vertical and horizontal displacements are constrained 
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at the bottom and horizontal displacements at the lateral surfaces. Initially, the stress state is 

computed in equilibrium with the gravity load and the initial hydro-thermal conditions (Fig. 

6.24).  

The stress state and the state variables calculated by this first analysis form the initial 

conditions for the successive run. Subsequently, rainfall infiltration is simulated by means of 

an imposed boundary flux of 150mm/hr along the upper surface (the rain input has the real 

value as this that was applied during the experiment). When the toe of the slope saturates, 

hydrostatic pressure is applied along its vertical side. 

Numerical results with the use of the DP model 

After 1.8 hr of the applied rainfall, the numerical solution became unstable and the 

numerical convergence was lost. This was also the actual time failure of the field experiment.  

Fig. 6.25 illustrates the contours of degree of saturation nearly at the beginning of the 

simulation and after 1.8hr, when the convergence of the norm of displacements cannot be 

achieved any further. In more detail, in Fig. 6.25a, it can be observed the procedure of rainfall 

infiltration: a wetting front percolating vertically downwards, across the sand layer. The 

wetting front does not saturate the sand in this case as the infiltration capacity is not exceeded 

by the rainfall intensity. While in Fig. 6.25b it can be observed that there has been formed a 

water table in the fill material (loose sand layer). Once the water front reached the interface 

between the two layers, a thin seepage layer was formed which started increasing upwards and 

more precisely from the toe towards the top due to the rainfall integration along the slope. 

 
(a)                                (b) 

Fig. 6.25 Evolution of the wetting front (a) and the water table (b), during the rainfall infiltration 

Only a small fraction was absorbed by the clay layer due to the large difference in the 
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permeability values between the two layers: in fact the cohesive soil represents an unsaturated 

permeability barrier in the short time. 

The hydraulic response of the model is also depicted in Fig. 6.26, through the volumetric 

water content time evolution at two different positions of the slope; at position 5 (TDR5) near 

the top of the sand layer and at position 6 (TDR6) near the interface between the two layers.  

  

(a) (b) 

Fig. 6.26 Comparison between computed and in-situ measured volumetric water content at the positions 5 and 6 (TDR5 

and TDR6 respectively) 

The comparison is shown between the in-situ measurements and the prediction of the model. 

A two-step evolution is noted: the water content increases from 0.18 to approximately 0.45 

and subsequently it increases up again to 0.578. The first rise involves the probes from the top 

to the bottom while the second one progresses from the bottom to the top. As it can be observed 

the computed volumetric contents are in a good agreement with the field measurements. 

The maximum displacements are concentrated at the lower part of the slope, as illustrated 

in Fig. 6.27. The vectors of the incremental displacements indicate that the sand layer is sliding 

downwards and that the lower part is also under swelling conditions at the end of the analysis 

because of the water overpressure and the constrained displacements at the toe. The equivalent 

plastic strain is also concentrated at the lower part of the slope and coincides with the contours 

of the second order work (Fig. 6.27c-d). The fact that the maximum displacements contour 

coincides with the contour of the equivalent plastic strains and the second order work contour, 

indicates that the onset of the failure is located at the lower part of the slope. 

This is what is actually expected since it is the most sensitive point of the slope: there 

concentrates the seepage water within the layer and, at the same time, it is being received the 

rainfall infiltration water as a flux input from the upper boundary surface. With increasing 
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water content, the capillary forces acting between the soil particles decrease. This de-bonding 

effect of wetting is taken into account in the model through Schrefler’s effective stress 

(Schrefler 1984) ' g w cp S p    σ σ 1  which decreases during rain infiltration and, as a 

consequence, the soil loses its strength. When the point of significant excess pore water 

development is reached, there will be little or no effective confining stress acting on the soil. 

Eventually, the soil state approaches a zone of instability in which the shear strength can 

decrease significantly. Figures Fig. 6.28a-b describe exactly this phenomenon of a probable 

liquefaction occurrence, as it was captured, indicatively, on node 158 at the lower part of the 

slope near the surface of the sand layer. Nearly at 1.68 hr the capillary pressure becomes 

negative (relative water pressure) and it is at that moment that the mean pressure becomes zero. 

At the same time, the deviatoric stress increases considerably and slightly after (1.78 hr) drops 

abruptly.  

  
(a) (b) 

  

(c) (d) 

Fig. 6.27 Displacement contours (a) and displacement vectors (b), equivalent plastic strain (c) and second order work 

contours (d), at the end of the analysis (after 1.8hr of rainfall input) 
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At the moment of the peak deviatoric stress the equivalent plastic strain begins to develop 

and it is obtained the first negative value of the second order work at the material point level, 

as illustrated in Fig. 6.28c. 

 

 
(a) 

(b) 

  

(c) (d) 

Fig. 6.28 Evolution of: the capillary pressure and the mean stress (a); deviatoric stress (b); equivalent plastic strain and 

the second order work (c) 

Numerical results with the use of the PZ model and comparison 

The results which were obtained from the analysis where the PZ model was employed, show 

us that the global behavior of the slope is described in a more precise way. It is observed that 

the displacements are distributed along the slope and are greater than the previous obtained 

with the DP model (Fig. 6.27a), with a difference of two orders of magnitude (Fig. 6.29a). The 

displacement vectors (Fig. 6.29b) show that the slope is sliding downwards rather than mainly 

swelling. This is due to the fact that the PZ model is directly dependent on the mean pressure 

(see eq. (6.7), (6.8) for the elastic moduli and eq. (6.12) of the plastic modulus). The mean 

pressure has decreased along the slope because of the saturation and so plastic strains develop 

as we can observe in Fig. 6.29c. The displacements which lead to a downward sliding are due 
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to these strains. The contour of the negative values of the second order work at the end of the 

analysis is also illustrated in Fig. 6.29d and as it can be observed the negative values are 

distributed along the slope and not only at the lower part. 

  
(a) (b) 

  

(c) (d) 

Fig. 6.29 Displacement contours (a) and displacement vectors (b), equivalent plastic strain (c) and second order work 

contours (d), at the end of the analysis (after 1.8hr of rainfall), using the Pastor-Zienkiewicz model (Pastor et al. 1990) 

As it has been observed from the contours, the global behaviour of the slope can be captured 

with a better agreement with what observed during the experiment when using the PZ model. 

Thus, we are able now to understand in a better way the mechanisms that take place during 

infiltration along the slope (and not solely near the toe as before). So, if we go into detail at the 

TDR points we observe indicatively, at TDR2: at the moment that the water front passes from 

that point (0.65 hr), the capillary pressure decreases drastically and this corresponds to the first 

negative value of the W2 (Fig. 6.30c, a, e respectively). At the same time the mean pressure 

increases, the deviatoric stress reaches a peak value and the volumetric strains are contractant 

(Fig. 6.30d, f, b respectively – 0.65hr) until the moment of saturation (after 1.4 hr), where the 

capillary pressure decreases and then it becomes negative, W2 begins to oscillate intensively 
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between positive and negative values, deviatoric and mean stresses decrease drastically and 

volumetric strains become positive. 

  
(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 6.30 Evolution of the capillary pressure (a) , of the volumetric strains (b) of the water saturation degree (c) of the 

mean (d) of the second order work (e) and of the deviatoric stress at TDR2 (node 187) 
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7 Conclusions and perspectives for future research 

This PhD thesis was devoted to numerical modelling of multi-physics processes in variably 

saturated slopes subjected to rainfall infiltration. Emphasis was placed on the detection of the 

onset of failure in rainfall-induced landslides.  

To this end, this thesis provided first a synthesis of the major failure modes which prevail 

in geomaterials and of the main theories which are used in the stability analysis with an 

extended reference to the second order work criterion which is being investigated throughout 

this thesis.  

Subsequently, the next chapter is presenting the state of knowledge on the fundamental 

aspects of unsaturated behavior, the physical processes and the failure mechanisms that take 

place in rainfall-induced landslides. The controlling factors for rain infiltration and pore water 

pressure changes in unsaturated slopes and the review of the main modelling concepts for the 

simulation of the failure onset of the rainfall-induced landslides constitute the bridge for 

chapters 4, 5 and justify the choice of the modelling framework which has been used in this 

thesis.  

The multiphase model for elasto-plastic porous media (and its background) which has been 

employed for the simulations, is presented in chapters 4, 5 from the mathematical and the 

numerical point of view.  

Finally, this modelling framework has been applied for the finite element analysis of: 

 a plane strain compression test of water saturated dense sand and isochoric grain 

matter, where strain localization is observed; 
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 the failure initiation of a well-documented flowslide (Sarno-Quindici events, Italy, 

May 5-6, 1998); 

 a large scale experimental test subjected to rainfall infiltration (University of 

Padova, 2014). 

Thesis contributions 

The numerical results have pointed out that a sufficiently general coupled model for 

multiphase geomaterials is capable of modelling a variety of phenomena as strain localization 

in laboratory tests and the initiation of flowslides, giving results in agreement with 

experimental or in-situ observations, and can be a powerful tool for the understanding of the 

triggering mechanisms during the progressive localized or diffused failure (in the first case-

plane strain compression test, a regularization procedure should be introduced for mesh 

objectivity upon mesh refinement, using, e.g., local or non-local visco-plasticity as in (Lazari 

et al. 2015) but this topic is beyond the scope of this work. In this simulation, the width of the 

shear band has been fixed by the width of the finite element, with dimension similar to that of 

the experimental shear band). 

The large scale slope experimental test which was carried out at the University of Padova 

in 2014 by Dr. Eng. Marco Lora is being modelled for the first time. It has been shown in 

particular that the model can predict the field measurements of the volumetric water content 

and can also provide us with the necessary mechanical results which indicate the failure 

mechanisms that take place at the real time of the actual failure. Furthermore, it has been shown 

that the constitutive model which will be used for the description of the soil mechanical 

behavior plays a signigicant role. For a first approximation of the onset of the failure, the DP 

model can be used. But for a more precise analysis of the global behavior of the slope an 

advanced constitutive model is needed to be used, suitable for the soil materials that are to be 

modeled. In this analysis, the Pastor-Zienkiewicz constitutive model (Pastor et al. 1990), 

suitable for the modelling of sand behavior, was employed, giving more precise results and a 

better overview of the global mechanical behavior of the slope.  

Additionally, in this work, the second order work criterion is implemented in the finite 

element code for multiphase geomaterials, Comes-Geo, and has been used in the simulations 

at the material point level to detect the zones with material-point instability in the cases 
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mentioned above. Three different expressions have been presented, which could be used in 

case of variably saturated porous materials: the second order work expressed in terms of 

effective stress, of total stresses and thirdly by taking into account the hydraulic energy 

contribution (Buscarnera & Prisco 2012) for partially saturated soils. 

The finite element results have shown that the set of the local negative values of the second 

order work computed from the three expressions gives a good indication of the spatial extent 

of the potentially unstable domains and is consistent with the spatial and time evolution of 

variables that are usually adopted to detect the occurrence of localized or diffuse unstable zones 

as the equivalent plastic strain and the displacement and its rate; all expressions seem 

equivalent, but local values and also spatial extents are different, as expected, with a slightly 

better agreement for the expression of the second order work in terms of effective stress, W2, 

and that taking into account the hydraulic energy contribution, W2unsat. The numerical results 

indicate also that the second order work criterion detects the local instability associated with 

cavitation of the pore water. 

Perspectives for future research 

To extend these conclusions to the evaluation of the instability of the entire soil mass (the 

global domain), the value of the second order work obtained by integration on the whole 

physical domain has to be computed. If this global value is negative, then the entire domain is 

unstable (Lignon et al. 2009; Laouafa et al. 2011; Prunier et al. 2016) and the global value 

plays the role of safety factor (see (Prunier et al. 2016) in case of single phase material). When 

local negative values are obtained with a positive global value, the criterion indicates that the 

whole slope is still globally stable, possibly approaching to a properly unstable state; in this 

case, a limited zone with local negative values can indicate local instability and can also be an 

indication of a possible local failure mechanism.  

Further research on the second order work criterion is encouraged, in particular to 

investigate how this criterion can be related to the global instability and to combine the second 

order work criterion with the results stemming from the bifurcation analysis for multiphase 

materials. This is necessary to evaluate separately the contribution of the hydro (capillary 

pressure/degree of saturation) and mechanical parts (stress/strain). Also the use of advanced 
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constitutive models for the solid skeleton is encouraged, to take into account the huge variety 

of the constitutive response of the materials. 
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