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Abstract

The title of this Thesis embraces two topics that have been investigated.

Most of the present work is dedicated to develops and extensions for Approximate

Bayesian Computation (ABC). While several algorithms have been proposed to improve

the efficiency of the basic ABC algorithm, a number of subjective choices is left to

the researcher. Several of these choices have not only an impact on the efficiency of

the algorithm but also on its capability to approximate properly the true posterior

distribution. We present a first extension of the ABC Population Monte–Carlo (ABC–

PMC) algorithm aimed by the goal of minimizing the number of subjective inputs

required to the user, improving at the same time the computational efficiency of the

algorithm. In the second work we propose extensions of the ABC–PMC algorithm as

an alternative framework for inference to work with finite mixture models.

The second topic was initiated from a collaboration between the Statistics and Data

Science Department and the Astronomy Department at Yale University and the De-

partment of Physics at the University of Geneve, with the goal of detecting and char-

acterizing “Earth–like” extrasolar planets. We propose a novel statistical tool to better

disentangle stellar activity from the pure signal coming from an extrasolar planet, aimed

by the goal of detecting and characterizing “Earth–like” planets.





Sommario

Il titolo di questa Tesi vuole abbracciare i due differenti argomenti che sono stati

investigati.

La maggior parte del presente lavoro é dedicata a sviluppi ed estensioni dell’ al-

goritmo Approximate Bayesian Computation Population Monte–Carlo (ABC–PMC).

Mentre parecchi algoritmi sono stati proposti per migliorare l’efficienza della procedura

base ABC, alcune scelte soggettive vengono lasciate al ricercatore. Alcune di queste

scelte hanno non solo un impatto sull’efficienza dell’algoritmo, ma anche sulla capacitá

del medesimo di approssimare in maniera consona la vera distribuzione a posteriori. Noi

presentiamo una prima estensione dell’algoritmo ABC–PMC che vuole minimizzare il

numero di scelte soggettive richieste all’utente, con l’obiettivo di migliorare l’efficienza

dell’algoritmo preservando al contempo l’ottenimento di una fedele approssimazione del-

la vera distribuzione a posteriori. Come seconda estensione, proponiamo una procedura

basata sull’algoritmo ABC–PMC per lavorare con modelli mistura (caso finito).

Il secondo argomento descrive uno dei risultati della collaborazione tra il Diparti-

mento di Astronomia e il Dipartimento di Statistica e Data Science all’ Universitá di

Yale ed il Dipartimento di Fisica all’Universitá di Ginevra, dove l’obiettivo consiste nello

scovare e caratterizzare pianeti extrasolari. Noi proponiamo una nuova tecnica stati-

stica per meglio separare l’attivitá stellare dal puro segnale proveniente da un pianeta

extrasolare, con l’obiettivo di scovare e caratterizzare esopianeti terrestri teoricamente

adatti ad ospitare la vita.





“Qualsiasi cosa dica in merito potrá essere male interpretata: ma anche tacendo daró

adito agli equivoci. Le parole possono mentire, il silenzio puó mentire. Persino i fatti

possono mentire. I bugiardi peggiori sono quelli che raccontano i fatti fingendo di aver

raccontato la veritá. Racconteró solo i fatti, non pretendo di sapere la veritá. Ogni

cosa accade secondo una certa opportunitá.”

Cesare Borgia
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Chapter 1

Introduction

1.1 Overview

The title of this Thesis embraces two topics that have been investigated. The first

topic is some methodological develops for Approximate Bayesian Computation (ABC).

The second topic was initiated from a collaboration between the Statistics and Data

Science Department and the Astronomy Department at Yale University and the De-

partment of Physics at the University of Geneve, with the goal of detecting and char-

acterizing “Earth–like” extrasolar planets.

In the first part of the Thesis, ABC is considered. ABC provides a framework for

inference in situations where the relationship between the data and the parameters is

not well-approximated by a tractable likelihood function, but simulation of the data–

generating process is possible. In recent years there have been many extensions to the

basic ABC algorithm, and in this Thesis we focus on the ABC - Population Monte–Carlo

(ABC–PMC) algorithm. Starting from the ABC–PMC algorithm we developed two

extensions. In the first extension we present a method for automatically and efficiently

selecting the series of tolerances, ε1:T = (ε1, ε2, . . . , εT ), along with determining T (i.e.

when to stop the algorithm). All the quantities are based on the online performances

of the ABC posterior distribution and the number of arbitrary selections required from

the researcher is reduced. In the second work we propose extensions of the ABC–PMC

algorithm as an alternative framework for inference to work with finite mixture models.

Part of the presented work is the results of the collaboration with Prof. Robert Wolpert

from the Statistical Sciences Department at Duke University.

In the second topic of this Thesis we outline one of the results of the collaboration

between the Department of Statistics and Data Science and the Department of Astron-

omy at Yale University and the Department of Physics at the University of Geneve. In

particular one of the main goals of this collaboration is to detecting and characterizing

3
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“Earth–like” extrasolar planets. When searching for terrestrial exoplanets in the hab-

itable zone using the radial velocity technique, one of the most important challenges

consists in properly addressing the impact of stellar activity. The result of using the

radial velocity technique for detecting extrasolar planets, when using data coming from

stabilized spectrographs, is usually summarized in the cross-correlation function (CCF),

which is an average of certain absorption lines of a stellar spectrum. The CCF is used for

measuring the radial velocity of the star and also for providing information about stel-

lar activity (evaluating the shape of the CCF). Poorly disentangling the signals coming

from the exoplanet and spurious radial velocity perturbations caused by stellar activity

can result in a false positive detection. When studying the CCF, the classic analysis

consists in two well defined steps. At first, the Normal distribution is used for retrieving

the radial velocity of the star and then, as a second and separate operation, the stellar

activity is evaluated by retrieving the so–called Bisector Inverse Slope Span in order

to measure the asymmetry of the CCF in order to infer stellar activity. We propose to

conduct the entire analysis with using the Skew Normal distribution. By using the Skew

Normal distribution the barycenter and skewness of a CCF can be retrieved in a single

operation, the correlation between the radial velocity of the star and stellar activity can

be better understood and finally the uncertainties associated to all the parameters are

smaller than the ones estimated with the classic analysis. This latter point is fundamen-

tal when searching for rocky exoplanets in the habitable zone using the state–of–the–art

spectrographs.

The Thesis is organized as follows: Chapter 1 highlights the main contributions of the

Thesis. Chapter 2 introduces the ABC methods, motivating their use and outlining the

nowadays challenges arising in this statistical framework. In Chapter 3 we introduce a

novel method to improve the computational performances of the ABC–PMC algorithm.

Always starting from the ABC–PMC algorithm, in Chapter 4, we develop an ABC based

procedure to work with finite mixture models. Chapter 5 takes a different direction, first

introducing the state–of–the–art challenges to detecting and characterizing “Earth–like”

exoplanets using the radial velocity technique, and then proposing a novel statistical

tool based on the Skew Normal distribution to disentangle stellar activity from the pure

Doppler signal coming from a hopefully terrestrial planet belonging to the habitable

zone.
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1.2 Main contributions of the Thesis

The contributions of the Thesis can be summarized as follow:

1. Developments of the ABC–PMC algorithm to adaptively selecting the series of

sequential tolerances ε1:T = (ε1, ε2, . . . , εT ) in order to improve the efficiency of the

sampling, along with an automatic stopping criterion that defines T (i.e. when

to stop the algorithm). The proposed adaptive ABC–PMC tolerance selection

algorithm can be easily implemented and examples are presented to show how this

extension can improve not only the efficiency of the ABC–PMC algorithm but also

avoiding to get stuck in local modes. This method, which works by evaluating the

online performances of the ABC posterior distribution, is illustrated in Chapter 3.

2. Developments of the ABC–PMC algorithm as an alternative framework for in-

ference to work with finite mixture models. There are several choices to take

when implementing an ABC–PMC algorithm to work with finite mixture mod-

els, including the selection of a suitable perturbation kernel to move the particles

through the iterations (in particular to resample the mixture weights), how to

address the label switching problem and the choice of high informative summary

statistics. Beyond to discuss and address the required methodological extensions

previously summarized, examples are presented to illustrate the performances of

the proposed extended ABC–PMC algorithm to work with finite mixture models.

This method is discussed in Chapter 4.

3. The CCF is an average of all the absorption lines of a stellar spectrum retrieved by

using the radial velocity technique. Stellar activity can be probed by measuring

variations in the shape of the CCF as function of time. Those variations are cal-

culated using different parameters of the CCF. To measure with the best precision

the necessary parameters is crucial to disentangle exoplanet signals from spurious

variations in radial velocity caused by stellar activity. We propose to measure

those parameters using a Skew Normal distribution, that compared to the Nor-

mal distribution generally used, naturally includes an extra parameter to model

the asymmetry of the CCF induced by convective blueshift. By using the Skew

Normal distribution the barycenter and skewness of the CCF can be retrieved in a

single operation, the correlation between the radial velocity of the star and stellar

activity can be better understood and finally the uncertainties associated to all

the parameters are smaller than the ones estimated with the classic analysis based

on the Normal distribution. This method is presented in Chapter 5.









Chapter 2

Approximate Bayesian

Computation Methods

In this Chapter we introduce the ABC framework, the basic ABC algorithm and some

of its already available extensions. Section 2.1 motivates the introduction for ABC as a

statistical framework for inference. Starting from the basic ABC algorithm, in Section

2.2 we summarize the main challenges that need to be addressed in this framework in

order to retrieve a suitable approximation of the true posterior distribution. In Section

2.3 one of the most famous extensions of the basic ABC algorithm, the ABC–PMC

algorithm, is introduced. Our final remarks are outlined in Section 2.4.

2.1 Motivations for using Approximate Bayesian

Computation

Bayesian inference has become through the last two decades a suitable alternative to

the frequentist approach. The relationship between the observed data yobs and parame-

ters θ ∈ Θ ⊆ Rp (i.e. p ≥ 1 is the dimension of the parameter space) can be described

by the likelihood function f(yobs | θ). In the Bayesian framework a prior distribution

has assigned to the vector of parameters θ ∼ π(θ), representing the subjective belief of

the researcher. Bayesian inference is based on the resulting posterior distribution for θ,

defined as:

π(θ | yobs) =
f(yobs | θ)π(θ)∫

Θ
f(yobs | θ)π(θ)dθ

, (2.1)

where the denominator of Equation (2.1) is known also as the normalizing constant.

If the elements of the posterior distribution in Equation (2.1) can be specified, then

various techniques can be used to write down the posterior distribution exactly (e.g. if

conjugate priors are specified) or approximated using various sampling techniques known

9
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as Markov Chain Monte–Carlo (MCMC) algorithms, such as the Gibbs Sampling [59]

and the Metropolis Hastings [65, 95].

Issues arise when the likelihood function cannot be specified. This happens for a

variety of reasons such as the relationship between the data and the parameters is highly

complex or unknown or if there are features of the data or data collecting procedure

that are difficult to incorporate into a likelihood funtion (e.g. complex censuring or

truncations). In the cases where it is not feasible to evaluate the likelihood function,

ABC provides a framework for inference to obtain an approximation of the true posterior

distribution.

In recent years ABC has been applied in many different fields of science, such as

biology [137], ecology [7], epidemiology [92], population genetic problems [10, 33, 110,

135] and population modeling [140]. Given the complexity of its models and simulators,

Astronomy seems to be a natural field for which an ABC based analysis could result

really helpful in order to successfully address a variety of problems. Among the others,

ABC has been used in problems such as the simulation of images for weak lensing

measurements [1, 25], model analysis of morphological transformation of galaxies [26,

64], TYPE Ia supernovae [73, 75, 150] and for estimating of the luminosity function

[128].

2.2 Basic Approximate Bayesian Computation algo-

rithm

ABC provides a framework for inference in situations where the relationship between

the data and the parameters is not well-approximated by a tractable likelihood function,

but simulation of the data–generating process is possible. The original idea about ABC

comes from [42], although its first methodological and philosophical arguments can be

found in [125].

Assuming θ ∈ Rp is the inferential target, the basic accept-reject ABC algorithm

[110, 135] consists of the four steps outlined in Algorithm 1.

Following the notation of [90], the resulting ABC posterior distribution can be written

as:

πε(θ | yobs) =

∫ [
f(yprop | θ)π(θ)IAε,yobs (yprop)∫

Aε,yobs×Θ
f(yprop | θ)π(θ)dypropdθ

]
dyprop, (2.2)

where IAε,yobs (·) is the indicator function for the set Aε,yobs = {yprop | ρ(yobs, yprop) ≤ ε}.
It then follows that πε(θ | yobs) ≈ π(θ | yobs) for ε→ 0, which requires further expla-

nations. The true posterior distribution, as defined in Equation (2.1), is a conditional
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Algorithm 1 Basic ABC algorithm for θ

(1) Sample from the prior distribution, θprop ∼ π(θ).
(2) Produce a generated sample of the data by using θprop in the forward simulation
model, yprop ∼ f(y | θprop).
(3) Compare the true data, yobs, with the generated sample, yprop, using a distance
function, ρ(·, ·), letting d = ρ(s(yobs), s(yprop)) where s(·) is some (possibly multi-
dimensional) summary statistic of the data.
(4) If the distance, d, is smaller than a fixed tolerance, ε, then θprop is retained,
otherwise it is discarded. Repeat until the desired particle sample size N is achieved.

distribution given the observed data, yobs. The ABC posterior is not conditioning on the

data exactly, but on the data within some tolerance, ε. In fact, with continuous data, the

probability for the observed dataset yobs to be equal to the simulated dataset yprop is null,

making the condition ε = 0 unfeasible. Moreover, as outlined in Algorithm 1, compar-

ing the entire observed dataset yobs with the simulated dataset yprop is computationally

impractical, implying that a reduction of the parametric space is needed. Reducing

the parametric space by selecting a set of suitable summary statistics is not straight-

forward. Whereas the desirable situation involves working with summary statistics s(·)
which also are sufficient, this rarely happens when facing real problems necessitating

ABC. Moreover, [90] pointed out that for most situations the summary statistics are

usually determined by the problem at hand and chosen by the experimenters in the

field, making the implementation of a general procedure for retrieving high informative

summary statistics challenging.

It is worth mentioning that, beyond the selection of the summary statistics and the

choice for a suitable tolerance, there is a third reason that motivates the approximated

nature of the ABC posterior distribution. According to Algorithm 1, once N particles

have been accepted, we have samples coming from the true posterior distribution (as-

suming s(·) high informative and ε “small” enough). The ABC posterior distribution

is usually retrieved by using some non parametric technique such as the kernel density

estimator or other Monte Carlo methods, leading therefore to a third approximation.

In the following of this Section we briefly discuss the first two sources of approx-

imation to deal with in order to obtain an ABC posterior distribution that suitably

approximates the true posterior: the selection of high informative summary statistics

s(·) and the choice of the suitable tolerance ε. An attempt to address the latter challenge

will be discussed in Chapter 3.



12 Approximate Bayesian Computation Methods

2.2.1 Selection of informative “enough” summary statistics

The first element that leads to an approximated posterior distribution is the necessary

definition for summary statistics s(·), as shown in Equation (2.3).

π(θ | yobs) ≈ π(θ | s(yobs)). (2.3)

This approximation is required for computational reasons and thus, rather than using

the complete dataset, lower dimensional summary statistics have in general to be defined.

To pick suitable summary statistics s(·) is essential to produce useful inference results.

In this Section we provide some indication about the challenges related to the selection

for s(·), focusing on the importance of using highly informative summary statistics

(possibly sufficient) in order to evaluate the quality of the necessary approximation that

takes place by using Equation (2.3).

ABC methods suffers of the so called curse of dimensionality effect. Hence a suitable

reduction of the parametric space has required. Using too many summary statistics or

even the entire dataset will result in a too low acceptance rate, forcing the researcher

to increase the level of the tolerance ε in order to apply Algorithm 1. For this reason,

reducing the parametric space by selecting summary statistics s(·) with minimal or none

loss of information is one of the most important steps of an ABC based procedure. In

particular there is a trade–off between low dimension of the summary statistics and loss

of information on the parameters of interest. Balancing this trade–off between selecting

a too large number of summary statistics (i.e. fixing then a large tolerance ε) and a

too small number of summary statistics (i.e. losing information on the parameters of

interest) is necessary for successfully retrieving a suitable approximation of the posterior

distribution.

Several studies have been done in the attempt to understand how the error in an ABC

procedure is related to the dimension of the summary statistics [11, 16, 51]. Among the

others, [6] showed that, asymptotically, the rate at which the error decays becomes worse

as the dimension of the dataset increases and that, under optimal ABC tuning and reg-

ularity conditions, the mean square error of a Monte Carlo estimate produced by using

Algorithm 1 is: Op(n
−4/(q+4)), where n is the (large) number of simulated datasets and

q is the dimension of the summary statistics. It is clear that high dimensional statistics

lead in general to an ABC posterior distribution which is a poor approximation of the

true one. Further details can be found in [6].

Since a suitable reduction of the parametric space is necessary, ideally the concept

of summary statistics in the ABC framework directly joins the one of complete minimal



Approximate Bayesian Computation Methods 13

sufficient statistics. If we were able to define lower dimension complete minimal sufficient

statistics as summary statistics, then all the information about the parameters of interest

would be preserved using at the same time the best possible reduction of the parametric

space. Using the classic definition of sufficient statistics by [35], s(·) is sufficient if

π(yobs|s, θ) = π(yobs|s). An equivalent definition more coherent with the nature of ABC

is the Bayes sufficient condition. The statistic s(yobs) is said to be Bayes sufficient

for θ if π(θ|s(yobs)) and π(θ|yobs) have the same distribution for any prior distribution

and almost all yobs. If the summary statistics are Bayes sufficient, than there is none

approximation in Equation (2.3).

However, as pointed out in Section 2.1, the main justification for using ABC is the

intractability of the likelihood function. Therefore, for those models requiring ABC, low

dimensional sufficient statistics do not generally exist. As noticed in [16], the central

question is hence deriving low dimension summary statistics from the observed dataset

with minimal loss information. Many methods have been developed for suitably selecting

summary statistics. As described in [109], these methods can fall into one of the following

three groups: subset selection, projection and auxiliary likelihood. Whereas both subset

selection and projection methods require a preliminary step of choosing a set of data

features (using respectively some criteria such as AIC and a training set), the auxiliary

likelihood method uses an approximated model whose likelihood is more tractable than

the model of interest and hence summary statistics are derived from this approximated

model. Further details about the already existent methods can be found in [13, 16, 109].

We cannot emphasize more the importance of selecting highly informative summary

statistics s(·) in order to retrieve useful inferential results on the parameters of interest.

Anyway, since ABC is used when the likelihood function is intractable or computation-

ally too expensive, s(·) will rarely be sufficient. In other words the loss of some amount

of information about θ is a first necessary downside to retrieve an approximation of the

posterior distribution.

2.2.2 Selection of small “enough” tolerances

The second element that leads to an approximated posterior distribution is caused by

the fact that, assuming summary statistics s(·) are used, the ABC posterior distribution

as shown in Equation (2.2) is not a conditional distribution given the observed summary

statistics s(yobs), but it is given the observed summary statistics within some tolerance.

Therefore, the indication function for the set of the accepted particles in Equation (2.2)

is of the type Aε,s(yobs) = {s(yprop) | ρ(s(yobs), s(yprop)) ≤ ε}. This consideration leads to
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the following second approximation:

π(θ | s(yobs)) ≈ πε(θ | s(yobs)). (2.4)

From a computational standpoint, fixing the tolerance ε = 0 is impractical, since for

the vast majority of cases the probability for simulated summary statistics s(yprop) to be

equal to the observed summary statistics s(yobs) is null (i.e. if ε = 0, the probability for a

proposed value θprop for being accepted is 0, meaning that Algorithm 1 needs an infinitive

amount of time for accepting even one single particle among the required N). Moreover,

the choice of ε depends on the way the distance metric ρ(·, ·) has been defined and this

definition is not unique (i.e. different distance functions lead to different suitable levels

for ε). Hence, in its original implementation, to choose in advance the level of the

tolerance ε is difficult. Usually ε is either fixed equal to some small percentile of the

simulated distances [10] or defined consistently to the available computational resources

[70].

As limit case, if ε := 0, then πε(θ | s(yobs)) := π(θ | s(yobs)) and Equation (2.4) is not

approximated. Moreover, assuming that s(y) is Bayes sufficient, then:

π(θ | s(yobs)) := π(θ | yobs), (2.5)

implying that in this scenario the ABC posterior distribution is not an approximation

of the true posterior (i.e. Equation (2.3) is not the results of a double approximation).

In other words, if ε is equal to 0 and if the summary statistics s(y) are Bayes sufficient,

the ABC posterior distribution matches the true posterior (see [90] for details). Unfor-

tunately, for both mathematical and computational reasons, the equivalence presented

in Equation (2.5) is not achievable unless having discrete data (i.e. the probability for

simulated summary statistics s(yprop) to be equal to the observed summary statistics

s(yobs) is not null) and a Bayes sufficient summary statistics s(·). We note that once

N particles have been accepted the ABC posterior distribution is usually obtained by

using some non parametric technique such as the kernel density estimator.

In closing, the ABC posterior distribution is generally the result of three approxi-

mations. The first approximation, defined in Equation (2.3), is required to reduce the

parametric space and a summary statistics s(·) has to be selected. The second approxi-

mation, defined in Equation (2.4), is justified by the fact that some discrepancy between

the observed summary statistics s(yobs) and the simulated summary statistics s(yprop)

has to be allowed. The third approximation, here only introduced, is the Monte Carlo

approximation for non parametrically estimating the ABC posterior distribution once
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N particles have been accepted, accordingly with the steps highlighted in Algorithm 1.

The nature of the ABC posterior distribution is summarized in a very informative

but nonetheless intuitive way by [90]:

The basic idea behind ABC is that using a representative (enough) sum-

mary statistic s(·) coupled with a small (enough) tolerance ε should produce

a good (enough) approximation to the posterior distribution.

2.2.3 A first example: the Normal–Normal model

We end the discussions about the approximated nature of the ABC posterior distri-

bution by introducing a simple first example. In the following, we implemented the basic

ABC algorithm using a Normal likelihood with unknown mean θ and known variance

σ2 = 1. The sample size of the observed data yobs is n = 100 and as prior distribution we

use a Normal distribution having mean θ0 = 0 and variance σ2
0 = 100. We used θ = 0

for generating yobs. Since the prior distribution is a conjugate prior for the likelihood

function, in this case the true posterior distribution is analytically available (i.e. a close

form for π(θ | yobs) is retrievable), providing a benchmark to evaluate the performance

of the basic ABC algorithm. For this specific example, to have the exact posterior dis-

tribution is also helpful to evaluate the loss of information caused by the definition of

insufficient summary statistics. We moreover note that when working with this model

the ABC posterior distribution can be analytically retrieved. In Appendix A we present

the mathematical details to obtain a close form for the ABC posterior distribution when

the model follows a Normal distribution.

Using the notation of Equation (2.1), the likelihood function is

f(yobs | θ) ∝ exp
(
− n

2σ2
(ȳ − θ)2

)
∼ N(ȳ|θ, σ

2

n
), (2.6)

and the conjugate prior distribution has the form

π(θ) ∝ exp

(
− n

2σ2
0

(θ − θ0)2

)
∼ N(θ|θ0, σ

2
0). (2.7)

According to Equation (2.1), the posterior distribution is easily retrievable in close form

as

π(θ | yobs) ∼ N


(
θ0
σ2
0

+
∑n
i=1 yi
σ2

)
(

1
σ2
0

+ n
σ2

) ,
1(

1
σ2
0

+ n
σ2

)
 . (2.8)
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In order to initialize the basic ABC algorithm, we first define the desired particles sample

size equal to N = 1000. Concerning the selection of a high informative summary statis-

tic, in this case the complete minimal sufficient statistic, s(yobs) =
∑n

i=1 yi, is available.

To show the consequences for using an insufficient summary statistic, we run the basic

ABC algorithm using also the first and the third quartiles as proposed summaries. The

definition of the distance metric is ρ = (s(yobs), s(yprop)) = |s(yobs)−s(yprop)|
n

. Since in this

example our main goal is to show the consequences on the ABC posterior distribution

for using poorly informative summary statistics, the allowed tolerance for all the analy-

ses is ε = 0.01 (which is the average distance ρ if yprop’s are 100 samples from a Normal

having as input parameter the true parameter θ = 0). The obtained ABC posterior

distributions, compared with the true one, are displayed in Figure 2.1. When using as

summary statistic the complete minimal sufficient statistic s(yobs) =
∑n

i=1 yi, there is

none loss of information on θ because of the definition of s(·) and the ABC posterior

distribution is comparable with the true one. However, the resulting ABC posterior

distribution has two approximations: the first one is the result of using a tolerance

ε = 0.01 and as second the ABC posterior distribution is obtained by using the kernel

density estimator. In Chapter 3 we will discuss in detail the role played by the tolerance

ε in any ABC based analysis, suggesting ways to properly and automatically define it.

When an insufficient statistic is used, the ABC posterior is a poor approximation of

the true posterior. The ABC posterior distribution is biased respect the true one and

the posterior variance is larger, which reinforces the assumption that some amount of

information about θ got lost. Smaller values for the tolerance have been tested when the

summary statistic is insufficient; the corresponding ABC posteriors have not improved,

suggesting that too much information was lost by using respectively the first and the

third quartile as summary statistic for the presented model. Finally, with running the

basic ABC algorithm with insufficient summary statistics, we noted that, for an equally

fixed tolerance ε, the computational time needed in order to accept N particles from

the prior distribution drastically increased respect to the case that used as summary

statistic the complete minimal sufficient statistic.

2.3 Approximate Bayesian Computation Population

Monte–Carlo algorithm

As pointed out in the work by [90], when using non informative priors the basic

ABC algorithm can be very inefficient, because simulations from π(θ) do not account

for the data at the proposal stage, leading to proposed values located in low posterior
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Figure 2.1: Comparison between the true posterior distribution (black line) and the
ABC posterior distribution using as summary statistic the mean (blue line), the first
quartile (yellow dots) and the third quartile (green dots). When using the complete
minimal sufficient statistic, the ABC posterior distribution is comparable with the true
posterior. When picking an insufficient summary statistic, the resulting ABC posterior
distribution is not a suitable approximation of the true posterior. The tolerance ε is
fixed for all the cases equal to 0.01. Smaller values for the tolerance have been tested
when the summary statistic is insufficient. The corresponding ABC posteriors have
not improved, suggesting that too much information was lost by using respectively
the first and the third quartile as summary statistic for the presented model.

probability regions. On top of that, picking in advance a suitable tolerance ε is unfea-

sible. For these reasons there have been many extensions to the basic ABC algorithm

[12, 13, 36, 44, 51, 62, 76, 90, 98, 116]. In this Thesis we focus on the ABC–PMC

approach originally introduced by [8].

The ABC–PMC algorithm is based on importance sampling ideas in order to improve

the efficiency of the algorithm by constructing a series of intermediate distributions; the

steps are displayed in Algorithm 2. The first iteration of the ABC–PMC algorithm uses

tolerance ε1 and draws proposals from the specified prior distribution(s); the resulting

ABC posterior is πε1 . Rather than starting the algorithm over from the beginning using

a smaller ε, the algorithm proceeds sequentially by drawing proposals from the previous

iteration’s ABC posterior, πεt−1 . After a particle is selected from the previous iterations

particle system, it is moved according to some kernel (e.g. a Gaussian kernel). Since
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the proposals are not drawn directly from the prior distribution(s), importance weights

are used. The importance weight for particle J = 1, . . . , N in iteration t is

W
(J)
t ∝ π(θ

(J)
t )/

N∑
K=1

W
(K)
t−1 φ

[
τ−1
t−1

(
θ

(J)
t − θ(K)

t−1

)]
,

where φ(·) is a Gaussian kernel with variance τ 2
t−1 – twice the (weighted) sample variance

of the particles from iteration t − 1 as recommended in [8]. However, other choices

beyond the Gaussian perturbation kernel are possible. For instance [140] proposed an

Uniform perturbation kernel in their ABC–PMC based analysis. We note however that,

regardless which perturbation transformation kernel has been defined, the importance

weights must be accordingly calculated, in order to reflect the fact that to propose

new candidates the prior distributions are not directly used. Other proposals for the

sequence of intermediate distributions in the ABC–PMC algorithm can be found in

[20, 38, 55, 79, 139].

While the proposals are drawn from a more informative distribution, the tolerances

also decrease such that ε1 > ε2 > · · · > εT , where T is the final iteration. Both

the rule to reduce the tolerances and the total number of iterations T are selected

in advance from the researcher. In particular, when working with a sequential ABC

algorithm, the series of the tolerances sequence ε1:T is selected either by fixing the

values in advance [92, 131, 140], or adaptively selecting εt based on some quantile of

{d(J)
t−1}NJ=1, the distances of the accepted particles from iteration t − 1 [8, 70, 85, 150].

After determining the sequence of tolerances, it also has to be determined when to stop

an ABC algorithm. An ABC algorithm is often stopped when either a desired (low)

tolerance is achieved [131] or once a fixed number of iterations T is reached [8]. [70]

showed that once the ABC posterior stabilizes, further reductions of the tolerance lead

to low acceptance rates without meaningful improvement in the ABC posterior; they

stop the algorithm once the acceptance rate drops below a threshold set by the user.

Both the selection of the series of decreasing tolerances and the stopping rule cover

an important role to determine the efficiency of the ABC–PMC algorithm and the

achievability of a suitable approximation of the true posterior distribution. Because

of the latter reason, beyond the goal of improving the computational efficiency of the

ABC–PMC algorithm, another goal of this Thesis is to provide further investigations

about the behavior of the ABC–PMC algorithm respect the presence of local modes, as

will be discussed in Chapter 3.
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Algorithm 2 ABC–PMC algorithm for θ

if t = 1 then
for J = 1, . . . , N do

Set d
(J)
1 = ε1 + 1

while d
(J)
1 > ε1 do

Propose θ(J) by drawing θprop ∼ π(θ),
Generate yprop ∼ f

(
y | θ(J)

)
Calculate distance d

(J)
1 = ρ(s(yobs), s(yprop))

end while
Set weight W

(J)
1 = N−1

end for
else if 2 ≤ t ≤ T then

Set τ 2
t = 2 · var

(
{θ(J)

t−1,W
(J)
t−1}NJ=1

)
for J = 1, . . . , N do

Set εt = qth quantile of {d(J)
t−1}NJ=1 (using an adaptively-selected tolerance se-

quence)

Set d
(J)
t = εt + 1

while d
(J)
t > εt do

Select θ∗t from θ
(J)
t−1 with probabilities

{
W

(J)
t−1/

∑N
K=1W

(K)
t−1

}N
J=1

Propose θ
(J)
t ∼ N (θ∗t , τ

2
t )

Generate yprop ∼ f
(
y | θ(J)

t

)
Calculate distance d

(J)
t = ρ(s(yobs), s(yprop))

end while
Set weight W

(J)
t ∝ π(θ

(J)
t )/

∑N
K=1 W

(K)
t−1 φ

[
τ−1
t−1

(
θ

(J)
t − θ(K)

t−1

)]
end for

end if

2.4 Concluding remarks

In this Chapter we introduced ABC methods, motivating their success in addressing

modern statistical problems and discussing the state–of–the–art methodological chal-

lenges related to this novel framework for statistical inference. In particular the selec-

tion for highly informative summary statistics s(·) and the determination for a suitable

tolerance ε are two choices always mandatory when running an ABC analysis. These

two choices have a huge impact on the way the ABC posterior distribution properly

approximates the true posterior.

Starting from the ABC–PMC algorithm introduced in Section 2.3 we developed two

extensions, whose contents will be provided in Chapter 3 and Chapter 4. In the first

extension we present a method for automatically and efficiently selecting the series of
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tolerances, ε1:T = (ε1, ε2, . . . , εT ), along with determining T (i.e. when to stop the algo-

rithm). All the necessary quantities are based on the online performances of the ABC

posterior distribution and the number of arbitrary selections required by the researcher

is minimized. In the second work we propose extensions of the ABC–PMC algorithm

as an alternative framework for inference for working with finite mixture models.







Chapter 3

Adaptive Approximate Bayesian

Computation Tolerance Selection

In this Chapter we extend the ABC–PMC algorithm [8] introduced in Chapter 2, so

that the quantile used to update the tolerance in each iteration, qt, is automatically and

efficiently selected (rather than fixed in advance to some quantile that is used for each

iteration). Note that efficiency is not only a matter of having a high acceptance rate (as

this can easily be accomplished by using larger quantiles), but rather a balance between

the acceptance rate and a suitable amount of shrinkage of the tolerance. Moreover the

series of tolerances needs to be selected in such a way that the algorithm avoids getting

stuck in local modes. Secondly, we propose an automatic stopping rule directly based

on the behavior of the ABC posterior distribution. The proposed extensions work best

for situations where ABC is required (i.e. the likelihood function is intractable) and the

number of parameters is not huge. Among the others, examples of such situations can

be found in [1, 62, 73, 75, 139].

In Section 3.1 we highlight the most common used strategies to run the ABC–PMC

algorithm. In Section 3.2 we propose a method to adaptively select the sequential tol-

erances that improves the computational efficiency of the algorithm over other common

techniques, while in Section 3.2.1 an automatic stopping rule is proposed. The pro-

posed adaptively ABC–PMC tolerance selection algorithm can be easily implemented

and several examples are presented in Section 3.3 to show not only that this extension

can improve the efficiency (in terms of computational time and number of draws from

the forward model) of the ABC–PMC algorithm but also that a suitable selection of

the series of tolerances is necessary to avoid getting stuck in local modes. Our final

conclusions are outlined in Section 3.4.

23
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3.1 Introduction

When working with a sequential ABC algorithm, there are two common approaches

for selecting the tolerance sequence, ε1:T : (i) fixing the values in advance [92, 131, 140],

or (ii) adaptively selecting εt based on some quantile of {d(J)
t−1}NJ=1, the distances of

the accepted particles from iteration t − 1 [8, 70, 85, 150]. These approaches can lead

to inefficient sampling as discussed below and demonstrated in the simulation study

presented in Section 3.3. On top of that, it turns out that selecting tolerances using a

predetermined quantile can, if not selected wisely, lead to the particle system getting

stuck in local modes [130]. Hence the exact sequence of tolerances has an impact not

only on the computational efficiency of the algorithm but also on the achievement of the

true posterior. We emphasize that finding the true posterior distribution using ABC is

not guaranteed and depends on a number of choices, including the careful selection of

summary statistics. However, in the following, we assume that the summary statistics

preserves sufficiency, focusing on the approximation caused by the tolerance ε.

In a recent work, [130] propose an adaptive approach for selecting the tolerance se-

quence at each iteration by estimating the threshold-acceptance rate curve (TAR curve),

which is used to balance the amount of shrinkage of the tolerance with the acceptance

rate. This approach requires, at each time step, the estimation of the TAR curve. The

naive, computationally impractical approach to estimate the TAR curve (noted as such

in [130]) is to simulate the acceptance rate at a range of difference tolerances; this would

have to be repeated at each time step of the ABC algorithm. Instead, they suggest a

method for estimating the TAR curve by building an approximation to the ABC simula-

tion model (in their example, using a mixture of Gaussians and the unscented transform

of [77]). The TAR curve approach is able to avoid local optima values, but requires the

extra step of building a fast approximation of the ABC data-generating model. Our

proposed algorithm similarly is able to avoid local modes, but uses quantities that are

directly and readily available in the algorithm. More details are presented in Section 3.3.

After determining the sequence of tolerances, it also has to be determined when to

stop an ABC algorithm. An ABC algorithm is often stopped when either a desired

(low) tolerance is achieved [131] or after a fixed number of iterations T [8]. [70] showed

that once the ABC posterior stabilizes, further reduction of the tolerance leads to low

acceptance rates without meaningful improvement in the ABC posterior; they stop the

algorithm once the acceptance rate drops below a threshold set by the user.
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3.2 Automatic tolerance selection

Using the same quantile to update the tolerance at each time step can be computa-

tionally inefficient and could result in the particle system getting stuck in local modes

(see example in Section 3.3.4). In this Section we introduce a method to adaptively

select the quantile such that each iteration will have its own quantile, qt, set based on

the online performance of the algorithm.

In order to initialize the tolerance sequence consider the following. Let N be the

desired number of particles to approximate the posterior. The initial tolerance ε1 can

be adaptively selected by sampling kN draws from the prior, for some k ∈ Z+. Then

the N particles of the kN total particles with the smallest distances are retained, and

ε1 = max
(
d

(1∗)
1 , . . . , d

(N∗)
1

)
, where d

(1∗)
1 , . . . , d

(N∗)
1 are the N smallest distances of the

kN particles sampled. This initialization procedure effectively selects a quantile for the

first step in selecting an appropriate k, but this adaptive first step can be easier to work

with than trying to guess at a good ε1 (which can be especially challenging when testing

different summary statistics or distance functions because the scale of the distances can

be different). We note that k must be large enough for an initial exploration of the

parameter space by the ABC algorithm; insufficient initial exploration of the parameter

space can lead to getting stuck in local regions of the parameter space. This is true in

general for ABC algorithms, including when ε1 is predefined (not set adaptively). The

selection of k is discussed in Section 3.3.

For subsequent tolerances, ε2:T , the general idea is to gauge the amount of shrinkage

for iteration t + 1 by setting εt+1 based on the amount of improvement between π̂εt−1

and π̂εt . In particular, we can use the estimated ABC posteriors to select a quantile for

updating the tolerance for the next iteration, and adjust the next tolerance based on

how slowly or rapidly the sequential ABC posteriors are changing. More specifically,

after each iteration t > 1, the following can be estimated using the weighted particles

ĉt = sup
θ

π̂εt(θ)

π̂εt−1(θ)
. (3.1)

Since π̂εt−1 and π̂εt are both proper densities, they will be either exactly the same,

making ĉt = 1 or there must be a place where π̂εt > π̂εt−1 , making ĉt > 1. We note that

ĉt has a lower limit equal to 1 since εt ≤ εt−1 and generally the variance of the ABC

posterior distribution decreases until convergence to the true posterior has reached, as

shown in Appendix A, which is achieved when the ABC posterior is no longer changing

sequentially. Then the proposed quantile for iteration t (in order to determine εt+1) is
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qt =
1

ĉt
, (3.2)

which varies between 0 and 1. Small values of qt imply qt−1 lead to a large improvement

between π̂εt−1 and π̂εt , which then results in a larger percentage reduction of the tolerance

for the coming iteration, t+ 1. On the other hand, once the ABC posterior stabilizes, qt

tends to 1 as π̂εt−1 gets closer to π̂εt . An illustration of the proposed quantile selection

is provided in Figure 3.1. For iteration t + 1, if π̂t−1 was still used as the proposal

for iteration t + 1, then qt would be the percentage decrease in the acceptance rate

from iteration t (i.e. if acct is the acceptance rate for iteration t, then acct+1 would be

approximately qt×acct). However, we are not proposing from π̂t−1, but rather π̂t so the

decrease in the acceptance rate is mitigated by the improvement in the proposed particles

from iteration t. When there is a large improvement in ABC posteriors from π̂t−1 to π̂t,

then qt is smaller (allowing for a larger drop in tolerance); this larger percentage drop

in tolerance does not result in an equal percentage drop in acceptance rate because the

new proposal distribution, π̂t, is better than π̂t−1. Conversely, if π̂t−1 is close to π̂t, then

the improvement in the ABC posterior is not enough to allow for a large decrease in the

acceptance rate so qt is closer to 1.
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Figure 3.1: Illustration of selection of qt. (left) The proposal distribution ABC
posterior π̂t−1 and the resulting ABC posterior π̂t, with ĉt is defined in Equation
(3.1) and used for setting qt as defined in Equation (3.2). (right) The (arbitrary)

distribution of distances is from the accepted distances at iteration t, {d(J)
t }NJ=1, with

εt being the largest possible value. The next iterations tolerance, εt+1, is set as the qt
quantile of {d(J)

t }NJ=1.
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The acceptance rate is also useful for evaluating the computational effort of the

ABC–PMC algorithm, defined as

acct =
N

Drawst
, (3.3)

where Drawst is the number of draws taken at iteration t in order to produce N accepted

values. We note that Equation (3.3) decreases because, as the tolerance decreases, the

number of elements Drawst required to get N accepted particles generally increases.

3.2.1 Stopping rule

There are several ideas on how to determine the number of iterations to use for an

ABC–PMC algorithm. Often one picks some T based on the computational resources

available, but this can be needlessly inefficient. [70] proposed to stop the algorithm

once the acceptance rate is smaller than some specified, fixed tolerance. We extend

this idea, discuss why to stop the algorithm once the acceptance rate is smaller than

some arbitrary pre–specified threshold can be inefficient, and suggest a new stopping

rule directly based on the estimated sequential ABC posterior distribution.

Again using a similar form as Equation (3.1), we evaluate the stability of the ABC

posterior using

Ĉt = sup
θ

π̂εt(θ)

π(θ)
, (3.4)

where the denominator is the prior distribution and the numerator is the ABC posterior

at iteration t. Once the sequential ABC posteriors stops changing significantly, the

series of Ĉt obtained through the iterations stabilizes – small changes are due to the

estimation of π̂εt at the end of each iteration.

The goal is to stop the procedure as soon as the ABC posterior has stabilized, and

1/Ĉt generally decreases as the tolerance decreases because the ABC posterior is looking

less like the prior. Once the ABC posterior stabilizes, the 1/Ĉt will stop monotonically

decreasing and further reductions of the tolerance (i.e. further iterations) do not neces-

sarily lead to an improvement by the ABC posterior distribution, but rather fluctuations

due to variability of the estimated ABC posterior. This leads to an automatic and sim-

ple stopping rule, which is employed starting from the third iteration (i.e. once the

transformation kernel was run twice to avoid premature stopping): the algorithm is

stopped at time t when
1

Ĉt
>

1

Ĉt−1

, for t ≥ 3. (3.5)
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Hence, the algorithm is stopped once the monotonicity of the updates in the sequential

ABC posterior is violated, suggesting that changes are due to its estimation variability.

Using Equation (3.5) as stopping rule and Equation (3.2) as an automatic rule to

shrink the tolerance, the ABC–PMC algorithm is stopped once additional time steps

with smaller tolerances do not lead to significant changes in the ABC posterior. We also

note that this coincides with the stabilization of the particle variance.1

Estimation of Equation (3.1) and Equation (3.4) requires estimation of π̂εt and π̂εt−1 ,

which can be done, for example, using kernel density estimation. Though kernel density

estimation suffers from the curse of dimensionality, this is a reasonable approach for

problems with lower dimensional parameter spaces such as the model considered below

in Section 3.3. Other examples in which the ABC approach is employed for addressing

problems with low dimensional parameter space are [31, 32, 72, 74]. We tried differ-

ent kernels when evaluating Equation (3.1) and Equation (3.4), obtaining comparable

results. For this reason we used the default Gaussian kernel provided by the function

density in R. The smoothing bandwidth parameter has not been fixed in advance.

3.3 Illustrative Examples

Next we provide a comparison between the classic ABC–PMC algorithm and our

extension proposed in Section 3.2, the adaptive ABC–PMC tolerance selection algorithm

(aABC–PMC), with five examples. The first two examples consider discrete (Beta-

Binomial) and continuous (Exponential-Gamma) models. We work with Exponential

Families because we have the complete minimal sufficient statistics, s(y), which allows

the study to focus on the proposed method rather confounding the overall performances

with determining reasonable summary statistics. Moreover, by using the conjugate

prior distribution, the true posterior distribution is available in closed form, providing

a benchmark to evaluate the behavior of both the ABC–PMC and our extension. In

the third example the Gaussian mixture model by [131] is used in order to show the

efficiency of the proposed aABC–PMC procedure. Then the aABC–PMC algorithm

is used for a model from [130], which has local modes, in order to illustrate how the

proposed automatic tolerance selection is able avoiding to get stuck in local modes.

The final example comes from a population modeling problem with the Lotka–Volterra

model by [140] in which the forward model for the analysis is computationally expensive.

1The desired sample size N has an impact on the evaluation of Equation (3.5). This problem arises
also in the classic MCMC analysis when determining the length of the MCMC chain [58]. An N that is
too low leads to more variability of the estimated posterior in Equation (3.4), which could lead to the
algorithm stopping prematurely. Further discussions on the role played by the desired particle sample
size N are presented in Appendix B.
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Expensive forward models are a challenge for ABC methods because the computational

cost can be prohibitive. For those cases, selecting an appropriate sequence of tolerances

is crucial.

In order to compare the proposed procedure with the classic ABC–PMC algorithm,

both the computational time and the total number of draws required to verify the

stopping rule are considered. The measure used for evaluating the similarity between

the ABC posterior distribution at the iteration t, π̂εt , and the benchmark, πtrue, is the

Hellinger distance, which is defined as

H(π̂εt , πtrue) =

(∫ (√
π̂εt(y)−

√
πtrue(y)

)2

dy

) 1
2

. (3.6)

The benchmark πtrue is the true posterior distribution if it is analytically retrievable

(as it is for the first four presented examples). In the last proposed example, the true

posterior distributions are not available so the ABC posteriors from [140] are used as

benchmarks.

3.3.1 Beta-Binomial Model

In this first example we compare the ABC–PMC algorithm and our proposed exten-

sion for the discrete Beta-Binomial model. The parameter of interest is p, the probability

of success in n = 100 independent replications. The likelihood function is available and

follows the law:

f (y | p) =

(
n

s

)
ps(1− p)n−s,

where s =
∑n

i=1 yi is the complete minimal sufficient statistics and yi ∈ {0, 1}.
As prior distribution a Beta with hyper parameters a = 1 and b = 1 is used, since it

is conjugate to the likelihood function.

π(p) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1.

The posterior distribution is available analytically as:

π(p | Y ) ∝ f(Y | p)π(p) ∝ ps(1− p)n−spa−1(1− p)b−1 ∝ ps+a−1(1− p)n−s+b−1, (3.7)

which is the kernel of a Beta distribution with updated hyperparameters a∗ = a+ s and

b∗ = b+ n− s.
The summary s(y) of the data is the complete minimal sufficient statistics s(y) =∑n
i=1 yi and the distance function to evaluate the separation between the real and the
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simulated dataset is defined as:

ρ (yobs, yprop) =
| s(yobs)− s(yprop) |

n
. (3.8)

In order to start the aABC–PMC algorithm, the only choice concerns the desired

particle sample size N , which we fixed to 2000. The quantile to update the tolerance

is automatically selected and the stopping rule does not need any specification about a

final number of iterations T or a tolerance on the lower limit of the acceptance rate to

continue with the procedure, since it is directly based on the behavior of the π̂εt .

Figure 3.2 shows the results of the analysis conducted by updating the quantile

according to Equation (3.2) and by evaluating Equation (3.5) to arrest the proce-

dure. The posterior distribution, displayed in Figure 3.2(left), is reached after 5 it-

erations and the Hellinger distance (Hdist) between the true posterior distribution

and the final ABC posterior is 0.032. The series of automatically selected quan-

tiles is: q2:5 = (0.22, 0.55, 0.87, 0.88), which leads to the series of tolerances ε1:5 =

(0.1, 0.02, 0.01, 0.01, 0.01). The qt’s retrieved by using Equation (3.2) are displayed in

Figure 3.2(right)(black circles), which generally increase until the final iteration. Once

the posterior distribution is reached by the algorithm, 1/Ĉt stabilizes, as shown in Fig-

ure 3.2(right)(orange crosses). Since we are using a discrete model and the tolerance

stabilizes starting from the third iteration, the acceptance rate (blue triangles) stabilizes

as well.
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Figure 3.2: aABC–PMC analysis for the discrete Beta-Binomial model with
N = 2000. (left) Series of 5 ABC posteriors, with the first and final ABC
posteriors noted in the legend. (right) Series of automatically selected quan-
tiles: q2:5 = (0.22, 0.55, 0.87, 0.88), that lead to the series of tolerances ε1:5 =
(0.1, 0.02, 0.01, 0.01, 0.01). The automatic stopping rule directly based on the behavior
of the ABC posterior distribution is satisfied after 5 iterations.
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For the standard ABC–PMC algorithm the tolerance sequence has to be selected

(either adaptively or fixed to particular values). Let us at first to select the quantile

used to shrink the tolerance equal to 0.75. The number of iterations T must be selected,

which can lead to a poor approximation of the posterior distribution if it is too small or

to an inefficient algorithm if it is too large. With the chosen quantile, we fixed T = 15.

Looking at Figure 3.3(right) the behavior is consistent with the fact that the convergence
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Figure 3.3: ABC–PMC analysis for the discrete Beta-Binomial model with N =
2000, qth = 0.75 and T = 15. (left) Series of 15 ABC posteriors, with the first
and final ABC posteriors noted in the legend. (right) Series of efficiencies based on
the selection in advance of the quantile used to reduce the tolerance through the 15
iterations.

has been reached. In fact, the tolerances do not decrease beyond the 6th iteration

(ε6:15 = 0.03). This situation explains why fixing a lower limit for the acceptance

rate in order to to arrest the procedure could be inefficient, since in the discrete case

that limit could take an excessive amount of time without noticeable benefit. When

a continuous model is used, the tolerance continues to decrease through the iterations

and the observed acceptance rate decreases as well. Once the posterior distribution is

reached by the algorithm, 1/Ĉt stabilizes, as shown in Figure 3.3(right)(orange crosses).

Figure 3.3(left) shows the evolution of the ABC posterior distribution by the ABC–PMC

procedure through all the 15 iterations, suggesting how once the procedure stopped, the

true posterior distribution has been reached (Hdist = 0.071).

To evaluate the reliability of the aABC–PMC, a comparison with the ABC–PMC is

done, both in terms of computational time of the entire procedure and total number

of draws needed to obtain N accepted values from the final ABC posterior distribu-

tion. A simulation study was performed based on 20 independent runs with the same

dataset. An average of both the total number of draws needed to accept N values and
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the computational time for the aABC–PMC is computed. The average computational

time is 125.990 sec. and the average total number of draws is 54889. To compare the

performance of aABC–PMC with ABC–PMC, ABC–PMC was run with 3 different fixed

quantiles, qth = 0.25, 0.5, 0.75. For each quantile, ABC–PMC was run independently

20 times with the total number of draws fixed at the aABC–PMC average of 54889. A

second set of 20 independent runs of ABC–PMC was carried out fixing the computa-

tional time at the aABC–PMC average of 125.990 sec. Figure 3.4 shows the results for

the three quantiles when the total number of draws allowed is 54889. The estimated

Hellinger distances are (0.068, 0.058, 0.091) for qth = 0.25, 0.5, 0.75 respectively, and only

qth = 0.25 has not converged based on the proposed stopping rule based on Equation

(3.4). The results for the fixed computational time 125.990 sec. are displayed in Fig-

ure 3.5. The estimated Hellinger distances are (0.14, 0.037, 0.16) for qth = 0.25, 0.5, 0.75

respectively, and only qth = 0.5 has converged based on the proposed stopping rule based

on Equation (3.4).
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Figure 3.4: ABC–PMC analysis for the Beta-Binomial model with N = 2000 and
maximum number of allowed draws equal to 54889, for qth = 0.25 (first column),
qth = 0.5 (second column) and qth = 0.75 (third column). The final Hellinger distances
between the true posterior and the final ABC posteriors are respectively equals to:
(0.068, 0.058, 0.091).

We conclude the analysis showing the behavior of the aABC–PMC algorithm for dif-

ferent choices of the number of proposed values from the prior distribution at the first
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1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

Iteration

E
ffi
ci
en
ci
es

Estimated Quantile
Acceptance Rate
1 Ĉ
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Figure 3.5: ABC–PMC analysis for the Beta-Binomial model with N = 2000 and
time limit equal to 125.990 sec., for qth = 0.25 (first column), qth = 0.5 (second
column) and qth = 0.75 (third column). The final Hellinger distances between the true
posterior and the final ABC posteriors are respectively equals to: (0.14, 0.037, 0.16).

iteration of the procedure. We recall that the first tolerance ε1 is selected by oversam-

pling from the prior distribution by a factor K. The choice of K is not straightforward,

since a K too large implies that the prior distribution is largely used, while a K too

small can fail to explore relevant regions of the parametric space. N, 2N, 5N, and 10N

initial draws are considered, and the results are displayed in Table 3.1. The first toler-

ance ε1 and the total number of iterations T naturally decrease as the elements proposed

by the prior distribution increases; however, this can have a negative impact on both

the total number of draws and the time needed to achieve convergence. Considering the

four options for this model, 5N seems to performe well with the total computational

time and the total number of draws.

3.3.2 Exponential-Gamma Model

Next we investigate the continuous Exponential-Gamma model to compare the per-

formance of the ABC–PMC algorithm with aABC–PMC. The parameter of interest is

θ ∈ R+ and the sample size is n = 100. The likelihood function is available and follows

the law:

f (y | θ) = θn exp{−sθ},
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T Drawstot ε1 εT time Hdist

N 13 53967 0.53 0.05 440.792 sec. 0.120
2N 7 45976 0.25 0.03 206.481 sec. 0.092
5N 5 54889 0.10 0.01 125.990 sec. 0.032
10N 4 71767 0.05 0.01 105.280 sec. 0.033

Table 3.1: Results for aABC–PMC
algorithm with different choices for
the initial number of values directly
proposed by the prior distribution:
(N, 2N, 5N, 10N).
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Figure 3.6: ABC final pos-
terior distributions for different
initial choices for the initial
number of values directly pro-
posed by the prior distribution:
(N, 2N, 5N, 10N).

where s(y) =
∑n

i=1 yi is again the complete minimal sufficient statistics.

As prior distribution a gamma with hyper parameters α = 2 and β = 3 is used, since

it is conjugate to the likelihood function.

π(θ) =
βα

Γ(α)
θα−1 exp{−βθ}.

The posterior distribution is available in closed form as:

π(θ | Y ) ∝ f(Y | θ)π(θ) ∝ θα+n−1 exp{−(β + s)θ}, (3.9)

which is the kernel of a gamma distribution with updated hyper parameters α∗ = α+n

and β∗ = β + s.

With the same distance and summary statistic defined in Equation (3.8) and N =

2000, the results of the analysis for both the aABC–PMC and the ABC–PMC are shown

in Figure 3.7 and 3.8, respectively. The qt’s retrieved by using Equation (3.2) and

displayed in Figure 3.7(right)(black circles), generally increase until the final iteration,

while the acceptance rate (blue triangles) decreases. Once the posterior distribution

is reached by the algorithm, 1/Ĉt stabilizes, as displayed in Figure 3.7(right)(orange

crosses). The posterior distribution, displayed in Figure 3.7(left), is reached after 4

iterations and the Hellinger distance (Hdist) between the true posterior distribution and

the final ABC posterior is 0.07. Stopping the procedure as soon as the convergence is
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reached allows for a potentially significant reduction in number of draws.
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Figure 3.7: aABC–PMC analysis for the Exponential-Gamma model withN = 2000.
(left) Series of 4 ABC posteriors, with the first and final ABC posteriors noted in the
legend. (right) Series of automatically selected quantiles: : q2:4 = (0.21, 0.61, 0.88),
that leads to the series of tolerances ε1:4 = (0.35, 0.08, 0.048, 0.042). The automatic
stopping rule directly based on the behavior of the ABC posterior distribution is
satisfied after 4 iterations.
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Figure 3.8: ABC–PMC analysis for the Exponential-Gamma model with N = 2000,
qth = 0.75 and T = 15. (left) Series of 15 ABC posteriors, with the first and final
ABC posteriors noted in the legend. (right) Series of efficiencies based on the selection
in advance of the quantile used to reduce the tolerance through the 15 iterations.

Concerning the ABC–PMC analysis, Figure 3.8(right) shows how the acceptance rate

continues to decrease once 1/Ĉt stabilizes (orange crosses) and the Hellinger distance

between the true posterior and the final ABC posterior is 0.043. Considering the (high)
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estimated quantiles in Figure 3.8(right)(black points), a smaller quantile (i.e. larger

reductions in the tolerance) would lead to faster convergence of the ABC posterior.

Figure 3.8(left) shows the evolution of the ABC posterior distribution by the ABC–PMC

procedure through all the 15 iterations, suggesting how once the procedure stopped, the

true posterior distribution has been reached.

As done for the Beta-Binomial Example, next we consider the average total number

of draws and average computation time for the Exponential-Gamma model using 20

independent runs. The average total number of draws for aABC–PMC is 63784 and the

average computational time is 56.193 sec. These two quantities are, respectively, fixed

in 20 independent runs of ABC–PMC with the same 3 quantiles (qth = 0.25, 0.50, 0.75).

Figure 3.9 displays the results of the ABC–PMC algorithm when the total number of

draws is fixed at 63784. The ABC posteriors did not converge based on this threshold

for all three quantiles. When the computational time for ABC–PMC is fixed at 56.193

sec., only the qth = 0.5 converged, as shown in Figure 3.10.
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Figure 3.9: ABC–PMC analysis for the Exponential-Gamma model with N = 2000
and maximum number of allowed draws equal to 63784, for qth = 0.25 (first column),
qth = 0.5 (second column) and qth = 0.75 (third column). The final Hellinger distances
between the true posterior and the final ABC posteriors are respectively equals to:
(0.072, 0.082, 0.09).

We repeated the analysis from the end of Section 3.3.1, where we change the number

of draws sampled from the prior distribution in the initial iteration. Table 3.2 lists the

average values of the quantities of interest once the experiment has been executed 20
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Figure 3.10: ABC–PMC analysis for the Exponential-Gamma model with N = 2000
and time limit equal to 56.193 sec., for qth = 0.25 (first column), qth = 0.5 (second
column) and qth = 0.75 (third column). The final Hellinger distances between the true
posterior and the final ABC posteriors are respectively equals to: (0.072, 0.074, 0.14).

times for each of the different choices of the initial number of draws. The final tolerance

εT for each particular choice leads to similar ABC posterior distributions, as shown in

Figure 3.11 and confirmed by the evaluation of the Hellinger distance. Also in this case

our preference for the choice of the initial number of values directly proposed by the

prior distribution is 5N .

3.3.3 Gaussian Mixture Model

The third application of the aABC–PMC is an example taken from [131], which

is also analyzed in [8]. It is a Gaussian mixture model with two components with

known variances and mixture weights, but an unknown common mean, f(y | θ) =

0.5N (θ, 1) + 0.5N (θ, 0.01) and prior distribution π(θ) ∼ Unif(−10, 10). With a single

observation yobs = 0, the posterior distribution is

π(θ | yobs) ∼ 0.5N (0, 1) + 0.5N (0, 0.01). (3.10)

For consistency with the results presented in [131] and [8], the distance function

used is ρ (yobs, yprop) = |yobs − yprop|, N = 1000, and a Gaussian kernel for resampling

the particles is used. Both [8] and [131] manually define the series of tolerances. In
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T Drawst ε1 εT time Hdist

N 11 87083 2.17 0.09 163.448 sec. 0.089
2N 7 57434 1.01 0.086 103.456 sec. 0.063
5N 4 63784 0.35 0.042 56.193 sec. 0.07
10N 3 100195 0.22 0.025 46.921 sec. 0.085

Table 3.2: aABC–PMC algo-
rithm with different choices for the
initial number of values directly
proposed by the prior distribution:
(N, 2N, 5N, 10N).

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

θ

D
en
si
ty

True Posterior
ABC Posterior N
ABC Posterior 2N
ABC Posterior 5N
ABC Posterior 10N
Input theta

Figure 3.11: ABC final pos-
terior distributions for different
initial choices for the initial
number of values directly pro-
posed by the prior distribution:
(N, 2N, 5N, 10N).

particular, [131] carryout T = 10 iterations with a fixed series of tolerances ε1:10 displayed

in Table 3.3. To evaluate the reliability of the aABC–PMC, a comparison with the ABC–

PMC is carried out, both in terms of computational time and total number of draws.

The results are based on 20 independent runs with the same dataset. The results of

the analysis are shown in Table 3.3, where aABC–PMC outperforms ABC–PMC with

total draws (135,373 vs. 1,421,283) and a faster computational time (52.244 seconds vs.

243.531 seconds). The final ABC posteriors for each method are displayed in Figure 3.12.

Though the aABC–PMC method is computationally more efficient than the ABC–PMC

approach, the final ABC posteriors are very similar. This suggests that after a suitable

tolerance is achieved, further decreasing the tolerance does not necessarily lead to a

better approximation of the posterior distribution.

From Table 3.3, we note that the final tolerance for [131] is ε10 = 0.0025 (Hdist = 0.55)

while the automatic stopping rule of aABC–PMC leads to 6 iterations with a final

tolerance of ε6 = 0.021 (Hdist = 0.54). In the right plot of Figure 3.12, the qt’s retrieved

by using Equation (3.2) are displayed (black circles), which generally increase until

the final iteration, while the acceptance rate (blue triangles) decreases. Neglecting to

stop the algorithm once the ABC posterior has stabilized can be inefficient since the

number of draws needed in order to complete further iterations drastically increases, as

evidenced by the increasing Drawst for later iterations displayed in Table 3.3.

For an additional assessment of the performance of the proposed method, we carryout
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Figure 3.12: Gaussian mixture model example. (left) ABC–PMC and aABC–PMC
final posterior distributions. The true posterior distribution is plotted with the black
line. (right) Sequential quantities computed for the aABC–PMC method. The qt’s
(black circles) generally increase through the iterations and the 1/Ĉt’s (orange pluses)
generally decrease until they stabilize. The acceptance rate (blue triangles) decreases
throughout the iterations which is why it is desirable to stop the algorithm once the
ABC posterior has stabilized.

Sisson et al. (2007) aABC–PMC
t εt Drawst Hdist t εt qt Drawst Hdist

1 1.000 2595 0.66 1 2.03 5000 0.76
2 0.5013 8284 0.59 2 0.39 0.20 7365 0.59
3 0.2519 8341 0.57 3 0.11 0.29 14585 0.57
4 0.1272 7432 0.57 4 0.049 0.44 30085 0.55
5 0.0648 10031 0.58 5 0.030 0.61 35584 0.54
6 0.0337 17056 0.53 6 0.021 0.72 42754 0.54
7 0.0181 34178 0.54
8 0.0102 72704 0.55
9 0.0064 171656 0.54
10 0.0025 1089006 0.55

Total 1421283 (243.531 sec.) 135373 (52.244 sec.)

Table 3.3: The mean number of draws needed in each iteration to reach N =
1000 accepted values for the ABC–PMC (left) and the aABC–PMC algorithm (right),
obtained by running the procedure 20 times. For aABC–PMC algorithm, the quantile
automatically selected through the iterations is displayed under qt.

a comparison with the commonly used adaptive tolerance selection method of fixing a

quantile using the same Gaussian mixture model example of [131]. For this experiment,

we fix the first and final tolerances to the values set using aABC–PMC, ε1 = 2.03 and

εT = εsuit = 0.021, respectively. Then we consider a range of different quantiles and run

the usual ABC–PMC algorithm 20 times for each quantile. We evaluate the performance

based on computational time and total number of draws required to reach the εsuit, at
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which time the procedure was stopped. Starting and ending each tolerance sequence

with the same tolerance allows for a comparison between the various quantiles, and with

the proposed aABC–PMC algorithm.

The results of the experiment are summarized in Figure 3.13; the left plot shows the

average total number of draws (for the 20 runs of each quantile) and the right plot shows

the average computational time for each quantile. Since the aABC–PMC algorithm uses

a different quantile at each iteration, a red ‘x’ is placed at the average quantile of the

series (q̄ = 0.44); the average total number of draws and the average computational

time are among the smallest for the proposed aABC–PMC. In particular, the left plot

of Figure 3.13 shows that using a quantile that is too small or too large in the ABC–

PMC algorithm results in an increased total number of draws required to reach εsuit. In

terms of computational time, the right plot of Figure 3.13 reveals that, for this example,

quantiles smaller than about 0.45 lead to comparable results.

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

0.2 0.4 0.6 0.8

50
00

00
10

00
00

0
15

00
00

0

Quantile

To
ta

l D
ra

w
s

● ABC−PMC
aABC−PMC

●
●

●

●

●

●
● ●

● ● ●
●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

10
0

20
0

30
0

40
0

50
0

60
0

Quantile

To
ta

l t
im

e

● ABC−PMC
aABC−PMC

Figure 3.13: Gaussian Mixture model example. (left) Average total number of draws
required by the aABC–PMC and the ABC–PMC algorithm for different quantiles.
(right) Average computational time required by the aABC–PMC and the ABC–PMC
algorithm for different quantiles. Because the aABC–PMC algorithm adaptively se-
lects different quantiles for each iteration, the red ’x’ is placed at the average quantile,
0.44.

In [131], the same example is considered but with a series of three fixed tolerances:

ε1:3 = (2, 0.5, 0.025). We run our aABC–PMC algorithm with a fixed series of tolerances

taken by the previous analysis with ε1:3 = (2.03, 0.39, 0.021) (corresponding to ε1, ε2,

and ε6 from Table 3.3). A comparison, in terms of number of draws and speed of the

algorithm is shown in Table 3.4, where again aABC–PMC outperforms ABC–PMC in

terms of total number of draws and computational time.
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Sisson et al. (2007) aABC–PMC
t εt Drawst t εt Drawst
1 2.000 4907 1 2.03 5508
2 0.500 4899 2 0.39 7215
3 0.025 66089 3 0.021 46495

Total 75895 (22.787 sec.) 59218 (16.710 sec.)

Table 3.4: The mean number of draws needed in each iteration to reach N =
1000 accepted values for the ABC–PMC (left) and the aABC–PMC (right) algorithm,
obtained by running the procedure 20 times.

T Drawst ε1 εT time Hdist

N 16 121439 11.41 0.061 116.697 sec. 0.59
2N 10 136175 4.94 0.036 73.572 sec. 0.59
5N 6 135373 1.95 0.029 52.244 sec. 0.54
10N 4 171385 0.97 0.021 49.969 sec. 0.55

Table 3.5: aABC–PMC algo-
rithm with different choices of the
initial number of values directly
proposed by the prior distribution:
(N, 2N, 5N, 10N).
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Figure 3.14: aABC–PMC algo-
rithm with different choices for
the initial number of values di-
rectly proposed by the prior dis-
tribution: (N, 2N, 5N, 10N).

We conclude the analysis showing the behavior of the aABC–PMC algorithm for

different choices of the number of proposed values from the prior distribution at the

first iteration of the procedure. Particle sample sizes of N, 2N, 5N, and 10N initial

draws are considered (with N = 1000 in this example), and the results are displayed

in Table 3.5. The initial particle sample size that balances the total number of draws

and the time required to satisfy the stopping rule is 5N . The automatic stopping rule

leads to similar ABC posterior distributions based on Hdist and visually as displayed in

Figure 3.14.

3.3.4 Presence of local modes

The sequence of tolerances has an impact not only on the computational efficiency

of the algorithm but also on its ability to find the true posterior [130], noting again
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that convergence to the true posterior using ABC is not guaranteed. In fact, when

using the ABC–PMC algorithm, perturbation kernels are used rather than the prior

distribution for iteration t > 1. As a consequence of that, if the previous iteration’s

accepted particles system does not include relevant regions of the parametric space,

then the algorithm can get stuck in local modes. To demonstrate the performance of

aABC–PMC in the presence of local modes, we consider an example proposed in [130].

The (deterministic) forward model is g(θ) = (θ−10)2−100 exp(−100(θ−3)2), with the

input θ set to θ∗ = 3, resulting in true posterior distribution that is a Dirac function at

3. The specifications for both the distance function (L1 norm) and the desired number

of particles (N = 1000) are taken from [130].

The distance function is plotted against a range of values for θ in Figure 3.15(left),

which highlights the challenge for ABC with this model. There is a broad, local minimum

distance around θ = 10, but the global minimum distance occurs at the true value of

θ = 3. Initial steps of the ABC algorithm will find the local minimum, and can easily

get stuck around θ = 10 if the sequential tolerance is not selected carefully. The series

of plots in Figure 3.15 shows the behavior, by iteration, of the aABC–PMC algorithm

focusing on the values for θ that were accepted (orange circles). After 5 iterations, the

aABC–PMC algorithm has found the global minimum distance around the true θ.

Figure 3.15(left) displays the locations of the accepted particles (orange circles) over

the distances for a range of θ’s. The third iteration was an important step in which

the large reduction of the tolerance allows the algorithm to consider those few particles

coming from the global optimal value at θ = 3. Although the raw tolerance hardly

decreases between the first and the second iteration (ε1 = 51.59 and ε2 = 51.01), there

is a substantial change between the ABC posteriors, from π̂ε1 to π̂ε2 , resulting in a large

reduction for the third iteration (ε3 = 5.49). The majority of the accepted values from

t = 2 are sampled near the local mode at θ = 10, but due to the large reduction resulting

in a smaller ε3, values proposed near θ = 10 in iteration 3 are not accepted.

A similar behavior was reported when using the TAR curve, where the tolerance

decreased from ε2 = 50.94 to ε3 = 5.49 · 10−4 [130]. We emphasize that this adjustment

needs to happen in the first few iterations of the ABC–PMC procedure, since uniformly

small reductions in the tolerance sequence (e.g. using a fixed q = 0.75) could end up

removing those few important particles near the global optimal value.

[130] note that if the particles are sampled from a large region of parameter space

that offers negligible or little support for the posterior distribution, there is a risk of

getting stuck in this parameter region if the tolerance is not selected carefully. In other

words, the parameter space needs to be sufficiently explored in order to get enough
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Figure 3.15: Example from [130] to investigate the performance of the proposed
aABC–PMC in the presence of a local optimal value. (left) The accepted θ are plot-
ted in orange against the corresponding distance by iteration, (right) the particle
distribution defined with the aABC–PMC for the 5 iterations. The series of automat-
ically selected quantiles is q2:5 = (0.18, 0.000016, 0.0044, 0.02) which leads to the series
of tolerances ε1:5 = (51.59, 51.01, 2.81, 0.00058, 1.42 · 10−4).

particles in regions near the global optimal value. We suggest that in the first iteration

of the aABC–PMC algorithm the number of particles sampled directly from the prior

be k times the desired number of particles N , where k = 5 seems to work well in the

examples considered.

The proposed aABC–PMC algorithm allows for small qt’s early on (when larger

improvements occur between sequential ABC posteriors) so that larger reductions in

the tolerance sequence can be taken, which results in moving away from local optimal

values into better regions of the parameter space. If sufficient reduction of the tolerance

is not made early on, achieving a good approximation of the true posterior distribution

is unlikely because the distances associated with the local optimal values will overwhelm

the particle system so that it gets stuck in the local region.

If the parameter space is not sufficiently explored, the risk of getting stuck in the local

maximum increases also if the aABC–PMC algorithm is used, since very few values are

coming from the true posterior at the end of the first iteration and their small associated

weights rapidly lead to their disappearance in the further iteration. As an example of

that, let us sample from the prior, in the first iteration of the aABC–PMC algorithm,

a number of particles equal to 2N . As shown in Figure 3.16(left), very few particles

are coming from the true posterior in correspondence to θ = 3. As a result of that,

the algorithm rapidly get stuck in the local maximum at θ = 10 and there is no way

to retrieve the true posterior distribution. The distance between the simulated and the
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observed data does not go under the value of 51 as showed by [130], where a fixed large

quantile is used. Hence our suggestion also in this example is to explore the parametric

space in the first iteration by sampling from the prior distribution an amount of particles

equal to 5N .
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Figure 3.16: Local maximum example with desired particle sample size equal to
N = 1000 and initial number of draws from the prior equal to 2000. (left) The
accepted θ are plotted in orange against the corresponding distance by iteration,
(right) the particle distribution defined with the aABC–PMC for the 6 iterations. In
this case the parametric space is not sufficiently explored, hence the achievement of
the true posterior distribution is not guaranteed by the aABC–PMC. The series of
automatically selected quantiles q2:6 = (0.44, 0.34, 0.31, 0.28, 0.23) are too gentle for
forcing the algorithm to consider those few particles coming from the true posterior
distribution and available at the end of the first iteration. The series of tolerances
ε1:5 = (55.82, 51.91, 51.18, 51.02, 51.02, 51.02) is coherent with the results found by by
[130].

A possible extensions of the model presented by [130] consists in the inclusion of

an additional local minimum at θ = 15. We are interested in understand how the

aABCpmc behaves in this new setting. The model, which now presents 3 modes, is

g(θ) = (θ − 10)2 − 100 exp(−100(θ − 3)2) − 50 exp(−50(θ − 15)2). The input θ in the

simulation is selected to be θ∗ = 3, so the true posterior distribution is again a Dirac

function at 3. The specifications for both the summary statistics and the desired number

of particles are taken from [130] and consistent with the basic aABCpmc introduced at

the beginning of this Section. Figure 3.17(left) shows the behavior by iteration of the

aABC–PMC algorithm, where it is possible to note that at the beginning the majority

of particles are coming from the 2 local minima. Nonetheless the series of automatically

selected quantiles leads, after 6 iterations, to accepted values which are coming from the

true posterior distribution, as shown in Figure 3.17(right). The third iteration is again
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the most important step, because of the large reduction of the tolerance the allows the

algorithm to consider those few particles coming from the global optimal value before

they are left out for the procedure.
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Figure 3.17: Extended example from [130], by considering a further local minimum
at θ = 15. (left) The accepted θ are plotted in orange against the corresponding
distance by iteration, (right) the particle distribution defined with the aABC–PMC
for the 5 iterations.The aABCpmc algorithm provides a series of tolerances ε1:5 =
(51.62, 50.91, 11.43, 0.00078, 1.42 ·10−4, 6.28 ·10−5). which leads to the true posteriors
posterior.

3.3.5 Lotka–Volterra model

The Lotka-Volterra model [88, 147] describes two interacting populations, and in its

original ecological setting these two populations represent, respectively, predators and

prey. The interaction between predators (y) and prey (x) is given by the two following

differential equations,

dx

dt
= ax− xy (3.11)

dy

dt
= bxy − y, (3.12)

where the parameter of interests are a and b.

Inference on this model using ABC was considered in [140], and we use their same

model, dataset, summary statistic and distance function in order to test the performance

of the proposed aABC–PMC algorithm. The dataset, (xobs, yobs), for the analysis was

obtained by using (3.11) and (3.12) with input values a = 1 and b = 1. The sample size
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is n = 8 for the two species, the distance function for comparing real data (x, y), with

the simulated dataset (xsim, ysim) is defined as:

d[(xobs, yobs), (xsim, ysim)] =
n∑
i=1

[
(xi,obs − xi,sim)2 + (yi,obs − yi,sim)2

]
. (3.13)

The forward model solves the deterministic set of differential equations defined above

for x and y, then Gaussian noise is added from N(0, 0.52) to get the simulated dataset,

(xsim, ysim). The prior distribution for both a and b is an Uniform with range [−10, 10],

and the proposed perturbation kernel for t > 1 is Kt = σU(−1, 1), with σ = 0.1. In

[140], the series of tolerances are manually selected as listed in Table 3.6.

For the proposed aABC–PMC procedure, the initial number of draws sampled from

the prior distributions is set at Ninit = 10 × 1000 in order to sufficiently exploring

the parametric space. A comparison between the two procedures is done as before, in

terms of the computational time and the total number of draws, with the results shown

in Table 3.6. Although aABC–PMC requires more iterations, the proposed procedure

outperforms [140]’s implementation of ABC–PMC in terms of total number of draws

and computational time.

The ABC posteriors for parameters a and b for the manually-selected tolerances of

[140] and the proposed aABC–PMC approach are displayed in Figures 3.18. Addition-

ally, ABC posteriors are displayed for two quantile-selected tolerances (0.5 and .75)2 for

comparison. Figures 3.18(right) shows the qt’s (black circles), acceptance rates (blue

triangles), and the 1/Ĉt’s (orange pluses) computed throughout the aABC–PMC run.

As the ABC posterior stabilizes, larger qt’s (i.e. smaller reductions of the tolerance) are

selected.

The series of tolerances are adaptively selected in such a way that the forward model,

which is computationally expensive, is drawn from fewer times than the manually-

selected approach from [140] and common quantile-selected approaches. Though the

final tolerance from [140], ε5 = 4.23, is smaller than the final tolerance of aABC–PMC,

ε8 = 6.27, the posteriors for a and b are very similar (Figure 3.18).

3.4 Concluding remarks

The ABC–PMC algorithms of [8] has lead to great improvements over the basic ABC

algorithm in terms of sampling efficiency. However, the user is required to set a sequence

2The ABC algorithm for the quantile-selected tolerances is stopped once the final number of draws
needed by the aABC–PMC is reached.
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Toni et al. (2009) aABC–PMC
t εt Drawst t εt qt Drawst
1 30 3541 1 24.24 10000
2 16 48402 2 21.65 0.48 5171
3 6 52471 3 18.81 0.47 4472
4 5 25097 4 11.81 0.26 4275
5 4.3 47521 5 8.63 0.36 3875

6 7.82 0.73 3845
7 7.18 0.72 4462
8 6.27 0.59 6949

Total 177032 (1074.842 sec.) 43049 (625.908 sec.)

Table 3.6: The mean number of draws needed in each iteration to reach N =
1000 accepted values for the ABC–PMC (left) and the aABC–PMC (right) algorithm,
obtained by running the procedure 20 times. In the aABC–PMC algorithm also the
quantile automatically selected through the iterations is available.
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Figure 3.18: Lotka–Volterra results. (left)(middle) comparison between the final
posterior distributions for a and b obtained using [140]’s manually selecting the toler-
ances (cyan), by fixing the quantile equal to .50 (green) and 0.75 (yellow), and by using
the aABC–PMC (blue). (right) The qt’s (black circles) generally increase through the
iterations, while the acceptance rate (blue points) mildly increases and then decreases
after iterations 5 and 6. Once the ABC posterior distribution stops improving as the
tolerance decreases, the series of 1/Ĉt’s defined for stopping the algorithm (orange
points) stabilizes.

of tolerances along with the total number of iterations. We propose a method for shrink-

ing the tolerances by adaptively selecting a suitable quantile based on the progression

of the estimated ABC posterior. The proposed adjustment to the algorithm is able to

deal with the possible presence of local optima values, and shrinks the tolerance in such

a way that fewer draws are needed from the forward model compared to commonly used

techniques for selecting the sequential tolerances. A criterion for stopping the algorithm

based on the behavior of the sequential ABC posterior distribution is presented. The

empirical performance of the examples considered suggest the proposed aABC–PMC al-

gorithm is superior to the manually-selected tolerance sequences and the fixed-quantile
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tolerance sequences in terms of computational time and the number of draws from the

forward model. We propose to use the proposed aABC–PMC algorithm for situations

where ABC is required and the number of parameters is not huge.







Chapter 4

Approximate Bayesian Computation

for Finite Mixture Models

In this Chapter we keep using the ABC–PMC algorithm, but rather than focusing

on its efficiency, an extension for working with finite mixture model is proposed.

Finite mixture models are used in statistics and other disciplines, but inference for

mixture models is challenging. The multimodality of the likelihood function and the

so–called label switching problem contribute to the challenge. When proposing an ex-

tension of the ABC–PMC algorithm as an alternative framework for inference on finite

mixture models, we need to make several decisions. In Section 4.1 we introduce the

basic definitions to work with a finite mixture model. In Section 4.2 we propose the

required extensions of the ABC–PMC algorithm, such as the perturbation kernel for

moving the mixture weights through the iterations (Section 4.2.2), the deterministic al-

gorithm for addressing the label switching problem (Section 4.2.3) and the definition of

informative summary statistics used for comparing the true and the generated dataset

into the ABC–PMC algorithm (Section 4.2.4). Examples are presented in Section 4.3

to evaluate the performances of the proposed ABC–PMC algorithm to work with finite

mixture models. Concluding remarks are outlined in Section 4.4.

4.1 Introduction

Mixture models have been used in statistics since the late 1800s when Karl Pearson

introduced them in an analysis of crab morphometry [101, 102]. Subsequently mixture

models have grown in popularity in the statistical community as a powerful framework

for modeling clustered data; the book by [93] provides a general overview of mixture

modeling while a more Bayesian perspective can be found in [57] or [89]. In recent

decades mixture models have become routinely applied in various applications [60, 69,

51
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83, 86, 117, 123, 153]. One reason for the general success of mixture models is due to

the opportunity of specifying the number of possibly different component distributions,

allowing for flexibility in describing complex systems [89].

The general definition for a finite mixture model with fixed integer K > 1 components

is:
K∑
i=1

fi · pi(y | θi), (4.1)

with mixture weights fi ∈ (0, 1) such that
∑K

i=1 fi = 1 and where pi(y | θi) are the

component distributions of the mixture, often parametrically specified with a vector of

the parameters, θi, that are the goal of the statistical inference.

Finite mixture models present computational and methodological challenges due, at

least in part, to the complex and possibly multimodal likelihood function, along with

the invariance under permutation of the component indices. The EM algorithm [39]

provides a method to numerically retrieve the maximum likelihood estimates, although

the possible multimodality of the likelihood function makes to find the global maximum

challenging [89]. Extensions of the EM algorithm have been proposed in order to improve

its speed of convergence and avoiding local optima [97, 99].

Bayesian approaches for mixture modeling have rapidly increased in the last two

decades [28, 89, 94, 119, 129]. Bayesian inference for mixture models often relies on

MCMC (Markov Chain Monte–Carlo) techniques, which can lead to the so–called label

switching problem [41, 71, 121, 133], because the likelihood function is invariant to the

re-labelling of the mixture components. Additionally the resulting posterior distribution

is multimodal and asymmetric, which makes to summarise the posterior distribution

using common statistics such as the posterior mean or the HPD interval unhelpful

[94, 133, 134].

A different framework for inference that can be explored in order to address the issues

related to the use of mixture models is ABC. ABC is often used in situations where

the likelihood function is complex or not available, but simulation of data through

a forward model is possible. With mixture models, though the likelihood function

is available, working with is difficult. Though it has its own challenges, ABC can

be successfully implemented to retrieve the posterior distributions of the parameters

of interest, providing an alternative to the MCMC are used. On top of that, ABC

allows statistical inference for a much broader class of models respect the ones for which

MCMC can be used. In particular, for all those cases in which the likelihood function is

intractable but mixture models are used, the following Chapter present a first attempt

to suitably extend the ABC–PMC algorithm to successfully run such analyses.
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4.2 Required extensions of the ABC–PMC algorithm

One of the main challenges when using the ABC–PMC algorithm for mixture models

is related to selecting an appropriate perturbation kernel for the mixture weights, since

the individual weights must have range between 0 and 1 and the weights must sum to 1.

Consequently, the usual Gaussian perturbation kernel is not a viable option because this

kernel can lead to proposed mixture weights that are not consistent with their support.

An additional challenge when using ABC–PMC for mixture models is due to the

label switching problem, and for reasons discussed below, this has to be addressed at

the end of each iteration.

Finally, in any ABC analysis the definition of both suitable summary statistics, s(·),
and a distance function, d, for comparing the true data yobs to the generated sample yprop

is needed and is crucial to get useful inference results [9]. The definition of summary

statistics is necessary because ABC suffers of the curse of dimensionality and using

the entire dataset is computationally unfeasible [13–15, 108]. In this Chapter, beyond

extending the ABC–PMC algorithm to work with finite mixture models, we propose the

Hellinger distance in order to compare the true data yobs to the generated sample yprop.

Details can be found in Section 4.2.4. While the proposed method is valid for yobs ∈ Rd,

for illustration purposes, we will focus on the one dimensional case where d = 1.

For the reasons above introduced, the original version of the ABC–PMC cannot be

used to work with mixture models. Our proposed extensions are discussed below, as

well as the definition of the finite Gaussian mixture model framework, which is the one

used to illustrate the performances of our proposed extended ABC–PMC algorithm.

Algorithm 3 summarizes our proposed ABC–PMC algorithm for the special case of a

finite Gaussian mixture model, and the details of the steps presented in the Algorithm

are discussed in the following subsections.

4.2.1 Finite Gaussian Mixture Models

A common choice for pi(· | ·) introduced in Equation (4.1) is the Gaussian distribu-

tion. This particular class of models, called Gaussian Mixture Models (GMM’s), is very

flexible and widely used in various applications [60, 86, 134]. Maintaining the notation

of Equation (4.1), a GMM is defined as:

K∑
i=1

fi · φ(y | θi), (4.2)
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where φ is the density function of the Normal distribution, θi = (µi, σ
2
i ) consists of the

vector of unknown means and variances for each of the K groups. Hence, the parameters

of interest are µ = (µ1, . . . , µK) ∈ RK , σ2 = (σ2
1, . . . , σ

2
K) ∈ RK

+ and the mixture weights

f = (f1, . . . , fK), that have been previously defined. More specifically, f = (f1, . . . , fK)

lies in the unit simplex, ∆K−1 ≡ {x ∈ RK
+ :

∑
j xj = 1} inside the unit cube [0, 1]K .

A common choice of the prior distribution for f = (f1, . . . , fK) is the Dirichlet distri-

bution of order K with hyperparameter δ = (δ1, . . . δK), where often δ ≡ (1, . . . , 1), as

proposed by [149]. Another common choice has been proposed by [124], who defined the

hyperparameter δ ≡ (1/2, . . . , 1/2); by using latter definition, the prior is marginally a

Jeffrey prior distribution.

The priors for the mean and the variance of the GMM can be defined as follows:

µi | σi ∼ φ(ξ, κ), σ−2
i ∼ Gamma(α, β), (4.3)

with mean ξ, variance κ, shape parameter α and rate parameter β. There are several

methods to select the hyperparameters, η = (ξ, κ, α, β), such as the Empirical Bayes

approach [29] and the “weakly informative principle” [117]. Both these options are

considered in the simulation study so as to be consistent with the original authors that

introduced the examples.

4.2.2 Perturbation kernel functions

As already pointed out in Chapter 2, one of the advantages of ABC–PMC over the

basic ABC algorithm is that, starting from the second iteration, rather than drawing

proposals from the prior distributions, proposed particles are drawn from the previous

step’s ABC posterior according to their importance weights. Then, instead of using

the actual proposed value that was drawn, it is perturbed according to some kernel.

There are a number of possible kernel functions, K(· | ·), to perturb the proposed

particles. [8] suggest a Gaussian kernel having mean on the selected element from the

previous iteration and a variance equal to twice the empirical variance of the previous

iteration’s ABC posterior. This is a reasonable choice if there are no constraints on

the support of the parameters of interest. More in detail, the variance of the Gaussian

perturbation kernel is defined as equal to twice the empirical variance of the previous

iteration’s ABC posterior for minimizing the Kullback–Leibler divergence between the

proposal distribution at iteration t and the target distribution, as shown in [8]. However,

when constraints on the parameter support are present, such as for the variances of the

mixtures or the mixture weights, a perturbation kernel should be selected so that it does
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Algorithm 3 ABC–PMC for Finite Gaussian Mixture Model

Select the number of components K
Select the desired number of particles N
Select the desired number of particles coming from the prior Ninit, Ninit > N , for
t = 1
if t = 1 then

for J = 1, . . . , Ninit do
Propose µ

(J)
1 = {µ1, . . . , µK}(J)

1 by drawing from prior µ∗k ∼ π(µ), k = 1, . . . , K

Propose σ2(J)

1 = {σ2
1, . . . , σ

2
K}(J)

1 by drawing from prior σ2∗

k ∼ π(σ2), k =
1, . . . , K

Propose f
(J)
1 = {f1, . . . , fK}(J)

1 by drawing from prior f ∗k ∼ π(f), k = 1, . . . , K

Generate yprop from
∑K

i=1 f
(i)
1 · φ(y | µ(i)

1 , σ
2(i)

1 )

Calculate distance d
(J)
1 = ρ {yobs, yprop}

end for
Put d1 in increasing order and set ε1 = d

(N)
1 , where (N) is the N th smallest distance

Keep corresponding elements µ
(1:N)
1 , σ2(1:N)

1 , f
(1:N)
1 , the proposed values correspond-

ing to the N smallest distances
Set weight W

(J)
1 = N−1

Address the label switching problem (§4.2.3)
else if 2 ≤ t ≤ T then

for J = 1, . . . , N do

Set εt = qth quantile of
{
d

(J)
t−1

}N
J=1

Set d
(J)
t = εt + 1

while d
(J)
t > εt do

Select
{
µ∗t , σ

2∗
t

}
from

{
µ

(J)
t−1, σ

2(J)

t−1

}N
J=1

with probabilities{
W

(J)
t−1/

∑N
K=1W

(K)
t−1

}N
J=1

Propose f
(J)
t according to the Dirichlet resampling functions (§4.2.2)

Propose µ
(J)
t ∼ φ(µ∗t , τ

2
µ,t−1)

Propose σ2(J)

t ∼ TruncNormal(σ2∗
t , τ

2
σ2,t−1), where TruncNormal is a Normal

distribution, centered at σ2∗
t , with variance τ 2

σ2,t−1 and truncated to the positive half-
line R+

Generate yprop from
∑K

i=1 f
(i)
t · φ(y | µ(i)

t , σ
2(i)

t )

Calculate distance d
(J)
t = ρ {yobs, yprop}

Address the label switching problem (§4.2.3)
end while
Set weight W

(J)
t ∝ π(µ

(J)
t , σ2(J)

t )/
∑N

K=1W
(K)
t−1 K

(
µ

(J)
t , σ2(J)

t | µ(K)
t−1, σ

2(K)

t−1

)
end for

end if
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not propose values outside the parameter’s support. In the following, we defined the

perturbation kernels in order to be consistent with the constraints on the parameters the

kernel is proposing, keep using as much as possible the original specifications by [8] (i.e.

defining the variance of the perturbation kernel equal to twice the empirical variance of

the previous iteration’s ABC posterior). We note however that, whatever perturbation

kernel has been defined, the importance weights are accordingly calculated, in order to

reflect the fact that to propose new candidates the prior distributions are not directly

used.

When moving the selected values for proposing candidates for the mixture weights,

not only is there the constraint that each mixture weight component must be in [0, 1],

but it is also required that
∑K

i=1 fi = 1, making the Gaussian kernel inappropriate.

In the first iteration of the proposed ABC–PMC algorithm, the mixture weights

{f 1
1 . . . , f

1
K} are directly sampled from the prior distribution, which is a Dirichlet(δ),

where δ = (δ1, . . . , δK). For t > 1, proposals are drawn from the previous step particle

system according to their importance weights. After randomly selecting a mixture

weight, f t−1, we want to “jitter” or move it in manner that preserves some information

coming from the selected particle, but not let it be an identical copy, leading to the

resampled mixture weight f t. This is carried out using Algorithm 4. The mathematical

assumptions required to run the proposed algorithm are discussed in the Appendix C.

Algorithm 4 Resampling the mixture weights

1. Draw Zt ∼ Gamma(δ+, 1), with δ+ =
∑N

i=1 δi and set ξti = Ztf t−1. Then {ξti}
ind∼

Gamma(δi, 1)
2. Select a real number p ∈ [0, 1]
3. Draw {Bt

i} ∼ Beta(pδi, (1 − p)δi) independently for i = 1, . . . , K, noticing that

{ξtiBt
i}

ind∼ Gamma(pδi, 1) are independent gamma-distributed random variables

4. Draw {ηti}
ind∼ Gamma((1− p)δi, 1) independently

5. Set ξt
∗
i = Ztf t−1

i Bt
i + ηti and f ti = ξt

∗
i /ξ

t∗
+ , with ξt

∗
+ =

∑K
i=1 ξ

t∗
i

From the steps outlined in Algorithm 4, we note that ξt
∗
i is the sum of two independent

random variables, with Ztf t−1
i Bt

i ∼ Gamma(pδ1, 1) and ηti ∼ Gamma((1 − p)δi, 1), so

that the resampled mixture weight f (t) ∼ Dirichlet(δ).

The parameter p is a fixed real number with range [0, 1] that determines how much

information to retain from f t−1. The choice of p has an impact on both the allowed

variability of the marginal ABC posterior distributions for the mixture weights and the

efficiency of the entire procedure. In particular fixing a p close to 1 leads to a Dirichlet

resampling in which the new set of mixture weights f t is close to the previous set f t−1

(if p = 1, then f t = f t−1). On the other hand a choice for p close to 0 implies that
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the information coming from f t−1 is weakly considered (for p = 0 a new set of particles

is drawn directly from the prior distribution and no information about f t−1 has been

retained). We found p = 0.5 to be a good choice to balance efficiency and variability

(i.e., it allows for some retention of information of the selected particle, but does not lead

to nearly identical copies of it). We would love for future studies to provide an extension

of Algorithm 4, where the parameter p is not fixed in advance by the researcher but

rather automatically retrieved by looking at the sequential performance of the ABC–

PMC algorithm. In this way we could speed up the convergence of the mixture weights

ABC posterior distributions to the true ones.

4.2.3 Algorithm for addressing the label switching problem

As noted earlier, a common problem arising when dealing with mixture models in the

Bayesian framework is the label switching. When drawing a sample from a posterior

(for both MCMC and ABC), the sampled values are not necessarily ordered accord-

ing to their mixture component assignments because the likelihood is exchangeable.

For example, suppose a particle {(f (J)
1 , . . . , f

(J)
K ), (µ

(J)
1 , . . . , µ

(J)
K ), (σ2(J)

1 , . . . , σ2(J)

K )} is ac-

cepted for a K component GMM. This particle was selected with a particular ordering

of the 1, . . . , K components with f
(J)
i , µ

(J)
i , and σ2(J)

i from the same mixture compo-

nent, i = 1, . . . , K. However, a new particle that is accepted will not necessarily follow

that same ordering of the i = 1, . . . , K components. Somehow the particles have to be

ordered in such a way that aligns different realizations of the i = 1, . . . , K components

in order to eliminate the ambiguity.

Several approaches have been proposed to address the label switching problem and

are known as relabeling algorithms. A first group of relabeling algorithms consists of im-

posing an artificial identifiability constraint in order to arbitrarily pick a parameter (e.g.

the mixture weights) and sort all the parameters for each accepted particle according to

that parameter’s order [41, 117]. However, the majority of the algorithms proposed to

address the label switching are deterministic (e.g Stephen’s method [133] and the piv-

otal reordering algorithm [89]). A third class of strategies, called probabilistic relabeling

algorithms, uses a probabilistic approach to address the label switching problem [132].

A detailed overview of current methods that try to address label switching is presented

in [100]. In Section 4.3.1, we provide an example that illustrates the problems arising

with the artificial identifiability constraint approach. Instead, we propose a determinis-

tic strategy for addressing the label switching by selecting a parameter that has at least

two well-separated components.
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Addressing the label switching problem is especially important for the proposed

sequential ABC algorithm because each time step’s ABC posterior is used as the proposal

in the subsequent step of the algorithm, meaning that the label switching has to be

addressed before using it as a proposal distribution. Algorithm 5 outlines the proposed

strategy, and is carried out at the end of each iteration. The key aspect of Algorithm 5 is

to select the parameter that has at least two well-separated components. To determine

this, each set of parameters (e.g. the means, the variances, the mixture weights), is

arranged an increasing order. For example, for each particle J , J = 1, . . . , N , µ(J)

would be ordered so that µ
(J)
(1) ≤ µ

(J)
(2) ≤ · · · ≤ µ

(J)
(K), with µ(i) as the ith order statistic;

let µ
(J)
(k) represent the kth smallest mean particle value. This is carried out for each set

of parameters with analogous notation.

The next step is to determine which set of parameters has the best separated com-

ponents values. We propose first shifting and scaling each set of parameters to be

supported within the range [0, 1] so that scaling issues are mitigated and the parameter

set values are comparable. One option for this adjustment is to use some distribution

function, such as a Normal distribution with a mean and standard deviation equal to the

sample mean and the sample standard deviation of the considered parameter set (e.g.

the sample mean for the µ’s is µ̄ =
∑K

k=1

∑N
J=1 µ

(J)
(k) , and the sample standard deviation

for the µ’s is sd(µ) =
√∑K

k=1

∑N
J=1(µ

(J)
(k) − µ̄)2). The resulting k-smallest standardized

value is, for the mixture mean, µ̃
(J)
(k) . This is carried out for each set of parameters with

analogous notation.

Then, for each component of each ordered and standardized particle a representative

value, such as a mean, is computed (e.g. ¯̃µ(k) = N−1
∑N

J=1 µ̃
(J)
(k) is the representative

value of the kth component of the mean parameter). This is carried out for each set

of parameters with analogous notation. The pairwise distances (pdist) between the

representative values within each parameter set is determined. The parameter set that

has the largest separation between any two of its representative values is selected for

the overall ordering of the particle system.

Other methods to address the label switching problem were considered. For example,

rather than sorting based on the parameter set with largest separation between any two

of its representative values, we considered basing the sorting on the parameter set with

the largest separation between its two closest representative values (i.e. the maximum

of the minimum separations); however, this sorting did not perform well empirically.

The issue seemed to be that parameter set with the largest separation between its two

closest representative values may actually have all of its components relatively close;

after multiple iterations, none of the components would separate out from the other
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Algorithm 5 Addressing the label switching problem

1. For each parameter set, obtain the ordered particles µ
(J)
(k) , σ

2(J)

(k) and f
(J)
(k) , k =

1, . . . , K, J = 1, . . . , N
2. Shift and rescale each set of parameters to be supported within the range
[0, 1], retrieving µ̃

(J)
(k) = Φ(µ

(J)
(k) , µ̄, sd(µ)), σ̃2(J)

(k) = Φ(σ2(J)

(k) , σ̄
2, sd(σ2)) and f̃

(J)
(k) =

Φ(f
(J)
(k) , f̄ , sd(f)), where Φ is the distribution function of a Normal distribution

3. Compute representative values (such as a mean) for each shifted and standardized

component, ¯̃µ(k),
¯̃σ

2

(k) and
¯̃
f (k)

4. Compute the pairwise distances (pdist) within each set of representative values,
¯̃µ(k),

¯̃σ
2

(k) and
¯̃
f (k)

5. The overall ordering of the particle system is based on the ordering of the parameter
set with the largest separation between any two of its representative values

components. This lead to iteration after iteration of components that remained a blend

of components rather than separating out into pure components. Overall, from empirical

experiments, the algorithm outlined in Algorithm 5 performed the best and thus is our

recommendation. However, we emphasize that alterations to this procedure may be

necessary for mixture models that have additional structure or correlations among the

parameters of the component distributions or to deal with multi–dimensional mixture

models.

4.2.4 Summary statistics

As already pointed out in Chapter 2, to compare the true data yobs with the generated

sample yprop in an ABC procedure is not computationally feasible. For this reason the

definition of a lower dimensional summary statistic is necessary. For mixture models,

due to the multimodality of the data, common summaries such as means or higher order

moments do not capture relevant aspects of the distribution. However, an estimate of

the density of the data will better account for its key features (e.g. the shape of each

component of the mixture).

We suggest using kernel density estimates of the generated sample, f̂yprop,n , and the

true data, f̂yobs,n , to summarize the data, and then the Hellinger distance (H) to carry

out the comparison. The Hellinger distance quantifies the similarity between two density

functions, f and g, and is defined as:

H(f, g) =

(∫ (√
f(y)−

√
g(y)

)2

dy

) 1
2

. (4.4)
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At each iteration t of the proposed ABC–PMC procedure, a proposed θ is accepted if

H(f̂yobs,n , f̂yprop,n) < εt, where εt is the tolerance.

4.3 Illustrative Examples

In this Section two simulation studies and a real application are introduced, to eval-

uate the behavior of the proposed ABC–PMC algorithm presented in Section 4.2. In

particular we are interested in evaluating the success of the procedure with respect to

the label switching problem and the reliability of the Hellinger distance as summary

statistic. To determine the number of iterations, a stopping rule was defined based

the Hellinger distance between sequential ABC posteriors; once the sequential Hellinger

distance dropped below a tolerance of 0.05 for each of the marginal ABC posteriors, the

algorithm was stopped.

4.3.1 Mixture Model with equal group sizes

The first example is taken from [94], which considered a GMM obtained by simulating

data coming from K = 2 groups of equal size which was designed to evaluate the

performance of a method proposed by [94] to address the label switching problem. A

total of 40 observations were simulated as follows:

Yi=1,...,20 ∼ φ(−20, 1), Yi=21,...,40 ∼ φ(20, 1). (4.5)

The variance is assumed known for both groups and hence the parameters of interest

are the mixture weights, f1 and f2 (with f2 = 1− f1), and the means µ = (µ1, µ2). The

prior distributions defined to run the analysis are the same as those used by [94], where

the values of the hyperparameters are η = (0, 100),

µi | σi ∼ φ(0, 100).

The prior for the mixture weights is the Dirichlet distribution with hyperparameters

δ = (1, 1),

f = (f1, f2) ∼ Dirichlet(1, 1).

The desired particles sample size was set to N = 5000 and the quantile used for shrinking

the tolerance was q = 0.5. The algorithm was stopped after t = 20 iterations, since

further reduction of the tolerance did not lead to an improvement by the ABC posterior
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distributions (evaluated by calculating the Hellinger distance between the sequential

ABC posterior distributions, as noted in the introduction to this Section).

Figure 4.1 displays the resulting ABC posteriors (the labels “ABC Posterior good LS”

and “ABC Posterior bad LS” are discussed later for illustrating the label switching issue)

and the corresponding MCMC posteriors, which are used as a benchmark to access the

performances of the proposed extended ABC–PMC. The ABC posteriors, when the label

switching is suitably addressed, closely match the MCMC posteriors. The summary of

the results presented in Table 4.1 demonstrates that the ABC posterior distributions

are a suitable approximation of the MCMC posteriors. The Hellinger distance between

the marginal ABC and the MCMC posteriors is also displayed in the last column of

Table 4.1; the Hellinger distance between the MCMC and the ABC posterior is 0.032

for the mixture weights and 0.21 for the means.
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Figure 4.1: Comparison between the ABC and the MCMC marginal posterior dis-
tributions for the two-component GMM example from [94]. The final ABC posteriors
obtained using the label switching (LS) procedure proposed in Section 4.2.3 are the
solid black lines (ABC Posterior good LS), and the naive approach that sorts based on
the mixture weights are the solid cyan lines (ABC Posterior bad LS). We recall that
only for the MCMC analysis the label switching problem has to be addressed. This is
done deterministically sorting the parameters according to the means of the mixture
model. The number of particles for the ABC analysis and the number of elements
kept from the MCMC analysis (after the burn-in) are equal to 5000.

As noted in Section 4.2.3, the label switching problem has to be carefully addressed

when using the ABC–PMC algorithm. For each time step following the initial step, the

previous step’s ABC posterior is used as the proposal rather than the prior distribution

so the procedure for addressing the label switching proposed in Section 4.2.3 is used
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Parameter (input) MCMC (SD) ABC (SD) H
f1(0.5) 0.5008(0.076) 0.5003(0.076) 0.032
f2(0.5) 0.4991(0.076) 0.4996(0.076) 0.032
µ1(−20) −19.72(0.18) −19.70(0.18) 0.21
µ2(20) 20.05(0.19) 20.10(0.19) 0.21

Table 4.1: Posterior means (and posterior standard deviations) obtained by using
the MCMC and the ABC–PMC algorithm for the two-component GMM example from
[94]. The fourth column indicates the Hellinger distance between the final ABC and
the MCMC posteriors. The number of ABC particles and the number of elements
retained from the MCMC chain (after the burn-in) are both equal to 5000.

at the end of each time step. In order to illustrate the consequences of incorrectly

addressing the label switching, we ran the proposed ABC algorithm on the example

proposed by [94], except rather than using the method proposed in Section 4.2.3, the

ordering of the particle system is carried out using the ordering of the mixture weights;

the mixture weights are equal in this example making them a poor choice for attempting

to separate out the mixture components. The resulting ABC posteriors are displayed in

Figure 4.1(cyan lines). The means, µ = (µ1, µ2), of the mixture components are shuffled

and not close to the MCMC posterior, while the mixture weights are sorted such a way

all the elements of f1 are smaller than 0.5 and all the elements of f2 are larger than 0.5.

We note however that the same undesirable results are retrieved in the MCMC analyses

if the label switching is not suitably addressed.

To complete this first example, [94] added a third component to the mixture defined

in Equation (4.5), by simulating five additional observations from a standard Normal

distribution and obtaining a three-component GMM with known variances. The ABC–

PMC algorithm was run with the same specifications as the first part of the example,

but required 25 time steps to achieve our stopping rule.

Figure 4.2 shows the MCMC and the ABC posteriors for the weights and the means of

the mixture components. The behavior of the ABC posterior distributions is consistent

with their MCMC benchmarks. A summary of the results presented in Table 4.2 shows

that the posterior means (and the posterior standard deviations) for the ABC posterior

distributions are consistent with the ones retrieved using MCMC. Finally, in the third

column, the Hellinger distances between the ABC and MCMC posteriors are provided.
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Parameter (input) MCMC (SD) ABC (SD) H
f1(0.44) 0.44(0.071) 0.44(0.071) 0.024
f2(0.12) 0.12(0.048) 0.12(0.048) 0.018
f3(0.44) 0.44(0.071) 0.44(0.071) 0.033
µ1(−20) −19.61(0.26) −19.73(0.22) 0.27
µ2(0) −0.33(0.45) −0.30(0.48) 0.17
µ3(20) 20.06(0.24) 20.19(0.22) 0.29

Table 4.2: Posterior means (and posterior standard deviations) obtained by using
the MCMC and the ABC–PMC algorithm for the three-component GMM example
from [94]. The fourth column is the Hellinger distance between the final ABC posterior
distribution and the MCMC posterior. The number of particles and the number of
elements retained from the MCMC chain (after the burn-in) are both equal to 5000.
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Figure 4.2: ABC and the MCMC marginal posterior distributions for the three-
component GMM example from [94]. The number of particles for the ABC analysis
and the number of elements kept from the MCMC analysis (after the burn-in) are
equal to 5000.

4.3.2 Mixture Model with unequal group size

Even in those cases in which the definition of the mixture model does not lead to

the label switching problem, a second category of issues related to the multimodality

of the likelihood function is present. This behavior has been studied from both a fre-

quentist and a Bayesian standpoint. In particular, [89] defined the following simple

two-component mixture model to illustrate the multimodality issue:

f · φ(µ1, 1) + (1− f) · φ(µ2, 1), (4.6)

where the weight f is assumed known and different from 0.5 (avoiding the label switching

problem). According to the specifications by [89], n = 500 samples were drawn from
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the model defined in Equation (4.6), with θ = (f, µ1, µ2) = (0.7, 0, 2.5). The bimodality

of the likelihood function (Figure 4.3) makes the use of both the EM algorithm [39] and

the Gibbs Sampler [41] risky, because their success depends on the set of initial values

selected for initiating the algorithms.

The Population Monte Carlo (PMC) sampler [27, 89] is used as a benchmark for the

proposed ABC–PMC solution. Figure 4.3 displays the log likelihood function (note the

two modes), and the final ABC posteriors with MCMC posteriors using good and bad

starting values along with the posteriors using the PMC algorithm. Table 4.3 lists the

means for the final ABC, MCMC, and PMC posteriors for µ1 and µ2, along with the

Hellinger distance between the final ABC–PMC posteriors and the PMC posterior. The

ABC–PMC posteriors closely match the PMC posteriors.
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Figure 4.3: (left) The log-likelihood surface of the Gaussian mixture model proposed
by [89]. There are two modes in the log-likelihood function, one close to the true value,
(0, 2.5), and a second local mode. (right) The marginal ABC, PMC, and MCMC
posterior distributions; the displayed MCMC posteriors include the results for good
initial starting values (MCMC Posterior (good initial choice)) and bad initial starting
values (MCMC Posterior (bad initial choice)).

4.3.3 Application to Galaxy Data

The galaxy dataset was introduced to the statistical community in [122] and since

than has been commonly used to test clustering methods. The data contain the reces-

sional velocities of 82 galaxies (km/sec) from six well separated sections of the Corona

Borealis region. It is worth noticing the analyses have been conducted using the version

used in [122] rather than the original dataset introduced in [107]; in the latter case, the
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Parameter (input) µ1(2.5) µ2(0)
PMC (SD) 2.29(0.17) −0.17(0.11)

ABC–PMC (SD) 2.29(0.17) −0.16(0.11)
MCMCgood (SD) 2.31(0.16) −0.16(0.11)
MCMCbad (SD) −0.18(0.29) 1.86(0.80)

H 0.051 0.048

Table 4.3: Mean posteriors (and standard deviations) obtained by using MCMC
(with good and poor choices for initializing the procedure), PMC and ABC algorithms
in the example by [89]. The last column indicates the Hellinger distance between the
final ABC posterior distributions and the PMC posteriors

dataset consists in 83 recessional velocities of galaxies (km/sec) from the same six well

separated sections of the Corona Borealis region. We finally note that the dataset used

here can be easily found loading the library MASS in the statistical software R.

In the last twenty years this dataset has been studied in a number of papers ([84,

117, 123, 148]). The recessional velocities of the galaxies are typically considered real-

izations of independent and identically distributed Normal random variables, but there

is discrepancy in their conclusions about the number of groups in the GMM; estimates

vary from three components [123] to six [117].

In this analysis, we focused on the model with three components [123], in order to

be consistent with [89] and [94]. For the hyper–parameters, we used the Empirical

Bayes approach suggested by [29]. Referring to Equation (4.3) and defining the ordered

dataset of the 82 galaxies as (x(1), x(2), . . . , x(n)), η = (ξ = m,κ = r
2
, α = 2, β = 50/r2),

where m =
x(1)+x(n)

2
(i.e. the mid point of the dataset) and r = (x(n) − x(1)) (i.e. the

range of the dataset). Additionally, since to each recessional velocity was also assigned

a measurement error, the ABC forward model has been modified to take into account

this information. In order to include the measurement errors in the forward model, each

simulated recessional velocity is assigned one of the observed measurement errors. The

simulated and observed recessional velocities were matched according to their ranks,

and the measurement error of the observations were assigned to the simulated data ac-

cording to this matching. Then, Gaussian noise was added to each simulated recessional

velocity with a standard deviation equal to its assigned measurement error. The goal for

presenting this example is not suggesting ABC over MCMC when measurement errors

are available, since MCMC is still possible [63, 78, 118]. The goal of this study is to test

the proposed extensions of the ABC–PMC algorithm in a more complex and realistic

scenario respect the simulation examples presented before in this Section.

The posterior means for each component’s parameters are listed in Table 4.4. The

third component was found to have a weight equal to 0.057, and mean and variance equal
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Parameter Marin et al. (2005) Mena et al. (2015) ABC–PMC ABC–PMC(with errors)

f1 0.09 0.087 0.089 0.087
f2 0.85 0.868 0.85 0.86
f3 0.06 0.035 0.061 0.053
µ1 9.5 9.71 9.36 9.51
µ2 21.4 21.4 21.32 21.33
µ3 26.8 32.72 32.94 32.58
σ2

1 1.9 0.21 0.40 0.20
σ2

2 6.1 4.76 5.32 4.79
σ2

3 34.1 0.82 1.16 0.62

Table 4.4: Comparison between the posterior means obtained by [89], [94] (MCMC
algorithm) and the ABC–PMC algorithm for the Galaxy data. The results of the
ABC–PMC analysis including measurement errors are displayed in the fourth column.
The proposed ABC–PMC estimates are comparable with the ones obtained by [94],
while [89] obtained different results, in particular for the third component of the
mixture.

to 32.94 and 1.16, respectively. The main difference between the proposed ABC–PMC

estimates and the estimates found by [89], in which the authors also fixed the number

of components equal to K = 3, is about the retrieved mean and retrieved variance for

the third component. Anyway, the proposed ABC–PMC estimates are comparable with

the ones obtained by [94].

By using the additional information about the measurement errors, the proposed

ABC–PMC algorithm can provide a more accurate evaluation of the dataset. Includ-

ing measurement errors in the forward model affects the resulting ABC posterior as

reported in Table 4.4 and the relative estimates plotted in Figure 4.4(orange line). In

particular, the variance of the estimated posterior means are smaller, which is a positive

consequence of appropriately accounting for the extra uncertainty in the data.

4.4 Concluding Remarks

The recent popularity of ABC is, at least in part, due to its capacity to handle

complex models. Extensions of the basic algorithm have lead to improved efficiency of

the sampling, such as the ABC–PMC algorithm of [8]. We proposed an ABC–PMC

algorithm that can successfully handle finite mixture models. Some of the challenges

with inference for finite mixture models are due to the complexity of the likelihood

function including its possible multimodality and the exchangeability of the mixture

component labels, leading to the label switching problem. Fortunately, ABC can handle

complicated likelihood functions, but the label switching problem must be addressed.

We suggested a procedure to address the label switching problem within the proposed
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Galaxy data (Roeder 1990)
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Figure 4.4: Histogram of the recessional velocity of 82 galaxies and the estimated
three-component Gaussian mixture models for each study. The posterior means for
the mixture weights, means and variances used are displayed in Table 4.4. It is possible
to note that both the results coming from the extended ABC–PMC algorithm (blue
and orange lines) and from [94] (green line) allow for a clear third component in
the mixture. The results obtained by [89] (red lines) find a third component whose
variance is in particular equal to σ2

3 = 34.1, making the third cluster not appreciable
in the Figure.

ABC algorithm that works well empirically. Some additional challenges with using

ABC for mixture models include the selection of informative summary statistics and

the definition of a kernel to move the mixture weights, since they are constrained to

be between 0 and 1 and must sum to 1. For the summary statistics, we proposed to

use the Hellinger distance between kernel density estimates of the real and simulated

observations; this allows the multimodality of the data to be accounted for and compared

between the two sets of data. We proposed a Dirichlet resampling algorithm to move the

mixture component weights that preserves some information from the sampled particle,

improving as well the efficiency of the ABC–PMC procedure (by not having to draw from

the same Dirichlet prior at each time step). The mathematical assumptions required to

run the proposed Dirichlet resampling algorithm are discussed in Appendix C.

The proposed ABC algorithm has been explored and tested empirically using popular

examples from the literature. The resulting ABC posteriors were compared to the

corresponding MCMC posteriors, and in all the considered cases the proposed ABC and

MCMC posteriors were very similar. However, we recall that for the MCMC analyses

good initial points were chosen to begin with the algorithm and the label switching

was addressed by using deterministic approaches. We also considered, as application

from real data, the recessional velocities of Galaxies from the Corona Borealis Region

[122], which is commonly used to test the performances of a procedure that works
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with mixture models. An advantage of ABC over other commonly used methods is

that the forward model can be easily expanded to better represent the physical process

that is being modeled. For the galaxy dataset, measurement errors are available in

the original dataset, but are not generally used when analyzing the data. We slightly

extended the proposed ABC–PMC forward model used in this example to include the

measurement errors, which provides a more accurate assessment of the uncertainty in

the data. Though the presented examples focused on one–dimensional GMM’s, the

component distributions can be easily changed to other distributions in the ABC forward

model. Overall, the proposed ABC–PMC algorithm performs well and is able to recover

the benchmark MCMC posteriors suggesting that ABC is a viable approach to carry

out inference for finite mixture models.







Chapter 5

Measuring precise radial velocities

and cross-correlation function

line-profile variations using a Skew

Normal distribution

In this Chapter we highlight one of the results of the collaboration between the

Statistics and Data Science Department and the Astronomy Department at Yale Uni-

versity and the Department of Physics and the University of Geneve, where in the last

years several researches have been done in the attempt to detecting and characterizing

“Earth–like” extrasolar planets.

To detecting and characterizing extrasolar planets, direct techniques cannot be used

since stars are much brighter than planets and also because the distance between those

stars and the Earth is too large in order for us to retrieve a direct image of a planetary

system. For these reasons indirect techniques are used where, looking at some particular

behavior of the star, the presence of one or more planets is inferred. In particular two

aspects of the star have been largely analyzed in recent years: the transit method

evaluates photometric variations of the star (e.g. the Kepler project [21]), while the

radial velocity method measures spectroscopic variations of the star [143]. Therefore,

the presence of an extrasolar planet can be better understood by looking at the impact

that its presence leads on photometric and spectroscopic aspects of the star. In this

Chapter we focus on the radial velocity technique.

When working with radial velocities (RV’s), the main limitation to the detection of

small-mass exoplanets is not anymore the precision of the instruments used, but how to

properly address the different noises coming from the stars we are observing [47]. In fact

stellar oscillations, granulation phenomena and stellar activity introduce spurious RV’s

71
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signals [40, 45, 49, 112, 126] that are beyond the precision of m s−1 reached by the best

state–of–the–art high-resolution spectrographs. It is therefore mandatory to understand

as best as possible spurious signals coming from the intrinsic behavior of the star and

to find ways to correct from them if in the near future we want to detecting Earth-twin

planet using the RV technique. This goal is even more crucial now that instruments like

EXPRESS [56] and ESPRESSO [104] should have the stability to theoretically detecting

signals coming from Earth-twin planets. However, if solutions are not found to mitigate

the impact of stellar activity when estimating RV’s, the detection and the confirmation

of potential Earth-twins planets will remain extremely challenging.

In Section 5.1 we outline the technological and methodological state–of–the–art chal-

lenges to detecting exoplanets, introducing the most common tools used by cosmologists.

In particular we rigorously define the bisector inverse slope span, the most common used

indicator to capture spurious variations in RV’s caused by stellar activity. In Section 5.2

we introduce the Skew Normal distribution, motivating its use to fit the Cross Corre-

lation Function. In Section 5.3 we show that the Skew Normal distribution provides

a suitable density of the observed Cross Correlation Function and we study how the

parameters of the Skew Normal relate to the radial velocity, the full width at half

maximum and the bisector inverse slope span of the Cross Correlation Function. In

Section 5.4 we present a simple model to correct the originally estimated set of RV’s

from spurious variations caused by stellar activity, aimed by the goal to retrieve a set of

new RV’s having information only about the (possibly) pure doppler shift caused by an

exoplanet. In Section 5.5, we compare on real observations the information provided by

the Skew Normal distribution with other common indicators. In Section 5.6 we derive

error bars for the different parameters of the Cross Correlation Function and finally we

discuss our results in Section 5.7.

5.1 Introduction

The RV of a star is defined as the velocity of the center of mass of the star along our

line of sight [56]. The information on the RV of a star is contained in the wavelength

position of its spectral lines. In particular, the RV of a star can be precisely estimated

by measuring the doppler shift variations produced on the spectral lines of the star.

This operation has done by using an instrument called spectrograph. For spectrographs

that are not stabilized in temperature and pressure, the iodine technique is used, where

the light of the star passes through a iodine cell before getting into the spectrograph

to imprint the absorption spectrum of iodine on top of the stellar spectrum (the High
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Resolution Spectrograph HRS [141], the Tull spectrograph [142], HIRES [145] on the

Keck 10-m telescope and the Hamilton spectrograph [144] at Lick Observatory). In this

case, if the spectrograph shifts because of changes in the atmospheric conditions, the

iodine and the stellar spectrum are shifted in the same way. This leads to complications

when reducing the data, because of the operation of “de–correlation” between the iodine

spectrum and the stellar spectrum. On the other hand, for spectrographs that are

stabilized, the spectrum of a calibration lamp is recorded close to the stellar spectrum on

the CCD, which prevents contamination of the stellar spectrum (SOPHIE [22], HARPS-

N [34], the High Accuracy Radial Velocity Planet Searcher (HARPS) [106], CORALIE

[113], CARMENES [114]). When using this second class of spectrographs, reducing

the data is easier since the stellar spectrum is not contaminated with iodine absorption

lines.

In the case of spectrographs that are stabilized, the RV of the star is obtained at

first by correlating the stellar spectrum with a synthetic [5, 103] or an observed stellar

template [2], which gives an average line profile, generally called Cross Correlation

Function (CCF). Since the exact regions of the mask associated with the absorption lines

depend on the atmospheric properties of the star, there are 3 available different masks

for 3 different spectral types (G2, K5 and M5). Further details about the operations

required in order to obtain the CCF can be found in [24]. Once the CCF has been

retrieved, a Normal density has fitted to this average line profile. The first two estimated

parameters of the fitted Normal density are the mean, that defines the RV of the star

and the variance, that defines the Full Width at Half Maximum (FWHM) of the line

profile. The CCF technique allows for averaging out the RV information of thousands of

lines in a stellar spectrum and therefore reaches a very high signal-to-noise ratio (SNR),

which is essential to retrieve a precise set of RV’s.

Among the different spurious stellar signals we are aware of, the one that is the most

difficult to characterize and to correct for is the signal induced by stellar activity. Stellar

activity is responsible for creating for instance magnetic regions on the surface of the star;

these magnetic regions change locally the temperature and the convection of the star,

inducing spurious RV’s variations [46, 96]. In theory, it should be easy to differentiate

between the pure Doppler-shift induced by a planet, that will shift the entire stellar

spectrum and stellar activity, that modifies the shape of spectral lines and by doing that

creates a spurious shift of the stellar spectrum [40, 46, 67, 80, 81, 87, 96, 126]. However,

on quiet GKM dwarfs, the main target for precise RV’s measurements, stellar activity

induces spurious variations of few m s−1 . This corresponds physically to variations

smaller than 1/100th of a pixel on the detector. Moreover, the convection in external
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layers of solar type stars is responsible for the granulation pattern than can be seen

at high spatial resolution on the surface of the Sun. This behavior of the star changes

the Normal shape profile of the spectral lines, that becomes asymmetric with a“C”-

shaped profile [43]. The strength of the asymmetry depends on the velocity of the

convection (approximatively 300 m s−1 for the Sun) but also on the depth formation of

spectral lines [61]. Stellar activity is responsible also for the appearance of dark spots

and bright faculae on the photosphere of the star, breaking the flux balance between

the red-shifted and the blue-shifted halves of a rotating star. These active regions

induce an asymmetry on the spectral lines and thus on the CCF. As the star rotates,

spots and faculae move across the stellar disk, modifying the asymmetries of the line

profiles and thus producing an apparent doppler shift [17, 40, 67, 80, 81, 126]. Spots

and faculae are also regions where the magnetic field is strong. A strong magnetic fields

reduces the stellar convection, modifying as well the asymmetry of the spectral lines

[24, 30, 43, 46, 87, 96].

Since the CCF is an average of all the spectral lines, where some of them are strongly

asymmetric and other ones are not, its asymmetry is rather small, which motivates the

historical use of the Normal density as a reasonable model to fit the CCF. If the star has

low levels of activity, the degree of the asymmetry produced by convection is constant

as a function of time. However, this asymmetry slightly modifies the estimated RV’s

of the star, reducing the accuracy of the measurements and potentially leading to a

false positive detection [24]. Stellar activity induces spurious variations in the RV’s

by modifying the asymmetry on the spectral lines, while an orbiting companion only

induces a pure doppler shift on the spectral lines without modifying their shapes nor

their widths. Therefore, assuming that there are not instrumental systematic errors,

stellar activity will induce a variation in the asymmetry and in the width of the CCF.

The asymmetry of the CCF is commonly retrieved by calculating at first the bisector

of the CCF [146] and then deriving from it further indicators such as the bisector span

[66, 138], the curvature of the bisector [66] or the bisector inverse slope span (BIS

SPAN)[112].

5.1.1 The BIS SPAN parameter for measuring stellar activity

The bisector of the CCF is defined as a measure of the general asymmetry of the

lines of a spectrum [146]. A rigorous definition of the bisector of the CCF can be found

in [105]: “[. . . ] the locus of median points midway between equal intensities on either

side of a spectral line, thereby dividing it into two halves of equal equivalent width.”

For each point on the left of the line profile, a matching point on the right is found
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with a cubic-spline interpolation [138]. The choice about how many points to consider

to calculate the bisector of the CCF is not straightforward. Ad noted in [138]: “They

(the points) were chosen on the basis of their strength and relative freedom from blends.

Strong lines are needed to get enough points across the profile to define the bisector,

and their steeper slopes also mean smaller bisector errors. Weak blends and spurious

noise can render a bisector or portion of a bisector unusable. If we were to demand that

the lines be completely free of blends, none would remain. By averaging the bisectors

for several lines we reduce the effect of unknown blends.”

The most used indicator derived from the bisector of the CCF is the BIS SPAN. In

particular, according to [24, 105], the BIS SPAN is defined as the difference in bisector

velocity between upper and lower regions of the CCF, avoiding wings and cores of the

line profile. The BIS SPAN is computed by calculating the so–called mean velocity B(d)

at the depth d between both sides of the CCF peak:

B(d) =
vl(d) + vr(d)

2
, (5.1)

where vl(d) corresponds to the velocities located on the left side from the minimum of

the CCF peak and vr(d) corresponds to the velocities located on the right side from

the minimum of the CCF peak. The mean bisector is then calculated at two depth

ranges, identified respectively with the terms BOTTOM, from d ∈ (0.1, 0.4), and TOP,

from d ∈ (0.6, 0.85), as shown in Figure 5.1. In this way the following two expectation

quantities are defined:

V̄t = E[B(d)], ∀d ∈ (0.1, 0.4), V̄b = E[B(d)], ∀d ∈ (0.6, 0.85). (5.2)

The BIS SPAN is finally defined as:

BIS SPAN = V̄t − V̄b. (5.3)

Several authors derived indicators that are more sensitive to changes in the asymme-

try of the CCF than the BIS SPAN. Recently, [18] proposed a new indicator named Vspan

to calculate the asymmetry of the CCF that is more sensitive than the BIS SPAN in

cases having low SNR. In another study, [54] invistigated the use of two new indicators,

bi-Gaussian and Vasy. The authors were able to show that when using bi-Gaussian, the

amplitude in asymmetry is 30% larger, allowing for the detection of smaller-amplitude

correlations between this statistics and the estimated RV’s. They also demonstrated

that Vasy seems to be the best indicator to capture changes in the asymmetry of the
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Figure 5.1: (left) The BIS SPAN of the CCF. V0 is an arbitrary offset. Note the
definition of the boundaries for the computation of (V̄t and V̄b) [112]. (right) The
bisector of the CCF for the star HD166435, constructed with a template selecting
only the weak and non saturated lines. This profile represents the mean spectral-line
profile of the lines selected by the template (i.e. the CCF). The original image was
originally shown by [66].

CCF at high SNR, as its correlation with the retrieved RV’s is stronger than any other

asymmetry indicator that has until now been proposed.

A crucial step of the analysis is therefore to retrieve precise and informative statistics

about stellar activity able to show strong correlations with the estimated RV’s. In fact,

as a RV signal is induced by activity, generally a strong correlation will be observed

between the RV and chromospheric activity indicators like log(R′HK) or H-α [19, 48, 120],

but also between the RV and the FWHM of the CCF or its BIS SPAN [19, 45, 111,

112]. A common strategy is that, when searching for a planetary signal, in addition

to a Keplerian function (i.e. the function taking information about the presence of an

extrasolar planet) the model includes in addition linear dependancies with the log(R′HK),

the FWHM and the BIS SPAN [47, 52]. It is also common to add a Gaussian process to
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the model in order to account for the correlated noise induced by stellar activity. The

hyperparameters of the Gaussian process are generally trained on the different activity

indicators [68, 115].

The major downside for all these different analyses is that the asymmetry of the CCF

is retrieved as a second and separated operation with respect to the first operation that

allows the researcher to estimate the RV’s of the star (i.e. by fitting a Normal density

and then retrieving its mean). The latter consideration is the reason why quantities

such as BIS SPAN, Vspan and Vasy can miss relevant information about stellar activity.

On top of that, the procedure discussed above to retrieve the BIS SPAN and in par-

ticular the steps required by Equation (5.2) are not free from uncertainties, as pointed

out in [24]. We note also that both selecting the number of points to estimate non

parametrically the bisector of the CCF and to fix the levels of the depth d to calcu-

late the mean bisector though Equation (5.1) are not unique straightforward choices.

It follows that, consequently, different BIS SPAN’s for the same analyzed CCF can be

retrieved, leading potentially to different correlations between them and the estimated

RV’s. Moreover, when analyzing slow rotators stars such as the Sun, because of the

limited spectral resolution of the spectrographs and the limited precision in retrieving

the corresponding RV’s, measuring the asymmetry of the CCF becomes challenging,

resulting in complications to detecting very small–mass planets with the RV technique.

As a summary of the discussions introduced in this Section, the estimations respec-

tively of the RV and the FWHM of a CCF have done separately from the evaluation of

its asymmetry. The asymmetry of the CCF has usually estimated by retrieving the BIS

SPAN. Anyway, all the parameters of interest of the CCF are correlated when stellar

activity is dominant and therefore performing a step–by–step approach makes it dif-

ficult to correctly estimating the errors on the different parameters. In addition, the

Normal density cannot take into account the natural asymmetry of the CCF, leaving

correlated noise in the residuals. Finally, as already noted, we know that for solar-type

stars and cooler dwarfs, the bisector of the CCF has a “C”-shape due to convective

blueshift [43, 61]. Therefore, fitting the CCF using a model that naturally includes

an asymmetry, like the Skew Normal density, should in principle lead to more precise

results, providing at the same time more information about the spurious variations in

RV’s caused by stellar activity. For all these reasons we propose to conduct the en-

tire analysis by fitting a Skew Normal density to the CCF, which naturally includes a

skewness parameter [3].
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5.2 The Skew Normal distribution

The Skew Normal (SN) distribution is a class of probability distributions which

includes the Normal distribution as a special case [3]. The SN distribution has, in

addition to a location and a scale parameter analogous to the Normal distribution’s

mean and standard deviation, a third parameter which describes the asymmetry, or the

skewness, of the distribution. Considering a random variable Y ∈ R (where R is the real

line) which follows a SN distribution with location parameter ξ ∈ R, scale parameter

ω ∈ R+ (i.e., the positive real line), and skewness parameter α ∈ R, its density at some

value Y = y can be written as

SN(y; ξ, ω, α) =
2

ω
φ

(
y − ξ
ω

)
Φ

(
α(y − ξ)

ω

)
, (5.4)

where φ and Φ are respectively the density function and the distribution function of

a standard Normal distribution and α ∈ R is the skewness parameter which quantifies

the asymmetry of the SN. We then write Y ∼ SN(ξ, ω2, α) to mean that the random

variable Y follows the noted SN distribution. Examples of SN densities under different

skewness parameter values and the same location and scale parameters (ξ = 0 and

ω = 1) are displayed in Fig. 5.2. The usual Normal distribution is the special case of

the SN distribution when the skewness parameter, α, is equal to 0. This can be seen

from Equation (5.4): if α = 0 then Φ
(
α(y−ξ)
ω

)
= Φ(0) and this is the probability for a

standard Normal random variable to be less than or equal to 0, which is 0.5. The 0.5

cancels with the 2 in the denominator and what remains is the usual Normal density,
1
ω
φ
(
y−ξ
ω

)
.

For reasons related to the interpretation of the parameters in Equation (5.4) and well

known computational issues with estimating α near 0 [3], a different parametrization is

used, which is referred to as the centered parametrization (CP). We will be using the

CP in this work, which includes a mean parameter µ, a variance parameter σ2, and a

skewness parameter γ. In order to define the CP, we need to express the CP parameters

(µ, σ2, γ) as a function of the ones used in the Equation (5.4) with (ξ, ω2, α) by

µ = ξ + ωβ, σ2 = ω2(1− β2), γ =
1

2
(4− π)β3

(
1− β2

)−3/2
, (5.5)

where β =
√

2
π

(
α√

1+α2

)
.

By using Equation (5.5), the new set of parameters (µ, σ2, γ) provides a more clear

interpretation of the behavior of the SN distribution. For the α values used in Figure 5.2,

the corresponding values of µ, σ2, γ are displayed in Table 5.1. In particular, µ and σ2
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Figure 5.2: Density function of a random variable Y ∼ SN(ξ, ω2, α) with location
parameter ξ = 0, scale parameter ω = 1 and different values of the skewness parameter
α indicated by different colors and line types. Note that the solid black line has an
α = 0, making it a Normal distribution.

are the actual mean and variance of the distribution (rather than simply a location and

scale parameter), and γ becomes the skewness parameter for evaluating the asymmetry

of the SN.

Beyond the mean of the SN, it is convenient to introduce a second location parameter

that will be largely used in the analyses: the median. Since the SN is an absolutely

continuous random variable, its median is defined as that value m such that∫ m

−∞
SN(y; ξ, ω, α) =

1

2
, (5.6)

where SN(y; ξ, ω, α) follows Equation (5.4).

Further details about the parametrization from Equation (5.4) (called Direct

Parametrization or DP), the CP and general statistical properties of the SN are treated

in rigorous mathematical and statistical viewpoints in the book by [4]. We note how-

ever that closed form expressions to estimate the parameters of the SN are not avail-

able, either using the maximum likelihood estimate or using the least squares algorithm.

Therefore, the estimation must be done numerically. In the present work we used the

quasi-Newton numerical optimization method [152].
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α µ σ2 γ
-3 -0.757 0.427 -0.667
0 0.000 1.000 0.000
2 0.714 0.491 0.454
6 0.787 0.381 0.891
10 0.794 0.370 0.956

Table 5.1: CP values, (µ, σ2, γ), corresponding to the α values from Fig. 5.2 (with
location parameter ξ = 0 and scale parameter ω = 1) using Equation (5.5). Values
are rounded to three decimal places.

5.3 Fitting the Skew Normal density to the CCF

The SN density shape is used to model the CCF. In particular we define the following

function fCCF (yi) to fit the CCF by using the least-squares algorithm:

fCCF (yi) = C + A× SN(yi;µ, σ
2, γ), i = 1, . . . , n (5.7)

where, beyond the previously defined tern (µ, σ2, γ), C is an unknown offset fitting the

continuum of the CCF, A is an unknown amplitude parameter known also with the name

“contrast”, y1, . . . , yn are the set of RV’s considered for the CCF and finally n is equal to

the number of points of the CCF. Note that the CCF is expressed in flux as a function

of the lag of the cross-correlation template, expressed in RV. We note moreover that

only the standard deviation of each data point is reported. The correlated noise is not

coming from calibration but from the activity of the star. In order to take into account

this information, we tried at first to consider an heteroskedastic function of the variance

of the type var(Yi) = σ2 + σ2
i , i = 1, . . . , n, where σi represents the measurement error

for each available point. By doing that we hoped to interpret the parameter σ2 as an

estimate of the pure variability of the CCF. Unfortunately, the problem we are trying

to address consists in fitting a SN distribution to a set of points (namely the CCF); as

a consequence of this, the parameter σ2 is not actually catching the pure variability of

the CCF also when considering the heteroskedastic function of the variance as the one

defined above. Since there is not a general model to account for stellar activity, deriving

the RV’s and other parameters from observed spectra is beyond the goals of the present

work. Therefore in the presented analyses we did not use the standard deviation of each

data point available from the pipeline.

When using the least square estimates to retrieve the best set of parameters using

the SN density, for few CCF’s the quasi-Newton algorithm leads to an error, caused

by the fact that γ exceeds its range, which is γ ∈ (−0.995, 0.995). Analyzing further
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this problem, we found out that some of the CCF’s selected after a preliminary step of

cleaning are probably the result of an error coming from the operation of cross correlation

between the stellar spectrum and the template. When using the SN density, having an

improperly shaped CCF can lead to problems with estimating γ. In fact, when using the

quasi-Newton method (and almost any other numerical method for which the calculation

of the Hessian matrix is required), unexpected behaviors of the CCF can lead to issues in

properly defining γ, leading to an error. We note moreover that when using the Normal

density to fit those particular improperly shaped CCF’s, no errors using the least squares

are returned, but the estimates for the amplitude parameter A and for the variance σ2

result much larger than the expected ones (based on CCF’s close in time to the studied

one). In Figure 5.3 and Figure 5.4 those few CCF’s for which the least squares algorithm

implemented by using the SN density leads to an error are displayed, respectively for the

stars Alpha Centauri B and Tau Ceti. It is straightforward to notice the difference with

an expected suitable CCF, comparing these CCF’s with the one for example presented

in the right plot of Figure 5.1. We note also that a similar problem when using the

SN distribution in an optimization problem was found in [53]. In this case the authors

suggested that this problem could be caused by having a small sample size n, suggesting

to perform the optimization problem by using a grid of starting values, in the attempt

to ensure that the true global maximum was reached. In our analyses, depending on

the star, the number of points of each CCF varies between n = 40 and n = 50 points

and we have not experienced problems in retrieving the best set of parameters because

of the sample size.

In conclusion, since the problems related to the estimation of the parameters of

interest of the CCF are related to the operation of cross correlation between the stellar

spectrum and the template, we decided to discard those few CCF’s that are not actually

matching the shape of a line profile. We emphasize on the fact that we discarded these

CCF’s because their improper shapes clearly suggest an error during the operation of

cross correlation between the stellar spectrum and the template. In particular all the

CCF’s for which the least squares algorithm returned an error have got an extremely

low SNR (SNR < 10). Moreover, only few CCF’s among the thousands that have been

analyzed present an improper shape; therefore discarding those few CCF’s does not

compromise the achievability of the goals of the analysis.

In the following of the Chapter, we define N mean RV as the mean of the Normal

density fitting the CCF. Concerning the fit of the CCF using the SN, we present at

first 2 indicators that define the RV of the star: the mean of the SN, defined as SN

mean RV and the median of the SN, defined as SN median RV (i.e. looking at Equation
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Figure 5.3: Among the 1812 analyzed CCF’s for Alpha Centauri B, 4 CCF’s leads to
problems when using the SN distribution. For all the CCF’s, the shape of the profile
is not recognizable and the numerical minimization using the SN distribution leads to
γ exceeding its range, forcing the procedure, correctly, to arrest.

(5.6), m = SN median RV). We will discuss advantages and limits for both these choices

through the examples presented in Section 5.5. Concerning the width of the CCF,

we use the FWHM of the Normal, which is 2
√

(2 ln 2)σ. The width of the SN, SN

FWHM, is defined in the same way. We note that SN FWHM does not correspond

to the width of the SN distribution at half maximum like in the Normal case, but we

decided to use this same definition because we have not found any remarkable difference

between a numerical estimation of the FWHM of the SN and the approximation derived

by 2
√

(2 ln 2)σ. We also note that, to compare the SN fit to the Normal fit, we are

interested mainly in evaluating the ratio between SN FWHM and FWHM, resulting

therefore in the ratio between the variances estimated respectively with the SN and

Normal densities. Being a Normal density symmetric, there is not such a parameter

that evaluates the asymmetry of the distribution, so the BIS SPAN is used. The BIS

SPAN is compared with the asymmetry parameter of the SN under CP, γ, defined in
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Figure 5.4: Among the 7935 analyzed CCF’s for HD10700, 7 CCF’s leads to prob-
lems when using the SN distribution. It is worth noting that all these CCF’s = {9158,
. . . , 9164} are consecutive. For all of them, the profile does not follow to the shape
of a proper absorption line.

the analyses also as SN GAMMA.

To test the strength of the correlation between the estimated RV’s and the differ-

ent indicators used to evaluate stellar activity, we calculated the Pearson correlation

coefficient, which in its general form is defined as:

R(x, y) =
cov(x, y)

σ(x), σ(y)
, (5.8)

where x and y are two quantitative variables, cov(x, y) indicates the covariance between

x and y, and σ(x) and σ(y) represent their standard deviations. A p−value for the sta-

tistical test having null hypothesis H0 : R = 0 is provided, along with a 95 % confidence

interval for R.
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5.4 Radial Velocity correction function for stellar

activity

Exoplanets will produce only variations in RV’s induced by a pure doppler shift

on the stellar spectra. Stellar activity, on the contrary, does not produce a blueshift

or redshift of the spectra, but creates spurious RV’s signal by modifying the shape

of the spectral lines and therefore of the CCF. To track changes in the shape of the

line profile, the general approach consists in using the FWHM, the BIS SPAN or the

indicators introduced by [18, 54], which provide an information on the average width

and asymmetry of the CCF. A strong correlation between the estimated set of RV’s and

one or more of these parameters provides an indication that the RV’s are affected by

stellar activity signals rather than by pure doppler shift variations.

To correct the estimated RV’s from spurious variations caused by stellar activity, it

is common to consider a linear combination of the RV’s with the BIS SPAN and the

FWHM (or γ and SN FWHM in the SN case), as shown in [47, 52]. Hence:

RVstellar activity = β0 + β1γ + β2SN FWHM + ε, (5.9)

where β0 is the intercept and ε is the vector of the errors with mean equal to 0 and

covariance matrix equal to σ2I (I defined as the identity matrix). When the Normal

fit is used, in Equation (5.9) the parameter γ is replaced by the BIS SPAN and the SN

FWHM is replaced by FWHM. In order to show the capacity of this function to correct

from stellar activity the originally retrieved RV’s, a statistical test on the parameters

β0, β1 and β2 is presented, where the null hypothesis is H0 : βi = 0, for i = 0, 1, 2.

The level for not rejecting the null hypothesis is fixed equal to 0.05. The coefficient

of determination R2 is introduced in order to explain how well this linear combination

addresses the variability of the RV’s of the star as caused by stellar activity.

We note however that a more complex law than the one proposed in Equation (5.9)

is probably needed. To find a more realistic way to correct the original set of estimated

RV’s from stellar activity is something we will evaluate in future analyses.

5.5 Illustrative Examples

In this Section we analyze five stars, showing the advantages of using the SN density

over the Normal density to fit the CCF, according to the definitions provided in Section

5.3. We emphasize that by using the SN density all the necessary statistics (i.e. the
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Figure 5.5: Correlation between γ and the BIS SPAN for Alpha Centauri B.

mean, the median, the variance and the skewness of the CCF) are naturally available

in one step. A comparison with the results obtained by the classic approach has done,

where the RV’s of the stars are estimated by calculating the mean of the Normal density

used to fit the CCF. When the analyses are performed using the Normal density, the

evaluation of the asymmetry of the CCF requires a second step, necessary to retrieve

the BIS SPAN or some of the other statistics proposed by [18, 54].

5.5.1 Alpha Centauri B

We first analyze Alpha Centauri B, where 1808 CCF’s measured in the year 2010 have

been studied. Several measurements taken throughout the year 2010 are contaminated

by the presence of the companion star Alpha Centauri A, meaning that as preliminary

step to retrieve uncontaminated spectra for Alpha Centauri B, we performed the same

selection presented in [48].

We begin our analysis by evaluating the correlation between γ and the classic BIS

SPAN. In fact, while the BIS SPAN has got a unit of measure (m/s), the γ parameter of

the SN is adimensional. In Figure 5.5 is possible to note that the relationship between

γ and the BIS SPAN is linear, with a slope equal to 720 and a correlation of R = 0.954.

Figure 5.6 shows the comparison between the RV’s retrieved using the SN density and

the RV’s obtained with the Normal density. In particular, as location parameters of the

SN density, SN mean RV (black dots) and SN median RV (cyan crosses) are proposed.
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Parameter N mean RV SN mean RV SN median RV
β0 0.0066 2.29e− 11 2.29e− 11
β1 0.022 2.22e− 16 0.03
β2 2.22e− 16 2.22e− 16 2.22e− 16
R2 0.49 0.72 0.57

Table 5.2: Alpha Centauri B: Evaluation of the linear combination used for
correcting the RV’s from stellar activity, according to Equarion (5.9). The p–values
for the parameters β0, β1 and β2 for all the methodologies are summarized, as well
as the R2. All the three parameters are useful in explaining variations in RV’s of the
star that can be caused by stellar activity. Anyway the evaluation of the R2 shows
that the linear combination better explains variations in RV’s due to stellar activity
coming from the SN analysis which uses SN mean RV.

Concerning the Normal fit, N mean RV is used as location parameter (red triangles).

This dataset for Alpha Centauri B, as shown also in [48, 136], presents a strong stellar

activity signal. Looking at Figure 5.6 we can see that the RV’s retrieved by using as

location parameter SN mean RV show more variability than the RV’s calculated with

the Normal density. SN mean RV seems to be more sensitive to stellar activity. This

can be explained by the fact that since the SN includes an asymmetry parameter, SN

mean RV gets a shift because of γ. However, when using SN median RV, the variability

caused by stellar activity seems smaller, suggesting that this location parameter could

be used to define the set of RV’s of the star. Both the location parameters derived

from the SN fit have desirable properties: SN mean RV seems to capture changes in

the asymmetry of the CCF caused by stellar activity and SN median RV can provide in

principle a more robust global indicator to define the RV’s of the star.

Using Equation (5.9), we provide a new set of RV’s corrected from stellar activity.

The results are shown in Figure 5.7. We see that, once corrected for stellar activity,

the residuals for the Normal and SN analysis are comparable. However, we note that

when using SN mean RV, the correction is more important. This is confirmed by the

statistical tests on the significance of the parameters β0, β1 and β2, whose results are

summarized in Table 5.2. The intercept and both the variables γ (or BIS SPAN) and

SN FWHM (or FWHM) are necessary to correct the originally estimated RV’s from

spurious variations caused by stellar activity for both the SN and the Normal fits. The

comparison of R2 shows as well that the SN fit accounts for a higher percentage of

variability in RV’s caused by stellar activity (i.e. spurious variations in RV’s).

A comparison of the correlation between the different activity indicators and the

RV’s of the star is presented in Figure 5.8. The correlation between γ and SN mean

RV is significantly stronger, almost twice, than the correlation calculated between the

other asymmetry statistics and their corresponding RV’s (R = 0.741). We note how
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Figure 5.6: (top) RV’s and (bottom) RV’s differences for Alpha Centauri B consid-
ering a Normal and a SN fitting. Two location parameters are proposed using the
SN density, SN mean RV (black dots) and SN median RV (cyan crosses), while the
location parameter for the Normal fit is N mean RV (red triangles).

the correlation between SN mean RV and γ is higher than the correlation between SN

median RV and γ, suggesting again that the first indicator is more sensible to spurious

variations in RV’s caused by stellar activity. The correlation between SN FWHM’s and

RV’s is as well stronger when fitting a SN density respect using the common Normal

density (R = 0.817). All the correlations are anyway statistically different from 0.

Analyzing further the data coming from Alpha Centauri B and by looking closer

to the data plotted in Figure 5.9, it is straightforward to note that there are three

distinct temporal clusters in the Alpha Centauri B measurements and each cluster has

a different linear relationship between its asymmetry parameter γ and RV’s (and also
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line-profile variations using a Skew Normal distribution
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Figure 5.7: (top) Set of RV’s for Alpha Centauri B estimated using a Normal or a SN
fit. (bottom) The residuals from the model fit using Equation (5.9). Once corrected
for stellar activity, the residuals in the Normal and SN analyses are comparable.

SN FWHM and RV’s, though not displayed here). When considering Equation (5.9) and

the subsequent inferences, this clustering is not accounted for in the model. A slightly

more general linear model that allows for different intercepts and different slopes for the

three clusters for γ and SN FWHM can be considered. Adjusting the RV’s for stellar

activity using this expanded model produces the corrected RV’s displayed in the left

plot of Figure 5.10. These corrected RV’s are different from those displayed in the lower

left plots of Figure 5.7 (which apply the correction derived from Equation (5.9)); the

right plot of Figure 5.10 displays the difference between the two sets of corrected RV’s.

The long-term trend can be explained by the fact that the RV’s drifts induced by the

companion Alpha Centauri A is not well corrected. However, the shorter-term variations
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R = 0.41 ( 0.371 , 0.448 ) 
 p.value =  2.2e−16
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R = −0.421 ( −0.459 , −0.383 ) 
 p.value =  2.2e−16
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R = −0.423 ( −0.46 , −0.384 ) 
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R = 0.394 ( 0.355 , 0.433 ) 
 p.value =  2.2e−16
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R = 0.817 ( 0.801 , 0.832 ) 
 p.value =  2.2e−16
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Figure 5.8: Correlation between the asymmetry parameters and the RV’s for Alpha
Centauri B. The last three plots show the correlation between the FWHM’s and the
RV’s for Alpha Centauri B, using respectively the SN and the Normal analyses. The
correlation between γ and SN mean RV is significantly higher, almost twice, than the
correlation calculated between the other asymmetry statistics and their corresponding
RV’s (R = 0.741). The comparison of the correlations between FWHM’s and RV’s
shows that the indicators retrieved by the SN fit have stronger correlations than the
one obtained with the common analysis (R = 0.817).
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Figure 5.9: The RV’s as a function of time (left) and the RV’s plotted against γ
(right) with colors and plot symbol according to its temporal cluster assignment for
Alpha Centauri B. The RV’s are expressed in m s−1 .

show that stellar activity varies as a function of time, with spots and faculae evolving,

leading to changes in the correlation between the RV’s with respect to the asymmetry

parameter γ and SN FWHM. These temporal variations are something that we want

to explore more, although this Chapter presents already a significant effort in trying to

understand and to remove from the data spurious variations in RV’s caused by stellar

activity.

5.5.2 HD192310

We present now the results of the analysis for the star HD192310 (also known as

Gliese785). The dataset consists in 1577 CCF’s. The correlation between γ and the BIS

SPAN is 0.888 and the slope of the fitted linear regression is 786, as shown in Figure

5.11.

Looking the top three plots of Figure 5.12 it is possible to note that the RV’s obtained

with the SN analysis, in particular when using SN mean RV, present larger residuals than

the RV’s obtained with the N mean RV. However, once corrected for stellar activity using

the linear combination with γ and SN FWHM (or BIS SPAN and FWHM) presented in

Equation (5.9), the results of the three analyses are comparable, as shown in the three

bottom plots of Figure 5.12. Table 5.3 summarized the tests conducted to evaluate the

role played by stellar activity in introducing spurious signals on the estimated RV’s.

When using N mean RV, variations in the BIS SPAN are not statistically helpful to

explain variations in RV’s. On the contrary γ is helpful to explain spurious variations in
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Figure 5.10: The RV’s for Alpha Centauri B corrected from stellar activity using the
SN fit and accounting for the temporal clusters (left), and the difference between those
values in the left plot and the analogous values without accounting for the temporal
clusters (right) which are displayed in the lower left plot of Figure 5.7. The RV’s are
expressed in m s−1 .
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Figure 5.11: Correlation between γ and the BIS SPAN for HD192310.
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Measuring precise radial velocities and cross-correlation function

line-profile variations using a Skew Normal distribution
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Figure 5.12: (top) Set of RV’s for HD192310 estimated using a Normal or a SN fit.
(bottom) The residuals from the model fit using Equation (5.9). Once corrected for
stellar activity, the residuals in the Normal and SN analyses are comparable.

RV’s when fitting the SN to the CCF. Like for Alpha Centauri B, the Pearson correlation

coefficient R2 shows that the model we used to correct for stellar activity is more useful

in the SN case rather than in the Normal one, in particular when using SN mean RV (

R2 = 0.53).

The comparison between the asymmetry parameters and the RV’s is presented in

Figure 5.13. The correlation between γ and SN mean RV is stronger (R = 0.669) than

the correlation calculated between the other asymmetry statistics and their correspond-

ing RV’s. The comparison of the correlations between FWHM’s and RV’s leads to the

same conclusion, with the correlation between SN mean RV and SN FWHM to be the

strongest (R = 0.666).
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R = 0.329 ( 0.285 , 0.373 ) 
 p.value =  2.2e−16
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B
is

−
S

pa
n 

[m
/s

]

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●●●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

● ●
●● ●●●

●
●

●
●

●

●
●

●●

●
●

●

●●
●

●●
●

● ●

●

●

●
●
●●

●

●

●
●●

●

●●

●●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●
●

●●
●
●●

●

●
●●

●●
●
●

●

●
● ●

●
●

●● ●
● ●

●

●

●

●
●

●

●●

●

●

●●
●

● ●

●● ●

●
●●●

●

●● ●
●

●

●
● ●

●

● ●

●●
●

●

●
●

● ●

●

●●

●
●

●
●● ●

●
● ●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●●
●

●

●●●●

●
●

●● ●
● ●

●

●
●

●
●
●●

●

●

●

●

●

● ●●●●
●

●
●

●
●

●
●

●
●
●

●

● ●● ●
●

●

● ●

●●

●

●
●● ●

●

●
● ●

●

●
●

●
●

●

●●
● ●

●
●

●

●●
●

●●

●
●

●

●●●
●

●
●●

●

●
●●

●
●

●●

●

●

● ●

●●
●

●

●●

●●●
●

●
●

●●

●

●

●● ●
●●

●

●

●

●

●

●

●
●●

●
●
●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●●●●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●●
●
●●

●
●●
● ●

●

●
●

●●

●

●

●
●●●●

● ●
●●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●
● ●●

●

●
● ●

●

●

●
●

●
● ●

●

●

●
●

●●

●
●

●

●●
●

●

●

●

●●

●

● ● ●●
●

●

●●
● ●

●
●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●
●●

●●

● ●● ●

●

●

●

●●

●

●

●
●●

●

●
●

●

● ●

●
●

●

●●●
●●

●

●

●
●

●
●

●

●●

●●
●

●●

● ●●
●●
●●

●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●
● ●●

●

●

●

●

●●

●● ●
●
●

●

●

●
●●●●●

●

●●
●

●
●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

● ●

●
●

●●

●

●
●

●

●
●

●
●●

●●

●●●

●●
●

●

●

●
●●

●●

●● ●●●●

●
● ● ●

●●
●

●●
●

●

●

●
●●●

●
● ●●●●●

●

●
● ●● ●●

●
●●

●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●●

●

●

●

●

●

●●●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●
●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●

●●●
●

●

●

●
●● ●
●

●
● ●

●

●
●

●

●
●

●

●●●

●

●

●

●●●

●

●

●
●

●●●●

●

●
● ●

●
●
●

●
●●

●●●

● ●
●

●●
●

●

●●
●● ●●

●
●●●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●
●●●● ●
●

●
●

●●●

●●

●
●
●

●
●

●
●
●

●

●

●●●

●●
● ●●

● ●

●
●

●
●●

●
●
●

●

●●
●

●

●

●
●
● ●●

●
●

●
●

●
●

●
●●

●

●●

● ●

●

●

●
●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●●
●

●●● ●●
●

●

● ●●
●

●

●●●
●

●

●
●●

●

●
●●●

●

●
●
●●

●

●● ●●●
●
●

●

●

●

●

●
●●

●●
●●

●
●

●●
●

●●

●●

●
●

● ●
●

●
●

●

●

●
●●

●

●
●

● ●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●
●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●● ● ●●
●

●

●●●

●

●

●
●

●
●

●
●● ●●●●

●
●●●

●
●

●
● ●●●

●●
●●

●

●●

●●

●

●
●

●●

●

●

●●

●

●

●●●

●

●

●
●●●

●
● ●

●

●

●
●

● ● ●

●

●
●

●
●●

●●
● ●●●

●
●●●●

●●
● ●●

●

●
● ●
● ●

●
●

●

●

●●
●●

●●
●

●

●

●

●

●

●

●

●●
●

● ●

● ●●
●

●●●●●

●●

●
● ●

●
●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

● ●

●●●
●

●
●

●
●

● ●
●●

●

●

●
●

●
●

●●
●●

● ●

●
●
●

●

●●●●
●●

●
●

● ●
●

●

●●
●

●
●●

●●
●

●

●
●●

●●
●

●
●●●

●● ●
● ●

●●

●

●

●●
●

●

●
●

●

●

●
●●

●
●

●●
●

●

●

●●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●●
●
●

● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●● ● ●
●

●

●●

●

●●

●

● ●●
●●●●●

●●●●

●●● ●●●
●

●
●
●

●

●
●

●

●●●
●

●
●

●
●

●

●

●

●

●

●● ●
●●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●●●
●

●

●

●

●

●
●

●● ●●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●●
●●
●

●
●

●

●

●

●●●
●●

●●
●●
●

●●●●

●●

●

●

●●

●

●
●

●

●
●

●●
●

●
● ●●●

●●
●

● ●
●

●
●

−5 0 5

−
4

0
4

R = 0.276 ( 0.23 , 0.321 ) 
 p.value =  2.2e−16

N mean RV [m/s]
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R = 0.334 ( 0.289 , 0.377 ) 
 p.value =  2.2e−16
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Figure 5.13: Correlation between the asymmetry parameters and the RV’s for
HD192310. The last three plots show the correlation between the FWHM’s and the
RV’s using respectively the SN and the Normal analyses. The correlation between
γ and SN mean RV is stronger than the correlation calculated between the other
asymmetry statistics and their corresponding RV’s (R = 0.669). The comparison of
the correlations between FWHM’s and RV’s leads to the same conclusion, with the
correlation between SN mean RV and SN FWHM to be the strongest (R = 0.666).
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line-profile variations using a Skew Normal distribution

Parameter N mean RV SN mean RV SN median RV
β0 2e− 16 2.22e− 16 2.22e− 16
β1 0.24 2.22e− 16 2.22e− 16
β2 2e− 10 2.22e− 16 2.22e− 16
R2 0.23 0.53 0.33

Table 5.3: HD192310: Evaluation of the linear combination used for correcting
the RV’s from stellar activity, according to Equation (5.9). The p–values for the
parameters β0, β1 and β2 for all the methodologies are summarized, as well as the
R2. Concerning the Normal fit, the BIS SPAN is not statistically useful to explain
variations in the RV’s of the star. On the other hand, concerning the analyses based on
the SN density, all the p–values associated with the parameters involved in Equation
(5.9) are statistically different from 0. The evaluation of the R2 shows that the linear
combination better explains variations in RV’s due to stellar activity coming from the
SN analysis which uses SN mean RV.
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Figure 5.14: Correlation between γ and the BIS SPAN for HD10700.

5.5.3 HD10700

The analysis of the star HD10700 (also known as Tau Ceti) consists of 7928 CCF’s.

Figure 5.14 shows the relation between γ and the BIS SPAN, with a correlation of

R = 0.78 and a slope of the fitted linear regression equal to 604. These values are

smaller with respect to the ones retrieved for the previous analyzed stars, probably

because HD10700 is at a very low activity level, similar to the Sun at its minimum

phase of activity.

The RV’s derived with the SN, using SN mean RV and SN median RV, present

slightly larger residuals, as highlighted in Figure 5.15. However, once corrected from



Measuring precise radial velocities and cross-correlation function
line-profile variations using a Skew Normal distribution 95

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●●
●
●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●●

●
●

●
●
●●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●●
●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●
●

●
●

●
●●●

●●

●

●
●
●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●
●
●●
●

●

●

●

●●
●●

●

●
●●
●

●

●
●
●
●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●●●

●

●

●●

●

●

●

●●●
●

●●

●

●

●

●
●

●
●

●

●

●

●●
●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●
●
●●

●

●

●

●
●
●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●●
●

●

●

●
●
●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●
●●
●
●
●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●
●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●
●
●
●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●
●●

●●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●
●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●●

●

●●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●●

●●
●

●

●●●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●
●●●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●
●

●

●

●
●
●●
●●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●

●

●

●
●

●
●●

●

●
●●
●●

●

●●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●●

●
●
●
●

●
●

●

●●

●
●
●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●
●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●
●

●

●
●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●●

●

●
●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●●●●
●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●●
●

●

●●

●

●

●

●●

●
●●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●●
●

●
●

●

●●
●
●

●
●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●●●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●
●

●●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●
●

●
●
●

●

●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●
●

●

●

●●●

●●

●

●

●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●
●

●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●

●●●

●

●

●

●

●●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●
●
●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●

●
●
●●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●
●
●

●

●●●

●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●●

●●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●
●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●●
●

●●

●

●

●

●

●●

●
●

●●

●
●

●●
●

●

●

●

●●●

●

●
●●

●●

●
●

●

●

●
●

●
●
●

●●

●

●●

●
●

●

●

●

●

●

●

●●
●
●

●

●●

●

●●

●

●
●

●●

●
●
●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●
●

●
●

●●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●●

●
●

●●

●

●
●●
●

●●●

●

●

●

●●
●

●

●●

●●
●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●
●●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●●

●
●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●
●
●
●●
●

●

●●
●●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●
●

●

●

●

●●

●

●●

●

●●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●
●
●

●

●
●

●
●

●●

●

●
●●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●●

●●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●
●●
●●
●

●

●

●
●●

●

●
●

●

●

●
●●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●

●

●
●
●

●
●

●

●

●●
●

●

●●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2453500 2455500

−
5

0
5

Julian Day

S
N

 m
ea

n 
R

V
 [m

/s
]

Estimated RVs std =  1.7 m/s

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●
●●●

●
●

●●
●

●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●●
●●
●

●

●

●

●

●
●●

●

●

●●
●●
●

●

●
●

●●

●
●●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●●

●
●●
●●
●
●
●●

●

●
●
●

●

●
●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●●
●

●

●

●●

●
●

●

●●●
●

●●
●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●
●●●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●●
●

●●●●

●

●
●●●

●●
●

●●

●
●
●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●
●●
●

●
●

●

●
●

●

●

●
●
●●

●●

●●

●

●

●

●
●●

●
●

●

●●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●
●●

●

●●●

●

●

●

●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●
●

●

●●
●●

●●●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●
●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●
●●

●●●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●

●
●●

●●●
●

●
●

●
●

●●

●
●

●

●●●

●

●●

●●
●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●

●●
●

●●
●
●

●●

●

●●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●
●
●●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●
●
●●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●
●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●●●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●●

●

●

●●

●

●
●

●

●

●
●
●
●●●

●
●

●

●

●
●

●

●
●
●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●
●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●
●●

●
●●

●

●

●
●●

●

●
●●●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●●
●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●
●●
●

●

●
●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●
●●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●
●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●●●
●
●

●

●

●

●

●●

●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●●●

●

●
●

●
●

●

●
●
●

●

●●

●
●●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●

●
●
●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●●

●

●●

●●

●●

●
●

●

●

●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●●

●●

●

●●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●
●
●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●
●●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●●●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●●
●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●●
●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●

●
●●●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●●
●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●●
●●

●

●
●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●
●

●

●

●

●●

●

●
●
●
●

●

●

●

●●
●●
●

●

●

●
●

●
●
●

●

●
●
●

●

●

●●

●

●

●

●●

●

●
●

●●●

●

●●●

●

●

●
●
●●

●

●
●
●

●

●

●
●

●
●
●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●●
●
●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●
●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●
●

●

●●

●
●
●

●

●

●

●●
●

●

●●●
●
●●
●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●●●

●●

●
●

●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●
●

●●
●●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●
●●●
●

●

●
●●
●

●

●●●

●

●●
●
●

●●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●
●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●
●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●
●●

●●●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●
●

●
●●

●●

●

●
●

●

●●

●

●

●
●
●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●
●●●●

●

●

●

●

●

●
●

●

●
●

●●
●●

●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●
●
●●

●
●

●

●

●●●

●
●

●

●
●●
●●

●
●●●
●

●

●

●
●

●

●●

●

●

●

●
●●●

●
●

●

●
●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●●
●

●
●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●●●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●●●

●
●
●

●●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●
●●
●

●

●

●●

●

●

●

●

●●●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●●
●

●
●

●

●
●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●
●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●
●
●●●
●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●

●
●

●

●

●

●

●
●
●

●

●
●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●●

●●

●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●
●
●

●

●

●
●●

●

●

●

●

●●

●
●

●

●●

●●
●

●

●

●
●

●
●

●●●
●

●

●

●

●

●
●

●
●

●
●
●

●

●●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●●
●

●
●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●●

●

●
●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●

●●

●

●

●

●
●●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●●

●

●
●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●

●●

●

●

●

●

●●

●
●
●
●

●

●
●●

●

●
●●

●●
●

●

●●●

●
●

●●
●
●

●
●●●

●

●
●

●

●●
●
●

●

●

●

●●
●●
●●

●
●

●
●

●

●

●

●

●●●
●

●
●

●●●

●

●
●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●●

●●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●
●

●
●

●●

●

●
●

●

●

●
●●
●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●
●

●

●●

●

●

●
●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●●●

●
●
●●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●●●●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●
●●

●
●

●

●

●●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●●●
●

●
●

●
●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●
●●●
●

●

●

●

●
●
●

●

●

●

●
●

●●

●●

●●
●

●

●●
●

●
●
●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●●

●●●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●●
●
●●●●
●

●●
●
●

●●

●

●

●

●

●●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●
●
●

●

●●●

●

●

●

●●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●
●●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●●●
●●

●●

●

●●

●

●

●●●

●●

●●
●

●

●

●●
●

●

●
●

●
●●●

●

●●●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●
●
●
●
●

●

●

●
●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●

●●●●
●●
●
●

●●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●●

●

●
●
●●
●

●

●●

●

●

●

●

●

●
●●
●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●
●

●
●
●

●

●
●

●

●

●●

●

●

●
●
●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●●
●

●
●●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●●

●

●

●
●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

2453500 2455500
−

5
0

5

Julian Day

S
N

 m
ed

ia
n 

R
V

 [m
/s

]

Estimated RVs std =  1.7 m/s
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Figure 5.15: (top) Set of RV’s for HD10700 estimated using a Normal or a SN fit.
(bottom) The residuals from the model fit using Equation (5.9). Once corrected for
stellar activity, the residuals for the Normal and SN analyses are comparable.

stellar activity, the residuals of the new set of RV’s using the Normal and the SN fit are

comparable. Looking at Table 5.4, we see that for both the Normal and SN analyses

the intercept, the FWHM and the asymmetry of the CCF (γ or BIS SPAN) can explain

part of the variations in RV’s as caused by stellar activity. The analyses on the R2

shows that for this star the correction for stellar activity is equally important for the

three analyses.

The comparison between the asymmetry parameters and the RV’s is presented in Fig-

ure 5.16. The correlation between γ and SN mean RV is stronger (R = 0.322) than the

correlation calculated between the other asymmetry statistics and their corresponding
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Parameter N mean RV SN mean RV SN median RV
β0 0.00013 2.22e− 16 2.22e− 16
β1 4.83e− 6 2.22e− 16 2.22e− 16
β2 2.22e− 16 2.22e− 16 2.22e− 16
R2 0.28 0.33 0.27

Table 5.4: HD10700: Evaluation of the linear combination used for correcting
the RV’s from stellar activity, according to Equation (5.9). The p–values for the
parameters β0, β1 and β2 for all the methodologies are summarized, as well as the R2.
All the three parameters are useful in explaining variations in RV’s of the star that
can be caused by stellar activity. The R2 shows that the correction for stellar activity
is equally important for the three analyses.

RV’s. In this case also the correlation between SN median RV and γ is weak, suggest-

ing again that the SN mean RV parameter better captures changes in the CCF caused

by active regions, in particular for stars having low activity levels, like HD10700. The

comparison of the correlations between the FWHM’s and RV’s, when using the Normal

and the SN fit leads, leads to comparable considerations. We note however that only for

this star the correlation between N mean RV and FWHM is the strongest (R = 0.529).

5.5.4 HD215152

The analysis of the star HD215152 consists in 273 CCF’s and Figure 5.17 shows that

the slope of the linear regression between γ and the BIS SPAN is 794 and the Pearson

correlation coefficient is R = 0.763. Figure 5.18 shows the RV’s measured with the SN

or the Normal density and their corresponding RV’s residuals, once corrected for stellar

activity. In this case the results are not comparable. While the correction from stellar

activity leads to similar considerations when SN mean RV or SN median RV are used,

using N mean RV leads to residuals 0.062 m s−1 higher. The proposed function that

tries to correct from stellar activity seems to be useful in addressing spurious variations

in RV’s only when SN mean RV is used (R2 = 0.34). This is probably because of the

presence of planetary signals in the data [91]. We note however that the information on

the orbital phase of the planet is not available in [91] and therefore we cannot remove

those pure doppler shift signals. The statistical tests on β0, β1 and β2, summarized in

Table 5.5, show that in the Normal case BIS SPAN is not statistically significant, while

for the intercept and the FWHM the test with level 0.05 is barely significant. Concerning

the analyses based on the SN density, the parameter γ is always useful to explain part

of the spurious variations in RV’s caused by stellar activity. However, the proposed

correction for stellar activity is more useful when using SN mean RV (R2 = 0.34).
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Figure 5.16: Correlation between the asymmetry parameters and the RV’s for
HD10700. The last three plots show the correlation between the FWHM’s and the
RV’s for HD10700, using respectively the SN and the Normal analyses. The correla-
tion between γ and SN mean RV is stronger than the correlation calculated between
the other asymmetry statistics and their corresponding RV’s ((R = 0.322)). The
comparison of the correlations between the FWHM’s and RV’s, when using the Nor-
mal and the SN fit leads to comparable considerations. However, in this case, the
correlation between N mean RV and FWHM is the strongest (R = 0.529).
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Figure 5.17: Correlation between γ and the BIS SPAN for HD215152.

Parameter N mean RV SN mean RV SN median RV
β0 0.045 0.032 0.025
β1 0.98 2.22e− 16 0.0017
β2 0.046 0.028 0.024
R2 0.019 0.34 0.0373

Table 5.5: HD215152: Evaluation of the linear combination used for correcting
the RV’s from stellar activity, according to Equation (5.9). The p–values for the
parameters β0, β1 and β2 for all the methodologies are summarized, as well as the R2.
Concerning the Normal fit, the intercept and the FWHM are statistically significant
to explain the RV’s variations at level 0.05 but not at level 0.01. The BIS SPAN is
not significant, which explains why the R2 is only 0.019. On the contrary, for the SN
case, γ is statistically significant in explaining the variations in RV’s caused by stellar
activity. The correction for stellar activity is more useful when using SN mean RV
(R2 = 0.34).

The comparison between the asymmetry parameters and the RV’s is presented in

Figure 5.19.The correlation between γ and SN mean RV is stronger than the correlation

calculated between the other asymmetry statistics and their corresponding RV’s (R =

0.571). The comparison of the correlations between FWHM’s and RV’s leads to the

same conclusion, since the correlation between SN mean RV and SN FWHM is the

strongest (R = 0.21).
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Correction std =  1.911 m/s
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Figure 5.18: (top) Set of RV’s for HD215152 estimated using a Normal or a SN fit.
(bottom) The residuals from the model fit using Equation (5.9). While the correction
from stellar activity leads to similar considerations when SN mean RV or SN median
RV are used, using N mean RV leads to residuals 0.062 m s−1 higher than the one
retrieved with the SN fit.

5.5.5 Corot-7

The final star that has been analyzed is Corot-7, whose CCF’s have low SNR (SN50 <

60) . A total of 173 CCF’s are analyzed and Figure 5.20 shows the correlation between γ

the BIS SPAN, with a linear regression slope of 607 and a Pearson correlation coefficient

of R = 0.814.

The RV’s obtained with the SN density (using SN mean RV or SN median RV) show

more variability than the RV’s estimated with the Normal density, as shown in the

top series of plots in Figure 5.21. Once corrected for stellar activity, using Equation
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Figure 5.19: Correlation between the asymmetry parameters and the RV’s for
HD215152. The last three plots show the correlation between the FWHM’s and the
RV’s for HD215152, using respectively the SN and the Normal analyses. The correla-
tion between γ and SN mean RV is stronger than the correlation calculated between
the other asymmetry statistics and their corresponding RV’s (R = 0.571). Concern-
ing the comparison of the correlations between FWHM’s and RV’s, the correlation
between SN mean RV and SN FWHM is the strongest (R = 0.21).
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Figure 5.20: Correlation between γ and the BIS SPAN for Corot-7.

(5.9), the RV’s residuals obtained with the SN are better than the ones estimated using

the Normal, suggesting that the SN fit gains power over the Normal fit as the SNR

decreases. In particular using the Normal density to fit the CCF’s leads to residuals

0.25 m s−1 larger. In Table 5.6 we see that for both the Normal and the SN analysis that

uses SN median RV the intercept and the FWHM can explain part of the variations

in RV’s, but the asymmetry parameter is not statistically helpful. On the other hand,

when using SN mean RV, also the asymmetry parameter γ is statistically significant.

The latter consideration, combined with the opposite conclusion obtained when SN

median RV is used, confirms that the SN median RV is a more robust index and hence

a more suitable indicator to define the set of RV’s of the star. At the same time, SN

mean RV better catches variations in the shape of the CCF because of stellar activity,

althoght exactly for this reason the proposed correction for stellar activity is more

relevant (R2 = 0.56).

The comparison between the asymmetry parameters and the RV’s is presented in

Figure 5.22. The correlation between γ and SN mean RV is stronger than the correlation

calculated between the other asymmetry statistics and their corresponding RV’s (R =

0.537). Concerning the comparison of the correlations between FWHM’s and RV’s, the

correlation between SN mean RV and SN FWHM is the strongest (R = 0.73). These

results suggest that, in particular for low SNR measurements, using the SN to fit the

CCF can improve the power in detecting stellar activity signals, which is key to detecting

“Earth–like” exoplanets.
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Figure 5.21: (top) Set of RV’s for Corot-7 estimated using a Normal or a SN fit.
(bottom) The residuals from the model fit using Equation (5.9). While the correction
from stellar activity leads to similar considerations when SN mean RV or SN median
RV are used, using N mean RV leads to residuals 0.25 m s−1 higher.

5.6 Estimation of standard errors for the CCF pa-

rameters

In this Section, we perform a bootstrap analysis [37, 50] in order to retrieve the

standard errors associated to SN mean RV, SN median RV, N mean RV, FWHM, SN

FWHM, BIS SPAN and γ. Because a CCF is obtained from a cross-correlation, each

point in a CCF is correlated with each other. Therefore, we cannot do a bootstrap

analysis on perturbing independently each CCF point with a Gaussian density scaled to

the error of each given point. A detailed discussions of the methods nowadays available
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Figure 5.22: Correlation between the asymmetry parameters and the RV’s for Corot-
7. The last three plots show the correlation between the FWHM’s and the RV’s for
Corot-7, using respectively the SN and the Normal analyses. The correlation between
γ and SN mean RV is stronger than the correlation calculated between the other
asymmetry statistics and their corresponding RV’s (R = 0.537). Concerning the
comparison of the correlations between FWHM’s and RV’s, the correlation between
SN mean RV and SN FWHM is the strongest (R = 0.73).
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Parameter N mean RV SN mean RV SN median RV
β0 2.22e− 16 2.22e− 16 2.22e− 16
β1 0.12 0.0015 0.36
β2 2.22e− 16 2.22e− 16 2.22e− 16
R2 0.36 0.56 0.44

Table 5.6: Corot-7: Evaluation of the linear combination used for correcting the
RV’s from stellar activity, according to Equation (5.9). The p–values for the param-
eters β0, β1 and β2 for all the methodologies are summarized, as well as the R2.
Concerning the Normal fit, the BIS SPAN is not significant, as well as γ if using SN
median RV. When using SN mean RV, all the parameters are statistically significant,
suggesting again that SN mean RV (R2 = 0.56) is more sensible to stellar activity
than SN median RV (R2 = 0.44).

to resampling in situations with dependent data structures is available in [82]. All

the bootstrap methods that deal with dependant data structures rely on the so–called

Block Bootstrap methods, originally introduced by [151]. In our particular case, since

each point in a CCF is correlated with each other, we bootstrap a hundred times the

stellar spectrum given the photon-noise error of each wavelength and calculate for each

realization a new CCF. We then fit a Normal or a SN to each of these CCF’s and then

calculate the standard deviations of the density for the location parameters (N mean

RV, SN mean RV or SN median RV), the width parameters (FWHM or SN FWHM)

and the parameters of asymmetry (BIS SPAN or γ).

In the top plots of Fig. 5.23 we show the different errors for the RV’s of the star, de-

fined as N mean RV (red triangles), SN mean RV (black circles) or SN median RV (cyan

crosses), FWHM (red triangles), SN FWHM (black circles), BIS SPAN (red triangles)

and γ (black circles). The analysis uses information from three real stars, HD215152,

HD192310 and Corot-7, whose original CCF’s are all at different SNR levels. The pa-

rameter SN@550 nm corresponds to the SNR at order 50, which is equal to a wavelength

of 550 nm. Looking at the estimates for the RV’s, we see that they all follow a similar

exponential decay. Although we plot the data for three different stars, we do not see

any offsets in this decay, which implies that the parameter SN@550 nm is the main

contributor to the precision measured in RV. This is not surprising as the three stars

studied here are all main sequence K-dwarfs. In the bottom plots, we show the ratio

between the parameters estimated from the bootstrap analysis fitting the SN and the

parameters obtained from the bootstrap analysis fitting the Normal density.

When comparing the three different estimates for the RV, we see that SN mean RV

presents standard errors that are 60% larger than what N mean RV gives. On the

opposite, SN median RV gives errors 10% more precise than N mean RV. Regarding the

parameters describing the width of the CCF, FWHM and SN FWHM have the same
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standard errors. Finally, for the asymmetry parameters, we see that γ, derived from the

SN, is 15% more precise than BIS SPAN.

In closing, using SN median RV leads to uncertainties 10% smaller than usingN

mean RV and using γ leads to uncertainties 15% smaller than using BIS SPAN. At the

same time the precision on the width parameter of the CCF is preserved. SN mean RV

should not be uses to define precise RV’s since the precision on this parameter is 60%

worse than the precision on the RV’s retrieved by using the mean of a Normal density

fit to the CCF. We recall moreover that, using the SN density, all the parameters are

automatically retrieved in 1 single step, while in the common approach RV and FWHM

are calculated separately from the BIS SPAN.

5.7 Concluding Remarks

When searching for small-mass exoplanets using the RV technique, it is crucial to

get the best possible precision when retrieving the RV of the star, but also to measure

precisely variations in the shape of the CCF, since these variations are induced by stellar

activity and not by planets. The correlations between the width of the CCF and the

RV and the correlations between the asymmetry of the CCF and the RV are used in

order to understand if the estimated RV’s are contaminated by stellar activity signals.

Therefore, the stronger those correlations are, the better we can probe low level of stellar

activity.

In this Chapter we introduced a novel approach based on the SN density to estimate

RV’s and shape variations in the CCF of stars. The standard approach consists at

first to fit a Normal density to the CCF in order to retrieve RV and FWHM. Then,

to measure changes in the asymmetry of the CCF, the BIS SPAN or other indicators

proposed by [18, 54] are separately retrieved.

We propose to conduct the analysis fitting a SN density to the CCF. Since the

CCF presents a natural asymmetry due the convective blueshift, the SN density can

in principle better capture spurious variations in RV’s caused by stellar activity. On

top of that, by using the SN density to fit the CCF, we can retrieve simultaneously

the barycenter of the CCF (namely the RV), the width and the asymmetry of the

CCF. Using the SN to fit the CCF brings a significant improvement in probing stellar

activity. While for the Normal density mean and median are equivalent, using the SN

fit different location parameters can be tested. While SN median RV is more robust

respect to variations in the shape of the CCF, SN mean RV is more sensible to changes

in the asymmetry or width of the CCF.
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Figure 5.23: Comparison between the standard errors using the bootstrap analysis
for the RV’s, the FWHM and the asymmetry parameters. When using SN mean RV
(black circles), the standard errors are in average 60% larger than the standard errors
retrieved for RV (red triangles). However, if using SN median RV (cyan crosses), the
standard errors are on average 10% smaller than the standard errors related to RV.
To use as asymmetry parameter the γ of the SN leads to standard errors on average
15% smaller than the standard errors related to the BIS SPAN. Note that for the
asymmetry, the error in BIS SPAN is in km s−1. To be able to compare the errors in
γ and BIS SPAN we multiplied the error in γ by the slope of the linear fit between γ
and BIS SPAN, as shown in Figures 5.11, 5.17 and 5.20.

We suggest to use as parameter that defines the set of RV’s of the star SN median RV,

since the standard errors related to this parameter are 10% smaller than the standard

errors retrieved on N mean RV. In order to evaluate changes in the asymmetry and in

the width of the CCF, we suggest to use SN mean RV as location parameter of the CCF.

The correlation between SN mean RV and SN FWHM and the correlation between SN

mean RV and γ (the asymmetry parameter of the SN) are statistically stronger than

the correlations between the equivalent parameters derived using the Normal fit for all

the real stars that have been studies. The standard errors related to the asymmetry
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parameter γ are on average ∼15% smaller than the uncertainties calculated on the BIS

SPAN. Therefore, when searching for rotational periods in the data or when applying

Gaussian Processes to account for stellar activity signals, the parameters obtained with

the SN density should be used.
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Appendix

A Analytic expression for the ABC posterior distri-

bution under the assumption of Normal distribu-

tion

In the case in which the forward model follows a Normal distribution and the prior

is Uniform, the ABC posterior distribution can be retrieved analytically. In order to

demonstrate this, let’s consider for simplicity a single draw y from Y ∼ N(θ, σ2), with

unknown mean θ and known variance σ2, fixed in this case equal to 1. The results here

presented can be easily generalized to the case with n observations. When possible, we

will be referring to the same parameterization presented in Chapter 2.

By using Equation (2.1), the true posterior distribution is straightforward to calcu-

late:

π(θ | y) ∼ N(y, 1). (A.1)

In order to retrieve the ABC posterior distribution, πε(θ | y), let’s define x as the

simulated draw. The distance function used to compare the true observation y with

the simulated observation x is the L1 norm: ρ(x, y) = |x − y|. A draw x ∼ N(θ, 1) is

accepted as an element coming from the true posterior distribution if |x− y| ≤ ε, with

ε > 0. Hence, πε(θ | y) is proportional to:

Pr[θ| |x− y| ≤ ε] = Pr[θ| x− y ≤ ε]− Pr[θ| x− y ≤ −ε]. (A.2)

In this case Equation (2.2) can be analytically solved. Since y can be seen as a constant,

if follows that x − y ∼ N(θ − y, 1). The two probabilities of Equation (A.2) can be

respectively wriitten as:

Pr[θ| x− y ≤ ε] = Pr

[
θ| x− y − θ + y

1
≤ ε− θ + y

1

]
= Φ

(
y + ε− θ

1

)
(A.3)

111
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and

Pr[θ| x− y ≤ −ε] = Pr

[
θ| x− y − θ + y

1
≤ −ε− θ + y

1

]
= Φ

(
y − ε− θ

1

)
, (A.4)

where for both Equations (A.3) and (A.4) we explicitly noted the variance 1 at the

denominator, while Φ defines the distribution function of a standard normal distribution.

To completely define the ABC posterior distribution, we need to calculate the nor-

malizing constant of Equation (2.1), defined here as c(θ). Let’s first write down Equation

(A.2) as follows:

Pr[θ| |x− y| ≤ ε] = Φ

(
y + ε− θ

1

)
− Φ

(
y − ε− θ

1

)
=

=
1√
(2π)

[∫ y−θ+ε

−∞
e−

t2

2 dt−
∫ y−θ−ε

−∞
e−

t2

2 dt

]
=

=
1√
(2π)

∫ y−θ+ε

y−θ−ε
e−

t2

2 dt =

=
1√
(2π)

∫ ε

−ε
e−

(t′+y−θ)2
2 dt′,

(A.5)

where in the last equivalence we changed variable: t = t′+y−θ, so that for t = y−θ+ ε

we get t′ = ε and for for t = y − θ − ε we get t′ = −ε.
In order to retrieve the normalizing constant c(θ) we need to integrate Equation (A.5)

over θ, that takes values on the entire real line R.

c(θ) =

∫ ∞
−∞

1√
(2π)

∫ ε

−ε
e−

(t′+y−θ)2
2 dt′dθ =

=

∫ −ε
−ε

∫ ∞
−∞

1√
(2π)

e−
(t′+y−θ)2

2 dθdt′ =

=

∫ −ε
−ε

1dt′ =

= 2ε.

(A.6)

Here and in other several parts, we exchanged the order of the integrals using of Fubini’s

theorem. Moreover we recognized that
∫∞
−∞

1√
(2π)

e−
(t′+y−θ)2

2 dθ is the density of a Normal

distribution, hence the result of its integral is 1.

The ABC posterior distribution can be written in compact form as follows:

πε(θ | y) =
Φ
(
y+ε−θ

1

)
− Φ

(
y−ε−θ

1

)
2ε

. (A.7)
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Starting from Equation (A.7), we are now interested in retrieving the first two cen-

tered moments of πε(θ | y), and in particular the posterior variance. In fact, the ABC-

PMC Algorithm presented in Section 2.3 uses a Gaussian perturbation kernel having

variance equal to twice var(πε(θ | y)).

To retrieve the mean of πε(θ | y) is straightforward. Following the definition for the

mean of a general absolute continuous random variable:

E[πε(θ | y)] =
1

2ε

∫ ∞
−∞

θ
1√
(2π)

∫ ε

−ε
e−

(t′+y−θ)2
2 dt′dθ =

=
1

2ε

∫ ε

−ε

∫ ∞
−∞

1√
(2π)

θe−
(t′+y−θ)2

2 dθdt′ =

=
1

2ε

∫ ε

−ε
(t′ + y)dt′ =

=
1

2ε

[
t′2

2
+ t′y

]ε
−ε

=

=
1

2ε

[
ε2

2
+ εy − ε2

2
+ εy

]
=

=
1

2ε
2εy =

= y.

(A.8)

In order to retrieve the variance of πε(θ | y), we use the equivalence

var(πε(θ | y)) = E[πε(θ | y)2]− E[πε(θ | y)]2, (A.9)

where clearly, from Equation (A.8), E[πε(θ | y)]2 = y2. We need then to retrieve

E[πε(θ | y)2]:

E[πε(θ | y)2] =
1

2ε

∫ ∞
−∞

θ2 1√
(2π)

∫ ε

−ε
e−

(t′+y−θ)2
2 dt′dθ =

=
1

2ε

∫ ε

−ε

1√
(2π)

∫ ∞
−∞

θ2e−
(t′+y−θ)2

2 dθdt′.

(A.10)

As we can see from Equation (A.10), calculating E[πε(θ | y)2] is not straightforward,

since the inner integral of Equation (A.10) has not an easy solution. We propose here to

overcome the direct calculation of this integral by retrieving two auxiliary integrals. For

the particular problem we are trying to solve, for which the forward model’s variance

is equal to 1, we know that, by following the definition of variance for an absolutely
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continuous random variable:

1√
(2π)

∫ ∞
−∞

(θ − (t′ + y))2e−
(t′+y−θ)2

2 dθ = 1. (A.11)

The integral of Equation (A.11) can be written as follows:

1√
(2π)

∫ ∞
−∞

[
θ2 − 2θ(t′ + y) + (t′ + y)2

]
e−

(t′+y−θ)2
2 dθ = 1, (A.12)

which leads to the three integrals:

1√
(2π)

∫ ∞
−∞

θ2e−
(t′+y−θ)2

2 dθ, (A.13)

1√
(2π)

∫ ∞
−∞
−2θ(t′ + y)e−

(t′+y−θ)2
2 dθ (A.14)

and finally
1√
(2π)

∫ ∞
−∞

(t′ + y)2e−
(t′+y−θ)2

2 dθ. (A.15)

By solving the integrals of Equations (A.14) and (A.15) and since the three integrals

sum to 1, we will be able to solve Equation (A.13), which actually is the inner integral

of Equation (A.10).

Let’s start with Equation (A.14):

1√
(2π)

∫ ∞
−∞
−2θ(t′ + y)e−

(t′+y−θ)2
2 dθ = −2(t′ + y)

∫ ∞
−∞

θe−
(t′+y−θ)2

2 dθ =

= −2(t′ + y)(t′ + y) =

= −2(t′ + y)2.

(A.16)

The solution for the integral of Equation (A.15) is:

1√
(2π)

∫ ∞
−∞

(t′ + y)2e−
(t′+y−θ)2

2 dθ =
(t′ + y)2√

(2π)

∫ ∞
−∞

e−
(t′+y−θ)2

2 dθ =

= (t′ + y)2.

(A.17)

Therefore, Equation (A.13) has solution:

1√
(2π)

∫ ∞
−∞

θ2e−
(t′+y−θ)2

2 dθ = 1 + 2(t′ + y)2 − (t′ + y)2 =

= 1 + (t′ + y)2,

(A.18)
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where the first additive term on the left side of the equivalence is the variance. Starting

from Equation (A.10) and knowing the result of its inner integral, we can expand as

follows:

E[πε(θ | y)2] =
1

2ε

∫ ∞
−∞

θ2 1√
(2π)

∫ ε

−ε
e−

(t′+y−θ)2
2 dt′dθ =

=
1

2ε

∫ ε

−ε

1√
(2π)

∫ ∞
−∞

θ2e−
(t′+y−θ)2

2 dθdt′ =

=
1

2ε

∫ ε

−ε

[
1 + (t′ + y)2

]
dt′ =

=
1

2ε

∫ ε

−ε

[
1 + t′2 + y2 + 2t′y

]
dt′ =

=
1

2ε

[
t′ +

t′3

3
+ t′y2 +

2yt′2

2

]ε
−ε

=

=
1

2ε

[
ε+

ε3

3
+ εy2 +

2yε2

2
+ ε+

ε3

3
+ εy2 − 2yε2

2

]
=

=
1

2ε

[
2ε+

2ε3

3
+ 2εy2

]
=

=
1

2ε

[
2ε

(
1 +

ε2

3
+ y2

)]
=

= 1 +
ε2

3
+ y2.

(A.19)

We can finally retrieve var(πε(θ | y)) from Equation (A.9):

var(πε(θ | y)) = 1 +
ε2

3
+ y2 − y2 = 1 +

ε2

3
. (A.20)

In closing, E[πε(θ | y)] = y and var(πε(θ | y)) = 1 + ε2

3
. These two equivalences can be

easily generalized to the case in which the sample size is n > 1 and the forward model’s

variance σ2 is known but different from 1. We suggest to use as distance function |x̄− ȳ|.
In this case E[πε(θ | ȳ)] = ȳ and var(πε(θ | ȳ)) = σ2

n
+ ε2

3
.

The variance of the perturbation kernel used by the ABC-PMC algorithm is twice(
σ2

n
+ ε2

3

)
. Using this information, our goal is to determine the best possible choice to

reduce the tolerance through the iterations of the algorithm. We note that close forms

are also available if the prior distribution for θ follows a Normal distribution having

hyperparameters µ0 and σ2
0, which is a conjugate prior for the likelihood function.
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B Impact of the desired particle sample size N on

the Adaptive Approximate Bayesian Computa-

tion Tolerance Selection algorithm

In Chapter 3 we proposed a method to adaptively select the sequential tolerances that

improves the computational efficiency of the ABC-PMC algorithm. Looking at Equation

(3.1) that updates the quantile used to reduce the tolerance, the presence of tail features

could lead the ratio of the current posterior estimate to the previous estimate to be large,

making the approach too sensitive to those extreme features in the posterior. However,

if the posterior distribution presents extreme features on the tails, our task is to take into

account of those aspects, in order to properly characterize the posterior distribution.

In Section 3.3.4 we presented an example where taking into account of the behavior of

the ABC posterior distribution in the tails allows the algorithm for retrieving a suitable

approximation of the true posterior distribution.

A possible second concern is the behavior of the presented extensions when the

desired particle sample size N is small. In many practical problems that require ABC,

either the cost of generating mock data and the number of parameters of interest do

not permit a saturation of the parametric space with a high N . As already noted in

Section 3.2.1, the desired sample size N has an impact on the evaluation of Equation

(3.5) used to automatically arrest the procedure. In particular a too low N leads to

more variability of the estimated posterior in Equation (3.4), which could lead to the

algorithm stopping prematurely.

We studied the behavior of the Adaptive Approximate Bayesian Computation Toler-

ance Selection algorithm for the three examples presented in Section 3.3. We performed

a simulation study, running the algorithm for 4 different desired particles sample sizes:

N = {100, 50, 20, 10}. For each N , we run the aABC-PMC algorithm 20 times. For the

first iteration we explored the parametric space by sampling from the prior distribution

an amount of particles equal to 5N .

The results of the analyses are presented, respectively for the Beta-Binomial model,

the Exponential-Gamma model and the Gaussian Mixture Model, in Tables B.1–B.3 and

Figures B.1–B.3. In the Tables, we also summarized the results originally presented in

Section 3.3, where we used N = 2000 to compare the results. The estimates presented in

Tables B.1–B.3 are an average of both the final tolerance εT and the Hellinger distance

resulting from the simulation study. We did not plot the ABC posterior distributions

for the case N = 2000 in Figures B.1–B.3 because, as discussed in Section 3.3, they are
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εT Hdist

N=2000 0.01 0.032
N=100 0.01 0.11
N=50 0.02 0.17
N=20 0.01 0.22
N=10 0.03 0.23

Table B.1: Beta-Binomial model:
aABC-PMC algorithm performances
for different desired particles sample
sizes: N = {2000, 100, 50, 20, 10}. The
Hellinger distance between the final
aABC-PMC posterior and the true
posterior is shown.
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Figure B.1: Beta-Binomial
model: aABC-PMC final poste-
rior distribution for different de-
sired particles sample sizes: N =
{100, 50, 20, 10}.

comparable with the true posterior distribution.

For all the analyses, we can see that the final tolerances εT ’s for which the stopping

rule is verified are comparable. We also note that if N = {100, 50}, the ABC posterior

distribution suitably approximates the true one. On the other hand, not surprisingly,

the ABC posterior distribution approximates the true posterior when N = {20, 10}.
In particular, focusing on Figure B.3, we can see that N = {20, 10} are simply not

sufficient to obtain a suitable approximation of the true posterior distribution.

The example presented in Section 3.3.4 has not been discussed, because for that

particular model exploring the parametric space is necessary condition to obtain at

least few particles coming from the global mode. For this example, if N is small,

no particles coming from relevant regions of the parametric space are accepted and a

suitable approximation of the true posterior distribution cannot be obtained.

In this Appendix B only examples with 1 parameter have been considered. The stop-

ping rule seems to work properly and the ABC posterior distribution poorly approxi-

mates the true posterior because of the extremely low sample size N (e.g. N = {20, 10}).
The evaluation of the behavior of the Adaptive Approximate Bayesian Computation

Tolerance Selection algorithm in the multidimensional case is something to explore for

future analyses.
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εT Hdist

N=2000 0.042 0.07
N=100 0.023 0.11
N=50 0.025 0.20
N=20 0.022 0.43
N=10 0.017 0.28

Table B.2: Exponential-Gamma
model: aABC-PMC algorithm for dif-
ferent desired particles sample sizes:
N = {2000, 100, 50, 20, 10}. The
Hellinger distance between the final
aABC-PMC posterior and the true
posterior is shown.
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Figure B.2: Exponential-
Gamma model: aABC-PMC fi-
nal posterior distribution for dif-
ferent desired particles sample
sizes: N = {100, 50, 20, 10}.

εT Hdist

N=2000 0.029 0.54
N=100 0.054 0.57
N=50 0.026 0.63
N=20 0.011 0.88
N=10 0.024 0.94

Table B.3: Gaussian Mixture
Model: aABC-PMC algorithm for
different desired particles sample sizes:
N = {2000, 100, 50, 20, 10}. The
Hellinger distance between the final
aABC-PMC posterior and the true
posterior is shown.
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Figure B.3: Gaussian Mix-
ture Model: aABC-PMC final
posterior distribution for differ-
ent desired particles sample sizes:
N = {100, 50, 20, 10}.
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C Resampling the Mixture Weights

In the following we introduce the mathematical definitions required to define Algo-

rithm 4 presented in Section 4.2.2.

When moving the selected values for the mixture weights, not only is there the

constraint that each mixture weight component must be in [0, 1], but it is also required

that
∑K

i=1 fi = 1, making the Gaussian kernel inappropriate.

In the first iteration of the proposed ABC-PMC algorithm, the mixture weights

{f 1
1 . . . , f

1
K} are directly sampled from the prior distribution, which is a Dirichlet(δ),

where δ = (δ1, . . . , δK). For t > 1, proposals are drawn from the previous step particle

system according to their importance weights. After randomly selecting a mixture

weight, f t−1, we want to “jitter” or move it in manner that preserves some information

coming from the selected particle, but not let it be an identical copy, leading to the

resampled mixture weight f t. Overall Algorithm 4 relies on 5 properties, discussed

below.

Let’s define k = 2 independent random variables X1 ∼ Gamma(δ1, β) and X2 ∼
Gamma(δ2, β), having shape parameter respectively δ1 > 0 and δ2 > 0 and the same

rate parameter β > 0.

1. X+ := X1 +X2 ∼ Gamma(δ+, β), where δ+ := δ1 + δ2.

The moment generating function of a Gamma random variable X1 is:

MX1(t; δ1, β) = E[etX1 ]

=

∫ +∞

0

etX1
1

Γ(δ1)
βδ1xδ1−1

1 e−βx1dt

=
βδ1

Γ(δ1)

∫ +∞

0

xδ1−1
1 e−(β−t)x1dt

=
βδ1

Γ(δ1)

Γ(δ1)

(β − t)δ1

=
1(

1− t
β

)δ1

(C.1)

Since X1 ⊥⊥ X2, then
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MX+(t) = MX1+X2(t) = MX1(t) ·MX2(t)

=
1(

1− t
β

)δ1 · 1(
1− t

β

)δ2
=

1(
1− t

β

)δ+ ,
(C.2)

which is the moment generating function of a Gamma random variable having

shape parameter δ+ = δ1 + δ2 and rate parameter β.

2. Y :=
(
X1

X+
, X2

X+

)
:= X

X+
∼ Dirichlet(δ1, δ2)

The demonstration consists in the following 4 steps:

(a) Retrieve the joint distribution of (X1, X2):

fx1,x2(x1, x2; δ1, δ2, β) :=
2∏
i=1

1

Γ(δi)
βδixδi−1

i e−βxi

:=
1

Γ(δ1)Γ(δ2)
βδ1+δ2xδ1−1

1 xδ2−1
2 e−β(x1+x2)

(C.3)

(b) Set Y := X1

X1+X2
and Z := X1 + X2 and retrieve the joint distribution of

fY,Z(y, z; δ1, δ2, β):

Given the transformation of the random variables X1 and X2, it follows that

X1 = Y Z and X2 = Z(1− Y ). The Jacobian is equal to

J(y, z) =

[
z y

−z 1− y

]
= z

(c) The joint distribution fY,Z(y, z; δ1, δ2, β) is:

fY,Z(y, z; δ1, δ2, β) := z
1

Γ(δ1)Γ(δ2)
(zy)δ1−1(z(1− y))δ2−1βδ1+δ2e−βz

:=
1

Γ(δ1)Γ(δ2)
zδ1+δ2−1yδ1−1(1− y)δ2−1βδ1+δ2e−βz

:= zδ1+δ2−1βδ1+δ2e−βz
1

Γ(δ1)Γ(δ2)
yδ1−1(1− y)δ2−1

:= zδ1+δ2−1βδ1+δ2e−βz
1

Γ(δ1 + δ2)

Γ(δ1 + δ2)

Γ(δ1)Γ(δ2)
yδ1−1(1− y)δ2−1

(C.4)

(d) It is straightforward to see that Z and Y factorize, meaning that Z ⊥⊥ Y .

Moreover by just multiplying and dividing for Γ(δ1 + δ2) it follows that:
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Z ∼ Gamma(δ+, β), (C.5)

as already shown in the previous point.

The random variable Y ∼ Dirichlet(δ1, δ2):

fY (y; δ1, δ2) :=
Γ(δ1 + δ2)

Γ(δ1)Γ(δ2)
yδ1−1(1− y)δ2−1, (C.6)

which in this case, since k = 2, corresponds to a Beta(δ1, δ2).

3. X+ and Y are independent.

This fact comes clearly from Equation (C.4).

4. For any Z ∼ Gamma(δ, β) and independent B ∼ Beta(pδ, (1−p)δ) it follows that:

BZ ∼ Gamma(pδ, β), (1−B)Z ∼ Gamma((1− p)δ, β) (C.7)

with BZ ⊥⊥ (1−B)Z.

Again, from Equation (C.4), it is straightforward to show thatBZ ∼ Gamma(pδ, β).

Just recalling that, given B ∼ Beta(pδ, (1− p)δ), 1− B ∼ Beta((1− p)δ, pδ) and

keep referring to Equation (C.4), it follows that (1−B)Z ∼ Gamma((1− p)δ, β).

5. Let’s define f ∼ Dirichlet(δ) independent from Z ∼ Gamma(δ+, β). Then:

{fiZ} ⊥⊥∼ Gamma(δi, β) (C.8)

It directly comes from point (b) in the second demonstration introduced here.

From the steps outlined in Algorithm 4, we note that ξt
∗
i is the sum of two independent

random variables, with Ztf t−1
i Bt

i ∼ Gamma(pδ1, 1) and ηti ∼ Gamma((1 − p)δi, 1), so

that the resampled mixture weight f (t) ∼ Dirichlet(δ).

The parameter p is a fixed real number with range [0, 1] that determines how much

information to retain from f t−1. If p is tiny, then the {Bt
i} will be tiny and the new

Gamma random variables will be ξt
∗
i = Ztf t−1

i Bt
i + ηti ≈ ηti , nearly equal to the new

ηti
⊥⊥∼ Gamma((1−p)δi, 1), so f t will be almost independent of f t−1. If p is nearly 1 then

{Bt
i} will be nearly 1, the {ηti} will be nearly 0 and ξt

∗
i = Ztf t−1

i Bt
i + ηti ≈ Ztf t−1

i , so f t

will be almost identical to f t−1.
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