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Functional molecular hybrids based on polyoxometalates: catalytic and biological 

studies 

Ph. D. Thesis by Gloria Modugno, University of Padova, Italy. 

Polyoxometalates (POMs) are molecular and nano-dimensional, multi-metal oxides, which 

have found applications in catalysis, materials science, and nano-medicine. Their general 

formula are: a) [MmOy]
p-

; b) [XxMmOy]
q-

, where M is the main transition metal constituent of 

the POM (M = Mo, V, W), O is the oxygen atom and X can be a non-metal atom, such as P, 

Si, As, Sb, another element of the p block, or a different transition metal. These species are 

characterized by a remarkable variety, since their properties depend on elemental 

composition, structure, and associated counterion. In addition, it is possible to synthesize 

“vacant” POMs derivatives, with surface defects. These last structures feature coordinatively 

unsaturated, terminal oxygen atoms, whose nucleophilicity can be exploited to foster reactions 

with electrophilic organic moieties to give O-X-R bonds, where X = As, P, Si, Sn, and R = 

organic residue. In this way, several organic-inorganic hybrid complexes can be obtained. 

Thus, the merging of organic domains with POM nano-scaffolds can be exploited to design 

new functional molecules and materials. In particular, POM-appended organic/organometallic 

moieties are instrumental for advanced catalytic applications and can direct the 

supramolecular organization of the hybrid molecules towards extended functional 

nanostructures. Among recent examples, the interplay of organic chromophores and POMs by 

covalent linkage and ionic assembly has been proposed for the development of 

photosensitized catalytic processes.  

In this thesis, we report the synthesis of hybrid POM derivatives containing luminescent 

chromophores (dansyl, pyrene and fluorescein), grafted as silane (with general formula 

(nBu4N)4[(R-Si)2O(γ-SiW10O36)]) or chiral phosphonate (with general formula 

(nBu4N)3Na2[(R*PO)2(α-A-PW9O34)]) derivatives, with unique spectroscopic features. The 

use of tetrabutylammonium (nBu4N
+
) as counterion promotes the solubilization of the POM 

in CH3CN. The resulting hybrids have been characterized at the solid state and in solution by 

a combination of techniques (multinuclear NMR, FT-IR, ESI-MS). The characterization 

suggested a bis-substitution: the inorganic POM framework provides a molecular nanosurface 

where two molecules of the same fluorophore are anchored in a tweezer-type arrangement. 

Optical and chiroptical properties of the hybrid derivatives have been investigated. In 

particular, the fluorescence spectroscopy of the fluorophore-tagged POMs has been exploited 

for sensing applications towards metal ions and organic molecules: 

 



 

(i) The bis-dansylated complex can selectively coordinate bivalent metal ions (Cu and Pb 

ions), which can be detected in micromolar concentration. In the presence of Cu
2+

, a 

fluorescence quenching has been observed, whereas with Pb
2+

 an increase of luminescence 

has been obtained. 

(ii)  The extended π system of the pyrene derivative has been exploited to bind 

[60]fullerene. The luminescence quenching has highlighted the interaction of the POM 

with fullerene molecules in the micromolar range. 

 

A promising potential for applications in many different fields such as sensing, catalysis, 

nanoelectronics, and photochemical conversion of solar energy is foreseen for these 

luminescent systems. 

Moreover, due to the potential applications of POMs in medicine (many POMs exhibit 

antiviral, antitumoral and antibiotic activity), their association with organic domains may be 

also of interest to improve targeting and delivery strategies. In this scenario, the exploitation 

of hybrid complexes can allow: (i) to enhance stability and biocompatibility; (ii) to increment 

the affinity of derivatives towards carriers and biological targets; (iii) to incorporate imaging 

probes for cellular tracking/trafficking. Luminescent hybrid POMs, in particular, may couple 

the bio-imaging diagnostic potential with innovative therapy protocols. Thus, the assembly 

behavior and the stability of the luminescent hybrid POMs in physiological conditions have 

been investigated by means of dynamic light scattering (DLS), scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM). The analysis showed the formation of 

spherical aggregates with a broad size distribution for these derivatives. The formation of 

such aggregates is expected to be driven by the hindered organic chromophores, bearing 

aromatic residues, whereas the tetrabutylammonium cations may assist the assembly, 

minimizing repulsion between adjacent inorganic polyanions. Moreover, since the 

fluorescence of these compounds is maintained under physiological conditions, they were 

tracked in the cells, showing their localization in different subcellular regions. An 

unprecedented uptake into nucleosomes and mitochondria has been highlighted. The 

cytotoxicity of hybrid POMs has also been determined, showing a reduced toxicity at low 

doses. These results are expected to pave the way to the use of suitable POMs both as drugs 

and as nanodimensional scaffolds for organic drugs.  

Furthermore, since the preparation of hybrid derivatives could be a powerful strategy for the 

introduction of molecular recognition sites and the enhancement of biocompatibility, studies 



 

on the interaction between POM and hybrid POMs with important biological macromolecules 

(ferritin and avidin) were explored.  

The binding of two different kind of inorganic POMs ([Ru
IV

4(µ-OH)2(µ-O)4(H2O)4(µ-

SiW10O36)2]
10- 

and
 
[EuW10O36]

9-
) on the ferritin (Ftn) has been indeed higlighted by a 

combined investigation, involving DLS, ζ-potential measurements, ITC (isothermal titration 

calorimetry), fluorimetry, CD (circular dichroism) and TEM. In particular, (i) the shift of Ftn 

ζ-potential towards more negative potentials (by 8-13 mV), in the presence of the POM and 

(ii) the complete quenching of the Trp luminescence (λexc = 290 nm, λem = 327 nm), upon 

addition of >24 eqs of POM, likely due to energy transfer between the two domains, have 

shown that the POM can be successfully attached to the Ftn by means of ionic interactions. In 

addition, the integrity of the protein has been estabilished by DLS and CD analysis. 

Moreover, a biological hybrid POM containing biotin moieties was synthesized and its 

interaction capability with avidin was investigated. Such study allowed to investigate the 

confinement of hybrid POMs in correspondence of specific protein binding sites and to design 

bioconjugated systems with molecular recognition properties, to be exploited in targeting 

therapies. 

A last work, developed during a short scientific mission in Dublin, in collaboration with the 

research group of Prof. Martin Albrecht, is also presented. We have studied a strategy for the 

synthesis of a POM-appended N-heterocyclic carbene (NHC) iridium complex. To this end, 

imidazolium moieties have been successfully grafted on the defect site of a divacant Keggin 

polyanion. The hybrid POM synthesized was tested in catalyzing hydrogen transfer reactions 

(HT). The reduction of benzophenone to diphenyl methanol in iPrOH as solvent and hydrogen 

donor was used as a model reaction for probing the catalytic activity of the iridium(I) 

complex. In particular, full conversion after 120 min has been obtained using tBuOK as base.  

 

 

 

 

 

 

 

 

 

 



 

Ibridi molecolari funzionali basati su poliossometallati: studi catalitici e biologici 

Tesi di Dottorato di Gloria Modugno, Università degli Studi di Padova, Italia. 

I poliossometallati (POMs) sono una classe di composti a base di ossidi polianionici discreti 

che presentano potenzialità di utilizzo in campi diversi, quali la catalisi, la scienza dei 

materiali e la medicina. Tali composti possono essere rappresentati da due formule generali:
 

(a) [MmOy]
p-  

isopolianioni; (b)[XxMmOy]
q-  

eteropolianioni,
 
dove M è un metallo delle serie di 

transizione (solitamente V, Mo o W nel più alto stato d’ossidazione (d
0
)) mentre X può essere 

un non metallo (P, Si, Ge, As, Sb, Te, etc.), o un diverso metallo di transizione (Co, Fe, Mn, 

Cu, etc.). 
 

La diversità strutturale e di composizione che caratterizza i POMs, si riflette in un ampio 

spettro di proprietà, controllabili a livello molecolare, che coinvolgono forma, potenziale 

redox, distribuzione della carica superficiale, acidità e solubilità. In particolare, una delle 

possibili modificazioni della struttura di un poliossometallato consiste nella preparazione di 

un complesso “vacante”. Poichè tali derivati presentano dei difetti strutturali sulla loro 

superficie, caratterizzati dalla presenza di atomi di ossigeno con reattività nucleofila, possono 

essere sfruttati per preparare complessi ibridi organici-inorganici. Infatti, gli atomi di 

ossigeno che si trovano in prossimità della lacuna vengono funzionalizzati mediante reazioni 

con reagenti elettrofili per dare legami O-X-R, dove X = As, P, Si, Sn, e R = residuo organico. 

In questo modo, la funzionalizzazione di POMs con residui organici consente lo sviluppo di 

molecole e materiali ibridi che possono presentare diverse funzionalità. Per esempio, 

l'associazione di residui organici/organometallici ai poliossoanioni ha consentito lo sviluppo 

di aggregati supramolecolari estesi e di sistemi innovativi con applicazioni catalitiche 

bifunzionali e avanzate. Inoltre, l' ancoraggio di cromofori organici è stato recentemente 

proposto per lo sviluppo di processi fotoattivati.  

Sulla base di queste premesse, in questo lavoro di tesi, sono state quindi studiate nuove 

strategie di sintesi, per la preparazione di derivati ibridi luminescenti basati su 

poliossometallati contenenti cromofori, quali dansile, pirene e fluoresceina e legati 

covalentemente al POM come organosilani (con formula generale (nBu4N)4[(R-Si)2O(γ-

SiW10O36)]) o come fosfonati chirali (con formula generale (nBu4N)3Na2[(R*PO)2(α-A-

PW9O34)]). Nella strategia di funzionalizzazione, l’uso di un sale di tetrabutilammonio 

(nBu4NBr) promuove la solubilizzazione del POM in CH3CN. 

I derivati ibridi ottenuti sono stati caratterizzati allo stato solido ed in soluzione utilizzando 

una combinazione di tecniche diverse (NMR multinucleare, FT-IR, ESI-MS). La 

caratterizzazione ha suggerito una bis-funzionalizzazione dello scaffold inorganico: due 



 

molecole dello stesso fluoroforo organico sono ancorate sulla superficie del POM secondo un 

arrangiamento a tweezer. Sono state, quindi, studiate le proprietà ottiche e chiroottiche dei 

derivati ibridi luminescenti preparati e, in particolare, mediante indagini di fluorescenza, è 

stato possibile studiare la loro capacità come sensori verso ioni metallici e molecole 

organiche: 

 

(i) Il derivato bis-dansilato coordina selettivamente ioni metallici bivalenti, come il rame e 

il piombo, i quali possono essere, così, rilevati in concentrazione micromolare in soluzione 

organica. In seguito alla presenza di Cu
2+

 e Pb
2+

, in soluzione, sono stato stati osservati, 

rispettivamente, uno spegnimento e un aumento della fluorescenza del derivato. 

(ii) Il sistema esteso π del POM ibrido contenente pirene è stato, invece, sfruttato per 

legare il fullerene. In particolare, misure di luminescenza hanno evidenziato l'interazione 

del POM con molecole di fullerene nell'intervallo micromolare. 

 

I sistemi luminescenti proposti potranno essere utilizzati in diversi ambiti applicativi: 

sensoristica, catalisi, nanoelettronica, e fotochimica. 

Inoltre, considerando il potenziale utilizzo dei POMs in ambito biomedico, che include 

possibile attività antibatterica, antivirale e antitumorale, la loro associazione con domini 

organici e leganti è di interesse anche per disegnare nuove strategie di delivery e di targeting. 

A questo proposito, l' utilizzo di POMs ibridi potrebbe consentire: (i) l'uso di derivati con 

maggiore stabilità e biocompatibilità; (ii) l'incremento dell'affinità dei derivati nei confronti di 

vettori cellulari e di bersagli biologici; (iii) l' associazione di sonde luminescenti per il 

rilevamento di POMs nelle cellule. In particolare, POMs ibridi luminescenti, possono essere 

utilizzati per il bio-imaging, consentendo anche lo sviluppo di protocolli terapeutici 

innovativi. A tale proposito, quindi, sono stati investigati i fenomeni di aggregazione e la 

stabilità dei poliossanioni in soluzione fisiologica mediante indagini di dynamic light 

scattering (DLS), microscopia a scansione elettronica (SEM) e microscopia a trasmissione 

elettronica (TEM). Le analisi hanno permesso di evidenziare, per tali derivati, la formazione 

di aggregati sferici con un' amplia distribuzione delle dimensioni. La formazione di questi 

aggregati è probabilmente dovuta alle interazioni idrofobiche che coinvolgono i residui 

aromatici, mentre i cationi tetrabutilammonio possono minimizzare la repulsione tra gruppi 

polianionici adiacenti. Inoltre, poichè la luminescenza di questi sistemi viene mantenuta anche 

in condizioni fisiologiche, essi sono stati veicolati all'interno delle cellule, e localizzati in 

diverse regioni subcellulari, come nei nucleosomi e nei mitocondri. Studi dell' attività 



 

biologica dei POMs ibridi hanno, in seguito, mostrato una ridotta tossicità a basse dosi. Questi 

risultati sono molto promettenti in quanto potrebbero aprire la strada all' utilizzo di POM 

ibridi, come farmaci o supporti biologici per molecole bioattive, in nanomedicina. 

Poichè, inoltre, la preparazione di derivati ibridi potrebbe essere una potente strategia per 

l'introduzione di siti di riconoscimento molecolare e il miglioramento della biocompatibilità 

del derivato stesso, sono stati condotti anche studi di interazione tra POMs e POMs ibridi con 

importanti macromolecole biologiche, come la ferritina e l'avidina. 

Ad esempio, abbiamo studiato l' interazione ionica fra due diversi tipi di POM ([Ru
IV

4 (μ-

OH)2(μ-O)4(H2O)4(μ-SiW10O36)2]
10 -

 e [EuW10O36]
9-

) con la proteina ferritina (Ftn) mediante l' 

ausilio della combinazione di diverse tecniche che hanno incluso: DLS, ζ-potential, ITC 

(calorimetria isotermica di titolazione), fluorimetria, CD (dicroismo circolare) e TEM. In 

particolare, abbiamo osservato (i) lo spostamento del potenziale ζ di Ftn verso valori più 

negativi, in presenza del POM e (ii) il completo quenching della luminescenza di Ftn (Trp: λex 

= 290 nm, λem = 327 nm), in seguito all' aggiunta di > 24 equivalenti di POM, dovuto, 

probabilmente, a trasferimenti energetici tra il POM e la macromolecola. Infine, l'integrità 

della proteina è stata verificata mediante analisi DLS e CD. 

Inoltre, è stato preparato un POM ibrido biologico contenente due molecole di biotina, al fine 

di valutare la sua capacità di interazione con la proteina avidina. In particolare, questo tipo di 

studio ha permesso di investigare la possibilità di confinare POM ibridi in corrispondenza di 

siti specifici di legame delle proteina e di esplorare la progettazione di nuovi sistemi 

bioconiugati con proprietà di riconoscimento molecolare, sfruttabili in terapie di targeting. 

Infine, è stata studiata una strategia di sintesi di un complesso di iridio, contenente come 

legante un poliossoanione ibrido funzionalizzato con un gruppo imidazolico. Questo lavoro è 

stato svolto nel laboratori di ricerca del Prof. Martin Albrecht presso University College of 

Dublin, Dublino, Irlanda. In questo caso, Il POM ibrido, preparato è stato sperimentato nella 

riduzione di gruppi carbonilici, mediante trasferimento di atomi di idrogeno da agenti 

riducenti sacrificali (iPrOH). La riduzione di benzofenone a difenil metanolo in iPrOH è stata, 

quindi, utilizzata come reazione modello per investigare l'attività catalitica del complesso. In 

particolare, è stato possibile ottenere una conversione completa dopo 120 min, utilizzando 

tBuOK come base. 
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1.1 Polyoxometalates: a general presentation 

The history of polyoxometalates (POMs) goes back to early XIX century
1
 when the discovery 

that metals belonging to early transition series, such as niobium, vanadium, tantalum, 

molybdenum, and tungsten in their higher oxidation states (configuration d
0
 or d

1
) can form in 

aqueous solution (at suitable pH, concentration and temperature) discrete polynuclear 

oxoanions with variable dimensions, ranging from few Angstrom and tens of nanometers.
2, 3, 4, 

5,6
 A first classification of these complexes is based on their chemical composition, essentially 

represented by two types of general formula.
2, 3, 4, 5, 6

: 

 

a) [MmOy]
p-

 

b) [XxMmOy]
q- 

 

where M is the main transition metal constituent of the polyoxometalate, O is the oxygen 

atom and X can be a non-metal atom as P, Si, As, Sb, another element of the p block, or a 

different transition metal. In the first case (a), polyoxometalates are called isopolyanions; 

while in the second case (b), they are called heteropolyanions.  

There are many types of polyoxometalate structures (Lindqvist, Keggin, Wells-Dawson, 

Kreb), obtained by a careful tuning of the synthetic parameters: concentration, stoichiometric 

ratio of the reactants, temperature, acidity. Some examples of polyoxometalate structures are 

reported in figure 1.1. 

 

 

 

Figure 1.1 Polyhedral representation of 

polyoxometalates, in which blue 

octahedra are centred on tungsten atoms, 

while the yellow tetrahedra are centered 

on the central hetroatom. 

a) Lindqvist structure [M6O19]
2-

 (M = 

Mo, W); b) α-Keggin structure 

[XW12O40]
n-

 (X = P, Si, B, Al, Ge; M = 

Mo, W); c) α-Well Dawson structure 

[X2M18O82]
n-

; d) Anderson-Evans 

heteropolyanion [XMo6O24]
m-

 (X = P, 

As, Mn); e) Dexter structure X2M12O42
n-.

. 
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The accessibility to such structural and compositional diversity is reflected in a broad range of 

properties that involve shape, redox potential, surface charge, acidity and solubility. 

Noteworthy, isostructural polyoxometalates may also display different properties depending 

on the heteroatom X, whereas the associated countercation is pivotal to foster solubility in 

different solvents. Properties and reactivity of POMs can thus be tuned and controlled at 

molecular level.  

In most cases, the structure of the polyoxometalates is derived from the aggregation of 

octahedral units MO6 with a central metal atom M and the oxygen atoms placed on their 

corners. In such octahedra, oxygen atoms exhibiting simple bonds with the metal allow the 

condensation between two octahedral units, while one oxygen atom- or a maximum of two – 

present a double bond character with the central metal atom and they are not shared with other 

metal atoms within the complex (terminal oxygens, Lipscom' s law
7
). In the following Figure 

1.2, two kinds of octahedra constituting POM structures are represented
2
: the first one is a 

terminal mono-oxo type presenting only one terminal oxygen atom, while the other five 

oxygens are shared with other atoms of the polyoxometalate; the second one is a terminal cis-

di-oxo type and it presents two terminal oxygens, in cis position, while the remaining four 

oxygens are shared by other metals in the whole polyoxometalate structure. 

 

 
 

Figure 1.2 Octahedra constituting the most common structures of the polyoxometalates. 

 

 

Two are the main characteristic features that a metal must possess to originate 

polyoxometalate complexes
2
:  

 

i) dimensions (cationic radius) compatible with a octahedral coordination;  

ii) presence of empty and available d orbitals, to allow the formation of terminal metal–

oxygen double bond.  
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The first feature explains, for example, the absence of a polyoxoanionic chemistry for Cr 

(VI): indeed, its smaller dimensions (ionic radius = 0.58 Å) allow only up to four coordinating 

oxygens. 

The octahedra condensation takes place through shared oxygen atoms, with the formation of μ 

- oxo bridged bonds between two metals ions, by the following three different ways
3,8

: 

 

 
i) corner sharing;  

ii) edge sharing;  

iii) face sharing (less frequent). 

 

These sharing modes are represented in figure 1.3. The presence of terminal oxygen atoms is 

essential for the aggregation to take place in discrete structures and not in an extended 

material (as for most common metal oxides, silicates, germanates, tellurates). Since terminal 

oxygens are less basic, they are not suitable for the condensation with other monomeric units, 

thus providing a barrier towards the linear polymerization and finally favouring discrete 

molecular units.
 2
 

 

 

 

Figure 1.3 Condensation of the octahedral units in polyoxometalates. 
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1.1.1 α-Keggin structure 

One of the most important class of polyoxometalates, is that of Keggin heteropolyanions. 

Their general formula is [XM12O40]
n-

, with M = Mo (VI) or W (VI). Keggin obtained the 

structure of the hexahydrated dodecatungstophosphoric acid for the first time in 1934, by X-

ray investigations
9
. This structure is called α-Keggin and consists of a central PO4 tetrahedron 

surrounded by 12 octahedra WO6 belonging to the mono-oxo terminal type. 

Such octahedra are disposed in four groups (triplets M3O13), each of them constituted by the 

aggregation of three octahedral units by edge-sharing. The four different triplets are 

condensed each other by corner-sharing. 

 

 

Figure 1.4 Two representation of the same α-Keggin structure of the [α-PW12O40]
3-

 heteropolyanion. 

On the left side a ball-and-stick model is represented: the red spheres are oxygen atoms, the blue ones 

are tungsten atoms and the orange one is the central phosphorous atom. On the right side a polyhedral 

model is represented: blue octahedra are centred on tungsten atoms, while the orange tetrahedron is 

centered on the phosphorous atom. 

 

Structure and symmetry of α-Keggin polyanions have also been confirmed in solution by 
29

Si, 

31
P and 

183
W NMR spectroscopies. 

10, 11, 12,13 NMR characterizations of [-PW12O40]
3-

 and [-

SiW12O40]
4-

 are reported in Table 1.1. The chemical equivalence of the 12 tungsten atoms 

leads to a single signal in both the 
183

W NMR spectra,
10 

while one signal is observed for the 

central atom (Si or P).
11, 12

  

Keggin polyoxometalates can also present structural isomers, which are formally obtained 

from the α structure by 60° rotation of one (β isomer), two (γ isomer), three (δ isomer) or four 

(ε isomer) triplets M3O13.
2,3

 These isomers are characterized by lower symmetry and by a 

decreased thermodynamic stability with respect to the α structure. 
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Table 1.1 Heteronuclear NMR characterizations of heteropolyanions with -

Keggin structure. 

 

 

 

 

 

 

 

 

 

 

1.1.2 Vacant structures 

Heteropolyoxotungstates described above are also called “saturated” structures, due to the 

high symmetry, the low anionic charge and the stability of the structure itself. Starting from 

them, it is also possible to synthesize derivatives with defects in the structure, the so called 

“vacant” (or “lacunary”) polyoxometalates. Such complexes derives from the saturated 

original polyoxometalate, through the formal loss of one or more MO6 tetrahedral units, thus 

affording vacancies on the surface. Synthetic procedures and experimental conditions to yield 

these species are strictly related to the thermodynamic and kinetic stability of the lacunary 

complexes themselves, which can be obtained from the precursors in suitable conditions of 

temperature, concentration and pH. 

As an example, the synthetic procedure and the structure of a monovacant tungsten complex 

[XW11O39]
n-

 (X = Si
IV

, P
V
, …), derived from the α-Keggin structure is reported below.

14
 

The vacant complex [XW11O39]
n- 

is stable and it can be isolated. Its synthesis can be obtained 

starting from [α-XW12O40]
 (n-4)-

, as well as by mixing stoichiometric amounts of mononuclear 

metal salts and adjusting the pH to a specific acidic value. 

 

 

 

Scheme 1.1 Synthetic procedure of the monovacant -Keggin [XW11O39]
n-

. 

Polyoxoanion 
183

W NMR
a 
δ, 

ppm 

31
P NMR

b 
δ, 

ppm 

29
Si NMR

c 
δ, 

ppm 

[-PW12O40]
3-

 -99.4 -14.9 --- 

[-SiW12O40]
4-

 -103.8 --- -85.3 

a
 ref.: 1 M WO4

2-
 in D2O; 

b
 ref.: 85% H3PO4; 

c
 ref.: Si(CH3)4; 

d
 ref.: H2O. 
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The same considerations applies to di- ([XW10O36]
m-

) and tri-vacant species ([XW9O33]
p-

), 

resulting from the formal loss of two or three octahedra, respectively.
15

 

 

 

 

Figure 1.6 Polyhedral structures of di- (left) and tri-vacant Keggin polyoxotungstates (right). 

 

Since these vacant polyanionic complexes feature reactive terminal, coordinatively 

unsaturated, oxygen atoms around the vacant sites, their nucleophilicity can be exploited to 

prepare the following derivatives: 

 

i) Transition metals-substituted polyoxometalates (TMSPs) complexes  

The reaction between a vacant polyoxometalate with a suitable transition metal precursor 

(M = Cr, Fe, Mn, Co e Ru) allows the incorporation of such metal on the POM structure, 

giving Transition Metals-Substituted Polyoxometalates (TMSPs) complexes (see Figure 

1.7 A). In several cases, a “out-of-pocket” coordination of transition metals yields 

sandwich-like dimeric structures, whereby the metal ions bridge the subunits (Figure 1.7 

B).
16,17

 

Figure 1.5 Ball-and-stick representation 

of the structure of the monovacant -

Keggin [XW11O39]
n-

. The blue spheres are 

tungsten atoms, the white ones are 

oxygens and the green one is the central 

heteroatom X. The red spheres are the 

nucleophilic oxygen atoms bordering the 

vacant site. 
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TMSPs show high stability, since the transition metal becomes an effective constituent of 

the whole polyanion structure. 

 

ii) Organic inorganic hybrid polyoxometalates (hybrid POMs) 

The vacant polyoxometalates can react with electrophilic organic moieties to give O-X-R 

bonds, where X = As, P, Si, Sn, and R = organic residue. In this way organic - inorganic 

hybrid POM complexes are formed (see Figure 1.7 C).
18,19,20  

 

 

Figure 1.7 Examples of derivatives obtained from vacant POMs: A [α-Fe(H2O)SiW11O39]
5-

; B [Fe 4(H2O)10(-

AsW9O33)2]6; C [(HO2CCH2PO)2(γ-SiW10O36)]
4-

. 

 

 

1.1.3 Proprieties of POMs 

Different properties make polyoxometalates very interesting in different scientific fields such 

as catalysis, material science and medicine
4
: 

 

(i) In catalysis, their use as Brönsted acids and homogeneous oxidation catalysts has been 

firmly established since the late 70s and 80s, respectively.
21

 Polyoxometalates in their 

protonated forms are called heteropolyacids (HPAs) and show a very strong Brönsted 

acidity, approaching the superacidic behavior; on the other hand, they are efficient 

oxidants, exhibiting fast reversible multielectron redox transformations under rather mild 

conditions. Furthermore, their acid-base and redox properties can be varied over a wide 

range by changing the chemical composition. On top of that, POMs exhibit a fairly high 

thermal stability in the solid state and they can be easily solubilized in a wide range of 

solvents, by choosing a suitable counterion. Of particular interest is the structural analogy 

between molecular POMs and extended solid oxides, as they may provide soluble models 
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to investigate reactions and surface properties of such related materials.
2,22 

The intriguing 

prospect is to use the well-defined and discrete POM based systems as molecular probes to 

trace new mechanistic pathways at the heterogeneous interface of metal oxide surfaces.
21,23

 

 

(ii) The anchoring of organic substituents on the POMs surface offers the possibility to 

tune the stereoelectronic features of the resulting complexes, and to affect their solubility, 

reactivity, and hydrolytic stability.
19,21,23

 This strategy was successfully employed to obtain 

polymerizable,
24

 dendrimeric
25

, and supramolecular derivatives
26

. Indeed, the merging of 

organic and inorganic domains is a developing field of investigation, mainly focusing on 

the design of new hybrid materials.
27

 The concept of hybrid polyoxometalates will be 

developed in the paragraph 1.2: Hybrid POMs: synthesis and applications. 

 

(iv) More recently, an increasing number of potential medical properties for 

polyoxometalates have been reported in the literature. Several papers deal with their 

bioactivity as antibacterial, antiviral, antitumoral agents or focused on their interactions 

with proteins.
28

 The application of POMs in medicine will be developed in detail in the 

paragraph 1.3: Polyoxometalates in Medicine. 

 

1.2 Hybrid POMs: synthesis and applications 

1.2.1 Synthetic strategies to obtain hybrid POMs 

In relation to the synthetic strategy adopted for their construction, POM hybrids can be 

classified on the basis of of interaction type between their organic and inorganic subunits. In 

particular, Class I is made up of all the species in which only non-covalent interactions (i.e., 

hydrogen bonds, electrostatic, or van der Waals interactions) occur between the two domains, 

while in Class II the organic and inorganic moieties are linked via covalent bonds.
21,23  

 

1.2.1.1 Class I hybrids 

The polyanionic nature of POMs offers a unique advantage in order to generate structural and 

function diversity, simply by counterion exchange.
19c

 Moreover, due to the cooperative effect 

of multiple ionic interactions, polycharged species can be assembled in highly stable 

structures and evolve to persistent nano-architectures. This category includes all POM 

derivatives associated with organic cations (tetraalkylammonium or phosphonium), 

polycationic polymers, dendrimers and dendrons, and organometallic complexes with a 

positive charge. 
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As an example, following this approach, in our research group, a tetraruthenium substituted 

POM complex [Ru4(µ-OH)2(µ-O)4(H2O)4(γ-SiW10O36)2]
10– 

(RuPOM)
 
has been associated to

 

cationic polyaniline (PANI), polydiallyldimethyammonium charged polymers (PDDA) or on 

carbon nanotubes decorated with positively charged dendrons. This POM is known as a 

highly robust and efficient water oxidation catalyst. In particular, the unique mechanistic and 

stability features of RuPOM have been exploited to prepare innovative nano-structured 

oxygen-evolving anodes, upon assembly of the POM cluster on the functionalized 

nanotubes.
29

 

.  

 

 

 

 

 

 

 

 

 

 

 

1.2.1.2 Class II hybrids 

Organic derivatization of polyoxometalates is mainly achieved from lacunary 

heteropolyoxometalates (paragraph 1.1.2), since the nucleophilic vacant oxygen atoms can 

react with electrophilic groups such as organophosponates, organoarsonates, organotin, 

etc.
18,19

 In particular, the variety of electrophilic groups available, combined with the various 

topologies observed in lacunary heteropolyoxometalate realm, explains the recent 

development of such organic/inorganic hybrids. The structure of the vacancy and the 

structural organization of the functionalizing agents are key parameters that need to be 

considered for the synthesis of functionalized heteropolyoxometalates. Furthermore, it has to 

be noticed that, aside from few exceptions, the functionalization of heteropolyoxometalates of 

Keggin and Dawson families is mainly observed with vacant tungsten species. 

In 1978, Klemperer first synthesized a functionalized polyoxometalate from a lacunary 

structure: [PW11O39]
7-

 was reacted with CpTiCl3 in CH2Cl2 to give [PW11O39 (TiCp)] 
4-

.
30

 

This approach was soon extended to the reactions of other hydrolyzable compounds such as 

Figure 1.8 Electrostatic immobilization of 

the RuPOM on the surface of nanotubes 

functionalized with positively charged 

dendrons. 
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RSiCl3, RGeCl3, RAsCl2, RP(O)Cl2 and RSnCl3 with monovacant Keggin and Dawson POM 

structures (Schemes 1.2 and 1.3).
31

 

 

 

Scheme 1.2 Functionalization of monovacant Keggin [α-PW11O39]
7-

 POM with organic moieties to yield hybrid 

POMs.  

 

 

Scheme 1.3 Functionalization of monvacant Dawson [α2-P2W17O61]
10 

POM with organic moieties to yield an 

hybrid POM.  
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In our Research Group, different procedures have been optimized in order to synthesize 

organic–inorganic POM-based hybrid complexes, starting from both organosilyl (SiX3, X = 

Cl, OMe) and organophosphonyl (POX2, X = Cl, OH) compounds as electrophilic reagents. 

The covalent functionalization of different lacunary POMs has been achieved with yields 

ranging from 65 up to 90%.
32

 The use of the bivacant complex [γ-SiW10O36]
8- 

has shown to be 

convenient for these reactions, since it is characterized by a higher hydrolytic stability, than 

other vacant complexes, in the acidic environment required for these reactions. As in the case 

of the monovacant precursor (see Figure 1.5) it presents four equivalent nucleophilic vacant 

oxygen atoms. These features allow to obtain bis-functionalized products with high 

selectivity. The reaction occurs readily in acetonitrile under phase-transfer conditions, by 

addition of nBu4NBr, that guarantee the solubility of the product.
33

 

 

 

 

Scheme 1.4 Functionalization of divacant Keggin [γ-SiW10O36]
8-

 POM
 
with organic moieties to yield hybrid 

POMs. 

Furthermore, to increase the complexity and diversity of these molecular structures, it is 

possible to chemically modify the organic arms grafted onto the polyoxometalate in post-

functionalization reactions. In this respect, for example, in our research group, amino acid 

methyl esters were covalently linked to the phosphonoacetic-substituted POM 

[(HOC(O)CH2PO)2(γ-SiW10O36)]
4–

 by means of classic condensation reactions.
34

 The 

synthetic scheme of the reaction is the following: 
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Scheme 1.5 Functionalization of the phosphonoacetic-substituted POM [(HOC(O)CH2PO)2(γ-SiW10O36)]
4–

 with 

amino acid methyl esters by means of classic condensation reactions.  

EDC=Ethyl-γ-dimethylaminopropylcarbodimmide; HOBT =1-hydroxy-1,2,3-benzotriazole. 

 

1.2.2 Hybrid POMs: molecules and materials with targeted properties and 

functions 

One of the aims of this Thesis is to explore and broad the use of hybrid POMs towards 

different application fields. For a better contextualization of the results obtained, some 

examples of hybrid POM structures and their applications have been collected and discussed 

within this paragraph.  

In general, the covalent functionalization of the POMs surface with organic residues can be 

exploited to:  

 

(i) stabilize molecular inorganic structures, by preventing structure collapsing;
35

  

(ii) tune the stereo-electronic features of the POMs surface, thus shaping their catalytic 

functions;  

(iii) support organic residues and organometallic catalysts;
19(d),36,37

 

(iv) provide solubilizing tags, suitable for a wide range of media, either aqueous or organic 

solvents, fluorinated phases, and non-conventional solvents, like ionic liquids;  

(v) introduce polyfunctional groups to be used as spacers between polyoxometalates, so to 

obtain dimers, polymers and dendrimers;
20,33 

(vi) provide an efficient tool for the self-organization of POMs in various phases, their 

immobilization on surfaces and their embedding in polymer matrices. 
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In our research group, hybrids POMs obtained by functionalization of [γ-SiW10O36]
8- 

POM 

scaffold with phenylphosphonic acid were used as catalysts in CH3CN or in ionic liquids to 

perform oxidations of alcohols, olefins, sulfides and sulfoxides in the presence of H2O2, even 

under microwave irradiation (scheme 1.6).  

 

 

 

Scheme 1.6 POM-based catalysts for microwave-assisted H2O2 activation. 

 

These hybrid derivatives presented superior performance and stability compared to the total 

inorganic POM precursors.
38

 In addition, (i) functionalization of the vacant site prevents the 

thermal rearrangement of the POM structure, so to allow the use of harsher conditions, 

including microwave (MW) irradiation (Scheme 1.6); (ii) the catalyst activity is strongly 

dependent on the nature of the organic moieties decorating the POM surface.
19,39 

The 

functionalization with chiral phosphonyl groups was also achieved, with the aim of 

performing enantioselective oxygen transfer.
34,39

 

Furthermore, in our research group, a fullerene-based hybrid POM found application in 

photocatalytic oxygenations. The reactivity of the hybrid photocatalyst toward hydrosoluble 

organic substrates has been assessed in water at 25°C, irradiating with λ >375 nm, in the 

presence of dioxygen (1 atm) (Scheme 1.7).  

Combining photoactive groups with POMs is a key strategy to access innovative 

photosensitized processes, with application in the field of photocatalysis and solar energy 

conversion.
19(d),40 
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Scheme 1.7 Schematic representation of the structure of a photoactive fullerene-based hybrid POM, able to 

perform the photo-oxidation of organic substrates, as phenol and L-methionine, in water. 

 

In particular, considering POMs ability to store several electrons with only minor structural 

reorganization, the association of organic sensitizers, as fullerene derivatives or different 

residues: pirene
41

 and perilene
42

, on the polyanionic scaffolds can be used to promote electron 

transfer phenomena between the two domains. 

This behavior is of interest to access new systems capable of combining the three functions 

necessary to photosynthetic activity: (i) collection of light; (ii) charge separation; (iii) 

accumulation of charge.  

As an example, a multi-porphyrin cluster has been covalently attached to a polyoxometalate 

catalyst in order to form an advanced model for the photosynthetic reaction complex. This 

bio-inspired mimic system, reported in Figure 1.9, displays efficient energy transfer from the 

peripheral zinc porphyrins (ZnP) to the central free-base porphyrin (FbP). The latter species 

participate in a light-induced electron transfer with the POM.
43
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Figure 1.9 Schematic representation of the structure and of the light-induced electron transfer for the POM-

based multi-porphyrin cluster. 

 

Unprecedented functionalization strategies of lacunary POMs with different luminescent 

probes, as well as their optical and sensing properties will be presented in Chapter 2: 

paragraph 2.2.3. In addition, they have been delivered into model human cells (see Chapter 

3: paragraph 3.2.1). 

 

Polyanionic inorganic scaffolds were also functionalized with organometallic complexes, 

examples include metallo-salen,
36(a) 

Wilkinson-type rhodium ligands
36(b)

. These hybrids were, 

generally, described as being more active and/or selective than the related organometallic 

precursor complexes. The main role of the POM scaffold is to tune the steric and electronic 

properties of the catalyst. Another expected role of the POM is to enhance the robustness to 

the whole hybrid (see also Chapter 4, paragraph 4.1.1). In our research group, POM-appended 

N-heterocyclic carbene (NHC) palladium complexes, capable to promote C-C cross coupling 

reactions were also synthesized.
37

  

 

In Chapter 4, the design of a novel POM-appended N-heterocyclic carbene (NHC) iridium 

organometallic complex and its catalytic activity in hydrogen transfer reactions will be 

discussed. 
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Finally, POMs serve also as building blocks for the bottom-up assembly of organic–inorganic 

hybrid 3D structures with applications in materials science, surface chemistry, 

electrochemistry and photochemistry.
19c),29,44,45

 

In this research group, Strandberg-type polyoxomolybdates[(R*PO3)2Mo5O15]
4-

 where R* is a 

chiral amino-phosphonate, were prepared. Due to the formation of a hydrogen bonded 

network, these hybrid units self-assembleand evolve to a hierarchical architecture of 

entangled fibers, showing solvent gelation capability, and amplification of chirality (Figure 

1.10).
27(b) 

 

 

 

Figure 1.10 Left: TEM analysis of Na-(R,R)-[(R*PO3)2Mo5O15]
2-

. Right: crystal packing diagram for Rb-(R,R)-

[(R*PO3)2Mo5O15]
2-

. MoO6 octahedra orange, O red, P magenta, C gray, N blue, H white, Rb azure.
 

 

 

Moreover, considering the redox activity of POMs, numerous electronic devices based on the 

interaction between POMs and electrically active materials (eg carbon nanotubes, graphene, 

semiconductors, etc..) have been developed (Figure 1.11). In these devices, POMs play the 

role of mediators for electron transfers. Indeed, they can act as electron reservoirs after 

photochemical or electrochemical reduction, to their corresponding colored mixed-valence 

species with no significant structural changes.
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Figure 1.11 Hybrids based on POMs and electrically active materials. 

 

 

In the field of Li-ion battery, for example, different electrodes based on POMs hybridized 

with polyaniline,
46

 carbon
47

 or single-wall nanotubes (SWNTs)
48

 were built; the resulting 

batteries show an increased capacity, due to the high storage electronic ability of POMs, 

based on reversible multi-step reduction processes.  

 

1.3 Polyoxometalates in medicine 

An increasing number of potential applications for polyoxometalates in human medicine have 

been reported in the literature. Several papers deal with their bioactivity as antibacterial, 

antiviral, antitumoral agents.
28

 

The main advantageous feature of POMs is that nearly every molecular property that impacts 

the recognition and reactivity of POMs with target biological macromolecules can be 

controlled. These include polarity, redox potentials, surface charge distribution, shape, and 

acidity. As already introduced above, another attractive feature is that rational and 

reproducible synthetic methods are now available (i) for the replacement of one or more of the 

skeletal d
0 

early transition metal cations in POMs with d- or p-block ions and also (ii) for the 

covalent attachment of organic groups to POMs via linkages that are compatible with 

physiological conditions (long half-lives in H2O or buffers at pH~7). Both metal substitution 

and organic derivatization extend considerably the number of POMs that are potentially 

bioactive. In particular, organic/biological pendant groups could be used to improve 

bioavailability and drug formulation, or to introduce recognition functions of target 
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biomacromolecules. To date, there are only few papers involving the biological behavior of 

POMs derivatized with organic groups, so this is a largely uncharted technical territory. 

The main disadvantage of POMs medicine is that they are not organic species. Low molecular 

weight, organic species dominate in the pharmaceutical industry (drug discovery, synthesis 

and development). An intrinsic counterpoint is that POM-based pharmaceuticals are much 

less expensive and more amenable to scale-ujp than the great majority of organic 

pharmaceuticals, so their successful application might positively impact large and growing 

markets in the emerging world.  

Two types of POM activity, antiviral and antitumoral, have dominated the medicinal 

chemistry of these compounds to date. Moreover, the antibiotic activity of some POMs has 

been demonstrated recently. These topics will be presented in the next paragraphs. 

 

1.3.1 Bioactivity of POMs 

1.3.1.1 Antiviral activities 

In 1970, Chermann and coworkers noticed an inhibitory effect of "silicotungstic acid 

supernatants (STAS)", a cell culture supernatant obtained in a procedure where silicotungstic 

acid was employed.
49

 They subsequently recognized that the inhibitor was the silicotungstate 

ion,
50

 and this led to a systematic study of the antiviral activities of this and other 

polyanions.
51 

Prior to 1990, in vitro studies conducted by various groups showed the efficacy 

of these POMs against several viruses: murine leukemia sarcoma (MLSV), vesicular 

stomatitis (VSV), polio, rubella, Rauscher leukemia (RLV), Rabies (RV), Rhabdovirus, and 

Epstein-Barr (EBV). Most of these POMs showed good inhibitory activity with low 

cytotoxicity, in a variety of cell lines. A particular effective compound was the 

tungstoantimonate (NH4)19[Sb9W21O86] (HPA-23). This POM was shown to be an effective 

antiviral agent against MLSV, RV, rhabdovirus and EBV, at nontoxic doses for the cells.
52

 

The advent of AIDS has increased the search for antiviral agents, and encouraged many 

studies that included polyoxometalates. In particular the groups of Hill and Yamase were very 

active in this area.
28(a) 

More recently, many different POMs have been shown to selectively inhibit in vitro the 

replication of retro-, toga-, paramyxo-, flavi-, and several herpes viruses and cytomegalovirus 

(CMV). Of significance was the finding that most POMs are highly effective against HIV-1, 

HIV-2, and simian immunodeficiency virus (SIV) in culture. Their activity is primarily 

antiviral and not virucidal (i.e., they do not interact directly with the virus in cell-free 

systems).  
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Table 1.2 Anti-HIV-1 activity and toxicity of organosilyl functionalized polytungstosilicate complexes (1-4_R) in 

Human PBM cells. 

a
EC50 = median effective (antiviral) concentration in µM. b

IC50 = median inhibitory (toxicity) concentration in µM.
  

 

As for instance, the activities of cesium and tetramethylammonium (TMA) salts of 

polyoxotungstate anions with covalently attached organosilyl groups against human 

immunodeficiency virus in primary human lymphocytes were evaluated (Figure 1.12).
53

 

 

 

Figure 1.12 Structure of the hybrid POM [(RSi)2O(γ-SiW11O39)]
4–

. 1-3_R: cesium (Cs) salts, 4_R: 

tetramethylammonium (TMA) salt. 

 

Table 1.2 lists the median effective concentration (EC50), and the median inhibitory 

concentration (IC50) of compounds 1-4_R compared to phosphonoformate (PFA), an antiviral 

agent used as a positive control, tested on human peripheral blood mononuclear cells 

(PBMC).  

 

 

 

 

 

The activities (EC50) of these compounds against human immunodeficiency virus in primary 

human lymphocytes range from 3.3 µM to 39.0 µM. Their IC50 values are all greater than 100 

 

# R 

HIV-1 in  

PBMC: 

EC50
a
 

toxicity in  

PBMC: 

IC50
b
 

1_R CH2CH2COOCH3 3.3 >100 

2_R CH2CH2CH2CN 19.8 >100 

3_R CH=CH2 35.3 >100 

4_R TMA CH2CH2COOCH3 39.0 >100 

 Phosphonoformate 21.0 >100 
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µM. Compound 1_R, was the most potent in the series with an EC50 of 3.3 µM and no 

toxicity to the uninfected host human lymphocytes when tested up to 100 µM.
53 

 

While the inhibition of viruses by POMs has been well documented, the primary mechanism 

for antiviral action has remained elusive. Both data and physical properties of POMs outlined 

in literature are consistent with multiple modes of action. The most likely of these are 

inhibition of viral enzymes (reverse transcriptase, RT, and/or protease in retroviruses).
53

 The 

polyanionic POM was proposed to bind electrostatically to the viral enzymes. Consequently, 

the charge and size of the POM was postulated to be a factor in viral inhibition. Nearly all the 

early experimental work on POM antiviral activity addressed inhibition of RT.
28(b) 

Another possible antiviral mechanism is the inhibition of surface viral proteins (such as gp120 

for HIV).
54

 Indeed, a strong interaction between a chemotherapeutic agent and viral surface 

proteins can lead to inhibition of virus-cell recognition and viral penetration into the cell (viral 

infectivity).  

POM antiviral activity varies considerably, not only with the structural class, composition, 

size, and charge of the POM, but also with the virus and viral strain and the cell line at parity 

of virus strain. Moreover, countercations of the polyanion and the organic functions of the 

POM play a significant role in biological activity and selectivity.  

As a final remark, while the antiviral effectiveness of over 200 POMs has been documented in 

vitro, the efficacy of fewer than 20 POMs has been documented in vivo. 

 

1.3.1.2 Antitumoral activities 

Antitumor activities of a variety of polyoxotungstates are mentioned in the scientific literature 

or in patents. In the last few years, Liu, Pope and their co-workers have investigated the 

cytotoxic properties of many heteropolyoxotungstates against cancer cell lines in vitro.
55

  

The authors focused mainly on hybrid derivatives of heteropolyoxotungstates containing RSn 

or CpTi (Cp = cyclopentadienyl) groups. Attempts have been made to correlate the 

cytotoxicity of the compounds with the potential of the first reduction process. Within several 

series of closely related compounds, it was found that the sequence of IC50 values is 

consistent with the order of the reduction potential: the higher the reduction potential, the 

higher their cytotoxicity.
56

 However, this correlation cannot be generalized: structure and 

composition clearly also play an important role in determining the activity.  

The IC50 values of some hybrid heteropolyoxotungstates derivatives are reported in μM in 

Table 1.3.
28(b)
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Table 1.3 IC50 values in µM for different heteropolyoxotungstates on tumor cells in vitro.  

 

 

Furthermore, the encapsulation of [CoW11TiO40]
8–

 in starch nanoparticles increases the cell 

penetration of [CoW11TiO40]
8–

: the higher efficiency observed for this system is likely due to 

a higher concentration of the heteropolytungstate inside the cell (see also paragraph 1.3.3.1). 

Organic substituents on the polyoxometalate core might have the same effect (see paragraph 

1.3.3.2) but this hypothesis still needs to be verified. Obviously, further investigations are 

necessary to elucidate the mechanism of the cytotoxicity of polyoxotungstates in vitro, and to 

establish a structure-activity relationship.  

Few data are available on the antitumor activity of polyoxotungstates in vivo. Yamase 

reported, in his patent applications, the growth inhibition of Meth A tumors in mice by rare 

earth-containing decatungstates.
28 

Yamase and his coworkers also recognized the antitumor 

Compound Cancer Cell Line 

 SSMC-7721 HeLa 

α-[(CpTi)3Si3W9O37]
7–

 7.8 14.0 

α-[(CpTi)3Ge3W9O37]
7–

 4.0 7.6 

-[(CpTi)3Si3W9O37]
7–

 6.7 12.1 

   
γ-[(CH3OOCCH2CH2Sn)2SiW10O38]

6–
 20.2 24.5 

γ-[(CH3OOCCH(CH3)CH2Sn)2SiW10O38]
6–

 19.0 23.2 

γ-[(C5H5Ti)2SiW10O38]
6–

 4.4 8.8 

   
[(CH3OOCCH2CH2Sn)2PW10O38]

5–
 17.2 21.7 

[(CH3OOCCH(CH3)CH2Sn)2PW10O38]
5–

 16.7 21.1 

   
[(CH3OOCCH2CH2Sn)3(PW9O34)2]

9–
 8.7 9.1 

[(CH3OOCCH(CH3)CH2Sn)P2W17O61]
7–

 16.7 18.3 

   
α-[(CH3OOCCH2CH2Sn)3SiW9O37]

7–
 28.1 28.8 

-[(CH3OOCCH2CH2Sn)3SiW9O37]
7–

 19.1 24.9 

α-[(CH3OOCCH2CH2Sn)3(SiW9O34)2]
11–

 10.8 15.6 

   
[(C5H5Ti)CoW11O39]

7–
 3.2 11.5 

[(C5H5Ti)BW11O39]
6–

 12.9 14.6 
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activities of Anderson-type polyoxomolybdates and of heptamolybdates in vivo.
28(a)

 They 

found, in particular, that the compound (NH3iPr)6[Mo7O24] significantly suppressed the tumor 

growth in mice bearing subcutaneously or intraperitoneally implanted methylcholanthrene-

induced tumor (Meth A sarcoma) or MM-46 adenocarcinoma. Promising antitumor activity of 

(NH3iPr)6[Mo7O24] was also reported against CO-4 human colon cancer and OAT human 

lung cancer xenografts. The antitumoral activity of POMs was found to compare favorably 

with that of commercial drugs. Based on the strong toxic effect of reduced heptamolybdate, 

the authors have proposed a mechanism for the antitumor action of (NH3iPr)6[Mo7O24]: the 

[Mo7O24]
6–

 species would be reduced to [HxMo7O24]
6–

 after thermal activation of a oxygen-to-

molybdenum-charge-transfer. The reduced species would then be reoxidized by reduction of 

the tumor cell, causing cell lysis.  

 

1.3.1.3 Antibacterial activities 

In 1993, Tajima reported that the lacunary Keggin polyoxotungstate [PW11O39]
7–

, when used 

in combination with β-lactam antibiotics,
 
greatly enhanced antibiotic effectiveness against 

otherwise resistant strains of bacteria.
28(b)

 Thus, an extended investigation on the synergistic 

effect of more than 70 polyoxometalates in combination with -lactam antibiotics followed 

the initial studies.
28(b)

 However, there are too few studies of isostructural polyoxometalates to 

draw conclusions about the relationship between composition and activity.  

 

1.3.1.4 Cellular penetration of POMs 

POMs are large (in the nanometer size range) and highly negatively charged species. These 

two factors certainly do not facilitate their penetration into cells. One might therefore 

conclude that the observed activities result from the interaction of the POMs with the cell 

surface. Some studies however indicate that, under certain circumstances, POMs can cross the 

barrier and penetrate inside a cell.
28

 In particular, some polyoxotungstates have been found 

into the cells by means of high energy techniques, such as X-fluorescence microscopy, raman 

laser microscopy or scanning electron microscopy (see also Chapter 3, paragraph 3.1.1). 

Since these techniques are destructive for the cells, they cannot be used for imaging and cell 

tracking modalities.  

In this respect, in this Thesis hybrid POMs containing chromophores on their surface have 

been designed and exploited to study specific interactions of POMs with the cells. All this 

topics will be presented in the Chapter 3 of this Thesis. 
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On the other hand, as wjue have previously described (see paragraph 1.3.1.1), most of the 

biological, in vivo effects of POMs may be explained by interactions with target proteins 

accessible from the extracellular site. For this reason, the next paragraph will be focused on 

the POM-biomolecules interactions. 

 

1.3.2 Interaction of POMs with biological macromolecules 

Their promising biological activities make POMs attractive candidates for novel, innovative 

and cheap therapeutic strategies for various human diseases. However, the mechanisms of 

these phenomena at a molecular level remain unclear. As a consequence, preliminary studies 

of interactions, in a broad sense, between POMs and several target proteins, are one of the 

necessary steps toward an understanding their bio-functions. Furthermore, research on the 

interaction between POMs and proteins may open new paths for finding novel bio-function 

compounds. 

First, investigations of POMs in the presence of viral enzymes (e.g., HIV-1 reverse 

transcriptase -HIV-1 RT- and HIV-1 protease -HIV-1 P-) and proteins (e.g., gp120 and CD4) 

have indeed provided additional information into their mode of action.  

Initially, the structural and electronic complexity of POMs interacting with biological 

macromolecules has limited the collective efforts to probe these interactions theoretically. In 

this respect, as for instance, Hill and co-workers conducted theoretical studies on 

interaction(s) of different POMs (α1-K7[P2W17(NbO2)O61] and α2-K7[P2W17(NbO2)O61]; α1-

K7[P2W17NbO62] and α2-K7[P2W17NbO62]) with HIV-1 P. These computational studies 

strongly suggest that the POMs bind to a cationic pocket on the “hinge” region of the flaps 

covering the active site and not to the active site directly (the mode of inhibition of all other 

HIV-1 P protease inhibitors). The kinetics and binding studies, conducted after the molecular 

modelling, were in remarkable agreement with the modeling results.
57

 

Furthermore, several classic POMs (such as the Keggin K6SiNiW11O39, the Wells–Dawson α-

K8P2NiW17O61, and the trivacant Keggin-derived sandwich K10P2Zn4(H2O)2W18O68 bind to 

the cationic pocket of basic fibroblast growth factor (bFGF).
58

 The inhibition of angiogenesis-

promoting factors such as fibroblast growth factor is considered to be a potential treatment for 

cancers. 

More recently, the molecular interaction between HSA and two different polyoxometalates 

with Keggin [H2W12O40]
6-

 (H2W12) and wheel-shaped [NaP5W30O110]
14-

 (P5W30) structures 

were studied by isothermal titration calorimetry  (ITC), complemented by fluorescence and 
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circular dichroism (CD) experiments.
59

 Both polyoxometalates H2W12 and P5W30 strongly 

bind to the protein, mainly by electrostatic interactions.  

 

 

Figure 1.13 Left: POM structures: A the Keggin structure [H2W12O40]
6-

 (H2W12), B the wheel-shaped structure 

[NaP5W30O110]
14-

 (P5W30); Right: surface potential of HSA calculated with the GRASP software. The protein is 

in its N conformation. The two views are related by a 180° rotation about the vertical axis of the sheet. The 

region in the green circle is the most likely the unique (for H2W12) or initial (for P5W30) binding site for POMs 

(blue for positively and red for negatively charged areas). 

 

It was suggested that both size and charges of the polyoxometalates play key roles in the 

molecular interaction process. The surface map of the protein is shown in Figure 1.13: upon 

close examination, it appears that a cavity with a positively charged inner wall is located 

roughly in the center of the protein. The width of this cavity is about 1 nm length, which 

would fit to the diameter of H2W12. In particular, the results have suggested that the POM 

H2W12 specifically binds on this cavity of the protein and forms a 1:1 protein-POM complex, 

whereas the wheel shaped P5W30 binds to more than five sites and forms a complicated 

complex with the protein. The binding of H2W12 has almost no effect on the protein structure, 

in contrast with the binding of P5W30, which destabilizes the protein structure.  

Furthermore, the binding with HSA of three POMs with the Wells-Dawson structure, α2-

[P2W17O61]
10-

 and two of its metal-substituted derivatives, α2-[NiP2W17O61]
8-

 and α2-

[CuP2W17O61]
8-

 suggested the importance of the atomic composition in the interaction event.
60

 

The interaction between lanthanide containing decatungstate [EuW10O36]
9-

 (EuW10) and HSA 

was also studied. Fluorescence analysis showed the existence of a strong 1:1 interaction 

between the POM and HSA (Scheme 1.8).  
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Scheme 1.8 Interaction between EuW10 and HSA. 

 

 

This interaction has key effects both on luminescence of the POM and on the behaviour of 

HSA: an enhancement of the POM luminescence is observed upon interaction, while an 

increasing concentrations of the POM results in the progressive quenching of the fluorescence 

of the single tryptophan of HSA. Circular dichroism evidenced that the binding of EuW10 did 

not significantly alter the secondary structure of the protein
61

 (see also Chapter 3, paragraph 

3.1.2). 

Finally, four POMs capable of inhibiting amyloid β-peptides (Aβ) aggregation have been 

identified. The polymerization of Aβ into amyloid fibrils is crucial for the Alzheimer’s 

disease (AD). Therefore, the development of Aβ inhibitors has received much attention. The 

highest inhibition was observed for K8[P2CoW17O61], a phosphotungstate with a Wells 

Dawson structure. POMs with a Keggin structure showed moderate to high inhibition of Aβ 

aggregation. Smaller POMs, such as Na5[IMo6O24] with an Anderson structure were inactive. 

Indeed, the size of POMs might play a key role in Aβ recognition. In particular, an 

electrostatic effect is the main factor in the interactions between POMs and Aβ. Experiments 

based on enzyme digestion, competitive binding, fluorescence quenching, and the use of a 

different Aβ fragment indicated that POMs bind to the positively charged His13–Lys16 

cluster region of Aβ.
62
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1.3.3 Strategies for the biofunctionalization of POMs 

Since the main part of POMs derivatives present little or no hydrolytic stability at 

physiologically relevant pH values and some of them exhibit toxicity, many efforts have been 

made to modify POMs through altering their structure, polarity, charge, and composition in 

order to obtain compounds featuring low toxicity, high stability, and high activity.
57,63

 In this 

respect, a number of new POMs with hydrolytic stability at physiologically relevant pH 

values have been synthesized recently, and the toxicity problems exhibited by some POMs are 

considerably smaller or nonexistent in the second generation of POM-based chemotherapeutic 

agents.  

Moreover, an organic modification of POMs can be used to achieve higher stability under 

physiological conditions, together with a lower toxicity and a tunable biodistribution. In 

particular, two strategies for the biofunctionalization of POMs can be individuated: 

 

(i) non-covalent encapsulation of POMs by biopolymers, dendritic ligands and surfactants; 

(ii) covalent grafting of organic ligand or biomolecule on POMs. 

 

in the next sections these two strategies will be examined. 

 

1.3.3.1 Encapsulation of bioactive POMs into macromolecular matrices 

Different studies investigated the possibility of using nanocarriers for POM delivery, showing 

that the preparation of hybrid composite materials, through encapsulation of bioactive POMs 

into no toxic macromolecular matrices is a flexible and straightforward approach that should 

provide direct access to a wide spectrum of POM composites, improving their cellular uptake. 

The same strategy may be also useful to enhance hydrolytic stability of POMs and to decrease 

their toxicity.  
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Figure 1.14 Strategies for the non-covalent bio-functionalization of POMs. (a) encapsulation using dendrons, (b) 

encapsulation in dendrimers, (c) encapsulation in liposomes and (d) encapsulation in biopolymers (starch, 

chitosan). 

 

For instance, sugar-capped poly(propylene amine) (POPAM) dendrimers (Figure 1.14 (b)) are 

well suited for encapsulating and slowly releasing polyanions such as [Re6S8(OH)6]
4–

. The 

loading capacity of nanosized dendritic hosts with anionic guests and the pharmacokinetic 

properties of the host–guest complexes can be tuned by variation of the generation, the type of 

branching unit and the moieties grafted on to the periphery of the dendrimers.
64

 

Moreover, the synthesis of liposome-encapsulated polyoxometalate (LEP) nanoparticles of 

size 15-60 nm containing K6[SiW11TiO40]∙16H2O (SiW11Ti) is reported in the literature 

(Figure 1.14 (c)). Based on in vitro measurements with KB and HeLa cancer cells, the 

liposome encapsulation enhances cell-membrane penetration, the stability and antitumoral 

activity of the POM. The toxicity of the POM was also reduced when LEPs were employed 

against HL-60 tumors in vivo.
65 

 

The combination of chitosan and its derivatives with different drug types into core-shell 

nanoparticles (preferably in the 100 nm size range) offers manifold therapeutic advantages, 

such as reductions of side effects, prolonged drug circulation times or passive drug 

targeting.
66

 In the case of POMs, the mechanism of interaction with chitosan (Figure 1.14 (d)) 

is likely to be electrostatic. It is expected that the terminal/bridging oxygen on the surface of 
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POM interacts with the NH3
+
 protonated groups of chitosan to form intermolecular cross-

linking which thereby results in the formation of the nanocomposite (Figure 1.15). 

 

Figure 1.15 Representation of the interaction mechanism between POM and chitosan. 

 

 

As an example, the potential of a novel europium containing the polytungstoarsenate  

([CsEu6As6W63O218(H2O)14(OH)4]
25−

)
67

 (EuWAs) trapped whitin biopolymer chitosan, was 

evaluated as a cancer nanomedicine. Highly stable, monodispersed nanoparticles of size about 

200 nm, encapsulating EuWAs were prepared by ionotropic gelation technique. The aggregate 

showed a slow and sustained drug release profile when tested in vitro under physiological 

conditions. Its anticancer activity was found to be enhanced at lower doses. Flow cytometry 

studies revealed that reactive oxygen species (ROS) generation can be the plausible 

mechanism for the apoptosis induced by this material.
68

  

Moreover, the disadvantage of chitosan only being soluble in acidic media, can be overcome 

by transforming it into the water-soluble carboxymethyl chitosan (CMC) through 

carboxymethylation of the primary alcohol group and the amino group.
69

 The 

carboxymethylated chitosan has the ability to serve as a drug carrier for polyoxometalates.
 
In 

this respect, the synthesis, characterization and cytotoxicities of POM/CMC-based composites 

has been investigated. Since [Co4(PW9O34)2]
10-

 is well known for its manifold properties, such 

as antiviral activity, it was selected as a model POM. The resulting composites were 

characterized with a wide range of analytical methods, such as UV-Vis, FT-IR spectroscopy, 

as well as solid-state 
31

P NMR and EDX measurements, which pointed to quantitative 

encapsulation of intact POMs within the CMC matrix. The nanocomposites display a narrow 

size distribution ranging from 50–160 nm, which makes them ideal for cellular uptake. Thus 

the biocompatibility of the POM/CMC nanocomposites on HeLa cells was also evaluated 

through MTT and proliferation assays. Even after prolonged incubation times at high 
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concentrations, the composites did not display cytotoxicity, thereby drastically reducing the 

side effects of POMs.
70  

Finally, the use of fluorescein-tagged CMC as POMs carrier was applied to get insights about 

their localization, by means of confocal fluorescence microscopy.
71

 Thus POM/CMC 

nanocomposites with an average diameter of 130 nm were synthesized and labeled with 

fluorescein isothiocyanate (FITC) for a combined drug-carrier and cellular-monitoring 

approach. In particular, cellular uptake of fluorescently labeled {EuSiW11O39}/FITC-CMC 

nanoparticles were monitored with confocal laser scanning microscopy. Nanoparticle uptake 

occurs after incubation times of about 1 h and no cyctotoxic effect was observed upon 

prolonged treatment. The preferential location of these nanocomposites in the perinuclear 

region was furthermore verified with transmission electron microscopy investigations on 

unlabeled nanopart,icles. Therefore, this approach is a promising dual strategy for the safe 

cellular transfer and monitoring of bioactive POMs.  

 

1.3.3.2 Decoration of POMs with biological macromolecules 

The presence of organic substituents anchored on the POM surface also offers the possibility 

to modulate essential features, such as stability, bioavailability, recognition and affinity 

towards suitable carriers, that need to be mastered for pharmaceutical purposes.
63(c),72,73 

In 

particular, the introduction of chiral molecules on POMs surface is highly desirable for 

biomedical applications.
74

 

In this respect, numerous different synthetic approaches have permitted the grafting of 

biomolecules like amino acids,
75

 peptides
76

 and carbohydrates
77

 onto the polyoxometalate 

framework.  

For instance, in the literature are known complexes of polyoxomolybdates with peptides or 

aminoacids. γ-Type octamolybdates with formula, Na4[Mo8O26(alaO)2]∙18H2O, 

Na4[Mo8O26(glyglyO)2]∙15H2O and Na4[Mo8O26(glyglyO)2]∙12H2O have been prepared from 

sodium molybdate in aqueous solution by adding DL-alanine or glycylglycine. Their crystal 

structures have been determined by X-ray structural analysis. DL-alanine and glycylglycine 

coordinate molybdenum atom in γ-octamolybdate [Mo8O26]
4-

 anions via monodentate 

carboxylate-oxygen atom. These prepared octamolybdates were screened for the possible 

antiproliferative activity on a panel of five tumor cell lines and on a normal cell line. All 

tested compounds showed a differential cell-growth inhibition, in a dose-dependent manner, 

selectively on hepatocellular carcinoma cell line (HepG2) and breast cancer cell line.
78
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Moreover, hybrid organic-inorganic Wells-Dawson polyoxotungstates were prepared through 

addition of functionalized tricholorostannanes to lacunary α2- and α1-[P2W17O61]
10-

. The 

resulting products α2- and α1-[P2W17O61{SnR}]
7-

 with R = CH2COOH, CH2COOEt, 

CH2CHO, CH=CH2 were further functionalized with various molecules. Thus, coupling the 

polyoxotungstate platforms with amines and alcohols led to new structures in good yields.
79

 

In particular, amino acids or chiral amines were covalently linked to the chiral scaffold α1-

[P2W17O61{SnCH2COOH}]
7-

 by means of classic condensation reactions.  

 

 

Figure 1.16 Structure of α1-[P2W17O61(SnCH2CH2CONHR)]
7-

. 

 

In particular, coupling of chiral amines with the previously organotin-substituted α1 

derivatives allowed the isolation of diastereomers, which feature in some cases splitted 
1
H, 

13
C, and 

31
P NMR signals.  

Furthermore, more recently, different kinds of molecules (lipophilic, hydrophilic and 

biologically relevant) were coupled to the platforms α1- and α2-[P2W17O61{SnR}]
7-

 with R = 

CH2CHCH or CH2CH2CH2N3 to generate hybrids by means of the copper-catalyzed 

azide/alkyne cycloaddition (click chemistry).
77

 

Finally, in our research group, lacunary Keggin POMs have been also functionalized with 

enantiopure phosphonates (see also Scheme 1.5). These optically active hybrid complexes 

were characterized by FT-IR, heteronuclear NMR spectroscopy, mass spectrometry, and 

UV/Vis experiments. In such complexes, the merging of the organic and inorganic domains 

induces intense and multiple CD features up to 400 nm.  
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Figure 1.17 Stucture of α2-[P2W17O61(SnCH2CH2CONHR)]
7-

. 

 

 

1.4 Aim of Ph.D Thesis 

The work described in this Thesis mainly deals with the synthesis of functional molecular 

hybrids based on polyoxometalates for sensing, biological and catalytic applications. In 

particular, considering the great potential of hybrid organic-inorganic POMs derivatives, for 

improving recognition capabilities and selectivity towards organic/biological substrates, the 

use of different organic domains grafted on the POMs surface has been explored for imaging, 

targeting and catalytic purposes.  

The work is divided in three parts, involving synthesis, characterization and properties of 

different POMs: 

 

 Chapter 2 describes the functionalization and characterization of lacunary POMs with 

luminescent probes, that exhibit interesting opto-electronic properties and sensing 

applications. Fluorescence experiments have been performed to investigate the chemo-

sensing capabilities of the luminescent hybrid systems towards metal cations and 

hydrophobic molecules.  

 

 Chapter 3 is dedicated to the exploitation of POM-based hybrid systems for biological 

studies.  

In particular, the work has been dedicated to fill the lack of experimental data about POMs 

cellular uptake/ mechanism of action/ localization. In this scenario, the exploitation of 

stable hybrid luminescent complexes is suggested as a method to unravel their cellular 

localization. Furthermore, since the preparation of hybrid derivatives could be a powerful 

strategy for the introduction of molecular recognition sites and the enhancement of 

biocompatibility, studies of interaction between POMs and hybrid POMs with important 
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biological macromolecules (ferritin and avidin) has been explored. For this purpose, a 

hybrid POM containing biotin moieties has been synthesized and its interaction with 

avidin has also been investigated.  

 Chapter 4. In this chapter a strategy for the synthesis of a POM-appended N-

heterocyclic carbene (NHC) iridium complex is presented. To this end, imidazolium 

moieties have been successfully grafted on the defect site of a divacant Keggin polyanion. 

The resulting hybrid POM has been tested for catalyzing hydrogen transfer reactions 

(HT). This last project was developed during a short scientific mission in Dublin, in 

collaboration with the research group of Prof. Martin Albrecht. 
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Chapter 2 
 

Luminescent hybrid polyoxometalates: synthesis, 

characterization, sensing and spectral features 

 

 

 

In this chapter, we report the synthesis of hybrid polyoxometalate (POM) derivatives 

containing luminescent chromophores (dansyl, pyrene and fluorescein), grafted as 

organosilanes or chiral phosphonates, with unique spectroscopic features. The resulting 

hybrids have been characterized at the solid state and in solution by a combination of 

techniques (multinuclear NMR, FT-IR, ESI-MS). The characterization confirmed a bis-

substitution: the inorganic POM framework provides a molecular nanosurface where two 

molecules of the same fluorophore are anchored in a tweezer-type arrangement. Optical and 

chiroptical properties of the hybrid derivatives have been investigated. In particular, the 

fluorescence of the fluorophore-tagged POMs has been exploited for sensing applications 

towards metal ions and organic molecules. A promising potential for applications in many 

different fields such as sensing, catalysis, nanoelectronics, and photochemical conversion of 

solar energy is foreseen for these luminescent systems. 
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2.1 Introduction 

2.1.1 Hybrid polyoxometalates: synthesis and characterization 

Polyoxometalates (POMs) are nano-dimensional molecular, multi-metal oxides, which have 

found applications in catalysis, materials science, and nano-medicine.
1,2,3,4 

Tailored control of 

their properties is readily achieved by tuning the elemental composition, structure, and charge 

density of the inorganic scaffold.
1
 Moreover, the introduction of surface bound organic arms 

is a valuable tool for modifying redox and spectroscopic behavior, as well as their solubility 

and hydrolytic stability in various media.
5,6 

(see Chapter 1 paragraph 1.2: Hybrid POMs: 

synthesis and applications). 

Covalent derivatization of POM surfaces occurs smoothly according to well-established 

synthetic strategies, in analogy to those applied for the functionalization of extended metal 

oxides surfaces. Two basic strategies which rely on direct functionalization of POMs or post 

functionalization of preformed hybrid POM platforms, can be distinguished. 

 

2.1.1.1 Direct functionalization 

As already introduced in Chapter 1 (paragraph 1.1.2), vacant polyanionic complexes feature 

reactive terminal, coordinatively unsaturated, oxygen atoms. Their nucleophilicity can be 

exploited to foster a reaction with electrophilic organic moieties to give O-X-R bonds, where 

X = As, P, Si, Sn, Ge and R = organic residue. In this way organic-inorganic hybrid 

complexes can be obtained.
6,7,8 

In our research group, different procedures have been optimized in order to functionalize the 

POMs vacant site through the covalent grafting of organosilyl derivatives (SiX3, X = Cl, 

OMe) as electrophilic reagents. The covalent functionalization of different vacant POMs has 

been achieved with yields ranging from 65 up to 90%. The use of the bivacant complex [γ-

SiW10O36]
8- 

has shown to be convenient for these reactions, since it is characterized by a 

higher hydrolytic stability than other vacant complexes in the acid environment required for 

these reactions.
 
Thus the divacant complex [γ-SiW10O36]

8-
 has been reacted with organosilyl 

clorides (RSiCl3) and trialkoxysiloxanes (RSi(OR)3), where R = Et, n-Pr, Ph.
 

The general mechanisms for the derivatization of vacant polyanions with organosilanes are 

reported in the following scheme.  
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Scheme 2.1 General procedure for the preparation of organosilyl POM derivatives. 

 

The process requires the hydrolysis of the Si-X bonds: although the silanols may give easy 

polymerization (to form RSiOn species), the condensation with oxygen atoms on POM defect 

sites, is preferred. Grafting strategies have been optimized in acetonitrile, where the presence 

of tetrabutylammonium bromide (nBu4NBr) promotes the solubilization of the POM by 

counterion metathesis. Under these conditions, decoration of the vacant POM is known to 

yield hybrids with two surface-anchored organosilyl (RSi-) groups, each one linked to two 

oxygen atoms belonging to two edge-shared WO6 octahedra.
4(a) 

By using a similar protocol, the divacant POM complex reacts with organophosphonyl 

(POX2, X = Cl, OH) compounds in acetonitrile, under phase transfer conditions. In this case, 

the decoration of the divacant [γ-SiW10O36]
8–

 unit provide hybrid POMs with two surface-

anchored organophosphonyl (RPO
2+

) groups facing each other while linked to two oxygen 

atoms of two edge-shared WO6 octahedra. This structural arrangement was shown in the 

literature by solid-state X-ray characterization.
9
 In the scheme below, are reported the 

synthetic strategies for both the functionalizations proposed (organosilyl and 

organophosphonyl derivatives) in the next paragraphs. 
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Scheme 2.2 Functionalization of vacant polyoxometalates with organic moieties to yield hybrid POMs. 

The higher stability of hybrid structures in comparison to lacunary species, can be ascribed to 

the grafted organic functions, acting as protecting groups of the nucleophilic oxygenated sites 

on the POM lacuna. Thus, undesired parallel reactions, such as condensation or isomerisation 

of the vacant POMs, are inhibited, thus increasing their stability in different solvents and at 

higher temperatures. 

 

2.1.1.2 Post-functionalization 

Covalent functionalization of POMs provides – in principle – a robust link between the POM 

and the appended functional group. In this respect, as the complexity of the functional 

compond increases, the post-functionalization strategy is expected to be more attractive. 

Different hybrid POM platforms bearing functional groups have been involved in post 

functionalization reactions. The methodologies used to further derivatize preformed hybrid 

POM platforms can be classified according to the type of covalent bond formed: metal 

coordination, peptide and related bonds, imines as linkers, Huisgen 1,3-dipolar cycloaddition, 

carbon–carbon cross couplings. However, due to purification and stability issues, the number 

of reactions and related platforms are rather limited regarding the tremendous number of 

organic reactions available.
10

 

Compared with direct functionalization of POMs which may involve alkaline salts of parent 

POMs, like in the preparation of silyl or phosphonyl derivatives, the post-functionalization 

reactions reported to date have all been carried out in organic solvents, starting generally with 

tetrabutylammonium salts of the hybrid POM platforms.  

When the anchorage of electroactive groups has been considered, it is worth mentioning that 

the redox properties of both the POMs and the electroactive groups were not altered, thus 
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reflecting limited electronic interactions between the two domains. This is mainly due to the 

poor redox activity of vacant POMs. 

 

2.1.1.3 Characterization  

Different techniques can be combined to obtain information from both the inorganic and 

organic part of the molecule. In particular, the analysis which result most useful for 

monitoring the grafting of organic pendants on POM scaffold are the FT-IR and heteronuclear 

NMR spectroscopies. 

In the FT-IR analysis, a region between 1000 and 600 cm
-1

 (vibrations of the bonds W-O and 

X-O), results particular diagnostic to verify the modification and functionalization of the 

inorganic domain. In particular, narrow and intense bands are consistent with the presence of 

stable and highly symmetrical structures for the complexes of Keggin, while for vacant 

complexes spectra with lower absorption frequencies are observed, in agreement with the 

partial weakening of the vacant polyoxotungstate structure. Furthermore, since in the vacant 

complex the simmetry is reduced from Td to Cs or C2v due to the loss of WO
4+

 units, the 

bands result large and more numerous. The same region is also affected by the covalent 

linkage of the vacancy with organic compounds, with the occurrence of new signals due to 

XO bonds (with X = P, Si) above 1000 cm
-1

. Finally, a partial symmetrization of the complex, 

lead again to a general reduction of the number of signals and to an increase of the absorption 

frequencies. 

Information about the structure of the polyanion can be also derived from 
183

W NMR where 

typical signals patterns demonstrate the symmetry of the complex. The understanding of the 

electronic factors that influence the chemical shifts of the tungsten nuclei in mono and 

polynuclear complexes is still an open and complex topic, discussed in the literature mainly 

on the basis of empirical observations. However, in the case of new structures for which X-

ray diffraction is known, homonuclear 
2
J (W, W) and heteronuclear 

2
J (P, W) scalar couplings 

in 1 and 2-D techniques allowed the peaks assignment. In this way, characteristic patterns of 

signals allow to trace the exact symmetry of the complexes upon comparison with that of 

known structures. 

Finally, 
1
H NMR, 

13
C NMR, 

29
Si or 

31
P NMR spectroscopies and mass spectrometries (ESI-

MS, MALDI), are indispensable tolls to verify the introduction of organic residues. 
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2.1.2 Functionalization of POMs with fluorescent organic probes  

Fluorescence plays a key role in a growing number of disciplines, from molecular biology, to 

analytical chemistry, to optoelectronics and material science. Its high spatial, temporal 

resolution and excellent signal-to-noise ratio make fluorescence an ideal tool for studying the 

structure and dynamics of matter and living systems on a molecular and nanometric scale.  

The organic fluorophores may form covalent or noncovalent linkages with POMs, producing 

the respective conjugates or complexes, that can show fluorescence from short to very long 

wavelengths, depending on the marker used.
11

 

In addition, the interplay of organic fluorophores and POMs by covalent and ionic linkage has 

been recently proposed to promote charge separation states, being instrumental for solar 

energy conversion and storage, as well as for the development of molecular capacitors and 

photosensitized catalytic processes.
12,13 

Indeed the grafting of an organic pendant on POM 

nano-scaffold is a developing field of investigation focusing on the design of new functional 

molecules and materials (see also Chapter 1: paragraph 1.2.2). Furthermore, considering the 

interdisciplinary frontier of inorganic nano-clusters in medicinal chemistry (see Chapter 1 

paragraph 1.3), the introduction of luminescent probes on POMs can be also proposed for bio-

imaging/sensors and could eventually couple the diagnostic potential with innovative therapy 

protocols.
14

 

On these basis and perspectives, to exploit and combine the ability of organic luminescent 

molecules with the use of polyoxometalate scaffolds, fluorescent-tagged hybrids have been 

prepared, starting from vacant Keggin polyoxotungstates. To this aim, the organic reagents 

reported in Figure 2.1. have been selected. 

 

 

 

 

Figure 2.1 Organic reagents selected for the functionalization of POM scaffolds: (a) dansyl chloride (Dans-Cl); 

(b) pyrene sulphonyl chloride (Pyr-SO2Cl); (c) fluorescein isothiocyanate (FITC). 
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In particular, the grafting of the molecules (a), (b), (c) on polyanionic scaffolds has allowed to 

obtain four different luminescent hybrid derivatives:  

 

(a) a dansyl-functionalized POM with emission in the range 500-600 nm, 

(b) a pyrene sulfonyl-functionalized POM with emission up to 500 nm, 

(c) two fluoresceine isothiocyanate-functionalized POMs with emission beyond 500 nm. 

 

The synthesis and the sensing applications of these complexes will be presented in this 

chapter, while the biological properties will be described in depth in the next chapter. 

 

2.2 Results and discussion 

The introductions of fluorescent probes have been achieved following two different synthetic 

strategies: 

 

(i) Synthesis of the lacunary POM. 

(ii) Functionalization of the lacunary POM with an organic spacer containing a 

suitable functional group. 

(iii) Derivatization with the fluorophore in a post-functionalization reaction. 

In a different synthetic strategy, the steps (ii) and (iii) may be replaced by: 

(ii)
*
  Derivatization of the organic fluorophore with an appropriate organic spacer. 

(iii)
* 
 Direct functionalization of the fluorescent organic derivative on the POM. 

 

In the following sections the synthetic procedures developed to prepare new functional hybrid 

derivatives will be described. 
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2.2.1 Preparation and characterization of vacant polyoxotungstate 

precursors 

In this work, two different polyoxotungstates containing structural defects have been prepared 

as convenient precursors for the covalent functionalization with organic residues:  

 

(i) K8[γ-SiW10O36]: divacant decatungstate complex. It presents 4 unsaturated oxygen atoms 

on its surface. Beside the stability under functionalization conditions, it has been chosen 

because it can be produced with high selectivity, with no need to crystallize it;  

(ii) β-A-Na8[HPW9O34]: trivacant nonatungstate complex. It presents 6 unsaturated oxygen 

atoms on the surface. It can be functionalized with two or three organic groups, using, 

respectively, organophosphonates or organosilanes.
15

  

 

183
W NMR has been used to confirm the structure of the POM precursors: the structure and 

the spectra are briefly described below. 

 

(i) K8[γ-SiW10O36] (SiW10) 

The divacant precursor has been synthesized through a two steps procedure. First, the 

monovacant precursor [β2-SiW11O39]
8-

 is obtained as potassium salt, starting from sodium 

silicate and tungstate, then this complex is converted to the divacant derivative in the presence 

of K2CO3 at pH = 9.1.
16

  

The 
183

W NMR spectrum, recorded for the potassium salt of [γ-SiW10O36]
8-

, is reported in 

Figure 2.2: the corresponding spin-system, consisting of three signals with integration ratio 

2:2:1, is in agreement with the anion symmetry (C2v).
16 
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Figure 2.2 Polyhedral (A) and Ball-and-stick representation (B) of the divacant precursor SiW10 and 
183

W- 

NMR spectrum for the potassium salt. A difference in integral ratio is due to spin relaxations. WC (two tungsten 

side atoms), WA (four bottom tungsten atoms), and WB (four vacant tungsten atoms). 

 

(ii) β-A-Na8[HPW9O34] (PW9) 

The trivacant precursor is obtained, according to the the literature,
17

 from the dissolution of 

sodium tungstate in water, followed by addition of orthophosphoric acid, H3PO4 and 

concentrated acetic acid. The purity of the complex isolated was analyzed by 
31

P NMR and 

FT-IR. In particular, FT-IR evidences diagnostic bands at 1056, 1014, 931, 821 and 737 cm
-1

 

are in agreement with a Cs simmetry.
 15,17 

The trivacant structure is reported in Figure 2.3. 

 

 

 
 

Figure 2.3 Polyhedral (A) and Ball-and-stick representation (B) of the trivacant precursor PW9. 
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2.2.2 Synthesis and characterization of a bis-dansylated polyoxotungstate 

Naphthalene-based fluorophores have been extensively investigated, for example, as labels 

for amino acids, peptides, and proteins. The 5-dimethylamino-1 naphthalenesulfonyl label 

(generally indicated as dansyl; see Figure 2.1) carries some key optical properties, such as: (i) 

intense fluorescence in the visible region; (ii) relatively long emission wavelength; (iii) high 

Stokes shift behavior preventing self quenching; (iii) solvatochromism, by effect of a twisted 

intramolecular charge-transfer (TICT) excited state, and (iv) antenna-effects of 

polydansylated arrays.
18,19 

These unique features have been successfully exploited for the 

momolecular design of fluorescent chemosensors in which the dansyl chromophore is used in 

combination with receptor domains, including multi-dentate ligands, supramolecular hosts 

such as calix[4]arenes, cyclodextrins, crown ethers, and also silica surfaces.
20,21,22,23,24 

Depending on the dansyl environment, selective fluoroionophores have been obtained with 

interesting sensitivity towards ions such as Pb
2+

,
25

 Hg
2+

,
20,26

 and Cu
2+

.
21,27

 Moreover, a strong 

signal amplification results from multi-cooperative fluorescence quenching involving a 

dansylated surface-array attached to tailored nanosens hors.
19,28

 

 

2.2.2.1 Synthesis of (nBu4N)4[{((CH3)2N)C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Dans-

SiW10)  

Selective dansylation of the divacant polyoxotungstate [γ-SiW10O36]
8–

 has been achieved after 

introduction of an aminopropyl trialkoxysilane spacer (step 1). 

The synthetic strategy is reported in scheme 2.3. The reaction entails a double 

functionalization of the POM precursor at the tetra-oxygenated nucleophilic site, which 

occurs readily in acetonitrile under phase-transfer conditions, by addition of nBu4NBr (step 

1).
6(a),29 

The resulting intermediate [{NH2(CH2)3Si}2O(γ SiW10O36)]
4–

 (APTES-SiW10)
12(a)

, 

reacts in a post-functionalization (step 2) with dansyl chloride (3.5 equiv.) in the presence of 

triethylamine (TEA, 3.5 equiv.), in acetonitrile at 50 °C for 2.5 h. The final product 

(nBu4N)4[{((CH3)2N)C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] (1) was isolated in 69% yield, 

after precipitation with water and purification by extensive washing/extraction cycles with 

diethyl ether and acetone. 
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Scheme 2.3 Synthetic routes to a Keggin-type decatungstate functionalized with the dansyl chromophore. Step 

1: grafting of NH2(CH2)3SiCl3; Step 2: grafting of the dansyl chromophore.  

 

2.2.2.2 Characterization  

Grafting of NH2(CH2)3SiCl3 (Step 1) 

The hybrid POM APTES-SiW10 isolated in the first step (Scheme 2.3) display spectroscopic 

data (
1
H, 

13
C, 

29
Si and 

183
W NMR, FT-IR) that are in agreement with the expected bis-

functionalized structure.
6(a)

 In particular, as already introduced, among the characterization 

techniques, the spin-systems observed by mean of 
183

W NMR spectrum, is particularly 

diagnostic because it allow to recognize the expected signal patterns, in agreement with the 

structural hypothesis, and with different chemical shifts with respect to the corresponding 

POM precursors SiW10 (see paragraph 2.2.1). In particular, the 
183

W NMR spectrum of 

APTES-SiW10 shows three resonances at -107.8, -135.3 and -141.9 ppm in 2:1:2 ratio, 

confirming the retention of the C2v symmetry of the vacant precursor (Figure 2.4). In 

comparison with the inorganic precursor, a major downfield shift is observed for the signals 

corresponding to Wc (two side W atoms), whereas the atoms WB (four vacant W atoms) in 

proximity of the vacancy are now the most shielded.
30
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Figure 2.4 
183

W NMR spectrum of APTES-SiW10. 

 

The identification of a new signal 
29

Si NMR (at - 62.45 ppm) for the POM hybrid derivative, 

in addition to that observed at - 88.36 ppm for the silicon atom inside the polyanion 

(integration ratio of 2:1), is a further evidence of the introduction of two RSiO-equivalent 

groups (Figure 2.5). 

 

 

 

Figure 2.5 
29

Si NMR spectrum of APTES-SiW10. 

 

The FT-IR spectrum differs from that of the precursor POM SiW10 and shows intense 

absorption bands due to the organic counterion (2960-2874 cm
-1

) and to the hybrid polyanion; 

the intense band at 1100 cm
-1

 is assignable to the stretching of the group Si-O-Si linked to the 

polyoxometalate scaffold and consistent with the bis-functionalization (Figure 2.6). 

As expected, the bands are narrower and shifted to higher frequencies than those of the 

divacant precursor (see paragraph 2.1.1.3). 
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Figure 2.6 FT-IR (KBr) spectrum of APTES-SiW10 (up) in comparison with FT-IR (KBr) spectrum of K8[γ-

SiW10O36] (bottom). 

 

Finally 
1
H NMR and 

13
C NMR analysis confirm the presence of the aminopropyl group 

(Appendix, A1 and A2). 

 

Grafting of the dansyl chromophore (Step 2) 

The novel hybrid POM Dans-SiW10 (1) exhibits 
29

Si and 
183

W NMR spectral patterns 

confirming, respectively, the maintenance of the bis-organosilane anchoring (
29

Si NMR: δ = –

62.5 ppm, 2Si), in addition to the central tetrahedral SiO4 group (
29

Si NMR: δ = – 88.4 ppm, 

1Si), and the overall C2v symmetry of the POM structure with a 2:1:2 intensity ratio of the 

three expected 
183

W NMR signals (
183

W NMR: δ = –107.9, –136.2, –142.1) (Appendix, A4 

and A5). 

The FT-IR spectrum features diagnostic bands between 982 and 737 cm
–1

 (W–O bonds) and 

weak absorptions at 1101 and 1045 cm
–1

 (Si–O); furthermore, comparison with the spectrum 

of APTES-SiW10 confirms the integrity of the hybrid POM network upon dansylation. The 

new absorption bands observed at 1318 and 1143 cm
–1

 result from the sulfonamidic 

substituents (Appendix, A3). 

The ESI-MS spectrum of (1), recorded in the negative mode, shows a dominant cluster 

centered at m/z = 773.9 that can be ascribed to [{((CH3)2N)C10H6SO2NH(CH2)3Si}2O(γ-

SiW10O36)]
4–

, confirming the introduction of two dansyl units through a bis-sulfonamide 

linkage involving both amino pendants on the POM surface (Figure 2.7). 
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Figure 2.7 ESI-MS ((-),CH3CN) spectrum of (1). 

 

Finally, the 
1
H and 

13
C NMR spectra are also consistent with a covalent conjugation and, in 

particular, the signals of the aromatic carbons of (1) are sensibly deshielded (115–153 ppm), 

with respect to the dansyl chloride precursor (115–135 ppm) (Figure 2.9), the α methylene 

protons resonate at δ = 2.84 ppm (Δδ = –0.7 ppm with respect to the dansyl-free APTES-

SiW10), and the amidic (SO2NH) proton resonates at δ = 5.95 ppm (Figure 2.8). 

 

 

Figure 2.8 
1
H NMR spectrum of (1) in CD3CN. 
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Figure 2.9 
13

C NMR spectrum of (1) in CD3CN. 

 

2.2.2.3 Study of optical and sensing properties 

The UV-Vis spectrum of (1) (>200 nm) displays a shoulder at 218 and a maximum at 250 nm, 

together with a broad absorbance tail extending up to 450 nm. This spectral behavior is the 

result of the POM oxygen-to-tungsten charge transfer bands, overlapping with the typical 

absorption features of the fluorophore moiety, as can be seen from the superimposed spectra 

of dansyl-free APTES-SiW10 and of 3-(dansylamido)propyl(triethoxy)silane (reference 

dansylated silane). In particular, the three absorption bands at 218, 252, and 338 nm can be 

ascribed to the appended dansyl tweezer (Figure 2.10). 

 

 

 

 

 

 

 

 
 

 

 

Figure 2.10. Left: structure of the reference dansylated silane
31

; Right: UV-Vis spectra of the dansyl reference 

(20 μM, dashed line), APTES-SiW10 (10 μM, gray solid line), and Dans-SiW10 (1) (10 μM, black solid line) in 

CH3CN.. 
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The fluorescence spectra of (1) (Figure 2.11) retain the typical pattern expected for the dansyl 

fluorophore with one emission band centered at 449 nm (λexc = 324 nm), albeit somewhat 

blue-shifted and with diminished intensity (20-fold) when compared to the emission observed 

for the singlet n,π* excited state of the dansylated silane, upon excitation at 336 nm. As 

verified for APTES-SiW10, the polyoxotungstate component shows only negligible 

fluorescence so that the excitation spectrum of (1) (λem = 450 nm) is dominated by the dansyl 

contribution, exhibiting well-resolved bands at 223, 245, and 329 nm. 

 

  

The quenching effect can be due to the electron acceptor properties of the POM network: a 

charge transfer state dansyl
+
-POM

- 
is

 
likely occurring at lower energy in comparison to the 

dansyl emission state, so to provide an inactivation route by means of an electron-transfer 

mechanism. Moreover, the blue-shift phenomenon is probably due to destabilization of the 

dansyl emission state by inter-electronic repulsions with electrons on the POM network, 

inducing an increase of its energy.  

 

Protonation equilibria  

Hybrid (1) (10 μM) undergoes protonation equilibria in acetonitrile/water (97.5:2.5 v/v) upon 

addition of acid (HCl, 1.6x10
–3 

M). The spectrophotometric titration shows major 

modifications in the spectral range 210–410 nm, whereby a gradual decrease of the bands at 

342 and 250 nm is accompanied by a progressive increase of a new absorption at 293 nm, 

giving rise to four isosbestic points at 222, 236, 274, and 308 nm (Figure 2.12 a). 

A parallel modification is registered in the emission and excitation spectra (Figure 2.12, b), 

where a progressive decrease of the dansyl-centered bands is observed respectively at 450 

(λexc = 324 nm) and at 247 and 330 nm (λem = 450 nm). This behavior is consistent with the 

protonation of both dansyl amino groups, and is responsible for a gradual disappearance of the 

Figure 2.11 Fluorescence spectra of the 

reference dansylated silane [20 μM, 

dashed lines: excitation (λem = 551 nm) 

and emission (λexc = 336 nm)] and Dans-

SiW10 (1) [10 μM, solid lines: excitation 

(λem = 450 nm) and emission (λexc = 324 

nm)], in CH3CN. 
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electronic transition bands involving the nitrogen lone-pair, as experimentally observed in 

both the absorption and fluorescence spectra.
19

 

 

Figure 2.12 Titration of Dans-SiW10 (1) (10 μM in CH3CN) with aqueous HCl (1.6x10
–3

 M). (a) UV/Vis 

spectra; (b) Excitation (λem = 450 nm) and emission (λexc = 324 nm) spectra. Inset: relative emission intensity at 

450 nm upon excitation at 236 nm (one of the isosobestic points). 

 

The spectrophotometric titrations determined either in absorption, emission, or excitation 

modes, display similar profiles, as a function of the added acid equivalents, and highlight the 

independent behavior of the dansyl units (Figure 2.13). 

 

 

 

 

Figure 2.13 Spectrophotometric titration of Dans-SiW10 (1) (10 μM in CH3CN) by stepwise addition of aqueous 

HCl (1.6 mM). Normalized values of absorbance (A) and fluorescence intensity (I) variations monitored at 

different wavelengths. 

 

In all cases, the observed spectral variations can mainly be ascribed to the dansyl probe, and 

they follow a sigmoidal behavior, with an initial “silent” phase, which was clearly determined 

in the fluorescence titration, followed by a linear behavior to a plateau value reached at two 
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equivalents. This is likely explained by an initial buffering effect of the inorganic polyanion, 

which acts as a competing proton scavenger in the system.
32

 

This hypothesis has been addressed by DFT calculations by using the ZORA-BP86 functional 

with the TZ2P basis set, including solvent and relativistic effects. Due to the large size of the 

molecules and to the high number of heavy metals, the internal or core electrons were kept 

frozen (see Chapter 5; paragraph: 5.3.2). These methods provide the optimized geometry for 

(1), together with the molecular electrostatic potential (MEP), and frontier molecular orbital 

(FMO) analysis (Figure 2.14). MEP analysis allowed the relative basicity of the different sites 

in the molecular hybrid to be estimated and indicated that a significant and extended electron 

density was localized at the oxygen centers of the polyoxometalate framework (Figure 2.14 

A). Moreover, inspection of the calculated FMO distribution showed that the filled orbitals 

were delocalized on the oxygen POM centers (oxo band) with energy levels close to the 

dansyl HOMO and HOMO
–1

, mostly identified by the π orbitals of the naphthalenic units with 

approximately 30% contribution of the p orbital of the nitrogen atoms of the dimethylamino 

functions (Figure 2.14 B). These findings support the involvement of the POM scaffold in 

protonation equilibria. 

 

 

Figure 2.14 A Map of the electrostatic potential and B representation of the HOMO and HOMO
–1

 orbitals of 

Dans-SiW10 (1), delocalized in the dansyl moieties. 

 

Fluoroionophore properties  

To evaluate the optical response of hybrid DansSiW10 (1) towards other cationic analytes and 

its potential as a fluorescent chemosensor for metal ions, emission quenching experiments 

were performed in the presence of Cu
2+

 Fe
2+

, Ni
2+

, Hg
2+

, Co
2+

, Cd
2+

, Zn
2+

, and Pb
2+

 by 

addition of an aqueous analyte solution (1.6 mM) to (1) (10 μM in CH3CN). The bar-graph in 
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Figure 2.15 highlights the dependence of the fluorescence intensity ratio I/I0 determined at λem 

= 457 (λexc = 324 nm) as a function of the metal ion added in the system.  

 

 

Figure 2.15 Optical sensing screening determined as the ratio between the fluorescence intensity observed for 

Dans-SiW10 (1) (10 μM in CH3CN with 2.5% v/v H2O) in the absence of any metal ion (I0) and in the presence 

of 40 μM metal ions (I) (λexc = 324 nm; λem = 457 nm, for Pb
2+

 λem = 525). 

 

In most cases, no appreciable change in the emission intensity occurred (I/I0 ≈ 1), with the 

remarkable exceptions of Cu
2+

 and Pb
2+

, which are two ions that are typically recognized as 

hazardous contaminants for drinking water.
33

 The optical sensing by (1) clearly entails diverse 

recognition mechanisms, because opposite effects are induced in the fluorescence emission 

upon addition of either Cu
2+

 or Pb
2+

 analyte. 

In particular, sensing of aqueous PbSO4 (40 μM), was determined by a red shift (68 nm) of 

the maximum emission wavelength (λ = 525 nm), together with a progressive tenfold increase 

of luminescence at that wavelength (Appendix, A6). Fluorescence enhancement has been 

previously reported for dansyl-based Pb
2+

 ionophores, and it was ascribed to metal ligation 

upon deprotonation of the NH amide function.
27 

In this specific case, however, Pb
2+

 ions may 

trigger a change either in the electronic structure or in the interactions between the 

chromophoric units, such as a decreased stacking of paired naphthalenic moieties. The similar 

emission of the Pb
2+

 adduct and of reference dansylated silane may also suggest a reduced 

interaction between the dansyl units and the polyanionic domain. 

On the other hand, stepwise addition of CuSO4 (1.6x10
–3

 M, ca. 4 μL aliquots) induced a 

progressive quenching of the emission band, monitored at 457 and at 525 nm (λexc = 324 nm), 

down to a plateau value of about 5–14% with respect to the initial conditions (Figure 2.16). 
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Figure 2.16 A Normalized values of fluorescence intensity (I) obtained for the titration of hybrid DansSiW10 (1) 

(10 μM in CH3CN) with an aqueous CuSO4 solution (0–20 μM), in the presence and in the absence of 40 μM 

CoSO4. B Emission (λexc = 324 nm) spectra. 

 

The Cu
2+

 titration profile resembles the protonation curve, determined for (1) with a similar 

procedure, again showing a sigmoidal shape, with a turning point at about 1:1 equiv. ratio. 

Moreover, the UV/Vis spectrum registered for (1) in the presence of the cuprous salt retains 

isosbestic points (albeit with a lower absolute ΔAbs) similar to those ascribed to the 

protonation equilibria (Figure 2.12 and 2.13). Accordingly, a plausible trigger for the Cu
2+

-

induced emission quenching could originate from its binding at the electron rich amine sites 

of the luminophore moiety. For comparison, the fluorescence response of reference compound 

was evaluated with respect to Cu
2+

, which showed negligible activity. This observation 

highlights the interplay between the two domains in the sensing mechanisms. 

Indeed, at variance with the majority of previously reported Cu-chemosensors, (1) does not 

contain any additional binding site tailored for a specific transition metal.
34

 Selective sensing 

by (1) and the tuning of its optical response stems from its multi-functional molecular nature 

integrating a dansyl-based optical transducer with the tungsten-oxide polyanionic surface. 

These latter features are instrumental for the geometrical constrains/spacing of the bis-

fluorophore tweezer, and the occurrence of competing cation scavenging equilibria that can be 

exploited in the analysis of complex mixtures. Indeed, the selective recognition of Cu
2+

 by (1) 

has also been validated in the presence of potentially interfering bivalent metal ions such as 

Fe
2+

, Ni
2+

, Co
2+

, and Zn
2+

. The presence of these latter ions did not result in any detrimental 

effects in the system, even when added in large excess (40 μM). On the other hand, the 

combined presence of “dansyl silent” metal cations, for instance Co
2+

, turns out to improve 

the optical signaling of Cu
2+

, resulting in a linearization of the sigmoidal fluorescence titration 
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curve (Figure 2.16). This can be explained by a preferential electrostatic interaction between 

Co
2+

 and the POM surface, thus overriding the initial lag-response of the dansyl 

fluorophore.
35

 Under such optimized conditions, a linear correlation is obtained, featuring a 

micromolar detection limit with maximum quenching at [Cu
2+

] above 12 μM, pointing to a 

1:1 interaction with (1). 

 

2.2.3 Synthesis and characterization of a pyrene-functionalized 

polyoxotungstate 

Pyrene is a rigid polyaromatic hydrocarbon fluorophore. It is a good probe as it presents a 

strong absorption and luminescence in the visible region (350-450 nm). One important 

application of the pyrene fluorescence stems from its ability to probe the polarity of the local 

microenvironment, either in a hydrophobic or hydrophilic media, from the change of specific 

emission spectrum.  

The extended π-system of the pyrene derivatives can be also exploited to bind hydrophobic 

molecules, such as [60]fullerene.
36

 Furthermore, the use of pyrene molecules as donors has 

been reported for a range of molecular systems exhibiting photo-induced electron transfer 

(PET). In this respect, many POMs are able to store several electrons with only minor 

structural reorganization and their reduced forms display efficient electrocatalytic 

properties,
37

 notably for the hydrogen evolution reaction.
38

 As a consequence, POMs are 

attractive candidates for the development of functional artificial photosynthetic devices and, 

in particular, their association to a light-harvesting antenna, such as pyrene derivatives, is yet 

necessary, since POMs themselves are only photoactive in the UV part of the solar 

spectrum.
39

 

Moreover, amphiphilic hybrid POM clusters with pendent pyrene fluorescent probes are of 

potential interest for the construction of smart supramolecular assemblies.
40

  

Finally, planar aromatic moiety, as pyrene, can intercalate into neighboring base pairs of 

double-stranded DNA.
41

 This intercalation can results from collective interactions of different 

forces depending on the structure of intercalators, including π-π interactions, the van der 

Waals force, hydrophobic interactions, and so forth. Considering the potential applications of 

POMs in medicine, the grafting of an intercalator containing aromatic rings on POMs surface, 

could be a focus of interest to researchers in different fields, referring to molecular 

recognition and nanomedicine. 

 

 



Chapter 2 

60 

 

2.2.3.1 Synthesis of (nBu4N)4[{C16H9SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Pyr-SiW10)  

Synthesis of the reactive ligand: pyrene sulfonyl chloride 

First, in order to obtain a chromophore reactive in the reaction with the hybrid APTES-SiW10 

(see previous paragraph), we have functionalized the pyrene with the sulfonyl chloride group. 

The synthetic scheme reaction is reported below. 

 

1. ClSO3H

CH2Cl2

2. NaOH

SO3
-Na+

PCl5

CH2Cl2
40°C

SO2Cl

 

 

Scheme 2.4 Synthetic routes to 1-pyrensulfonyl chloride. 

The first synthetic step (Scheme 2.4), chlorosulfonation of pyrene, proceeded smoothly. The 

isolated intermediate, sodium l-pyrenesulfonate contains hydration water and NaOH, but it 

can be used without further purification. Transformation to pyrenesulfonyl chloride was 

performed in CH2Cl2 at 40°C in the presence of phosphorus pentachloride. Pyrene sulfonyl 

chloride was purified by silica gel column chromatography using CH2Cl2:hexane (2:3) as 

eluent. The yield of the orange product was 92.7%.
42

 

 

Grafting of the ligand on the POM scaffold 

 

 

 

Scheme 2.5 Synthetic routes to a Keggin-type decatungstate functionalized with the pyrene chromophore. 

 

Selective introduction of pyrene on the divacant polyoxotungstate [γ-SiW10O36]
8–

 was 

achieved after introduction of an aminopropyl silane spacer, as reported for the bis-dansylated 
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polyoxotungstate (nBu4N)4[{((CH3)2N)C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] (1). The first 

intermediate [{NH2(CH2)3Si}2O(γ-SiW10O36)]
4–

 reacts in a post-functionalization reaction in 

acetonitrile at 50°C, in the presence of 1-pyrensulfonyl chloride (Pyr-SO2Cl) (2.5 equiv.) and 

triethylamine (TEA, 2.5 equiv.) for 3 h. Finally, the mixture was centrifuged to remove 

insoluble reagents and byproducts. The volume of the solution was reduced to 1 mL, upon 

evaporation under vacuum, than diethylether was added to precipitate the product. 

(nBu4N)4[{C16H9SO2NH(CH2)3Si}2O(γ-SiW10O36)] Pyr-SiW10 (2) was isolated in 71% after 

washing/extraction with water, diethyl ether, and a small amount of CH2Cl2 on a fritted funnel 

and drying several hours under vacuum.  

The solution characterization of the resulting hybrid POM was performed by the following 

techniques: 
183

W, 
29

Si, 
13

C, 
1
H NMR spectroscopy and ESI-MS. 

The hybrid (2) exhibits a 
183

W NMR spectral pattern in agreement with the expected bis-

functionalized, C2v-symmetric structure, with three multiple resonances at -107.51, -136.03, -

141.52 ppm in relative ratio 2:1:2 respectively, corresponding to WA (four bottom W atoms), 

WC (two side W atoms), and WB (four vacant W atoms).  

 

 

 

Figure 2.17 
183

W NMR of (2) in CD3CN/CH3CN. 
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Figure 2.18 
29

Si NMR of (2) in CD3CN/CH3CN. 

The 
29

Si NMR spectrum reveals two signals at - 62.61 and - 88.34 ppm with integration ratio 

2:1 respectively. These results are consistent with a double functionalization. 

FT-IR evidences diagnostic bands at 964, 950, 903, 886, 840, 821 cm
–1 

for νas(W–O–W),  

weak bands at 1050 cm
-1

 for νas(Si–O-Si) and 1102 cm
-1

 for νas(Si–C), confirming the 

maintenance of the POM structure (Appendix, A7). 

1
H NMR and 

13
C NMR spectroscopies confirm the introduction of the pyrene groups, since 

expected resonances for the aromatic pyrene protons and carbons are observed between 8.86 - 

8.02 and 135.21–124.66 ppm respectively (Figure 2.19 and Appendix, A8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 
1
H-NMR of (2) in CD3CN. 
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The ESI-MS of hybrid (2), registered in negative mode, show cluster signals centered at m/z = 

789.5; 1053.1 attributed, respectively, to the ions [C38H32N2O41S2Si3W10]
4- 

= 789.9 and 

[C38H33N2O41S2Si3W10]
3- 

= 1053.5 (Appendix, A9). 

 

2.2.3.2 Study of optical, sensing and interaction properties 

The UV-Vis spectrum of (2) (>200 nm) display seven absorption bands at 233, 242, 269, 279, 

336, 351 and 358 nm that can be ascribed to the appended pyrene tweezer.  

This spectral behavior is the result of the POM oxygen-to-tungsten charge transfer bands 

overlapping with the typical absorption features of the pyrene moiety, as can be seen from the 

comparison with the spectrum of the pyrene (Figure 2.20).  

 

 

Figure 2.20 UV-Vis spectra of Pyr-SiW10 (2) (10 μM, black solid line) and APTES-SiW10 (10 μM, dashed line) 

in CH3CN; Inset: UV/Vis spectrum of pyrene (20 μM) in CH3CN. 

 

The fluorescence spectrum of (2) (Figure 2.21) maintains the typical pattern expected for the 

pyrene fluorophore with two emission bands centered at 379 and 397 nm (λexc = 338 nm), 

albeit somewhat red-shifted in excitation and with diminished intensity (~ 3-fold) when 

compared to the reference compound fluorescence (pyrene). 



Chapter 2 

64 

 

 

Figure 2.21 Fluorescence spectra of (2) [10 μM, solid lines: excitation (λem = 380 nm) and emission (λexc = 338 

nm)] and pyrene [20 μM, dashed lines: excitation (λem = 389 nm) and emission (λexc = 338 nm)], in CH3CN. 

 

To evaluate the molecular interaction capability of the pyrene-functionalized 

decatungstosilicate towards hydrophobic molecules we have performed luminescence 

quenching experiments in the presence of different neutral molecules. To promote π-π 

stacking interactions, we included derivatives with extended π-system: 1,4-dinitrobenzene 

(DNB),
43

 adenin (ADN), adenosin (ADS), caffeine
44

 and fullerene (C60)
45

.  

The bar-graph in Figure 2.22 highlights the dependence of the fluorescence intensity ratio as a 

function of the molecules added in the system.  

 

Figure 2.22 Optical sensing screening determined as the ratio between the fluorescence intensity observed for 

(2) (1 μM in DMF) in the absence of any molecules (I0) and in the presence of 100 equivalents of aromatic 

molecules (I). 
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In most cases, no appreciable change in the emission intensity occurred (I/I0 ≈ 1), with the 

remarkable exceptions of C60.  

The nature of the interaction between the hybrid system containing pyrene moieties and 

fullerene molecules was further investigated. Stepwise addition of C60 in ortho-

dichlorobenzene (o-DCB) (5x10
–3

 M, 4μL aliquots) induced a progressive quenching of the 

emission band, detected at 379 and at 397 nm (λexc = 330 nm) of the hybrid (2) dissolved in 

DMF. 

The luminescence quenching (Figure 2.23 A) has highlighted the interaction of the POM with 

fullerene molecules in the micromolar range. The fluorescence intensity ratio, (I
0
/I)-1, of 

POM (2) at 400 nm was measured as a function of the C60 concentration at room temperature. 

As shown in Figure 2.23 B, the slope of the Stern-Volmer (S-V) plot is higher in the presence 

of a little percentage of H2O, confirming the π-π stacking contribute in the interaction. 

 

 

 

The Stern-Volmer plot show a linear profile up to 1 equivalent of C60 added (10 µM of C60 in 

solution). After 1 equivalent the plot became highly curved, upward, and non linearly 

proportional to the fullerene concentration. In particular, the competition for light absorption 

Figure 2.23 A Titration of (2) (10 μM in 

DMF) with a solution of C60 in o-DCB (0-

70 μM); λex = 330 nm; B Stern-Volmer plot 

of the quenching of (2) fluorescence by C60 

in DMF (orange circles) and DMF + 1% 

H2O (blue circles). C Stern-Volmer plot of 

the quenching of (2) fluorescence by C60 in 

DMF for lower concentrations of C60 (0-30 

µM); λex = 350 nm.  
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by C60 can explain the observed upward deviation. To minimize this effect, a further titration 

was performed at low C60 concentration region (0-30 µM), choosing an excitation wavelength 

(λex = 350 nm) where the light absorption of the quencher is weaker in comparison to the 

absorption of pyrene groups. In such conditions, a linear S-V behavior can be observed 

(Figure 2.23 C). The data were thus corrected for the inner filter absorption effects of the C60 

(see Chapter 5: paragraph 5.3.1) and the Stem Volmer constant results Ksv = (9.40 ± 0.22) 

x10
3
 M

-1
. Such weak binding constant is likely ascribed to the non-planar structure of C60.

46
  

Hence, experiments with nanotubes (SWNTs) have been performed to yield an enhanced 

bonding. In particular, SWNTs contain a vast mixture of diameters and chiralities defining 

their electronic structure as being metallic or semiconducting. Among the efforts to increase 

the processability of this unique materials, noncovalent functionalization of these systems 

represents a corner stone, as it is nondestructive and does not alter the intrinsic properties of 

nanotubes. In this respect, a strong and specific interaction with the SWNTs can be ensured 

through π–π stacking.  

Thus, 3 mg of carbon nanotubes (CNTs) were added to 3 mg of Pyr-SiW10 dispersed in 3 mL 

of a DMF/MeOH 1:1 solution. Fluorescence experiments show a quenching of the Pyr-SiW10 

luminescence upon addition of CNTs (3 mg/7.27x10
-7

 mol POM) (peaks at 379 nm and 398 

nm), confirming that the pyrene units are involved in an electron transfer with the carbon 

nanostructures. Furthermore, upon the interaction of Pyr-SiW10 with different kind of CNTs, 

changes in the NIR-semiconducting region can be observed: red shift and reduction of 

absorption intensity for HiPCO (SWNTs diameter distribution 0.8–1.4 nm; Figure 2.24 C), 

blue shift for CoMoCAT (SWNTs diameter distribution 0.7–0.9 nm; Figure 2.24 D) 

respectively. This suggest the capability of Pyr-SiW10 to interact and recognize carbon 

nanotubes according to their helicity and diameter. This behaviour will be studied in detail in 

collaboration with the group of Prof. M. Prato (University of Trieste).  
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Figure 2.24 A Representation of interaction of (2) with a nanotube. B Fluorescence spectra of (2) (λexc=335 nm) 

in the absence (blue line) and in the presence of CNTs (HiPCO: red line, CoMoCAT: black line). C UV/Vis/NIR 

spectra of HiPCO nanotubes in the absence (black line) and in the presence of (2) (red line). D UV/Vis/NIR 

spectra of CoMoCAT nanotubes in the absence (black line) and in the presence of (2) (red line). (3 mg/ 7.27x10
-7

 

mol POM); SDS: sodium dodecyl sulfate.u 

 

2.2.4 Synthesis and characterization of two fluoresceine-appended 

polyoxotungstates  

Fluorescein is a synthetic organic compound soluble in water and alcohol. It is widely used as 

a fluorescent tracer for many applications. In particular, in cellular biology, 

the isothiocyanate derivative of fluorescein is often used to label and track labeled compounds 

within cells by fluorescence microscopy. The fluorescence of this molecule is very intense at 

521 nm, and excitation occurs at 494 nm. Fluorescein has a pKa of 6.4, and its ionization 

equilibrium leads to pH-dependent absorption and emission over the pH range from 5 to 9.  

In this paragraph, the introduction of fluoresceine on two different POM scaffolds (K8[γ-

SiW10O36] and β-A-Na8[HPW9O34]) will be described. 

http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/Flow_tracer
http://en.wikipedia.org/wiki/Isothiocyanate
http://en.wikipedia.org/wiki/Fluorescence_microscopy
http://en.wikipedia.org/wiki/Nanometre
http://en.wikipedia.org/wiki/Acid_dissociation_constant
http://en.wikipedia.org/wiki/Absorption_(optics)
http://en.wikipedia.org/wiki/Fluorescence
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2.2.4.1 Synthesis of (nBu4N)4[{(C20H11O5)NHCSNH(CH2)3Si}2O(γ-SiW10O36)] (FITC-

SiW10)  

The introduction of fluoresceine probe on the polyanionic scaffold [γ-SiW10O36]
8– 

was 

achieved by a synthetic procedure that also involves the amino-functionalized POM (APTES-

SiW10), and its reaction with fluoresceine isothiocyanate (FITC), to obtain a thioureido group. 

The scheme of reaction is reported below. 

 

Si Si

H2N NH2

(nBu4N)4[(NH2(CH2)3Si)2O (-SiW10O36)]

4-

O

O

O
H
N

HN

S

O

O

O
H
N

NH

S

OHHO Si Si
O

OHHO

O

4-

O

O

O

OH

HO

S
C

N

TEA, CH3CN

    50°C, 3h

(nBu4N)4[(C20H11O5)NHCSNH(CH2)3Si)2O (-SiW10O36)] 

Scheme 2.6 Synthetic routes to a Keggin-type decatungstate functionalized with the fluoresceine chromophore. 

 

The hybrid POM [{NH2(CH2)3Si}2O(γ-SiW10O36)]
4–

 reacts with 2.5 equivalents of FITC in 

the presence of 2.5 equivalents of triethylamine (TEA). As in the previous cases, the product 

(nBu4N)4[{(C20H11O5)NHCSNH(CH2)3Si}2O(γ-SiW10O36)] (FITC-SiW10) (3) was isolated by 

precipitation with water and then washed with water and various organic solvents (diethyl 

ether, methanol), obtaining a yield of 56%. 

The bis-decorated molecular hybrid was characterized by FT-IR, multinuclear NMR, ESI-MS, 

UV-Vis and luminescence spectroscopy. The complete characterization has highlighted 

several features shared with the previously described POMs.  

1
H NMR and 

13
C NMR spectroscopies confirm the introduction of the fluoresceine groups, 

since the expected resonances for the aromatic fluoresceine protons and carbons are observed 

between 9.14 -6.56 ppm and 181.78 and 84.25 ppm respectively. 

Finally, relevant spectral features, in agreement with the bis-substitution, are reported in Table 

2.1 (see also Chapter 5 and Appendix, A10 - A15): 
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2.2.4.2 Study of optical properties 

Generally, the absorption and the luminescence analysis of free fluorescein are conducted in 

aqueous solution at buffered pH. In our case, since the hybrids are not water-soluble, the 

optical measures were performed in EtOH with added DMSO (1.8 % v/v). EtOH does not 

affect fluoresceine luminescence, whereas the small percentage of DMSO, required to 

dissolve the hybrid POM in solution, is responsible for a minor emission quenching.  

 

 

Figure 2.25 UV-Vis spectrum of FITC-SiW10 (3) (10 μM) in EtOH with added DMSO (1.8 % v/v); Inset: 

UV/Vis spectrum of FITC (20 μM) in EtOH with added DMSO (1.8 % v/v) . 

 

The UV-Vis spectrum of (3) display a shoulder at 275 nm and three absorption bands at 428, 

454 and 482 nm. These can be ascribed to the appended fluoresceine moieties. Upon 

Solvent m/z 

29
Si NMR 

(ppm) 

183
W NMR 

(ppm) 

CH3CN 
852.5

a
 

1217.5
b
  

-61.34 (2Si), 

-88.26 (1Si) 

- 108.32 (4W) 

- 132.87 (2W) 

- 143.32 (4W) 

Table 2.1 Relevant spectral features of FITC-SiW10 (3). 

(a)
 
expected for [C48H38N4O47S2Si3W10]

4- 
= 852.4, (b)

 
expected for [C64H74N5O47S2Si3W10]

3- 
= 1217.3; polyanion 

without (a) and with (b) a single nBu4N
+
 countercation. 
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introduction of the fluoresceine groups on the polyanion, a hypochromic effect, in comparison 

with FITC, can be observed for the UV-Vis absorption (Figure 2.25).  

The fluorescence spectrum of (3) (Figure 2.26 A) maintains the typical pattern of the 

fluoresceine fluorophore, with a large emission band centered at 528 nm (λexc = 480 nm), 

albeit somewhat blue-shifted and with diminished intensity (~ 10-folds) when compared to 

the reference emission (FITC) (Figure 2.26 B). 

 

 

Figure 2.26 A Fluorescence spectra of (3) [10 μM, excitation (λem = 528 nm) and emission (λexc = 480 nm)] B 

Comparison between emission spectrum of FITC (20 μM, dashed lines) with (3) (10 μM, solid lines) (λem = 528 

nm) in DMSO/EtOH (2% v/v). 

To evaluate the effect of POM scaffold on fluoresceine luminescence, the same probe was 

also introduced on β-A-Na8[HPW9O34] (see Figure 2.3). The synthetic strategy is described in 

the next paragraph. 

 

2.2.4.3 Synthesis of (nBu4N)3Na2[{(C20H11O5)NHCSNHCH(CH3)PO}2(α-A-PW9O34)] 

(FITC-PW9)  

The fluorescein probe has been also introduced on the trivacant β-A-Na8[HPW9O34] (PW9) 

scaffold with a different synthetic strategy, exploiting phosphonic acid units. 

 

Synthesis of the reactive ligand: (C20H11O5)NHCSNHCH(CH3)PO(OH)2 (FITC-AEPA) 

In this case, the fluorescein isothiocyanate (FITC) has been first functionalized with a chiral 

residue: 1-aminoethyl phosphonic acid (AEPA), by means of a reaction carried out in water 

and DMSO (9:1) at pH 9. 
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Scheme 2.7 Synthetic route to FITC-AEPA.  

The synthetic procedure and the characterization are reported in the Chapter 5 (Appendix, 

A28-A33).  

Grafting of the ligand on the POM scaffold 

The trivacant POM PW9 was reacted with two equivalents of 1-aminoethyl phosphonic acid 

derivatized with fluorescein in CH3CN, in the presence of four equivalents of hydrochloric 

acid, using a tetrabutylammonium salt (nBu4NBr). The final product 

(nBu4N)3Na2[(C20H11O5)NHCSNHCH(CH3)PO)2(α-A-PW9O34)] (FITC-PW9) (4) was 

isolated with 50% yield, upon precipitation with water and purification by extensive 

washing/extraction cycles with ethanol and Et2O/MeOH (5:1). 

 

 

Scheme 2.8 Synthetic routes to a Keggin-type nonaoxotungstate functionalized with fluoresceine chromophore. 

The spectroscopic characterization confirms an bis-functionalization, in agreement with the 

data in literature.
15

  

In the FT-IR the low-wavenumber part (ν< 1000 cm
-1

) is characteristic of the polyoxometalate 

framework.
47

 The stretching vibrational bands [νasym (W-Ob-W) and νasym (W=Oter)] are 

shifted to higher frequency, compared to those of the starting trivacant [PW9O34]
9-

 anion 

(Figure 2.27 and Table 2.2). This effect, previously observed for organosilyl derivatives of 

trivacant polyoxotungstates, is attributed to a partial saturation of the polyoxometallic moiety. 

The stretching vibration bands of the PO4 and RPO3 groups are observed between 1000 and 

H 2 O - D M S O 

N H 2 C H ( C H 3 ) P O ( O H ) 2 
C O 3 

2 - / H C O 3 
- 

F IT C 

O 

O 

H 
N 

S 

O H H O 

O 

H N C H 3 

P O 
H O 

O H 
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1100 cm
-1

.  Finally, vibrational bands relative to the counterion (2850-3000 cm
-1

) and minor 

bands attributable to fluorescein (1100-1650 cm
-1

) can be observed.  

 

 

 

 

 

Figure 2.27 FT-IR (KBr) spectrum of (4) (red) in comparison with FT-IR (KBr) spectrum of PW9 (blue). 

 

 

The 
31

P NMR spectrum presents two lines with a relative intensity of 2:1 (Figure 2.28). 

Integration was carried out on proton coupled spectra: the high-frequency resonance (19.32 

ppm) is attributed to the RPO group. The low-frequency singlet of relative intensity 1 (-12.59 

ppm) is assigned to the central PO4 unit of the polyoxotungstate. The value of literature for 

compounds bis-functionalized is δ = - 11.46 ± 0.2
17

.  

 

Assignment
47

 FIPW9 β-PW9 

ν(P-C) 1179m  

νasym(P-O)
 
(PO4) 1090s; 1036m 1056s; 1014w 

νasym(P-O)
 
(PO) 998m  

νasym(W=Oter) 959vs 931vs 

νasym(W-Ob-W) 879vs; 850vs; 782vs; 752vs 821vs; 737vs 

Table 2.2 Infrared data (cm
-1

) for (4) and -A-Na8H[PW9O34]*24H2O 

m: medium; s: strong; vs: very strong 
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Figure 2.28 

31
P NMR ([D6]DMSO, 28 °C) of (4). 

 

Studies of 
1
H NMR and 

31
P NMR, performed at different temperatures, have shown the 

presence of different equilibria in solution: a splitting of the signals that still maintain an 

integration ratio 2:1 is observed at temperature under 18° C (Appendix, A16) . This is 

probably due to the fact that the fluorescein has several forms in equilibrium in solution 

(cationic, neutral, anionic and dianionic) dependent on the pH and temperature.
48

 These forms 

probably affect the electron density of the polyanion in different ways. 

 

2.2.4.4 Study of optical and chiroptical properties 

Since, the conjugation with AEPA does not affect the spectral properties of FITC, we used 

this latter as reference. Optical features were studied by using solutions of EtOH with a little 

percentage of DMSO. 

 

Figure 2.29 A UV-Vis spectrum of (4) (10 μM) in EtOH with added DMSO (1.8 % v/v) B Fluorescence spectra 

of (4) [10 μM, excitation (λem = 528 nm) and emission (λexc = 480 nm)]. 
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Also in this case, we observed a depletion of fluorophore absorption and fluorescence when 

the FITC is grafted on the polyanion, as reported for the hybrid polyoxotungstate FITC-

SiW10 (3). 

In particular, a comparison of fluorescence spectra (reported in Figure 2.30), shows that the 

divacant polyanion [γ-SiW10O36]
8-

 induces a stronger quenching of the fluoresceine 

luminescence with respect to the trivacant [A-β-PW9O34]
9-

, suggesting that the interaction 

with the divacant POM is stronger. This can be explained by the fact that the divacant POM 

(SiW10) does not show equilibria involving the ligand, as in the case for the trivacant one 

(PW9).  

 

 

Figure 2.30 A Fluorescence spectra of (3) [10 μM, dashed line: excitation (λem = 528 nm) and emission (λexc = 

480 nm)] and fluorescence spectra of (4) [10 μM, solid line: excitation (λem = 528 nm) and emission (λexc = 480 

nm)]. B Comparison between emission spectra of (3) (black solid line) and (4) (gray solid line) with emission 

spectra of fluoresceine isothiocyanate (dashed line). (λexc = 480 nm); solvent: DMSO/EtOH (2% v/v). 

 

Finally, both (R,R) and (S,S) enantiomers of (4) were prepared upon functionalization of PW9 

with the two enantiomers of the aminoethylphosphonic acid, functionalized with fluoresceine 

isothiocyanate. As expected, the two enantiomers of hybrid (4) show mirror-symmetric CD 

spectra (θmax = 8.3×10
4
 deg cm

2
 dmol

-1
 at 274 nm) (Figure 2.31). In addition, the lower 

optical activity observed for the FITC-AEPA (a single positive Cotton effect at 253 nm with 

θmax = 7.30×10
3
deg cm

2
 dmol

-1
) in the spectral region where the characteristic oxygen-to-

tungsten charge-transfer bands of the polyanion absorbs (Appendix, A33) suggests that the 

optical activity is induced through chirality transfer.
49
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Figure 2.31 Circular dichroic spectra of (R, R) and (S,S)-(4) in CH3CN (10 µM). 

 

2.3 Conclusions and future perspectives 

In conclusion, we have presented a family of novel POMs featuring different luminescent 

behaviour. In particular, an innovative polyoxometalate-based molecular chemosensor 

displaying recognition and luminescent signalling functions has been described. The POM-

based bis-dansyl tweezer (1) acts as selective fluorescence sensor for Cu
2+

 and Pb
2+

 ions, in 

quenching and enhancing mode, respectively, with tunable intensity depending on the 

emission wavelength, POM-aided scavenging of potentially interfering cations, detection 

limit in the micromolar range. In addition, a remarkable benefit, with respect to previously 

known nano-colloid analogs, is that the tweezer arrangement does not require the integrating 

of a multi-dentate ligand fragment for the Cu
2+

/Pb
2+

 capture. 

Moreover, the present study reports the synthesis of a pyrene-functionalized POM (2), and its 

interaction with C60 and SWCNTs in DMF and DMF/MeOH 1:1 medium respectively. The 

bidimensional ordering of [60]fullerene and its derivatives with organic counterparts, self-

assembled on suitable metal or semiconductor single-crystal surfaces, is a interesting 

perspective to develop photoactive materials. A promising potential for applications in many 

different fields such as sensing, catalysis, nanoelectronics, and photochemical conversion of 

solar energy is foreseen. 

Finally, considering the medical applications of POMs (see Chapter 1 paragraph 1.3) 

compounds (1)-(4) can be exploited for the cellular tracking by means of fluorescence 

microscopy. In the next Chapter, the biological properties and the exploitation of the organic 

domain for imaging or targeting purposes will be described. In particular, POM (3) and (4) are 

specifically designed for cellular trafficking studies, and their behavoir will be presented in 

the next chapter. 
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Chapter 3 
 

Interaction of polyoxometalates  

with biological targets 

 

 

 

 

 

 

 

 

Due to the potential applications of polyoxometalates (POMs) in medicine (many POMs 

exhibit antiviral, antitumoral and antibiotic activity), their association with organic domains 

and ligands is of interest to improve targeting and delivery strategies.
 
In particular, the 

fluorescence of POMs functionalized with luminescent probes is maintained under 

physiological conditions and, due to the overall low toxicity of POMs, they can be exploited 

for in vitro cellular imaging, whereby the luminescent moieties is useful to track POMs 

towards different regions of the cells. Furthermore, since the preparation of hybrid derivatives 

could be a powerful strategy for the introduction of molecular recognition sites and the 

enhancement of biocompatibility, studies on the interaction between POM and hybrid POMs 

with important biological macromolecules (ferritin and avidin) has been explored. 
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3.1 Introduction 

Among small inorganic systems, polyoxometalates (POMs) are multi metallic and 

polyanionic oxides which have shown interesting potential applications in nanomedicine (see 

Chapter 1 paragraph 1.3). Several papers deal with their bioactivity as antibacterial,
1
 

antiviral,
2
 antitumoral

3
 agents, suggesting their possible use as drugs. Such activity mainly 

stems from their redox behaviour and their capability to interact with biological 

macromolecules through electrostatic bonds. Some paper, indeed, focuses on their interactions 

with cation pockets of proteins and enzymes.
4
 In this respect, systematic studies, performed 

particularly by the groups of Yamase, Hill and Pope, indicated that the biological activities of 

polyoxometalates, in many cases, are closely associated with enzyme inhibition. However, 

fundamental questions concerning the mechanisms responsible for many of the observed 

biological effects remain essentially unanswered. In particular, although most of the in vivo 

effects of POMs may be explained by interactions with extracellular target proteins, different 

POMs, despite their size and charge density, can cross cell membranes and interact with 

intracellular targets. The interaction capability of POMs with intracellular and biological 

targets will be presented in the next paragraphs. 

 

3.1.1 Interactions of POMs with intracellular targets 

Few details are known about POMs cellular localization. In this regard, POMs can be used as 

electron-dense imaging agents when exposed to high energy radiations. Different electronic 

microscopies may give information on the molecular shape, orientation and assembly of the 

cluster compounds.
5
 Thus, the distribution of POMs in cells can be determined with high 

spatial resolution. 

For example, an increased number of vacuoles was observed by fluorescence into 

macrophages cell line J774 incubated with different POMs: [P2W12O48]
14–

, 

[P2W18Zn4(H2O)2O68]
10–

 , [Si2W18Nb6O77]
8-

. In particular, exploiting transmission electron 

microscopy (TEM) and scanning electron X-ray -wavelength dispersive spectroscopy (SEM-

WDS), it was possible to detected the tungsten.
6
 The results confirmed that the POMs were 

taken up by the macrophages and concentrated in the cytoplasma. Furthermore, X-ray 

fluorescence microscopy and raman laser microscopy were used to detect a POM into a  

cytoplasmic precipitate obtained after incubation of C3HBi fibroblasts with the 

tugstoantimonate [NaSb9W21O86]
18–

.
7
 By using electron probe microanalysis, this 

tungstoantimonate was localized in the lysosomes of different macrophages after intravenous 

administration in rats. Moreover, a scanning proton microprobe was used to analyse the metal 
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content of individual peripheral blood mononuclear cells treated with the cobalt substituted 

polyoxotungstate [Co4(H2O)2(PW9O34)2]
10–

,
8
 showing its subcellular distribution: this 

trivacant Keggin-derived sandwich structure was found on the surface of the cell nucleus in 

peripheral blood lymphocytes. 

The studies reported above have allowed to establish that POMs are able to penetrate into 

scavenger cells such as macrophages. However, they were carried out by means of invasive 

techniques, that cause the destruction of cells. To avoid damage at cellular level, luminescent 

lanthanide-substituted POMs were also used as model probes, but their emission is readily 

quenched by water oscillators, thus hampering imaging studies under physiological 

conditions, unless they are completely encapsulated and protected from the aqueous 

environment.
9
  

A promising alternative to study POMs cellular tracking, could stem from decoration of the 

POM scaffolds with resident luminophores (see Chapter 2), whereby covalent bonds 

guarantee long-term performance under physiological conditions. In particular, in this chapter 

we will see the utilization of the luminescent hybrid POMs described in the Chapter 2, to 

investigate the interactions of POMs with cells by means of fluorescence microscopy. 

 

3.1.2 Interactions of POMs with extracellular targets 

The pharmacological POMs effects observed in vivo could be mainly due to the interaction 

between POMs with extracellular target proteins as well as proteins integrated into the cell 

membrane. In particular, enzyme inhibition has been demonstrated for several different 

enzyme families (e.g., ecto-nucleotidases, ecto-kinases, sulfo- and sialyltransferases) and for a 

variety of POMs with inhibitory potencies from micro- to nanomolar concentrations.  

As for instance, inactivation of reverse transcriptases and DNA polymerases by POMs may 

contribute to the protection against viral infection.
10

 The synergistic effect of POMs with β-

lactam antibiotics against the pathogenic Gram-positive bacteria Staphylococcus aureus 

appears to be due to the reduced expression of the penicillin binding protein and β-lactamase, 

but additional, yet unknown, mechanisms of actions are likely involved.
3,11

 The activity of the 

decavanadate against leishmania (a genus of Trypanosomatid protozoa, parasite responsible 

for the disease leishmaniasis) may be due to the inhibition of phosphoglycerate mutase and 

various phosphatases.
12

 It has been speculated that the antidiabetic activities of oxometalates 

might be a result of the inhibition of regulatory protein phosphates or glucose-6- 

phosphatase.
13

 Recently, ecto-nucleotidase and protein kinase inhibition by POMs have been 

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Trypanosomatid
http://en.wikipedia.org/wiki/Protozoa
http://en.wikipedia.org/wiki/Leishmaniasis
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identified as possible modes of actions contributing to their antibiotic and/or anticancer 

activities.
4e),14

 

However, systematic structure–activity relationship studies of POMs using various enzymes 

are still difficult because of the very limited number of compounds, often with large structural 

variations and different stabilities.  

In this scenario, the research on POM–protein interactions (structural and energetic aspects) is 

an active field of interest due to the perspective of understanding POM action mechanisms 

and the possibility of designing novel drugs (see also Chapter 1, paragraph 1.3.2). In 

particular molecular recognition and binding of POMs by the target proteins constitute the 

first step in the complex mechanism of their biological action. In this respect, the interaction 

capability of different classes of POMs with various proteins was investigated in the 

literature.  

For example, the direct interaction between human serum albumin (HSA)
4a),15

 or basic 

fibroblast growth factor (bFGF)
16

 and POMs was demonstrated by the combination of several 

techniques: fluorescence, ultraviolet absorption, circular dichroism and isothermal titration 

measurements. In the case of HSA a complex forms upon selective binding of POM in a site 

containing positively charged residues. In figure 3.1, HSA intrinsic fluorescence quenching 

by a selected polyoxometalate [EuW10O36]
9- 

is reported.
17

 

The fluorescence of HSA, which is due to the single tryptophan residue in the protein, 

Trp214, can efficiently be quenched by POM. A Stern–Volmer analysis was applied to the 

fluorescence quenching data and the Stern–Volmer plot shows a linear relationship (Figure 

3.1 B). The quenching stopped when the molar ratio between EuW10 and HSA reached 1, 

indicating the stoichiometry of the interaction between EuW10 and HSA.
15,17 

Furthermore, as shown in Figure 3.1 C, binding of EuW10 has no significant effect on the 

secondary structure content of the protein, which is characterized by a high helical 

proportion.
15,17 

In this chapter, preliminary interaction studies of POMs and hybrid POMs with different 

proteins (ferritine and avidin) will be described.  
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3.1.3 Bioactive POMs: strategies for imaging, delivery and targeting 

Despite the great potential of hybrid organic-inorganic POMs derivatives,
18

 for improving 

recognition capabilities and selectivity, no report deal with the exploitation of the organic 

domain for imaging or targeting purposes.  

New POM based systems have thus been designed to overcome the main obstacles to POMs 

medical exploitation. In particular we will present: 

 

(i) The use of POM luminescent derivatives for cellular imaging. The introduction of 

organic probes on the polyanionic scaffolds can help to study the POMs cellular uptake 

and to reveal their specific interactions with intracellular portions, by means of 

fluorescence microscopy. The utilization of organic probes on the polyanionic scaffolds 

can allow to investigate POM cellular tracking, without inducing any cellular change or 

damage. 

 

(ii) The study of interaction between an hollow protein (apoferritin) with totally inorganic 

POMs. Interaction studies between POMs and macromolecules can be useful to clarify 

POM biological effects (paragraph 3.1.2) as well as to design novel drug delivery 

Figure 3.1 A Emission spectrum (λexc = 295 nm)  of 

HSA in the presence of increasing concentrations of 

EuW10 ([HSA] = 1.0x10-5 M, in pure water). (from top 

to bottom, the concentration of POM increases from 0 to 

1.0x10-5 M; increments of 1.0x10-6 M); B Plot of Stern-

Volmer quenching of the fluorescence of HSA in pure 

water (λem = 350 nm); C CD spectrum of HSA (1.0x10-6 

M) in the absence and presence of different 

concentrations of EuW10 (in pure water, 20 °C). 
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systems, capable to limit the toxicity of POMs. In this respect, different literature studies 

investigated the possibility of using nanocarriers for POM delivery, showing that the 

encapsulation of POMs by dendritic ligands, surfactants and biopolymers leads to an 

increase in both the stability and cellular uptake of POMs (see Chapter 1 paragraph 

1.3.3).
19

 

 

(iii) The design of a hybrid POM containing a bioactive molecule (biotin) capable of 

biomolecular recognition for targeting purposes. The goal of a selective POM-based 

bioconjugate is to increase its concentration in the vicinity of the cells responsible for 

disease thus decreasing unwanted side effects on healthy cells.  

 

3.2 Results and discussion 

3.2.1 Interaction studies of luminescent POMs with cells  

In this chapter, we describe the biological activity and the use of the organic chromophore-

appended POMs described in Chapter 2 to unravel their cellular localization by means of 

fluorescence microscopy. The following POMs were prepared (see Chapter 2, paragraph 2.2): 

three derivatives of the divacant decatungstosilicate [γ-SiW10O36]
8-

:  

 

(i) a dansyl-tagged POM (nBu4N)4[{((CH3)2N)C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] 

(Dans-SiW10) (1),  

(ii) a pyrene-tagged POM (nBu4N)4[{(C16H9)SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Pyr-

SiW10) (2),  

(iii) a fluorescein-tagged  (nBu4N)4[{(C20H11O5)NHCSNH(CH2)3Si}2O(γ-SiW10O36)] 

(FITC-SiW10) (3).  

In addition, a fluoresceine-tagged chiral derivative of the trivacant nonatungstophosphate β-

A-Na8[HPW9O34] was also prepared, to explore the effect of a different inorganic scaffold:   

(iv) a fluorescein-tagged (R,R) and (S,S)-(nBu4N)4[{(C20H11O5)NHCSNHCH(CH3)PO}2(α-

A-PW9O34)] (FITC-PW9) (4).  

 

a

)  

b

)  
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They were characterized by several techniques (see Chapter 2) and delivered into HEK293 

cells, showing their different localization, which depends on both the chromophore and on the 

inorganic scaffold. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Chemical structures of luminescent polyoxotungstate derivatives: (1): Dans-SiW10; (2): Pyr-SiW10; 

(3): FITC-SiW10 ; (4): FITC-PW9. 

 

The emission of the luminescent POMs cover different spectral regions, as shown in Figure 

3.2. 

 

 

Figure 3.2 Fluorescence spectra of Dans-SiW10 (10 µM), Pyr-SiW10 (10 µM) in CH3CN and of FITC-SiW10 (5 

µM) in EtOH with added DMSO (2% v/v).  
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3.2.1.1 Structural investigation of luminescent hybrid POMs in aqueous and 

physiological conditions 

The hybrid POMs (1-4) are very soluble in polar organic solvents (acetonitrile, 

dimethylformamide (DMF), dimethylsulfoxide (DMSO). To test their behaviour in water, 

spectroscopic and structural features of POMs have been monitored in aqueous and 

physiological conditions. A first attempt to obtain a water soluble hybrid POM, involving the 

exchange of tetrabutylammonium (nBu4N
+
) with sodium countercations, has also been 

performed (see Chapter 5: paragraph 5.2.2). 

The resulting hybrid POM Nax(nBu4N)4-x[{(N(CH3)2)C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] 

(Na
+
_Dans-SiW10)  has been isolated and characterized by FT-IR, UV-VIS and fluorescence 

analysis. 

The FT-IR spectrum is consistent with the exchange of the countercation; whereby 

particularly diagnostic regions are: 

(i) 3000-2875 cm
-1

: the C-H stretching of nBu4N
+
 are significantly reduced; 

(ii) 1700 cm
-1

: appearance of a strong band relative to coordinated H2O (H-O-H bending); 

(iii) 1000-600 cm
-1

: the variation of the characteristic stretching of the inorganic 

framework (vibrations of the bonds W-O and Si-O) suggests a variation of the electron 

density of the structure due to the introduction of sodium as countercation. 

 

 

Figure 3.3 FT-IR spectrum of Nax(nBu4N)4-x[{(N(CH3)2)C10H6SO2N(CH2)3Si}2O(γ-SiW10O36)] (below) 

compared with the FT-IR spectrum of (nBu4N)4[{(N(CH3)2) C10H6SO2NH(CH2)3Si}2O (γ-SiW10O36)] (above). 
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The UV-Vis spectral features of the water soluble hybrid Na
+
_Dans-SiW10 are kept in H2O: 

the shoulder at 250 nm can be attributed to the dansyl fluorophore (Figure 3.4 A). The 

fluorescence spectrum presents an emission band centered at 495 nm (λexc = 330 nm) and an 

excitation band centered at 332 nm (λem = 510 nm). The emission band of the water soluble 

POM exhibits a red-shift (Δλ = 46 nm) and a reduced intensity (about 20 times less) in 

comparison with the corresponding emission band observed for the acetonitrile soluble- 

hybrid derivative Dans-SiW10 (Figure 3.4 B). 

 

Figure 3.4 A UV-Vis spectrum of  Na
+
_Dans-SiW10 (2.4x10

-5
 M), B Emission (λexc = 330 nm) and excitation 

(λem = 510 nm) spectra of Na
+
_Dans-SiW10 (solid line, 2.4x10

-5
 M) in H2O in comparison with emission (λexc = 

336 nm) and excitation (λem = 551 nm) spectra of Dans-SiW10 (dashed line, 2.4x10
-5

 M) in CH3CN. 

 

Despite partial water-induced fluorescence quenching, POM (1) still maintains its 

luminescence features into aqueous conditions even after countercation exchange. 

However, the solubility of hybrid POMs (1-4) in H2O is strongly affected by the apolar 

organic compound grafted on the surface of the polyanion. In particular the POM Na
+
_Pyr-

SiW10 (2) only gives an emulsion in water. 

Due to the generally low metathesis yield, we found more convenient to dissolve hybrid 

POMs (1-4) in water (or in physiological conditions) at low concentration, upon dilution of a 

concentrated DMSO solution.  

Dynamic Light Scattering (DLS) measurements show the formation of nanoparticles 

characterized by a large polydispersion, with minor peaks around 150-250 nm and higher 

peaks between 500 nm-1.05 µm for Dans-SiW10, 400-900 nm for Pyr-SiW10, 300-800 nm for 

FITC-SiW10. FITC-PW9 forms smaller aggregates, with 25-105 nm diameter. (Appendix, 

A37). ζpotential investigations highlighted the polyanionic nature of the assemblies: SiW10 
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derivatives are more negatively charged, with potentials between -25 and -30 mV, whereas 

FITC-PW9 displays a less negative potential (-17 mV) (Appendix, A36). 

Transmission electronic microscopy (TEM) confirms the formation of spherical aggregates 

with a broad size distribution. Coalescence of the nanoparticles towards the formation of 

worm-like aggregates has been frequently observed. The formation of such aggregates is 

expected to be driven by the hindered organic chromophores, bearing aromatic residues, 

whereas the tetrabutylammonium cations may assist the assembly, avoiding repulsion 

between adjacent inorganic polyanions.
20

 

 

 

 

Figure 3.5 Transmission electronic microscopy (TEM) images of POMs in H2O/0.05 % DMSO. 

 

 

Scheme 3.2 Assembly of the hybrid POMs in H2O/0.05 % DMSO; (circular sector representing a portion of a 

spherical vesicle with exposed anionic scaffolds). 

 

To evaluate the use of the POMs (1-4) under physiological conditions, we have performed 

further investigations in a extra cellular-mimicking solution. DLS and ζ-potential 

measurements were not reproducible, thus suggesting that the aggregates are less stable. 
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Indeed, different inorganic cations may efficiently neutralize the surface charges. However, 

the formation of nanoparticles has been confirmed by SEM and TEM measures, which show 

the formation of vesicles with diameter of 80-100 nm (Dans-SiW10; Figure 3.6), 150 nm 

(Pyr-SiW10; appendix A38) or 200-220 nm (FTIC-PW9; appendix A39). 

 

 

 

 

 

 

 

 

 

Figure 3.6 Left: transmission electronic microscopy (TEM) images of POM Dans-SiW10 (1) in physiological-

like solution containing 0.05% v/v of DMSO. Right: scanning electronic microscopy (SEM) images of POM  

Dans-SiW10 (1) in physiological-like solution containing 0.05% v/v of DMSO. 

Partially coalesced aggregates can be observed also in these conditions. In particular, TEM 

analysis show nanoparticles consisting in an denser inner part, surrounded by a shell featuring 

lower contrast, likely rich in solvent.
21

 This kind of assembly is expected to reduce repulsion 

with the negatively charged cellular membrane, while increasing the affinity toward lipid 

bilayers.  

3.2.1.2 Biological activity of luminescent hybrids POMs  

Cytotoxic tests were carried out with MTT
22

 assays based on the quantification of cell 

mitochondrial metabolism of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. 

Viability MTT test were performed after an exposure of 24 h with different POM 

concentrations (up to 500 µM), upon comparison of the metabolic activity of the treated cell 

with the control ones (Figure 3.7).  
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Figure 3.7 Cells viability studies of HEK cells incubated with different concentrations of POMs (1-4) and 

FITC-AEPA at 37°C for 24 h. 

 

After 24 h, very low toxicity was observed for all compounds. In addition, a even larger MTT 

metabolic activity was found in cells exposed to 62-250 µm of FITC-PW9.  

IC50 (median inhibitory (toxicity) concentration in µM) assessed at ca. 0.5 mM. This value 

has been extrapolated from the MTT test at 48 h, in correspondence of 500 µM (Appendix, 

A42). 

This value is 1-2 orders of magnitude higher in comparison with other polyoxotungstates.
23

 

To test if 24 h exposure with POMs (1-4) altered cell basic functions, cell proliferation was 

tested using a dedicated assay (Cell proliferation WST-1 assay, Roche)
24

 at different 

concentrations (18 µM and 250 µM).  

After removing the medium containing the POMs, the proliferation curve was monitored up 

to 6 hours (Figure 3.8). The data show that at higher concentration all POMs except Pyr-

SiW10 have a significant delay in the proliferation rate with respect to control (Figure 3.8 B). 

This effect is less important at lower concentrations (18 µM), although SiW10-based samples 

show a higher toxicity (Figure 3.8 A). Proliferation rate of samples exposed with FITC-

AEPA was comparable with that of the control. 
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Figure 3.8 Proliferation assay in HEK cells treated for 24 h with POMs (1-4) at 18 µM (A) and 250 µM (B). 

The analyses were performed at time 0.5, 1.5, 3 and 6 h after removal of the POM containing medium. 

Proliferation of non-treated cells (control) is also shown. 

 

Considering the minor alteration of cell viability at low POM concentrations, we performed 

cell uptake and distribution studies on HEK293 culture cells at 18 µM.  

 

3.2.1.3 Cell tracking of luminescent hybrids POMs  

Thank to their intrinsic emission properties, luminescent hybrid POMs (1-4) can be observed 

by fluorescence microscopy. In particular Dans-SiW10 and Pyr-SiW10 were observed with a 

selective 305 nm filter (EX G 365, BS FT 395, EM BP 445/50), while fluorescein-based 

compounds were observed with a selective 488 nm filter (EX BP 470/40, BS FT 495, EM BP 

a

)  

b

)  
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525/50). Despite a very fast quenching of the luminescence (Δt = 20-30 sec), the POMs can 

be easily observed in specific subcellular regions, showing a strong dependence with the 

organic domain itself. Their uptake was more efficient after a prolonged time (>12 h). 

Transmitted light microscopy allowed to monitor cell morphology after the uptake, and 

showed that POMs do not induces major morphology changes or damages (Figure 3.9). 

 

 

Figure 3.9 Effect on cell survival and proliferation. Representative microscopy images of cells in control 

conditions and after exposure with different POMs (18 µM, 15 h, 37
o
C), visualized with transmitted light. Note 

limited effects of exposed compounds on cell morphology, limited overall toxicity. Bar = 50 µm. 

 

Compounds Dans-SiW10 (1) and Pyr-SiW10 (2) were mainly detected as spots in the 

cytoplasmatic and in the perinuclear regions. To identify the cellular localization of POMs (1) 

and (2),  colocalization experiments using mitochondria and nuclei-selective staining reagents 

were also performed.   

The cells have been also incubated with carbocyanine-based MitoTracker
 
Red FM Probe: both 

POMs show a signal in spots, and a partial co-localisation with mitocondria. 
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Figure 3.10 Subcellular localization of Dans-SiW10 and Pyr-SiW10  compounds. In vitro fluorescence imaging 

of HEK cells treated with POMs (18 µM, 16h at 37°C) and counterstained with mitochondrial probe 

(Mitotracker, red)
 25

 suggesting preferential mitochondrial localization of the compounds.  

Fluorescein-based compounds FITC-SiW10 and FITC-PW9 were able to penetrate the 

nuclear membrane and to accumulate into the nuclei. Furthermore, a different fluorescence 

efficiency, depending on the inorganic domain was observed. FITC-PW9 shows a better 

uptake, with preferential nuclear localization (Figure 3.11). The brillant aggregates seems to 

be co-localised with inner nuclear structures. FITC-SiW10, was scarcely and not evenly 

uptaken, with bright aggregates on cell surface. The POM-free FITC-AEPA was also 

detected in the nuclear regions, even if only at low intensity, highlighting a major role of the 

organic tag (Appendix, A41).  

A 
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Figure 3.11 Subcellular localization of FITC-POMs. Fluorescent microscopy imaging of HEK cells treated 

with FITC-PW9 and FITC-SiW10 (18 µM, 16h at 37°C) and counterstained with nuclear dye (Hoechst blue)
26

 

confirm nuclear localization of these compounds. Scale bar: 10 µm. 

Cell fixation with 2% paraformaldehyde in phosphate buffer increased consistently membrane 

permeability of POMs, that retained the subcellular preferential colocalisation, towards the 

cytoplasmatic region (Dans-SiW10 and Pyr-SiW10) or nuclei (FITC-based compounds). 

 

3.2.1.4 Conclusions and future perspectives 

In conclusion, we have shown that the luminescent hybrid POMs(1-4) are hydrophobic and 

self-assemble into nanoparticles: in such form, they can be delivered into HEK cells without 

any carrier, likely using the intrinsic surface membrane recycling activity of the cells.
27

 We 

have indeed proven that the these luminescent POMs can be tracked in the cells, showing 

their localization in different subcellular regions. An unprecedented uptake into nuclei and 

mitochondria has been highlighted. Biological effects and biocompatibility of hybrid POMs 

have been determined, showing a reduced toxicity at low doses. These results are expected to 

pave the way to the use of suitable POMs both as drugs and as nanodimensional scaffolds.  

In the next paragraphs we will consider the design and the possible delivery of POMs 

functionalized with small biochemical molecules
28

 and POM-based bioconjugates. 
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3.2.2  Interaction studies between POMs and apoferritin protein (aFtn) 

As we have mentioned in the Introduction of this chapter (paragraph 3.1), the mechanisms of 

POMs biological activity at a molecular level remain unclear. As a consequence, preliminary 

studies on the interactions, in a broad sense, between POMs and several proteins is an 

important field of interest with the aim of unravel biological effects and the possibility of 

designing novel POMs-based drugs. 

Furthermore, such kind of interaction studies between POMs and macromolecules can be also 

useful to design drug delivery systems, capable to carry, protect and confine POMs, while 

decreasing their toxicity. In particular, the encapsulation of POMs within an organized 

protective protein environment represents a promising approach to overcome stability issues 

and can be used to generate functional nanodevices with potential medical applications. In 

this respect, in the literature, some types of nanocarriers have already been investigated to 

gather information about the stabilization, biocompatibility, cell permeability and interaction 

of these systems with healthy and tumour cells (see Chapter 1, paragraph 1.3.3).  

Within this context, due to their well defined size and morphology, proteins can act as soluble 

templating agents with enhanced recognition capabilities, useful to increment the 

biocompatibilty of POMs into physiological conditions. In particular, POM polyanionic 

nature can be indeed exploited to drive electrostatic interactions with the cationic residues on 

the surface or into the pockets of the proteins.
15,17,29  

In this paragraph, a preliminary investigation to explore the use of apoferritin (aFtn) as a nano 

cage/scaffold for polyoxometalate complexes will be presented. Apoferritin is an hollow 

protein containing 24 subunits, with approximately 12 and 8 nm external and internal 

diameter (Figure 3.12). The protein, present in the intestinal mucosa, it is able to bind  and 

store iron. Inside the apoferritin shell, Fe
III 

ions are incorporated in mineral ferrihydrite 

[FeO(OH)]8[FeO(H2PO4)], together with phosphate and hydroxide ions and form ferritin. To 

release iron when the body needs it, the iron must be changed from the Fe
III 

to the Fe
II 

oxidation state. Then, the iron leaves through channels in the spherical structure. In this way, 

Ftn molecules result ubiquitous proteins which are used by several organisms to temporarily 

store up to 4500 iron ions as hydrated Fe
III

 oxide, so to prevent the formation of free radicals 

that can be generated by an excess of Fe
II
 ions, through Haber-Weiss reaction mechanism.

30
 

 

a

)  

b

)  

http://en.wikipedia.org/wiki/Ferrihydrite
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Hydroxide
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Figure 3.12 Drawing of aFtn: subunit(left), exterior (middle) and internal cavity (right). 

 

Fe can be completely removed by dialysis against a reducing agent and aFtn can be used as a 

bio-template, to host inorganic nanoparticles and organometallic complexes with catalytic 

properties. In addition, aFtn is able to disassemble into subunits at pH<3.0 and reassemble as 

an almost intact sphere at pH>5.
31

 This property has allowed the introduction of different 

molecules including drugs
32

 and quantum dots
33

 within the Ftn, to be used as delivery agents. 

In this work, in particular, the POMs reported in Figure 3.13 have been chosen for the 

interaction studies with apoferritin: 

 

 

 

 

 

 

 

 

 

Figure 3.13 Polyhedral/ball and stick representations of the two POMs used for the experiments. Red polyhedra 

contain tungsten atoms. EuPOM: green sphere is europium heteroatom (Eu
III

); RuPOM: red spheres are oxygen 

atoms, blue spheres are ruthenium heteroatoms (Ru
IV

). 

 

(i) [EuW10O36]
9-

 (EuPOM) is a fluorescent POM and it can be used as a fluorescent probe. 

Its emission spectrum exhibits three main emissions: 593 nm (
5
D0  

7
F1), 619 nm (

5
D0  

7
F2), and 700 nm (

5
D0  

7
F4), which are very sensitive to the environment.

34
  

(ii) [Ru
IV

4(µ-OH)2(µ-O)4(H2O)4(γ-SiW10O36)2]
10- 

(RuPOM) has been selected for its 

outstanding activity in mimicking the activity of photosystem II and of catalase enzymes.
35

  

[RuIV
4(m-OH)2(m-O)4(H2O)4(g-SiW10O36)2]

10-

RuPOM

[EuW10O36]
9-

EuPOM
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In particular, two strategies have thus been explored for the development of a novel 

nanocomposite material featuring noncovalent interactions between the POMs and the proteic 

scaffold: 

 

(i) Electrostatic interaction between POMs and Ftn at pH 3.5, to reduce the overall 

negative charges on the Ftn surface upon protonation of acidic residues (Glu, Asp) and of 

amino groups (His, Arg, Lys). 

 

(ii) Opening of the Ftn at pH 2.5, to exploit the internal sites of Ftn for POM binding, 

followed by reassembly at neutral pH. 

 

3.2.2.1 Association through electrostatic interactions 

 

 

Scheme 3.3 

 

Study of fluorescence, ζ-potential and DLS were performed to study the interaction of aFtn 

with EuPOM and RuPOM. Since the buffers may give a strong contribution to ζ-potential 

measurements, analyses were carried out in non buffered media.  

As stated above, to favour the association with the polyanionic POM, the pH was decreased to 

3.5 (with diluted HCl or in a 20 mM AcONa/AcOH buffer). At these values ζ-potential 

increases towards less negative values (from -21.3 to -9.8 mV). Addition of RuPOM resulted 

in a shift at -17.8 mV, suggesting an interaction with the polyanion (Appendix, A43). 

Binding of the POM was thus followed by fluorescence spectroscopy in such pH conditions. 

The Trp residues present in the three-fold channels can be irradiated at 290 nm, while the 

emission can be monitored at 327 nm. 
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Figure 3.14 Schematic representation of a three fold channel of Ftn. 

 

 

The RuPOM was dissolved in a buffered media (20 mM AcONa/AcOH) and added stepwise 

to a Ftn solution in the same buffer. 

A complete quenching of the Trp fluorescence was observed when > 30 eqs of the RuPOM 

were added (Figure 3.15). Each subunit seems able to coordinate with a POM unit, without 

yielding a complete saturation of other accessible binding sites. 

 

 

 

Figure 3.15 A Fluorescence quenching observed upon addition of RuPOM to a 0.5 µM Ftn solution in acetate 

buffer 20 mM, pH 3,5. B Monitoring of the emission at 327 nm (λexc = 290 nm). 

 

At pH 3.5, quenching of the Trp fluorescence was also observed upon addition of 0-35 eqs of 

[EuW10O36]
9-

 (EuPOM) (Figure 3.16). Since the luminescence of this POM is also 

completely quenched, we can state that the POM is not protected from the aqueous 

enviroment.
17 
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Figure 3.16 Fluorescence quenching observed during the addition of EuPOM to a solution of Ftn 0.5 µM in 20 

mM AcONa/AcOH (pH 3.5); monitoring of the emission at 327 nm (λexc = 290 nm). 

 

The minor differences in charge (-9 vs -10) and dimensions of this last POM (ca 1.6 vs 1.8 

nm), in comparison with RuPOM does not strongly affect the binding process. This suggests 

that the binding could be readily obtained with different POMs featuring similar charge 

density. 

Even if at pH 3.5, aFtn may start to loose some subunit, so to expose a fraction of Trp 

residues, the quenching is not expected to result from a direct interaction between these 

aminoacids and the POM. Indeed, the channels are too small to allow the introduction of the 

polyanion; moreover, Trp residues are close to Glu aminoacids, and no cationic side chain is 

present to favour the interaction (see Figure 3.14). As reported in the literature, for Eu-based 

POMs with HSA, a dynamic quenching, involving long range energy transfer may be 

considered.
15

 As a further remark, the addition of POM do not seem to alter the tridimensional 

secondary structure of the protein, since the CD signal is only slightly decreased (Figure 

3.17). 
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Figure 3.17 CD of a 0.5 µM aFtn solution in acetate buffer 2mM (pH 3,5), in the absence and in the presence of 

RuPOM (25µM). 

 

Finally, the isothermal titration calorimetry (ITC) analyses show a saturation behaviour after 

addition of 20 (EuPOM) or 25 (RuPOM) eqs. The binding is an exothermic process with 

reaction enthalpies of about -15 (RuPOM) and -17 kcal/mol (EuPOM). This results are in 

agreement with an enthalpy driven electrostatic assembly. 

 

 

Figure 3.18 Isotherms recorded during the titration of aFtn (2.25 µM) with A EuPOM and B RuPOM (2 µl 

aliquots of a 0.315 mM solution) at pH 3.5 (20 mM AcONa/AcOH). 
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3.2.2.2 Opening the aFtn at pH 2.5  

As already introduced, the aFtn can partially disassemble upon release of some subunits at 

pH<3.0, to be reassembled at neutral pH. Ftn has been opened at pH 2.5 by using a glycine-

HCl buffer or diluted HCl, and POMs have been added (Scheme 3.4).  

 

 

 Scheme 3.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At this pH, the ζ-potential exhibits a less negative value. A trend can thus be observed while 

going from pH 7.8 (-21.3 mV), pH 3.5 (-9.8 mV) and pH 2.5 (-7.0 mV), in non buffered 

media. The decreased stability of the particles featuring less negative potential is confirmed 

by the broader dispersion of the potential. 

The addition of RuPOM decreases the negative charge to -20 mV. This values is, as 

expected, lower than those observed at pH 3.5 (-17.8 mV), confirming the possibility to host 

more POM complexes. 

# Compound pH Peak 1 (mV)
* 

Peak 2 (mV) 

1 Ftn 2.5 HCl -7.0 - 

2 Ftn Back to 7,8 with NaOH -26.8  

3 RuPOM@Ftn 2,5 (HCl) -19.0 ÷ -15.4  

4 RuPOM@Ftn Back to 7,8 with NaOH -33.0 -14.6 

5 RuPOM@Ftn Back to 7.4 with tris/acetate -21.6 -5.19 

6 EuPOM@Ftn Back to 7.4 with tris/acetate -28.1 (1.72) 

Table 3.1: ζ-potential measurements of POMs (5.88 µM) and Ftn (0.245 µM) in 

different aqueous conditions. 

*Main peak. 
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The fluorimetric analysis has been repeated in such conditions. A very similar behavior has 

been observed, even if with a decreased quenching efficiency. 

 

 

Figure 3.19 Fluorescence quenching observed during the addition of RuPOM to a 0.5 µM Ftn solution. A 

Comparison of titrations at pH 3.5 and 2.5 (20 mM Gly/HCl); B Ster-Volmer graphs.  

 

A Stern-Volmer analysis was applied to the fluorescence quenching data in a range of POM 

concentrations where the plot remains linear (up to 10-15 eqs of quencher). The quenching 

constant calculated from the Stern-Volmer plot at 293 K are KSV = 2.78 x 10
5
 M

-1
 at pH 3.5 

and KSV = 1.59 x 10
5
 M

-1
 at pH 2.5, respectively.

15(a)
 The saturation occurs after the addition 

of > 35 eqs of POM. In such conditions, however, there is an extensive precipitation of the 

adduct. To avoid separation of the adducts from the solution, further experiments have been 

carried out in the presence of 24 eqs of POMs. 

The addition of TRIS to restore the neutral pH resulted in a partial recovery of fluorescence 

(Figure 3.20 A). Closure of the Ftn and release of non trapped POM is indeed expected. This 

speaks in favour of a stable interaction.  

The CD spectrum, recorded at pH 2.5, is slighty affected after addition of RuPOM (partial 

unfolding) but the spectral features can be recoverd at pH 7.8 (Figure 3.20 B). In addition, the 

CD spectrum show that at this pH apoferritin has a high proportion of ordered structures. 

Indeed protein undergo changes attributed to pH-dependent conformational transitions in the 

range 200-240 nm.
36
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Figure 3.20 Ftn (0.5 µM) at pH 2.5 (blue), Ftn with RuPOM (12 µM) at pH 2.5 (red) and after addition of TRIS 

(green), up to pH 7.8. 

Upon pH increase with NaOH, ζ-potential of aFtn get close to its initial value (-26.8 mV Vs -

21.3 mV), whereas in the presence of RuPOM, the ζ-potential is still more negative, even if 

with an irregular distribution (Table 3.1, # 2 and 4; Appendix, A44). 

The procedure has also been carried out in different conditions (Table 1, #5 and #6) with 

0.245 µM aFtn and 50 eqs of POMs. The Ftn has been placed in the presence of a glycine 

buffer (pH 2.5), followed by addition of the POM and further modification of the pH by 

dialysis against a TRIS buffer (pH 7.8). The size of the particles containing POMs, after 

opening/closure is 10.8 nm, whereas a -28.1 mV of ζ-potential has been observed (with 

EuPOM), suggesting that there could still be POM on the spherical aFtn surface (Appendix, 

A45). 

Interestingly, transmission electronic microscopy (TEM) images had shown further possible 

evidences relative the inner confinement of the RuPOM (Figure 3.21). 

The darker regions into the ferritin core can be attributed to the POM: indeed, the reference 

aFtn does not display the same contrast.   
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Figure 3.21 Transmission electron microscopy (TEM) image of aFtn containing RuPOM, upon opening with 

Gly/HCl buffer (pH = 2.5) and closing with NaOH (pH=7.5). Inset: aFtn in the same conditions and without 

RuPOM. Both images were obtained in the presence of uranyl acetate (5%) to provide a negative staining of the 

proteic structures. 

 

Dialysis procedures were also used to remove non encapsulated POM, but the POMs do not 

cross the membrane (100KDa cut off). PAGE (Polyacrylamide gel electrophoresis) seems to 

be more promising for the separation of the Ftn and the free POMs and will be carefully 

investigated. 

 

3.2.2.3 Conclusions and future perspectives 

The bio-template approach has been studied by a combined investigation, involving DLS 

(dynamic light scattering), ζ-potential measurements, ITC (isothermal titration calorimetry), 

fluorimetry, CD (circular dichroism) and TEM (trasmission elctronic microscopy). The results 

have shown that the POM can be successfully attached to the Ftn by means of ionic 

interactions. The binding of the POMs ( [Ru
IV

4(µ-OH)2(µ-O)4(H2O)4(µ-SiW10O36)2]
10-  

and
 
 

[EuW10O36]
9-

 on Ftn has been indeed higlighted by: 

(i) the shift of Ftn ζ-potential towards more negative potentials (by 8-13 mV), in the 

presence of the POM; 

(ii) complete quenching of the Trp luminescence (λexc = 290 nm, λem = 327 nm), upon 

addition of >24 eqs of POM, likely due to energy transfer between the two domains;  
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(iii) hexothermal heat tranfer during the titration of Ftn with POM.  

In addition, the integrity of the Ftn has been estabilished by DLS and CD analysis showing, 

respectively, retention of the cage size (10 nm) as well as of its secondary structure (positive 

Cotton effect of -sheets).  

 

3.2.3 Synthesis of a biotin-conjugated POM and study of its interaction with 

avidin protein 

In this paragraph the synthesis of a hybrid POM containing a bioactive molecule and a 

preliminary study of its capability to interact with a protein will be presented. This study 

allows to investigate the possibility to confine hybrid POMs in correspondence of specific 

protein binding sites and to design bio-conjugated systems with molecular recognition 

properties, to be exploited in targeted cancer therapy. 

To this purpose, the polyanion [γ-SiW10O36]
8-

 have been bis-functionalized with biotin 

molecule. In particular, biotin is able to bind avidin, a protein isolated from chicken eggs, and 

its bacterial analogue, streptavidin, (from Streptomyces avidinii) with an extremely high 

affinity, fast on-rate, and high specificity.  

The biotin-avidin interaction system is extensively used in biotechnology and, more recently, 

in biomedical field in order to (i) isolate proteins, (ii) perform biochemical assays and, in 

particular, (iii) implement drug therapies. 

 

 

Figure 3.22 avidin containing 4 molecules of biotin 

 

In detail, avidin consist of 4 subunits, each capable of binding a molecule of biotin, with 

dissociation constants of the order of 10
-15 

M (Figure 3.22). 
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The specific characteristics of avidin have been shown to be of great advantage for selective 

drug design: the high positive charge of avidin augments the efficiency of cellular uptake of 

biotin-coated particles, whereas incubation of bio-conjugated avidin with biotinylated cells 

lines results in rapid surface attachment and endocytosis, with efficiencies approaching 100%. 

In addition, avidin has been demonstrated to accumulate in specific tissues, especially in 

tumors in vivo. Indeed the strong avidin-biotin interaction can be used to develop targeted 

therapies by the biotinylation of ligands or tissues in vivo.
37

 

In the next paragraph the synthesis of a biotinylated POM and its interaction with avidin 

protein is described. 

 

3.2.3.1 Synthesis of (nBu4N)4[{(C5H7N2OS)(CH2)4CONH(CH2)3Si}2O(γ-SiW10O36)] (Biot-

SiW10)  

 

 

 

 
Scheme 3.5 Synthetic routes to a Keggin-type polyoxotungstate functionalized with biotin biomolecules. 

 

The complex Biot-SiW10, containing two molecules of biotin, was prepared by means of a 

classical coupling reaction in solution between the carboxylic acid function of the biotin and 

the amine function of the hybrid POM intermediate APTES-SiW10 (see Chapter 2, paragraph 

2.2.2) in the presence of TEA (triethylamine). 
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In a first step (Scheme 3.5), the carboxyl group of biotin was activated with DCC 

(dicyclohexyl-carbodiimide, 2.5 eq) and NHS (N-hydroxy-succinimide, 2.5 eq) in 

CH3CN/DMF for one night at 50°C. The resulting activated biotin was reacted, in a molar 

ratio 2:1, with the hybrid precursor APTES-SiW10 in CH3CN, in the presence of TEA for 24 

h, at room temperature.  

Finally, the product, (nBu4N)4[{(C5H7N2OS)(CH2)4CONH(CH2)3Si}2O(γ-SiW10O36)] (Biot-

SiW10) (5) was isolated by precipitation with diethyl ether and extensively washed with water, 

obtaining a yield of 64%. 

The bis-decorated molecular hybrid was characterized by FT-IR, multinuclear NMR, ESI-MS, 

UV-Vis and circular dichroism. The complete characterization has highlighted several 

features shared with the previously hybrid POMs (1-4) described in Chapter 2. In particular, 

relevant spectral features, reported in Table 3.2, are in agreement with a bis-substitution.  

 

 

 

After the introduction of the biotin chiral centers, a C2 symmetric complex is obtained. 

However, since the distance between the asymmetric centers and the POM is too long, 
29

Si 

and 
183

W NMR resonance values are very close to those of the precursor APTES-SiW10 and 

do not display any splitting (see Chapter 2, paragraph 2.2.2).
38

 

Finally, the 
1
H NMR spectrum is also consistent with the biotinylation, since resonances due 

to protons of the condensed rings of biotin can be recognized. 

In this case, the signals of the biotin protons are not significantly shifted with respect to the 

free molecule, suggesting that also the organic moiety is not altered after attachment to the 

POM. 

Solvent m/z 
29

Si NMR (ppm) 
183

W NMR (ppm) 

CH3CN 

 

768.0* 

 

-62.01 (2Si), 

-88.43 (1Si) 

- 107.55 (4W) 

- 136.09 (2W) 

- 142.08 (4W) 

Table 3.2 Relevant spectral features of Biot-SiW10 (5) 

* expected for [C26H44N6O41S2Si3W10]
4- -

= 770.5. 
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Figure 3.23 
1
H NMR (CD3CN) of Biot-SiW10. 

 

3.2.3.2 Preliminary interaction studies of Biot-SiW10 with avidin 

Once synthesized the hybrid POM containing two molecules of biotin, we have evaluated its 

capability to bind avidin (see the introduction of the paragraph). To this aim, a known 

amounts of Biot-SiW10 has been added to a solution containing avidin and the 4'-

hydroxyazobenzene-2-carboxylic acid (HABA). The HABA is a dye capable to weakly bind 

avidin and produce a yellow-orange colored complex. The interaction between biotin and 

avidin causes the release of HABA, with a consequent increase of its absorbance (monitored 

at 348 nm) in aqueous solution. The binding event can thus be followed by UV-Vis 

spectroscopy. 

The UV-Vis titration show a saturation behaviour after addition of 1.28 equivalents of Biot-

SiW10, leading to a 64% saturation of the binding sites available in the protein. This important 

result suggests that biotin maintains its ability to bind avidin even when anchored to the 

polyanionic scaffold. 
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Figure 3.25 A UV-Vis titration of Avidin/HABA system (0.68 µM in H2O) with Biot-SiW10 (0-3 eqs); B 

binding monitored at 348 nm; in y-axes is reported the absorption of HABA. 

 

In figure 3.26 are reported the different binding models proposed for the Biot-SiW10/avidin 

interaction. 

 

 

 

Figure 3.26 Possible binding models between Biot-SiW10 and avidin. 

 

Figure 3.24 Structure of HABA.  
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Considering the structural features of the hybrid complex, since the distance between the two 

biotin molecules on the polyanionic scaffold is not sufficient, a single Biotin-SiW10 molecule 

is not able to bind with both biotin units to a single avidin molecule (Figure 3.26, C).
39

 

Indeed, it is much more probable that the Biotin-SiW10 binds the protein according to the 

cases A and B illustrated in figure 3.26. The possibility that the POM may bridge two 

different molecules of avidin to yield a cross-linked polymeric structure, is suggested by the 

decreased solubility of the resulting adduct. 

 

3.2.2.3 Conclusions and future perspectives 

A POM-based bio-conjugate has been successfully prepared by the bis-functionalization of 

the [γ-SiW10O36]
8-

 scaffold with biotin molecules. Furthermore, its interaction capability with 

avidin has been investigated by means of UV-Vis titration. The results suggested that the 

Biot-SiW10 is proximal to the biotin binding site of the protein. Such kind of interaction could 

be useful to protect and deliver POMs towards biological targets, increasing the bio-stability. 

The final goal is to obtain bio-conjugated systems that integrate POMs with molecular 

recognition properties. Although these are preliminary studies, these data demonstrate the 

potential of POM hybrid for targeting and delivery applications. 
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Chapter 4 
 

Hybrid polyoxometalate  

as ligand for an iridium catalyst 

with hydrogen transfer activity 

 

 

 

 

 

 

 

* This work has been developed during a short scientific mission in Dublin, in collaboration 

with the research group of Prof. Martin Albrecht.

In this chapter, we report a strategy for the synthesis of a POM-appended N-heterocyclic 

carbene (NHC) iridium complex. To this end, imidazolium moieties have been successfully 

grafted on the defect site of a divacant Keggin polyanion. The hybrid POM synthesized has 

been tested for catalyzing hydrogen transfer reactions. The reduction of benzophenone to 

diphenyl methanol in iPrOH as solvent and hydrogen donor has been used as a model reaction 

for probing the catalytic activity of the iridium(I) complex. In particular, full conversion after 

120 min has been obtained using tBuOK as base.* 
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4.1 Introduction 

4.1.1 Organometallic catalysts tethered to POMs 

The anchorage of an organometallic catalyst on a nanodimensional and molecular scaffold is a 

valuable tool to implement the catalytic strategy. This allows to introduce a bulky molecule 

which can be useful to tune the solubility, so to easily exploit removal by precipitation, or for 

the successful recovery through nanofiltration and dialysis techniques. Between the suitable 

molecular species, we can find dendrimers, POSS (polyhedral oligomeric silsesquioxane), 

fullerenes, polyoxometalates (POMs) and metallic clusters.  

POMs, in particular, represent molecular models of extended oxide-based solid supports, with 

the advantage of a tuneable solubility, that mainly depend on the counterions. In this respect, 

polydentate salen-type ligands, thiols, phosphines, and N-heterocycles carbene ligands have 

already been immobilized on the POM surface to bind Mn, Pd or Rh ions, respectively.
1,2,3

 

The resulting hybrid POMs may display a remarkable stability under harsh catalytic 

conditions, enabling a multi-turnover performance under both oxidative and reductive 

conditions.
2,4

  

In particular, Neumann and co-workers, developed new catalytic systems based on the 

covalent linkage of well-established organometallic catalysts to POM scaffolds: examples 

include tethering of metallo-salen (SiW11–Msalen, M = Mn, Co, Ni, Pd)
1
 and Wilkinson-type 

rhodium (SiW11–Rh)
2
. 

 

 

 

Figure. 4.1 Representation of the SiW11–Msalen (left), and SiW11–Rh (right) hybrids. Blue octahedra, {WO6}; 

green tetrahedral, {SiO4}. 
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At first, [SiW11O39]
8-

 scaffolds were functionalized with silyl groups, than the metalation was 

achieved in a post-functionalization reaction.  

These hybrids have been described as being more active and/or selective than the related 

organometallic precursor complexes. The main role of the POM is to tune the steric and 

electronic properties of the catalyst. In the case of the SiW11–Msalen complexes, a charge 

transfer between the metallo-salen donor and the POM acceptor has been observed, with 

stabilization of unusual oxidation state of the appended metal M and/or oxidation of the salen 

ligand. Interestingly, this is an intramolecular phenomenon, not observed for mechanical 

mixtures of the parent POM and metallo-salen complexes. This underlines the beneficial 

effect of covalent tethering, compared to an electrostatic association. Improved stabilization 

of an intermediate Rh(III) was also proposed to account for the increased reactivity of the 

SiW11–Rh hybrid. 

 

4.1.2 Polyoxometalate-based N-heterocyclic carbene (NHC) complexes 

N-heterocyclic carbenes (NHC) behave like typical σ-donor ligands able to form robust 

metal-carbene bonds with a variety of transition metals M, leading to M-NHC metal 

complexes with extraordinary stability toward temperature, oxidation and hydrolysis.
5,6 

 

 

 

 

Figure 4.2 Singlet state of a carbene (A) and structure of an imidazol-2-ylidene (B) (the most widely used NHC 

in catalysis). 

Electronic features of the NHC ligands may be optimized in order to improve the catalytic 

performance of the resulting M-NHC complexes, which are often reported to overcome the 

activity of phosphine analogues, in different catalytic reactions (e.g. cross-coupling reactions, 

metathesis).
6(a),7,8

 Thus, several NHCs incorporating bulky substituents, donor groups, rigid 

systems and chiral functionalities have been developed. Recently, a series of homo- and 
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hetero-dimetallic complexes of 9
th

 and 10
th

 group metal ions have been obtained using Y-

shaped tris-NHC ligands, to perform tandem process including a transfer hydrogenation (TH) 

step.
9
 

In our research group, a hybrid POM containing Pd-NHC units has been prepared. In this 

case, the organometallic hybrid derivative (SiW10–Pd(NHC)) results from the direct 

functionalization of the [-SiW10O36]
8-

 scaffold with the preformed organometallic silane.
3
 

 

 

 

Figure 4.3 Representation of SiW10–Pd(NHC). Blue octahedra, {WO6}; green tetrahedral, {SiO4}. 

 

In particular, the complex SiW10–Pd(NHC) displays outstanding catalytic activity in Suzuki 

Miyaura C–C cross coupling in harsh catalytic conditions, i.e. under microwave (MW) 

irradiation. In this case, the polyanionic domain represent an efficient MW-absorber, and 

provides for repulsive interactions between the catalytic units, so to prevent formation of 

inactive Pd-black upon aggregation of Pd
0
 centers during catalytic turnover. Furthermore, the 

POM, due to its charge, presents high affinity towards ionic liquid media.
4
 The POM-based 

system was also effective in coupling aryl chlorides. The particular role of the POM in these 

catalytic systems is to bring robustness to the whole hybrid and thus to increase its stability 

and performance.
4
 

In this chapter, we present the synthesis of a hybrid POM, with anchored Ir-NHC moieties. 

This kind of complex has been tested as catalysts for the transfer hydrogenation of ketones.  
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4.1.3 Metal-catalyzed hydrogen transfer reactions 

During transfer hydrogenation (TH), a hydrogen is transferred from an alcohol to an 

unsaturated bond. With respect to hydrogenation reaction using the hydrogen, TH is a safer 

and environmentally benign method, in which the alcohol acts as both the reaction solvent and 

the source of hydrogen. There is a continuous demand in developing new active catalysts that 

can perform such reactions under mild conditions and by simple methodologies. Many recent 

reports have also focused on the mechanistic aspects of the reaction. A common feature of 

these reactions is that they involve metal hydride (monohydride or dihydride) intermediates, 

and a base is generally required in order to promote their formation.  

Two general reaction pathways can thus be envisaged for hydrogen transfer: a step-wise 

process, called “hydridic route”, and a concert process, called “direct hydrogen transfer” 

(Scheme 4.1). 
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Scheme 4.1 Possible paths for the hydrogen-transfer reactions. M = metal; L = ligand; A = hydrogen-donor. 

 

The “hydridic route” involves the formation of a metal hydride intermediate by interaction of 

the catalyst with the hydrogen donor, followed by hydride transfer from the metal to the 

substrate (Scheme 4.1 (a)).
10

 The “direct hydrogen transfer” implies that hydrogen is 

transferred to the substrate in a concerted process where both the H-donor and the H-acceptor 

are held together in close proximity by the catalyst (Scheme 4.1 (b)). 

In particular, the hydrogen transfer activity of Ir complexes is well established.
11

 Moreover, 

the introduction of N-heterocyclic carbene ligands (NHC) greatly improves the catalytic 
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performances of different iridium complexes. As, we have previously mentioned, indeed, 

NHCs impart high thermal robustness and stability to the organometallic intermediates during 

multi-turnover catalysis.
12

 An example of a transfer hydrogenation catalysis by an Ir-NHC 

complex is reported in Scheme 4.2. 

 

 

 

 

Scheme 4.2 Catalytic transfer Hydrogenation of acetophenone catalyzed by a chelated Iridium(III) bis-NHC 

complex (R = iPr); conditions: 0.2 M substrate solution, molar ratio catalyst/base 1:5. Product yields determined 

by 
1
H NMR.

11(i)
 

 

A polymer-supported, carbon dioxide protected Ir(I)-NHC complex, was also successfully 

used to promote hydrogen transfer from isopropanol to benzaldehyde.
13

  

Finally, the presence of a strong base and an appropriate activation procedure are required to 

achieve a high catalytic activity; the addition of a base, however, often may hamper the 

hydrogenation of base-sensitive ketones and aldehydes. New catalytic strategies are thus 

expected to address this issue. 

In the following paragraphs, our strategy, based on the synthesis of molecular hybrid POM-

appended NHC iridium complex will be described, together with its application in TH 

catalysis.  

 

4.2 Results and discussion 

As we have seen in the Introduction part of this chapter, the design of novel ligands for 

transition metals is a major goal in catalysis, to obtain better performances in terms of yields, 

selectivities and sustainability of the reaction. Molecular hybrids are of particular interest in 

catalysis, due to the interplay of joint organic-inorganic domains with very diverse functional 

environments. Such hybrid up-grade of the catalytic system can be readily accessed, through 

the covalent functionalization of molecular polyoxometalates.
4,14 
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4.2.1 Synthesis of a POM-appended N-heterocyclic carbene (NHC) iridium 

complex 

We present herein the synthesis, characterization, and catalytic applications of a POM-

appended N-heterocyclic carbene (NHC) iridium complex and its activity in catalyzing 

hydrogen transfer reactions.  

To this end, imidazolium moieties have been successfully grafted on the defect site of the 

divacant Keggin polyanion [γ-SiW10O36]
8-

.  

In particular the synthesis of the complex has been achieved by two steps:  

 

(i) synthesis of an iridium organometallic complex containing an unsaturated heterocycle 

with a trialkoxysilyl substituent on the nitrogen atom in position 3; 

(ii) grafting of the iridium organometallic complex on the polyanionic scaffold [γ-

SiW10O36]
8-

. 

 

The synthetic strategy is described in the next paragraphs. 

 

4.2.1.1 Synthesis of [(1,2,5,6-η)-1,5-cyclooctadiene][1-butyl-3-(3-triethoxysilylpropyl)-

imidazol-2-ylidene]chloroiridium ((NHC)Ir)  

First, a monomeric imidazolium derivative has been prepared following a procedure, 

optimized in our research group, depicted in Scheme 4.3.
4
  

 

 

Scheme 4.3 

 

The trialkoxysilyl-tagged unsaturated heterocycle containing a less hindered n-butyl 

substituent at the nitrogen atom (1), was synthesized under strictly anhydrous conditions, 

from (3-chloropropyl)-triethoxysilane and 1-butylimidazole. The ligand was characterized by 

1
H NMR and ESI-MS analyses. Both techniques gave results in agreement with the expected 

structure.
3
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Afterwards, the intermediate (1) was reacted with Ag2O ("silver-route" ), and the reaction was 

followed by transmetallation with [Ir(COD)Cl]2, to afford the (NHC)Ir complex [(1,2,5,6-η)-

1,5-cyclooctadiene][1-butyl-3-(3-triethoxysilylpropyl)-imidazol-2-ylidene]chloroiridium (2), 

with 78% yield (Scheme 4.4).
15

  

 

 

Scheme 4.4 

 

Complex (2) was characterized by 
1
H NMR and 

13
C NMR analyses. In the 

1
H NMR 

spectrum, the signal of the proton at position 2 of the imidazolium ring (δ = 10.6 ppm) 

disappeared, thus suggesting the formation of the carbene (see Figure 4.4 for a comparison 

between the spectrum of the product (2) and of the starting material (1)). 
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Figure 4.4 
1
H NMR of the complex (2) (A) and of the starting material (1) (B) in CDCl3. 

 

13
C NMR of the complex (2) reveals the presence of a weak signal at 178.70 ppm, as expected 

for  the resonance of C(-Ir), and confirms the formation of the complex (Figure 4.5). 

 

 

 

Figure 4.5 
13

C NMR of the complex (2) in CDCl3. 

Moreover, a single 
29

Si NMR signal at - 48.2 ppm is indicative of a pure product. The ESI-

MS (positive mode) analysis confirms the formation of the desired iridium complex, bearing 
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NHC and cyclooctadiene (COD) as ligands, showing signals centered at m/z = 628.9 and 

670.6, corresponding to [(C8H12){C10H17N2Si(OEt)3}Ir]
+
 and [(C8H12){C10H17N2(OEt)}Ir( 

CH3CN)]
+
, respectively (Appendix; A35). Attempts to crystallize the complex (2) are still in 

progress. 

 

4.2.1.2 Synthesis of (nBu4N)4[{ClIr(C8H12)(C10H17N2Si)}2O(γ-SiW10O36)] ((NHC)Ir-SiW10)  

The synthetic route to obtain the Keggin-type hybrid (NHC)Ir-SiW10 involves the reaction of 

the iridium  organosilane complex (2) with the nucleophilic oxygen atoms that border a defect 

site on the divacant Keggin POM [-SiW10O36]
8-

 (see Chapter 2: paragraph 2.1.1.1). As 

already described for the complex APTES-SiW10 (Chapter 2, paragraph 2.2.2.1), the bis-

substitution of the divacant POM yields hybrids with two surface-anchored organosilyl (RSi-) 

groups, each one linked to two oxygen atoms of two edge-shared WO6 octahedra. Grafting 

occurs in acetonitrile, in which nBu4NBr promotes the solubilization of the POM by 

counterion metathesis (Scheme 4.5), leading to the functionalized hybrid POM 

(nBu4N)4[{ClIr(C8H12)(C10H17N2Si)}2O(γ-SiW10O36)] (3) in 54% yield.  

 

 

 

Scheme 4.5 Synthetic routes to Keggin-type decatungstate functionalized with the (NHC)Ir complex (3). 

 

The product was characterized both in the solid state (by FT-IR spectroscopy and CHN 

elemental analysis) and in solution (
1
H, 

13
C, 

29
Si and 

183
W NMR, ESI-MS and cyclic 

voltammetry).
16

 The 
183

W NMR spectrum shows three resonances at -107.4, -135.8, and -

142.1 ppm in 2:1:2 ratio, in agreement with a C2v symmetry of the product. The 
29

Si NMR 
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spectrum reveals two signals at -62.8 (organosilane resonance) and -88.4 (silicotungstate 

resonance) ppm with integration ratio 2:1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  
29

Si NMR (79.5 MHz, 25°C) of (3) in CD3CN and of (2) in CHCl3 (inset). 

 

These results are consistent with a double substitution of the POM surface, while a 16.6 ppm 

upfield shift can be observed for the organosilicon signal after grafting (Figure 4.6). 

The FT-IR spectroscopy is also in agreement with the expected bis-functionalization, as 

shown by the RSi-O vibrational band at 1102 cm
-1

 and by the diagnostic spectral pattern due 

to W-O bonds vibrations, observed between 1000 and 700 cm
-1

. 

ESI-MS spectrum of (3), registered in negative mode, shows a dominant cluster centred at m/z 

= 1723, ascribable to [{(C8H12)Ir(C10H17N2Si)}2O(γ-SiW10O36)]
2-

 (Figure 4.7).  
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Figure 4.7 ESI-MS of (3) in CH3CN (negative mode). 

 

Finally, the cyclic voltammetry measurements rule out the occurrence of any undesired 

reduction pathway during the anchoring process; the Ir
(I)

 center show a good stability upon 

attachment on the polyoxometalate, and present an irreversible anodic wave at 0.64 V (vs 

Ag/AgCl). In comparison to the POM-free complex (2), the oxidation of the complex is 

anticipated by 0.07 V. Furthermore, the cathodic scan in CH3CN is dominated by a quasi 

reversible wave at E1/2=0.76 V (vs Ag/AgCl), due to the formation of Ir
(0)

, that occurs at less 

negative potential than the W
(VI) 

reduction (Appendix; A24, A25). 

 

4.2.1.3 Transfer hydrogenation (TH) activity 

A catalytic screening has been performed with the catalyst (3) to test the activity of the 

(NHC)Ir complex in the hydrogen transfer reaction. The reduction of benzophenone to 

diphenyl methanol in iPrOH was used as a model reaction for probing the catalytic activity of 

the Iridium(I) complex (Scheme 4.6 and Table 4.1). 
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Scheme 4.6 Hydrogen transfer reaction of benzophenone. 

Catalyst manipulation does not need particular precautions, and transfer hydrogenations were 

generally performed in air. Product conversion was monitored by 
1
H NMR: the results are 

collected in Table 4.1.  

In a typical reaction, the active catalyst was formed by heating a mixture of catalyst in 

alkaline iPrOH for 10 min prior to substrate addition. The base KOH was added from a 

concentrated aqueous solution. The complex [Ir(COD)Cl(NHC)] (4) has been used as a 

reference.
15

 This is inactive in the absence of a base, while 90% conversion, in 2 h, can be 

achieved in the presence of KOH (entry 1). The parent [γ-SiW10O36]
8-

 (SiW10) is essentially 

inactive (entry 2). Combining the reference complex with the vacant POM did not affect 

catalytic activity of (4) (entry 3). Under analogue conditions, the compound (3) is active, but 

less than (4) (entry 4). (3) is also inactive in the absence of KOH (entry 5). To improve the 

solubility of (3) under the catalytic conditions, we performed a reaction with a minimum 

amount of DMF (entry 6), but the DMF appear to be detrimental for the catalysis.
17

 Identical 

conversions were obtained in a comparative experiment using tBuOK dissolved in iPrOH, to 

avoid the addition of water (entries 7, 8). The use of tBuOK as base gave full conversion after 

120 min (entry 7). This base is also expected to improve POM hydrolytic stability. Lowering 

the Ir-POM concentration from 1 mol% to 0.1 mol% still provided 70% conversion after 5h 

(entry 8). On the contrary, the use of nBu4NOH substantially lowered the activity (entry 9).  
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Finally, Figure 4.8 compares the activity over time during hydrogenation of  benzophenone 

with the POM-based catalyst in presence of different bases. 

Entry pre-catalyst Base Conv. 

(10 min) 

Conv. 

(2 h) 

Conv. 

(5 h) 

1 (4) KOH 40 90  

2 SiW10 - 0.1 1.6  

3 (4) + SiW10 KOH 33 87  

4 (3) KOH 16 57  

5 (3) - 0 0  

6
[a] 

(3) KOH 1.7 13  

7 (3) tBuOK 60 (30‘)  99  

8
[b]

 (3) tBuOK  45  70 

9 (3) nBu4NOH  14  23 

Table 4.1 TH reactions obtained with Ir(I) complexes. 

 

[a] with DMF; [b] 0.1% catalyst loading. 
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Figure 4.8 Kinetic behaviour for some of the TH reported in table 4.1. 

 

4.3 Conclusion and future perspectives 

In summary, we have described a novel POM-supported Ir
(I)

 catalyst, capable of TH to 

carbonyls. A preliminary optimization has demonstrated that we can tune the activity of the 

supported catalyst up to the level of the unsupported one. In particular, the interplay of the Ir 

binding domains with the inorganic POM scaffold provides new opportunities to access multi-

turnover catalysis while preserving good performance. Recovery strategies for the catalyst 

will thus be implemented. 

The covalent functionalization of POM vacant sites with other M-NHC complexes will be 

also evaluated (e.g. Ru-NHC)   
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5.1 General remarks 

5.1.1 Solvents and chemicals 

All commercially available reagents and solvents were used as received, without further 

purification.  

MilliQ-deionized water (Millipore) was used as solvent for the reactions and for spectrometric 

measurements. 

Sigma-Aldrich: ethylic ether, hexane, pentane, tetrahydrofuran, methanol, ethanol, 

chloroform, dichloromethane, acetonitile, deuterated chloroform, deuterated acetonitrile, D2O; 

Fluka: anhydrous dichloromethane, anhydrous ethylic ether; Prolabo: acetonitrile, 2-propanol, 

N,N-dimethylformamide, dichloromethane, P2O5; Lab Scan: dimethylsulfoxide. 

Sigma-Aldrich: sodium tungstate dihydrate, KBr, KCl, K2CO3, Na2SiO3, (R)-(−)-1-

aminoethylphosphonic acid, (S)-(+)-1-aminoethylphosphonic, tetrabutylammonium bromide, 

tetramethylammonium bromide, sulfonic acid, pyrene, dansyl chloride, fluorescein 

isothiocyanate, biotin, 1-hydroxy-1,2,3-benzotriazole (HOBt), N,N'-dicyclohexylcarbodiimide 

(DCC), N-hydroxysuccinimide (NHS), acetophenone, silver oxide, HABA/avidin reagent; 

Fluka: 1-methylimidazole; Prolabo: MgSO4, NaOH; Acros Organics: 1-ethyl-3-(3-

dimethylaminopropyl)carbodimmide (EDC); Carlo Erba: HCl 37%, HNO3 65%, Na2CO3, 

KHCO3, triethylamine; Merck: celite. 

K8[γ-SiW10O36],
1
 -A-Na8[HPW9O34]*24H2O,

2
 3-(dansylamido) propyl triethoxysilane,

3
 

pyrene-1-sulfonyl-chloride,
4
 triethoxysilyl-functionalized 4,5-dihydro-imidazolium bromide,

5
 

[Ir(COD)Cl]2 and [Ir(COD)Cl(NHC)]
6 were prepared as described in the literature.  

HEK-293 cell culture was maintained in Dulbecco's modified Eagle' s medium (DMEM, 

Sigma–Aldrich) containing glucose (4500 mgL
-1

), l-glutamine (5 mM), sodium pyruvate (1 

mM) and sodium bicarbonate (1 mM), supplemented with heat-inactivated FCS (foetal calf 

serum, 10%, Sigma–Aldrich) in a humidified atmosphere (5% CO2) at 37 °C. 

 

5.1.2 Instruments and apparatus 

1
H NMR spectra have been recorded with Bruker AV300 instruments operating at 300.13 

MHz; for protonic spectra, the following symbolism has been used: s: singlet; d: doublet; t: 

triplet; q: quartet; m: multiplet. 
13

C NMR spectra have been recorded with Bruker AV300 

operating at 75.4 MHz; Si(CH3)4 was used as reference. 
183

W NMR and 
29

Si NMR spectra 

have been recorded with a Bruker Avance DRX 400 instrument operating at 16.67 MHz and 

79.50 MHz, respectively, using 2M Na2WO4 in D2O and Si(CH3)4 in CDCl3 as external 

http://www.google.it/url?sa=t&rct=j&q=pyrene+sulfonyl+chloride&source=web&cd=1&cad=rja&ved=0CDIQFjAA&url=http%3A%2F%2Fwww.molport.com%2Fbuy-chemicals%2Fmoleculelink%2Fpyrene-1-sulfonyl-chloride%2F3824741&ei=KWDXULy8MYqK4gSQkIC4BQ&usg=AFQjCNEVl6FwXkyslyEKRGx--muDiEsUFQ&bvm=bv.1355534169,d.Yms
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references; 
31

P NMR spectra were recorded with a Bruker Avance DRX 300 spectrometer 

operating at 121.49 MHz with H3PO4 85% as external reference. FT-IR (KBr) spectra were 

collected on a Thermo Quest Nicolet 5700 instrument. For FT-IR spectra the following 

symbolism has been used: w: weak signal; s: strong signal; b: broad band signal. ESI-MS 

spectra have been obtained with a Agilent LC/MSD Trap SL spectrometer, by using a 

capillary potential of 1500V. UV-Vis spectra were recorded with Lambda 45 Perkin-Elmer 

and Cary 5000 Varian spectrophotometers (the spectra were collected in the range 200-800 

nm using a 1 cm quartz cell). Molar extinction coefficients ε are expressed in M
-1 

x cm
-1

. 

Fluorimetric analysis have been performed on a Perkin Elmer LS50B instrument 1 cm quartz 

cell. Circular dichroism (CD) spectra were recorded with a Jasco J-715 polarimeter with 1 cm 

UV quartz cells. Dynamic light scattering (DLS) was performed on a Malvern Zetasizer 

Nano-S instrument. Field emission-scanning electron microscopy (FESEM) measurements 

were carried out at acceleration voltages between 5 and 20 kV by means of a Zeiss SUPRA 

40VP instrument. Transmission Electronic Microscopy (TEM) measurements were obtained 

using a FEI Tecnai G2 transmission electron microscope at Biology Department, University 

of Padova. Cyclic voltammograms were recorded with a BAS (Bio Analytical Systems) 

Epsilon workstation at scan rates of 200 mV s
-1

 in a conventional electrochemical cell 

containing a three-electrode system; experiments were performed in CH3CN (0.1 M 

nBu4ClO4), using a Ag/AgCl reference. Elemental Analysis were performed at Microanalysis 

Laboratory of Chemical Science Department, University of Padova. Thin Layer 

Cromatography (TLC) were performed using DC Fertigplatten-Durasil-25 UV254 sheets 

(Machery-Nagel). Chromatography Column purifications were performed on gravity column 

using Sigma Aldrich silica gel, mesh grade 10184, granulometry 70-230 mesh, 100 Angstrom. 

pH meter: pH lab 827, Metroohm – Swiss.  

The imaging microscopy experiments and biological analysis were performed at Center for 

Biomedical Science and Engineering, University of Nova Gorica: HEK cells were plated in 

glass bottom optical imaging petri dishes and exposed to different compounds for the 

indicated time; samples were analyzed using a Axiovert Zeiss microscope with the following 

filter sets: EX BP 470/40, BS FT 495, EM BP 525/50 for the analysis of POMs: FITC-SiW10, 

FITC-PW9 and of the ligand FITC-AEPA; EX G 365, BS FT 395, EM BP 445/50 for the 

analysis of POMs: Dans-SiW10, Pyr-SiW10 and for the detection of nuclear probe Hoechst 

333423 (Invitrogen). For mitochondrial staining, cells were incubated for 15 min with 

MitoTracker probe (Molecular Probes, 250 nM) and observed with following filter set: EX 

BP 587/25, BS FT 605, EM BP 647/70. Images were acquired simultaneously using a 10x and 
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40x oil-immersion objective in transmitted light and fluorescence mode with the Axiovision 

software (Zeiss). For proliferation tests, after exposure with different compounds, cells were 

washed and incubated with Cell Proliferation Reagent WST-1 (Roche), following 

manufacturer instructions, and absorbance was measured at different time points during an 

interval of 6 h. For citotoxicity, cells were incubated for Thiazolyl Blue Tetrazolium Bromide 

(MTT, 0.025mg/ml Sigma) for 1.5 h at the cell incubator. Reaction was blocked with DMSO 

and absorbance was analysed with a Tecan Infinite Reader at 560 nm. 

 

5.2 Synthesis and characterization  

5.2.1 Synthesis of hybrid POMs 

Synthesis of (nBu4N)4[(NH2(CH2)3Si)2O(γ-SiW10O36)] (APTES-SiW10) 

600 mg (0.20 mmol) of K8[γ-SiW10O36] were suspended in 10 mL of a mixture CH3CN/H2O 

10:1, and 262 mg (0.80 mmol, 4 equiv.) of nBu4NBr, were added. Then 95 µl (0.40 mmol, 2 

equiv.) of 3 amminopropyl triethoxysilane and 293 µL (6 equiv.) of HCl 4M were added in 

rapid sequence. Upon addition of acid, immediate clearing of the solution was observed. The 

mixture was kept under vigorous stirring overnight at r.t., then filtered to remove the insoluble 

material. The mixture was concentrated to about 1 mL volume, and the product was 

precipitated by adding deionized water (20 mL). The product was collected by filtration, in a 

fritted funnel, washed with portions of deionized water and diethyl ether, and dried in vacuo. 

257 mg (76.5 µmol) of 2 were obtained (38% yield).  

FT-IR (KBr): ν= 2964 (m), 2932 (m), 2872 (m), 1626 (m, b), 1485 (m), 1381 (w), 1105 (m), 

1043 (m, b), 965 (m), 904 (s), 874 (s), 823 (s), 792 (s), 740 (s, b) cm
-1

. 
1
 H NMR: δH (300.13 

MHz, CD3CN, 301 K) 0.70 (m, 4H, N(CH2)2CH2Si), 0.99 (t, 48 H, (CH3CH2CH2CH2)4N); 

1.39 (m, 32 H, (CH3CH2CH2CH2)4N), 1.62 (m, 32 H, (CH3CH2CH2CH2)4N), 1.86 (m, 4H, N 

CH2CH2CH2Si), 3.18 (t, 32 H, (CH3CH2CH2CH2)4N), 3.50 (m, 4H, NCH2CH2CH2Si), 7.39 

(m, broad, 4 H, H2N(CH2)3Si). 
13

C NMR: δC (75.47 MHz, CD3CN, 301 K) 58.97 (16C, 

(CH2CH2CH2CH2)4N), 38.03 (2C, SiCH2CH2CH2N), 29.02 (2C, SiCH2CH2CH2N), 24.10 

(16C, (CH2CH2CH2CH2)4N), 20.04 (16C, (CH2CH2CH2CH2)4N), 15.13 (SiCH2CH2CH2N), 

13.64 (16C, (CH2CH2CH2CH2)4N). 
29

Si NMR (79.49 MHz, CD3CN/CH3CN, 298 K): δ = –

62.45 (2 Si), –88.36 (1 Si) ppm.
183 

W NMR (16.67 MHz, CD3CN/CH3CN, 298 K): δ = –107.8 

(4 W), –135.3 (2 W), –142.1 (4 W) ppm.  
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(nBu4N)4[{{(CH3)2N}C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Dans-SiW10) 

In a round-bottomed flask, APTES-SiW10 (400 mg, 0.12 mmol) was suspended in acetonitrile 

(3 mL). Triethylamine (58 μL, 0.42 mmol) was slowly added under vigorous stirring. After 5 

min, dansyl chloride (112 mg, 0.415 mmol) was dissolved in acetonitrile (4 mL) and added to 

the solution whilst stirring. The mixture was heated at 40 °C under reflux for 2.5 h and then 

centrifuged to remove insoluble reagents and byproducts. The volume of the solution was 

reduced to 1 mL by evaporation under vacuum, then diethyl ether was added to precipitate the 

product. The solid was washed with water and diethyl ether on a fritted funnel and dried for 

several hours under vacuum. Yield: 69% (366 mg, 0.09 mmol). C94H182N8O41S2Si3W10 

(4067.38): calcd. C 27.75, H 4.51, N 2.75, S 1.58; found C 26.87, H 4.45, N 2.82, S 1.06. 

FTIR (KBr): ν = 2961 (m), 2938 (m), 2873 (m), 634 (w,b), 1476 (m), 1394 (w), 1316 (w), 

1146 (m), 1102 (m), 1043 (m,b), 967 (m), 906 (s), 885 (s), 821 (s), 792 (s), 741 (s, m), 684 

(m), 625 (m), 569 (m), 544 (m), 508 (m) cm
–1

. 
1
H NMR (300 MHz, CD3CN, 301 K): δ = 0.24 

(m, 4 H, NCH2CH2CH2Si), 0.97 [t, 
3
J = 8.7 Hz, 48 H, N(CH2CH2CH2CH3)4], 1.31 [m, 36 H, 

N(CH2CH2CH2CH3)4 and SiCH2CH2CH2N], 1.62 [m, 32 H, N(CH2CH2CH2CH3)4], 2.84 [m, 

16 H, N(CH3)2 and SiCH2CH2CH2N], 3.14 [m, 32 H, N(CH2CH2CH2CH3)4], 5.95 (t, 
3
J = 6.0 

Hz, 2 H, NHCH2CH2CH2Si), 7.22 (m, 2 H, Ar-H), 7.58 (m, 4 H, Ar-H), 8.16 (m, 2 H, Ar-H), 

8.30 (d, 
3
J = 8.7 Hz, 2 H, Ar-H), 8.48 (d, 

3
J = 8.4 Hz, 2 H, Ar-H) ppm. 

13
C{1H} NMR (75.47 

MHz, CD3CN, 301 K): δ = 13.01 (2 C, SiCH2CH2CH2N), 14.07 [16 C, N(CH2CH2CH2CH3)4], 

20.47 [16 C, N(CH2CH2CH2CH3)4], 24.51[16 C, N(CH2CH2CH2CH3)4], 24.73 (2 C, 

SiCH2CH2CH2N), 45.83 [4 C, N(CH3)2], 46.83 (2 C, SiCH2CH2CH2N), 59.40 [16 C, 

N(CH2CH2CH2CH3)4], 124.53, 129.27, 129.99, 130.50, 130.70, 136.82, 152.87 (20 C, Ar) 

ppm. 
183 

W NMR (16.67 MHz, CD3CN/CH3CN, 298 K): δ = –107.9 (4 W), –136.2 (2 W), –

142.1 (4 W) ppm. 
29

Si NMR (79.49 MHz, CD3CN/CH3CN, 298 K): δ = –62.5 (2 Si), –88.4 (1 

Si) ppm. ESI-MS (–, CH3CN): calcd. for [C30H36N4O41S2Si3W10]
4– 

773.3; found 773.9. UV: λ 

(log ε) = 251 (4.7), 211 (5.1) nm. 

 

Synthesis of (nBu4N)4[{C16H9SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Pyr-SiW10) 

In a round bottomed flask, APTES-SiW10 (450 mg, 0.14 mmol) was suspended in CH3CN (3 

mL). After stirring for 5 min, triethylamine (49 μl, 0.35 mmol) was slowly added under 

vigorous stirring. 1-Pyrensulfonyl chloride (105 mg, 0.35 mmol) was dissolved in CH3CN (6 

ml) and added dropwise in solution whilst stirring. The mixture was heated at 50°C under 

reflux for 3 h and then centrifuged to remove insoluble reagents and byproducts. The volume 

of the solution was reduced to 1 mL, upon evaporation under vacuum, than diethylether was 
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added to precipitate the product. The solid was finally washed with diethyl ether (2 times), 

water (2 times) and a small amount of CH2Cl2 (2 times) on a fritted funnel, and dried several 

hours under vacuum. 410 mg (0.1 mmol) of product were obtained (71% yield). 

Elemental analysis: Calcd. for C102H176N6O41S2Si3W10 C 29.65 H 4.26; N 2.03; S 1.55; 

Found: C 28.87; H 3.57; N 1.94; S 1.03. FTIR (KBr): ν = 2961 (m), 2923 (m), 2873 (m), 1483 

(m, b), 1385 (m), 1318 (w, b), 1159 (w), 1143 (w), 1132 (w), 1100 (m, b), 964 (m), 949 (m), 

902 (s), 885 (s), 839 (s), 819 (s), 742 (s, b), 650 (w) cm
-1

. 
1
H NMR (300 MHz, CD3CN, 301 

K) δ = 0.57 (4H, m, NCH2CH2CH2Si), 0.94 [48H, t, N(CH2CH2CH2CH3)4], 1.27 (4H, m, 

NCH2CH2CH2Si), 1.34 [32H, m, N(CH2CH2CH2CH3)4], 1.59 [32H, m, 

N(CH2CH2CH2CH3)4], 3.09 [32 H, m, N(CH2CH2CH2CH3)4], 3.54 (4H, m, NCH2CH2CH2Si), 

6.14 (2H, t, 
3
J = 5.6 Hz, NHCH2CH2CH2Si), 8.86 - 8.02 (18 H, m, Ar-H), ppm. 

13
C{

1
H}NMR 

(75.47 MHz, CD3CN, 301 K): δ = 12.35 (2C, SiCH2CH2CH2N), 13.86 [16C, 

N(CH2CH2CH2CH3)4], 20.29 [16C, N(CH2CH2CH2CH3)4] 22.99 (2C, SiCH2CH2CH2N), 

24.32 [16C, N(CH2CH2CH2CH3)4], 46.50 (2C, SiCH2CH2CH2N), 59.24 [16C, 

N(CH2CH2CH2CH3)4], 135.25-124.42 (32 C, Ar-C) ppm. 
29

Si NMR (79.5 MHz, CD3CN/d-

DMSO, 25°C): δ = -62.61 (2 Si), -88.34 (1 Si) ppm. 
183

W NMR (16.7 MHz, CD3CN, 25°C): - 

107.51 (4 W), -136.03 (2W), - 141.52 (4 W) ppm. ESI-MS (–, CH3CN): m/z = 789.5, 1053.1 

expected for [C38H32N2O41S2Si3W10]
4- 

= 789.9; [C38H33N2O41S2Si3W10]
3- 

= 1053.5. 

Synthesis of (nBu4N)4[{(C20H11O5)NHCSNH(CH2)3Si}2O(γ-SiW10O36)] (FITC-SiW10) 

In a round bottomed flask, APTES-SiW10 (400 mg, 0.12 mmol) was suspended in CH3CN (7 

mL). Triethylamine (42 μl, 0.30 mmol) was slowly added under vigorous stirring. After 

stirring for 5 min, fluoresceine isothiocyanate (116 mg, 0.30 mmol) was dissolved in CH3CN 

(5 ml) and added in solution whilst stirring. The mixture was heated at 50°C under reflux for 

3 h and then centrifuged to remove insoluble reagents and byproducts. The volume of the 

solution was reduced to 1 mL, upon evaporation under vacuum, than diethylether was added 

to precipitate the product. The solid was finally washed with water (3 times), diethyl ether (3 

times), and finally Et2O/MeOH (5:1, 5 times) on a fritted funnel and dried several hours under 

vacuum. 276 mg (0.06 mmol) of product were obtained (53% yield). 

Elemental analysis: Calcd. for C112H182N8O47S2Si3W10 C 30.72; H 4.19; N 2.56; S 1.46; 

Found: C 28.80; H 3.94; N 2.09; S 1.04. FT-IR (KBr): ν =  2960 (m), 2927 (m), 2872 (m), 

1751 (m),1616 (m), 1457 (m), 1107 (w), 966 (m), 888 (s), 820 (s), 778 (s,br), 541 (w) cm
-1

. 

1
H NMR (300 MHz, CD3CN, 301 K) δ = 9.14-6.56 (fluoresceine protons), 3.32 (4H, 

SiCH2CH2CH2N), 3.14 [32 H, m, N(CH2CH2CH2CH3)4], 2.14 (4H, SiCH2CH2CH2N), 1.63 

[32H, m, N(CH2CH2CH2CH3)4], 1.38 [32 H, m, N(CH2CH2CH2CH3)4], 0.97 [48 H, m, 
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N(CH2CH2CH2CH3)4], 0.76 (4H, SiCH2CH2CH2N). 
13

C{
1
H} NMR (75.47 MHz, CD3CN, 301 

K): δ = 181.78 (2C, C=S), 169.93 (2C, C=O), 160.24, 153.34, 148.63, 142.79, 137.40, 130.23, 

127.76, 124.73, 113.39, 111.55, 103.42, 84.25 (fluoresceine carbons), 65.48 (2C, 

SiCH2CH2CH2N), 59.23 [16C, N(CH2CH2CH2CH3)4], 47.87 (2C, SiCH2CH2CH2N), 24.35 

[16C, N(CH2CH2CH2CH3)4], 20.32 [16C, N(CH2CH2CH2CH3)4], 13.94 [16C, 

N(CH2CH2CH2CH3)4], 9.54 (2C, SiCH2CH2CH2N). 
29

Si NMR (79.5 MHz, 

CD3CN/[D6]DMSO, 25°C): δ = -61.34 (2 Si), -88.26 (1 Si) ppm. 
183

W NMR (16.7 MHz, 

CD3CN, 25°C): - 108.32 (4 W), -132.87 (2W), - 143.32 (4 W) ppm. ESI-MS (–, CH3CN): m/z 

= 852.5, expected for [C48H38N4O47S2Si3W10]
4- 

= 852.4; m/z = 1217.5, expected for 

[C64H74N5O47S2Si3W10]
4- 

= 1217.3. 

 

Synthesis of (nBu4N)3Na2[((C20H11O5)NHCSNHCH(CH3)PO)2(α-A-PW9O34)] (FITC-

PW9) 

In a round-bottomed flask, β-A-Na8[HPW9O34] (187 mg, 0.06 mmol) was suspended in 

CH3CN (3 mL), with nBu4NBr (99 mg, 0.30 mmol). FITC-AEPA (70 mg, 0.13 mmol) was 

dissolved in DMSO (0.4 mL) and added to the solution, followed by the slow addition of HCl 

(70 µl, 4 M) under vigorous stirring. The mixture was heated at reflux overnight and filtered 

to remove insoluble reagents and byproducts. The volume of the solution was reduced to 1 

mL, upon evaporation under vacuum, than water was added to precipitate the product. The 

solid was washed with water (3 times), diethyl ether (3 times), and finally Et2O/MeOH (5:1, 5 

times) on a fritted funnel. 112 mg (0.03 mmol) of product were obtained (50% yield). 

Elemental analysis: Calcd. for C94H142Na2N7O46P3S2W9 C 28.48; H 3.61; N 2.47; S 1.62; 

Found: C 29.63; H 3.07; N 2.32; S 1.12. FTIR (KBr): ν = 2962 (m), 2934 (m), 2873 (m), 1755 

(m, b), 1620 (m, b), 1461 (w, b), 1383 (w), 1341 (w), 1258 (w), 1182 (m, b), 1086 (m), 1034 

(m), 962 (s), 881 (s), 850 (s), 785 (s), 750 (s), 640 (w) cm
-1

. 
1
H NMR (300 MHz, [D6]DMSO, 

301 K) δ = 10.42 – 6.59 (m, OH and Ar-H), 3.55 (2H, m, CH hidden by the water peak) 3.17 

[m, 24 H, N(CH2CH2CH2CH3)4], 1.57 [m, 24 H, N(CH2CH2CH2CH3)4], 1.33 [m, 30 H, 

N(CH2CH2CH2CH3)4; CH3], 0.93 [m, 36 H, N(CH2CH2CH2CH3)4] ppm. 
13

C{1H} NMR 

(75.47 MHz, [D6]DMSO, 28 °C): δ = 179.76, 168.56, 159.31, 151.81, 148.08, 145.74, 140.92, 

128.95, 126.51, 125.40, 112.51, 110.08, 109.53, 102.14, 83.08 (fluoresceine carbons), 57.52 

[12 C, N(CH2CH2CH2CH3)4], 56.41 (2 C) 23.04 [12 C, N(CH2CH2CH2CH3)4], 19.16 [12 C, 

N(CH2CH2CH2CH3)4], 13.30 [12 C, N(CH2CH2CH2CH3)4], 7.98 (2C, CH3) ppm. 
31

P{1H} 

NMR (121.50 MHz, [D6]DMSO, 28 °C): δ = 20.18 (s, 2 P), - 12.02 (s, 1 P) ppm. 
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Synthesis of (nBu4N)4[{(C5H7N2OS)(CH2)4CONH(CH2)3Si}2O(γ-SiW10O36)] (Biot-SiW10) 

Biotin (37 mg, 151 µmol) was introduced in a well dried Schlenk with magnetic stirring and 

connected to the line of nitrogen. Anhydrous DMF (0.5 mL), anhydrous CH3CN (1 mL), 

N,N'-dicyclohexylcarbodiimide DCC (33 mg, 160 µmol) and N-hydroxysuccinimide NHS (19 

mg, 164 µmol) were then added. The reaction mixture, vigorously stirred, was allowed to 

react for one night at 50 ° C, under nitrogen. After one night, APTES-SiW10 (200 mg, 59.4 

µmol) and TEA (21.3 µL, 149 µmol) were dissolved in 2 ml of anhydrous CH3CN and added 

to the reaction mixture. The mixture was stirred for one day at room temperature. Finally, the 

reaction mixture was centrifuged to remove insoluble reagents and byproducts. The volume of 

the solution was reduced to 1 mL, upon evaporation under vacuum, than water was added to 

precipitate the product. The solid was washed with water (3 times), diethyl ether (3 times) on 

a fritted funnel. 154 mg of product were obtained (64% yield). 

Elemental analysis: Calcd. for C: 23.3; H: 4.0; N: 3.3; S: 1.7. Found: C: 23.1; H: 4.2; N: 2.7; 

S: 0.9. FT-IR (KBr): ν = 2961 (m), 2934 (m), 2873 (m), 1662 (m), 1469 (m), 1387 (w), 1099 

(w), 948 (m), 901 (s), 820 (s), 734 (s), 544 (w) cm
-1

. 
1
H NMR (CD3CN) δ: 0.55 (4 H, m), 0.99 

(48 H, m), 1.39 (32 H, m), 1.64 (32 H, m), 2.63 (2 H, m), 3.15 (32 H, m), 4.33 (2 H, m), 4.49 

(2 H, m), 5.09 (2 H, s, br), 5.85 (2H, s, br), 6.89 (2 H, s, br).
13

C NMR (75.5 MHz, CD3CN, 

301 K) δ: 14.08 (32 C), 20.42 (32 C), 21.96 (2 C), 24.47 (32 C), 25.92 (2 C), 26.67 (2 C), 

29.21 (2 C), 36.77 (2 C), 41.89 (2 C), 42.90 (2 C), 56.56 (2 C), 61.24 (2 C), 62.77 (2 C), 

164.69 (2 C), 174.18 (2 C). 
29

Si NMR (CH3CN\CD3CN, 301 K) δ: - 62.01 (2 Si, s), - 88.43 

(1 Si, s). 
183

W NMR (16.67 MHz, CH3CN/CD3CN, 301 K) δ: - 107.55 (4 W, s), - 136.09 

(2W, s), -142.08 (4 W, s). ESI-MS (–, CH3CN): m/z = 768.0, calc. for 

[C26H44N6O41S2Si3W10]
4-

 = 770.5. 

 

Synthesis of (nBu4N)4[{ClIr(COD)(C10H17N2Si)}2O(γ-SiW10O36)] ((NHC)Ir-SiW10) 

380 mg (0.13 mmol) of K8[γ-SiW10O36] were suspended in 500 µL of H2O under nitrogen. 

206 mg (65 mmol, 5 equiv.) of nBu4NBr, and CH3CN (5 mL) were added and the mixture 

was stirred at room temperature for 20 minutes. The ligand [(1,2,5,6-η)-1,5-

cyclooctadiene][1-butyl-3-(3-triethoxysilylpropyl)-imidazol-2-ylidene]chloroiridium 

((NHC)Ir) (170 mg, 0.26 mmol) was dissolved in 3 mL of solution CH2Cl2/CH3CN 1/2 under 

nitrogen. Then the solution of (NHC)Ir and 190 μl of HCl 4.05 M were added in rapid 

sequence to the reaction mixture. Upon addition of acid, immediate clearing of the solution 

was observed. The mixture was kept under vigorous stirring overnight at r.t., then filtered to 

remove the insoluble material. The mixture was concentrated to about 1 mL volume, and the 
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product was precipitated by adding deionized water (20 mL). The product was collected by 

filtration, in a frittel funnel, washed with portions of deionized water and diethyl ether, and 

dried in vacuo. 298 mg (0.07 mmol) of product were obtained (54% yield). 

Elemental analysis calcd (%) for C100N8Si3Ir2Cl2W10O37: C 26.75, H 4.50, N 2.50; found: C 

25.25, H 4.00, N 2.54. FTIR (KBr): ν= 2960 (m), 2932 (m), 2872 (m), 1660 (m), 1482 (m), 

1463 (m), 1418 (m), 1380 (m), 1105 (m), 964 (s), 902 (s), 886 (s), 820 (s), 733 (s), 544 (m), 

508 (m) cm-1. 
1
H NMR (300 MHz, CD3CN, 301 K) δ = 7.22 (2H, s, CH imidazol-2-ylidene), 

7.04 (2H, s, CH imidazol-2-ylidene), 4.44-4.16 [24H, m, CHCOD, Si(CH2)2CH2N, 

NCH2(CH2)2CH3, CH3CH2O], 3.16 [32H, m, (CH3CH2CH2CH2)4N], 2.79-2.13 (28H, m, 

CHcod, NCH2CH2CH2CH3, SiCH2CH2CH2N, NCH2CH2CH2CH3), 1.65 [32H, m, 

N(CH2CH2CH2CH3)4], 1.40 [50H, N(CH2CH2CH2CH3)4, OCH2CH3], 0.98 [54H, 

N(CH2CH2CH2CH3] N(CH2)3CH3], 0.60 (4H, m, SiCH2) ppm. 
13

C{
1
H} NMR (75.47 MHz, d-

DMF, 301 K): δ = 178.7 (2C, C-Ir), 122.16, 121.40 (4C, C4 and C5, imidazol-2-ylidene), 

82.75 (2C, CHCOD), 82.57 (2C, CHCOD), 59.27 [16C, N(CH2CH2CH2CH3)4], 58.93, 58.54, 

58.17, 50.77 [8C, CH3(CH2)2CH2N, SiCH2CH2CH2N and CHCOD], 34.06, 33.89, 33.48, 30.46, 

26.31 (14C, methylene groups and CHCOD), 24.36 [16C, N(CH2CH2CH2CH3)4], 20.6 (6C, 

OCH2CH3), 20.33 [16C, N(CH2CH2CH2CH3)4], 13.90 [16C, N(CH2CH2CH2CH3)4], 13.16 

[2C, CH3(CH2)2CH2N] 
29

Si NMR (79.5 MHz, CD3CN, 25°C): δ = -62.0 (2 Si), -87.8 (1 Si) 

ppm. 
183

W-NMR (16.7 MHz, CD3CN, 25°C): - 105.8 (4 W), -135.6 (2W), - 141.8 (4 W) ppm. 

ESI-MS (–, CH3CN) m/z = 1723.0, calcd. For {[(C8H12)Ir(C10H17N2Si)]2O(γ-SiW10O36)}
2- 

= 

1723.  

 

5.2.2 General procedure for the cationic exchange 

In around-bottomed flask with magnetic stirring 100.0 mg of Dans-SiW10 (24.8 µmol) were 

dissolved in 3 ml of acetonitrile. Then 26.7 mg of tetramethylammonium (173 µmol) 

dissolved in 2 ml of water were added. The reaction mixture, vigorously stirred, was allowed 

to react at room temperature, for one night. The solution obtained was poured into EtOH (15 

mL). The white precipitate obtained was filtered, dried under vacuum and, finally, eluted in a 

resin (Amberlyst 15) loaded with sodium ions, using a gradient eluent of a mixture water / 

acetonitrile (1:1 to 1:0). Finally, the solution was lyophilized to remove water.  
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5.2.3 Synthesis of organic ligands 

Synthesis of 1-Pyrensulfonyl Chloride (PyrSO2-Cl) 

Sodium 1-Pyrene Sulfonate. To a vigorously stirred solution of pyrene (9.2 g, 47.1 mmol) in 

CH2Cl2 (60 mL) at 0 °C under nitrogen, chlorosulfonic acid (3.2 mL, 48 mmol), previously 

dissolved in CH2Cl2 (10 mL), was added dropwise. This solution was stirred at 0 °C for 3 h, 

then at room temperature for 16 h. The resulting dark green solution was poured onto ice (100 

g), and the CH2Cl2 was removed by rotary evaporation. The remaining solution was filtered 

twice through celite to remove particulates, and washed with water (2 x 30 ml) each time. 

Solid NaOH (2 g) was added, followed by addition of an aqueous solution of 5% NaCl (20 

ml). The resulting yellow solid was filtered off, washed with water and air-dried. Yield 10.2 g 

(71%). 

1-Pyrenesulfonyl Chloride. In CH2Cl2 (95 ml) sodium pyrene sulfonate (1.8 g, 5.9 mmol) and 

phosphorus pentachloride (4 g, 13.9 mmol) were dispersed, and then heated at 40 °C for 1 h. 

The resulting solution was filtered and the filtrate was washed with water (2 x 200 ml), then 

dried (MgSO4) and concentrated by rotary evaporation to give pyrene sulfonyl chloride, that 

was purified by silica gel column chromatography, using CH2Cl2:hexane (2:3) as eluent. The 

yield of the orange product was 1.65 g (92.7%); m.p. 172-173 °C (lit. 172).
 

FT-IR (KBr): ν = 2921 (m, aromatic CH stretch); 1588 (m, S-Cl stretch); 1384 (m), 1373 (m), 

1362 (s, asymmetric S=O), 1172 (s, asymmetric S=O), 1146 (m), 1134 (m), 849 (m) cm
-1

; 
1
H 

NMR δH (300 MHz, d6-DMSO, 301 K) all aromatic resonances; 
13

C-NMR: δC (75.47 MHz, 

d6-DMSO, 301 K) 143.04, 132.82, 132.15, 131.56, 129.13, 128.67, 128.31, 128.11, 127.65, 

126.75, 126.74, 126.24, 125.67, 125.16. 

 

Synthesis of (C20H11O5)NHCSNHCH(CH3)PO(OH)2 (FITC-AEPA) 

In around-bottomed flask, R or S 1-aminoethylphosphonic acid (AEPA) (70 mg, 0.56 mmol) 

was dissolved in H2O (12 mL) buffered with a solution of CO3
2-

/HCO3
-
 (1M) at pH 9. 

Separately, FITC (200 mg, 0.51 mmol) was dissolved in DMSO (1 mL). This latter solution 

was added dropwise to the solution of AEPA, and the resulting mixture was stirred overnight. 

The solution was acidified with aqueous KHSO4 solution (pH 2) to obtain a neutral species. 

Then the product was collected upon centrifugation and washing with acidic water (3 times) 

and finally with AcOEt (5 times). 123 mg (0.24 mmol) of product were obtained (yield 47% ). 

FTIR (KBr): ν= 3090-2850 (w), 1636 (m), 1603 (m), 1539 (m), 1459 (m), 1389 (m), 1318 

(m), 1277 (m), 1209 (m), 1174 (m), 1118 (m), 1024 (m), 950 (m), 850 (m) cm
-1

.
 1

H NMR 

(300 MHz, CD3OH, 28°C): δ = 8.41 – 6.73 (m, 11 H, Ar-H), 3.60 (1H, m, CH hidden by the 
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ethanol peak), 1.44 (m, 3H, CH3). ppm. 
13

C{
1
H} NMR (75.47 MHz, CD3OH, 301 K): δ = 

183.12, 182.99, 182.56, 169.92, 165.66, 156.70, 156.38, 143.26, 142.78, 132.70, 131.88, 

131.68, 130.20, 127.69, 116.45, 114.16, 113.75, 103.49 (fluoresceine carbons), 15.88 (1C, 

CH3) ppm 
31

P{
1
H} NMR (121.50 MHz, [D6]DMSO, 28 °C): δ = 21.05 (s, 1 P) ppm. ESI-MS 

(–, CH3OH): m/z = 513.1, expected for [C23H18N2O8PS]
-
= 513.4. 

 

Synthesis of [(1,2,5,6-η)-1,5-cyclooctadiene][1-butyl-3-(3-triethoxysilylpropyl)-imidazol-

2-ylidene]chloroiridium ((NHC)Ir)  

1-butyl-3-(3-triethoxysilylpropyl)-imidazolium bromide (0.5 g, 1.22 mmol) was introduced in 

a well dried schlenk tube. Anhydrous CH2Cl2 (40 mL) and Ag2O (0.142 g, 0.61 mmol) were 

then added. The reaction mixture, vigorously stirred, was allowed to react at room 

temperature, under nitrogen. After 5 h [Ir(cod)Cl]2 (0.410 g, 0.61 mmol) was added and the 

mixture was stirred for one night, then filtered through celite. Evaporation of the solvent gives 

the desired product as a yellow oil. Yield: 85% (0.69 g ). 

Elemental analysis calcd (%) for C24H44ClIrN2O3Si: C 43.39, H 6.68 N 4.22; found: C 42.39, 

H 5.75 N 4.13; FT-IR (KBr). ν = 3163 (w), 3126 (w), 3103 (w), 2961 (s), 2927 (s), 2876 (s), 

2013 (w, b), 1456 (m), 1420 (m), 1257 (m), 1226 (m), 1201 (m), 1167 (m), 1102 (s), 1077 (s), 

956 (m), 883 (w), 798 (m), 777(m), 703 (m), 690k (m) cm-1. 
29

Si-NMR (79.5 MHz, CD3CN, 

25°C): δ = - 48.2 ppm. 
1
H NMR (360 MHz, CD2Cl2, 25°C) 6.87 (1H, s, CH imidazol-2-

ylidene), 6.82 (1H, s, CH imidazol-2-ylidene), 4.58 (2H, s, b, CHcod ) 4.36 [4H, m, 

Si(CH2)2CH2N, NCH2(CH2)2CH3], 3.84 (6H, q, CH3CH2O), 2.92 (2H, s, b, CHcod ), 2.20 (4H, 

s, b, CHcod ), 2.06-1.38 (10H, m, CHcod, NCH2CH2CH2CH3, SiCH2CH2CH2N, 

NCH2CH2CH2CH3), 1.24 (9H, t, CH3CH2O), 1.00 [3H, t, N(CH2)3CH3], 0.71 (2H, m, SiCH2) 

ppm. 
13

C{
1
H} NMR (62.5 MHz, CD2Cl2, 25°C): 179.65 (C-Ir), 119.99, 119.68 (C4 and C5, 

imidazol-2-ylidene), 83.83 (1C, CHcod), 83.52 (1C, CHcod), 58.44 (3C, OCH2), 52.79, 51.46, 

51.14, 50.23 (4C, CH3(CH2)2CH2N, SiCH2CH2CH2N and CHcod), 33.73, 33.35, 32.94, 29.69, 

29.33, 24.50, 19.98 (7C, methylene groups and CHcod), 18.27 (3C, OCH2CH3), 13.70 [1C, 

CH3(CH2)2CH2N], 7.77 (1C, SiCH2) ppm. ESI-MS(+, CH3CN) m/z = 628.9 and 670.6, calcd. 

For [(C8H12){C10H17N2Si(OEt)3}Ir]
+
 and [(C8H12){C10H17N2(OEt)3}Ir(CH3CN)]

+
.  
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5.3 Analysis methods 

5.3.1 Spectrophotometric titrations 

Fluorimetric titrations of Dans-SiW10  

CuSO4·5H2O, Zn(NO3)2·6H2O, HgSO4, PbSO4, NiSO4·6H2O, FeSO4, CdSO4·H2O, and 

CoSO4·6H2O were analytical-grade products and were used to prepare 1.6 mM aqueous 

solutions. 2 mL of a 10 μM CH3CN solution of Dans-SiW10 were placed in a fluorescence 

quartz cell. A variable volume of concentrated metal ion solution (up to 40 μL) was added, 

and water was added to provide a fixed 2.5% water content. The resulting solutions were 

allowed to equilibrate until stable emission spectra were obtained (less than 5 min were 

usually required, except for Pb
2+

). 

 

Fluorimetric titrations of Pyr-SiW10  

C60 titration: 3 mg of Pyr-SiW10 were dispersed in 10 mL of DMF (solution A); at the same 

time, 7.2 mg of C60 was dissolved into 2 mL of o-DCB (solution B). Both the solutions were 

stirred for 5 minutes for a complete and homogeneous dispersion of the molecules in solution. 

Afterwards, solution A and B were dilute for having UV signals under Abs value of 1; so, 

0.45 ml of solution A were added to 2.25 mL of DMF (solution C, dilution of 1/6), and 0,4 ml 

of solution B were added to 2 ml of o-DCB (solution D, dilution of 1/6). 

UV-Vis-NIR and fluor. titrations were performed with stepwise addition of 4 μl of solution D 

to solution C, except for the very last add (+ 50 μl). About fluor. experiments, excitation 

wavelength was set at 335 nm. 

The inner filter effect correction was carried out as follows: in our system, C60 shows 

absorption at the excitation wavelength (335 nm) of Pyr-SiW10. As a consequence, with the 

gradual addition of C60, the excitation light is absorbed by both of the entities. This 

phenomenon is called inner filter effect. Thus it is very important to subtract such an effect 

from the raw quenching data. At the position of emission, which is in the half of the cell 

length, the absorption of the excitation light by the C60 can be calculated by the following set 

of equations : 
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where ε295 is the molar absorption coefficient constant of the C60 at 335 nm, F is the real 

fluorescence intensity after deduction of the inner filter effect, and F1 is the original 

fluorescence intensity measured from the spectra.  

 

Carbon nanotubes (CNTs) titration: 3 mg of Pyr-SiW10 were dispersed in 3 ml of 

DMF/MeOH 1:1 solution; after stirring the mixture for 5 minutes for increasing 

solubilisation, 3 mg of CNTs were added. The solution was sonicated for 30 minutes, and 

then was stirred for further 30 minutes. The mixture was centrifugated for 1 h at 3000 rpm, 

and after this the supernatant solution was collected. UV-Vis-NIR and fluor. experiments 

were performed directly on the supernatant solutions without any dilutions; excitation 

wavelength was set at 335 nm. 

 

Binding study between Biot-SiW10 and avidin 

The binding between Biot-SiW10 and avidin has been monitored by means of UV-Vis 

spectrophotometry. The solution avidin/HABA acid was commercially available product 

(Sigma-Aldrich) and suitable for the spectrophotometric determination of biotin levels. The 

commercial reagent was diluted 1/10 (0.68 µM in H2O; solution A). 2 mL of solution A were 

placed in a fluorescence quartz cell. 5 µL of a concentrated Biot-SiW10 solution (70 μM; 

solution B in DMF) were added to the solution A up to 20 µL, and then 5 µL of a 

concentrated Biot-SiW10 solution (140 μM; solution C in DMF) up to 50 µL. 

 

5.3.2 DFT Calculations 

Computational resources and assistance were provided by the Laboratorio Interdipartimentale 

di Chimica Computazionale (LICC) at the Department of Chemical Sciences of the University 

of Padova. DFT calculations were carried out using the Amsterdam density functional (ADF) 

code;
7
 scalar relativistic effects were taken into account by means of the two-component 

zeroorder regular approximation (ZORA) method,
8
 adopting the Becke 88 exchange plus the 

Perdew 86 correlation (BP) functional.
9
 The basis functions for describing the valence 

electrons are triple-zeta quality, doubly polarized (TZ2P), specially optimizedfor ZORA 

calculations. Due to the large size of the molecules under investigation, the internal or core 

electrons (C, N and O: 1s; Si: 1s to 2sp; W: 1s to 4spdf) were kept frozen. Geometries were 

optimized without symmetry constraints. The solvent effect was modeled by means of the 

ADF implementation
10

 of the COSMO method.
11

 

 



Chapter 5 

148 

 

5.3.3 Typical procedure for catalytic transfer hydrogenation 

Typically, the transfer hydrogen of benzophenone to diphenyl methanol in iPrOH was 

performed in a glass reactor. Catalyst manipulation does not need particular precautions, and 

transfer hydrogenations were generally performed in air.  

In a typical reaction, the catalyst (0.01 mmol, 1 mol%) was stirred, together with KOH (0.05 

mL of 2 M solution in H2O, 0.1 mmol) and iPrOH (5.0 mL) at reflux for 10 min. Then the 

ketone (1.0 mmol) was added at once. Aliquots (0.2 mL) were taken at fixed times, quenched 

in hexane (2 mL), and filtered through a plug of silica, then the silica was washed with diethyl 

ether or tert-butyl methyl ether. The combined organic filtrates were evaporated and analyzed 

by 
1
H NMR spectroscopy. 
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Acronyms and abbreviations 

 

AcOH: Acetic Acid (CH3COOH) 

AcONa: Sodium Acetate (CH3COONa) 

AEPA: 1-aminoethylphosphonic acid 

ADF: Amsterdam Density Functional code 

aFtn: apoferritin 

Ftn: Ferritin 

APTES-SiW10 = (nBu4N)4[(NH2(CH2)3Si)2O(γ-SiW10O36)] 

Biot-SiW10: (nBu4N)4[{(C5H7N2OS)(CH2)4CONH(CH2)3Si}2O(γ-SiW10O36)] 

COD: Cyclooctadiene 

Dans-SiW10: (nBu4N)4[{{(CH3)2N}C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] 

DCC: N.N'-Dicyclohexylcarbodiimide 

DCU: N,N'-Dicyclohexylurea 

DFT: Density Functional Theory 

DLS: Dynamic Light Scattering 

DMF: Dimethylformamide 

DMSO: Dimethylsulfoxide 

EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

ESI-MS: Electrospray Ionsation Mass Spectroscopy 

EtOH: Ethanol 

EuPOM: [EuW10O36]
9-

 

FID: Flame Ionisation Detector  

FITC: Fluorescein Isothiocyanate  

FITC-AEPA: (C20H11O5)NHCSNHCH(CH3)PO(OH)2 

FITC-PW9: (nBu4N)3Na2[((C20H11O5)NHCSNHCH(CH3)PO)2(α-A-PW9O34)] 

FITC-SiW10: (nBu4N)4[{(C20H11O5)NHCSNH(CH2)3Si}2O(γ-SiW10O36)] 

FT-IR: Fourier Transform - Infrared spectroscopy  

Gly: Glycine 

HABA: 4'-hydroxyazobenzene-2-carboxylic acid 

HEK293: Human Embryonic Kidney 293 cells 

HOBt: 1-hydroxy-1,2,3-benzotriazole 

HPAs: Heteropolyacids 

HSA: Human Serum Albumin 

http://www.google.it/search?hl=it&tbo=d&biw=1360&bih=528&spell=1&q=FITC:+fluorescein+isothiocyanate&sa=X&ei=nfLuUPf3OcattAaH2YG4Ag&ved=0CCwQBSgA


 

 

IC50: median inhibitory concentration (in µM) 

ITC: Isothiocyanate  

ITC: Isothermal Titration Calorimetry 

LICC: Laboratorio Interdipartimentale di Chimica Computazionale 

LUMO: Lowest Unoccupied Molecular Orbital  

MTT: (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MW: Microwave radiation 

nBu4N
+
: Tetrabutylammonium cation  

NMR: Nuclear Magnetic Resonance 

NHC: N-Heterocyclic Carbene  

(NHC)Ir: [(1,2,5,6-η)-1,5-cyclooctadiene][1-butyl-3-(3-triethoxysilylpropyl)-imidazol-2 

ylidene]chloroiridium 

(NHC)Ir-SiW10: (nBu4N)4[{ClIr(COD)(C10H17N2Si)}2O(γ-SiW10O36)] 

NHS: N-hydroxysuccinimide 

o-DCB: ortho-dichlorobenzene 

Pyr-SiW10: (nBu4N)4[{C16H9SO2NH(CH2)3Si}2O(γ-SiW10O36)] 

PyrSO2-Cl: 1-Pyrensulfonyl Chloride 

POM: Polyoxometalate 

RuPOM: [Ru
IV

4(µ-OH)2(µ-O)4(H2O)4(γ-SiW10O36)2]
10-

 

SEM: Scansion Electron Microscopy 

TEA: Triethylamine 

TEM: Transmission Electron Microscopy  

TH:  Transfer Hydrogenation 

THF: Tetrahydrofuran 

TLC: Thin Layer Cromatography 

TMA: Tetramethylammonium 

TMSP: Transition Metals Substituted Polyoxometalates 

TOF: Turnover Frequency 

TON: Turnover Number 

TRIS:  tris(hydroxymethyl)aminomethane ((HOCH2)3CNH2) 

TZ2P: Triple-Zeta quality, doubly Polarized 

UV-Vis: Ultraviolet-Visible spectroscopy 

WST-1: Water Soluble Tetrazolium salts 

ZORA: two-component ZeroOrder Regular Approximation 

http://www.google.it/search?hl=it&tbo=d&biw=1360&bih=528&spell=1&q=FITC:+fluorescein+isothiocyanate&sa=X&ei=nfLuUPf3OcattAaH2YG4Ag&ved=0CCwQBSgA
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
http://www.google.it/search?hl=it&tbo=d&biw=1360&bih=528&spell=1&q=NHC:+N-Heterocyclic+Carbene&sa=X&ei=FfXuUNCbD4_ltQavpYHAAw&ved=0CCwQBSgA


 

 

SPECTRA 

 

Hybrid POMs 

 

(nBu4N)4[(NH2(CH2)3Si)2O(γ-SiW10O36)] (APTES-SiW10) 

 

 

A1 
1H NMR (CD3CN) of APTES-SiW10. 

 

 

A2 
13

C NMR (CD3CN) of APTES-SiW10. 

 

 

 



 

 

(nBu4N)4[{{(CH3)2N}C10H6SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Dans-SiW10) 

 

 

A3 FT-IR of APTES-SiW10. 

 

A4 
29

Si NMR (CD3CN) of Dans-SiW10. 

 

A5 
183

W NMR (CD3CN) of Dans-SiW10. 



 

 

 

 

A6 Emission of  Dans-SiW10 (1x10
-5

M in CH3CN with 2.5% v/v H2O, λex = 293 nm) after addition of Pb(NO3)2 

(40 M). 
 

 

 

 

(nBu4N)4[{C16H9SO2NH(CH2)3Si}2O(γ-SiW10O36)] (Pyr-SiW10) 
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A7 FT-IR (KBr) of Pyr-SiW10. 

 

 



 

 

 

A8 
13

C NMR (CD3CN) of Pyr-SiW10. 

 

 

 

A9 ESI-MS ((-),CH3CN) of Pyr-SiW10. 

 

 

 

 

 

 

 

 



 

 

 (nBu4N)4[{(C20H11O5)NHCSNH(CH2)3Si}2O(γ-SiW10O36)] (FITC-SiW10) 
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A10 FT-IR (KBr) of FITC-SiW10. 

 

 

A11 
1
H NMR (CD3CN) spectrum of FITC-SiW10. 
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A12 
13

C NMR (CD3CN) spectrum of FITC-SiW10.  

 

 

A13 
29

Si NMR (CD3CN) spectrum of FITC-SiW10. 

 

 

A14 
183

W NMR (CD3CN) spectrum of FITC-SiW10. 

 



 

 

 

A15 ESI-MS ((-),CH3CN) of FITC-SiW10. 

 

 

 

(nBu4N)3Na2[(C20H11O5)NHCSNHCH(CH3)PO)2(α-A-PW9O34)] (FITC-PW9)  

 

 
A16 

31
P NMR (CD3CN/[D]6DMSO) recorded at -32 °C of FITC-PW9. 

 

 

 

 

 



 

 

(nBu4N)4[(C5H7N2OS(CH2)4CONH(CH2)3Si)2(γOSiW10O36)] (Biot-SiW10) 

 
A17 FT-IR (KBr) of Biot-SiW10. 

 
A18 

29
Si NMR (CD3CN) spectrum of Biot-SiW10. 

 
A19 

183
W NMR (CD3CN) spectrum of Biot-SiW10. 



 

 

 

 

A20 ESI-MS ((-),CH3CN) of Biot-SiW10. 

 

 

 

(nBu4N)4{[ClIr(COD)(C10H17N2Si)]2O(γ-SiW10O36)} ((NHC)Ir-SiW10)  
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A21 FT-IR (KBr) of (NHC)Ir-SiW10. 
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A22 1
H NMR (CD3CN) of (NHC)Ir-SiW10. 

 

 

 

A23 13
C NMR (CD3CN) of (NHC)Ir-SiW10 
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A24 Cyclic voltammetry; cathodic scan: 0.5 mM; CH3CN (nBu4ClO4; 0.1M); 200 mV/sec. 

 

 

 

A25 Cyclic voltammetry; anodic scan: 0.05 mM; CH3CN (nBu4ClO4; 0.1M); 200 mV/sec. 

 

 



 

 

Ligands 

Synthesis of 1-Pyrensulfonyl Chloride (PyrSO2-Cl) 

ppm (f1)
12.5012.6012.7012.8012.9013.0013.1013.2013.3013.4013.5013.6013.7013.8013.9014.0014.1014.2014.3014.40  

A26 1
H NMR (CD3CN) of PyrSO2-Cl. 
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A27 13
C NMR (CD3CN) of PyrSO2-Cl. 

 

 

 



 

 

(C20H11O5)NHCSNHCH(CH3)PO(OH)2 (FITC-AEPA) 
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A28 FT-IR (KBr) of FITC-AEPA. 

 

 

 

A29 
13

H NMR spectrum of FITC-AEPA in CD3OH.*Residual peaks (ethanol and water). 

 



 

 

 
A30 

13
C NMR spectrum of FITC-AEPA in CD3OH. *Residual ethanol peaks. 

 

 

 

A31 
31

P NMR spectrum of FITC-AEPA in [D6]DMSO. 

 

 

 



 

 

 

A32 ESI-MS ((+),CH3OH) of FITC-AEPA. 

 

 

A33 Circular dichroic spectrum (CH3CO) of FITC-AEPA. 

 

 

 

 

 

 

 

 



 

 

[(1,2,5,6-η)-1,5-cyclooctadiene][1-butyl-3-(3-triethoxysilylpropyl)-imidazol-2 

ylidene]chloroiridium ((NHC)Ir)  
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A34 FT-IR (KBr) of (NHC)Ir 

 

 

A35 ESI-MS ((+),CH3CN) of (NHC)Ir. 

 



 

 

ζ-potential measurements of luminescent hybrid POMs 

Dans-SiW10 

 

Pyr-SiW10 

 

FITC-SiW10 

 
 



 

 

FITC-PW9 

 

A36 ζ-potential of hybrid POMs: Dans-SiW10, Pyr-SiW10, FITC-SiW10, FITC-PW9 in in H2O/0.05 % DMSO. 

 

 

 

Dynamic light Scattering of luminescent hybrid POMs 
 

 
 

Dans-SiW10 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

Pyr-SiW10 

 
 

 

 

FITC-SiW10 

 
 

 

FITC-PW9 

 
 

 

A37 Dynamic Light Scattering (DLS) of Dans-SiW10, Pyr-SiW10, FITC-SiW10, FITC-PW9 in H2O/0.05 % 

DMSO. 

 



 

 

Electronic microscopy imaging of luminescent hybrid POMs 

 

 

 

 
 

 

A38 Left: transmission electronic microscopy (TEM) images of POM Pyr-SiW10 (2) in physiological-like 

solution containing 0.05% v/v of DMSO. Right: scanning electronic microscopy (SEM) images of POM  Pyr-

SiW10 in physiological-like solution containing 0.05% v/v of DMSO 

 

 

 

 

 

 

 

 

 

 

 

A39 Scanning electronic microscopy (SEM) images of POM FITC-PW9 in physiological-like solution 

containing 0.05% v/v of DMSO. 

 

 

 

 

 

 

 

 

 

 



 

 

Optical microscopy imaging of cells incubated with luminescent 

hybrid POMs 

 

 

 
 

A40 Subcellular localisation In vitro fluorescent large magnification microscopy imaging of HEK cells exposed 

to  FITC-PW9 and Pyr-SiW10 (18 M, at 37
o
C) for longer time (>15h). Note different preferential localisation 

of the two compounds. Scale bar : 10  m. 

 



 

 

 
 

A41 Representative images of cells exposed to different POMs (18 µM, 15 h, 37
o
C) and visualised with 

appropriate fluorescence filters and transmitted light to appreciate cell morphology. Note dense cell monolyer 

induced by FITC-PW9. Bar = 50 m. 

 



 

 

Biological activity of luminescent hybrid POMs 
 

 

 

A42 Cells viability studies of HEK cells incubated with different concentrations of POMs Pyr-SiW10  and 

FITC-PW9 at 37°C for 48 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ζ-potential measurements of aFtn/POMs system 

 

 

 

 

A43 ζ-potential of aFtn (0.245 µM) (up) and in the presence of RuPOM (below), at pH 3.5 with HCl. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

A44 Ftn (0.245 µM), in the absence (top) and in the presence (bottom) of RuPOM (24 eqs), after addition of 

NaOH, to solutions at pH 2.5 (final pH 7.8).  

 

 

 

 

 

 

 



 

 

 

 

 

 

A45 DLS (above) and ζ-potential (below) of aFtn (0.245 µM) and EuPOM (12.25 µM), back to pH 7.8, by 

dialysis against TRIS/AcOH buffer. 
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