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Riassunto 

 

I dati climatologici sono molto utili in molti campi della ricerca scientifica. Oggigiorno, 

molte volte questi dati sono disponibili sottoforma di enormi data-base che sono spesso 

prodotti da stazioni meteorologiche automatiche. 

Affinché analisi di ricerca e lavori di modellistica siano possibili su questi data-base, essi 

devono subire un’opera di omogeneizzazione, validazione e ricostruzione dei dati 

mancanti. Le operazioni di validazione ed omogeneizzazione sono già per lo più 

condotte dalle organizzazioni che gestiscono questi dati. Il problema principale rimane 

quello della ricostruzione dei dati mancanti. 

Questa tesi si occupa principalmente di due argomenti: (a) la ricostruzione di valori 

mancanti di insiemi di dati di precipitazione e temperatura giornalieri; (b) un’analisi 

fondamentale sulla correlazione spazio-temporale tra le stazioni di una rete 

meteorologica. 

(a) 

Per prima cosa, si presenta un nuovo modello adattivo per ricostruire i dati di temperatura. 

Questo modello viene confrontato con uno non adattivo. Poi si presenterà un’analisi 

dettagliata sulla scelta ed il numero di predittori per metodi di ricostruzione di tipo 

multi-regressivo. 

Precipitazioni e temperatura sono le più importanti variabili climatologiche, così, viene 

scelto un metodo per ricostruire anche i dati giornalieri di pioggia, questa scelta viene 

fatta attraverso un confronto fra 4 tecniche. 

(b) 

Questi due metodi (ricostruzione di pioggia e temperature) permettono di ricostruire i data-

base che vengono usati per il prossimo ed ultimo lavoro: l’analisi di correlazione, attraverso 

le coordinate spaziale e temporale della rete. 
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Summary 

 

Climate data are very useful in many fields of the scientific research. Nowadays, in many 

cases these data are available through giant data-base that are often yielded by automatic 

meteorological networks. 

In order to make possible research analysis and the running of computational models,  these 

data base need to be validated, homogenized, and to be without missing values. 

Validation and homogenization are common operations, nowadays: the organizations 

that manage these data-base provide these services. The main problem remain the 

reconstruction of the missing data. 

This dissertation deal with two main topics: (a) the reconstruction of missing values of 

daily precipitation and temperature datasets;  (b) a base analysis on the time and space 

correlation between stations of a meteorological network. 

(a) 

At first, a new adaptive method to reconstruct temperature data is described. This method is 

compare with a non-adaptive one. A detailed analysis of the effects of the number of 

predictors for a regression-based approach (to reconstruct daily temperature data) and 

their search strategy is then presented. 

Precipitation and temperature are the most important climatological variables, so, a method 

to reconstruct daily precipitation data is chosen through a comparison of four technique. 

(b) 

The methods selected in phase (a) make it possible to reconstruct the two data-base 

(precipitation and temperature) that will be used for the next and last work: the 

correlation analysis, through time and space of network data.  
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Automatic networks and climate data 

 

Agronomy, engineering (civil, naval, aeronautical, etc.), geology, environmental sciences in 

general, architecture, etc., are among the fields of the science in which climate data play an 

important role. 

Nowadays, in many locations on the surface of the earth, automatic networks of 

meteorological instruments (thermometers, pluviometers, hygrometers, barometers, etc.) 

are available to detect the state of the climate. 

These instruments transmit their atmospheric measurements to a system of 

hardware/software devices, via radiowaves and at regular intervals, which in turn 

systematically record this data in the form of files (electronic structured data). 

This measurements are collected in giant database providing a source for research and the 

analysis of the climatic variables being in the running. 

Precisely, this radio-software organization makes it possible to gather these important 

database affected mainly by systematic errors. 

This quality of the data were not possible when, formerly, data were collected with the help 

of operators that directly read the measurements from the instruments; these readings were 

highly prone to human errors, and the density of the instruments was very low. The data 

base collected in this way were affected by unsystematic errors that provides difficulties for 

both statistical and climatic comprehension. Some datasets could be easily lost (for 

example, due to wartime events). Even with automated systems, however, unsystematic 

errors can be present e.g. for failures of the system. 

In these last years, a large number of research works are obtained from the study and the 

analysis of this “automatic” database. They led to a rapid increase of deeper analysis, 

especially in the field of statistics and the applied sciences, through the creation of new 

mathematical models. In the meteorological field, they make it possible to reach an 

improved ability to forecast, and an easier comprehension of phenomenologies governing 

the physics of the atmosphere. Obviously, all this, with the help of computers: permitting a 

giant number of calculations in a few bits of time. 
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Statistical errors and non-response 

 

The statistical error can be subdivided into two kinds of errors: sampling errors and non-

sampling errors (Groves R.M., 1989). 

Among non-sampling errors is non-response, that can be found regardless of the kind of 

data-base, both manual or automatic; though, in the case of automatic networks, these 

errors are easier to analyse. 

Among non-response errors can be cited: missing values (not observed), outliers 

(observations that is numerically distant from the rest of the data), out-range (values outside 

of a reasonable range) and inconsistent values (comparing with other variables). 

Often, nowadays, missing data is the only problem that must be solved; in fact, most part of 

the organizations, managing this networks, carry out detailed analysis to validate 

(validation: the checking of data for correctness, or the determination of compliance with 

applicable standards, rules, and conventions) the measurements of the instruments, almost 

immediately after the data were recorded. 

 

Main topic of the research 

 

The main topic of this research, is the imputation of the missing values. 

Precipitation and temperature are among the main climatological variables and the two ones 

we will deal with; although, we retain that some methods that are here described can be 

applied to other weather variables (sometimes, this idea will be mentioned). 

In particular we deal with daily precipitation data (accumulated) and daily temperature 

data: maximum, mean and minimum temperature. 

These data are provided by the Veneto Meteorological Centre of Teolo (Padova, Italy); this 

Centre manages one of the best weather network operating in Italy. 

Not more than 5 percent of the values of these database are missing. The reconstruction of 

these data may be due to many reasons: the needing to obtain a value of daily precipitation 

or temperature in a day when unfortunately this datum is not available; the use of 

algorithms for which, a priori, there must be no gaps in the data to run; etc. 
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The most important methods to reconstruct missing precipitation and temperature data, of 

the current literature, are described in the next chapters, through the introducting sections. 

 

Some considerations dealing with reconstructing methods 

 

In order to identify the most performing method to fill the gaps of a database  we should 

understand that the type of model is strictly dependent on : 

 * The kind of variable (temperature, precipitation, radiation, humidity, etc.) that we are 

dealing with; 

 * The total number of available stations and their density in the studied area; 

 * Frequently, a morphological dependence, when the territory includes significant 

gradients in altitude, must be taken into account; 

 * In some cases the different climatic zones involved should be considered; 

 * When reconstructions are made per gap (calling gap a sequence of contiguous missing 

values), their size has to be considered, in fact, they could still affect the selection of the 

method. 

It is worth noting that sometime the behaviour on space and time of different weather 

variables can be very different. A typical comparison is between temperature and 

precipitation. Temperature can be considered roughly continuous. Instead, precipitation 

generally shows high gradients onto both space and time directions; wide area and long 

periods without phenomena can be found. 

Anyway, regardless of the method, it is important to yield reconstructions complying with 

the climatology that can be deduced from observed data; moreover, the final purposes of 

the reconstruction have to be considered. 

Finally, it is important to cite the adaptive methods, they are methods that carry out 

reconstructions in a localized way, taking into account the particular time and place of the 

missing value that has to be filled.  
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Some brief features of the climatology of the Veneto Region 

 

There are two principal climactic zones: the alpine region, characterised by cool summers 

and cold winters with frequent snowfalls, and the hill and plain areas where the climate is 

moderately continental. The two coastal areas, along the Adriatic and the Garda lake, give a 

warmer climate. The lowlands are often covered by thick fog. 

From the point of view of precipitations, convection is one of the most important 

meteorological phenomena during the warm season in northern Italy (Calza et al., 2008).  

The convective activity in Veneto Region was documented for the warm seasons 2005, 

2006 and 2007 by Calza et al. (2008), where the overall density map of the warm seasons 

highlights the province of Vicenza, western part of the Region, as the area with the highest 

frequency of convective activity. 

Verifications in the Calza's paper (2008) revealed that the quantitative precipitation forecast 

(for the warm seasons - May-Sep - 2005, 2006 and 2007) maxima are located prevalently in 

the Alpine and Prealpine areas of the Veneto Region, whereas the minima are observed on 

the southern plains. 

Months with a predominance of thermal convection which affects mainly the mountainous 

parts of Veneto (e.g. Jul 2006) are distinctly different from months where a synoptic 

influence prevails (e.g. Sep 2006). August appears to be the month with highest convective 

activity. 

 

Second topic of the research 

 

The other topic of this study, is the analysis of the correlations between the stations, 

taking into account the varying of both time and space through the database. 

This topic is directly related to the first, particularly when regressive methods are used to 

fill the gaps; in fact, often in these cases for a regressive-formula, predictors are selected 

considering their correlation coefficients with the target station (target station: station 

where a gap has to be filled or station on which we focus for calculations), so, it is natural 
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to ask what is the inner structure and the relationship of the whole system of distances 

(from the target station) and correlations with target stations, considering all the stations of 

the network. This analysis will be led from both points of view, of space and time. 

It is important to note that calculations carried out via computer for this topic, would not be 

possible if the gaps of the data were not filled in advance. Now it is clear that the two 

arguments are a vicious circle, but thinking that the total number of missing values to fill, 

not exceed the 5 percent of the whole database this hindrance is easily overcome:the 

possible errors induced is minimal. 

 

Description of the sections of  the dissertation 

 

First of all, a new dynamic (time-dependent) method to reconstruct temperature data is 

described. This method works with a set of  parameters and most of them are set from 

experience. Consequently, the second part of this work presents a deeper analysis carried 

out on the dynamic method to understand how to use these parameters with more scientific 

awareness. Through this second part, important deductions are made on the relationship 

between the multiply correlation and the distance of the stations that are used as predictors 

in the multilinear regression formula. 

The third part deals with finding a method to fill the gaps of the precipitation-database; this 

method must be as simple and performing as possible. 

Through these two methods the data of temperature and precipitation are completed, so 

(fourth part) a deep analysis on the Pearson's correlation coefficients is conducted to obtain 

important relationships characterizing the correlation system between the stations, through 

the time and the spatial coordinates of the network. 

The second and the fourth parts are closely related: important differences can be noted 

between the working in multilinear and linear environment, on the behaviour of the 

stations. 

Here is a more detailed description of the chapters 2,3,4,5. Each chapter corresponds to an 

article. The first chapter is an international published paper, the other three are submitted to 

international journals. 
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2nd Chapter (Abstract: Tardivo G and Berti A, 2012) 

A regression-based approach for temperature data reconstruction has been used to fill the 

gaps in the series of automatic temperature records obtained from the meteorological 

network of the Veneto Region (North-eastern Italy). The method presented is characterised 

by a dynamic selection of the reconstructing stations and of the coupling period which can 

precede or follow the missing data. Each gap is considered as a specific case, identifying 

the best set of stations and the period that minimizes the estimated reconstruction error for 

the gap, thus permitting a potentially better adaptation to time-dependent factors affecting 

the relationships between stations.  

The best sampling size is determined through an inference procedure, permitting a highly 

specific selection of the parameters used to fill each gap in the time series. 

With a proper selection of the parameters, the average errors of reconstruction are close to 0 

and those corresponding to the 95th percentile are typically around 0.1 °C.  

In comparison with similar regression-based approaches, the errors are lower, particularly 

for minimum temperatures, and the method limits inversions between minimum, mean and 

maximum temperatures.   

 

3rd Chapter (Abstract: Tardivo G and Berti A, submitted-1) 

A suitable search strategy for identifying the best reconstructing stations is a basic requisite 

for the proper implementation of gap-filling methods. 

A detailed analysis of the effects of the number of predictors for a regression-based 

approach and their search strategy is presented. These information can be used for the 

reconstruction of missing data in a daily temperature dataset. 

Data are recorded by the weather stations of the meteorological network of the Veneto 

Region (North-eastern Italy). The correlation between stations was studied, checking 

performances with a recently published regression model. For the network considered, a 

better performance was achieved by the system when the maximum radius within which to 

start searching for predictors was set at equal to or greater than 40 km. As a consequence it 

can be deduced that stations used to reconstruct gaps don' t strictly need to be close to the 

target station. Setting the maximum number of predictors at 4 and the maximum radius at 
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exactly 40 km significantly reduces the number of inversions and their attached errors. 

 

4th Chapter (Abstract: Tardivo G and Berti A, submitted-2) 

Daily precipitation data are often useful to perform climatological models; nowadays these 

models make frequent use of computational and algorithmic approaches requiring no 

missing values to run. 

Four straightforward methods to reconstruct gaps of precipitation data-base are here 

considered and compared through a series of statistical indexes and applications to some 

practical issues. 

The purpose of this paper is to repair the daily precipitation data-base of the Veneto Region 

(Italy) obtaining values as consistent as possible with the information arising from the 

observed data. 

The methods are compared from many points of view: estimating extreme errors;  pairing 

observed rainfall values and respective errors of each method; ability to predict monthly 

and annual accumulations, and monthly and annual rainy days;  varying the density of the 

network. 

In the two last cases, Linear Regression seem to be the most performing; in the first case, a 

modified Normal Ratio method seem to have the best behaviour; in the second case, the 

modified Normal Ratio shares the results with Linear Regression and Inverse Distance 

Weighting method. 

 

5
th

 Chapter (Abstract: Tardivo G, submitted-3) 

A basic issue concerning weather networks, when matched data bases are analysed and 

studied, is the correlation system that characterizes the set of weather stations. 

Some statistical models that reproduce temperature and precipitation data or are used to 

reconstruct missing data often make use of the Pearson's correlation coefficient, whereby a 

selection of predictors is carried out. 

In this paper a specific analysis has been made to understand the relationships between 

distance and correlation structures (of the network), and the changing of the order of the 

stations, passing the time since the birth of the network on, when they are ranked through 
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the values of correlation coefficient with a target station. 

This study has preliminarily been carried out over the entire area (Veneto Region, Italy) 

and then, subdividing that area into three main climatic zones: mountain, plain and coast. 

The variables that are involved in this study are :  daily precipitation and daily maximum, 

mean and minimum temperature. 

The results of this work that are worth highlighting are: the correlation coefficients of the 

database of precipitation are, on average, inversely proportional to the mean distances from 

the target station; the correlation coefficients are higher for the closest stations to the target 

station; these last sentences are not true for temperature; from 5.5 years from the birth of 

the network, the temperature variable is characterized by a high stability of the correlation 

order, up to an wide radius from the target station; this sentence is less evident for rainfall 

data. 

 

 

 

 

Brief note to read figures and tables: 

 

Fig.02-04 (or Tab.02-04) means: the fourth figure (or table) of the second chapter. 
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Introduction 

 

Both climatic data analysis and environmental modelling require a complete set of 

meteorological inputs, but frequently weather stations are subject to some malfunctioning 

in the monitoring period. The estimation of missing meteorological data is typically done 

through within-station, between-station or regression-based methods (Allen and De 

Gaetano 2001). With the first, data for the same station on days when data are available are 

used, while the other two groups of methods are based on data from neighbouring stations. 

Short gaps (typically of one or a few days) can be easily filled by simple within-station 

methods, such as interpolation between available data or moving averages (Kemp et al. 

1983), or using data from several days before and several days after the date of missing 

data in a non-linear regression to fill the data gap (Acock and Pachepsky 2000). When the 

length of the missing period increases, between-station approaches, considering the specific 

variability of climate in the period to be reconstructed, tend to give better results; 

furthermore, Kemp et al. (1983) have shown that regression-based approaches give more 

accurate estimates than within-station and between-station methods. 

For between-station analyses different approaches have been used, ranging from spatial 

averages or even the use of data from the closest station (Xia et al. 1999), to inverse 

distance weighting methods (Teegavarapua and Chandramouli 2005). 

Also geostatistical interpolation approaches such as kriging (Jeffrey et al., 2001) are 

considered as reconstructing methods: the main problem with kriging is the computational 

intensity for large datasets, the complexity of estimating a variogram, and the critical 

assumptions that must be made about the statistical nature of the variation (WMO 2007; 

Xia 2001).  

Various types of regression approaches (Eischeid et al. 1985, De Gaetano 2000, Allen and 

De Gaetano 2001) have been also implemented, and they can give good results (Nalder and 

Wein 1998), even better than those given by kriging approaches (Ian and Ross 1998) and 

can be easily used for automatic data reconstruction. Further increases in reconstruction 

performances have been achieved with thin-plate smoothing splines (ANUSPLIN) (Price et 

al., 2000), which gave positive results in comparison with Gradient plus Inverse-Distance-

Squared (GIDS) (Nalder and Wein, 1998). 
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The paper presents  a regression-based approach for daily temperature data reconstruction 

that involves a dynamic selection of both the reconstructing stations and the length of the 

coupling period used. Each gap is considered as a specific case, identifying the best set of 

stations and the period that minimizes the estimated reconstruction error for the gap. The 

main advantage of this approach is a potentially better adaptation to time-dependent factors 

affecting the relationships between stations. Examples of these factors can be climatic 

changes due to both long- and medium- term evolutions that have variable effects on 

different areas within the region considered, specific local effects such as instrument 

changes or modification of the conditions surrounding the stations and presence of strong 

seasonal effects (i.e. mountain areas). 

The method has been applied to fill the gaps in the Regional network of meteorological 

stations of the Veneto Region (North-eastern Italy), composed of 114 stations over an area 

of 18364 km2.  
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Materials and methods 

 

The data used in this study have been collected by the Meteorological Centre of the Veneto 

Region Environmental Protection Agency (Centro Meteorologico di Teolo – ARPA 

Veneto) on a network of 114 automatic meteorological stations. The stations are 

distributed quite homogeneously across the Veneto Region (North-eastern Italy) 

(Fig.02-01).  

 

Fig.02-01_Distribution of meteorological stations across Veneto Region.  = stations used for 

reconstructions; ▲ = stations used both for reconstructions and for evaluating the presence of edge effects 

in the reconstructions 

 

The stations close to the Region boundaries have been used both for the reconstruction of 

missing data and, in a specific analysis, to evaluate the possible presence of edge effects 

in the reconstructions. The main characteristics of the stations are reported in Tridello et 

al. (2009). The time series considered have already been checked for consistency and 

validated (Tridello et al., 2009). 

The time span considered is from January 1, 1993 to December 31, 2008, for a total of 5844 

days. Taking the whole set of 114 stations and the three parameters observed (daily 
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minimum, maximum and mean temperature) gives a total of 1998648 data values. There 

are 4440 missing data intervals (1480 missing intervals for minimum, maximum, and 

mean temperature respectively) in the time series, corresponding to a total of 18063 

missing data values.  

Most missing data intervals are short: 86% are less than 5 days and 98% are less than 20 

days, with a single maximum of 213 days of contiguous missing data (Fig.02-02). 
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Fig.02-02_Cumulative distribution of the extent of missing data intervals (log scale). For the 114 stations. 

The time span considered is from January 1, 1993 to December 31, 2008. The total number of intervals of 

missing days is 1480 

 

 

The approach used: 

 

The method is based on multiple linear regressions (LS), using a set of surrounding stations 

as regressors. The approach used for the selection of the stations and identification of the 

best period of coupling of reconstructing and target stations can be summarised as 

follows: 

1) analysis of the target station to identify a period without gaps of sufficient length 

contiguous to the gap to be filled preceding and/or following the gap; 

2) identification of two groups of stations (maximum 4 stations per group) that can be 
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potentially used for data reconstruction in the neighbourhood of the target station, one 

considering data preceding the gap to be filled, the other group following the gap; 

3) selection of the period to be considered (before or after the gap); 

4) identification of the subset of stations, in the period previously identified, giving the best 

correlation with the target station for the specific gap to be filled. The search is done 

considering all the possible subsets within the selected group; 

5) identification of the best sampling size (length of the period used for data coupling) that 

minimises the reconstruction error; 

6) reconstruction of the gap. 

The procedure is then repeated for the subsequent gaps and, after reaching the end of the 

time series of the considered target station, for the gaps previously omitted for lack of a 

period without gaps of sufficient length, using the reconstructed values previously 

calculated. 

 

 

Details of the method: 

 

As a first step, the algorithm verifies that in the target station there is a continuous period of 

at least D days before and/or after and contiguous to the gap (Fig.02-03), in order to 

perform all the required calculations. 

The length of the required period without gaps is defined as follows: 

D = (U-1) + T + I 

where U = number of CV trials (cross-validation trials), user defined; 

T = length of the gap (days) 

I = maximum sampling size allowed. 

The method will then search an optimal sampling size considering sampling sizes (i) 

ranging from number of reconstructing stations+2 to I.  

To evaluate the performances of the proposed approach, the reconstruction process was 

tested considering a range of values of I from 25 to 500 days and of U from 100 to 500. 

The stations that can be used for the reconstruction are those without gaps in the days 

corresponding to the gap of the target station and in the contiguous period of D days 
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before and/or after the gap. 

The stations within a radius of 40 km satisfying this condition are selected. If there is not at 

least 1 station with available data within 40 km of the target station, the search radius is 

increased by 10 km steps until the minimum of 1 suitable station is reached. If more than 

4 stations are found, the 4 with the best correlations over the period of D days are 

selected. The evaluation is done through the coefficient of determination (R
2
). The 

maximum number of stations was limited to 4 following Eischeid et al. (1995), who 

stated that inclusion of more than 4 stations does not significantly improve the 

interpolation and may in fact degrade the estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.02-03_ Progress of CV trials for every sampling size in the case of the selection of the period before the 

real gap. D =  (U-1) + T + I; I = maximum sampling size allowed; i = tested sampling size ; U = number of 

CV trials ; T = length of the gap (days). Each u represents a CV trial. 
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If the target station has a continuous period of D days both before and after the gap, two 

groups of potential stations could be identified, one for the period preceding the gap in 

the target station, the other following the gap. The group containing the station with the 

best R
2
 is then selected. 

The final set of stations that will be used for reconstruction is then identified considering all 

the possible subsets of stations in the previously identified group, and computing a 

multiple linear regression over the D days considered between the reconstructing 

stations (xi) and the target station (y). The final set of reconstructing stations is then 

selected choosing the one with the lowest mean absolute error (MAE) of the multiple 

linear regression, exploring all the possible combinations of reconstructing stations.  

The next step of the reconstruction process is to identify the best sampling size for the final 

reconstruction (i.e. number of days contiguous to the gap to be used for determining the 

multiple regression between reconstructing stations and the target station). As stated 

before, the length of this period (i) can vary between number of reconstructing 

stations+2 to a maximum of I days. For each sampling size i, a number of CV trials 

equal to U is done, starting from the farthest position from the gap and moving the 

period of T+i days towards the real gap with a 1 day step within the interval of D days, 

as indicated in Fig.02-03.  

For each CV trial, a gap of T days is simulated and then reconstructed with the multiple 

regression obtained for the set of considered reconstructing stations in the period of i 

days contiguous to the simulated gap; these simulated reconstructions (CV trials) can be 

used for assessing the performances of the reconstruction method. For each simulated 

gap, a MAE is computed and, over the U CV trials, a mean MAE (MAEi) can be 

computed for each i. The final sampling size (n) that will be used for the reconstruction 

is equal to the i value giving the minimum MAEi. 

The period of n days contiguous to the real gap is then used for calculating the coefficients 

of the multiple regression between the selected reconstructing stations and the target. 

These coefficients are specific to the reconstruction of the considered gap.  
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Fig.02-04_95

th
 percentile of the absolute values of mean error (ME) (left) and of the standard deviation (SD) 

(right) for every U and I value; U = number of CV trials and I = maximum sampling size allowed. Tmax = 

maximum temperature; Tmean = mean temperature; Tmin = minimum temperature. 
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Results and discussion 

 

As stated before, the method considers a maximum of 4 reconstructing stations for each 

gap, following the suggestion of Eischeid et al. (1995). A preliminary study was done 

comparing the reconstruction done with a maximum of 4 or 10 reconstructing stations 

(data not shown). The average reconstruction error is similar in the two cases, but the 

number of inversions, i.e. cases where a reconstructed minimum temperature (Tmin) is 

higher than the mean temperature (Tmean), or maximum temperature (Tmax) is lower 

than Tmean, was markedly reduced when setting the maximum number of 

reconstructing stations at 4. This limit was therefore retained for subsequent analyses. 

A first step in the evaluation of the method performance is to assess the optimal values of 

the number of CV trials (U) and maximum sampling size (I) and to evaluate its 

sensitivity to the change of these parameters 

The U values considered ranged from 100 to 500 with 50 units steps, while those 

considered for I were 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 days, for a 

total of 99 experiments (i.e. sets of data reconstruction with given I and U values). 

The model used requires a contiguous period in the target station of at least D days without 

gaps for the first data reconstruction. The length of the longest period without gaps is 

then an important factor limiting the values of both I and U. In our dataset, this period 

varies within the 114 stations from 464 to a maximum of 5439 days. In order to permit 

data reconstruction on the whole set of stations, D should therefore not exceed 464. In 

our case we also considered values of I and U leading to D values above this threshold to 

evaluate their effect on a wider range of values, accepting the risk of not being able to 

fill all the gaps of the dataset. 

It is worth noting that with our dataset, only in 7 cases over 114 meteorological stations, the 

size of the maximum contiguous period without gaps did not permit the reconstruction 

of the missing data with the higher I and U values considered. Even in these cases, 

however, a proper selection of these two parameters allowed all the stations to be 

reconstructed. 

For each I and U, a number of CV trials equal to U is done for determine the optimal 

sampling size n for a specific gap; each of them allows the accuracy of the method to be 
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evaluated. A ME have then be computed for each data value and the average ME have 

been used to evaluate the reconstruction performances. Considering the whole set of 

data, the absolute value of the mean of the ME of the simulated reconstructions varied 

from 0.000 and 0.009 °C, this shows the method is essentially unbiased. 

The 95
th

 percentile of the absolute values of ME (Fig.02-04) confirms the great reliability 

of the method. However, both I and U can affect the accuracy of the method, with values 

generally inversely proportional to U , provided I is larger than around 100. Taking into 

account the 95
th

 percentile of SD, there is a wider dispersion for the smaller sampling 

sizes and a tendency to reduce the variability of estimates for I values ranging from 50 to 

150 days (Fig.02-04). 

The final sampling size selected by the method is in most cases close to I when this 

parameter is less than 100 days. For higher I values, the final sampling size is distributed 

over the whole range of possible values, even if the median values don't exceed 150 days 

(Fig.02-05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.02-05_Box-plots for the distribution of the final sampling size (n) with different I thresholds. U=450. U = 

number of CV trials and I = maximum sampling size allowed. 
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The number of regressors used for the reconstruction is limited to 4 stations; however the 

procedure can select fewer stations, depending on the number of reconstructing stations 

found in the neighbourhood of the target station and their correlation. In most cases the 

final number of regressors is equal to the maximum number allowed (Fig.02-06), mainly 

because the network of stations is relatively dense, so there are a large number of 

stations within 40 km of the target station.  

 

 

Fig.02-06_Number of regressors (reconstructing stations) selected. Maximum, minimum or mean temperature 

share the same graph. U=450, I=150. U = number of CV trials and I = maximum sampling size allowed. 

 

 

The average distance of the stations selected as regressors slightly increases with both I and 

U even if the mean distance is within a 20 km range for all the combinations of I and U 

(data not shown). With small maximum sampling sizes (small I) the required length of 

the period without gaps before and after the gap to be filled is short, so a large number of 

possible stations are available around the target one and the search can be concluded 

within a relatively short radius. Increasing both I and U, the required length of the period 

without gaps increases, thus reducing the number of suitable stations and forcing the 

search over a wider radius. 

To evaluate if there is some edge effect on the reconstruction of data in stations laying on 

the boundary of the region, the 31 stations highlighted in (Fig.02-01) were considered. 
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The 95
th

 percentile of the reconstruction errors and of their standard deviations were 

very close to those of the whole set of reconstructions and the differences never 

exceeded ± 0.006 °C  for 95
th

 percentile and ± 0.08 °C for its standard deviation, thus 

indicating that the method can give reliable results even in these conditions. 

A further aspect to be considered when evaluating the reconstruction performance is the 

number of inversions (i.e. cases where a reconstructed Tmin is higher than Tmean, or 

Tmax is lower than Tmean) (Xia, 2001). This type of error is quite rare, ranging from 1 

to 37 inversions in the whole set of ca. 6000 missing days  (Tab.02-01). An effect of 

both I and U is anyway evident, with the lesser number of inversions for I ranging from 

100 to 250 days and U more than 150. 

 

Tab.02-01_Number of inversions observed as a function of I and U parameters. 

 U 100 150 200 250 300 350 400 450 500 

I number of inversion 

25 33 31 30 27 18 18 29 31 37 

50 26 12 18 14 11 17 18 20 19 

100 6 17 11 9 9 9 9 10 10 

150 11 4 5 5 3 7 7 1 4 

200 3 4 9 7 5 9 3 5 7 

250 5 4 7 6 7 3 7 8 11 

300 5 4 6 9 6 6 10 11 15 

350 5 2 9 6 9 10 11 13 11 

400 1 8 7 7 8 10 10 11 10 

450 2 5 6 10 8 11 11 11 10 

500 6 7 7 9 11 9 11 11 12 

  

 

Considering both the ME and its standard deviation as well as the number of inversions, the 

parameter values I=150 and U=450 seem to be appropriate in most cases, leading to 95
th

 

percentile errors of 0.112, 0.072 and 0.107 °C for minimum, mean and maximum 

temperatures respectively (Fig.02-04).  These values were selected for subsequent 

analyses. 

To compare the results obtained with the method presented here with other approaches, the 

procedure proposed by Eischeid et al. (1995) has been applied to daily data, as proposed 

by Allen and De Gaetano (2001). 

The approach of Eischeid et al. (1995), as our method, is based on multiple regressions, 

using the absolute deviations from the regression (LAD) as minimising function.  
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The aim of this comparison was mainly to check if the use of a dynamic and gap-specific 

selection of both the reconstructing stations and the sampling size should improve the 

reconstructions in comparison with a static selection of these two parameters. 

The meteorological stations used for data reconstruction were selected over an initial radius 

of 40 km around the target station, considering a minimum of 1 station and a maximum 

of 4. 

The LAD method was applied for all the cross-validations (simulated gaps) already done 

for the LS method. 

The mean ME are similar for both methods and, in absolute terms, very small (Tab.02-02). 

The method presented here permits a reduction of 95
th

 percentile SD, particularly in 

extreme cases, with a consistent reduction of 95
th

 percentile ME, and greatly reduces the 

number of inversions, which pass from 41 with a maximum error of 2.002 °C for the 

method of Eischeid et al. (1995) to 1 inversion with a maximum error of 0.025 °C for 

the method presented here. 

It is worth noting that, in the estimation procedure, Eischeid et al. (1995) used only stations 

presenting a correlation coefficient higher than 0.35. In our case this criterion was not 

used due to the very high correlation coefficients of the stations used for data 

reconstruction, typically over 0.95. 

 

Tab.02-02_Comparison of LAD and LS methods for data 

reconstruction. 95th percentile of the absolute values of ME, 

mean and median values and 95th percentile of the standard 

deviations are presented. Parameters for LS method: I=150, 

U=450; for LAD I is not considered while U is the same as the 

LS method. U = number of CV trials and I = maximum 

sampling size allowed. 

 

   LAD method  

  

95
th

 

percentile mean median 

SD 95
th

 

percentile 

                                   °C 

Tmax 0.347 -0.011 -0.002 1.278 

Tmean 0.277  0.001 -0.003 0.917 

Tmin 0.339  0.001  0.003 1.414 

   LS method  

Tmax 0.112 -0.001 0.002 1.247 

Tmean 0.072 -0.003 -0.003 0.670 

Tmin 0.107 -0.004 -0.004 1.048 
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Conclusions 

 

The proposed method proved to be a reliable procedure for reconstructing missing data in 

long-term daily temperature series. With a proper selection of the I and U parameters, the 

average errors are close to 0 and those corresponding to the 95
th

 percentile are always very 

low, typically around 0.1 °C. This aspect is of great importance because these errors are 

often related to extreme observations, thus indicating a potential ability of the method also 

in reconstructing extreme events. The selection of the number of cross-validations (U) and 

maximum sampling size allowed (I) is  crucial for the reliability of the method, both for 

limiting the reconstruction error and the number of inversions. On the other hand, 

augmenting U and I, the number of calculations and the time required for the reconstruction 

increases. The values of I=150 and U=450 appears to be a good compromise, allowing a 

good reconstruction of all the missing data while maintaining a feasible computing time. 

Further studies should be necessary to assess if these parameters can be considered valid 

also in other situations or are highly dependent on the specific characteristics of the 

network considered. 

In comparison with similar regression-based approaches (Eischeid et al. 1995), the errors 

are lower, and the method proposed here limits to a minimum the case of inversions 

between minimum, mean and maximum temperatures. 
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Chapter 3 

 

The selection of predictors in a regression-based method 

for gap filling in daily temperature datasets
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Introduction 

 

Long-term time series often contain gaps due to failures of the measuring instruments or 

radio-software systems acquiring data from them. This issue is particularly acute in 

meteorological and climatological fields where monitoring station networks are 

frequently used to detect key variables such as temperature, precipitation, pressure, 

humidity, radiation, etc. Studies began some decades ago on models, to provide as 

accurate as possible climatological data reconstructions. The arrival of computers made 

it possible to significantly increase their performance; they enable models to making use 

of more sophisticated mathematical and statistical methods supported by important 

algorithmic structures. 

Many climatological models require a number of surrounding stations to reconstruct 

missing values of a given station; for example: between-station methods (Kemp et al., 

1983), kriging approaches (Jeffrey et al., 2001), thin-plate smoothing splines (Price et 

al., 2000), artificial neural networks (Kim and Pachepschy, 2010) etc. The number and 

closeness to the target station of these surrounding stations (predictors) is strictly 

dependent on the type of model and on the total number of available stations and their 

density in the study area; there is also frequently a morphological dependence when the 

territory includes significant altitudinal gradients. Depending on the characteristics of 

studied variables, the different climatic zones involved should be taken into account. 

It must be stressed that a sufficient number of stations are required in the network; were it 

not for this, a more thorough numerical analysis would make no sense. 

In this context,there are essentially three main ways to rank and select predictors: by 

climatic zone, by distance and by correlation indices. 

Some methods, such as Steurer’ s (1985), rely on selection of stations using broad and 

somewhat arbitrary climate or political boundaries; DeGaetano et al. (1995) have shown 

that using a distance criterion versus climate boundaries significantly reduces the overall 

range of errors. But in other methods such as the Normal Ratio (Young 1992), the choice 

was made by the value of the correlation coefficient (using the best three stations). 

Temperature is one of the least problematic variables and reconstructing methods are often 

based on multilinear regression. There are many variants in the literature, more or less 
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complicated, each one tailored to a specific situation.  

These methods include one by Eischeid ( 1995), in which the problem of number of 

predictors was solved by requiring a preliminary choice of 10 stations closest to the 

target station; this author also stated that a minimum of one station is needed as predictor 

and a maximum of 4, while using more than 4 stations could degrade the estimate.  

Another adaptive and regression-based method was recently published (Tardivo and Berti, 

2012), consisting of a statistical-computational approach that tackles each gap 

separately. 

The method was compared with that of Eischeid; setting the maximum number of 

reconstructing stations at 4 or 10, it was observed that the best behaviour was achieved 

with 4 stations, especially from the point of view of inversions (cases when 

reconstructed data present Tmax values less than Tmean or Tmean less than Tmin), 

roughly agreeing with Eischeid' s assertion. 

This chapter describes a more detailed analysis for better understanding the variation in 

performance resulting from the changing of these numbers, and to explore the more 

appropriate maximum distance from the target station within which to start searching for 

predictors.  In some cases this problem was solved by using stations as close as possible 

to the target station (Eischeid, 1995). 

In Chapter 2, the initial radius was set at 40 km; this was obtained through a rudimentary 

system of tests and no specific analysis was conducted. 

It should be mentioned that this work uses regression dynamic methods: for each gap and 

target station a preliminary selection of predictors is needed that adapts locally to the 

period of the gap.  The analysis of the behaviour of such a system in relation to the 

search parameters is of interest even for non-dynamic but regressive systems, which 

anyway look for predictors that have no missing days corresponding to the gap period. 

Finally, it should be pointed out that spatial predictions are dealt with here, but a similar 

analysis was conducted in the weather forecasting field (Carr, 1988), where important 

suggestions were made regarding the number of predictors, referring in particular to the 

Model Output Statistics (MOS) forecasting technique. 
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Materials and methods 

 

This work was carried out over the stations already used in chapter 2. 

 

Selection of predictors  

 

Reconstruction of missing data requires a coupling period to study the correlation between 

the target and the reconstructing station(s). In the present paper a continuous period 

contiguous to the gap of 600 days (plus the extent of the gap minus one) is required (see 

Chapter 2).  

Reconstructing stations can have an available period either prior to or after the gap period. 

If a target gap has sets of stations available on both sides, a choice is made ranking the two 

sets by R
2
 and picking the set having the station with the best  R

2
. From this last set the 

subgroup of stations reporting the best MAE (Mean Absolute Error) with the target station 

(on the coupling period of 600 days) is selected.  

In this work this selection procedure is performed searching for a number of stations 

ranging from a minimum (mn) to a maximum (Mx), varying mn and Mx. If more than Mx 

stations are found, the Mx stations with the best  R2 are selected. The system begins to 

search for perdictors within a radius of Sr km (varying Sr). When mn stations are not found, 

this value (Sr) is increased by 10 km until the mn number of stations is found. 

This method of searching for predictors was described in chapter 2. In this chapter these 

three parameters are varied, ranging mn and Mx from 1 station to 12, with mn less than or 

equal to Mx and Sr from 10 to 60 km with a 10 km step. 

Setting Sr, mn and Mx for each target station and each of their gaps, a subgroup of 

predictors can be found; a set of subgroups (hereafter referred as “subgroups-set”) is 

obtained (matched with the previously set Sr, mn, Mx) scanning the whole network of 

target stations with their gaps. These subgroups-sets were analyzed varying Sr, mn and Mx 

parameters as required by the method described and according to the purposes of this 

particular work. 

This chapter deals with the effect of the size of predictor-subgroups and their distance from 
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the target station. More specifically, for each subgroups-set, the mean values of sizes of all 

its subgroups and their mean distance (calculated over all the average distances of 

subgroups, of the subgroups-set, from their respective target station) were considered. 

 

Evaluation of reconstruction performances 

 

After choosing the predictors of a gap, the second phase consists of an inference procedure: 

the identification of the best sampling size (length of period used for data coupling when 

the real reconstruction has to be done) that minimises the reconstruction errors of a series of 

cross validation-trials carried out over the period of 600 days close to the real gap. This 

method of obtaining performance values is used to evaluate the different set mn, Mx, and 

Sr values over all of the gaps and, separately, for each temperature (Tmax, Tmean and 

Tmin). 

For these tests and this network of stations the best performing values of I and U already 

identified in the preceding chapter were maintained, setting I=150 and U=450 days (for the 

sum of 600 days); the same was done for the value of maximum searching distance for 

predictors, which was set at 100 km. 
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Results and discussion 

 

Station Selection 

 

Stations that can be used as predictors in gap reconstruction must have a sufficient number 

of days available. If  a dynamic selection method is used (Chapter 2), a further condition is 

that the required number of days must be continuous and contiguous to the missing period 

in the target station.  This period permits statistical (and therefore climatological) 

relationships with the target station to be analyzed in a localized way. 

In Chapter 2 this period (D) was the sum of the number of days: number of cross 

validation-trials (U), maximum sampling size allowed (I) and gap-size (T) minus one. In 

the present chapter a period of  600 days has been considered. This length of period is 

assumed as sufficiently wide to allow a detailed study on the relationships between weather 

stations. 

Generally a dynamic and/or regression-based model deals with station-selection by r 

(Pearson correlation coefficient), R
2
 (coefficient of determination) and MAE (Mean 

Absolut Error) as statistical indexes. R
2
 is used to rank stations when the number of 

searched station is equal to one, while when more than one station is searched, the possible 

subgroups of stations are selected via combinatorial calculus, ranking them via MAE. 

The selection of station appeared to be strongly affected by Mx, mn and Sr parameters, 

with effects involving both the number of stations selected and their distance from the 

target one. 

A preliminary analysis can be discussed observing variations of both means of the sizes of 

subgroups and their distances from target station, when mn=1. Setting mn=1 permits the 

system to be independent from mn values and to study just the relationship of Mx and Sr.  

The mean of the number of predictors is reported in Fig.03-01 for each subgroups-set with 

mn=1 (this graph refers to Tmax data, the same behaviour was found for Tmean and Tmin) 

and Tab.03-01 representing mean distance of the closest stations, from all stations, having 

an available period of D days contiguous to the gaps. 

Observing Tab.03-01 it can be noted that, if Sr≤30 km, the system can find 7 suitable 
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stations at most on average; instead, if Sr>30 km, the system can find more than 12 suitable 

stations on average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.03-01_Mode-values of histograms of the whole set of sizes of selected subgroups for each collection, with 

mn=1 (this graph refers to Tmax data, the same behaviour was found for Tmean and Tmin). 

 

 

Analysing Fig.03-01 the system increases the mean of the sizes (of subgroups) with Mx, 

when Sr>30 km; instead, when Sr≤30 km, this mean remains constant when the 

corresponding number of stations (see Tab.03-01: station-order column) is approximately 

reached; indeed, looking at the graph with Sr=30 km, it can be seen that at Mx=9, the 

subgroups-sets reach a mean size of 7 stations, and this is maintained up to Mx=12; this is 

in accordance with Tab.03-01, where, for Sr=30 km the system can find 7 stations (on 

average). 

When Sr is greater than 30 km, Tab.03-01 shows that the system finds more than 12 
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stations, whereas Fig.03-01 shows an increase of the subgroups-set size with Mx. 

This suggests that the distance between the target station and the reconstructing one is not 

the main criterion of selection and that it is possible to find stations (and subgroups) with a 

high correlation even at very long distances from the target.  

 

 

Tab.03-01_ Mean distances of the stations with suitable and 

available D-period. (From the 1st to the 12th nearest station). 

 

station order suitable station 

1 10183.2 

2 13784.5 

3 16955.2 

4 20124.4 

5 23157.5 

6 25868.5 

7 28282.5 

8 30373.6 

9 32449.6 

10 34512.0 

11 36619.9 

12 38499.3 

 

 

 

Furthermore, it was observed that the average distance of the selected stations seems to be 

independent from Mx and varies according to mn at the smaller Sr values, while the 

opposite is evident for the larger Sr values. This last dependence was acquired gradually, 

changing Sr from 10 to 60 km. 

The behaviour of the system in terms of distances is summarized in Fig.03-02, where the 
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graphs of average distances are presented varying Sr from 10 to 60 km and setting as 

constant first the mn and then the Mx parameter. The left hand column contains graphs with  
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Fig.03-02_Average distances of subgroups varying Sr from 10 to 60 km and setting as constant first the mn 

parameter (left-side) and then the Mx parameter (right-side). 
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mn=constant: from Sr=10 to 60 km, it can be seen that there is a tendency to increase the 

dependence on Mx of the average distance of subgroups selected; at Sr=60 km this distance 

increases with Mx and this increase becomes independent of the mn value. Instead, looking 

at the right hand column: from Sr=10 to 60 km, the increasing of independence from mn 

when Mx is constant can be noted; at Sr=10 km dependence is quite equal for each Mx 

constant value. 

The mean value of distances reported in each graph increase with Sr; referring to Tmax as 

an example: mean value is 16802 meters for the graph of Sr=10 km, rising to 17523, 19663, 

21832, 23709, up to 24961 for Sr=60 km. 

When the search is restricted to a relatively reduced radius, the optimum number of 

predictors is mainly dictated by the parameter mn; when a number of stations equal to the 

minimum allowed is available, the search stops. With a wider search radius it is possible to 

identify many possible predictors, generally above the maximum allowed Mx; in these 

conditions the number of predictors selected is mainly dictated by Mx and, frequently, 

stations as far away as 84 km but, nevertheless, highly correlated with the target one can be 

found. 

 

Estimation of performance 

 

To evaluate the performance of this selection procedure the cross validation-trial method of 

dynamic model (Chapter 2) has been used, where calculations of 95%, SD95% and 

inversion errors were done for each subgroups-set. 

For each Sr value the  values of 95
th

 percentile of the mean error (varying mn and Mx 

parameters) are presented in Tab.03-02, together with their standard errors (SD95); the 

absolute values of these errors are very low and are only marginally affected by Sr. 

The SD95 values tend to reach a minimum when mn=Mx in comparison with the cases 

when mn was less than Mx, so, looking at these values (Mx=mn) (Fig.03-03) the standard 

deviation of Tmax decreases rapidly with both Sr and the number of predictors, becoming 

roughly stable for Sr40 km and for more than 6 predictors. With a proper selection of both 

Sr and number of predictors it is anyway possible to obtain SD95 values very close to the 

best values: when  Mx=mn=4 stations and Sr40 km, the values are only 0.015 °C higher  
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Tab.03-02_ Differences between maximum  and minimum values of distances, 95% and SD95%, for each Sr 

and each temperature (Tmax, Tmean, Tmin), varying mn and Mx. 
 

Sr  Distance    95    SD95  

 Tmax Tmean Tmin  Tmax Tmean Tmin  Tmax Tmean Tmin 

10 14242 14852 14925  0.029 0.062 0.041  0.659 1.110 1.145 

20 12674 13171 13219  0.017 0.023 0.010  0.279 0.433 0.542 

30 11381 11302 11292  0.023 0.017 0.007  0.246 0.261 0.383 

40 10810 10975 10966  0.021 0.013 0.011  0.195 0.183 0.186 

50 12206 12607 12521  0.019 0.010 0.011  0.187 0.178 0.161 

60 13258 13944 13999  0.019 0.012 0.008  0.184 0.169 0.155 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.03-03_Boxplot of 95% st. dev. errors matched to collections varying Sr from 10 to 60 km (left-graph) and 

varying mn=Mx (right-graph); for Tmax. The same behaviour was found for Tmean and Tmin. 

 



 

 

58 

 

 

than the best one; the same happens with  Mx=mn=10 stations, independently of Sr. 

The same behaviour was found for Tmean and Tmin with minimum SD95 values of 1.254, 

0.584 and 0.946 °C for Tmax, Tmean and Tmin respectively.  

In the case of the number of inversions (cases when reconstructed data present Tmax values 

less than Tmean or Tmean values less than Tmin) (Tab.03-03) it can be observed that the 

best results were found when Mx=mn was equal to or greater than 4 and Sr40 km; while, 

considering the associated errors of inversions (Tab.03-04), the best entries are found when 

Mx=mn was equal to or greater than 3. 

 

 

Tab.03-03_Number of inversions found, for each reconstruction 

procedure. (For each Sr value and each Mx=mn). 

 

Sr      Mx=mn      

 1 2 3 4 5 6 7 8 9 10 11 12 

10 91 48 26 21 13 9 11 16 10 10 12 10 

20 61 45 24 21 12 9 11 16 10 10 12 10 

30 35 45 26 16 9 10 9 14 10 11 12 10 

40 25 23 10 2 4 6 4 12 12 9 6 10 

50 28 26 14 7 5 9 5 11 7 9 7 9 

60 29 28 11 7 6 6 6 11 9 14 4 9 

  

 

 

Tab.03-04_The maximum absolute error of inversions found (°C), for each reconstruction 

procedure. (For each Sr value and each Mx=mn). 

 

Sr      Mx=mn      

 1 2 3 4 5 6 7 8 9 10 11 12 

10 4.003 1.982 1.061 1.604 0.718 0.390 1.443 1.033 0.615 0.565 0.950 0.296 

20 6.652 1.982 0.877 1.604 0.544 0.390 1.443 1.033 0.615 0.565 0.950 0.296 

30 3.906 3.007 0.956 1.659 0.932 0.390 1.443 1.033 0.615 0.565 0.700 0.296 

40 3.906 3.007 0.549 0.025 0.210 1.030 1.097 0.715 0.590 0.517 0.327 0.315 

50 3.906 3.007 0.549 1.084 0.323 0.393 0.660 1.394 1.827 0.363 0.574 0.447 

60 3.906 3.007 0.549 1.084 0.323 0.393 0.660 1.394 1.827 0.646 0.851 0.779 
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Conclusions 

 

The results presented highlight that it is preferable to search for suitable reconstructing 

stations over a wide search radius. This may seem counter-intuitive, being the closeness 

of the predicting station being a widely used and accepted criterion for station selection. 

In effect in most cases the closer stations are highly correlated with the target one but it 

is anyway possible to identify other stations that, despite their distance from the target 

one, present high correlations due to some specific local trait. 

A further advantage of a wide search radius is that it is possible to identify a large number 

of possible reconstructors and the increase in the number of predictors permits the 

reconstruction error to be limited. In our case, setting Sr40 km it is already possible to 

obtain a saturated selection system, i.e. a system that almost always finds at least Mx 

stations independently from mn. 

Considering both SD95 and inversion errors, the best results are obtained for Sr=40 km and 

mn=Mx=4, reaching 1 inversion with an error of 0.025 °C. Extrapolating from the 

specific situation, it seems to be appropriate to use a search radius allowing the 

identification of a number of stations roughly three times the required number of 

predictors. This generally permits an optimal subgroup of predictors to be identified, 

limiting the reconstruction error to a minimum. 
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Chapter 4 

 

Comparison of four methods to fill the gaps in daily 

precipitation data collected by a dense weather network
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Introduction 

 

Precipitation databases are very important in many research fields, including hydrology 

(e.g. evaluation of basin flows), agronomy (e.g. calculations of evapotranspiration), and 

climatology and meteorology (e.g. precipitation forecasting). 

Nowadays, one of the most important issues concerning the use of a database to obtain 

relevant information about rainfall, is the reconstruction of the missing values, required 

by many algorithms used in data analysis. 

 

Two important issues can be highlighted about the filling of a precipitation database: the 

ability of a reconstructing method to allow accurate computations on simple averages 

(e.g. on monthly or annual periods); and the ability to reconstruct extreme values. 

In general, applying reconstructed data to obtain monthly or annual accumulated rainfall 

values or rainy days as consistent as possible with the information from the observed 

data, is a usual way to test the method. 

In most cases, filling missing gaps in daily precipitation data is a difficult task. Indeed, this 

can be clearly seen when comparing precipitation and temperature variables: generally, 

precipitation is characterized by higher values of both space and time gradients. This 

may be due to the climatic zone involved (as may be the case for northern Italy), 

however this feature can be considered as an intrinsic characteristic of this variable. 

Nevertheless, it must be considered that summer precipitations in northern Italy are 

characterized by short-range storm cells. Sometimes these cells are very localized, so 

that only one pluviometer in the grid can adequately record the event and this interferes 

with data reconstruction. For example, if this instrument failed to record the event, there 

would be no way to estimate this datum from surrounding stations.  

Many approaches have been used for filling time series, for example: kriging and thin plate 

smoothing splines; in many cases, such as basin flow evaluation (hydrology), Artificial 

Neural Network models (ANN) are very reliable (Kim and Pachepsky, 2010), but when 

more accurate evaluations of extreme values are required, ANN models are less effective 

in reproducing the events (Tirozzi et al., 2006; p. 162); in comparison many other 

straightforward methods, such as Normal-Ratio (NR) (Paulhus and Kohler, 1952; 
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Young, 1992), Multiple Linear Regression (MLR), Multiple Discriminant Analysis 

(MDA) (Young, 1992), Nearest-Neighbour (NN), Inverse Distance Weighting (IDW) 

and Linear Regression (LR) (Serrano et al., 2009) seem to show lower values of errors in 

reproducing extremes, though they are generally less effective, on average, on non-

extreme values.  

In this work, NN, IDW, LR and a slightly modified Young' s NR method are tested and 

compared. 

The methods are compared from many points of view: estimating extreme errors; pairing 

observed rainfall values and respective errors of each method; ability to predict monthly 

and annual accumulations, and monthly and annual rainy days;  varying the density of 

the network. 

In the two last cases, LR seems to be the best performer; in the first case, a modified NR 

method seems to have the best behaviour; in the second case, the modified NR gives the 

same results as LR and IDW methods. 
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Materials and methods 

 

Data 

 

The data span from 1
st
 January 1993 to 31

st
 December 2007. The network has 109 stations, 

distributed over 18400 km
2
 of the Veneto Region. Each station has a number of missing 

data that does not exceed 5% of the spanned period. 62% of the data were equal to zero-

precipitation. 

The stations of the network are automatic, they are radio-connected to a system of 

software/hardware devices that record the measurements. 

The instruments are tipping bucket rain gauges. 

 

Methods 

 

Three of the four methods compared are presented in detail in Serrano et al. (2009). 

Some differences from Serrano's application (due to the network and area involved) are 

described below. 

 

Nearest-neighbour method (NN) uses two criteria for the selection of the predictor: the 

nearest neighbour has to be within a radius of 40 km of the target station and have a 

correlation coefficient (with the target station) higher than 0.6 (instead of 15 km and 

r=0.5 requested in Serrano's paper; the reason is due to the differences in the spatial-

densities and distribution of the correlations between this dataset and the Serrano one) 

and at this distance the correlation (Pearson’s r) between the daily precipitation series 

from both stations is equal to 0.72 on average (instead of 0.62, see Serrano's paper). In 

this case, setting these thresholds (40 km and 0.6) appeared to be the best compromise. 

The gaps are filled directly with data from the closest station meeting the criteria. 

The low percentage of missing days in the database makes it possible to not consider the 

problem of common data between the predictor and target stations (see Serrano's paper).  
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In the linear regression method (LR), missing data were obtained by identifying the 

station more correlated with the target one, forcing its regression line with the target 

station to pass through the origin. Only the slope coefficient was used to provide 

reconstructed data (see Serrano et al., 2009). 

 

Inverse distance weighting (IDW), where (1/d)
2
 is the weighting factor, (d) being the 

distance between target and neighbouring station. Serrano et al. (2009) used a maximum 

radius of 15 km for the interpolation, while a radius of 40 km has been considered in this 

paper, for consistency with the NN method. 

 

The last compared method is a variant of the Normal-Ratio (NR), first proposed by 

Paulhus (1952). A modified version was proposed by Young (Young et al., 1992), using  

functions of r-Pearson coefficients as weights of neighbouring stations. In this paper, 

different functions of these coefficients are proposed, obtaining the formula: 

 

xT  = ( ∑ ri  xi  ) / ( ∑ ri
1.75  

) 

 

Where xi are the values of surrounding stations, ri the respective Pearson's coefficients. 

This formula is applied to a maximum of three stations with the best correlation coefficient, 

and within a radius of 40 km. 

This variant of Young' s method was considered because of the relatively small value of the 

highest error presented in reconstructing the whole network (through the cross-

validation system); precisely: the exponent 1.75 in the denominator gave the smallest 

value of the highest error, in comparison with other exponents and other types of 

functions of r-Pearson. 

The choice of a 40 km radius was due to the different structure of the network in 

comparison with that studied by Serrano's paper; here, a greater distance was needed within 

which the target stations gather a sufficient number of well-correlated predictors. 

The performance of each method was studied by doing a large number of cross-validations, 

reconstructing one day in each of them and comparing the reconstructed value with the 
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observed one. 

The approaches were then compared using the Maximum Absolute Error (MAE) and 

Residual Mean Square Error (RMSE) and evaluating the amount and distribution of 

outliers. 
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Results and discussion 

 

A total of 515117 cross-validations were done to evaluate and compare the four methods. 

For all four methods, the upper range of error centiles (from 88 to 100
th

 centiles) are shown 

in Fig.04-01. Up to the 98
th

 centile the four methods present roughly the same behaviour 

while important differences are evident for extreme errors which are well differentiated 

between the methods, with NN presenting the highest maximum errors and NR the 

lowest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.04-01_Centiles of errors (from the 88th to the 100th centile) through the whole set of cross-validations. 

 

 

It is worth noting that IDW, while presenting a slightly higher MAE than NR, has the lower 

RMSE (Tab.04-01). To define the level of significance of the indices (maximum error, 
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MAE, RMSE), a series of 1000 bootstraps over the cross-validations were carried out 

(Fig.04-02). It can be seen that NN and LR methods present significantly higher MAE 

and RMSE, while NR has a significantly lower MAE than IDW method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.04-02_Box-plots of the values deduced from the bootstraps carried out to estimate the significance of the 

performance of NR method. 
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Tab.04-01_MAE and RMSE of the four methods. 

These values are obtained for all the cross-validations. 

 

 MAE RMSE 

NN 1.28 4.50 

LR 0.99 3.38 

IDW 0.96 3.09 

NR 0.93 3.11 

  

To evaluate the performances of the methods in the case of outliers, two analyses were 

conducted. Firstly, the relationship between the real values of daily rainfall and the 

associated outliers of errors of reconstruction was studied for each method. 

In this paper errors that are over 1.5×IRQ (Inter Quantile Range) +75
th

 centile or below 

25
th

- 1.5×IRQ  of the distribution of errors, are considered outliers of errors. Tab.04-02 

presents the numbers of outliers of errors, subdividing the set of observed daily 

precipitation values (p), of the whole network, into 7 intervals: p=0 mm;  0 < p ≤ 2 mm; 

2 < p ≤ 20 mm; 20 < p ≤ 40 mm; 40 < p ≤ 70 mm; 70 < p ≤ 88.4 mm; p > 88.4 mm. It 

can be seen that when p is equal to 0, the fourth method shows a greater number of 

outliers of errors, but the mean value of these errors is the smallest; in the other cases the 

number of outliers is similar for all the methods, but the mean of the fourth is always 

among the best. 

The threshold value of 88.4 mm was selected to evaluate the outliers of the real daily 

rainfall values, and calculated following the method proposed by Eischeid et al. (1995): 

an outlier was flagged when it was greater than f*IRQ+50
th

 centile, f being a 

multiplication factor; choosing the multiple (f) of the IRQ where the slope of the 

function of the number of outliers flagged varying f was sufficiently near zero. Setting 

f=10 (instead of 4, see Eischeid), all values greater than 88.4 mm were found as outliers 

in the whole series (see Fig.04-03). 

 

These analysis are not sufficient and are too specific in order to determine the goodness of a 

method. A reconstructing method of daily precipitation has to be effective when it is 

used to evaluate, for example, the number of rainy days or the values of annual or 

monthly accumulations. For that purpose calculations on these topics were made 

comparing the fitted values resulting from the four methods with the real values. 
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Tab.04-02_The numbers of outliers of errors and their mean values matched to each sub-

indicated interval: p=0 mm;  0 < p ≤ 2 mm; 2 < p ≤ 20 mm; 20 < p ≤ 40 mm; 40 < p ≤ 70 

mm; 70 < p ≤ 88.4 mm; p > 88.4 mm. 

 

 

Number Mean Number Mean Number Mean 

p = 0 mm 0 < p ≤ 2 mm 2 < p ≤ 20 mm 

28889 1.16 9554 5.66 5373 18.48 

30657 0.60 8894 3.88 5485 13.58 

47967 0.72 9465 4.17 5074 11.65 

63685 0.40 10311 3.65 5251 11.90 

20 < p ≤ 40 mm 40 < p ≤ 70 mm 70 < p ≤ 88.4 mm 

457 40.55 104 64.31 18 91.11 

567 28.63 152 45.67 17 65.38 

608 25.48 172 42.72 33 59.58 

590 26.48 174 43.35 27 61.33 

p > 88.4 mm     

9 126.62     

22 85.85     

9 98.89     

17 85.01     
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Fig.04-03_The varying of the number of outliers flagged varying f. 

 

 

 

 

Fig.04-04…04-11 can be analysed to reveal the goodness of the methods, comparing each 

one with the others. 

For monthly accumulated values, Fig.04-04 (scatterplots of the fitting values with the real 

ones) shows LR to be the more symmetric method. NN, IDW and NR have a tendency 

to underestimate these monthly values (especially for the high ones); Fig.04-05 

(boxplots of observed and fitting monthly accumulated values) shows a similar 

behaviour for all methods, but when outliers are considered, NN and LR seem to have 

better estimates. Fig.04-06 and .04-07 are similar to Fig.04-04 and .04-05, respectively, 

but they show results from the estimates of the numbers of rainy days monthly. In this 

case IDW seems not to underestimate, on average, in comparison with the other 
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methods;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.04-04_ Scatterplots of the fitting values with the real ones, for the four methods. Monthly accumulated 

values. 
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Fig.04-05_Boxplots of the fitting and the real values, for the four methods. Monthly accumulated values. 
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Fig.04-06_Scatterplots of the fitting values with the real ones, for the four methods. Monthly rainy days. 
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Fig.04-07_Boxplots of the fitting and the real values, for the four methods. Monthly rainy days. 
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Fig.04-08_Scatterplots of the fitting values with the real ones, for the four methods. Annual accumulated 

values. 
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Fig.04-09_Boxplots of the fitting and the real values, for the four methods. Annual accumulated values. 
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Fig.04-10_Scatterplots of the fitting values with the real ones, for the four methods. Annual rainy days. 
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Fig.04-11_Boxplots of the fitting and the real values, for the four methods. Annual rainy days. 
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methods; NR shows a slight underestimation for the high values.  Looking at the boxplots 

(Fig.04-07) NN and LR show the best accordance with the real estimations. 

When annual accumulated values were considered (Fig.04-08), a more symmetric 

behaviour was noted (on average) for the LR method, but an overestimation is evident 

for all the methods when low values are considered. Boxplots in Fig.04-09 show an 

overestimation of extreme values especially for LR method and a slight underestimation 

for IDW, but there is not a great difference between methods (the best seems to be NR). 

Fig.04-10 presents scatterplots for the number of annual rainy days. Graphs of NN and LR 

methods show overestimation and underestimation for low and high values respectively; 

overestimation of both low and high values can be noted for IDW and overestimation of 

low values for NR ; however the best distributions were presented by NN and LR 

methods (Fig.04-11). 

 

The behaviour of the fourth (NR) method with outliers could then be considered matching 

the specific structure and density of the network, even if the differences between 

methods 2 to 4 appears to be very small. Indeed, Borrough and McDonnell (1998) stated 

that when data are abundant most interpolation techniques give similar results.  

Another analysis was therefore conducted, reducing the number of stations in the network; 

first decreasing the total number by 30 stations, then by 60 and 90 stations.  

Tab.04-03 shows MAE, RMSE and extreme errors for each method and each of the four 

numbers of available stations. Decreasing the number of stations, the second method 

shows a greater robustness and it is able to reconstruct missing values even when few 

stations are available. 
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Tab.04-03_MAE, RMSE and extreme errors for each method and each of the four numbers of available 

stations: 109, 79, 49 and 19 stations. 

 

 

Number of 

stations 

Models Extreme 

errors 

MAE RMSE 

109 NN 199.4 1.3 4.5 

LR 142.4 1.0 3.4 

IDW 127.9 1.0 3.1 

NR 119.4 0.9 3.1 

79 NN 152.0 1.1 3.9 

LR 112.2 1.0 3.6 

IDW 116.2 1.0 3.3 

NR 118.4 1.0 3.3 

49 NN 163.8 1.3 4.3 

LR   98.4 1.1 3.8 

IDW 126.5 1.2 3.7 

NR 121.5 1.2 3.8 

19 NN 131.8 1.7 5.7 

LR   93.7 1.4 4.6 

IDW 123.5 1.5 4.8 

NR 153.9 1.5 4.8 
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Conclusions 

 

The results obtained depict a different behaviour of the four methods considered. When 

dealing with extreme values, the NR methods seems to be the most effective, while 

considering average values the performances of LR and IDW methods are almost equal 

to those of NR. However, the results obtained with a reduced set of stations showed that 

LR method presents a greater robustness when stations are more spread. 

These results highlight the inherent difficulty of dealing with data characterised by a strong 

spatial and temporal variability such as rainfall and that the selection of the ‘best’ 

method should be done considering the purpose of the analysis (e.g. reconstruction of 

extreme events or identification of averages of subperiods) and the characteristics of the 

network, thus requiring a proper analysis on available data prior to the phase of data 

reconstruction. 
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Chapter 5 

 

Spatial and time correlation of thermometers and 

pluviometers in a weather network data-base
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Introduction 

 

The most familiar measure of dependence between two random variables is the Pearson's 

correlation coefficient (or linear correlation coefficient). It is obtained by dividing the 

covariance of two variables by the product of their standard deviations. 

This index is very useful in the field of the applied climatology, for example when the aim 

of the work is to validate, homogenize or reconstruct the data base of a weather network, 

or to characterize the climatic zones concerning the studied area (WMO, 2011). 

Regarding the reconstructing methods used to homogenize or fill missing values of a 

meteorological data base, e.g. data of thermometers and pluviometer grids, there are 

many examples where the correlation coefficient is used. The nearest neighbour, the 

linear regression (Serrano et al., 2009), the normal ratio (Young, 1995) and Eischeid's 

method (Eischeid, 1995) are some simple examples, where the correlation coefficient 

plays a leading role. 

In these last examples, two important issues can be highlighted to make the correlation 

between a target station and the other ones easier to understand: a) the relation between 

the distance of a station from the target station and its correlation coefficient (with the 

target station) and b) the variation of the order of the stations within the unfolding of the 

history of the network (since its birth), when they are ranked by the correlation 

coefficients with the target station. 

The first issue is important, for example when a method such as the nearest neighbour is 

considered. In this case a relation between the distance of a station from a target station 

and their correlation has to be evaluated to allow its application. 

Though the main aim of the paper of BenHamida et al. (2009) was to propose an original 

synchronous average-based decomposition of the time series, the first issue is mentioned 

in this paper, where spatial correlation was studied, as a function of the distance. 

An analysis concerning the second issue should allow, for example, to establish a station to 

be steadily coupled with another from a certain point in the history of the network 

onwards. This pair could definitely be used to check the data mutually, thereby enabling 

direct validation and reconstruction. 

The analysis of this second issue can have another more general use; it allows to understand 
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if some studies carried out on a network for the whole period of the time series can be 

applied also to the future. In fact, if the correlations orders are stable over the time, they 

could be fixed without other future calculations. 

In this paper, the analysis was carried out over the area of the Veneto Region (Italy), which 

was subdivided into three main climatic zones: the mountains, the plain and the coast. 

This study deals with daily precipitation and daily maximum, mean and minimum 

temperature. Temperature and precipitation were considered because of their very 

different distribution in space and time. Moreover, sea and altitude are two important 

factors that influence climate conditions, and 29 % of the surface of the Veneto Region 

is mountainous. Its coast extends for 140 km of the Adriatic Sea.  
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Materials and methods 

 

The data. 

 

Data span from 1
st
 January 1993 to 31

th
 December 2008 (5844 days), for both temperature 

and precipitation. The network has a total of 112 pluviometers and 114 thermometers, 

distributed over 18400 km
2
 of the Veneto Region. All 112 pluviometers are in the same site 

of a thermometer. Each instrument produced a number of missing data that did not exceed 5 

per cent of the spanned period. 

The aim of this work was to carry out analyses on daily data of precipitation, and 

maximum, mean and minimum temperatures (Tmax, Tmean and Tmin). 

 

Data reconstruction. 

 

Missing data have been reconstructed prior to the present data analysis. All kinds of 

temperatures (Tmax, Tmean and Tmin) were reconstructed with the new dynamic method 

presented in Chapter 2, while  missing precipitation data, on the basis of the results 

obtained in Chapter 4, were reconstructed with the linear regression method (LR) (Serrano, 

2009).  

 

Methods 

 

The method can be subdivided into two phases. 

The first is to understand the relationship between the distance of a station from the target 

station and its correlation coefficient, considering the whole history of the network as 

sampling size of the correlation formula. 

The second phase is to study the variation of the order of the stations, in the unfolding of 

the history of the network (since its birth), when they are ranked by the  correlation 
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coefficient with the target station. In this case the sampling size is not only the whole 

history of the network but varies from a minimum to a maximum value (the whole history 

of the network). 

 

In the first phase, for each target station (spanning the whole set of stations) the correlation 

coefficients of any other station with the target one are obtained. All these stations are 

ranked by the value of the coefficient and sorted in descending order. The distance from 

target station are matched to each of these correlation values. 

Three matrices are obtained. A matrix of correlation coefficients, cij, where i=1,...,112 

(precipitations) or 1,...,114 (temperature) spanning the whole set of stations (target 

stations), and j=1,...,111 or 1,...,113 spanning the number of the other stations except the 

target; it can be noted that cij>cik when j<k. 

The distances matched to the cij coefficients are described by the other matrices, dij; note 

that distances are generally not sorted. A third matrix is defined as d'ij, where  d'ij<d'ik 

when j<k. 

To obtain a relationship between coefficients and related distances, the averages 

mj=mean(dij) are calculated, obtaining for each j the mean distance of the coefficients that 

are in the j-th column of the cij matrix. This vector will be compared with the vector 

m'j=mean(d'ij). The purpose will be to analyse the distance, from the target station, of the 

most correlated stations with the target station. 

 

In the second phase, a similar matrix of the first phase is obtained by computing the 

correlation coefficients with the first n days of the history of the network: n varied from 4 

(due to the natural application of the Pearson's formula) to 5844  spanning the 16 years of 

the series, yielding a number of 5841 matrices. Finally, a three-dimension array, c'ijk (where 

c'ijk is a matrix for each k=1,...,5841), is obtained. In the same way as the first phase, an 

array d'ijk is matched to the c'ijk array; in this second phase, for each k, d'ijk is sorted by 

ascending order: at j=1 position there is the distance of the nearest station to the target 

station, i.  

 

Considering all d'ijk entries of the matrix i, with j=1,2 and k=w,w+1, it can be said that the 
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order of correlations changes, passing from k=w to k=w+1, if c'i1w<c'i2w and 

c'i1(w+1)>c'i2(w+1) (or c'i1w>c'i2w and c'i1(w+1)<c'i2(w+1)). 

More generally, given m, for each u ranging from 1 to m (the m stations closest to the target 

station), and k=w,w+1, it can be said that the order of correlations changes, passing from 

k=w to k=w+1, if c'iuw<c'iuw (or c'iuw>c'iuw) for some u. 

 

For each m=2,...,113 (or 111 for precipitations) and w=1,...,5840, the presence of some 

changes in order is monitored. 

 

To investigate the degree of permanence of the correlation order in time, per size of the 

groups of nearest stations, a definition of  “stability” is proposed: the group of the m closest 

stations to the target station is considered “stable” if given a value of q days, in 100 percent 

of the cases, in which w≥q, there are no changes in order (for the m stations considered). 

 

The value of q days is set because of the transient period characterizing all sequences of 

correlation coefficients, calculated between any pair of stations, from the beginning to the 

end of the time series. Fig.05-01 and Fig.05-02 show two examples for precipitations and 

maximum temperature, for plain, mountain and coast. 

It can be noted that the curves of these figures, up to a specific value of sampling size, have 

irregular oscillations with a large amplitude especially for precipitation; therefore, in this 

period (transient) talking about stability does not make any sense. 

Not even, an excessive value of q must be considered, otherwise once again the concept of 

stability does not make sense. Moreover, the number of w≥q has to be as large as possible, 

to permit statistical evaluations. 

 

These two phases are performed for precipitations, the three kinds of temperature and for 

the three climatic zones (mountain, plain and coast). 
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Fig.05-01_Correlation coefficients as a function of sampling size from the beginning of the time series. Three 

examples for precipitation data: Plain, Mountain and Coast.
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Fig.05-02_Correlation coefficients as a function of sampling size from the beginning of the time series. Three 

examples for maximum temperature data: Plain, Mountain and Coast. 
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Results and discussion 

 

It must be noted that no more than 5 percent of the data base used for this work  were 

missing, so that, a series of reconstructions were carried out to fill in these gaps, 

permitting calculations that would otherwise have been impossible. 

The relationship between correlation and distance can be seen in Fig.05-03 and Fig.05-04, 

where correlation, as a function of distance from target station (see BenHamida, 2009), 

is presented for precipitation and maximum temperature (the same behaviour was found 

for Tmean and Tmin): an example for each climatic zone. 

In comparison with temperature, precipitation data present a closer dependence on the 

distance of the stations from the target station. For precipitations, at great distances the r 

value can reach very low values, while the correlation for temperature remain very high 

even at a great distance. 

This fact can be related to the precipitation system that characterizes the climate of the 

Veneto Region: the database of rainfall shows high time and spatial gradients; there is a 

marked difference between the rainfall phenomenology of the mountain and the plain.  

 

As described by the first phase of the method, the difference mj-m'j, varying j, is presented 

by Fig.05-05 for precipitation and Fig.05-06 for minimum temperature (the same 

behaviour was noted for Tmax and Tmean); graphs show data for the whole Region, 

plain, mountain and coast. 

It can be observed that, in comparison with temperature, the mean distance of the stations 

(pluviometers) sorted by coefficients (mj) are rather similar to the mean distances sorted 

by order of distance (m'j). 

In Fig.05-05 (precipitations) it is important to note that, unlike the mountain and plain, for 

the coast the most correlated stations are, on average, at a greater distance from the 

target station: approximately 10 km more than the mean distance, m'j. 

This could be related to the influence of the sea on the rainy system of the coast. 

Looking at the Regional graph of temperature (Fig.05-06), a greater distance from the 

target station of the most correlated stations is shown, and this fact is mainly influenced  
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Fig.05-03_Correlation coefficients (calculated over the whole time series) as a function of the distance of 

stations from target station. Three examples for precipitation data: Plain, Mountain and Coast. 
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Fig.05-04_Correlation coefficients (calculated over the whole time series) as a function of the distance of 

stations from the target station. Three examples for maximum temperature data: Plain, Mountain and Coast. 
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Fig.05-05_Difference between the mean distance of the j-th best coefficients and the mean distance of the j-th 

closest stations from their respective target stations (mj-m'j, varying j). For precipitation: Region, Plain, 

Mountain and Coast. 
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Fig.05-06_Difference between the mean distance of the j-th best coefficients and the mean distance of the j-th 

closest stations from their respective target stations (mj-m'j, varying j). For Tmin: Region, Plain, Mountain 

and Coast. 
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by the behaviour of the mountain area: in this climatic zone the most correlated stations can 

be, on average, at 15 km more distant than the mean distance from the target station 

(m'j). 

This behaviour could be related to the great diversity of altitude values and sun exposure 

that characterize the placement of thermometers in the mountainous area (Collins and 

Bolstad, 1996). 

 

Time correlation is analysed in the second phase of the method. As mentioned previously, 

setting q is very important for this phase. The transient period and the magnitude of 

5840-q (as large as possible), must be taken into account. Drawing on experience, q was 

set at 2000 days.  

The values of m (defined before), for all target pluviometers, meeting the defined criterion 

of stability, are shown through Fig.05-07. These boxplots indicate that over the whole 

area, 25 % of stations do not present any m of stability, 75 % have the two closest 

stations that are stable, at least; with a maximum value of m equal to 7. Comparing the 

three zones, it was noted that the best behaviour was for the plain that shows the same 

percentage of stations without stability (25 %). 

Referring to temperature, Fig.05-08 shows the same as Fig.05-07, for Tmax, Tmean and 

Tmin. It was found that over the whole area, 17 %, 15 % and 7 %, respectively for 

Tmax, Tmean and Tmin, do not present stability for any m value. In this case, the best 

behaviour was reached in the mountain zone that presents 5 and 9 % (of unstable 

stations) for Tmax and Tmean, and 0 % for Tmin. 

A maximum value of m is reached with Tmean: m=21 stations (mountain). 

Comparing Fig.05-08 with Fig.05-07, it is clear that temperature is generally more stable 

than precipitation, and as might be expected, this fact may be due to the cases in which 

precipitation does not show a limited transient, as is clearly shown in the plain-graph of 

Fig.05-01. 

This observation makes it possible to deduce that, from a certain point of the history of the 

network onwards, the data base of temperature maintains the correlation order within a 

wide radius from the target station.  

The complete graph of the average of the distances of the stations from a target station (m'j) 
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is reported in Fig.05-09. The radius of preservation of the order of correlation in time, 

for precipitations and Tmean (Tab.05-01) is of 11 and 28 km respectively for 

precipitations, and 18 and 41 km respectively for Tmean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.05-07_Boxplot of the values of m for which stations have stability (the correlation order of the closest m 

stations is stable). In the graph, 0 means no stability. This graph is for precipitation: Region, Plain, Mountain 

and Coast. 
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Fig.05-08_Boxplots of the values of m for which stations have stability (the correlation order of the closest m 

stations is stable). In the graph, 0 means no stability. These graphs are for temperature (Tmax, Tmean and 

Tmin): Region, Plain, Mountain and Coast. 
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Fig.05-09_The mean distance of the stations, sorted by distance from the target station (m'j). The grey line 

correspond to the precipitation data. Precipitation and temperature values are almost the same. 
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Tab.05-01_Median and maximum values of the values of m (the m stations closest to the target station) and  

the matched m'j  (mean distance of the j-th station closest to the target station). Table shows precipitation, 

Tmax, Tmean and Tmin values. 

 

 m Mean distance (km) 

 Median Max Median Max 

Prec 2 7 11 28 

Tmax 4 13 16 31 

Tmean 5 21 18 41 

Tmin 4 15 16 33 
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Conclusions 

 

The correlation coefficients of the precipitation database are, on average, inversely 

proportional to the mean distances from the target station. The same has not been shown 

by temperature data that, however, always show a high correlation coefficient regardless 

of the distance. 

The sentence: “the correlation coefficients are higher for the closest stations”, is generally 

true for precipitation data, except for the stations of the coastline, while it is frequently 

not true for temperature, particularly in the mountain zone. 

However, from 5.5 years (q=2000 days) from the beginning of the time series, the 

temperature variable is characterized by a high stability of the correlation order in time. 

The highest values are shown by the mean temperature; whereas  the mountain area .of 

the minimum temperature does not have any unstable station. 

 

From a more general point of view this result also indicate that, from a certain year of the 

history of the network (in our case: about the fifth year), the calculation of the Pearson' s 

coefficient acquires an important stability, regardless of the type of variable 

(precipitation or temperature). 
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Conclusions 

 

 

The first method (temperature data reconstructions) could seem quite complex at first sight 

and the analysis is described by two independent chapters (articles), though the kernel of 

this method makes use of one of the simplest statistical models, namely, the multiple linear 

regression. The novelty underlying this dynamic technique is the system of cross-

validations trials that allows the algorithm to adapt the parameters used to “shape” the 

multiregression formula in the best way for each gap. When the series of cross-validations 

are carried out to evaluate the performance of gap filling, it is known in advance that the 

method will have the highest performance possible. In fact, the trials carried out initially to 

“shape” the multiregression formula (for each gap) work with the algorithm and in the same 

space-time location of  the subsequently running cross-validation system. 

Through these two chapters, a better performance of the adaptive regression methods in 

comparison with non-adaptive regression ones can be demonstrated, at least as far as 

temperature data are concerned. 

Looking to the method more closely, some issues that are not mentioned in the papers can 

be outlined. For example, a deeper analysis on the variation of performance using 

reconstructed data to fill other gaps has not been already done. However, the experience 

and unpublished calculations show this use of reconstructed data does not affect the system 

significantly. In future papers, issues of this nature will be formalised and analysed in 

depth. 

 

The method selected for reconstructing of precipitation data is very simple (LR method). 

Considering the whole network, this methods performs similarly to other approaches, but 

the trials carried out with a reduced set of stations proved its effectiveness and robustness, 

at least for the network considered.  

When the number of stations of this network is reduced, the philosophy of seeking the 

“shape” of a rainfall event, using more than one station near the target station (combined 

with a specific and proper formula), is superseded by the more simple approach of using the 

data of the most correlated station only: less attention to the spatial and greater attention to 
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the time relationship is, therefore, afforded. 

We can note that in both cases (temperature and precipitation), a linear model was used to 

reconstruct the data. This model is very close to our way of reasoning: trying to forecast 

some event of an unknown phenomenology by linking it directly with other events whose 

phenomenology is known seems to be natural. Consequently, linear and multilinear 

regression models appear to be more simple and easy to manage to our minds in 

comparison with other tangled statistical techniques. It is worth noting that reconstruction 

of missing data is done for relatively short periods, where the assumption of stability of 

meteorological conditions are applicable. 

 

The chapter referring to the Pearson's coefficient (chapter 5) demonstrates that some years 

after the birth of the network (about 5 years, in our case), the correlation system became 

relatively stable, and many calculations linked to this system (correlation system) can be 

considered to be relatively definitive in the future, too. As a consequence, studies on spatial 

correlation, as in our case, can be carried out without the availability of long time series, as 

required by the concept of Climate Normal of 30 years (WMO). 

 

Furthermore the sentence “the correlation coefficients are higher for the closest stations”, 

can be not true, especially when talking about the temperature variable which can anyway 

be considered to be relatively continuous. 

 

A comparison between the third and the fifth chapters emphasize the difference between 

linear or multilinear environments. In the first case the most correlated predictors are 

always quite close to the target station, while  in a multiregression environment, predictors 

with a high multilinear correlation can be found even at very long distances from the target 

station, even up to 80 km away. 
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