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Abstract

The present Thesis is dedicated to the investigation of necessary and sufficient

conditions for which a weighted Hardy type inequality holds in weighted spaces

of sequences and on the cone of non-negative monotone sequences, and their

applications. We prove a new discrete Hardy type inequality involving a kernel

which has a more general form than those known in the literature.

This Thesis consists of four chapters.

In Chapter 1, we shortly describe the development and current status of the

theory of Hardy type inequalities. Moreover, Chapter 1 includes the statement

and motivation of the problems and the main results. In Chapter 1, we also

present some well-known auxiliary facts and necessary notation on Hardy type

inequalities in weighted spaces of sequences and on the cone of non-negative

monotone sequences.

In Chapter 2, we study the problems of boundedness and compactness of

matrix operators in weighted spaces of sequences. We introduce a general class

of matrices, and introduce their properties. Moreover, Chapter 2 contains ex-

amples of matrices from the introduced classes and here we show that such

classes of matrices include well-known classical operators such as the operator

of multiple summation, Hölder’s operator, Cesàro operator and others. We

establish necessary and sufficient conditions for the boundedness and com-

pactness of the matrix operators in weighted spaces of sequences, where the

corresponding matrices belong to such classes. Such classes of matrices are

wider than those which have been previously studied in the theory of discrete

Hardy type inequalities. Moreover, some related results are also proved.
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In Chapter 3, we investigate a Hardy type inequality restricted to the cone

of non-negative and non-increasing sequences under weaker conditions than

those studied before in the literature. We obtain new results, which generalize

the known results concerning this subject.

Chapter 4 is devoted to the application of the main results. Here we ap-

ply the main results of Chapter 2 in order to obtain criteria on boundedness

and compactness of composition of matrix operators in weighted spaces of se-

quences. By using the results of Chapter 2 we obtain necessary and sufficient

conditions for which three-weighted Hardy type inequalities hold. Moreover,

in Chapter 4, by exploiting the main results of Chapter 2 and 3 we obtain

two-sided estimates for summable matrices in weighted spaces of sequences

and on the cone of non-negative and non-increasing sequences.
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Sunto

Questa tesi è dedicata allo studio di condizioni necessarie e sufficienti per cui

valga una disuguaglianza di tipo Hardy con peso in uno spazio pesato di succes-

sioni e nel cono delle successioni monotone non-negative, e alle corrispondenti

applicazioni.

Proviamo una nuova disuguaglianza discreta di tipo Hardy con nucleo di

forma più generale di quelli noti in letteratura.

La tesi consiste di quattro capitoli.

Nel Capitolo 1 descriviamo brevemente lo sviluppo e lo stato attuale della

teoria delle disuguaglianze di tipo Hardy. Inoltre il Capitolo 1 contiene l’enun-

ciato e la motivazione dei problemi e dei principali risultati. Nel Capitolo 1

presentiamo anche alcuni fatti ausiliari ben noti e la notazione necessaria per

le disuguaglianze di tipo Hardy negli spazi pesati di successioni e nel cono delle

successioni monotone non-negative.

Nel Capitolo 2 studiamo il problema della limitatezza e compattezza degli

operatori matriciali negli spazi pesati di successioni. Introduciamo una classe

generale di matrici e le loro proprietà. Inoltre il Capitolo 2 contiene esempi di

matrici delle classi introdotte e qui mostriamo che tali classi di matrici con-

tengono ben noti operatori classici come l’operatore di sommazione multipla,

l’operatore di Hölder, l’operatore di Cesàro ed altri. Stabiliamo condizioni

necessarie e sufficienti per la limitatezza e la compattezza di operatori ma-

triciali in spazi pesati di successioni, nel caso in cui le corrispondenti matrici

appartengano a tali classi. Tali classi di matrici sono più grandi di quelle che

sono state studiate in precedenza nella teoria delle disuguaglianza discrete di
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tipo Hardy. Inoltre, si dimostrano anche dei risultati ad esse relativi.

Nel Capitolo 3, studiamo una disuguaglianza di tipo Hardy ristretta al

cono delle successioni non-negative e non crescenti in condizioni più deboli

di quelle studiate prima nella letteratura. Otteniamo dei nuovi risultati che

generalizzano i risultati noti su questo argomento.

Il Capitolo 4 è dedicato alle applicazioni dei risultati principali. Qui ap-

plichiamo i risultati principali del Capitolo 2 al fine di ottenere criteri di limi-

tatezza e compattezza per la composizione di operatori matriciali in spazi pe-

sati di successioni. Utilizzando i risultati del Capitolo 2 otteniamo condizioni

necessarie e sufficienti affinchè valgano disuguaglianze di tipo Hardy a tre pesi.

Inoltre nel Capitolo 4, sfruttando i risultati dei Capitoli 2 e 3 otteniamo stime

bilatere per matrici sommabili in spazi pesati di successioni e nel cono delle

successioni non negative e non crescenti.
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(Dipartimento di Matematica, Università degli Studi di Padova, Italy) for their

constant support, patience and encouragement during all my study. Their con-

tribution is very much appreciated and recognized.

Secondly, I am very grateful to the L.N. Gumilyov Eurasian National Uni-

versity for giving me this chance by funding my PhD program. I also would

like to thank both L.N. Gumilyov Eurasian National University and the Uni-
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Chapter 1

Introduction

1.1 Preliminaries.

One of the main problems in the theory of matrices is to find necessary and

sufficient conditions for the elements of a matrix so that the corresponding ma-

trix operator maps continuously one normed space of sequences into another

normed space of sequences. Thus it is very important to find the norm of a

matrix operator, or at least, an upper or lower bound for the norm. However,

in several spaces, which are very important both theoretically and in the appli-

cations, such problems have not been solved yet in full generality for operators

corresponding to arbitrary matrices. Therefore, in such spaces researchers

have considered some specific classes of matrix operators and have established

criteria of boundedness and compactness for operators of such classes.

For a summary of results on matrix operators acting in 11 spaces of se-

quences and on their norms, we refer to [1]. However, as pointed out in [1],

general criteria for the action of a matrix operator from lp to lq with p > 1,

q > 1 and for the corresponding norms are not known yet. Such operators

have their own self interest and they are also a discrete analogue of integral

operators, which play a very important role in functional analysis (see [2], [3]).

In the second half of last century researchers singled out a class of integral
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4 INTRODUCTION

operators, which is called the class of Hardy type operators, which is related

to the work [4] of G.H. Hardy (1925). Hardy has established the boundedness

of the operator H in Lp(0,∞) for 1 < p <∞ defined by

(Hf)(x) =
1

x

x∫
0

f(s)ds ∀f ∈ Lp(0,∞),

and has proved that ‖H‖p→p = p
p−1

.

However, in several applications in function theory, harmonic analysis and

differential equations, one needs to consider weighed forms of Hardy opera-

tors. Namely, one needs to consider non-negative weights u(x) and v(x) in

Lebesgue spaces and operators K0 of the form (K0f)(x) = u(x)
x∫
0

v(s)f(s)ds.

The problem was not easy. Only in 1969 the Italian mathematicians G. Talenti

[5] and G. Tomaselli [6] have established, independently of each other, crite-

ria of boundedness of the operator K0 in Lp(0,∞). During the next 11 years

B. Muckenhoupt [7], J.S. Bradley [8], V.M. Kokilashvili [9], V.G. Maz’ya [10]

have obtained criteria of boundedness for the operator K0 from Lp(0,∞) to

Lq(0,∞) with 1 ≤ p, q ≤ ∞. The initial results of G. Talenti, G. Tomaselli,

B. Muckenhoupt gave a new impetus in the analysis of weighted embedding

theorems and spectral problems for singular differential operators. Thus, for

example, M. Otelbaev and his school have obtained important results in the

1970s concerning such topics (see e.g. [11], [12], [13]).

The next step was a study of the operator

(Kf)(x) =

x∫
0

K(x, s)f(s)ds

with non-negative kernel K(·, ·). Such type of operators are called Hardy type

operators. However, even in the space L2(0,∞) finding a criterion of bound-

edness for such general form operators in terms of the kernel K(·, ·) is very

difficult and is still an unsolved problem. Therefore, many researchers have

identified several classes of kernels, which satisfy some specific conditions and

have proved boundedness criteria for the corresponding integral operators from

Lp(0,∞) to Lq(0,∞), 1 < p, q <∞.
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The first impulse in this direction was given by the works of F. Martin-Reyes

and E. Sawyer [14], and V.D. Stepanov [15]-[18]. They have obtained criteria of

boundedness of the Riemann-Liouville fractional integration operator from Lp,v

to Lq,u, 1 < p, q <∞, which has several applications in various fields of science.

In [19] V.D. Stepanov has investigated the operator K with kernel K(x, s) =

k(x − s), where k(·) is not decreasing and for which there exists d ≥ 1 such

that k(x+ s) ≤ d(k(x) + k(s)), x, s ∈ (0,∞). In 1989-1990 R. Oinarov in [20]

and independently the American mathematicians S. Bloom and R. Kerman in

[21] in 1991 have studied the operator K, when its kernel satisfies the following

condition

1

d
(K(x, t) +K(t, s)) ≤ K(x, s) ≤ d(K(x, t) +K(t, s)),

x ≥ t ≥ s > 0, d ≥ 1. One of the important feature of this class of oper-

ators is that it includes almost all known operators of fractional integration.

Nowadays, this condition imposed on the kernel K(·, ·) of the operator K is

called the “Oinarov condition” in the mathematical literature. An operator K

with Oinarov condition has been investigated by many authors (see e.g. [2],

[22]). Necessary and sufficient conditions for the boundedness and compact-

ness of operator K for a more general classes of kernels have been obtained by

R. Oinarov in [23].

In the twenties of the last century G.H. Hardy considered the discrete

analogue of the operator H in the form (Hdf)i = 1
i

i∑
j=1

fj and proved the

boundedness of Hd in the space of sequences lp and a formula for the norm

‖Hd‖p→p =
p

p− 1
, 1 < p < ∞. As in the continuous case, this result of

Hardy had various applications in many problems. The discrete analogue

(Kd
0f)i = ui

i∑
j=1

vjfj of the operator K0 has been studied by many authors

and the main final results have been obtained in [24]-[29] only in 1987-1994.

Such delay of decades is related with the discrete changes of sequences {fj} and

{(Kd
0f)i}, which do not enable to transfer methods of the continuous case based

on the continuity of the function (K0f)(·). The results which were obtained for

the operator Kd
0 have been successfully applied by mathematicians of different
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countries. For example in Kazakhstan M. Otelbaev [13], E.S. Smailov [30]-

[32], A. Stikharnyi [33], R. Oinarov, A. Stikharnyi [34] and other authors have

proved several applications in various problems of analysis.

An attempt to investigate more general matrix operators of Hardy type

(Af)i = ui

i∑
j=1

ai,jvjfj, ai,j ≥ 0 has been done by K.F Andersen and H.P. Heinig

[24], who have proved sufficient conditions for the boundedness of the operator

A in the space lp under some conditions on the matrix (ai,j).

In recent years M.L. Goldman [35] has introduced the method of discretiza-

tion for solving various problems in the embedding theory and in the theory of

integral operators, where the estimate of matrix operators plays a main role.

Thus, not only the theory of matrix operators has an important significance,

but also different and versatile applications.

Let 1 < p, q <∞, 1
p
+ 1

p′
= 1 and let u = {ui}∞i=1, v = {vi}∞i=1 be sequences

of positive real numbers. Let lp,v be the space of sequences f = {fi}∞i=1 of real

numbers with the following norm

‖f‖p,v :=

(
∞∑
i=1

|vifi|p
) 1

p

, 1 < p <∞.

In Chapter 2, we consider the problems of boundedness and compactness

from the weighted lp,v space into the weighted lq,u space of the matrix operators

of Hardy type

(
A+f

)
i
:=

i∑
j=1

ai,jfj, i ≥ 1, (1.1)

(
A−f

)
j
:=

∞∑
i=j

ai,jfi, j ≥ 1. (1.2)

The boundedness of such operators is equivalent to the validity of the following

Hardy type inequality

‖A±f‖q,u ≤ C‖f‖p,v ∀f ∈ lp,v, (1.3)

where C is a positive finite constant independent of f and (ai,j) is a triangular

matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.
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For ai,j = 1, i ≥ j ≥ 1, the operators (1.1), (1.2) coincide with the discrete

Hardy operators of the forms
(
A+

0 f
)

i
:=

i∑
j=1

fj,
(
A−0 f

)
j

:=
∞∑
i=j

fi, respectively.

References about generalizations of the original forms of the discrete and con-

tinuous Hardy inequalities can be found in different books, see e.g., [2, 3, 36].

R. Oinarov, S.Kh. Shalgynbaeva [37] and R. Oinarov, C.A. Okpoti, L-

E. Persson [38] have proved criteria of boundedness and compactness for the

operators A+ and A− from lp,v to lq,u, when the entries of the matrix (ai,j)

satisfy a discrete analogue of the “Oinarov condition”.

R. Oinarov, L-E. Persson, A.M. Temirkhanova [39] and A.M. Temirkhanova

[40] have obtained necessary and sufficient conditions for the boundedness of

operators A+ and A− from the weighted lp,v space into the weighted lq,u space

for a slightly more general classes of matrix operators.

For more information, we refer to the PhD dissertations of

A.M. Temirkhanova [41] and C.A. Okpoti [42].

Moreover, C.A. Okpoti in his PhD thesis [42, Chapter 4] has pointed out

the following open questions.

Open question 1. Find necessary and sufficient conditions for (1.3) to

hold for all non-negative sequences {fi}∞i=1 for as general kernels as possible.

Open question 2. Find necessary and sufficient conditions for (1.3) to

hold on the cone of non-increasing sequences for as general kernels as possible.

The main part of the present PhD thesis is dedicated to the above men-

tioned open problems. In the present PhD thesis we consider a discrete Hardy

type inequality involving a kernel which has a more general form than those

known in the literature.

In Chapter 2 we have obtained the following new results.

– Firstly, we have introduced the classes of matrices O+
n and O−

n for n ≥ 0,

which cover much wider classes of matrix operators than those studied be-

fore. Such classes of matrices include well-known matrices of analysis such

as summable matrices, and in particular, matrices satisfying a discrete ana-

logue of the “Oinarov condition” and the condition considered in [39], [40].
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Moreover, we have introduced properties of such classes, which allowed us to

to consider the problem of boundedness and compactness of composition of

matrix operators.

– We have shown that the classes of matrices O+
n and O−

n for n ≥ 0 include

well-known classical operators such as the operator of multiple summation,

Hölder’s operator, Cesàro operator and others.

– We have obtained necessary and sufficient condition for the boundedness

and compactness of the matrix operators A+ and A− from the weighted lp,v

space into the weighted lq,u space when the corresponding matrices (ai,j) belong

to the class O+
n ∪ O−

n , n ≥ 0 for 1 < p ≤ q <∞.

– We have obtained boundedness criteria of the matrix operators A+ and A−

from the weighted lp,v space into the weighted lq,u space when the corresponding

matrices (ai,j) belong to the class O−
1 for 1 < q < p <∞.

Chapter 3 is devoted to the second open problem, which is pointed out in

[42]. Actually, we consider an inequality of the following form(
∞∑
i=1

uq
i

(
i∑

j=1

ai,jfj

)q) 1
q

≤ C

(
∞∑
i=1

vp
i fi

p

) 1
p

(1.4)

on the cone of non-negative and non-increasing sequences f = {fi}∞i=1 of lp,v,

where C is a positive constant independent of f and (ai,j) is a triangular matrix

with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

If ai,j = 1
i

for i ≥ j ≥ 1 and ai,j = 0 for i < j, then we obtain a discrete

Hardy inequality of the form(
∞∑
i=1

uq
i

(
1

i

i∑
j=1

fj

)q) 1
q

≤ C

(
∞∑
i=1

vp
i fi

p

) 1
p

(1.5)

for all non-negative and non-increasing sequences f ∈ lp,v.

The Hardy type inequalities restricted to the cones of monotone functions

and sequences have been actively studied in the last two decades. This prob-

lem has some applications in the investigation of boundedness of operators in

Lorentz spaces and in the embedding theory in Lorentz spaces. For a history

of Hardy type inequalities on the cones of monotone functions and sequences
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and for references to related results we refer to the book of A. Kufner, L.

Maligranda and L.-E. Persson [3, Chapter 10], and to the PhD thesis of O.

Popova [43].

Note that the impulse to study Hardy inequality on the cone of monotone

functions was given by the work of E. Sawyer [44], which allows to reduce

an inequality restricted to the cone of monotone functions to a corresponding

inequality for some positive linear operators on the cone of positive functions.

Now this result of E. Sawyer is known as the Sawyer duality principle. Some

generalizations of Sawyer duality principle and a corresponding result for the

discrete case were studied by many authors under some conditions on weights

(see [3, Chapter 10]).

In 1998 R. Oinarov and S.Kh. Shalgynbaeva [45] obtained an analogue of

the Sawyer duality principle for the discrete case for 1 < p, q <∞. Moreover,

S.Kh. Shalgynbaeva in her PhD thesis [46] obtained criteria for the validity

of inequality (1.5) for some other values of the parameters p and q. Also

inequality (1.4) was studied in [46] under some conditions on the entries of the

matrix (ai,j).

In 2006 G. Bennett and K.-G. Grosse-Erdmann [47] obtained a complete

characterization of the weights for which the Hardy inequality (1.5) holds on

the cone of monotone sequences of different nature of the conditions of S.Kh.

Shalgynbaeva.

In [48] S.Kh. Shalgynbaeva has obtained necessary and sufficient conditions

for the validity of (1.4) on the cone of monotone sequences for 1 < p ≤ q <∞,

when the entries of the matrix (ai,j) satisfy a discrete analogue of the “Oinarov

condition”.

Chapter 3 contains the following new results.

– Necessary and sufficient conditions for the validity of inequality (1.4)

on the cone of non-negative and non-increasing sequences f ≥ 0 when the

corresponding matrix (ai,j) belongs to the class O+
n ∪ O−

n , n ≥ 0 for 1 < p ≤

q <∞.
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– Two-sided estimates for matrix operators on the cone of non-negative

and non-increasing sequences f ≥ 0 for the case 1 < q < p < ∞, when the

corresponding matrices (ai,j) belong to the classes O+
1 and O−

1 .

Chapter 4 is devoted to the applications of the main results. Here we

apply the results of Chapter 2 and 3 for composition of matrix operators, for

three-weighted inequalities of Hardy type, and for summable matrices.

In Chapter 4 we have obtained the following new results.

–We have proved both boundedness and compactness results for composition

of matrix operators in weighted spaces of sequences when the corresponding

matrices (ai,j) belong to the classes O+
n∪O−

n , n ≥ 0 for the case 1 < p ≤ q <∞.

–Necessary and sufficient conditions for which three-weighted inequalities

of Hardy type hold when the corresponding matrices belong to the class O−
n ,

n ≥ 0 in the case 1 < p ≤ q <∞.

–Necessary and sufficient conditions for the validity of three-weighted in-

equalities of Hardy type when the corresponding matrices belong to the class

O−
1 in the case 1 < q < p <∞.

–Two-sided estimates for summable matrices in weighted spaces of sequences

and on the cone of non-negative and non-increasing sequences.
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1.2 The history and development of weighted

Hardy type inequalities.

Since the present Thesis deals with some generalizations of weighted Hardy

type inequalities, in this section we focus our interest on the history and ref-

erences results on the weighted Hardy type inequalities.

The theory of Hardy type inequalities is a wonderful subject with a proud

history and a great future. The study of Hardy type inequalities in weighted

Lebesgue spaces began in 1915 with the work of G.H. Hardy. In 1925 G.H.

Hardy proved the following result [4]:

Let p > 1 and {an}∞n=1 be a sequence of non-negative real numbers, such

that the series
∞∑

n=1

ap
n converges. Then the well-known discrete Hardy inequality

∞∑
n=1

(
1

n

n∑
k=1

ak

)p

≤
(

p

p− 1

)p ∞∑
n=1

ap
n (1.6)

holds.

The continuous Hardy inequality reads: if p > 1 and f is a non-negative

p-integrable function on (0, ∞), then f is integrable over the interval (0, x)

for all x > 0 and

∞∫
0

1

x

x∫
0

f(t)dt

p

dx ≤
(

p

p− 1

)p
∞∫

0

fp(x)dx. (1.7)

It should be noted that the constant

(
p

p− 1

)p

in both inequalities (1.6)

and (1.7) is sharp in the sense that it can not be replaced by any smaller

number.

The inequalities (1.6) and (1.7) imply the following information, respec-

tively.

If
∞∑

n=1

ap
n <∞, then

∞∑
n=1

hp
n(a) <∞, (1.8)

where a = {an} with an ≥ 0 and h(a) = {hn(a)}, hn(a) := 1
n

n∑
k=1

ak < ∞ is
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the discrete Hardy operator. Similarly, in the continuous case, we have the

following.

If

∞∫
0

fp(x)dx <∞, then

∞∫
0

(Hf(x))p dx <∞, (1.9)

where f(x) ≥ 0 and Hf(x) := 1
x

x∫
0

f(t)dt is the continuous Hardy operator.

Note that (1.8) and (1.9) are called the weak forms of (1.6) and (1.7),

respectively.

The inequalities (1.6) and (1.7) imply that the Hardy operators h and H

map the spaces lp into lp and Lp into Lp (p > 1), respectively, and that their

norms are equal to p′ = p
p−1

. Here, as usual, the spaces lp and Lp are the

Lebesgue spaces of all sequences a = {an}∞n=1 of real numbers and all (equiv-

alence classes modulo equality almost everywhere of) measurable functions

f = f(x) on (0, ∞), respectively, with the following norms

‖a‖lp :=

(
∞∑

n=1

|an|p
) 1

p

and ‖f‖Lp :=

 ∞∫
0

|f(x)|p
 1

p

.

Hardy’s original aim was to find a new, more elementary proof of Hilbert’s

double series theorem and he showed that in fact it follows from (1.6). Sim-

ple proofs of inequality (1.6) and its generalizations were obtained by Hardy

(1925), Elloit (1926,1929), Copson (1927, 1928), Kaluza-Szegö (1927), Hadry-

Littlewood (1927), Broadbent (1928), Grandjot (1928), Knopp (1928, 1929,

1930) and Mulholland (1932).

Many books and articles have been devoted to the investigation and gener-

alization of Hardy inequalities ever since. The first book on the Hardy inequal-

ity was the book of G.H. Hardy, J.E. Littlewood and G. Pólya Inequalities [49]

of 1934. The first book has been fully devoted to the Hardy inequality, and

has been published in 1990 by B. Opic, A. Kufner [50]. We also mention here

the book of A. Kufner and L.-E. Persson Weighted Inequalities of Hardy Type

[2], which is devoted to basic overview of the subject of weighted Hardy type
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inequalities in weighted Lebesgue spaces. A description of the most impor-

tant steps in the development of the Hardy inequalities has been published by

A. Kufner, L. Maligranda and L.-E. Persson [3].

In 1928 G.H. Hardy [51] proved the first “weighted” modification of in-

equality (1.7) for some integral operators, namely he proved the inequality

∞∫
o

1

x

x∫
0

f(t)dt

p

xεdx ≤
(

p

p− ε− 1

)p
∞∫

0

fp(x)xεdx. (1.10)

for all measurable non-negative functions f and for p > 1, ε < p− 1. Here the

constant

(
p

p− ε− 1

)p

is the best possible.

Some generalizations of the Hardy inequalities (1.6) and (1.7) have been

studied by Higaki (1935), Takahashi (1935), Chow (1939), Beesack (1961),

Petersen (1962), Levinson (1964) and others.

During the last decades inequalities (1.6) and (1.7) have been developed in

the following forms(
∞∑

n=1

un

∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣
q) 1

q

≤ C

(
∞∑

n=1

|an|pvn

) 1
p

, (1.11)

 b∫
a

∣∣∣∣∣∣
x∫

a

f(t)dt

∣∣∣∣∣∣
q

u(x)dx


1
q

≤ C

 b∫
a

|f(x)|pv(x)dx


1
p

, (1.12)

respectively, which are called weighted Hardy inequalities.

In 1930 G.H. Hardy and J.E. Littlewood [52], and G.A. Bliss [53] studied

inequality (1.12) with different parameters p and q in the case 1 < p < q <

∞. They considered the interval (0, ∞) and the weight functions v(x) ≡ 1,

u(x) = xr−q with r = q−p
p

and derived inequality (1.12). Moreover, G.A. Bliss

found the best constant in this case.

The systematic investigation of (1.12) started in the fifties-sixties for the

case p = q in the papers of P.R. Beesack [54], [55], J. Kadlec and A. Kufner

[56], V.R. Portnov [57], V.N. Sedov [58], F.A. Sysoeva [59], G. Talenti [5],

G. Tomaselli [6]. Note that G. Talenti and G. Tomaselli obtained the following



14 INTRODUCTION

necessary and sufficient condition for the validity of inequality (1.12) in the

case p = q

sup
t>0

 ∞∫
t

u(x)dx

 1
p
 t∫

0

v1−p′(y)dy


1
p′

<∞, p′ =
p

p− 1
.

Nowadays this condition is called the Muckenhoupt condition in honour of

B. Muckenhoupt, who presented a very nice proof of this result in [7] even in

a more general form with 1 ≤ p = q <∞ and for some Borel measures dµ(x),

dν(y) instead of u(x)dx and v(y)dy.

The study of the case of different parameters p and q has been started by

J.S. Bradley in [8]. He consider inequality (1.12) with (a, b) = (0, ∞) and

proved that the condition

sup
t>0

 ∞∫
t

u(x)dx

 1
q
 t∫

0

v1−p′(y)dy


1
p′

<∞

is necessary for (1.12) to hold for all 1 ≤ p, q ≤ ∞ and that it is also sufficient

for 1 ≤ p ≤ q <∞.

From the 60’s of the last century weighted Hardy inequalities have been

intensively studied by many authors. Let us mention here some of them:

V.M. Kokilashvili [9], V.G. Maz’ya [10], K.F. Andersen and B. Muckenhoupt

[60], L.-E. Persson and V.D. Stepanov [61], R.K. Juberg [62], V.D. Stepanov

[63], G. Bennett [28], V.M. Manakov [64], V.G. Maz’ya and A.L. Rozin (see

[10]), G. Sinnamon [65], [66], G. Sinnamon and V.D. Stepanov [67] and others.

Moreover, for more information we refer to the books [49], [50], [2], [68], [69]

and to the PhD dissertations of M. Nassyrova [70], D.V. Prokhorov [71], and

A. Wedestig [72].

Almost all references concern the continuous case (1.12), and surprisingly

little has been done for the discrete case.

The first result related to inequality (1.11) belongs to K.F. Andersen and

H.P. Heinig ([24], Theorem 4.1). In 1983 they proved that if 1 ≤ p ≤ q < ∞
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and

sup
n∈N

(
∞∑

k=n

uk

) 1
q
(

n∑
k=1

v1−p′

k

) 1
p′

<∞,

then the inequality (1.11) holds.

In 1985 H.P. Heinig [25] obtained a sufficient condition for the validity of

inequality (1.11). Namely, he proved that if 1 ≤ q < p <∞, 1
r

= 1
q
− 1

p
and

B :=

 ∞∑
n=−∞

(
∞∑

k=n

uk

) r
q
(

n∑
k=−∞

v1−p′

k

) r
q′

v1−p′

n

 1
r

<∞,

then inequality (1.11) holds with C ≤ q
1
q (p′)

1
q′B.

In 1987-1991 G. Bennett [26], [27], [28] gave a full characterization of the

weighted inequality (1.11), except for the case 0 < q < 1 < p < ∞. The

remaining case was obtained by M.S. Braverman and V.D. Stepanov [29] in

1992.

Now we state the following important result mainly taken from the Ben-

nett’s paper [28] (see also [3]):

Theorem 1.1. (i) If 1 < p ≤ q <∞, then inequality (1.11) holds if and only

if either

A1 := sup
n∈N

(
∞∑

k=n

uk

) 1
q
(

n∑
k=1

v1−p′

k

) 1
p′

<∞

or

A2 := sup
n∈N

(
n∑

k=1

v1−p′

k

)− 1
p
(

n∑
k=1

uk

(
k∑

m=1

v1−p′

m

)q) 1
q

<∞

or

A3 := sup
n∈N

(
∞∑

k=n

uk

)− 1
q′
 ∞∑

k=n

v1−p′

k

(
∞∑

m=k

um

)p′
 1

p′

<∞.

(ii) If 0 < p ≤ 1, p ≤ q <∞, then inequality (1.11) holds if and only if

A4 := sup
n∈N

(
∞∑

k=n

uk

) 1
q

v
− 1

p
n <∞.
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(iii) If 1 < p <∞, 0 < q < p and 1
r

= 1
q
− 1

p
, then inequality (1.11)

holds if and only if

A5 :=
∞∑

n=1

un

(
∞∑

k=n

uk

) r
p
(

n∑
k=1

v1−p′

k

) r
p′
 <∞.

(iv) If q < p = 1, then inequality (1.11) holds if and only if

A6 :=
∞∑

n=1

un

(
∞∑

k=n

uk

) q
1−q

max
1≤k≤n

v
q

q−1

k

 <∞.

(v) If 0 < q < 1 < p < ∞,
1

r
=

1

q
− 1

p
, then inequality (1.11) holds if

and only if

A7 :=

 ∞∑
n=1

(
∞∑

k=n

uk

) r
q
(

n∑
k=1

v1−p′

k

) r
q′

v1−p′

n

 1
r

<∞.

C.A. Okpoti [42] in his PhD thesis has proved that for the case 1 < p ≤

q <∞ there are infinite many conditions characterizing (1.11).

More general Hardy type operators (Kf)(x) =
x∫
0

K(x, s)f(s)ds with non-

negative kernel K(·, ·) have been studied by many authors including F. Martin-

Reyes and E. Sawyer [14], V.D. Stepanov [15]-[19], R. Oinarov [20], [23],

S. Bloom and R. Kerman [21], L.-E. Persson, V.D. Stepanov [61], D.V. Pro-

khorov [71].

It is now natural to study the following general discrete Hardy type oper-

ators (
A+f

)
i
:=

i∑
j=1

ai,jfj, i ≥ 1, (1.13)

(
A−f

)
j
:=

∞∑
i=j

ai,jfi, j ≥ 1, (1.14)

where (ai,j) is a triangular matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and

ai,j = 0 for i < j.

The boundedness of such operators from the weighted lp,v space into the

weighted lq,u space is equivalent to finding necessary and sufficient conditions
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on the weight sequences {ui}∞i=1 and {vi}∞i=1 such that the following general

discrete Hardy type inequality(
∞∑
i=1

uq
i

∣∣(A±f)i

∣∣q) 1
q

≤ C

(
∞∑
i=1

vp
i |fi|p

) 1
p

(1.15)

holds for all f ∈ lp,v.

When one of the parameters p or q is equal to 1 or ∞, necessary and

sufficient conditions for the validity of (1.15) with the exact value of the best

constant C > 0 have been obtained in [1]. In case 1 < p, q < ∞ inequalities

as (1.15) have not been established yet for arbitrary matrices (ai,j). Instead

inequality (1.15) has been established with certain restrictions on the matrix

(ai,j).

The first result in this direction has been obtained by K.F. Andersen and

H.P. Heinig [24], who proved a sufficient condition for general discrete Hardy

type inequality (1.15) to hold for the case 1 ≤ p ≤ q < ∞ with special

non-negative kernels (ai,j) that was assumed to be non-increasing in i and

non-decreasing in j.

In [73] C.A. Okpoti, L-E. Persson, A. Wedestig have studied inequality

(1.15) for the case ai,j = αiβj, i ≥ j ≥ 1, where {αi}∞i=1 and {βj}∞j=1 are

positive sequences. Moreover, in [74] they have obtained a sufficient condition

for which inequality (1.15) holds for a general kernel.

Now we introduce the following notation.

Notation. If M and K are real valued functionals of sequences, then we

understand that the symbol M � K means that there exists c > 0 such that

M ≤ cK, where c is a constant which may depend only on parameters such as

p, q, rn and hn. If M � K �M , then we write M ≈ K.

R. Oinarov, S.Kh. Shalgynbaeva [37] and R. Oinarov, C.A.Okpoti, L-E.

Persson [38] have obtained necessary and sufficient conditions for the validity

of (1.15) for 1 < p, q < ∞ under the assumption that there exists d ≥ 1 such

that

ai,j ≈
ai,k

ck
cj +

ak,j

bk
bi, i ≥ k ≥ j ≥ 1 (1.16)
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holds, where c = {ci}∞i=1, b = {bi}∞i=1 are sequences of positive numbers.

However, inequality (1.15) is equivalent to the following inequality

‖Ã±f‖q,ũ ≤ C‖f‖p,ṽ,

where ũi = uib
q
i , ṽi = vic

−p
i , i ≥ 1 and the entries ãi,j =

ai,j

bicj
of matrix (ãi,j) of

operator Ã satisfy the following condition

ãi,j ≈ ãi,k + ãk,j i ≥ k ≥ j ≥ 1,

which is equivalent to the condition (1.16).

We now list some of the most relevant results of R. Oinarov, S.Kh. Shalg-

ynbaeva [37] and R. Oinarov, C.A.Okpoti, L-E. Persson [38].

Theorem 1.2. [37] Let 1 < p ≤ q < ∞. Let the entries of the matrix (ai,j)

satisfy condition (1.16). Then inequality (1.15) for the operator (1.13) holds

if and only if M = max{M1,M2} <∞, where

M1 = sup
k≥1

1

ck

(
k∑

j=1

cp
′

j v
−p′

j

) 1
p′
(

∞∑
i=k

aq
i,ku

q
i

) 1
q

,

M2 = sup
k≥1

1

bk

(
k∑

j=1

ap′

k,jv
−p′

j

) 1
p′
(

∞∑
i=k

bqiu
q
i

) 1
q

.

Moreover, M ≈ C, where C is the best constant in (1.15).

Theorem 1.3. [37] Let 1 < p ≤ q < ∞. Let the entries of the matrix (ai,j)

satisfy condition (1.16). Then inequality (1.15) for the operator (1.14) holds

if and only if M∗ = max{M∗
1 ,M

∗
2} <∞, where

M∗
1 = sup

k≥1

1

ck

(
k∑

j=1

cqju
q
j

) 1
q
(

∞∑
i=k

ap′

i,kv
−p′

i

) 1
p′

,

M∗
2 = sup

k≥1

1

bk

(
k∑

j=1

aq
k,ju

q
j

) 1
q
(

∞∑
i=k

b−p′

i v−p′

i

) 1
p′

.

Moreover, M∗ ≈ C, where C is the best constant in (1.15).
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Theorem 1.4. [38] Let 1 < q < p < ∞. Let the entries of the matrix (ai,j)

satisfy condition (1.16). Then inequality (1.15) for the operator (1.13) holds

if and only if B := max{B1, B2} <∞, where

B1 :=

 ∞∑
k=1

v−p′

k

(
∞∑

i=k

aq
i,ku

q
i

) p
p−q
(

1

cp
′

k

k∑
i=1

cp
′

i v
−p′

i

) p(q−1)
p−q


p−q
pq

,

B2 :=

 ∞∑
k=1

uq
k

(
k∑

i=1

ap′

i,kv
−p′

i

) q(p−1)
p−q

(
1

bqk

∞∑
i=k

bqiu
q
i

) q
p−q


p−q
pq

.

Moreover, B ≈ C, where C is the best constant in (1.15).

Theorem 1.5. [38] Let 1 < q < p < ∞. Let the entries of the matrix (ai,j)

satisfy condition (1.16). Then inequality (1.15) for the operator (1.14) holds

if and only if B∗ := max{B∗1 , B∗2} <∞, where

B∗1 :=

 ∞∑
k=1

uq
k

(
∞∑

i=k

ap′

i,kv
−p′

i

) q(p−1)
p−q

(
1

cqk

k∑
i=1

cqiu
q
i

) q
p−q


p−q
pq

,

B∗2 :=

 ∞∑
k=1

v−p′

k

(
k∑

i=1

aq
i,ku

q
i

) p
p−q
(

1

bp
′

k

∞∑
i=k

bp
′

i v
−p′

i

) p(q−1)
p−q


p−q
pq

.

Moreover, B∗ ≈ C, where C is the best constant in (1.15).

Now we introduce the following definition.

Definition 1.6. A sequence {αi}∞i=1 is called almost non-decreasing (non-

increasing), if there exists c > 0 such that cαi ≥ αk (αk ≤ cαj) for all

i ≥ k ≥ j ≥ 1.

R. Oinarov, L-E. Persson, A.M. Temirkhanova [39] and A.M. Temirkhanova

[40] have studied estimate (1.15) for 1 < p, q < ∞ under the assumption

that there exist d ≥ 1 and a sequence of positive numbers {ωk}∞k=1, and a

non-negative matrix (bi,j), where bi,j is almost non-decreasing in i and almost

non-increasing in j, such that the inequalities

1

d
(bi,kωj + ak,j) ≤ ai,j ≤ d(bi,kωj + ak,j) (1.17)
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hold for all i ≥ k ≥ j ≥ 1.

We now state the main results of [39] and [40].

Theorem 1.7. [39] Let 1 < p ≤ q <∞. Let the entries of the matrix (ai,j) of

the operator (1.13) satisfy assumption (1.17). Then inequality (1.15) for the

operator (1.13) holds if and only if G = max{G1, G2} <∞, where

G1 = sup
n≥1

(
∞∑

i=n

bqi,nu
q
i

) 1
q
(

n∑
j=1

ωp′

j v
−p′

j

) 1
p′

, G2 = sup
n≥1

(
∞∑

i=n

uq
i

) 1
q
(

n∑
j=1

ap′

n,jv
−p′

j

) 1
p′

.

Moreover, G ≈ C, where C is the best constant in (1.15).

Theorem 1.8. [39] Let 1 < p ≤ q <∞. Let the entries of the matrix (ai,j) of

the operator (1.14) satisfy assumption (1.17). Then inequality (1.15) for the

operator (1.14) holds if and only if G∗ = max{G∗
1,G∗

2} <∞, where

G∗
1 = sup

k≥1

(
∞∑

i=k

bp
′

i,kv
−p′

i

) 1
p′
(

k∑
j=1

ωq
ju

q
j

) 1
q

, G∗
2 = sup

k≥1

(
∞∑

i=k

v−p′

i

) 1
p′
(

k∑
j=1

aq
k,ju

q
j

) 1
q

.

Moreover, G∗ ≈ C, where C is the best constant in (1.15).

Theorem 1.9. [40] Let 1 < q < p <∞. Let the entries of the matrix (ai,j) of

the operator (1.13) satisfy assumption (1.17). Then inequality (1.15) for the

operator (1.13) holds if and only if G = max{G1, G2} <∞, where

G1 =

 ∞∑
k=1

(
∞∑

j=k

bqj,ku
q
j

) p
p−q
(

k∑
i=1

ωp′

i v
−p′

i

) p(q−1)
p−q

ωp′

k v
−p′

k


p−q
pq

,

G2 =

 ∞∑
k=1

(
∞∑

j=k

uq
j

) q
p−q
(

k∑
i=1

ap′

k,iv
−p′

i

) q(p−1)
p−q

uq
k


p−q
pq

.

Moreover, G ≈ C, where C is the best constant in (1.15).

Theorem 1.10. [40] Let 1 < q < p < ∞. Let the entries of the matrix (ai,j)

of the operator (1.14) satisfy assumption (1.17). Then inequality (1.15) for

the operator (1.14) holds if and only if G∗ = max{G∗1 , G∗2} <∞, where

G∗1 =

 ∞∑
k=1

(
∞∑

j=k

bp
′

j,kv
−p′

j

) q(p−1)
p−q

(
k∑

i=1

ωq
i u

q
i

) q
p−q

ωq
ku

q
k


p−q
pq

,
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G∗2 =

 ∞∑
k=1

(
∞∑

j=k

v−p′

j

) p(q−1)
p−q

(
k∑

i=1

aq
k,iu

q
i

) p
p−q

v−p′

k


p−q
pq

.

Moreover, G∗ ≈ C, where C is the best constant in (1.15).
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1.3 Weighted Hardy type inequalities on the

cones of monotone functions and sequences.

The properties of the cone of monotone sequences of real numbers, of the

cone of monotone functions, and several related extremum problems have an

important significance in functional analysis, in the problems of the mathemat-

ical economics, of the theory of probability and statistics. The approximation

numbers of operators, quantitative characteristics of the best approximations

of functions, moment sequences of function are monotone sequences of num-

bers, which carry certain information. Many qualitative properties of this type

can be expressed by functional relations of monotone sequences.

It is known that the properties of a class of functions or of a class of

sequences of numbers can be obtained from the functional relations of their

non-increasing rearrangements, which are monotone functions and monotone

sequences, respectively. Therefore, the problem of establishing the various

functional relationships on the cone of monotone sequences of numbers is an

actual direction of mathematical analysis.

Hardy type inequalities on the cone of monotone functions and sequences

have some applications in the investigation of boundedness of operators in

Lorentz spaces and in the embedding theory in Lorentz spaces. In 1951

G. Lorentz [75] first introduced the Lorentz spaces Λp(u), 0 < p <∞.

Λp(u) :=

f : ‖f ∗‖p,u =

 ∞∫
0

(f ∗(t))p u(t)dt

 1
p

<∞

 .

Here f ∗ is the equimeasurable decreasing rearrangement of |f | defined by

f ∗(t) := inf{y > 0 : λf (y) ≤ t},

where λf is the distribution function:

λf (y) := meas{x ∈ X : |f(x)| > y}.
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A weight characterization of classical operators in Lorentz spaces led to the

necessity to study operators defined on the cone of decreasing functions.

Now we consider the Hardy-Littlewood maximal function Mf , which is

defined by the following formula

(Mf)(x) := sup
x∈Q

1

|Q|

∫
Q

|f(z)|dz, x ∈ Rn,

where Q ia a cube in Rn with sides parallel to the coordinate axes and |Q| is

its n-dimensional Lebesgue measure. It is known that

(Mf)∗(t) ≈ 1

t

t∫
0

f ∗(s)ds, t > 0

(for the proofs and historical notes concerning this estimate, see e.g. [76], [77]).

Thus, the characterization of weight functions u and v, for which the mapping

M : Λp(v) → Λq(u), 1 < p, q <∞

is bounded between Lorentz spaces, is equivalent to the characterization of

weight functions u and v, for which the following Hardy inequality

 ∞∫
0

1

t

t∫
0

f(s)ds

q

u(t)dt


1
q

≤ C

 ∞∫
0

fp(t)v(t)dt

 1
p

(1.18)

holds for all decreasing functions f ≥ 0.

Hardy type inequalities on the cone of monotone functions and sequences

have been intensively studied during the last two decades. In 1990 M. Ariño

and B. Muckenhoupt [78] obtained a necessary and sufficient condition for the

validity of (1.18) on the cone of non-negative and non-increasing functions f

in the case 1 ≤ p = q <∞ and u(t) = v(t). The result is the following.

Let 1 ≤ p <∞. Then the inequality

 ∞∫
0

1

t

t∫
0

f(s)ds

p

v(t)dt


1
p

≤ C

 ∞∫
0

fp(t)v(t)dt

 1
p
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holds for all non-negative and non-increasing functions f if and only if there

is a constant D > 0 such that

∞∫
t

s−pv(s)ds ≤ Dt−p

t∫
0

v(s)ds for all t > 0.

Previously, such problems were studied by D.W. Boyd [79] in 1967 and by

S.G. Krein, Yu.I. Petunin, E.M. Semenov [80].

E. Sawyer [44] has extended the result of M. Ariño and B. Muckenhoupt to

the case of different weights v and u and 1 < p, q < ∞. Nowadays this result

of E. Sawyer is known as the Sawyer duality principle.

The Sawyer duality principle. Let 1 < p < ∞, g, v be non-negative

measurable functions on (0, ∞) with v locally integrable. Then

sup
0≤f↓

∞∫
0

f(x)g(x)dx(∞∫
0

fp(x)v(x)dx

) 1
p

≈

 ∞∫
0

 x∫
0

g(t)dt

p′ x∫
0

v(t)dt

−p′

v(x)dx


1
p′

+

∞∫
0

g(x)dx(∞∫
0

v(x)dx

) 1
p

If
∞∫
0

v(x)dx = ∞, then the second term on the right hand side of the last

equivalence can be omitted.

Moreover, E. Sawyer [44] has used this duality result to obtain necessary

and sufficient conditions for which (1.18) holds for all non-negative and non-

increasing functions f in the case 1 < p, q < ∞. This result of E. Sawyer

was extended by V.D. Stepanov [81] to the cases 0 < q < 1 < p < ∞ and

0 < p ≤ q <∞, 0 < p < 1. M.L. Goldman [35], G. Bennett and K.-G. Grosse-

Erdmann [47] have characterized the weights u and v, for which inequality

(1.18) holds for all non-negative and non-increasing functions f in the case

0 < q < p < 1. The duality principle for the case 0 < p ≤ 1 has been

proved in [81], [82] and [83]. A simpler proof of the Sawyer duality principle

has been obtained by by V.D. Stepanov [81], M.J. Carro and J. Soria [82].
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Some generalizations of Sawer duality formula were proved by D.E. Edmunds,

R. Kerman, L. Pick [84] and A. Kamińska, M. Mastylo [85].

Various aspects of weighted inequalities for monotone functions and their

applications in the estimation of maximal functions, in the theory of inter-

polation of operators, in the embedding theory and their relations with the

stochastic inequalities have been studied in [21], [81], [86]-[94]. Such intensive

investigation of various weighted inequalities on the cone of monotone func-

tions in recent years has been made possible due to the achievements of the

study of weighted inequalities in various spaces (see e.g. [7], [8], [9], [10], [16],

[17], [20], [50] and many others).

At the same time the investigation and generalization of the discrete Hardy

inequality

(
∞∑
i=1

ui

(
1

i

i∑
j=1

fj

)q) 1
q

≤ C

(
∞∑
i=1

vifi
p

) 1
p

(1.19)

on the cone of monotone sequences f ≥ 0 was developed. Results on weighted

Hardy inequalities on the cone of monotone sequences have been obtained by

K.F. Andersen, H.P. Heinig [24], H.P. Heinig [25], L. Leindler [95], M.Sh. Braver-

man, V.D. Stepanov [29], J. Nemeth [96], F.P. Cass, W. Kratz [97], P.D. John-

son, R.N. Mohapatra, David Ross [98], R. Oinarov, S.Kh. Shalgynbaeva

[45], G. Bennett, K.-G. Grosse-Erdmann [47], M.L. Goldman [35], [99], [100],

S.Kh. Shalgynbaeva [48] and others.

In 1998 R. Oinarov, S.Kh. Shalgynbaeva [45] obtained an analogue of the

Sawyer duality principle for the discrete case if 1 < p, q < ∞. This result of

R. Oinarov, S.Kh. Shalgynbaeva allows to reduce a Hardy type inequality on

the cone of monotone sequences to a corresponding inequality on the cone of

non-negative sequences from lp,v. Indeed, we have the following.

Theorem 1.11. [45] Let 1 < p, q <∞. Let (ai,j) be a triangular matrix with

entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j. Let Vk =
k∑

i=1

vi for k ≥ 1.
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Then inequality(
∞∑
i=1

ui

(
i∑

j=1

ai,jfj

)q) 1
q

≤ C

(
∞∑
i=1

vifi
p

) 1
p

(1.20)

on the cone of non-negative and non-increasing sequences f = {fi}∞i=1 of lp,v

is equivalent to the following inequality

 ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

(1.21)

for all non-negative sequences g = {gi}∞i=1, if V∞ = lim
k→∞

Vk = ∞, and to the

inequality

 ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

+

(
∞∑

j=1

∞∑
i=j

ai,jgi

)(
∞∑

k=1

vk

)− 1
p

≤ C

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

(1.22)

for all non-negative sequences g = {gi}∞i=1, if V∞ <∞.

Moreover, C̃ ≈ C if V∞ = ∞, and C ≈ C if V∞ <∞, where C, C̃ and C

are the best constants in (1.20), (1.21), (1.22), respectively.

Moreover, S.Kh. Shalgynbaeva in her PhD thesis [46] has obtained criteria

for the validity of inequality (1.19) for some other values of the parameters p

and q.

In 2006 G. Bennett and K.-G. Grosse-Erdmann [47] obtained a complete

characterization of the weights for which the Hardy inequality (1.19) holds on

the cone of monotone sequences of different nature of the conditions of S.Kh.

Shalgynbaeva.

M.L. Goldman in his papers has studied inequalities of the type (1.19) on

the cone of monotone sequences and has applied the corresponding results to

establish Hardy inequalities on the cone of quasi-monotone sequences, see e.g.

[35], [99], [100].
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In [48] S.Kh. Shalgynbaeva has obtained necessary and sufficient conditions

for the validity of (1.20) on the cone of monotone sequences for 1 < p ≤ q <∞

under the assumption that there exists d ≥ 1 such that the inequalities

1

d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), i ≥ k ≥ j ≥ 1 (1.23)

hold. Namely, the following result.

Theorem 1.12. [48] Let 1 < p ≤ q < ∞. Let the entries of the matrix (ai,j)

in (1.20) satisfy condition (1.23). Let Vk =
k∑

i=1

vi for k ≥ 1 and Aik =
k∑

j=1

ai,j

for i ≥ k ≥ 1. Then inequality (1.20) on the cone of non-negative and non-

increasing sequences f ≥ 0 holds if and only if H0 ≡ max{H1, H2, H3} <∞,

where

H1 = sup
s≥1

V
− 1

p
s

(
s∑

i=1

Aq
iiui

) 1
q

,

H2 = sup
s≥1

(
s∑

k=1

kp′
(

V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

∞∑
i=s

aq
ikui

) 1
q

,

H3 = sup
s≥1

(
s∑

i=1

Ap′

si

(
V
− p′

p

i − V
p′
p

i+1

)) 1
p′
(

∞∑
k=s

uk

) 1
q

.

Moreover, H0 ≈ C, where C is the best constant in (1.20).

Nowadays inequalities on the cone of monotone functions and sequences are

still being intensively developed. This fact is confirmed by a great number of

recent publications [2], [36], [67], [88], [92], [101]-[114] and most recently [100]

and [115]. For a history of Hardy type inequalities on the cones of monotone

functions and sequences and for references to related results we refer to the

book of A. Kufner, L. Maligranda and L.-E. Persson [3, Chapter 10], and to

the PhD thesis of O. Popova [43].
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Chapter 2

Boundedness and compactness

of matrix operators in weighted

Lebesgue spaces

2.1 Preliminaries and notation.

In this Chapter we consider the problems of boundedness and compactness

from the weighted lp,v space into the weighted lq,u space of the matrix operators

(
A+f

)
i
:=

i∑
j=1

ai,jfj, i ≥ 1, (2.1)

(
A−f

)
j
:=

∞∑
i=j

ai,jfi, j ≥ 1. (2.2)

The boundedness of such operators is equivalent to the validity of the following

Hardy type inequality

‖A±f‖q,u ≤ C‖f‖p,v ∀f ∈ lp,v, (2.3)

where C is a positive finite constant independent of f and (ai,j) is a triangular

matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

29
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Here and further 1 < p, q <∞, 1
p
+ 1

p′
= 1 and u = {ui}∞i=1, v = {vi}∞i=1 are

positive sequences of real numbers. lp,v is the space of sequences f = {fi}∞i=1

of real numbers such that

‖f‖p,v :=

(
∞∑
i=1

|vifi|p
) 1

p

<∞, 1 < p <∞.

In this Chapter we consider inequality (2.3) under the following assumption

in the case 1 < q < p <∞.

Assumption A. There exist d ≥ 1, a sequence of positive numbers {ωk}∞k=1,

and a non-negative matrix (bi,j), whose entries bi,j are almost non-decreasing

in i and almost non-increasing in j such that the inequalities

1

d
(ai,k + bk,jωi) ≤ ai,j ≤ d(ai,k + bk,jωi) (2.4)

hold for all i ≥ k ≥ j ≥ 1.

Here and further, a matrix is said to be non-negative provided that all its

entries are non-negative.

Let α > 0. Let ai,j = (bi − dj)
α for i ≥ j ≥ 1 and ai,j = 0 for i < j,

where the sequences {bi}∞i=1 and {di}∞i=1 are such that bi ≥ dj, i ≥ j ≥ 1.

If {bi}∞i=1 is a non-decreasing sequence and {di}∞i=1 is an arbitrary sequence,

then the entries of the matrix (ai,j) satisfy condition (1.17). Indeed, we have

ai,j ≈ (bi − bk)
α + ak,j, i ≥ k ≥ j ≥ 1. In general, the entries ai,j do not

satisfy condition (2.4). If {di}∞i=1 is a non-decreasing sequence and {bi}∞i=1

is an arbitrary sequence, then the entries ai,j satisfy condition (2.4), but in

general, condition (1.17) does not hold for the entries of the matrix (ai,j).

Thus, conditions (1.17), (2.4) include condition (1.16) and complement

each other.

Moreover, in this Chapter we introduce a general class of matrices. We

establish necessary and sufficient conditions for the boundedness and com-

pactness of the operators (2.1) and (2.2) when the corresponding matrices

belong to such classes. Such classes of matrices are wider than those which

have been previously studied in the theory of discrete Hardy type inequalities.
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The content of the Chapter is as follows. In Section 2.2, we introduce the

classes of matrices O+
n and O−

n for n ≥ 0, which include well-known matrices

of analysis such as summable matrices, and in particular, matrices satisfy-

ing conditions (1.16), (1.17), (2.4). Moreover, in this section we introduce

properties of such classes. Section 2.3 contains examples of matrices from

the introduced classes and here we show that such classes of matrices include

well-known classical operators such as the operator of multiple summation,

Hölder’s operator, Cesàro operator. In Section 2.4, we prove the theorems,

which give criteria of boundedness of the operators defined by (2.1) and (2.2)

in weighted spaces of sequences when the corresponding matrices belong to the

classes O+
n and O−

n , n ≥ 0 in case 1 < p ≤ q < ∞. In Section 2.5, we obtain

necessary and sufficient conditions for the compactness of the matrix operators

defined by (2.1) and (2.2) when the corresponding matrices belong to one of

the classes O+
n and O−

n , n ≥ 0. Section 2.6 contains the main results for the

case 1 < p ≤ q <∞ and their proofs. Section 2.7 is devoted to the problem of

boundedness of the operators defined by (2.1) and (2.2) in weighted spaces of

sequences when the entries of the corresponding matrices satisfy Assumption

A in case 1 < q < p <∞.

For the proof of our main theorem we will need the following well-known

results for the discrete weighted Hardy inequality (see [3]) and the criteria of

precompactness of sets in lp (see [116, p. 32]).

Theorem A. Let {µj}∞j=1 be a non-negative sequence of real numbers.

(i) If 1 < p ≤ q <∞, then the inequality

(
∞∑
i=1

∣∣∣∣∣
i∑

j=1

µjfj

∣∣∣∣∣
q

uq
i

) 1
q

≤ C

(
∞∑
i=1

|vifi|p
) 1

p

(2.5)

holds for all f ∈ lp,v if and only if

H0 = sup
n≥1

(
∞∑

j=n

uq
j

) 1
q
(

n∑
i=1

µp′

i v
−p′

i

) 1
p′

<∞.

Moreover, H0 ≈ C, where C is the best constant in (2.5).
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(ii) If 1 < q < p <∞, then the inequality (2.5) for all f ∈ lp,v holds if and

only if

H1 =

 ∞∑
k=1

(
∞∑

i=k

uq
i

) p
p−q
(

k∑
j=1

µp′

j v
−p′

j

) p(q−1)
p−q

µp′

k v
−p′

k


p−q
pq

<∞.

Moreover, H1 ≈ C, where C is the best constant in (2.5).

Theorem B. Let {µj}∞j=1 be a non-negative sequence of real numbers.

(i) If 1 < p ≤ q <∞, then the inequality(
∞∑
i=1

∣∣∣∣∣
∞∑
j=i

µjfj

∣∣∣∣∣
q

uq
i

) 1
q

≤ C

(
∞∑
i=1

|vifi|p
) 1

p

(2.6)

holds for all f ∈ lp,v if and only if

H2 = sup
n≥1

(
n∑

j=1

uq
j

) 1
q
(

∞∑
i=n

µp′

i v
−p′

i

) 1
p′

<∞.

Moreover, H2 ≈ C, where C is the best constant in (2.6).

(ii) If 1 < q < p <∞, then the inequality (2.6) for all f ∈ lp,v holds if and

only if

H3 =

 ∞∑
k=1

(
k∑

i=1

uq
i

) p
p−q
(

∞∑
j=k

µp′

j v
−p′

j

) p(q−1)
p−q

µp′

k v
−p′

k


p−q
pq

<∞.

Moreover, H3 ≈ C, where C is the best constant in (2.6).

Theorem C. Let T be a set in lp, 1 ≤ p < ∞. The set T is compact if

and only if T is bounded and for all ε > 0 there exists N = N(ε) such that for

all x = {xi}∞i=1 ∈ T the inequality

∞∑
i=N

|xi|p < ε

holds.

We also need the following well-known result (see [38]).

Lemma D. Let γ > 0. Then there exists c > 0 such that

1

c

(
j∑

k=1

βk

)γ

≤
j∑

k=1

βk

(
k∑

i=1

βi

)γ−1

≤ c

(
j∑

k=1

βk

)γ

∀j ∈ N (2.7)
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for all sequences {βk}∞k=1 of positive real numbers.

Moreover, there exists c1 ≥ 1 such that

1

c1

(
N∑

k=j

βk

)γ

≤
N∑

k=j

βk

(
N∑

i=k

βi

)γ−1

≤ c1

(
N∑

k=j

βk

)γ

(2.8)

for all j, k ∈ {1, 2, ..., N}, N ∈ N ∪ {∞} and for all sequences {βk}∞k=1 of

positive real numbers such that
∞∑

k=1

βk <∞.
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2.2 Introduction of classes of matrices and their

properties.

For n ≥ 1, we introduce the classes O+
n and O−

n of matrices (ai,j) . We denote

by
(
a

(n)
i,j

)
a generic element (ai,j) of O+

n or (ai,j) of O−
n .

We now introduce the set M+ of non-negative matrices (ai,j) such that ai,j

is non-decreasing in the first index for all i ≥ j ≥ 1. We define the classes O+
n ,

n ≥ 0 by induction. If n = 0 the class O+
0 is defined as the set of matrices

of M+ of the type a
(0)
i,j = αj, ∀i ≥ j ≥ 1. Next we assume that the classes

O+
γ have already been defined for γ = 0, 1, . . . , n − 1, n ≥ 1. By definition a

matrix (ai,j) ≡ (a
(n)
i,j ) of M+ belongs to the class O+

n if and only if there exist

matrices (a
(γ)
i,j ) ∈ O+

γ , γ = 0, 1, . . . , n− 1 and a number rn > 0 such that

a
(n)
i,j ≤ rn

n∑
γ=0

bn,γ
i,k a

(γ)
k,j (2.9)

for all i ≥ k ≥ j ≥ 1, where bn,n
i,k ≡ 1 and

bn,γ
i,k = inf

1≤j≤k

a
(n)
i,j

a
(γ)
k,j

, γ = 0, 1, . . . , n− 1. (2.10)

From (2.10) it follows that entries of the matrices (bn,γ
i,k ) are non-decreasing in

the first index and are non-increasing in the second index. Moreover, (2.10)

provides the validity of the following inequality

a
(n)
i,j ≥ bn,γ

i,k a
(γ)
k,j (2.11)

for all i ≥ k ≥ j ≥ 1, γ = 0, 1, . . . , n, n = 0, 1, . . . Then for (a
(n)
i,j ) ∈ O+

n we

have

a
(n)
i,j ≈

n∑
γ=0

bn,γ
i,k a

(γ)
k,j , n ≥ 0 (2.12)

for all i ≥ k ≥ j ≥ 1.

Remark 2.1. It is easy to show that if for the matrix (a
(n)
i,j ), n ≥ 0 there exist

matrices (a
(γ)
i,j ) ∈ O+

γ , γ = 0, 1, . . . , n − 1, and matrices (̃bn,γ
i,k ), γ = 0, 1, . . . , n
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such that the equivalence (2.12) is valid for all i ≥ k ≥ j ≥ 1, then (a
(n)
i,j ) ∈ O+

n

and b̃n,γ
i,k ≈ bn,γ

i,k . Hence, we may assume that the matrices (bn,γ
i,k ) are arbitrary

non-negative matrices which satisfy (2.12).

For the proof of our main results we also need the following inequality. Let

n ≥ l ≥ γ. Then we have

bn,γ
i,k ≥ bn,l

i,s · b
l,γ
s,k ∀i ≥ s ≥ k ≥ 1. (2.13)

Indeed, using (2.11), for i ≥ s ≥ k ≥ 1, n ≥ l ≥ γ we obtain

bn,γ
i,k = inf

1≤j≤k

a
(n)
i,j

a
(γ)
k,j

≥ bn,l
i,s · inf

1≤j≤k

a
(l)
s,j

a
(γ)
k,j

= bn,l
i,s · b

l,γ
s,k.

As above, we introduce the classes O−
m, m ≥ 0. We now define the set M−

of non-negative matrices (ai,j) such that ai,j is non-increasing in the second

index for all i ≥ j ≥ 1. By definition a matrix (ai,j) = (a
(0)
i,j ) of M− belongs to

the class O−
0 if and only if it has the form a

(0)
i,j = βi for all i ≥ j ≥ 1. Let the

classes O−
γ , γ = 0, 1, . . . ,m − 1, m ≥ 1 be defined. A matrix (ai,j) = (a

(m)
i,j )

of M− belongs to the class O−
m if and only if there exist matrices (a

(γ)
i,j ) ∈ O−

γ ,

γ = 0, 1, . . . ,m− 1 and a number hm > 0 such that

a
(m)
i,j ≤ hm

m∑
γ=0

a
(γ)
i,k d

γ,m
k,j (2.14)

for all i ≥ k ≥ j ≥ 1, where dm,m
k,j ≡ 1 and

dγ,m
k,j = inf

k≤i≤∞

a
(m)
i,j

a
(γ)
i,k

, γ = 0, 1, . . . ,m− 1. (2.15)

From the definition of the matrix (dγ,m
k,j ), γ = 0, 1, . . . ,m − 1, m = 0, 1, . . . ,

it is obvious that the entries of the matrix (dγ,m
k,j ) do not decrease in the first

index and do not increase in the second index and for m ≥ l ≥ γ, k ≥ s ≥ j

satisfy the following inequality

dγ,m
k,j ≥ dγ,l

k,s · d
l,m
s,j . (2.16)

From (2.15) it follows that for all i ≥ k ≥ j ≥ 1

a
(m)
i,j ≥ a

(γ)
i,k d

γ,m
k,j , γ = 0, 1, . . . ,m− 1. (2.17)
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As in (2.12) every class O−
m, m ≥ 0 of matrices (a

(m)
i,j ) is characterized by

the following relation

a
(m)
i,j ≈

m∑
γ=0

a
(γ)
i,k d

γ,m
k,j (2.18)

for all i ≥ k ≥ j, where dγ,m
k,j , γ = 0, 1, . . . ,m are defined by the formula (2.15).

Remark 2.2. As mentioned before, we may assume that the matrices (dγ,m
k,j ),

γ = 0, 1, . . . ,m, m ≥ 0 are arbitrary non-negative matrices which satisfy

(2.18).

Remark 2.3. By the definitions of the classes O±
n , n ≥ 0 we have O±

0 ⊂ O±
1 ⊂

· · · ⊂ O±
n ⊂ · · ·

In particular, the matrices of the classes O+
1 and O−

1 are characterized by

the following relations, respectively,

a
(1)
i,j ≈ b1,0

i,ka
(0)
k,j + a

(1)
k,j ∀i ≥ k ≥ j ≥ 1,

a
(1)
i,j ≈ a

(1)
i,k + a

(0)
i,kd

0,1
k,j ∀i ≥ k ≥ j ≥ 1.

It is obvious that the class O+
1 include the matrices, whose entries satisfy

conditions (1.16) and (1.17). Also it should be noted that the matrices with

conditions (1.16) and (2.4) belong to the class O−
1 . This implies that the classes

O+
n , n ≥ 1 and O−

m, m ≥ 1 are wider than the classes of matrices which have

been used in this connection before.

The matrices of the classes O+
2 and O−

2 are described by the following

relations, respectively,

a
(2)
i,j ≈ b2,0

i,ka
(0)
k,j + b2,1

i,ka
(1)
k,j + a

(2)
k,j ∀i ≥ k ≥ j ≥ 1,

a
(2)
i,j ≈ a

(2)
i,k + a

(1)
i,kd

1,2
k,j + a

(0)
i,kd

0,2
k,j ∀i ≥ k ≥ j ≥ 1.

A continuous analogue of the classes O+
n and O−

n , n ≥ 0 has been studied

by R. Oinarov in [23].
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Definition 2.4. If there exist a non-negative sequence α = {αi}∞i=1 and a

matrix ãi,j ∈ O±
n , n ≥ 0 such that ai,j ≈ αiãi,j, then we say that (ai,j) ∈ αO±

n ,

n ≥ 0.

Definition 2.5. If there exist a non-negative sequence β = {βj}∞j=1 and a

matrix ãi,j ∈ O±
n , n ≥ 0 such that ai,j ≈ ãi,jβj, then we say that (ai,j) ∈ O±

n β,

n ≥ 0.

Such classes of operators include a lot of well-known operators, which play

significant role in analysis. As an example of matrices from the classes αO±
n

and O±
n β, n ≥ 0 we can take Cesàro matrix, Hölder’s matrix and others. For

more detailed information, see Section 2.3.

Next, we show properties of the classes of matrices O+
n and O−

n , n ≥ 0.

We set

wi,k =
i∑

j=k

ai,jσj,k.

Then we have the following

Lemma 2.6. Let (ai,j) ∈ O+
n , (σj,k) ∈ O+

m. Then (wi,k) ∈ O+
m+n+1.

Proof of Lemma 2.6. Since (ai,j) ∈ O+
n , there exist matrices (a

(γ)
i,j ) ∈ O+

γ ,

γ = 0, 1, . . . , n− 1, and matrices (δn,γ
i,l ) such that

ai,j ≡ a
(n)
i,j ≈

n∑
γ=0

δn,γ
i,l a

(γ)
l,j , n = 0, 1, . . . , δn,n

i,l ≡ 1

for all i ≥ l ≥ j ≥ 1.

Since (σj,k) ∈ O+
m, there exist matrices (σ

(µ)
j,k ) ∈ O+

µ , µ = 0, 1, . . . ,m − 1,

and matrices (em,µ
j,l ) such that

σj,k ≡ σ
(m)
j,k ≈

m∑
µ=0

em,µ
j,l σ

(µ)
l,k , m = 0, 1, . . . , em,m

j,l ≡ 1

for all j ≥ l ≥ k ≥ 1.

We set

wi,k ≡ wn,m
i,k =

i∑
j=k

a
(n)
i,j σ

(m)
j,k .
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First, we consider the case when m ≥ 0, n = 0. In this case a
(0)
i,j = αj,

∀i ≥ j ≥ 1. For ∀i ≥ l ≥ k we obtain

wo,m
i,k =

i∑
j=k

αjσ
(m)
j,k ≈

l∑
j=k

αjσ
(m)
j,k +

i∑
j=l

αjσ
(m)
j,k

≈ wo,m
l,k +

m∑
µ=0

σ
(µ)
l,k

i∑
j=l

αje
m,µ
j,l

= wo,m
l,k +

m∑
µ=0

ẽm+1,µ
i,l σ

(µ)
l,k ,

where ẽm+1,µ
i,l =

i∑
j=l

αje
m,µ
j,l , µ = 0, 1, . . . ,m. Suppose that ẽm+1,m+1

i,l ≡ 1. Since(
σ

(µ)
l,k

)
∈ O+

µ for µ = 0, 1, . . . ,m, by definition we easily see that wo,m
i,k ∈ O+

m+1.

By induction, we assume that for n = 0, 1, . . . , r− 1, r ≥ 1
(
wn,m

i,k

)
belong to

the classes O+
n+m+1. For i ≥ l ≥ k we have

wr,m
i,k =

i∑
j=k

a
(r)
i,j σ

(m)
j,k ≈

l∑
j=k

a
(r)
i,j σ

(m)
j,k +

i∑
j=l

a
(r)
i,j σ

(m)
j,k

≈
l∑

j=k

(
r∑

γ=0

δr,γ
i,l a

(γ)
l,j

)
σ

(m)
j,k +

i∑
j=l

a
(r)
i,j

(
m∑

µ=0

em,µ
j,l σ

(µ)
l,k

)

=
r∑

γ=0

δr,γ
i,l

l∑
j=k

a
(γ)
l,j σ

(m)
j,k +

m∑
µ=0

σ
(µ)
l,k

i∑
j=l

a
(r)
i,j e

m,µ
j,l

=
l∑

j=k

a
(r)
l,j σ

(m)
j,k +

r−1∑
γ=0

δr,γ
i,l

l∑
j=k

a
(γ)
l,j σ

(m)
j,k +

m∑
µ=0

σ
(µ)
l,k

i∑
j=l

a
(r)
i,j e

m,µ
j,l

= wr,m
l,k +

r−1∑
γ=0

δr,γ
i,l σ̃

(γ+m+1)
l,k +

m∑
µ=0

ẽm+1,µ
i,l σ

(µ)
l,k ,

where σ̃
(γ+m+1)
l,k ≡

l∑
j=k

a
(γ)
l,j σ

(m)
j,k , γ = 0, . . . , r−1 and ẽm+1,µ

i,l ≡
i∑

j=l

a
(r)
i,j e

m,µ
j,l µ =

0, . . . ,m. We denote γ +m+ 1 by µ. Then we have

wr,m
i,k ≈ wr,m

l,k +
r+m∑

µ=m+1

δr,µ−m−1
i,l σ̃

(µ)
l,k +

m∑
µ=0

ẽm+1,µ
i,l σ

(µ)
l,k

= wr,m
l,k +

r+m∑
µ=0

δ̃r+m,µ
i,l σ̃

(µ)
l,k ,
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where

δ̃r+m,µ
i,l =

 ẽm+1,µ
i,l , 0 ≤ µ ≤ m,

δr,µ−m−1
i,l , m+ 1 ≤ µ ≤ r +m,

and

σ̃
(µ)
l,k =

 σ
(µ)
l,k , 0 ≤ µ ≤ m,

σ̃
(µ)
l,k , m+ 1 ≤ µ ≤ r +m.

Since σ̃
(µ)
l,k ∈ O+

µ , µ = 0, 1, . . . , r+m we obtain that wr,m
i,k ∈ O+

r+m+1. The

proof is complete.

Now we set

ζk,j =
k∑

i=j

σk,iai,j.

Then we have the following lemma.

Lemma 2.7. Let (ai,j) ∈ O−
n , (σk,i) ∈ O−

m. Then (ζk,j) ∈ O−
m+n+1.

Lemma 2.7 can be proved in the same way as Lemma 2.6.

We define

$i,k =
k∑

j=1

ai,jσk,j, i ≥ k,

ϕk,i =
i∑

j=1

σk,jai,j, k ≥ i.

Lemma 2.8. i) If (ai,j) ∈ O+
n , n ≥ 0 and (σk,j) is an arbitrary non-negative

lower triangular matrix, then ($i,k) belongs to the class O+
n .

ii) If (σk,j) ∈ O+
m, m ≥ 0 and (ai,j) is an arbitrary non-negative lower

triangular matrix, then (ϕk,i) belongs to the class O+
m.

iii) If (ai,j) ∈ O−
n , n ≥ 0 and (σk,j) is an arbitrary non-negative lower

triangular matrix, then ($i,k) belongs to the class O−
n β, where β = {βk}∞k=1

and βk =
k∑

j=1

σk,j.

iv) If (σk,j) ∈ O−
m, m ≥ 0 and (ai,j) is an arbitrary non-negative lower

triangular matrix, then (ϕk,i) belongs to the class O−
mα, where α = {αi}∞i=1 and

αi =
i∑

j=1

ai,j.
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Proof of Lemma 2.8

i) Since (ai,j) ∈ O+
n , there exist matrices (a

(γ)
i,j ) ∈ O+

γ , γ = 0, 1, ..., n − 1,

and matrices (dn,γ
i,k ) such that

ai,j ≡ a
(n)
i,j ≈

n∑
γ=0

dn,γ
i,s a

(γ)
s,j , dn,n

i,s ≡ 1

for all i ≥ s ≥ j ≥ 1.

We set

$i,k ≡ $
(n)
i,k =

k∑
j=1

a
(n)
i,j σk,j.

First we consider the case when n = 0. In this case $
(0)
i,k =

k∑
j=1

αjσk,j ≡ α̃k,

which means that ($
(0)
i,k ) belongs to the class O+

0 . By induction we assume that

for n = 0, 1, ..., r− 1, r ≥ 1 ($
(n)
i,k ) belong to the classes O+

n . For i ≥ s ≥ k we

have

$
(r)
i,k ≈

k∑
j=1

r∑
γ=0

dr,γ
i,s a

(γ)
s,j σk,j =

r∑
γ=0

dr,γ
i,s

k∑
j=1

a
(γ)
s,j σk,j =

r∑
γ=0

dr,γ
i,s$

(γ)
s,k ,

which implies that ($
(r)
i,k ) belongs to the class O+

r , r ≥ 0.

ii) Since (σk,j) ∈ O+
m, there exist matrices (σ

(γ)
i,j ) ∈ O+

γ , γ = 0, 1, ...,m− 1,

and matrices (em,γ
k,i ) such that

σk,j ≡ σ
(m)
k,j ≈

m∑
γ=0

em,γ
k,s σ

(γ)
s,j , em,m

k,s ≡ 1

for all k ≥ s ≥ j ≥ 1.

We set

ϕk,i ≡ ϕ
(m)
k,i =

i∑
j=1

σ
(m)
k,j ai,j.

First we consider the case when m = 0. In this case ϕ
(0)
k,i =

i∑
j=1

βjai,j ≡ β̃i,

which means that (ϕ
(0)
k,i ) belongs to the class O+

0 . By induction we assume that

for m = 0, 1, ..., r − 1, r ≥ 1 (ϕ
(m)
k,i ) belong to the classes O+

m. For k ≥ s ≥ i

we obtain

ϕ
(r)
k,i ≈

i∑
j=1

r∑
γ=0

er,γ
k,sσ

(γ)
s,j ai,j =

r∑
γ=0

er,γ
k,s

i∑
j=1

σ
(γ)
s,j ai,j =

r∑
γ=0

er,γ
k,sϕ

(γ)
s,i .
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According to definition we obtain that (ϕ
(r)
k,i) belongs to the class O+

r , r ≥ 0.

iii) Since (ai,j) ∈ O−
n , there exist matrices (a

(γ)
i,s ) ∈ O−

γ , γ = 0, 1, ..., n − 1,

and matrices (dγ,n
s,j ) such that

ai,j ≡ a
(n)
i,j ≈

n∑
γ=0

a
(γ)
i,s d

γ,n
s,j , dn,n

s,j ≡ 1

for all i ≥ s ≥ j ≥ 1.

Let i ≥ s ≥ k. Then

$i,k ≡ $
(n)
i,k =

k∑
j=1

a
(n)
i,j σk,j ≈

k∑
j=1

n∑
γ=0

a
(γ)
i,s d

γ,n
s,j σk,j

=
n∑

γ=0

a
(γ)
i,s

k∑
j=1

dγ,n
s,j σk,j

= a
(n)
i,s

k∑
j=1

σk,j +
n−1∑
γ=0

a
(γ)
i,s

k∑
j=1

dγ,n
s,j σk,j

= βk

(
a

(n)
i,s +

n−1∑
γ=0

a
(γ)
i,s D

γ,n
s,k

)
= βkãi,k,

where βk =
k∑

j=1

σk,j, ãi,k = a
(n)
i,s +

n−1∑
γ=0

a
(γ)
i,s D

γ,n
s,k and Dγ,n

s,k = 1
βk

(
k∑

j=1

dγ,n
s,j σk,j

)
.

By definition of (ãi,k) we see that (ãi,k) ∈ O−
n , n ≥ 0. Therefore ($i,k)

belongs to the class O−
n β, n ≥ 0.

iv) Since (σk,j) ∈ O−
m, there exist matrices (σ

(γ)
k,s ) ∈ O−

γ , γ = 0, 1, ...,m− 1,

and matrices (eγ,m
s,j ) such that

σk,j ≡ σ
(m)
k,j ≈

m∑
γ=0

σ
(γ)
k,se

γ,m
s,j , em,m

s,j ≡ 1

for all k ≥ s ≥ j ≥ 1.

Let k ≥ s ≥ i. Then

ϕk,i ≡ ϕ
(m)
k,i =

i∑
j=1

σ
(m)
k,j ai,j ≈

i∑
j=1

m∑
γ=0

σ
(γ)
k,se

γ,m
s,j ai,j

= σ
(m)
k,s

i∑
j=1

ai,j +
m−1∑
γ=0

σ
(γ)
k,s

i∑
j=1

eγ,m
s,j ai,j

= αi

(
σ

(m)
k,s +

m−1∑
γ=0

σ
(γ)
k,sE

γ,m
s,i

)
= αiσ̃k,i,
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where αi =
i∑

j=1

ai,j, σ̃k,i = σ
(m)
k,s +

m−1∑
γ=0

σ
(γ)
k,sE

γ,m
s,i and Eγ,m

s,i = 1
αi

(
i∑

j=1

eγ,m
s,j ai,j

)
.

By definition of (σ̃k,i) we see that (σ̃k,i) ∈ O−
m, m ≥ 0. Since ϕk,i ≈ αiσ̃k,i,

we obtain (ϕk,i) belongs to the class O−
mα, m ≥ 0.

Thus the proof of Lemma 2.8 is complete.

We define

ψk,j =
∞∑

i=k

σi,kai,j, k ≥ j,

ρj,k =
∞∑
i=j

ai,jσi,k, j ≥ k.

Lemma 2.9. i) If (ai,j) ∈ O−
n , n ≥ 0 and (σk,j) is an arbitrary non-negative

lower triangular matrix, then (ψk,j) belongs to the class O−
n .

ii) If (σi,k) ∈ O−
m, m ≥ 0 and (ai,j) is an arbitrary non-negative lower

triangular matrix, then (ρj,k) belongs to the class O−
m.

iii) If (ai,j) ∈ O+
n , n ≥ 0 and (σk,j) is an arbitrary non-negative lower

triangular matrix, then (ψk,j) belongs to the class BO+
n , where B = {Bk}∞k=1

and Bk =
∞∑

i=k

σi,k.

iv) If (σk,j) ∈ O+
m, m ≥ 0 and (ai,j) is an arbitrary non-negative lower

triangular matrix, then (ρj,k) belongs to the class AO+
m, where A = {Aj}∞j=1

and Aj =
∞∑
i=j

ai,j.

Proof of Lemma 2.9

i) Since (ai,j) ∈ O−
n , there exist matrices (a

(γ)
i,j ) ∈ O−

γ , γ = 0, 1, ..., n − 1, and

matrices (dγ,n
s,j ) such that

ai,j ≡ a
(n)
i,j ≈

n∑
γ=0

a
(γ)
i,s d

γ,n
s,j , dn,n

s,j ≡ 1

for all i ≥ s ≥ j ≥ 1.

We set

ψk,j ≡ ψ
(n)
k,j =

∞∑
i=k

σi,ka
(n)
i,j .
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First we consider the case when n = 0. In this case ψ
(0)
k,j =

∞∑
i=k

σi,kαi ≡ α̃k,

which means that (ψ
(0)
k,j) belongs to the class O−

0 . By induction we assume that

for n = 0, 1, ..., r− 1, r ≥ 1 (ψ
(n)
k,j ) belong to the classes O−

n . For k ≥ s ≥ j we

have

ψ
(r)
k,j ≈

∞∑
i=k

σi,k

r∑
γ=0

a
(γ)
i,s d

γ,r
s,j =

r∑
γ=0

dγ,r
s,j

∞∑
j=k

σi,ka
(γ)
i,s =

r∑
γ=0

ψ
(γ)
k,sd

γ,r
s,j ,

which means that (ψ
(r)
k,j) belongs to the class O−

r , r ≥ 0.

ii) Since (σi,k) ∈ O−
m, there exist matrices (σ

(γ)
i,j ) ∈ O−

γ , γ = 0, 1, ...,m− 1,

and matrices (eγ,m
s,k ) such that

σi,k ≡ σ
(m)
i,k ≈

m∑
γ=0

σ
(γ)
i,s e

γ,m
s,k , em,m

s,k ≡ 1

for all i ≥ s ≥ k ≥ 1.

We set

ρj,k ≡ ρ
(m)
j,k =

∞∑
i=j

ai,jσ
(m)
i,k .

First we consider the case when m = 0. In this case ρ
(0)
j,k =

∞∑
i=j

ai,jβi ≡ β̃j,

which means that (ρ
(0)
j,k) belongs to the class O−

0 . By induction we assume that

for m = 0, 1, ..., r − 1, r ≥ 1 (ρ
(0)
j,k) belong to the classes O−

m. For i ≥ j ≥ k we

have

ρ
(r)
j,k ≈

∞∑
i=j

ai,j

r∑
γ=0

σ
(γ)
i,s e

γ,r
s,k =

r∑
γ=0

eγ,r
s,k

∞∑
i=j

ai,jσ
(γ)
i,s =

r∑
γ=0

ρ
(γ)
j,s e

γ,r
s,k ,

which implies that (ρ
(r)
j,k) belongs to the class O−

r , r ≥ 0.

iii) Since (ai,j) ∈ O+
n , there exist matrices (a

(γ)
s,j ) ∈ O+

γ , γ = 0, 1, ..., n − 1,

and matrices (dn,γ
i,s ) such that

ai,j ≡ a
(n)
i,j ≈

n∑
γ=0

dn,γ
i,s a

(γ)
s,j , dn,n

i,s ≡ 1

for all i ≥ s ≥ j ≥ 1.
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Let k ≥ s ≥ j. Then we have

ψk,j ≡ ψ
(n)
k,j =

∞∑
i=k

σi,ka
(n)
i,j ≈

∞∑
i=k

σi,k

n∑
γ=0

dn,γ
i,s a

(γ)
s,j

= a
(n)
s,j

∞∑
i=k

σi,k +
n−1∑
γ=0

a
(γ)
s,j

∞∑
i=k

σi,kd
n,γ
i,s

= Bk

(
a

(n)
s,j +

n−1∑
γ=0

Dn,γ
k,s a

(γ)
s,j

)
= Bkâk,j,

where Bk =
∞∑

i=k

σi,k, âk,j = a
(n)
s,j +

n−1∑
γ=0

Dn,γ
k,s a

(γ)
s,j and Dn,γ

k,s = 1
Bk

(
∞∑

i=k

σi,kd
n,γ
i,s

)
.

By definition of (âk,j) we see that (âk,j) ∈ O+
n , n ≥ 0. Therefore (ψk,j)

belongs to the class BO+
n , n ≥ 0.

iv) Since (σi,k) ∈ O+
m, there exist matrices (σ

(γ)
s,k ) ∈ O+

γ , γ = 0, 1, ...,m− 1,

and matrices (em,γ
i,s ) such that

σi,k ≡ σ
(m)
i,k ≈

m∑
γ=0

em,γ
i,s σ

(γ)
s,k , em,m

i,s ≡ 1

for all i ≥ s ≥ k ≥ 1.

Let i ≥ j ≥ k. Then we have

ρj,k ≡ ρ
(m)
j,k =

∞∑
i=j

ai,jσ
(m)
i,k ≈

∞∑
i=j

ai,j

m∑
γ=0

em,γ
i,s σ

(γ)
s,k

= σ
(m)
s,k

∞∑
i=j

ai,j +
m−1∑
γ=0

σ
(γ)
s,k

∞∑
i=j

ai,je
m,γ
i,s

= Aj

(
σ

(m)
s,k +

m−1∑
γ=0

Em,γ
j,s σ

(γ)
s,k

)
= Ajσ̂j,k,

where Aj =
∞∑
i=j

ai,j, σ̂j,k = σ
(m)
s,k +

m−1∑
γ=0

Em,γ
j,s σ

(γ)
s,k and Em,γ

j,s = 1
Ai

(
∞∑
i=j

ai,je
m,γ
i,s

)
.

By definition of (σ̂j,k) we see that (σ̂j,k) ∈ O+
m, m ≥ 0. Hence, (ρj,k)

belongs to the class AO+
m, m ≥ 0.

Thus the proof of Lemma 2.9 is complete.



IN WEIGHTED LEBESGUE SPACES 45

2.3 Examples of matrices of the classes αO±
n

and O±
n β.

In this section we give examples of matrices of the classes αO±
n , O±

n β, n ≥ 0,

which can be estimated in lp,v and on the cone of monotone sequences by using

our main results.

1. We consider an operator of multiple summation

(Snf)i =
i∑

k1=1

ω1,k1

k1∑
k2=1

ω2,k2

k2∑
k3=1

ω3,k3 ...

kn−2∑
kn−1=1

ωn−1,kn−1

kn−1∑
j=1

fj. (2.19)

By changing the order of summation in (2.19), we obtain

(Snf)i =
i∑

j=1

fjWn−1,1(i, j), (2.20)

where Wn−1,1(i, j) ≡ 1 for n = 1 and

Wn−1,1(i, j) =
i∑

kn−1=j

ωn−1,kn−1

i∑
kn−2=kn−1

ωn−2,kn−2 ...
i∑

k1=k2

ω1,k1

for n ≥ 2.

The boundedness and compactness criteria of such operators have been

established in [117].

Assume that Wl,m(i, j) ≡ 1 for m > l and

Wl,m(i, j) =
i∑

kl=j

ωl,kl

i∑
kl−1=kl

ωl−1,kl−1
...

i∑
km=km+1

ωm,km

for n− 1 ≥ l ≥ m ≥ 1.

By Lemma 1 of [117] it easily follows that

Wl,m(i, j) ≈
l+1∑
r=m

Wr−1,m(i, τ)Wl,r(τ, j) (2.21)

for n− 1 ≥ l ≥ m ≥ 1 and for all i, τ , j such that 1 ≤ j ≤ τ ≤ i <∞.

For m = 1 and n− 1 ≥ l ≥ 1 (2.21) implies that

Wl,1(i, j) ≈
l∑

r=0

Wr,1(i, τ)Wl,r+1(τ, j) (2.22)
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for all i ≥ τ ≥ j ≥ 1.

We define a(r)(i, j) ≡ Wr,1(i, j) for r = 0, 1, ..., l. Then we have

a(l)(i, j) ≈
l∑

r=0

a(r)(i, τ)Wl,r+1(τ, j) (2.23)

for i ≥ τ ≥ j ≥ 1. If we prove that (a(l)(i, j)) ∈ O−
l for l = 0, 1, ..., n− 1, then

we obtain that (a(n−1)(i, j)) ≡ (Wn−1,1(i, j)) ∈ O−
n−1.

Indeed, if l = 0, then a(0)(i, j) = W0,1(i, j) ≡ 1, which implies that

(a(0)(i, j)) ∈ O−
0 .

For l = 1, by (2.23) and (2.18) we have

a(1)(i, j) ≈ a(1)(i, τ) + a(1)(τ, j)

for i ≥ τ ≥ j ≥ 1. Hence, (a(1)(i, j)) ∈ O−
1 .

Assume that (a(r)(i, j)) ∈ O−
r for r = 0, 1, ..., l − 1, n − 1 ≥ l > 1. Then

taking into account that Wl,l+1(τ, j) ≡ 1, by (2.23) and (2.18) we deduce that

(a(l)(i, j)) ∈ O−
l . Consequently, (Wn−1,1(i, j)) ∈ O−

n−1 for n ≥ 1.

Next we prove that (Wn−1,1(i, j)) ∈ O+
n−1 for n ≥ 1.

For m = 1 and l = n− 1 relation (2.21) implies that

Wn−1,1(i, j) ≈
n−1∑
k=0

Wn−k−1,1(i, τ)Wn−1,n−k(τ, j)

for all i ≥ τ ≥ j ≥ 1.

We define a(k)(i, j) ≡ Wn−1,n−k(i, j) for k = 0, 1, ..., n − 1. Then we have

Wn−1,1(i, j) ≡ a(n−1)(i, j) and

a(n−1)(i, j) ≈
n−1∑
k=0

Wn−k−1,1(i, τ)a
(k)(τ, j), i ≥ τ ≥ j.

Since W0,1(i, τ) ≡ 1, if (a(k)(i, j)) ∈ O+
k for k = 0, 1, ...n−2, then we obtain

that (a(n−1)(i, j)) ∈ O+
n−1.

By assuming that l = n − 1 and m = n − k, 0 ≤ k ≤ n − 1 in (2.21), we

obtain

a(k)(i, j) ≈
n∑

r=n−k

Wr−1,n−k(i, τ)Wn−1,r(τ, j) (2.24)

=
k∑

r=0

Wn−r−1,n−k(i, τ)a
(r)(τ, j)
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for all i ≥ τ ≥ j ≥ 1.

If k = 0, then a(0)(i, j) ≡ Wn−1,n(i, j) ≡ 1. Therefore, (a(0)(i, j)) ∈ O+
0 .

If k = 1 by (2.12) and (2.24) we obtain that

a(1)(i, j) ≈ Wn−1,n−1(i, τ)a
(0)(τ, j) +Wn−2,n−1(i, τ)a

(1)(τ, j)

= a(1)(i, τ) + a(1)(τ, j),

which implies that (a(1)(i, j)) ∈ O+
1 .

Assume that (a(r)(i, j)) ∈ O+
r for r = 0, 1, ..., k − 1, k > 1. Since

Wn−k−1,n−k(i, τ) ≡ 1 for k = 0, 1, ..., n − 1 from (2.24) it follows that

(a(k)(i, j)) ∈ O+
k for k = 0, 1, ..., n − 1. Therefore, (Wn−1,1(i, j)) ∈ O+

n−1

for n ≥ 1.

Thus, we prove that the matrix (Wn−1,1(i, j)) belongs to the class O+
n−1 ∩

O−
n−1.

2. By definition, the series
∞∑

j=1

fj is summable with sum s by the Hölder

method (H, n) if

lim
i→∞

Hn
i = s,

where

H0
i = si =

i∑
j=1

fj,

Hn
i =

Hn−1
1 + ...+Hn−1

i

i
, i = 1, 2, ...

This summation method was introduced by O. Hölder [118] (see also [119]) as

a generalization of the summation method of arithmetic averages.

The expression Hn
i can be written in the following form

Hn
i ≡ (Hnf)i =

1

i

i∑
k1=1

1

k1

k1∑
k2=1

1

k2

...

kn−2∑
kn−1=1

1

kn−1

kn−1∑
kn=1

kn∑
j=1

fj.

If we consider the operator of multiple summation of order (n+1) by taking

ωl,kl
= 1

kl
for 1 ≤ l ≤ n− 1 and ωn,kn = 1, then we obtain

(Sn+1f)i =
i∑

k1=1

1

k1

k1∑
k2=1

1

k2

...

kn−2∑
kn−1=1

1

kn−1

kn−1∑
kn=1

kn∑
j=1

fj = i(Hnf)i.
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According to the previous example, the matrix of the operator of multiple

summation of order (n+1) belongs to the class O+
n ∩O−

n , n ≥ 0. Therefore, we

obtain that the Hölder’s matrix of order n belongs to the class ϕO+
n ∩ ϕO−

n ,

n ≥ 0, where ϕ = {1
i
}∞i=1.

3. We consider Cesàro summation method, which is a matrix summation

method with matrix (ak
i,j), where

ak
i,j =


T k−1

i−j

T k
i
, j ≤ i,

0, j > i

and T k
i = (k+1)(k+2)...(k+i)

i!
.

If k = 1, then a1
i,j = 1

i+1
, which gives a Hardy operator and we already

know how to estimate a Hardy operator in weighted spaces of sequences, on

the cone of monotone sequences (see e.g. [3]).

If k ≥ 2 for j ≤ i, we have

ak
i,j =

T k−1
i−j

T k
i

=
k

(i+ 1)(i+ 2)...(i+ k)
(i− j + 1)(i− j + 2)...(i− j + k − 1).

We set

ak
i,j = ψk

i ã
(k−1)
i,j ,

where ã
(k−1)
i,j = (i− j + 1)(i− j + 2)...(i− j + k − 1) and ψk

i = k
(i+1)(i+2)...(i+k)

.

Now we prove that the Cesàro matrix (ak
i,j) belongs to the class ψ(k)O+

k−1∩

ψ(k)O−
k−1, k ≥ 1, where ψ(k) = {ψk

i }∞i=1. For that purpose, we need to prove

that (ã
(k−1)
i,j ) ∈ O+

k−1 ∩ O
−
k−1, k ≥ 2.

We assert that for ∀l ≥ 1 the following factorization is valid

ã
(l)
i,j = (i− j + 1)(i− j + 2)...(i− j + l) =

l∑
γ=0

ã
(γ)
i,s d

γ,l
s,j ∀i ≥ s ≥ j, (2.25)

where dl,l
s,j ≡ 1 for any l ≥ 0, d−1,l

s,j ≡ 0 for any l ≥ 0, and dγ,l
s,j = dγ−1,l−1

s,j +

dγ,l−1
s,j (l − γ − 1 + s− j) for γ = 0, ..., l − 1, l ≥ 1.

If l = 1, then ã
(1)
i,j = (i− j + 1) = (i− s+ 1) + (s− j) = ã

(1)
i,s + d0,1

s,j , where

d0,1
s,j = s− j and ã

(0)
i,s = 1.
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By induction, we assume that (2.25) holds for l = 2, ..., r − 1, r ≥ 2 and

we prove that (2.25) holds for l = r. We assume that dγ,r−1
s,j = 0 if γ < 0. For

∀i ≥ s ≥ j we obtain

ã
(r)
i,j = (i− j + 1)(i− j + 2)...(i− j + r) = ã

(r−1)
i,j (i− j + r)

=
r−1∑
γ=0

ã
(γ)
i,s d

γ,r−1
s,j ((i− s+ γ + 1) + (r − γ − 1) + (s− j))

=
r−1∑
γ=0

ã
(γ)
i,s d

γ,r−1
s,j (i− s+ γ + 1)

+
r−1∑
γ=0

(
ã

(γ)
i,s d

γ,r−1
s,j (r − γ − 1) + ã

(γ)
i,s d

γ,r−1
s,j (s− j)

)
=

r−1∑
γ=0

ã
(γ+1)
i,s dγ,r−1

s,j +
r−1∑
γ=0

ã
(γ)
i,s d

γ,r−1
s,j (r − γ − 1 + s− j)

=
r∑

γ=1

ã
(γ)
i,s d

γ−1,r−1
s,j +

r−1∑
γ=1

ã
(γ)
i,s d

γ,r−1
s,j (r − γ − 1 + s− j)

+d0,r−1
s,j (r − 1 + s− j)

= ã
(r)
i,s +

r−1∑
γ=1

(
ã

(γ)
i,s d

γ−1,r−1
s,j + ã

(γ)
i,s d

γ,r−1
s,j (r − γ − 1 + s− j)

)
+d0,r−1

s,j (r − 1 + s− j)

= ã
(r)
i,s +

r−1∑
γ=0

ã
(γ)
i,s (dγ−1,r−1

s,j + dγ,r−1
s,j (r − γ − 1 + s− j))

= ã
(r)
i,s +

r−1∑
γ=0

ã
(γ)
i,s d

γ,r
s,j ,

where dγ,r
s,j = dγ−1,r−1

s,j + dγ,r−1
s,j (r − γ − 1 + s− j).

By definition of classes O−
l , l ≥ 1 we see that the matrix (ã

(1)
i,j ) belongs to

the class O−
1 . We assume that the matrices (ã

(l)
i,j) belong to the classes O−

l for

l = 2, ...r−1. We see that for (ã
(r)
i,j ) equality (2.25) holds. By assumption (ã

(l)
i,j)

belong to the classes O−
l for l = 1, 2, ...r−1. Then equality (2.25) implies that

(ã
(r)
i,j ) belongs to the class O−

r .

In the same way one proves that for (ã
(l)
i,j), l ≥ 1 the following factorization
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is valid

ã
(l)
i,j =

l∑
γ=0

el,γ
i,s ã

(γ)
s,j ∀i ≥ s ≥ j, (2.26)

where el,l
i,s ≡ 1 for any l ≥ 0, e−1,l

i,s ≡ 1 for any l ≥ 0, and el,γ
i,s = el−1,γ−1

i,s +

el−1,γ
i,s (i− s+ l− γ− 1) for γ = 0, ..., l− 1, l ≥ 1. Moreover, as above we obtain

that (ã
(l)
i,j) belongs to the class O+

l , l ≥ 1.

Therefore, we see that (ã
(k−1)
i,j ) ∈ O+

k−1∩O
−
k−1, k ≥ 1. This implies that the

Cesàro matrix (ak
i,j) belongs to the class ψ(k)O+

k−1 ∩ ψ(k)O−
k−1, k ≥ 1.
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2.4 Necessary and sufficient conditions for the

boundedness of matrix operators in weighted

spaces of sequences, the case 1 < p ≤ q <

∞.

In this section we give necessary and sufficient conditions for the boundedness

of the operators A+ and A− from the weighted lp,v space into the lq,u space

when the corresponding matrices belong to one of the classes O+
n and O−

n ,

n ≥ 0.

We define

(
B+

p,q

)
k

=

 k∑
j=1

v−p′

j

(
∞∑

i=k

aq
i,ju

q
i

) p′
q


1
p′

,

(
B−p,q

)
k

=

 ∞∑
i=k

uq
i

(
k∑

j=1

ap′

i,jv
−p′

j

) q
p′


1
q

,

(
A+

p,q

)
k

=

 k∑
j=1

uq
j

(
∞∑

i=k

ap′

i,jv
−p′

i

) q
p′
 1

q

,

(
A−p,q

)
k

=

 ∞∑
i=k

v−p′

i

(
k∑

j=1

aq
i,ju

q
j

) p′
q


1
p′

.

We set B+ = sup
k≥1

(
B+

p,q

)
k
, B− = sup

k≥1

(
B−p,q

)
k
, A+ = sup

k≥1

(
A+

p,q

)
k

and A− =

sup
k≥1

(
A−p,q

)
k
.

Theorem 2.10. Let 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.1) belong to

the class O+
n , n ≥ 0. Then the estimate (2.3) for the operator defined by (2.1)

holds if and only if at least one of the conditions B+ <∞ and B− <∞ holds.

Moreover, B+ ≈ B− ≈ C, where C is the best constant in (2.3).
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Theorem 2.11. Let 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.2) belong to

the class O−
m, m ≥ 0. Then the estimate (2.3) for the operator defined by (2.2)

holds if and only if at least one of the conditions A+ <∞ and A− <∞ holds.

Moreover, A+ ≈ A− ≈ C, where C is the best constant in (2.3).

Here we present only the proof of Theorem 2.11, since the proof of Theorem

2.10 is very similar.

For the proof of Theorem 2.11 we need the following.

Lemma 2.12. Let the matrix in (2.2) belong to the class O−
m, m ≥ 0. Then

for k ≥ 1 we have the following equivalence

(
A+

p,q

)
k
≈ (Am)k ≡ max

0≤γ≤m
(Aγ,m)k ≈

(
A−p,q

)
k
, (2.27)

where

(Aγ,m)k =

(
k∑

j=1

(
dγ,m

k,j

)q
uq

j

) 1
q
(

∞∑
i=k

(
a

(γ)
i,k

)p′

v−p′

i

) 1
p′

.

By (2.27) it follows that

A+ ≈ Am = sup
k≥1

(Am)k ≈ A
−, ∀m ≥ 0. (2.28)

Indeed, this equivalence follows from (2.18).

Proof of Theorem 2.11. Necessity. Suppose that the matrix of the

operator (2.2) belongs to the class O−
m, m ≥ 0 and (2.3) holds.

For k > 1 we assume that g̃ = {g̃i}∞i=1: g̃i =

 ui, 1 ≤ i ≤ k

0, i > k.

It is known that inequality (2.3) holds if and only if the following dual

inequality

‖A∗g‖p′,v−1 ≤ C‖g‖q′,u−1 , g ∈ lq′,u−1 (2.29)

holds for the conjugate operator A∗, which coincides with the operator defined

by (2.1). Moreover, the best constants in (2.3) and (2.29) coincide (see e.g.,

[2]).
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Hence, choosing g = g̃ in (2.29) and by exploiting (2.17), we obtain

Ck
1
q′ ≥ ‖A∗g̃‖p′,v−1 ≥

 ∞∑
i=k

(
k∑

j=1

a
(m)
i,j uj

)p′

v−p′

i

 1
p′

�

(
∞∑

i=k

(
a

(γ)
i,k

)p′

v−p′

i

) 1
p′
(

k∑
j=1

dγ,m
k,j uj

)
, γ = 0, 1, . . . ,m.

Therefore {a(γ)
i,k }∞i=1 ∈ lp′,v−1 .

Now for 1 ≤ r < M <∞, we assume that f̃ = {f̃s}∞s=1, where

f̃s =

 (a
(γ)
s,r )p′−1v−p′

s , r ≤ s ≤M

0, s < r or s > M.

By choosing f = f̃ in inequality (2.3) and exploiting (2.17), we find that

C

(
M∑

s=r

(
a(γ)

s,r

)p′
v−p′

s

) 1
p

≥ ‖A−f̃‖q,u =

(
∞∑

j=1

(
∞∑

s=j

a
(m)
s,j f̃s

)q

uq
j

) 1
q

�

(
r∑

j=1

(
dγ,m

r,j

)q
uq

j

) 1
q
(

M∑
s=r

(
a(γ)

s,r

)p′
v−p′

s

)
,

which implies that

C �

(
r∑

j=1

(
dγ,m

r,j

)q
uq

j

) 1
q
(

M∑
s=r

(
a(γ)

s,r

)p′
v−p′

s

) 1
p′

. (2.30)

Since inequality (2.30) holds for all γ = 0, 1, . . . ,m and r ≥ 1 is arbitrary,

passing to the limit as M →∞ we have

sup
k≥1

(Am)k � C. (2.31)

Then by Lemma 2.12, we obtain

A+ ≈ A− � C (2.32)

and thus the proof of the necessity is complete.

Sufficiency. Let the matrix (ai,j) of the operator (2.2) belong to the class

O−
m, m ≥ 0. Let 0 ≤ f ∈ lp,v and at least one of the conditions A+ < ∞ and

A− < ∞ hold. Assume that m = 0. By the definition of O−
0 , the matrix of
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the operator (2.2) has the form a
(0)
i,j = βi ∀i ≥ j ≥ 1. Then the estimate (2.3)

coincides with the estimate (2.6) and the operator (2.2) is the matrix operator

A−0 . Hence from Theorem B it follows that

‖A−0 f‖q,u � A0‖f‖p,v ∀f ∈ lp,v.

Based on Lemma 2.12 it follows that the inequality (2.3) holds for m = 0 and

for the best constant in (2.3) the following estimate is valid

C � A+ ≈ A−. (2.33)

Now we assume that the inequality (2.3) holds for m = 0, 1, . . . , n−1, n ≥ 1

and for the best constant in (2.3) the estimate (2.33) is valid. We consider the

inequality

‖A−mf‖q,u � Am‖f‖p,v ∀f ∈ lp,v, (2.34)

where A−m is given by (2.2) with the matrix (a
(m)
i,j ) ∈ O−

m.

Now our aim is to show that the inequality (2.34) holds for m = n with

the estimate (2.33).

Let h ≡ hn, where hn is the constant in (2.14) with m = n. For all j ≥ 1

we define the following set:

Tj = {k ∈ Z : (h+ 1)−k ≤
(
A−n f

)
j
},

where Z is the set of integers. We assume that kj = inf Tj, if Tj 6= ∅ and

kj = ∞, if Tj = ∅. In order to avoid trivial cases we directly suppose that

(A−n f)1 6= 0. Since a
(n)
i,j is non-increasing in j, we have kj ≤ kj+1. If kj < ∞,

then

(h+ 1)−kj ≤
(
A−n f

)
j
< (h+ 1)−(kj−1), j ≥ 1. (2.35)

Let m1 = 0, k1 = km1+1 and M1 = {j ∈ N : kj = k1 = km1+1}, where

N is the set of natural numbers. Suppose that m2 is such that supM1 = m2.

Obviouslym2 > m1 and if the setM1 is bounded from above, thenm2 <∞ and

m2 = maxM1. We now define the numbers 0 = m1 < m2 < · · · < ms < ∞,
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s ≥ 1 by induction. To define ms+1 we assume that ms+1 = supMs, where

Ms = {j ∈ N : kj = kms+1}.

Let N0 = {s ∈ N : ms < ∞}. Further, we assume that kms+1 = ns+1, s ∈

N0. From the definition of ms and from (2.35) it follows that, for s ∈ N0,

(h+ 1)−ns+1 ≤
(
A−n f

)
j
< (h+ 1)−ns+1+1, ms + 1 ≤ j ≤ ms+1 (2.36)

and

N =
⋃

s∈N0

[ms + 1,ms+1], where [ms + 1,ms+1] ∩ [ml + 1,ml+1] = ∅, s 6= l.

Therefore, for 0 ≤ f ∈ lp,v the left-hand side of (2.3) has the following form

‖A−n f‖q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j . (2.37)

We assume that
ms+1∑

j=ms+1

= 0, if ms = ∞.

There are two possible cases: N0 = N and N0 6= N.

1. If N0 = N, then we estimate (2.37) in the following way.

Clearly inequalities ns+1 < ns+2 < ns+3 imply that −ns+3 + 1 ≤ −ns+1− 1

for all s ∈ N. Hence, (2.36), (2.18) imply that

(h+ 1)−ns+1−1 = (h+ 1)−ns+1 − h(h+ 1)−ns+1−1 (2.38)

≤ (h+ 1)−ns+1 − h(h+ 1)−ns+3+1

<
(
A−n f

)
ms+1

− h
(
A−n f

)
ms+3

=
∞∑

i=ms+1

a
(n)
i,ms+1

fi − h

∞∑
i=ms+3

a
(n)
i,ms+3

fi

≤
ms+3∑

i=ms+1

a
(n)
i,ms+1

fi +
∞∑

i=ms+3

[a
(n)
i,ms+1

− ha
(n)
i,ms+3

]fi

≤
ms+3∑

i=ms+1

a
(n)
i,ms+1

fi +
∞∑

i=ms+3

[h
n∑

γ=0

a
(γ)
i,ms+3

dγ,n
ms+3,ms+1

− ha
(n)
i,ms+3

]fi

=

ms+3∑
i=ms+1

a
(n)
i,ms+1

fi + h

∞∑
i=ms+3

n−1∑
γ=0

a
(γ)
i,ms+3

dγ,n
ms+3,ms+1

fi.
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Now, by using (2.36) and (2.38), we can estimate (2.37) in the following

way.

∑
s∈N

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j <
∑
s∈N

ms+1∑
j=ms+1

(h+ 1)(−ns+1+1)quq
j (2.39)

= (h+ 1)2q
∑
s∈N

(h+ 1)(−ns+1−1)q

ms+1∑
j=ms+1

uq
j

�
∑
s∈N

 ms+3∑
i=ms+1

a
(n)
i,ms+1

fi + h
n−1∑
γ=0

∞∑
i=ms+3

a
(γ)
i,ms+3

dγ,n
ms+3,ms+1

fi

q
ms+1∑

j=ms+1

uq
j

�
∑
s∈N

 ms+3∑
i=ms+1

a
(n)
i,ms+1

fi

q
ms+1∑

j=ms+1

uq
j

+
n−1∑
γ=0

∑
s∈N

(
dγ,n

ms+3,ms+1

)q ∞∑
i=ms+3

a
(γ)
i,ms+3

fi

q
ms+1∑

j=ms+1

uq
j := In +

n−1∑
γ=0

Iγ,

where

In =
∑
s∈N

 ms+3∑
i=ms+1

a
(n)
i,ms+1

fi

q
ms+1∑

j=ms+1

uq
j

and

Iγ =
∑
s∈N

(
dγ,n

ms+3,ms+1

)q ∞∑
i=ms+3

a
(γ)
i,ms+3

fi

q
ms+1∑

j=ms+1

uq
j , 0 ≤ γ ≤ n− 1.

To estimate In we apply Hölder’s and Jensen’s inequalities and find that

In ≤
∑
s∈N

 ms+3∑
i=ms+1

(a
(n)
i,ms+1

)p′v−p′

i


q
p′ ms+1∑

j=ms+1

uq
j

 ms+3∑
i=ms+1

|fivi|p


q
p

(2.40)

≤

sup
k≥1

(
k∑

j=1

uq
j

) 1
q
(

∞∑
i=k

(a
(n)
i,k )p′v−p′

i

) 1
p′
q∑

s∈N

 ms+3∑
j=ms+1

|fivi|p


q
p

≤

sup
k≥1

(
k∑

j=1

(
dn,n

k,j

)q
uq

j

) 1
q
(

∞∑
i=k

(a
(n)
i,k )p′v−p′

i

) 1
p′
q∑

s∈N

ms+3∑
i=ms+1

|fivi|p


q
p

� Aq
n‖f‖q

p,v.

We introduce the sequence {∆j}∞j=1 defined by ∆j =
(
dγ,n

ms+3,ms+1

)q ms+1∑
j=ms+1

uq
j ,

j = ms+3 and ∆j = 0, j 6= ms+3, s ∈ N . Hence, we can rewrite Iγ,
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γ = 0, . . . , n− 1 in the following form.

Iγ =
∑
s∈N

 ∞∑
i=ms+3

a
(γ)
i,ms+3

fi

q (
dγ,n

ms+3,ms+1

)q ms+1∑
i=ms+1

uq
i (2.41)

=
∞∑

j=1

(
∞∑
i=j

a
(γ)
i,j fi

)q

∆j.

By the assumptions on a
(γ)
i,j , γ = 0, . . . , n − 1, i ≥ j ≥ 1, we have the validity

of (2.34). Therefore,

Iγ � Ãq
γ‖f‖q

p, γ = 0, . . . , n− 1, (2.42)

where

Ãγ = max
0≤l≤γ

sup
k≥1

(
k∑

j=1

(
dl,γ

k,j

)q

∆j

) 1
q
(

∞∑
i=k

(
a

(l)
i,k

)p′

v−p′

i

) 1
p′

. (2.43)

Using (2.16) and taking into account that dl,n
i,j is non-decreasing in i and non-

increasing in j, we find that

k∑
j=1

(
dl,γ

k,j

)q

∆j =
∑

ms+3≤k

(
dl,γ

k,ms+3

)q (
dγ,n

ms+3,ms+1

)q ms+1∑
j=ms+1

uq
j (2.44)

�
∑

ms+3≤k

ms+1∑
i=ms+1

(
dl,n

k,i

)q

uq
i ≤

k∑
i=1

(
dl,n

k,i

)q

uq
i .

By combining (2.42), (2.43), and (2.44), we obtain that

Iγ � Aq
n‖f‖q

p,v. (2.45)

Thus, from (2.39), (2.40), and (2.45) it follows that

‖A−n f‖q,u � An‖f‖p,v, f ≥ 0, (2.46)

which means that inequality (2.3) is valid. Hence, by Lemma 2.12, we obtain

that

C � An ≈ A+ ≈ A−. (2.47)

2. If N0 6= N , then maxN0 < ∞ and N0 = {1, 2, . . . , s0}, s0 ≥ 1. There-

fore, ms0 < ∞ and ms0+1 = ∞. We assume that
n∑

s=k

= 0, if k > n and
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n∑
s=k

=
n∑

s=1

, if k ≤ 0. We have two possible cases: ns0+1 < ∞ and ns0+1 = ∞.

We consider these cases separately.

1) If ns0+1 <∞, then from (2.37) it follows that

‖A−n f‖q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j (2.48)

=

s0∑
s=1

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j

=

s0−3∑
s=1

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j +

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j

+
∞∑

j=ms0+1

(
A−n f

)q
j
uq

j

= J1 + J2 + J3.

If J1 6= 0, then for s0 > 3, we estimate J1 using (2.38) and the previous proof

for the case N0 = N as in estimate Iγ. Hence, we get

J1 � Aq
n‖f‖q

p,v. (2.49)

If J2 6= 0, then by using (2.36) and applying Hölder’s and Jensen’s inequalities,

we obtain the following estimate

J2 =

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j (2.50)

<

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(h+ 1)(−ns+1+1)quq
j

= (h+ 1)q

s0−1∑
s=s0−2

(h+ 1)−ns+1q

ms+1∑
j=ms+1

uq
j

�
s0−1∑

s=s0−2

(
A−n f

)q
ms+1

ms+1∑
j=ms+1

uq
j

=

s0−1∑
s=s0−2

 ∞∑
i=ms+1

a
(n)
i,ms+1

fi

q
ms+1∑

j=ms+1

uq
j

≤
s0−1∑

s=s0−2


 ∞∑

i=ms+1

(a
(n)
i,ms+1

)p′v−p′

i

 1
p′ ( ms+1∑

j=ms+1

uq
j

) 1
q


q ∞∑

j=ms+1

|vifi|p


q
p



IN WEIGHTED LEBESGUE SPACES 59

≤

sup
k≥1

(
∞∑

i=k

(a
(n)
i,k )p′v−p′

i

) 1
p′
(

k∑
j=1

uq
j

) 1
q

q s0−1∑
s=s0−2

∞∑
j=ms+1

|vifi|p


q
p

≤ 2Aq
n‖f‖q

p,v � Aq
n‖f‖q

p,v.

Using (2.36) and applying Hölder’s inequality we estimate J3 in the following

way.

J3 =
∞∑

j=ms0+1

(
A−n f

)q
j
uq

j (2.51)

≤ sup
t≥ms0+1

t∑
j=ms0+1

(
A−n f

)q
j
uq

j

≤ (h+ 1)q sup
t≥ms0+1

(h+ 1)−ns0+1q

t∑
j=ms0+1

uq
j

� sup
t≥ms0+1

(
A−n f

)q
t

t∑
j=ms0+1

uq
j

= sup
t≥ms0+1

(
∞∑
i=t

a
(n)
i,t fi

)q t∑
j=ms0+1

uq
j

≤ sup
t≥ms0+1

( ∞∑
i=t

(a
(n)
i,t )p′v−p′

i

) 1
p′
 t∑

j=ms0+1

uq
j

 1
q


q

‖f‖q
p,v

≤ Aq
n‖f‖q

p,v.

By (2.48), (2.49), (2.50), and (2.51) we obtain (2.46) and, consequently (2.47).

2) If ns0+1 = ∞, which means that kms0+1 = ∞, then by the definition

of ms0+1 we have kj = ∞ and Tj = ∅, if j ≥ ms0 + 1, i.e., (A−n f)j = 0, if

j ≥ ms0 + 1. By the assumption that (A−n f)1 6= 0 it follows that s0 > 1.

Therefore, m2 <∞ and s0 ≥ 2. Thus by (2.37) we have

‖A−n f‖q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j (2.52)

=

s0−3∑
s=1

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j +

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(
A−n f

)q
j
uq

j

= J ′1 + J ′2.
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By estimating J ′1 and J ′2 as J1 and J2, respectively, from (2.52) we obtain

(2.46) and, consequently (2.47). Therefore, we see that inequality (2.34) holds

for m = n and the estimate (2.33) is valid. This means that inequality (2.34)

holds for all m ≥ 0 with the estimate (2.33), which together with (2.32) gives

C ≈ An. Thus the proof is complete.
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2.5 Compactness criteria of matrix operators

in weighted Lebesgue spaces.

This section is devoted to the compactness criteria of the matrix operators A+

and A− from the weighted lp,v space into the lq,u space when the corresponding

matrices belong to one of the classes O+
n and O−

n n ≥ 0.

Theorem 2.13. Let 1 < p ≤ q < ∞. Let the matrix (ai,j) of (2.1) belong to

the class O+
n , n ≥ 0. Then the operator defined by (2.1) is compact from lp,v

into lq,u if and only if at least one of the following conditions holds

lim
k→∞

(
B+

p,q

)
k

= 0, (2.53)

lim
k→∞

(
B−p,q

)
k

= 0. (2.54)

Theorem 2.14. Let 1 < p ≤ q < ∞. Let the matrix (ai,j) of (2.2) belong to

the class O−
m, m ≥ 0. Then the operator defined by (2.2) is compact from lp,v

into lq,u if and only if at least one of the following conditions holds

lim
k→∞

(
A+

p,q

)
k

= 0, (2.55)

lim
k→∞

(
A−p,q

)
k

= 0. (2.56)

Now we give the proof of compactness for the class O+
n , n ≥ 0.

Proof of Theorem 2.13. For the proof of Theorem 2.13, we need the

following equivalence

(
B+

p,q

)
k
≈ (Bn)k ≡ max

0≤γ≤n
(Bγ,n)k ≈

(
B−p,q

)
k
, (2.57)

where

(Bγ,n)k =

(
∞∑

i=k

(
bn,γ
i,k

)q
uq

i

) 1
q
(

k∑
j=1

(
a

(γ)
k,j

)p′

v−p′

j

) 1
p′

.

The equivalence directly follows from (2.12).
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Necessity. Suppose that the matrix of operator (2.1) belongs to the class O+
n ,

n ≥ 0. Let the operator (2.1) be compact from lp,v into lq,u.

For r ≥ 1, we introduce the following sequence:

ϕr = {ϕr,j}∞j=1 : ϕr,j =
fr,j

‖fr‖p,v

,

where fr = {fr,j}∞j=1: fr,j =


(
a

(γ)
r,j

)p′−1

v−p′

j , 1 ≤ j ≤ r,

0, j > r.

It is obvious that ‖ϕr‖p,v = 1. Since the operator (2.1) is compact from

lp,v into lq,u, the set {uA+ϕ, ‖ϕ‖p,v = 1} is precompact in lq. Hence, from the

criterion of precompactness of the sets in lp (see Theorem C) we conclude that

lim
r→∞

sup
‖ϕ‖p,v=1

(
∞∑
i=r

uq
i

(
A+ϕ

)q
i

) 1
q

= 0. (2.58)

Moreover, by using (2.11) we have that

sup
‖ϕ‖p,v=1

(
∞∑
i=r

uq
i

(
A+ϕ

)q
i

) 1
q

≥

(
∞∑
i=r

uq
i

(
A+ϕr

)q
i

) 1
q

(2.59)

=

(
∞∑
i=r

uq
i

(
i∑

j=1

a
(n)
i,j

fr,j

‖fr‖p,v

)q) 1
q

≥

(
∞∑
i=r

uq
i

(
r∑

j=1

a
(n)
i,j

fr,j

‖fr‖p,v

)q) 1
q

=

(
∞∑
i=r

uq
i

(
r∑

j=1

a
(n)
i,j

(
a

(γ)
r,j

)p′−1

v−p′

j

)q) 1
q
(

r∑
j=1

(
a

(γ)
r,j

)p′

v−p′

j

)− 1
p

≥

(
∞∑
i=r

uq
i

(
bn,γ
i,r

)q) 1
q
(

r∑
j=1

(
a

(γ)
r,j

)p′

v−p′

j

) 1
p′

= (Bγ,n)r .

Since inequality (2.59) holds for all γ = 0, 1, . . . , n and from the validity of

(2.58) we obtain

lim
r→∞

(Bn)r = 0

The proof of the necessity is complete.

Sufficiency. Let the matrix of operator (2.1) belong to the class O+
n , n ≥ 0.

Assume that at least one of the conditions (2.53) and (2.54) is valid. Then, by
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Theorem 2.10, the operator (2.1) is bounded from lp,v into lq,u. Consequently,

the set {uA+f, ‖f‖p,v ≤ 1} is bounded in lq. Let us show that this set is

precompact in lq. By the criterion on precompactness of the sets in lq (see

Theorem C), the bounded set {uA+f, ‖f‖p,v ≤ 1} is compact in lq, if

lim
r→∞

sup
‖f‖p,v≤1

(
∞∑
i=r

uq
i |
(
A+f

)
i
|q
) 1

q

= 0. (2.60)

For r > 1 we assume that ũ = {ũi}∞i=1: ũi =

 0, 1 ≤ i ≤ r − 1

ui, r ≤ i.

Then, by Theorem 2.10, we have that

sup
‖f‖p,v≤1

(
∞∑
i=r

uq
i |
(
A+f

)
i
|q
) 1

q

= sup
‖f‖p,v≤1

(
∞∑
i=1

ũq
i |(A+f)i|q

) 1
q

� B̃n(r), (2.61)

where

B̃n(r) = sup
k≥1

max
0≤γ≤n

(
∞∑

i=k

(
bn,γ
i,k

)q
ũq

i

) 1
q
(

k∑
j=1

(
a

(γ)
k,j

)p′

v−p′

j

) 1
p′

.

Since ũi = 0 when 1 ≤ i ≤ r − 1 we have

B̃n(r) = sup
k≥r

max
0≤γ≤n

(
∞∑

i=k

(
bn,γ
i,k

)q
uq

i

) 1
q
(

k∑
j=1

(
a

(γ)
k,j

)p′

v−p′

j

) 1
p′

(2.62)

= sup
k≥r

(Bn)k ,

By (2.53), (2.54), (2.57), and (2.62) we deduce

lim
r→∞

B̃n(r) = lim
r→∞

sup
k≥r

(Bn)k = lim
r→∞

(Bn)r = 0.

Hence, by using (2.61) we obtain (2.60) and the proof is complete.

Theorem 2.14 is proven in a similar way.
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2.6 Boundedness and compactness of a class of

matrix operators, the case 1 < p ≤ q < ∞.

Proof of the main result.

In this section we give criteria on boundedness and compactness of the matrix

operators A+ and A− from the weighted lp,v space into the lq,u space when the

corresponding matrices belong to class O+
m ∪ O−

m, m ≥ 0.

Theorem 2.15. Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.1)

belong to the class O+
m ∪ O−

m, m ≥ 0. Let A+ be the operator defined in (2.1).

Then the following statements hold:

(i) A+ is bounded from lp,v into lq,u if and only if at least one of the

conditions B+ <∞ and B− <∞ holds. Moreover B+ ≈ B− ≈ C, where C is

the best constant in (2.3).

(ii) A+ is compact from lp,v into lq,u if and only if at least one of the

conditions lim
k→∞

(
B+

p,q

)
k

= 0 and lim
k→∞

(
B−p,q

)
k

= 0 holds.

Theorem 2.16. Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.2)

belong to the class O+
m ∪ O−

m, m ≥ 0. Let A− be the operator defined in (2.2).

Then the following statements hold:

(j) A− is bounded from lp,v into lq,u if and only if at least one of the

conditions A+ <∞ and A− <∞ holds. Moreover A+ ≈ A− ≈ C, where C is

the best constant in (2.3).

(jj) A− is compact from lp,v into lq,u if and only if at least one of the

conditions lim
k→∞

(
A+

p,q

)
k

= 0 and lim
k→∞

(
A−p,q

)
k

= 0 holds.

Now based on the results of Sections 2.4 and 2.5 we prove Theorem 2.15.

The proof of Theorem 2.16 can be carried out by the same method as in the

proof of Theorem 2.15. Hence we give the proof of Theorem 2.15.
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Proof of Theorem 2.15.

(i) If the matrix of (2.1) belong to O+
m, m ≥ 0, then the statement (i)

of Theorem 2.15 directly follows from Theorem 2.10. Suppose that the matrix

(ai,j) = (a
(m)
i,j ) of (2.1) belongs to O−

m, m ≥ 0. It is known that the boundedness

of the operator (2.1) from lp,v into lq,u is equivalent to the boundedness of the

conjugate operator from lq′,u−1 into lp′,v−1 , which coincides with operator (2.2).

From the condition that 1 < p ≤ q <∞ it follows that 1 < q′ ≤ p′ <∞. Then

by Theorem 2.11 and the identities
(
A+

q′,p′

)
k

=
(
B+

p,q

)
k

and
(
A−q′,p′

)
k

=
(
B−p,q

)
k
,

the boundedness of the operator defined by (2.2) from lq′,u−1 into lp′,v−1 is

equivalent to the conditions of the statement (i) of Theorem 2.15. Hence the

statement (i) of Theorem 2.15 is also valid in the case when the matrix of (2.1)

belongs to O−
m, m ≥ 0. Thus the proof of the statement (i) of Theorem 2.15 is

complete.

(ii) Let the matrix of (2.1) belong to O+
m, m ≥ 0. Then the statement

(ii) of Theorem 2.15 follows from Theorem 2.13. If the matrix (ai,j) = (a
(m)
i,j )

of (2.1) belongs to O−
m, m ≥ 0, then by arguing with Theorem 2.14 as above

statement (ii) of Theorem 2.15 follows. Thus the proof of Theorem 2.15 is

complete.
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2.7 Boundedness criteria of a class of matrix

operators, the case q < p.

In this Section we obtain necessary and sufficient conditions for the bounded-

ness of the matrix operators A+ and A− from the weighted lp,v space into the

weighted lq,u space in case 1 < q < p <∞.

In this Section we consider inequality (2.3) under the Assumption A (see

condition (2.4)).

We note that from (2.4) it easily follows that

dai,j ≥ ai,k, (2.63)

dai,j ≥ bk,jωi, (2.64)

for i ≥ k ≥ j ≥ 1.

Theorem 2.17. Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy

Assumption A. Then estimate (2.3) for the operator defined by (2.2) holds if

and only if F = max{F1, F2} <∞, where

F1 =

 ∞∑
i=1

(
i∑

j=1

bqi,ju
q
j

) p
p−q
(

∞∑
k=i

ωp′

k v
−p′

k

) p(q−1)
p−q

ωp′

i v
−p′

i


p−q
pq

and

F2 =

 ∞∑
i=1

(
i∑

j=1

uq
j

) q
p−q
(

∞∑
k=i

ap′

k,iv
−p′

k

) q(p−1)
p−q

uq
i


p−q
pq

.

Moreover, F ≈ C, where C is the best constant in (2.3).

Proof of Theorem 2.17. Necessity. Let us assume that (2.3) holds for a

finite constant C. Let m ≥ 1. Then we take a test sequence f̃m = {f̃m,k}∞k=1

such that

f̃m,k =


(

k∑
j=1

bqk,ju
q
j

) 1
p−q ( m∑

i=k

ωp′

i v
−p′

i

) q−1
p−q

ωp′−1
k v−p′

k , if 1 ≤ k ≤ m,

0, if k > m.
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Then

‖f̃m‖p,v =

(
∞∑

k=1

f̃p
m,kv

p
k

) 1
p

(2.65)

=

 m∑
k=1

(
k∑

j=1

bqk,ju
q
j

) p
p−q
(

m∑
i=k

ωp′

i v
−p′

i

) p(q−1)
p−q

ωp′

k v
−p′

k


1
p

.

Substituting f̃m in the left hand side of inequality (2.3) and using (2.8) and

(2.64), we deduce that

‖A−f̃m‖q
q,u �

m∑
k=1

m∑
j=k

aj,kf̃m,j

(
m∑

i=j

ai,kf̃m,i

)q−1

uq
k

=
m∑

j=1

f̃m,j

j∑
k=1

uq
kaj,k

(
m∑

i=j

ai,kf̃m,i

)q−1

�
m∑

j=1

f̃m,jωj

j∑
k=1

uq
kb

q
j,k

(
m∑

i=j

ωif̃m,i

)q−1

=
m∑

j=1

f̃m,jωj

j∑
k=1

uq
kb

q
j,k

 m∑
i=j

ωi

(
i∑

s=1

bqi,su
q
s

) 1
p−q

×

(
m∑

k=i

ωp′

k v
−p′

k

) q−1
p−q

ωp′−1
i v−p′

i

q−1

�
m∑

j=1

f̃m,jωj

j∑
k=1

uq
kb

q
j,k

(
j∑

s=1

bqj,su
q
s

) q−1
p−q

×

 m∑
i=j

ωp′

i v
−p′

i

(
m∑

k=i

ωp′

k v
−p′

k

) q−1
p−q

q−1

�
m∑

j=1

f̃m,jωj

(
j∑

s=1

bqj,su
q
s

) p−1
p−q
(

m∑
i=j

ωp′

i v
−p′

i

) (p−1)(q−1)
p−q

=
m∑

j=1

(
j∑

s=1

bqj,su
q
s

) p
p−q
(

m∑
i=j

ωp′

i v
−p′

i

) p(q−1)
p−q

ωp′

j v
−p′

j ,

which implies that

‖A−f̃m‖q,u �

 m∑
j=1

(
j∑

s=1

bqj,su
q
s

) p
p−q
(

m∑
i=j

ωp′

i v
−p′

i

) p(q−1)
p−q

ωp′

j v
−p′

j


1
q

. (2.66)
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From (2.3), (2.65) and (2.66) it follows that m∑
j=1

(
j∑

s=1

bqj,su
q
s

) p
p−q
(

m∑
i=j

ωp′

i v
−p′

i

) p(q−1)
p−q

ωp′

j v
−p′

j


p−q
pq

� C

for all m ≥ 1. Since m ≥ 1 is arbitrary we have that

F1 � C. (2.67)

We know that inequality (2.3) holds if and only if the following dual in-

equality

‖A∗g‖p′,v−1 ≤ C‖g‖q′,u−1 , g ∈ lq′,u−1 (2.68)

holds for the conjugate operator A∗, which is defined by (2.1). Moreover, the

best constants in (2.3) and (2.68) coincide.

Now let m ≥ 1. By taking a test sequence g̃m = {g̃m,k}∞k=1 such that

g̃m,k =


(

k∑
j=1

uq
j

) q−1
p−q ( m∑

i=k

ap′

i,kv
−p′

i

) (q−1)(p−1)
p−q

uq
k for 1 ≤ k ≤ m,

0 for k > m.

we have that

‖g̃m‖q′,u−1 =

 m∑
k=1

(
k∑

j=1

uq
j

) q
p−q
(

m∑
i=k

ap′

i,kv
−p′

i

) q(p−1)
p−q

uq
k


1
q′

. (2.69)

By using (2.7) and (2.63) we deduce that

‖A∗g̃m‖p′

p′,v−1 ≥
m∑

i=1

(
i∑

j=1

ai,j g̃m,j

)p′

v−p′

i

�
m∑

i=1

i∑
j=1

ai,j g̃m,j

(
j∑

k=1

ai,kg̃m,k

)p′−1

v−p′

i

≥
m∑

j=1

g̃m,j

m∑
i=j

ai,j

(
j∑

k=1

ai,kg̃m,k

)p′−1

v−p′

i

�
m∑

j=1

g̃m,j

m∑
i=j

ap′

i,jv
−p′

i

(
j∑

k=1

g̃m,k

)p′−1
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=
m∑

j=1

g̃m,j

m∑
i=j

ap′

i,jv
−p′

i

 j∑
k=1

(
k∑

s=1

uq
s

) q−1
p−q

×

(
m∑

i=k

ap′

i,kv
−p′

i

) (q−1)(p−1)
p−q

uq
k

p′−1

�
m∑

j=1

g̃m,j

m∑
i=j

ap′

i,jv
−p′

i

(
m∑

i=j

ap′

i,jv
−p′

i

) q−1
p−q

 j∑
k=1

uq
k

(
k∑

s=1

uq
s

) q−1
p−q

p′−1

�
m∑

j=1

g̃m,j

(
m∑

i=j

ap′

i,jv
−p′

i

) p−1
p−q
(

j∑
k=1

uq
k

) 1
p−q

=
m∑

j=1

(
j∑

k=1

uq
k

) q
p−q
(

m∑
i=j

ap′

i,jv
−p′

i

) q(p−1)
p−q

uq
j ,

which implies that

‖A∗g̃m‖p′,v−1 �

 m∑
j=1

(
j∑

k=1

uq
k

) q
p−q
(

m∑
i=j

ap′

i,jv
−p′

i

) q(p−1)
p−q

uq
j


1
p′

. (2.70)

Since m ≥ 1 is arbitrary, then (2.68), (2.69), (2.70) imply that F2 � C. Hence,

(2.67) implies that

F � C. (2.71)

The proof of the necessity is thus complete.

Sufficiency. Let F <∞ and 0 ≤ f ∈ lp,v.

For all j ≥ 1 we define the following set:

Tj = {k ∈ Z : (d+ 1)−k ≤
(
A−f

)
j
},

where d is the constant from (2.4) and Z is the set of integers. We assume

that inf Tj = ∞, if Tj = ∅ and kj = inf Tj, if Tj 6= ∅. We can clearly assume

that (A−f)1 6= 0. Without loss of generality, we may assume that ai,j is non-

increasing in j, otherwise we take ai,j ≈ ãi,j = sup
j≤k≤i

ai,k. Therefore kj < kj+1.

If kj <∞, then

(d+ 1)−kj ≤
(
A−f

)
j
< (d+ 1)−(kj−1), j ≥ 1. (2.72)
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Let m1 = 0, k1 = km1+1 and M1 = {j ∈ N : kj = k1 = km1+1}, where N

is the set of natural numbers. Suppose that m2 is such that supM1 = m2.

Obviously m2 > m1 and if the set M1 is upper bounded, then m2 < ∞ and

m2 = maxM1. We now define inductively the numbers 0 = m1 < m2 < . . . <

ms <∞, s ≥ 1. We set ms+1 = supMs, where Ms = {j ∈ N : kj = kms+1}.

Let N0 = {s ∈ N : ms < ∞}. Further, we assume that kms+1 = ns+1, s ∈

N0. From the definition of ms and from (2.72) it follows that

(d+ 1)−ns+1 ≤
(
A−f

)
j
< (d+ 1)−ns+1+1, ms + 1 ≤ j ≤ ms+1 (2.73)

for all s ∈ N0. Then

N =
⋃

s∈N0

[ms + 1,ms+1], where [ms + 1,ms+1] ∩ [ml + 1,ml+1] = ∅, s 6= l.

Therefore

‖A−f‖q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j . (2.74)

We assume that
ms+1∑

j=ms+1

= 0, if ms = ∞.

There are two possible cases: N0 = N and N0 6= N.

1. If N0 = N, then we estimate the left hand side of (2.3) in the following

way.

Clearly inequalities ns+1 < ns+2 < ns+3 imply that −ns+3 + 1 ≤ −ns+1− 1

for all s ∈ N. Hence, (2.73), (2.4) imply that

(d+ 1)−ns+1−1 = (d+ 1)−ns+1 − d(d+ 1)−ns+1−1 (2.75)

≤ (d+ 1)−ns+1 − d(d+ 1)−ns+3+1

<
(
A−f

)
ms+1

− d
(
A−f

)
ms+3
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=
∞∑

i=ms+1

ai,ms+1fi − d
∞∑

i=ms+3

ai,ms+3fi

≤
ms+3∑

i=ms+1

ai,ms+1fi +
∞∑

i=ms+3

[ai,ms+1 − dai,ms+3 ]fi

≤
ms+3∑

i=ms+1

ai,ms+1fi

+
∞∑

i=ms+3

[d(ai,ms+3 + bms+3,ms+1ωi)− dai,ms+3 ]fi

=

ms+3∑
i=ms+1

ai,ms+1fi + dbms+3,ms+1

∞∑
i=ms+3

ωifi.

Now, by using (2.73) and (2.75), we can estimate the summand on the left

hand side in (2.3) in the following way:

∑
s∈N

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j <
∑
s∈N

ms+1∑
j=ms+1

(d+ 1)(−ns+1+1)quq
j (2.76)

= (d+ 1)2q
∑
s∈N

(d+ 1)(−ns+1−1)q

ms+1∑
j=ms+1

uq
j

�
∑
s∈N

 ms+3∑
i=ms+1

ai,ms+1fi + dbms+3,ms+1

∞∑
i=ms+3

ωifi

q
ms+1∑

j=ms+1

uq
j

�
∑
s∈N

 ms+3∑
i=ms+1

ai,ms+1fi

q
ms+1∑

j=ms+1

uq
j

+
∑
s∈N

bqms+3,ms+1

 ∞∑
i=ms+3

ωifi

q
ms+1∑

j=ms+1

uq
j := S1 + S2,

where

S1 =
∑
s∈N

 ms+3∑
i=ms+1

ai,ms+1fi

q
ms+1∑

j=ms+1

uq
j ,

and

S2 =
∑
s∈N

bqms+3,ms+1

 ∞∑
i=ms+3

ωifi

q
ms+1∑

j=ms+1

uq
j .

To estimate S1, we apply the Hölder’s inequality in the inner summand with

the powers p, p′ and in the outer summand with the powers p
p−q

, p
q
, and we
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obtain that

S1 ≤
∑
s∈N

 ms+3∑
i=ms+1

ap′

i,ms+1
v−p′

i


q
p′
 ms+3∑

i=ms+1

|vifi|p


q
p ms+1∑

j=ms+1

uq
j (2.77)

≤

∑
s∈N

 ms+3∑
i=ms+1

ap′

i,ms+1
v−p′

i


q(p−1)

p−q ( ms+1∑
j=ms+1

uq
j

) p
p−q


p−q

p

×

∑
s∈N

ms+3∑
i=ms+1

|vifi|p


q
p

� (F̃2)
p−q

p ‖f‖q
p,v.

By (2.8) and (2.63) we can estimate F̃2 as follows:

F̃2 =
∑
s∈N

 ms+3∑
i=ms+1

ap′

i,ms+1
v−p′

i


q(p−1)

p−q ( ms+1∑
j=ms+1

uq
j

) p
p−q

(2.78)

�
∑
s∈N

 ms+3∑
i=ms+1

ap′

i,ms+1
v−p′

i


q(p−1)

p−q ms+1∑
j=ms+1

(
ms+1∑
k=j

uq
k

) q
p−q

uq
j

�
∑
s∈N

ms+1∑
j=ms+1

(
ms+1∑
k=1

uq
k

) q
p−q

 ∞∑
i=ms+1

ap′

i,jv
−p′

i


q(p−1)

p−q

uq
j

≤
∞∑

j=1

(
j∑

k=1

uq
k

) q
p−q
(

∞∑
i=j

ap′

i,jv
−p′

i

) q(p−1)
p−q

uq
j = F

pq
p−q

2 .

By (2.77) and (2.78) we deduce that

S1 � F q
2 ‖f‖q

p,v. (2.79)

Next we introduce the sequence {∆j}∞j=1 such that ∆j = bqms+3,ms+1

ms+1∑
i=ms+1

uq
i ,

j = ms+3 and ∆j = 0, j 6= ms+3, s ∈ N. Hence, we can rewrite S2 in the fol-

lowing form:

S2 =
∑
s∈N

 ∞∑
i=ms+3

ωifi

q

bqms+3,ms+1

ms+1∑
i=ms+1

uq
i =

∞∑
j=1

(
∞∑
i=j

ωifi

)q

∆j. (2.80)

Thus, by Theorem B, we have that

S2 � H̃q‖f‖q
p,v, (2.81)
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where

H̃ =

 ∞∑
k=1

(
k∑

i=1

∆i

) p
p−q
(

∞∑
j=k

ωp′

j v
−p′

j

) p(q−1)
p−q

ωp′

k v
−p′

k


p−q
pq

. (2.82)

By Assumption A, bi,j is almost non-decreasing in i and almost non-increasing

in j, and accordingly,

k∑
i=1

∆i =
∑

ms+3≤k

bqms+3,ms+1

ms+1∑
j=ms+1

uq
j (2.83)

�
∑

ms+3≤k

ms+1∑
j=ms+1

bqk,ju
q
j ≤

k∑
j=1

bqk,ju
q
j .

By combining (2.81), (2.82) and (2.83), we obtain

S2 � F q
1 ‖f‖q

p,v. (2.84)

Thus, from (2.74), (2.76), (2.79) and (2.84) it follows that

‖A−f‖q,u � F‖f‖p,v f ≥ 0. (2.85)

This means that inequality (2.3) holds and that C � F , where C is the best

constant for which (2.3) holds.

2. If N0 6= N, i.e. maxN0 < ∞ and N0 = {1, 2, ..., s0}, s0 ≥ 1. Therefore

ms0 <∞ and ms0+1 = ∞. We assume that
n∑

s=k

= 0, if k > n and
n∑

s=k

=
n∑

s=1

, if

k ≤ 0. We have two possible cases: ns0+1 < ∞ and ns0+1 = ∞. We consider

such cases separately:

1) If ns0+1 <∞, then from (2.74) it follows that

‖A−f‖q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j =

s0∑
s=1

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j (2.86)

=

s0−3∑
s=1

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j +

s0∑
s=s0−2

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j = I1 + I2.

If I1 6= 0 then we estimate I1 using (2.75) and the previous proof for the case

N0 = N . Hence, we obtain

I1 � F q‖f‖q
p,v. (2.87)
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By using (2.73) and applying the Hölder’s inequality with the powers p, p′

and with the powers p
p−q

, p
q
, we obtain the following inequality

I2 =

s0∑
s=s0−2

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j (2.88)

<

s0∑
s=s0−2

ms+1∑
j=ms+1

(d+ 1)(−ns+1+1)quq
j

= (d+ 1)q

s0∑
s=s0−2

(d+ 1)−ns+1q

ms+1∑
j=ms+1

uq
j

�
s0∑

s=s0−2

(
A−f

)q
ms+1

ms+1∑
j=ms+1

uq
j

=

s0∑
s=s0−2

 ∞∑
i=ms+1

ai,ms+1fi

q
ms+1∑

j=ms+1

uq
j

≤
s0∑

s=s0−2

 ∞∑
i=ms+1

ap′

i,ms+1
v−p′

i


q
p′
 ∞∑

i=ms+1

|vifi|p


q
p ms+1∑

j=ms+1

uq
j

≤

 s0∑
s=s0−2

 ∞∑
i=ms+1

ap′

i,ms+1
v−p′

i


q(p−1)

p−q ( ms+1∑
j=ms+1

uq
j

) p
p−q


p−q

p

×

 s0∑
s=s0−2

∞∑
i=ms+1

|vifi|p


q
p

� (F̂2)
p−q

p ‖f‖q
p,v.

Using (2.8) and (2.63) we can estimate F̂2 as follows:

F̂2 =

s0∑
s=s0−2

 ∞∑
i=ms+1

ap′

i,ms+1
v−p′

i


q(p−1)

p−q ( ms+1∑
j=ms+1

uq
j

) p
p−q

(2.89)

�
s0∑

s=s0−2

 ∞∑
i=ms+1

ap′

i,ms+1
v−p′

i


q(p−1)

p−q ms+1∑
j=ms+1

(
ms+1∑
k=j

uq
k

) q
p−q

uq
j

�
s0∑

s=s0−2

ms+1∑
j=ms+1

(
ms+1∑
k=1

uq
k

) q
p−q

 ∞∑
i=ms+1

ap′

i,jv
−p′

i


q(p−1)

p−q

uq
j

≤
∞∑

j=1

(
j∑

k=1

uq
k

) q
p−q
(

∞∑
i=j

ap′

i,jv
−p′

i

) q(p−1)
p−q

uq
j = F

pq
p−q

2 .
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From (2.88) and (2.89) we obtain

I2 � F q
2 ‖f‖q

p,v. (2.90)

From (2.86), (2.87) and (2.90) we deduce (2.85).

2) If ns0+1 = ∞, which means that kms0+1 = ∞, then we have kj = ∞ and

Tj = ∅, if j ≥ ms0 + 1, i.e. (A−f)j = 0, if j ≥ ms0+1 and (A−f)j =
ms0∑
i=j

ai,jfi,

1 ≤ j ≤ ms0 . Therefore m2 <∞ and s0 ≥ 2. Then from (2.74) we have

‖A−f‖q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j =

s0−1∑
s=1

ms+1∑
j=ms+1

(
A−f

)q
j
uq

j (2.91)

Similarly, we can exploit (2.91) to prove (2.85). Then (2.85) together with

(2.71) implies that C ≈ F and thus the proof is complete.

It is known that inequality (2.3) for the operator (2.2) holds if and only

if the dual inequality defined by (2.68) holds for the conjugate operator A∗,

which coincides with operator defined by (2.1). Moreover, the best constants

in (2.3) and (2.68) coincide.

Therefore by using Theorem 2.17 with p′, q′, v−1 and u−1 replaced by q, p, u

and v, respectively, we obtain the following dual version of Theorem 2.17:

Theorem 2.18. Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy

Assumption A. Then estimate (2.3) for the operator defined by (2.1) holds if

and only if F ∗ = max{F ∗1 , F ∗2 } <∞, where

F ∗1 =

 ∞∑
i=1

(
i∑

j=1

bp
′

i,jv
−p′

j

) q(p−1)
p−q

(
∞∑

k=i

ωq
ku

q
k

) q
p−q

ωq
i u

q
i


p−q
pq

,

F ∗2 =

 ∞∑
i=1

(
i∑

j=1

v−p′

j

) p(q−1)
p−q

(
∞∑

k=i

aq
k,iu

q
k

) p
p−q

v−p′

i


p−q
pq

.

Moreover, F ∗ ≈ C, where C is the best constant in (2.3).
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Chapter 3

Weighted Hardy type

inequalities on the cone of

monotone sequences

3.1 Weighted estimates for a class of matrices

on the cone of monotone sequences, the

case 1 < p ≤ q <∞.

In this Section we consider weighted Hardy type inequalities restricted to the

cone of monotone sequences under conditions which are weaker than those

known in the literature.

We consider an inequality of the following form(
∞∑
i=1

uq
i

(
i∑

j=1

ai,jfj

)q) 1
q

≤ C

(
∞∑
i=1

vp
i fi

p

) 1
p

(3.1)

on the cone of non-negative and non-increasing sequences f = {fi}∞i=1 of lp,v,

where C is a positive constant independent of f and (ai,j) is a non-negative

triangular matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

77
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In this Section, we consider inequality (3.1) restricted to the cone of mono-

tone sequences when the corresponding matrices belong to the classesO+
m∪O−

m,

m ≥ 0 for 1 < p ≤ q <∞.

In [45] R. Oinarov and S.Kh. Shalgynbaeva have proved a statement which

allows to reduce inequality (3.1) on the cone of monotone sequences to a cor-

responding inequality on the cone of non-negative sequences from lp,v. Now we

give this statement in a form convenient for us (see also Theorem 1.11 for an

equivalent statement).

Theorem E. [45] Let 1 < p, q < ∞. Let Vk =
k∑

i=1

vp
i , ∀k ≥ 1. Then

inequality (3.1) on the cone of non-negative and non-increasing sequences f ∈

lp,v is equivalent to the inequality ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.2)

for all non-negative sequences g = {gi}∞i=1, if V∞ = lim
k→∞

Vk = ∞, and to the

inequality ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

+

(
∞∑

j=1

∞∑
i=j

ai,jgi

)(
∞∑

k=1

vp
k

)− 1
p

≤ C

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.3)

for all non-negative sequences g = {gi}∞i=1, if V∞ <∞.

Moreover, C̃ ≈ C if V∞ = ∞, and C ≈ C if V∞ < ∞, where C, C̃ and C

are the best constants in (3.1), (3.2), (3.3), respectively.

We define

Vk =
k∑

i=1

vp
i , Aik =

k∑
j=1

ai,j, E1 = sup
s≥1

V
− 1

p
s

(
s∑

i=1

Aq
iiu

q
i

) 1
q

,

E2 = sup
s≥1

 s∑
k=1

(
V
− p′

p

k − V
− p′

p

k+1

)( ∞∑
i=s

Aq
iku

q
i

) p′
q


1
p′

,
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E3 = sup
s≥1

 ∞∑
k=s

uq
k

(
s∑

i=1

Ap′

ki

(
V
− p′

p

i − V
− p′

p

i+1

)) q
p′
 1

q

.

Theorem 3.1. Let 1 < p ≤ q <∞. Let the matrix (ai,j) in (3.1) belong to the

class O+
m ∪O−

m, m ≥ 0. Then the inequality (3.1) on the cone of non-negative

and non-increasing sequences f ∈ lp,v holds if and only if at least one of the

conditions E12 = max{E1, E2} < ∞ and E13 = max{E1, E3} < ∞ holds.

Moreover, E12 ≈ E13 ≈ C, where C is the best constant in (3.1).

Proof of Theorem 3.1. Let the matrix (ai,j) in (3.1) belong to the class

O+
m ∪ O−

m, m ≥ 0. We consider two cases separately: V∞ = ∞ and V∞ <∞.

1. We first consider case V∞ = ∞. Then by Theorem E inequality (3.1)

on the cone of non-negative and non-increasing sequences f ∈ lp,v holds if and

only if the following inequality holds

 ∞∑
k=1

(
k∑

j=1

∞∑
i=j

a
(m)
i,j gi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

(3.4)

holds for all non-negative sequences g = {gi}∞i=1. Moreover, C̃ ≈ C, where C

is the best constant in (3.1).

a) Let the matrix (ai,j) = (a
(m)
i,j ) of (3.1) belong to the class O+

m, m ≥ 0.

Since a
(m)
i,j , gi are non-negative we have

k∑
j=1

∞∑
i=j

a
(m)
i,j gi =

k∑
j=1

k∑
i=j

a
(m)
i,j gi +

k∑
j=1

∞∑
i=k+1

a
(m)
i,j gi (3.5)

≈
k∑

i=1

A
(m)
ii gi +

∞∑
i=k

A
(m)
ik gi.

Therefore, (
k∑

j=1

∞∑
i=j

a
(m)
i,j gi

)p′

≈

(
k∑

i=1

A
(m)
ii gi

)p′

+

(
∞∑

i=k

A
(m)
ik gi

)p′

.

Substituting the last inequality in the left hand side of inequality (3.4) we
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obtain the following inequality ∞∑
k=1

( k∑
i=1

A
(m)
ii gi

)p′

+

(
∞∑

i=k

A
(m)
ik gi

)p′
(V − p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C0

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.6)

for all non-negative sequences g = {gi}∞i=1, which is equivalent to the inequality

(3.4). Moreover, C̃ ≈ C0.

Inequality (3.6) holds if and only if the following inequalities hold simulta-

neously ∞∑
k=1

(
k∑

i=1

A
(m)
ii gi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C1

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

, (3.7)

 ∞∑
k=1

(
∞∑

i=k

A
(m)
ik gi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C2

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.8)

for all non-negative sequences g = {gi}∞i=1. Moreover,

C̃ ≈ max{C1, C2}. (3.9)

Inequality (3.7) is a Hardy type inequality. Hence, by Theorem A inequality

(3.7) holds if and only if the following condition holds

sup
s≥1

(
∞∑

k=s

(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

s∑
i=1

(
A

(m)
ii

)q

uq
i

) 1
q

= sup
s≥1

V
− 1

p
s

(
s∑

i=1

(
A

(m)
ii

)q

uq
i

) 1
q

= E1 <∞. (3.10)

Moreover,

E1 ≈ C1. (3.11)

In (3.8) by passing to the dual inequality we obtain(
∞∑

k=1

(
k∑

i=1

A
(m)
ki ϕi

)q

uq
k

) 1
q

≤ C2

(
∞∑

k=1

ϕp
k

(
V
− p′

p

k − V
− p′

p

k+1

)− p
p′
) 1

p

(3.12)
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for all non-negative sequences ϕ = {ϕi}∞i=1.

Suppose that A
(m)
ki = 0 for i > k. Since (a

(m)
k,i ) ∈ O+

m, then we have

(A
(m)
ki ) ∈ O+

m, m ≥ 0. Indeed, for k ≥ s ≥ i

A
(m)
ki =

i∑
j=1

a
(m)
k,j ≈

i∑
j=1

m∑
γ=0

bm,γ
k,s a

(γ)
s,j =

m∑
γ=0

bm,γ
k,s

i∑
j=1

a
(γ)
s,j =

m∑
γ=0

bm,γ
k,s A

(γ)
si . (3.13)

If m = 0 we see that (A
(0)
ki ) belongs to the class O+

0 . Assume that (A
(m)
ki ) ∈ O+

m

for m = 1, ..., r − 1. Then by induction on m = r, (3.13) implies that (A
(r)
ki )

belongs to the class O+
r .

Then by Theorem 2.15 inequality (3.12) holds if and only if one of the

following conditions holds

sup
k≥1

 k∑
j=1

(
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
A

(m)
ij

)q

uq
i

) p′
q


1
p′

= E2 <∞, (3.14)

sup
k≥1

 ∞∑
i=k

uq
i

(
k∑

j=1

(
A

(m)
ij

)p′
(
V
− p′

p

j − V
− p′

p

j+1

)) q
p′


1
q

= E3 <∞. (3.15)

Moreover,

C2 ≈ E2 ≈ E3. (3.16)

By (3.11) and (3.16) we deduce that inequalities (3.7), (3.8) hold if and

only if at least one of the conditions E12 = max{E1, E2} < ∞ and E13 =

max{E1, E3} < ∞ holds. Moreover, E12 ≈ E13 ≈ max{C1, C2}, which im-

plies that E12 ≈ E13 ≈ C0. Since C0 ≈ C̃, C̃ ≈ C we get E12 ≈ E13 ≈ C. The

last equivalence proves the statement of Theorem 3.1 when (ai,j) ∈ O+
m in the

case V∞ = ∞.

b) Let the matrix (ai,j) = (a
(m)
i,j ) of (3.1) belong to the class O−

m, m ≥ 0.
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Since a
(m)
i,j , gi are non-negative we have

k∑
j=1

∞∑
i=j

a
(m)
i,j gi =

k∑
j=1

k∑
i=j

a
(m)
i,j gi +

k∑
j=1

∞∑
i=k+1

a
(m)
i,j gi (3.17)

≈
k∑

i=1

A
(m)
ii gi +

∞∑
i=k

gi

k∑
j=1

a
(m)
i,j

≈
k∑

i=1

A
(m)
ii gi +

∞∑
i=k

gi

k∑
j=1

m∑
γ=0

a
(γ)
i,k d

γ,m
k,j

=
k∑

i=1

A
(m)
ii gi +

m∑
γ=0

Dγ,m
kk

∞∑
i=k

a
(γ)
i,k gi,

where Dγ,m
kk =

k∑
j=1

dγ,m
k,j . Therefore,

(
k∑

j=1

∞∑
i=j

a
(m)
i,j gi

)p′

≈

(
k∑

i=1

A
(m)
ii gi

)p′

+
m∑

γ=0

(
Dγ,m

kk

∞∑
i=k

a
(γ)
i,k gi

)p′

.

Substituting the last inequality in the left hand side of inequality (3.4) we

obtain the following inequality

 ∞∑
k=1

( k∑
i=1

A
(m)
ii gi

)p′

+
m∑

γ=0

(
Dγ,m

kk

∞∑
i=k

a
(γ)
i,k gi

)p′
(V − p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C0

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.18)

for all non-negative sequences g = {gi}∞i=1, which is equivalent to the inequality

(3.4). Moreover, C̃ ≈ C0.

Inequality (3.18) holds if and only if the following inequalities hold simul-

taneously

 ∞∑
k=1

(
k∑

i=1

A
(m)
ii gi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C1

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

∀g ≥ 0, (3.19)
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 ∞∑
k=1

(
∞∑

i=k

a
(γ)
i,k gi

)p′

(Dγ,m
kk )p′

(
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃γ

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

∀g ≥ 0 (3.20)

for all γ = 0, 1, ...,m. Moreover,

C̃ ≈ C0 ≈ max{C1, C̃0, C̃1, ..., C̃m}. (3.21)

(3.19) is a Hardy type inequality. Hence, using Theorem A as in (3.10), we

obtain that inequality (3.19) holds if and only if the following condition holds

E1 = sup
s≥1

V
− 1

p
s

(
s∑

i=1

(
A

(m)
ii

)q

uq
i

) 1
q

<∞. (3.22)

Moreover,

E1 ≈ C1. (3.23)

In (3.20) by passing to the dual inequality we obtain

(
∞∑

k=1

(
k∑

i=1

a
(γ)
k,iϕi

)q

uq
k

) 1
q

≤ C̃γ

(
∞∑
i=1

ϕp
i (Dγ,m

ii )−p

(
V
− p′

p

i − V
− p′

p

i+1

)− p
p′
) 1

p

(3.24)

for all non-negative sequences ϕ = {ϕi}∞i=1 and for all γ = 0, 1, ...,m.

Since (a
(γ)
k,i ) ∈ O−

γ , γ = 0, 1, ...,m, by Theorem 2.15 inequality (3.24) holds

if and only if one of the following conditions holds

B̃+
γ = sup

k≥1

(
B̃+

γ

)
k

= sup
k≥1

 k∑
j=1

(
Dγ,m

jj

)p′ (
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
a

(γ)
i,j

)q

uq
i

) p′
q


1
p′

<∞, (3.25)
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B̃−γ = sup
k≥1

(
B̃−γ

)
k

= sup
k≥1

 ∞∑
i=k

uq
i

(
k∑

j=1

(
a

(γ)
i,j

)p′ (
Dγ,m

jj

)p′ (
V
− p′

p

j − V
− p′

p

j+1

)) q
p′


1
q

<∞. (3.26)

and

C̃γ ≈ B̃+
γ ≈ B̃−γ . (3.27)

The expression
(
B̃+

γ

)
k

can be written in the following form.

(
B̃+

γ

)
k

=

 k∑
j=1

(
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
j∑

s=1

a
(γ)
i,j d

γ,m
j,s

)q

uq
i

) p′
q


1
p′

.

Then we have

m∑
γ=0

(
B̃+

γ

)
k

=
m∑

γ=0

 k∑
j=1

(
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
j∑

s=1

a
(γ)
i,j d

γ,m
j,s

)q

uq
i

) p′
q


1
p′

≈

 k∑
j=1

(
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
j∑

s=1

m∑
γ=0

a
(γ)
i,j d

γ,m
j,s

)q

uq
i

) p′
q


1
p′

≈

 k∑
j=1

(
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
j∑

s=1

a
(m)
i,s

)q

uq
i

) p′
q


1
p′

=

 k∑
j=1

(
V
− p′

p

j − V
− p′

p

j+1

)( ∞∑
i=k

(
A

(m)
i,j

)q

uq
i

) p′
q


1
p′

.

Therefore, we have sup
k≥1

m∑
γ=0

(
B̃+

γ

)
k
≈ E2. Since sup

k≥1

m∑
γ=0

(
B̃+

γ

)
k
≈

m∑
γ=0

B̃+
γ ,

we obtain max
0≤γ≤m

B̃+
γ ≈

m∑
γ=0

B̃+
γ ≈ E2. In the same way, we deduce that max

0≤γ≤m
B̃−γ ≈

m∑
γ=0

B̃−γ ≈ E3.

By (3.22), (3.25) and (3.26) we obtain that inequalities (3.19), (3.20) hold

if and only if one of the conditions E12 = max{E1, E2} < ∞ and E13 =



ON THE CONE OF MONOTONE SEQUENCES 85

max{E1, E3} <∞ holds. Moreover, we have E12 ≈ E13 ≈ max{C1, C̃0, C̃1, ...,

C̃m}, which implies that E12 ≈ E13 ≈ C̃. Since C̃ ≈ C, we get E12 ≈ E13 ≈ C.

The last equivalence gives the statement of Theorem 3.1 when (ai,j) ∈ O−
m,

m ≥ 0 in the case V∞ = ∞.

2. Next we consider case V∞ <∞. By Theorem E inequality (3.1) on the

cone of non-negative and non-increasing sequences f ∈ lp,v holds if and only if

both inequality (3.4) and the inequality(
∞∑

k=1

∞∑
i=k

a
(m)
i,k gi

)(
∞∑
i=1

vp
i

)− 1
p

≤ Ĉ

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.28)

for all non-negative sequences g = {gi}∞i=1 hold. Here Ĉ is the best constant

for which (3.28) holds. Moreover, C ≈ max{C̃, Ĉ}.

So in case V∞ <∞, inequality (3.4) holds if and only if one of the conditions

max{E ′1, E2} <∞ and max{E ′1, E3} <∞ holds, where

E ′1 = sup
s≥1

(
V
− p′

p
s − V

− p′
p

∞

) 1
p′
(

s∑
i=1

(
A

(m)
ii

)q

uq
i

) 1
q

.

Indeed, if V∞ < ∞, (3.10) implies that inequality (3.7) (and accordingly in-

equality (3.19)) holds if and only if E ′1 <∞. Moreover, E ′1 ≈ C1.

Since a
(m)
i,j , gi are non-negative, changing the order of summation in the left

hand side of (3.28) we obtain(
∞∑
i=1

A
(m)
ii gi

)
≤ ĈV

1
p
∞

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

∀g ≥ 0.

By the reverse Hölder’s inequality we have(
∞∑
i=1

(
A

(m)
ii

)q

uq
i

) 1
q

= ĈV
1
p
∞.

Hence, inequality (3.28) holds if and only if

Ĉ = V
− 1

p
∞

(
∞∑
i=1

(
A

(m)
ii

)q

uq
i

) 1
q

<∞.

It is obvious that 1
2

(
E ′1 + Ĉ

)
< E1. At the same time, for s ≥ 1 we have

V
− 1

p
s =

(
V
− p′

p
s

) 1
p′

=

(
V
− p′

p
s − V

− p′
p

∞ + V
− p′

p
∞

) 1
p′

≤
(
V
− p′

p
s − V

− p′
p

∞

) 1
p′

+ V
− 1

p
∞ ,
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which implies that E1 ≤
(
E ′1 + Ĉ

)
. Hence, we obtain that 1

2

(
E ′1 + Ĉ

)
<

E1 ≤
(
E ′1 + Ĉ

)
. Therefore, inequalities (3.7) (and accordingly (3.19)) and

(3.28) hold if and only if E1 <∞. Moreover, E1 ≈ max{C1, Ĉ}.

Now we see that max{E1, E2} ≈ max{E1, E3} ≈ max{C1, Ĉ, C̃} ≈ C

regardless of whether V∞ is finite or infinite. Thus the proof is complete.
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3.2 Two-sided estimates for matrix operators

on the cone of monotone sequences, the

case q < p.

In this Section we consider inequality (3.1) on the cone of monotone sequences

for 1 < q < p <∞.

We define

Vk =
k∑

i=1

vp
i , Wk =

k∑
i=1

ωi, Aik =
k∑

j=1

ai,j, Bik =
k∑

j=1

bi,j,

F1 =

 ∞∑
k=1

V
q

q−p

k

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

,

F2 =

 ∞∑
k=1

(
∞∑

j=k

bqj,ku
q
j

) p
p−q
(

k∑
i=1

W p′

i

(
V
− p′

p

i − V
− p′

p

i+1

)) p(q−1)
p−q

× W p′

k

(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

,

F3 =

 ∞∑
k=1

(
∞∑

j=k

uq
j

) q
p−q
(

k∑
i=1

Ap′

ki

(
V
− p′

p

i − V
− p′

p

i+1

)) q(p−1)
p−q

uq
k


p−q
pq

,

F2 =

 ∞∑
k=1

(
∞∑

i=k

wq
i u

q
i

) p
p−q
(

k∑
j=1

Bp′

jj

(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

× Bp′

kk

(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

,

F3 =

 ∞∑
k=1

(
k∑

j=1

jp′bp
′

k,j

(
V
− p′

p

j − V
− p′

p

j+1

)) q(p−1)
p−q

(
∞∑

i=k

wq
i u

q
i

) q
p−q

wq
ku

q
k


p−q
pq

,
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F4 =

 ∞∑
k=1

(
∞∑

i=k

aq
i,ku

q
i

) p
p−q
(

k∑
j=1

jp′
(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

× kp′
(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

.

Theorem 3.2. Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy

assumption (1.17). Then inequality (3.1) on the cone of non-negative and non-

increasing sequences f ∈ lp,v holds if and only if F0 = max{F1, F2, F3} <∞.

Moreover, F0 ≈ C, where C is the best constant in (3.1).

Theorem 3.3. Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy

Assumption A. Then inequality (3.1) on the cone of non-negative and non-

increasing sequences f ∈ lp,v holds if and only if F0 = max{F1, F2, F3, F4} <

∞. Moreover, F0 ≈ C, where C is the best constant in (3.1).

Proof of Theorem 3.2. Let the entries of the matrix (ai,j) satisfy as-

sumption (1.17). We consider two cases separately: V∞ = ∞ and V∞ <∞.

1. Let V∞ = ∞. Then by Theorem E inequality (3.1) on the cone of non-

negative and non-increasing sequences f ∈ lp,v holds if and only if the following

inequality ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.29)

holds for all non-negative sequences g = {gi}∞i=1. Moreover, C̃ ≈ C, where C

is the best constant in (3.1).

Since ai,j, gi are non-negative we have

k∑
j=1

∞∑
i=j

ai,jgi =
k∑

j=1

k∑
i=j

ai,jgi +
k∑

j=1

∞∑
i=k+1

ai,jgi ≈
k∑

i=1

Aiigi +
∞∑

i=k

Aikgi. (3.30)

Therefore, (
k∑

j=1

∞∑
i=j

ai,jgi

)p′

≈

(
k∑

i=1

Aiigi

)p′

+

(
∞∑

i=k

Aikgi

)p′

.
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Substituting the last inequality in the left hand side of inequality (3.29) we

have the following inequality ∞∑
k=1

( k∑
i=1

Aiigi

)p′

+

(
∞∑

i=k

Aikgi

)p′
(V − p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃0

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.31)

for all non-negative sequences g = {gi}∞i=1, which is equivalent to the inequality

(3.29). Moreover, C̃ ≈ C̃0.

Inequality (3.31) holds if and only if the following inequalities hold simul-

taneously

 ∞∑
k=1

(
k∑

i=1

Aiigi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃1

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

, (3.32)

 ∞∑
k=1

(
∞∑

i=k

Aikgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃2

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.33)

for all non-negative sequences g = {gi}∞i=1. Moreover,

C̃ ≈ max{C̃1, C̃2}. (3.34)

Inequality (3.32) is a Hardy type inequality. Hence by Theorem A inequal-

ity (3.32) holds if and only if the following condition holds ∞∑
k=1

V
q

q−p

k

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

= F1 <∞. (3.35)

Moreover,

F1 ≈ C̃1. (3.36)

By passing to the dual inequality in (3.33) we obtain(
∞∑

k=1

(
k∑

i=1

Akiϕi

)q

uq
k

) 1
q

≤ C̃2

(
∞∑

k=1

ϕp
k

(
V
− p′

p

k − V
− p′

p

k+1

)− p
p′
) 1

p

(3.37)
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for all non-negative sequences ϕ = {ϕi}∞i=1.

The entries of the matrix (Aki) for k ≥ s ≥ i satisfy the following condition.

Aki =
i∑

j=1

ak,j ≈
i∑

j=1

(bk,sωj + as,j) = bk,sWi +
i∑

j=1

as,j = bk,sWi + Asi, (3.38)

which asserts that the entries of the matrix (Aki) satisfy assumption (1.17).

Therefore, by Theorem 1.9 inequality (3.37) holds if and only if the following

conditions hold ∞∑
k=1

(
∞∑

j=k

bqj,ku
q
j

) p
p−q
(

k∑
i=1

W p′

i

(
V
− p′

p

i − V
− p′

p

i+1

)) p(q−1)
p−q

×W p′

k

(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

= F2 <∞, (3.39)

 ∞∑
k=1

(
∞∑

j=k

uq
j

) q
p−q
(

k∑
i=1

Ap′

ki

(
V
− p′

p

i − V
− p′

p

i+1

)) q(p−1)
p−q

uq
k


p−q
pq

= F3 <∞, (3.40)

and

C̃2 ≈ max{F2, F3}. (3.41)

By (3.35) and (3.39), (3.40) we obtain that inequalities (3.32) and (3.37) hold

if and only if F0 = max{F1, F2, F3} < ∞. Moreover, F0 ≈ max{C̃1, C̃2},

which implies that F0 ≈ C̃. Since C̃ ≈ C, we get F0 ≈ C. The last equivalence

gives the statement of Theorem 3.2 in the case V∞ = ∞.

2. Let V∞ <∞. By Theorem E inequality (3.1) on the cone of non-negative

and non-increasing sequences f ∈ lp,v holds if and only if both inequality (3.29)

and the inequality(
∞∑

k=1

∞∑
i=k

ai,kgi

)(
∞∑
i=1

vp
i

)− 1
p

≤ Ĉ

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.42)

for all non-negative sequences g = {gi}∞i=1 hold. Here Ĉ is the best constant

for which (3.42) holds. Moreover, C ≈ max{C̃, Ĉ}.
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Since ai,j, gi are non-negative, changing the order of summation in the left

hand side of (3.42) we obtain

(
∞∑
i=1

giAii

)
≤ ĈV

1
p
∞

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

∀g ≥ 0.

By the reverse Hölder’s inequality we have(
∞∑
i=1

Aq
iiu

q
i

) 1
q

= ĈV
1
p
∞,

and accordingly

V
− 1

p
∞

(
∞∑
i=1

Aq
iiu

q
i

) 1
q

= Ĉ. (3.43)

Therefore, inequality (3.42) holds if and only if Ĉ <∞.

As proved above, inequality (3.29) holds if and only if the inequalities (3.32)

and (3.33) hold simultaneously.

In the same way as in the case V∞ = ∞ we prove that inequality (3.33)

holds if and only if F2 <∞, F3 <∞.

By Theorem A inequality (3.32) holds if and only if the following condition

holds

F′1 =

 ∞∑
k=1

(
∞∑

j=k

(V
− p′

p

j − V
− p′

p

j+1 )

) q(p−1)
p−q

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

=

 ∞∑
k=1

(
V
− p′

p

k − V
− p′

p
∞

) q(p−1)
p−q

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

<∞.

Thus, in case V∞ < ∞, inequality (3.1) on the cone of non-negative and

non-increasing sequences f ∈ lp,v holds if and only if max
{

F′1, F2, F3, Ĉ
}
<

∞. If we prove that F1 ≈ max
{

F′1, Ĉ
}
, then we obtain that inequality (3.1)

on the cone of non-negative and non-increasing sequences f ∈ lp,v holds if and

only if F0 <∞ and F0 ≈ C.

It is obvious that F′1 ≤ F1. Now we show that Ĉ � F1.
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Note that(
∞∑
i=1

Aq
iiu

q
i

) 1
q

=

( ∞∑
i=1

Aq
iiu

q
i

) p
p−q


p−q
pq

=

 ∞∑
k=1

( k∑
i=1

Aq
iiu

q
i

) p
p−q

−

(
k−1∑
i=1

Aq
iiu

q
i

) p
p−q


p−q
pq

�

 ∞∑
k=1

(
k∑

i=1

Aq
iiu

q
i

) q
p−q
(

k∑
i=1

Aq
iiu

q
i −

k−1∑
i=1

Aq
iiu

q
i

)
p−q
pq

�

 ∞∑
k=1

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

,

which implies that

Ĉ = V
− 1

p
∞

(
∞∑
i=1

Aq
iiu

q
i

) 1
q

� V
− 1

p
∞

 ∞∑
k=1

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

≤

 ∞∑
k=1

V
q

q−p

k

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

= F1.

Therefore, we deduce that max{F′1, Ĉ} � F1. The reverse relation follows

by using Minkowski inequality in the following way.

F1 =

 ∞∑
k=1

(
V
− p′

p

k − V
− p′

p
∞ + V

− p′
p

∞

) q(p−1)
p−q

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

≤

 ∞∑
k=1

(
V
− p′

p

k − V
− p′

p
∞

) q(p−1)
p−q

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

+ V
− 1

p
∞

 ∞∑
k=1

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

� F′1 + Ĉ ≤ 2 max{F′1, Ĉ}.

Hence, we obtain that F1 ≈ max
{

F′1, Ĉ
}
.

Therefore, we deduce that inequality (3.1) on the cone of non-negative

and non-increasing sequences f ∈ lp,v holds if and only if F0 < ∞ and
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C ≈ F0 = max{F1, F2, F3} regardless of whether V∞ is finite or infinite.

Thus, the proof is complete.

Now we prove Theorem 3.3.

Proof of Theorem 3.3. Let the entries of the matrix (ai,j) satisfy As-

sumption A. We consider two cases separately: V∞ = ∞ and V∞ <∞.

1. Let V∞ = ∞. Then based on Theorem E inequality (3.1) on the cone

of non-negative and non-increasing sequences f ∈ lp,v holds if and only if

inequality (3.29) holds for all non-negative sequences g = {gi}∞i=1. Moreover,

C̃ ≈ C, where C and C̃ are the best constants in (3.1) and (3.29), respectively.

Since ai,j, gi are non-negative and according to Assumption A we have

k∑
j=1

∞∑
i=j

ai,jgi =
k∑

j=1

k∑
i=j

ai,jgi +
k∑

j=1

∞∑
i=k+1

ai,jgi (3.44)

≈
k∑

i=1

Aiigi +
∞∑

i=k

gi

k∑
j=1

ai,j

≈
k∑

i=1

Aiigi + k
∞∑

i=k

ai,kgi +Bkk

∞∑
i=k

ωigi.

Therefore,

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′

≈

(
k∑

i=1

Aiigi

)p′

+

(
k

∞∑
i=k

ai,kgi

)p′

+

(
Bkk

∞∑
i=k

ωigi

)p′

.

Substituting the last inequality in the left hand side of inequality (3.29) we

obtain the following inequality ∞∑
k=1

( k∑
i=1

Aiigi

)p′

+

(
k

∞∑
i=k

ai,kgi

)p′

+

(
Bkk

∞∑
i=k

ωigi

)p′


×
(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′

≤ C̃0

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.45)

for all non-negative sequences g = {gi}∞i=1, which is equivalent to inequality

(3.29). Moreover, C̃ ≈ C̃0.
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Inequality (3.45) holds if and only if the following inequalities hold simul-

taneously ∞∑
k=1

(
k∑

i=1

Aiigi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃1

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

, (3.46)

 ∞∑
k=1

(
k

∞∑
i=k

ai,kgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃2

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

, (3.47)

 ∞∑
k=1

(
Bkk

∞∑
i=k

ωigi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃3

(
∞∑
i=1

gq′

i u
−q′

i

) 1
q′

(3.48)

for all non-negative sequences g = {gi}∞i=1. Moreover,

C̃ ≈ max{C̃1, C̃2, C̃3}. (3.49)

By passing to the dual inequalities in (3.47) and (3.48), we obtain(
∞∑

k=1

(
k∑

i=1

ak,iϕi

)q

uq
k

) 1
q

≤ C̃2

(
∞∑
i=1

ϕp
i i

−p

(
V
− p′

p

i − V
− p′

p

i+1

)− p
p′
) 1

p

, (3.50)

(
∞∑

k=1

(
k∑

i=1

ϕi

)q

ωq
ku

q
k

) 1
q

≤ C̃3

(
∞∑

k=1

ϕp
kB

−p
kk

(
V
− p′

p

k − V
− p′

p

k+1

)− p
p′
) 1

p

(3.51)

for all non-negative sequences ϕ = {ϕi}∞i=1.

Inequalities (3.46) and (3.51) are Hardy type inequalities. Hence, by The-

orem A inequalities (3.46), (3.51) hold if and only if the following conditions

hold, respectively. ∞∑
k=1

V
q

q−p

k

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

= F1 <∞, (3.52)

 ∞∑
k=1

(
∞∑

i=k

wq
i u

q
i

) p
p−q
(

k∑
j=1

Bp′

jj

(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

×Bp′

kk

(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

= F2 <∞. (3.53)
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Moreover,

F1 ≈ C̃1, F2 ≈ C̃3. (3.54)

The entries of the matrix (ak,i) satisfy Assumption A. Therefore, by The-

orem 2.18 inequality (3.50) holds if and only if the following conditions hold

 ∞∑
k=1

(
k∑

j=1

jp′bp
′

k,j

(
V
− p′

p

j − V
− p′

p

j+1

)) q(p−1)
p−q

(
∞∑

i=k

wq
i u

q
i

) q
p−q

wq
ku

q
k


p−q
pq

= F3 <∞, (3.55)

 ∞∑
k=1

(
∞∑

i=k

aq
i,ku

q
i

) p
p−q
(

k∑
j=1

jp′
(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

×kp′
(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

= F4 <∞ (3.56)

and

C̃2 ≈ max{F3, F4}. (3.57)

By (3.52), (3.53) and (3.55), (3.56) we obtain that inequalities (3.46), (3.50)

and (3.51) hold if and only if F0 = max{F1, F2, F3, F4} < ∞. Moreover,

F0 ≈ max{C̃1, C̃2, C̃3}, which implies that F0 ≈ C̃. Since C̃ ≈ C we get

F0 ≈ C. The last equivalence gives the statement of Theorem 3.3 in the case

V∞ = ∞.

2. Let V∞ <∞. By Theorem E inequality (3.1) on the cone of non-negative

and non-increasing sequences f ∈ lp,v holds if and only if both inequality

(3.29) and inequality (3.42) for all non-negative sequences g = {gi}∞i=1 hold.

Moreover, C ≈ max{C̃, Ĉ}.

As in the proof of Theorem 3.2 in case V∞ <∞ we obtain that inequality

(3.42) holds if and only if Ĉ <∞.

As proved above, inequality (3.29) holds if and only if the inequalities

(3.46), (3.47) and (3.48) hold simultaneously.
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In the same way as in the case V∞ = ∞ we prove that inequality (3.47)

holds if and only if F3 < ∞, F4 < ∞ and that inequality (3.48) holds if and

only if F2 <∞.

By Theorem A it follows that inequality (3.46) holds if and only if

F′1 =

 ∞∑
k=1

(
V
− p′

p

k − V
− p′

p
∞

) q(p−1)
p−q

(
k∑

i=1

Aq
iiu

q
i

) q
p−q

Aq
kku

q
k


p−q
pq

<∞

Thus, in case V∞ < ∞, inequality (3.1) on the cone of non-negative and

non-increasing sequences f ∈ lp,v holds if and only if max
{

F′1, F2, F3, F4, Ĉ
}

<∞.

However, in the proof of Theorem 3.2 we have already proved that F1 ≈

max
{

F′1, Ĉ
}
. Therefore, we obtain that inequality (3.1) on the cone of non-

negative and non-increasing sequences f ∈ lp,v holds if and only if F0 =

max{F1, F2, F3, F4} < ∞ and C ≈ max{C̃, Ĉ} ≈ F0 regardless of whether

V∞ is finite or infinite. Thus, the proof is complete.



Chapter 4

Applications of the main results

4.1 Boundedness and compactness criteria of

compositions of matrix operators

In this Section we consider boundedness and compactness problems of the

composition of matrix operators in weighted spaces of sequences when the cor-

responding matrices belong to the classes O+
n ∪O−

n , n ≥ 0 for 1 < p ≤ q <∞.

We define (
Σ+f

)
i
:=

i∑
j=1

σi,jfj, i ≥ 1, (4.1)

(
Σ−g

)
j
:=

∞∑
i=j

σi,jgi, j ≥ 1. (4.2)

Remark 4.1. If we consider operator defined by (2.1) and (4.1), then for

non-negative ai,j, σj,k and gk we have

(
A+ ◦ Σ+

)
(g)i ≡

(
A+
(
Σ+g

))
i
=

i∑
j=1

ai,j

j∑
k=1

σj,kgk

=
i∑

k=1

(
i∑

j=k

ai,jσj,k

)
gk =

i∑
k=1

wi,kgk.

97
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Therefore, if (ai,j) ∈ O+
n , (σj,k) ∈ O+

m, then according to Lemma 2.6 the matrix

(wi,k) of the operator A+ ◦ Σ+ belongs to the class O+
m+n+1.

In the same way using Lemma 2.7 one can prove that if (ai,j) ∈ O−
n , (σj,k) ∈

O−
m, then the matrix of the operator A+ ◦ Σ+ belongs to the class O−

m+n+1.

In general, if the matrices (ak
i,j) of the operators

(
A+

k f
)

i
=

i∑
j=1

ak
i,jfj belong

to the classes O±
mk
, k = 1, . . . , n, then the matrix of the operator A+

n ≡ A+
1 ◦

A+
2 ◦· · ·◦A+

n belongs to the class O±
m, where m =

n∑
k=1

mk+n−1. Thus, according

to Theorem 2.15 we can obtain criteria of boundedness and compactness of the

matrix operator A+
n from the weighted lp,v space into the weighted lq,u space for

1 < p ≤ q <∞.

Similarly, if the matrices (ak
i,j) of the operators

(
A−k g

)
j

=
∞∑
i=j

ak
i,jgi belong

to the classes O±
mk
, k = 1, . . . , n, then by Lemmas 2.6 and 2.7, and Theorem

2.16 we obtain necessary and sufficient conditions for the boundedness and

compactness of operator A−
n = A−1 ◦ A−2 ◦ · · · ◦ A−n from lp,v into lq,u for 1 <

p ≤ q <∞.

We define

(D1)s =

 s∑
k=1

v−p′

k

(
∞∑
i=s

(
k∑

j=1

ai,jσk,j

)q

uq
i

) p′
q


1
p′

,

(D2)s =

 ∞∑
i=s

uq
i

 s∑
k=1

(
k∑

j=1

ai,jσk,j

)p′

v−p′

k


q
p′


1
q

,

(D3)s =

 s∑
i=1

uq
i

 ∞∑
k=s

(
i∑

j=1

ai,jσk,j

)p′

v−p′

k


q
p′


1
q

,

(D4)s =

 ∞∑
k=s

v−p′

k

(
s∑

i=1

(
i∑

j=1

ai,jσk,j

)q

uq
i

) p′
q


1
p′

,

(G1)s =

 s∑
j=1

v−p′

j

(
∞∑

k=s

(
∞∑

i=k

ai,jσi,k

)q

uq
k

) p′
q


1
p′

,



OF THE MAIN RESULTS 99

(G2)s =

 ∞∑
k=s

uq
k

 s∑
j=1

(
∞∑

i=k

ai,jσi,k

)p′

v−p′

j


q
p′


1
q

,

(G3)s =

 s∑
k=1

uq
k

 ∞∑
j=s

(
∞∑
i=j

ai,jσi,k

)p′

v−p′

j


q
p′


1
q

,

(G4)s =

 ∞∑
j=s

v−p′

j

(
s∑

k=1

(
∞∑
i=j

ai,jσi,k

)q

uq
k

) p′
q


1
p′

.

Then we set

D1 = sup
s≥1

(D1)s, D2 = sup
s≥1

(D2)s, D3 = sup
s≥1

(D3)s, D4 = sup
s≥1

(D4)s,

G1 = sup
s≥1

(G1)s, G2 = sup
s≥1

(G2)s, G3 = sup
s≥1

(G3)s, G4 = sup
s≥1

(G4)s

and

D13 = max{D1, D3}, D14 = max{D1, D4},

D23 = max{D2, D3}, D24 = max{D2, D4},

G13 = max{G1, G3}, G14 = max{G1, G4},

G23 = max{G2, G3}, G24 = max{G2, G4}.

Theorem 4.2. Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.1)

belong to the class O+
n ∪O−

n , n ≥ 0. Let the matrix (σi,j) in (4.2) belong to the

class O+
m ∪ O−

m, m ≥ 0. Then the following statements hold.

(i) The operator A+ ◦ Σ− is bounded from lp,v into lq,u if and only

if at least one of the suprema D13, D14, D23 and D24 is finite. Moreover,

‖A+ ◦ Σ−‖lp,v→lq,u ≈ D13 ≈ D14 ≈ D23 ≈ D24.

(ii) The operator A+ ◦ Σ− is compact from lp,v into lq,u if and only if

at least one of the following conditions holds

1) lim
s→∞

(D1)s = 0, lim
s→∞

(D3)s = 0; 2) lim
s→∞

(D2)s = 0, lim
s→∞

(D4)s = 0;

3) lim
s→∞

(D1)s = 0, lim
s→∞

(D4)s = 0; 4) lim
s→∞

(D2)s = 0, lim
s→∞

(D3)s = 0.
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Theorem 4.3. Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (2.1)

belong to the class O+
n ∪O−

n , n ≥ 0. Let the matrix (σi,j) in (4.2) belong to the

class O+
m ∪ O−

m, m ≥ 0. Then the following statements hold.

(j) The operator Σ− ◦ A+ is bounded from lp,v into lq,u if and only

if at least one of the suprema G13, G14, G23 and G24 is finite. Moreover,

‖Σ− ◦ A+‖lp,v→lq,u ≈ G13 ≈ G14 ≈ G23 ≈ G24.

(jj) The operator Σ− ◦ A+ is compact from lp,v into lq,u if and only if

at least one of the following conditions holds

1) lim
s→∞

(G1)s = 0, lim
s→∞

(G3)s = 0; 2) lim
s→∞

(G2)s = 0, lim
s→∞

(G4)s = 0;

3) lim
s→∞

(G1)s = 0, lim
s→∞

(G4)s = 0; 4) lim
s→∞

(G2)s = 0, lim
s→∞

(G3)s = 0.

Next we define

(W+f)i =
i∑

k=1

fk

k∑
j=1

ai,jσk,j, i ≥ 1, (4.3)

(Φ−f)i =
∞∑

k=i

fk

i∑
j=1

σk,jai,j, i ≥ 1. (4.4)

By exploiting the results of Sections 2.2 and 2.6 we obtain.

Theorem 4.4. Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) of the

operator W+ belong to the class O+
n ∪ O−

n , n ≥ 0. Let the matrix (σi,j) of the

operator W+ be non-negative. Then the following statements hold.

(i) The operator W+ is bounded from lp,v into lq,u if and only if at least

one of the conditions D1 <∞ and D2 <∞ holds. Moreover, ‖W+‖lp,v→lq,u ≈

D1 ≈ D2.

(ii) The operator W+ is compact from lp,v into lq,u if and only if at least

one of the limits lim
s→∞

(D1)s and lim
s→∞

(D2)s equals zero.

Theorem 4.5. Suppose that 1 < p ≤ q < ∞. Let the matrix (σi,j) of the

operator Φ− belong to the class O+
m ∪ O−

m, m ≥ 0. Let the matrix (ai,j) of the

operator Φ− be non-negative. Then the following statements hold.
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(i) The operator Φ− is bounded from lp,v into lq,u if and only if at least

one of the conditions D3 < ∞ and D4 < ∞ holds. Moreover, ‖Φ−‖lp,v→lq,u ≈

D3 ≈ D4.

(ii) The operator Φ− is compact from lp,v into lq,u if and only if at least

one of the limits lim
s→∞

(D3)s and lim
s→∞

(D4)s equals zero.

Proof of Theorem 4.4. The boundedness of the operator W+ is equiva-

lent to the validity of the following inequality

‖W+f‖q,u ≤ C‖f‖p,v (4.5)

for all f ∈ lp,v with a positive finite constant C independent of f .

We set $i,k =
k∑

j=1

ai,jσk,j, i ≥ k. Then we have

(W+f)i =
i∑

k=1

fk

k∑
j=1

ai,jσk,j =
i∑

k=1

$i,kfk, i ≥ 1.

1. Let (ai,j) ∈ O+
n , n ≥ 0. Let (σi,j) be an arbitrary non-negative matrix.

Then according to Lemma 2.8 it follows that ($i,k) ∈ O+
n , n ≥ 0. Therefore, by

Theorem 2.15, inequality (4.5) holds if and only if at least one of the following

two conditions holds

sup
s≥1

 s∑
k=1

v−p′

k

(
∞∑
i=s

$q
i,ku

q
i

) p′
q


1
p′

= sup
s≥1

(D1)s = D1 <∞, (4.6)

sup
s≥1

 ∞∑
i=s

uq
i

(
s∑

k=1

$p′

i,kv
−p′

k

) q
p′
 1

q

= sup
s≥1

(D2)s = D2 <∞. (4.7)

Moreover,

D1 ≈ D2 ≈ C. (4.8)

In addition, by Theorem 2.15 operator W+ is compact from lp,v into lq,u if

and only if at least one of the limits lim
s→∞

(D1)s and lim
s→∞

(D2)s equals zero.
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2. Let (ai,j) ∈ O−
n , n ≥ 0. Let (σi,j) be an arbitrary non-negative matrix.

Then according to Lemma 2.8 it follows that ($i,k) ∈ O−
n β, n ≥ 0, where

β = {βk}∞k=1 and βk =
k∑

j=1

σk,j.

The membership ($i,k) ∈ O−
n β, n ≥ 0 means that $i,k ≈ βk$̃i,k, where

($̃i,k) ∈ O−
n , n ≥ 0. Substituting this equivalence in the left hand side of

inequality (4.5), we obtain that(
∞∑
i=1

uq
i

∣∣∣∣∣
i∑

k=1

βk$̃i,kfk

∣∣∣∣∣
q) 1

q

≤ C̃

(
∞∑
i=1

vp
i |fi|p

) 1
p

(4.9)

holds for all f ∈ lp,v, which is equivalent to inequality (4.5). Moreover, C̃ ≈ C.

By taking gk = βkfk we see that the validity of inequality (4.9) is equivalent

to the validity of the following inequality(
∞∑
i=1

uq
i

∣∣∣∣∣
i∑

k=1

$̃i,kgk

∣∣∣∣∣
q) 1

q

≤ C̃

(
∞∑
i=1

β−p
i vp

i |gi|p
) 1

p

. (4.10)

By inequality (4.10), we see that the boundedness of the operator W+ from

lp,v into lq,u is equivalent to the boundedness of operator W̃+ from lp,vβ−1 into

lq,u, where W̃+ =
i∑

k=1

$̃i,kgk.

Since ($̃i,k) ∈ O−
n , n ≥ 0, Theorem 2.15 implies that operator W̃+ is

bounded from lp,vβ−1 into lq,u if and only if one of the following conditions

holds

sup
s≥1

 s∑
k=1

v−p′

k βp′

k

(
∞∑
i=s

$̃q
i,ku

q
i

) p′
q


1
p′

≈ sup
s≥1

 s∑
k=1

v−p′

k

(
∞∑
i=s

$q
i,ku

q
i

) p′
q


1
p′

= D1 <∞,

sup
s≥1

 ∞∑
i=s

uq
i

(
s∑

k=1

$̃p′

i,kβ
p′

k v
−p′

k

) q
p′
 1

q

≈ sup
s≥1

 ∞∑
i=s

uq
i

(
s∑

k=1

$p′

i,kv
−p′

k

) q
p′
 1

q

= D2 <∞.



OF THE MAIN RESULTS 103

As a consequence, the operator W+ is bounded from lp,v into lq,u if and only

if at least one of the conditions D1 <∞ and D2 <∞ holds. Moreover,

D1 ≈ D2 ≈ C̃ ≈ C. (4.11)

In addition, by Theorem 2.15 the operator W̃+ is compact from lp,vβ−1 into

lq,u if and only if at least one of the limits lim
s→∞

(D1)s and lim
s→∞

(D2)s equals

zero. Thus, the validity of at least one of these conditions is necessary and

sufficient for the compactness of the operator W+ from lp,v into lq,u.

Hence, the proof of Theorem 4.4 is complete.

The proof of Theorem 4.5 follows directly from Theorem 2.16 by using

Lemma 2.8.

Proof of Theorem 4.2.

(i) Proof of boundedness.Necessity. Let (ai,j) ∈ O+
n ∪ O−

n , n ≥ 0 and (σi,j) ∈

O+
m ∪ O−

m, m ≥ 0. Let the operator A+ ◦ Σ− be bounded from lp,v into lq,u.

Then the following inequality

‖(A+ ◦ Σ−)f‖q,u ≤ C‖f‖p,v ∀f ∈ lp,v (4.12)

holds with a positive finite constant C independent of f .

Since ai,j and σk,j are non-negative, we note that for all non-negative f ∈

lp,v we have the following.

(A+ ◦ Σ−)(f)i = (A+(Σ−f))i =
i∑

j=1

ai,j

∞∑
k=j

σk,jfk (4.13)

≈
i∑

j=1

ai,j

i∑
k=j

σk,jfk +
i∑

j=1

ai,j

∞∑
k=i

σk,jfk

=
i∑

k=1

fk

k∑
j=1

ai,jσk,j +
∞∑

k=i

fk

i∑
j=1

σk,jai,j

=
(
W+f

)
i
+
(
Φ−f

)
i
,

where the operators W+ and Φ− are defined by (4.3) and (4.4), respectively.



104 APPLICATIONS

Therefore, for all f ≥ 0 we obtain the following.(
∞∑
i=1

uq
i

[(
A+ ◦ Σ−

)
f
]q
i

) 1
q

� max


(

∞∑
i=1

uq
i

(
W+f

)q
i

) 1
q

,

(
∞∑
i=1

uq
i

(
Φ−f

)q
i

) 1
q

 . (4.14)

We consider the following four cases separately.

1. Suppose that the matrix (ai,j) belongs to the class O+
n , n ≥ 0 and that

the matrix (σi,j) belongs to the class O+
m ∪ O−

m, m ≥ 0. Then by Lemma

2.8, we have that ($i,k) ∈ O+
n , n ≥ 0, where $i,k =

k∑
j=1

ai,jσk,j, i ≥ k. The

membership ($i,k) ∈ O+
n , n ≥ 0 means that there exist matrices ($i,k) ∈ O+

γ ,

γ = 0, ..., n− 1 and matrices (dn,γ
i,k ) such that

$i,k ≡ $
(n)
i,k ≈

n∑
γ=0

dn,γ
i,j $

(γ)
j,k (4.15)

for all i ≥ j ≥ k ≥ 1, where dn,n
i,j ≡ 1.

For r ≥ 1 we introduce the following sequence.

fr = {fr,k}∞k=1 : fr,k =


(
$

(γ)
r,k

)p′−1

v−p′

k , 1 ≤ k ≤ r,

0, k > r.
(4.16)

Applying fr to the right hand side of inequality (4.12) we obtain

‖fr‖p,v =

(
∞∑

k=1

|fr,k|p vp
k

) 1
p

=

(
r∑

k=1

(
$

(γ)
r,k

)p′

v−p′

k

) 1
p

. (4.17)

Since fr is the non-negative sequence, by (4.14) we have the following.

‖(A+ ◦ Σ−)fr‖q,u � ‖W+fr‖q,u =

(
∞∑
i=1

(
i∑

k=1

$
(n)
i,k fr,k

)q

uq
i

) 1
q

�

(
∞∑
i=r

(
dn,γ

i,r

)q
uq

i

) 1
q
(

r∑
k=1

(
$

(γ)
r,k

)p′

v−p′

k

)
.

(4.18)

By (4.12), (4.17) and (4.18) we deduce that

C �

(
∞∑
i=r

(
dn,γ

i,r

)q
uq

i

) 1
q
(

r∑
k=1

(
$

(γ)
r,k

)p′

v−p′

k

) 1
p′

≡ (Dγ,n)r . (4.19)
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Since inequality (4.19) holds for all γ = 0, 1, . . . , n, we obtain

C � max
0≤γ≤n

(Dγ,n)r ≡ (Dn)r .

Moreover,

(Dn)r = max
0≤γ≤n

(Dγ,n)r ≈
n∑

γ=0

(Dγ,n)r ≈ (D1)r ≈ (D2)r. (4.20)

Since r ≥ 1 is arbitrary, we deduce

C � sup
r≥1

(Dn)r ≈ sup
r≥1

(D1)r ≈ sup
r≥1

(D2)r,

and accordingly, we have C � D1 ≈ D2.

2. Suppose that the matrix (ai,j) belongs to the class O−
n , n ≥ 0 and that

the matrix (σi,j) belongs to the class O+
m∪O−

m, m ≥ 0. Then by Lemma 2.8, we

have that ($i,k) ∈ O−
n β, n ≥ 0. The membership ($i,k) ∈ O+

n β, n ≥ 0 means

that there exist a non-negative sequence {βk}∞k=1 and matrices ($̃i,k) ∈ O−
n

such that

$i,k ≡ $
(n)
i,k ≈ $̃

(n)
i,k βk and $̃

(n)
i,k ≈

n∑
γ=0

$̃
(γ)
i,j d̃

γ,n
j,k (4.21)

for all i ≥ j ≥ k ≥ 1, where d̃n,n
j,k ≡ 1.

For r ≥ 1 we introduce the following sequence.

f̃r = {f̃r,k}∞k=1 : f̃r,k =


(
d̃γ,n

r,k βk

)p′−1

v−p′

k , 1 ≤ k ≤ r,

0, k > r.
(4.22)

Taking into account inequality (4.14), we apply f̃r to inequality (4.12).

C‖f̃r‖p,v = C

(
r∑

k=1

(
d̃γ,n

r,k βk

)p′

v−p′

k

) 1
p

≥ ‖(A+ ◦ Σ−)f̃r‖q,u

� ‖W+f̃r‖q,u =

(
∞∑
i=1

(
i∑

k=1

$
(n)
i,k f̃r,k

)q

uq
i

) 1
q

�

(
∞∑
i=r

uq
i

(
$̃

(γ)
i,r

)q
) 1

q
(

r∑
k=1

(
d̃γ,n

r,k βk

)p′

v−p′

k

)
,
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which implies that

C �

(
∞∑
i=r

uq
i

(
$̃

(γ)
i,r

)q
) 1

q
(

r∑
k=1

(
d̃γ,n

r,k βk

)p′

v−p′

k

) 1
p′

≡
(
D̃γ,n

)
r
. (4.23)

Since inequality (4.23) holds for all γ = 0, 1, . . . , n, we obtain

C � max
0≤γ≤n

(
D̃γ,n

)
r
≡
(
D̃n

)
r
.

Since

(D̃n)r = max
0≤γ≤n

(
D̃γ,n

)
r
≈

n∑
γ=0

(
D̃γ,n

)
r
≈ (D1)r ≈ (D2)r, (4.24)

and since r ≥ 1 is arbitrary, we deduce

C � sup
r≥1

(
D̃n

)
r
≈ sup

r≥1
(D1)r ≈ sup

r≥1
(D2)r.

Hence, we have that C � D1 ≈ D2.

It is known that the inequality (4.12) holds if and only if the following dual

inequality

‖(A+ ◦ Σ−)∗f‖p′,v−1 ≤ C‖f‖q′,u−1 , f ∈ lq′,u−1 , (4.25)

holds for the conjugate operator (A+ ◦ Σ−)
∗
, which has the following from

[(
A+ ◦ Σ−

)∗
f
]
k

=
k∑

j=1

σk,j

∞∑
i=j

ai,jfi. (4.26)

Moreover, the best constants in (4.12) and (4.25) coincide.

Since ai,j, σk,j are non-negative, for all non-negative f ∈ lq′,u−1 we have the

following.

(A+ ◦ Σ−)∗(f)k =
k∑

j=1

σk,j

∞∑
i=j

ai,jfi

≈
k∑

j=1

σk,j

k∑
i=j

ai,jfi +
k∑

j=1

σk,j

∞∑
i=k

ai,jfi

=
k∑

i=1

fi

i∑
j=1

ai,jσk,j +
∞∑

i=k

fi

k∑
j=1

ai,jσk,j

≡
(
Φ+f

)
k
+
(
W−f

)
k
,

(4.27)
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where the operators Φ+ and W− are the conjugate operators to the operators

Φ− and W+, respectively.

(
Φ+f

)
k

=
k∑

i=1

fi

i∑
j=1

ai,jσk,j, k ≥ 1, (4.28)

(
W−f

)
k

=
∞∑

i=k

fi

k∑
j=1

ai,jσk,j, k ≥ 1. (4.29)

By (4.27) for all f ≥ 0 we obtain that

(
∞∑

k=1

v−p′

k

[(
A+ ◦ Σ−

)∗
f
]p′
k

) 1
p′

� max


(

∞∑
k=1

v−p′

k

(
Φ+f

)p′
k

) 1
p′

,

(
∞∑

k=1

v−p′

k

(
W−f

)p′
k

) 1
p′
 . (4.30)

3. Suppose that the matrix (ai,j) belongs to the class O+
n ∪ O−

n , n ≥ 0

and that the matrix (σi,j) belongs to the class O+
m. Then by Lemma 2.8,

we have that (ϕk,i) ∈ O+
m, m ≥ 0, where ϕk,i =

i∑
j=1

σk,jai,j, k ≥ i. The

membership (ϕk,i) ∈ O+
m, m ≥ 0 means that there exist matrices (ϕk,i) ∈ O+

γ ,

γ = 0, ...,m− 1 and matrices em,γ
k,j such that

ϕk,i ≡ ϕ
(m)
k,i ≈

m∑
γ=0

em,γ
k,j ϕ

(γ)
j,i (4.31)

for all k ≥ j ≥ i ≥ 1, where em,m
k,j ≡ 1.

For r ≥ 1 we introduce the following sequence.

f̂r = {f̂r,i}∞i=1 : f̂r,i =


(
ϕ

(γ)
r,i

)q−1

uq
i , 1 ≤ i ≤ r,

0, i > r.
(4.32)

Applying f̂r to the right hand side of inequality (4.25), we obtain

‖f̂r‖q′,u−1 =

(
∞∑
i=1

|f̂r,i|q
′
u−q′

i

) 1
q′

=

(
r∑

i=1

(
ϕ

(γ)
r,i

)q

uq
i

) 1
q′

. (4.33)
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Since f̂r is non-negative, by using (4.30) we have the following.

‖(A+ ◦ Σ−)∗f̂r‖p′,v−1 � ‖Φ+f̂r‖p′,v−1 (4.34)

=

 ∞∑
k=1

v−p′

k

(
k∑

i=1

ϕ
(m)
k,i f̂r,i

)p′
 1

p′

�

(
∞∑

k=r

v−p′

k

(
em,γ

k,r

)p′) 1
p′
(

r∑
i=1

(
ϕ

(γ)
r,i

)q

uq
i

)
.

Hence, by (4.25), (4.33) and (4.34) we deduce that

C �

(
∞∑

k=r

v−p′

k

(
em,γ

k,r

)p′) 1
p′
(

r∑
i=1

(
ϕ

(γ)
r,i

)q

uq
i

) 1
q

≡ (Dγ,m)r . (4.35)

Since inequality (4.35) holds for all γ = 0, 1, . . . ,m, we obtain

C � max
0≤γ≤m

(Dγ,m)r ≡ (Dm)r .

Moreover,

(Dm)r = max
0≤γ≤n

(Dγ,m)r ≈
m∑

γ=0

(Dγ,m)r ≈ (D3)r ≈ (D4)r. (4.36)

Since r ≥ 1 is arbitrary, we deduce that

C � sup
r≥1

(Dm)r ≈ sup
r≥1

(D3)r ≈ sup
r≥1

(D4)r,

and accordingly, we have that C � D3 ≈ D4.

4. Suppose that the matrix (ai,j) belongs to the class O+
n ∪O−

n , n ≥ 0 and

that the matrix (σi,j) belongs to the class O−
m. Then by Lemma 2.8, we have

that (ϕk,i) ∈ O−
mα, m ≥ 0. The membership (ϕk,i) ∈ O−

mα, m ≥ 0 means that

there exist a non-negative sequence {αi}∞i=1 and matrices (ϕ̃k,i) ∈ O−
m such

that

ϕk,i ≡ ϕ
(m)
k,i ≈ ϕ̃

(m)
k,i αi and ϕ̃

(m)
k,i ≈

m∑
γ=0

ϕ̃
(γ)
k,j ẽ

γ,m
j,i (4.37)

for all k ≥ j ≥ i ≥ 1, where ẽm,m
j,i ≡ 1.

For r ≥ 1 we introduce the following sequence.

f r = {f r,i}∞i=1 : f r,i =


(
ẽγ,m

r,i αi

)q−1
uq

i , 1 ≤ i ≤ r,

0, i > r.
(4.38)
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Taking into account inequality (4.30), we apply f r to inequality (4.25)

C‖f r‖q′,u−1 = C

(
∞∑
i=1

|f r,i|q
′
u−q′

i

) 1
q′

= C

(
r∑

i=1

(
ẽγ,m

r,i αi

)q
uq

i

) 1
q′

≥ ‖(A+ ◦ Σ−)∗f r‖p′,v−1 � ‖Φ+f r‖p′,v−1

=

 ∞∑
k=1

v−p′

k

(
k∑

i=1

ϕ
(m)
k,i f r,i

)p′
 1

p′

�

(
∞∑

k=r

(
ϕ

(γ)
k,r

)p′

v−p′

k

) 1
p′
(

r∑
i=1

(
ẽγ,m

r,i αi

)q
uq

i

)
,

which implies that

C �

(
∞∑

k=r

(
ϕ

(γ)
k,r

)p′

v−p′

k

) 1
p′
(

r∑
i=1

(
ẽγ,m

r,i αi

)q
uq

i

) 1
q

≡
(
D̃γ,m

)
r
. (4.39)

Since inequality (4.39) holds for all γ = 0, 1, . . . ,m we obtain

C � max
0≤γ≤n

(
D̃γ,m

)
r
≡
(
D̃m

)
r
.

Since (
D̃m

)
r

= max
0≤γ≤m

(
D̃γ,m

)
r
≈

m∑
γ=0

(
D̃γ,m

)
r
≈ (D3)r ≈ (D4)r, (4.40)

and since r ≥ 1 is arbitrary, we deduce

C � sup
r≥1

(
D̃m

)
r
≈ sup

r≥1
(D3)r ≈ sup

r≥1
(D4)r.

Hence, we have that C � D3 ≈ D4.

Finally, we have that C � D1 ≈ D2 and C � D3 ≈ D4, which imply that

C � max{D1, D3}, C � max{D2, D3},

C � max{D1, D4}, C � max{D2, D4}.
(4.41)

Thus, the proof of necessity is complete.

Sufficiency. Let the matrix (ai,j) in (2.1) belong to the class O+
n ∪ O−

n ,

n ≥ 0. Let the matrix (σi,j) in (4.2) belong to the class O+
m ∪O−

m, m ≥ 0. Let

at least one of the suprema D13, D14, D23 and D24 be finite. Now we show
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that the operator A+ ◦Σ− is bounded from lp,v into lq,u. It means that we have

to prove that inequality (4.12) holds for all f ∈ lp,v.

However, since ai,j, σi,j are non-negative, we have the following.

‖(A+ ◦ Σ−)f‖q,u =

(
∞∑
i=1

uq
i

∣∣∣∣∣
i∑

j=1

ai,j

∞∑
k=j

σk,jfk

∣∣∣∣∣
q) 1

q

(4.42)

≤

(
∞∑
i=1

uq
i

(
i∑

j=1

ai,j

∞∑
k=j

σk,j|fk|

)q) 1
q

.

Therefore, if we prove that inequality (4.12) holds for all non-negative f ∈ lp,v,

by (4.42) we obtain that inequality (4.12) holds for all f ∈ lp,v. Actually, we

have to prove the validity of the following inequality(
∞∑
i=1

uq
i

(
i∑

j=1

ai,j

∞∑
k=j

σk,jfk

)q) 1
q

≤ C̃

(
∞∑
i=1

vp
i f

p
i

) 1
p

0 ≤ f ∈ lp,v. (4.43)

Moreover, we have

C ≤ C̃, (4.44)

where C and C̃ are the best constants in (4.12) and (4.43), respectively.

By using (4.13) for all non-negative f we have the following.

∞∑
i=1

uq
i

(
i∑

j=1

ai,j

∞∑
k=j

σk,jfk

)q

≈
∞∑
i=1

uq
i

(
i∑

k=1

fk

k∑
j=1

ai,jσk,j +
∞∑

k=i

fk

i∑
j=1

σk,jai,j

)q

≈
∞∑
i=1

uq
i

(
i∑

k=1

fk

k∑
j=1

ai,jσk,j

)q

+
∞∑
i=1

uq
i

(
∞∑

k=i

fk

i∑
j=1

σk,jai,j

)q

=
∞∑
i=1

uq
i

(
W+f

)q
i
+

∞∑
i=1

uq
i

(
Φ−f

)q
i
.

Substituting the last inequality to the left hand side of inequality (4.43) we

obtain(
∞∑
i=1

uq
i

(
W+f

)q
i
+

∞∑
i=1

uq
i

(
Φ−f

)q
i

) 1
q

≤ C0

(
∞∑
i=1

vp
i f

p
i

) 1
p

0 ≤ f ∈ lp,v,(4.45)
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which is equivalent to the inequality (4.43). Moreover, C̃ ≈ C0.

Inequality (4.45) holds if and only if the following inequalities hold simul-

taneously(
∞∑
i=1

uq
i

(
W+f

)q
i

) 1
q

≤ C1

(
∞∑
i=1

vp
i f

p
i

) 1
p

, 0 ≤ f ∈ lp,v, (4.46)

(
∞∑
i=1

uq
i

(
Φ−f

)q
i

) 1
q

≤ C2

(
∞∑
i=1

vp
i f

p
i

) 1
p

, 0 ≤ f ∈ lp,v. (4.47)

Moreover,

C0 ≈ max{C1, C2}. (4.48)

According to statement of Theorem 4.2 (ai,j) belong to the class O+
n ∪ O−

n ,

n ≥ 0. Then by Theorem 4.4 inequality (4.46) holds if and only if one of the

conditions D1 <∞ and D2 <∞ holds. Moreover,

D1 ≈ D2 ≈ C1. (4.49)

In addition, since (σi,j) belong to the class O+
m ∪ O−

m, m ≥ 0, by Theorem

4.5 we have that inequality (4.47) holds if and only if one of the conditions

D3 <∞ and D4 <∞ holds. Moreover,

D3 ≈ D4 ≈ C2. (4.50)

By (4.49), (4.50) and (4.48) we obtain that inequalities (4.46) and (4.47),

accordingly inequality (4.43) hold for all non-negative f ∈ lp,v if and only if

one of the following conditions holds

D13 = max{D1, D3} <∞, D14 = max{D1, D4} <∞, (4.51)

D23 = max{D2, D3} <∞, D24 = max{D2, D4} <∞.

Moreover,

D13 ≈ D14 ≈ D23 ≈ D24 ≈ max{C1, C2} ≈ C0 ≈ C̃. (4.52)
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Since C ≤ C̃, we obtain that C � D13 ≈ D14 ≈ D23 ≈ D24, which together

with (4.41) implies that C ≈ D13 ≈ D14 ≈ D23 ≈ D24.

Thus, the proof of boundedness is complete.

(ii) Proof of compactness. Necessity. Let the operator A+ ◦Σ− be compact

from lp,v to lq,u. We introduce the following set:

M =

{
g = {gk}∞k=1 : gk =

fk

‖f‖p,v

, 0 ≤ f = {fk}∞k=1 ∈ lp,v

}
.

Clearly, ‖g‖p,v = 1 for all g ∈M . Since the operator A+ ◦Σ− is compact from

lp,v into lq,u, the set {u(A+ ◦ Σ−)g, g ∈ M} is precompact in lq. Hence, by

Theorem C we conclude that

lim
r→∞

sup
g∈M

(
∞∑
i=r

uq
i

[(
A+ ◦ Σ−

)
g
]q
i

) 1
q

= 0. (4.53)

However, since g = {gk}∞k=1 is non-negative, by (4.13) we have that(
∞∑
i=r

uq
i

[(
A+ ◦ Σ−

)
g
]q
i

) 1
q

� max


(

∞∑
i=r

uq
i

(
W+g

)
i

) 1
q

,

(
∞∑
i=r

uq
i

(
Φ−g

)q
i

) 1
q


for all g ∈M . Therefore,

lim
r→∞

sup
g∈M

(
∞∑
i=r

uq
i

(
W+g

)q
i

) 1
q

= 0 (4.54)

and

lim
r→∞

sup
g∈M

(
∞∑
i=r

uq
i

(
Φ−g

)q
i

) 1
q

= 0. (4.55)

1. Suppose that the matrix (ai,j) belongs to the class O+
n , n ≥ 0 and that

the matrix (σi,j) belongs to the class O+
m ∪ O−

m, m ≥ 0. Then by Lemma

2.8, we have that ($i,k) ∈ O+
n , n ≥ 0, where $i,k =

k∑
j=1

ai,jσk,j, i ≥ k. Since

($i,k) ∈ O+
n , n ≥ 0, there exist matrices ($i,k) ∈ O+

γ , γ = 0, ..., n − 1 and

matrices (dn,γ
i,k ) such that (4.15) holds for all i ≥ j ≥ k ≥ 1, where dn,n

i,j ≡ 1.

Let fr = {fr,k}∞k=1, r ≥ 1 be the sequences defined by (4.16).
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Let M1 =

{
gr = {gr,k}∞k=1 : gr,k =

fr,k

‖fr‖p,v

, r ≥ 1

}
. Since M1 ⊂ M , we

have

lim
r→∞

sup
gr∈M1

(
∞∑
i=r

uq
i

(
W+gr

)q
i

) 1
q

= 0. (4.56)

Moreover, as in (2.59), we obtain

sup
gr∈M1

(
∞∑
i=r

uq
i

(
W+gr

)q
i

) 1
q

≥

(
∞∑
i=r

uq
i

(
W+gr

)q
i

) 1
q

(4.57)

=

(
∞∑
i=r

uq
i

(
i∑

k=1

$
(n)
i,k

fr,k

‖fr‖p,v

)q) 1
q

≥

(
∞∑
i=r

uq
i

(
r∑

k=1

$
(n)
i,k

fr,k

‖fr‖p,v

)q) 1
q

=

(
∞∑
i=r

uq
i

(
r∑

k=1

$
(n)
i,k

(
$

(γ)
r,k

)p′−1

v−p′

k

)q) 1
q
(

r∑
k=1

(
$

(γ)
r,k

)p′

v−p′

k

)− 1
p

�

(
∞∑
i=r

uq
i

(
dn,γ

i,r

)q) 1
q
(

r∑
k=1

(
$

(γ)
r,k

)p′

v−p′

k

) 1
p′

≡ (Dγ,n)r .

Since inequality (4.57) holds for all γ = 0, 1, . . . , n, the limiting relation (4.56)

implies that

lim
r→∞

(Dn)r ≡ lim
r→∞

max
0≤γ≤n

(Dγ,n)r = 0.

Therefore, (4.20) implies that

lim
r→∞

(D1)r = 0 and lim
r→∞

(D2)r = 0. (4.58)

2. Suppose that the matrix (ai,j) belongs to the class O−
n , n ≥ 0 and that

the matrix (σi,j) belongs to the class O+
m ∪ O−

m, m ≥ 0. Then by Lemma 2.8,

we have that ($i,k) ∈ O−
n β, n ≥ 0. Therefore, for the matrix ($i,k) ∈ O+

n β,

n ≥ 0 there exist a non-negative sequence {βk}∞k=1 and matrices ($̃i,k) ∈ O−
n

such that (4.21) holds for all i ≥ j ≥ k ≥ 1, where d̃n,n
j,k ≡ 1.

Let f̃r = {f̃r,k}∞k=1, r ≥ 1 be the sequence, which is defined by (4.22).

Let M2 =

{
g̃r = {g̃r,k}∞k=1 : g̃r,k =

f̃r,k

‖f̃r‖p,v

, r ≥ 1

}
. Clearly, M2 ⊂ M .
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Hence, we have

lim
r→∞

sup
g̃r∈M2

(
∞∑
i=r

uq
i

(
W+g̃r

)q
i

) 1
q

= 0. (4.59)

Moreover, taking into account that ($i,k) ∈ O−
n β, n ≥ 0, we obtain

sup
g̃r∈M2

(
∞∑
i=r

uq
i

(
W+g̃r

)q
i

) 1
q

≥

(
∞∑
i=r

uq
i

(
W+g̃r

)q
i

) 1
q

(4.60)

≥

(
∞∑
i=r

uq
i

(
r∑

k=1

$
(n)
i,k

(
d̃γ,n

r,k βk

)p′−1

v−p′

k

)q) 1
q
(

r∑
k=1

(
d̃γ,n

r,k βk

)p′

v−p′

k

)− 1
p

�

(
∞∑
i=r

uq
i

(
$̃

(γ)
i,r

)q
) 1

q
(

r∑
k=1

(
d̃γ,n

r,k βk

)p′

v−p′

k

) 1
p′

≡
(
D̃γ,n

)
r
.

Since inequality (4.60) holds for all γ = 0, 1, . . . , n and by (4.59), we obtain

lim
r→∞

(
D̃n

)
r
≡ lim

r→∞
max
0≤γ≤n

(
D̃γ,n

)
r

= 0.

Moreover, by using (4.24), we obtain (4.58).

Next we consider the conjugate operator to the operator A+ ◦Σ−, which is

defined by (4.26). Since the operator A+ ◦ Σ− is compact from lp,v to lq,u, the

conjugate operator (A+ ◦ Σ−)
∗

is compact from lq′,u−1 to lp′,v−1 .

We introduce the following set:

M =

{
g = {gk}∞k=1 : gk =

fk

‖f‖q′,u−1

, 0 ≤ f = {fk}∞k=1 ∈ lq′,u−1

}
.

Clearly, ‖g‖q′,u−1 = 1 for all g ∈M. Since the operator (A+ ◦ Σ−)
∗

is compact

from lq′,u−1 to lp′,v−1 , the set {v−1(A+ ◦ Σ−)∗g, g ∈ M} is precompact in lp′ .

Therefore, by Theorem C we obtain that

lim
r→∞

sup
g∈M

(
∞∑

k=r

v−p′

k

[(
A+ ◦ Σ−

)∗
g
]p′
k

) 1
p′

= 0. (4.61)

Since {gi}∞i=1 is non-negative, by using (4.27) we obtain that(
∞∑

k=r

v−p′

k

[(
A+ ◦ Σ−

)∗
g
]p′
k

) 1
p′

� max


(

∞∑
k=r

v−p′

k

(
Φ+g

)p′
k

) 1
p′

,

(
∞∑
i=r

v−p′

k

(
W−g

)p′
k

) 1
p′
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for all g ∈ M, where Φ+ and W− are operators defined by (4.28) and (4.29),

respectively. Therefore, (4.61) implies that

lim
r→∞

sup
g∈M

(
∞∑

k=r

v−p′

k

(
Φ+g

)p′
k

) 1
p′

= 0 (4.62)

and

lim
r→∞

sup
g∈M

(
∞∑
i=r

v−p′

k

(
W−g

)p′
k

) 1
p′

= 0. (4.63)

3. Suppose that the matrix (ai,j) belongs to the class O+
n ∪O−

n , n ≥ 0 and

that the matrix (σi,j) belongs to the class O+
m. Then by Lemma 2.8, we have

that (ϕk,i) ∈ O+
m, m ≥ 0, where ϕk,i =

i∑
j=1

σk,jai,j, k ≥ i. Since (ϕk,i) ∈ O+
m,

m ≥ 0, there exist matrices (ϕk,i) ∈ O+
γ , γ = 0, ...,m − 1 and matrices em,γ

k,j

such that (4.31) holds for all k ≥ j ≥ i ≥ 1, where em,m
k,j ≡ 1.

Let f̂r = {f̂r,i}∞i=1, r ≥ 1 be the sequence defined by (4.32).

Let M1 =

{
ĝr = {ĝr,i}∞i=1 : ĝr,i =

f̂r,i

‖f̂r‖q′,u−1

, r ≥ 1

}
. Since M1 ⊂M, we

have

lim
r→∞

sup
ĝr∈M1

(
∞∑

k=r

v−p′

k

(
Φ+ĝr

)p′
k

) 1
p′

= 0. (4.64)

Moreover,

sup
gr∈M1

(
∞∑

k=r

v−p′

k

(
Φ+ĝr

)p′
k

) 1
p′

≥

(
∞∑

k=r

v−p′

k

(
Φ+ĝr

)p′
k

) 1
p′

(4.65)

≥

 ∞∑
k=r

v−p′

k

(
r∑

i=1

ϕ
(m)
k,i

f̂r,i

‖f̂r‖q′,u−1

)p′
 1

p′

=

 ∞∑
k=r

v−p′

k

(
r∑

i=1

ϕ
(m)
k,i

(
ϕ

(γ)
r,i

)q−1

uq
i

)p′
 1

p′ ( r∑
i=1

(
ϕ

(γ)
r,i

)q

uq
i

)− 1
q′

�

(
∞∑

k=r

v−p′

k

(
em,γ

k,r

)p′) 1
p′
(

r∑
i=1

(
ϕ

(γ)
r,i

)q

uq
i

) 1
q

≡ (Dγ,m)r .

Since inequality (4.65) holds for all γ = 0, 1, . . . ,m, the limiting relation (4.62)

implies that

lim
r→∞

(Dm)r ≡ lim
r→∞

max
0≤γ≤m

(Dγ,m)r = 0.
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Therefore, by (4.36) we deduce that

lim
r→∞

(D3)r = 0 and lim
r→∞

(D4)r = 0. (4.66)

4. Suppose that the matrix (ai,j) belongs to the class O+
n ∪O−

n , n ≥ 0 and

that the matrix (σi,j) belongs to the class O−
m. Then by Lemma 2.8, we have

that (ϕk,i) ∈ O−
mα, m ≥ 0. Therefore, for the matrix (ϕk,i) ∈ O−

mα, m ≥ 0

there exist a non-negative sequence {αi}∞i=1 and matrices (ϕ̃k,i) ∈ O−
m such

that (4.37) holds for all k ≥ j ≥ i ≥ 1, where ẽm,m
j,i ≡ 1.

Let f r = {f r,i}∞i=1, r ≥ 1 be the sequence defined by (4.38).

Let M2 =

{
gr = {gr,i}∞i=1 : gr,i =

f r,i

‖f r‖q′,u−1

, r ≥ 1

}
. Since M2 ⊂ M,

we have

lim
r→∞

sup
gr∈M2

(
∞∑

k=r

v−p′

k

(
Φ+gr

)p′
k

) 1
p′

= 0. (4.67)

Moreover,

sup
gr∈M2

(
∞∑

k=r

v−p′

k

(
Φ+gr

)p′
k

) 1
p′

≥

(
∞∑

k=r

v−p′

k

(
Φ+gr

)p′
k

) 1
p′

(4.68)

≥

 ∞∑
k=r

v−p′

k

(
r∑

i=1

ϕ
(m)
k,i

f r,i

‖f r‖q′,u−1

)p′
 1

p′

=

 ∞∑
k=r

v−p′

k

(
r∑

i=1

ϕ
(m)
k,i

(
ẽγ,m

r,i αi

)q−1
uq

i

)p′
 1

p′ ( r∑
i=1

(
ẽγ,m

r,i αi

)q
uq

i

)− 1
q′

�

(
∞∑

k=r

(
ϕ

(γ)
k,r

)p′

v−p′

k

) 1
p′
(

r∑
i=1

(
ẽγ,m

r,i αi

)q
uq

i

) 1
q

≡
(
D̃γ,m

)
r
.

Since inequality (4.68) holds for all γ = 0, 1, . . . ,m and from the validity of

(4.67) we obtain

lim
r→∞

(
D̃m

)
r
≡ lim

r→∞
max

0≤γ≤m

(
D̃γ,m

)
r

= 0.

Hence, by using (4.40) we obtain (4.66).

Thus, the proof of the necessity is complete.
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Sufficiency. Let (ai,j) ∈ O+
n ∪ O−

n , n ≥ 0 and (σi,j) ∈ O+
m ∪ O−

m, m ≥ 0.

Assume that the first condition of statement (ii) of Theorem 4.2 holds. Then,

according to statement (i) of Theorem 4.2, the operator A+ ◦ Σ− is bounded

from lp,v into lq,u. Therefore, the set {u(A+ ◦Σ−)f, ‖f‖p,v ≤ 1} is bounded in

lq. Now we show that this set is precompact in lq. By Theorem C the bounded

set {u(A+ ◦ Σ−)f, ‖f‖p,v ≤ 1} is compact in lq provided that

lim
r→∞

sup
‖f‖p,v≤1

(
∞∑
i=r

uq
i |
[
(A+ ◦ Σ−)f

]
i
|q
) 1

q

= 0. (4.69)

For r > 1 we assume that ũ = {ũi}∞i=1: ũi =

 0, 1 ≤ i ≤ r − 1

ui, r ≤ i.

Then, by statement (i) of Theorem 4.2, we have that

sup
‖f‖p,v≤1

(
∞∑
i=r

uq
i |
[
(A+ ◦ Σ−)f

]
i
|q
) 1

q

= sup
‖f‖p,v≤1

(
∞∑
i=1

ũq
i |
[
(A+ ◦ Σ−)f

]
i
|q
) 1

q

� D̃13(r), (4.70)

where

D̃13(r) = max{D̃1(r), D̃3(r)}

and

D̃1(r) = sup
s≥1

 s∑
k=1

v−p′

k

(
∞∑
i=s

(
k∑

j=1

ai,jσk,j

)q

ũq
i

) p′
q


1
p′

(4.71)

= sup
s≥r

 s∑
k=1

v−p′

k

(
∞∑
i=s

(
k∑

j=1

ai,jσk,j

)q

uq
i

) p′
q


1
p′

= sup
s≥r

(D1)s,
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D̃3(r) = sup
s≥1

 s∑
i=1

ũq
i

 ∞∑
k=s

(
i∑

j=1

ai,jσk,j

)p′

v−p′

k


q
p′


1
q

(4.72)

= sup
s≥r

 s∑
i=r

uq
i

 ∞∑
k=s

(
i∑

j=1

ai,jσk,j

)p′

v−p′

k


q
p′


1
q

≤ sup
s≥r

(D3)s,

By the first condition of statement (ii) of Theorem 4.2 and by conditions

(4.71), (4.72), we obtain

lim
r→∞

D̃1(r) = lim
r→∞

sup
s≥r

(D1)s = lim
r→∞

(D1)r = 0,

lim
r→∞

D̃3(r) ≤ lim
r→∞

sup
s≥r

(D3)s = lim
r→∞

(D3)r = 0.

Hence, by inequality (4.70), we obtain (4.69).

The other cases of statement (ii) follow from the equivalences (D1)s ≈

(D2)s and (D3)s ≈ (D4)s for s ≥ 1.

Thus the proof of Theorem 4.2 is complete.

The proof of Theorem 4.3 can be carried out by using Lemma 2.9 and by

the same method of the proof of Theorem 4.2.
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4.2 Three-weighted inequality of Hardy type.

Our main results can be used to derive other inequalities. We consider an

additive estimate of the form

‖A+f‖q,u ≤ C
(
‖f‖p,v + ‖A+

0 f‖p,ρ

)
(4.73)

for all non-negative sequences f = {fi}∞i=1, where the matrix operator A+ is de-

fined by (2.1) and the Hardy operator A+
0 is defined by

(
A+

0 f
)

i
:=

i∑
j=1

fj, i ≥

1.

We assume that the weighted sequences v and ρ satisfy the following con-

ditions

vk > 0, k ≥ 1,
∞∑

k=1

ρk <∞.

We denote by ∆ϕi = ϕi − ϕi−1 and for n ≥ 1 we define

ϕn =

 min
1≤k≤n

( n∑
i=k

v−p′

i

)− 1
p′

+

(
∞∑

i=k

ρp
i

) 1
p


−1

, ϕ0 = 0.

Next we introduce the following result of R. Oinarov [120] on the equiva-

lence of inequalities (4.73) and (2.3) which we exploit below.

Theorem F. Let 1 < p, q < ∞ and the entries of the matrix (ak,i) of

the operator A+ are non-negative and non-increasing in i, which means that

ak,i+1 ≤ ak,i for k ≥ 1, i ≥ 1. Then inequality (4.73) holds for all non-negative

sequences f = {fi}∞i=1 if and only if the inequality

(
∞∑

k=1

uq
k

(
k∑

i=1

ak,ifi

)q) 1
q

≤ C̃

(
∞∑

k=1

fp
k

(
ϕp′

k − ϕp′

k−1

)1−p
) 1

p

(4.74)

holds for all non-negative sequences f = {fi}∞i=1. Moreover, C ≈ C̃, where C

and C̃ are the best constants in (4.73) and (4.74), respectively.

By exploiting Theorem F, we obtain the following statement.
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Theorem 4.6. Suppose that 1 < p ≤ q < ∞. Let the matrix (ai,j) in (4.73)

belong to the class O−
m, m ≥ 0. Then inequality (4.73) holds for all non-

negative sequences f = {fi}∞i=1 if and only if at least one of the conditions

D+ <∞ and D− <∞ holds, where

D+ = sup
k≥1

 k∑
j=1

∆ϕp′

j

(
∞∑

i=k

aq
i,ku

q
i

) p′
q


1
p′

and

D− = sup
k≥1

 ∞∑
i=k

uq
i

(
k∑

j=1

ap′

i,j∆ϕ
p′

j

) q
p′


1
q

.

Moreover, D+ ≈ D− ≈ C, where C is the best constant in (4.73).

Theorem 4.7. Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy

Assumption A. Then inequality (4.73) holds for all non-negative sequences

f = {fi}∞i=1 if and only if E = max{E+, E−} <∞, where

E+ =

 ∞∑
i=1

(
i∑

j=1

bp
′

i,j∆ϕ
p′

j

) q(p−1)
p−q

(
∞∑

k=i

ωq
ku

q
k

) q
p−q

ωq
i u

q
i


p−q
pq

,

E− =

 ∞∑
i=1

∆ϕ
pq

p−q

i

(
∞∑

k=i

aq
k,iu

q
k

) p
p−q


p−q
pq

.

Moreover, E ≈ C, where C is the best constant in (4.73).

Proof of Theorem 4.6. Let the matrix (ai,j) in (4.73) belong to the

class O−
m, m ≥ 0. Therefore (ai,j) is a matrix which is non-negative and non-

increasing in the second index for all i ≥ j ≥ 1. Then according to Theorem

F inequality (4.73) holds if and only if the inequality

(
∞∑

k=1

uq
k

(
k∑

i=1

a
(m)
k,i fi

)q) 1
q

≤ C1

(
∞∑

k=1

fp
k

(
∆ϕp′

k

)1−p
) 1

p

∀f ≥ 0 (4.75)

holds. Moreover, C1 ≈ C, where C and C1 are the best constants in (4.73)

and (4.75), respectively.
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Inequality (4.75) is equivalent to inequality (4.73). Then by Theorem 2.15

inequality (4.75), and accordingly (4.73) holds if and only if at least one of the

conditions D+ <∞ and D− <∞ holds. Thus the proof is complete.

Proof of Theorem 4.7. We set sup
j≤k≤i

ai,k = ãi,j. Obviously,

ai,j ≤ ãi,j. (4.76)

According to Assumption A we have

dai,j ≥ sup
j≤k≤i

ai,k = ãi,j. (4.77)

From (4.76) and (4.77) it follows that ai,j ≈ ãi,j. The matrix operator
(
Ã+f

)
i
=

i∑
j=1

ãi,jfj, i ≥ 1 is equivalent to the operator A+, namely, (A+f)i ≤
(
Ã+f

)
i
≤

d (A+f)i or (A+f)i ≈
(
Ã+f

)
i
for all f ≥ 0, i ≥ 1. Then inequality (4.73) is

equivalent to

‖Ã+f‖q,u ≤ C1

(
‖f‖p,v + ‖A+

0 f‖p,ρ

)
∀f ≥ 0. (4.78)

Moreover, C ≈ C1, where C and C1 are the best constants in (4.73) and (4.78),

respectively. It is easy to see that the entries of the matrix (ãi,j) satisfy the

following condition ãi,j ≥ ãi,k, i ≥ k ≥ j ≥ 1. Then according to Theorem F

inequality (4.78) holds if and only if the inequality(
∞∑

k=1

uq
k

(
k∑

i=1

ãk,ifi

)q) 1
q

≤ C2

(
∞∑

k=1

fp
k

(
∆ϕp′

k

)1−p
) 1

p

∀f ≥ 0, (4.79)

holds. Moreover, C1 ≈ C2, where C2 is the best constant in (4.79).

Since (4.78) is equivalent to inequality (4.73), inequality (4.79) is equivalent

to inequality (4.73). By Theorem 2.18 inequality (4.79) (and, thus, (4.78) and

(4.73)) holds if and only if E = max{E+, E−} <∞.

Hence, the proof is complete.
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4.3 Applications of the main results

for summable matrices.

In the theory of series it is very important to obtain estimates for the norms of

summable matrices. Note that a lower triangular matrix Ã = (ãi,j) is called a

summable matrix if ãi,j ≥ 0 and
i∑

j=1

ãi,j = 1. If (ai,j) ∈ O+
n or (ai,j) ∈ O−

n , n ≥ 0

then the matrix (ãi,j) =
(

ai,j

Aii

)
satisfies all conditions of summable matrix,

where Aii =
i∑

j=1

ai,j. If we consider inequality (2.3) for matrix (ai,j) = (βiai,j),

then we obtain inequality of the type (2.3)

(
∞∑
i=1

uq
iβ

q
i

∣∣∣∣∣
i∑

j=1

ai,jfj

∣∣∣∣∣
q) 1

q

≤ C

(
∞∑
i=1

vp
i |fi|p

) 1
p

.

Therefore using the results of Chapter 2 and 3 we obtain two-sided estimates

for the matrix (ai,j) = (βiai,j) in lp,v and on the cone of monotone sequences.

Consequently, we can estimate summable matrices, and in particular Hölder

and Cesàro matrices.

Now we define

J+
0 = sup

s≥1

 s∑
j=1

v−p′

j

(
∞∑
i=s

(
i!(i− j + k − 1)!

(i− j)!(k + i)!

)q

uq
i

) p′
q


1
p′

,

J−0 = sup
s≥1

 ∞∑
i=s

uq
i

(
i!

(k + i)!

)q
(

s∑
j=1

(
(i− j + k − 1)!

(i− j)!

)p′

v−p′

j

) q
p′
 1

q

,

J+
1 = sup

s≥1

 s∑
j=1

uq
j

(
∞∑
i=s

(
i!(i− j + k − 1)!

(i− j)!(k + i)!

)p′

v−p′

i

) q
p′
 1

q

,

J−1 = sup
s≥1

 ∞∑
i=s

v−p′

i

(
i!

(k + i)!

)p′
(

s∑
j=1

(
(i− j + k − 1)!

(i− j)!

)q

uq
j

) p′
q


1
p′

.

Now by using the results of Chapter 2 we obtain the following statements

for the Cesàro matrix.
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Theorem 4.8. Let 1 < p ≤ q <∞. Let the matrix (ai,j) in (2.1) be the Cesàro

matrix of order k, k ≥ 1. Then the inequality (2.3) for the operator defined by

(2.1) holds if and only if at least one of the conditions J+
0 < ∞ and J−0 < ∞

holds. Moreover, J+
0 ≈ J−0 ≈ C, where C is the best constant in (2.3).

Theorem 4.9. Let 1 < p ≤ q <∞. Let the matrix (ai,j) in (2.2) be the Cesàro

matrix of order k, k ≥ 1. Then the inequality (2.3) for the operator defined by

(2.2) holds if and only if at least one of the conditions J+
1 < ∞ and J−1 < ∞

holds. Moreover, J+
1 ≈ J−1 ≈ C, where C is the best constant in (2.3).

Next we set

Vk =
k∑

i=1

vp
i , E1 = sup

s≥1
V
− 1

p
s

(
s∑

i=1

(
i! · ui

(k + i)!

)q
(

i∑
j=1

(i− j + k − 1)!

(i− j)!

)q) 1
q

,

E2 = sup
s≥1

 s∑
l=1

(
V
− p′

p

l − V
− p′

p

l+1

)( ∞∑
i=s

(
i! · ui

(k + i)!

)q
(

l∑
j=1

(i− j + k − 1)!

(i− j)!

)q) p′
q


1
p′

,

E3 = sup
s≥1

 ∞∑
i=s

(
i! · ui

(k + i)!

)q
 s∑

l=1

(
l∑

j=1

(i− j + k − 1)!

(i− j)!

)p′ (
V
− p′

p

l − V
− p′

p

l+1

)
q
p′


1
q

.

By using the results of Chapter 3 we obtain the following statements for

the Cesàro matrix.

Theorem 4.10. Let 1 < p ≤ q < ∞. Then the inequality (3.1) on the cone

of non-negative and non-increasing sequences f ∈ lp,v for the Cesàro matrix

of order k, k ≥ 1 holds if and only if at least one of the conditions E12 =

max{E1, E2} < ∞ and E13 = max{E1, E3} < ∞ holds. Moreover, E12 ≈

E13 ≈ C, where C is the best constant in (3.1).

Now we define

ν
(n)
i,j ≡

i∑
kn=j

i∑
kn−1=kn

1

kn−1

i∑
kn−2=kn−1

1

kn−2

...

i∑
k1=k2

1

k1

, n ≥ 1,
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J+
2 = sup

s≥1

 s∑
j=1

v−p′

j

(
∞∑
i=s

(
ν

(n)
i,j

)q (ui

i

)q
) p′

q


1
p′

,

J−2 = sup
s≥1

 ∞∑
i=s

(ui

i

)q
(

s∑
j=1

(
ν

(n)
i,j

)p′

v−p′

j

) q
p′
 1

q

,

By exploiting the main results of Chapter 2 we have the following state-

ments for the Hölder’s matrix.

Theorem 4.11. Let 1 < p ≤ q <∞. Then the inequality (2.3) for the Hölder’s

operator of order n, n ≥ 1 holds if and only if at least one of the conditions

J+
2 < ∞ and J−2 < ∞ holds. Moreover, J+

2 ≈ J−2 ≈ C, where C is the best

constant in (2.3).

We define

Vk =
k∑

i=1

vp
i , V(n)

ik =
k∑

j=1

ν
(n)
i,j , E1 = sup

s≥1
V
− 1

p
s

(
s∑

i=1

(
V(n)

ii

)q (ui

i

)q
) 1

q

,

E2 = sup
s≥1

 s∑
k=1

(
V
− p′

p

k − V
− p′

p

k+1

)( ∞∑
i=s

(
V(n)

ik

)q (ui

i

)q
) p′

q


1
p′

,

E3 = sup
s≥1

 ∞∑
k=s

(uk

k

)q
(

s∑
i=1

(
V(n)

ki

)p′
(
V
− p′

p

i − V
− p′

p

i+1

)) q
p′
 1

q

.

By using the main results of Chapter 3 we have the following two-sided es-

timates for the Hölder’s matrix on the cone of non-negative and non-increasing

sequences.

Theorem 4.12. Let 1 < p ≤ q <∞. Then the inequality (3.1) for the Hölder’s

matrix of order n, n ≥ 1 on the cone of non-negative and non-increasing

sequences f ∈ lp,v holds if and only if at least one of the conditions E12 =

max{E1, E2} <∞ and E13 = max{E1, E3} <∞ holds. Moreover, E12 ≈ E13 ≈

C, where C is the best constant in (3.1).
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