
 

 
 

 
 
 

Università degli Studi di Padova 
 

Dipartimento di Psicologia Generale 

 
SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE PSICOLOGICHE 

Indirizzo Comune - Ciclo XXVI 

 

 

The deployment of visual attention in autism spectrum disorders 
 
 

 

 

Direttore della Scuola: Ch.ma Prof.ssa Francesca Peressotti 

Supervisore: Ch.mo Prof. Andrea Facoetti 

 

 

Dottorando: Luca Ronconi 

          

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 

To Beatrice and my family  
  



 



	   1 

Abstract (English) .................................................................................................................... 5 
 

Abstract (Italian) ...................................................................................................................... 7 
 

Preface ....................................................................................................................................... 9 
 

Chapter 1 - Introduction: Clinical Characterization, Prevalence And Current 
Neuropathogenic Hypotheses Of Autism Spectrum Disorders (ASD) .............................. 11 

1.1 The origins of the scientific study of autism ................................................................. 11 

1.2 Diagnostic criteria for autism spectrum disorder in the DSM-V .................................. 14 

1.3 Co-morbid features of ASD .......................................................................................... 17 

1.4 Prevalence of ASD and the enigma of climbing diagnoses .......................................... 18 

1.5 Neuropathogenesis of ASD: main hypotheses .............................................................. 20 

1.5.1 Brain overgrowth .................................................................................................. 20 

1.5.2 Minicolumns alteration ......................................................................................... 22 

1.5.3 The altered connectivity hypothesis: a puzzling picture ........................................ 24 
 

Chapter 2 - State Of The Art Concerning The Study Of Visual Attention In ASD ........ 27 

2.1 Models of visual spatial attention ................................................................................. 28 

2.1.1 The “spotlight” and the “zoom-lens” models of spatial attention ....................... 28 

2.1.2 Neurophysiological correlates of the “spotlight” and the “zoom-lens” models .. 29 

2.1.3 Beyond the spotlight and the zoom-lens: the “Mexican hat” model of the 
attentional focus ............................................................................................................. 31 

2.2 Neural sources of the control of visual attention .......................................................... 32 

2.2.1 Evidence from primate studies .............................................................................. 33 

2.2.2 Evidence from human studies ................................................................................ 34 

2.3 Why do we need to study visual attention in ASD?  ..................................................... 37 

2.4 Abnormalities of visual spatial attention in ASD ......................................................... 38 

2.4.1 The attentional spotlight in ASD: evidence for slow orienting and impaired 
disengagement.  .............................................................................................................. 38 

2.4.2 The attentional zoom-lens in ASD: evidence for a “zoom-out” impairment ........ 40 
 

Chapter 3 - Aims Of The Present Study .............................................................................. 43 
 



	   2 

Chapter 4 - Relationship Between Orienting And Zooming Mechanisms In ASD ......... 47 

4.1 Introduction ................................................................................................................... 47 

4.2 Methods ......................................................................................................................... 49 

4.2.1 Participants ........................................................................................................... 49 

4.2.2 Apparatus and stimuli ........................................................................................... 51 

4.2.3 Procedure .............................................................................................................. 52 

4.3 Results ........................................................................................................................... 53 

4.3.1 Cuing effect ............................................................................................................ 53 

4.3.2 Correlation between cuing effect and the autistic symptomatology ...................... 55  

4.4 Discussion ..................................................................................................................... 55 
 

Chapter 5 - The Orienting Mechanism In 8-Month-Old Infants And Its  Relationship 
With The Broader Autistic Phenotype (BAP)  .................................................................... 59 

5.1 Introduction ................................................................................................................... 59 

5.2 Methods ......................................................................................................................... 62 

5.2.1 Participants ........................................................................................................... 62 

5.2.2 Infants’ spatial cueing task .................................................................................... 62 

5.2.3 Evaluation of self-reported autistic traits in parents ............................................ 65 

5.3 Results ........................................................................................................................... 65 

5.3.1 Infants’ spatial cueing task .................................................................................... 65 

5.3.2 Relationship between attention in infants and parents’ autistic traits .................. 67 

5.4 Discussion ..................................................................................................................... 69 
 

Chapter 6 - The Zooming Mechanism In 8-Month-Old Infants And Its  Relationship 
With The Broader Autistic Phenotype (BAP)  .................................................................... 75 

6.1 Introduction ................................................................................................................... 75 

6.2 Experiment 1 ................................................................................................................. 77 

6.2.1 Methods ................................................................................................................. 77 

6.2.1.1 Participants .................................................................................................... 77 

6.2.1.2 Stimuli ............................................................................................................ 77 

6.2.1.3 Apparatus ....................................................................................................... 78 

6.2.1.4 Procedure ...................................................................................................... 78 

6.2.2 Results ................................................................................................................... 80 



	   3 

6.2.3 Discussion ............................................................................................................. 83 

6.3 Experiment 2 ................................................................................................................. 84 

6.3.1 Methods ................................................................................................................. 84 

6.3.1.1 Participants .................................................................................................... 84 

6.3.1.2 Stimuli and apparatus .................................................................................... 84 

6.3.1.3 Procedure ...................................................................................................... 84 

6.3.2 Results ................................................................................................................... 85 

6.3.3 Discussion ............................................................................................................. 87 

6.4 Relationship between infants’ zooming mechanism and parents’ autistic traits ........... 87 

6.5 General Discussion ........................................................................................................ 88 
 

Chapter 7 - The Neural Underpinnings Of The Zooming Mechanism – Part I: TMS On 
The Right Frontal Eye Fields Induces An Inflexible Zoom-Lens Of  Attention .............. 93 

7.1 Introduction ................................................................................................................... 93 

7.2 Materials and Methods .................................................................................................. 93 

7.2.1 Participants ............................................................................................................ 95 

7.2.2 Apparatus and Procedure ....................................................................................... 96 

7.2.2.1 No TMS Experiment (Experiment 1)  ............................................................. 96 

7.2.2.2 TMS Experiment (Experiment 2)  .................................................................. 97 

7.3 Results ........................................................................................................................... 98 

7.3.1 No TMS Experiment (Experiment 1)  ................................................................... 98 

7.3.3 TMS Experiment (Experiment 2)  ....................................................................... 100 

7.4 Discussion ................................................................................................................... 102 
 

Chapter 8 - The Neural Underpinnings Of The Zooming Mechanism – Part II:  Neural 
Dynamics Of The Attentional Zoom-Lens As Revealed By Dense-Array EEG ............. 107 

8.1 Introduction ................................................................................................................. 107 

8.2 Method ........................................................................................................................ 109 

8.2.1 Participants ......................................................................................................... 109 

8.2.2 Stimuli and procedure ......................................................................................... 109 

8.2.3 EEG Recording and pre-processing .................................................................... 110 

8.2.4 Data Analysis – Behavioral performance ........................................................... 111 

8.2.5 Data Analysis – Target-locked ERP .................................................................... 111 



	   4 

8.2.6 Data Analysis – Cue-locked activity and estimation of neural sources .............. 111 

8.3 Results ......................................................................................................................... 113 

8.3.1 Behavioral data ................................................................................................... 113 

8.3.2 Target-locked ERP – P1 ...................................................................................... 113 

8.3.3 Target-locked ERP – N1 ...................................................................................... 114 

8.3.4 Scalp recorded neural activity and related brain sources in the cue-target interval
 ...................................................................................................................................... 116 

8.4 Discussion ................................................................................................................... 120 
 

Chapter 9 - Beyond The Spotlight And The Zoom-Lens Models: The “Mexican Hat” Of 
The Attentional Focus In ASD ............................................................................................ 125 

9.1 Introduction ................................................................................................................. 125 

9.2 Methods ....................................................................................................................... 128 

9.2.1. Participants ........................................................................................................ 129 

9.2.2 Apparatus and stimuli ......................................................................................... 130 

9.2.3 Procedure ............................................................................................................ 131 

9.3 Results ......................................................................................................................... 133 

9.3.1 Comparable performance between groups in the baseline condition ................. 134 

9.3.2 Weak surround suppression of the attentional focus in ASD .............................. 134 

9.3.3 Weak surround suppression correlates with autistic symptomatology ............... 135 

9.4 Discussion ................................................................................................................... 136 
 

Chapter 10  – General Discussion And Concluding Remarks ......................................... 141 
 

References ............................................................................................................................. 147 
 

Notes ...................................................................................................................................... 173 
	  
	  
	  
	  
	  
	  
	  
	  
	   	  



	   5 

ABSTRACT  
(English) 

 
 
 

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition that affects 

almost 1% of the population. One of the main challenges in the current ASD research is to 

define the early neurocognitive impairments that provide critical foundations for the core 

deficits in social and communication abilities. In particular, early attentional dysfunctions 

may play a critical role in the emergence of ASD. In this doctoral thesis I present six studies 

that give significant new insights into the nature of altered visual attention in individuals with 

ASD and their possible neural underpinnings.  

In the first study we show that individuals with ASD are impaired in enlarging (i.e., 

“zooming-out”) the attentional focus size relative to the control group and this deficit can 

impact the rapid orienting toward a cued location in the visual field. The second and the third 

studies show how parents without any history of ASD but with elevated autistic traits can 

transmit to their infants subtle deficit in visual attention (at the expense of both orienting and 

zooming mechanism) that may impact children’s future socio-communicative abilities. In the 

fourth and the fifth studies we employed transcranial magnetic stimulation and dense-array 

electroencephalography, respectively, with typical adults participants and we show that a 

network of frontal (mainly FEF and IFG) and parietal (mainly IPS/SPL) brain areas are 

fundamental in regulating the size of the attentional focus. In the last study, we evaluated the 

spatial profile of the attentional focus in individuals with ASD and results show that the 

inhibitory ring outside the focus of attention – fundamental to attenuate processing of 

irrelevant information – is significantly weakened relative to the control group.  

Overall, these findings show the importance of attentional impairments in the core 

manifestations of ASD and in its developmental course. Defining attentional abnormalities 

and their neural correlates is extremely important (i) to improve the early detection of the 

disorder and, (ii) to implement timely prevention programs to reduce the incidence of ASD. 
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ABSTRACT  
(Italian) 

 
 
 

Il disturbo dello spettro autistico (DSA) è un disturbo neuroevolutivo pervasivo che colpisce 

quasi l'1% della popolazione. Una delle principali sfide nell'attuale ricerca sul DSA è definire 

i deficit neurocognitivi precoci che costituiscono le fondamenta dei disturbi "chiave" nelle 

abilità sociali e comunicative. In particolare, precoci disfuzioni attentive potrebbero giocare 

un ruolo decisivo nell'emergere del DSA. Nella presente tesi di dottorato presento sei studi 

che contribuiscono significativamente alla comprensione delle alterazioni dell'attenzione 

visiva nei DSA e le loro possibili basi neurali. 

Nel primo studio, mostriamo che gli individui affetti da DSA sono compromessi nell'abilità 

di allargare ("zoom-out") la dimensione del fuoco attentivo e che questo problema può avere 

un impatto negativo nell'orientamento rapido verso una posizione segnalata nel campo visivo. 

Il secondo e terzo studio mostrano come genitori senza alcuna storia clinica di DSA ma con 

elevati tratti autistici possano trasmettere ai loro infanti sottili alterazioni nell'attenzione 

visiva (a carico sia del meccanismo di orientamento che di quello di zoom) che possono avere 

conseguenze negative sul futuro sviluppo delle abilità socio-comunicative dei loro figli. Nel 

quarto e quinto studio, abbiamo utilizzato la stimolazione magnetica transcranica e 

l'elettroencefalografia ad alta densità, rispettivamente, in partecipanti adulti a sviluppo tipico 

e mostriamo che un network di aree frontali (principalmente FEF e IFG) e parietali 

(principalmente IPS/SPL) sono fondamentali nella regolazione della dimensione del fuoco 

attentivo. Nell'ultimo studio, abbiamo valutato il profilo spaziale del fuoco attentivo in 

individui con DSA e mostriamo come l'anulo inibitorio circostante al fuoco attentivo –

fondamentale per attenuare il processamento d'informazioni irrilevanti – è significativamente 

più debole nel DSA rispetto al gruppo di controllo. 

Complessivamente, queste evidenze mostrano l'importanza dei deficit attentivi nelle 

manifestazioni chiave del DSA e nel suo decorso evolutivo. Definire le anomalie 

dell'attenzione e i corrispondenti correlati neurali è estremamente importante (i) per 

migliorare la diagnosi precoce del disturbo e (ii) per implementare tempestivi programmi 

preventivi mirati a ridurre l'incidenza dei DSA. 
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PREFACE 
 
 

 

“There are times, more often than not, in which she is completely oblivious to all but her 

immediate focus of attention.” (Kanner, 1943, p. 231) 

 

The essence of the term “autism” seems to be fully illustrated by these few words that Leo 

Kanner wrote in his original paper. He was referring to the striking characteristics of one of 

the children he visited, for which everything outside of the focus of attention seemed to be 

completely oblivious. This perfectly fit also to the origin of the term autism, derived from the 

term “autós” (αὐτός, a Greek word that mean “self”) to indicate that persons affected were 

individuals who have very limited contacts with the outside world.  

Despite the importance of attention was clear since the very first description of autism, much 

of the following research efforts in the field have historically been concentrated on trying to 

explain the disorder in term of altered “mind reading” capacities (more technically called 

“theory of mind”). Simply, persons with autism are missing core modules of the brain that are 

necessary for understanding the behavior of others, and consequently they found extremely 

difficult to interact with the outside world. 

However, this seems to me as seeing only the tip of the iceberg. The ability to attribute 

mental states emerges gradually in the course of development and may depend on the 

integrity of several elementary (and at the same time essential) neurocognitive functions that 

constitute the fundamental bricks to build such a high-level constituent of human cognition. 

One of these fundamental brick is certainly constituted by attention. Attention allows us to 

select relevant input from the environment, avoiding to process irrelevant inputs and keeping 

only what is relevant for our current behaviour and future learning. Research on dysfunction 
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of attention in the field of autism has initially started to explore attentional abnormalities with 

the implicit idea that these deficits were only mere reflections and co-occurring factors of the 

disorder. Only recently this idea has started to be challenged, especially with the advent of 

longitudinal studies in infants at risk that showed how impairments in basic mechanisms of 

visual attention (e.g., disengagement) are closely related to the emergence of autism later in 

toddlerhood. A domain-general deficit, which can impact the attention network as well as 

other neurocognitive networks, is thus increasingly accredited as one of the main factor that 

could lead to the emergence of autism. This kind of model is also better fitting the nature of 

neural abnormalities that researchers have found in the autistic brain, abnormalities that are 

not confined into a single brain network but that involve the entire pattern of brain 

morphology and functional activity. 

The better understanding of how basic attentional abnormalities can lead to social and 

communicative impairments that are the core symptoms of autism will be the leitmotiv of the 

present doctoral thesis.  

 

 

	  
	  
	  
	  
	  
	  
	  



CHAPTER 1 - INTRODUCTION:  
CLINICAL CHARACTERIZATION, PREVALENCE AND 

CURRENT NEUROPATHOGENIC HYPOTHESES OF AUTISM 
SPECTRUM DISORDERS (ASD) 

 

 

 

1.1 The origins of the scientific study of autism 

The scientific study of autism, or what we called today autism spectrum disorder (ASD), 

started with the pioneers Leo Kanner and Hans Asperger who, independently, first published 

a description of the condition (Kanner, 1943; Asperger 1944). These publications contained 

detailed cases description and also offered the first theoretical attempts to explain the 

disorder. It is not a coincidence that both have chosen the word “autistic” for characterizing 

the nature of the underlying deficit. The word has been introduced by the eminent psychiatrist 

Eugene Bleuler in the 1911. It referred to a striking deficit that characterizes individuals with 

schizophrenia (another term coined by Bleuer), namely the narrowed relationships with 

people and the limited contact with the outside world. The narrowing is so extreme that 

seems to exclude everything except the person’s own self. The words “autism” and “autistic” 

derived, indeed, from the Greek word “autós” that means “self”. Both Kanner, working in 

Baltimore, and Asperger, working in Wien, studied several cases of children who had in 

common some fascinating behavioural features. These children seemed to be unable to 

established normal relationship with their peers. In contrast to Bleuer’s schizophrenia, the 

disorder appear to have been there from the beginning. Furthermore, in contrast to 

schizophrenia, the deficit was not accompanied by progressive deterioration. If anything, 

behavioural improvements could be expected to occur with development and learning. 
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It is worth to note that both authors believed that a fundamental biological deficit was present 

from birth. Despite that, in the following years, around 1950, some child psychologists 

wrongly inferred that the parents' coldness was the cause of their children's autism. It is true 

that in his 1943 paper that first identified autism, Kanner called attention to what appeared to 

him as a lack of warmth among the fathers and mothers of autistic children. He wrote, in the 

original paper (Kanner, 1943, p. 250):   

 

“This much is certain, that there is a great deal of obsessiveness in the family background. 

The very detailed diaries and reports and the frequent remembrance, after several years, 

that children had learned to recite twenty-five questions and answers of the Presbyterian 

Catechism, to sing thirty-seven nursery songs, or to discriminate between eighteen 

symphonies, furnish a telling illustration of the parental obsessiveness. One other fact 

stands out prominently. In the whole group, there are very few really warmhearted fathers 

and mothers. For the most parts, the parents, grandparents and collateral are persons 

strongly preoccupied with abstractions of a scientific, literary, or artistic nature, and 

limited in genuine interest in people.” 

 

But he also wrote, few lines below: 

 

“The question arises whether or to what extent this fact has contributed to the condition of 

the children. The children’s aloneness from the beginning of life makes it difficult to 

attribute the whole picture exclusively to the type of the early parental relations with our 

patient.”   
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Notwithstanding the clear scepticism of Kanner in attributing the behaviors of children with 

autism to the type of early relations with parents, few years later Bruno Bettelheim, a 

University of Chicago professor and child development specialist facilitated the widespread 

acceptance of the so-called “refrigerators mothers” theory.	  In the absence of any biomedical 

explanation for what causes autism, Bettelheim and other leading psychoanalysts of the 

epoch supported the notion that autism was the product of mothers who were cold, distant 

and rejecting. The theory was embraced by the medical establishment and went largely 

unchallenged into the mid-1960s, with the apex of the Bettelheim’s theory that was reached 

when his book The Empty Fortress: Infantile Autism and the Birth of the Self was published 

in 1967. Many articles and books published in that era blamed autism on a maternal lack of 

affection, but in 1969, Kanner tackled the refrigerator mother issue at the first annual meeting 

of what is now the Autism Society of America, by stating: 

 

“From the very first publication until the last, I spoke of this condition in no uncertain 

terms as ‘innate’. But because I described some of the characteristics of the parents as 

persons, I was misquoted often as having said that ‘it is all the parents' fault’.” 

 

Fortunately, the modern consensus is that autism is a disorder of the neural development that 

has a strong genetic basis, although the genetic of autism is complex and not well understood 

yet (Abrahams and Geshwind, 2008). Even if recent studies have indicated that quality of 

relationship with mothers are associated with reductions of behavioural problems in 

adolescents and adults with autism, and that maternal criticisms are associated with 

maladaptive behaviours and symptoms, these ideas are distinct from the refrigerator mother 

hypothesis (Smith et al., 2008).  
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Today, precise behavioural criteria are used for the diagnosis of autism. The most detailed 

and recent scheme is the one described by the Diagnostic and statistical manual of mental 

disorders: DSM-V (American Psychiatric Association, 2013). There is substantial 

heterogeneity in the onset of autism. Some children manifest the disorder within the first 18 

months of life. However, 25%-40% of children with autism initially demonstrate near-normal 

development until 18-24 months, when they regress into autism. Generally speaking, the 

early- and the late- onset types are indistinguishable (Werner and Dawson, 2005). 

 

1.2 Diagnostic criteria for autism spectrum disorder in the DSM-V 

In previous version of the Diagnostic and statistical manual of mental disorders, the DSM-

IV, patients could be diagnosed with four separate disorders: autistic disorder, Asperger’s 

disorder, childhood disintegrative disorder, or pervasive developmental disorder not 

otherwise specified (American Psychiatric Association, 1994). All these four categories, in 

the new DSM-V have been merged into a single category that is autism spectrum disorder 

(ASD).  

The new diagnostic criteria for ASD (299.00 [F84.0]) (from the Diagnostic and statistical 

manual of mental disorders: DSM-V, pp. 50-51; American Psychiatric Association, 2013) 

are: 

 

A. Persistent deficits in social communication and social interaction across multiple contexts, 

as manifested by the following, currently or by history (examples are illustrative, not 

exhaustive): 

1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social 

approach and failure of normal back-and-forth conversation; to reduced sharing of 

interests, emotions, or affect; to failure to initiate or respond to social interactions. 
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2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, 

for example, from poorly integrated verbal and nonverbal communication; to 

abnormalities in eye contact and body language or deficits in understanding and use of 

gestures: to a total lack of facial expressions and nonverbal communication. 

3. Deficits in developing, maintaining, and understanding relationships, ranging, for 

example, from difficulties adjusting behavior to suit various social contexts; to 

difficulties in sharing imaginative play or in making friends; to absence of interest in 

peers. 

Specify current severity: Severity is based on social communication impairments and 

restricted, repetitive patterns of behavior (see Table 1.1). 

 

B. Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least 

two of the following, currently or by history (examples are illustrative, not exhaustive; see 

text): 

1. Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple 

motor stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases). 

2. Insistence on sameness, inflexible adherence to routines, or ritualized patterns of 

verbal or nonverbal behavior (e.g., extreme distress at small changes, difficulties with 

transitions, rigid thinking patterns, greeting rituals, need to take same route or eat same 

food every day). 

3. Highly restricted, fixated interests that are abnormal in intensity or focus (e.g., strong 

attachment to or preoccupation with unusual objects, excessively circumscribed or 

perseverative interests). 

4. Hyper- or hypo-reactivity to sensory input or unusual interest in sensory aspects of the 

environment (e.g., apparent indifference to pain/temperature, adverse response to 
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specific sounds or textures, excessive smelling or touching of objects, visual fascination 

with lights or movement). 

 

Specify current severity: Severity is based on social communication impairments and 

restricted, repetitive patterns of behavior (see Table 1.1). 

 

C. Symptoms must be present in the early developmental period (but may not become fully 

manifest until social demands exceed limited capacities, or may be masked by learned 

strategies in later life). 

 

D. Symptoms cause clinically significant impairment in social, occupational, or other 

important areas of current functioning. 

 

E. These disturbances are not better explained by intellectual disability (intellectual 

developmental disorder) or global developmental delay. Intellectual disability and autism 

spectrum disorder frequently co-occur; to make comorbid diagnoses of autism spectrum 

disorder and intellectual disability, social communication should be below that expected for 

general developmental level. 

 

Note: Individuals with a well-established DSM-IV diagnosis of autistic disorder, Asperger’s 

disorder, or pervasive developmental disorder not otherwise specified should be given the 

diagnosis of autism spectrum disorder. Individuals who have marked deficits in social 

communication, but whose symptoms do not otherwise meet criteria for autism spectrum 

disorder, should be evaluated for social (pragmatic) communication disorder. 
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Table 1.1 Severity levels for autism spectrum disorder according to the DSM-V (American Psychiatric Association, 2013). 

 

1.3 Co-morbid features of ASD 

In addition to the core symptoms of autism, neurological disorders frequently co-occurred 

(DiCicco-Bloom et al., 2006). The prevalence of mental retardation when the autism 

spectrum is taken as a whole is closer to 30% (Fombonne, 2006). Epilepsy has long been 

associated with autism although estimates of the occurrence of seizure disorder vary from 5% 

Severity level Social communication Restricted, repetitive behaviors 

Level 3 
"Requiring very 

substantial 
support” 

 

Severe deficits in verbal and nonverbal 
social communication skills cause severe 
impairments in functioning, very limited 
initiation of social interactions, and minimal 
response to social overtures from others. For 
example, a person with few words of 
intelligible speech who rarely initiates 
interaction and, when he or she does, makes 
unusual approaches to meet needs only and 
responds to only very direct social 
approaches 

Inflexibility of behavior, extreme 
difficulty coping with change, or 
other restricted/repetitive behaviors 
markedly interfere with functioning 
in all spheres. Great 
distress/difficulty changing focus or 
action. 
 

Level 2 
"Requiring 
substantial 
support” 

 

Marked deficits in verbal and nonverbal 
social communication skills; social 
impairments apparent even with supports in 
place; limited initiation of social 
interactions; and reduced or abnormal 
responses to social overtures from others. 
For example, a person who speaks simple 
sentences, whose interaction is limited to 
narrow special interests, and how has 
markedly odd nonverbal communication. 
 

Inflexibility of behavior, difficulty 
coping with change, or other 
restricted/repetitive behaviors appear 
frequently enough to be obvious to 
the casual observer and interfere with 
functioning in a variety of contexts. 
Distress and/or difficulty changing 
focus or action. 
 

Level 1 
"Requiring 
support” 

Without supports in place, deficits in social 
communication cause noticeable 
impairments. Difficulty initiating social 
interactions, and clear examples of atypical 
or unsuccessful response to social overtures 
of others. May appear to have decreased 
interest in social interactions. For example, a 
person who is able to speak in full sentences 
and engages in communication but whose 
to-and-for conversation with others fails, and 
whose attempts to make friends are odd and 
typically unsuccessful. 

Inflexibility of behavior causes 
significant interference with 
functioning in one or more contexts. 
Difficulty switching between 
activities. Problems of organization 
and planning hamper independence. 
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to 44% (Tuchman and Rapin, 2002). Anxiety and mood disorders are also very common 

(Lecavalier, 2006). 

 

1.4 Prevalence of ASD and the enigma of climbing diagnoses 

In the last fifty years there has been a frenetic rise in ASD diagnosis, as recently well 

reassumed by the freelance writer Karen Weintraub (2011), in a special issue of Nature 

dedicated to autism. An early study in the mid-60s examined eight- to ten-year-old children 

in Middlesex, UK, and estimated a prevalence of 4.5 cases per 10,000 children (Lotter, 

1966). However, in 1992, 19 cases per 10,000 six-year-old Americans children were being 

diagnosed as autistic (Newschaffer et al., 2005), but it was in the first decade of the twenty-

first century, that the growth in diagnoses has reached its highest peak. According to data 

from the US Centers for Disease Control and Prevention in Atlanta (Georgia), what is today 

known as ASD affect more than 90 in 10,000 eight-year-olds in the United States in the year 

2006. In other words, ASD is currently affecting 1 in every 110 children (ADDMN 

Surveillance 2006).  

Peter Bearman, a sociologist at Columbia University in New York, has been trying to figure 

out how much of the increase is driven by social forces. He analysed nearly 5 million 

California birth records and 20,000 records from the state’s department of developmental 

Figure 1.1 Left panel displays the ASD diagnoses increment from 1975 until now. Right panel displays the main factor 
that, however, only partially can explain the rise. Reproduced from Weintraub (2011). 
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services. By linking birth with detailed diagnostic data he was able to generate a rich picture 

of the demographics and life history of those with autism, which yielded clues to the social 

factors that influence diagnosis, which are summarized in Figure 1.1. Around 25% of the rise 

in autism can be ascribed to what he calls “diagnostic accretion”, referring to the fact some 

children who would have been diagnosed as mentally retarded ten years ago are now 

diagnosed with both mental retardation and autism (King and Bearman, 2009). Another 15% 

can be accounted for by the growing awareness of autism. Simply, more parents and 

paediatricians are aware of what autism is (King and Bearman, 2011). Moreover, geographic 

clustering accounts for about 4%. The clearest example lies in and around the hills of 

Hollywood, California, where children living in a 900-square- kilometre area centred on 

West Hollywood are four times more likely to be diagnosed with autism than are those living 

elsewhere in the state (King and Bearman, 2011). The authors suggest the most plausible 

explanation for the cluster has to do with neighbourliness. Once a cluster of informed parents 

builds up, specialists are more likely to settle in that area, and as a consequence diagnosing 

are more common. The last piece of plausibly known reasons, accounting another 10% of the 

increase, may rely on specific social changes that have also biological implications. People 

tend to have their children when they are older. Some studies have found that children born to 

parents older than 35 have a higher risk of being diagnosed with autism (King et al., 2009). In 

the end, 46% of the increment in autism diagnoses is still far from being explained 

(Weintraub, 2011). 
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1.5 Neuropathogenesis of ASD: main hypotheses  

Research into the biological basis of ASD is in its infancy; so, current etiological viewpoints 

are necessarily primitive (Geshwind and Levitt, 2007). 

However, recent genetic findings, coupled with emerging anatomical and functional imaging 

studies, suggest a model that described autism in terms of altered brain connectivity (e.g., 

Belmonte et al., 2004; Frith, 2004; Geshwind and Levitt, 2007; Rudie and Dapretto, 2013; 

Casanova and Trippe, 2009). This hypothesis assumes that there is a developmental bias 

towards the formation of short-range connections due to disruptions of synapse development 

and function. This would result in excessive activity and overconnectivity within local 

networks. These networks might become partially isolated, and in turn this would affect the 

formation of long-range connections and systems governing top-down control and 

integration. Here after we will examine the main evidence supporting widespread alterations 

in brain of patients with autism that supports the altered connectivity hypothesis.  

 

1.5.1 Brain overgrowth  

One of the most robust findings in the neuropathology of autism is that the brain seems to 

undergo a period of precocious growth during early postnatal life (for a review see Amaral et 

al., 2008; see Figure 1.2). These findings have been demonstrated with head circumference 

measurements (that approximates the total brain volume) and also with magnetic resonance 

imaging (MRI). Collectively, these studies indicate a period of abnormal brain growth, which 

begins in the first year of life and results in a persistent enlargement at least through early 

childhood (Courchesne et al., 2001; Sparks et al., 2002; Courchesne et al., 2003; 

Dementieva et al., 2005; Hazlett et al., 2006; Dawson et al., 2007). Whether this enlargement 

persists into later childhood and adolescence is still not clear (Courchesne et al., 2001; 

Aylward et al. 2002). Similarly, it is not yet clear whether this overgrowth involve equally 
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the white and grey matter (Amaral et al., 2008). Herbert et al. (2003) postulated that the 

abnormal brain enlargement observed in children with autism is mainly accounted by an 

increment of white matter size, not grey matter (in accordance to Courchesne et al., 2001), 

even if it is not clear whether these increments persist into later childhood and adolescence 

(Hazlett et al., 2006). 

It is important to underline that an ideal study would include a very large sample size of well-

characterized individuals, tested at birth and followed longitudinally at least into late 

childhood or early adolescence. On the contrary, most of the studies in this field are 

Figure 1.2 Percent difference between ASD and typical development groups with best-fit curves for (a) total brain 
volume, (b) gray matter and (c) white matter, based on existing MRI literature. Reproduced from Amaral et al. (2008). 
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characterized by small sample sizes and the great majority is limited to cross-sectional design 

(Brambilla et al., 2003; Amaral et al., 2008). 

 

1.5.2 Minicolumns alteration  

As introduced above, current biological research hypothetically suggests that autism involves 

disruptions of synapse development and function. But how are such disruptions taking place 

during development? One possibility has been advanced by Casanova and colleagues. They 

postulated that there are an abnormal number and width of minicolumns in individuals with 

autism (Casanova et al., 2002, 2006; Buxhoeveden et al., 2006).  

Minicolumns are radially oriented arrangements of cellular elements, which have a 

stereotypical morphometry and are distributed throughout the cortex. They share common 

input-output operations mediated by recurrent circuits linking translaminar columns of 

pyramidal neurons (Mountcastle, 1997; Buxhoeveden & Casanova 2002; DeFelipe, 2005). 

These modules have commonly been considered to represent a canonical microcircuit 

contained within a defined cylindrical volume (Casanova and Trippe, 2009). Minicolumn 

formation has been associated with early stages of cortical development when postmitotic 

neurons ascend in linear arrays along a radial glial scaffolding (Rakic, 1988). 

Within the first year of life, there is a dramatic increase in dendritic growth. By 2 years of 

age, the minicolumns are spaced farther apart with a lower cell density in a given region of 

cortex. Dendritic bundles and axonal fascicles that extend throughout several layers of the 

cortex occupy the space between minicolumns. Within the first year of life, there is a 

dramatic increase in dendritic growth. By 2 years of age, the minicolumns are spaced farther 

apart with a lower cell density in a given region of cortex. Dendritic bundles and axonal 

fascicles that extend throughout several layers of the cortex occupy the space between 

minicolumns (Amaral et al., 2008). 
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As Amaral and colleagues (2008) recently reviewed, only 14 cases of autism (9 of which had 

seizures and at least 10 with mental retardation) have been examined for minicolumnar 

pathology so far. The most consistent finding in these studies is reduced intercolumnar width 

of the minicolumns (only layer III has been studied so far) in dorsolateral prefrontal cortex or 

Brodmann’s area (BA) 9 (Casanova et al., 2002, 2006; Buxhoeveden et al., 2006). These 

findings, coupled with increases in neuronal density on the order of 23% noted by Casanova 

et al. (2006), imply that there should be a greater number of neurons in BA 9 of the autistic 

cortex. Given the narrower neuropil area between columns, one would also predict a decrease 

in the dendritic arborization of BA 9 neurons.  

Figure 1.3 Features of neocortical organization potentially altered in ASD. Panels a–c depict cell body-stained sections of 
BA 9 at 1, 6 and 24 months of age. Below each is a representative Golgi-stained section showing the extent of dendritic 
growth in this same cortical area over these same ages. Panel d indicates aberrant columnar structure in autism in layer III 
with less space between cell body-defined minicolumns. Reproduced from Amaral et al. (2008). 
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It remains to be seen how these findings might relate to pathophysiological processes 

underlying ASD. One possibility is that the reduced volume of neuropil area between 

columns indicates reductions in the numbers of radially oriented inhibitory GABA neurons or 

in the extent of their axonal and dendritic processes. As a result, collateral excitation of 

neighbouring minicolumns would be increased leading to overconnectivity within local 

networks (Casanova and Trippe, 2009). 

 

1.5.3 The altered connectivity hypothesis: a puzzling picture 

Despite the challenges that remain, in particular the need of clarifying the underline neuronal 

mechanism that lead to the pattern of altered connectivity, there have been many progresses. 

As stated above, the original theory regarding brain connectivity in people with ASD claims 

that there is long distance under-connectivity and local over-connectivity (Belmonte et al., 

2004; Frith, 2004; Just et al., 2004; Geshwind and Levitt, 2007; Casanova and Trippe, 2009; 

Rudie and Dapretto, 2013). This theory seems to be at least partially confirmed by findings of 

the past decade.  

As reviewed by Vissers and colleagues (2012), consistent with the theory, a large body of 

evidence from fMRI studies showed reduced long-range cortico-cortical functional and 

structural connectivity appears to be weaker in people with ASD than in controls. On the 

contrary, in contrast to the theory, there is less evidence for local over-connectivity that was 

assumed for specific cortical areas, as the frontal cortex, following the results about 

minicolumns abnormalities (Amaral et al., 2008; Casanova and Trippe, 2009). Interestingly, a 

recent study by Keown et al. (2013) focused on the local connectivity issue. Several groups 

have hypothesized that enhanced local circuit connectivity may provide an explanation for 

the preservation or enhancement of certain cognitive functions in ASD, such as visual or 

auditory discrimination (Courchesne and Pierce, 2005; Geschwind and Levitt, 2007). 
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However, few studies have comprehensively addressed whole-brain local connectivity in 

ASD. Keown et al. (2013) tested adolescents with ASD with a resting state functional 

connectivity MRI and computed whole-brain maps of local connectivity. They showed an 

anterior-posterior gradient of local under- to over- connectivity in ASD. Specifically, reduced 

local connectivity was found in frontal regions and was more pronounced in ASD adolescents 

with less severe social impairments, whereas occipitotemporal regions showed diffuse 

overconnectivity, which was more pronounced in individuals with more severe social 

deficits. 

In summary, even if the whole picture of the brain connectivity theory is still not completely 

delineated, this model offers a good framework to explain both the impairments and the 

preservation or even enhancement of certain functions, and can also clarify the specificity of 

deficits observed in the autisms. For this reason it will be one of the leading areas of research 

in ASD for the near future (Vissers et al., 2012; Rudie and Dapretto, 2013). However, despite 

some clues, mechanisms relating pathogenesis and altered cell function to the altered 

connectivity remain unclear (Casanova and Trippe, 2009). 
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CHAPTER 2 - STATE OF THE ART CONCERNING THE STUDY 
OF VISUAL ATTENTION IN ASD. 

	  
 

 

“Millions of items of the outward order are present to my senses which never properly enter 

into my experience. Why? Because they have no interest for me. My experience is what I 

agree to attend to. Only those items which I notice shape my mind” (William James, 1890) 

 

The visual system has to solve a variety of problems to make sense of a visual scene, and to 

this aim, we need to detect, localize and identify relevant information. Visual attention plays 

a fundamental role in this process and has been a matter of study from several centuries. It 

was originally discussed by philosophers, like	  Gottfried Leibniz (1646-1716), that introduced 

the concept of “apperception”, referring to an act that is necessary for an individual to 

become conscious of a perceptual event (Shiraev, 2010). 	  

What captures our attention spontaneously and what we decide to attend voluntary can 

influence the way we experience and perceive the world around us and impacts the course of 

brain and behavioural development (Keehn et al., 2013). The primary aim of this chapter is to 

summarize, without any pretension to be exhaustive, the major findings regarding visual 

attention in autism spectrum disorder (ASD), in order to progressively introduce the rationale 

of the present work and the theoretical framework underlying it. But before this, I will briefly 

introduce the main findings regarding the study of visual spatial attention in typical 

populations. 
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2.1 Models of visual spatial attention 

Under normal circumstances, the direction of gaze and the direction of visual spatial attention 

are aligned. But since von Helmholtz (1910) and William James (1890) the potential 

dissociation between the point of gaze fixation and the focus of attention within the field of 

view was noted. The first experimental demonstrations of the phenomenon came more 

recently (Sperling and Melchner, 1978; Posner et al., 1980; Posner and Cohen 1984). The so-

called “covert” deployment of spatial attention produces biases in behavioral performance 

and neural processing of relevant stimuli in the absence of “overt” orienting (i.e., head or 

eyes movement; Moore et al., 2003). Various model have been proposed by psychologists 

and neuroscientists to understand how relevant visual information is covertly selected by 

spatial attention. These models, with certain exceptions for some of their predictions, are not 

completely incompatible one with the others, but their relations have not been clarified yet.  

 

2.1.1 The “spotlight” and the “zoom-lens” models of spatial attention. 

Sokolov (1963) described what he called the “orienting reflex”, a mechanism that allow us to 

identify new elements that has just occurred in the scene in order to prepare the whole 

organism to react toward it. A series of independent mechanisms would have allowed the 

orienting reflex to take place, and one of the most important is the orienting of attention to 

the region of the space where the new element has appeared. This idea by Sokolov gave a 

substantial contribution for the birth of the “spotlight” metaphor of visual attention, originally 

postulated by Posner, Snyder, and Davidson (1980). The spotlight model claims that 

information from one region of the visual field is selected by a mechanism analogous to a 

spotlight that can moves to a specific region in the visual space. This orienting of the 

attentional spotlight results in an improvement of information processing in the attended area 

at the expense of other locations, in other words stimulus detection is faster and its 
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discrimination is more accurate (for reviews see Posner and Petersen, 1990; Corbetta and 

Shulman, 2002; Carrasco, 2011). Moreover, according to Posner (1980) and Jonides (1981), 

there are two different ways to control the spotlight of attention: i) endogenous (voluntary or 

sustained), which is determined and controlled voluntary by the subjects, and ii) exogenous 

(automatic or involuntary), that occurs imperatively following the abrupt onset of a peripheral 

stimulus. 

However, because in everyday life objects have different dimensions, shapes and sizes, the 

focus of attention need also need to be adjusted in its size. Some years later, the idea that the 

attentional focus can process information from a broad or a narrow region of the visual field 

has been added by the “zoom-lens” model of attention (Eriksen and St. James, 1986; 

Castiello and Umiltà, 1990). This model also predicted an increase of processing efficiency 

within the focus when the attentional spotlight is decreased in size. In fact, reaction times are 

faster and discrimination are more accurate while the attentional focus size gets smaller 

(Eriksen and St. James, 1986; Castiello and Umiltà, 1990). 

 

2.1.2 Neurophysiological correlates of the 

“spotlight” and the “zoom-lens” models.  

Both the orienting and the zooming of the focus of 

attention lead to specific changes in the level of 

activation in the visual areas. 

Neuroimaging (Brefczynski and DeYoe, 1999, 

Figure 2.1; Gandhi et al., 1999; Somers et al., 

1999) and electrophysiological (Hillyard and 

Münte, 1984; Mangun and Hillyard, 1988; Neville 

and Lawson, 1987; Rugg et al., 1987; Eimer, 

Figure 2.1 Characterization of attentional effects in 
early visual areas. (a) Retinotopically mapped 
activation due to shifts of attention into the right 
visual field. Colors of activated voxels (right 
panel) correspond to attentional focus (left 
schematic) that produced greatest modulation. (b) 
Activation produced by attentional shifts into the left 
visual field. Reproduced from Brefczynski and 
DeYoe (1999). 



Chapter 2 - State of the art concerning the study of visual attention in ASD.	  

	   30 

1994; for a review see Luck et al., 2000) studies in humans, as well as single-cell recordings 

in monkeys (Motter, 1993; Roelfsema et al., 1998; McAdams and Maunsell, 1999; Reynolds 

et al., 2000) suggest that the behavioral benefits of spatial attention are reflected in stronger 

activity in early visual areas for attended than unattended stimulus locations. Thus, when 

subjects orient their focus of attention to a spatial location, neural responses are enhanced for 

stimuli presented at the attended location, allowing for improved visual performance. 

Neurophysiological findings following variation of the attentional zoom-lens – though less 

investigated in the literature – are consistent in showing a precise retinotopic variations of 

neural activity in accordance to the portion of the visual field that subjects’ are attending. 

Specifically, the spatial extent of activation increases whereas the level of neural activity 

decreased in the visual cortex as the size of the attended area becomes larger (Müller et al. 

2003; Figure 2.2). Electrophysiological studies in human on this topic are only two (Luo et 

al., 2001; Fu et al., 2005), with discrepant findings (see Chapter 8 for a more extensive 

treatment of the topic).  

Figure 2.2 Left image: maps of activity in visual areas after the onset of the cue in an attentional zooming task (small cue, 
first row; medium cue, third row; large cue, fourth row). Right image: (a) extent of activated visual cortex (collapsed 
across visual areas); (b) peak blood oxygen level dependent (BOLD) responses as a function of the cue size. Reproduced 
from Müller et al. 2003. 
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2.1.3 Beyond the spotlight and the zoom-lens: the “Mexican hat” model of the attentional 

focus.  

Both the spotlight and the zoom-lens models predict that the attentional resources decrease 

monotonically while the distance from the focus of attention increases. However, they do not 

represent the all picture of how attention selects relevant visual information in a real cluttered 

visual environment, where objects has to be discerned one another and in which fonts of 

relevant and irrelevant information may become mixed together. For this reason, in the last 

years researchers started to investigate how a combination of enhancement and suppression 

may effectively sharpen the demarcation of relevant from irrelevant inputs. The so-called 

“Mexican hat” profile of attentional modulation has been originally proposed by Müller and 

Kleinschmidt (2004), based on the observation that if observers attended to a location in 

space, responses in early visual areas were higher for stimuli farther from the attended 

location than relatively close to it. This and other findings are consistent with the idea that 

spatial attention, in order to enhance relevant visual information and attenuate irrelevant 

inputs, elicits a zone of attenuated excitability in the immediate surround of its focus 

(Slotnick et al., 2002; Müller and Kleinschmidt, 2004; Müller et al., 2005; Hopf et al., 2006; 

Boehler et al., 2011). A further 

demonstration of the existence of a 

zone of attenuation surrounding the 

focus of attention derives from a study 

by Hopf and colleagues (2006) that 

employed magnetoencephalographical 

(MEG) recordings. Observers were 

asked to attend to a colour pop-out 

target and probe stimuli appeared soon 

Figure 2.3 (a) Time course of the event-related magnetic field 
(ERMF) response for each probe distance; PD0: target and 
probe in the same spatial location; PD1: probe adjacent to the 
target; PD2-PD4: probe non-adjacent to the target (b) Mean 
size of the probe-related response between 130 and 150 ms, 
collapsed across corresponding probe-distance conditions. 
Reproduced from Hopf et al. (2006). 
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after at varying distances from the target (were the focus of attention was captured). The 

electromagnetic response to the probe stimulus was enhanced when the probe was presented 

at the location of the target, but was suppressed in a narrow zone surrounding the target and 

then recovered at more distant locations (Hopf et al., 2006; see Figure 2.3). 

This centre-surround profile suggests that attending to a stimulus places a ring of inhibition 

around it, which would be optimal to attenuate the deleterious noise during target 

identification. These findings are also consistent with the selective tuning model proposed by 

Tsotsos and colleagues (Tsotsos, et al. 1995, 2001). According this model attention optimizes 

the search procedure by selectively tuning the visual processing network. Attentional 

selection operates in the visual cortex based on hierarchical winner-take-all (WTA) processes 

that propagate in a top-down direction from higher level of the visual hierarchy to lower 

levels. Connections representing input from irrelevant locations are pruned away from level 

to level, yielding a pass zone of enhanced activity for connections representing the 

target/attended input. Connections immediately surrounding the representation of the 

attended input become suppressed, leading to a profile of cortical responsiveness with an 

excitatory centre and an inhibitory surround. 

 

2.2 Neural sources of the control of visual attention 

Evidence of the network that control the ability to adjust the size of our attentional focus are 

limited and will be discussed in details on Chapter 8 and 9. Neural mechanisms that control 

the centre-surround profile of the attentional focus have never been investigated to the best of 

my knowledge. On the contrary, neural mechanisms controlling the orienting of spatial 

attention have been a central focus in cognitive neuroscience in the last decade and will be 

briefly summarized in the following two paragraphs. 



Chapter 2 - State of the art concerning the study of visual attention in ASD.	  

	   33 

2.2.1 Evidence from primate studies. 

Much of what is known so far about the neural 

basis of attention comes from studies of the 

primate visual system, which has proven to be a 

highly valuable model (for a recent review see 

Noudoost et al., 2010; see Figure 2.4). In 

particular they aimed at identifying neural circuits 

controlling the “top-down” control (endogenous 

or voluntary) of spatial attention, which take place 

according to internal behavioral goals. 

Mechanisms of “bottom-up” (exogenous or 

involuntary) spatial attention, which occurs by 

virtue of a stimulus’ physical salience, are less 

understood in the primate brain (Noudoost et al., 

2010). 

Moore and Fallah (2001) were the first to examine the effect of intracortical microstimulation 

on visual attention. They found that when neurons within the frontal eye fields (FEF) of the 

frontal lobe were stimulated using subthreshold currents (too low to evoke saccades), they 

could enhance a monkey’s performance on an attention-demanding task. Another study found 

that subthreshold microstimulation of sites within the lateral intraparietal area (LIP) reduced 

reaction times in a cued target detection task, albeit in a non-spatially specific manner 

(Cutrell and Marrocco, 2002). 

Consistent with the above evidence of attention-related effects of FEF microstimulation, a 

number of subsequent studies have observed modulation of visual cortical responses during 

microstimulation of the FEF. A brief enhancement of visually driven responses was observed 

Figure 2.4 Bottom, Possible routes for attentional 
signals from frontal and parietal areas (FEF and 
LIP) to visual area V4. Direct corticocortical 
projections exist from both the FEF and LIP to 
most extrastriate areas in which signatures of 
attention have been observed, including well-
studied area V4. Moreover, corticocortical 
feedback projections throughout the visual 
hierarchy could propagate a modulatory signal 
from higher (e.g. V4) to lower (e.g. V1) areas. 
Top, cytoarchitecture of area V4 and laminar 
patterns of afferent (left) and efferent (right) 
connections. Reproduced from Noudoost et al., 
2010. 
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in receptive fields of area V4 neurons at locations overlapping the stimulated FEF 

representation (Moore and Armstrong, 2003). In another study that employed functional 

magnetic resonance imaging (fMRI) to examine the influence of FEF microstimulation on 

visual activation throughout cortex, Ekstrom and colleagues (2008) found that FEF 

microstimulation enhanced the visual activation of retinotopically corresponding foci within 

multiple visual areas, even V1 and V2, which receive little or no direct projections from the 

FEF (Stanton et al., 1995).  

Studies comparing the latencies of top-down attentional modulation across different areas 

have yielded evidence that is consistent with a fronto-parietal source. FEF neurons achieve 

this activation first, followed shortly by dorso-lateral prefrontal cortex (dlPFC) neurons and 

then by LIP neurons (Buschman and Miller, 2007).  

 

2.2.2 Evidence from human studies. 

Several evidence indicate that two cortical neural systems are involved in attending to 

environmental stimuli (Corbetta and Shulman, 2002; Corbetta et al., 2008; see Figure 2.5). 

One is the dorsal frontoparietal network, whose core regions include dorsal parietal cortex, 

particularly intraparietal sulcus (IPS) and superior parietal lobule (SPL), and dorsal frontal 

cortex along the precentral sulcus, where the frontal eye field (FEF) are located. The current 

idea is that dorsal system generates and maintains endogenous signals based on current goals 

and preexisting information about likely contingencies and sends out top-down signals that 

bias the processing of appropriate stimulus features and locations in sensory cortex. This 

conclusion is based mainly on the evidence that the dorsal network is preactivated by the 

expectation of seeing an object at a particular location or with certain features (e.g., 

movement in a specific direction) (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 

2000). Moreover, recent studies found that magnetic stimulation of FEF or IPS leads to a 
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retinotopically specific modulation of visual areas and parallel improvement of perception at 

corresponding locations of the visual field (Ruff et al., 2006, 2008, 2009). 

A second system, the ventral frontoparietal network, responds – along with the dorsal 

network – when behaviourally relevant objects (or targets) are detected (Corbetta et al., 

2000). Core regions of the ventral network include temporoparietal junction (TPJ) cortex – 

defined as the posterior sector of the superior temporal sulcus (STS) and gyrus (STG) and the 

ventral part of the supramarginal gyrus (SMG) – the ventral frontal cortex (VFC, including 

parts of middle frontal gyrus or MFG), inferior frontal gyrus (IFG), frontal operculum, and 

anterior insula (Corbetta and Shulman, 2002 for a review).  

Both dorsal and ventral networks are also activated during reorienting of attention 

(disengagement from a previously cued location and orienting toward a new one), with 

enhanced responses during the detection of targets that appear at unattended locations. For 

example, enhanced responses are observed when subjects are cued to expect a target at one 

location but it unexpectedly appears at another (i.e., ‘‘invalid’’ targets in the Posner spatial 

cuing paradigm) (Arrington et al., 2000; Corbetta et al., 2000; Macaluso et al., 2002; Kincade 

et al., 2005; Vossel et al., 2006). 

While segregation between dorsal and ventral attention networks is nearly complete, 

spontaneous activity in right posterior MFG correlates with both networks, indicating that 

right MFG may contain intermixed neuronal populations respectively connected with dorsal 

or ventral regions (Fox et al., 2006). This result raises the possibility that ventral and dorsal 

networks do not directly interact but are principally linked through prefrontal cortex (Fox et 

al., 2006). 
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Although an early theory of how the two networks interact (Corbetta and Shulman, 2002) 

proposed that the division between ventral and dorsal network may reflect the psychological 

distinction between exogenous (bottom-up) and endogenous (top-down) orienting, recent 

claims hypothesized that a more fundamental distinction appears to be between systems 

involved in orienting and those involved in re-orienting (Corbetta et al., 2008). While the 

orienting of attention, both exogenous and endogenous would recruit the dorsal attention 

system, when we have to reorient our attention because a relevant stimulus appear on the 

environment, the ventral and dorsal attention systems interact to perform this operation. Even 

if the nature of this interaction is still not completely clarified, according to Corbetta and 

colleagues (2008), the current idea is that when subjects focus on a task, TPJ (ventral 

network) is deactivated, thus preventing reorienting to distracting and irrelevant events 

(Shulman et al., 2007). When behaviourally-relevant environmental stimuli appear on the 

scene, the ventral network promote the reorienting (Downar et al., 2001; Serences et al., 

2005) and the source of the filtering signal that distinguish between relevant and irrelevant 

inputs may be the dorsal network or other parts of pre-frontal cortex (Kastner et al., 1999; 

Corbetta et al., 2000; Shulman et al., 2003). 

Figure 2.5 Definition of dorsal and ventral 
networks for the control of visual attention. 
(Top panel) Regions in blue are consistently 
activated by central cues, indicating where a 
peripheral object will subsequently appear or 
what is the feature of an upcoming object. 
Regions in orange are consistently activated 
when attention is reoriented to an unexpected 
but behaviorally relevant object. (Bottom 
panel) Model for the interaction of dorsal 
(blue) and ventral (orange) networks during 
stimulus-driven reorienting. Dorsal network 
regions FEF and IPS send top-down biases to 
visual areas and via MFG to the ventral 
network (filtering signal), restricting ventral 
activation to behaviorally important stimuli. 
IPS-FEF are also important for exogenous 
orienting. Overall, the dorsal network 
coordinates stimulus-response selection. 
Conversely, when a salient stimulus occurs, 
the ventral network sends a reorienting signal 
to the dorsal network through MFG. 
Reproduced from Corbetta et al. (2008). 

 



Chapter 2 - State of the art concerning the study of visual attention in ASD.	  

	   37 

2.3 Why do we need to study visual attention in ASD? 

Attentional abnormalities have been associated with the disorder since its first description by 

Kanner (1943). For example, reporting some notes on the behavior of his study case 6 

(Virginia), Kanner (1943, p. 231) wrote:  

 

“There are times, more often than not, in which she is completely oblivious to all but her 

immediate focus of attention.” 

 

This sentence perfectly depicts the fact that many patients with ASD appear to focus their 

attention intensely only on some element of the environment while ignoring surrounding 

contextual information (Schreibman & Lovaas, 1973; Lovaas et al., 1979).  

After the first seminal investigations (for an early review see Lovaas et al., 1979), in the last 

two decades a large body of evidence has described attentional abnormalities in ASD, both in 

terms of dysfunctions and superiorities (for recent review see Ames and Fletcher-Watson, 

2010; Keehn et al., 2013). Importantly, atypical attentional functioning has been shown in 

infants at-risk for ASD (because they have an older sibling diagnosed with ASD), and may be 

one of the earliest characteristics that distinguish infants who later receive an ASD diagnosis 

(Zwaigenbaum et al., 2005; Elsabbagh et al., 2013). 

These findings suggest that lower-level attentional processes may impact the development of 

higher-level sociocommunicative functions. Thus, understanding the nature of these 

abnormalities may help to elucidate atypical trajectories of attentional development in ASD, 

and furthermore, how these attentional abnormalities may contribute to the manifestation of 

the core symptoms in ASD. Understanding if early attentional impairments can be one of the 

factors that are causally involved in the development of ASD, is important for at least three 

reasons: i) attentional deficits may be used as an early marker to identify ASD in the first 
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year of life (Elsabbagh et al., 2013); ii) the development of attention-targeted early 

interventions that – even during infancy (Wass et al., 2011) – may remediate abnormal 

developmental trajectories and improve outcomes in children with ASD, and; iii) a precise 

clarification of attentional abnormalities can be the starting point for modelling atypical 

neural circuitries that characterize the autistic brain. 

 

2.4 Abnormalities of visual spatial attention in ASD 

2.4.1 The attentional spotlight in ASD: evidence for slow orienting and impaired 

disengagement. 

As recently reviewed by Keehn and colleagues (2013), in children, adolescents, and adults 

with ASD orienting abilities have been measured using various spatial cuing paradigm 

derived from the original paradigm by Posner (1980). The common procedure is to compare 

response latencies to target at a validly cued versus an invalidly cued location (“cuing effect” 

or “validity effect”), so that we can measure the time course of the operations that the focus 

of attention performs.  

Townsend et al. (1996) found slower orienting in adults with ASD compared to typical 

individuals. Automatic/exogenous orienting 

seems to be more impaired than 

voluntary/endogenous shifts of attention 

(Ristic et al., 2005; Renner et al., 2006; 

Grubb et al., 2013), although there is some 

conflicting evidence (Pruett et al., 2011). As 

theorized by Posner and colleagues (1980), 

attentional orienting involves also the ability 

to disengage attention from a previously 

Figure 2.6 A gap-overlap task where a target can occur 
after fixation offset (gap), with the fixation remaining 
on screen (overlap). Readapted from Keehn et al. 
(2013). 
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cued location, in order to shift and re-engage our focus of attention onto a new location or 

object of interest. Disengagement efficiency in ASD has been tested mainly by examining 

saccadic responses in the “gap-overlap” paradigm (Kingstone and Klein, 1993; Figure 2.6). 

In this paradigm, targets appear in the periphery of the visual field under two different 

conditions. An overlap condition, when a central stimulus (e.g. the fixation cross) remains on 

the screen when the peripheral target appears, and a gap condition, when the central stimulus 

disappears prior to the target onset. These two conditions are usually compared (the measure 

is technically called “the gap effect”) to obtain an index of the disengagement ability.  

Landry and Bryson (2004) examined the disengagement ability in children with ASD, and 

two groups of age matched children with Down’s syndrome or with typical development. The 

authors demonstrated that the ASD group showed significantly increased latencies to 

disengage visual attention (on overlap trials) compared to both comparison groups. 

Additionally, the authors report that the frequency of fast attentional shifts (i.e., the number 

of shifts with latency between 100 and 300 ms) for the gap condition was significantly 

reduced in the ASD group, suggesting that in addition to difficulty disengaging attention on 

overlap trials, children with ASD did not efficiently shift attention to the target, even when 

disengagement mechanisms were not competing with the central stimulus. Impaired 

disengagement has also been confirmed by other groups and in low-functioning adults with 

ASD (Wainwright-Sharp and Bryson 1993; Courchesne et al. 1994; Kawakubo et al., 2007). 

Importantly, disengagement inefficiency has been demonstrated also in infants at risk for 

developing ASD (Zwaigenbaum et al., 2005; Elsabbagh et al., 2013). In particular, a recent 

longitudinal study by Elsabbagh et al. (2013) demonstrated the relationship between 

disengagement of visual attention in infancy and later autism in toddlerhood. At 14 months, 

longer latencies to disengage was observed in a subset of the high-risk group later diagnosed 

with ASD at 36 months, relative to other infants at risk and the low-risk control group. 
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2.4.2 The attentional zoom-lens in ASD: evidence for a “zoom-out” impairment 

Although several studies investigated the attentional orienting in ASD as summarized in the 

previous paragraph, less evidence exist on the ability to adjust the size of the attentional 

focus. In a first study by Burack (1994) participants (four mental-age matched groups 

composed by children with autism, with mental retardation and with no handicap) performed 

a forced-choice reaction time (RT) task to assess the filtering component of selective 

attention. The independent variables were the presence/absence of a window that narrowed 

the attentional focus (zoom-in), the number (zero, two, or four) and the location of 

distractors. The RTs of the subjects with autism improved relative to the other groups in the 

presence of the window without distractors, but this effect was negated when distractors were 

also presented. Performance of the autism group was, indeed, the most impaired in the 

presence of distractors. These findings represent a behavioral evidence of an inefficient broad 

attentional lens among persons with autism. In the second study, Mann and Walker (2003) 

employed a paradigm requiring participants to make a judgment about which one of the two 

pairs of cross-hairs was the longer. Participants with ASD were less able than comparison 

group in making this judgment only when the previous pair of cross-hairs was smaller than 

the one to be judged. The authors argued that individuals with ASD have a difficulty in the 

zoom-out of the attentional focus. 

The findings of Mann and Walker (2003) were recently confirmed by a study performed in 

our laboratory. Ronconi and colleagues (2013b; Figure 2.7) tested participants with ASD in 

an attentional zooming paradigm where attentional resources were narrowed (zoom-in) or 

distributed (zoom-out) in the visual field with a small (containing only the nearest target 

eccentricity) or large (containing also the farthest target eccentricity) cue. Typically 

developing children, at the short cue-target interval, showed a “gradient effect” (i.e., 

increasing response latency with increasing eccentricity) in the small but not in the large 
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condition, indicating efficient zoom-in and zoom-out attentional mechanisms. In contrast, 

children with ASD showed a gradient effect also in the large focusing cue condition, 

suggesting a specific zoom-out attentional impairment. In addition, at the long cue-target 

interval the ASD group showed an atypical gradient effect in the small cue condition, 

suggesting a prolonged zoom-in and a sluggish zoom-out attentional mechanism. 

In a following study (Ronconi et al., 2012), this zoom-out impairment was found to be 

associated with the inability to discriminate coherent motion information (for a review see 

Grinter et al., 2010). Moreover, the inability to zoom-out the attentional focus was found to 

be positively associated with ASD symptoms’ severity (Ronconi et al., 2012). The finding of 

a relationship between poor coherent motion perception and zoom-out impairment is 

particularly important, since difficulties in perceiving coherent motion are representative of 

the so-called “weak central coherence” (Happé and Frith, 2006). In the visual domain the 

weak central coherence of individuals with ASD lead to a strong tendency toward the 

processing of details at the expense of the global configuration (for reviews see Dakin and 

Frith, 2005; Simmons et al., 2009).  

Thus, the zoom-out attentional impairment can be one of the main factors underlying detail-

oriented perception and poor integration abilities that characterizes the perception in ASD.

Figure 2.7 Attentional zooming paradigm. Representation of experimental sequences in the small (a) and in the 
large (b) cue condition, testing zoom-in and zoom-out attentional mechanisms, respectively. Target could appear in 
one of the six locations depicted along the horizontal axis and participants are required to simple detect it by 
pressing the response key. Reproduced from Ronconi et al. (2013b). 
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The general objective of the present doctoral thesis is to contribute to a better understanding 

of visual attentional abnormalities in individuals with autism spectrum disorder (ASD), both 

at behavioral and neurophysiological level. Each study will have its own specific introduction 

part with a clear statement of the hypotheses. Here, I would like just to briefly summarize the 

rationale behind each study. 

As we see in the previous Chapter, both orienting and zooming of visual attention have found 

to be compromised in ASD. In particular, deficits are present in rapid orienting and 

disengaging of attention (for a review see Keehn et al., 2013), as well as in zooming-out the 

size of the attentional focus (Mann and Walker, 2003; Ronconi et al., 2012; 2013b). Though 

the orienting and zooming components have always been investigated separately in ASD 

population (but the same could be said for the typical population), an ecological examination 

of the deployment of visual attention should involve both processes. The aim of the first 

study (Chapter 4) is to investigate the relationship between the orienting and the zooming 

components of the attentional system in a group of children and adolescents affected by ASD. 

Specifically, we aimed to evaluate possible differences in the time course of attentional 

orienting and re-orienting between ASD and typically developing (TD) groups as a function 

of the size of their attentional focus. 

In Chapters 5 and 6, we present two studies that tested a new approach for the early 

identification of ASD neurocognitive markers. Attentional dysfunctions appear to be one of 

the earliest cognitive markers of children with ASD, and research in this area has greatly 

improved in recent years (for a review see Jones et al., in press). Early symptoms are evident 

not only when infants at-risk are compared with the control groups in their ability to attended 
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to the social scene (Chawarska et al., 2013), but also when they have to disengage visual 

attention in non-social context (Elsabbagh et al., 2013). The current strategy to identify early 

markers of the condition is to study infants siblings of older children with a diagnosis of 

ASD, which are at higher risk to develop the condition relative to the general population 

(Bolton et al. 1998). In two studies we tested a new and relatively lower cost strategy that 

together with study of infants sibling can inform this emerging area of research. 

Neurocognitive dysfunctions associated with autism can be found not only in affected 

individuals but also – thought in milder form – in individuals from the general population that 

has never received an ASD diagnosis and these findings support the idea that ASD is the 

upper extreme of a constellation of traits that may be continuously distributed in the general 

population (Dawson et al. 2002). For this reason, and considering the strong genetic basis of 

the disorder (Abrahams and Geshwind, 2008), we investigated in the general population, the 

relationship between infants’ attentional functioning and the autistic traits measured in their 

parents. In the first infants study (Chapter 5) we employed a classical Posner cuing task to 

assess the orienting of visual attention in infants and their relationship with autistic traits in 

their parents. In the second infants study (Chapter 6), we used the same approach but this 

time the focus was on the infants’ ability to adjust the attentional focus size. The attentional 

“zoom-lens” has never been tested in infants so far, so we created a paradigm suitable to 

evaluate this fundamental component of the attentional system at early stages of 

development. 

Another major section of the present doctoral thesis (Chapters 7 and 8) is focused on the 

neural mechanisms involved in the control of the attentional focus size. As previously 

introduced, individuals affected by ASD show impairments when they have to enlarge their 

focus of attention in its size (i.e., attending a broad portion of the visual field). A precise 

clarification of neural areas underlying attentional abnormalities found in ASD can be the 
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starting point for modelling atypical attentional circuitries that characterize the autistic brain. 

That is why it is important to clarify the network of brain areas involved in the attentional 

operation that are compromised in ASD. Despite several studies investigated neural sources 

of the control of the attentional orienting (for reviews see Corbetta and Shulmann, 2002; 

Corbetta et al., 2008; Noudoost et al., 2010), limited evidence are present regarding the 

control of the attentional zoom-lens. In Chapter 7, we employed transcranial magnetic 

stimulation (TMS) in typical adult participants to elucidate the neural areas involved in the 

control of the attentional zoom-lens. TMS is a focal brain stimulation technique that can be 

used to induce a transient interference with normal brain activity in a relatively restricted area 

of the brain (Walsh and Cowey, 2000). We focused on the frontal eye fields (FEF) area, that 

it is clear from the evidence discussed in the previous chapter that in both humans and 

animals is vital for mediating spatial attention. In Chapter 8, neural dynamics involved in the 

control of the attentional zoom-lens was investigated with a more explorative approach with 

high-density electroencephalography (d-EEG). First, analysis of the event related potential 

(ERPs) allowed us to reveal the electrophysiological correlates of processing target with a 

narrow or broad attentional focus. Second, neural sources estimation from d-EEG was 

performed in the cue-target interval (where participants adjust their focus of attention to the 

cued dimension) to elucidate the network of brain areas, without strong a priori as in the TMS 

study, involved both in the zoom-in and the zoom-out of the attentional focus.  

Finally, in Chapter 9, we went one step beyond the two models of visual spatial attention 

(spotlight and zoom-lens) mainly adopted so far in the study of ASD, in order to precisely 

define the spatial profile of the attentional focus in ASD. Both the spotlight and the zoom-

lens models, indeed, predict that attentional resources decrease monotonically while the 

distance from the focus of attention increase. However, they don’t represent the complete 

picture of how attention selects relevant visual information in the environment. Recent 
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neurophysiological evidence (Müller and Kleinschmidt, 2004; Hopf et al., 2006, 2010) 

demonstrate that visual search requiring spatial scrutiny for object recognition elicits – in the 

immediate surround of the attentional focus – a zone of attenuated excitability forming a 

“Mexican-hat” profile (Müller and Kleinschmidt, 2004; Müller et al., 2005). The attenuated 

excitability in the immediate surround of the attentional focus would be optimal to highlight 

relevant information and attenuate the deleterious noise during the selection of relevant visual 

target (Hopf et al., 2006). 

 

 

 

 

 

	  

	  

	  

	  

	  

	  

	  

	  

	  



 

CHAPTER 4 - RELATIONSHIP BETWEEN ORIENTING AND 
ZOOMING MECHANISMS IN ASD 

 

 

 

4.1 Introduction 

It is well known that perception of relevant information is mediated by visual attention, as 

extensively described in Chapter 2. Traditionally, the attentional focus has been compared to 

a “spotlight”, that can moves to a specific region in the visual space, improving information 

processing in the attended area at the expense of other locations (Posner, 1980; Posner and 

Petersen, 1990; Corbetta and Shulman, 2002; Carrasco, 2011). In addition, the attentional 

focus can be adjusted in its size in order to process information from a broad or a narrow 

region of the visual field – as proposed by the “zoom-lens” model of attention (Eriksen and 

St. James, 1986; Castiello and Umiltà, 1990; Turatto et al., 2000).  

ASD has been repeatedly associated with different types of dysfunctions in spatial attention 

(for reviews see Ames and Fletcher-Watson, 2010; Keehn et al., 2013) and the idea that 

people with ASD pay attention to the world differently, and that this might contribute to 

abnormalities in visual perception (Dakin and Frith, 2005; Simmons et al., 2009) and 

consequently in higher-level cognitive domains (Mundy, 2003; Mundy and Newell, 2007) is 

one of the most intriguing aspects of current ASD research. On the one hand, studies that 

evaluated the “spotlight” (i.e., orienting) efficiency in ASD found impairments in rapid 

orienting (Townsend et al., 1996) as well as in disengaging attention from a previously 

attended location (Wainwright-Sharp and Bryson, 1993; Courchesne et al., 1994; Landry and 

Bryson, 2004). Recently, a longitudinal study in a cohort of children at risk for ASD 

demonstrated that this disengagement deficit of visual attention discriminated 14-month-old 

infants who later manifest an ASD in toddlerhood (Elsabbagh et al., 2013). On the other 
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hand, studies that evaluated the “zoom-lens” (i.e., zooming) efficiency in ASD found that the 

disorder seems to be associated to impairment in “zooming-out” the attentional focus, namely 

the ability to spread attentional resources in a broad portion of the visual field (Mann and 

Walker, 2003; Ronconi et al., 2012, 2013b). 

The orienting and the zooming mechanisms, though with a certain degree of independence 

(Castiello & Umiltà, 1992; Turatto et al., 2000; Fu et al., 2005), normally cooperate to select 

visual information that is relevant to our current behaviour. This cooperation allows us to 

plan accurate eye-movements, targeting the source of relevant information, as suggested by 

the premotor theory of attention (Rizzolatti et al., 1987). Although the orienting and the 

zooming components have been mainly investigated separately, an ecological examination of 

the deployment of visual attention should involve both the orienting and the zooming 

mechanism. First, because in the case of ASD impairments on both mechanisms have been 

documented as stated above. Second, because the deployment of visual attention is highly 

flexible and can adapt to various task demands to select relevant stimuli in a diverse range of 

spatial configurations (McMains and Somers, 2005). Previous studies by Castiello and 

Umiltà (1990, 1992) showed that typical adult subjects can maintain two attentional foci in 

non-contiguous regions of the visual field and can also vary their sizes in accordance with 

task demands. More recently, McMains and Somers (2004) confirmed the existence of 

multiple spotlight of attentional selection in visual cortex by using functional magnetic 

resonance imaging (fMRI). These findings determined that the orienting and the zooming 

mechanisms efficiency can be evaluated simultaneously in a single paradigm. To this aim, in 

the present experiment we modified the classical spatial cuing paradigm (Posner, 1980). Two 

small or large cues were initially presented at opposite sides of the visual hemifield. 

Subsequently, one of these cues was briefly flashed to manipulate its spatial validity. In valid 

trials the target appeared at the cued location while in invalid trials attention was captured in 
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the opposite hemifield. Neutral trials were also employed, and in this case both cues were 

flashed and consequently no information on the target location was provided. The two groups 

of participants comprised adolescents affected by ASD and typically developing (TD) peers 

matched for age and cognitive level. The analysis of the “cuing effect” (CE; i.e., difference in 

reactions times between invalid and valid trials) at different inter-stimulus interval (ISI) 

allowed us to evaluate possible differences in the time course of attentional orienting and re-

orienting between ASD and TD groups as a function of the size of their attention foci. Since 

orienting and zooming of the attentional focus are not completely independent (Castiello and 

Umiltà, 1992; Fu et al., 2005), the deficit in zooming-out the attentional focus (Mann and 

Walker, 2003; Ronconi et al., 2012, 2013b) should amplify the problem in orienting and 

disengagement that was previously observed in ASD (Wainwright-Sharp and Bryson, 1993; 

Courchesne et al., 1994; Landry and Bryson, 2004; Elsabbagh et al., 2013). 

 

4.2 Methods 

4.2.1 Participants 

Forty-four children took part in the experiment. Both the ASD and TD groups comprised 22 

children each. All participants with ASD were recruited according to the following criteria: 

(i) full scale IQ > 70 as measured by the Italian version of Wechsler Intelligence Scale for 

Children-Revised (WISC-III, Wechsler, 1991); (ii) absence of gross behavioural problems; 

(iii) normal or corrected-to-normal vision and hearing; (iv) absence of drug therapy; and (v) 

absence of attention deficit hyperactivity disorder on the basis of DSM-IV criteria (American 

Psychiatric Association, 1994). Children with ASD were recruited at the Developmental 

Neuropsychology Unit of Scientific Institute “E. Medea” (Bosisio Parini, Italy) and at 

“Associazione La Nostra Famiglia” (Padua, Italy). Diagnosis of ASD was made by licensed 

clinicians experienced in the assessment of ASD in respect to DSM-IV diagnostic criteria and 
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to the Autism Diagnostic Observation Scale (ADOS; Lord et al., 2002). Children of the TD 

group were randomly sampled in Padua public schools. According to the parents’ report, TD 

children did not have prior history of any psychiatric disorders. Both groups were matched 

for chronological age (t(42)=-0.62, p=.535). Cognitive level in TD children was estimated with 

two Verbal (Vocabulary and Similarities) and two Performance (Block Design and Pictures 

Completion) subtests of the WISC-III (Wechsler, 1991). ASD and TD group did not differed 

in any of the four subtests (all ps>.113). The Social Communication Questionnaire (Rutter et 

al., 2003) was also administered to both groups. Children of the ASD group scored 

significantly higher in comparison to the TD group in both the Current (t(42)=9.41, p<.001) 

and Lifetime (t(42)=16.64, p<.001) forms. For details about participants’ characterization see 

Table 4.1.  

The entire research protocol was approved by the ethical committees of both Scientific 

Institute “E. Medea” and Department of General Psychology of Padua University. Informed 

consent was obtained from each child and their parents and the research was conducted in 

accordance to the principles elucidated in the declaration of Helsinki.  
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Table 4.1 Descriptive statistics of participants. ASD=Autism Spectrum Disorder; TD=Typically Developing. 

  ASD (n=22) TD (n=22) p-value 

Mean (SD) Mean (SD)  
Age 13.9 (2.7) 14.4 (2.6) n.s 
Gender 19 M 18 M - 
TIQ 95.5 (17.9) - - 
WISC III - Vocabulary 9.8 (3.7) 10.0 (2.4) n.s. 
WISC III - Similarities 9.9 (3.4) 9.9 (2.4) n.s. 
WISC III - Picture completion 9.8 (3.8) 11.4 (2.4) n.s. 

WISC III - Block Design 9.8 (3.8) 10.8 (2.4) n.s. 
Social Communication 
Questionnaire (SCQ) - Current 

12.5 (6.9)  3.14 (3.2) <.001 

Social Communication 
Questionnaire (SCQ) - Lifetime 

19.3 (8.7) 2.7 (2.5) <.001 

ADOS - Communication 3.2 (1.8) - - 

ADOS – Social Interaction 5.7 (3.1) - - 

 

4.2.2 Apparatus and stimuli 

The experiment was conducted in a dimly lit and quiet room. Participants were seated 50 cm 

far from an LCD screen (17 inch, 75 Hz). A chinrest was used to avoid head movement. 

Stimulus presentation and data acquisition were performed with E-Prime 2 (Psychology 

Software Tolls, Inc.). The choice about stimuli parameters was based on previous pilot 

observations. 

All stimuli were middle grey (RGB: 128, 128, 128) presented on a black background. 

Fixation point consisted in a cross subtending a visual angle of 0.5 deg, presented on the 

screen center. To manipulate the size of the attentional focus two pairs of circle with different 

dimension were presented both on the left and right side of the fixation point, at an 

eccentricity of 9.6 deg from the fixation point. In the small cue condition there were two 

circles with a diameter of 2.17 deg, whereas in the large cue condition there were two circles 

with a diameter of 6.35 deg. The target stimulus was a small dot (diameter=1.5 deg) and 

appeared in the center of the two cues.  
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4.2.3 Procedure 

Children were instructed to keep their eyes on the fixation for the entire duration of the trial. 

Each trial started with the onset of the fixation cross. After 500 ms, two small or large circles 

were presented at both the left and right side of the fixation. After 500 ms from the 

presentation of the circles, one or both of them were briefly thickened for 50 ms, resulting in 

a rapid flash. In the valid trials, the circle flashed on the same side of the target. In the invalid 

trials, the circle flashed on the opposite side of the target. In the neutral trials, circles flashed 

at both sides. The temporal interval or interstimulus interval (ISI) between the offset of the 

cue and the target onset was randomly chosen between 100, 400 or 700 ms. After this 

variable ISI, the target appeared on one side for 20 ms. Notably, the cue was completely not 

informative about the target location (valid cues indicated the correct target position with a 

probability of 50%). Participants were asked to press the space bar as soon as they see the 

target appearing. Catch trials, in which the stimulus was not presented and the participant did 

not have to respond, were intermixed with response trials. 

The entire experiment consisted of 198 trials, randomly intermixed. Precisely, 180 response 

trials (2 cue-sizes by 3 cue-condition by 3 ISI, each repeated 10 times) and 18 catch trials. At 

the end of each trial a blank screen was presented until the experimenter pressed the mouse 

button to start the next trial. 
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4.3 Results 

4.3.1 Cuing effect 

Reaction times (RTs) of accurate trials (filtered between 150 and 1200 ms) were used to 

compute the cuing effect (CE), that is the difference in RTs between invalid and valid trials 

and a commonly used index of the attentional orienting ability. The CE was then analysed 

with a 2×3×2 mixed design analysis of variance (ANOVA) with one between-subjects factor, 

the group (ASD vs. TD), and two within-subjects factors: the cue size (small vs. large) and 

the ISI (100, 400 and 700 ms). ANOVA revealed a main effect of ISI (F(2, 84)=12.01, p<.001, 

η2
p=.22), showing that overall mean CE varied as a function of the cue-target ISI 

(mean±SEM: ISI 100 = 13.61±6.18; ISI 400 = -2.24±6.97; ISI 700 = -31.81±6.53). 

Importantly, a significant cue size by ISI by group interaction emerged (F(2, 84)=3.43, p=.037, 

η2
p=.08), suggesting that the time course of the CE was different in the two groups relative to 

the cue size displayed. To further explore this three-way interaction we performed two 

distinct ISI by group ANOVA, one for the small and one for the large cue condition. 

ANOVA performed in the small cue condition showed only a main effect if ISI (F(2, 84)=5.83, 

Figure 4.1 Schematic representation of the task procedure. 
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p=.008, η2
p=.11) but no interaction. In contrast, ANOVA performed in the large cue 

condition revealed both a main effect of ISI (F(2, 84)=11.25, p<.001, η2
p=.21) and a significant 

ISI by group interaction (F(2, 84)=3.98, p=.022, η2
p=.09; ; see Figure 4.2). A series of planned 

comparisons was then performed for both groups on the mean CE values to test the difference 

against µ=0 (absence of cuing effect, i.e. no difference between valid and invalid trials). In 

the TD group, trials with ISI=100 ms showed a significant positive difference as compared to 

0 (t(21)=2.03, p=.027), no difference at ISI=400 ms (t(21)=-1.49, p=.152), and a significant 

negative difference at ISI=700 ms (t(21)=-3.77, p=.001). In the ASD group, trials with ISI=100 

ms did not show a significant difference as compared to 0 (t(21)=.24, p=.812), while a positive 

difference emerged at ISI=400 ms (t(21)=2.35, p=.028), and a significant negative difference 

at ISI=700 ms (t(21)=-3.11, p=.005). Moreover, a significant difference emerged also when the 

CE at ISI=400 ms was compared between the two groups (t-test for independent sample: 

t(42)=2.70, p=.010).  

 

Figure 4.2 Bar plot showing the mean cuing effect (difference in RTs between the invalid and valid trials) as a function 
of group, inter-stimulus interval (ISI) and cue-size condition (small vs. large). In the large cue condition, the significant 
two-way interaction ISI by group was explored by the means of planned comparisons. *=p<.05 resulting from one-
sample t-tests against 0; ★=p<.05 resulting from independent sample t-test (ASD vs. TD). 
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4.3.2 Correlation between cuing effect and the autistic symptomatology  

We considered the possible relationship between the individual cuing effects in the large cue 

condition and the ASD symptomatology measured by the ADOS (Lord et al., 2002). Partial 

correlation was performed to control for the effect of age, and the results showed that 

individual cuing effect at ISI=100 was negatively correlated with ADOS Social Interaction 

score (r(22) = -.422, p=.025; see Figure 4.3). 

These results show that the sluggish attentional orienting exhibited by the ASD group in the 

large cue was associated with autistic symptomatology, so that slower attentional 

modulations corresponded to more severe problems in social interaction. 

 

 

 

4.4 Discussion 

In the present experiment we studied the relationship between orienting and zooming 

attentional mechanisms in adolescents affected by ASD and TD peers. Previous studies 

suggest that both functions are compromised in ASD, impaired rapid orienting and 

disengagement characterize the former mechanism (Wainwright-Sharp and Bryson, 1993; 

r(22)=-.422, p=.025 

Figure 4.3 Scatterplot showing the 
relationship between individual cuing 
effect in the large cue trials (ISI=100 ms) 
and the ADOS Social Interaction subscore.	  
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Courchesne et al., 1994; Landry and Bryson, 2004; Elsabbagh et al., 2013), while an 

impaired zoom-out characterizes the latter one (Mann and Walker, 2003; Ronconi et al., 

2012, 2013b). 

Our results showed that in the small cue condition, where the two attentional foci had initially 

to be zoomed-in and then oriented toward the position indicated by the cue, the time course 

of attentional orienting was not different between the two groups. At the first ISI (100 ms), a 

positive cuing effect (RTs for valid trials were faster then RTs for invalid ones) suggests 

participants’ attention was rapidly oriented toward the cued hemifield. At the intermediate ISI 

(400 ms), the cuing effect decayed (no difference between valid and invalid trials and at the 

third ISI (700 ms) a negative cuing effect emerged (invalid trials were faster relative to valid 

trials), thus resulting in the typical inhibition of return (IOR). IOR is a bias against directing 

attention to a previously cued location and it is a well-established sign of attentional re-

orienting from the original cued position (first described by Posner and Cohen, 1984; for a 

review see Klein, 2000).  

Interestingly, the two groups differed in their performance in the large cue condition. Here, 

the two attentional foci had initially to be zoomed-out and then oriented toward the cued 

position. In this case we found evidence of a different time course of attentional orienting 

between the two groups. The TD group showed a pattern of results very similar to what 

observed in the small cue condition: facilitation at the first ISI and a significant IOR at the 

third one, with a nulled cuing effect at the intermediate ISI. On the contrary, in the ASD 

group, the facilitation did not emerge at the first ISI but only at the intermediate one, thus 

revealing a specific sluggish attentional orienting only if an attentional zoom-out was 

required. At the third ISI, there was no difference between groups and both showed a 

significant IOR.  
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This evidence was supported also by a significant negative correlation between the individual 

rapid orienting ability in the large cue condition (individual cuing effect at ISI=100 ms) and 

the ADOS Social Interaction score, which measured the severity of autistic symptomatology 

in the social domain. The more impaired they were in orienting after the zoom-out the more 

severe was their impairments in social interaction. On the contrary, when the focus of 

attention had initially to be zoomed-in, no difference between ASD and TD groups emerged. 

A plausible explanation of the present results is that while TD can efficiently orient their 

attentional focus both when narrow or broad portions of the visual field have to be attended, 

individuals affected by ASD suffer from a sluggish zoom-out of the attentional focus and this 

is likely to impact serially also other operations that focus of attention has to perform, in this 

case the orienting toward the cued location. Even if previous studies about zooming in ASD 

required the manipulation of the size of a single focus, the problem does not seem to rely on 

splitting attention between two foci (Castiello and Umiltà, 1992; McMains and Somers, 

2004), since there was no difference between group when attention had initially to be 

zoomed-in, but only when it had initially to be zoomed-out.  

To conclude, these results are important as they confirm previous findings of an 

impaired/sluggish zoom-out of the attentional focus in ASD obtained by other researchers 

(Mann and Walker, 2003) and in our own laboratory in an independent sample of children 

(Ronconi et al., 2012, 2013b). Moreover, the present findings have important implication for 

the studies of the orienting abilities in ASD. All attentional cueing paradigms, indeed, allow a 

fine grained analysis of the time course of attentional processing and enable researchers to 

identify components of attention that are impaired in ASD. However, as shown by Ames and 

Fletcher-Watson (2010; see also Keehn et al., 2013) in their recent review, there are a number 

of inconsistencies in this body of research. Potential methodological sources of this 

inconsistency, among others, may include the size of the attentional focus that participants 
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have to orient in the visual field. When a broad portion of the visual space has to be attended, 

difficulties in orienting the focus of attention can be only a mere consequence of difficulties 

in zooming-out the attentional focus size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 - THE ORIENTING MECHANISM IN 8-
MONTH-OLD INFANTS AND ITS  RELATIONSHIP WITH 

THE BROADER AUTISTIC PHENOTYPE (BAP). 
 

*This study has been published as: Ronconi L, Facoetti A, Bulf H, Franchin L, Bettoni R, Valenza E (2014). Paternal autistic 
traits are predictive of infants visual attention. J Autism Dev Disord. In press. doi: 10.1007/s10803-013-2018-1.   
 

 

5.1 Introduction 

As summarized in Chapter 2, people with ASD show dysfunctions not only when “zooming 

out” their attention to spread it over a broad portion of the visual field (Mann and Walker, 

2003; Ronconi et al., 2012, 2013b), but also in quickly orienting (Townsend et al., 1996) or 

disengaging attention from a previously cued location (Wainwright-Sharp and Bryson, 1993; 

Courchesne et al., 1994; Landry and Bryson, 2004).  

Attentional dysfunctions in ASD are not limited to visuo-spatial domains. 

Electrophysiological studies, among others, have demonstrated atypical alerting mechanisms 

in individuals with ASD (Courchesne et al., 1985; Ciesielski et al., 1990; Bruneau et al., 

2003; Orekhova et al., 2009; for a review see Keehn et al., 2013), as well as in 10-month-old 

infants at risk of developing the disorder (McCleery et al., 2009).  

These findings converge with the neuroconstructivist approach that suggests development 

plays a crucial role in phenotypic outcomes, and tiny variations in an initial state could cause 

marked differences in end states (Karmiloff-Smith, 1998). Some authors suggest high-level 

social impairment may spring from early impairments in other low-level attentional systems 

(Landry and Bryson, 2004; Elsabbagh et al., 2009). According to this view, inflexible spatial 

attention in early development could impair later visual orienting toward social stimuli 

(Mundy and Newell, 2007; Elsabbagh and Johnson, 2010). Therefore, current ASD research 
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has tried to identify neurocognitive markers for early detection of this disorder, studying the 

attentional mechanisms exhibited in infancy.  

Since ASD is highly heritable, the most frequent approach is the study of infant siblings of 

older children with autism, which are at high risk of developing this disorder (Bolton et al., 

1998). The infants show similar impairment to their siblings in disengaging visual attention 

in a “gap-overlap” paradigm (Elsabbagh et al., 2009).  

Siblings are part of the broader autism phenotype (BAP), in which ASD represents the upper 

extreme of a constellation of traits that may be continuously distributed in the general 

population (Dawson et al., 2002). Therefore, neurocognitive dysfunctions associated with 

autism can be found not only in affected individuals but also in their genetic relatives 

(Dawson et al., 2005; Belmonte et al., 2010), many of whom have social and communication 

impairments similar to those in ASD, but in milder form.  

Studies quantifying autistic traits have found that people score higher when they have a 

family history of ASD (Bishop et al., 2004). Importantly, children whose parents show high 

but subthreshold presence of autistic traits have, in turn, more prevalent autistic traits 

(Constantino and Todd, 2005).  

People with elevated autistic traits show abnormalities not only in the high-level social 

domain, but also in low-level visual attention and perception. For example, they outperform 

individuals with low autistic traits in tasks requiring detail-oriented perception (Almeida et 

al., 2010), and tolerate a higher amount of perceptual load in visual tasks (Bayliss and 

Kritikos, 2011), but do not easily identify coherent motion (Grinter et al., 2010) or the global 

level of a hierarchical Navon stimuli with strongly salient local components (Sutherland and 

Crewther, 2010). 

The present study aims to test a new approach to identify possible early markers of ASD. We 

hypothesized that traits for autism in adults from the general population could be related to 
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abnormalities in attentional functioning measured in their 8-month-old offspring. To verify 

this, we studied the relationship between infants’ ability to deploy attention, in both space 

(visual orienting) and time (alerting), and autistic traits their parents self-reported in the 

Autism Quotient questionnaire (AQ; Baron-Cohen et al., 2001).  

Efficiency of attentional systems is crucial to explore the environment for further processing 

and learning (Petersen and Posner, 2012). In particular, early dysfunction of orienting and 

alerting skills might contribute to the atypical development of joint attention and 

consequently to impairment in social cognition (Mundy, 2003). Orienting and alerting 

systems develop dramatically in the first year of life (Johnson et al., 1991; Hood, 1995). 

Infants get faster at paying attention to a location: the efficiency of neural circuits controlling 

these mechanisms improves over the first six months of life (Johnson and Tucker, 1996; 

Richards, 2003, 2005). Orienting and alerting have been consistently associated with the right 

ventral frontoparietal network in adults (Corbetta and Shulman, 2002, 2011) 

Here, by using an eye-tracker system, we tested infants with a spatial cueing task (Posner, 

1980). A visual target was presented after the onset of a spatiotemporal cue that could be: (i) 

valid, indicating where the target would appear; (ii) neutral, providing no information on the 

target location; and (iii) invalid, directing attention away from the target location. By 

calculating differences in the time to target fixation (TTF) between invalid and valid trials, 

we can estimate the efficiency of attentional orienting. We also employed two stimulus onset 

asynchronies (SOAs): short (84 ms) and long (168 ms). These measured the time course of 

orienting as well as the alerting system’s efficiency, that is, the phasic arousal state that 

involves temporal preparation for response to an expected signal or event. 

As discussed above, we hypothesized that a high level of autistic traits in parents could be 

related to infants’ impairment. More specifically, we looked for impairment in: i) rapid 

attentional orienting (measured by TTF difference between invalid and valid trials with the 



Chapter 5 - The orienting mechanism in 8-month-old infants and its relationship with the broader autistic phenotype (BAP). 

	  

	   62 

short SOA); ii) disengagement of attention from a previously cued location (measured by 

invalid trials with the long SOA) and; iii) the alerting mechanism (overall difference between 

the two SOAs). Given that both ASD and sub-clinical autistic traits are more prevalent in 

male than female subjects (Baron-Cohen et al., 2001, 2011; Constantino and Todd, 2003; 

Amaral et al., 2008), it is reasonable to postulate that infants’ attentional abilities will show 

stronger association with paternal autistic traits than maternal ones.  

 

5.2 Methods 

5.2.1 Participants 

Twenty-six 8-month-old infants (13 females, mean age = 249 days, range = 235-262 days) 

and their parents comprised the final sample. Eight infants were observed but excluded from 

the final sample because of uninterpretable eye-movement data resulting from poor 

calibration of the point of gaze (n = 4) or general fussiness (n = 4). The mean parent age was 

35 for mothers (range = 27-42 years) and 37 for fathers (range = 28-47 years), and all were 

biological parents. The inclusion criteria for all participants were that infants were born at full 

term, in good health, with no sensorial or neurological disorders. Infants were tested only 

after their parents gave informed consent. The departmental ethical committee approved the 

present study, and all research was conducted in accordance with the ethical standards of the 

1964 Declaration of Helsinki and its later amendments. 

 

5.2.2 Infants’ spatial cueing task 

5.2.2.1 Apparatus  

The stimuli were presented with E-Prime 2.0 software on a 19-inch monitor (resolution 1024 

x 768 pixels). A remote, pan-tilt infrared eye-tracking camera (Model 504, Applied Science 

Laboratory, Bedford, MA) using bright-pupil technology was directly below the stimulus 
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screen, recording participants’ 

eye movements at 50 Hz. An 

experimenter guided the eye-

tracking camera by remote 

control, keeping the 

participants’ eyes in focus. A 

television monitor displayed 

the eyes, simplifying this 

procedure. To coordinate eye 

movement data with respective 

stimulus displays, the stimulus-generating computer sent unique, time-stamped numerical 

codes via parallel port to the data-collecting computer, indicating the onset and type of 

stimulus display. The digital data, indicating the fixation locations and changes in locations 

of the eye, were calculated in relation to the centroids of the pupils and the corneal 

reflections, using the Applied Science Laboratories' algorithm. 

 

5.2.2.2 Stimuli and Procedure 

The infants sat in an infant car seat 60 cm from the stimulus monitor. Parents usually sat 

behind the infant. Before experimental trials began, the stimulus monitor presented animated 

cartoons (accompanied by a sound) at three different locations (centre, top left, and bottom 

right) to calibrate the eye tracker. All subsequent eye data were calculated from these 

calibration values. The cartoon directed the infant’s gaze to the centre as the test began. A 

dynamic stimulus is usually adopted with infants of this age because it easily triggers their 

attention (e.g., Johnson & Tucker, 1996; Elsabbagh et al., 2009).  

Figure 5.1 Schematic representation of a valid cue condition of the infants’ 
spatial cueing task. Cue-target SOA = stimulus onset asynchrony = interval 
between cue and target. 
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As soon as a participant looked at the central fixation point for 300 ms, two coloured circles 

(6°) were automatically presented peripherally (11° of eccentricity, with the two edges of the 

circles separated by 16°), one on the left and one on the right of the central attention-getter, 

on a black background (see Figure 5.1). Four different colours of circles (red, green, yellow 

and blue) and four different attention-getters, randomly presented during the trial, were 

chosen to sustain infants’ attention. The circles appeared for 966 ms while the cartoon 

remained in the centre. It is worth to note that the cartoon’s movement and sound made it 

much more triggering than the peripheral static circles. Therefore, central and peripheral 

stimuli were unbalanced, reducing the possibility of eye movements toward the peripheral 

circles. A cue, the thickening of one of the two circles (from 0.2° to 0.7°), then appeared for 

42 ms in addition to the cartoon. This brief change did not let the infant orient eye movement 

toward the cue (i.e., covert attention; Richards, 2001). Moreover, the presentation of the cue 

at the same time as a dynamic central fixation stimulus helped prevent saccades to the 

peripheral cue (e.g. Johnson & Tucker, 1996). Valid cues (thickening in the same circle as the 

target), neutral cues (consisting in the thickening of both circles, providing no information on 

the target location), or invalid cues (thickening the circle that did not include the target), were 

randomly intermixed. Finally, the visual target, a smiling and flickering schematic face the 

visual target, consisting in a smiling and flickering schematic face (3.2°, flickering at 1 cycle 

of 168 ms, 64 ms on - 64 ms off, 5.95 Hz), appeared after one of two intervals (84 or 168 

ms). One out of four different target types was randomly presented during each trial. The 

target remained visible until the participant glanced at it or for a maximum of 2 s. This 

terminated the trial, and another trial began at the central attention-getter. Each infant 

received 60 trials divided into three blocks. Each block consisted of 8 valid, 8 invalid and 4 

neutral trials, for a total of 24 valid trials (12 for each cue-target SOA), 24 invalid trials (12 

for each cue-target SOA), and 12 neutral trials (6 for each cue-target SOA). 
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5.2.2.3 Data analysis 

The display was virtually divided into 3 square areas of interest (AOI); one surrounded the 

position of the central attention-getter, and two corresponded to the two circles. Each AOI 

measured approximately 7.8° on each side. Time to target fixation (TTF) was a dependent 

variable (fixation threshold settings: duration > 100 ms, max displacement < 1° of visual 

angle). 

 

5.2.3 Evaluation of self-reported autistic traits in parents 

Both parents of each participating infant completed a paper version of the AQ questionnaire 

(Baron-Cohen et al., 2001); higher scores correspond to elevated ASD traits. In addition to 

the total score, we also computed five sub-scores: (i) social skill; (ii) attention switching; (iii) 

attention to detail; (iv) communication; and (v) imagination.  

 

5.3 Results 

5.3.1 Infants’ spatial cueing task 

A mean of 27.5 trials (standard error mean, SEM = 1.97) were excluded from statistical 

analysis because: (i) the infant did not look at the central AOI at the onset of the cue and the 

target, (ii) the infant looked outside the AOI that contained the target, (iii) the infant oriented 

toward the peripheral target within the first 100 ms after its onset (anticipatory eye-

movements), or (iv) the signal of the eye tracker was lost during the stimuli presentation. The 

final number of trials in which infants correctly detected the targets was (mean and SEM) 

32.5 ± 1.97. For the shorter SOA (84 ms) valid trials were 6.31 ± 0.43, neutral ones were 3.08 

± 0.32, and invalid ones were 6.73 ± 0.46; for the longer SOA (168 ms), valid trials were 

6.85 ± 0.42, neutral ones were 3.08 ± 0.28, and invalids ones were 6.58 ± 0.46. We analyzed 

corrected TTF using a repeated-measures ANOVA with a 3 × 2 design, in which the within 
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subjects factors were the cue condition (valid, neutral and invalid) and the cue-target SOA 

(84 and 168 ms). The ANOVA revealed a main effect of cue-target SOA (F(1,23) = 18.28, p < 

.001, η2
p=.44), showing that the mean TTF were faster (312 ± 10 ms) at the longer SOA than 

in the shorter one (362 ± 10 ms). The main effect of cue condition was also significant 

(F(1.37,31.48) = 13.2, p < .001, η2
p=.36), showing that mean TTF varied with the condition of the 

cue (299 ± 8, 334 ± 15 and 379 ± 13 ms, respectively for valid, neutral and invalid cue 

condition). The SOA by cue condition interaction was not significant (F < 1, η2
p=.001; see 

Figure 5.2). 
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5.3.2 Relationship between attention in infants and parents’ autistic traits 

Infants’ TTF in the spatial cueing task were correlated to the amount of self-reported autistic 

traits exhibited by their parents. In line with the hypotheses in the Introduction, we used the 

following variables from the infants’ cueing task: (i) the rapid orienting index, or the average 

difference between TTF under invalid and valid conditions at the short cue-target (SOAs, 84 

ms), which measures the ability to use the spatial information provided by the peripheral cue 

to rapidly and automatically orient visual attention; (ii) the raw TTF in the invalid condition 

at the long cue-target SOAs (168 ms), which measures the ability to disengage attention from 

a previously cued location; and (iii) the alerting index, the difference in TTF across all cue 

conditions between short and long cue-target SOAs, which measures the ability to prepare a 

rapid response to the target stimuli after getting the temporal cue.  

Figure 5.2 a) Results of the infants’ spatial cueing task where TTF (time to target fixation) is plotted as a function of cue 
condition and cue-target SOA (stimulus onset asynchrony). Bars represent the SEM. b) Scatter plot showing the 
individual mean TTF separated for cue condition and SOA. Horizontal lines represent the medians.	  
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We found a significant positive correlation between the TTF on the invalid cue condition at 

the second SOA (168 ms) and AQ attention to details sub-scores (r(24) = .42, p < .05). The 

higher the attention to detail reported by fathers, the slower their infants were to look away 

from a previously cued location. We also found a negative correlation between the rapid 

orienting index and AQ communication sub-scores (r(25) = -.56, p < .05): higher 

communication problems reported by fathers corresponded to lower rapid orienting skill in 

their infants. Finally, a significant negative correlation between the alerting index and AQ 

attention to details sub-scores (r(24) = -.47, p < .05), shows that higher autistic traits 

corresponded to inefficient alerting skill.  

In order to control for the paternal age effect (Parner et al., 2012) as a potential mediator or 

confounder of these relationships between paternal autistic traits and infants’ attention, we 

performed three two-step fixed-entry multiple regression analyses, with paternal age always 

as a predictor in the first step. 

In the first regression analysis, the predictor in the second step was the AQ attention to details 

sub-score, while the dependent variable was TTF in the invalid cue condition at 168 ms cue-

target SOA. Overall the regression model accounted for 17% of the variance (p < .05). The 

AQ attention to details entered last accounted for 17% (F change(1,23) = 4.85, p < .05) of 

unique variance of TTF in the attentional disengagement index (see Figure 5.3, panel A).  

In the second regression analysis, the dependent variable was the rapid orienting index, while 

the AQ communication was the predictor in the second step. The entire model accounted for 

35% of the variance (p < .01). The AQ communication sub-scores entered last accounted for 

19% (F change(1,23) = 6.45, p < .05) of the unique variance of the rapid orienting index (see 

Figure 5.3, panel B).  

In the third regression analysis, the dependent variable was the alerting index, while the AQ 

attention to details was the predictor in the second step. The entire model accounted for 26% 
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of the variance (p < .05), and the AQ attention to details sub-scores entered last accounted for 

19% (F change(1,21) = 5.22, p < .05) of the unique variance of the alerting index (see Figure 

5.3, panel C).  

Interestingly, we did not find any significant results (all ps > 0.05) when exploring the 

relationship between maternal autistic traits and their offspring’s attentional indexes. 

 

5.4 Discussion 

In the present study, we investigated a new approach for the identification of neurocognitive 

markers that, together with the study of infant siblings, might help to characterize the early 

developmental course of broader phenotype of autism. We hypothesized a relationship 

between the attentional functioning of 8-month-old infants and the autistic traits in their 

parents. Our results show that different aspects of attentional deployment in infants were 

related to autistic traits in their fathers.  

Specifically, we found that TTF on the invalid cue condition at the long cue-target interval 

was associated with higher levels of attention to details in the fathers. Since the invalid cue 

condition measures the ability to disengage and re-orient the focus of attention (Posner, 

1980), this evidence agrees with findings of impairments in that ability, demonstrated not 

Figure 5.3 Correlation plots of: a) the relationship between the invalid cue condition of spatial cueing task in infants and 
the paternal AQ attention to details sub-score; b) the relationship between the rapid orienting index of spatial cueing task 
in infants and the paternal AQ communication sub-score; c) the relationship between the alerting index (difference 
between TTF at the first and at the second cue-target SOA) of spatial cueing task in infants and the paternal AQ attention 
to details sub-score. 
	  



Chapter 5 - The orienting mechanism in 8-month-old infants and its relationship with the broader autistic phenotype (BAP). 

	  

	   70 

only in the ASD population (Wainwright-Sharp and Bryson, 1993; Courchesne et al., 1994; 

Landry and Bryson, 2004), but also in infant siblings of children with ASD (Elsabbagh et al., 

2009), and, more importantly, in infants who later develop ASD (Zwaigenbaum et al., 2005; 

Elsabbagh et al., 2013; Sacrey et al., 2013). Trying to identify the possible mechanism 

connecting the infants’ ability to disengage/re-orient the focus of attention and the greater 

attention to details manifest in fathers is not easy, given that also within the ASD population 

this relation in not fully understood (for a discussion see Keehn et al., 2013). Fischer and 

Breitmeyer (1987) showed that the exploration of visual environment by the means of 

saccadic eye movement is strictly in relation to mechanisms of visual attention. During the 

engagement phase of visual attention, indeed, saccades are inhibited, thereby providing 

steady fixation. The inefficiency of the attentional disengagement could therefore be linked to 

“sticky” attention in a limited portion of the visual field, that could lead in turn to greater 

attention to the detailed aspects of visual input. Accordingly, children affected by ASD show 

a specific impairment in zooming out the attentional focus (Mann and Waler, 2003; Ronconi 

et al., 2013b), which is linked to their social-communicative impairments and global 

integration deficit of dynamic information (Ronconi et al., 2012).  

Paternal autistic traits were also related to the rapid orienting index (i.e., TTF difference 

between the invalid and the valid trials at the short cue-target SOA), which measures the 

ability to use a peripheral and transient spatial cue to rapidly shift visual attention to the cued 

location. Higher communication difficulties reported by fathers were related to smaller rapid 

orienting indexes in their infants. This evidence agrees with Wainwright-Sharp and Bryson 

(1993), who found that a group of high-functioning adolescents with autism did not show a 

cueing effect when the cue was presented for 100 ms, indicating an inability to process 

rapidly presented spatial cues. This absence of cueing effect suggests a possible disorder of 

right frontoparietal network in children with ASD (Belmonte et al., 2010; Ronconi et al., 
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2012, 2013b). Visual sensitivity to peripheral cues, indeed, induces automatic orienting of 

attention mainly controlled by the right frontoparietal network (Saalmann et al., 2007; 

Corbetta and Shulman, 2011; Ronconi et al., 2014a). Visual orienting is a basic element for 

the development of joint attention (Mundy and Newell, 2007). This idea is supported by 

previous studies showing that the degree of which attention is captured by changes in the 

visual environment (Butterworth and Jarrett, 1991) – as well as by changes in head/gaze 

direction of the caregiver (Butterworth and Grover, 1990) – influence joint attention abilities. 

Moreover, joint attention have been linked to language and communication development, as 

research in typically developing infants and toddlers demonstrated (Carpenter et al., 1998). In 

sum, we can reasonably speculate that parents with poor communication abilities transmit to 

their offspring subtle deficits in visual attention that in turn affect joint attention and 

communication development.  

Our results were not limited to the spatial dimension of attention. We also found a 

relationship between alerting efficiency and paternal autistic traits: the alerting index (i.e., 

difference in TTF between the shorter and longer cue-target SOAs) was inversely related to 

attention to details in the father, suggesting that the ability to react to high-priority stimuli 

was lower in infants whose fathers had higher attention to details. This result is compatible 

with the relationship between alerting system disorder and social impairment recently found 

in children with ASD (Keehn et al., 2010). Some authors (Gold and Gold, 1975; Dawson and 

Lewy, 1989) hypothesized that abnormal alerting would have developmental consequences in 

a variety of domains. Particularly, if the attention system is not adequately prepared to 

process incoming information with a proper level of phasic arousal, novelty can lead to 

stressful reaction. To avoid this it may be preferable to persist in the ongoing state 

(“insistence on sameness”). Thus, overfocused and detail-oriented attention could be partially 

due to the inefficiency of the alerting system that disrupts responses to novel stimuli. An 
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alternative explanation of the relationship between inefficiency in alerting and overfocused 

attention could rely on the close interplay between orienting and alerting systems. Even if 

classical theoretical frameworks claim for an independency between these two systems 

(Posner and Petersen, 1990; Petersen and Posner, 2012), recent evidence suggest an intensive 

interplay (for a review see Corbetta and Shulman, 2011). Callejas and colleagues (2004), in 

particular, demonstrate that increasing phasic alerting can exert a positive influence on 

attentional orienting, by accelerating its time-course. Thus, alerting inefficiency could 

amplify the deficit in attentional orienting and re-orienting that contributes to sticky attention 

typically associated to ASD and its broader phenotype (Zwaigenbaum et al., 2005; Keehn et 

al., 2010). 

Overall, these findings suggest that inefficient rapid orienting of visual attention in space, as 

well as poorer ability to use the temporal cue to program an action in time, characterized 

infants whose fathers showed higher presence of autistic traits.  

By contrast, maternal autistic traits were not related to any attentional measures of their 

children. This result is consistent with the evidence that ASD is four times more prevalent in 

males than in females (Baron-Cohen et al., 2011) and similarly sub-clinical autistic traits are 

more common in males (Baron Cohen et al., 2001; Constantino and Todd, 2003). However, 

this lack of a relationship should not be taken as definitive, because of the small sample size 

in the present study. 

The main innovative aspect of the present research is that early attentional markers of the 

broader autism phenotype shared not only in infant siblings of children affected by ASD, but 

also in infants whose parents show high presence of autistic traits. The infants’ early deficits 

in attention systems may be related to future deficits in higher-level domains, such as 

responses to social and non-social stimuli and communication skills (Chawarska et al., 2013; 

Hutman, 2013). Accordingly, various studies in individuals with ASD found that basic visual 
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anomalies, in particular the performance in visual search task (Joseph et al., 2009), biological 

motion processing (Koldewyn et al., 2010), and visual fixation pattern (Klin et al., 2002) 

predicted communication and social interaction impairments.  

However, our results, and similar findings reported above, derive from studies with a purely 

correlational design. Thus, it is not possible to exclude that poor development of both social 

and non-social domain derives from a common developmental pathogenic process causing 

ASD. A recent longitudinal study seems to go one step forward to clarify this question. 

Studying a cohort of children at risk for ASD, Elsabbagh and colleagues (2013) demonstrate 

the relationship between disengagement of visual attention in infancy and later autism in 

toddlerhood. 

In conclusion, the present research highlights the potential of studying infants whose parents 

exhibit elevated autistic traits to improve the identification of early ASD markers. Employing 

larger samples and using research with longitudinal design could improve the identification 

of early attentional dysfunction that might undermine typical social-communication 

development.  
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CHAPTER 6 - THE ZOOMING MECHANISM IN 8-MONTH-OLD 
INFANTS AND ITS  RELATIONSHIP WITH THE BROADER 

AUTISTIC PHENOTYPE (BAP) 

 

 

6.1 Introduction 

A wide range of studies investigated the orienting component of visual attention in 

infanthood (e.g., Clohessy et al., 1991; Johnson et al., 1991; Hood, 1993; Valenza et al., 

1994; Johnson & Tucker, 1996; Richards & Hunter, 1998; Ronconi et al., 2014b). It has been 

shown that its efficiency develops dramatically in the first year of life (Johnson et al., 1991; 

Hood, 1995), with neural circuits responsible for the spatial orienting getting faster over the 

first 6 months (Johnson & Tucker, 1996; Richards, 2003, 2005). On the other hand, the 

ability to modulate the attentional focus size – hereafter, “attentional zooming” – has yet to 

be explored in infants. 

In the present study, we developed the first paradigm to measure attentional zooming in 

infancy. In previous works the efficiency of attentional zooming was evaluated in children 

affected by developmental dyslexia (Facoetti et al., 2000; Facoetti & Molteni, 2001) and 

autism spectrum disorder (Ronconi et al., 2012, 2013b), and the neural underpinnings of this 

process was clarified using neurophysiological, neuroimaging and transcranial magnetic 

stimulation in human adults (e.g., Fu et al., 2005; Chen et al., 2009; Ronconi et al., 2014a). 

Here, an attentional zooming paradigm was readapted and an eye-tracker system was 

employed to measure saccadic latencies (SLs), defined as the time to initiate a saccade 

toward the target. SLs are the most reliable measure of covert visual attention deployment in 

infanthood.  
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SLs were measured in response to a visual target appearing at two possible eccentricities 

(central and peripheral) from the central fixation along the horizontal axis. Attentional 

resources were focused or distributed by using a small or large cue, respectively. In the small 

cue condition, the central target appeared inside the cue, while the peripheral target appeared 

outside. In the large cue condition, instead, both the central and peripheral target appeared 

inside the cue.  

Our prediction was that if the attentional zooming mechanism is already developed in 8-

months-old infants, SLs should vary between the small and the large cue condition as a 

function of target eccentricity. Specifically, if in the small cue condition infants can zoom-in 

their attentional focus, then the detection of central targets should be accelerated relative to 

the large cue condition (i.e., cue-size effect; e.g., Eriksen & St. James, 1986; Castiello & 

Umiltà, 1990; Turatto et al., 2000). Furthermore, if in the large cue condition infants can 

zoom-out their attentional focus, then the detection of peripheral targets should be accelerated 

relative to the small cue condition. We tested this hypothesis performing two different 

experiments. In the Experiment 1 visual target had the same dimension for both the central 

and the peripheral eccentricity, while in the Experiment 2 peripheral target was enlarged 

according to the cortical magnification factor (Daniel & Whitteridge, 1961), ensuring a 

balanced perceptual saliency between eccentricities. Manipulating the cue-target interval 

(100 or 300 ms), we could also evaluate what was the optimal time to adjust the focus of 

attention at this stage of development. Evidence of the time-course of the attentional zooming 

in adults have shown that the mechanism takes between 33 and 66 ms to be initiated (Benso 

et al., 1998). Previous data on both typically developing school-aged children and adults 

showed that an optimal cue-target interval to perform the attentional zooming is 100 ms, 

while at longer cue-target intervals (e.g., 500-800 ms) the attentional focus “collapsed” 

(Benso et al., 1998; Ronconi et al., 2013b, 2014a). 
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6.2 EXPERIMENT 1 

6.2.1 Method 

6.2.1.1 Participants  

Twenty-five healthy and full-term infants participated in the Experiment 1. Nine infants were 

tested but not included in the analyses, as they had less than 50% valid trials. This was due to 

fussiness or drowsiness (n=4), excessive movement of the infant, such that we were unable to 

record eye movements (n=1), or poor calibration in detecting with the eye tracker the infant’s 

gaze direction in a reliable way (n=4). The final sample was composed by sixteen infants (11 

males and 5 females) with a mean age of 8 months and 13 days (mean age=253 days, 

SD=7.83, range=243-265). Infants were recruited from a database of new parents and were 

tested only after their parents had given their informed consent. The entire research protocol 

was approved by the ethic committee of the Department of Developmental and Socialization 

Psychology of the University of Padua and was conducted in accordance to the principles 

elucidated in the Declaration of Helsinki. 

 

6.2.1.2 Stimuli 

The computer screen showed the stimuli on a black background. The attention getter was a 

coloured dynamic cartoon with a musical soundtrack. The cue was a central empty grey 

circle, concentrically displayed relative to the fixation point, with a ray of 4° in the small and 

12.5° in the large cue condition. 

The target was a coloured (green, red, or yellow) smile that could appear at two possible 

eccentricities, 3° (central) or 9° (peripheral) from the fixation along the horizontal axis. 

Targets at both eccentricity measured 2 cm (1.9°) in width and 2 cm (1.9°) in height. In the 

small cue condition, the central target appeared inside the cue, while the peripheral target 
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appeared outside. In the large cue condition, both the central and peripheral target appeared 

always inside the cue (see Figure 6.1, panel A and C). 

 

6.2.1.3 Apparatus  

The stimuli were presented with E-Prime 2.0 on a 19-inch monitor with a resolution of 

1024x768 pixels. A remote, pan-tilt infrared eye-tracking camera (Model 504, Applied 

Science Laboratories, Bedford, MA) using bright-pupil technology, placed directly below the 

stimulus screen, recorded the participant's eye movements at a temporal resolution of 50 Hz. 

Infrared light emitted from diodes on the camera was reflected back from the participant's 

retina through the pupil, producing a backlit, white pupil from the corneal surface of the eye. 

An experimenter guided the eye-tracking camera by means of a remote control, so that the 

eye of the participant was always in focus. The image of the eye on a television monitor 

made this procedure easier. To coordinate the eye-movement data with a specific stimulus 

display, the stimuli-generating computer sent a unique, time-stamped numerical code via a 

parallel port to the data-collecting computer, indicating the onset and the type of the stimulus 

display. The digital data indicating the fixation locations and change of locations of the eye 

(the eye movements themselves) were calculated in relation between the centroid of the pupil 

and the corneal reflection by using the Applied Science Laboratories' algorithm. 

Four main areas of interest (AOI) that corresponded to the possible positions of the target 

(left and right central targets; left and right peripheral targets) were selected. Each AOI 

measured 2.5 cm in width and 2.5 cm in height. 

 

6.2.1.4 Procedure  

The infant sat in an infant car seat placed 60 cm distant from the stimulus monitor. Parents 

usually were seated behind the infant seat, slightly moved randomly to the right or left side of 
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the infant, so they could see the monitor and be close to their baby. The room lights were first 

lowered, and the infants shown a dynamic cartoon with a musical soundtrack to engage his or 

her interest toward the predetermined locations, as the experimenter directed the pupil camera 

toward the participants’ eye with the remote control. 

The experimental session began with the calibration procedure that allowed the eye-tracker 

system to subsequently determine the precise direction of the infants’ gaze. The eye tracker 

was calibrated by showing to participants three markers on the screen presented one by one 

on the top-left, on the centre and on the bottom-right, and recording the eye-tracker readings 

for the eye-fixation location. If the recorded gaze position did not remain stable within the 

area covered by the calibration stimulus, a new calibration was conducted. Calibration 

usually lasted between 1 and 2 minutes. All subsequent eye data were calculated from these 

calibration values. 

An experimental trial began with the presentation, in the middle of the screen, of the central 

dynamic attention getter (a coloured moving clown). As soon as the participants looked at 

this central fixation point, one of the two types of cue – the small or the large circle – was 

presented. After a variable interval of 100 or 300 ms from the cue presentation (Stimulus 

Onset Asynchrony or SOA), the target appeared randomly on the left or on the right of the 

central attention getter, at two different eccentricities (central=3° or peripheral=9°). The 

probability of the target locations was balanced in the two sides. The target remained visible 

until the participant made a saccade toward it or for a maximum of 2 seconds, after which the 

trial terminated. 

A total of 48 trials (6 repetitions × 2 cue size × 2 SOA × 2 target eccentricities) were 

administered to each infant, randomly intermixed and arranged in two blocks, so they could 

take a break halfway trough. The entire experiment lasted about 15-20 minutes. 
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Software E-Prime allowed us to elaborate the raw data coming from the eye-tracker system, 

calculating participants’ SLs. Trials were considered valid and were analyzed only if 

saccades started from the central fixation point, were directed toward the target and reached 

it. 

 

6.2.2 Results 

A mean of 8.6 trials (SD=7) for each infant was excluded from the statistical analysis for the 

following reasons: infants looked outside the defined AOI (mean=3.1 trials; SD=3.7), or the 

signal of the eye tracker was lost during the stimuli presentation (mean=4.5 trials; SD=4.2), 

or the saccadic latencies were lower than 100 ms (i.e., anticipations; mean=0.6 trials; 

SD=0.7), or the saccadic latencies were greater than 500 ms (mean=0.4 trials; SD=0.8). The 

final number of valid was on average 39.4 (SD=7.0). Table 6.1 shows mean SLs and other 

collected measures for all infants’ valid responses, as a function of the cue size, SOA and 

target eccentricity.  
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SLs were analyzed using a repeated measure 2×2×2 analysis of variance (ANOVA) with the 

following within-subjects factors: Cue size (small vs. large), SOA (100 vs. 300) and Target 

eccentricity (central vs. peripheral). The results showed a significant main effect of SOA 

(F(1,15)=22.14, p<.001, η2
p=.60; mean±SEM SLs were 246±5 ms and 263±6 ms at the two 

SOA, respectively), and Target eccentricity (F(1,15)=26.63, p<.001, η2
p=.64; mean SLs were 

238±5 and 271±8 ms at the central and  peripheral eccentricity, respectively), and a 

significant SOA by Target eccentricity interaction (F(1,15)=6.55, p<.05, η2
p=.30; at SOA=100 

ms SLs were 236±6 and 257±7 ms for the central and the peripheral eccentricity, 

respectively; at SOA=300 ms SLs were 241±5 and 286±9 ms for the central and the 

peripheral eccentricity, respectively). 

Importantly, a Cue size by Target eccentricity interaction emerged (F(1,15)=5.61, p<.05, 

η2
p=.27; see Figure 6.2). Planned comparisons showed that SLs for peripheral target were 

Figure 6.1 Schematic representation of the attentional zooming task for Experiment 1 (panel A) and 
Experiment 2 (panel B). The two bottom panels C and D represent possible targets location in Experiment 1 
and 2 respectively, for every combination of visual hemi-field, cue size and target eccentricity. 
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significantly faster in the large (257±8) relative to the small (285±12) cue condition (t(15)=-

2.23, p<.05, η2
p=.25), while SLs for central target were faster in the small relative to the large 

cue condition, but this difference was not statistically significant (234±5 vs. 242±6;  

t(15)=1.16, p=.26, η2
p=.08). In addition, SLs were faster for central (234±5) versus peripheral 

target (285±12) in the small cue condition, (t(15)=-4.57, p<.001, η2
p=.58), but no difference 

emerged in the large cue condition (242±6 vs. 257±8; t(15)=-1.71, p=.11, η2
p=.16). The main 

effect of the Cue size and the other interactions were not significant.  

 

 

 

 

 

 

 

 

 

 Experiment 1 
 SOA=100 ms SOA=300 ms 

 Small cue Large cue Small cue Large cue 

 Eccentr. 3° Eccentr. 9° Eccentr. 3° Eccentr. 9° Eccentr. 3° Eccentr. 9° Eccentr. 3° Eccentr. 9° 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Saccadic  
Latency (ms) 236.73 28.66 271.56 45.10 235.33 26.20 241.79 29.43 232.06 19.84 300.11 61.50 249.40 38.50 272.33 43.33 
Time to target 
fixation (ms) 295.58 42.36 451.29 58.29 317.23 58.82 430.13 72.23 298.58 50.14 492.51 86.43 318.17 64.33 465.15 75.80 

Duration (ms) 35.85 12.23 98.31 26.21 44.02 10.94 91.85 29.50 40.29 15.06 86.91 25.74 39.39 16.85 97.37 28.17 

Angle (°) 2.58 0.44 8.97 0.97 2.89 0.44 8.63 0.88 2.57 0.43 8.94 1.15 2.72 0.58 8.94 1.31 

Speed (°/sec) 88.77 10.80 101.74 14.56 80.06 11.56 102.53 9.07 85.45 14.47 105.35 13.21 85.82 16.80 101.62 19.42 

Figure 6.2 Graph displaying the 
results of the Experiment 1, with 
mean saccadic latencies (SLs) 
plotted as a function of cue type 
and eccentricity (averaged across 
SOAs). In this case, target had 
always the same dimension across 
eccentricity. Error bars represent 
SEM. n.s.= not significant, 
***=p<.001; *=p<.05.  
	  

Table 6.1 Descriptive statistics (mean and SD) of the main measures collected in Experiment 1, separated for each 
level of each independent variable.	  
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6.2.3 Discussion 

Results of the Experiment 1 are in agreement with a proper modulation of the attentional 

focus size, demonstrating that zoom-in and zoom-out attentional mechanisms are already 

developed in 8-month-old infants. In particular, peripheral target detection was faster in the 

large relative to the small cue condition, whereas central target detection was slower 

(although not statistically significant). Accordingly, target anticipated by a small cue led to 

the rise of a significant “attentional gradient” (i.e., slower detection of peripheral than central 

targets), suggesting that attentional resources were focused inside the narrow area delimited 

by the small cue and fall off progressively outside the focus. On the other hand, for targets 

anticipated by a large cue – containing both possible target locations – the attentional 

gradient was nullified, because of the spreading of attentional resources in the entire cue-

delimited visual space. These results are congruent with previous studies employing manual 

reaction times to investigate the attentional zooming in children and adults (Castiello and 

Umiltà, 1990; 1992; Benso et al., 1998; Greenwood and Parasuraman, 1999; Facoetti et al., 

2000; Luo et al., 2001; Müller et al., 2003; Ronconi et al., 2013b, 2014a; Turatto et al., 2000).  

Although the cue was effective in modulating the target detection relative to the eccentricity, 

peripheral (vs. central) targets were detected systematically slower independently from all the 

other factors (as suggested by the significant main effect of the target eccentricity), revealing 

that peripheral target were perceptually less salient than central ones, particularly for longer 

cue-target SOA (as suggested by the significant SOA by target eccentricity interaction). 

We aimed to remove the perceptual bias by adjusting the size of the peripheral target in 

agreement to the cortical magnification factor (Daniel & Whitteridge, 1961), which states 

that there is a larger representation in the visual cortex of the foveal and parafoveal retinal 

portions compared to peripheral regions. In the Experiment 2, the perceptual saliency of 

visual targets was balanced across eccentricities.  
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 6.3 EXPERIMENT 2 

6.3.1 Method 

6.3.1.1 Participants 

Twenty-eight healthy and full-term infants participated in the experiment and none of them 

took part in the Experiment 1. Eighteen infants (9 males and 9 females) with a mean age of 8 

months and 11 days (mean age=250 days, SD=7.45, range=240-264) comprised the final 

sample. Ten infants were observed but not included in the statistical analyses, as they had less 

than 50% valid trials. This was due to fussiness or drowsiness (N=4), excessive movement of 

the infant, such that we were unable to record eye movements (N=3), or poor calibration in 

detecting with the eye tracker the infant’s gaze direction in a reliable way (N=3). The 

recruitment method was the same of the Experiment 1. 

 

6.3.1.2 Stimuli and apparatus  

The stimuli and the apparatus were identical to those used in the Experiment 1, with the 

following exceptions: (i) target at the peripheral eccentricity was scaled following the 

procedure elucidated by Rovamo and Virsu (1979) and Virsu and Rovamo (1979), resulting 

in a 5 cm (4.8°) width and 5 cm (4.8°) height target; (ii) the dimensions of the four main AOI 

measured 2.5 cm in width and 2.5 cm in height at the central eccentricity and 5.5 cm in width 

and 5.5 cm in height at the peripheral eccentricity. 

 

6.3.1.3 Procedure  

The procedure was exactly the same of the Experiment 1. 
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6.3.2 Results 

Trials were considered valid and were analyzed only if saccades started from the central 

fixation point, were directed toward the target and reached it. A mean of 10.2 trials (SD=7.3) 

for each infant was excluded by the statistical analysis for the following reasons: because 

infants looked outside the defined AOI (mean=2.4 trials; SD=2.3), or because the signal of 

the eye tracker was lost during the stimuli presentation (mean=6.4 trials; SD=6.5), or the 

saccadic latencies were lower than 100 ms (i.e., anticipations) (mean=0.4 trials; SD=1.0), or 

the saccadic latencies were greater than 500 ms (mean=0.9 trials; SD=1.3). The final number 

of trials in which infants correctly detected the target was on average 37.8 trials (SD=7.3). 

Table 6.2 shows mean SLs and other measures collected for all infants’ valid responses, as a 

function of the cue size, SOA and target eccentricity.  

As for the Experiment 1, SLs were analyzed using a repeated measure 2×2×2 ANOVA with 

the following within-subjects factors: Cue size (small vs. large), SOA (100 vs. 300 ms) and 

Target eccentricity (central vs. peripheral). Main effects were not significant. It is worth to 

note that the absence of a significant effect of the factor Target eccentricity demonstrated that 

the manipulation of peripheral target size was effective in balancing the perceptual saliency 

between the two eccentricities. Importantly, a significant Cue size by SOA by Target 

eccentricity interaction emerged (F(1,17)=10.62, p<.01, η2
p=.38; see Figure 6.3). This three-

way interaction was further explored with two 2×2 ANOVA performed at each SOA. At the 

first SOA (100 ms) ANOVA revealed a significant Cue size by Target eccentricity interaction 

(F(1,17)=22.49, p<.001, η2
p=.57). Planned comparison revealed that SLs at the central 

eccentricity were faster when anticipated by a small than by a large cue (235±6 vs. 249±5; 

t(17)=2.69, p<.05, η2
p=.30), while the opposite was obtained for targets appearing at the 

peripheral eccentricity, that were detected faster when anticipated by a large then a small cue 

(230±5 vs. 245±7; t(17)=-2.39, p<.05, η2
p=.25).  
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ANOVA performed at the second SOA (300 ms) did not revealed any significant main effect 

or interaction between factors. 

 

 
 
 

 

 

 

 

 

 

 

 

 

  

 Experiment 2 

 SOA=100 ms SOA=300 ms 

 Small cue Large cue Small cue Large cue 

 Eccentr. 3° Eccentr. 9° Eccentr. 3° Eccentr. 9° Eccentr. 3° Eccentr. 9° Eccentr. 3° Eccentr. 9° 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Saccadic  
Latency (ms) 235.00 25.12 245.21 28.45 248.77 22.90 230.09 19.49 247.71 32.67 234.90 29.77 244.17 30.25 243.11 33.57 
Time to target 
fixation (ms) 300.39 58.45 372.94 63.71 324.72 48.67 386.91 73.49 318.65 60.04 392.91 81.76 368.94 85.54 414.94 

108.7
7 

Duration (ms) 42.09 29.74 89.20 19.55 37.48 23.97 100.00 46.16 39.59 19.57 92.39 22.70 44.31 27.51 105.18 44.42 

Angle (°) 2.49 0.30 8.36 0.67 2.54 0.36 8.58 0.53 2.48 0.31 8.26 0.86 2.83 0.75 8.46 0.95 

Speed (°/sec) 87.59 18.51 100.92 13.10 89.77 20.18 100.05 14.52 78.54 25.29 101.20 13.80 88.16 19.62 97.95 16.04 

Figure 6.3 Graph displaying the results of the Experiment 2, with mean saccadic latencies (SLs) plotted as a 
function of SOA, cue type and eccentricity. In this case, the target dimension at the second eccentricity was 
adjusted accordingly to the cortical magnification factor (see Figure 6.1). Error bars represent SEM, n.s.= not 
significant, *=p<.05.  
	  

Table 6.2 Descriptive statistics (mean and SD) of the main measures collected in Experiment 2, separated for each 
level of each independent variable.	  
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6.3.3 Discussion  

In the Experiment 2 we balanced the perceptual saliency between the two target eccentricities 

by enlarging the peripheral target size according to the cortical magnification factor (Daniel 

& Whitteridge, 1961). Thus, the only comparisons that can be done are between the two 

types of cue at each of the two target eccentricities. Results showed that at the central 

eccentricity SLs were faster in the small relative to the large cue condition (i.e., the cue size 

effect on central target). Target at the peripheral eccentricity on the other hand were faster 

when anticipated by a large cue  (i.e., the cue size effect on peripheral target). Overall these 

results corroborate the hypothesis tested in the Experiment 1, in which infants were able to 

automatically adjust the size of the attentional focus in accordance with the cue size. 

Moreover, in the Experiment 2 there was a specific temporal window to perform the 

attentional zooming. Only at the first SOA (100 ms), indeed, the small cue induced infants to 

narrow their attentional focus (zoom-in), while the large cue induced them to broaden their 

attentional focus (zoom-out). In contrast, at the longer SOA (300 m), infants’ attentional 

focus collapsed and returned to a “default” state.  

 

6.4 Relationship between infants’ zooming mechanism and parents’ autistic traits 

Similarly to what we did in the previous study (Chapter 5), we explored the relationship 

between infants’ attentional functioning – in this case the ability to adjust the size of the 

attentional focus – and the autistic traits self reported by their parents by using the Autism 

Quotient questionnaire (Baron-Cohen et al., 2001).  

In order to maximize the statistical power of our analysis, we decided to consider the entire 

group of infants that took part in the present study. Thus, we putted together in a unique 

analysis infants from Experiment 1 and 2. Since the peripheral target was magnified in 
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Experiment 2, while the central target remain with the same dimension, we limited our 

analysis SLs at the first target eccentricity.  

We computed an index of attentional zoom-in, by subtracting SLs in the small cue condition 

from SLs in the large cue condition (averaged between SOAs). Higher zoom-in indexes 

correspond to stronger focusing of attention. We found that both fathers’ (r(30)=.314, p=.028) 

and mothers’ (r(32)=.440, p=.005) individuals AQ scores in the Attention Switching subscale 

were positively correlated with the zoom-in indexes of their offspring (see Figure 6.4). 

 

 

 

 

 

 

 

 

 

 

6.5 General Discussion 

In the developed human brain, the focus of attention can be adjusted in its size to process 

information from a narrow (zoom-in) or a broad (zoom-out) region of the visual field 

(Ericksen and St. James, 1986; Müller et al., 2003; Chen et al., 2009). This mechanism is 

fundamental to select relevant information from the complex visual environment. Attentional 

zooming ability has never been investigated in infants. In two different experiments we 

demonstrated, for the first time, that 8-month-old infants were able to accurately adapt the 

size of their attentional focus.  

Figure 6.4 Graph displaying the relationship between fathers’ (a) nad mothers’ (b) individual score on the 
Attention Switching subscale of the Autism Quotient (AQ) questionnaire and their infants’ attentional zoom-in 
indexes. 
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Results of the Experiment 1 – where we employed targets of the same size across 

eccentricities – show that peripheral target detection was faster in the large relative to the 

small cue condition, whereas central target detection was slower (although not statistically 

significant). In addition, when targets were preceded by a small cue a significant attentional 

gradient (difference in SLs between central and peripheral eccentricity) emerged, indicating 

an efficient focusing of attentional resources (zoom-in). On the contrary, when targets were 

preceded by a large cue the attentional gradient was nullified (SLs did not differ across 

eccentricities), indicating an efficient spread of attentional resources (zoom-out).  

In Experiment 2, we controlled for the perceptual saliency of peripheral targets by adjusting 

their dimension according to the cortical magnification factor. Results show that for central 

targets SLs were faster in the small relative to the large cue condition (i.e., the cue size effect; 

Eriksen & St. James, 1986; Castiello & Umiltà, 1990; Turatto et al., 2000). Conversely, for 

peripheral target SLs were faster in the large relative to the small cue condition. These 

findings demonstrate that infants were able to zoom-in and zoom-out their attentional focus, 

respectively. Since these findings were found only at the short cue-target SOA, we propose 

that attentional zooming mechanism was rapidly adapted to the object size but collapsed 

shortly after, accordingly to an exogenous deployment of visual selective attention (see 

Posner and Petersen, 1990; Petersen and Posner, 2012 for reviews). 

The validation of this paradigm and the evidence that the zooming mechanism is already 

developed in infants at 8 months of age have important implications for the study of 

developing cognition. According to the neuro-constructivist approach (Karmiloff-Smith, 

1998) and interactive specialization approach (Johnson, 2011), indeed, development itself 

plays a crucial role in phenotypical outcomes, and tiny variations in the initial state could 

give rise to marked differences in the end states. Thus, the ability to control the attentional 
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zooming mechanism can be related to higher order cognitive function such as joint attention, 

as previously suggested also for the orienting mechanism (Mundy & Newell, 2007).  

Importantly, this paradigm could be use in future studies as a tool for the early diagnosis of 

autism spectrum disorder (ASD). Previous studies found an impaired zoom-out attentional 

mechanism in children with ASD (Mann & Walker, 2003; Ronconi et al., 2012, 2013b; see 

Chapter 2). This impairment in spreading the attentional resources has been confirmed also 

by results of the first study exposed in the present thesis (Chapter 4). Future longitudinal 

studies will have the possibility to assess if the deficit in enlarging the attentional focus size 

is present also in infants at-risk for developing the condition that are later diagnosed with 

ASD in toddlerhood. The correlational analyses that we performed with the approach of the 

broader autistic phenotype seem to confirm a possible relationship between higher risk of 

autistic phenotype and a deficit in spreading attentional resources. Autistic traits of parents in 

the AQ - Attention Switching subscore were indeed related to infants’ deployment of 

attention. Those parents with higher autistic traits have infants with higher zoom-in indexes, 

which could be considered the flip side of the coin relative to the zoom-out dysfunction. 

Prolonged zoom-in was indeed coupled with sluggish zoom-out of the attentional focus in our 

previous study in individuals with ADS (Ronconi e al., 2013b). However, these data have to 

be considered preliminary, as we do not have the possibility to correlate parents’ autistic 

traits with infants’ attentional zoom-out (because the peripheral target eccentricity had 

different dimensions across the two experiments, thus only central target eccentricity was 

considered). 

In conclusion, for the first time, the current study showed that the essential ability to control 

the size of the attentional focus is present in 8-month-old infants. The relationship between 

this attentional mechanism and higher order visual perception (e.g. local/global stimulus 

analysis, spatio-temporal visual integration) and attentional processes (e.g. joint attention) 
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remains to be fully explored. Moreover, having a tool to assess the modulation of the 

attentional focus size in infancy is extremely important for its potential application as an 

early marker of ASD. 
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CHAPTER 7 - THE NEURAL UNDERPINNINGS OF THE 
ZOOMING MECHANISM – PART I: TMS ON THE RIGHT 

FRONTAL EYE FIELDS INDUCES AN INFLEXIBLE ZOOM-
LENS OF  ATTENTION*. 

*This study has been published as: Ronconi L, Basso D, Gori S, Facoetti A (2014). TMS on Right Frontal Eye Fields 
Induces an Inflexible Focus of Attention. Cereb Cortex, 24 (2): 396-402. doi:10.1093/cercor/bhs319 
 

 

7.1 Introduction 

As summarized in Chapter 2, the selection of relevant visual information is controlled by 

spatial attention. The focus of attention can be moved to a particular region in the visual 

space, also in absence of eye movements (i.e., covert orienting of attention; Posner, 1980). 

Moreover, it can be adjusted in its size, like a “zoom-lens” (e.g., Eriksen and St. James, 1986; 

Castiello and Umiltà, 1990), in order to be spread in a broader portion (zoom-out) or focused 

in a narrow region (zoom-in) of the visual field. Neuroimaging and neurophysiological data 

supported this hypothesis, suggesting that the neural activity preceding the target presentation 

was finely modulated by the attended region in early visual areas (Vidyasagar, 1998; 

Brefczynski and DeYoe, 1999; Müller et al., 2003; McAdams and Reid, 2005), and that the 

attentional zooming modulated both P1 and N1 component of the visual event related 

potentials (Luo et al., 2001; Fu et al., 2005).  

It is widely demonstrated that a fronto-parietal network, composed of superior frontal cortex 

(in particular Frontal Eyes Fields - FEF) and intraparietal sulcus, plays a crucial role on 

covert orienting of attention (see Corbetta and Shulman, 2002, 2011 for reviews). However, 

the brain areas devoted to control the attentional focus size have not been specifically 

investigated yet. In particular, there is no evidence regarding the role of FEF. The 

predominant view of visual cognition associated FEF with eye movement programming (see 

Tehovnik et al., 2000 for a review). The hypothesis of a strict link between covert spatial 
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attention and eye movement programming was originally suggested by Rizzolatti and 

colleagues (1987). After this proposal, the role of FEF has been increasingly recognized to go 

beyond the programming of eye movements. Previous studies showed that the FEF area of 

the macaques was involved in visual target selection during a visual search task (e.g., Bichot 

and Schall, 1999, 2001; Murthy et al., 2001). Further evidence came from transcranial 

magnetic stimulation (TMS) studies in human participants, which demonstrated the FEF 

fundamental role in covert orienting of attention (e.g., Ro et al., 2003; Taylor et al., 2007) and 

in serial visual search (see O’Shea et al., 2006 for a review). Importantly, recent concurrent 

TMS and functional neuroimaging studies suggest the casual role for FEF in the fronto-

parietal modulation of neural activity in both striate and extrastriate visual areas (Ruff et al., 

2006; 2008).  

The aim of the present study was to investigate the role of FEF in the modulation of the 

attentional focus size. Single pulse TMS was used to interfere with the cue processing that 

induced subjects to narrow or to broaden the attentional focus. We measured simple reaction 

times (RTs) to a visual target that could appear at one out of three eccentricities from the 

fixation. We used the term “attentional gradient” to indicate the specific RTs pattern, 

dependent on target eccentricity, that is influenced by the two different cue-sizes employed 

(LaBerge, 1983; see LaBerge and Brown, 1989 for a review). When a small cue (containing 

only the first target eccentricity) preceded the target onset, subjects are induced to zoom-in 

their focus of attention, generating a significant attentional gradient in RTs (i.e. increasing 

RTs with increasing target eccentricity). On the other hand, when a large cue (containing all 

possible target eccentricity) anticipated the target onset, subjects automatically zoom-out 

their attentional focus to cover all the possible target locations. Consequently, the attentional 

gradient in RTs is usually reduced or even nullify (equal RTs across eccentricities) in 

presence of a large cue. This prediction should be valid only within a limited cue-target time 
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window, as suggested by previous studies that investigated the specific time course of the 

attentional focusing (e.g., Benso et al., 1998; Turatto et al., 2000; Ronconi et al., 2013b; 

2012b). In particular, Turatto and colleagues (2000) provided evidence of automatic and 

voluntary attentional mechanisms controlling the size of the focus. When a new object 

suddenly appears in the visual field, the focus automatically adjusted its size. Accordingly, 

Benso and collegues (1998) showed that the focusing mechanism takes between 33 and 66 

ms to be initiated but for long SOAs the focus collapses.  

Since it is a widely held view that the right hemisphere is dominant for spatial attention 

(Corbetta and Shulman, 2002, 2011), our prediction is that only TMS of the right FEF would 

interfere with the attentional zoom-lens control. 

 

7.2 Materials and Methods 

7.2.1 Participants 

Fifteen adult participants (age range 22-27, mean age=24.33, all right-handed) without any 

history of neurological or psychiatric disorder took part in the present study as paid 

volunteers. Six participants took part in the “No TMS experiment” (Experiment 1), while the 

other 9 participants performed the “TMS experiment” (Experiment 2). All had normal or 

corrected to normal vision and provided informed consent before participation. The entire 

research protocol was conducted in accordance to the principles elucidated in the Declaration 

of Helsinki and the ethical committee of the Department of General Psychology of the 

University of Padua approved the study. 
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7.2.2 Apparatus and Procedure 

7.2.2.1 No TMS Experiment (Experiment 1) 

The experiment was conducted in a dimly lit and quiet room. Participants were seated 40 cm 

away from a 19-in. CRT monitor. A chinrest was used to stabilize the head, fixation was 

binocular. All stimuli were middle gray displayed on a black background. The fixation point 

was a cross of 0.5 deg placed in the screen center. One circle was presented concentrically to 

the fixation point and the dimension of its ray was manipulated according to the two cue 

conditions: 4 deg in the Small and 12.5 deg in the Large cue condition (Figure 7.1). The 

target stimulus was a dot of 0.5 deg, which could appear at one out of three possible 

horizontal eccentricity (i.e., 2, 6 and 12 deg, namely: Eccentricity 1, Eccentricity 2 and 

Eccentricity 3, respectively). In the Small cue condition, the target was displayed inside the 

focusing cue at Eccentricity 1, whereas at Eccentricity 2 and 3 it felt outside. In the Large cue 

condition the target was always displayed inside the focusing cue. The target was randomly 

presented either in the left or in the right visual hemifield. Similar experimental paradigms 

have already been employed in other studies (Facoetti and Molteni, 2001; Ronconi et al., 

2012, 2013b). 

At the beginning of each trial, a central fixation point appeared for 1000 ms. Subsequently, a 

non-informative Small or Large cue was presented (i.e., the probability of the target location 

was equal in the two focusing cue conditions). After a variable stimulus onset asynchrony 

(SOA: 100, 300 or 500 ms), the target was displayed for 20 ms. A short target duration was 

chosen to prevent eye movements after the stimulus onset. Participants were instructed to 

press the space bar with their right hand as fast as possible at the target onset. If no response 

was provided within 1000 ms from the stimulus onset, participants were warned with a 800 

Hz sound played for 500 ms. At the end of each trial, a blank screen for an inter-trial interval 

of 1500 ms was presented before starting the following trial. The entire experiment consisted 
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of 1440 trials, run in two separate sessions of 720 trials, with a few hours of break between 

them. Both sessions were identical, and consisted in three different blocks of 240 trials. Each 

block contained 216 response trials (108 trials for the 2 focusing cue sizes; 36 trials for each 

target location) and 24 catch trials (target absent).  

 

7.2.2.2 TMS Experiment (Experiment 2) 

Experiment 2 used the same behavioral procedure of Experiment 1, but TMS stimulation was 

included. Single-pulse TMS was performed using a Magstim Rapid² stimulator and a 70mm 

figure-8 shaped coil (The Magstim Company Ltd) combined with the Brainsight frameless 

stereotactic navigation system (Rogue Research Inc., Montreal, Canada).  

Single-pulse TMS was delivered on the right FEF (r-FEF, experimental condition) and on the 

left FEF (l-FEF, control condition). The stimulation was time-locked to each trial, either 0 or 

70 ms after the cue onset, and randomized across trials. We separated the two stimulation 

sites (r-FEF and l-FEF) into different blocks. The same administration order was repeated for 

the two sessions and was randomly counterbalanced across participants. 

Figure 7.1 Schematic 
illustration of the task design 
(SOA: stimulus onset 
asynchronies, TMS: 
transcranial magnetic 
stimulation). Target appeared 
randomly in one of the six 
position depicted along the 
horizontal axis (not shown 
while participants performed 
the task).	  
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The r-FEF and the control (l-FEF) sites were localized moving the coil 3 cm rostrally from 

each subject’s motor hotspots and 5 cm laterally of the sagittal midline. These positions were 

then marked with the Brainsight software. The handle of the coil was oriented posteriorly. 

The precise location of the FEFs varies from individual to individual (Ro et al. 2002) and this 

could be a possible source of error. However, the same procedure has been successfully 

employed in previous TMS studies (e.g., Muri et al., 1991; Ro et al., 1999; Leff et al., 2001; 

O'Shea et al., 2006).  When participants reported discomfort caused by TMS-evoked blinks 

and facial twitches, the orientation of the coil was altered slightly, without any change in 

position. Stimulation was delivered at 100% of the motor threshold, considered as the 

minimal intensity necessary to elicit a visible movement of the hand in 5 out of 10 

stimulation pulses produced on the contralateral motor hotspot (mean intensity for the r-FEF 

was 51.22 ± 4.26; mean intensity for the l-FEF was 50.67 ± 4.47, t(8)=.73, p>.05). 

 

7.3 Results 

7.3.1 No TMS Experiment (Experiment 1) 

Mean RTs for the correct response trials were used as the dependent variable for a three-way 

repeated-measures ANOVA with the following within subject factors: Cue (Small and 

Large), SOA (100, 300 and 500 ms) and Eccentricity (2, 6 and 12 deg). The main result is a 

significant Cue × SOA × Eccentricities interaction (F(4, 20)=2.91, p<.05, η2
p=.37; Figure 7.2). 

This interaction showed the specific time course of the cue size effect on the RTs at the three 

eccentricities. Planned comparisons at 100 ms SOA (F(2, 10)=20.37, p<.05, η2
p=.80) showed 

that RTs difference between Eccentricity 1 and Eccentricity 3 was significant in the Small 

Cue condition (306 ms; SE=7 and 335 ms; SE=10 respectively; F(1, 5)=39.3, p<.05, η2
p=.89), 

but not in the Large Cue condition (310 ms; SE=8 and 313 ms; SE=8 respectively; F(1, 5)<1, 

η2
p=.07). In contrast, planned comparisons at the other SOAs did not reveal any significant 



Chapter 7 - The neural underpinnings of the zooming mechanism – Part I: TMS on the right frontal eye fields induces an inflexible zoom-
lens of  attention 

	  

	   99 

Cue × Eccentricity (SOA=300 ms: F(1, 5)<1, η2
p=.04; SOA=500 ms: F(1, 5)=2.25, n.s., η2

p=.31). 

These results show that an automatic control of the attentional focus is present only when the 

target appeared 100 ms after the cue. 

The ANOVA revealed also a main effect of Cue (F(1, 5)=18.17, p<.01, η2
p=.78), SOA (F(2, 

10)=23.49, p<.05, η2
p=.82), and Eccentricity (F(2, 10)=37.28, p<.05, η2

p=.88). No other main 

effect or interaction was significant. 

 

  

Figure 7.2 Results of the behavioral experiment (Experiment 1 – No TMS), showing mean RTs as a function of the 
Cue (small vs. large), Eccentricity (2, 6 and 12 deg) and stimulus onset asynchronies (SOAs: 100, 300 and 500 ms). 
Error bars represent the SEM. 
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7.3.2 The “Attentional Gradient” (AG) as a measure of the attentional focus modulation 

According to the results of the Experiment 1, we calculated an Attentional Gradient (AG) 

index (Ronconi et al., 2012; 2013b) for the 100 ms SOA. The AG was obtained separately for 

the Small and Large cue conditions, subtracting the Eccentricity 1 from the Eccentricity 3 

RTs. As can be seen from the  (panel A), in the Experiment 1 the AG was significantly 

different between the Large (mean AG=2.62 ms, SE=4) and the Small cue condition (mean 

AG=29.01 ms, SE=5; F(1, 5)=37.52, p<.05, η2
p=.88; Figure 7.4, panel A). This difference was 

not significant at the other SOAs (300 and 500 ms, all ps>.05). In the light of these results, 

we focused the analysis of the Experiment 2 on the AG calculated at the first SOA. 

 

7.3.3 TMS Experiment (Experiment 2)  

In Experiment 2, we used the raw RTs mean of the correct response trials (see Figure 7.3) to 

compute the AG values mean, and performed a three-way repeated-measures ANOVA 

(2×2×2) with the following within subjects factors: Cue (Small and Large), Site (l-FEF and r-

FEF) and TMS Timing (0 and 70 ms from the cue onset). The main result is a significant Cue 

× Site × TMS Timing interaction (F(1, 8)=7.17, p<.05, η2
p=.47; see Figure 7.4, panels B and C) 

which was explored by the following planned comparisons. For the l-FEF site (Figure 7.4, 

panel B), comparison revealed that the AG was significantly different between the Small and 

the Large cue condition, regardless of the TMS Timing (0 ms TMS Timing: mean AG=1.17 

ms for the Large cue, SE=5; mean AG=19.75 ms for the Small cue, SE=5; F(1, 8)=12.78, 

p<.05, η2
p=.61; 70 ms TMS Timing: mean AG=-.86 ms for the Large cue, SE=9; mean 

AG=26.76 for the Small cue, SE=3; F(1, 8)= 10.69, p<.05, η2
p=.57). This result indicates that 

participants automatic adjusted their focus of attention when the single-pulse TMS was 

delivered at the l-FEF site, as we found in the No-TMS Experiment.  
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When TMS was delivered at the r-FEF site (Figure 7.4, panel C) simultaneously with the cue 

onset (TMS Timing=0 ms), participants continued to automatically adjust the focus of 

attention. The AG was still different between the two cue conditions (for the Large cue: mean 

AG=-5.13 ms, SE=6; for the Small cue: mean AG=26.13 ms, SE=7; F(1, 8)=8.08, p<.05, 

η2
p=.50). In contrast, when TMS was delivered to the r-FEF 70 ms after the cue onset, the 

AG did not differ between the Large and the Small cue condition (mean AG=12.97 ms in the 

Large cue, SE=5; mean AG=13.81 ms in the Small cue, SE=6; F(1, 8)<1, n.s., η2
p=.001). 

Furthermore, in the r-FEF TMS condition, the AG differed significantly between the two 

TMS Timing, for both the Large (F(1, 8)=12.60, p<.05, η2
p=.61) and the Small cue condition 

(F(1, 8)=7.84, p<.05, η2
p=.49). These results suggest that benefits associated with automatic 

control of the size of the attentional focus were selectively disrupted by TMS delivered 70 ms 

after the cue onset on the right FEF.  

The ANOVA revealed also a main effect of Cue (F(1, 8)=10.29, p<.05, η2
p=.56). No other 

main effect or interaction were significant. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 The mean raw 
reaction times are depicted 
as a function of TMS Sites 
(left FEF vs. right FEF), 
Cue (small vs. large) and 
Eccentricity (2 vs. 12 deg). 
Error bars represent the 
SEM. 
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7.4 Discussion 

The focus of attention can be adjusted in its size in order to process information from a 

narrow (zoom-in) or a broad (zoom-out) region of the visual field. Two processes control the 

attentional zooming: an early, short-lasting process that automatically adjusts the focus of 

attention to the object size and a later, long-lasting process that voluntarily maintains 

attention on a focus (Turatto et al., 2000). However, the brain areas devoted to control the 

size of the attentional focus in striate and extrastriate visual cortex (Müller et al., 2003) have 

not been clarified yet. Our findings are the first prove that FEF plays a causal role in the 

automatic modulation of the attentional focus size.  

Our behavioral results showed that when participants were induced to broaden their focus of 

attention onto a large cue, the “attentional gradient” (i.e., difference in RTs between the 

farthest and the nearest eccentricity) was nullified, indicating an efficient spread of 

attentional resources. On the other hand, when participants were induced to narrow their 

focus of attention onto a small cue, the attentional gradient arose, indicating an efficient 

zoom-in mechanism.  

It is important to note that we observed a focus size-dependent modulation only at 100 ms 

cue-target SOA, while with longer SOAs the attentional zooming mechanism decayed, 

Figure 7.4 The mean Attentional 
Gradient (AG; i.e., difference 
between RTs at Eccentricity 3 [12 
deg] and RTs at Eccentricity 1 [2 
deg]) is depicted as a function of 
cue and TMS condition: (A) No 
TMS, (B) TMS on the left FEF 
(control site) and (C) TMS on the 
right FEF. Error bars represent the 
SEM. * indicates a significant 
difference as revealed by planned 
comparisons (p<.05).   
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supporting the existence of a short-lasting process that automatically adjusts the focus of 

attention (Turatto et al., 2000). The same time course is present also in typically developing 

children (Ronconi et al., 2012, 2013b). These results show that the modulation of the 

attentional focus size were measured, rather than a simple perceptual facilitation due to the 

lateral small or large cue boundary. No theoretical reasons suggest that this perceptual 

facilitation should be present only at the first SOA. One could argue that the cue did not 

operate to focused or spread attentional resources, but simply served as an exogenous 

lateralized cue. This alternative hypothesis seems unfounded given the pattern of results we 

observed. A lateralized facilitation in the large cue condition should induce an inverse 

attentional gradient (e.g. slower RTs near the fixation and faster RTs at the locus of the cue 

boards), whereas we found a flattened detection speed across eccentricities when participants 

spread their focus of attention.  

In Experiment 2 we applied single-pulse TMS to interfere with the control of the attentional 

focus size. Our results clearly show that only TMS to the right FEF interferes with the 

modulation of the attentional focus size at the first cue-target SOA. When single-pulse TMS 

was delivered on right FEF 70 ms after the large cue onset, the attentional gradient persisted, 

demonstrating that the zoom-out of the attentional focus was impaired. Similarly, when 

single-pulse TMS was delivered on right FEF 70 ms after the small cue onset, the zoom-in 

mechanism was inhibited. On the contrary, when TMS was delivered simultaneously to the 

cue onset participants succeed in the automatic modulation of the size of their attentional 

focus according to the area delimited by the spatial cue. 

The use of two different TMS timings was important because it allowed us to exclude 

indirect and non-specific effects of FEF stimulation in early visual areas (Ruff et al., 2006, 

2008). Only single-pulse TMS delivered 70 ms after the cue onset inhibited the regulation of 

the attentional focus size. The efficacy of the 70 ms TMS timing in interfering with the focus 
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size modulation is compatible with the latencies of FEF neuron response after the onset of a 

visual stimulus (Bullier, 2001). In contrast, the stimulation of the left FEF did not interfere 

with the modulation of the attentional focus size. The fact that TMS affects the attentional 

focus only when delivered on the right FEF, appears to be another strong argument against 

the interpretation of our results in terms of perceptual facilitation. 

Since attentional zooming modulates visual search (e.g., Greenwood and Parasuraman, 

1999), right hemisphere specialization in controlling the size of the attentional focus is 

consistent with previous studies revealing the causal role of the right FEF in visual 

conjunction search performance (e.g., Ashbridge et al., 1997; Muggleton et al., 2003). The 

present results are also in agreement with the evidence revealing the causal role of the right 

FEF in modulating the activity of the striate and extra-striate visual cortices (Ruff et al., 

2006; Taylor et al., 2007).  

Although our results demonstrated the role of the right FEF area in controlling the adjustment 

of the focus size, other areas could also be involved. Another possible candidate in playing a 

role in the attentional focus modulation could be the right posterior parietal cortex (PPC; e.g., 

Halligan and Marshall, 1993; Ruff et al., 2009; Taylor et al., 2007). This area is an important 

component of the attentional network in human and non-human primates (e.g., Bisley and 

Goldberg, 2003; Saalmann et al., 2007; see Vidyasagar, 1999 for reviews) and it is strongly 

interconnected with the FEF (e.g., Buschman and Miller, 2007; Kveraga, et al., 2007; see 

Corbetta and Shulman, 2002, 2011 for reviews). Future researches could directly investigate 

the role of the PPC in the attentional focus control, employing a similar paradigm, but 

varying the TMS timing. In support of the role of PPC in the modulation of the attentional 

focus, Chen and colleagues (2009) employed a different experimental paradigm with fMRI 

and revealed shared activations for both zoom-in and zoom-out conditions in the right 

posterior temporoparietal junction. The combination of our findings and the previous 
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literature suggest that a right network of brain areas, including the FEF and PPC, could be 

involved not only in attentional orienting (Corbetta and Shulman, 2002, 2011) but also in the 

attentional focus size control.  

These findings have important implications autism spectrum disorders (ASD) that as we have 

seen in Chapter 2 have been associated with an impaired zoom-out attentional mechanism 

(Mann and Walker, 2003; Ronconi et al., 2012, 2013b). One of the leading hypotheses about 

the neural disorders in ASD proposes that autistic brain is characterized by a short-range 

hyper-connectivity (i.e., within local neural districts) and long-range hypo-connectivity (i.e., 

across different brain areas; Belmonte et al., 2004). In particular, one of the most impaired 

long-range connections is between frontal and occipital lobe (e.g., Courchesne and Pierce, 

2005; Barttfeld et al., 2010). Thus, the present study, showing the critical role of right FEF in 

the attentional focus size control, supports the dysfunctional fronto-occipital connection 

hypothesis for the attentional zoom-out deficit in children with ASD.  

The importance of these findings for ASD will be more extensively discussed in the final 

chapter. 
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CHAPTER 8 - THE NEURAL UNDERPINNINGS OF THE 
ZOOMING MECHANISM – PART II:  NEURAL DYNAMICS OF 
THE ATTENTIONAL ZOOM-LENS AS REVEALED BY DENSE-

ARRAY EEG. 
 

 

 

8.1 Introduction 

In the previous experiment (Chapter 8), we showed that TMS applied to the right frontal eye     

fields area can disrupt the zoom-lens mechanism in typical adults participants. However, this 

result gives only a limited picture of the more complex neural network that is recruited when 

we have to adapt the size of the attentional focus. In the present experiment, we used dense-

array electroencephalography (d-EEG) to better investigate neural events associated to the 

modulation of the attentional focus size. EEG is a powerful tool to investigate with high 

temporal resolution neural events that characterized a certain cognitive process. With recent 

advances in technology and the advent of d-EEG (i.e. multi-channels, usually 64 or more 

channels in a cap), we can now apply a big quantity of electrodes quickly and without painful 

scalp abrasion. Increasing the number of electrodes turns directly in better spatial resolution 

of the neuroelectric signal. Consequently, d-EEG, can be used on the one hand to investigate 

large scale response of neuronal population locked to an event, commonly referred as event-

related potential (ERP), and on the other hand to finally estimate deep neural sources at the 

cortical level that are the generators of electrical activity measured outside the scalp. 

Studies that attempted to identify the neurophysiological correlates of the orienting 

mechanism demonstrated that target appearing in the attended location, where attentional 

resources are invested, elicits larger P1 and N1 as compared to the unattended location, 

where attentional resources are withdrawn (see Luck et al., 2000 for a review). According to 
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these findings it is reasonable to postulate that for central targets, P1 and N1 in the small cue 

trials should be larger relative to large cue trials. Conversely, for peripheral targets, P1 and 

N1 in the large cue trials should be larger relative to small cue trials.  

Only a few studies, to the best of our knowledge, have investigated ERPs associated to 

changing in the zoom-lens of attention (Luo et al., 2001; Fu et al., 2005). In a first study, Luo 

and colleagues (2001) tested the ERP correlates of the attentional zooming in a visual search 

task in which they varied the size of a cue that circumscribed the target region. They found 

that the amplitudes of the posterior P1 and N1 components of the ERP evoked by the target 

were affected in opposite ways by the cue size: P1 amplitude increased whereas N1 

amplitude decreased as cue size increased (i.e., broader attentional focus). Their results, 

therefore, are partially coherent with predictions that can be made according to attentional 

orienting studies findings. Later, Fu and colleagues (2005) reported that attentional focusing 

modulated only the amplitudes of the P1 component, with zoom-in trials eliciting a larger P1 

than zoom-out trials at both contralateral and ipsilateral sites. Thus, the picture of the ERP 

correlates of the attentional zooming is still fuzzy and the first aim of the present experiment 

is to clarify how different dimension of the attentional focus affect target-related ERP. 

Evidence about the neural network controlling the zoom-lens of attention is also very limited. 

Only one study, to our knowledge, have tried to locate neural areas underliyng the control of 

the attentional zoom-lens with functional magnetic resonance imaging (fMRI) (Chen et al., 

2009). This study highlighted that when compared with zoom-out condition, zoom-in 

differentially implicated the activation of the left anterior intraparietal sulcus (IPS), which 

may reflect the functional specificity of left anterior IPS in focusing attention on local object 

features. By contrast, zooming out differentially activated the right inferior frontal gyrus 

(IFG), which may reflect higher demands on cognitive control processes associated with 

enlarging the attentional focus (Chen et al., 2009). However, fMRI has really low temporal 



Chapter 8 - The neural underpinnings of the zooming mechanism – Part II:  neural dynamics of the attentional zoom-lens as revealed by 
dense-array EEG 

	   109 

resolution, thus providing limited evidence on the dynamics of neural operations involved in 

the attentional zooming. The second goal of the current study is, therefore, to investigate with 

very high temporal precision the neural network and the timing of neural operations that 

underlies the control of the attentional zoom-lens. To this aim, scalp-recorded EEG data were 

analyzed with a source reconstruction method in the cue-target interval. 

 

8.2 Method 

8.2.1 Participants 

Twenty adult participants took part in the present study as paid volunteers. Three participants 

were excluded from analysis because less than 60% of their experimental trials were retained 

after artefact rejection procedures. Seventeen adult participants comprise the final sample for 

which EEG analysis was computed (8 male, mean age=23.7, age range=20-27). Participants 

provided informed consent, had normal or corrected-to-normal vision and normal hearing. 

They reported no history of psychiatric/neurological disorders. The study was approved by 

the Ethics Committee of the Department of General Psychology at the University of Padua 

and was conducted according to the principles elucidated in the Declaration of Helsinki. 

 

8.2.2 Stimuli and procedure 

The experiment was presented on a Dell LCD monitor (19 inch, refreshing at 75 Hz). Stimuli 

presentation and data acquisition were performed using E-Prime 2.0 (Psychology Software 

Tools, Inc.). 

Stimuli and procedure were mostly identical to those used in the previous experiment (see 

Chapter 7), except for the stimulus onset asynchronies (SOA) used that was uniquely set to 

500 ms and the response device that was an electrically shielded response pad. Experimental 
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trials were totally 328: 288 real trials (2 cue size × 2 SOA × 2 target eccentricity × 36 

repetitions) and 40 catch trials in which no target was presented). 

 

8.2.3 EEG Recording and pre-processing 

Testing occurred individually in a dimly lit and electrically isolated room. EEG was recorded 

using the Electrical Geodesics system and a 128-channel Hydrocel Geodesic Sensor Net 

(Electrical Geodesics, Inc.). The sampling rate was 500 Hz, and input data were analog-

filtered between 0.01 and 100 Hz.  

Data analysis was performed with EEGLAB 12.0.2 (Delorme and Makeig, 2004), a freely 

available open source software toolbox (Swartz Center for Computational Neurosciences, La 

Jolla, CA; http://www.sccn.ucsd.edu/eeglab) running under Matlab (MathWorks, Inc, Natick, 

MA). Offline, data were down-sampled at 250 Hz, recomputed to an average reference, 

notch-filtered at 50 Hz and band-pass filtered between 0.1 and 30 Hz. Continuous EEG data 

were then segmented to -200 +500 ms relative to the target onset – for target-related analysis 

– and -200 +700 ms relative to the cue onset – for the cue-related analysis (see following 

paragraphs). Interpolation was carried out on individual bad channels if required (3.3% and 

2.7% channels interpolated on average for target- and cue- locked trials respectively, range 

1.5-8.6% and 0-8.6%). Epochs containing eye movements were discarded. Activity evoked 

by eye-blinks or electrocardiogram was detected using the Independent Component Analysis 

(ICA). ICA-derived components that clearly were artifactual in their nature were removed. 

Moreover, epochs containing voltage deviation that exceeds ±100 µV were also removed. 

Across participants, 88.9% and 90.4% of trials were retained after artifact rejection for the 

target-locked and the cue-locked analysis, respectively. 
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8.2.4 Data Analysis – Behavioral performance 

Reaction times (RTs) of correct responses were analyzed by using a repeated measures 

ANOVA, with the following within-subjects factors: type of cue (small vs. large) and target 

eccentricity (2 deg vs. 12 deg).  

 

8.2.5 Data Analysis – Target-locked ERP 

As stated in the previous paragraph, the time-window for the analysis of the target-locked 

activity ranged from -200 to +500 ms relative to the target onset. Data were analyzed with a 

classical ERP approach. Regions of interest (ROI) were located in two parieto-occipital 

clusters of electrodes above the left (channels: 59, 60, 65, 66, 67, 70, 71) and the right 

hemisphere (channels: 76, 77, 83, 84, 85, 90, 91). Peak amplitude for P1 (100-150 ms) and 

N1 (175-225 ms) in the identified electrodes’ cluster was subjected to two repeated-measures 

ANOVA (one for left-displayed and one for right-displayed targets) with the following 

within-subject factors: ROI (left vs. right), type of cue (small vs. large) and target eccentricity 

(2 deg vs. 12 deg).  

 

8.2.6 Data Analysis – Cue-locked activity and estimation of neural sources  

Since this is the first study that investigates the neuroelectric events associated to the 

zooming of visual attention in the cue-target period, we had no a priori assumptions about 

possible ROI and time windows. For this reason, we used a mass univariate approach in the 

analysis of cue-related activity. This approach is superior to conventional ANOVA-based 

analysis of event-related brain potentials (ERPs) in that it requires fewer a priori assumptions 

and can provide greater temporal and spatial resolution of the phenomenon under 

investigation (Groppe et al., 2011). 
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To detect reliable differences between the ERPs elicited by the small and the large cue, we 

performed a series of two-tailed repeated measures permutation tests based on the “tmax” 

statistic (Blair & Karniski, 1993), with a family-wise alpha level of 0.01. The tmax statistic 

was chosen for this permutation test because it has been shown to have relatively good power 

for data (like ERPs) whose dimensions are highly correlated (Hemmelman et al., 2004). The 

time window between 0 and 500 ms (corresponding to the cue and target onset, respectively) 

was divided in ten 50 ms-windows. Thus, 10 time windows at all 128 scalp electrodes were 

included in the test (i.e., 1280 total comparisons), and 5000 random within-participant 

permutations of the data were used to estimate the distribution of the null hypothesis. Based 

on this estimate, critical t-scores of ±6.11 were derived. In other words, any differences in the 

original data that exceeded a t-score of ±6.11 (corresponding to a p-values<.0096 with df=16) 

were considered reliable. 

Source reconstruction was then performed with Brainstorm (Tadel et al., 2011), an open 

source software for the analysis of EEG and MEG data which is documented and freely 

available for download online under the GNU general public license 

(http://neuroimage.usc.edu/brainstorm). Individual averaged ERP were used to estimate 

neural activity by applying a depth-weighted minimum-norm estimation inverse solution 

(Baillet et al., 2001) with constrained dipole orientation (i.e., at each vertex of the cortex 

surface, there is only one dipole, and that its orientation is the normal to the cortex surface at 

this point). A cortical mesh template surface, composed by 15000 vertices and derived from 

the default anatomy of the Montreal Neurological Institute (MNI/Colin27), was used as a 

brain model to estimate the current source distribution. To compute the forward model we 

employed a symmetric boundary element method (symmetric BEM) with the OpenMEEG 

software (Kybic et al., 2005; Gramfort et al., 2010; http://www-

sop.inria.fr/athena/software/OpenMEEG/). 
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8.3 Results 

8.3.1 RT data 

ANOVA performed on corrected 

mean RTs revealed a main effect 

of target eccentricity 

(F(1,16)=40.17, p<.001, η2
p=.71), 

and importantly a significant type 

of cue by target eccentricity 

interaction (F(1,16)=23.50, p<.001, 

η2
p=.59; Figure 8.1). Planned 

comparisons revealed that for target displayed at 2 deg there were no difference in RTs for 

the two cue conditions (small: 280±9 ms; large: 282±10 ms; t(16)=-0.36). In contrast, the large 

cue led to faster RTs relative to the small cue (small: 305±9 ms; large: 292±11 ms; t(16)=3.73, 

p=.002) for target displayed at 12 deg. 

 

8.3.2 Target-locked ERP – P1 

ANOVA performed on the P1 peak amplitude elicited by target displayed on the right visual 

hemifield revealed main effects of eccentricity (F(1,16)=7.56, p=.014, η2
p=.32) and ROI 

(F(1,16)=12.31, p=.003, η2
p=.43). P1 elicited by target at 2 deg (mean±SEM: 1.20±.29 µV) 

were larger than P1 elicited by target at 12 deg (0.48±.22 µV), and the P1 registered left 

parieto-occipital electrodes (0.50±.22 µV) was smaller than P1 registered at right parieto-

occipital electrodes (1.19±.22 µV). No significant interaction emerged. 

ANOVA performed on the P1 peak amplitude elicited by target displayed on the left visual 

hemifield revealed no significant main effects, but a significant type of cue by eccentricity by 

ROI interaction (F(1,16)=7.25, p=.016, η2
p=.31). This interaction was explored by the means of 

Figure 8.2 Behavioural data. Mean RTs are displayed as a function of target 
eccentricity and cue size.  
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planned comparisons, but no significant difference emerged when target at the same 

eccentricity were compared between the two cue conditions, neither for P1 elicited in the 

contralateral nor in the ipsilateral ROI. 

 

8.3.3 Target-locked ERP – N1 

ANOVA performed on the N1 peak amplitude elicited by target displayed on the right visual 

hemifield revealed a main effect of eccentricity (F(1,16)=21.72, p<.001, η2
p=.58),  showing that 

overall central targets elicited a larger N1 amplitude relative to peripheral targets (2 deg=-

2.72±.25 µV; 12 deg=-1.83±.22 µV). Also the main effect of ROI was significant, indicating 

that the N1 amplitude was larger for the parieto-occipital left (-3.36±.28 µV) relative to the 

parieto-occipital right (-1.19±.28 µV) cluster of electrodes (F(1,16)=34.24, p<.001, η2
p=.68). 

Importantly, a type of cue by eccentricity by ROI emerged (F(1,16)=6.92, p=.018, η2
p=.30). 

This interaction was explored by the means of planned comparisons. Target appearing at 2 

deg elicited a larger N1 when anticipated by a small relative to a large cue in the contralateral 

ROI (parieto-occipital left ROI: t(16)=-2.39, p=.029; parieto-occipital right ROI: t(16)=-1.15, 

n.s.). Target appearing at 12 deg, on the other contrary, elicited a larger N1 when anticipated 

by a large relative to a small cue in the contralateral ROI (parieto-occipital left ROI: 

t(16)=2.73, p=.015; parieto-occipital right ROI: t(16)=1.50, n.s.). 

ANOVA performed on the N1 peak amplitude elicited by target displayed on the left visual 

hemifield revealed only a main effect of eccentricity (F(1,16)=5.07, p=.039, η2
p=.24; 2 deg=-

2.31±.22 µV and 12 deg=-1.57±.28 µV). However, if we test the same comparisons 

performed for left hemi-field target, they reveal that target appearing at 12 deg elicited again 

a larger N1 when anticipated by a large relative to a small cue in the contralateral ROI 

(parieto-occipital right ROI: t(16)=2.26, p=.038; parieto-occipital left ROI: t(16)=.93, n.s.). 
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Figure 8.2 Waveforms elicited by left- and right- displayed target for each combination of cue size (small vs. large) and target 
eccentricity (2 vs. 12 deg). Bar plots depicted the N1 peak amplitude with * denoting a significant difference (p<.05) between the 
large and the small cue condition. Clusters of channels used to compute waveforms and N1 peak amplitudes are marked in black. 
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8.3.4 Scalp recorded neural activity and related brain sources in the cue-target interval 

Our general approach was to analyze the difference between the large and the small cue 

condition both at the channels and the sources level. Mass univariate analysis using 

permutation tests with the t-max correction for multiple comparisons revealed that three out 

of ten temporal windows showed a significant difference when the large and the small cue 

condition were compared: i) 150-200 ms (channels: 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 21, 

22, 53, 60, 61, 62,66, 71, 72, 128); ii) 250-300 ms (channels: 4, 5, 6, 7, 9, 11, 12, 15, 16, 18, 

19, 22, 23, 65, 66, 70, 84, 89, 90, 96, 97, 112); and iii) 300-350 ms (channels: 3, 4, 9, 10, 11, 

12, 16, 18, 19, 20, 22, 24, 27, 28, 60, 66, 67, 70, 71, 73, 74, 75, 81, 82, 88, 89, 124). Figure 

8.3 show the butterfly plot of all 128 channels obtained from the difference between the large 

and the small cue condition for all the ten temporal windows, with related scalp maps. 

Channels that showed significant difference in the two cue conditions are marked in white. 

Two neural events are clearly discernable, one more transient activity in the 100-200 ms 

temporal window and one more sustained activity after 200 ms.    

Estimated neural sources are displayed in Figure 8.4. Red/yellow area depicted greater 

activation for the large as compared to the small cue condition, whereas dark/light blue area 

depicted greater activation for the small as compared to the large cue condition. To use a 

conservative approach to sources data, we consider as reliable only significantly activated 

neural sources in the three temporal windows (i.e., 150-200; 250-300 and 300-350 ms) that 

differed between the two cue conditions at the channels level. Moreover, we considered as 

reliable only cortex activations that emerged significantly for at least 24 neighboring vertices.  
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In the 150-200 ms temporal window, large cue led to significantly increased activation in the 

superior parietal lobule of the left hemisphere, and bilaterally in the superior/middle frontal 

gyrus and in the inferior frontal junction/gyrus. On the contrary, small cue led to significantly 

increased activation in the left intraparietal sulcus. In the 250-300 ms temporal window, 

bilateral activation of the middle temporal gyrus were observed, that persist in the right 

middle temporal gyrus also during the 300-350 ms window. Moreover, in both the 250-300 

and 300-350 ms temporal windows, we found neural sources in the inferior frontal gyrus and 

insula of both hemispheres. Interestingly, increased activation for the zoom-out condition in 

the IFG was observed in all the three temporal windows. Table 8.1 reports coordinates of the 

points of maximum activation in the three significant temporal windows.   

 

Figure 8.3 Butterfly plot of all 128 electrodes and related scalp maps obtained by subtracting small cue trials (zoom-in) from 
large cue trials (zoom-out). For the scalp maps, neural activity was averaged over ten 50ms-time windows between the cue 
and the target onset. White-marked channels are channels that showed a significant difference between the two cue conditions 
as revealed by permutation tests with the “t-max” correction. 
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AREA LABELS MNI 
COORDINATES 

TALAIRACH 
COORDINATES 

BRODMANN 
AREAS 

Zoom-in > Zoom-out 
Left IPS -24, -73, 40 -24, -69, 37 7 

Zoom-out > Zoom-in 
Left SPL -18, -44, -68 -17, -48, 56 7 

Right IFG/J 51, 1, 18 48, 0, 20 9 
Left IFG/J -36, 5, 31 -35, 4, 30 6 
Right FEF 26, 9, 49 26, 11, 46 6 
Left FEF -25, 27, 43 -25, 25, 40 8 

Right MTG 43, -64, 20 44, -62, 21 39 
Left MTG -42, -61, 22 -42, -59, 23 39 

Right Insula 33, -29, 15 32, -28, 16 13 
Left Insula -41, -10, 19 -39, -10, 19 13 

Table 8.1 Area labels, coordinates [x,y,z] in the MNI and Talairach systems and Brodmann areas relative to the points 
(vertices) of maximum activation in the cortex surface. 
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Figure 8.4 Source activations in the cue-target time interval for the three temporal windows in which the two cue conditions 
differed one each other are displayed. In the cortical maps, red/yellow activations represent greater activity for large relative to 
small cue trials, whereas dark-/light-blue activations represent  greater activity for small relative to large cue trials. The entire 
time course of activations (z-scores of the point of maximum activation normalized by the -200/+0 baseline period) are also 
plotted for each significantly activated region.   
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8.4 Discussion 

The present experiment clarifies both the effect of processing visual target with different 

sizes of the attentional focus at the ERP level and the cortical sources underlying the control 

of the attentional zoom-lens.  

The ERPs results show that the effect of the cue-size was reflected in the amplitude of the 

target-related N1 registered at posterior electrodes. Targets appearing in the central position 

evoked a larger N1 when anticipated by a small cue as compared to a large one. Conversely, 

targets appearing in the peripheral position elicited a larger N1 when anticipated by a large 

cue as compared to a small one. This is in agreement with the zoom-lens model of the 

attentional focus (Ericksen and St. James, 1986; Castiello and Umiltà, 1990; see also the 

gradient model of attentional resources by La Berge and Brown, 1989) that predict that when 

participants see the small cue before the target appearance, their attentional resources are 

focused onto the narrow portion of the visual field delimited by the cue, with very rarefied 

resources outside the attentional focus. On the contrary, the large cue led attentional 

resources to be spread almost uniformly in a broader portion of the visual field. The larger 

target-evoked N1 amplitude in our paradigm was directly reflecting the degree of attentional 

resources deployed for target processing, with more attentional resources (i.e., when central 

targets were preceded by a small cue or when peripheral targets were preceded by a large 

cue). These results is in agreement with a wide literature concerning the effect of attentional 

orienting on target related ERPs, that largely demonstrate that N1 elicited for attended targets 

are larger as compared to N1 elicited by unattended targets (see Luck et al., 2000 for a 

review). The evidence of N1 modulation induced by different sizes of the attentional focus is 

also consistent with one of the two studies that in the past aimed to test the ERPs correlates of 

the scaling of the attentional focus size. Luo et al. (2001) found that in a visual search task 

where the target appeared always inside the cue, the amplitude of the N1 decreased as the cue 
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size increased. Our results, contrarily to those reported by Luo et al (2001) and Fu et al. 

(2005), that however reported opposite findings, did not revealed a clear modulation of the 

P1 amplitude. Further studies are probably necessary to clarify the P1 modulation by 

attentional zooming. 

The second aim of the present high-density EEG study was to analyze neural events in the 

cue-target time interval to better understand the neural mechanisms that allow us to change 

the ongoing size of the attentional focus. The results show that two clearly discernable neural 

events characterized the cue-target time interval, one in the 100-200 ms time range and one 

that extended after the 200 ms until the target appearance, confirming previous claims of a 

dissociation between a transient (automatic) and a sustained (voluntary) control of the 

attentional zooming mechanism (Turatto et al., 2000). With a data-driven and statistically 

robust approach we demonstrated that large and small cue differed in the neural evoked 

response in three out of ten selected time windows (150-200, 250-300 and 300-350 ms) and 

the effect was extensively visible in both parieto-occipital and frontal electrodes. Analysis of 

the neural sources in these three time windows showed that when compared to the zoom-out 

condition, the zoom-in of the attentional focus was associated to greater activations of the left 

intra-parietal sulcus (IPS). This result is in agreement with what reported by Chen and 

colleagues (2009) with fMRI. On the other, when compared to the zoom-in condition, the 

zoom-out of the attentional focus was associated initially to greater activations in the right 

superior parietal lobule (SPL) and bilaterally in the superior/middle frontal gyrus – including 

the frontal eye fields (FEF) – and in the inferior frontal gyrus (IFG). After this initial pattern 

of activity, the zoom-out condition led to greater activations bilaterally in the middle 

temporal gyrus (MTG) and in the insula (INS). Notably, increased activation for the zoom-

out condition in the IFG was observed in all the three temporal windows, and is consistent 

with what was previously reported by the fMRI study of Chen and colleagues (2009).  
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Although not observed in the study by Chen et al. (2009), FEF activation is consistent with 

what we reported in the previous experiment, where we found that TMS applied over the 

right FEF area disrupted both the zoom-in and the zoom-out of the attentional focus (see 

Chapter 7; Ronconi et al., 2014a). Here, activation of the FEF area was bilateral, and this can 

be explained in different ways. One possibility could rely on the employment of a longer 

SOA in the present study. While a more automatic (transient) control of the zoom-lens – as in 

the case of the previous TMS study, where the SOA was 100 ms – involve especially the 

right FEF, a more voluntary (sustained) control of the zoom-lens – as in the present 

experiment, where the SOA was 500 ms – could recruit also FEF of the left hemisphere. 

Another possibility is that, given the right hemisphere dominance for spatial attention control 

(Kinsbourne, 1987; Corbetta and Shulmann, 2002, 2011), when disrupting the left FEF 

activity, the right FEF is still strong enough to control the size of the attentional focus by 

itself, while when disrupting the right FEF, the activation of the left FEF alone is not 

sufficient to perform the zoom-lens modulation. 

The critical difference between the zoom-out and the zoom-in mechanisms in the current 

experiment is that attentional resources are more widely spatially distributed in the former 

case. This should be reflected in a spatially broader activation in occipital visual areas, as 

demonstrated by Müller and colleagues (2003). It is largely demonstrated that frontal cortex 

modulates the neural processing in the posterior visual cortex with direct top-down feedback 

(Miller and D’Esposito 2005; Rowe et al. 2005; Ruff et al., 2006, 2008), and the greater 

degree of activations in various parts of the frontal lobe (FEF and IFG) that we found in the 

zoom-out condition could be due to increased top-down modulation of visual cortex.  

Importantly, our data suggest also that two phases of activation in the cue-target interval are 

clearly discernable. The activity was initially distributed in a more dorsal network (150-200 

ms), and subsequently there was a clear shift toward activations mostly distributed in a 
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ventral network (250-300 and 300-350 ms). Recent neurophysiological models obtained by 

examining correlations in spontaneous fluctuations of the fMRI signal while neurologically 

intact adult participants were in a resting state (i.e., absence of a cognitive task) showed the 

existence of two distinct attentional network (Fox et al., 2006; He et al., 2007; Corbetta and 

Shulmann, 2011): i) a dorsal attention network that includes IPS and FEF of both 

hemispheres and is thought to control the spatial mechanism of attention (i.e., spatial coding), 

and; ii) a ventral attention network, largely right-lateralized, that includes the region of 

temporo-parietal junction and ventral frontal cortex (including IFG) and is thought to control 

the non-spatial mechanisms of attention (i.e. response preparation, arousal and temporal 

attention). The location and timing of activations we found in the present study seems to be 

consistent with the dorsal/ventral attention network model. The initial activations we 

observed were mainly located in the dorsal regions (IPS, SPL and FEF). These regions may 

be the generators of the spatial coordinated for the size of the attentional focus. Subsequently, 

activations moved to a more ventral network (IFG, MTG and Insula), which may operate to 

maintain high level of alertness until the target appearance. The current dimension of the 

attentional focus modulated the ventral network activation (i.e., larger activations in the 

zoom-out condition), suggesting that a broader attentional focus size required higher level of 

alertness and response preparation. Interestingly, the only activation that persists for all the 

three temporal windows is the activation in the IFG, a region that shows resting-state 

connectivity with both dorsal and ventral networks (He et al. 2007), and that some authors 

proposed may act as a pivot area between to attentional networks (Corbetta and Shulmann, 

2011). 

The importance of these results in understanding the zoom-out attentional impairments found 

in ASD will be discussed in the last chapter of general discussion. 
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CHAPTER 9 - BEYOND THE SPOTLIGHT AND THE ZOOM-
LENS MODELS: THE “MEXICAN HAT” OF THE 

ATTENTIONAL FOCUS IN ASD 

 
 

 

9.1 Introduction 

As we have seen in Chapter 2, many efforts have been made to understand the way in which 

individuals with ASD deploy their visual attention to select relevant information in the 

environment (for a review see Ames and Fletcher-Watson, 2010). The focus of spatial 

attention has been traditionally viewed as a simple “spotlight”, that can moves to a specific 

region in the visual space, improving information processing in the attended area at the 

expense of other locations (Posner et al., 1980; Posner and Petersen, 1990; Corbetta and 

Shulman, 2002). In addition, the attentional focus can be adjusted in its size in order to 

process information from a broad or a narrow region of the visual field – like a “zoom-lens” 

(Eriksen and St. James, 1986; Castiello and Umiltà, 1990; Turatto et al., 2000). Several 

investigations used these two theoretical accounts to investigate how individuals with ASD 

deploy their attention in the visual field. It has been consistently reported that ASD is 

associated to impairment in disengaging attention from a previously cued location 

(Courchesne, Townsend, Akshoomoff, Saitoh, Yeung-Courchesne, Lincoln, et al., 1994; 

Landry and Bryson, 2004; Wainwright-Sharp and Bryson, 1993), and a recent longitudinal 

study revealed that this deficit in the disengagement of visual attention measured in infants at 

risk for developing ASD is associated to the later emergence of autism in toddlerhood 

(Elsabbagh et al., 2013). Moreover, increasing evidence demonstrate that individuals with 

ASD manifest an overfocused attention and an impairment in “zooming-out” the attentional 

focus, that is the ability to spread the attentional resources in a broad portion of the visual 



Chapter 9 - Beyond the spotlight and the zoom-lens models: the “Mexican hat” of the attentional focus in ASD 

	   126 

field (Mann and Walker, 2003; Roberston et al., 2013; Ronconi et al., 2012; 2013b; Study 1 -

Chapter 4 of the present thesis).  

In the light of these evidence, some authors suggest that high-level deficit in social orienting 

may originate from early impairments in low-level attentional systems (Landry and Bryson, 

2004; Elsabbagh et al., 2009). For example, the inability to flexibly shift the locus of spatial 

attention could lead to problems in visual orienting toward social stimuli (Mundy and 

Newell, 2007; Elsabbagh and Johnson, 2010). Similarly, the difficulties in broadening the 

focus of attention could cause abnormalities in the spatio-temporal visual integration, with 

cascade effect in the processing of dynamic stimuli, as faces and actions with biological 

meaning (Mann & Walker, 2003; Ronconi et al., 2012). 

Both the spotlight and the zoom-lens models predict that the attentional resources are 

concentrated at their maximum at the center of the attentional focus, and then shade 

progressively (with a linear spatial gradient) while the distance from the attentional focus 

increases. However, these models do not represent the all picture of how attention selects 

relevant visual objects in an ecological environment. The focus of attention, indeed, is not 

always characterized by a simple spatial gradient that falls off monotonically with increasing 

distance from the focus center. On the contrary, recent neurophysiological model demonstrate 

that visual selection requiring spatial scrutiny for object recognition elicits – in the immediate 

surround of the attentional focus – a zone of attenuated excitability, forming a profile that 

resembles a “Mexican hat” (Caputo & Guerra, 1998; Slotnick et al., 2002; Müller and 

Kleinschmidt, 2004; Müller et al., 2005; Hopf et al., 2006; Boehler et al., 2011). Hopf and 

colleagues (2006) argued that this inhibitory ring surrounding the focus of attention is 

optimal to highlight relevant information and attenuate the deleterious noise during visual 

object selection. 
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The aim of the present study was to evaluate the spatial profile (i.e., the Mexican hat) of the 

attentional focus in individuals with ASD. This question is particularly important to 

understand the way in which individuals with ASD deploy spatial attention in the visual 

space and how they select relevant visual information. A huge amount of evidence associated 

ASD with higher performance in detail-oriented task (for reviews see Simmons et al., 2009; 

Dakin & Frith, 2005; Pellicano & Burr, 2012). Individuals with ASD display faster detection 

of targets in visual search tasks (O’Riordan et al., 2001; Joseph et al., 2009) and in the 

Embedded Figure Test (Jolliffe & Baron-Cohen, 1997; Manjaly et al., 2007), and show also a 

better tolerance to visual crowding (Baldassi et al., 2009; Keïta et al., 2010). One might 

expect a detail-oriented perception to be associated also to a reduced interference from 

incongruent/irrelevant information. However, both clinical and experimental reports are fairly 

clear in showing that this is not the case. One of the first studies that highlighted this 

contradictory aspect was made by Burack (1994). Participants performed a forced-choice 

reaction time (RT) task to assess the filtering component of selective attention. The 

manipulated variables were the presence/absence of a window that narrowed the attentional 

spotlight and the presence of a variable number of distractors. The RTs of the subjects with 

ASD improved relative to the other groups in the presence of the window without distractors, 

but the performance of the ASD group was the most impaired in the presence of distractors. 

A recent study employing an Eriksen flanker task manipulated target-flanker distance and 

showed an increased interference effect across all distances in individuals with ASD (Adams 

and Jarrold, 2012). Moreover, in a recent study we showed that when lateral competing 

information is presented close in time to a central target, children with ASD suffered for a 

deeper and prolonged backward interference (that we referred as an “attentional masking” 

effect) in respect to controls (Ronconi et al., 2013a). In addition to these experimental 

evidence, visual sensory overload is traditionally associated to ASD, and has been well 
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documented not only in autobiographical reports (Grandin, 2009) but also with caregiver-

report questionnaires (Kern et al., 2006; Leekam et al., 2007) and electrophysiological studies 

(Pritchard et al., 1987; Belmonte, 2000). 

Thus, the central question of the present study is: How individuals affected by ASD process 

visual information at different degrees of proximity from the attentional focus? The answer to 

this question can be particularly relevant to understand the discrepancy between strong 

attention to details and deeper interference by irrelevant visual objects in ASD. To measure 

the spatial profile of the attentional focus we readapted the behavioral paradigm developed by 

Hopf and colleagues (2006). Children with ASD and an age- and IQ- matched sample of 

typically developing (TD) peers were asked to perform a computerized task in which they 

were asked initially to fixate the center of the screen. Their attention was captured onto a 

color pop-out target (red C) among an array of non-target stimuli (blue Cs). In half of the 

trials (baseline condition), their task was to recognize the orientation of the red C that 

changed position from trial to trial. In the other half of the trials (probe condition), after the 

red target C a probe circle circumscribed a region containing a non-target C at various 

distances from the red target C. This latter condition allowed measuring the spatial profile 

(i.e., the inhibitory ring or Mexican hat) of the attentional focus. 

 

9.2 Methods 

9.2.1. Participants 

Forty-six children took part in the experiment. Both the ASD and TD groups comprised 

initially 23 children each. Four participants from the ASD group and 1 from the TD group 

were excluded from statistical analyses because they did not achieve 40% of overall accuracy 

in the probe condition. Thus, the final samples comprised 19 children for the ASD group and 

22 for the TD group.  



Chapter 9 - Beyond the spotlight and the zoom-lens models: the “Mexican hat” of the attentional focus in ASD 

	   129 

All participants with ASD were recruited according to the following criteria: (i) full scale IQ 

> 70 as measured by the Italian version of Wechsler Intelligence Scale for Children-Revised 

(WISC-III, Wechsler, 1991); (ii) absence of gross behavioural problems; (iii) normal or 

corrected-to-normal vision and hearing; (iv) absence of drug therapy; and (v) absence of 

attention deficit hyperactivity disorder on the basis of DSM-IV criteria (American Psychiatric 

Association, 1994). Children with ASD were recruited at the Developmental 

Neuropsychology Unit of Scientific Institute “E. Medea” (Bosisio Parini, Italy) and at 

“Associazione La Nostra Famiglia” (Padua, Italy). Diagnosis of ASD was made by licensed 

clinicians experienced in the assessment of ASD in respect to DSM-IV diagnostic criteria and 

to the Autism Diagnostic Observation Scale (ADOS; Lord et al., 2002; see Table 9.1). 

Children of the TD group were randomly sampled in Padua public schools. According to the 

parents’ report, TD children did not have prior history of any psychiatric disorders. Both 

groups were matched for chronological age (t(39)=0.21, p=.831). Cognitive level in TD 

children was estimated with two Verbal (Vocabulary and Similarities) and two Performance 

(Block Design and Pictures Completion) subtests of the WISC-III (Wechsler, 1991). ASD 

and TD group did not differed in any of the four subtests (all ps>.272). The Social 

Communication Questionnaire (Rutter et al., 2003) was also administered to both groups. 

Children of the ASD group scored significantly higher in comparison to the TD group in both 

the Current (t(39)=6.40, p<.001) and Lifetime (t(39)=8.85, p<.001) forms.  

The entire research protocol was approved by the ethical committees of both Scientific 

Institute “E. Medea” and Department of General Psychology of Padua University. Informed 

consent was obtained from each child and their parents and the entire research protocol was 

conducted in accordance to the principles elucidated in the declaration of Helsinki.  
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9.2.2 Apparatus and stimuli 

The experiment was conducted in a dimly lit and quiet room. Participants were seated 50 cm 

far from an LCD screen (17 inch, 75 Hz). A chinrest was used to avoid head movement. 

Stimulus presentation and data acquisition were performed with E-Prime 2 (Psychology 

Software Tolls, Inc.). The choice about stimuli parameters was based on previous pilot 

observations. 

All stimuli were presented on a middle grey background (RGB=142,142,142). Fixation point 

consisted in a black cross subtending a visual angle of 0.5 deg, presented on the screen 

center. The search array consisted on nine blue non-target Cs stimuli (RGB=4,61,245), while 

the target C was colored in red (RGB=242,18,42). Both target and non-target Cs subtended a 

  ASD (n=19) TD (n=22) p-value 

Mean (SD) Mean (SD)  

Age 14.6 (2.7) 14.4 (2.6) n.s 
Gender 17 M 18 M - 
TIQ 100.11 (14.6) - - 
WISC III - Vocabulary 10.17 (3.4) 10.1 (2.4) n.s. 
WISC III - Similarities 10.8 (2.8) 9.91 (2.4) n.s. 
WISC III – Picture completion 10.5 (3.3) 11.4 (2.4) n.s. 

WISC III – Block Design 10.33 (3.9) 10.77 (2.4) n.s. 
Social Communication 
Questionnaire (SCQ) - Current 

13.0 (6.4)  3.05 (3.2) <.001 

Social Communication 
Questionnaire (SCQ) - Lifetime 

18.8 (8.1) 2.6 (2.6) <.001 

ADOS - Communication 2.7 (1.3) - - 

ADOS – Social Interaction 5.3 (3.0) - - 

Table 9.1 Descriptive statistics for the two groups of participants (ASD=autism spectrum disorder; 
TD=typically developing). 
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visual angle of 1.2 deg, and were presented at an isoeccentric distance of 8 deg from the 

fixation. All Cs were obtained by removing a portion subtending 45° of angle from a ring-

shape stimulus. The gap of each C varied randomly in position (up, down, left, right). 

One C was presented aligned with the horizontal axis, and the other Cs were presented four in 

the upper and four in the lower quadrant, separated by an angle of 0.26 rad one each other. 

The stimulus used as a probe consisted in a white circle with a diameter of 2.12 deg. Masks 

stimuli were obtained from the complete ring used to create the Cs stimuli. 

 

9.2.3 Procedure 

The procedure was adapted from previous studies on typical adults (Hopf et al., 2006, 2010). 

Children were instructed to keep their eyes on the fixation for the entire duration of the trial. 

The entire experiment was proposed to the children as a game (“The Naughty Turtle” game). 

Each trial started with the onset of the fixation cross, which lasted for 1000 ms. The array of 

nine randomly oriented non-target Cs then appeared unpredictably to the left or to the right 

side of the fixation. After 50 ms, a target C was colored in red for 100 ms, while the other Cs 

remained blue. On 50% of the trials (baseline condition, Figure 9.1, panel A), children were 

instructed search the red target C among the other eight blue non-target Cs. The target C 

appeared randomly at one of the nine possible stimulus locations, so that children were forced 

to focus their attention in different positions from trial to trial.  

In the other 50% of the trials (probe condition, Figure 9.1, panel B), the appearance of the 

target red C was followed by the probe circle appearing around the central C for 50 ms. As 

the probe position was kept constant and the target position varied, there were five target-to-

probe distances, called Probe Distance (PD), ranging from probe distance 0 (PD0; probe at 

the target location) through probe-distance 4 (PD4; probe at the farthest distance from the 

target; see Figure 9.1, panel C). Trials for the Baseline and the Probe condition were 
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randomly intermixed during the experiment, so that was impossible for participants to predict 

in advance the type of trial that they had to perform.  

Subsequently, all Cs were replaced by the mask ring for 13 ms (one refresh of the monitor). 

After a blank screen displayed for 1000 ms, the response screen with the four possible 

orientation of the Cs was presented for an unlimited time. Participants then indicated the 

correct response, corresponding to the orientation of the red C in the baseline condition and 

to the orientation of the blue C surrounded by the probe circle in the probe condition. The 

experimenter than entered the selected choice by pressing the one of the four arrow keys on 

the pc keyboard. Children were specified that only accuracy was important and that no 

reaction times were collected.  

The entire experiment consisted in 144 trials, 72 for the baseline and 72 for the probe 

condition, each one composed by 36 trials presented in the right and 36 trials in the left visual 

field, 4 for each of the nine position in the array. A practice session of 12 trials – 

accompanied by correctness feedbacks – was performed before starting the experiment, with 

stimuli presented at half of the speed and separated by wider spaces.  
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9.3 Results 

Response accuracies were analyzed by two 5 × 2 mixed design ANOVA, one for the baseline 

and one for the probe condition. Both ANOVAs had as within-subjects factor the probe 

distance (or PD, with 5 levels: PD0, PD1, PD2, PD3, PD4), and as between-subjects factor 

the group (ASD vs. TD). Note that for the baseline condition, the variable PD – since the 

probe stimulus is absent – is used to identify the position of the target in the array (PD0 

represents a target aligned with the horizontal axis, while PD1 to PD4 are progressively 

farther from it). 

  

Figure 9.1 Schematic representation of the task procedure for: (a) baseline and (b) probe condition. (c) Relation between 
target-to-probe distance (PD) distances and the prediction of the Mexican hat model (Müller et al., 2005; Hopf et al., 
2006) of the attentional focus. (d) Graph representing the two alternative hypotheses (Hp1 and 2) of the current study.  
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9.3.1 Comparable performance between groups in the baseline condition 

ANOVA performed in the baseline condition revealed a main effect of Probe Distance (F(4, 

156)=12.96, p<.001, η2
p=.25), revealing that overall accuracy varied as a function of the 

position of the C in the array (mean±SEM were: PD0=89.2%±2.5, PD1=84.4%±2.3, 

PD2=82.1%±2.1, PD3=74.3%±2.2, PD4=83.3%±2.6). On the contrary, the main effect of 

Group and the interaction were not significant (p=.33 and p=.59, respectively; see Figure 9.2, 

panel A). These results show that both group were equally efficient in orienting and zoom-in 

attention in a small cue (see also Chapter 4 study in the small cue condition). The main effect 

of probe distance in this case it is to consider the result of a combination of visual anisotropy 

(i.e., stimuli placed along the vertical and horizontal axes are discriminated better than 

stimuli placed in the oblique ones; Maffei and Campbell, 1970) and crowding. For both 

group, the task was easier at PD0, because in this case the target was placed aligned with the 

horizontal axis. A gradient of decreased accuracy, instead, was observed from PD1 to PD3, 

caused by an increasing level of visual crowding. Contrarily, in the outer position PD4, visual 

crowding was reduced since no other stimuli were externally presented.      

 

9.3.2 Weak surround suppression of the attentional focus in ASD 

ANOVA performed in the probe condition revealed a main effect of Probe Distance (F(4, 

156)=17.40, p<.001, η2
p=.31; mean±SEM were: PD0=80.4%±3.1, PD1=58.4%±2.7, 

PD2=64.1%±2.7, PD3=68.7%±2.3, PD4=73.3%±2.5). Importantly, a significant Probe 

Distance by Group interaction emerged (F(4,172)=4.38, p=.002, η2
p=.10). To further explore 

this two-way interaction we performed planned comparisons, comparing the performance of 

the two groups in the five different Probe Distance (PD). As shown in the Figure 9.2 (panel 

B), ASD showed a higher accuracy as compared to the TD group both at PD 1 (t(39)=2.17, 
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p=.036) and PD 2 (t(39)=2.15, p=.038). Comparisons at the other PDs did not result significant 

(all ps>.15).  

These results show that the ASD group, at PD1 and PD2, where the effect of surround 

suppression should be the strongest, show a significant weaker suppression – relative to the 

TD group – as reflected by higher accuracy rate. 

 

 

9.3.3 Weak surround suppression correlates with autistic symptomatology 

We considered the possible relationship between the individual measure of surround 

suppression and the ASD symptomatology measured by the SCQ. Individual Surround 

Suppression Index (SSI) was calculated as the mean of accuracy rate in PD1 and PD2, 

subtracted from the accuracy rate at PD0 (SSI = PD0 – Mean [PD1, PD2]). A lower SSI 

corresponds to a weaker suppression outside the focus of attention, and vice versa. Partial 

correlation was performed to control for the effect of age, and the results showed that 

individual SSI was negatively correlated with SCQ scores (Current version; r(16)=-.418, 

p=.042; see Figure 9.3). 

Figure 9.2 Plots showing mean accuracies in the (a) basene and (b) probe conditions, as a function of group and target-
to-probe (PD) distances. *=p<.05. Bars represent the SEM.    
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These results show that this low-level attentional dysfunction in the ASD group is associated 

with symptomatology defined at a higher behavioral level, so that weaker suppression in the 

surround of the attentional focus corresponds to higher symptoms severity. 

 

 

 

 

 

 

 

 

 

9.4 Discussion 

The present study is the first that systematically assess the spatial profile of the attentional 

focus in individuals with ASD. Results clearly demonstrate that the ASD group exhibits a 

weaker suppression in the surround of the attentional focus relative to the TD group. Further, 

the degree of inefficiency in inhibiting visual information outside the focus of attention was 

associated with higher ASD symptoms severity. 

A weaker suppression surrounding the focus of attention suggests an unbalanced relationship 

between neural mechanism of enhancement and suppression at the locus of visual attention 

and is likely to dramatically impact the way in which persons with ASD engage to the visual 

environment. Weak surround suppression may also explain different aspects of their visual 

perception, both in term of strengths and weaknesses. On the one hand, a weak suppression 

surrounding the focus of attention can lead to a better representation of visual information 

(e.g. enhancing local contrast sensitivity) in the vicinity of the attentional focus. This can 

Figure 9.3 Partial correlation 
plot. Scatter plot showing the 
correlation between individuals 
Surround Inhibition Indexes and 
the Social Communication 
Questionnaire (SCQ) score. The 
effect of chronological age has 
been controlled for.      

r(16) = -.418 
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translate into better performance in task such as the visual search (O’Riordan et al., 2001; 

Joseph et al., 2009), the Embedded Figure Test (Jolliffe & Baron-Cohen, 1997; Manjaly et 

al., 2007) and visual crowding (Baldassi et al., 2009; Keïta et al., 2010). Accordingly, Joseph 

and colleagues (2009) studied the factors underlying superior visual search performance in 

ASD. Their findings showed that neither differences in eye-movements nor enhanced visual 

memory can account for better performance in search. They claim, on the contrary, that non-

search factors, specifically related to an anomalously enhanced perception of stimulus 

features, are the key factor behind this advantage. On the other hand, less inhibition of the 

visual information outside the focus of attention could lead to tremendous problem when 

irrelevant information are concurrently presented with relevant ones. One case that clearly 

demonstrates this phenomenon has been described by Burack (1994). The author found that 

individuals with ASD have better performance relative to the control groups when a window 

circumscribed the target and no distractors were on the scene. Conversely, the performance of 

the ASD group was clearly impaired in the presence of distractors outside the window cue. 

An anomalous interference from irrelevant information has been found also using an Eriksen 

flanker task in a more recent study by Adams and Jarrold (2012). Interestingly, the same 

sample of individuals with ASD showed no evidence of impaired prepotent response 

inhibition, leading Adams and Jarrold to conclude that the nature of impaired distractor 

inhibition found in the Eriksen flanker task is not due to a real inhibitory problem, but may in 

fact be related to an increased perceptual representation of distractors. In addition and 

coherently with these findings, in our previous work we demonstrated that people with ASD 

suffered for a deeper and prolonged backward interference (i.e., attentional masking), relative 

to controls, when a laterally displayed irrelevant object was presented after a central target. 

The same impairment was not observed when the second irrelevant masking object followed 

the target in the same spatial position (Ronconi et al., 2013a). 
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The present findings suggest also an important theoretical question that needs to be solved to 

better understand the peculiar nature of visual selection in ASD and their cognition more 

generally. The question is: how the present findings of a weaker suppression surrounding the 

focus of attention are related to evidence of an impaired zoom-out and hyper-focused 

attention previously reported (Mann and Walker, 2003; Robertson et al., 2013; Ronconi et al., 

2013b)? In other words, how persons with ASD can show at the same time a narrowly 

focused attention (which should predict less resources outside the attentional focus) and a 

stronger interference from information outside the attentional window? One plausible answer 

relies on the nature of experimental paradigm previously used to asses the distribution of 

attentional resource. Previous studies have never systematically address – as we did in the 

present study – the processing resolution as a function of the distance from the locus in space 

where attention has been captured. In particular, previous experiments have never specifically 

tested attentional resources outside but near to the attentional focus (although results of 

Ronconi et al., 2013a are in line with present findings). Another possible answer could be 

that the zoom-out problem may be a consequence of a weaker inhibition outside the attended 

area. To avoid visual sensory overload caused by an inefficient suppression at unattended 

locations, people with ASD may develop a tendency to avoid the zooming-out of their 

attentional focus, as the load of information that they have to deal with may become 

excessive and overwhelming. Of course, this latter interpretation remains just speculative at 

the present state, but we believe that future studies need to asses in parallel the modulation of 

the attentional resources as a function of the spatial position or size of the attended area (i.e., 

orienting and zooming), and the spatial profile of the attentional focus (i.e. the surround 

suppression). Evaluating the developmental trajectory and the mutual influence of these two 

mechanisms, we can reach a better understanding of the nature of visual processing and 

related abnormalities that characterize ASD.  
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Possible neural correlates of a weak suppression surrounding the focus of attention can rely 

on diminished top-down modulation coupled with an augmented neural representation of 

visual objects in visual areas. Hopf and colleagues (2006, 2010), indeed, showed that the 

inhibitory ring surrounding the attentional focus arises with a substantial delay relative to the 

initial feed-forward visual flow, suggesting that it is the consequence of top-down attentional 

selection in the early visual system (Tsotsos, 1990, 2005; Hopf et al., 2006, 2010).  

Accumulating evidence, furthermore, support the idea that ASD is characterized by reduced 

functional connectivity between distant neural areas (Rubenstein and Merzenich, 2003; Just 

et al., 2004; Belmonte et al., 2004; Minshew and Williams, 2007; Di Martino et al., 2013; 

Khan et al., 2013; see Vissers et al., 2012 for a review), with a conspicuous reduction in 

fronto-occipital connection (Courchesne and Pierce, 2005; Bartffeld et al., 2011; Jou et al., 

2011). On the other hand, recent reports assessing local connectivity alterations in ASD lend 

support to the hypothesis of diffuse local overconnectivity in occipitotemporal region, where 

the object representation is formed (Keown et al., 2013). Thus, the inefficient surround 

suppression of individuals with ASD is likely to result from impaired feedback projections 

from the attentional network (i.e., frontoparietal areas) – caused by underconnectivity – 

coupled with an augmented visual representation of irrelevant object in visual associative 

areas (i.e., occipitotemporal areas) – caused by local regional overconnectivity. 

In sum, the present findings show that individuals with ASD manifest a spatial profile of the 

attentional focus characterizes by a weak suppression surrounding the attended area. This 

altered inhibitory ring is likely to derive from an inefficient top-down selection of 

information in visual areas and can be the main factor underlying the profile of strengths and 

weaknesses in the visual sensory domain typically associated with ASD. Importantly, as 

attention is known to be a supramodal neurocognitive function that operates on different 

sensory modalities (Farah et al., 1989; Banerijee et al., 2011; Green et al., 2011), this deficit 
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in suppression of irrelevant information can be postulated also for the sensory overload 

present in tactile and auditory domains (Kern et al., 2006; Leekam et al., 2007). 

The experiments conducted so far in the present thesis investigated the deployment of visual 

attention in ASD according to the spotlight (Posner, 1980) and the zoom-lens (Eriksen and 

St. James, 1986; Castiello and Umiltà 1990) models. These models predict that the attentional 

resources are concentrated at their maximum at the center of the attentional focus, and then 

shade progressively (with a linear spatial gradient) while the distance from the attentional 

focus increases. Considering the zoom-out deficit (but the same could be valid for the 

disengagement deficit), one would expect an overfocused attention to be associated also to a 

reduced interference from incongruent/irrelevant information. However, both clinical and 

experimental reports are fairly clear in showing that individuals with ASD suffer often from 

an increased interference from irrelevant and distracting information (e.g. Burack, 1994; 

Belmonte, 2000; Leekam et al., 2007; Ronconi et al., 2013a). 

 

 

 

 

	  



 

CHAPTER 10   – GENERAL DISCUSSION AND CONCLUDING 
REMARKS 

 

 

 

The six studies reported in my Ph.D. thesis give new insights into the nature of altered visual 

attention in individuals with autism spectrum disorder (ASD).  

In the first study (Chapter 4), we evaluated possible differences in the time course of 

attentional orienting and re-orienting between ASD and typically developing (TD) peers as a 

function of the size of their attention focus. We found that performance of the two groups 

was comparable when the attentional focus had to be scaled in a small portion of the visual 

field. On the contrary, when participants had initially to enlarge their attentional focus size, 

the ASD group showed a sluggish attentional orienting relative to the TD group. This 

evidence was also supported by a significant correlation that suggests that slower orienting 

abilities in the large cue condition were related to higher autistic symptomatology. These 

findings suggest that while TD group can efficiently orient their attentional focus both when 

narrow or broad portions of the visual field have to be attended, individuals affected by ASD 

suffer from a sluggish zoom-out of the attentional focus and this is likely to impact 

consecutively also other operations that visual attention has to perform, in this case the 

orienting toward the cued location. Moreover, these results confirm previous evidence of an 

impaired zooming-out of the attentional focus (Mann and Walker, 2003; Ronconi et al., 2012, 

2013b). 

In the two following studies (Chapter 5 and 6) we tested a new strategy that together with 

study of infants at-risk (sibling of older children with ASD) can inform about the 

neurocognitive dysfunction that characterizes ASD and the broader autistic phenotype in the 

very early stage of development. We found that autistic traits in parents from the general 
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population without any history of ASD were related to the attentional functioning of their 8-

month-old infants. In one study (Chapter 5), orienting and alerting attention systems were 

measured in infants using a spatial cueing paradigm and an eye-tracker. Results showed that 

paternal autistic traits were linked to their infants’: (i) attentional disengagement; (ii) rapid 

attentional orienting and (iii) alerting. In the other study (Chapter 6), we tested a new 

paradigm that allows evaluating the attentional zooming mechanism in infanthood, always by 

the means of an eye-tracker. Attentional zooming has never been tested in infanthood before. 

The first important result was that 8-month-old infants can automatically adjust the size of 

their attentional focus in a pre-saccadic temporal window. Moreover, higher autistic traits 

both in fathers and mothers were related to a narrower focus of attention in their infants 

(probably the flip side of the zoom-out attentional impairment associated with ASD). Overall, 

these findings suggest that an early dysfunction of orienting and zooming mechanisms might 

alter the developmental trajectory of future ability in social and communication domains. It 

suggests also that attentional abnormalities can be found not only in infants who have a 

“strong” biological risk for developing the condition – as they are siblings of older children 

with a diagnosis of ASD – but also in infants who have a “mild” biological risk since born 

from parents with high autistic traits.   

Two other studies presented in this work (Chapter 7 and 8) were conducted in order to better 

understand the zoom-out attentional impairment found in ASD and in infants of the broader 

autistic phenotype (Chapter 4 and 6; Mann and Walker, 2003; Ronconi et al., 2012, 2013b). 

We investigated, in the typical population, the neural underpinnings of the attentional 

zooming. While the neural sources of the control of attentional orienting have been widely 

investigated in cognitive neuroscience (see Corbetta and Shulmann, 2002, 2011; Corbetta et 

al., 2008 for reviews), limited evidence are present regarding the neural areas that control the 

attentional focus size. In a first study, we delivered single-pulse transcranial magnetic 
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stimulation (TMS) on the frontal eye fields (FEF) while participants performed an attentional 

zooming task. Results showed that TMS delivered on the right FEF, but not on the left FEF, 

was able to interfere with both zoom-in and zoom-out attentional mechanisms. In a second 

study, we used dense-array electroencephalography (d-EEG) to better investigate neural 

events associated to the modulation of the attentional focus size. Neural sources estimation 

were performed in the cue-target interval, revealing that when compared to the zoom-out 

condition, the zoom-in of the attentional focus was associated to greater activations of the left 

intra-parietal sulcus (IPS). On the other hand, when compared to the zoom-in condition, the 

zoom-out of the attentional focus was associated to long-lasting increased activation in the 

inferior frontal gyrus (IFG) accompanied by: (i) initially, activations in right superior parietal 

lobule (SPL) and bilaterally in superior/middle frontal gyrus – where the frontal eye fields 

(FEF) are located;  (ii) secondly, activations bilaterally in middle temporal gyrus (MTG) and 

insula (INS). 

Overall, these two studies reveal clearly a massive involvement prior to the target onset of 

different part of the frontal lobe, especially FEF and IFG, when subjects had to zoom-out 

their focus of attention. What these results in typical population can tell us about the zoom-

out dysfunction observed in ASD? We saw in Chapter 2 that one of the leading hypothesis 

about neural abnormalities in ASD claims that the autistic brain is characterized by long 

distance under-connectivity (Belmonte et al., 2004; Frith, 2004; Just et al., 2004; Geshwind 

and Levitt, 2007; Casanova and Trippe, 2009; Rudie and Dapretto, 2013), presumably due to 

defect in the development of the minicolumns during early stages of post-natal life (Casanova 

et al., 2002, 2006; Buxhoeveden et al., 2006;). Interestingly, increasing evidence show that 

that long-range connectivity is particularly disrupted between frontal and occipital areas in 

ASD (e.g., Courchesne and Pierce, 2005; Barttfeld et al., 2010; see Belmonte et al., 2004 for 

a review). Accordingly, two fMRI studies have shown, in individuals with ASD, a 
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dysfunction of the dorso-lateral prefrontal cortex during visual attention task (Ring et al., 

1999; Manjaly et al., 2007), and atypical prefrontal activations when testing visual attention 

seem to be present also in unaffected sibs (Belmonte et al., 2010). These findings, along with 

TMS and d-EEG results presented here, give increased consistency to the hypothesis that 

underconnectivity between frontal areas – where top-down attentional processes are 

controlled – and visual areas are the main factor underlying the altered deployment of visual 

attention in ASD.  

In the last study reported here (Chapter 9) we went one step forward the main models of 

visual spatial attention (orienting and zooming) and we investigated the spatial profile of the 

attentional focus in individuals with ASD, according to the so-called “Mexican-hat” model 

(Müller et al., 2005; Hopf et al., 2006). This model, supported by strong neurophysiological 

data, claim that the selection of relevant visual objects produces an area of neural attenuation 

surrounding the focus of attention, a sort of inhibitory ring which is optimal to highlight 

important information and attenuate the deleterious noise (Hopf et al., 2006, 2010). We tested 

this model in ASD in order to clarify why detailed oriented perception and overfocused 

attention – largely demonstrated in ASD (see Happé, 1999; Happé and Frith, 2006; Dakin 

and Frith, 2005; Mottron et al., 2006 for reviews) – coexist with stronger interference from 

irrelevant information (e.g. Burack, 1994; Adams and Jarrold, 2012; Ronconi et al., 2013a), 

which often leads to sensory overload in most individuals with ASD (Kern et al., 2006; 

Leekam et al., 2007). Results showed that in the ASD group the attenuation surrounding the 

focus of attention was markedly reduced, suggesting an unbalanced relationship between 

neural mechanisms of enhancement and suppression at the locus of attention. Moreover, 

weaker suppression outside the focus of attention correlated with higher autistic 

symptomatology. 
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The inefficient surround suppression of individuals with ASD is likely to result from at least 

two different neural abnormalities. Precisely, impaired feedback projections from the top-

down attentional network (i.e., frontal and parietal areas) caused by long-range 

underconnectivity coupled with an augmented representation of objects outside the 

attentional focus in visual associative areas (i.e., occipitotemporal areas) – presumably 

caused by a local regional overconnectivity. While evidence in favor of the former alteration 

has been already discussed above, the latter alteration is supported by a recent study that 

demonstrated local connectivity alterations in occipitotemporal region of individuals with 

ASD (Keown et al., 2013). Local overconnectivity in visual areas was suggested also by 

previous results of psychophysical lateral and attentional masking paradigm in individuals 

with ASD (Kéïta et al., 2011; Ronconi et al., 2013a).  

To conclude, the present doctoral thesis gives significant new insights to define the altered 

deployment of visual attention in persons with ASD. Specifically: (i) it confirms deficit in 

enlarging the attentional focus previously reported (Mann and Walker, 2003; Ronconi et al., 

2012, 2013b); (ii) it shows how parents with high autistic traits can transmit to their infants 

subtle deficit in visual attention that are likely to impact their future socio-communicative 

abilities; (iii) it confirms the validity of visual attention abnormalities as an early marker of 

ASD; (iv) it shows the importance of frontal (especially, FEF and IFG) and parietal 

(especially IPS/SPL) brain areas in regulating the size of the attentional focus and 

consequently the portion in the visual cortex activated in preparation to a stimulus via top-

down modulatory connections; and, lastly (v) it demonstrate that the inhibitory ring outside 

the focus of attention is markedly reduced in ASD, providing a fundamental insight into the 

understanding of both superior performance in detail-oriented tasks as well as sensory 

overload characterizing persons with ASD. 
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The question that remains to be solved is whether these impairments are a cause or a 

consequence of ASD. Only future longitudinal studies carried out in infants at risk can help 

to solve this question. However, whatever will be the case, our evidence in infants with high-

autistic-traits parents – along with recent longitudinal studies in infants at biological risk for 

developing the condition (e.g., Elsabbagh et al., 2013; Chawarska et al., 2013) – suggests that 

alterations of the attention network play a central role in the development of ASD. Since 

attention can be trained efficiently also in infanthood (Wass et al., 2011), the time for early 

and inexpensive prevention programs to reduce the incidence of ASD is getting closer. 



 

REFERENCES 
 
 

 

Abrahams BS, Geschwind DH (2008) Advances in autism genetics: On the threshold of a 

new neurobiology. Nat Rev Genet 9:341-355. 

Adams NC, Jarrold C (2012) Inhibition in autism: Children with autism have difficulty 

inhibiting irrelevant distractors but not prepotent responses. J Autism Dev Disord 

42:1052-1063. 

ADDMN Surveillance, Year 2006 (2009) Principal Investigators MMWR. Surveill Summ 

58:1-20. 

Almeida RA, Dickinson JE, Maybery MT, Badcock JC, Badcock DR (2010) A new step 

towards understanding embedded figures test performance in the autism spectrum: The 

radial frequency search task. Neuropsychologia 48:374-381. 

Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 

31:137-145. 

American Psychiatric Association (2013) Diagnostic and statistical manual of mental 

disorders (5th. edition) (DSM-V). Amer Psychiatric Pub Inc. 

American Psychiatric Association (1994) Diagnostic and statistical manual of mental 

disorders (4th. edition) (DSM-IV). Amer Psychiatric Pub Inc. 

Ames C, Fletcher-Watson S (2010) A review of methods in the study of attention in autism. 

Developmental Review 30:52-73.  

Arrington CM, Carr TH, Mayer AR, Rao SM (2000) Neural mechanisms of visual attention: 

Object-based selection of a region in space. J Cogn Neurosci 12 Suppl 2:106-117. 

Ashbridge E, Walsh V, Cowey A (1997) Temporal aspects of visual search studied by 

transcranial magnetic stimulation. Neuropsychologia 35:1121-1131. 



 

	   148 

Asperger H (1944) Die "autistischen psychopathen" im kindesalter. Eur Arch Psychiatry Clin 

Neurosci 117:76-136. 

Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain 

volume and head circumference in autism. Neurology 59:175-183. 

Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. Signal Processing 

Magazine, IEEE 18:14-30. 

Baldassi S, Pei F, Megna N, Recupero G, Viespoli M, Igliozzi R, Tancredi R, Muratori F, 

Cioni G (2009) Search superiority in autism within, but not outside the crowding 

regime. Vision Res 49:2151-2156. 

Banerjee S, Snyder AC, Molholm S, Foxe JJ (2011) Oscillatory alpha-band mechanisms and 

the deployment of spatial attention to anticipated auditory and visual target locations: 

Supramodal or sensory-specific control mechanisms? J Neurosci 31:9923-9932. 

Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E (2001) The autism-spectrum 

quotient (AQ): Evidence from asperger Syndrome/High-functioning autism, males and 

females, scientists and mathematicians. J Autism Dev Disord 31:5-17. 

Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R 

(2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 

9:e1001081. 

Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M (2011) A big-world network 

in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections 

and an excess of short-range connections. Neuropsychologia 49:254-263. 

Bayliss AP, Kritikos A (2011) Brief report: Perceptual load and the autism spectrum in 

typically developed individuals. J Autism Dev Disord 41:1573-1578. 

Belmonte MK (2000) Abnormal attention in autism shown by steady-state visual evoked 

potentials. Autism 4:269-285. 



 

	   149 

Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004) 

Autism and abnormal development of brain connectivity. J Neurosci 24:9228-9231. 

Belmonte MK, Gomot M, Baron‐Cohen S (2010) Visual attention in autism families: 

‘unaffected’ sibs share atypical frontal activation. J Child Psychol Psychiatry 51:259-

276. 

Benso F, Turatto M, Mascetti GG, Umiltà C (1998) The time course of attentional focusing. 

Eur J Cogn Psychol 10:373-388. 

Bettelheim B (1967) The empty fortress: Infantile autism and the birth of the self. Free Press. 

Bichot NP, Schall JD (1999) Saccade target selection in macaque during feature and 

conjunction visual search. Vis Neurosci 16:81-89. 

Bishop DV, Maybery M, Maley A, Wong D, Hill W, Hallmayer J (2004) Using self‐report to 

identify the broad phenotype in parents of children with autistic spectrum disorders: A 

study using the Autism‐Spectrum quotient. J Child Psychol Psychiatry 45:1431-1436. 

Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial 

attention. Science 299:81-86. 

Blair RC, Karniski W (1993) An alternative method for significance testing of waveform 

difference potentials. Psychophysiology 30:518-524. 

Bleuler E (1911) Dementia Praecox oder Gruppe der Schizophrenien. Leipzig, Germany: 

Deuticke. 

Boehler CN, Tsotsos JK, Schoenfeld MA, Heinze H, Hopf J (2011) Neural mechanisms of 

surround attenuation and distractor competition in visual search. J Neurosci 31:5213-

5224. 

Bolton P, Pickles A, Murphy M, Rutter M (1998) Autism, affective and other psychiatric 

disorders: Patterns of familial aggregation. Psychol Med 28:385-395. 



 

	   150 

Brambilla P, Hardan A, di Nemi SU, Perez J, Soares JC, Barale F (2003) Brain anatomy and 

development in autism: Review of structural MRI studies. Brain Res Bull 61:557-569.  

Brefczynski JA, DeYoe EA (1999) A physiological correlate of the 'spotlight' of visual 

attention. Nat Neurosci 2:370-374. 

Bruneau N, Bonnet-Brilhault F, Gomot M, Adrien J, Barthélémy C (2003) Cortical auditory 

processing and communication in children with autism: 

Electrophysiological/behavioral relations. Int J Psychophysiol 51:17-25. 

Bullier J (2001) Integrated model of visual processing. Brain Res Rev 36:96-107. 

Burack JA (1994) Selective attention deficits in persons with autism: Preliminary evidence of 

an inefficient attentional lens. J Abnorm Psychol 103:535-543. 

Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the 

prefrontal and posterior parietal cortices. Science 315:1860-1862. 

Butterworth G, Grover (1990) Joint visual attention, manual pointing, and pre-verbal 

communication in human infancy. In: Attention and performance XIII (Jeannerod M, 

ed), pp.605-624 Hillside, NJ: Erlbaum. 

Butterworth G, Jarrett N (1991) What minds have in common is space: Spatial mechanisms 

serving joint visual attention in infancy. Brith J Develop Psychol 9:55-72. 

Buxhoeveden D, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E (2006) 

Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl 

Neurobiol 32:483-491. 

Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 

125:935-951. 

Callejas A, Lupiáñez J, Tudela P (2004) The three attentional networks: On their 

independence and interactions. Brain Cogn 54:225-227. 



 

	   151 

Caputo G, Guerra S (1998) Attentional selection by distractor suppression. Vision Res 

38:669-689.  

Carrasco M (2011) Visual attention: The past 25 years. Vision Res 51:1484-1525. 

Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002) Minicolumnar pathology in 

autism. Neurology 58:428-432. 

Casanova MF, van Kooten IA, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, 

Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. 

Acta Neuropathol 112:287-303. 

Casanova M, Trippe J (2009) Radial cytoarchitecture and patterns of cortical connectivity in 

autism. Philos Trans R Soc Lond B Biol Sci 364:1433-1436. 

Castiello U, Umiltà C (1990) Size of the attentional focus and efficiency of processing. Acta 

Psychol 73:195-209. 

Castiello U, Umiltà C (1992) Splitting focal attention. J Exp Psychol Hum Percept Perform 

18:837-848. 

Chawarska K, Macari S, Shic F (2013) Decreased spontaneous attention to social scenes in 6-

month-old infants later diagnosed with autism spectrum disorders. Biol Psychiatry 

74:195-203. 

Chen Q, Marshall JC, Weidner R, Fink GR (2009) Zooming in and zooming out of the 

attentional focus: An fMRI study. Cereb Cortex 19:805-819. 

Ciesielski K, Courchesne E, Elmasian R (1990) Effects of focused selective attention tasks on 

event-related potentials in autistic and normal individuals. Electroencephalogr Clin 

Neurophysiol 75:207-220. 

Clohessy AB, Posner MI, Rothbart MK, Vecera SP (1991) The development of inhibition of 

return in early infancy. J Cogn Neurosci 3:345-350. 



 

	   152 

Constantino JN, Todd RD (2005) Intergenerational transmission of subthreshold autistic traits 

in the general population. Biol Psychiatry 57:655-660. 

Constantino JN, Todd RD (2003) Autistic traits in the general population: A twin study. Arch 

Gen Psychiatry 60:524-530. 

Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary 

orienting is dissociated from target detection in human posterior parietal cortex. Nat 

Neurosci 3:292-297. 

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the 

brain. Nat Rev Neurosci 3:215-229. 

Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: From 

environment to theory of mind. Neuron 58:306-324. 

Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 

34:569-599. 

Courchesne E, Lincoln AJ, Kilman BA, Galambos R (1985) Event-related brain potential 

correlates of the processing of novel visual and auditory information in autism. J 

Autism Dev Disord 15:55-76. 

Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, 

James HE, Haas RH, Schreibman L, Lau L (1994) Impairment in shifting attention in 

autistic and cerebellar patients. Behav Neurosci 108:848. 

Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses 

P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, 

Courchesne RY (2001) Unusual brain growth patterns in early life in patients with 

autistic disorder: An MRI study. Neurology 57:245-254.  

Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first 

year of life in autism. JAMA 290:337-344. 



 

	   153 

Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to 

itself: Local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 

15:225-230. 

Cutrell EB, Marrocco RT (2002) Electrical microstimulation of primate posterior parietal 

cortex initiates orienting and alerting components of covert attention. Exp Brain Res 

144:103-113. 

Dakin S, Frith U (2005) Vagaries of visual perception in autism. Neuron 48:497-507. 

Dawson, G., & Lewy, A. (1989). Arousal, attention, and the socioemotional impairments of 

individuals with autism. In: Autism: Nature, diagnosis, and treatment (Dawson G, ed) 

pp.49-74. New York: Guilford Press. 

Dawson G, Webb S, Schellenberg GD, Dager S, Friedman S, Aylward E, Richards T (2002) 

Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives. 

Dev Psychopathol 14:581-611. 

Dawson G, Webb SJ, Wijsman E, Schellenberg G, Estes A, Munson J, Faja S (2005) 

Neurocognitive and electrophysiological evidence of altered face processing in parents 

of children with autism: Implications for a model of abnormal development of social 

brain circuitry in autism. Dev Psychopathol 17:679-697. 

Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K (2007) Rate of head growth 

decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry 

61:458-464. 

Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial 

EEG dynamics including independent component analysis. J Neurosci Methods 134:9-

21. 



 

	   154 

Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA, DeLong GR, 

Abramson RK, Wright HH, Cuccaro ML (2005) Accelerated head growth in early 

development of individuals with autism. Pediatr Neurol 32:102-108. 

DeFelipe, J. (2005) Reflections on the structure of the cortical minicolumn. In: Neocortical 

Modularity and the Cell Minicolumn (Casanova M, ed), pp.57-92, Nova Science 

Publishers. 

Di Martino A et al (2013) The autism brain imaging data exchange: Towards a large-scale 

evaluation of the intrinsic brain architecture in autism. Mol Psychiatry (In press: doi: 

10.1038/mp.2013.78) 

DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz 

RT, Crawley J, Young LJ (2006) The developmental neurobiology of autism spectrum 

disorder. J Neurosci 26:6897-6906. 

Downar J, Crawley AP, Mikulis DJ, Davis KD (2001) The effect of task relevance on the 

cortical response to changes in visual and auditory stimuli: An event-related fMRI 

study. Neuroimage 14:1256-1267. 

Eimer M (1994) An ERP study on visual spatial priming with peripheral onsets. 

Psychophysiology 31:154-163. 

Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom-up 

dependent gating of frontal signals in early visual cortex. Science 321:414-417. 

Elsabbagh M, Johnson MH (2010) Getting answers from babies about autism. Trends Cogn 

Sci 14:81-87. 

Elsabbagh M, Volein A, Holmboe K, Tucker L, Csibra G, Baron-Cohen S, Bolton P, 

Charman T, Baird G, Johnson MH (2009) Visual orienting in the early broader autism 

phenotype: Disengagement and facilitation. J Child Psychol Psychiatry 50:637-642. 



 

	   155 

Elsabbagh M, Fernandes J, Jane Webb S, Dawson G, Charman T, Johnson MH, British 

Autism Study of Infant Siblings Team (2013) Disengagement of visual attention in 

infancy is associated with emerging autism in toddlerhood. Biol Psychiatry 74:189-194. 

Eriksen CW, St James JD (1986) Visual attention within and around the field of focal 

attention: A zoom lens model. Percept Psychophys 40:225-240. 

Facoetti A, Paganoni P, Lorusso ML (2000) The spatial distribution of visual attention in 

developmental dyslexia. Exp Brain Res 132:531-538. 

Facoetti A, Molteni M (2001) The gradient of visual attention in developmental dyslexia. 

Neuropsychologia 39:352-357. 

Farah MJ, Wong AB, Monheit MA, Morrow LA (1989) Parietal lobe mechanisms of spatial 

attention: Modality-specific or supramodal? Neuropsychologia 27:461-470. 

Fischer B, Breitmeyer B (1987) Mechanisms of visual attention revealed by saccadic eye 

movements. Neuropsychologia 25:73-83. 

Fombonne E (2006) Past and future perspectives on autism epidemiology. In: Understanding 

Autism from Basic Neuroscience to Treatment (Moldin SO, Rubenstein JLR, eds), 

pp.25-48, Taylor and Francis. 

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal 

activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U 

S A 103:10046-10051. 

Frith C (2004) Is autism a disconnection disorder? Lancet Neurol 3:577. 

Fu S, Caggiano DM, Greenwood PM, Parasuraman R (2005) Event-related potentials reveal 

dissociable mechanisms for orienting and focusing visuospatial attention. Cogn Brain 

Res 23:341-353. 

Gandhi SP, Heeger DJ, Boynton GM (1999) Spatial attention affects brain activity in human 

primary visual cortex. Proc Natl Acad Sci U S A 96:3314-3319. 



 

	   156 

Geschwind DH, Levitt P (2007) Autism spectrum disorders: Developmental disconnection 

syndromes. Curr Opin Neurobiol 17:103-111. 

Gold MS, Gold JR (1975) Autism and attention: Theoretical considerations and a pilot study 

using set reaction time. Child Psychiatry Hum Dev 6:68-80. 

Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: Opensource software for 

quasistatic bioelectromagnetics. Biomedical Eng Online 9:45. 

Grandin T (2009) Visual abilities and sensory differences in a person with autism. Biol 

Psychiatry 65:15-16. 

Green JJ, Doesburg SM, Ward LM, McDonald JJ (2011) Electrical neuroimaging of 

voluntary audiospatial attention: Evidence for a supramodal attention control network. J 

Neurosci 31:3560-3564. 

Greenwood PM, Parasuraman R (1999) Scale of attentional focus in visual search. Percept 

Psychophys 61:837-859. 

Grinter EJ, Maybery MT, Badcock DR (2010) Vision in developmental disorders: Is there a 

dorsal stream deficit? Brain Res Bull 82:147-160. 

Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of event-related brain 

potentials/fields I: A critical tutorial review. Psychophysiology 48:1711-1725. 

Grubb MA, Behrmann M, Egan R, Minshew NJ, Carrasco M, Heeger DJ (2013) Endogenous 

spatial attention: Evidence for intact functioning in adults with autism. Autism Res 

6:108-118. 

Halligan PW, Marshall JC (1993) Homing in on neglect: A case study of visual search. 

Cortex 29:167-174. 

Happé F (1999) Autism: Cognitive deficit or cognitive style. Trends Cogn Sci 3:216-222. 

Happé F, Frith U (2006) The weak coherence account: Detail-focused cognitive style in 

autism spectrum disorders. J Autism Dev Disord 36:5-25. 



 

	   157 

Hazlett HC, Poe MD, Gerig G, Smith RG, Piven J (2006) Cortical gray and white brain tissue 

volume in adolescents and adults with autism. Biol Psychiatry 59:1-6. 

He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of 

functional connectivity in frontoparietal networks underlies behavioral deficits in 

spatial neglect. Neuron 53:905-918. 

Hemmelmann C, Horn M, Reiterer S, Schack B, Susse T, Weiss S (2004) Multivariate tests 

for the evaluation of high-dimensional EEG data. J Neurosci Methods 139:111-120. 

Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Lange N, Bakardjiev A, Hodgson J, 

Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS,Jr (2003) 

Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in 

autistic boys. Brain 126:1182-1192. 

Hillyard SA, Munte TF (1984) Selective attention to color and location: An analysis with 

event-related brain potentials. Percept Psychophys 36:185-198. 

Hood BM (1993) Inhibition of return produced by covert shifts of visual attention in 6-

month-old infants. Infant Behavior and Development 16:245-254. 

Hood BM (1995) Shifts of visual attention in the human infant: A neuroscientific approach. 

Advances in Infancy Research 9:163-216. 

Hopf J, Boehler C, Luck S, Tsotsos J, Heinze H, Schoenfeld M (2006) Direct 

neurophysiological evidence for spatial suppression surrounding the focus of attention 

in vision. Proc Natl Acad Sci U S A 103:1053-1058. 

Hopf JM, Boehler CN, Schoenfeld MA, Heinze HJ, Tsotsos JK (2010) The spatial profile of 

the focus of attention in visual search: Insights from MEG recordings. Vision Res 

50:1312-1320. 

Hopfinger J, Buonocore M, Mangun G (2000) The neural mechanisms of top-down 

attentional control. Nat Neurosci 3:284-291. 



 

	   158 

Hutman T (2013) From attention to interaction: The emergence of autism during infancy. 

Biol Psychiatry 74:162-163. 

James W (1890) Principles of Psychology, Vol. 1. NewYork: Holt. 

Johnson MH, Tucker LA (1996) The development and temporal dynamics of spatial orienting 

in infants. J Exp Child Psychol 63:171-188. 

Johnson MH, Posner MI, Rothbart MK (1991) Components of visual orienting in early 

infancy: Contingency learning, anticipatory looking, and disengaging. J Cogn Neurosci 

3:335-344. 

Johnson MH (2011) Interactive specialization: A domain-general framework for human 

functional brain development? Dev Cogn Neurosci 1:7-21. 

Jolliffe T, Baron-Cohen S (1997) Are people with autism and Asperger syndrome faster than 

normal on the embedded figures test? J Child Psychol Psychiatry 38:527-534. 

Jones EJH, Gliga T, Bedford R, Charman T, Johnson MH (2013) Developmental pathways to 

autism: A review of prospective studies of infants at risk. Neurosci Biobehav Rev (In 

press: doi: 10.1016/j.neubiorev.2013.12.001) 

Jonides, J (1981) Voluntary versus automatic control over the mind’s eye’s movement. In: 

Attention and performance IX (Long JB, Baddeley AD, eds) pp.187-203. Hillsdale, NJ: 

Erlbaum. 

Joseph RM, Keehn B, Connolly C, Wolfe JM, Horowitz TS (2009) Why is visual search 

superior in autism spectrum disorder? Dev Sci 12:1083-1096. 

Jou RJ, Jackowski AP, Papademetris X, Rajeevan N, Staib LH, Volkmar FR (2011) 

Diffusion tensor imaging in autism spectrum disorders: Preliminary evidence of 

abnormal neural connectivity. Aust N Z J Psychiatry 45:153-162. 



 

	   159 

Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and 

synchronization during sentence comprehension in high-functioning autism: Evidence 

of underconnectivity. Brain 127:1811-1821. 

Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2:217-250. 

Karmiloff-Smith A (1998) Development itself is the key to understanding developmental 

disorders. Trends Cogn Sci 2:389-398. 

Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in 

human visual cortex during directed attention in the absence of visual stimulation. 

Neuron 22:751-761. 

Kawakubo Y, Kasai K, Okazaki S, Hosokawa-Kakurai M, Watanabe K, Kuwabara H, 

Ishijima M, Yamasue H, Iwanami A, Kato N, Maekawa H (2007) Electrophysiological 

abnormalities of spatial attention in adults with autism during the gap overlap task. Clin 

Neurophysiol 118:1464-1471. 

Keehn B, Lincoln AJ, Müller RA, Townsend J (2010) Attentional networks in children and 

adolescents with autism spectrum disorder. J Child Psychol Psychiatry 51:1251-1259. 

Keehn B, Müller R, Townsend J (2013) Atypical attentional networks and the emergence of 

autism. Neurosci Biobehav Rev 37:164-183. 

Kéïta L, Mottron L, Bertone A (2010) Far visual acuity is unremarkable in autism: Do we 

need to focus on crowding? Autism Res 3:333-341. 

Kéïta L, Mottron L, Dawson M, Bertone A (2011) Atypical lateral connectivity: A neural 

basis for altered visuospatial processing in autism. Biol Psychiatry 70:806-811. 

Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, Müller R (2013) Local functional 

overconnectivity in posterior brain regions is associated with symptom severity in 

autism spectrum disorders. Cell Reports 5:567-572. 



 

	   160 

Kern JK, Trivedi MH, Garver CR, Grannemann BD, Andrews AA, Savla JS, Johnson DG, 

Mehta JA, Schroeder JL (2006) The pattern of sensory processing abnormalities in 

autism. Autism 10:480-494. 

Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli 

JD, Tager-Flusberg HB, Joseph RM (2013) Local and long-range functional 

connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci U 

S A 110:3107-3112. 

Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M (2005) An event-related 

functional magnetic resonance imaging study of voluntary and stimulus-driven 

orienting of attention. J Neurosci 25:4593-4604. 

King M, Bearman PS (2009) Diagnostic change and the increased prevalence of autism. Int J 

Epidemiol 38:1224-1234. 

King MD, Fountain C, Dakhlallah D, Bearman PS (2009) Estimated autism risk and older 

reproductive age. Am J Public Health 99:1673-1679. 

King MD, Bearman PS (2011) Socioeconomic status and the increased prevalence of autism 

in california. Am Sociol Rev 76:320-346. 

Kingstone A, Klein RM (1993) Visual offsets facilitate saccadic latency: Does 

predisengagement of visuospatial attention mediate this gap effect? J Exp Psychol Hum 

Percept Perform 19:1251-1265. 

Kinsbourne M (1987) Mechanisms of unilateral neglect. Adv Psychol 45:69-86. 

Klein RM (2000) Inhibition of return. Trends Cogn Sci 4:138-147. 

Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Visual fixation patterns during 

viewing of naturalistic social situations as predictors of social competence in 

individuals with autism. Arch Gen Psychiatry 59:809-816. 



 

	   161 

Koldewyn K, Whitney D, Rivera SM (2011) Neural correlates of coherent and biological 

motion perception in autism. Dev Sci 14:1075-1088. 

Kveraga K, Boshyan J, Bar M (2007) Magnocellular projections as the trigger of top-down 

facilitation in recognition. J Neurosci 27:13232-13240. 

Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T (2005) A common 

formalism for the integral formulations of the forward EEG problem. IEEE Trans Med 

Imaging 24:12-28. 

LaBerge D (1983) Spatial extent of attention to letters and words. J Exp Psychol Hum 

Percept Perform 9:371-379. 

LaBerge D, Brown V (1989) Theory of attentional operations in shape identification. Psychol 

Rev 96:101-124. 

Landry R, Bryson SE (2004) Impaired disengagement of attention in young children with 

autism. J Child Psychol Psychiatry 45:1115-1122. 

Lecavalier L (2006) Behavioral and emotional problems in young people with pervasive 

developmental disorders: Relative prevalence, effects of subject characteristics, and 

empirical classification. J Autism Dev Disord 36:1101-1114. 

Leekam SR, Nieto C, Libby SJ, Wing L, Gould J (2007) Describing the sensory 

abnormalities of children and adults with autism. J Autism Dev Disord 37:894-910. 

Leff AP, Scott SK, Rothwell JC, Wise RJS (2001) The planning and guiding of reading 

saccades: A repetitive transcranial magnetic stimulation study. Cereb Cortex 11:918-

923. 

Lord C, Rutter M, DiLavore P, Risi S (2002) Autism diagnostic observation schedule: 

ADOS. Western Psychological Services. 

Lotter V (1966) Epidemiology of autistic conditions in young children. Social Psychiatry 

1:124-135. 



 

	   162 

Lovaas OI, Koegel RL, Schreibman L (1979) Stimulus overselectivity in autism: A review of 

research. Psychol Bull 86:1236-1254. 

Luck SJ, Woodman GF, Vogel EK (2000) Event-related potential studies of attention. Trends 

Cogn Sci 4:432-440. 

Luo Y, Greenwood PM, Parasuraman R (2001) Dynamics of the spatial scale of visual 

attention revealed by brain event-related potentials. Cogn Brain Res 12:371-381. 

Macaluso E, Frith CD, Driver J (2002) Directing attention to locations and to sensory 

modalities: Multiple levels of selective processing revealed with PET. Cereb Cortex 

12:357-368. 

Maffei L, Campbell FW (1970) Neurophysiological localization of the vertical and horizontal 

visual coordinates in man. Science 167:386-387. 

Mangun GR, Hillyard SA (1988) Spatial gradients of visual attention: Behavioral and 

electrophysiological evidence. Electroencephalogr Clin Neurophysiol 70:417-428. 

Manjaly ZM, Bruning N, Neufang S, Stephan KE, Brieber S, Marshall JC, Kamp-Becker I, 

Remschmidt H, Herpertz-Dahlmann B, Konrad K (2007) Neurophysiological correlates 

of relatively enhanced local visual search in autistic adolescents. Neuroimage 35:283-

291. 

Mann TA, Walker P (2003) Autism and a deficit in broadening the spread of visual attention. 

J Child Psychol Psychiatry 44:274-284. 

McAdams CJ, Maunsell JH (1999) Effects of attention on orientation-tuning functions of 

single neurons in macaque cortical area V4. J Neurosci 19:431-441. 

McAdams CJ, Reid RC (2005) Attention modulates the responses of simple cells in monkey 

primary visual cortex. J Neurosci 25:11023-11033. 



 

	   163 

McCleery JP, Akshoomoff N, Dobkins KR, Carver LJ (2009) Atypical face versus object 

processing and hemispheric asymmetries in 10-month-old infants at risk for autism. 

Biol Psychiatry 66:950-957. 

McMains SA, Somers DC (2004) Multiple spotlights of attentional selection in human visual 

cortex. Neuron 42:677-686.  

McMains SA, Somers DC (2005) Processing efficiency of divided spatial attention 

mechanisms in human visual cortex. J Neurosci 25:9444-9448. 

Miller BT, D'Esposito M (2005) Searching for “the top” in top-down control. Neuron 48:535-

538. 

Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad 

Sci U S A 98:1273-1276. 

Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of 

frontal cortex. Nature 421:370-373. 

Moore T, Armstrong KM, Fallah M (2003) Visuomotor origins of covert spatial attention. 

Neuron 40:671-683.  

Motter BC (1993) Focal attention produces spatially selective processing in visual cortical 

areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol 70:909-919. 

Mottron L, Dawson M, Soulieres I, Hubert B, Burack JA (2006) Enhanced perceptual 

functioning in autism: An update, and eight principles of autistic perception. J Autism 

Dev Disord 36:27-43. 

Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701-722. 

Muggleton NG, Juan CH, Cowey A, Walsh V (2003) Human frontal eye fields and visual 

search. J Neurophysiol 89:3340-3343. 

Müller NG, Bartelt OA, Donner TH, Villringer A, Brandt SA (2003) A physiological 

correlate of the "zoom lens" of visual attention. J Neurosci 23:3561-3565. 



 

	   164 

Müller NG, Kleinschmidt A (2004) The attentional 'spotlight's' penumbra: Center-surround 

modulation in striate cortex. Neuroreport 15:977-980. 

Müller NG, Mollenhauer M, Rösler A, Kleinschmidt A (2005) The attentional field has a 

mexican hat distribution. Vision Res 45:1129-1137.  

Mundy P (2003) Annotation: The neural basis of social impairments in autism: The role of 

the dorsal medial‐frontal cortex and anterior cingulate system. J Child Psychol 

Psychiatry 44:793-809. 

Mundy P, Newell L (2007) Attention, joint attention, and social cognition. Curr Dir Psychol 

Sci 16:269-274. 

Müri R, Hess C, Meienberg O (1991) Transcranial stimulation of the human frontal eye field 

by magnetic pulses. Exp Brain Res 86:219-223. 

Murthy A, Thompson KG, Schall JD (2001) Dynamic dissociation of visual selection from 

saccade programming in frontal eye field. J Neurophysiol 86:2634-2637. 

Neville HJ, Lawson D (1987) Attention to central and peripheral visual space in a movement 

detection task: An event-related potential and behavioral study. II. Congenitally deaf 

adults. Brain Res 405:268-283. 

Newschaffer CJ, Falb MD, Gurney JG (2005) National autism prevalence trends from united 

states special education data. Pediatrics 115:e277-e282. 

Noudoost B, Chang MH, Steinmetz NA, Moore T (2010) Top-down control of visual 

attention. Curr Opin Neurobiol 20:183-190. 

Orekhova EV, Stroganova T, Prokofiev A, Nygren G, Gillberg C, Elam M (2009) The right 

hemisphere fails to respond to temporal novelty in autism: Evidence from an ERP 

study. Clin Neurophysiol 120:520-529. 

O'Riordan MA, Plaisted KC, Driver J, Baron-Cohen S (2001) Superior visual search in 

autism. J Exp Psychol Hum Percept Perform 27:719-730. 



 

	   165 

O'Shea J, Muggleton NG, Cowey A, Walsh V (2006) On the roles of the human frontal eye 

fields and parietal cortex in visual search. Visual Cognition 14:934-957. 

Parner ET, Baron-Cohen S, Lauritsen MB, Jorgensen M, Schieve LA, Yeargin-Allsopp M, 

Obel C (2012) Parental age and autism spectrum disorders. Ann Epidemiol 22:143-150. 

Pellicano E, Burr D (2012) When the world becomes 'too real': A bayesian explanation of 

autistic perception. Trends Cogn Sci 16:504-510.  

Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu 

Rev Neurosci 35:73-89. 

Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3-25. 

Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp 

Psychol 109:160-174. 

Posner MI, Cohen Y (1984) Components of visual orienting. In: Attention and performance 

X (Bouma H & Bouwhuis H, eds.). pp.531-556. Hove, UK: Lawrence Erlbaum 

Associates Ltd. 

Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 

13:25-42. 

Pritchard WS, Raz N, August GJ (1987) Visual augmenting/reducing and P300 in autistic 

children. J Autism Dev Disord 17:231-242. 

Pruett JR Jr, LaMacchia A, Hoertel S, Squire E, McVey K, Todd RD, Constantino JN, 

Petersen SE (2011) Social and non-social cueing of visuospatial attention in autism and 

typical development. J Autism Dev Disord 41:715-731. 

Rakic P (1988) Specification of cerebral cortical areas. Science 241:170-176. 

Renner P, Grofer Klinger L, Klinger MR (2006) Exogenous and endogenous attention 

orienting in autism spectrum disorders. Child Neuropsychol 12:361-382. 



 

	   166 

Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitivity of V4 neurons. 

Neuron 26:703-714. 

Richards JE (2001) Attention in young infants: A developmental psychophysiological 

perspective. In: Handbook of Developmental Cognitive Neuroscience (Nelson CA, 

Luciana M, eds.) pp.321-338. MIT Press. 

Richards JE (2003) Attention affects the recognition of briefly presented visual stimuli in 

infants: An ERP study. Dev Sci 6:312-328. 

Richards JE (2005) Localizing cortical sources of event‐related potentials in infants’ covert 

orienting. Dev Sci 8:255-278. 

Ring HA, Baron-Cohen S, Wheelwright S, Williams SC, Brammer M, Andrew C, Bullmore 

ET (1999) Cerebral correlates of preserved cognitive skills in autism: A functional MRI 

study of embedded figures task performance. Brain 122:1305-1315. 

Ristic J, Mottron L, Friesen CK, Iarocci G, Burack JA, Kingstone A (2005) Eyes are special 

but not for everyone: The case of autism. Brain Res Cogn Brain Res 24:715-718. 

Rizzolatti G, Riggio L, Dascola I, Umiltà C (1987) Reorienting attention across the 

horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. 

Neuropsychologia 25:31-40. 

Ro T, Cheifet S, Ingle H, Shoup R, Rafal R (1999) Localization of the human frontal eye 

fields and motor hand area with transcranial magnetic stimulation and magnetic 

resonance imaging. Neuropsychologia 37:225-231. 

Robertson CE, Kravitz DJ, Freyberg J, Baron-Cohen S, Baker CI (2013) Tunnel vision: 

Sharper gradient of spatial attention in autism. J Neurosci 33:6776-6781. 

Roelfsema PR, Lamme VA, Spekreijse H (1998) Object-based attention in the primary visual 

cortex of the macaque monkey. Nature 395:376-381. 



 

	   167 

Ronconi L, Gori S, Ruffino M, Franceschini S, Urbani B, Molteni M, Facoetti A (2012) 

Decreased coherent motion discrimination in autism spectrum disorder: The role of 

attentional zoom-out deficit. PloS One 7:e49019. 

Ronconi L, Gori S, Giora E, Ruffino M, Molteni M, Facoetti A (2013a) Deeper attentional 

masking by lateral objects in children with autism. Brain Cogn 82:213-218. 

Ronconi L, Gori S, Ruffino M, Molteni M, Facoetti A (2013b) Zoom-out attentional 

impairment in children with autism spectrum disorder. Cortex 49:1025-1033. 

Ronconi L, Basso D, Gori S, Facoetti A (2014a) TMS on right frontal eye fields induces an 

inflexible focus of attention. Cereb Cortex 24:396-402. 

Ronconi L, Facoetti A, Bulf H, Franchin L, Bettoni R, Valenza E (2014b) Paternal autistic 

traits are predictive of infants visual attention. J Autism Dev Disord (In press, doi: 

10.1007/s10803-013-2018-1). 

Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification 

factor. Exp Brain Res 37:495-510. 

Rowe JB, Stephan KE, Friston K, Frackowiak RS, Passingham RE (2005) The prefrontal 

cortex shows context-specific changes in effective connectivity to motor or visual 

cortex during the selection of action or colour. Cereb Cortex 15:85-95. 

Rubenstein J, Merzenich M (2003) Model of autism: Increased ratio of excitation/inhibition 

in key neural systems. Genes Brain Behav 2:255-267. 

Rudie J, Dapretto M (2013) Convergent evidence of brain overconnectivity in children with 

autism? Cell Reports 5:565-566. 

Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs 

O, Deichmann R, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal 

frontal influences on human retinotopic visual cortex. Curr Biol 16:1479-1488. 



 

	   168 

Ruff CC, Bestmann S, Blankenburg F, Bjoertomt O, Josephs O, Weiskopf N, Deichmann R, 

Driver J (2008) Distinct causal influences of parietal versus frontal areas on human 

visual cortex: Evidence from concurrent TMS–fMRI. Cereb Cortex 18:817-827. 

Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Weiskopf N, Driver J (2009) 

Hemispheric differences in frontal and parietal influences on human occipital cortex: 

Direct confirmation with concurrent TMS–fMRI. J Cogn Neurosci 21:1146-1161. 

Rugg MD, Milner AD, Lines CR, Phalp R (1987) Modulation of visual event-related 

potentials by spatial and non-spatial visual selective attention. Neuropsychologia 25:85-

96. 

Rutter M, Bailey A, Lord C (2003) SCQ: Social Communication Questionnaire. Western 

Psychological Services, Los Angeles. 

Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: 

How top-down feedback highlights relevant locations. Science 316:1612-1615. 

Sacrey LR, Bryson SE, Zwaigenbaum L (2013) Prospective examination of visual attention 

during play in infants at high-risk for autism spectrum disorder: A longitudinal study 

from 6 to 36 months of age. Behav Brain Res 256:441-450. 

Schreibman L, Lovaas OI (1973) Overselective response to social stimuli by autistic children. 

J Abnorm Child Psychol 1:152-168. 

Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S (2005) Coordination of 

voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:114-

122. 

Shiraev, E (2010) A history of psychology: a global perspective. Thousand Oaks, CA: Sage. 

Shulman GL, McAvoy MP, Cowan MC, Astafiev SV, Tansy AP, d'Avossa G, Corbetta M 

(2003) Quantitative analysis of attention and detection signals during visual search. J 

Neurophysiol 90:3384-3397. 



 

	   169 

Shulman GL, Astafiev SV, McAvoy MP, d'Avossa G, Corbetta M (2007) Right TPJ 

deactivation during visual search: Functional significance and support for a filter 

hypothesis. Cereb Cortex 17:2625-2633. 

Simmons DR, Robertson AE, McKay LS, Toal E, McAleer P, Pollick FE (2009) Vision in 

autism spectrum disorders. Vision Res 49:2705-2739. 

Slotnick SD, Hopfinger JB, Klein SA, Sutter EE (2002) Darkness beyond the light: 

Attentional inhibition surrounding the classic spotlight. Neuroreport 13:773-778. 

Smith LE, Greenberg JS, Seltzer MM, Hong J (2008) Symptoms and behavior problems of 

adolescents and adults with autism: Effects of mother-child relationship quality, 

warmth, and praise. Am J Ment Retard 113:387-402. 

Sokolov EN (1963) Perception and the conditioned reflex. Oxford: Oxford University Press, 

Pergamon Press. 

Somers DC, Dale AM, Seiffert AE, Tootell RB (1999) Functional MRI reveals spatially 

specific attentional modulation in human primary visual cortex. Proc Natl Acad Sci U S 

A 96:1663-1668. 

Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, 

Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in 

young children with autism spectrum disorder. Neurology 59:184-192. 

Sperling G, Melchner MJ (1978) The attention operating characteristic: Examples from 

visual search. Science 202:315-318. 

Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical 

areas from the macaque frontal eye fields. J Comp Neurol 353:291-305. 

Sutherland A, Crewther DP (2010) Magnocellular visual evoked potential delay with high 

autism spectrum quotient yields a neural mechanism for altered perception. Brain 

133:2089-2097. 



 

	   170 

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: A user-friendly 

application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716. 

Taylor PCJ, Nobre AC, Rushworth MFS (2007) FEF TMS affects visual cortical activity. 

Cereb Cortex 17:391-399. 

Tehovnik EJ, Sommer MA, Chou I, Slocum WM, Schiller PH (2000) Eye fields in the frontal 

lobes of primates. Brain Res Rev 32:413-448. 

Townsend J, Courchesne E, Egaas B (1996) Slowed orienting of covert visual-spatial 

attention in autism: Specific deficits associated with cerebellar and parietal 

abnormality. Dev Psychopathol 8:563-584. 

Tsotsos JK (1990) Analyzing vision at the complexity level. Behav Brain Sci 13:423-469.  

Tsotsos JK, Culhane S, Winky Y, Yuzhong L, Davis N, Nuflo F (1995) Modeling visual 

attention via selective tuning. Artif Intell 78:507-545. 

Tsotsos JK, Culhane SM, Cutzu F (2001) From foundational principles to a hierarchical 

selection circuit for attention. In: Visual attention and cortical circuits (Tsotsos JK, 

Culhane S, Florin C, eds) pp.285-306). MIT Press. 

Tsotsos, JK (2005) The selective tuning model for visual attention. In: Neurobiology of 

Attention (Itti L, Rees G, Tsotsos JK, eds) pp.562-569. San Diego, CA: Elsevier. 

Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352-358. 

Turatto M, Benso F, Facoetti A, Galfano G, Mascetti GG, Umiltà C (2000) Automatic and 

voluntary focusing of attention. Percept Psychophys 62:935-952. 

Valenza E, Simion F, Umiltà C (1994) Inhibition of return in newborn infants. Infant 

Behavior and Development 17:293-302. 

Vidyasagar TR (1998) Gating of neuronal responses in macaque primary visual cortex by an 

attentional spotlight. Neuroreport 9:1947-1952. 



 

	   171 

Vidyasagar TR (1999) A neuronal model of attentional spotlight: Parietal guiding the 

temporal. Brain Res Rev 30:66-76. 

Virsu V, Rovamo J (1979) Visual resolution, contrast sensitivity, and the cortical 

magnification factor. Exp Brain Res 37:475-494. 

Vissers ME, Cohen MX, Geurts HM (2012) Brain connectivity and high functioning autism: 

A promising path of research that needs refined models, methodological convergence, 

and stronger behavioral links. Neurosci Biobehav Rev 36:604-625. 

Vossel S, Thiel CM, Fink GR (2006) Cue validity modulates the neural correlates of covert 

endogenous orienting of attention in parietal and frontal cortex. Neuroimage 32:1257-

1264. 

Wainwright-Sharp JA, Bryson SE (1993) Visual orienting deficits in high-functioning people 

with autism. J Autism Dev Disord 23:1-13. 

Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. 

Nat Rev Neurosci 1:73-79. 

Wass S, Porayska-Pomsta K, Johnson MH (2011) Training attentional control in infancy. 

Curr Biol 21:1543-1547. 

Wechsler D (1991) WISC-III: Wechsler intelligence scale for children. Psychological 

Corporation San Antonio, TX. 

Weintraub K (2011) The prevalence puzzle: Autism counts. Nature 479:22-24. 

Werner E, Dawson G (2005) Validation of the phenomenon of autistic regression using home 

videotapes. Arch Gen Psychiatry 62:889-895. 

von Helmholtz H (1910) Treatise on Physiological Optics Vol. III. New York: Dover. 

Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P (2005) Behavioral 

manifestations of autism in the first year of life. Int J Dev Neurosci 23:143-152. 

 



 

	   172 

 



 

	   173 

NOTES 
 
 

 

The studies presented here were possible through the contribution of different persons and 

laboratories. Experiments performed in children and adolescents with ASD were conducted 

in the research hospital “I.R.C.C.S. E. Medea” in Bosisio Parini (LC) and at the clinic “La 

Nostra Famiglia” in Padua. Persons who supervised the clinical part and collect the ADOS 

scores were Massimo Molteni, Barbara Urbani (I.R.C.C.S. E. Medea) and Giuseppe Visentini 

(La Nostra Famiglia, Padua). 

The two infants studies were possible through the collaboration with the Infant Cognitive 

Laboratory at the Department of Developmental and Socialization Psychology of the 

University of Padua. Especially, Dr. Laura Franchin and Dr. Hermann Bulf who performed 

infants’ testing and eye-tracker data analysis and Prof. Eloisa Valenza who supervised the 

experiments. 
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