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ABSTRACT
(English)

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition that affects
almost 1% of the population. One of the main challenges in the current ASD research is to
define the early neurocognitive impairments that provide critical foundations for the core
deficits in social and communication abilities. In particular, early attentional dysfunctions
may play a critical role in the emergence of ASD. In this doctoral thesis I present six studies
that give significant new insights into the nature of altered visual attention in individuals with
ASD and their possible neural underpinnings.

In the first study we show that individuals with ASD are impaired in enlarging (i.e.,
“zooming-out”) the attentional focus size relative to the control group and this deficit can
impact the rapid orienting toward a cued location in the visual field. The second and the third
studies show how parents without any history of ASD but with elevated autistic traits can
transmit to their infants subtle deficit in visual attention (at the expense of both orienting and
zooming mechanism) that may impact children’s future socio-communicative abilities. In the
fourth and the fifth studies we employed transcranial magnetic stimulation and dense-array
electroencephalography, respectively, with typical adults participants and we show that a
network of frontal (mainly FEF and IFG) and parietal (mainly IPS/SPL) brain areas are
fundamental in regulating the size of the attentional focus. In the last study, we evaluated the
spatial profile of the attentional focus in individuals with ASD and results show that the
inhibitory ring outside the focus of attention — fundamental to attenuate processing of
irrelevant information — is significantly weakened relative to the control group.

Overall, these findings show the importance of attentional impairments in the core
manifestations of ASD and in its developmental course. Defining attentional abnormalities
and their neural correlates is extremely important (i) to improve the early detection of the

disorder and, (ii) to implement timely prevention programs to reduce the incidence of ASD.






ABSTRACT
(Italian)

11 disturbo dello spettro autistico (DSA) ¢ un disturbo neuroevolutivo pervasivo che colpisce
quasi I'1% della popolazione. Una delle principali sfide nell'attuale ricerca sul DSA ¢ definire
i deficit neurocognitivi precoci che costituiscono le fondamenta dei disturbi "chiave" nelle
abilita sociali e comunicative. In particolare, precoci disfuzioni attentive potrebbero giocare
un ruolo decisivo nell'emergere del DSA. Nella presente tesi di dottorato presento sei studi
che contribuiscono significativamente alla comprensione delle alterazioni dell'attenzione
visiva nei DSA e le loro possibili basi neurali.

Nel primo studio, mostriamo che gli individui affetti da DSA sono compromessi nell'abilita
di allargare ("zoom-out") la dimensione del fuoco attentivo e che questo problema puo avere
un impatto negativo nell'orientamento rapido verso una posizione segnalata nel campo visivo.
Il secondo e terzo studio mostrano come genitori senza alcuna storia clinica di DSA ma con
elevati tratti autistici possano trasmettere ai loro infanti sottili alterazioni nell'attenzione
visiva (a carico sia del meccanismo di orientamento che di quello di zoom) che possono avere
conseguenze negative sul futuro sviluppo delle abilita socio-comunicative dei loro figli. Nel
quarto e quinto studio, abbiamo utilizzato la stimolazione magnetica transcranica e
l'elettroencefalografia ad alta densita, rispettivamente, in partecipanti adulti a sviluppo tipico
e mostriamo che un network di aree frontali (principalmente FEF e IFG) e parietali
(principalmente IPS/SPL) sono fondamentali nella regolazione della dimensione del fuoco
attentivo. Nell'ultimo studio, abbiamo valutato il profilo spaziale del fuoco attentivo in
individui con DSA e mostriamo come l'anulo inibitorio circostante al fuoco attentivo —
fondamentale per attenuare il processamento d'informazioni irrilevanti — ¢ significativamente
piu debole nel DSA rispetto al gruppo di controllo.

Complessivamente, queste evidenze mostrano l'importanza dei deficit attentivi nelle
manifestazioni chiave del DSA e nel suo decorso evolutivo. Definire le anomalie
dell'attenzione e 1 corrispondenti correlati neurali ¢ estremamente importante (i) per
migliorare la diagnosi precoce del disturbo e (ii) per implementare tempestivi programmi

preventivi mirati a ridurre l'incidenza dei DSA.






PREFACE

“There are times, more often than not, in which she is completely oblivious to all but her

immediate focus of attention.” (Kanner, 1943, p. 231)

The essence of the term “autism” seems to be fully illustrated by these few words that Leo
Kanner wrote in his original paper. He was referring to the striking characteristics of one of
the children he visited, for which everything outside of the focus of attention seemed to be
completely oblivious. This perfectly fit also to the origin of the term autism, derived from the
term “aut6s” (avtog, a Greek word that mean “self”) to indicate that persons affected were
individuals who have very limited contacts with the outside world.

Despite the importance of attention was clear since the very first description of autism, much
of the following research efforts in the field have historically been concentrated on trying to
explain the disorder in term of altered “mind reading” capacities (more technically called
“theory of mind”). Simply, persons with autism are missing core modules of the brain that are
necessary for understanding the behavior of others, and consequently they found extremely
difficult to interact with the outside world.

However, this seems to me as seeing only the tip of the iceberg. The ability to attribute
mental states emerges gradually in the course of development and may depend on the
integrity of several elementary (and at the same time essential) neurocognitive functions that
constitute the fundamental bricks to build such a high-level constituent of human cognition.
One of these fundamental brick is certainly constituted by attention. Attention allows us to
select relevant input from the environment, avoiding to process irrelevant inputs and keeping

only what is relevant for our current behaviour and future learning. Research on dysfunction



of attention in the field of autism has initially started to explore attentional abnormalities with
the implicit idea that these deficits were only mere reflections and co-occurring factors of the
disorder. Only recently this idea has started to be challenged, especially with the advent of
longitudinal studies in infants at risk that showed how impairments in basic mechanisms of
visual attention (e.g., disengagement) are closely related to the emergence of autism later in
toddlerhood. A domain-general deficit, which can impact the attention network as well as
other neurocognitive networks, is thus increasingly accredited as one of the main factor that
could lead to the emergence of autism. This kind of model is also better fitting the nature of
neural abnormalities that researchers have found in the autistic brain, abnormalities that are
not confined into a single brain network but that involve the entire pattern of brain
morphology and functional activity.

The better understanding of how basic attentional abnormalities can lead to social and
communicative impairments that are the core symptoms of autism will be the /eitmotiv of the

present doctoral thesis.
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CHAPTER 1 - INTRODUCTION:
CLINICAL CHARACTERIZATION, PREVALENCE AND
CURRENT NEUROPATHOGENIC HYPOTHESES OF AUTISM
SPECTRUM DISORDERS (ASD)

1.1 The origins of the scientific study of autism

The scientific study of autism, or what we called today autism spectrum disorder (ASD),
started with the pioneers Leo Kanner and Hans Asperger who, independently, first published
a description of the condition (Kanner, 1943; Asperger 1944). These publications contained
detailed cases description and also offered the first theoretical attempts to explain the
disorder. It is not a coincidence that both have chosen the word “autistic” for characterizing
the nature of the underlying deficit. The word has been introduced by the eminent psychiatrist
Eugene Bleuler in the 1911. It referred to a striking deficit that characterizes individuals with
schizophrenia (another term coined by Bleuer), namely the narrowed relationships with
people and the limited contact with the outside world. The narrowing is so extreme that
seems to exclude everything except the person’s own self. The words “autism” and ““autistic”
derived, indeed, from the Greek word “autos” that means “self”. Both Kanner, working in
Baltimore, and Asperger, working in Wien, studied several cases of children who had in
common some fascinating behavioural features. These children seemed to be unable to
established normal relationship with their peers. In contrast to Bleuer’s schizophrenia, the
disorder appear to have been there from the beginning. Furthermore, in contrast to
schizophrenia, the deficit was not accompanied by progressive deterioration. If anything,

behavioural improvements could be expected to occur with development and learning.



Chapter 1 - Introduction: clinical characterization, prevalence and current neuropathogenic hypotheses of autism spectrum disorders (ASD)

It is worth to note that both authors believed that a fundamental biological deficit was present
from birth. Despite that, in the following years, around 1950, some child psychologists
wrongly inferred that the parents' coldness was the cause of their children's autism. It is true
that in his 1943 paper that first identified autism, Kanner called attention to what appeared to
him as a lack of warmth among the fathers and mothers of autistic children. He wrote, in the

original paper (Kanner, 1943, p. 250):

“This much is certain, that there is a great deal of obsessiveness in the family background.
The very detailed diaries and reports and the frequent remembrance, after several years,
that children had learned to recite twenty-five questions and answers of the Presbyterian
Catechism, to sing thirty-seven nursery songs, or to discriminate between eighteen
symphonies, furnish a telling illustration of the parental obsessiveness. One other fact
stands out prominently. In the whole group, there are very few really warmhearted fathers
and mothers. For the most parts, the parents, grandparents and collateral are persons
strongly preoccupied with abstractions of a scientific, literary, or artistic nature, and

limited in genuine interest in people.”

But he also wrote, few lines below:

“The question arises whether or to what extent this fact has contributed to the condition of

the children. The children’s aloneness from the beginning of life makes it difficult to

attribute the whole picture exclusively to the type of the early parental relations with our

patient.”
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Chapter 1 - Introduction: clinical characterization, prevalence and current neuropathogenic hypotheses of autism spectrum disorders (ASD)

Notwithstanding the clear scepticism of Kanner in attributing the behaviors of children with
autism to the type of early relations with parents, few years later Bruno Bettelheim, a
University of Chicago professor and child development specialist facilitated the widespread
acceptance of the so-called “refrigerators mothers” theory. In the absence of any biomedical
explanation for what causes autism, Bettelheim and other leading psychoanalysts of the
epoch supported the notion that autism was the product of mothers who were cold, distant
and rejecting. The theory was embraced by the medical establishment and went largely
unchallenged into the mid-1960s, with the apex of the Bettelheim’s theory that was reached
when his book The Empty Fortress: Infantile Autism and the Birth of the Self was published
in 1967. Many articles and books published in that era blamed autism on a maternal lack of
affection, but in 1969, Kanner tackled the refrigerator mother issue at the first annual meeting

of what is now the Autism Society of America, by stating:

“From the very first publication until the last, I spoke of this condition in no uncertain
terms as ‘innate’. But because I described some of the characteristics of the parents as

0

persons, I was misquoted often as having said that ‘it is all the parents' fault’.

Fortunately, the modern consensus is that autism is a disorder of the neural development that
has a strong genetic basis, although the genetic of autism is complex and not well understood
yet (Abrahams and Geshwind, 2008). Even if recent studies have indicated that quality of
relationship with mothers are associated with reductions of behavioural problems in
adolescents and adults with autism, and that maternal criticisms are associated with
maladaptive behaviours and symptoms, these ideas are distinct from the refrigerator mother

hypothesis (Smith et al., 2008).
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Chapter 1 - Introduction: clinical characterization, prevalence and current neuropathogenic hypotheses of autism spectrum disorders (ASD)

Today, precise behavioural criteria are used for the diagnosis of autism. The most detailed
and recent scheme is the one described by the Diagnostic and statistical manual of mental
disorders: DSM-V (American Psychiatric Association, 2013). There is substantial
heterogeneity in the onset of autism. Some children manifest the disorder within the first 18
months of life. However, 25%-40% of children with autism initially demonstrate near-normal
development until 18-24 months, when they regress into autism. Generally speaking, the

early- and the late- onset types are indistinguishable (Werner and Dawson, 2005).

1.2 Diagnostic criteria for autism spectrum disorder in the DSM-V

In previous version of the Diagnostic and statistical manual of mental disorders, the DSM-
IV, patients could be diagnosed with four separate disorders: autistic disorder, Asperger’s
disorder, childhood disintegrative disorder, or pervasive developmental disorder not
otherwise specified (American Psychiatric Association, 1994). All these four categories, in
the new DSM-V have been merged into a single category that is autism spectrum disorder
(ASD).

The new diagnostic criteria for ASD (299.00 [F84.0]) (from the Diagnostic and statistical
manual of mental disorders: DSM-V, pp. 50-51; American Psychiatric Association, 2013)

arc:

A. Persistent deficits in social communication and social interaction across multiple contexts,
as manifested by the following, currently or by history (examples are illustrative, not
exhaustive):
1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social
approach and failure of normal back-and-forth conversation; to reduced sharing of

interests, emotions, or affect; to failure to initiate or respond to social interactions.
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Chapter 1 - Introduction: clinical characterization, prevalence and current neuropathogenic hypotheses of autism spectrum disorders (ASD)

2. Deficits in nonverbal communicative behaviors used for social interaction, ranging,
for example, from poorly integrated verbal and nonverbal communication; to
abnormalities in eye contact and body language or deficits in understanding and use of
gestures: to a total lack of facial expressions and nonverbal communication.
3. Deficits in developing, maintaining, and understanding relationships, ranging, for
example, from difficulties adjusting behavior to suit various social contexts; to
difficulties in sharing imaginative play or in making friends; to absence of interest in
peers.

Specify current severity: Severity is based on social communication impairments and

restricted, repetitive patterns of behavior (see Table 1.1).

B. Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least
two of the following, currently or by history (examples are illustrative, not exhaustive; see
text):
1. Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple
motor stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases).
2. Insistence on sameness, inflexible adherence to routines, or ritualized patterns of
verbal or nonverbal behavior (e.g., extreme distress at small changes, difficulties with
transitions, rigid thinking patterns, greeting rituals, need to take same route or eat same
food every day).
3. Highly restricted, fixated interests that are abnormal in intensity or focus (e.g., strong
attachment to or preoccupation with unusual objects, excessively circumscribed or
perseverative interests).
4. Hyper- or hypo-reactivity to sensory input or unusual interest in sensory aspects of the

environment (e.g., apparent indifference to pain/temperature, adverse response to

15



Chapter 1 - Introduction: clinical characterization, prevalence and current neuropathogenic hypotheses of autism spectrum disorders (ASD)

specific sounds or textures, excessive smelling or touching of objects, visual fascination

with lights or movement).

Specify current severity: Severity is based on social communication impairments and

restricted, repetitive patterns of behavior (see Table 1.1).

C. Symptoms must be present in the early developmental period (but may not become fully
manifest until social demands exceed limited capacities, or may be masked by learned

strategies in later life).

D. Symptoms cause clinically significant impairment in social, occupational, or other

important areas of current functioning.

E. These disturbances are not better explained by intellectual disability (intellectual
developmental disorder) or global developmental delay. Intellectual disability and autism
spectrum disorder frequently co-occur; to make comorbid diagnoses of autism spectrum
disorder and intellectual disability, social communication should be below that expected for

general developmental level.

Note: Individuals with a well-established DSM-IV diagnosis of autistic disorder, Asperger’s
disorder, or pervasive developmental disorder not otherwise specified should be given the
diagnosis of autism spectrum disorder. Individuals who have marked deficits in social
communication, but whose symptoms do not otherwise meet criteria for autism spectrum

disorder, should be evaluated for social (pragmatic) communication disorder.
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Chapter 1 - Introduction: clinical characterization, prevalence and current neuropathogenic hypotheses of autism spectrum disorders (ASD)

Table 1.1 Severity levels for autism spectrum disorder according to the DSM-V (American Psychiatric Association, 2013).

Severity level Social communication Restricted, repetitive behaviors
Severe deficits in verbal and nonverbal | Inflexibility of behavior, extreme
social communication skills cause severe | difficulty coping with change, or
impairments in functioning, very limited | other restricted/repetitive behaviors

Level 3 initiation of social interactions, and minimal | markedly interfere with functioning
"Requiring very | response to social overtures from others. For | in all spheres. Great
substantial example, a person with few words of | distress/difficulty changing focus or
support” intelligible speech who rarely initiates | action.
interaction and, when he or she does, makes
unusual approaches to meet needs only and
responds to only very direct social
approaches
Marked deficits in verbal and nonverbal | Inflexibility of behavior, difficulty
social communication  skills; social | coping with change, or other
impairments apparent even with supports in | restricted/repetitive behaviors appear
Level 2 place; limited initiation of social | frequently enough to be obvious to
"Requiring interactions; and reduced or abnormal | the casual observer and interfere with
substantial responses to social overtures from others. | functioning in a variety of contexts.
support” For example, a person who speaks simple | Distress and/or difficulty changing
sentences, whose interaction is limited to | focus or action.
narrow special interests, and how has
markedly odd nonverbal communication.
Without supports in place, deficits in social | Inflexibility of behavior causes
communication cause noticeable | significant interference with
impairments. Difficulty initiating social | functioning in one or more contexts.
interactions, and clear examples of atypical | Difficulty switching between
Level 1 or unsuccessful response to social overtures activities.' Problems 'of organization
"Requiring f)f other-s. M'fly ‘appearvto have decreased | and planning hamper independence.
" interest in social interactions. For example, a
support . .
person who is able to speak in full sentences
and engages in communication but whose
to-and-for conversation with others fails, and
whose attempts to make friends are odd and
typically unsuccessful.

1.3 Co-morbid features of ASD

In addition to the core symptoms of autism, neurological disorders frequently co-occurred
(DiCicco-Bloom et al., 2006). The prevalence of mental retardation when the autism
spectrum is taken as a whole is closer to 30% (Fombonne, 2006). Epilepsy has long been

associated with autism although estimates of the occurrence of seizure disorder vary from 5%
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to 44% (Tuchman and Rapin, 2002). Anxiety and mood disorders are also very common

(Lecavalier, 20006).

1.4 Prevalence of ASD and the enigma of climbing diagnoses

In the last fifty years there has been a frenetic rise in ASD diagnosis, as recently well
reassumed by the freelance writer Karen Weintraub (2011), in a special issue of Nature
dedicated to autism. An early study in the mid-60s examined eight- to ten-year-old children
in Middlesex, UK, and estimated a prevalence of 4.5 cases per 10,000 children (Lotter,
1966). However, in 1992, 19 cases per 10,000 six-year-old Americans children were being
diagnosed as autistic (Newschaffer et al., 2005), but it was in the first decade of the twenty-
first century, that the growth in diagnoses has reached its highest peak. According to data
from the US Centers for Disease Control and Prevention in Atlanta (Georgia), what is today
known as ASD affect more than 90 in 10,000 eight-year-olds in the United States in the year
2006. In other words, ASD is currently affecting 1 in every 110 children (ADDMN
Surveillance 2006).

Peter Bearman, a sociologist at Columbia University in New York, has been trying to figure
out how much of the increase is driven by social forces. He analysed nearly 5 million

California birth records and 20,000 records from the state’s department of developmental

Diagnosis: rising linti0 Reasons: unclear

By some counts, autism diagnoses have climbed steadily
since the 1970s. Some research has found explanation
for more than half of the rise (right).
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Figure 1.1 Left panel displays the ASD diagnoses increment from 1975 until now. Right panel displays the main factor
that, however, only partially can explain the rise. Reproduced from Weintraub (2011).
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services. By linking birth with detailed diagnostic data he was able to generate a rich picture
of the demographics and life history of those with autism, which yielded clues to the social
factors that influence diagnosis, which are summarized in Figure 1.1. Around 25% of the rise
in autism can be ascribed to what he calls “diagnostic accretion”, referring to the fact some
children who would have been diagnosed as mentally retarded ten years ago are now
diagnosed with both mental retardation and autism (King and Bearman, 2009). Another 15%
can be accounted for by the growing awareness of autism. Simply, more parents and
paediatricians are aware of what autism is (King and Bearman, 2011). Moreover, geographic
clustering accounts for about 4%. The clearest example lies in and around the hills of
Hollywood, California, where children living in a 900-square- kilometre area centred on
West Hollywood are four times more likely to be diagnosed with autism than are those living
elsewhere in the state (King and Bearman, 2011). The authors suggest the most plausible
explanation for the cluster has to do with neighbourliness. Once a cluster of informed parents
builds up, specialists are more likely to settle in that area, and as a consequence diagnosing
are more common. The last piece of plausibly known reasons, accounting another 10% of the
increase, may rely on specific social changes that have also biological implications. People
tend to have their children when they are older. Some studies have found that children born to
parents older than 35 have a higher risk of being diagnosed with autism (King et al., 2009). In
the end, 46% of the increment in autism diagnoses is still far from being explained

(Weintraub, 2011).
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1.5 Neuropathogenesis of ASD: main hypotheses

Research into the biological basis of ASD is in its infancy; so, current etiological viewpoints
are necessarily primitive (Geshwind and Levitt, 2007).

However, recent genetic findings, coupled with emerging anatomical and functional imaging
studies, suggest a model that described autism in terms of altered brain connectivity (e.g.,
Belmonte et al., 2004; Frith, 2004; Geshwind and Levitt, 2007; Rudie and Dapretto, 2013;
Casanova and Trippe, 2009). This hypothesis assumes that there is a developmental bias
towards the formation of short-range connections due to disruptions of synapse development
and function. This would result in excessive activity and overconnectivity within local
networks. These networks might become partially isolated, and in turn this would affect the
formation of long-range connections and systems governing top-down control and
integration. Here after we will examine the main evidence supporting widespread alterations

in brain of patients with autism that supports the altered connectivity hypothesis.

1.5.1 Brain overgrowth

One of the most robust findings in the neuropathology of autism is that the brain seems to
undergo a period of precocious growth during early postnatal life (for a review see Amaral et
al., 2008; see Figure 1.2). These findings have been demonstrated with head circumference
measurements (that approximates the total brain volume) and also with magnetic resonance
imaging (MRI). Collectively, these studies indicate a period of abnormal brain growth, which
begins in the first year of life and results in a persistent enlargement at least through early
childhood (Courchesne et al., 2001; Sparks et al., 2002; Courchesne et al., 2003;
Dementieva et al., 2005; Hazlett et al., 2006; Dawson et al., 2007). Whether this enlargement
persists into later childhood and adolescence is still not clear (Courchesne et al., 2001;

Aylward et al. 2002). Similarly, it is not yet clear whether this overgrowth involve equally
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Figure 1.2 Percent difference between ASD and typical development groups with best-fit curves for (a) total brain
volume, (b) gray matter and (c) white matter, based on existing MRI literature. Reproduced from Amaral et al. (2008).

the white and grey matter (Amaral et al., 2008). Herbert et al. (2003) postulated that the
abnormal brain enlargement observed in children with autism is mainly accounted by an
increment of white matter size, not grey matter (in accordance to Courchesne et al., 2001),
even if it is not clear whether these increments persist into later childhood and adolescence
(Hazlett et al., 2006).

It is important to underline that an ideal study would include a very large sample size of well-
characterized individuals, tested at birth and followed longitudinally at least into late

childhood or early adolescence. On the contrary, most of the studies in this field are
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characterized by small sample sizes and the great majority is limited to cross-sectional design

(Brambilla et al., 2003; Amaral et al., 2008).

1.5.2 Minicolumns alteration

As introduced above, current biological research hypothetically suggests that autism involves
disruptions of synapse development and function. But how are such disruptions taking place
during development? One possibility has been advanced by Casanova and colleagues. They
postulated that there are an abnormal number and width of minicolumns in individuals with
autism (Casanova et al., 2002, 2006; Buxhoeveden et al., 2006).

Minicolumns are radially oriented arrangements of cellular elements, which have a
stereotypical morphometry and are distributed throughout the cortex. They share common
input-output operations mediated by recurrent circuits linking translaminar columns of
pyramidal neurons (Mountcastle, 1997; Buxhoeveden & Casanova 2002; DeFelipe, 2005).
These modules have commonly been considered to represent a canonical microcircuit
contained within a defined cylindrical volume (Casanova and Trippe, 2009). Minicolumn
formation has been associated with early stages of cortical development when postmitotic
neurons ascend in linear arrays along a radial glial scaffolding (Rakic, 1988).

Within the first year of life, there is a dramatic increase in dendritic growth. By 2 years of
age, the minicolumns are spaced farther apart with a lower cell density in a given region of
cortex. Dendritic bundles and axonal fascicles that extend throughout several layers of the
cortex occupy the space between minicolumns. Within the first year of life, there is a
dramatic increase in dendritic growth. By 2 years of age, the minicolumns are spaced farther
apart with a lower cell density in a given region of cortex. Dendritic bundles and axonal
fascicles that extend throughout several layers of the cortex occupy the space between

minicolumns (Amaral et al., 2008).
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As Amaral and colleagues (2008) recently reviewed, only 14 cases of autism (9 of which had
seizures and at least 10 with mental retardation) have been examined for minicolumnar
pathology so far. The most consistent finding in these studies is reduced intercolumnar width
of the minicolumns (only layer III has been studied so far) in dorsolateral prefrontal cortex or
Brodmann’s area (BA) 9 (Casanova et al., 2002, 2006; Buxhoeveden et al., 2006). These
findings, coupled with increases in neuronal density on the order of 23% noted by Casanova
et al. (2006), imply that there should be a greater number of neurons in BA 9 of the autistic
cortex. Given the narrower neuropil area between columns, one would also predict a decrease

in the dendritic arborization of BA 9 neurons.

24 month old

(d)
4 year old Control

R
b L ‘5‘ 3
layer Ill Wt = 3

B

RIE 1
j o

Figure 1.3 Features of neocortical organization potentially altered in ASD. Panels a—c depict cell body-stained sections of
BA 9 at 1, 6 and 24 months of age. Below each is a representative Golgi-stained section showing the extent of dendritic
growth in this same cortical area over these same ages. Panel d indicates aberrant columnar structure in autism in layer II1
with less space between cell body-defined minicolumns. Reproduced from Amaral et al. (2008).
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It remains to be seen how these findings might relate to pathophysiological processes
underlying ASD. One possibility is that the reduced volume of neuropil area between
columns indicates reductions in the numbers of radially oriented inhibitory GABA neurons or
in the extent of their axonal and dendritic processes. As a result, collateral excitation of
neighbouring minicolumns would be increased leading to overconnectivity within local

networks (Casanova and Trippe, 2009).

1.5.3 The altered connectivity hypothesis: a puzzling picture

Despite the challenges that remain, in particular the need of clarifying the underline neuronal
mechanism that lead to the pattern of altered connectivity, there have been many progresses.
As stated above, the original theory regarding brain connectivity in people with ASD claims
that there is long distance under-connectivity and local over-connectivity (Belmonte et al.,
2004; Frith, 2004; Just et al., 2004; Geshwind and Levitt, 2007; Casanova and Trippe, 2009;
Rudie and Dapretto, 2013). This theory seems to be at least partially confirmed by findings of
the past decade.

As reviewed by Vissers and colleagues (2012), consistent with the theory, a large body of
evidence from fMRI studies showed reduced long-range cortico-cortical functional and
structural connectivity appears to be weaker in people with ASD than in controls. On the
contrary, in contrast to the theory, there is less evidence for local over-connectivity that was
assumed for specific cortical areas, as the frontal cortex, following the results about
minicolumns abnormalities (Amaral et al., 2008; Casanova and Trippe, 2009). Interestingly, a
recent study by Keown et al. (2013) focused on the local connectivity issue. Several groups
have hypothesized that enhanced local circuit connectivity may provide an explanation for
the preservation or enhancement of certain cognitive functions in ASD, such as visual or

auditory discrimination (Courchesne and Pierce, 2005; Geschwind and Levitt, 2007).
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However, few studies have comprehensively addressed whole-brain local connectivity in
ASD. Keown et al. (2013) tested adolescents with ASD with a resting state functional
connectivity MRI and computed whole-brain maps of local connectivity. They showed an
anterior-posterior gradient of local under- to over- connectivity in ASD. Specifically, reduced
local connectivity was found in frontal regions and was more pronounced in ASD adolescents
with less severe social impairments, whereas occipitotemporal regions showed diffuse
overconnectivity, which was more pronounced in individuals with more severe social
deficits.

In summary, even if the whole picture of the brain connectivity theory is still not completely
delineated, this model offers a good framework to explain both the impairments and the
preservation or even enhancement of certain functions, and can also clarify the specificity of
deficits observed in the autisms. For this reason it will be one of the leading areas of research
in ASD for the near future (Vissers et al., 2012; Rudie and Dapretto, 2013). However, despite
some clues, mechanisms relating pathogenesis and altered cell function to the altered

connectivity remain unclear (Casanova and Trippe, 2009).
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CHAPTER 2 - STATE OF THE ART CONCERNING THE STUDY
OF VISUAL ATTENTION IN ASD.

“Millions of items of the outward order are present to my senses which never properly enter
into my experience. Why? Because they have no interest for me. My experience is what [

agree to attend to. Only those items which I notice shape my mind” (William James, 1890)

The visual system has to solve a variety of problems to make sense of a visual scene, and to
this aim, we need to detect, localize and identify relevant information. Visual attention plays
a fundamental role in this process and has been a matter of study from several centuries. It
was originally discussed by philosophers, like Gottfried Leibniz (1646-1716), that introduced
the concept of “apperception”, referring to an act that is necessary for an individual to
become conscious of a perceptual event (Shiraev, 2010).

What captures our attention spontaneously and what we decide to attend voluntary can
influence the way we experience and perceive the world around us and impacts the course of
brain and behavioural development (Keehn et al., 2013). The primary aim of this chapter is to
summarize, without any pretension to be exhaustive, the major findings regarding visual
attention in autism spectrum disorder (ASD), in order to progressively introduce the rationale
of the present work and the theoretical framework underlying it. But before this, I will briefly
introduce the main findings regarding the study of visual spatial attention in typical

populations.
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2.1 Models of visual spatial attention

Under normal circumstances, the direction of gaze and the direction of visual spatial attention
are aligned. But since von Helmholtz (1910) and William James (1890) the potential
dissociation between the point of gaze fixation and the focus of attention within the field of
view was noted. The first experimental demonstrations of the phenomenon came more
recently (Sperling and Melchner, 1978; Posner et al., 1980; Posner and Cohen 1984). The so-
called “covert” deployment of spatial attention produces biases in behavioral performance
and neural processing of relevant stimuli in the absence of “overt” orienting (i.e., head or
eyes movement; Moore et al., 2003). Various model have been proposed by psychologists
and neuroscientists to understand how relevant visual information is covertly selected by
spatial attention. These models, with certain exceptions for some of their predictions, are not

completely incompatible one with the others, but their relations have not been clarified yet.

2.1.1 The “spotlight” and the “zoom-lens” models of spatial attention.

Sokolov (1963) described what he called the “orienting reflex”, a mechanism that allow us to
identify new elements that has just occurred in the scene in order to prepare the whole
organism to react toward it. A series of independent mechanisms would have allowed the
orienting reflex to take place, and one of the most important is the orienting of attention to
the region of the space where the new element has appeared. This idea by Sokolov gave a
substantial contribution for the birth of the “spotlight” metaphor of visual attention, originally
postulated by Posner, Snyder, and Davidson (1980). The spotlight model claims that
information from one region of the visual field is selected by a mechanism analogous to a
spotlight that can moves to a specific region in the visual space. This orienting of the
attentional spotlight results in an improvement of information processing in the attended area

at the expense of other locations, in other words stimulus detection is faster and its
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discrimination is more accurate (for reviews see Posner and Petersen, 1990; Corbetta and
Shulman, 2002; Carrasco, 2011). Moreover, according to Posner (1980) and Jonides (1981),
there are two different ways to control the spotlight of attention: i) endogenous (voluntary or
sustained), which is determined and controlled voluntary by the subjects, and ii) exogenous
(automatic or involuntary), that occurs imperatively following the abrupt onset of a peripheral
stimulus.

However, because in everyday life objects have different dimensions, shapes and sizes, the
focus of attention need also need to be adjusted in its size. Some years later, the idea that the
attentional focus can process information from a broad or a narrow region of the visual field
has been added by the “zoom-lens” model of attention (Eriksen and St. James, 1986;
Castiello and Umilta, 1990). This model also predicted an increase of processing efficiency
within the focus when the attentional spotlight is decreased in size. In fact, reaction times are
faster and discrimination are more accurate while the attentional focus size gets smaller
(Eriksen and St. James, 1986; Castiello and Umilta, 1990).

a Rlght hemifield 2.1.2  Neurophysiological correlates of the
“spotlight” and the “zoom-lens” models.

Both the orienting and the zooming of the focus of

b attention lead to specific changes in the level of
Left hemifield
activation in the visual areas.

Neuroimaging (Brefczynski and DeYoe, 1999,

Figure 2.1; Gandhi et al., 1999; Somers et al.,

Figure 2.1 Characterization of attentional effects in 1999) and electrophysiological (Hillyard and
early visual areas. (a) Retinotopically mapped

activation due to shifts of attention into the right

visual field. Colors of activated voxels (right Miinte, 1984; Mangun and Hillyard, 1988; Neville
panel) correspond  to  attentional focus (left
schematic) that produced greatest modulation. (b)
Activation produced by attentional shifts into the left
visual field. Reproduced from Brefczynski and
DeYoe (1999).

and Lawson, 1987; Rugg et al., 1987; Eimer,
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1994; for a review see Luck et al., 2000) studies in humans, as well as single-cell recordings
in monkeys (Motter, 1993; Roelfsema et al., 1998; McAdams and Maunsell, 1999; Reynolds
et al., 2000) suggest that the behavioral benefits of spatial attention are reflected in stronger
activity in early visual areas for attended than unattended stimulus locations. Thus, when
subjects orient their focus of attention to a spatial location, neural responses are enhanced for
stimuli presented at the attended location, allowing for improved visual performance.

Neurophysiological findings following variation of the attentional zoom-lens — though less
investigated in the literature — are consistent in showing a precise retinotopic variations of
neural activity in accordance to the portion of the visual field that subjects’ are attending.
Specifically, the spatial extent of activation increases whereas the level of neural activity
decreased in the visual cortex as the size of the attended area becomes larger (Miiller et al.
2003; Figure 2.2). Electrophysiological studies in human on this topic are only two (Luo et
al., 2001; Fu et al., 2005), with discrepant findings (see Chapter 8 for a more extensive

treatment of the topic).
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Figure 2.2 Left image: maps of activity in visual areas after the onset of the cue in an attentional zooming task (small cue,
first row; medium cue, third row; large cue, fourth row). Right image: (a) extent of activated visual cortex (collapsed
across visual areas); (b) peak blood oxygen level dependent (BOLD) responses as a function of the cue size. Reproduced
from Miiller et al. 2003.
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2.1.3 Beyond the spotlight and the zoom-lens: the “Mexican hat” model of the attentional
focus.

Both the spotlight and the zoom-lens models predict that the attentional resources decrease
monotonically while the distance from the focus of attention increases. However, they do not
represent the all picture of how attention selects relevant visual information in a real cluttered
visual environment, where objects has to be discerned one another and in which fonts of
relevant and irrelevant information may become mixed together. For this reason, in the last
years researchers started to investigate how a combination of enhancement and suppression
may effectively sharpen the demarcation of relevant from irrelevant inputs. The so-called
“Mexican hat” profile of attentional modulation has been originally proposed by Miiller and
Kleinschmidt (2004), based on the observation that if observers attended to a location in
space, responses in early visual areas were higher for stimuli farther from the attended
location than relatively close to it. This and other findings are consistent with the idea that
spatial attention, in order to enhance relevant visual information and attenuate irrelevant
inputs, elicits a zone of attenuated excitability in the immediate surround of its focus
(Slotnick et al., 2002; Miiller and Kleinschmidt, 2004; Miiller et al., 2005; Hopf et al., 2006;
Boehler et al, 2011). A further

b 200 fT

demonstration of the existence of a
150
zone of attenuation surrounding the
100
focus of attention derives from a study

50
by Hopf and colleagues (2006) that efflux-minusinflux

employed magnetoencephalographical

Figure 2.3 (a) Time course of the event-related magnetic field
(MEG) recordings. Observers were  (ERMF) response for each probe distance; PDO: target and
probe in the same spatial location; PD1: probe adjacent to the
target; PD2-PD4: probe non-adjacent to the target (b) Mean
asked to attend to a colour pop-out size of the probe-related response between 130 and 150 ms,
collapsed across corresponding probe-distance conditions.

target and probe stimuli appeared soon ~ Reproduced from Hopf et al. (2006).
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after at varying distances from the target (were the focus of attention was captured). The
electromagnetic response to the probe stimulus was enhanced when the probe was presented
at the location of the target, but was suppressed in a narrow zone surrounding the target and
then recovered at more distant locations (Hopf et al., 2006; see Figure 2.3).

This centre-surround profile suggests that attending to a stimulus places a ring of inhibition
around it, which would be optimal to attenuate the deleterious noise during target
identification. These findings are also consistent with the selective tuning model proposed by
Tsotsos and colleagues (Tsotsos, et al. 1995, 2001). According this model attention optimizes
the search procedure by selectively tuning the visual processing network. Attentional
selection operates in the visual cortex based on hierarchical winner-take-all (WTA) processes
that propagate in a top-down direction from higher level of the visual hierarchy to lower
levels. Connections representing input from irrelevant locations are pruned away from level
to level, yielding a pass zone of enhanced activity for connections representing the
target/attended input. Connections immediately surrounding the representation of the
attended input become suppressed, leading to a profile of cortical responsiveness with an

excitatory centre and an inhibitory surround.

2.2 Neural sources of the control of visual attention

Evidence of the network that control the ability to adjust the size of our attentional focus are
limited and will be discussed in details on Chapter 8 and 9. Neural mechanisms that control
the centre-surround profile of the attentional focus have never been investigated to the best of
my knowledge. On the contrary, neural mechanisms controlling the orienting of spatial
attention have been a central focus in cognitive neuroscience in the last decade and will be

briefly summarized in the following two paragraphs.
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2.2.1 Evidence from primate studies.
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Moore and Fallah (2001) were the first to examine the effect of intracortical microstimulation
on visual attention. They found that when neurons within the frontal eye fields (FEF) of the
frontal lobe were stimulated using subthreshold currents (too low to evoke saccades), they
could enhance a monkey’s performance on an attention-demanding task. Another study found
that subthreshold microstimulation of sites within the lateral intraparietal area (LIP) reduced
reaction times in a cued target detection task, albeit in a non-spatially specific manner
(Cutrell and Marrocco, 2002).

Consistent with the above evidence of attention-related effects of FEF microstimulation, a
number of subsequent studies have observed modulation of visual cortical responses during

microstimulation of the FEF. A brief enhancement of visually driven responses was observed
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in receptive fields of area V4 neurons at locations overlapping the stimulated FEF
representation (Moore and Armstrong, 2003). In another study that employed functional
magnetic resonance imaging (fMRI) to examine the influence of FEF microstimulation on
visual activation throughout cortex, Ekstrom and colleagues (2008) found that FEF
microstimulation enhanced the visual activation of retinotopically corresponding foci within
multiple visual areas, even V1 and V2, which receive little or no direct projections from the
FEF (Stanton et al., 1995).

Studies comparing the latencies of top-down attentional modulation across different areas
have yielded evidence that is consistent with a fronto-parietal source. FEF neurons achieve
this activation first, followed shortly by dorso-lateral prefrontal cortex (dIPFC) neurons and

then by LIP neurons (Buschman and Miller, 2007).

2.2.2 Evidence from human studies.

Several evidence indicate that two cortical neural systems are involved in attending to
environmental stimuli (Corbetta and Shulman, 2002; Corbetta et al., 2008; see Figure 2.5).
One is the dorsal frontoparietal network, whose core regions include dorsal parietal cortex,
particularly intraparietal sulcus (IPS) and superior parietal lobule (SPL), and dorsal frontal
cortex along the precentral sulcus, where the frontal eye field (FEF) are located. The current
idea is that dorsal system generates and maintains endogenous signals based on current goals
and preexisting information about likely contingencies and sends out top-down signals that
bias the processing of appropriate stimulus features and locations in sensory cortex. This
conclusion is based mainly on the evidence that the dorsal network is preactivated by the
expectation of seeing an object at a particular location or with certain features (e.g.,
movement in a specific direction) (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al.,

2000). Moreover, recent studies found that magnetic stimulation of FEF or IPS leads to a
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retinotopically specific modulation of visual areas and parallel improvement of perception at
corresponding locations of the visual field (Ruff et al., 2006, 2008, 2009).

A second system, the ventral frontoparietal network, responds — along with the dorsal
network — when behaviourally relevant objects (or targets) are detected (Corbetta et al.,
2000). Core regions of the ventral network include temporoparietal junction (TPJ) cortex —
defined as the posterior sector of the superior temporal sulcus (STS) and gyrus (STG) and the
ventral part of the supramarginal gyrus (SMG) — the ventral frontal cortex (VFC, including
parts of middle frontal gyrus or MFQG), inferior frontal gyrus (IFG), frontal operculum, and
anterior insula (Corbetta and Shulman, 2002 for a review).

Both dorsal and ventral networks are also activated during reorienting of attention
(disengagement from a previously cued location and orienting toward a new one), with
enhanced responses during the detection of targets that appear at unattended locations. For
example, enhanced responses are observed when subjects are cued to expect a target at one
location but it unexpectedly appears at another (i.e., “‘invalid’’ targets in the Posner spatial
cuing paradigm) (Arrington et al., 2000; Corbetta et al., 2000; Macaluso et al., 2002; Kincade
et al., 2005; Vossel et al., 2006).

While segregation between dorsal and ventral attention networks is nearly complete,
spontaneous activity in right posterior MFG correlates with both networks, indicating that
right MFG may contain intermixed neuronal populations respectively connected with dorsal
or ventral regions (Fox et al., 2006). This result raises the possibility that ventral and dorsal
networks do not directly interact but are principally linked through prefrontal cortex (Fox et

al., 2000).
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Figure 2.5 Definition of dorsal and ventral
networks for the control of visual attention.
(Top panel) Regions in blue are consistently
activated by central cues, indicating where a
peripheral object will subsequently appear or
what is the feature of an upcoming object.
Regions in orange are consistently activated
when attention is reoriented to an unexpected
but behaviorally relevant object. (Bottom
panel) Model for the interaction of dorsal
(blue) and ventral (orange) networks during
stimulus-driven reorienting. Dorsal network
regions FEF and IPS send top-down biases to
visual areas and via MFG to the ventral
network (filtering signal), restricting ventral
activation to behaviorally important stimuli.
IPS-FEF are also important for exogenous
orienting. Overall, the dorsal network
coordinates  stimulus-response  selection.
Conversely, when a salient stimulus occurs,
the ventral network sends a reorienting signal
to the dorsal network through MFG.
€D Top-down control () Stimulus-driven control Reproduced from Corbetta et al. (2008).

Although an early theory of how the two networks interact (Corbetta and Shulman, 2002)
proposed that the division between ventral and dorsal network may reflect the psychological
distinction between exogenous (bottom-up) and endogenous (top-down) orienting, recent
claims hypothesized that a more fundamental distinction appears to be between systems
involved in orienting and those involved in re-orienting (Corbetta et al., 2008). While the
orienting of attention, both exogenous and endogenous would recruit the dorsal attention
system, when we have to reorient our attention because a relevant stimulus appear on the
environment, the ventral and dorsal attention systems interact to perform this operation. Even
if the nature of this interaction is still not completely clarified, according to Corbetta and
colleagues (2008), the current idea is that when subjects focus on a task, TPJ (ventral
network) is deactivated, thus preventing reorienting to distracting and irrelevant events
(Shulman et al., 2007). When behaviourally-relevant environmental stimuli appear on the
scene, the ventral network promote the reorienting (Downar et al., 2001; Serences et al.,
2005) and the source of the filtering signal that distinguish between relevant and irrelevant
inputs may be the dorsal network or other parts of pre-frontal cortex (Kastner et al., 1999;

Corbetta et al., 2000; Shulman et al., 2003).
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2.3 Why do we need to study visual attention in ASD?
Attentional abnormalities have been associated with the disorder since its first description by
Kanner (1943). For example, reporting some notes on the behavior of his study case 6

(Virginia), Kanner (1943, p. 231) wrote:

“There are times, more often than not, in which she is completely oblivious to all but her

immediate focus of attention.”

This sentence perfectly depicts the fact that many patients with ASD appear to focus their
attention intensely only on some element of the environment while ignoring surrounding
contextual information (Schreibman & Lovaas, 1973; Lovaas et al., 1979).

After the first seminal investigations (for an early review see Lovaas et al., 1979), in the last
two decades a large body of evidence has described attentional abnormalities in ASD, both in
terms of dysfunctions and superiorities (for recent review see Ames and Fletcher-Watson,
2010; Keehn et al., 2013). Importantly, atypical attentional functioning has been shown in
infants at-risk for ASD (because they have an older sibling diagnosed with ASD), and may be
one of the earliest characteristics that distinguish infants who later receive an ASD diagnosis
(Zwaigenbaum et al., 2005; Elsabbagh et al., 2013).

These findings suggest that lower-level attentional processes may impact the development of
higher-level sociocommunicative functions. Thus, understanding the nature of these
abnormalities may help to elucidate atypical trajectories of attentional development in ASD,
and furthermore, how these attentional abnormalities may contribute to the manifestation of
the core symptoms in ASD. Understanding if early attentional impairments can be one of the
factors that are causally involved in the development of ASD, is important for at least three

reasons: 1) attentional deficits may be used as an early marker to identify ASD in the first
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year of life (Elsabbagh et al., 2013); ii) the development of attention-targeted early
interventions that — even during infancy (Wass et al., 2011) — may remediate abnormal
developmental trajectories and improve outcomes in children with ASD, and; iii) a precise
clarification of attentional abnormalities can be the starting point for modelling atypical

neural circuitries that characterize the autistic brain.

2.4 Abnormalities of visual spatial attention in ASD

2.4.1 The attentional spotlight in ASD: evidence for slow orienting and impaired
disengagement.

As recently reviewed by Keehn and colleagues (2013), in children, adolescents, and adults
with ASD orienting abilities have been measured using various spatial cuing paradigm
derived from the original paradigm by Posner (1980). The common procedure is to compare
response latencies to target at a validly cued versus an invalidly cued location (“cuing effect”
or “validity effect”), so that we can measure the time course of the operations that the focus
of attention performs.

Townsend et al. (1996) found slower orienting in adults with ASD compared to typical

individuals. Automatic/exogenous orienting

Gap Overlap
seems to be more impaired than
+ +
voluntary/endogenous shifts of attention
(Ristic et al., 2005; Renner et al., 20006; =
Grubb et al., 2013), although there is some
conflicting evidence (Pruett et al., 2011). As * + *

theorized by Posner and colleagues (1980),

Figure 2.6 A gap-overlap task where a target can occur

. . . . . after fixation offset (gap), with the fixation remaining
attentional orienting involves also the ability  on screen (overlap). Readapted from Keehn et al.

(2013).
to disengage attention from a previously
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cued location, in order to shift and re-engage our focus of attention onto a new location or
object of interest. Disengagement efficiency in ASD has been tested mainly by examining
saccadic responses in the “gap-overlap” paradigm (Kingstone and Klein, 1993; Figure 2.6).
In this paradigm, targets appear in the periphery of the visual field under two different
conditions. An overlap condition, when a central stimulus (e.g. the fixation cross) remains on
the screen when the peripheral target appears, and a gap condition, when the central stimulus
disappears prior to the target onset. These two conditions are usually compared (the measure
is technically called “the gap effect”) to obtain an index of the disengagement ability.

Landry and Bryson (2004) examined the disengagement ability in children with ASD, and
two groups of age matched children with Down’s syndrome or with typical development. The
authors demonstrated that the ASD group showed significantly increased latencies to
disengage visual attention (on overlap trials) compared to both comparison groups.
Additionally, the authors report that the frequency of fast attentional shifts (i.e., the number
of shifts with latency between 100 and 300 ms) for the gap condition was significantly
reduced in the ASD group, suggesting that in addition to difficulty disengaging attention on
overlap trials, children with ASD did not efficiently shift attention to the target, even when
disengagement mechanisms were not competing with the central stimulus. Impaired
disengagement has also been confirmed by other groups and in low-functioning adults with
ASD (Wainwright-Sharp and Bryson 1993; Courchesne et al. 1994; Kawakubo et al., 2007).
Importantly, disengagement inefficiency has been demonstrated also in infants at risk for
developing ASD (Zwaigenbaum et al., 2005; Elsabbagh et al., 2013). In particular, a recent
longitudinal study by Elsabbagh et al. (2013) demonstrated the relationship between
disengagement of visual attention in infancy and later autism in toddlerhood. At 14 months,
longer latencies to disengage was observed in a subset of the high-risk group later diagnosed

with ASD at 36 months, relative to other infants at risk and the low-risk control group.
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2.4.2 The attentional zoom-lens in ASD: evidence for a “zoom-out” impairment

Although several studies investigated the attentional orienting in ASD as summarized in the
previous paragraph, less evidence exist on the ability to adjust the size of the attentional
focus. In a first study by Burack (1994) participants (four mental-age matched groups
composed by children with autism, with mental retardation and with no handicap) performed
a forced-choice reaction time (RT) task to assess the filtering component of selective
attention. The independent variables were the presence/absence of a window that narrowed
the attentional focus (zoom-in), the number (zero, two, or four) and the location of
distractors. The RTs of the subjects with autism improved relative to the other groups in the
presence of the window without distractors, but this effect was negated when distractors were
also presented. Performance of the autism group was, indeed, the most impaired in the
presence of distractors. These findings represent a behavioral evidence of an inefficient broad
attentional lens among persons with autism. In the second study, Mann and Walker (2003)
employed a paradigm requiring participants to make a judgment about which one of the two
pairs of cross-hairs was the longer. Participants with ASD were less able than comparison
group in making this judgment only when the previous pair of cross-hairs was smaller than
the one to be judged. The authors argued that individuals with ASD have a difficulty in the
zoom-out of the attentional focus.

The findings of Mann and Walker (2003) were recently confirmed by a study performed in
our laboratory. Ronconi and colleagues (2013b; Figure 2.7) tested participants with ASD in
an attentional zooming paradigm where attentional resources were narrowed (zoom-in) or
distributed (zoom-out) in the visual field with a small (containing only the nearest target
eccentricity) or large (containing also the farthest target eccentricity) cue. Typically
developing children, at the short cue-target interval, showed a “gradient effect” (i.e.,

increasing response latency with increasing eccentricity) in the small but not in the large
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condition, indicating efficient zoom-in and zoom-out attentional mechanisms. In contrast,
children with ASD showed a gradient effect also in the large focusing cue condition,
suggesting a specific zoom-out attentional impairment. In addition, at the long cue-target
interval the ASD group showed an atypical gradient effect in the small cue condition,
suggesting a prolonged zoom-in and a sluggish zoom-out attentional mechanism.

In a following study (Ronconi et al., 2012), this zoom-out impairment was found to be
associated with the inability to discriminate coherent motion information (for a review see
Grinter et al., 2010). Moreover, the inability to zoom-out the attentional focus was found to
be positively associated with ASD symptoms’ severity (Ronconi et al., 2012). The finding of
a relationship between poor coherent motion perception and zoom-out impairment is
particularly important, since difficulties in perceiving coherent motion are representative of
the so-called “weak central coherence” (Happé and Frith, 2006). In the visual domain the
weak central coherence of individuals with ASD lead to a strong tendency toward the
processing of details at the expense of the global configuration (for reviews see Dakin and
Frith, 2005; Simmons et al., 2009).

Thus, the zoom-out attentional impairment can be one of the main factors underlying detail-

oriented perception and poor integration abilities that characterizes the perception in ASD.

Fixation cross (500 ms) Fixation cross (500 ms)
- Focusing Cue + Focusing Cue +
Variable SOA (100 or 800 ms) Variable SOA (100 or 800 ms)
A A
3~ Target (20 ms) 3ﬂ Target (20 ms)
Response (maximum Response (maximum
time 2000 ms) time 2000 ms)

Figure 2.7 Attentional zooming paradigm. Representation of experimental sequences in the small (a) and in the
large (b) cue condition, testing zoom-in and zoom-out attentional mechanisms, respectively. Target could appear in
one of the six locations depicted along the horizontal axis and participants are required to simple detect it by
pressing the response key. Reproduced from Ronconi et al. (2013b).
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CHAPTER 3 - AIMS OF THE PRESENT STUDY

The general objective of the present doctoral thesis is to contribute to a better understanding
of visual attentional abnormalities in individuals with autism spectrum disorder (ASD), both
at behavioral and neurophysiological level. Each study will have its own specific introduction
part with a clear statement of the hypotheses. Here, I would like just to briefly summarize the
rationale behind each study.

As we see in the previous Chapter, both orienting and zooming of visual attention have found
to be compromised in ASD. In particular, deficits are present in rapid orienting and
disengaging of attention (for a review see Keehn et al., 2013), as well as in zooming-out the
size of the attentional focus (Mann and Walker, 2003; Ronconi et al., 2012; 2013b). Though
the orienting and zooming components have always been investigated separately in ASD
population (but the same could be said for the typical population), an ecological examination
of the deployment of visual attention should involve both processes. The aim of the first
study (Chapter 4) is to investigate the relationship between the orienting and the zooming
components of the attentional system in a group of children and adolescents affected by ASD.
Specifically, we aimed to evaluate possible differences in the time course of attentional
orienting and re-orienting between ASD and typically developing (TD) groups as a function
of the size of their attentional focus.

In Chapters 5 and 6, we present two studies that tested a new approach for the early
identification of ASD neurocognitive markers. Attentional dysfunctions appear to be one of
the earliest cognitive markers of children with ASD, and research in this area has greatly
improved in recent years (for a review see Jones et al., in press). Early symptoms are evident

not only when infants at-risk are compared with the control groups in their ability to attended
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to the social scene (Chawarska et al., 2013), but also when they have to disengage visual
attention in non-social context (Elsabbagh et al., 2013). The current strategy to identify early
markers of the condition is to study infants siblings of older children with a diagnosis of
ASD, which are at higher risk to develop the condition relative to the general population
(Bolton et al. 1998). In two studies we tested a new and relatively lower cost strategy that
together with study of infants sibling can inform this emerging area of research.
Neurocognitive dysfunctions associated with autism can be found not only in affected
individuals but also — thought in milder form — in individuals from the general population that
has never received an ASD diagnosis and these findings support the idea that ASD is the
upper extreme of a constellation of traits that may be continuously distributed in the general
population (Dawson et al. 2002). For this reason, and considering the strong genetic basis of
the disorder (Abrahams and Geshwind, 2008), we investigated in the general population, the
relationship between infants’ attentional functioning and the autistic traits measured in their
parents. In the first infants study (Chapter 5) we employed a classical Posner cuing task to
assess the orienting of visual attention in infants and their relationship with autistic traits in
their parents. In the second infants study (Chapter 6), we used the same approach but this
time the focus was on the infants’ ability to adjust the attentional focus size. The attentional
“zoom-lens” has never been tested in infants so far, so we created a paradigm suitable to
evaluate this fundamental component of the attentional system at early stages of
development.

Another major section of the present doctoral thesis (Chapters 7 and 8) is focused on the
neural mechanisms involved in the control of the attentional focus size. As previously
introduced, individuals affected by ASD show impairments when they have to enlarge their
focus of attention in its size (i.e., attending a broad portion of the visual field). A precise

clarification of neural areas underlying attentional abnormalities found in ASD can be the
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starting point for modelling atypical attentional circuitries that characterize the autistic brain.
That is why it is important to clarify the network of brain areas involved in the attentional
operation that are compromised in ASD. Despite several studies investigated neural sources
of the control of the attentional orienting (for reviews see Corbetta and Shulmann, 2002;
Corbetta et al., 2008; Noudoost et al., 2010), limited evidence are present regarding the
control of the attentional zoom-lens. In Chapter 7, we employed transcranial magnetic
stimulation (TMS) in typical adult participants to elucidate the neural areas involved in the
control of the attentional zoom-lens. TMS is a focal brain stimulation technique that can be
used to induce a transient interference with normal brain activity in a relatively restricted area
of the brain (Walsh and Cowey, 2000). We focused on the frontal eye fields (FEF) area, that
it is clear from the evidence discussed in the previous chapter that in both humans and
animals is vital for mediating spatial attention. In Chapter 8, neural dynamics involved in the
control of the attentional zoom-lens was investigated with a more explorative approach with
high-density electroencephalography (d-EEG). First, analysis of the event related potential
(ERPs) allowed us to reveal the electrophysiological correlates of processing target with a
narrow or broad attentional focus. Second, neural sources estimation from d-EEG was
performed in the cue-target interval (where participants adjust their focus of attention to the
cued dimension) to elucidate the network of brain areas, without strong a priori as in the TMS
study, involved both in the zoom-in and the zoom-out of the attentional focus.

Finally, in Chapter 9, we went one step beyond the two models of visual spatial attention
(spotlight and zoom-lens) mainly adopted so far in the study of ASD, in order to precisely
define the spatial profile of the attentional focus in ASD. Both the spotlight and the zoom-
lens models, indeed, predict that attentional resources decrease monotonically while the
distance from the focus of attention increase. However, they don’t represent the complete

picture of how attention selects relevant visual information in the environment. Recent
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neurophysiological evidence (Miiller and Kleinschmidt, 2004; Hopf et al., 2006, 2010)
demonstrate that visual search requiring spatial scrutiny for object recognition elicits — in the
immediate surround of the attentional focus — a zone of attenuated excitability forming a
“Mexican-hat” profile (Miiller and Kleinschmidt, 2004; Miiller et al., 2005). The attenuated
excitability in the immediate surround of the attentional focus would be optimal to highlight
relevant information and attenuate the deleterious noise during the selection of relevant visual

target (Hopf et al., 2000).
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CHAPTER 4 - RELATIONSHIP BETWEEN ORIENTING AND
ZOOMING MECHANISMS IN ASD

4.1 Introduction

It is well known that perception of relevant information is mediated by visual attention, as
extensively described in Chapter 2. Traditionally, the attentional focus has been compared to
a “spotlight”, that can moves to a specific region in the visual space, improving information
processing in the attended area at the expense of other locations (Posner, 1980; Posner and
Petersen, 1990; Corbetta and Shulman, 2002; Carrasco, 2011). In addition, the attentional
focus can be adjusted in its size in order to process information from a broad or a narrow
region of the visual field — as proposed by the “zoom-lens” model of attention (Eriksen and
St. James, 1986; Castiello and Umilta, 1990; Turatto et al., 2000).

ASD has been repeatedly associated with different types of dysfunctions in spatial attention
(for reviews see Ames and Fletcher-Watson, 2010; Keehn et al., 2013) and the idea that
people with ASD pay attention to the world differently, and that this might contribute to
abnormalities in visual perception (Dakin and Frith, 2005; Simmons et al., 2009) and
consequently in higher-level cognitive domains (Mundy, 2003; Mundy and Newell, 2007) is
one of the most intriguing aspects of current ASD research. On the one hand, studies that
evaluated the “spotlight” (i.e., orienting) efficiency in ASD found impairments in rapid
orienting (Townsend et al., 1996) as well as in disengaging attention from a previously
attended location (Wainwright-Sharp and Bryson, 1993; Courchesne et al., 1994; Landry and
Bryson, 2004). Recently, a longitudinal study in a cohort of children at risk for ASD
demonstrated that this disengagement deficit of visual attention discriminated 14-month-old

infants who later manifest an ASD in toddlerhood (Elsabbagh et al., 2013). On the other
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hand, studies that evaluated the “zoom-lens” (i.e., zooming) efficiency in ASD found that the
disorder seems to be associated to impairment in “zooming-out” the attentional focus, namely
the ability to spread attentional resources in a broad portion of the visual field (Mann and
Walker, 2003; Ronconi et al., 2012, 2013b).

The orienting and the zooming mechanisms, though with a certain degree of independence
(Castiello & Umilta, 1992; Turatto et al., 2000; Fu et al., 2005), normally cooperate to select
visual information that is relevant to our current behaviour. This cooperation allows us to
plan accurate eye-movements, targeting the source of relevant information, as suggested by
the premotor theory of attention (Rizzolatti et al., 1987). Although the orienting and the
zooming components have been mainly investigated separately, an ecological examination of
the deployment of visual attention should involve both the orienting and the zooming
mechanism. First, because in the case of ASD impairments on both mechanisms have been
documented as stated above. Second, because the deployment of visual attention is highly
flexible and can adapt to various task demands to select relevant stimuli in a diverse range of
spatial configurations (McMains and Somers, 2005). Previous studies by Castiello and
Umilta (1990, 1992) showed that typical adult subjects can maintain two attentional foci in
non-contiguous regions of the visual field and can also vary their sizes in accordance with
task demands. More recently, McMains and Somers (2004) confirmed the existence of
multiple spotlight of attentional selection in visual cortex by using functional magnetic
resonance imaging (fMRI). These findings determined that the orienting and the zooming
mechanisms efficiency can be evaluated simultaneously in a single paradigm. To this aim, in
the present experiment we modified the classical spatial cuing paradigm (Posner, 1980). Two
small or large cues were initially presented at opposite sides of the visual hemifield.
Subsequently, one of these cues was briefly flashed to manipulate its spatial validity. In valid

trials the target appeared at the cued location while in invalid trials attention was captured in
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the opposite hemifield. Neutral trials were also employed, and in this case both cues were
flashed and consequently no information on the target location was provided. The two groups
of participants comprised adolescents affected by ASD and typically developing (TD) peers
matched for age and cognitive level. The analysis of the “cuing effect” (CE; i.e., difference in
reactions times between invalid and valid trials) at different inter-stimulus interval (ISI)
allowed us to evaluate possible differences in the time course of attentional orienting and re-
orienting between ASD and TD groups as a function of the size of their attention foci. Since
orienting and zooming of the attentional focus are not completely independent (Castiello and
Umilta, 1992; Fu et al., 2005), the deficit in zooming-out the attentional focus (Mann and
Walker, 2003; Ronconi et al., 2012, 2013b) should amplify the problem in orienting and
disengagement that was previously observed in ASD (Wainwright-Sharp and Bryson, 1993;

Courchesne et al., 1994; Landry and Bryson, 2004; Elsabbagh et al., 2013).

4.2 Methods

4.2.1 Participants

Forty-four children took part in the experiment. Both the ASD and TD groups comprised 22
children each. All participants with ASD were recruited according to the following criteria:
(1) full scale IQ > 70 as measured by the Italian version of Wechsler Intelligence Scale for
Children-Revised (WISC-III, Wechsler, 1991); (ii) absence of gross behavioural problems;
(ii1) normal or corrected-to-normal vision and hearing; (iv) absence of drug therapy; and (v)
absence of attention deficit hyperactivity disorder on the basis of DSM-IV criteria (American
Psychiatric Association, 1994). Children with ASD were recruited at the Developmental
Neuropsychology Unit of Scientific Institute “E. Medea” (Bosisio Parini, Italy) and at
“Associazione La Nostra Famiglia” (Padua, Italy). Diagnosis of ASD was made by licensed

clinicians experienced in the assessment of ASD in respect to DSM-1V diagnostic criteria and
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to the Autism Diagnostic Observation Scale (ADOS; Lord et al., 2002). Children of the TD
group were randomly sampled in Padua public schools. According to the parents’ report, TD
children did not have prior history of any psychiatric disorders. Both groups were matched
for chronological age (t42=-0.62, p=.535). Cognitive level in TD children was estimated with
two Verbal (Vocabulary and Similarities) and two Performance (Block Design and Pictures
Completion) subtests of the WISC-III (Wechsler, 1991). ASD and TD group did not differed
in any of the four subtests (all ps>.113). The Social Communication Questionnaire (Rutter et
al., 2003) was also administered to both groups. Children of the ASD group scored
significantly higher in comparison to the TD group in both the Current (t42)=9.41, p<.001)
and Lifetime (t42=16.64, p<.001) forms. For details about participants’ characterization see
Table 4.1.

The entire research protocol was approved by the ethical committees of both Scientific
Institute “E. Medea” and Department of General Psychology of Padua University. Informed
consent was obtained from each child and their parents and the research was conducted in

accordance to the principles elucidated in the declaration of Helsinki.
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Table 4.1 Descriptive statistics of participants. ASD=Autism Spectrum Disorder; TD=Typically Developing.

ASD (n=22) TD (n=22) p-value
Mean (SD) Mean (SD)
Age 13.9 (2.7) 14.4 (2.6) n.s
Gender 19 M 18 M -
TIQ 95.5(17.9) - -
WISC III - Vocabulary 9.8 (3.7) 10.0 (2.4) n.s.
WISC III - Similarities 9.9 (3.4) 9.9 (2.4) n.s.
WISC III - Picture completion 9.8 (3.8) 11.4 (2.4) n.s.
WISC III - Block Design 9.8 (3.8) 10.8 (2.4) n.s.
Social Communication 12.5 (6.9) 3.14 (3.2) <.001
Questionnaire (SCQ) - Current
Social Communication 19.3 (8.7) 2.7(2.5) <.001
Questionnaire (SCQ) - Lifetime
ADOS - Communication 3.2(1.8) - -
ADOS - Social Interaction 5.7@3.1) - -

4.2.2 Apparatus and stimuli

The experiment was conducted in a dimly lit and quiet room. Participants were seated 50 cm
far from an LCD screen (17 inch, 75 Hz). A chinrest was used to avoid head movement.
Stimulus presentation and data acquisition were performed with E-Prime 2 (Psychology
Software Tolls, Inc.). The choice about stimuli parameters was based on previous pilot
observations.

All stimuli were middle grey (RGB: 128, 128, 128) presented on a black background.
Fixation point consisted in a cross subtending a visual angle of 0.5 deg, presented on the
screen center. To manipulate the size of the attentional focus two pairs of circle with different
dimension were presented both on the left and right side of the fixation point, at an
eccentricity of 9.6 deg from the fixation point. In the small cue condition there were two
circles with a diameter of 2.17 deg, whereas in the large cue condition there were two circles
with a diameter of 6.35 deg. The target stimulus was a small dot (diameter=1.5 deg) and

appeared in the center of the two cues.
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4.2.3 Procedure

Children were instructed to keep their eyes on the fixation for the entire duration of the trial.
Each trial started with the onset of the fixation cross. After 500 ms, two small or large circles
were presented at both the left and right side of the fixation. After 500 ms from the
presentation of the circles, one or both of them were briefly thickened for 50 ms, resulting in
a rapid flash. In the valid trials, the circle flashed on the same side of the target. In the invalid
trials, the circle flashed on the opposite side of the target. In the neutral trials, circles flashed
at both sides. The temporal interval or interstimulus interval (ISI) between the offset of the
cue and the target onset was randomly chosen between 100, 400 or 700 ms. After this
variable ISI, the target appeared on one side for 20 ms. Notably, the cue was completely not
informative about the target location (valid cues indicated the correct target position with a
probability of 50%). Participants were asked to press the space bar as soon as they see the
target appearing. Catch trials, in which the stimulus was not presented and the participant did
not have to respond, were intermixed with response trials.

The entire experiment consisted of 198 trials, randomly intermixed. Precisely, 180 response
trials (2 cue-sizes by 3 cue-condition by 3 ISI, each repeated 10 times) and 18 catch trials. At
the end of each trial a blank screen was presented until the experimenter pressed the mouse

button to start the next trial.
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Small cue trials Large cue trials
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Target (20 ms) +
Response (max 2000 ms)

Figure 4.1 Schematic representation of the task procedure.

4.3 Results

4.3.1 Cuing effect

Reaction times (RTs) of accurate trials (filtered between 150 and 1200 ms) were used to
compute the cuing effect (CE), that is the difference in RTs between invalid and valid trials
and a commonly used index of the attentional orienting ability. The CE was then analysed
with a 2x3%2 mixed design analysis of variance (ANOVA) with one between-subjects factor,
the group (ASD vs. TD), and two within-subjects factors: the cue size (small vs. large) and
the ISI (100, 400 and 700 ms). ANOVA revealed a main effect of ISI (F(», 34=12.01, p<.001,
n°;=.22), showing that overall mean CE varied as a function of the cue-target ISI
(mean+SEM: ISI 100 = 13.61+6.18; ISI 400 = -2.24+6.97; ISI 700 = -31.81+6.53).
Importantly, a significant cue size by ISI by group interaction emerged (F 2, 34=3.43, p=.037,
1n°,=.08), suggesting that the time course of the CE was different in the two groups relative to
the cue size displayed. To further explore this three-way interaction we performed two
distinct ISI by group ANOVA, one for the small and one for the large cue condition.

ANOVA performed in the small cue condition showed only a main effect if ISI (F 2, 84=5.83,
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p=.008, n2p=.1 1) but no interaction. In contrast, ANOVA performed in the large cue
condition revealed both a main effect of ISI (F, s4=11.25, p<.001, n2p=.2l) and a significant
ISI by group interaction (F(», 34=3.98, p=.022, n2p=.09; ; see Figure 4.2). A series of planned
comparisons was then performed for both groups on the mean CE values to test the difference
against u=0 (absence of cuing effect, i.e. no difference between valid and invalid trials). In
the TD group, trials with ISI=100 ms showed a significant positive difference as compared to
0 (tey=2.03, p=.027), no difference at ISI=400 ms (t1)=-1.49, p=.152), and a significant
negative difference at ISI=700 ms (t1y=-3.77, p=.001). In the ASD group, trials with ISI=100
ms did not show a significant difference as compared to 0 (t21)=.24, p=.812), while a positive
difference emerged at ISI=400 ms (t»1)=2.35, p=.028), and a significant negative difference
at ISI=700 ms (t21y=-3.11, p=.005). Moreover, a significant difference emerged also when the
CE at ISI=400 ms was compared between the two groups (t-test for independent sample:

t42=2.70, p=.010).

Small cue condition (F<1,p=471) Large cue condition (F=3.98, p=.022)
40~ 40+ *
. Il ASD
] ™

204 20
i *
E l L
3 0- 0-
£
(]
g -201 -20-
=
o

-40- -40-

*
*
-60 T T T '60 T T T
100 400 700 100 400 700
ISl (ms) ISI (ms)

Figure 4.2 Bar plot showing the mean cuing effect (difference in RTs between the invalid and valid trials) as a function
of group, inter-stimulus interval (ISI) and cue-size condition (small vs. large). In the large cue condition, the significant
two-way interaction ISI by group was explored by the means of planned comparisons. *=p<.05 resulting from one-
sample t-tests against 0; *=p<.05 resulting from independent sample t-test (ASD vs. TD).
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4.3.2 Correlation between cuing effect and the autistic symptomatology

We considered the possible relationship between the individual cuing effects in the large cue
condition and the ASD symptomatology measured by the ADOS (Lord et al., 2002). Partial
correlation was performed to control for the effect of age, and the results showed that
individual cuing effect at ISI=100 was negatively correlated with ADOS Social Interaction
score (rp2) = -.422, p=.025; see Figure 4.3).

These results show that the sluggish attentional orienting exhibited by the ASD group in the
large cue was associated with autistic symptomatology, so that slower attentional

modulations corresponded to more severe problems in social interaction.

Figure 4.3 Scatterplot showing the

Me2=--422, p=.025 relationship between individual cuing
c 6= o o effect in the large cue trials (ISI=100 ms)
o and the ADOS Social Interaction subscore.
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4.4 Discussion

In the present experiment we studied the relationship between orienting and zooming
attentional mechanisms in adolescents affected by ASD and TD peers. Previous studies
suggest that both functions are compromised in ASD, impaired rapid orienting and

disengagement characterize the former mechanism (Wainwright-Sharp and Bryson, 1993;
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Courchesne et al., 1994; Landry and Bryson, 2004; Elsabbagh et al., 2013), while an
impaired zoom-out characterizes the latter one (Mann and Walker, 2003; Ronconi et al.,
2012, 2013b).

Our results showed that in the small cue condition, where the two attentional foci had initially
to be zoomed-in and then oriented toward the position indicated by the cue, the time course
of attentional orienting was not different between the two groups. At the first ISI (100 ms), a
positive cuing effect (RTs for valid trials were faster then RTs for invalid ones) suggests
participants’ attention was rapidly oriented toward the cued hemifield. At the intermediate ISI
(400 ms), the cuing effect decayed (no difference between valid and invalid trials and at the
third ISI (700 ms) a negative cuing effect emerged (invalid trials were faster relative to valid
trials), thus resulting in the typical inhibition of return (IOR). IOR is a bias against directing
attention to a previously cued location and it is a well-established sign of attentional re-
orienting from the original cued position (first described by Posner and Cohen, 1984; for a
review see Klein, 2000).

Interestingly, the two groups differed in their performance in the large cue condition. Here,
the two attentional foci had initially to be zoomed-out and then oriented toward the cued
position. In this case we found evidence of a different time course of attentional orienting
between the two groups. The TD group showed a pattern of results very similar to what
observed in the small cue condition: facilitation at the first ISI and a significant IOR at the
third one, with a nulled cuing effect at the intermediate ISI. On the contrary, in the ASD
group, the facilitation did not emerge at the first ISI but only at the intermediate one, thus
revealing a specific sluggish attentional orienting only if an attentional zoom-out was
required. At the third ISI, there was no difference between groups and both showed a

significant IOR.
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This evidence was supported also by a significant negative correlation between the individual
rapid orienting ability in the large cue condition (individual cuing effect at ISI=100 ms) and
the ADOS Social Interaction score, which measured the severity of autistic symptomatology
in the social domain. The more impaired they were in orienting after the zoom-out the more
severe was their impairments in social interaction. On the contrary, when the focus of
attention had initially to be zoomed-in, no difference between ASD and TD groups emerged.
A plausible explanation of the present results is that while TD can efficiently orient their
attentional focus both when narrow or broad portions of the visual field have to be attended,
individuals affected by ASD suffer from a sluggish zoom-out of the attentional focus and this
is likely to impact serially also other operations that focus of attention has to perform, in this
case the orienting toward the cued location. Even if previous studies about zooming in ASD
required the manipulation of the size of a single focus, the problem does not seem to rely on
splitting attention between two foci (Castiello and Umilta, 1992; McMains and Somers,
2004), since there was no difference between group when attention had initially to be
zoomed-in, but only when it had initially to be zoomed-out.

To conclude, these results are important as they confirm previous findings of an
impaired/sluggish zoom-out of the attentional focus in ASD obtained by other researchers
(Mann and Walker, 2003) and in our own laboratory in an independent sample of children
(Ronconi et al., 2012, 2013b). Moreover, the present findings have important implication for
the studies of the orienting abilities in ASD. All attentional cueing paradigms, indeed, allow a
fine grained analysis of the time course of attentional processing and enable researchers to
identify components of attention that are impaired in ASD. However, as shown by Ames and
Fletcher-Watson (2010; see also Keehn et al., 2013) in their recent review, there are a number
of inconsistencies in this body of research. Potential methodological sources of this

inconsistency, among others, may include the size of the attentional focus that participants
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have to orient in the visual field. When a broad portion of the visual space has to be attended,
difficulties in orienting the focus of attention can be only a mere consequence of difficulties

in zooming-out the attentional focus size.
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CHAPTER 5 - THE ORIENTING MECHANISM IN 8-
MONTH-OLD INFANTS AND ITS RELATIONSHIP WITH
THE BROADER AUTISTIC PHENOTYPE (BAP).

*This study has been published as: Ronconi L, Facoetti A, Bulf H, Franchin L, Bettoni R, Valenza E (2014). Paternal autistic
traits are predictive of infants visual attention. J Autism Dev Disord. In press. doi: 10.1007/s10803-013-2018-1.

5.1 Introduction

As summarized in Chapter 2, people with ASD show dysfunctions not only when “zooming
out” their attention to spread it over a broad portion of the visual field (Mann and Walker,
2003; Ronconi et al., 2012, 2013b), but also in quickly orienting (Townsend et al., 1996) or
disengaging attention from a previously cued location (Wainwright-Sharp and Bryson, 1993;
Courchesne et al., 1994; Landry and Bryson, 2004).

Attentional dysfunctions in ASD are not limited to visuo-spatial domains.
Electrophysiological studies, among others, have demonstrated atypical alerting mechanisms
in individuals with ASD (Courchesne et al., 1985; Ciesielski et al., 1990; Bruneau et al.,
2003; Orekhova et al., 2009; for a review see Keehn et al., 2013), as well as in 10-month-old
infants at risk of developing the disorder (McCleery et al., 2009).

These findings converge with the neuroconstructivist approach that suggests development
plays a crucial role in phenotypic outcomes, and tiny variations in an initial state could cause
marked differences in end states (Karmiloff-Smith, 1998). Some authors suggest high-level
social impairment may spring from early impairments in other low-level attentional systems
(Landry and Bryson, 2004; Elsabbagh et al., 2009). According to this view, inflexible spatial
attention in early development could impair later visual orienting toward social stimuli

(Mundy and Newell, 2007; Elsabbagh and Johnson, 2010). Therefore, current ASD research
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has tried to identify neurocognitive markers for early detection of this disorder, studying the
attentional mechanisms exhibited in infancy.

Since ASD is highly heritable, the most frequent approach is the study of infant siblings of
older children with autism, which are at high risk of developing this disorder (Bolton et al.,
1998). The infants show similar impairment to their siblings in disengaging visual attention
in a “gap-overlap” paradigm (Elsabbagh et al., 2009).

Siblings are part of the broader autism phenotype (BAP), in which ASD represents the upper
extreme of a constellation of traits that may be continuously distributed in the general
population (Dawson et al., 2002). Therefore, neurocognitive dysfunctions associated with
autism can be found not only in affected individuals but also in their genetic relatives
(Dawson et al., 2005; Belmonte et al., 2010), many of whom have social and communication
impairments similar to those in ASD, but in milder form.

Studies quantifying autistic traits have found that people score higher when they have a
family history of ASD (Bishop et al., 2004). Importantly, children whose parents show high
but subthreshold presence of autistic traits have, in turn, more prevalent autistic traits
(Constantino and Todd, 2005).

People with elevated autistic traits show abnormalities not only in the high-level social
domain, but also in low-level visual attention and perception. For example, they outperform
individuals with low autistic traits in tasks requiring detail-oriented perception (Almeida et
al., 2010), and tolerate a higher amount of perceptual load in visual tasks (Bayliss and
Kritikos, 2011), but do not easily identify coherent motion (Grinter et al., 2010) or the global
level of a hierarchical Navon stimuli with strongly salient local components (Sutherland and
Crewther, 2010).

The present study aims to test a new approach to identify possible early markers of ASD. We

hypothesized that traits for autism in adults from the general population could be related to
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abnormalities in attentional functioning measured in their 8-month-old offspring. To verify
this, we studied the relationship between infants’ ability to deploy attention, in both space
(visual orienting) and time (alerting), and autistic traits their parents self-reported in the
Autism Quotient questionnaire (AQ; Baron-Cohen et al., 2001).

Efficiency of attentional systems is crucial to explore the environment for further processing
and learning (Petersen and Posner, 2012). In particular, early dysfunction of orienting and
alerting skills might contribute to the atypical development of joint attention and
consequently to impairment in social cognition (Mundy, 2003). Orienting and alerting
systems develop dramatically in the first year of life (Johnson et al., 1991; Hood, 1995).
Infants get faster at paying attention to a location: the efficiency of neural circuits controlling
these mechanisms improves over the first six months of life (Johnson and Tucker, 1996;
Richards, 2003, 2005). Orienting and alerting have been consistently associated with the right
ventral frontoparietal network in adults (Corbetta and Shulman, 2002, 2011)

Here, by using an eye-tracker system, we tested infants with a spatial cueing task (Posner,
1980). A visual target was presented after the onset of a spatiotemporal cue that could be: (i)
valid, indicating where the target would appear; (ii) neutral, providing no information on the
target location; and (iii) invalid, directing attention away from the target location. By
calculating differences in the time to target fixation (TTF) between invalid and valid trials,
we can estimate the efficiency of attentional orienting. We also employed two stimulus onset
asynchronies (SOAs): short (84 ms) and long (168 ms). These measured the time course of
orienting as well as the alerting system’s efficiency, that is, the phasic arousal state that
involves temporal preparation for response to an expected signal or event.

As discussed above, we hypothesized that a high level of autistic traits in parents could be
related to infants’ impairment. More specifically, we looked for impairment in: i) rapid

attentional orienting (measured by TTF difference between invalid and valid trials with the
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short SOA); ii) disengagement of attention from a previously cued location (measured by
invalid trials with the long SOA) and; iii) the alerting mechanism (overall difference between
the two SOAs). Given that both ASD and sub-clinical autistic traits are more prevalent in
male than female subjects (Baron-Cohen et al., 2001, 2011; Constantino and Todd, 2003;
Amaral et al., 2008), it is reasonable to postulate that infants’ attentional abilities will show

stronger association with paternal autistic traits than maternal ones.

5.2 Methods

5.2.1 Participants

Twenty-six 8-month-old infants (13 females, mean age = 249 days, range = 235-262 days)
and their parents comprised the final sample. Eight infants were observed but excluded from
the final sample because of uninterpretable eye-movement data resulting from poor
calibration of the point of gaze (n = 4) or general fussiness (n = 4). The mean parent age was
35 for mothers (range = 27-42 years) and 37 for fathers (range = 28-47 years), and all were
biological parents. The inclusion criteria for all participants were that infants were born at full
term, in good health, with no sensorial or neurological disorders. Infants were tested only
after their parents gave informed consent. The departmental ethical committee approved the
present study, and all research was conducted in accordance with the ethical standards of the

1964 Declaration of Helsinki and its later amendments.

5.2.2 Infants’ spatial cueing task

5.2.2.1 Apparatus

The stimuli were presented with E-Prime 2.0 software on a 19-inch monitor (resolution 1024
X 768 pixels). A remote, pan-tilt infrared eye-tracking camera (Model 504, Applied Science

Laboratory, Bedford, MA) using bright-pupil technology was directly below the stimulus
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. Figure 5.1 Schematic representation of a valid cue condition of the infants’
procedure. To coordinate eye spatial cueing task. Cue-target SOA = stimulus onset asynchrony = interval
between cue and target.
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movement data with respective

stimulus displays, the stimulus-generating computer sent unique, time-stamped numerical
codes via parallel port to the data-collecting computer, indicating the onset and type of
stimulus display. The digital data, indicating the fixation locations and changes in locations
of the eye, were calculated in relation to the centroids of the pupils and the corneal

reflections, using the Applied Science Laboratories' algorithm.

5.2.2.2 Stimuli and Procedure

The infants sat in an infant car seat 60 cm from the stimulus monitor. Parents usually sat
behind the infant. Before experimental trials began, the stimulus monitor presented animated
cartoons (accompanied by a sound) at three different locations (centre, top left, and bottom
right) to calibrate the eye tracker. All subsequent eye data were calculated from these
calibration values. The cartoon directed the infant’s gaze to the centre as the test began. A
dynamic stimulus is usually adopted with infants of this age because it easily triggers their

attention (e.g., Johnson & Tucker, 1996; Elsabbagh et al., 2009).
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As soon as a participant looked at the central fixation point for 300 ms, two coloured circles
(6°) were automatically presented peripherally (11° of eccentricity, with the two edges of the
circles separated by 16°), one on the left and one on the right of the central attention-getter,
on a black background (see Figure 5.1). Four different colours of circles (red, green, yellow
and blue) and four different attention-getters, randomly presented during the trial, were
chosen to sustain infants’ attention. The circles appeared for 966 ms while the cartoon
remained in the centre. It is worth to note that the cartoon’s movement and sound made it
much more triggering than the peripheral static circles. Therefore, central and peripheral
stimuli were unbalanced, reducing the possibility of eye movements toward the peripheral
circles. A cue, the thickening of one of the two circles (from 0.2° to 0.7°), then appeared for
42 ms in addition to the cartoon. This brief change did not let the infant orient eye movement
toward the cue (i.e., covert attention; Richards, 2001). Moreover, the presentation of the cue
at the same time as a dynamic central fixation stimulus helped prevent saccades to the
peripheral cue (e.g. Johnson & Tucker, 1996). Valid cues (thickening in the same circle as the
target), neutral cues (consisting in the thickening of both circles, providing no information on
the target location), or invalid cues (thickening the circle that did not include the target), were
randomly intermixed. Finally, the visual target, a smiling and flickering schematic face the
visual target, consisting in a smiling and flickering schematic face (3.2°, flickering at 1 cycle
of 168 ms, 64 ms on - 64 ms off, 5.95 Hz), appeared after one of two intervals (84 or 168
ms). One out of four different target types was randomly presented during each trial. The
target remained visible until the participant glanced at it or for a maximum of 2 s. This
terminated the trial, and another trial began at the central attention-getter. Each infant
received 60 trials divided into three blocks. Each block consisted of 8 valid, 8 invalid and 4
neutral trials, for a total of 24 valid trials (12 for each cue-target SOA), 24 invalid trials (12

for each cue-target SOA), and 12 neutral trials (6 for each cue-target SOA).
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5.2.2.3 Data analysis

The display was virtually divided into 3 square areas of interest (AOI); one surrounded the
position of the central attention-getter, and two corresponded to the two circles. Each AOI
measured approximately 7.8° on each side. Time to target fixation (TTF) was a dependent
variable (fixation threshold settings: duration > 100 ms, max displacement < 1° of visual

angle).

5.2.3 Evaluation of self-reported autistic traits in parents

Both parents of each participating infant completed a paper version of the AQ questionnaire
(Baron-Cohen et al., 2001); higher scores correspond to elevated ASD traits. In addition to
the total score, we also computed five sub-scores: (i) social skill; (i) attention switching; (iii)

attention to detail; (iv) communication; and (v) imagination.

5.3 Results

5.3.1 Infants’ spatial cueing task

A mean of 27.5 trials (standard error mean, SEM = 1.97) were excluded from statistical
analysis because: (i) the infant did not look at the central AOI at the onset of the cue and the
target, (i1) the infant looked outside the AOI that contained the target, (iii) the infant oriented
toward the peripheral target within the first 100 ms after its onset (anticipatory eye-
movements), or (iv) the signal of the eye tracker was lost during the stimuli presentation. The
final number of trials in which infants correctly detected the targets was (mean and SEM)
32.5 £ 1.97. For the shorter SOA (84 ms) valid trials were 6.31 & 0.43, neutral ones were 3.08
+ 0.32, and invalid ones were 6.73 + 0.46; for the longer SOA (168 ms), valid trials were
6.85 + 0.42, neutral ones were 3.08 £ 0.28, and invalids ones were 6.58 + 0.46. We analyzed

corrected TTF using a repeated-measures ANOVA with a 3 x 2 design, in which the within
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subjects factors were the cue condition (valid, neutral and invalid) and the cue-target SOA
(84 and 168 ms). The ANOVA revealed a main effect of cue-target SOA (F(123) = 18.28, p <
.001, n2p=.44), showing that the mean TTF were faster (312 £ 10 ms) at the longer SOA than
in the shorter one (362 £ 10 ms). The main effect of cue condition was also significant
(Fa375148 = 13.2, p < .001, 1°,=.36), showing that mean TTF varied with the condition of the
cue (299 £ 8, 334 £ 15 and 379 £+ 13 ms, respectively for valid, neutral and invalid cue
condition). The SOA by cue condition interaction was not significant (F < 1, n2p=.001; see

Figure 5.2).
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Figure 5.2 a) Results of the infants’ spatial cueing task where TTF (time to target fixation) is plotted as a function of cue
condition and cue-target SOA (stimulus onset asynchrony). Bars represent the SEM. b) Scatter plot showing the
individual mean TTF separated for cue condition and SOA. Horizontal lines represent the medians.

5.3.2 Relationship between attention in infants and parents’ autistic traits

Infants’ TTF in the spatial cueing task were correlated to the amount of self-reported autistic
traits exhibited by their parents. In line with the hypotheses in the Introduction, we used the
following variables from the infants’ cueing task: (i) the rapid orienting index, or the average
difference between TTF under invalid and valid conditions at the short cue-target (SOAs, 84
ms), which measures the ability to use the spatial information provided by the peripheral cue
to rapidly and automatically orient visual attention; (ii) the raw TTF in the invalid condition
at the long cue-target SOAs (168 ms), which measures the ability to disengage attention from
a previously cued location; and (iii) the alerting index, the difference in TTF across all cue
conditions between short and long cue-target SOAs, which measures the ability to prepare a

rapid response to the target stimuli after getting the temporal cue.
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We found a significant positive correlation between the TTF on the invalid cue condition at
the second SOA (168 ms) and AQ attention to details sub-scores (rp4) = .42, p < .05). The
higher the attention to detail reported by fathers, the slower their infants were to look away
from a previously cued location. We also found a negative correlation between the rapid
orienting index and AQ communication sub-scores (rpsy = -.56, p < .05): higher
communication problems reported by fathers corresponded to lower rapid orienting skill in
their infants. Finally, a significant negative correlation between the alerting index and AQ
attention to details sub-scores (rp4) = -.47, p < .05), shows that higher autistic traits
corresponded to inefficient alerting skill.

In order to control for the paternal age effect (Parner et al., 2012) as a potential mediator or
confounder of these relationships between paternal autistic traits and infants’ attention, we
performed three two-step fixed-entry multiple regression analyses, with paternal age always
as a predictor in the first step.

In the first regression analysis, the predictor in the second step was the AQ attention to details
sub-score, while the dependent variable was TTF in the invalid cue condition at 168 ms cue-
target SOA. Overall the regression model accounted for 17% of the variance (p < .05). The
AQ attention to details entered last accounted for 17% (F change( 23 = 4.85, p < .05) of
unique variance of TTF in the attentional disengagement index (see Figure 5.3, panel A).

In the second regression analysis, the dependent variable was the rapid orienting index, while
the AQ communication was the predictor in the second step. The entire model accounted for
35% of the variance (p < .01). The AQ communication sub-scores entered last accounted for
19% (F change »3) = 6.45, p < .05) of the unique variance of the rapid orienting index (see
Figure 5.3, panel B).

In the third regression analysis, the dependent variable was the alerting index, while the AQ

attention to details was the predictor in the second step. The entire model accounted for 26%
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of the variance (p < .05), and the AQ attention to details sub-scores entered last accounted for
19% (F change(i 21y = 5.22, p < .05) of the unique variance of the alerting index (see Figure
5.3, panel C).

Interestingly, we did not find any significant results (all ps > 0.05) when exploring the

relationship between maternal autistic traits and their offspring’s attentional indexes.
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Figure 5.3 Correlation plots of: a) the relationship between the invalid cue condition of spatial cueing task in infants and
the paternal AQ attention to details sub-score; b) the relationship between the rapid orienting index of spatial cueing task
in infants and the paternal AQ communication sub-score; c) the relationship between the alerting index (difference

between TTF at the first and at the second cue-target SOA) of spatial cueing task in infants and the paternal AQ attention
to details sub-score.

5.4 Discussion

In the present study, we investigated a new approach for the identification of neurocognitive
markers that, together with the study of infant siblings, might help to characterize the early
developmental course of broader phenotype of autism. We hypothesized a relationship
between the attentional functioning of 8-month-old infants and the autistic traits in their
parents. Our results show that different aspects of attentional deployment in infants were
related to autistic traits in their fathers.

Specifically, we found that TTF on the invalid cue condition at the long cue-target interval
was associated with higher levels of attention to details in the fathers. Since the invalid cue
condition measures the ability to disengage and re-orient the focus of attention (Posner,

1980), this evidence agrees with findings of impairments in that ability, demonstrated not
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only in the ASD population (Wainwright-Sharp and Bryson, 1993; Courchesne et al., 1994;
Landry and Bryson, 2004), but also in infant siblings of children with ASD (Elsabbagh et al.,
2009), and, more importantly, in infants who later develop ASD (Zwaigenbaum et al., 2005;
Elsabbagh et al., 2013; Sacrey et al., 2013). Trying to identify the possible mechanism
connecting the infants’ ability to disengage/re-orient the focus of attention and the greater
attention to details manifest in fathers is not easy, given that also within the ASD population
this relation in not fully understood (for a discussion see Keehn et al., 2013). Fischer and
Breitmeyer (1987) showed that the exploration of visual environment by the means of
saccadic eye movement is strictly in relation to mechanisms of visual attention. During the
engagement phase of visual attention, indeed, saccades are inhibited, thereby providing
steady fixation. The inefficiency of the attentional disengagement could therefore be linked to
“sticky” attention in a limited portion of the visual field, that could lead in turn to greater
attention to the detailed aspects of visual input. Accordingly, children affected by ASD show
a specific impairment in zooming out the attentional focus (Mann and Waler, 2003; Ronconi
et al,, 2013b), which is linked to their social-communicative impairments and global
integration deficit of dynamic information (Ronconi et al., 2012).

Paternal autistic traits were also related to the rapid orienting index (i.e., TTF difference
between the invalid and the valid trials at the short cue-target SOA), which measures the
ability to use a peripheral and transient spatial cue to rapidly shift visual attention to the cued
location. Higher communication difficulties reported by fathers were related to smaller rapid
orienting indexes in their infants. This evidence agrees with Wainwright-Sharp and Bryson
(1993), who found that a group of high-functioning adolescents with autism did not show a
cueing effect when the cue was presented for 100 ms, indicating an inability to process
rapidly presented spatial cues. This absence of cueing effect suggests a possible disorder of

right frontoparietal network in children with ASD (Belmonte et al., 2010; Ronconi et al.,
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2012, 2013b). Visual sensitivity to peripheral cues, indeed, induces automatic orienting of
attention mainly controlled by the right frontoparietal network (Saalmann et al., 2007;
Corbetta and Shulman, 2011; Ronconi et al., 2014a). Visual orienting is a basic element for
the development of joint attention (Mundy and Newell, 2007). This idea is supported by
previous studies showing that the degree of which attention is captured by changes in the
visual environment (Butterworth and Jarrett, 1991) — as well as by changes in head/gaze
direction of the caregiver (Butterworth and Grover, 1990) — influence joint attention abilities.
Moreover, joint attention have been linked to language and communication development, as
research in typically developing infants and toddlers demonstrated (Carpenter et al., 1998). In
sum, we can reasonably speculate that parents with poor communication abilities transmit to
their offspring subtle deficits in visual attention that in turn affect joint attention and
communication development.

Our results were not limited to the spatial dimension of attention. We also found a
relationship between alerting efficiency and paternal autistic traits: the alerting index (i.e.,
difference in TTF between the shorter and longer cue-target SOAs) was inversely related to
attention to details in the father, suggesting that the ability to react to high-priority stimuli
was lower in infants whose fathers had higher attention to details. This result is compatible
with the relationship between alerting system disorder and social impairment recently found
in children with ASD (Keehn et al., 2010). Some authors (Gold and Gold, 1975; Dawson and
Lewy, 1989) hypothesized that abnormal alerting would have developmental consequences in
a variety of domains. Particularly, if the attention system is not adequately prepared to
process incoming information with a proper level of phasic arousal, novelty can lead to
stressful reaction. To avoid this it may be preferable to persist in the ongoing state
(“insistence on sameness”). Thus, overfocused and detail-oriented attention could be partially

due to the inefficiency of the alerting system that disrupts responses to novel stimuli. An

71



Chapter 5 - The orienting mechanism in 8-month-old infants and its relationship with the broader autistic phenotype (BAP).

alternative explanation of the relationship between inefficiency in alerting and overfocused
attention could rely on the close interplay between orienting and alerting systems. Even if
classical theoretical frameworks claim for an independency between these two systems
(Posner and Petersen, 1990; Petersen and Posner, 2012), recent evidence suggest an intensive
interplay (for a review see Corbetta and Shulman, 2011). Callejas and colleagues (2004), in
particular, demonstrate that increasing phasic alerting can exert a positive influence on
attentional orienting, by accelerating its time-course. Thus, alerting inefficiency could
amplify the deficit in attentional orienting and re-orienting that contributes to sticky attention
typically associated to ASD and its broader phenotype (Zwaigenbaum et al., 2005; Keehn et
al., 2010).

Overall, these findings suggest that inefficient rapid orienting of visual attention in space, as
well as poorer ability to use the temporal cue to program an action in time, characterized
infants whose fathers showed higher presence of autistic traits.

By contrast, maternal autistic traits were not related to any attentional measures of their
children. This result is consistent with the evidence that ASD is four times more prevalent in
males than in females (Baron-Cohen et al., 2011) and similarly sub-clinical autistic traits are
more common in males (Baron Cohen et al., 2001; Constantino and Todd, 2003). However,
this lack of a relationship should not be taken as definitive, because of the small sample size
in the present study.

The main innovative aspect of the present research is that early attentional markers of the
broader autism phenotype shared not only in infant siblings of children affected by ASD, but
also in infants whose parents show high presence of autistic traits. The infants’ early deficits
in attention systems may be related to future deficits in higher-level domains, such as
responses to social and non-social stimuli and communication skills (Chawarska et al., 2013;

Hutman, 2013). Accordingly, various studies in individuals with ASD found that basic visual
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anomalies, in particular the performance in visual search task (Joseph et al., 2009), biological
motion processing (Koldewyn et al., 2010), and visual fixation pattern (Klin et al., 2002)
predicted communication and social interaction impairments.

However, our results, and similar findings reported above, derive from studies with a purely
correlational design. Thus, it is not possible to exclude that poor development of both social
and non-social domain derives from a common developmental pathogenic process causing
ASD. A recent longitudinal study seems to go one step forward to clarify this question.
Studying a cohort of children at risk for ASD, Elsabbagh and colleagues (2013) demonstrate
the relationship between disengagement of visual attention in infancy and later autism in
toddlerhood.

In conclusion, the present research highlights the potential of studying infants whose parents
exhibit elevated autistic traits to improve the identification of early ASD markers. Employing
larger samples and using research with longitudinal design could improve the identification
of early attentional dysfunction that might undermine typical social-communication

development.
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CHAPTER 6 - THE ZOOMING MECHANISM IN 8-MONTH-OLD
INFANTS AND ITS RELATIONSHIP WITH THE BROADER
AUTISTIC PHENOTYPE (BAP)

6.1 Introduction

A wide range of studies investigated the orienting component of visual attention in
infanthood (e.g., Clohessy et al., 1991; Johnson et al., 1991; Hood, 1993; Valenza et al.,
1994; Johnson & Tucker, 1996; Richards & Hunter, 1998; Ronconi et al., 2014b). It has been
shown that its efficiency develops dramatically in the first year of life (Johnson et al., 1991;
Hood, 1995), with neural circuits responsible for the spatial orienting getting faster over the
first 6 months (Johnson & Tucker, 1996; Richards, 2003, 2005). On the other hand, the
ability to modulate the attentional focus size — hereafter, “attentional zooming” — has yet to
be explored in infants.

In the present study, we developed the first paradigm to measure attentional zooming in
infancy. In previous works the efficiency of attentional zooming was evaluated in children
affected by developmental dyslexia (Facoetti et al., 2000; Facoetti & Molteni, 2001) and
autism spectrum disorder (Ronconi et al., 2012, 2013b), and the neural underpinnings of this
process was clarified using neurophysiological, neuroimaging and transcranial magnetic
stimulation in human adults (e.g., Fu et al., 2005; Chen et al., 2009; Ronconi et al., 2014a).
Here, an attentional zooming paradigm was readapted and an eye-tracker system was
employed to measure saccadic latencies (SLs), defined as the time to initiate a saccade
toward the target. SLs are the most reliable measure of covert visual attention deployment in

infanthood.
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SLs were measured in response to a visual target appearing at two possible eccentricities
(central and peripheral) from the central fixation along the horizontal axis. Attentional
resources were focused or distributed by using a small or large cue, respectively. In the small
cue condition, the central target appeared inside the cue, while the peripheral target appeared
outside. In the large cue condition, instead, both the central and peripheral target appeared
inside the cue.

Our prediction was that if the attentional zooming mechanism is already developed in 8-
months-old infants, SLs should vary between the small and the large cue condition as a
function of target eccentricity. Specifically, if in the small cue condition infants can zoom-in
their attentional focus, then the detection of central targets should be accelerated relative to
the large cue condition (i.e., cue-size effect; e.g., Eriksen & St. James, 1986; Castiello &
Umilta, 1990; Turatto et al., 2000). Furthermore, if in the large cue condition infants can
zoom-out their attentional focus, then the detection of peripheral targets should be accelerated
relative to the small cue condition. We tested this hypothesis performing two different
experiments. In the Experiment 1 visual target had the same dimension for both the central
and the peripheral eccentricity, while in the Experiment 2 peripheral target was enlarged
according to the cortical magnification factor (Daniel & Whitteridge, 1961), ensuring a
balanced perceptual saliency between eccentricities. Manipulating the cue-target interval
(100 or 300 ms), we could also evaluate what was the optimal time to adjust the focus of
attention at this stage of development. Evidence of the time-course of the attentional zooming
in adults have shown that the mechanism takes between 33 and 66 ms to be initiated (Benso
et al.,, 1998). Previous data on both typically developing school-aged children and adults
showed that an optimal cue-target interval to perform the attentional zooming is 100 ms,
while at longer cue-target intervals (e.g., 500-800 ms) the attentional focus “collapsed”

(Benso et al., 1998; Ronconi et al., 2013b, 2014a).
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6.2 EXPERIMENT 1

6.2.1 Method

6.2.1.1 Participants

Twenty-five healthy and full-term infants participated in the Experiment 1. Nine infants were
tested but not included in the analyses, as they had less than 50% valid trials. This was due to
fussiness or drowsiness (n=4), excessive movement of the infant, such that we were unable to
record eye movements (n=1), or poor calibration in detecting with the eye tracker the infant’s
gaze direction in a reliable way (n=4). The final sample was composed by sixteen infants (11
males and 5 females) with a mean age of 8§ months and 13 days (mean age=253 days,
SD=7.83, range=243-265). Infants were recruited from a database of new parents and were
tested only after their parents had given their informed consent. The entire research protocol
was approved by the ethic committee of the Department of Developmental and Socialization
Psychology of the University of Padua and was conducted in accordance to the principles

elucidated in the Declaration of Helsinki.

6.2.1.2 Stimuli

The computer screen showed the stimuli on a black background. The attention getter was a
coloured dynamic cartoon with a musical soundtrack. The cue was a central empty grey
circle, concentrically displayed relative to the fixation point, with a ray of 4° in the small and
12.5° in the large cue condition.

The target was a coloured (green, red, or yellow) smile that could appear at two possible
eccentricities, 3° (central) or 9° (peripheral) from the fixation along the horizontal axis.
Targets at both eccentricity measured 2 cm (1.9°) in width and 2 cm (1.9°) in height. In the

small cue condition, the central target appeared inside the cue, while the peripheral target
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appeared outside. In the large cue condition, both the central and peripheral target appeared

always inside the cue (see Figure 6.1, panel A and C).

6.2.1.3 Apparatus

The stimuli were presented with E-Prime 2.0 on a 19-inch monitor with a resolution of
1024x768 pixels. A remote, pan-tilt infrared eye-tracking camera (Model 504, Applied
Science Laboratories, Bedford, MA) using bright-pupil technology, placed directly below the
stimulus screen, recorded the participant's eye movements at a temporal resolution of 50 Hz.
Infrared light emitted from diodes on the camera was reflected back from the participant's
retina through the pupil, producing a backlit, white pupil from the corneal surface of the eye.
An experimenter guided the eye-tracking camera by means of a remote control, so that the
eye of the participant was always in focus. The image of the eye on a television monitor
made this procedure easier. To coordinate the eye-movement data with a specific stimulus
display, the stimuli-generating computer sent a unique, time-stamped numerical code via a
parallel port to the data-collecting computer, indicating the onset and the type of the stimulus
display. The digital data indicating the fixation locations and change of locations of the eye
(the eye movements themselves) were calculated in relation between the centroid of the pupil
and the corneal reflection by using the Applied Science Laboratories' algorithm.

Four main areas of interest (AOI) that corresponded to the possible positions of the target
(left and right central targets; left and right peripheral targets) were selected. Each AOI

measured 2.5 cm in width and 2.5 cm in height.

6.2.1.4 Procedure

The infant sat in an infant car seat placed 60 cm distant from the stimulus monitor. Parents

usually were seated behind the infant seat, slightly moved randomly to the right or left side of
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the infant, so they could see the monitor and be close to their baby. The room lights were first
lowered, and the infants shown a dynamic cartoon with a musical soundtrack to engage his or
her interest toward the predetermined locations, as the experimenter directed the pupil camera
toward the participants’ eye with the remote control.

The experimental session began with the calibration procedure that allowed the eye-tracker
system to subsequently determine the precise direction of the infants’ gaze. The eye tracker
was calibrated by showing to participants three markers on the screen presented one by one
on the top-left, on the centre and on the bottom-right, and recording the eye-tracker readings
for the eye-fixation location. If the recorded gaze position did not remain stable within the
area covered by the calibration stimulus, a new calibration was conducted. Calibration
usually lasted between 1 and 2 minutes. All subsequent eye data were calculated from these
calibration values.

An experimental trial began with the presentation, in the middle of the screen, of the central
dynamic attention getter (a coloured moving clown). As soon as the participants looked at
this central fixation point, one of the two types of cue — the small or the large circle — was
presented. After a variable interval of 100 or 300 ms from the cue presentation (Stimulus
Onset Asynchrony or SOA), the target appeared randomly on the left or on the right of the
central attention getter, at two different eccentricities (central=3° or peripheral=9°). The
probability of the target locations was balanced in the two sides. The target remained visible
until the participant made a saccade toward it or for a maximum of 2 seconds, after which the
trial terminated.

A total of 48 trials (6 repetitions % 2 cue size X 2 SOA X 2 target eccentricities) were
administered to each infant, randomly intermixed and arranged in two blocks, so they could

take a break halfway trough. The entire experiment lasted about 15-20 minutes.
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Software E-Prime allowed us to elaborate the raw data coming from the eye-tracker system,
calculating participants’ SLs. Trials were considered valid and were analyzed only if
saccades started from the central fixation point, were directed toward the target and reached

it.

6.2.2 Results

A mean of 8.6 trials (SD=7) for each infant was excluded from the statistical analysis for the
following reasons: infants looked outside the defined AOI (mean=3.1 trials; SD=3.7), or the
signal of the eye tracker was lost during the stimuli presentation (mean=4.5 trials; SD=4.2),
or the saccadic latencies were lower than 100 ms (i.e., anticipations; mean=0.6 trials;
SD=0.7), or the saccadic latencies were greater than 500 ms (mean=0.4 trials; SD=0.8). The
final number of valid was on average 39.4 (SD=7.0). Table 6.1 shows mean SLs and other
collected measures for all infants’ valid responses, as a function of the cue size, SOA and

target eccentricity.
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Figure 6.1 Schematic representation of the attentional zooming task for Experiment 1 (panel A) and
Experiment 2 (panel B). The two bottom panels C and D represent possible targets location in Experiment 1
and 2 respectively, for every combination of visual hemi-field, cue size and target eccentricity.

SLs were analyzed using a repeated measure 2x2x2 analysis of variance (ANOVA) with the
following within-subjects factors: Cue size (small vs. large), SOA (100 vs. 300) and Target
eccentricity (central vs. peripheral). The results showed a significant main effect of SOA
(F1.15=22.14, p<.001, n°,=.60; mean+SEM SLs were 246+5 ms and 263+6 ms at the two
SOA, respectively), and Target eccentricity (F(,15=26.63, p<.001, n2p=.64; mean SLs were
238+5 and 271+£8 ms at the central and peripheral eccentricity, respectively), and a
significant SOA by Target eccentricity interaction (F(,15=6.55, p<.05, n2p=.30; at SOA=100
ms SLs were 236+6 and 257+7 ms for the central and the peripheral eccentricity,
respectively; at SOA=300 ms SLs were 241+5 and 286+9 ms for the central and the
peripheral eccentricity, respectively).

Importantly, a Cue size by Target eccentricity interaction emerged (F(i15=5.61, p<.05,

n2p=.27; see Figure 6.2). Planned comparisons showed that SLs for peripheral target were
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significantly faster in the large (257+8) relative to the small (285+12) cue condition (t(5=-
2.23, p<.05, n2p=.25), while SLs for central target were faster in the small relative to the large
cue condition, but this difference was not statistically significant (234+5 vs. 242+6;
tas=1.16, p=.26, n2p=.08). In addition, SLs were faster for central (234+5) versus peripheral
target (285+12) in the small cue condition, (tis5=-4.57, p<.001, n2p=.58), but no difference
emerged in the large cue condition (242+6 vs. 257+8; ts=-1.71, p=.11, n°,=.16). The main

effect of the Cue size and the other interactions were not significant.

Experiment 1
Figure 6.2 Graph displaying the 350
results of the Experiment 1, with & o * Il Small cue
mean saccadic latencies (SLs) E 325 I I L
= arge cue
plotted as a function of cue type @ n.s. | - 9
and eccentricity (averaged across ‘G 3004
SOAs). In this case, target had E
always the same dimension across § 2757 T
eccentricity. Error bars represent .Q 250
SEM. ns.= not significant, g T
*H*=p<.001; *=p<.05. S 225+
)]
200 T T
3° 9°
Eccentricity

Table 6.1 Descriptive statistics (mean and SD) of the main measures collected in Experiment 1, separated for each
level of each independent variable.

Experiment 1

SOA=100 ms SOA=300 ms

Small cue Large cue Small cue Large cue

Eccentr. 3°|[Eccentr. 9°|Eccentr. 3°[Eccentr. 9°|Eccentr. 3°|Eccentr. 9°|Eccentr. 3°|Eccentr. 9°

Mean | SD |Mean | SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD

Saccadic
Latency (ms) 236.73]|28.66] 271.56]45.10| 235.33| 26.20| 241.79| 29.43| 232.06| 19.84| 300.11| 61.50| 249.40| 38.50| 272.33| 43.33
Time to target
fixation (mS) 295.58]42.36{ 451.29|58.29| 317.23| 58.82| 430.13| 72.23]| 298.58| 50.14| 492.51| 86.43| 318.17| 64.33| 465.15| 75.80

Duration (ms)| 35.85[12.23] 98.31/26.21| 44.0210.94| 91.85/29.50| 40.29|15.06] 86.91|25.74| 39.39|16.85| 97.37|28.17

Angle (°) 2.58] 0.44] 897) 097 2.89] 044 8.63| 0.88] 2.57| 043 894 1.15| 2.72| 0.58] 8.94] 131

Speed (°/sec) | 88.77)10.80| 101.74] 14.56| 80.06] 11.56| 102.53| 9.07| 85.4514.47] 105.35)13.21] 85.82| 16.80| 101.62]19.42
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6.2.3 Discussion

Results of the Experiment 1 are in agreement with a proper modulation of the attentional
focus size, demonstrating that zoom-in and zoom-out attentional mechanisms are already
developed in 8-month-old infants. In particular, peripheral target detection was faster in the
large relative to the small cue condition, whereas central target detection was slower
(although not statistically significant). Accordingly, target anticipated by a small cue led to
the rise of a significant “attentional gradient” (i.e., slower detection of peripheral than central
targets), suggesting that attentional resources were focused inside the narrow area delimited
by the small cue and fall off progressively outside the focus. On the other hand, for targets
anticipated by a large cue — containing both possible target locations — the attentional
gradient was nullified, because of the spreading of attentional resources in the entire cue-
delimited visual space. These results are congruent with previous studies employing manual
reaction times to investigate the attentional zooming in children and adults (Castiello and
Umilta, 1990; 1992; Benso et al., 1998; Greenwood and Parasuraman, 1999; Facoetti et al.,
2000; Luo et al., 2001; Miiller et al., 2003; Ronconi et al., 2013b, 2014a; Turatto et al., 2000).
Although the cue was effective in modulating the target detection relative to the eccentricity,
peripheral (vs. central) targets were detected systematically slower independently from all the
other factors (as suggested by the significant main effect of the target eccentricity), revealing
that peripheral target were perceptually less salient than central ones, particularly for longer
cue-target SOA (as suggested by the significant SOA by target eccentricity interaction).

We aimed to remove the perceptual bias by adjusting the size of the peripheral target in
agreement to the cortical magnification factor (Daniel & Whitteridge, 1961), which states
that there is a larger representation in the visual cortex of the foveal and parafoveal retinal
portions compared to peripheral regions. In the Experiment 2, the perceptual saliency of

visual targets was balanced across eccentricities.
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6.3 EXPERIMENT 2

6.3.1 Method

6.3.1.1 Participants

Twenty-eight healthy and full-term infants participated in the experiment and none of them
took part in the Experiment 1. Eighteen infants (9 males and 9 females) with a mean age of 8
months and 11 days (mean age=250 days, SD=7.45, range=240-264) comprised the final
sample. Ten infants were observed but not included in the statistical analyses, as they had less
than 50% valid trials. This was due to fussiness or drowsiness (N=4), excessive movement of
the infant, such that we were unable to record eye movements (N=3), or poor calibration in
detecting with the eye tracker the infant’s gaze direction in a reliable way (N=3). The

recruitment method was the same of the Experiment 1.

6.3.1.2 Stimuli and apparatus

The stimuli and the apparatus were identical to those used in the Experiment 1, with the
following exceptions: (i) target at the peripheral eccentricity was scaled following the
procedure elucidated by Rovamo and Virsu (1979) and Virsu and Rovamo (1979), resulting
ina 5 cm (4.8°) width and 5 cm (4.8°) height target; (ii) the dimensions of the four main AOI
measured 2.5 cm in width and 2.5 cm in height at the central eccentricity and 5.5 cm in width

and 5.5 cm in height at the peripheral eccentricity.

6.3.1.3 Procedure

The procedure was exactly the same of the Experiment 1.
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6.3.2 Results

Trials were considered valid and were analyzed only if saccades started from the central
fixation point, were directed toward the target and reached it. A mean of 10.2 trials (SD=7.3)
for each infant was excluded by the statistical analysis for the following reasons: because
infants looked outside the defined AOI (mean=2.4 trials; SD=2.3), or because the signal of
the eye tracker was lost during the stimuli presentation (mean=6.4 trials; SD=6.5), or the
saccadic latencies were lower than 100 ms (i.e., anticipations) (mean=0.4 trials; SD=1.0), or
the saccadic latencies were greater than 500 ms (mean=0.9 trials; SD=1.3). The final number
of trials in which infants correctly detected the target was on average 37.8 trials (SD=7.3).
Table 6.2 shows mean SLs and other measures collected for all infants’ valid responses, as a
function of the cue size, SOA and target eccentricity.

As for the Experiment 1, SLs were analyzed using a repeated measure 2x2x2 ANOVA with
the following within-subjects factors: Cue size (small vs. large), SOA (100 vs. 300 ms) and
Target eccentricity (central vs. peripheral). Main effects were not significant. It is worth to
note that the absence of a significant effect of the factor Target eccentricity demonstrated that
the manipulation of peripheral target size was effective in balancing the perceptual saliency
between the two eccentricities. Importantly, a significant Cue size by SOA by Target
eccentricity interaction emerged (F(1,17=10.62, p<.01, n2p=.38; see Figure 6.3). This three-
way interaction was further explored with two 2x2 ANOVA performed at each SOA. At the
first SOA (100 ms) ANOVA revealed a significant Cue size by Target eccentricity interaction
(F1.17=22.49, p<.001, n°,=.57). Planned comparison revealed that SLs at the central
eccentricity were faster when anticipated by a small than by a large cue (235+6 vs. 249+5;
t17=2.69, p<.05, n2p=‘30), while the opposite was obtained for targets appearing at the
peripheral eccentricity, that were detected faster when anticipated by a large then a small cue

(23045 vs. 245+7; t77=-2.39, p<.05, n°,=.25).
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ANOVA performed at the second SOA (300 ms) did not revealed any significant main effect

or interaction between factors.

Experiment 2

SOA=100 ms SOA=300 ms
3001 3007
g Il Small cue
£ I Large cue
n.s. n.s.
.6 2754 '% ,;| 275+ — —
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Figure 6.3 Graph displaying the results of the Experiment 2, with mean saccadic latencies (SLs) plotted as a
function of SOA, cue type and eccentricity. In this case, the target dimension at the second eccentricity was
adjusted accordingly to the cortical magnification factor (see Figure 6.1). Error bars represent SEM, n.s.= not
significant, *=p<.05.

Table 6.2 Descriptive statistics (mean and SD) of the main measures collected in Experiment 2, separated for each
level of each independent variable.

Experiment 2

SOA=100 ms SOA=300 ms

Small cue Large cue Small cue Large cue

Eccentr. 3°|Eccentr. 9°|[Eccentr. 3°|Eccentr. 9°|Eccentr. 3°([Eccentr. 9°|Eccentr. 3°|Eccentr. 9°

Mean| SD |Mean| SD |Mean| SD | Mean| SD | Mean| SD |Mean| SD |Mean| SD | Mean| SD

Saccadic
Latency (ms) 235.00] 25.12| 245.21| 28.45| 248.77] 22.90| 230.09] 19.49] 247.71| 32.67] 234.90| 29.77| 244.17| 30.25| 243.11| 33.57
Time to target 108.7
fixation (ms) 300.39] 58.45] 372.94] 63.71] 324.72| 48.67| 386.91| 73.49| 318.65| 60.04| 392.91| 81.76| 368.94| 85.54| 414.94] 7

Duration (ms) 42.09]29.74] 89.20{ 19.55] 37.48|23.97| 100.00| 46.16| 39.59|19.57| 92.39|22.70] 44.31|27.51| 105.18] 44.42

Angle (°) 249 030 836 0.67] 2.54] 036] 8.58 053] 248 031 826 0.86] 2.83] 0.75] 846/ 0.95

Speed (°/sec) 87.59/18.51] 100.92| 13.10] 89.77] 20.18| 100.05] 14.52] 78.54|25.29] 101.20{ 13.80] 88.16]19.62| 97.95| 16.04
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6.3.3 Discussion

In the Experiment 2 we balanced the perceptual saliency between the two target eccentricities
by enlarging the peripheral target size according to the cortical magnification factor (Daniel
& Whitteridge, 1961). Thus, the only comparisons that can be done are between the two
types of cue at each of the two target eccentricities. Results showed that at the central
eccentricity SLs were faster in the small relative to the large cue condition (i.e., the cue size
effect on central target). Target at the peripheral eccentricity on the other hand were faster
when anticipated by a large cue (i.e., the cue size effect on peripheral target). Overall these
results corroborate the hypothesis tested in the Experiment 1, in which infants were able to
automatically adjust the size of the attentional focus in accordance with the cue size.
Moreover, in the Experiment 2 there was a specific temporal window to perform the
attentional zooming. Only at the first SOA (100 ms), indeed, the small cue induced infants to
narrow their attentional focus (zoom-in), while the large cue induced them to broaden their
attentional focus (zoom-out). In contrast, at the longer SOA (300 m), infants’ attentional

focus collapsed and returned to a “default” state.

6.4 Relationship between infants’ zooming mechanism and parents’ autistic traits
Similarly to what we did in the previous study (Chapter 5), we explored the relationship
between infants’ attentional functioning — in this case the ability to adjust the size of the
attentional focus — and the autistic traits self reported by their parents by using the Autism
Quotient questionnaire (Baron-Cohen et al., 2001).

In order to maximize the statistical power of our analysis, we decided to consider the entire
group of infants that took part in the present study. Thus, we putted together in a unique

analysis infants from Experiment 1 and 2. Since the peripheral target was magnified in
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Experiment 2, while the central target remain with the same dimension, we limited our
analysis SLs at the first target eccentricity.

We computed an index of attentional zoom-in, by subtracting SLs in the small cue condition
from SLs in the large cue condition (averaged between SOAs). Higher zoom-in indexes
correspond to stronger focusing of attention. We found that both fathers’ (r;30=.314, p=.028)
and mothers’ (r32=.440, p=.005) individuals AQ scores in the Attention Switching subscale

were positively correlated with the zoom-in indexes of their offspring (see Figure 6.4).
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Figure 6.4 Graph displaying the relationship between fathers’ (a) nad mothers’ (b) individual score on the
Attention Switching subscale of the Autism Quotient (AQ) questionnaire and their infants’ attentional zoom-in
indexes.

6.5 General Discussion

In the developed human brain, the focus of attention can be adjusted in its size to process
information from a narrow (zoom-in) or a broad (zoom-out) region of the visual field
(Ericksen and St. James, 1986; Miiller et al., 2003; Chen et al., 2009). This mechanism is
fundamental to select relevant information from the complex visual environment. Attentional
zooming ability has never been investigated in infants. In two different experiments we

demonstrated, for the first time, that 8-month-old infants were able to accurately adapt the

size of their attentional focus.
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Results of the Experiment 1 — where we employed targets of the same size across
eccentricities — show that peripheral target detection was faster in the large relative to the
small cue condition, whereas central target detection was slower (although not statistically
significant). In addition, when targets were preceded by a small cue a significant attentional
gradient (difference in SLs between central and peripheral eccentricity) emerged, indicating
an efficient focusing of attentional resources (zoom-in). On the contrary, when targets were
preceded by a large cue the attentional gradient was nullified (SLs did not differ across
eccentricities), indicating an efficient spread of attentional resources (zoom-out).

In Experiment 2, we controlled for the perceptual saliency of peripheral targets by adjusting
their dimension according to the cortical magnification factor. Results show that for central
targets SLs were faster in the small relative to the large cue condition (i.e., the cue size effect;
Eriksen & St. James, 1986; Castiello & Umilta, 1990; Turatto et al., 2000). Conversely, for
peripheral target SLs were faster in the large relative to the small cue condition. These
findings demonstrate that infants were able to zoom-in and zoom-out their attentional focus,
respectively. Since these findings were found only at the short cue-target SOA, we propose
that attentional zooming mechanism was rapidly adapted to the object size but collapsed
shortly after, accordingly to an exogenous deployment of visual selective attention (see
Posner and Petersen, 1990; Petersen and Posner, 2012 for reviews).

The validation of this paradigm and the evidence that the zooming mechanism is already
developed in infants at 8 months of age have important implications for the study of
developing cognition. According to the neuro-constructivist approach (Karmiloff-Smith,
1998) and interactive specialization approach (Johnson, 2011), indeed, development itself
plays a crucial role in phenotypical outcomes, and tiny variations in the initial state could

give rise to marked differences in the end states. Thus, the ability to control the attentional
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zooming mechanism can be related to higher order cognitive function such as joint attention,
as previously suggested also for the orienting mechanism (Mundy & Newell, 2007).
Importantly, this paradigm could be use in future studies as a tool for the early diagnosis of
autism spectrum disorder (ASD). Previous studies found an impaired zoom-out attentional
mechanism in children with ASD (Mann & Walker, 2003; Ronconi et al., 2012, 2013b; see
Chapter 2). This impairment in spreading the attentional resources has been confirmed also
by results of the first study exposed in the present thesis (Chapter 4). Future longitudinal
studies will have the possibility to assess if the deficit in enlarging the attentional focus size
is present also in infants at-risk for developing the condition that are later diagnosed with
ASD in toddlerhood. The correlational analyses that we performed with the approach of the
broader autistic phenotype seem to confirm a possible relationship between higher risk of
autistic phenotype and a deficit in spreading attentional resources. Autistic traits of parents in
the AQ - Attention Switching subscore were indeed related to infants’ deployment of
attention. Those parents with higher autistic traits have infants with higher zoom-in indexes,
which could be considered the flip side of the coin relative to the zoom-out dysfunction.
Prolonged zoom-in was indeed coupled with sluggish zoom-out of the attentional focus in our
previous study in individuals with ADS (Ronconi e al., 2013b). However, these data have to
be considered preliminary, as we do not have the possibility to correlate parents’ autistic
traits with infants’ attentional zoom-out (because the peripheral target eccentricity had
different dimensions across the two experiments, thus only central target eccentricity was
considered).

In conclusion, for the first time, the current study showed that the essential ability to control
the size of the attentional focus is present in 8-month-old infants. The relationship between
this attentional mechanism and higher order visual perception (e.g. local/global stimulus

analysis, spatio-temporal visual integration) and attentional processes (e.g. joint attention)
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remains to be fully explored. Moreover, having a tool to assess the modulation of the
attentional focus size in infancy is extremely important for its potential application as an

early marker of ASD.
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CHAPTER 7 - THE NEURAL UNDERPINNINGS OF THE
ZOOMING MECHANISM — PART I: TMS ON THE RIGHT
FRONTAL EYE FIELDS INDUCES AN INFLEXIBLE ZOOM-
LENS OF ATTENTION*.

*This study has been published as: Ronconi L, Basso D, Gori S, Facoetti A (2014). TMS on Right Frontal Eye Fields
Induces an Inflexible Focus of Attention. Cereb Cortex, 24 (2): 396-402. doi:10.1093/cercor/bhs319

7.1 Introduction

As summarized in Chapter 2, the selection of relevant visual information is controlled by
spatial attention. The focus of attention can be moved to a particular region in the visual
space, also in absence of eye movements (i.e., covert orienting of attention; Posner, 1980).
Moreover, it can be adjusted in its size, like a “zoom-lens” (e.g., Eriksen and St. James, 1986;
Castiello and Umilta, 1990), in order to be spread in a broader portion (zoom-out) or focused
in a narrow region (zoom-in) of the visual field. Neuroimaging and neurophysiological data
supported this hypothesis, suggesting that the neural activity preceding the target presentation
was finely modulated by the attended region in early visual areas (Vidyasagar, 1998;
Brefczynski and DeYoe, 1999; Miiller et al., 2003; McAdams and Reid, 2005), and that the
attentional zooming modulated both P1 and N1 component of the visual event related
potentials (Luo et al., 2001; Fu et al., 2005).

It is widely demonstrated that a fronto-parietal network, composed of superior frontal cortex
(in particular Frontal Eyes Fields - FEF) and intraparietal sulcus, plays a crucial role on
covert orienting of attention (see Corbetta and Shulman, 2002, 2011 for reviews). However,
the brain areas devoted to control the attentional focus size have not been specifically
investigated yet. In particular, there is no evidence regarding the role of FEF. The
predominant view of visual cognition associated FEF with eye movement programming (see

Tehovnik et al., 2000 for a review). The hypothesis of a strict link between covert spatial
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attention and eye movement programming was originally suggested by Rizzolatti and
colleagues (1987). After this proposal, the role of FEF has been increasingly recognized to go
beyond the programming of eye movements. Previous studies showed that the FEF area of
the macaques was involved in visual target selection during a visual search task (e.g., Bichot
and Schall, 1999, 2001; Murthy et al., 2001). Further evidence came from transcranial
magnetic stimulation (TMS) studies in human participants, which demonstrated the FEF
fundamental role in covert orienting of attention (e.g., Ro et al., 2003; Taylor et al., 2007) and
in serial visual search (see O’Shea et al., 2006 for a review). Importantly, recent concurrent
TMS and functional neuroimaging studies suggest the casual role for FEF in the fronto-
parietal modulation of neural activity in both striate and extrastriate visual areas (Ruff et al.,
2006; 2008).

The aim of the present study was to investigate the role of FEF in the modulation of the
attentional focus size. Single pulse TMS was used to interfere with the cue processing that
induced subjects to narrow or to broaden the attentional focus. We measured simple reaction
times (RTs) to a visual target that could appear at one out of three eccentricities from the
fixation. We used the term “attentional gradient” to indicate the specific RTs pattern,
dependent on target eccentricity, that is influenced by the two different cue-sizes employed
(LaBerge, 1983; see LaBerge and Brown, 1989 for a review). When a small cue (containing
only the first target eccentricity) preceded the target onset, subjects are induced to zoom-in
their focus of attention, generating a significant attentional gradient in RTs (i.e. increasing
RTs with increasing target eccentricity). On the other hand, when a large cue (containing all
possible target eccentricity) anticipated the target onset, subjects automatically zoom-out
their attentional focus to cover all the possible target locations. Consequently, the attentional
gradient in RTs is usually reduced or even nullify (equal RTs across eccentricities) in

presence of a large cue. This prediction should be valid only within a limited cue-target time
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window, as suggested by previous studies that investigated the specific time course of the
attentional focusing (e.g., Benso et al., 1998; Turatto et al., 2000; Ronconi et al., 2013b;
2012b). In particular, Turatto and colleagues (2000) provided evidence of automatic and
voluntary attentional mechanisms controlling the size of the focus. When a new object
suddenly appears in the visual field, the focus automatically adjusted its size. Accordingly,
Benso and collegues (1998) showed that the focusing mechanism takes between 33 and 66
ms to be initiated but for long SOAs the focus collapses.

Since it is a widely held view that the right hemisphere is dominant for spatial attention
(Corbetta and Shulman, 2002, 2011), our prediction is that only TMS of the right FEF would

interfere with the attentional zoom-lens control.

7.2 Materials and Methods

7.2.1 Participants

Fifteen adult participants (age range 22-27, mean age=24.33, all right-handed) without any
history of neurological or psychiatric disorder took part in the present study as paid
volunteers. Six participants took part in the “No TMS experiment” (Experiment 1), while the
other 9 participants performed the “TMS experiment” (Experiment 2). All had normal or
corrected to normal vision and provided informed consent before participation. The entire
research protocol was conducted in accordance to the principles elucidated in the Declaration
of Helsinki and the ethical committee of the Department of General Psychology of the

University of Padua approved the study.
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7.2.2 Apparatus and Procedure

7.2.2.1 No TMS Experiment (Experiment 1)

The experiment was conducted in a dimly lit and quiet room. Participants were seated 40 cm
away from a 19-in. CRT monitor. A chinrest was used to stabilize the head, fixation was
binocular. All stimuli were middle gray displayed on a black background. The fixation point
was a cross of 0.5 deg placed in the screen center. One circle was presented concentrically to
the fixation point and the dimension of its ray was manipulated according to the two cue
conditions: 4 deg in the Small and 12.5 deg in the Large cue condition (Figure 7.1). The
target stimulus was a dot of 0.5 deg, which could appear at one out of three possible
horizontal eccentricity (i.e., 2, 6 and 12 deg, namely: Eccentricity 1, Eccentricity 2 and
Eccentricity 3, respectively). In the Small cue condition, the target was displayed inside the
focusing cue at Eccentricity 1, whereas at Eccentricity 2 and 3 it felt outside. In the Large cue
condition the target was always displayed inside the focusing cue. The target was randomly
presented either in the left or in the right visual hemifield. Similar experimental paradigms
have already been employed in other studies (Facoetti and Molteni, 2001; Ronconi et al.,
2012, 2013b).

At the beginning of each trial, a central fixation point appeared for 1000 ms. Subsequently, a
non-informative Small or Large cue was presented (i.e., the probability of the target location
was equal in the two focusing cue conditions). After a variable stimulus onset asynchrony
(SOA: 100, 300 or 500 ms), the target was displayed for 20 ms. A short target duration was
chosen to prevent eye movements after the stimulus onset. Participants were instructed to
press the space bar with their right hand as fast as possible at the target onset. If no response
was provided within 1000 ms from the stimulus onset, participants were warned with a 800
Hz sound played for 500 ms. At the end of each trial, a blank screen for an inter-trial interval

of 1500 ms was presented before starting the following trial. The entire experiment consisted
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of 1440 trials, run in two separate sessions of 720 trials, with a few hours of break between
them. Both sessions were identical, and consisted in three different blocks of 240 trials. Each
block contained 216 response trials (108 trials for the 2 focusing cue sizes; 36 trials for each

target location) and 24 catch trials (target absent).

7.2.2.2 TMS Experiment (Experiment 2)

Experiment 2 used the same behavioral procedure of Experiment 1, but TMS stimulation was
included. Single-pulse TMS was performed using a Magstim Rapid? stimulator and a 70mm
figure-8 shaped coil (The Magstim Company Ltd) combined with the Brainsight frameless
stereotactic navigation system (Rogue Research Inc., Montreal, Canada).

Single-pulse TMS was delivered on the right FEF (r-FEF, experimental condition) and on the
left FEF (I-FEF, control condition). The stimulation was time-locked to each trial, either 0 or
70 ms after the cue onset, and randomized across trials. We separated the two stimulation
sites (r-FEF and I-FEF) into different blocks. The same administration order was repeated for

the two sessions and was randomly counterbalanced across participants.

Figure 7.1 Schematic
illustration of the task design
+ Fixation (1000 ms) (SOA: stimulus onset
asynchronies, TMS:
transcranial magnetic
stimulation). Target appeared
}) randomly in one of the six
Cue and variable SOA position depicted along the
@ (100, 300, 500 ms) horizontal axis (not shown
+ while participants performed
Single pulse TMS the task).
(0 or 70 ms after the cue onset)
o
.
(until 1000 ms)

Small cue condition Large cue condition

Qwil
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The r-FEF and the control (I-FEF) sites were localized moving the coil 3 cm rostrally from
each subject’s motor hotspots and 5 cm laterally of the sagittal midline. These positions were
then marked with the Brainsight software. The handle of the coil was oriented posteriorly.
The precise location of the FEFs varies from individual to individual (Ro et al. 2002) and this
could be a possible source of error. However, the same procedure has been successfully
employed in previous TMS studies (e.g., Muri et al., 1991; Ro et al., 1999; Leff et al., 2001;
O'Shea et al., 2006). When participants reported discomfort caused by TMS-evoked blinks
and facial twitches, the orientation of the coil was altered slightly, without any change in
position. Stimulation was delivered at 100% of the motor threshold, considered as the
minimal intensity necessary to elicit a visible movement of the hand in 5 out of 10
stimulation pulses produced on the contralateral motor hotspot (mean intensity for the r-FEF

was 51.22 + 4.26; mean intensity for the I-FEF was 50.67 + 4.47, t=.73, p>.05).

7.3 Results

7.3.1 No TMS Experiment (Experiment 1)

Mean RTs for the correct response trials were used as the dependent variable for a three-way
repeated-measures ANOVA with the following within subject factors: Cue (Small and
Large), SOA (100, 300 and 500 ms) and Eccentricity (2, 6 and 12 deg). The main result is a
significant Cue x SOA x Eccentricities interaction (F,20=2.91, p<.05, n2p=.37; Figure 7.2).
This interaction showed the specific time course of the cue size effect on the RTs at the three
eccentricities. Planned comparisons at 100 ms SOA (F(2, 10=20.37, p<.05, n2p=.80) showed
that RTs difference between Eccentricity 1 and Eccentricity 3 was significant in the Small
Cue condition (306 ms; SE=7 and 335 ms; SE=10 respectively; F, 5=39.3, p<.05, n2p=.89),
but not in the Large Cue condition (310 ms; SE=8 and 313 ms; SE=8 respectively; F(, 5<I,

n2p=.07). In contrast, planned comparisons at the other SOAs did not reveal any significant
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Cue x Eccentricity (SOA=300 ms: F(,5<1, n°,=.04; SOA=500 ms: F;, 5=2.25, n.s., n°,=.31).
These results show that an automatic control of the attentional focus is present only when the
target appeared 100 ms after the cue.

The ANOVA revealed also a main effect of Cue (F1, 5=18.17, p<.01, n°,=.78), SOA (F.
10y=23.49, p<.05, n2p=.82), and Eccentricity (Fp, 10=37.28, p<.05, n2p=.88). No other main

effect or interaction was significant.
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Figure 7.2 Results of the behavioral experiment (Experiment 1 — No TMS), showing mean RTs as a function of the
Cue (small vs. large), Eccentricity (2, 6 and 12 deg) and stimulus onset asynchronies (SOAs: 100, 300 and 500 ms).
Error bars represent the SEM.
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7.3.2 The “Attentional Gradient” (AG) as a measure of the attentional focus modulation

According to the results of the Experiment 1, we calculated an Attentional Gradient (AG)
index (Ronconi et al., 2012; 2013b) for the 100 ms SOA. The AG was obtained separately for
the Small and Large cue conditions, subtracting the Eccentricity 1 from the Eccentricity 3
RTs. As can be seen from the (panel A), in the Experiment 1 the AG was significantly
different between the Large (mean AG=2.62 ms, SE=4) and the Small cue condition (mean
AG=29.01 ms, SE=5; F(1,5=37.52, p<.05, n2p=.88; Figure 7.4, panel A). This difference was
not significant at the other SOAs (300 and 500 ms, all ps>.05). In the light of these results,

we focused the analysis of the Experiment 2 on the AG calculated at the first SOA.

7.3.3 TMS Experiment (Experiment 2)

In Experiment 2, we used the raw RTs mean of the correct response trials (see Figure 7.3) to
compute the AG values mean, and performed a three-way repeated-measures ANOVA
(2x2x2) with the following within subjects factors: Cue (Small and Large), Site (I-FEF and r-
FEF) and TMS Timing (0 and 70 ms from the cue onset). The main result is a significant Cue
x Site x TMS Timing interaction (F(;, 5=7.17, p<.05, n’,=.47; see Figure 7.4, panels B and C)
which was explored by the following planned comparisons. For the I-FEF site (Figure 7.4,
panel B), comparison revealed that the AG was significantly different between the Small and
the Large cue condition, regardless of the TMS Timing (0 ms TMS Timing: mean AG=1.17
ms for the Large cue, SE=5; mean AG=19.75 ms for the Small cue, SE=5; F, 3=12.78,
p<.05, n2p=.61; 70 ms TMS Timing: mean AG=-.86 ms for the Large cue, SE=9; mean
AG=26.76 for the Small cue, SE=3; F(; g= 10.69, p<.05, n2p=.57). This result indicates that
participants automatic adjusted their focus of attention when the single-pulse TMS was

delivered at the I-FEF site, as we found in the No-TMS Experiment.
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When TMS was delivered at the r-FEF site (Figure 7.4, panel C) simultaneously with the cue
onset (TMS Timing=0 ms), participants continued to automatically adjust the focus of
attention. The AG was still different between the two cue conditions (for the Large cue: mean
AG=-5.13 ms, SE=6; for the Small cue: mean AG=26.13 ms, SE=7; F, §=8.08, p<.05,
n°,=.50). In contrast, when TMS was delivered to the r-FEF 70 ms after the cue onset, the
AG did not differ between the Large and the Small cue condition (mean AG=12.97 ms in the
Large cue, SE=5; mean AG=13.81 ms in the Small cue, SE=6; F(; §<I, ns., n2p=.001).
Furthermore, in the r-FEF TMS condition, the AG differed significantly between the two
TMS Timing, for both the Large (F,g=12.60, p<.05, 1°,=.61) and the Small cue condition
(F. 5=7.84, p<.05, n°,=.49). These results suggest that benefits associated with automatic
control of the size of the attentional focus were selectively disrupted by TMS delivered 70 ms
after the cue onset on the right FEF.

The ANOVA revealed also a main effect of Cue (F, £=10.29, p<.05, n’,=.56). No other

main effect or interaction were significant.

Left FEF Right FEF Figure 7.3 The mean raw
reaction times are depicted

TMS timing =0 ms TMS timing =0 ms . .
as a function of TMS Sites
%0 (left FEF vs. right FEF),
320 ’T Cue (small vs. large) and
310 .7 Eccentricity (2 vs. 12 deg).

Mean RT [ms]
w
8

i Error bars represent the
F\I SEM.

2 12 2 12
Eccentricity [deg] Eccentricity [deg]
-O= Small
-m- Large
TMS timing =70 ms TMS timing =70 ms
330
320 R4
@ s’
E 310 e
-
E 300 R
3 290
=
280
270 T T T T
2 12 2 12
Eccentricity [deg] Eccentricity [deg]

101



Chapter 7 - The neural underpinnings of the zooming mechanism — Part I: TMS on the right frontal eye fields induces an inflexible zoom-

lens of attention

[ Large
= Small . h ional
A B. C. Figure 7.4 The mean Attentiona

. Gradient (AG; i.e., difference
—_— between RTs at Eccentricity 3 [12
s deg] and RTs at Eccentricity 1 [2
deg]) is depicted as a function of

2 2 20! cue and TMS condition: (A) No
TMS, (B) TMS on the left FEF
(control site) and (C) TMS on the
L right FEF. Error bars represent the
SEM. * indicates a significant

T L|J difference as revealed by planned

comparisons (p<.05).

40 * 40 * *

Attentional Gradient [ms]
>
3>
3

)
3

-20. No TMS |-FEF (0 ms) I-FEF (70 ms) -20- r-FEF (0 ms) r-FEF (70 ms)

7.4 Discussion

The focus of attention can be adjusted in its size in order to process information from a
narrow (zoom-in) or a broad (zoom-out) region of the visual field. Two processes control the
attentional zooming: an early, short-lasting process that automatically adjusts the focus of
attention to the object size and a later, long-lasting process that voluntarily maintains
attention on a focus (Turatto et al., 2000). However, the brain areas devoted to control the
size of the attentional focus in striate and extrastriate visual cortex (Miiller et al., 2003) have
not been clarified yet. Our findings are the first prove that FEF plays a causal role in the
automatic modulation of the attentional focus size.

Our behavioral results showed that when participants were induced to broaden their focus of
attention onto a large cue, the “attentional gradient” (i.e., difference in RTs between the
farthest and the nearest eccentricity) was nullified, indicating an efficient spread of
attentional resources. On the other hand, when participants were induced to narrow their
focus of attention onto a small cue, the attentional gradient arose, indicating an efficient
zoom-in mechanism.

It is important to note that we observed a focus size-dependent modulation only at 100 ms

cue-target SOA, while with longer SOAs the attentional zooming mechanism decayed,
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supporting the existence of a short-lasting process that automatically adjusts the focus of
attention (Turatto et al., 2000). The same time course is present also in typically developing
children (Ronconi et al., 2012, 2013b). These results show that the modulation of the
attentional focus size were measured, rather than a simple perceptual facilitation due to the
lateral small or large cue boundary. No theoretical reasons suggest that this perceptual
facilitation should be present only at the first SOA. One could argue that the cue did not
operate to focused or spread attentional resources, but simply served as an exogenous
lateralized cue. This alternative hypothesis seems unfounded given the pattern of results we
observed. A lateralized facilitation in the large cue condition should induce an inverse
attentional gradient (e.g. slower RTs near the fixation and faster RTs at the locus of the cue
boards), whereas we found a flattened detection speed across eccentricities when participants
spread their focus of attention.

In Experiment 2 we applied single-pulse TMS to interfere with the control of the attentional
focus size. Our results clearly show that only TMS to the right FEF interferes with the
modulation of the attentional focus size at the first cue-target SOA. When single-pulse TMS
was delivered on right FEF 70 ms after the large cue onset, the attentional gradient persisted,
demonstrating that the zoom-out of the attentional focus was impaired. Similarly, when
single-pulse TMS was delivered on right FEF 70 ms after the small cue onset, the zoom-in
mechanism was inhibited. On the contrary, when TMS was delivered simultaneously to the
cue onset participants succeed in the automatic modulation of the size of their attentional
focus according to the area delimited by the spatial cue.

The use of two different TMS timings was important because it allowed us to exclude
indirect and non-specific effects of FEF stimulation in early visual areas (Ruff et al., 2006,
2008). Only single-pulse TMS delivered 70 ms after the cue onset inhibited the regulation of

the attentional focus size. The efficacy of the 70 ms TMS timing in interfering with the focus
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size modulation is compatible with the latencies of FEF neuron response after the onset of a
visual stimulus (Bullier, 2001). In contrast, the stimulation of the left FEF did not interfere
with the modulation of the attentional focus size. The fact that TMS affects the attentional
focus only when delivered on the right FEF, appears to be another strong argument against
the interpretation of our results in terms of perceptual facilitation.

Since attentional zooming modulates visual search (e.g., Greenwood and Parasuraman,
1999), right hemisphere specialization in controlling the size of the attentional focus is
consistent with previous studies revealing the causal role of the right FEF in visual
conjunction search performance (e.g., Ashbridge et al., 1997; Muggleton et al., 2003). The
present results are also in agreement with the evidence revealing the causal role of the right
FEF in modulating the activity of the striate and extra-striate visual cortices (Ruff et al.,
2006; Taylor et al., 2007).

Although our results demonstrated the role of the right FEF area in controlling the adjustment
of the focus size, other areas could also be involved. Another possible candidate in playing a
role in the attentional focus modulation could be the right posterior parietal cortex (PPC; e.g.,
Halligan and Marshall, 1993; Ruff et al., 2009; Taylor et al., 2007). This area is an important
component of the attentional network in human and non-human primates (e.g., Bisley and
Goldberg, 2003; Saalmann et al., 2007; see Vidyasagar, 1999 for reviews) and it is strongly
interconnected with the FEF (e.g., Buschman and Miller, 2007; Kveraga, et al., 2007; see
Corbetta and Shulman, 2002, 2011 for reviews). Future researches could directly investigate
the role of the PPC in the attentional focus control, employing a similar paradigm, but
varying the TMS timing. In support of the role of PPC in the modulation of the attentional
focus, Chen and colleagues (2009) employed a different experimental paradigm with fMRI
and revealed shared activations for both zoom-in and zoom-out conditions in the right

posterior temporoparietal junction. The combination of our findings and the previous
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literature suggest that a right network of brain areas, including the FEF and PPC, could be
involved not only in attentional orienting (Corbetta and Shulman, 2002, 2011) but also in the
attentional focus size control.

These findings have important implications autism spectrum disorders (ASD) that as we have
seen in Chapter 2 have been associated with an impaired zoom-out attentional mechanism
(Mann and Walker, 2003; Ronconi et al., 2012, 2013b). One of the leading hypotheses about
the neural disorders in ASD proposes that autistic brain is characterized by a short-range
hyper-connectivity (i.e., within local neural districts) and long-range hypo-connectivity (i.e.,
across different brain areas; Belmonte et al., 2004). In particular, one of the most impaired
long-range connections is between frontal and occipital lobe (e.g., Courchesne and Pierce,
2005; Barttfeld et al., 2010). Thus, the present study, showing the critical role of right FEF in
the attentional focus size control, supports the dysfunctional fronto-occipital connection
hypothesis for the attentional zoom-out deficit in children with ASD.

The importance of these findings for ASD will be more extensively discussed in the final

chapter.
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CHAPTER 8 - THE NEURAL UNDERPINNINGS OF THE
ZOOMING MECHANISM — PART II: NEURAL DYNAMICS OF
THE ATTENTIONAL ZOOM-LENS AS REVEALED BY DENSE-

ARRAY EEG.

8.1 Introduction

In the previous experiment (Chapter 8), we showed that TMS applied to the right frontal eye
fields area can disrupt the zoom-lens mechanism in typical adults participants. However, this
result gives only a limited picture of the more complex neural network that is recruited when
we have to adapt the size of the attentional focus. In the present experiment, we used dense-
array electroencephalography (d-EEG) to better investigate neural events associated to the
modulation of the attentional focus size. EEG is a powerful tool to investigate with high
temporal resolution neural events that characterized a certain cognitive process. With recent
advances in technology and the advent of d-EEG (i.e. multi-channels, usually 64 or more
channels in a cap), we can now apply a big quantity of electrodes quickly and without painful
scalp abrasion. Increasing the number of electrodes turns directly in better spatial resolution
of the neuroelectric signal. Consequently, d-EEG, can be used on the one hand to investigate
large scale response of neuronal population locked to an event, commonly referred as event-
related potential (ERP), and on the other hand to finally estimate deep neural sources at the
cortical level that are the generators of electrical activity measured outside the scalp.

Studies that attempted to identify the neurophysiological correlates of the orienting
mechanism demonstrated that target appearing in the attended location, where attentional
resources are invested, elicits larger P1 and N1 as compared to the unattended location,

where attentional resources are withdrawn (see Luck et al., 2000 for a review). According to
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these findings it is reasonable to postulate that for central targets, P1 and N1 in the small cue
trials should be larger relative to large cue trials. Conversely, for peripheral targets, P1 and
N1 in the large cue trials should be larger relative to small cue trials.

Only a few studies, to the best of our knowledge, have investigated ERPs associated to
changing in the zoom-lens of attention (Luo et al., 2001; Fu et al., 2005). In a first study, Luo
and colleagues (2001) tested the ERP correlates of the attentional zooming in a visual search
task in which they varied the size of a cue that circumscribed the target region. They found
that the amplitudes of the posterior P1 and N1 components of the ERP evoked by the target
were affected in opposite ways by the cue size: Pl amplitude increased whereas N1
amplitude decreased as cue size increased (i.e., broader attentional focus). Their results,
therefore, are partially coherent with predictions that can be made according to attentional
orienting studies findings. Later, Fu and colleagues (2005) reported that attentional focusing
modulated only the amplitudes of the P1 component, with zoom-in trials eliciting a larger P1
than zoom-out trials at both contralateral and ipsilateral sites. Thus, the picture of the ERP
correlates of the attentional zooming is still fuzzy and the first aim of the present experiment
is to clarify how different dimension of the attentional focus affect target-related ERP.
Evidence about the neural network controlling the zoom-lens of attention is also very limited.
Only one study, to our knowledge, have tried to locate neural areas underliyng the control of
the attentional zoom-lens with functional magnetic resonance imaging (fMRI) (Chen et al.,
2009). This study highlighted that when compared with zoom-out condition, zoom-in
differentially implicated the activation of the left anterior intraparietal sulcus (IPS), which
may reflect the functional specificity of left anterior IPS in focusing attention on local object
features. By contrast, zooming out differentially activated the right inferior frontal gyrus
(IFG), which may reflect higher demands on cognitive control processes associated with

enlarging the attentional focus (Chen et al., 2009). However, fMRI has really low temporal
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resolution, thus providing limited evidence on the dynamics of neural operations involved in
the attentional zooming. The second goal of the current study is, therefore, to investigate with
very high temporal precision the neural network and the timing of neural operations that
underlies the control of the attentional zoom-lens. To this aim, scalp-recorded EEG data were

analyzed with a source reconstruction method in the cue-target interval.

8.2 Method

8.2.1 Participants

Twenty adult participants took part in the present study as paid volunteers. Three participants
were excluded from analysis because less than 60% of their experimental trials were retained
after artefact rejection procedures. Seventeen adult participants comprise the final sample for
which EEG analysis was computed (8 male, mean age=23.7, age range=20-27). Participants
provided informed consent, had normal or corrected-to-normal vision and normal hearing.
They reported no history of psychiatric/neurological disorders. The study was approved by
the Ethics Committee of the Department of General Psychology at the University of Padua

and was conducted according to the principles elucidated in the Declaration of Helsinki.

8.2.2 Stimuli and procedure

The experiment was presented on a Dell LCD monitor (19 inch, refreshing at 75 Hz). Stimuli
presentation and data acquisition were performed using E-Prime 2.0 (Psychology Software
Tools, Inc.).

Stimuli and procedure were mostly identical to those used in the previous experiment (see
Chapter 7), except for the stimulus onset asynchronies (SOA) used that was uniquely set to

500 ms and the response device that was an electrically shielded response pad. Experimental
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trials were totally 328: 288 real trials (2 cue size X 2 SOA x 2 target eccentricity X 36

repetitions) and 40 catch trials in which no target was presented).

8.2.3 EEG Recording and pre-processing

Testing occurred individually in a dimly lit and electrically isolated room. EEG was recorded
using the Electrical Geodesics system and a 128-channel Hydrocel Geodesic Sensor Net
(Electrical Geodesics, Inc.). The sampling rate was 500 Hz, and input data were analog-
filtered between 0.01 and 100 Hz.

Data analysis was performed with EEGLAB 12.0.2 (Delorme and Makeig, 2004), a freely
available open source software toolbox (Swartz Center for Computational Neurosciences, La
Jolla, CA; http://www.sccn.ucsd.edu/eeglab) running under Matlab (MathWorks, Inc, Natick,
MA). Offline, data were down-sampled at 250 Hz, recomputed to an average reference,
notch-filtered at 50 Hz and band-pass filtered between 0.1 and 30 Hz. Continuous EEG data
were then segmented to -200 +500 ms relative to the target onset — for target-related analysis
— and -200 +700 ms relative to the cue onset — for the cue-related analysis (see following
paragraphs). Interpolation was carried out on individual bad channels if required (3.3% and
2.7% channels interpolated on average for target- and cue- locked trials respectively, range
1.5-8.6% and 0-8.6%). Epochs containing eye movements were discarded. Activity evoked
by eye-blinks or electrocardiogram was detected using the Independent Component Analysis
(ICA). ICA-derived components that clearly were artifactual in their nature were removed.
Moreover, epochs containing voltage deviation that exceeds £100 pV were also removed.
Across participants, 88.9% and 90.4% of trials were retained after artifact rejection for the

target-locked and the cue-locked analysis, respectively.
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8.2.4 Data Analysis — Behavioral performance
Reaction times (RTs) of correct responses were analyzed by using a repeated measures
ANOVA, with the following within-subjects factors: type of cue (small vs. large) and target

eccentricity (2 deg vs. 12 deg).

8.2.5 Data Analysis — Target-locked ERP

As stated in the previous paragraph, the time-window for the analysis of the target-locked
activity ranged from -200 to +500 ms relative to the target onset. Data were analyzed with a
classical ERP approach. Regions of interest (ROI) were located in two parieto-occipital
clusters of electrodes above the left (channels: 59, 60, 65, 66, 67, 70, 71) and the right
hemisphere (channels: 76, 77, 83, 84, 85, 90, 91). Peak amplitude for P1 (100-150 ms) and
N1 (175-225 ms) in the identified electrodes’ cluster was subjected to two repeated-measures
ANOVA (one for left-displayed and one for right-displayed targets) with the following
within-subject factors: ROI (left vs. right), type of cue (small vs. large) and target eccentricity

(2 deg vs. 12 deg).

8.2.6 Data Analysis — Cue-locked activity and estimation of neural sources

Since this is the first study that investigates the neuroelectric events associated to the
zooming of visual attention in the cue-target period, we had no a priori assumptions about
possible ROI and time windows. For this reason, we used a mass univariate approach in the
analysis of cue-related activity. This approach is superior to conventional ANOVA-based
analysis of event-related brain potentials (ERPs) in that it requires fewer a priori assumptions
and can provide greater temporal and spatial resolution of the phenomenon under

investigation (Groppe et al., 2011).
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To detect reliable differences between the ERPs elicited by the small and the large cue, we
performed a series of two-tailed repeated measures permutation tests based on the “tmax”
statistic (Blair & Karniski, 1993), with a family-wise alpha level of 0.01. The tmax statistic
was chosen for this permutation test because it has been shown to have relatively good power
for data (like ERPs) whose dimensions are highly correlated (Hemmelman et al., 2004). The
time window between 0 and 500 ms (corresponding to the cue and target onset, respectively)
was divided in ten 50 ms-windows. Thus, 10 time windows at all 128 scalp electrodes were
included in the test (i.e., 1280 total comparisons), and 5000 random within-participant
permutations of the data were used to estimate the distribution of the null hypothesis. Based
on this estimate, critical t-scores of £6.11 were derived. In other words, any differences in the
original data that exceeded a t-score of +6.11 (corresponding to a p-values<.0096 with df=16)
were considered reliable.

Source reconstruction was then performed with Brainstorm (Tadel et al., 2011), an open
source software for the analysis of EEG and MEG data which is documented and freely
available for download online under the GNU general public license

(http://neuroimage.usc.edu/brainstorm). Individual averaged ERP were used to estimate

neural activity by applying a depth-weighted minimum-norm estimation inverse solution
(Baillet et al., 2001) with constrained dipole orientation (i.e., at each vertex of the cortex
surface, there is only one dipole, and that its orientation is the normal to the cortex surface at
this point). A cortical mesh template surface, composed by 15000 vertices and derived from
the default anatomy of the Montreal Neurological Institute (MNI/Colin27), was used as a
brain model to estimate the current source distribution. To compute the forward model we
employed a symmetric boundary element method (symmetric BEM) with the OpenMEEG
software  (Kybic et al, 2005; Gramfort et al, 2010; http:/www-

sop.inria.fr/athena/software/OpenMEEG/).
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8.3 Results
8.3.1 RT data
ANOVA performed on corrected Behavioral data

mean RTs revealed a main effect

*
%257 Il Small cue
of target eccentricity —_ ns. Large cue
£ 300- 'I'
_ 2 _ E
(Fa.16=40.17, p<.001, 1%=.71), B T
é 275+
and importantly a significant type
.. 250- T T
of cue by target eccentricity 2 deg 12 deg

Target eccentricity

interaction (F(1,16=23.50, p<.001,

Figure 8.2 Behavioural data. Mean RTs are displayed as a function of target
n2p=~59; Figure 81) Planned eccentricity and cue size.
comparisons revealed that for target displayed at 2 deg there were no difference in RTs for
the two cue conditions (small: 280+9 ms; large: 282+10 ms; t(16=-0.36). In contrast, the large

cue led to faster RTs relative to the small cue (small: 305+9 ms; large: 292+11 ms; t16=3.73,

p=.002) for target displayed at 12 deg.

8.3.2 Target-locked ERP — P1

ANOVA performed on the P1 peak amplitude elicited by target displayed on the right visual
hemifield revealed main effects of eccentricity (F(i,16=7.56, p=.014, n2p=.32) and ROI
(F1,16=12.31, p=.003, n2p=.43). P1 elicited by target at 2 deg (mean+=SEM: 1.20+.29 pV)
were larger than P1 elicited by target at 12 deg (0.48+.22 uV), and the P1 registered left
parieto-occipital electrodes (0.50+.22 pV) was smaller than P1 registered at right parieto-
occipital electrodes (1.19+.22 nV). No significant interaction emerged.

ANOVA performed on the P1 peak amplitude elicited by target displayed on the left visual
hemifield revealed no significant main effects, but a significant type of cue by eccentricity by

ROI interaction (F(1,16=7.25, p=.016, n2p=.3 1). This interaction was explored by the means of
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planned comparisons, but no significant difference emerged when target at the same

eccentricity were compared between the two cue conditions, neither for P1 elicited in the

contralateral nor in the ipsilateral ROL.

8.3.3 Target-locked ERP — N1

ANOVA performed on the N1 peak amplitude elicited by target displayed on the right visual
hemifield revealed a main effect of eccentricity (F(1,16=21.72, p<.001, n2p=.58), showing that
overall central targets elicited a larger N1 amplitude relative to peripheral targets (2 deg=-
2.72+.25 uV; 12 deg=-1.83+.22 nV). Also the main effect of ROI was significant, indicating
that the N1 amplitude was larger for the parieto-occipital left (-3.36+.28 pV) relative to the
parieto-occipital right (-1.19+.28 pV) cluster of electrodes (F(i,16=34.24, p<.001, n2p=.68).
Importantly, a type of cue by eccentricity by ROI emerged (F(1,16=6.92, p=.018, n2p=.30).
This interaction was explored by the means of planned comparisons. Target appearing at 2
deg elicited a larger N1 when anticipated by a small relative to a large cue in the contralateral
ROI (parieto-occipital left ROI: t(16=-2.39, p=.029; parieto-occipital right ROI: t(6=-1.15,
n.s.). Target appearing at 12 deg, on the other contrary, elicited a larger N1 when anticipated
by a large relative to a small cue in the contralateral ROI (parieto-occipital left ROI:
t16=2.73, p=.015; parieto-occipital right ROI: t16=1.50, n.s.).

ANOVA performed on the N1 peak amplitude elicited by target displayed on the left visual
hemifield revealed only a main effect of eccentricity (F(1,16=5.07, p=.039, n2p=.24; 2 deg=-
2.31+.22 pV and 12 deg=-1.57+.28 uV). However, if we test the same comparisons
performed for left hemi-field target, they reveal that target appearing at 12 deg elicited again
a larger N1 when anticipated by a large relative to a small cue in the contralateral ROI

(parieto-occipital right ROI: t16=2.26, p=.038; parieto-occipital left ROI: t16=.93, n.s.).
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Figure 8.2 Waveforms elicited by left- and right- displayed target for each combination of cue size (small vs. large) and target

eccentricity (2 vs. 12 deg). Bar plots depicted the N1 peak amplitude with * denoting a significant difference (p<.05) between the
large and the small cue condition. Clusters of channels used to compute waveforms and N1 peak amplitudes are marked in black.
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8.3.4 Scalp recorded neural activity and related brain sources in the cue-target interval

Our general approach was to analyze the difference between the large and the small cue
condition both at the channels and the sources level. Mass univariate analysis using
permutation tests with the t-max correction for multiple comparisons revealed that three out
of ten temporal windows showed a significant difference when the large and the small cue
condition were compared: i) 150-200 ms (channels: 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 21,
22,53, 60, 61, 62,66, 71, 72, 128); ii) 250-300 ms (channels: 4, 5, 6, 7, 9, 11, 12, 15, 16, 18,
19, 22, 23, 65, 66, 70, 84, 89, 90, 96, 97, 112); and iii) 300-350 ms (channels: 3, 4, 9, 10, 11,
12, 16, 18, 19, 20, 22, 24, 27, 28, 60, 66, 67, 70, 71, 73, 74, 75, 81, 82, 88, 89, 124). Figure
8.3 show the butterfly plot of all 128 channels obtained from the difference between the large
and the small cue condition for all the ten temporal windows, with related scalp maps.
Channels that showed significant difference in the two cue conditions are marked in white.
Two neural events are clearly discernable, one more transient activity in the 100-200 ms
temporal window and one more sustained activity after 200 ms.

Estimated neural sources are displayed in Figure 8.4. Red/yellow area depicted greater
activation for the large as compared to the small cue condition, whereas dark/light blue area
depicted greater activation for the small as compared to the large cue condition. To use a
conservative approach to sources data, we consider as reliable only significantly activated
neural sources in the three temporal windows (i.e., 150-200; 250-300 and 300-350 ms) that
differed between the two cue conditions at the channels level. Moreover, we considered as

reliable only cortex activations that emerged significantly for at least 24 neighboring vertices.
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Figure 8.3 Butterfly plot of all 128 electrodes and related scalp maps obtained by subtracting small cue trials (zoom-in) from
large cue trials (zoom-out). For the scalp maps, neural activity was averaged over ten 50ms-time windows between the cue
and the target onset. White-marked channels are channels that showed a significant difference between the two cue conditions
as revealed by permutation tests with the “t-max” correction.

In the 150-200 ms temporal window, large cue led to significantly increased activation in the
superior parietal lobule of the left hemisphere, and bilaterally in the superior/middle frontal
gyrus and in the inferior frontal junction/gyrus. On the contrary, small cue led to significantly
increased activation in the left intraparietal sulcus. In the 250-300 ms temporal window,
bilateral activation of the middle temporal gyrus were observed, that persist in the right
middle temporal gyrus also during the 300-350 ms window. Moreover, in both the 250-300
and 300-350 ms temporal windows, we found neural sources in the inferior frontal gyrus and
insula of both hemispheres. Interestingly, increased activation for the zoom-out condition in
the IFG was observed in all the three temporal windows. Table 8.1 reports coordinates of the

points of maximum activation in the three significant temporal windows.
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Table 8.1 Area labels, coordinates [x,y,z] in the MNI and Talairach systems and Brodmann areas relative to the points
(vertices) of maximum activation in the cortex surface.

AREA LABELS MNI TALAIRACH BRODMANN
COORDINATES | COORDINATES AREAS
Zoom-in > Zoom-out
Left IPS -24,-73, 40 -24,-69, 37 7
Zoom-out > Zoom-in
Left SPL -18, -44, -68 -17, -48, 56 7
Right IFG/J 51,1, 18 48, 0, 20 9
Left IFG/J -36, 5, 31 -35,4, 30 6
Right FEF 26,9, 49 26, 11, 46 6
Left FEF -25,27,43 -25, 25,40 8
Right MTG 43, -64, 20 44, -62,21 39
Left MTG -42,-61, 22 -42,-59,23 39
Right Insula 33,-29, 15 32,-28, 16 13
Left Insula -41,-10, 19 -39, -10, 19 13

118




Chapter 8 - The neural underpinnings of the zooming mechanism — Part II: neural dynamics of the attentional zoom-lens as revealed by
dense-array EEG

@
=]

=
Y <
0 K [F3
s |8
=
< o 2 =
P £ =
£ 8 g - °E ] 2
= 2 7 £ L
£ ° = o
o =l £ - < £
o © = < 2 S
q° .
4
ks
w Sl 5
E 2 i (s@109s-2) apnydwy
- s
5 o -
&z = (s@109s-2) apnydwy (s@109s-2) apnydwy
&
& & ¥ &
(se109s-2) apnydwy o O
>3 3
o O
= O
T D
€ &
» 4
'
= ]
© )
£ |
@ ]
A
@ |
j=d |
] !
=
Ln
12} 12} 12}
£ £ £
g g 2
Q @ ™ ol |3
' ' ' z
o o o
wn w o
-~ N @
L
3
L e
S
° 3}
<y
]
7 g S
= 3 3
T 2 ) &
£ = N @
2] £ [ E
s [

& & ¥ & <
(s@409s-2) apnydwy

Left IPS
Time (sec)

(sa109s-2) apnydwy

S~a
< Le
3
% e B
g 3 = >
:
& 2L % E
@ (V) - R - F
g 4 3 g
F w T £ <, Ly 2
th 3 s S S E
[ 8 <[ F
Y
ki g 5
) = =]
3
(s01005-2) opnyciuy

(sa109s-2) apnydwy

(s@109s-2) apnydwy

(s2109s-2) apnydwy

Figure 8.4 Source activations in the cue-target time interval for the three temporal windows in which the two cue conditions
differed one each other are displayed. In the cortical maps, red/yellow activations represent greater activity for large relative to
small cue trials, whereas dark-/light-blue activations represent greater activity for small relative to large cue trials. The entire
time course of activations (z-scores of the point of maximum activation normalized by the -200/+0 baseline period) are also
plotted for each significantly activated region.
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8.4 Discussion

The present experiment clarifies both the effect of processing visual target with different
sizes of the attentional focus at the ERP level and the cortical sources underlying the control
of the attentional zoom-lens.

The ERPs results show that the effect of the cue-size was reflected in the amplitude of the
target-related N1 registered at posterior electrodes. Targets appearing in the central position
evoked a larger N1 when anticipated by a small cue as compared to a large one. Conversely,
targets appearing in the peripheral position elicited a larger N1 when anticipated by a large
cue as compared to a small one. This is in agreement with the zoom-lens model of the
attentional focus (Ericksen and St. James, 1986; Castiello and Umilta, 1990; see also the
gradient model of attentional resources by La Berge and Brown, 1989) that predict that when
participants see the small cue before the target appearance, their attentional resources are
focused onto the narrow portion of the visual field delimited by the cue, with very rarefied
resources outside the attentional focus. On the contrary, the large cue led attentional
resources to be spread almost uniformly in a broader portion of the visual field. The larger
target-evoked N1 amplitude in our paradigm was directly reflecting the degree of attentional
resources deployed for target processing, with more attentional resources (i.e., when central
targets were preceded by a small cue or when peripheral targets were preceded by a large
cue). These results is in agreement with a wide literature concerning the effect of attentional
orienting on target related ERPs, that largely demonstrate that N1 elicited for attended targets
are larger as compared to N1 elicited by unattended targets (see Luck et al., 2000 for a
review). The evidence of N1 modulation induced by different sizes of the attentional focus is
also consistent with one of the two studies that in the past aimed to test the ERPs correlates of
the scaling of the attentional focus size. Luo et al. (2001) found that in a visual search task

where the target appeared always inside the cue, the amplitude of the N1 decreased as the cue
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size increased. Our results, contrarily to those reported by Luo et al (2001) and Fu et al.
(2005), that however reported opposite findings, did not revealed a clear modulation of the
P1 amplitude. Further studies are probably necessary to clarify the P1 modulation by
attentional zooming.

The second aim of the present high-density EEG study was to analyze neural events in the
cue-target time interval to better understand the neural mechanisms that allow us to change
the ongoing size of the attentional focus. The results show that two clearly discernable neural
events characterized the cue-target time interval, one in the 100-200 ms time range and one
that extended after the 200 ms until the target appearance, confirming previous claims of a
dissociation between a transient (automatic) and a sustained (voluntary) control of the
attentional zooming mechanism (Turatto et al., 2000). With a data-driven and statistically
robust approach we demonstrated that large and small cue differed in the neural evoked
response in three out of ten selected time windows (150-200, 250-300 and 300-350 ms) and
the effect was extensively visible in both parieto-occipital and frontal electrodes. Analysis of
the neural sources in these three time windows showed that when compared to the zoom-out
condition, the zoom-in of the attentional focus was associated to greater activations of the left
intra-parietal sulcus (IPS). This result is in agreement with what reported by Chen and
colleagues (2009) with fMRI. On the other, when compared to the zoom-in condition, the
zoom-out of the attentional focus was associated initially to greater activations in the right
superior parietal lobule (SPL) and bilaterally in the superior/middle frontal gyrus — including
the frontal eye fields (FEF) — and in the inferior frontal gyrus (IFG). After this initial pattern
of activity, the zoom-out condition led to greater activations bilaterally in the middle
temporal gyrus (MTG) and in the insula (INS). Notably, increased activation for the zoom-
out condition in the IFG was observed in all the three temporal windows, and is consistent

with what was previously reported by the fMRI study of Chen and colleagues (2009).
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Although not observed in the study by Chen et al. (2009), FEF activation is consistent with
what we reported in the previous experiment, where we found that TMS applied over the
right FEF area disrupted both the zoom-in and the zoom-out of the attentional focus (see
Chapter 7; Ronconi et al., 2014a). Here, activation of the FEF area was bilateral, and this can
be explained in different ways. One possibility could rely on the employment of a longer
SOA in the present study. While a more automatic (transient) control of the zoom-lens — as in
the case of the previous TMS study, where the SOA was 100 ms — involve especially the
right FEF, a more voluntary (sustained) control of the zoom-lens — as in the present
experiment, where the SOA was 500 ms — could recruit also FEF of the left hemisphere.
Another possibility is that, given the right hemisphere dominance for spatial attention control
(Kinsbourne, 1987; Corbetta and Shulmann, 2002, 2011), when disrupting the left FEF
activity, the right FEF is still strong enough to control the size of the attentional focus by
itself, while when disrupting the right FEF, the activation of the left FEF alone is not
sufficient to perform the zoom-lens modulation.

The critical difference between the zoom-out and the zoom-in mechanisms in the current
experiment is that attentional resources are more widely spatially distributed in the former
case. This should be reflected in a spatially broader activation in occipital visual areas, as
demonstrated by Miiller and colleagues (2003). It is largely demonstrated that frontal cortex
modulates the neural processing in the posterior visual cortex with direct top-down feedback
(Miller and D’Esposito 2005; Rowe et al. 2005; Ruff et al., 2006, 2008), and the greater
degree of activations in various parts of the frontal lobe (FEF and IFG) that we found in the
zoom-out condition could be due to increased top-down modulation of visual cortex.
Importantly, our data suggest also that two phases of activation in the cue-target interval are
clearly discernable. The activity was initially distributed in a more dorsal network (150-200

ms), and subsequently there was a clear shift toward activations mostly distributed in a
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ventral network (250-300 and 300-350 ms). Recent neurophysiological models obtained by
examining correlations in spontaneous fluctuations of the fMRI signal while neurologically
intact adult participants were in a resting state (i.e., absence of a cognitive task) showed the
existence of two distinct attentional network (Fox et al., 2006; He et al., 2007; Corbetta and
Shulmann, 2011): i) a dorsal attention network that includes IPS and FEF of both
hemispheres and is thought to control the spatial mechanism of attention (i.e., spatial coding),
and; ii) a ventral attention network, largely right-lateralized, that includes the region of
temporo-parietal junction and ventral frontal cortex (including IFG) and is thought to control
the non-spatial mechanisms of attention (i.e. response preparation, arousal and temporal
attention). The location and timing of activations we found in the present study seems to be
consistent with the dorsal/ventral attention network model. The initial activations we
observed were mainly located in the dorsal regions (IPS, SPL and FEF). These regions may
be the generators of the spatial coordinated for the size of the attentional focus. Subsequently,
activations moved to a more ventral network (IFG, MTG and Insula), which may operate to
maintain high level of alertness until the target appearance. The current dimension of the
attentional focus modulated the ventral network activation (i.e., larger activations in the
zoom-out condition), suggesting that a broader attentional focus size required higher level of
alertness and response preparation. Interestingly, the only activation that persists for all the
three temporal windows is the activation in the IFG, a region that shows resting-state
connectivity with both dorsal and ventral networks (He et al. 2007), and that some authors
proposed may act as a pivot area between to attentional networks (Corbetta and Shulmann,
2011).

The importance of these results in understanding the zoom-out attentional impairments found

in ASD will be discussed in the last chapter of general discussion.
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CHAPTER 9 - BEYOND THE SPOTLIGHT AND THE ZOOM-
LENS MODELS: THE “MEXICAN HAT” OF THE
ATTENTIONAL FOCUS IN ASD

9.1 Introduction

As we have seen in Chapter 2, many efforts have been made to understand the way in which
individuals with ASD deploy their visual attention to select relevant information in the
environment (for a review see Ames and Fletcher-Watson, 2010). The focus of spatial
attention has been traditionally viewed as a simple “spotlight”, that can moves to a specific
region in the visual space, improving information processing in the attended area at the
expense of other locations (Posner et al., 1980; Posner and Petersen, 1990; Corbetta and
Shulman, 2002). In addition, the attentional focus can be adjusted in its size in order to
process information from a broad or a narrow region of the visual field — like a “zoom-lens”
(Eriksen and St. James, 1986; Castiello and Umilta, 1990; Turatto et al., 2000). Several
investigations used these two theoretical accounts to investigate how individuals with ASD
deploy their attention in the visual field. It has been consistently reported that ASD is
associated to impairment in disengaging attention from a previously cued location
(Courchesne, Townsend, Akshoomoff, Saitoh, Yeung-Courchesne, Lincoln, et al., 1994;
Landry and Bryson, 2004; Wainwright-Sharp and Bryson, 1993), and a recent longitudinal
study revealed that this deficit in the disengagement of visual attention measured in infants at
risk for developing ASD is associated to the later emergence of autism in toddlerhood
(Elsabbagh et al., 2013). Moreover, increasing evidence demonstrate that individuals with
ASD manifest an overfocused attention and an impairment in “zooming-out” the attentional

focus, that is the ability to spread the attentional resources in a broad portion of the visual
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field (Mann and Walker, 2003; Roberston et al., 2013; Ronconi et al., 2012; 2013b; Study 1 -
Chapter 4 of the present thesis).

In the light of these evidence, some authors suggest that high-level deficit in social orienting
may originate from early impairments in low-level attentional systems (Landry and Bryson,
2004; Elsabbagh et al., 2009). For example, the inability to flexibly shift the locus of spatial
attention could lead to problems in visual orienting toward social stimuli (Mundy and
Newell, 2007; Elsabbagh and Johnson, 2010). Similarly, the difficulties in broadening the
focus of attention could cause abnormalities in the spatio-temporal visual integration, with
cascade effect in the processing of dynamic stimuli, as faces and actions with biological
meaning (Mann & Walker, 2003; Ronconi et al., 2012).

Both the spotlight and the zoom-lens models predict that the attentional resources are
concentrated at their maximum at the center of the attentional focus, and then shade
progressively (with a linear spatial gradient) while the distance from the attentional focus
increases. However, these models do not represent the all picture of how attention selects
relevant visual objects in an ecological environment. The focus of attention, indeed, is not
always characterized by a simple spatial gradient that falls off monotonically with increasing
distance from the focus center. On the contrary, recent neurophysiological model demonstrate
that visual selection requiring spatial scrutiny for object recognition elicits — in the immediate
surround of the attentional focus — a zone of attenuated excitability, forming a profile that
resembles a “Mexican hat” (Caputo & Guerra, 1998; Slotnick et al., 2002; Miiller and
Kleinschmidt, 2004; Miiller et al., 2005; Hopf et al., 2006; Boehler et al., 2011). Hopf and
colleagues (2006) argued that this inhibitory ring surrounding the focus of attention is
optimal to highlight relevant information and attenuate the deleterious noise during visual

object selection.
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The aim of the present study was to evaluate the spatial profile (i.e., the Mexican hat) of the
attentional focus in individuals with ASD. This question is particularly important to
understand the way in which individuals with ASD deploy spatial attention in the visual
space and how they select relevant visual information. A huge amount of evidence associated
ASD with higher performance in detail-oriented task (for reviews see Simmons et al., 2009;
Dakin & Frith, 2005; Pellicano & Burr, 2012). Individuals with ASD display faster detection
of targets in visual search tasks (O’Riordan et al., 2001; Joseph et al., 2009) and in the
Embedded Figure Test (Jolliffe & Baron-Cohen, 1997; Manjaly et al., 2007), and show also a
better tolerance to visual crowding (Baldassi et al., 2009; Keita et al., 2010). One might
expect a detail-oriented perception to be associated also to a reduced interference from
incongruent/irrelevant information. However, both clinical and experimental reports are fairly
clear in showing that this is not the case. One of the first studies that highlighted this
contradictory aspect was made by Burack (1994). Participants performed a forced-choice
reaction time (RT) task to assess the filtering component of selective attention. The
manipulated variables were the presence/absence of a window that narrowed the attentional
spotlight and the presence of a variable number of distractors. The RTs of the subjects with
ASD improved relative to the other groups in the presence of the window without distractors,
but the performance of the ASD group was the most impaired in the presence of distractors.
A recent study employing an Eriksen flanker task manipulated target-flanker distance and
showed an increased interference effect across all distances in individuals with ASD (Adams
and Jarrold, 2012). Moreover, in a recent study we showed that when lateral competing
information is presented close in time to a central target, children with ASD suffered for a
deeper and prolonged backward interference (that we referred as an “attentional masking”
effect) in respect to controls (Ronconi et al., 2013a). In addition to these experimental

evidence, visual sensory overload is traditionally associated to ASD, and has been well
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documented not only in autobiographical reports (Grandin, 2009) but also with caregiver-
report questionnaires (Kern et al., 2006; Leekam et al., 2007) and electrophysiological studies
(Pritchard et al., 1987; Belmonte, 2000).

Thus, the central question of the present study is: How individuals affected by ASD process
visual information at different degrees of proximity from the attentional focus? The answer to
this question can be particularly relevant to understand the discrepancy between strong
attention to details and deeper interference by irrelevant visual objects in ASD. To measure
the spatial profile of the attentional focus we readapted the behavioral paradigm developed by
Hopf and colleagues (2006). Children with ASD and an age- and 1Q- matched sample of
typically developing (TD) peers were asked to perform a computerized task in which they
were asked initially to fixate the center of the screen. Their attention was captured onto a
color pop-out target (red C) among an array of non-target stimuli (blue Cs). In half of the
trials (baseline condition), their task was to recognize the orientation of the red C that
changed position from trial to trial. In the other half of the trials (probe condition), after the
red target C a probe circle circumscribed a region containing a non-target C at various
distances from the red target C. This latter condition allowed measuring the spatial profile

(i.e., the inhibitory ring or Mexican hat) of the attentional focus.

9.2 Methods

9.2.1. Participants

Forty-six children took part in the experiment. Both the ASD and TD groups comprised
initially 23 children each. Four participants from the ASD group and 1 from the TD group
were excluded from statistical analyses because they did not achieve 40% of overall accuracy
in the probe condition. Thus, the final samples comprised 19 children for the ASD group and

22 for the TD group.
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All participants with ASD were recruited according to the following criteria: (i) full scale IQ
> 70 as measured by the Italian version of Wechsler Intelligence Scale for Children-Revised
(WISC-III, Wechsler, 1991); (ii) absence of gross behavioural problems; (iii) normal or
corrected-to-normal vision and hearing; (iv) absence of drug therapy; and (v) absence of
attention deficit hyperactivity disorder on the basis of DSM-IV criteria (American Psychiatric
Association, 1994). Children with ASD were recruited at the Developmental
Neuropsychology Unit of Scientific Institute “E. Medea” (Bosisio Parini, Italy) and at
“Associazione La Nostra Famiglia” (Padua, Italy). Diagnosis of ASD was made by licensed
clinicians experienced in the assessment of ASD in respect to DSM-1V diagnostic criteria and
to the Autism Diagnostic Observation Scale (ADOS; Lord et al., 2002; see Table 9.1).
Children of the TD group were randomly sampled in Padua public schools. According to the
parents’ report, TD children did not have prior history of any psychiatric disorders. Both
groups were matched for chronological age (t39=0.21, p=.831). Cognitive level in TD
children was estimated with two Verbal (Vocabulary and Similarities) and two Performance
(Block Design and Pictures Completion) subtests of the WISC-III (Wechsler, 1991). ASD
and TD group did not differed in any of the four subtests (all ps>.272). The Social
Communication Questionnaire (Rutter et al., 2003) was also administered to both groups.
Children of the ASD group scored significantly higher in comparison to the TD group in both
the Current (t39y=6.40, p<.001) and Lifetime (t;39)=8.85, p<.001) forms.

The entire research protocol was approved by the ethical committees of both Scientific
Institute “E. Medea” and Department of General Psychology of Padua University. Informed
consent was obtained from each child and their parents and the entire research protocol was

conducted in accordance to the principles elucidated in the declaration of Helsinki.

129



Chapter 9 - Beyond the spotlight and the zoom-lens models: the “Mexican hat” of the attentional focus in ASD

Table 9.1 Descriptive statistics for the two groups of participants (ASD=autism spectrum disorder;
TD=typically developing).

ASD (n=19) TD (n=22) p-value
Mean (SD) Mean (SD)
Age 14.6 (2.7) 14.4 (2.6) n.s
Gender 17M 18 M -
TIQ 100.11 (14.6) - -
WISC III - Vocabulary 10.17 (3.4) 10.1 (2.4) n.s.
WISC III - Similarities 10.8 (2.8) 9.91 (2.4) n.s.
WISC III — Picture completion 10.5 (3.3) 11.4 (2.4) n.s.
WISC IIT — Block Design 10.33 (3.9) 10.77 (2.4) n.s.
Social Communication 13.0 (6.4) 3.053.2) <.001
Questionnaire (SCQ) - Current
Social Communication 18.8 (8.1) 2.6 (2.6) <.001
Questionnaire (SCQ) - Lifetime
ADOS - Communication 2.7(1.3) - -
ADOS — Social Interaction 5.3(3.0) - -

9.2.2 Apparatus and stimuli

The experiment was conducted in a dimly lit and quiet room. Participants were seated 50 cm
far from an LCD screen (17 inch, 75 Hz). A chinrest was used to avoid head movement.
Stimulus presentation and data acquisition were performed with E-Prime 2 (Psychology
Software Tolls, Inc.). The choice about stimuli parameters was based on previous pilot
observations.

All stimuli were presented on a middle grey background (RGB=142,142,142). Fixation point
consisted in a black cross subtending a visual angle of 0.5 deg, presented on the screen
center. The search array consisted on nine blue non-target Cs stimuli (RGB=4,61,245), while

the target C was colored in red (RGB=242,18,42). Both target and non-target Cs subtended a
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visual angle of 1.2 deg, and were presented at an isoeccentric distance of 8 deg from the
fixation. All Cs were obtained by removing a portion subtending 45° of angle from a ring-
shape stimulus. The gap of each C varied randomly in position (up, down, left, right).

One C was presented aligned with the horizontal axis, and the other Cs were presented four in
the upper and four in the lower quadrant, separated by an angle of 0.26 rad one each other.
The stimulus used as a probe consisted in a white circle with a diameter of 2.12 deg. Masks

stimuli were obtained from the complete ring used to create the Cs stimuli.

9.2.3 Procedure

The procedure was adapted from previous studies on typical adults (Hopf et al., 2006, 2010).
Children were instructed to keep their eyes on the fixation for the entire duration of the trial.
The entire experiment was proposed to the children as a game (“The Naughty Turtle” game).
Each trial started with the onset of the fixation cross, which lasted for 1000 ms. The array of
nine randomly oriented non-target Cs then appeared unpredictably to the left or to the right
side of the fixation. After 50 ms, a target C was colored in red for 100 ms, while the other Cs
remained blue. On 50% of the trials (baseline condition, Figure 9.1, panel A), children were
instructed search the red target C among the other eight blue non-target Cs. The target C
appeared randomly at one of the nine possible stimulus locations, so that children were forced
to focus their attention in different positions from trial to trial.

In the other 50% of the trials (probe condition, Figure 9.1, panel B), the appearance of the
target red C was followed by the probe circle appearing around the central C for 50 ms. As
the probe position was kept constant and the target position varied, there were five target-to-
probe distances, called Probe Distance (PD), ranging from probe distance 0 (PDO; probe at
the target location) through probe-distance 4 (PD4; probe at the farthest distance from the

target; see Figure 9.1, panel C). Trials for the Baseline and the Probe condition were
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randomly intermixed during the experiment, so that was impossible for participants to predict
in advance the type of trial that they had to perform.

Subsequently, all Cs were replaced by the mask ring for 13 ms (one refresh of the monitor).
After a blank screen displayed for 1000 ms, the response screen with the four possible
orientation of the Cs was presented for an unlimited time. Participants then indicated the
correct response, corresponding to the orientation of the red C in the baseline condition and
to the orientation of the blue C surrounded by the probe circle in the probe condition. The
experimenter than entered the selected choice by pressing the one of the four arrow keys on
the pc keyboard. Children were specified that only accuracy was important and that no
reaction times were collected.

The entire experiment consisted in 144 trials, 72 for the baseline and 72 for the probe
condition, each one composed by 36 trials presented in the right and 36 trials in the left visual
field, 4 for each of the nine position in the array. A practice session of 12 trials —
accompanied by correctness feedbacks — was performed before starting the experiment, with

stimuli presented at half of the speed and separated by wider spaces.
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Figure 9.1 Schematic representation of the task procedure for: (a) baseline and (b) probe condition. (c) Relation between
target-to-probe distance (PD) distances and the prediction of the Mexican hat model (Miiller et al., 2005; Hopf et al.,
2006) of the attentional focus. (d) Graph representing the two alternative hypotheses (Hp1 and 2) of the current study.

9.3 Results

Response accuracies were analyzed by two 5 x 2 mixed design ANOVA, one for the baseline
and one for the probe condition. Both ANOVAs had as within-subjects factor the probe
distance (or PD, with 5 levels: PD0O, PD1, PD2, PD3, PD4), and as between-subjects factor
the group (ASD vs. TD). Note that for the baseline condition, the variable PD — since the
probe stimulus is absent — is used to identify the position of the target in the array (PDO
represents a target aligned with the horizontal axis, while PD1 to PD4 are progressively

farther from it).
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9.3.1 Comparable performance between groups in the baseline condition

ANOVA performed in the baseline condition revealed a main effect of Probe Distance (F,
156=12.96, p<.001, n2p=.25), revealing that overall accuracy varied as a function of the
position of the C in the array (meantSEM were: PD0=89.2%=2.5, PD1=84.4%=2.3,
PD2=82.1%+2.1, PD3=74.3%+2.2, PD4=83.3%+2.6). On the contrary, the main effect of
Group and the interaction were not significant (p=.33 and p=.59, respectively; see Figure 9.2,
panel A). These results show that both group were equally efficient in orienting and zoom-in
attention in a small cue (see also Chapter 4 study in the small cue condition). The main effect
of probe distance in this case it is to consider the result of a combination of visual anisotropy
(i.e., stimuli placed along the vertical and horizontal axes are discriminated better than
stimuli placed in the oblique ones; Maffei and Campbell, 1970) and crowding. For both
group, the task was easier at PD0, because in this case the target was placed aligned with the
horizontal axis. A gradient of decreased accuracy, instead, was observed from PD1 to PD3,
caused by an increasing level of visual crowding. Contrarily, in the outer position PD4, visual

crowding was reduced since no other stimuli were externally presented.

9.3.2 Weak surround suppression of the attentional focus in ASD

ANOVA performed in the probe condition revealed a main effect of Probe Distance (F,
156=17.40, p<.001, n’,=31; meantSEM were: PD0=80.4%%3.1, PDI1=58.4%=+2.7,
PD2=64.1%+2.7, PD3=68.7%+2.3, PD4=73.3%=2.5). Importantly, a significant Probe
Distance by Group interaction emerged (Fu,172=4.38, p=.002, n2p=.10). To further explore
this two-way interaction we performed planned comparisons, comparing the performance of
the two groups in the five different Probe Distance (PD). As shown in the Figure 9.2 (panel

B), ASD showed a higher accuracy as compared to the TD group both at PD 1 (t39)=2.17,
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p=.036) and PD 2 (t39)=2.15, p=.038). Comparisons at the other PDs did not result significant
(all ps>.15).

These results show that the ASD group, at PD1 and PD2, where the effect of surround
suppression should be the strongest, show a significant weaker suppression — relative to the

TD group — as reflected by higher accuracy rate.
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Figure 9.2 Plots showing mean accuracies in the (a) basene and (b) probe conditions, as a function of group and target-
to-probe (PD) distances. *=p<.05. Bars represent the SEM.

9.3.3 Weak surround suppression correlates with autistic symptomatology

We considered the possible relationship between the individual measure of surround
suppression and the ASD symptomatology measured by the SCQ. Individual Surround
Suppression Index (SSI) was calculated as the mean of accuracy rate in PD1 and PD2,
subtracted from the accuracy rate at PDO (SSI = PDO — Mean [PDI1, PD2]). A lower SSI
corresponds to a weaker suppression outside the focus of attention, and vice versa. Partial
correlation was performed to control for the effect of age, and the results showed that
individual SSI was negatively correlated with SCQ scores (Current version; r(s=-.418,

p=.042; see Figure 9.3).
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These results show that this low-level attentional dysfunction in the ASD group is associated
with symptomatology defined at a higher behavioral level, so that weaker suppression in the

surround of the attentional focus corresponds to higher symptoms severity.
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9.4 Discussion

The present study is the first that systematically assess the spatial profile of the attentional
focus in individuals with ASD. Results clearly demonstrate that the ASD group exhibits a
weaker suppression in the surround of the attentional focus relative to the TD group. Further,
the degree of inefficiency in inhibiting visual information outside the focus of attention was
associated with higher ASD symptoms severity.

A weaker suppression surrounding the focus of attention suggests an unbalanced relationship
between neural mechanism of enhancement and suppression at the locus of visual attention
and is likely to dramatically impact the way in which persons with ASD engage to the visual
environment. Weak surround suppression may also explain different aspects of their visual
perception, both in term of strengths and weaknesses. On the one hand, a weak suppression
surrounding the focus of attention can lead to a better representation of visual information

(e.g. enhancing local contrast sensitivity) in the vicinity of the attentional focus. This can
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translate into better performance in task such as the visual search (O’Riordan et al., 2001;
Joseph et al., 2009), the Embedded Figure Test (Jolliffe & Baron-Cohen, 1997; Manjaly et
al., 2007) and visual crowding (Baldassi et al., 2009; Keita et al., 2010). Accordingly, Joseph
and colleagues (2009) studied the factors underlying superior visual search performance in
ASD. Their findings showed that neither differences in eye-movements nor enhanced visual
memory can account for better performance in search. They claim, on the contrary, that non-
search factors, specifically related to an anomalously enhanced perception of stimulus
features, are the key factor behind this advantage. On the other hand, less inhibition of the
visual information outside the focus of attention could lead to tremendous problem when
irrelevant information are concurrently presented with relevant ones. One case that clearly
demonstrates this phenomenon has been described by Burack (1994). The author found that
individuals with ASD have better performance relative to the control groups when a window
circumscribed the target and no distractors were on the scene. Conversely, the performance of
the ASD group was clearly impaired in the presence of distractors outside the window cue.
An anomalous interference from irrelevant information has been found also using an Eriksen
flanker task in a more recent study by Adams and Jarrold (2012). Interestingly, the same
sample of individuals with ASD showed no evidence of impaired prepotent response
inhibition, leading Adams and Jarrold to conclude that the nature of impaired distractor
inhibition found in the Eriksen flanker task is not due to a real inhibitory problem, but may in
fact be related to an increased perceptual representation of distractors. In addition and
coherently with these findings, in our previous work we demonstrated that people with ASD
suffered for a deeper and prolonged backward interference (i.e., attentional masking), relative
to controls, when a laterally displayed irrelevant object was presented after a central target.
The same impairment was not observed when the second irrelevant masking object followed

the target in the same spatial position (Ronconi et al., 2013a).
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The present findings suggest also an important theoretical question that needs to be solved to
better understand the peculiar nature of visual selection in ASD and their cognition more
generally. The question is: how the present findings of a weaker suppression surrounding the
focus of attention are related to evidence of an impaired zoom-out and hyper-focused
attention previously reported (Mann and Walker, 2003; Robertson et al., 2013; Ronconi et al.,
2013b)? In other words, how persons with ASD can show at the same time a narrowly
focused attention (which should predict less resources outside the attentional focus) and a
stronger interference from information outside the attentional window? One plausible answer
relies on the nature of experimental paradigm previously used to asses the distribution of
attentional resource. Previous studies have never systematically address — as we did in the
present study — the processing resolution as a function of the distance from the locus in space
where attention has been captured. In particular, previous experiments have never specifically
tested attentional resources outside but near to the attentional focus (although results of
Ronconi et al., 2013a are in line with present findings). Another possible answer could be
that the zoom-out problem may be a consequence of a weaker inhibition outside the attended
area. To avoid visual sensory overload caused by an inefficient suppression at unattended
locations, people with ASD may develop a tendency to avoid the zooming-out of their
attentional focus, as the load of information that they have to deal with may become
excessive and overwhelming. Of course, this latter interpretation remains just speculative at
the present state, but we believe that future studies need to asses in parallel the modulation of
the attentional resources as a function of the spatial position or size of the attended area (i.e.,
orienting and zooming), and the spatial profile of the attentional focus (i.e. the surround
suppression). Evaluating the developmental trajectory and the mutual influence of these two
mechanisms, we can reach a better understanding of the nature of visual processing and

related abnormalities that characterize ASD.
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Possible neural correlates of a weak suppression surrounding the focus of attention can rely
on diminished top-down modulation coupled with an augmented neural representation of
visual objects in visual areas. Hopf and colleagues (2006, 2010), indeed, showed that the
inhibitory ring surrounding the attentional focus arises with a substantial delay relative to the
initial feed-forward visual flow, suggesting that it is the consequence of top-down attentional
selection in the early visual system (Tsotsos, 1990, 2005; Hopf et al., 2006, 2010).
Accumulating evidence, furthermore, support the idea that ASD is characterized by reduced
functional connectivity between distant neural areas (Rubenstein and Merzenich, 2003; Just
et al., 2004; Belmonte et al., 2004; Minshew and Williams, 2007; Di Martino et al., 2013;
Khan et al., 2013; see Vissers et al., 2012 for a review), with a conspicuous reduction in
fronto-occipital connection (Courchesne and Pierce, 2005; Bartffeld et al., 2011; Jou et al.,
2011). On the other hand, recent reports assessing local connectivity alterations in ASD lend
support to the hypothesis of diffuse local overconnectivity in occipitotemporal region, where
the object representation is formed (Keown et al., 2013). Thus, the inefficient surround
suppression of individuals with ASD is likely to result from impaired feedback projections
from the attentional network (i.e., frontoparietal areas) — caused by underconnectivity —
coupled with an augmented visual representation of irrelevant object in visual associative
areas (i.e., occipitotemporal areas) — caused by local regional overconnectivity.

In sum, the present findings show that individuals with ASD manifest a spatial profile of the
attentional focus characterizes by a weak suppression surrounding the attended area. This
altered inhibitory ring is likely to derive from an inefficient top-down selection of
information in visual areas and can be the main factor underlying the profile of strengths and
weaknesses in the visual sensory domain typically associated with ASD. Importantly, as
attention is known to be a supramodal neurocognitive function that operates on different

sensory modalities (Farah et al., 1989; Banerijee et al., 2011; Green et al., 2011), this deficit
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in suppression of irrelevant information can be postulated also for the sensory overload
present in tactile and auditory domains (Kern et al., 2006; Leekam et al., 2007).

The experiments conducted so far in the present thesis investigated the deployment of visual
attention in ASD according to the spotlight (Posner, 1980) and the zoom-lens (Eriksen and
St. James, 1986; Castiello and Umilta 1990) models. These models predict that the attentional
resources are concentrated at their maximum at the center of the attentional focus, and then
shade progressively (with a linear spatial gradient) while the distance from the attentional
focus increases. Considering the zoom-out deficit (but the same could be valid for the
disengagement deficit), one would expect an overfocused attention to be associated also to a
reduced interference from incongruent/irrelevant information. However, both clinical and
experimental reports are fairly clear in showing that individuals with ASD suffer often from
an increased interference from irrelevant and distracting information (e.g. Burack, 1994;

Belmonte, 2000; Leekam et al., 2007; Ronconi et al., 2013a).
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CHAPTER 10 — GENERAL DISCUSSION AND CONCLUDING
REMARKS

The six studies reported in my Ph.D. thesis give new insights into the nature of altered visual
attention in individuals with autism spectrum disorder (ASD).

In the first study (Chapter 4), we evaluated possible differences in the time course of
attentional orienting and re-orienting between ASD and typically developing (TD) peers as a
function of the size of their attention focus. We found that performance of the two groups
was comparable when the attentional focus had to be scaled in a small portion of the visual
field. On the contrary, when participants had initially to enlarge their attentional focus size,
the ASD group showed a sluggish attentional orienting relative to the TD group. This
evidence was also supported by a significant correlation that suggests that slower orienting
abilities in the large cue condition were related to higher autistic symptomatology. These
findings suggest that while TD group can efficiently orient their attentional focus both when
narrow or broad portions of the visual field have to be attended, individuals affected by ASD
suffer from a sluggish zoom-out of the attentional focus and this is likely to impact
consecutively also other operations that visual attention has to perform, in this case the
orienting toward the cued location. Moreover, these results confirm previous evidence of an
impaired zooming-out of the attentional focus (Mann and Walker, 2003; Ronconi et al., 2012,
2013b).

In the two following studies (Chapter 5 and 6) we tested a new strategy that together with
study of infants at-risk (sibling of older children with ASD) can inform about the
neurocognitive dysfunction that characterizes ASD and the broader autistic phenotype in the

very early stage of development. We found that autistic traits in parents from the general
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population without any history of ASD were related to the attentional functioning of their 8-
month-old infants. In one study (Chapter 5), orienting and alerting attention systems were
measured in infants using a spatial cueing paradigm and an eye-tracker. Results showed that
paternal autistic traits were linked to their infants’: (i) attentional disengagement; (ii) rapid
attentional orienting and (iii) alerting. In the other study (Chapter 6), we tested a new
paradigm that allows evaluating the attentional zooming mechanism in infanthood, always by
the means of an eye-tracker. Attentional zooming has never been tested in infanthood before.
The first important result was that 8-month-old infants can automatically adjust the size of
their attentional focus in a pre-saccadic temporal window. Moreover, higher autistic traits
both in fathers and mothers were related to a narrower focus of attention in their infants
(probably the flip side of the zoom-out attentional impairment associated with ASD). Overall,
these findings suggest that an early dysfunction of orienting and zooming mechanisms might
alter the developmental trajectory of future ability in social and communication domains. It
suggests also that attentional abnormalities can be found not only in infants who have a
“strong” biological risk for developing the condition — as they are siblings of older children
with a diagnosis of ASD — but also in infants who have a “mild” biological risk since born
from parents with high autistic traits.

Two other studies presented in this work (Chapter 7 and 8) were conducted in order to better
understand the zoom-out attentional impairment found in ASD and in infants of the broader
autistic phenotype (Chapter 4 and 6; Mann and Walker, 2003; Ronconi et al., 2012, 2013b).
We investigated, in the typical population, the neural underpinnings of the attentional
zooming. While the neural sources of the control of attentional orienting have been widely
investigated in cognitive neuroscience (see Corbetta and Shulmann, 2002, 2011; Corbetta et
al., 2008 for reviews), limited evidence are present regarding the neural areas that control the

attentional focus size. In a first study, we delivered single-pulse transcranial magnetic
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stimulation (TMS) on the frontal eye fields (FEF) while participants performed an attentional
zooming task. Results showed that TMS delivered on the right FEF, but not on the left FEF,
was able to interfere with both zoom-in and zoom-out attentional mechanisms. In a second
study, we used dense-array electroencephalography (d-EEG) to better investigate neural
events associated to the modulation of the attentional focus size. Neural sources estimation
were performed in the cue-target interval, revealing that when compared to the zoom-out
condition, the zoom-in of the attentional focus was associated to greater activations of the left
intra-parietal sulcus (IPS). On the other hand, when compared to the zoom-in condition, the
zoom-out of the attentional focus was associated to long-lasting increased activation in the
inferior frontal gyrus (IFG) accompanied by: (i) initially, activations in right superior parietal
lobule (SPL) and bilaterally in superior/middle frontal gyrus — where the frontal eye fields
(FEF) are located; (ii) secondly, activations bilaterally in middle temporal gyrus (MTG) and
insula (INS).

Overall, these two studies reveal clearly a massive involvement prior to the target onset of
different part of the frontal lobe, especially FEF and IFG, when subjects had to zoom-out
their focus of attention. What these results in typical population can tell us about the zoom-
out dysfunction observed in ASD? We saw in Chapter 2 that one of the leading hypothesis
about neural abnormalities in ASD claims that the autistic brain is characterized by long
distance under-connectivity (Belmonte et al., 2004; Frith, 2004; Just et al., 2004; Geshwind
and Levitt, 2007; Casanova and Trippe, 2009; Rudie and Dapretto, 2013), presumably due to
defect in the development of the minicolumns during early stages of post-natal life (Casanova
et al., 2002, 2006; Buxhoeveden et al., 2006;). Interestingly, increasing evidence show that
that long-range connectivity is particularly disrupted between frontal and occipital areas in
ASD (e.g., Courchesne and Pierce, 2005; Barttfeld et al., 2010; see Belmonte et al., 2004 for

a review). Accordingly, two fMRI studies have shown, in individuals with ASD, a
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dysfunction of the dorso-lateral prefrontal cortex during visual attention task (Ring et al.,
1999; Manjaly et al., 2007), and atypical prefrontal activations when testing visual attention
seem to be present also in unaffected sibs (Belmonte et al., 2010). These findings, along with
TMS and d-EEG results presented here, give increased consistency to the hypothesis that
underconnectivity between frontal areas — where top-down attentional processes are
controlled — and visual areas are the main factor underlying the altered deployment of visual
attention in ASD.

In the last study reported here (Chapter 9) we went one step forward the main models of
visual spatial attention (orienting and zooming) and we investigated the spatial profile of the
attentional focus in individuals with ASD, according to the so-called “Mexican-hat” model
(Miiller et al., 2005; Hopf et al., 2006). This model, supported by strong neurophysiological
data, claim that the selection of relevant visual objects produces an area of neural attenuation
surrounding the focus of attention, a sort of inhibitory ring which is optimal to highlight
important information and attenuate the deleterious noise (Hopf et al., 2006, 2010). We tested
this model in ASD in order to clarify why detailed oriented perception and overfocused
attention — largely demonstrated in ASD (see Happé¢, 1999; Happé and Frith, 2006; Dakin
and Frith, 2005; Mottron et al., 2006 for reviews) — coexist with stronger interference from
irrelevant information (e.g. Burack, 1994; Adams and Jarrold, 2012; Ronconi et al., 2013a),
which often leads to sensory overload in most individuals with ASD (Kern et al., 2006;
Leekam et al., 2007). Results showed that in the ASD group the attenuation surrounding the
focus of attention was markedly reduced, suggesting an unbalanced relationship between
neural mechanisms of enhancement and suppression at the locus of attention. Moreover,
weaker suppression outside the focus of attention correlated with higher autistic

symptomatology.
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The inefficient surround suppression of individuals with ASD is likely to result from at least
two different neural abnormalities. Precisely, impaired feedback projections from the top-
down attentional network (i.e., frontal and parietal areas) caused by long-range
underconnectivity coupled with an augmented representation of objects outside the
attentional focus in visual associative areas (i.e., occipitotemporal areas) — presumably
caused by a local regional overconnectivity. While evidence in favor of the former alteration
has been already discussed above, the latter alteration is supported by a recent study that
demonstrated local connectivity alterations in occipitotemporal region of individuals with
ASD (Keown et al., 2013). Local overconnectivity in visual areas was suggested also by
previous results of psychophysical lateral and attentional masking paradigm in individuals
with ASD (Kéita et al., 2011; Ronconi et al., 2013a).

To conclude, the present doctoral thesis gives significant new insights to define the altered
deployment of visual attention in persons with ASD. Specifically: (i) it confirms deficit in
enlarging the attentional focus previously reported (Mann and Walker, 2003; Ronconi et al.,
2012, 2013b); (ii) it shows how parents with high autistic traits can transmit to their infants
subtle deficit in visual attention that are likely to impact their future socio-communicative
abilities; (iii) it confirms the validity of visual attention abnormalities as an early marker of
ASD; (iv) it shows the importance of frontal (especially, FEF and IFG) and parietal
(especially IPS/SPL) brain areas in regulating the size of the attentional focus and
consequently the portion in the visual cortex activated in preparation to a stimulus via top-
down modulatory connections; and, lastly (v) it demonstrate that the inhibitory ring outside
the focus of attention is markedly reduced in ASD, providing a fundamental insight into the
understanding of both superior performance in detail-oriented tasks as well as sensory

overload characterizing persons with ASD.
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The question that remains to be solved is whether these impairments are a cause or a
consequence of ASD. Only future longitudinal studies carried out in infants at risk can help
to solve this question. However, whatever will be the case, our evidence in infants with high-
autistic-traits parents — along with recent longitudinal studies in infants at biological risk for
developing the condition (e.g., Elsabbagh et al., 2013; Chawarska et al., 2013) — suggests that
alterations of the attention network play a central role in the development of ASD. Since
attention can be trained efficiently also in infanthood (Wass et al., 2011), the time for early

and inexpensive prevention programs to reduce the incidence of ASD is getting closer.
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NOTES

The studies presented here were possible through the contribution of different persons and
laboratories. Experiments performed in children and adolescents with ASD were conducted
in the research hospital “I.LR.C.C.S. E. Medea” in Bosisio Parini (LC) and at the clinic “La
Nostra Famiglia” in Padua. Persons who supervised the clinical part and collect the ADOS
scores were Massimo Molteni, Barbara Urbani (I.R.C.C.S. E. Medea) and Giuseppe Visentini
(La Nostra Famiglia, Padua).

The two infants studies were possible through the collaboration with the Infant Cognitive
Laboratory at the Department of Developmental and Socialization Psychology of the
University of Padua. Especially, Dr. Laura Franchin and Dr. Hermann Bulf who performed
infants’ testing and eye-tracker data analysis and Prof. Eloisa Valenza who supervised the

experiments.
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