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1.1 Introduction 

The design and study of metal catalysts able to mimic the activity of biological systems is of 

considerable interest nowadays. This can be achieved through the modulation of the electronic 

properties and the steric volume around the metal modes using synthetic ligands. This translates in 

the control of the catalytic behaviour and coordination chemistry of the resulting system. Among 

the different strategies, the use of multi-dentate ligands is emerging as the leading route for the 

synthesis of stable and active metal catalysts.1 The nearly complete filling of all vacant coordination 

sites around the metal by a single ligand results in intrinsic thermodynamic stability and it allows 

the use of low catalyst concentrations to prevent the formation of multi-meric species during 

catalyst turnover. In addition, the presence of single mononuclear species greatly facilitates 

mechanistic studies and catalyst optimization, particularly in stereoselective processes. 

While C2 symmetric bi-dentate ligands have been extensively studied, ligands with a C3 symmetric 

axis have attracted attention only recently.2 These systems have attracted the interest to a substantial 

number of research groups concerning their synthesis, complexation behaviour and catalysis. 

In this context, triphenolamines Figure 1, have proven to be excellent ligands due to the particular 

stability, and catalytic abilities of their corresponding metal complexes.3 The tripodal ligand system 

bearing a central amino and three phenoxide donors (NO3 donor ligand) has attracted great interest 

(triphenolamines, Figure 1). 

In view of this thesis work, different approaches used for their synthesis will be reported, followed 

by some examples of their coordination chemistry and subsequently their use in catalysis. 

 

                                                            
1 a) A. J. Chmura, C. J. Chuck, M. G. Davidson, M. D. Jones, M. D. Lunn, S. D Bull, M. F. Mahon. Angew. Chem. Int. 
Ed. 2007, 46, 2280. b) A. J. Chmura, M. G. Davidson, C. J. Frankis, M. D Jones, M. D. Lunn. Chem. Commun. 2008, 
11, 1293. c) A. J. Chmura, D. M. Cousins, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, Dalton. Trans. 
2008, 11, 1437. d) S. D. Bull, M. G. Davidson, A. L. Johnson, D. Robinson, E. J. E. M. F. Mahon. Chem. Commun. 
2003, 1750. e) P. Axe, S. D. Bull, M. G. Davidson, J. E. Jones, M. D. Robinson, W. L. Mitchell, J. E. Warren. Dalton 
Trans. 2009, 46, 10169. 
2 a) C. Moberg. Angew. Chem. Int. Ed. 1998, 37, 248. b) S. E. Gibson, M. P. Castaldi. Chem. Commun. 2006, 29. b) K. 
Jyothish, W. Zhang. Angew. Chem. Int. Ed. 2011, 50, 8478. 
3 a) G. Licini, M. Mba, C. Zonta. Dalton Trans. 2009, 5265. b) M. Mba, L. J. Prins, G. Licini. Org. Lett. 2007, 9, 15. c) 
C. Zonta, E. Cazzola, M. Mba, G. Licini. Adv. Synth. Catal. 2008, 350, 2503. d) F. Romano, A. Linden, M. Mba, C. 
Zonta. Adv. Synth. Catal. 2010, 352, 2937. 
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Figure 1. Triphenolamines 

1.1.1 Synthesis of Triphenolamines 

Triphenolamines molecules have traditionally been synthesized by reaction of ortho/para-

disubstituted phenols with hexamethylenetetramine Scheme 1.4 This synthetic pathway (Mannich 

reaction) involves only one-step from the phenol to the ligand. This procedure however, requires 

long reaction times (2-7 days), harsh reaction conditions and high temperatures. In addition, this 

strategy allows the formation of corresponding ligand only when the phenol moiety is substituted in 

either the ortho- and para-positions.  

 

 
Scheme 1 Synthesis of Triphenolamines via Mannich reaction 

 

An alternative route has been reported based on the nucleophilic substitution (SN2) of a 2-

methoxybenzylamine with two equivalents of 2-methoxybenzylbromide Scheme 2.5 This strategy 

has the advantage of giving access to asymmetric triphenolamine 13 Scheme 3. 

                                                            
4 A. Chandrasekaran, R. O. Day, R. R. Holmes. J. Am. Chem. Soc. 2000, 122, 1066.  
5 J. Hwang, K. Govindaswamy, S. A. Koch. Chem. Commun. 1998, 1667. 
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Scheme 2.  

 

This strategy allows also access to enantiopure triphenolamines. The key step is the stereoselective 

reduction of a chiral imine 9. Subsequently, this is converted to the primary amine by oxidation in 

the presence of Pb(OAc)4, followed by hydrolysis.6 Finally, the enantiopure triphenolamine 4d is 

obtained by reacting the amine with two equivalents of 2-benzyloxy-3-bromomethyl-biphenyl, 

followed by the hydrogenolysis of the benzyl group Scheme 3.  

 

Scheme 3. 

A third synthetic approach has been developed to synthesize C3 symmetric ortho-substituted 

triphenolamine ligands as depicted in Scheme 4. This synthesis is based on a three-fold reductive 

amination starting from ortho-substituted salicyl aldehydes using a nitrogen source such as 

NH4OAc and a reducing agent NaBH(OAc)3.
7 Most of the salicylaldehyde derivatives are 

commercially available but they can also be easily prepared from their corresponding phenols. The 

phenoxy group is usually protected with an ether moiety, typically a benzyl group, during the 

reductive amination step. Finally, the ligand is obtained in good yield by removing the ether group 

via hydrogenolysis. The easy availability of the starting materials and the possibility to have direct 

access to this important class of ligands, make this strategy an efficient route for the preparation of 

ortho-substituted triphenolamines.  
                                                            
6 G. Bernardinelli, D. Fernandez, R. Gosmini, P. Meier, P.A. Ripa, B. Treptov, E. P. Kunding. Chirality 2000, 12, 529. 
7 L. J. Prins, M. Blázquez. Mba, A. Kolarovic, G. Licini. Tetrahedron Lett. 2006, 47, 2735. 
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Scheme 4. Synthesis of triphenolamines via reductive amination 

 

 

 

1.2 Coordination chemistry of amine triphenolate complex  

Amino triphenolate ligands are able to form metal complexes with early transition metals 

and main group elements in high oxidation states. The coordination of these ligands to metal ions 

affords highly robust complexes. In these complexes, the ligand usually binds to the metal as a 

tetradentate ligand with the three anionic oxygen atoms in the equatorial positions and the tertiary 

amine in one of the axial positions. Generally, upon complexation with metal ions, mononuclear 

complexes with a ratio of 1:1 ligand–metal are obtained. As reported previously, a crucial role for 

their stability is given by the substituents in ortho and para positions to the phenoxy moiety of the 

ligand. For instance ortho groups, which are in close proximity to the metal center, can affect 

directly their stability and therefore the reactivity of the corresponding metal complexes. As 

examples, complexes bearing bulky substituents such as t-Bu groups are highly stable to hydrolysis 

in comparison to complexes having small groups such as Me or H. 3b,3c,8,9 Such complexes have the 

tendency to form di-nuclear complexes or aggregates after exposure to moisture.10 Para substituents 

                                                            
8 M. Kol, M. Shamis, I. Goldberg, Z. Goldschmidt, S. Alfiand, E. Hayut- Salant. Inorg. Chem. Commun. 2001, 4, 177. 
9 V. Ugrinova, G. A. Ellis, S. N. Brown. Chem. Commun. 2004, 468. 
10 A. J. Nielson, C. Shen, J. M. Waters. Polyhedron, 2006, 25, 2039. 
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to the phenoxy groups are able to modify the electronic properties of the ligand and therefore can 

directly affect the catalytic properties of the corresponding complex. 

In the majority of the reported examples the usual geometry assumed by the complexes are trigonal 

bipyramidal (TBP) and octahedral (OCT), whereas tetra-coordinate complexes with trigonal 

monopyramidal (TMP) geometry are less observed as depicted in Figure 2. 

 

 
Figure 2. Common geometries of the complexes 

 

Moreover, amino triphenolate ligands can form stable metal complexes with a wide range of metal 

ions and main group elements such as Ti, Zr, Hf, V, Nb, Ta, Mo, W, Al, Ga, In, and Fe. However, 

in view of this thesis work, the attention will be focused on the coordination chemistry and the 

reactivity of vanadium and iron amino triphenolate complexes in order to compare and identify new 

opportunities in catalysis. 

 

1.3 Vanadium amino triphenolate complexes and their reactivity in catalysis 

Vanadium complexes belong to the group V in which usually the octahedral geometry 

predominates, except for the vanadium species. Generally vanadium (V) complexes assume a 

trigonal bypyramidal (TBP) geometry, however different binding behaviour was found upon 

complexation with very electron-poor ligands such as dichloro-substituted ortho/para amino 

triphenolate (R1=R2=Cl).11 In this example, a hexa-coordinate octahedral crystal structure was 

obtained with the oxo moiety present in the trans- position to the amine group and a molecule of 

water as ligand in the apical position of the complex Figure 3.  

 

                                                            
11 S. Groysman, I. Goldberg, Z. Goldschmidt, M. Kol. Inorg. Chem. 2005, 44, 5073. 
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Figure 3. Crystal structure of V(V) ortho/para Cl amino triphenolate 11 

 

The first synthesis of vanadium amino triphenolate complexes was reported by Kol et al.11 The 

synthesis was carried out mixing equimolar amounts of ortho/para di-substituted amino 

triphenolate ligand with VCl3-THF affording, vanadium complexes with C3-TBP in which in the 

apical position is occupied with a labile ligand such as THF. 

Also when other metal precursors are used in the synthesis of vanadium complexes, such as 

V(O)(OR)3, the same geometry was obtained with an oxo moiety in the trans position to the 

nitrogen of the amino triphenolate ligand.12 Vanadium oxo complexes have a much longer distance 

between the amino donor group (N) and the metal centre (V), in comparison to the distance found 

for the V(III) species.  

The catalytic behaviour of V(V) amino triphenolate complexes was also investigated in the 

oxidation of styrene to styrene oxide, in the presence of t-butyl hydrogen peroxide (t-BuOOH) as 

oxidant. In these catalytic studies reported by Kol, Goldschmidt and others, 11 the oxidation reaction 

was carried out using 5% mol of V(V) catalysts in a solution of benzene and t-BuOOH. Under these 

conditions, the catalysts showed poor reactivity and the evolution of side products were observed. 

More recently, the catalytic studies of V(V) amino triphenolate complexes, were focused on 

sulfoxidation and halogenation reactions.13 In these studies, vanadium complexes were obtained by 

the reaction of ligands with an equimolar amount of vanadium precursor VO(Oi-Pr) in dry THF in 

an inert atmosphere affording mononuclear complexes in high yield (92-94%) as deep red 

crystalline solids Scheme 5. All (V) amino triphenolate complexes where characterized by 1H-

NMR, 51V-NMR spectroscopy and X-ray diffractometric analysis, the results are reported in Table 1 

and Figure 4. 

 

 

Scheme 5. Synthesis of V(V) complexes 18e-h 

 

Table 1. 51V NMR chemical shift (ppm) of 18e-h in CDCl3 solvent. 

                                                            
12 M. Mba, M. Pontini, S. Lovat, C. Zonta, G. Bernardinelli, E. P. Kundig, G. Licini. Inorg. Chem. 2008, 47, 8616. 
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COMPLEX 
51V NMR - δ (ppm), 

CDCl3 

18e -396.83, -428.78 

18f -381.90 

18g -389.07 

 

 

Figure 4. X-Ray complex 18 g 

 

Complexes bearing Me and t-Bu groups in the ortho position have shown highly symmetric 1H-

NMR proton spectra in accordance with the presence of a mononuclear species having C3 symmetry 

and singlet signals in the 51V-NMR spectrum were detected (-381,90 ppm and -389 ppm 

respectively recorded in CDCl3). Whereas for the complex 18e, a non-symmetric 1H-NMR spectra 

with different signals in 51V-NMR spectrum was observed, suggesting the formation of aggregates 

or the presence of a mixture of species. This confirms the strong importance of bulky ortho 

substituents for the formation of stable metal complexes. 

As mentioned previously, the catalytic activity of amino triphenolate complexes was studied in the 

sulfoxidation reaction. The complexes firstly were tested in sulfoxidation of thioanisol, using 

hydrogen peroxide as oxidant at room temperature. V(V) catalysts were found to efficiently 

catalyze the reaction in fast and highly selective manner to the corresponding sulfoxide, reaching 

quantitative yields in the case of the complex 18g (R= t-Bu). Further optimization of the reaction 

conditions was obtained by decreasing the catalyst loading to 0.01 mol%. In this case, high 

selectivity of methyl phenyl sulfoxide with respect to methyl phenyl sulfone was obtained reaching 

high TONs and TOFs (up to 8000h-1). The optimized procedure was then extended to other 

sulphides Table 2. In this case, the catalytic systems based on vanadium complexes were found to 

be extremely active with high selectivity, confirming the efficiency of these catalysts in oxygen 

transfer reactions. The results obtained employing complex 18g as catalysts are reported in Table 2. 

 

   
Table 2. Oxidation of sulphides catalysed by 18g. 

Entry R R1 Yield (%) SO/SO2 Time 

1 Ph Me 98 99:1 120 

2 p-Tol Me > 99 > 99:1 120 

3 p-Tol n-Bu 96 99:1 120 
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4 Ph Bn > 99 > 99:1 90 

5 n-Bu n-Bu 99  >99:1 60 

6 p-MeO-C6H4 Me 98 99:1 100 
a Reaction conditions: Reactions carried out at 28 °C with a 1:1 molar ratio of substrate aq H2O2 ; 0,1 catalyst.  
b conversion determined by 1H-NMR (CD3OD), 300MHz). c yield determined by GC analysis on the crude reaction mixture after total 
oxidant consumption. 
 

In general, the mechanism is believed to proceed through the addition of hydrogen peroxide to the 

metal centre affording a metal peroxide species, which is the active species in the sulfoxidation 

reaction. The sulfide acts as nucleophile and can attack the electrophilic oxygen of the peroxo 

moiety to subsequently give cleavage of the O-O bond leading the oxidized product and the 

formation of the di-oxo species. Finally, this complex, in the presence of H+, can form again the 

initial species. 

Vanadium-based complexes have also attracted recently the interest as biomimetic systems, as some 

of these catalytic systems are able to mimic vanadium haloperoxidases.13 These enzymes, which 

catalyse the oxidation of halides to the corresponding ”X+” halonium species in the presence of 

hydrogen peroxides, can generate halogenated compounds. These vanadium-dependent enzymes, 

have shown a five coordinate V(V) centre with a trigonal bipyramidal geometry.14 15 The most 

reported vanadium dependent enzymes are bromoperoxidases VBrPO, which are able to catalyse 

the oxidation of bromide by hydrogen peroxides. Generally, the catalytic cycle, proceeds towards 

the formation of a peroxovanadium species, which represents the active oxidant in the cycle. The 

peroxo derivatives are able to oxidize the bromide ion to a brominating intermediate, which 

subsequently reacts with the substrate, generally a nucleophile, affording the brominated product. 

V(V) amino triphenolate complexes can be considered to be good candidates for structural and 

functional models of vanadium haloperoxidase enzymes and for these reasons they have been 

studied in halide oxidations, for example; bromination reactions. In these catalytic systems, the 

ligands play an important role in order to stabilize the monomeric vanadium complex preventing the 

formation of oligomeric species under acidic conditions. The catalytic performance of vanadium 

(V) amino triphenolate complexes were tested in the bromination of 1,3,5-trimethoxybenzene using 

tetrabutyl ammonium bromide (TBAB) as a halogen source, in the presence of an oxidant, hydrogen 

peroxide (1 eq.) and in acidic conditions (1 eq.), according to the stoichiometry of the reaction. The 

                                                            
13 a) M. A. Andersson, A. Willetts, S.G. Allenmark, J. Org. Chem. 1997, 8455. b) A. G .J. Ligtenbarg, R. Hage, B. L. 
Feringa, Coord. Chem. Rev. 2003, 98. 
14 a) A. Messerschmidt, R. Wever. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 392. b) A. Messerschmidt, R. Wever. Biol. 
Chem. 1997, 378, 309.  
15 R. A. Tschirret, A. Butler. J. Am. Chem. Soc. 1994, 116, 411. 
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brominated product 2,4,6-trimethoxybromobenzene was afforded in high yield, up to 92%, reaching 

TONs up to 1260 Scheme 6. 

 

V(V) = 0.05-5%
Yields up to 92%
TON = 1260

OMe

OMeMeO

OMe

OMeMeO

Br

V

N

O O

O
O

t-Bu

t-But-Bu

+ H2O2 + H+ + Br- + 2 H2O

28°C, DMF

 
Scheme 6. Bromination of 1,3,5-trimethoxybenzene using 18g as catalyst 

 

1.4 Iron amino triphenolate complexes and their use in catalysis 

Iron (III) complexes bearing amino triphenolate ligands were originally reported by Koch 

and co-workers more than 10 years ago.5 The ligand was synthesized by the reaction of two 

equivalents of 2-methoxybenzyl bromide with commercially available 2-methoxybenzylamine in 

refluxing CH3CN and K2CO3 affording tris (2-methoxybenzyl) amine in 80–85% yield. The 

protecting groups were removed by refluxing the compound in toluene with five equivalents of 

AlCl3 yielding triphenolamine which was reacted with FeCl3 leading to a penta-coordinate TBP 

structure having 1-methylimidazole in apical position. Crystal structures demonstrated that Fe (III) 

is able to bind an extra ligand which confers an octahedral geometry Figure 5. The catalytic activity 

of these complexes was not exploited at that time. 

 

 
 

Figure 5. Structure and crystal structure of Fe(III) amino triphenolate having 1-methylimidazole in apical position.5 

 

More recently, Kleij and co-workers reported an iron(III) amino triphenolate complex to be 

an efficient catalyst for the cycloaddition of carbon dioxide to a wide variety of oxiranes and 

oxetanes to yield the corresponding cyclic carbonate products under mild reaction conditions.16 The 

                                                            
16 C. J. Whiteoak, E. Martin, M. Martínez Belmonte, J. Benet-Buchholz, A. W. Kleij. Adv. Synth. Catal. 2011, 354, 469. 
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ligand was synthesized following the Scheme 1 (Mannich reaction) starting from ortho/para 

dimethyl substituted phenol. 

The Fe (III) amino triphenolate complex was prepared by mixing a solution of the ligand with three 

equivalents of NaH and FeCl3 as the metallic precursor. The corresponding complex was 

characterized by X-ray crystallographic analysis showing a di-meric form Figure 6. The synthesis of the 

complex and the crystal structures obtained are reported in Scheme 7.  

 

 

Scheme 7. Synthesis complex 19a  Figure 6. X-Ray complex 19a16 

 

As mentioned above, the complex was employed as catalyst in cycloaddition of carbon dioxide to 

oxirane and oxetanes to yield the corresponding cyclic carbonate. The synthesis of these compounds 

from epoxides and CO2 catalysed by metal complexes has been widely investigated17 and nowadays 

represents a successful example of carbon dioxide utilization. In these metal-based complexes, 

catalysis is made possible by the combination of a binary system, which consists commonly of 

quaternary ammonium halide salt18,19 (tetrabutyl ammonium chloride, bromide TBAB and iodide 

TBAI) or phosphonium halide salts and a metal complex. In this context, Fe(III) amino triphenolate 

complexes together with a presence of a co- catalyst (TBAI or TBAB), have shown good 

performance for the synthesis of cyclic carbonates. The reactions were carried out employing 0.5 

mol% of Fe (III) catalyst, 5 mol% of co-catalyst using methylethyl ketone as solvent at 10 bar of 

CO2. Some of the results are summarized in Table 3. 

 

 

                                                            
17 a) A. Berkessel, M. Brandenburg. Org. Lett. 2006, 8, 4401. b) W. Clegg, R. W. Harrington, M. North, R. Pasquale. 
Chem. Eur. J. 2010, 16, 6828. c) R. L. Paddock, S. T. Nguyen. Chem. Commun. 2004, 1622. d) A. Decortes, A. W. 
Kleij. ChemCatChem. 2011, 3, 831. 
18 S. Fukuoka, M. Kawamura, K. Komiya, M. Tojo, H. Hachiya, K. Hasegawa, M. Aminaka, H. Okamoto, I. Fukawa, S. 
Konno. Green Chem. 2003, 5, 497. 
19 a) M. Yoshida. M. Ihara. Chem. Eur. J., 2004, 10, 2886. b) J. Sun, S. I. Fujita, M. Arai. J. Organomet. Chem. 2005, 
690, 3490. c) W. L. Dai, S. L. Luo, S. F. Yin, C. T. Au. Appl. Catal., 2009, 366, 2. d) T. Sakakura. K. Kohno. Chem. 
Commun. 2009, 1312. 
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Table 3. Cycloaddition of CO2 to terminal epoxides. 

 

 

Substrate Product Co-cat Yield (%) 

 

 

 

TBAI 

 

96 

O

Cl
 

 

 

TBAB 

 

83 

 

 

 

TBAI 

 

91 

 

 

 

TBAB 

 

56 

 

 

 

TBAI 

 

90 

 

 

 

TBAI 

 

70 

Reaction conditions: substrate (2.0 x 10-3 mol), catalyst (1.0 x 10-5 mol, 0.5 
mol%), co-catalyst (1.0 x 10-4 mol, 5 mol%) methyl ethyl ketone (5 mL), 
pCO2=0.2 MPa, 25 °C, 18 h. Conversions based on 1H NMR analysis of 
reaction mixture aliquots using mesitylene as an internal standard. [c] The 
selectivity toward the cyclic carbonates was>99% as determined by 1H NMR. 

 
 

All the cyclic carbonate products were obtained in good yields using either an iodide or a bromide 

salt as co-catalyst. In general, the iron complex acts as Lewis Acid which has the role of activating 

the epoxide towards ring opening by the nucleophile, followed by the insertion of CO2 into the 

activated intermediate. The carbonate intermediate can either undergo a ring-closure reaction 

leading to formation of the cyclic carbonate or react further through the alternating insertion of 

epoxide and CO2 molecules, yielding a polycarbonate. 
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More recently, three different ortho/para substituted Fe(III) amino triphenolate complexes 

were reported and their catalytic activity in the synthesis of cyclic and polymeric cyclohexane 

carbonates were described.20,21 In this work, it has been shown that the selectivity towards 

formation of either the cyclic carbonate or the polycarbonate can be controlled by using Fe(III) 

catalysts and a carefully combination of the reactions conditions, such as temperature and pressure.  

 

1.5 Aim of the thesis work 

This thesis has the aim to search for and develop catalytic systems based on metal complexes for 

different uses in catalysis. In particular, catalysts based on amino triphenolate complexes, which 

have shown to be highly stable and reactive, will be reported. Furthermore, an extension toward the 

synthesis of their analogues will be described. 

In this respect, Chapter 2 will report a new strategy for the synthesis of the analogues tris-

thiophenol amine. 

In Chapter 3 and 4 the results obtained with Fe(III) amino triphenolate and V(V) amino triphenolate 

for the synthesis of small molecules from a renewable carbon feedstock such as carbon dioxide will 

be discussed. 

In particular, Chapter 3 will describe novel reactivity of V(V) amino triphenolate complexes as 

catalysts for the aerobic oxidation of diols and ether compounds in order to investigate their use for 

the transformation of lignin into valuable chemicals. 

In Chapter 4 the reactivity of Fe(III) amino triphenolate complexes as a catalyst for the synthesis of 

cyclic organic carbonates, starting from epoxides and CO2, is reported. 

 

 

 

 

 

 

                                                            
20 M. Taherimehr, S. M. Al-Amsyar, C. J. Whiteoak, A. W. Kleij, P. P. Pescarmona. Catal. Sci. Technol., 2012, 2, 2231. 
21 M. Taherimehr, S. M. Al-Amsyar, C. J. Whiteoak, A. W. Kleij, P. P. Pescarmona. Green Chem., 2013, 15, 3083. 



Chapter 1 

_______________________________________________________________________ 

14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 2 

 

Synthesis of ortho-Substituted Trithiophenol 
Amines by Miyazaki–Newman–Kwart 

Rearrangement 
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Abstract 

In this chapter, the synthesis of ligands analogous of triphenolamines is described. An efficient 

synthetic pathway of ortho-substituted trithiophenol amines via Miyazaki–Newman–Kwart 

rearrangement followed by reductive amination is reported. This project has the aim to affect 

directly a modification of the binding and electronic properties of the parent ligand in order to 

have access to different metal complexes and consequently different catalysis.  

 
This chapter has been published.1 

 

 

2.1 Introduction 

Owing to the numerous publications on the topic, it is clear that the use of polydentate 

ligands, and in particular C3 symmetric complexes, is emerging as one of the leading strategies for 

the formation of catalytically stable complexes.2 As discussed in the first chapter, these ligands are 

used to control the environment of the metal, modulate the electronic and steric properties around 

the metal centre and therefore control their catalytic properties. In the last decade, many studies 

have been carried out for the synthesis of triphenolamines, their complexation with a wide variety 

of transition metals and main group elements3 and catalytic activity4 (triphenolamine Figure 1 

right). 
 

                                                            
1 B. Gjoka, F. Romano, C. Zonta, G. Licini. Eur. J. Org. Chem. 2011, 5636. 
2 a) C. Moberg. Angew. Chem. Int. Ed. 1998, 37, 248. b) S. E. Gibson, M. P. Castaldi. Chem. Commun. 2006, 29. c) G. Licini, M. 
Mba, C. Zonta. Dalton Trans. 2009, 5265. d) K. Jyothish, W. Zhang. Angew. Chem. Int. Ed. 2011, 50, 8478. 
3 a) M. Mba, L. J. Prins, G. Licini. Org. Lett. 2007, 9, 15. b) G. Bernardinelli, T. M. Seidel, E. P. Kündig, L. J. Prins, A. Kolarovic, 
M. Mba, M. Pontini, G. Licini. Dalton Trans. 2007, 1573. c) C. Zonta, E. Cazzola, M. Mba, G. Licini. Adv. Synth. Catal. 2008, 350, 
2503. d) M. Mba, M. Pontini, S. Lovat, C. Zonta, G. Bernardinelli, E. P. Kündig, G. Licini. Inorg. Chem. 2008, 47, 8616. e) F. 
Romano, A. Linden, M. Mba, C. Zonta. Adv. Synth. Catal. 2010, 352, 2937. f) M. Mba, L. J. Prins, C. Zonta, M. Cametti, A. 
Valkonen, K. Rissanen, G. Licini. Dalton Trans. 2010, 39, 7384. 
4 S. D. Bull, M. G. Davidson, A. L. Johnson, D. E. Robinson, M. F. Mahon. Chem. Commun. 2003, 1750. b) A. J. Chmura, C. J. 
Chuck, M. G. Davidson, M. D. Jones, M. D. Lunn, S. D. Bull, M. F. Mahon. Angew. Chem. Int. Ed. 2007, 46, 2280. c) A. J. Chmura, 
M. G. Davidson, C. J. Frankis, M. D. Jones, M. D. Lunn. Chem. Commun. 2008, 11, 1293. d) A. J. Chmura, D. M. Cousins, M. G. 
Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon. Dalton Trans. 2008, 11, 1437. e) P. Axe, S. D. Bull, M. G. Davidson, M. D. 
Jones, D. E. J. E. Robinson, W. L. Mitchell, J. E. Warren. Dalton Trans. 2009, 46, 10169. f) S. D. Bull, M. G. Davidson, A. L. 
Johnson, M. F. Mahon, D. E. J. E. Robinson. Chem. Asian J. 2010, 5, 612.  
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Figure 1. Triphenolamine (left) and trithiophenol amine (right). 

 

Usually the synthesis of triphenolamines is performed via a one-step Mannich reaction of 

ortho/para disubstituted phenols with HMTA (hexamethylenetetramine) but this synthetic pathway 

requires long reaction times and harsh conditions. As previously reported, an effective synthesis 

based on a three-fold reductive amination starting from protected salicyl aldehydes was employed 

to achieve ortho-substituted triphenolamines.5 This synthesis has been shown to be a successful 

methodology to build a large family of complexes with various functionalities in a multi-gram 

scale.  

Taking advantage of this synthetic approach work proceeded in the study of the analogous 

trithiophenol amines (Figure 1, left). Ligands based on thiophenolate systems coordinated to 

transition metals can be efficiently employed in homogeneous catalysis and bioinorganic chemistry, 

although they are still rare and unexplored compared to their related phenolate derivatives. 

In view of the results obtained with triphenolamines and inspired by the trigonal FeS3 coordination 

sites present in the Fe Mo-cofactor of nitrogenase, the study was extended to trithiophenol amine in 

order to understand if the variation of the environment around the metal center would led to 

different reactivity and therefore different applications in catalysis and in coordination chemistry.  

Very little has been reported on ligands-based on thiophenolate and the first synthesis of such 

ligand (R =H) was reported by Koch et al. nearly 20 years ago. It was employed for the preparation 

of the corresponding iron(II) and iron(III) complexes..6 The catalytic behaviour of iron complexes 

was not explored at that time.  

The ligand was synthesized starting from thiol-protected benzylamine, which was reacted with 2 

equiv of the corresponding benzyl bromide using K2CO3 as base in acetonitrile (ACN), yielding the 

corresponding protected trithiophenol amine in 80% yield. After the removal of the protecting 

group, the ligand was obtained as a salt in 40% yield. The synthetic pathway is depicted in Scheme 

1. 

 

                                                            
5 L. J. Prins, M. Mba Blázquez, A. Kolarovic´, G. Licini. Tetrahdron Lett. 2006, 47, 2735. 
6 N. Govindaswamy, D. A. Quarless Jr, S. A. Koch. J. Am. Chem. Soc. 1995, 117, 8468. 
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Scheme 1. Synthesis of trithiophenol amine  

 

This synthetic route opened the way for the study of a new class of ligands however this strategy 

(Scheme 1), provided only non-substituted trithiophenol amine ligand in quite low yield involving 

the preparation of the two reagents separately.  

In view of these results others have been investigated amino trithiophenolate when 

coordinated with Ga(III) and In(III).7 In particular, Ga(III) amino trithiophenolate complexes have 

shown promising applications in the radiolabelling of large biomolecules such as peptides for use in 

receptor-based imaging. The tripodal ligand for Ga(III) was found to be stable to enzymatic 

hydrolysis, neutral and able to pass the BBB (blood-brain barrier). Although extensive theoretical 

studies have been carried out on amino trithiophenolate (R= H) complexes with iron,8 ortho-

substituted trithiophenol amine derivatives and their coordination chemistry with different metals 

have not been intensively investigated.  

As consequence, the development of a general and efficient synthesis for this type of ligand 

is desirable and it will offer the opportunity to extend their application in catalysis. In light of our 

experience in the synthesis of triphenolamines and in their use as ligands for complexation and 

catalysis, we planned to prepare trithiophenol amine molecules via a similar methodology, i.e. the 

use of reductive amination as the key step for the preparation of the amino skeleton and Miyazaki–

Newman–Kwart (MNK) rearrangement for the preparation of the thiophenol salicaldehyde 

monomers Scheme 2.  

 

                                                            
7 a) R. J. Motekaitis, A. E. Martell, S. A. Koch, J. Hwang, D. A. Quarless Jr, M. J. Welch. Inorg. Chem. 1998, 37, 5902. b) L. G. 
Luyt, J. A. Katzenellenbogen. Bioconjugate Chem. 2002, 13, 1140. c) C. S. Cutler, M. C. Giron, D. E. Reichert, A. Z. Snyder, P. 
Herrero, C. J. Anderson, D. A. Quarless, S. A. Koch, M. J. Welch. Nucl. Med. Biol. 1999, 26, 305. 
8 a) J. Conradie, D. A. Quarless, H.-F. Hsu, T. C. Harrop, S. J. Lippard, S. A. Koch, A. Ghosh. J. Am. Chem. Soc. 2007, 129, 10446. 
b) J. Conradie, K. H. Hopmann, A. Ghosh. J. Phys. Chem. B, 2010, 114, 8517. 
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Scheme 2 Trithiophenol amine Retro-Synthesis  

 

2.1.1 Miyazaki-Newman-Kwart Rearrangement 

MNK rearrangement is a tautomeric rearrangement, which allows the migration of the aryl group of 

an O-aryl thiocarbamate from the oxygen to the sulfur atom through a four membered transition 

state, which forms an S-aryl thiocarbamate.9 Because the sulphur atom has a stronger 

nucleophilicity compared to the oxygen atom, it becomes the driving force of the reaction toward 

the displacement of the oxygen as depicted in Scheme 3. 
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TTA
O

OH

Protection  

Scheme 3 Miyazaki -Newmann–Kwart rearrangement 

 

The electronic and steric properties of substituents, in either the aromatic ring or N-substituent, are 

important in the rearrangement in order to stabilize both the negative and positive charge. For 

example, it was shown that electron withdrawing groups such as NO2 in para position to the 

thiocarbamate have a positive effect in stabilizing the negative charge. On the other hand, N-alkyl 

substituents strongly affected the yield in rearranged product. Investigations also of the steric effects 

have been carried out, showing that hindered groups at the ortho position generally favoured the 

rearrangement except in the case of t-Bu groups.10 

Taking account of these considerations, the work proceeded by planning the synthesis of a series of 

ortho-substituted trithiophenol amines, which can be easily and effectively prepared by reductive 

amination of the corresponding MNK rearranged S-thiocarbamoyl salicaldehydes. The key issue 

that makes this method successful is the use of the thiocarbamoyl group both as a rearranging agent 

and protecting group during the reductive amination carried out in the presence of NaBH(OAc)3 and 

                                                            
9 a) C. Zonta, O. De Lucchi, R. Volpicelli, L. Cotarca. Topics Curr. Chem. 2007, 275, 131. b) G. C. Lloyd-Jones, J. D. Moseley, J. S. 
Renny. Synthesis, 2008, 5, 661. c) M. Burns, G. C. Lloyd-Jones, J. D. Moseley, J. S. Renny. J. Org. Chem. 2010, 75, 6347. 
10 H. M. Relles, G. Pizzoato. J. Org. Chem. 1968, 33, 2249. 
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NH4OAc. This strategy allows the effective construction of the ligand skeleton and differently 

substituted trithiophenol amines. 

Initially a synthetic approach was examined, which proceeded toward the preliminary 

protection of the H group of substituted salicaldehydes 2a–d (R = H, Me, Ph, tBu, respectively), 

followed by MNK rearrangement of the resulting O-thiocarbamate esters 3a–d, a threefold 

reductive amination of the thiosalicaldehyde S-thiocarbamates 4a–d, and finally the reductive 

removal of the protecting carbamoyl groups, yielding 1a–c (Scheme 4). The starting materials are 

commercially available (2a–c) or easily accessible from the corresponding phenol using 

paraformaldehyde and MgCl2 (2d).5 

 

2.2. Synthesis of S-thiocarbammate compounds 

Treatment of 2a–d with N,N-dimethylthiocarbamoyl chloride (DMTCl) in acetonitrile in the 

presence of potassium carbonate gave the desired O-thiocarbamates 3a–d in good yields after 

purification (75–77%). The compounds were purified by either column chromatography or 

crystallization. Alternative procedures with different bases, such as 1,4-diazabicyclo[2.2.2] octane 

or NaH in N,N-dimethylformamide, did not furnish satisfactory yields for all of the products. 

Reaction conditions for the MNK rearrangement were optimized for 3a (R = H, Table 1). The 

rearrangement was performed initially using the Lewis acid catalyst BF3·OEt2 as reported by 

Brooker et al.11 Although the reaction proceeded smoothly in high yield, it requires long reaction 

times 3d and strictly anhydrous reaction conditions. To obtain a more reliable method the classical 

thermal rearrangement was attempted (Table 1, Entry 2).  

 

Table 1. Optimisation of MNK rearrangement reaction conditions for 3a. 

 

# Method[a] Solvent[b] Temp 
°C 

Time 
(min) 

Conversion[c] 
(%) 

4a:2a:6a[c] 

1 BF3
.OEt2 DCE 85 72 h 95 90:10:0 

2 Thermal Neat 300 5 80 30:70:0 
3 MW NMP 200 10 30 >99:1:0 
4 MW NMP 230 5 95 >99:1:0 
5 MW NMP 230 10 99 >99:1:0 
6 MW NMP 230 15 99 90:0:10 

                                                            
11 S. Brooker, G. B. Caygill, P. D. Croucher, T. C. Davidson, D. L. J. Clive, S. R. Magnuson, S. P. Cramer, C. Y. Ralston. J. Chem. 
Soc., Dalton Trans. 2000, 3113. 
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[a] BF3

.OEt2: Lewis acid rearrangement using the conditions described in ref. 9, Thermal: 
thermal rearrangement induced by heating, MW: microwave rearrangement. [b] DCE: 
dichloroethane, NMP N-methylpyrrolidone. [c] Data obtained using 1H NMR of the crude 
mixture. 

The reaction was performed at 300 °C and 25% of the desired product 4a was obtained, in a very 

short time. However, under these conditions, extensive hydrolysis of the reagent to 2a (56%) was 

observed. On the contrary, the reaction carried out using microwave (MW) induced heating, after 

dissolving the sample in N-methylpyrrolidone (NMP), enables the tuning and optimization of the 

reaction conditions and the maximization of conversion of 3a into 4a without reagent or product 

hydrolysis (Table 1, Entries 3–6). 12 The best reaction conditions were obtained, using anhydrous 

NMP at 230 °C for 10 min (Table 1, Entry 5). Shorter reaction times did not permit complete 

conversion of the reagent, and longer reaction times resulted in the partial hydrolysis of the S-

thiocarbamoyl group yielding thiosalicaldehyde (6a, 10%, Table 1, Entry 6). The best reaction 

conditions obtained with 3a were also applied to 3b–d (Table 2). As mentioned previously, the 

presence of an ortho substituent to the thiols moiety is known to strongly influence the MNK 

rearrangement. 9a Preliminary tests showed that, although a clean and quantitative rearrangement 

was obtained for the phenyl substituted aldehyde 4c, the presence of an aliphatic group in the ortho 

position, as the methyl group 3b or tert-butyl 3d systems, resulted in extensive reagent and/or 

product hydrolysis, lowering the final yield of 4. Therefore, irradiation times were decreased to 5 

min and under this conditions a good yield of 3c was obtained (95% conversion, Table 2, Entry 4), 

whereas 3b, with 97% conversion, gave a rearrangement yield of 78% for S-thiocarbamate 4b 

(54%) and the hydrolyzed 6b (24%, Table 2, Entry 2 and 4). For 3d, reagent and product hydrolysis 

were even more evident. The MNK rearrangement furnished 10% yield of 4d and 50% of 6d. It 

seems likely that the aliphatic substituent is not responsible for the reduced yield in the 

rearrangement reaction rather the starting material 3d and the thiocarbamate product 4d are more 

susceptible to hydrolysis. Further variation of the reaction times and reaction temperatures under 

MW induced heating conditions or the use of BF3·OEt2 did not result in better yields.  

 

Table 2. MNK rearrangement for 3a–d. 

                                                            
12 J. D. Moseley, R. F. Sankeya, O. N. Tanga, J. P. Gildaya. Tetrahedron, 2006, 62, 4685. 
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# Aldehyde 
Temp 
(°C) 

Time 
(min) 

Conversion[a
] 

(%) 
4:6:2[a] 

1 3a 230 5 95 90:0:10 
2 3b 230 5 97 54:24:22 
4 3c 230 5 95 99:0:1 
6 3d 230 5 99 10:50:40 

[a] Data obtained using 1H NMR of the crude mixture. 

Compounds 3b and 3d were also irradiated without solvent and an increased yield of rearranged 

product was obtained for 3b (90%, Table 2 Entry 3), whereas 3d gave a higher yield of 4d (25%) 

with an amount of 6d (48 %). Because of the low yields of 4d, the synthesis of trithiophenol amine 

1d was not further investigated. However, it must pointed out that the MNK rearrangement is 

effective (60% of rearranged product as 4d and 6d) and can still be synthetically useful. Moreover, 

2b and 2d can be recycled. S-thiocarbamoyl aldehydes 4a–c were purified by column 

chromatography after removal of the solvent by distillation at low pressure.  

 

 

 

 

 

2.3 Synthesis of ortho-trithiophenol amines 

 

The resulting S-thiocarbamoyl aldehydes 4a–c were subsequently used for reductive amination in 

the presence of NaBH(OAc)3/NH4OAc. The yields of 5a–c after purification were satisfactory (ca. 

50%). The only by product of the reaction was the benzylic alcohol arising from the reduction of the 

corresponding aldehyde. The final step can be driven to completion under reductive conditions 

(lithium aluminium hydride), whereas hydrolytic methods (KOH/EtOH) gave only partial 

deprotection. The desired 1a–c ligands were obtained in good yields after aqueous work up (60–65 

%) Scheme 4. These compounds are known to have low stability under oxidative or basic 
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conditions (formation of disulfides and dibenzo[1,5] dithiocines) 13 and, for these reasons, they were 

usually used directly for the synthesis of the corresponding metal complexes without further 

purification. 14 

 

 

Scheme 4. Synthetic procedure for the synthesis of 1a-c 

The synthesis can be further optimized by carrying out the reductive amination and deprotection in 

a one-pot procedure. This strategy has been tested on 4c affording the product in quite good yields. 

Therefore, only three steps are required to obtain the trithiophenol amines from the commercially 

available salicaldehydes. 

Furthermore, in parallel with the synthetic pathway described above, another synthetic 

approach was attempted. To achieve directly the ligand, firstly it was prepared using a threefold 

reductive amination, as presented above, followed by the Miazaky-Newmann–Kwart rearrangement 

of the ligand itself. Although the threefold introduction of the thiocarbamoyl groups proceeded 

smoothly, the rearrangement did not take place and a mixture of either rearranged or non-rearranged 

products was observed. The synthesis is depicted in Scheme 5. 

                                                            
13 K. Kanakarajan, H. Meier. J. Org. Chem. 1983, 48, 881. 
14 a) R. Burth, A. Stange, M. Schäfer, Eur. J. Inorg. Chem. 1998, 1, 1759. b) C. Belle, C. Bougault, M.-T. Averbuch, A. Du-Rif, J.-L. 
Pierre. J.-M. Latour, L. Le Pape. J. Am. Chem. Soc. 2001, 123, 8053. 
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Scheme 5 

2.4 Conclusions 

In conclusion, the synthetic methodology reported allows the synthesis of ortho-substituted 

trithiophenolamines 1a-c with very satisfactory yields via a three step procedure starting form 

commercially available aldehydes. This approach led us to the possibility, for the first time, to 

access this important class of ligands in a systematic way using either commercially or readily 

available building blocks. Moreover, the synthesis of thio-aldehydes could be important for the 

preparation of salan, salen and salalen ligands. This methodology will be employ for the synthesis 

of a large library of this class of ligands for applications in coordination chemistry and catalysis. 

 

2.5 Experimental Section 

General methods: Chemicals and solvents were purchased from commercial suppliers and used as 

supplied. Starting materials such as 3-substituted salycil aldehydes 2a-d are commercially available 

or easily accessible from the corresponding phenols. 1H-NMR spectra were recorded on a Bruker 

AC 250 (250.18 MHz) or Bruker Avance DRX 300 (300.13 MHz) spectrometer, using partially 

deuterated solvent or TMS as internal references (TMS = 0.00 ppm, CHCl3= 7.26 ppm). ESI-MS 

and EA 

Synthesis of substituted O-2-formylphenyl dimethylthiocarbamate (3a-d). 

Substituted salicyl aldehydes 2a-d, (0.05 mol) were dissolved in dry acetonitrile (20 ml) under 

nitrogen at room temperature. K2CO3 (26.25g, 0.2 mol) was added to the stirred solution. After 10 
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min solid dimethylthiocarbamoyl chloride (7.4 g, 0.06 mol) was added and the mixture heated at 

80°C. After 24 hours the mixture was cooled at room temperature, the solid residue was filtered and 

washed with EtOAc (25 ml). The organic layer washed with water (3 x 15 ml), dried over Na2SO4 

and concentrated under reduced pressure. The product was purified by flash chromatography (SiO2, 

Petroleum Ether:EtOAc 8:2). 

O-(2-formylphenyl)dimethylthiocarbamate (3a): white solid; yield: 75%; 1H-NMR (250MHz, 

CDCl3): δ= 10.07 (s, 1H), 7.91(d, J = 9.0 Hz, 1H), 7.89 (t, J = 9.0 Hz 1H), 7.4 (t, J = 13.0 Hz, 1H), 

7.13 (d, J= 13.0 Hz 1H), 3.44 (d, J = 15.0 Hz, 6H) ppm; 13C NMR (62.9 MHz, CDCl3): δ= 187.92, 

154.81, 134.43, 129.23, 128.69, 126.00, 123.96, 111.49, 43.40, 38.92 ppm. 

O-(2-Formyl-6-methylphenyl) dimethylthiocarbamate (3b): orange oil; yield: 77%; 1H-NMR 

(250MHz, CDCl3): δ= 10.02 (s, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.30 (t, J = 

7.5, 1H), 3.46 (d, J = 10 Hz, 6H) 2.43 (s, 3H) ppm; 13C NMR (62.9 MHz, CDCl3): δ= 188.77, 

153.45, 136.70, 132.38, 129.13, 127.55, 126.12, 111.84, 43.33, 38.69, 15.51 ppm. 

O-(3-Formyl-biphenyl-2yl) dimethylthiocarbamate (3c): white solid ; yield: 75%; 1H-NMR 

(250MHz, CDCl3): δ= 10.09 (s, 1H), 7.94 (d, J =7.5, 1H), 7.62 (d, J = 7.5, 1H), 7.49 (s, 1H), 7.41 

(m, 5H), 3.21 (d, J = 18Hz, 6H) ppm; 13C NMR (62.9 MHz, CDCl3): δ= 188.49, 152.45, 136.44, 

130.19, 129.17, 128.39, 127.85, 126.47, 43.40, 38.63 ppm. 

O-(2-Formyl-6-t-butylphenyl) dimethylthiocarbamate (3d); yellow solid; yield:75%, 1H-NMR 

(250MHz, CDCl3): δ= 9.92 (s, 1H), 7.75 (d, J =7.5 Hz, 1H), 7.67 (d, J =7.5 Hz, 1H), 7.30 (t, J = 7.5 

Hz, 1H), 3.48 (s, 6H) 1.40 (s, 9H) ppm; 13C NMR (62.9 MHz, CDCl3): δ= 188.52, 153.30, 142.51, 

133.20, 130.64, 128.53, 125.98, 126.47, 43.40, 39.10, 35.05, 30.83 ppm. 

Synthesis of substituted S-2-formylphenyl dimethylthiocarbamate (4a-d). 

Microwave reactions were performed in 10 ml sealed tubes in a regularly calibrated CEM Discover 

focused 300 W microwave reactor with IR temperature monitoring and non-invasive pressure 

transducer. In a typical procedure O-thiocarbamate 3a-d (1 mmol) was dissolved in NMP (2.5 ml) 

and heated to the required temperature with stirring for a fixed time. The heating time to reach the 

set temperature was typically 60 s, depending on the scale, the maximum wattage supplied (100–

300 W) and the temperature required. The heating time is not included in the quoted hold time for 

any given procedure. The S-thiocarbamate (4a-c) products were isolated either directly by aqueous 

drown-out from NMP solutions, or by extraction into EtOAc followed by flash silica gel 

chromatography. 

S-(2-formylphenyl) dimethylthiocarbamate (4a): Irradiation time 230°C, 5 min. After extraction 

with EtOAc, the crude material was purified by flash (SiO2, Petrolium Ether: Ethyl Acetate 8:2). 

Bright yellow oil; yield 85% 1H-NMR (250MHz, CDCl3): δ= 10.35 (s, 1H), 8.02 (d, J = 5.7 Hz, 
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1H), 7.55 (m, 3H), 3.07 (s, 6H) ppm; 13C NMR (62.9 MHz, CDCl3): δ= 191.82, 165.23, 148.24, 

140.08, 138.58, 135.31, 129.58, 127.75, 37.09 ppm. 

S-(2-Formyl-6-methylphenyl) dimethylthiocarbamate (4b): Irradiation time 230°C, 2 min. After 

extraction with EtOAc, the crude material was purified by flash (SiO2, Petrolium Ether: Ethyl Ether 

7:3). orange oil; yield: 52%; 1H-NMR (250MHz, CDCl3): δ= 10.42 (s, 1H), 7.80 (d, J =7.5 Hz, 1H), 

7.40 (m, 2H), 3.04 (d, J =10 Hz, 6H), 2.43(s, 3H) ppm; 13C NMR (62.9 MHz, CDCl3): δ = 192.06, 

164.61, 143.97, 138.39, 135.47, 131.60, 129.65, 126.20, 37.04, 20.84 ppm. 

S-(3-Formyl-biphenyl-2yl) dimethylthiocarbamate (4c): Irradiation time 230°C, 5 min. After 

extraction with EtOAc, the crude material was purified by flash (SiO2, Petrolium Ether: Ethyl 

Acetate 8:2). Bright yellow oil; yield 94%. 1H-NMR (250MHz, CDCl3): δ= 10.36 Hz (s, 1H), 8.0 

(m, 1H), 7.52 (m, 2H), 7.34 (m, 3H), 7.2 (m, 2H), 2.97 (s, 6H) ppm; 13C NMR (62.9 MHz, CDCl3): 

δ= 191.69, 165.10, 148.26, 140.10, 138.59, 135.34, 130.75, 129.60, 127.77, 127.55, 36.96 ppm. 

 

Synthesis of Tri-(2-N-dimethylthiocarbamoilbenzyl) amine (5a-c):  

Rearranged aldehydes 4a-c (3 mmol) were mixed with ammonium acetate (80 mg, 1 mmol) in THF 

(20 ml) under nitrogen atmosphere. After 2h sodium triacetoxy borohydride (920 mg, 4 mmol) was 

added. The mixture was stirred overnight at room temperature and evaporated to dryness. The 

residue was dissolved in EtOAc and washed twice in ammonium chloride and brine. The organic 

layer was dried over Na2SO4 and concentrated under reduced pressure. The product was purified by 

flash chromatography. (SiO2, Petroleum Ether: EtOAc:TEA 8:2:0.01). 

Tri-(2-N-dimethylthiocarbamoilbenzyl) amine (5a). 55%. Bright yellow oil; yield 55%. 1H-NMR 

(250MHz, CDCl3): δ = 7.53 Hz (d, J = 7.5, 3H), 7.42 (d, J = 5.0 Hz, 3H), 7.31 (t, J= 5.0 Hz, 3H), 

7.21 (t, J = 7.5 Hz, 3H), 3.69 (s, 6H), 2.98 (s, 18H) ppm; 13C NMR (62.9 MHz, CDCl3): δ= 166.50, 

142.82, 136.93, 130,96, 129.02, 128.74, 126.96, 56.95, 36.72 ppm. MS (ESI): calcd for 

C30H36N4O3S3 [M+H]+, 596.1, found 596.2. 

Tri-(2-N-dimethylthiocarbamoil-3-metilbenzyl) amine (5b): 50%. Bright yellow oil; 1H-NMR 

(250MHz, CDCl3): δ= 7.80 (d, J =7.5 Hz, 3H), 7.40 (m, 6H), 3.73(s, 6H), 3.04 (s, 18H), 2.43 (s, 

9H) ppm; 13C NMR (62.9 MHz, CDCl3): δ = 165.70, 147.97, 140.39, 138.30, 133.70, 131.44, 

128.30, 37.04, 20.84 ppm. MS (ESI): calcd for C33H42N4O3S3 [M+H]+, 639.2, found 639.2. 

Tri-(2-N-dimethylthiocarbamoil-3-phenylbenzyl) amine (5c): 53% Yellow oil; 1H-NMR (250MHz, 

CDCl3): δ= 7.80 Hz (d, J = 7.5 Hz, 3H), 7.30 (m, 3H), 7.27 (m, 15H), 7.20 (m, 3H), 3.96 (s, 6H), 

2.85 (s, 18H) ppm; 13C NMR (62.9 MHz, CDCl3): δ = 166.29, 147.85, 144.74, 142,12, 129.53, 

129.37, 129.04, 128.89, 127.32, 126.72, 57.65, 37.19 ppm. MS (ESI): calcd for C48H48N4O3S3 

[M+H]+, 825.3, found 825.3. 
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Synthesis of Tris-(2-mercaptobenzyl) amine (1a-c): To a solution of compound 5a-c ( 0.16 

mmol) in dry THF (2 ml) was slowly added at -70°C LiAlH4 (1.34 ml 1.0 M in THF, 1.34 mmmol). 

After 5 min the mixture was warmed to room temperature and refluxed for 3 hours. The excess of 

LiAlH4 was quenched by careful addition of EtOAc (3 ml) at 0°C. This operation was followed by 

the addition of a solution of H2SO4 (10% water, 2 ml). The mixture was extracted with EtOAc (5 

ml), washed with water and dried over Na2SO4. The resulting solution was concentrated under 

reduced pressure. Due to the instability of the ligands, the products were not purified. 

Tris-(2-mercaptobenzyl) amine (1a). Bright yellow oil; yield 60%. 1H-NMR (250MHz, CDCl3): δ = 

7.33 Hz (d, J = 7.5 Hz, 3H), 7.3 (d, J = 5.0 Hz, 3H), 7.17 (t, J = 5.0 Hz, 3H), 7.21 (t, J = 7.5 Hz, 

3H),  3.69 (s, 6H) ppm; 13C NMR (62.9 MHz, CDCl3): δ = 142.82, 136.93, 130,76, 129.02, 128.74, 

126.96, 56.95 ppm. MS (ESI): calcd for C21H21NS3 [M+H]+, 384.1, found 384.0. 

Tris-(2-mercapto-3-methylbenzyl) amine (2a) Bright yellow oil; yield 60% 1H-NMR (250MHz, 

CDCl3): δ= 7.60 (d, J =7.5 Hz, 3H), 7.25 (m, 6H), 3.73( s, 6H), 2.41 (s, 9H) ppm; 13C NMR (62.9 

MHz, CDCl3): δ =145.97, 140.39, 138.30, 133.70, 131.44, 128.30, 57.04, 21.84 ppm. MS (ESI): 

calcd for C33H42N4O3S3 [M+H], 426.1, found 426.2. 

Tris-(2-mercapto-3-phenylbenzyl) amine (3a): bright yellow oil 65%. 1H-NMR (250MHz, CDCl3): 

δ= 7.38 Hz (m, 3H), 7.35 (m, 3H), 7.30 (m, 15 H), 7.10 (m, 3H), 3.80 (s, 6H), ppm; 13C NMR 

(62.9 MHz, CDCl3): 147.85, 144.74, 142, 12, 129.53, 129.37, 129.04, 128.89, 127.32, 126.72, 

57.65, ppm. MS (ESI): calcd for C39H33NS3 [M+H]+, 612.2, found 612.1. 
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Abstract 

In this chapter, an exploration into new reactivity of V(V) amino triphenolate 

complexes will be described. In particular the activity in oxidative C-C bond 

cleavage of 1,2-diols and, in a preliminary way, β-hydroxy ethers has been 

investigated. These studies were carried out in order to develop catalysts capable 

of controlled oxidative degradation of more challenging substrates, such as lignin 

models to demonstrate the feasibility of producing fine chemicals from a 

renewable carbon feedstock. 

 

 

3.1 Introduction 

The development of efficient catalytic systems able to transform biomass into useful 

chemicals is of great interest in the chemical world because biomass is considered to be the only 

renewable carbon feedstock available.1 Both cellulose and lignin are constituents of non-food based 

biomass and therefore potential sources of complex organic building blocks. Several methods have 

been reported for the conversion of cellulose whereas little progresses have been made for the 

transformation of lignin into valuable compounds. This is related to its highly intricate structure; 

lignin is a polymer organized in irregular carbon-carbon and carbon-oxygen phenolic subunits and 

the abundance of these subunits linkages is different in each type of wood. Despite the diversity of 

lignin, the most common unit includes the β-O-aryl ether (β-O-4) linkages featured in Figure 1. 

                                                            
1 a) A. Corma, S. Iborra, A. Velty. Chem. Rev. 2007, 107, 2411. b) J. N. Chheda, G. W. Huber, J. A. Dumesic. Angew. Chem. 2007, 
119, 7298. c) G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044. 
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Figure 1. Representative structures of a fragment of lignin and the corresponding β−O−4-linked model compound 1. 

This subunit represents a significant percentage of all the linkages, thus is a target of lignin de-

polymerization. For this reason, the development of catalysts that can effectively cleave β-O-

4′bonds under mild reaction conditions could provide the utilization of lignin for high-value 

applications. Aside from the difficulty related to its structural complexity, there are three main 

problems for the efficient use of lignin compounds: firstly the reaction conditions required for its 

degradation such as temperature, pressure2 and solubility,3 secondly the selectivity of the 

transformation in delivering valuable aromatic compounds4 and finally the cost of the entire 

degradation process which has to be convenient in terms of both price and waste products.5 

The primary pathway by which lignin is naturally depolymerized is oxidation using enzymes such 

as lignin peroxidases in the presence of oxidants such as hydrogen peroxide or oxygen. 6 Oxidation 

in aerobic conditions has shown to be advantageous since no added reagents are required. 

Furthermore, it could preserve a high degree of the functionalities present in the original lignin 

polymer. 

A series of recent works report that homogeneous catalysis using non-toxic, abundant and cheap 

metals could provide a selective cleavage of lignin linkages, which as mentioned above, is highly 

desirable under mild and inexpensive conditions.5 

In general, the homogeneous catalysts employed for lignin oxidation can be summarized into five 

classes of compounds: Schiff base catalysts,7,8 metalloporphyrins,9 tetraamidomacrocyclic iron 

                                                            
2 a) V. M. Roberts, V. Stein, T. Reiner, A. Lemonidou, X. Li, J. A. Lercher, Chem.-Eur. J. 2011, 17, 5939. b) C. Zhao, J. A. Lercher. 
ChemCatChem. 2012, 4, 64. 
ì3 a) A. G. Sergeev, J. F. Hartwig. Science, 2011, 332, 439. b) A. Wu, B. O. Patrick, E. Chung, B. R. James. Dalton Trans. 2012, 41, 
11093. c) J. M. Nichols, L. M. Bishop, R. G. Bergman, J. A. Ellman. J. Am. Chem. Soc. 2010, 132, 12554. 
4 a) C. Crestini, A. Pastorini, P. Tagliatesta. J. Mol. Catal. A: Chem. 2004, 208, 195. b) A. R. Gaspar, J. A. F. Gamelas, D. V. 
Evtuguin, C. P. Neto. Green Chem. 2007, 9, 717. 
5 a) P. Zakzeski, C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen. Chem. Rev. 2010, 110, 3552. b) F. G Calvo-Flores, J. A. 
Dobado. ChemSusChem.2010, 3, 1227. c) J. C. Hicks, J. Phys. Chem. Lett. 2011, 2, 2280. d) M. P. Panday, C. S. Kim. Chem. Eng. 
Technol. 2011, 34, 29. e) P. Azadi, O. R. Inderwildi, R. Farnood, D. A. King. Renew. Sust. Energy Rev. 2013, 21, 506. 
6 a) T. K. Kirk, R. L Farrell. Annu. Rev. Microbiol. 1987, 41, 465. b) M. Tien, T. K Kirk. Science, 1983, 221, 661. 
7 K. C. Gupta, A. K. Sutar, C.-C. Lin. Coord. Chem. Rev. 2009, 253, 1926. 
8 C. Canevali, M. Orlandi, L. Pardi, B. Rindone, R. Scotti, J. Sipila, F. J. Morazzoni. Chem. Soc., Dalton Trans. 2002, 3007. 
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catalysts,10,11 polyoxometalates12 and Co(III)13 and Mn(III)14 salts. For each system reported 

stoichiometric amounts of oxidants, e.g. hydrogen peroxide or oxygen, were employed. 

 

3.1.1 Vanadium(V) as catalysts for lignin degradation 

 

Among these catalytic systems developed in the last few years and in view of this thesis 

work, attention will be focused on homogeneous catalysis based on vanadium complexes, that have 

been shown to be able to degradate lignin model compounds under aerobic oxidation conditions. 

Son and Toste reported the V(V) tridentate Schiff-base catalyst 1 that effectively and selectively 

cleaves β-O-4′bonds in lignin substructures as depicted in Scheme 1.15,16 

 

Scheme 1. Lignin model degradation by 1 

The reaction was carried out using 10% catalyst 1 loading, at 80°C in MeCN and after 24 h it was 

possible to obtain almost complete conversion of lignin model compound (95%), yielding the 

products 3, 4 and 5. It was found that after 24 h under anaerobic conditions the same products were 

obtained, albeit in reduced yield. This demonstrates that the V(V) is reduced to V(IV) species 

during the reaction, but oxygen is not fundamental for catalyst turnover. For this catalytic system, a 

non-oxidative C-O bond cleavage was proposed which proceeds through one-electron process as 

depicted in Scheme 2.  

 

                                                                                                                                                                                                     
9 a) G. Labat, B. Meunier. J. Org. Chem. 1989, 54, 5008. b) W. Zhu, W. T. Ford. J. Mol. Catal. 1993, 78, 367. c) I. Artaud, K. Ben-
Aziza, D. Mansuy. J. Org. Chem. 1993, 58, 3373.  
10 T. J Collins. Acc. Chem. Res. 2002, 35, 78. 
11 D.-L. Popescu, A. Chanda, M. J. Stadler, S. Mondal, J. Tehranchi, A. D. Ryabov, T. J. Collins. J. Am. Chem. Soc. 2008, 130, 
12260. 
12 J. A. F. Gamelas, A. R. Gaspar, D. V. Evtuguin, C. P. Neto. Appl. Catal., 2005, 295, 134. b) J. A. F. Gamelas, A. R. Gaspar, D. V. 
Evtuguin, C. P. Neto. Chem. Eng. Commun. 2009, 196, 801. c) Y. S. Kim, H.-M. Chang, J. F. J Kadla. Wood Chem. Technol. 2007, 
27, 225. 
13 R. Di Cosimo, H. C. Szabo. J. Org. Chem. 1988, 53, 1673. b) G. A. A. Labat, A. R. Goncalves. Appl. Biochem. Biotechnol. 2008, 
148, 151. 
14 S. Hwang, Y.-W. Lee, C.-H. Lee, I.-S. J. Ahn. Polym. Sci., Part A: Polym. Chem., 46, 6009. 
15 S. Son, F. D. Toste. Angew. Chem. Int. Ed. 2010, 49, 3791. 
16 J. M. W. Chan, S. Bauer, H. Sorek, S. Sreekumar, K. Wang, F. D. Toste. .ACS Catal. 2013, 3, 1369. 
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Scheme 2. Proposed mechanism for vanadium-catalyzed non-oxidative cleavage reported by Toste.5 

The first step involves the exchange of the alcholate ligand on the vanadium(V) complex 1 with the 

benzylic hydroxyl group, followed by the abstraction of the hydrogen to form a ketyl radical which 

subsequently eliminates the aryloxyradical. The reaction proceeds with the elimination of the 

hydroxyl group from the resulting enolate yielding an enone product and the reduced species of 

vanadium (IV) which can be re-oxidized into vanadium (V) species by the aryloxyradical. These 

latter results are supported by thermodynamic studies of hydrogen atom transfer reaction between 

phenol derivatives and vanadium–oxo species.17 The same authors inspired by these promising 

results obtained with vanadium(V) catalyst 1, proceeded toward the extension of this catalytic 

system into lignin derived from Miscanthusgiganteus. The reactions were followed by GPC and it 

was found that V(V) catalyst 1 remained active and can efficiently perform the cleavage of the β-O-

4 linkage yielding valuable aromatic compounds. 

More recently, Hanson et al. reported other vanadium complexes as catalysts for oxidative 

C-C bond cleavage of a phenolic lignin compound.18 These studies had the aim to identify catalysts 

able to control the selectivity toward C-C or C-O bond cleavage of lignin in aerobic oxidation. Both 

in catalytic aerobic oxidation conditions and the cleavage of specific linkages represent a challenge 

in homogeneous catalysis, as this strategy would provide the production of fine chemicals without 

the use of stoichiometric reagents. As previously mentioned, lignin is composed by irregular 

                                                            
17C. R. Waid- Mann, X. Zhou, E. A. Tsai, W. Kaminsky, D. A. Hrovat, W. T. Borden, J. M. Mayer, J. Am. Chem. Soc. 2009, 131, 
4729. 
18 a) Hanson, S. K.; Wu, R.; Silks, L. A. Angew. Chem. Int. Ed. 2012, 51, 3410. b) Sedai, B.; Diaz-Urrutia, C.; Baker, R. T.; Wu, R.; 
Silks, L. A.; Hanson, S. K. ACS Catal. 2011, 1, 794. 
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phenolic subunits, each containing 1,2-hydroxy ether substituents. In these studies the reactivity of 

8-quinolinate vanadium(V) complex 6 was investigated with the phenolic lignin model compound 7 

(Scheme 3). In previous work, it was found that complex 6 is able to catalyze the aerobic oxidation 

of benzylic and allylic alcohols when an additive, generally a base, is used.19 The reaction was 

carried out using 10 mol% of catalyst 6 in the presence of triethylamine and the results are 

presented in Scheme 3. 

 

 
Scheme 3.  

 

Under these conditions the reactions affords the products derived from cleavage of the C-C bond: 

compound 8 (2,6-dimethoxybenzoquinone 40%), an acrolein derivative 9 (38%), and the 

corresponding oxidized ketone 10 (38%) (Scheme 3). According to the authors, the formation of the 

acrolein product 9 was unexpected as the cleavage of C-C bond between alkyl and phenyl moieties 

is a rare reaction. The cleavage observed with the formation of the acrolein product, which differs 

from the non-oxidative C-O cleavage reported by Toste, indicates that the reaction selectivity 

depends upon the catalyst used. When the same lignin model was tested with Toste’s catalyst the 

products derived from C-O bond cleavage were observed. This confirms that selectivity in cleavage 

sites can be achieved using different catalysts. The role played by the phenoxy group in the lignin 

model compound in selectivity was highlighted when the experiment was carried out using a non-

phenolic lignin model compound. In this case, products derived from the C-C bond cleavage were 

not detected. 

                                                            
19 S. K. Hanson, R. Wu, L. A. Silks, Org. Lett. 2011, 13, 1908. 
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According to the authors, the mechanism of the oxidative C-C bond cleavage may involve the 

formation of a phenoxy radical intermediate. This pathway has been also proposed for metal 

complexes based on cobalt.20 

More recently, the same group reported a vanadium complexes based on bis-(phenolate) ligands 

(Scheme 4). These complexes were employed as catalysts in the aerobic oxidation of lignin model 

compounds and in the oxidation of 1,2-diols and benzyl alcohol.21 In this case, for lignin 

transformation, vanadium complexes have shown different selectivity toward the cleavage of C-O 

and C-H bond and lower reactivity in comparison with the V(V) 8-quinolinate 6 previously 

discussed. For example, it was found that complex 10, employing phenolic lignin model compound 

7, gave only 20% of conversion, whereas for 11, a non-phenolic lignin model, 84% of conversion 

was obtained with a mixture of C-O and C-H bond cleavage products, as reported in Scheme 4. 

 

 
Scheme 4. Lignin model 11 degradationcatalyzed by 10. 21 

 

In view of the latest studies obtained with V(V) complexes and in the light of the promising 

results achieved previously with V(V) amino triphenolate catalysts in oxidation reactions,22 we 

tested the potential reactivity of V(V) amino triphenolate complexes in the oxidative carbon-carbon 

bond cleavage in aerobic conditions of diols and β-hydroxy ether compounds. 

The work here presented will be focused on the reactivity of a vanadium (V) amino triphenolate 

complex in the oxidative C-C bond cleavage under aerobic conditions of both 1,2-diols and one 

ethereal derivative.   

 

                                                            
20 a) C. Canevali, M. Orlandi, L. Pardi, B. Rindone, R. Scotti, J. Sipila, F. Morazzoni, J. Chem. Soc. Dalton Trans. 2002, 3007. b) E. 
Bolzacchini, C. Canevali, F. Morazzoni, M. Orlandi, B. Rindone, R. Scotti, J. Chem. Soc. Dalton Trans. 1997, 4695. c) E. 
Bolzacchini, L. B. Chiavetto, C. Canevali, F. Morazzoni, M. Orlandi, B. Rindone, J. Mol. Catal. A. 1996, 112, 347. 
21 G. Zhang, B. Scott, W. Ruilian, L. A. Silks, S. Hanson. Inorg. Chem. 2012, 51, 7354. 
22 M.; Mba, M. Pontini, S. Lovat, C. Zonta, G. Bernardinelli, E. P. Kundig, G. Licini. Inorg. Chem. 2008, 47, 8616. 
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3.2 V(V) Amino Triphenolate Complex 

The V(V) amino triphenolate complex used in this study was synthesized as depicted in 

Scheme 5 and characterized as reported previously. 22 

 

V

N

O O

O
O

t-Bu

t-Bu
t-Bu

N

OH HO

HO

t-Bu

t-Bu
t-Bu VO(O i-Pr)3

THF

Yield 90%15 16  
Scheme 5. Synthesis of V(V) complex 16. 

 

Equimolar amounts of the ligand 15 with the precursor VO(Oi-Pr) in dry THF in inert atmosphere 

afforded complex 16 in high yield (90%).  

 

3.2.1 Electrochemical and UV-Vis Studies 

To evaluate the potential of V(V) amino triphenolate to be employed as oxidant, cyclic voltammetry 

experiments were performed in dichloromethane for the complex 16 which exhibits quasi-reversible 

waves at -625 mV (vs Ag/AgCl) corresponding to a vanadium (IV) species and at -1.024 mV (vs 

Ag/AgCl)  corresponding to a vanadium (III) species, as reported in Figure 2. 

 

 
Figure 2. Cyclic voltammograms of V(V) complex 16 (5·10-4 M) in CH2Cl2 at 298 K (scan rate = 100 mV s−1) 

using 0.1 M NBu4PF6 as supporting electrolyte, glassy carbon working electrode, platinum wire auxiliary 

electrode, and Ag/AgCl/NaCl (sat) reference electrode.  

 

In order to further characterize the vanadium species at different oxidation states, the UV-vis 

spectra of the three different oxidation states corresponding to V(V), V(IV) and V(III) of 16 were 

recorded in CH2Cl2. This was performed by measurement of UV-Vis spectrum during 

electrochemical reduction of the V(V) complex 16 (Figure 3).  
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Figure 3. UV-Vis spectra of V(V) complex 16 (5·10-4 M) in CH2Cl2 at 298 K. Red Curve V(V) species at equilibrium potential, 

green curve at -625 mV potential and blue curve at -1025 mV potential.  

 

The red curve, corresponding to the V(V) species 16 has a maximum at 460 nm, was recorded at 

initial time at equilibrium potential. After the application of a -700 mV (vs Ag/AgCl) potential, the 

UV-vis spectrum of a different species was recorded, with a maximum of adsorbtion at 470 nm. 

This spectrum can be assigned can assigned to the corresponding V(IV) species (green curve, 

Figure 3). Finally, applying a potential of-1025 mV (vs Ag/AgCl), a third spectrum was obtained, 

with a maximum of absorption at 567 nm, that we could assign to the V(III) species (blue curve).  

 

3.3 Catalytic reactivity of vanadium (V) catalyst: Pinacol aerobic oxidation 

Investigations to assess the potential of the V(V) amino triphenolate complex 16 to catalyze 

an oxidative C-C bond cleavage reaction were performed. The reactions were carried out using 

pinacol as substrate in different solvents and were monitored in order to detect the consumption of 

the pinacol and formation of the products. The results obtained are summarized in Table 1.  

 

 

Table 1. Aerobic oxidation of pinacol catalyzed by 16 (10%). 

Entry  Solvent Time (h) Conversion b % 

1 DCE 8 >98 

2 
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4 
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>98 
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5 Toluenec 24 >98

a Reaction conditions: 10% of catalyst 16, [substrate]0= 0.05M, at 80 ºC, 
performed in air. b Conversions were determined by 1H-NMR (%) analysis on 
the crude of the reaction mixture after complete consumption of substrate using 
dimethylsulfone as internal standard. c.The reaction was performed in the 
presence of triethylamine 2 mol%.  

 

It was found that complete consumption of pinacol after 2 h in >98% 1H-NMR yield was observed 

using pyridine and NMP as solvent. Toluene and DCE afforded reaction slightly slower (4 and 8 h 

respectively to go to completion). Having established that pyridine has a positive effect on the rate 

of the reaction, we also investigated the effect of another base such as triethylamine (20%). In the 

presence of triethylamine, it was possible to observe a significant decrease of the rate of the reaction 

resulting in longer reaction time (24 h Table 1 entry 5). Due to the less problematic handling of 

toluene, in respect to pyridine and NMP, it was chosen as optimal solvent for the further studies and 

the reactions were carried out without the presence of any additives. 

The catalyticity of the system was tested as well by decreasing the catalyst loading down to 0.2 %. 

The results are reported in Table 2.  

 

Table 2. Aerobic oxidation of pinacol catalysed by 16: catalyticity. 

#  16 (%) Solvent Time (h) T (°C) Conversion % 

1 2 Toluene 4 80 >98 

2 1 Toluene 8 80 >98 

3 0.2 Toluene 48 80 >98 

4 0.2 Neat 24 80 >98 

Reaction conditions: 2-0.2% of catalyst 16, [substrate]0= 0.05M, at 80 ºC, 
performed in air. Yield determined by 1H-NMR (%) analysis of the crude 
reaction mixture after complete consumption of substrate using 
dimethylsulfone as internal standard. 
 

Even using a lower catalyst loading (2 mol%) we obtained a complete conversion of the reagent 

into product in 4 only hours, indicating that the system is able to performed 100 TON. When the 

reaction was performed using 1 mol% and 0.2 mol% of catalyst in toluene complete consumption of 

pinacol was obtained after 8 h and 48 h respectively (entry 2, 3 Table 2). The reaction was also 

carried out in neat conditions and after 24 h using 0.2 mol% of catalyst complete conversion of 

pinacol was obtained.  

To further investigate the scope of the reaction, two different substrates were studied: 1,1-2,2–

tetraphenylethandiol and 1,2-diphenyl-1,2-ethandiol. The results are summarized in Table 3.  
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Table 3. Oxidative cleavage of 1,2 diols under aerobic condition. 

Entry Substrate Product 16 (mol%) Time (h) Conversion 

(%) 

 
1 

 

 

 

 

 
1 

0.2 

 
8 
24 

 
>98 
>98 

 
2 

  

 
1 

0.2 

 
4 
24 

 
>98 
>98 

Reaction conditions: 1-0.2 % of catalyst 16, [substrate]0= 0.05M, at 80 ºC, performed in air. 
Yield determined by 1H-NMR (%) analysis on the crude reaction mixture after complete 
consumption of substrate using hexamethyl benzene or 1,3,5-tri-tert-butyl benzene as internal 
standard. 
 

When the reactions were performed using 1 mol% of catalyst 16, complete consumption of the 

starting material was observed after 8 h and 4 h, respectively. Complete conversion into the 

corresponding carbonyl derivatives was obtained also working at lower catalyst loading (0.2%) 

after 24 h.  It is worth of mention that for 1,2-diphenly-1,2-ethandiol in both cases the only product 

obtained was benzaldeyde (Table 3 entry 2 and 4) without any farter oxidation to the corresponding 

benzoic acid.  

 

3.5 Aerobic C-C bond cleavage of 1,2-hydroxyethers. 

The catalytic activity of complex 16 has been preliminary tested with an 1,2-hydroxyether 

compound, 1,2-diphenyl- 2-methoxyethanol, a compound that contains a β-hydroxy linkage.  

The aerobic oxidation of 1,2-diphenyl- 2-methoxyethanol in the presence of complex 16 (10%) was 

tested both in toluene and DCE, in presence or absence of a base. The results obtained are reported 

in Table 4.  
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Table 4. Aerobic oxidation of 1,2-diphenyl-2-methoxyethanol catalysed by 16 (10%). 

Entry  mol% 16 Solvent Additive Time (h) Conversion % 

1 0.2 DCE Et3N 48 20 

2 0.2 Toluene Et3N 4 days 20 

3 0.2 DCE __ 48 >98 

4 0.2 Toluene __ 3 days >98 

5 1 DCE __ 36 >98 

6 -- DCE __ 48 -- 

 Reaction conditions: 1-0.2 mol% of catalyst 16, [substrate]0= 0.05M at 80 ºC, 
performed in air. Yield determined by 1H-NMR (%) analysis of the crude reaction 
mixture after complete consumption of substrate using 1,3,5-tri-tert-butyl benzene as 
internal standard  

 

From the data reported in the Table 4, it is possible to observe that also in this case catalyst 16 is 

able to perform the oxidative C-C cleavage in both toluene and DCE under aerobic conditions. The 

products obtained by substrate cleavage are mainly benzaldehyde (up to 77%), benzoic acid (7%) 

and benzoin methyl ether (16%) determined via 1H-NMR (internal standard, 1,3,5-tri-tert-butyl 

benzene) (Table 4 entry 5). 

Also in this case, the presence of the base inhibits the reactions (Table 4 entry 1 and 2). Reactions 

are faster in DCE and the complete consumption of the starting material was obtained after 36 h 

(1% catalyst loading entry 5) or 48 h (0.2% catalyst loading entry 6).  

In order to determine if the oxidation occurs via oxidation to the corresponding ketone and 

subsequent C-C bond cleavage, as suggested in some recent work reported by Hanson et al.,24 we 

attempt the oxidation of (2-methoxy-2-phenylacetophenone) (Scheme 6). Even after 48 h no 

products originating from C-C bond cleavage could be detected (benzaldehyde or benzoic 

acid/ester). The reaction has been monitored via 1H-NMR and 51V-NMR spectroscopy and no 

changes on the NMR signals of the substrate/catalyst were registered. 

 

 

Scheme 6. Oxidation of 2-methoxy-2-phenylacetophenone under aerobic conditions 
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This result, even if very preliminary, indicate that V(V) catalyst 16 operates with a different 

mechanism in respect to the ones studies by Hanson et al. Further investigation on different 

substrates and reaction conditions will be performed in the future, in order to elucidate the reaction 

mechanism and apply the method to lignin itself. 

 

3.5 Conclusions  

 

V(V)/TPA complex 16 has been found to be a very effective catalyst for the aerobic oxidative C-C 

cleavage of tertiary and secondary vicinal diols. The mild reaction conditions and high yields 

achieved for 1,2-diols and an ethereal derivative make this catalyst not only competitive to those 

previously reported but also good candidate for lignin model compounds transformation. 

 

 

3.6 Experimental part 

General methods: All chemicals and solvents were purchased from commercial suppliers and used 

as supplied. Triphenolamine23 and its corresponding V(V) complex were synthetized as previously 

reported.22 1H-NMR spectra were recorded on Bruker Avance DRX 300 (300.13 MHz) 

spectrometer, using partially deuterated solvent, CHCl3 = 7.26 ppm. 51V NMR spectra have been 

recorded at 301 K with 10000 scans at 78.28 MHz with a broadband probe. V(V) complex 16, once 

prepared in Glove-Box under inert atmosphere, can be handled in open air. 

 

UV-Vis measurements were carried out on a Shimadzu UV-1700PC spectrophotometer equipped 

with a photomultiplier detector, double beam optics, and D2 and W light source. 

All oxygen or moisture sensitive compounds have been handled under controlled atmosphere in a 

glove-box Mbraun MB 200MOD, equipped with a MB 150 G-I recycling system. UV-Vis spectra 

was recorded using a quarz cell with a 1 cm of path length, of a solution of 16 (5X10-4 M) in 

CH2Cl2 at 298 K.  

 

Cyclic voltammetry experiments were performed using a BAS EC-epsilon potentiostat. A standard 

three-electrode electrochemical cell was used. Glassy carbon electrode from BAS and a Pt wire 

                                                            
23 L. J. Prins, M. Mba Blázquez, A. Kolarović, G. Licini. Tetrahedron Lett. 2006, 47, 2735. 



Chapter 3 
___________________________________________________________________________________________________________ 

42 
 

were used respectively as working and auxiliary electrode. Potentials were refered to an Ag/AgCl/3 

M NaCl reference electrode.  

The experimental data were obtained under N2 atmosphere using V(V) complex 16 (5·10-4 M) in 

CH2Cl2 at 298 K (scan rate = 100 mV s−1) and 0.1 M NBu4PF6 as supporting electrolyte 

 

Catalytic Experiments 

In a typical experiment, the substrate (0.1 mmol of 1,2 diol or β-hydroxy compound), complex 16 

(0.01 mmol) and the internal standard (0.5 mmol of 1,3,5-tri-tert-butylbenzene, dimethysulfone or 

hexamethylbenzene) were dissolved in 2 mL of toluene or DCE (1,2- dichloroethane). The reactions 

were performed in a 5 mL glass vessel equipped with a Teflon stopcock and stirred under air. An 

initial 1H-NMR spectra was recorded and afterward the vessel was closed and heated at 80° C under 

magnetical stirring. The reactions were monitored periodically, recording 1H-NMR spectra by 

transferring an aliquot of the mixture in NMR tube after concentrating with reduced pressure. After 

the consumption of the starting materials, product yields were determined by integration against the 

internal standard. 

 

Compounds Determination 

Aerobic Pinacol oxidation. (Table 1 and 2) 

In a 5 mL glass vessel, the substrate 0.1 mmol and 0.01-0.002 mmol of complex 16 were dissolved 

in toluene under aerobic condition. To the mixture (red colour) was added 0.05 mmol of internal 

standard (dimetilsulfone). An initial 1H-NMR was detected and the mixure was left stirring at 80° 

C. During the course of the reaction, it was possible to observe a change of colour in the solution at 

the end of the reaction, from deep red to slightly green and purple. After cooling and exposure of 

the mixture to air the reddish colour was again observed. 

The consumption of pinacol was revealed and quantified after recording periodically 1H-NMR 

spectra.  

 

Aerobic oxidation of 1,1-2,2–tetraphenylethandiol (Table 3, entry 1). 

Same procedure followed for pinacol. In this case, to a 2 mL of toluene solution containing the 

substrate 0.1 mmol and the catalyst 16 1-0.2 mmol, was added 0.05 mmol of hexamethylbenzene as 

internal standard and the product detected was benzophenone (C13H10O). 
1 H NMR (300 MHz, CDCl3) δ 7.82 – 7.79 (m, 4H), 7.76-7.45 (m, 6H), 1.26 (s, 3H).  

MS m/z (M+, 182). 
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Aerobic oxidation of 1,2-diphenyl-1,2-ethandiol (Table 3, entry 2) 

Same procedure followed for pinacol. In this case, to a 2 mL solution of toluene, containing 0.1 

mmol of substrate and 1-0.2 mmol of catalyst 16, was added 0.05 mmol of 1,3,5-tri-tert-

butylbenzene as internal standard and the product detected was benzaldehyde.  
1H NMR (300 MHz, CDCl3) δ 10.03 (s, 1H), 7.87-7.84 (d, 2H), 7.63-7.48 (m, 3H), 1.34 (s, 9H). 

MS m/z (M+ H+, 108) 

 

1,2-diphenyl-2-methoxyethanol. (Table 4)  

Same procedure followed for pinacol. In this case, to a 2 mL solution of DCE or toluene, containing 

0.1 mmol of substrate and 1-0.2 mmol of catalyst 16, was added 0.05 mmol of 1,3,5-tri-tert-

butylbenzene as internal standard and the product detected was benzaldehyde, benzoic acid and 

methyl benzoate. The data were compared with original spectra recorded for each sample. 

Benzaldehyde: 1H NMR (300 MHz, CDCl3) δ 9.97 (s, 1H), 7.87-7.84 (m, 2H), 7.63-7.48 (m, 3H), 

1.34(s, 9H). 

Benzoic Acid: 1H NMR (300 MHz, CDCl3) δ 8.13-8.11 (d, 2H), 7.64-7.59 (t, 1H), 7.50-7.45 (t, 

2H), 1.34 (s, 9H). 

Methyl Benzoate: 1H NMR (300 MHz, CDCl3) δ 8.04-8.01 (m, 2H), 7.54-7.52 (t, 1H), 7.50-7.4 (m, 

2H), 1.34 (s, 9H). 
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Abstract 

This chapter describes the synthesis and characterization of new Fe(III) amino triphenolate 

complexes and their use as catalysts in carbon dioxide activation, in particular the cycloaddition to 

epoxides and oxetanes to yield cyclic carbonates. Fe(III) amino triphenolates allows CO2 activation 

under mild conditions (low temperature and CO2 pressure) with a series of epoxides and oxetanes. 

Different activities have been observed depending on the substituents on the phenyl ring and the 

nuclearity of the complexes. The catalytic reactivity of their analogues, V(V) and Mo(VI) 

complexes has been also investigated.  

 

 

 
 

  

 

Part of the work reported in the Chapter has been published: 1 

 

 

4.1 Introduction 

In recent years, the transformation of carbon dioxide into useful chemicals has been of great interest 

to the scientific community because CO2 can be considered a renewable carbon source (C1), 

abundant, cheap and non-toxic.2 3 Since fossil fuels (coal, oil) are limited, carbon dioxide can be 

considered as an alternative chemical feedstock for the production of high-value products. Despite 

this desire, very few industrial processes utilize carbon dioxide as sustainable carbon resource and 

this is mainly due to the low reactivity of CO2. However, the annual consumption of CO2 per year 

                                                            
1 C. J. Whiteoak, B. Gjoka, E. Martin, M. Martinez Belmonte, G. Licini, A. W. Kleij, Inorg. Chem. 2012, 51, 10639. 
2 Carbon Dioxide as Chemical Feedstock (Ed.: M. Aresta), Wiley-VCH, Weinheim, 2010. 
3 T. Sakakura, J. Choi and H. Yasuda, Chem. Rev., 2007, 107, 236. 
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as a synthetic building block is 110 Mtonnes. 2 4 Industrial processes in which carbon dioxide is 

used 5 include the synthesis of urea from CO2 and ammonia, 6 the synthesis of salicylic acid from 

phenol and CO2 (the Kolbe-Schmitt reaction) 7  and the synthesis of cyclic carbonates and 

polypropylene carbonate from CO2 and epoxides. 4 8 9 

The production of urea is the largest scale chemical process currently in operation (100 

Mtonnes/year). 10 This is also an excellent example of the use of the waste CO2 obtained as by-

product in the synthesis of hydrogen from methane. 

The synthesis of salicylic acid has been already developed on an industrial scale since the 1890.11 

The process used today is based on the reaction of sodium phenolate with CO2 at a pressure of 0.5 

mPa at 0° C. After absorption of approximately one mole of CO2 the temperature is risen to 50°C 

for several hours until the reaction is completed (Scheme 1).  

 

 

Scheme 1. Industrial synthesis of salicylic acid. 

 

The transformation of carbon dioxide and epoxides/ oxetanes into cyclic organic carbonates 

is a rather important reaction (equation 1). 

 

Catalysts employed for industrial scale synthesis: KI or TBAB (tetrabutylammonium bromide) 

 

                                                            
4 a) H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. Bell, J. E.Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. 
Domen, D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. 
Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. 
Schmidt, A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas, Chem. Rev., 2001, 101, 953. b) M. North.; R. Pasquale.; C. 
Young. Green Chem., 2010, 12, 1514.  
5 I. Omae, Catal. Today, 2006, 115, 33. M. Aresta and A. Dibenedetto, Dalton Trans., 2007, 2975. 
6a) F. Shi, Y. Q. Deng, T. L. Si-Ma, J. J. Peng, Y. L. Gu, B. T. Qiao, Angew. Chem., Int. Ed. 2003, 42, 3257. b) C. C. Tai, M. J. 
Huck, E. P. Mc Koon, T. Woo, G. J. Jessop, Org. Chem. 2002, 67, 9070. c) R. Nomura, Y. Hasegawa, M. Ishimoto, T. Toyosaki, H. 
Matsuda. J. Org. Chem. 1992, 57, 7339. 
7 a) H. Kolbe, E. Lautemann. Annalen 1869, 113, 125. b) R. Schmitt, E. Burkard, Ber. Dtsch. Chem. Ges. 1877, 20, 2699. c) Y. 
Kosugi, Y. Imaoka, F. Gotoh, M. A.; Rahim, Y. Matsui, K. Sakanishi. Org. Biomol. Chem. 2003, 1, 817. d) A. Sclafani, L. 
Palmisano, G. Farneti. Chem. Commun. 1997, 52. 
8 a) M. Yoshida, M. Ihara, Chem.–Eur. J., 2004, 10, 2886; b) J. Sun, S.-I. Fujita and M. Arai, J. Organomet. Chem., 2005, 690, 3490; 
c) W.-L. Dai, S.-L. Luo, S.-F. Yin and C.-T. Au, Appl. Catal., A, 2009, 366, 2. 
9 T. Sakakura, K. Kohno. Chem. Commun., 2009, 1312. A. Decortes, A. M. Castilla, A. W. Kleij, Angew. Chem., Int. Ed., 2010, 49, 
9822. 
10 F. Barzagli, F. Mani, M. Peruzzini, Green Chem., 2012, 13, 1267. 
11 M. Aresta, A. Dibenedetto, Catal. Today, 2004, 98, 455. 
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These class of compounds are of interest for a wide variety of applications, including the 

production of aprotic polar solvents, fine chemical intermediates, starting materials for the synthesis 

of polymers, engineering plastics, biomedical materials and electrolytes in lithium ion batteries.12 

The current production of cyclic carbonates is around 100 ktonnes/year. 8 Traditionally the 

synthesis of these compounds was carried out using phosgene as reagent (equation 2), which is 

highly toxic and in addition, this methodology affords two equivalents of corrosive hydrochloric 

acid. 

 

The necessity to replace this conventional route with greener and safer process motivated intense research to 

find new effective systems for producing cyclic carbonates by using CO2. 

 

4.1.1 Cyclic carbonate synthesis from epoxides and CO2 catalyzed by metal based complex 

 

As previously mentioned, the addition of CO2 to epoxides cleanly generates cyclic carbonates, 3b 7 8 

which are the thermodynamically favored products or, under different reaction conditions, 

polycarbonates. 13 14 

The synthetic routes developed for the preparation of cyclic carbonates from carbon dioxide and 

epoxides (equation 1) are all catalytic processes. Catalysts that have been used are amines or 

phosphines, 15 ammonium 16 17 or metal halides18 19 and metal complexes. The catalysts currently 

                                                            
12 a) J. H. Clements, Ind. Eng. Chem. Res., 2003, 42, 663.; B. Schaffner, F. Schaffner, S. P. Verevkin, A. Borner, Chem. Rev., 2010, 
110, 4554. b) M. North, F. Pizzato, P. Villuendas, ChemSusChem, 2009, 2, 862. c) M. North, M. Omedes-Pujol, Tetrahedron Lett. 
2009, 50, 4452. d) W. Clegg, R. W. Harrington, M. North, F. Pizzato, P. Villuendas, Tetrahedron: Asymmetry, 2010, 21, 1262. e) M. 
North and P. Villuendas, Org. Lett., 2010, 12, 2378; M. North and M. Omedes-Pujol, Beilstein J. Org. Chem., 2010, 6, 1043. f) C. 
Beattie, M. North and P. Villuendas, Molecules, 2011, 16, 3420. g) M. Morcillo, M. North and P. Villuendas, Synthesis, 2011, 1918; 
P. Lenden, P. M. Ylioja, C. Gonzalez-Rodriguez, D. A. Entwistle, M. C. Willis, Green Chem., 2011, 13, 1980. 
13 X-Bing. Lu, D. J. Darensbourg, Chem. Soc. Rev., 2012, 41, 1462. 
14 a) H. Sugimoto and S. Inoue, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 5561. b) D. J. Darensbourg, R. M. Mackiewicz, A. 
L. Phelps, D. R. Billodeaux, Acc. Chem. Res., 2004, 37, 8. c) G. W. Coates and D. R. Moore, Angew. Chem., Int. Ed., 2004, 43, 6618. 
d) D. J. Darensbourg, Inorg. Chem., 2010, 49, 1076. e) M. R. Kember, A. Buchard, C. K. Williams, Chem. Commun. 2011, 47, 141. 
15 a) Y. M. Shen, M. Shi. Adv. Synth. Catal. 2003, 345, 337. b) H. Kawanami, Y. Ikushimaab. Chem. Commun. 2000, 21, 2089. c) L. 
N. He, H. Yasuda, T. Sakakura. Green Chem. 2003, 5, 92. d) J. W. Huang, M. Shi. J. Org. Chem. 2003, 68, 6705. e) J. L. Song, Z. F. 
Zhang, S. Q. Hu, T. B. Wu, T. Jiang, B. X. Han. Green Chem. 2009, 11, 1031. f) Y. B. Xiong, H. Wang, R. M. Wang, Y. F. Yan, B. 
Zheng, Y. P. Wang. Chem. Commun. 2010, 46, 3399. g) Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema, T. Sakai. Org. Lett. 2010, 
12, 5728. 
16 D. J. Darensbourg, M.W. Holtcamp Coord. Chem. 1996, 153, 155. 
17 A. Sibaouih, T. Repo. Appl. Catal. A, 2009, 365, 194. 
18 N. Kihara, N. Hara, T. Endo. J. Org. Chem. 193, 58, 6198. 
19 V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Org. Lett. 2002, 4, 2561. 
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employed for industrial production of cyclic carbonates (equation 1) are metals and ammonium 

halides such as KI or tetrabutylammonium bromide (TBAB). 

These salts are suitable for large scale synthesis because they are stable, soluble in the reaction 

products (cyclic carbonate), and they do not solidify when the reaction mixture is concentrated 

during the purification step. In Scheme 2 a possible reaction mechanism for the synthesis of cyclic 

carbonates starting from epoxides and CO2 catalyzed by tetrabutylammonium bromide (TBAB) is 

reported. 18 This reaction proceeds through the ring opening of the epoxide by nucleophilic attack of 

the halide ion (Br-), which leads to an oxy anion species that is transformed into the corresponding 

cyclic carbonate after reaction with CO2. 

 

O

R
Br

BrR

-O NBu4

O O-

O

R Br

NBu4O O

O

R

NBu4

NBu4

Br

CO2

 

Scheme 2 General mechanism of cyclic carbonates synthesis catalysed by TBAB. 18 

 

These catalytic systems require high temperatures (100-150°C) and pressures (up to 20 bar) and the 

catalysts are difficult to recover and reuse. 20 Furthermore they are active only with terminal 

epoxides.  

Metal complexes have been found to be much more active catalysts in order to operate 

under milder conditions (lower temperature and CO2 pressure) and with less reactive epoxides. 

Metal-based complexes usually are used in the presence of a co-catalyst, a quaternary ammonium 

halide, 6 21 (tetra-butyl ammonium chloride, bromide or iodide) or phosphonium halide. Examples 

of co-catalysts anchored on the ligand backbone, arising a bifunctional systems, have been also 

reported. 22 23 24 Generally, in the catalytic cycle, the metal complex acts as Lewis acid, activating 

the epoxide toward nucleophilic attack by the halide co-catalyst. Then the insertion of CO2 and ring 

closure yields the cyclic carbonate (Scheme 3).  

                                                            
20 M. Aresta, A. Dibenedetto, A. Angelini. Chem. Molec. Sciences, and Chem. Ing. 2013, 563. 
21 S. Fukuoka, M. Kawamura, K. Komiya, M. Tojo, H. Hachiya, K. Hasegawa, M. Aminaka, H. Okamoto, I. Fukawa, S. Konno. 
Green Chem. 2003, 5, 497. 
22 S. Klaus, M.W. Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem. Rev. 2011, 255, 1460. 
23 J. Mel_ndez, M. North, P. Villuendas, C. Young, Dalton Trans. 2011, 40, 3885. 
24 T. Ema, Y. Miyazaki, S. Koyama, Y. Yano, T. Sakai, Chem. Commun. 2012, 48, 4489. 
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Scheme 3 General reaction mechanism for metal catalysed cyclic carbonate synthesis. 

 

In the recent years effective catalysts for the synthesis of cyclic carbonates from epoxides have been 

reported. It is worth mentioning that Al, Co, Cr salen (1-3), 25  Zn(salophen) (4), 26 , 27 

Zn(metalloporphyrin) (5)23 phatocyanine (6) and Fe (7) and Al (8) amino triphenolate complexes28 

29 are the most successful catalysts reported in literature Figure 1. 

 

 

                                                            
25 a) A. Decortes, A. M. Castilla, A. W. Kleij, Angew. Chem. 2010, 122, 10016. b) L.-N. He, J.-Q. Wang, J.-L. Wang, Pure Appl. 
Chem. 2009, 81, 2069. c) X.-B. Lu, X.-J. Feng, R. He, Appl. Catal. A. 2002, 234, 25. d) X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, 
Y.-M. Wang, C.-X. Bai, H. Wang, R. Zhang, J. Am. Chem. Soc. 2004, 126, 3732. 
26 A. Decortes, M. Martinez Belmonte, J. Benet-Buchholz, A. W. Kleij, Chem. Commun. 2010, 46, 4580. b) A. Decortes, A. W. 
Kleij, Chem. Cat.Chem. 2011, 3, 831. 
27 D. Ji, X. Lu, R. He, Appl. Catal. A. 2000, 203, 329. 
28 C. J. Whiteoak, E. Martin, M. Martínez Belmonte, J. Benet-Buchholz, A. W. Kleij, Adv. Synth. Catal., 2012, 354, 469. 
29 C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin, A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228. 
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Figure 1 

 

 

In Table 1 are reported the results obtained using the different catalytic systems in the reaction with propylene (9) or 1-

hexene oxide (10). 

 

Table 1. Effect of different metal catalysts (1-8) on the reaction of terminal epoxides (propylene oxide (9) or 1-hexene 

oxide (10) with CO2. 

# Sub Cat (%) co-cat. PCO2(bar) T(°C) TOF (h-1) solvent Time (h) 

1 9 1 (0.125) nBu4NI 6 35 63.0 neat 8 

2 9 2 (0.1) nBu4NBr 35 45 316 neat 16 

3 9 3 (0.075) DMAP 7 100 916 CH2Cl2 1 

4 9 4 (0.5) nBu4NI 10 85 n.d. MEK 18 

5 10 5 (0.03) nBu4NBr 17 120 12.000 neat 10 
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6 9 6 (0.18) nBu3N 50 140 801 neat 1.2 

7 9 7 (1) Bu4NI 10 25 n.d. MEK  18  

8 10 8 (0.5) nBu4NI 10 30 901 neat 2 

 

In most of the cases the reactions can be carried out at relatively low CO2 pressures (6-10 bar) and 

catalyst loadings. In the case of the reaction with porphyrine 5 as catalyst the presence of the co-

catalyst in the ligand allowed to very high reactivity (TOF’s up to12.000 h-1). 

More recently, effective catalytic systems based on Fe(III) and Al(III) amino triphenolate 

complexes have been reported. 26 27 Either the dinuclear Fe(III) and Al(III) amino triphenolate 

complexes 7 and 8 have shown excellent reactivity with a broad substrate scope and low catalyst 

loadings. 

In the present work the reactivity of amino triphenolate complexes as catalysts for cyclic carbonate 

formation has been explored more in detail. In particular the effect of the nature of the ligand on the 

reactivity of Fe(III) amino triphenolate complexes, and the resulting nuclearity, has been 

investigated together with the performance of the corresponding analogous V(V) and Mo(VI) 

complexes. 

 

 

4.2 Synthesis and Characterization of Iron(III) ortho-substituted Amino Triphenolate 

Complexes 

4.2.1 Synthesis 

All the ligands used in this study have been synthesized by a three-fold reductive amination. 30 

Fe(III) complexes were obtained by the reaction of the triphenolamines L1-4H3, 11, where R = H, 

methyl, tert-butyl, or phenyl with 3 equiv. of sodium hydride in tetrahydrofuran and subsequent 

addition of 1 equiv. of FeCl3, after filtration to remove the sodium salt, analytically pure mono- or 

di-iron(III)complexes were obtained. Scheme 4. 

 

                                                            
30 L. J. Prins, M. Mba Blázquez, A. Kolarović, G. Licini. Tetrahedron Lett. 2006, 47, 2735. 
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Scheme 4. Synthesis of Fe(III) complexes 12a-d 

 

All complexes 12a-d have been characterized by Maldi-TOF-MS and elemental analysis. Crystals 

suitable for X-ray analysis have been obtained for all the compounds, confirming the mono and 

dinuclear nature of the complexes.  

 

4.2.2 X-Ray Diffractometric Studies 

 

Crystals for X-ray diffractometric studies were obtained by slow evaporation of 

tetrahydrofuran solutions of the complexes, except for 12a where crystals were grown from a 

concentrated toluene solution. The solid state structures of iron(III) amino triphenolate complexes 

are shown in Figure 2, with selected bond lengths and angles reported in Tables 2 and 3.  

 

12a 

12b 

12c 
12d 
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Figure 2. Solid state structures of 12a (top left), 12b (top right), 12c (bottom left), and 12d (bottom right). H-atoms, co-crystallized 
solvent and disorder have been omitted for clarity, and only a partial numbering scheme is provided. 

 

The molecular structure of the complex 12a consists of two iron(III) amino triphenolate complexes 

forming a dinuclear assembly, with one phenoxide O-atom from each individual complex acting as 

a bridging ligand, resulting in the formation of a central Fe2O2 motif. The solid state structures of 

the complexes 12b, 12c and 12d are mononuclear containing an apical ligand originating from the 

solvent media. The molecular structure 12c contains a water ligand in place of the expected 

tetrahydrofuran ligand, which is likely to be a consequence of ligand exchange with the water 

present in the solvent used during crystallization. The molecular structure of complex 12b, as has 

been mentioned, shows the mononuclear form of the complex, but further investigations (vide infra) 

indicate that a dinuclear structure may be easily formed as in the case of complex 12a. No evidence 

of dinuclear complexes in the cases of 12c or 12d have been found. The solid state structure of 12b 

displays idealized C3 symmetry, with the corresponding angle between the amine and the oxygen 

atom of the tetrahydrofuran ligand (178.24(4)°) close to the ideal value of 180° expected in a 

perfectly C3 symmetrical molecule. The structure also displays similar bond length values for all the 

Fe−O bonds with the ligand and an elongated Fe−O bond length for the bond between the 

tetrahydrofuran and metal. The addition of tert-butyl groups, impacts severely on the C3 symmetry 

of the complex in 12c compared with 12b. It appears that the tert-butyl groups have a significant 

steric effect on the structure. The angles between of O(1)−Fe(1)−O(2), O(1)−Fe(1)−O(3), and 

O(1)−Fe(1)− O(3) are significantly different from those expected in a perfect C3 symmetrical 

molecule and have values of 113.79(17)°, 115.77(17)°, and 130.41(17)°, respectively. These 

distortions are similar in value to those observed by Safaei and co-workers for a similar complex 

containing a methanol ligand in the apical position. 31  A further difference in this molecule 

compared to 12b is that not all the Fe−O bond lengths between the metal and the ligand have the 

same length, with one of them being clearly elongated. The observation of these differences in 

structure adds weight to the proposal that the original tetrahydrofuran ligand has exchanged with the 

water ligand during crystallization to form a more stable complex. Similar but less significant 

distortions from perfect C3 symmetry are also observed in the case of 12d compared with 12c 

indicating that the phenyl groups contribute less to the steric constraints immediately around the 

Fe(III) center.  

 
 

 

                                                            
31 E. Safaei, H. Sheykhi, T. Weyhermüller, B. Eckhard. Inorg. Chim. Acta. 2012, 384, 69. 



Chapter 4 

_________________________________________________________________________ 

55 

 

Table 2. Selected bond lengths (A) of iron (III) complexes. 
Bond Lengths (A) 

 12a 12b 12c 12d 

Fe(1)-O(1) 1.9713(18) 1.8643(12) 1.885(4) 1.856(3) 

Fe(1)-O(2) 1.8611(18) 1.8555(12) 1.853(4) 1.859(3) 

Fe(1)-O(3) 1.8519(19) 1.8685(11) 1.861(4) 1.878(3) 

Fe(1)-O(4) 2.0642(17) 2.1063(11) 2.097(4) 2.055(5) 

Fe(1)-N(1) 2.1440(20) 2.1795(13) 2.178(4) 2.163(4) 

 

The resulting angles being 116.22(14)°, 121.82(14)°,and 121.94(14)° for O(1)−Fe(1)−O(2), 

O(1)−Fe(1)−O(3),and O(1)−Fe(1)−O(3), respectively. The dinuclear complex 12a displays two Fe−O bonds 

with lengths of 1.8611(18) Å and 1.8519(19) Å corresponding to the non-bridging phenoxide moieties and 

two longer Fe−O bonds with lengths of 1.9713(18) Å and 2.0642(17) Å for the bonds involving the bridging 

phenoxide moieties. These bond lengths are similar to those previously reported for a similar dinuclear 

structure. 32 

 

Table 3. Selected angles (deg) of iron (III) complexes 

Bond Angles (deg) 

 12a 12b 12c 12d 

O(1)-Fe(1)-O(2) 120.76(8) 121.15(5) 113.79(17) 116.22(14) 

O(1)-Fe(1)-O(3) 116.00(8) 119.08(6) 130.41(17) 121.94 (14) 

O(2)-Fe(1)-O(3) 123.14(9) 119.58(5) 115.77(17) 121.82(14) 

O(1)-Fe(1)-O(4) 77.44(7) 89.28(5) 92.16(16) 93.41(18) 

O(1)-Fe(1)-N(1) 91.15(8) 91.71(5) 89.75(16) 90.11(13) 

N(1)-Fe(1)-O(4) 168.33(8) 178.24(4) 172.98(17) 173.95(19) 

 

 

4.2.3 UV−VIS Studies. 

The electronic spectra of all complexes 12a-d are very similar to one another. A metal-to-

ligand charge transfer band (MLCT) is observed in all the complexes around 400−450 nm. A 

second MLCT band is detected for all complexes around 310−360 nm and in addition, 12a displays 

a third MLCT band in this region as a shoulder at 358 nm which is most likely as a result of the 

bridging phenoxide moieties.  

                                                            
32 A. J. Chmura, M. G. Davidson, C. J. Frankis, M. D. Jones, M. D. Lunn. Chem. Commun. 2008, 1293. 
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In order to investigate the behaviour of the Fe(III) complexes in solution, titration studies were 

performed. In this regard, it has been reported that complex 7, similar to 12b, can be disrupted by 

titration with propylene oxide. 26 From the UV-Vis spectra of 12b a slight change in the absorption 

curve was observed after addition of the titrant (Figure 3, bottom), whereas titration of the 

remaining complexes (12a, 12c and 12d) with propylene oxide did not give rise to any significant 

changes in the spectra. These data suggested that the complex 12a due to its strong tendency to 

form dinuclear species did not show any changes in the UV-Vis spectra. On the contrary, 12c and 

12d complexes because of their mononuclear nature, did not give any change upon addition of 

propylene oxide (Figure 4 top and bottom).  

 

 

 
Figure 3. UV-Vis spectra of 12a (top) and 12b (bottom) (1.0 x10-4M) titrated with propylene oxide (0 

to 1000 equiv.) in toluene. 

 

12a 

12b 

12c 
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Figure 4. UV-Vis spectra of 12c (top) and 12d (bottom) (1.0x10-4M) titrated with propylene oxide (0 to 1000 equiv.) in 

toluene. 

 

However, when the dinuclear complex 12a is titrated with pyridine (a much more basic ligand), a 

significant change in spectra is observed (Figure 5). For comparison the same experiment 

performed with the mononuclear complex 12d is reported, where the addition of an excess of 

pyridine causes only minor modification of the UV-Vis spectrum (Figure 5 right). These results 

suggest that 12a is a stable dinuclear complex also in solution and only in the presence of highly 

basic ligands it can form the corresponding mononuclear species. 

 

 
Figure 5. UV−vis spectra in toluene of 12a (left), 12d (right) 1x10-4M before and after addition of pyridine (0-1000 eq). 

 

4.2.4 1H NMR Characterization. 

 

Paramagnetic complexes generally exhibit broad resonances with large chemical shifts. The 
1H NMR spectra of all the complexes were recorded in CDCl3 at 298 K and are shown in Figure 6, 

with the region between 15 and −5 ppm omitted for clarity (this region principally displays 

resonances for the protio-impurities of the deuterated solvents, a broad resonance for the alkyl 

protons of the ligand and in the case of 12c, a broad resonance for the protons of the tert-butyl 
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group). Additionally, the 1H NMR spectra of all complexes were obtained in a CDCl3:d5-Pyridine 

(90:10 v/v) mixture to allow for comparison with the species obtained in the solution magnetic 

susceptibility measurements. The paramagnetically shifted resonances have been assigned 

tentativelly, as efforts to acquire 2D NMR spectra were unsuccessful.  

In the 1H NMR spectra of both 12a and 12b, there are no observable strongly shifted 

resonances to indicate the presence of a paramagnetic species. Most likely, in the case of 12a, as a 

result of strong antiferromagnetic coupling between the two iron(III) centers, very broad signals 

were observed. Upon addition of pyridine to both of these complexes it is possible to observe the 

appearance of new resonances in the 90 to −80 ppm range, indicating the formation of paramagnetic 

species. In the case of 12a/pyridine, we propose that the observed resonances, shown in Figure 6, 

are those of the aromatic protons of the ligand.  

 

 
Figure 6. 1H NMR spectra (500 MHz, CDCl3, 298 K) of 12a, 12b, 12c, and 12d; with/without the addition of d5- Pyridine. For 

clarity 15 to −5 ppm region has been  omitted 

 

Three of the aromatic protons appear as a pair of resonances (Ha′ =Ha″, Hb′ = Hb″, and Hc′ = Hc″), with the 

resonance corresponding to the remaining ortho-proton of the aromatic moiety being likely present in the 

0−12 ppm range. We propose that a pair of resonances is observed for each proton because of the possibility 

of either one or two pyridine ligands coordinating to the iron(III) center, and this is further confirmed by the 

presence of only a single set of resonances when the experiment is run in neat d5-pyridine. In the case of a 

single coordinated pyridine, the complex would display trigonal bipyramidal geometry, whereas upon 

coordination of a second pyridine ligand the complex becomes octahedral in geometry, resulting in different 
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orbital overlap and therefore displaying slightly different chemical shifts. The proposed ability of 12a to bind 

two external ligands and form an octahedral complex is a result of lower steric constraints imposed by this 

ligand compared with the other ligand structures and this complex would also be similar in structure to the 

first iron(III) amino triphenolate complex reported by Koch and co-workers, 12a (dipyridine), containing two 

pyridine molecules as apical ligand Scheme 5. 33 

 

 
Scheme 5. Schematic Representation of the Proposed Reaction of Pyridine with 12a 

 

In the case of 12b, the steric constraints imparted by the methyl groups of the ligand prevent the 

coordination of a second pyridine ligand, and hence only a single set of resonances (Ha, Hb, and 

Hc) are observed for each proton. The protons from the methyl group of 12b are observed as the 

second resonance (CH3) at around 60 ppm. Both the spectra of 12c and 12d display the 

paramagnetically shifted resonances for the aromatic protons (Ha, Hb, and Hc) in the absence of 

pyridine, further adding to the evidence that these two complexes exist in their mononuclear form. 

Upon addition of pyridine to 12c there is no change in the spectrum, as the pyridine is only 

substituting the tetrahydrofuran ligand to yield 12c (Py) in situ. 

The same behaviour is not true for 12d as after addition of pyridine the resonances which we 

propose are assigned to the protons of the ortho-phenyl group disappear (Hd, He, and Hf). The X-

ray structure of 12d (Py) has been resolved and indicates that pyridine can coordinate and act as a 

ligand though resulting in a reduced rotational freedom of the Ph groups of the triphenolamine 

ligand Figure 7 and Table 4. 

 

                                                            
33 J. W. Hwang, K. Govindaswamy, S. A. Koch. Chem. Commun. 1998, 1667. 
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Figure 7. Solid state structure of 12d (Py). H-atoms and co-crystallized solvent molecules, and rotational disorder are 

omitted for clarity. A partial numbering scheme (around the Fe center) is provided. 

 

Table 4. Selected bond lengths (Ǻ) and angles (deg) in 12d (Py). 

Bond Lengths (Ǻ)  Bond Angles (º)  

    

Fe(1)-O(1) 1.856(3) O(1)-Fe(1)-O(2) 123.40(14) 

Fe(1)-O(2) 1.870(3) O(1)-Fe(1)-O(3) 117.45(13) 

Fe(1)-O(3) 1.860(3) O(1)-Fe(1)-N(1) 88.43(13) 

Fe(1)-N(1) 2.182(4) O(1)-Fe(1)-N(2) 89.76(13) 

Fe(1)-N(2) 2.135(4) N(1)-Fe(1)-N(2) 177.99(13) 

 

 

4.2.5 Electrochemical Studies 

Cylic voltammetry experiments have been performed in dichloromethane for all the complexes 

Figure 8. The complexes 12c and 12d exhibit respectively quasi-reversible waves at -0.825 and -

1.008 V. Complexes 12a and 12b have a more complex electrochemical behavior. In the case of the 

dinuclear species 12a, a single quasi reversible wave at -0.288 V was obtained. This value is 

remarkably lower than for the mononuclear species, most likely because there is an easier reduction 

of the metal center due to the delocalized electron density between the two iron centers. The data 

observed and the cyclic voltamograms are reported in Table 5 and Figure 8. 
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3a 
3b 

 

3c 

 
3d 

Figure 8. Cyclic voltammograms at 298 K in CH2Cl2 (scan rate = 100 mV s−1) using 0.1 M NBu4PF6 as supporting electrolyte at a 

glassy carbon working electrode, platinum wire auxiliary electrode, and Ag-AgCl (sat. NaCl) reference electrode of 12a, 12b, 12c, 

and 12d. 

 

 

 

 

 

Table 5. Electrochemical data for 12a, 12b, 12c and 12d. a 

 E1/2{Complex} 

Complex E1/2(1) E1/2(2) 

12a -0.288 - 

12b -1.013 -0.930b 

12c -1.008 - 

12d -0.825 - 

a In CH2Cl2 at 298 K (scan rate = 100 mV s-1) using 0.1 M NBu4PF6 
as supporting electrolyte at a glassy carbon working electrode, 
platinum wire auxiliary electrode and Ag-AgCl (sat. NaCl) reference 
electrode. b Potential for irreversible reduction 

 

-2,5E-05

-1,5E-05

-5,0E-06

5,0E-06

1,5E-05

2,5E-05

-1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6

V

Current (A)

-5,0E-06

0,0E+00

5,0E-06

1,0E-05

1,5E-05

2,0E-05

-2,0E+00-1,5E+00-1,0E+00-5,0E-010,0E+005,0E-01

-2,5E-05

-1,5E-05

-5,0E-06

5,0E-06

1,5E-05

2,5E-05

3,5E-05

-2,0 -1,5 -1,0 -0,5 0,0
-3,0E-05

-1,0E-05

1,0E-05

3,0E-05

5,0E-05

-2,0 -1,5 -1,0 -0,5 0,0

A

v

Current (A)
Current (A) 

V 

Current (A) 

V 



Chapter 4 

_________________________________________________________________________ 

62 

 

4.3 Iron (III) complexes: Catalytic activity  

 

The reactivity of complexes 12a-d has been explored in the cycloaddition of CO2 to epoxides. As 

mentioned before, recently the dinuclear iron (III) amino triphenolate complex 7 was found to be an 

excellent catalyst for the conversion of CO2 and epoxides into cyclic carbonates using an 

alkylammonium bromide or iodide as co-catalyst. 26 In order to investigate the reactivity of the new 

complexes and compare their performance, experiments were carried out by using similar reaction 

conditions previously applied to 7. 

The results obtained from the cycloaddition of carbon dioxide (CO2) to propylene oxide are 

reported in Table 6. 

 

Table 6. Yields (%) aof cyclic carbonate from propylene oxide obtained using Fe(III) complexes 7 and 12a-d as 

catalysts and TBAB as co-catalyst. 

Substrate Solvent 7 12a 12b 12c 12d 

 

DCM n.d. 16 13 82 78 

MEK 65 56 72 85 88 

aYields (%) calculated via 1-H NMR with  mesitylene as internal standard. Conditions: 2.0 mmol epoxide, 0.01 mmol 12a or 7, 0.02 
mmol 12b-d, 0,1 mmol nBu4NBr, 2,0 mmol mesitylene, 5mL of solvent, 1.0 Mpa CO2, (0.2 MPa in the reaction catalysed by 7), 
25°C, 18h. MEK = methylethylketone, DCM= dichloromethane. 
 

The reactions were performed in a 25 mL autoclave, charged with methylethyl ketone (MEK) and 

dichloromethane (DCM) solutions containing the catalyst and co-catalyst, substrate and mesitylene 

as internal standard. From the data reported in Table 6 it is evident that the mononuclear catalysts 

12b-d afford better results than the dinuclear ones. Catalytic performances are better when the 

reactions are carried out using a coordinating solvent such as MEK. This is particularly true in the 

case of catalyst 12b (13 vs 72% yields) probably due to the preferential mononuclear nature of the 

catalyst under these reaction conditions. 

In order to investigate the scope of the reaction, the catalytic systems were tested with a series of 

different substrates, including the less reactive oxetanes Table 7.  

 

Table 7. Cycloaddition of CO2 to differently epoxides and oxetanes using catalysts 12a-d.  

// 
 Substrate Product 12a 12b 12c 12d 

   (%)a (%)a (%)a (%)a 

 
1 

 

  

 
12 

 
10 

 
90 

 
67 
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2  

 

 
83 
 

 
75 

 
82 

 
50 

 
3 

 

 
 

 

 

 
 

42 
 

 
 

62 

 
 

38  
(75)b

 
 

45 
(67)b 

 
4 

 

 

 
10 

 
94 

 
90 

 
50 

 
5 

 

 

 
 

4 

 
 

8 

 
 

8 

 
 

10 

a Yields (%) calculated via 1-H NMR, mesitylene as internal standard. Conditions: 2.0 mmol epoxide, 0.01 mmol 12a or 0.02 mmol 

12b-d, 0,1 mmol nBu4NBr, 2,0 mmol mesitylene, 5mL of solvent, 1.0 Mpa CO2, 85°C, 18h. b yields after 36h.  

 

With styrene oxide (entry 1) the mononuclear complexes are more effective catalysts, especially 

12c. With trans-2,3-epoxy butane (entry 2) all catalysts were found to convert stereospecifically the 

internal epoxide into the corresponding trans cyclic carbonate in very good reactivity and 

selectivity.  

Cyclohexene oxide (entry 3), a very interesting substrate for the production of polycarbonates, 

afforded the bicyclic carbonate in yields up to 75%.  

The reaction with oxetanes, which are particularly challenging substrates due to their low reactivity 
34 35 were quite successful. In particular with a simple oxetane (entry 4) a six-membered cyclic 

carbonate was obtained with yields up to 94% (with catalyst 12b). Some reactivity could be also 

observed with the 3,3-dimethyl oxetane (up to 10%).  

Very interestingly, in the case of 12c it was possible to obtain the solid state structure of the 

complex whereby the tetrahydrofuran ligand is replaced by a trans-2,3-epoxybutane ligand Figure 

9, indicating that the substrate is indeed able to bind to the iron(III) center. Thus, it seems that the 

catalytic activity of these complexes is controlled by their tendency to form dimeric structures, the 

solvent medium, the reaction temperature and the steric impediment upon coordination of the 

substrate to the Fe(III) center. In Table 8 are reported selected angles and bonds 

 

                                                            
34 D. J. Darensbourg, A. Horn Jr, A. I. Moncada, Green Chem. 2010, 12, 1376.  
35 D. J. Darensbourg, P. Ganguly, W. Choi, Inorg. Chem. 2006, 45, 3831. 
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Figure 9. X-ray Crystal Structure of 12d (trans-2,3-epoxybutane). H-atoms, co-crystallized solvent molecules and the disorder in the 

position of the epoxide ligand and the Ph groups of the ligand L4 are omitted for clarity. Only a partial numbering scheme is 

provided. 

 

Table 8. Selected Bond Lengths (Ǻ) and Angles (deg) in 12d (trans-2,3-epoxybutane). 

Bond Lengths (Ǻ)  Bond Angles (º)  

Fe(1)-O(1) 1.860(2) O(1)-Fe(1)-O(2) 116.23(10) 

Fe(1)-O(2) 1.860(2) O(1)-Fe(1)-O(3) 119.79(10) 

Fe(1)-O(3) 1.880(2) O(1)-Fe(1)-N(1) 90.66(9) 

Fe(1)-O(4) 2.145(10) O(1)-Fe(1)-O(4) 98.00(30) 

Fe(1)-N(2) 2.174(2) O(4)-Fe(1)-N(1) 171.10(30) 

 

 

4.4 V(V) and Mo(VI) Amino Triphenolate Complexes as catalysts for CO2 fixation. 

4.4.1 Mo(VI) Amino Triphenolate: Catalytic Activity 

The reactivity of other amino triphenolate complexes, in particular Mo(VI)/TPA 13 and V(V)/TPA 

14, was also investigated.  
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Beside the finding of new catalysts active in the CO2 cycloaddition to epoxides, the possibility that 

complexes such as 13 act as catalysts in the CO2 addition to epoxides could allow the direct 

synthesis of cyclic carbonates from olefins via a two consecutive steps: epoxidation and subsequent 

CO2 cycloaddition (Scheme 6). Mo(VI) complex 13 , in fact, is an active catalyst for the activation 

of tert-butylhydroperoxide in the epoxidation of olefins. 36 (Scheme 6). 

 

Scheme 6. Two step catalytic synthesis of cyclic carbonates via epoxidation and CO2/epoxide cycloaddition.  

 

Mo(VI) complex 13 has been tested as a catalyst in the CO2 cycloaddition with a series of terminal 

and internal epoxides. The experiments were performed under the best conditions obtained for the 

Fe(III)/TPA catalysts. The reactions were carried out under neat conditions 

(for liquid epoxides) or using a minimal amount of MEK (for the solid ones). With terminal 

aliphatic epoxides TBAI was used as co-catalyst while with more hindered substrates (styrene and 

trans-2,3-epoxybutane) TBAB was employed. 26 The results obtained are reported in Table 9.  

 

Table 9. CO2 cycloadditions with different epoxides in the presence of Mo(VI) 13 as catalyst.  

Entry Substrate 13 (mol%) 
Co-catalyst 

(mol%) 

T 

(°C) 

Yield 
1H-NMR (%)a 

                                                            
36 F. Romano, A. Linden, M. Mba, C. Zonta, G. Licini. Adv. Synth. Catal. 2010, 352, 2937. 
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1  

 

 

0.5 TBAI (2.5) 45 70 

2 1.0 TBAI (2.5) 45 77 

3 1.0 -- 45 n.r. 

4 1.0 -- 85 13 

5 1.0 -- 100 5 

6 -- TBAI (2.5) 45 58 

7 

 

+ 0.5 ml MEK 

1.0 TBAB (2.5) 45 20 

8 -- TBAB (2.5) 45 16 

9  

 

 

1.0 TBAB (2.5) 45 16 

10 -- TBAB (2.5) 45 10 

11 1.0 TBAB (2.5) 85 40 

12 -- TBAB (2.5) 85 10 

Conditions: substrates (1.0 g), catalyst= (0.5 mol%), ( 1mol%), TBAB = tert-butylammonium bromide, TBAI = tert-butylammonium 
iodide, 45-85°C, 10 bar  initial CO2 pressure in a 30 mL autoclave. a Yields determined by 1H-NMR from the crude reaction mixture. 

 

The results obtained show that Mo(VI) complex 13 is a less effective catalyst than the 

corresponding Fe(III) and Al(III) complexes. However, in the case of 1,2-epoxyhexane, a terminal 

epoxide and using TBAI as co-catalyst, reasonably high conversions were obtained (77% yield). 

This result is quite promising for the future design of a two-step procedure (epoxidation/CO2 

cycloaddition) on terminal olefins.  

4.4.2 V(V) Amino Triphenolate: Catalytic Activity 

The reactivity of the V(V) complex 14 has also been investigated. V(V) salophen complexes have 

been reported to be able to catalyze carbon dioxide addition to epoxides, although the catalytically 

active species in the process are indeed in-situ formed polyoxometalate species. 37 

Initially, reactions were performed with 1,2-epoxyhexane and styrene oxide in order to compare 

these results with the ones obtained with Mo(VI) 13. (Table 10). In this case much better results 

have been obtained, with yields up to 99%, even upon decreasing the catalyst/co-catalyst loading. In 

order to investigate the scope of the catalytic system, a variety of differently substituted epoxides 

were tested. In all cases substrates were transformed into the corresponding carbonates in excellent 

yields using catalyst loadings as low as 0.5 mol % and TBAI/TBAB as co-catalysts (1.25 mol %) at 

45°C under neat conditions. 

 

                                                            
37 A. Coletti.; C. J. Whiteoak., V. Conte.; A. W. Kleij. ChemCatChem. 2012, 4, 1190. 
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Table 10: CO2 cycloaddition with a series of terminal epoxides with V(V)/TPA 14 as catalyst. 

 

Entry R 14 (%) Co-catalyst (%) Solvent 

Temperature 

(°C) 

Conversion 
1H-NMR 

(%)a 

1  
n-Bu 

 

1.0 TBAI (2.5) -  >99 
2  

0.5 
 

TBAI (1.25) 
 
- 

 
 

 
>99 

3  
Ph 

 

1.0 TBAB (2.5) MEK   >99 

4 0.5 
 

TBAB (1.25) MEK   >99 

5 CH2Cl 
 

0.5 
. 

TBAI (1.25) -  >99 

6 CH2OH 
 

0.5 
 

TBAI (1.25) -  >99 
 

7 CH2OMe 
 

0.5 TBAI (1.25) -  >99 

8 CH2OEt 0.5 TBAI (1.25) -  >99 
Conditions: substrates (1.0 g), catalyst= (0.5 mol %), (1 mol%), TBAB= tert-butylammonium bromide, TBAI= tert-butylammonium 
iodide, 45-85°C, 10 bar initial CO2 pressure in a 30 mL autoclave. a Conversion determined by 1H- NMR from the crude reaction 
mixture.  

 

The catalytic performance of catalyst 14 has also been tested with internal epoxides, in particular 

trans-butene and trans-β-methyl styrene oxide. Due to the decreased reactivity reactions were 

carried out at 85°C with a CO2 pressure of 10 bar. The results obtained are reported in Table 11.  

 

Table 11: CO2 cycloadditions to trans-butene and trans-β-methyl styrene oxide catalyzed by V(V)/TPA. 

 

 

R 14 (%) TBAB (%) Conversions 1H-NMR (%)a Yields, % a 

Ph 0.5 1.25 98 60 

Ph 0.5 5.0 98 98 

Ph -- 5.0 15 15 
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Me 0.5 1.25 79 79 

 

Conditions: substrates (1.0 g), catalyst= (0.5 mol %), TBAB= tert-butyl ammonium bromide, 85°C, 10 bar initial CO2 

pressure in a 30 mL autoclave. a Conversions and yields determined by 1H-NMR from the crude reaction mixture.  

 

Also in this case the catalyst was found to be quite reactive with both substrates. In particular with 

β-methylstyrene oxide (Table 11, entry 1-2) high conversions and yields were obtained using 0.5 

mol% of catalyst and 5 mol% of the co-catalyst. In the presence of less amounts of co-catalyst 

(Table 11, entry 1) some decomposition of the reagent/product was observed, while the absence of 

catalyst gave poor conversions and chemical yields (15%, Table 11, entry 3).  

However, the results obtained with both Mo(VI) an V(V) amino triphenolate complexes are very 

promising in order to further investigate the possibility to form cyclic carbonates from olefins in a 

one-pot synthesis. 

 

 

4.5. Conclusions 

In summary, four new Fe(III) amino triphenolate complexes have been synthesized and fully 

characterized. These complexes have been found to be dinuclear (in the case of 12a) or 

mononuclear (in the case of 12b, 12c, 12d). The potential to form a dinuclear structure is dependent 

upon the substituent in the ortho-position of the phenolate moiety. Catalytic testing of the 

complexes for the cycloaddition of carbon dioxide to oxiranes has shown that the mononuclear form 

of these iron complexes is significantly more active than the dinuclear species. It has also been 

shown that by changing the reaction conditions (higher temperatures, using a solvent with 

coordinating potential and better CO2-dissolution potential) the dinuclear structure can be disrupted 

and a more active form of the complex can be obtained. Future prospects include the 

implementation of these iron complexes in other types of catalytic processes. 

Also Mo(VI)/TPA 13 and V(V)/TPA 14 have been found to be active catalysts in the same reaction. 

In particular the vanadium catalyst 14 was found to be active with terminal and internal epoxides, 

affording the corresponding cyclic carbonates in high yield under mild reaction conditions.  
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4.6 Experimental Part 

 

General Remarks 

All manipulations of moisture and/or air sensitive compounds were carried out under an atmosphere 

of nitrogen using standard Schlenk and cannula techniques. Conventional nitrogen atmosphere 

glove boxes were used for the preparation of analytical and spectroscopic samples as well as for the 

weighing and storage of air sensitive compounds. The ligands were prepared by a known literature 

procedure. 28 All Fe(III) amino triphenolate complexes once prepared, were no longer considered as 

air /moisture sensitive and were stored on the bench. Tetrahydrofuran and other dry solvents used 

during the synthesis of the complexes were dried using a Solvent Purification System (SPS), and all 

other solvent were reagent grade and used without any further purification. All other reagent or 

starting material and carbon dioxide gas phase (purchased from PRAXAIR) were used as received 

without any purification.  

The NMR spectra have been recorded on Bruker AV 400 (1H: 300.13 MHz; 13C: 75.5 MHz) 

spectrometer. Chemical shift (δ) have been reported in parts per million (ppm) relative to the 

residual undeuterated solvent as an internal reference (CDCl3; 7.26 ppm for 1H NMR and 77.0 ppm 

for 13C NMR; CD3OD: 4.84 ppm for 1H NMR and 49.05 ppm for 13C NMR). The following 

abbreviations have been used to describe the multiplicities of the NMR signals: s (singlet), d 

(doublet), t (triplet), dd (double doublet), dt (double triplet), br (broad) and m (multiplet). The 13C 

NMR spectra were all proton decoupled. 

 

X-Ray Crystallography 

The measured crystals were stable under atmospheric conditions; nevertheless they were treated 

under inert conditions immersed in perfluoropoly ether as protecting oil for manipulation. Data 

collection measurements were made on a Bruker-Nonius diffractometer equipped with an APPEX 2 

4 K CCD area detector, an FR591rotating anode with MoKα radiation, Montel mirrors, and a 

Kryoflex low temperature device (T = −173 °C). Full-sphere data collection was used with ω and ϕ 

scans. Programs used: data collection Apex2V2011.3 (Bruker-Nonius 2008), data reduction Saint+ 

Version 7.60 A (Bruker AXS 2008) and absorption correction SADABS V. 2008-1 (2008). For 

structure solution SHELXTLVersion 6.10 (Sheldrick, 2000)36 was used (Table 12). Structure 

refinement: SHELXTL-97-UNIX version. 

Table 12: X-ray structure data collection and refinement parameters for all reported structures 12a, 

12b, 12c and 12d. 
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Table 12 X-ray structure data collection and refinement parameters for all reported structures  

 

 
12d (Py) 12d (trans-2,3-

epoxybutane 

   

:Formula C44H35FeN2O3 C43H38FeNO4 

Fw (g·mol-1) 695.59 688.59 

T (K) 100(2) 100(2) 

 (Å) 0.71073 0.71073 

Crystal system Monoclinic Monoclinic 

Space group P21/c P21/c 

 12a 12b 12c 12d 

     

Formula C105H96Fe4N4O2 C28H32FeNO4 C33H46FeNO5 C43H34FeNO4 

Fw (g·mol-1) 1829.26 502.40 592.56 684.56 

T (K) 100(2) 100(2) 100(2) 100(2) 

 (Å) 0.71073 0.71073 0.71073 0.71073 

Crystal system Triclinic Triclinic Monoclinic Monoclinic 

Space group P-1 P-1 C2/c P21/c 

a (Å) 13.5240(13) 10.4445(6) 25.102(2) 16.0348(19) 

b (Å) 17.1679(17) 10.9051(6) 10.9015(11) 16.1658(18) 

c (Å) 19.236(2) 11.2722(6) 25.252(3) 13.0742(14) 

� (º) 77.392(3) 73.886(2) 90.00 90.00 

� (º) 79.290(3) 75.873(2) 112.938(3) 92.126(4) 

� (º) 78.116(4) 79.199(2) 90.00 90.00 

Volume (Å3), Z 4218.4(7), 2 1186.23(11), 2 6363.8(11), 8 3386.7(7), 4 

(calcd) (mg·m-3) 1.440 1.407 1.237 1.343 

 (mm-1) 0.744 0.671 0.513 0.491 

Absorption correction Empirical Empirical Empirical Empirical 

Refinement method 
Full-matrix least-

squares on F2 
Full-matrix least-

squares on F2 
Full-matrix least-

squares on F2 
Full-matrix least-

squares on F2 

Data/ restraints/ 
parameters 

26557/ 0/ 1129 6294/ 0/ 311 5817/ 4/ 382 8248/ 641/ 586 

GoF on F2 1.043 1.041 1.161 1.066 

Final R indices [I > 2�(I)] 
R1 = 0.0546, wR2 = 

0.1238 
R1 = 0.0359,          
wR2 = 0.0944 

R1 = 0.0833,      wR2 
= 0.2054 

R1 = 0.0979,          
wR2 = 0.2416 

R indices (all data) 
R1 = 0.1003, wR2 = 

0.1438 
R1 = 0.0402,         
wR2 = 0.0970 

R1 = 0.1002,      wR2 
= 0.2144 

R1 = 0.1453,          
wR2 = 0.2524 

Largest diff. peak and hole 
(e.Å-3) 

0.833 and -0.889 0.822 and -0.257 1.267 and -0.671 1.161 and -1.170 
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a (Å) 16.140(2) 16.0716(16) 

b (Å) 16.580(2) 16.2018(17) 

c (Å) 12.8255(16) 13.2037(12) 

� (º) 90.00 90.00 

� (º) 91.774(4) 94.218(3) 

� (º) 90.00 90.00 

Volume (Å3), Z 3430.3(8), 4 3428.8(6), 4 

(calcd) (mg·m-3) 1.347 1.334 

 (mm-1) 0.484 0.485 

Absorption correction Empirical Empirical 

Refinement method 
Full-matrix least-

squares on F2 
Full-matrix least-squares 

on F2 

Data/ restraints/ parameters 8392/ 204/ 496 8457/ 2746/ 953 

GoF on F2 1.050 1.056 

Final R indices [I > 2�(I)] 
R1 = 0.0770, wR2 = 

0.1640 
R1 = 0.0678, wR2 = 0.1624 

R indices (all data) 
R1 = 0.1346, wR2 = 

0.1824 
R1 = 0.0944, wR2 = 0.1769 

Largest diff. peak and hole 
(e.Å-3) 

0.426 and -1.032 0.798 and -0.972 

 

 

Cyclic Voltammetry 

Cyclic voltammetric measurements were carried out with a Princeton Applied Research PARSTAT 

2273 electrochemical analyzer. A three electrode assembly, comprising a glassy carbon working 

electrode, a platinum wire auxiliary electrode, and Ag/AgCl (sat. NaCl) reference electrode was 

used. The experimental data were obtained under an argon atmosphere in dichloromethane solvent 

using NBu4PF6 as supporting electrolyte.  

FT-IR measurements were carried out on a Bruker Optics FTIR Alpha spectrometer equipped with 

a DTGS detector, KBr beamsplitter at 4 cm−1.  

UV-vis measurements were carried out on a Shimadzu UV-1800 spectrophotometer. 

UV-Vis Titration Procedure with propylene oxide: A 1.0x10-4M toluene solutions of 12a, 12b, 12c 

and 12d were prepared and the UV-Vis spectrum recorded using a quartz cell with a 1 cm path 

length. An 0.40 M solution of propylene oxide containing the Fe complex (at 1.0x10-4M) was 

prepared and added in 50 mL aliquots to 2.0 mL of the solution of the Fe complex, with spectra 

being recorded after each addition.  
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UV-Vis Titration Procedure with pyridine. A 1.0 x10-4M toluene solutions of 12a and 12d were 

prepared and the UV-Vis spectrum recorded using a quartz cell with a 1 cm path length. An 0.40 M 

solution of pyridine containing the Fe complex (12a or 12d) (at 1.0 x10-4M) was prepared and 

added in 50 mL aliquots to 2.0 mL of the solution of the Fe complex, with spectra being recorded 

after each addition.  

 

 

 

 

Synthesis Fe(III) amino triphenolate complexes 12a-d.  

 

General synthetic procedure for all complexes 12a-d is the following. To a suspension of sodium 

hydride (75.2 mg, 3.13 mmol) in tetrahydrofuran (10 mL) was slowly added a solution of 11a (350 

mg, 1.04 mmol) in tetrahydrofuran (10 mL). The mixture was stirred for 18 h and after this time it 

was added to a solution of anhydrous iron(III) chloride (167.7 mg, 1.04 mmol) in tetrahydrofuran 

(10 mL). The mixture was stirred for a further 4 h and then filtered through a path of Celite, 

followed by removal of the solvent to yield a brown residue, which was subsequently dissolved in 

dichloromethane, filtered and the solvent then removed to yield a brown powder.  

12a Yield: 397 mg (88%). Anal. Calcd for C42H36Fe2N2O6: C, 64.97, H, 4.67; N, 3.61.Found: C, 

64.92; H, 4.61; N, 3.38. MALDI (+)−MS (pyrene): for C21H18FeNO3 m/z =388 [M]+ (calcd. 388), 

for 777 C42H36Fe2N2O6 [2M+H]+ (calcd 777). UV−vis (CH2Cl2, 0.1 mM, 25 °C, ε = L·mol−1·cm−1): 

314 nm (ε = 7970), 358 nm (ε =5290, sh), 430 nm (ε = 3510). Magnetic moment (298 K) μeff = 

4.14μB.  

12b This compound was prepared in an analogous manner to that described above for 12a. Yield: 

231 mg (89%). Anal. Calcd for C24H24FeNO3: C, 66.99; H, 5.62; N, 3.26. Found: C, 67.21; H, 5.82; 

N, 3.02. MALD I(+)−MS (pyrene): m/z = 430 [M]+ (calcd. 430). UV−vis (CH2Cl2, 0.1 mM, 25 °C, 

ε = L·mol−1 cm−1 ): 329 (ε = 4065), 416 (ε = 3625). Magnetic moment (298 K) μeff = 6.74 μB. 

12c (THF) This compound was prepared in an analogous manner to that described above for 12a 

Yield: 408 mg (90%). Anal. Calcd for C37H50FeNO4: C, 70.69; H, 8.02; N, 2.23. Found: C, 70.60; 

H, 8.34; N, 2.12. MALDI(+)−MS (dithranol): m/z = 557 [M+H−THF]+ (calcd. 557).UV−vis 

(CH2Cl2, 0.2 mM, 25 °C, ε = L·mol−1·cm−1): 329 nm (ε = 3570), 410 nm (ε = 3135). Magnetic 

moment (298 K) μeff = 5.49 μB.  
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12d (THF) This compound was prepared in an analogous manner to that described above for 12a 

Yield: 266 mg (61%). Anal. Calcd for C43H38FeNO4: C, 75.00; H, 5.56; N, 2.03. Found: C, 74.75; 

H, 5.80; N, 2.12. MALDI (+)−MS (pyrene): m/z = 616 [M−THF]+ (calcd. 616). UV− vis (CH2Cl2, 

0.2 mM, 25 °C, ε = L·mol−1 cm−1): 357 nm (ε = 5460), 426 nm (ε = 5045). Magnetic moment (298 

K) μeff = 5.53 μB. 

 

X-Ray Crystallography. 
 
Crystals suitable for single crystal X-ray analysis were obtained by slow evaporation of 

tetrahydrofuran solutions of 12b, 12c, and 12d or in the case of 12a, crystals were obtained from a 

concentrated toluene solution after three weeks. The structure obtained for 12c contains a molecule 

of water instead of the expected molecule of tetrahydrofuran as the co-ligand and is denoted as 12c. 

The crystals of 12d (Py) were grown by slow evaporation of a concentrated solution of the complex 

in tetrahydrofuran/pyridine (50:1). 

 

Catalytic Experiments. 

In a typical catalytic experiment the oxirane (2.0 mmol), tetra-butyl-ammonium bromide (TBAB) 

(32.6 mg, 0.1 mmol), the respective iron(III) amino triphenolate complex (0.01 mmol of complex 

12a or 12b, and 0.02 mmol 12c or 12d and mesitylene (278 μL, 2.0 mmol) were dissolved in the 

respective solvent (5 mL). The reaction mixture was then transferred to a stainless steel autoclave 

and three cycles of pressurization and depressurization with carbon dioxide were applied (pCO2 = 

0.5 MPa). The final pressure was then adjusted to 1.0 MPa, and the reaction was left stirring at the 

required temperature for 18 h. After this time, the yield was calculated using the 1H NMR spectrum 

(d6-DMSO or CDCl3) of an aliquot of the reaction mixture and mesitylene as the internal standard. 

 

Product Characterization 

All organic products from the catalysis experiments were characterized by 1H-NMR and IR 

spectroscopy and the spectra were compared with the data reported in literature. For these see 

characterization. For each cyclic carbonate compounds references are provided. 
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4-methyl-1,3-dioxolan-2-one (Table 6, 4a) 38 

Yield calculated by 1HNMR using mesitylene as internal standard. (400 MHz, CDCl3): δ m 4.94-

4.86 (m, 1H), 4.58 (t, J=8.0 Hz, 1H), 4.01 (t, J=8.8 Hz, 1H), 1.45 (d, J= 6.0 Hz, 3H).  

IR Neat: 1751cm-1. 

 

O
O

O

Ph 4-phenyl-1,3-dioxolan-2-one (Table 7, Entry 1) 39 

Yield calculated by 1HNMR using mesitylene as internal standard are reported in Table 7 (400MHz, 

CDCl3): δ 

7.35–7.44 (m, 5H), 5.86 (t, J= 8.0 Hz, 1H), 4.80 (t, J= 8.4 Hz, 1H), 4.34 (t, J= 8.4 Hz, 1H). 

IR Neat: 1788 cm-1. 

 

 (4R, 5R)-4,5-dimethyl-1,3-dioxolan-2-one (Table 7, entry2) 39 

Yields for each complex are reported in Table 7. 
1H NMR (300 MHz, CDCl3) δ 4.39 – 4.27 (m, 2H), 1.45 (d, J = 5.9 Hz, 6H). 

IR Neat: 1796 cm-1 (C=O).  

4, 5-tetramethylene-1, 3-dioxolan-2-one (Table 7, Entry 3) 40 
1H NMR (300 MHz, CDCl3) δ 4.78 – 4.59 (m, 2H), 2.02 – 1.79 (m, 4H), 1.69 – 1.52 (m, 2H), 1.51 
– 1.24 (m, 2H). IR Neat: 776 cm-1 (C=O).  
 

                                                            
38 J. Sun, L. Han, W. Cheng, J. Wang, X. Zhang, S. Zhang, ChemSusChem, 2011, 4, 502. 
39 K. Matsumoto, Y. Sato, M. Shimojo, M. Hatanaka, Tett. Assymmetry, 2000, 11, 1965. 
40 A. Buchard, M. R. Kember, K. G. Sandeman, C. K. Williams, Chem. Commun., 2011, 47, 212. 
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1,3-dioxan-2-one (Table 7, Entry 4). 41 Yield for each complex are given in table 3. 1H 

NMR (400 MHz, CDCl3) δ 4.53 – 4.35 (m, 4H), 2.27 – 2.08 (m, 2H). IR Neat: 1728 cm-1 (C=O) 

 

5,5-dimethyl-1,3-dioxan-2-one (Table 7, Entry 5). 42 Yield for each complex are given in 

table 3. 1H NMR (300 MHz, CDCl3) δ 4.06 (s, 4H), 1.10 (s, 6H). IR Neat: 1736 cm-1 (C=O). 

 

The synthesis of tiphenolamine ligands 11c is reported in literature. 29 The synthesis of Mo(VI) 

amino triphenolate complex 13c and 14d is reported in literature and fully characterized. 35 42 

The general procedure for 13c is the following. Milled MoO2Cl2 (200 mg, 1 mmol) and the ligand 

precursor 2d (503 mg, 1 mmol) were mixed with toluene (50 mL) and the stirred suspension was 

heated to reflux for 18 h. The resulting intense purple solution was filtered through a short pad of 

silica and evaporated to afford complex 3-Cl as a violet solid; yield: 500 mg (80%).  
1H NMR (300 MHz, CDCl3): d=7.40 (dd, J=7.8, 1H, and 1.4 Hz, ArH), 7.34 (dd J=7.8, 2H, and 1.8 

Hz, ArH), 7.15 (dd, J=9.2, 3H, and 1.4 Hz, ArH), 6.98 (m, 3H, ArH), 3.99 ( d, 2H, J=11.5, NCH2), 

3.6 (d, J=21.1 Hz, 2H, NCH2), 3.49 (s, 2H, NCH2),1.59 (s, 9 H), 1.47 (s, 18H); ESI-MS: m/z=672.2 

(M+Na+), 650.2 (M+ H+), 614.3 (M-Cl). 

 

General procedure for the synthesis of cyclic carbonate reported in Table 9, 10 and 11. 

 

In a typical CO2 cycloaddition reaction, a 30 mL autoclave was charged with the epoxide, Mo(VI) 

amino triphenolate complex 13c and co-catalyst TBAB or TBAI (and if necessary 0.5 mL of methyl 

ethyl ketone (MEK) in the cases where the substrate/cyclic carbonate product is a solid). The 

reaction was stirred for 18 h at the required temperature, after which time the reaction was cooled 

and an aliquot of the reaction mixture analyzed by 1H NMR spectroscopy in order to calculate the 

conversion and compared with those reported in literature.  

Same procedure was followed for cyclic organic carbonate reported in Table 11 catalyzed by 14c. 

                                                            
41 B. A. Sweileh, Y. M. A.Hiari, K. M. Aiedeh, J. Applied Poly. Sci., 2008, 110, 2278. 
42 M. Mba, M. Pontini, S. Lovat, C. Zonta; G. Bernardinelli, E. P. Kundig, G. Licini.  Inorg. Chem.2008, 47, 8616. 
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4-butyl-1,3-dioxolan-2-one (Table 9, Entry 1).  43 Conversion into the 

corresponding cyclic carbonate are reported in table 6. 
1H NMR (300 MHz, CDCl3) δ 4.79 – 4.62 (m, 1H), 4.52 (dd, J= 8.1 and 8.1 Hz, 1H), 

4.06 (dd, J = 8.1, 7.3 Hz, 1H), 1.90 – 1.58 (m, 2H), 1.53– 1.25 (m, 4H), 0.92 (t, J =7.0 Hz, 3H). 

 

4-(chloromethyl)-1,3-dioxolan-2-one ( Table 10, Entry 5) 43 
1H NMR (300 MHz, CDCl3) δ 5.09 – 4.81 (m, 1H), 4.59 (dd, J = 8.5 and 8.5 Hz, 1H), 4.41 (dd, J = 

8.5, 5.8 Hz, 1H), 3.91 – 3.53 (m, 2H). IR Neat: 1778 cm-1 (C=O). 

 

4-(hydroxymethyl)-1,3-dioxolan-2-one ( Table 10, Entry 6) 44 
1H NMR (500 MHz, CDCl3) δ 4.87 – 4.78 (m, 1H), 4.55 (dd, J = 8.4 and 8.4 Hz, 1H), 

4.48 (dd, J = 8.4 and 6.6 Hz, 1H), 4.01 (dd, J = 12.8, J = 3.0 Hz, 1H), 3.73 (dd, J = 12.8, J = 3.5 Hz, 

1H), 2.86 (br s, 1H). IR Neat: 1788 cm-1 (C=O).   

 4-(methoxymethyl)-1,3-dioxolan-2-one (Table 10 Entry 7) 26 28 38 
1H NMR (500 MHz, CDCl3) δ 4.88 – 4.77 (m, 1H), 4.51 (dd, J = 8.3 and 8.3 Hz, 1H), 4.38 (dd, J = 

8.3 and 5.9 Hz, 1H), 3.66 (dd, J = 11.0, J = 3.9 Hz, 1H), 3.58 (dd, J = 11.0, J= 3.8 Hz, 1H), 3.44 (s, 

3H).  

 

Allylglycidil ether 1,3-dioxolan-2one (Table 10 Entry 8) 28 

                                                            
43 J. Sun, L. Han, W. Cheng, J. Wang, X. Zhang, S. Zhang, ChemSusChem, 2011, 4, 502. 
44 Y. Patel, J. George, S. M. Pillai, P. Munshi, Green Chem., 2009, 11, 1056. 
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1H NMR ( , CDCl3) δ 5.88 – 4.76 (m, 1H), 5.27-5.14 (m, 2H), 4.84-4.77 (m, 1H), 4.50 (t, J = 3Hz, 

1H), 3,36 (dd, J = 3.0, J= 3.0 Hz, 1H),4.01 (d, J = 3.01, 2H), 3.68-3.64 (d.d, J= 1Hz and 3Hz, 1H), 

3.58-3.53 (d.d, J= 1Hz and 3Hz, 1H),  

 

(Table 11). Conversion into the corresponding cyclic carbonate are reported in Table 11. 

 

 (4R,5R)-4-methyl-5-phenyl-1,3-dioxolan-2-one (Table 11, Entry 1). 28 

 

 

 
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.42 (m, 3H), 7.41 – 7.33 (m, 2H), 5.16 (d, J = 8.0 Hz, 1H), 

4.75 – 4.53 (m, 1H), 1.58 (d, 3J HH = 6.2 Hz, 3H). IR Neat:1797 cm-1 (C=O). HR MS (ESI+): 

calcd. m/z 179.0708 [M + H]+; found: 179.0696. 
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Summary 

 

This Ph.D thesis describes a novel synthesis of analogues of amino triphenolate ligands and the use 

of Fe(III) and V(V) amino triphenolate complexes as catalysts for renewable carbon feedstocks 

transformation into valuable compounds. 

In general, in Chapter 1 an overview of synthetic approaches of triphenolamines are reported, 

followed by explanation of their coordination chemistry in particular with two metals, which are the 

subject of this thesis work, vanadium and iron. Finally the catalytic reactivity of both V(V) and 

Fe(III) complexes is reported. In particular the activity of V(V) amino triphenolate complexes is 

related to their capability to act as Lewis Acid, stabilizing the active species under turn-over 

conditions in oxygen transfer reaction such as sulfoxidation and halogenation of trimethoxybenzene 

in the presence of an oxidant. The reactivity of iron(III) amino triphenolate complexes as catalyst 

for the cycloaddition of carbon dioxide to epoxides for the synthesis of cyclic carbonate is reported. 

Having established that amino triphenolate ligands and in particular the substituents in ortho 

positions to the phenoxy moieties play an important role in order to control the environment of the 

metal, modulate the electronic and steric properties around the metal centre and therefore control 

their catalytic properties, in Chapter 2, a novel synthetic methodologies for the synthesis of their 

analogues amino trithiophenolate ligands is reported. The synthetic methodology allows the 

synthesis of ortho-substituted trithiophenolamines with very satisfactory yields via a three step 

procedure starting form commercially available aldehydes. This approach led to the possibility, for 

the first time, to access this important class of ligands in a systematic way using either 

commercially or readily available building blocks. 

In Chapter 3 a novel reactivity of V(V) amino triphenolate complex is described. More in detail, 

V(V)/TPA complex has been found to be a very effective catalyst for the aerobic oxidative C-C 

cleavage of tertiary and secondary vicinal diols. These studies were carried out in order to develop 

catalysts capable of controlled oxidative degradation of more challenging substrates, such as lignin 

models to demonstrate the feasibility of producing fine chemicals from a renewable carbon 

feedstock. The mild reaction conditions and high yields achieved for 1,2-diols and an ethereal 

derivative make this catalyst not only competitive to those previously reported but also good 

candidate for lignin model compounds transformation. 
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Finally, in Chapter 4 four new Fe(III) amino triphenolate complexes have been synthesized 

and fully characterized. These complexes have been found to be dinuclear or mononuclear. The 

potential to form a dinuclear structure is dependent upon the substituent in the ortho-position of the 

phenolate moiety. Catalytic testing of the complexes for the cycloaddition of carbon dioxide to 

oxiranes has shown that the mononuclear form of these iron complexes is significantly more active 

than the dinuclear species. It has also been shown that by changing the reaction conditions (higher 

temperatures, using a solvent with coordinating potential and better CO2-dissolution potential) the 

dinuclear structure can be disrupted and a more active form of the complex can be obtained. 

Moreover, Mo(VI) and V(V) amino triphenolate have been found to be active catalysts in the same 

reaction. In particular the vanadium catalyst was found to be active with terminal and internal 

epoxides, affording the corresponding cyclic carbonates in high yield under mild reaction 

conditions.  

In summary, this thesis work had the aim to identify new opportunities in homogeneous catalysis by 

using alternative carbon feedstocks for the production of small molecules. 
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Riassunto 
 

Questa tesi di dottorato riporta una nuova sintesi degli analoghi dei leganti trifenolamminici e 

l’impiego dei complessi trifenolamminici di Fe(III) e V(V) come catalizzatori per la trasformazione 

di fonti di carbonio rinnovabili per la produzione di composti organici. 

In generale nel Capitolo 1 vengono riportate le strategie sintetiche impiegate per l’ottenimento delle 

trifenolammine, seguita dalla spiegazione della loro chimica di coordinazione, in particolare con 

due metalli quali il ferro e il vanadio, oggetto di studio del lavoro di dottorato. Più in dettaglio 

vengono altresì riportate le reattività di questi complessi in catalisi. Per quanto riguarda il 

complesso di V(V), la sua reattività è legata alla sua capacità di fungere come Acido di Lewis, 

stabilizzando le specie attive in reazioni di ossidazione come per esempio nelle sulfossidazioni e 

alogenazioni in presenza di un opportuno ossidante. 

Per quanto riguarda invece i complessi di Fe(III) con le trifenolammine viene riportata la loro 

reattività come catalizzatori nella addizione della CO2 agli epossidi per la sintesi di carbonati ciclici. 

I leganti triphenolamminici e in particolare i sostituenti in orto al gruppo fenolico giocano un ruolo 

importante nel modulare le proprietà steriche ed elettroniche così come dell’intorno chimico del 

metallo a cui si vanno a complessare. Questo si traduce nella possibilità di modulare anche la loro 

attività catalitica. In virtù di quanto detto, nel secondo Capitolo 2 si è illustrato una nuova 

metodologia per la sintesi di leganti amino tritiofenolati, analoghi delle triphenolamine. La sintesi di 

questi leganti avviene solo in tre passaggi sintetici, partendo da substrati come i derivativi del 

aldeide salicilica, passando poi per la protezione del gruppo ossidrilico con un tiocarbammato il 

quale permette poi il successivo riarrangiamento, chiamato di Myazaki-Newmann-Kwart, 

consentendo così di avere la funzionalità tiofenolica. La sintesi procede con la successiva 

amminazione riduttiva per avere lo scheletro triamminico, seguita dal passaggio finale della 

deprotezione del gruppo carbammico ottenendo così il legante finale. Questo approccio di sintesi ha 

consentito per la prima volta ad avere leganti orto sostituiti, amino tritiofenolici in buone rese 

partendo da prodotti commercialmente disponibili. 

Nel Capitolo 3 invece il lavoro è proseguito nello studio di una nuova reattività data da complessi 

amino trifenolati di V(V). In dettaglio in questa parte ha riguardato la loro attività come 

catalizzatori nelle reazioni di scissione di legami carbonio-carbonio di dioli e preliminarmente nella 

scissione di composti β-idrossi eteri. Il complesso di V(V) sì e rivelato essere moto attivo e in 

condizioni di reazioni blande. Questi studi sono stati effettuati al fine di poter sviluppare 

catalizzatori capaci di degradare, in condizioni controllate di ossidazione, substrati come la lignina 
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la quale è considerata essere, insieme alla cellulosa, una fonte di carbonio rinnovabile, difficile però 

da poter utilizzarla come tale. 

Nella parte finale di questo lavoro viene riportato lo studio, sintesi, caratterizzazione e reattività di 

quattro complessi amino trifenolici di Fe(III). Questi complessi allo stato solido, a seconda del 

sostituente in orto al gruppo fenolico, hanno dimostrato essere mononucleari o binucleari. La loro 

attività poi è stata testata nella cicloaddizione della CO2 a differenti epossidi e ossirani per la sintesi 

di carbonati ciclici. Test catalitici hanno dimostrato come la forma mononucleare del complesso è 

molto più reattiva di quella dinucleare. Inoltre è stato dimostrato come cambiando le condizioni di 

reazione, temperature alte o usando solventi con potenzialità coordinative e di dissoluzione per la 

CO2, la forma dinucleare può essere aperta, permettendo in questo modo al substrato di coordinarsi 

e di avere una buona reattività. Nella seconda parte del Capitolo 4 sì è riportato l’attività di altri due 

complessi trifenolamminici rispettivamente di Mo(VI) e V(V) i quali sono stati testati come 

catalizzatori per la stessa reattività. Entrambi i catalizzatori hanno dimostrato avere buona reattività 

nell’attivazione dell’anidride carbonica. In particolare il complesso di V(V) ha dimostrato avere 

ottima reattività, ottenendo carbonati ciclici a cinque termini, sia partendo da epossidi terminali o 

interni.  

In sintesi, questa tesi di dottorato ha avuto come obiettivo l’identificazione di nuove opportunità in 

catalisi omogenea sfruttando fonti di carbonio rinnovabili ed alternative per la produzione di piccole 

molecole organiche. 
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