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Abstract

Spatiotemporal phenomena related to the rainfall measurements
can be characterised by statistical models grounded on physical con-
cepts instead of being identified by spatiotemporal patterns based on
standard correlations and related analytical tools. This perspective is
useful in understanding if the relationships among neighbouring zones
and consecutive years are attributable to latent physical mechanisms.
Satellite data are used to examine this theory and provide evidence on
empirical basis. A recent hydrological theory, which is based on the
concept of self-organisation, consists of simplified physical mechanisms
that are essential for the explanation of local data relationships. The
regression models inspired by the diffusion of innovation can approxi-
mate the evolution of the rainfall process within a year through a more
straightforward perspective. However, the multitude of collected data
requires innovative techniques of data management and advanced ana-
lytical solutions, in order to achieve optimal results in reasonable time.
Indeed, the nonlinear least squares and nonlinear quantile regression
are considered to make inference on the response variable given some
covariates. A new quantile regression technique is developed in order
to provide simultaneous estimates that do not violate the monotonic-
ity property of quantiles. The nonlinear least squares highlight strong
connections among rainfall and the salient features of the measure-
ments areas. Furthermore, the quantile regression analyses quantify
the intrinsic variability of the data.





Sommario

I fenomeni spazio-temporali relativi alle misurazioni di piovosità
possono essere caratterizzati da modelli statistici fondati su concetti
fisici invece di essere identificati da modelli standard basati su corre-
lazioni spazio-temporali e i relativi strumenti analitici. Questa pro-
spettiva è utile per capire se i rapporti tra zone confinanti e anni
consecutivi sono attribuibili a meccanismi fisici latenti. Dati satelli-
tari vengono utilizzati per esaminare questa teoria e fornire prove su
base empirica. Una recente teoria idrologica, basata sul concetto di
auto-organizzazione, è caratterizzata da meccanismi fisici semplifica-
ti che sono essenziali per la spiegazione delle relazioni locali presenti
nei dati osservati. I modelli di regressione, che si ispirano alla teoria
della diffusione di innovazioni, sono in grado di approssimare l’evo-
luzione del processo di precipitazione di un singolo anno attraverso
una più semplice prospettiva. Tuttavia, la moltitudine di informazio-
ni raccolte richiede tecniche innovative di gestione dei dati e soluzioni
analitiche avanzate con lo scopo di ottenere risultati ottimali in tempi
ragionevoli. Infatti, i minimi quadrati e la regressione quantilica per
modelli non-lineari vengono utilizzati per fare inferenza sulla variabile
risposta condizionatamente ad alcune covariate. Una nuova tecnica di
regressione quantilica è stata sviluppata ad hoc al fine di fornire stime
simultanee che non vìolino la proprietà di monotonicità dei quantili. I
minimi quadrati non lineari evidenziano un forte legame tra le precipi-
tazioni e alcune caratteristiche salienti delle zone di misurazione. Inol-
tre, le analisi ottenute tramite la regressione quantilica quantificano la
variabilità intrinseca nei dati.
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Chapter 1

Introduction

The quantitative clouds analysis and explanations of the processes which
involve the formation of cloud and precipitations started relatively late. In
fact, the developments obtained in this scientific field between the 17th cen-
tury and the 1940’s were mainly based on philosophical concepts that could
not find an empirical evidence of proves.

In the recent years, the rapid advances in technological developments
have led to a continuous improvement of the tools to collect data. From a
statistical perspective, the analysis of images and measurements produced by
satellites is the most challenging issue due to the large amount of data and
the complexity of the models adopted to describe the observed phenomena.

A part of the statistical disciplines has centred on producing estimation
techniques and forecasting methods, which have a marginal role in other
scientific field, such as physics; as a matter of fact, modelling an error or
data distributions introduces assumptions which might generate inaccurate
results. To obviate this problem, inference based on empirical quantiles can
be used for assumption free distribution analyses.

A brief review of the outstanding literature is given in Section 1.1, while
Section 1.2 introduces the structure of the thesis and its main contributions.

1.1 Overview

Analysis of rainfall data has strong relevance not only in meteorology.
It helps people to organise their lives and activities. This type of data are
related to the water-cycle and they are collected and studied mainly by hy-
drologists. There are many different methods to study rainfall data, some
focus on the analysis of extreme values and others on the identification and
interpretation of proper dynamical systems. The physical principles of the

1



2 1.1. Overview

process that generates these data and their main characteristics are well doc-
umented in hydrology, meteorology and physics of the atmosphere. Mostly,
self-organisation is the main feature of this complex system, wherein aerosol
particles and water molecules play crucial roles. The so-called aerosol-cloud-
precipitation system (Koren and Feingold, 2011) is based on simultaneous
differential equations describing the interaction between clouds and aerosol
particles. This dynamical perspective can be considered as a mean field ap-
proximation of the Nagel and Raschke’s proposal (1992), which was the first
attempt to model clouds dynamics and local interactions among particles by
the use of cellular automata.

The dynamics among agents of a cellular automaton are well described
by the innovation diffusion models introduced by Bass (1969) as a mean
field approximation (Tang and Bak, 1988) of the underlying process. Few
years ago, Guseo and Guidolin (2010) developed a new extension for the
generalised Bass model (Bass et al., 1994) which deals with cellular automata
and, if it is correctly simplified, can be applied to rainfall data on large-
scales. However, these models are not able to catch seasonal effects due to the
radiation intensity and, hence, variation of temperatures and precipitations.
Recently, several solutions for this problem were studied. The proposal of
Guidolin and Guseo (2013) is particularly useful for this purpose, because it
allows to specify harmonic functions which are introduced in the generalised
Bass model as seasonal shocks. Of course, the physical interpretation of this
model is meaningful according to the theories developed in these recent years.

From an inferential point of view, the parameters of these models are usu-
ally estimated on cumulative quantities by nonlinear least-squares regression
techniques (Seber and Wild, 2003). The most popular algorithm to min-
imise the deviance of the model was developed by Marquardt (1963), who
improved the method previously introduced by Levenberg (1944). Nonlinear
least squares are generally free distribution methods that allows to estimate
an expected trajectory. However, quantile regression techniques are more
suitable and robust procedures to study the characteristics of the distribu-
tion of a response variable with respect some covariates. Without making
assumption on the underlying distribution, Koenker and Bassett Jr. (1978)
introduced the linear quantile regression methodology, wherein the deviance
to be minimised is based on a summation of linear asymmetric loss functions.
In order to obtain reliable results and improve the convergence to the optimal
point for nonlinear quantile regression problems, Koenker and Park (1996)
developed a further technique based on both the Busovaca’s procedure (1985)
and the Powell’s algorithm (1969).

In most cases, this initial quantile regression techniques suffer from the so-
called crossing quantile problem. This happens especially when each quantile
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trajectory is separately fitted to the data; therefore the information of other
curves position is not considered, so that it is possible to obtain parame-
ters estimates which lead to curves that violate the monotonicity property of
quantiles. The first solution of this problem was presented in the literature
by He (1997), who proposed some forcing conditions based on the location-
scale paradigm. Chernozhukov et al. (2010) proposal is based on a monotonic
reorganisation of the quantile levels for each point in the domain of the esti-
mated curves. Furthermore, the method of Bondell et al. (2010) consists of an
algorithm to estimate simultaneously all parameters for each quantile curve
according to some constraints and, more recently, the technique proposed
by Schnabel and Eilers (2013) allows to fit simultaneous quantile curves by
avoiding a constrained optimisation. However, none of these techniques can
be adopted to fit parametric nonlinear models, because they are all based on
linear model or linear combination of basis functions (such as splines).

1.2 Summary and main contributions of the
thesis

The complexity of the phenomena and process that generates rainfall
data is described in Chapter 2. However, the large amount of data that are
collected by meteorologists and hydrologists requires simple models that are
able to catch most of the physical properties of the process. The rationale of
the innovation diffusion theory is here discussed and interpreted in the light
of a new scientific context.

In order to describe the spatiotemporal variability of the data by avoiding
distributive assumptions, several quantile regression techniques are consid-
ered in Chapter 3, and a particular emphasis is given to alternative solutions
of the quantile crossing curves for nonlinear models. In this chapter, the main
contribution focuses on simultaneous quantile regression procedures and to
the development of reliable parametric estimators. Both the computational
efficiency and accuracy of these techniques are taken into account; in fact,
the Marquardt’s algorithm (1963) is considered from a new perspective.

From a practical point of view, a preliminary analysis of rainfall data is
performed and documented in Chapter 4. It mostly deals with a brief review
of cluster analysis theory in order to choose an appropriate algorithm and
validation methods. The selected procedures are subsequently applied to
understand which macro-area can be used for the successive analyses.

Chapter 5 deals with the application of least square regression in order
to estimate the parameters and perform a model selection based on the data
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coming form a reduced area. Several innovation diffusion models are fitted;
in particular, the Bass’ model (1969), its generalisations (Bass et al., 1994;
Guidolin and Guseo, 2013) and different mixtures of shifted Bass models
(Guseo, 2004) are considered. The results highlight the role of the innovation
diffusion models in interpreting the basic mechanisms underlying the forma-
tion of precipitation, i.e. the initialisation of the condensation through the
aerosol particles and subsequent coalescence which leads to heavier droplets.
Nonetheless, other connections between the parameters and the orography
of the considered area emerge by adopting this model-based perspective.

All the analyses and the results exposed in Chapter 6 are obtained through
the application of the theory developed in Chapter 3. Particular emphasis
is given to the simultaneous estimation techniques, which are applied to the
Bass’ model and its extension (Bass et al., 1994). A more detail description
of the data variability is obtain via quantile regression, which shows the
effects of parameters in correspondence of probability variations. Most of the
parameters are quite constant or show little significant variations, however
only the parameter controlling the scale of the trajectory presents the largest
discrepancies between probability levels.

Final conclusions and remarks are presented in Chapter 7.



Chapter 2

A simplified regression model for
rainfall data

Meteorology and weather forecast play a major role in peoples’ lives and
can be very important for planning purposes. For instance, in agriculture
it can be useful to establish irrigation periods and quantity of water dis-
tribution, or in population safety it is possible to predict the path and the
area covered by hurricanes in order to alert population. Weather forecast is
mostly used to determine the time and the duration of precipitation events.
However, special meteorological measures such as rainfall can be much more
useful to determine how much freshwater is available for human consumption,
agriculture and industry.

Since precipitation is observed in a specific spatio-temporal coordinate
system, the techniques used to analyse these kinds of data are based on both
spatial statistics and time series methodologies. For forecasting purposes,
even if most of the statistical analyses are quite advanced, the physical de-
scription of the atmospheric phenomena related to the precipitation process
is mostly considered on a macroscopic scale rather than a microscopic. The
recorded rainfall, in fact, depends on several aspects: the type of clouds,
the humidity, the land-use, the orography, the wind speed and direction,
the atmospheric pressure and many others. At the same time, the micro-
physical processes consist mainly in the interactions among water molecules
and different kind of aerosol particles (e.g. biomass burning and air pollu-
tant). Both microphysical and macrophysical processes coexist in nature, so
that the interactions among the particles of the clouds are affected by many
macroscopic factors. The aerosols, under some conditions, initialise the for-
mation of cloud droplets or ice crystals. The precipitation is consequently
the result of the formation of raindrops by the collision and coalescence of
many small droplets (Levin and Cotton, 2008).

5
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A brief review and explanation of the most used hydrological terms and
concept is given in Section 2.1. The physics of the aerosol-cloud-precipitation
system is explained in Section 2.2, while the approximation based on the
diffusion of the innovation is presented in Section 2.3. Brief conclusions of
this Chapter are exposed in Section 2.4.

2.1 The hydrological cycle
The water cycle, or hydrological cycle, explains how the water is contin-

uously moving across the earth and the atmosphere. It consists of several
physical processes, which describe both the state transition of water and its
various movements. The state transition, or phase transition, processes have
in common the transformation of a thermodynamical system. E.g. water be-
comes ice or vapour according to temperature variations, which are due to
several factors (e.g. the solar radiation and altitude). So that we can speak
about

evaporation, when water passes from liquid to gas states;

condensation, which is the opposite transition of the evaporation;

sublimation, when the phase transition occurs form solid to gas states;

deposition, which is the opposite transition of the sublimation;

solidification, when water changes from liquid to solid states; and

fusion, which denotes the opposite transition of the solidification.

Other physical processes are behind the relocation of water on the earth and
in the atmosphere. We can refer to

precipitation for liquid (rainfall or cloud water droplets) or solid water
(snow, hail, etc.) that fall on the surface of the planet;

canopy interception for the precipitation that does not fall on the ground
because it is intercepted by plant foliage;

runoff for the movements across the land (e.g. rivers) also including artificial
canals;

infiltration for the water-flows from the surface into the ground;

subsurface flow for those flows that happen in the underground (e.g. the
aquifers);
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advection for the atmospheric movements of water in any state;

transpiration for the release of water vapour from vegetation and soil into
the atmosphere;

percolation for horizontal flows through the soil under the influence of pres-
sure forces.

The solar radiation provides heat and energy, which evaporates water from
the oceans, lakes, rivers, moisturised soil and so on. By transpiration, plants
release water into the air, while the ice in snowfields and glaciers may also
sublimate. By advection, the water vapour is taken high in the atmosphere,
where cooler temperatures make it to condense. Small droplets are so formed
inside the clouds, which move from a place to another by advection. When
the droplets become too heavy, the water returns to the ground as a form of
precipitation. Part of this water is frozen in ice caps or glaciers. Part of the
precipitation is intercepted by the vegetation and some flows to the seas and
oceans as a runoff. Another part infiltrates and slowly flows underground
among impermeable rock layers, eventually it returns to the seas as salty
water (Han, 2011).

The hydrological cycle is known to be a complex and self-organising sys-
tem. In particular, self-organisation is defined as the generation of a coherent
global pattern, which spontaneously arises from local interactions among the
components (or the agents) of the system. Self-organisation is an evident
characteristic of many natural systems, and it is a useful concept adopted
in different scientific fields, such as physics, environmental sciences, biology
and economics (Heylighen, 2001). The complex nature of the water cycle
consists of different and simultaneous self-organising processes, whereas the
water molecules act as agents in constant change, whose interactions emerge
from the necessity to adapt autonomously with the surrounding environment.

Modelling the water cycle denotes the capacity of being able to describe
each single process and its relationships with the others. The limitation of
tools to develop a general model led to simplified solutions, which focus on
some processes. These solutions are often the results of approaches based
on either a large- or micro-scale point of view. The large-scale modelling is
oriented to explain the macroscopic behaviour of a phenomenon and studying
its effects by ignoring the behaviour of the agents involved in the process.
On the other hand, the micro-scale modelling concentrates the attention on
the role of the particles, and the propagation of their effects.
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2.2 The aerosol-cloud-precipitation system

As part of the water cycle, the precipitation process can be considered as
a self-organising subsystem. It is characterised by specific tasks, which are
related to the formation and the release of rain droplets, or other kind of solid
precipitation (such as snow and hail). In order to simplify the complexity
of the problem, such a process can be studied by ignoring most of the other
subsystems, which form the water cycle (such as infiltration and percolation).
For instance, the cloud formation mechanism of Nagel and Raschke (1992)
is described in terms of self-organisation by the use of few clouds physical
processes; in fact, they did not consider solar radiation and other micro-scale
effects.

Condensation and solidification are the most known processes that lead
to the formation of precipitation in the troposphere (i.e. the closer part of
the atmosphere to the planet surface). These phase transitions arrange at-
mospheric molecules as a response to temperature variations. In the recent
years, the nature, the physical properties and the chemical composition of
such molecules has become clearer. Usually, we refer to the aerosols for a
joint definition of solid or liquid particles in the atmosphere. The aerosols
contribute to the formation of cloud droplets and ice particles and their role
and variations have become crucial for a sensible explanation of clouds and
precipitation changes (Stevens and Feingold, 2009).

The aerosol sources and the micro-physical effects are described in an
extensive review by Andreae and Rosenfeld (2008). Almost all the varieties
of aerosols are constituted by some deliquescent component, which has the
potential to start the formation of cloud condensation nuclei (i.e. liquid cloud
droplets) or ice nuclei (i.e. ice crystals). This potential differs according to
the origin of aerosols particles and their size, and even if such particles are
internally mixed, their composition should be taken into account. Due to
the controversial role of human beings in climate change causes, the aerosols
are mainly divided in anthropogenic and natural sources type. A more infor-
mative classification is based on the chemical composition and the original
location of aerosol emissions. In particular, we can speak about soil dust, sea
salt and sea spray aerosols, biological particles (e.g. from plants pollen, fungi,
microbes or other organic matter), biomass burning, fossil fuel combustion,
and other particles (such as nitrates and sulfates).

The interaction among aerosols, clouds and precipitations have been stud-
ied by several scientists. They often refer to the so-called aerosol-cloud-
precipitation system, which consists in a variety of complex mechanisms.
Stevens and Feingold (2009) proposed that these interactions should be con-
sidered as a buffered system, wherein a chain of subsequent events is given as
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a system response to compensate for external changes. Feingold et al. (2010)
considered a cellular cloud field characterised by stable oscillations (related
to the Rayleigh–Bénard convective theory; Rayleigh, 1916), wherein precip-
itation affects and transforms cloud patterns. Koren and Feingold (2011)
employed some principles of population dynamics to reduce the interactions
complexities. In fact, by the use of Lotka–Volterra equations (Lotka, 1910;
Volterra, 1927), they were able to model and mimic through simulations the
main features of the aerosol-cloud-precipitation system.

The Lotka–Volterra equations can describe the instantaneous variations
of two reference populations within a specific environment. According to the
interpretation of Volterra (1927), one population acts as a resource for the
other, and the transfer of this resource is the unique connection between these
two populations. Indeed, we can refer to these equations as the predator-pray
model, which is generally defined as two simultaneous differential equations,
i.e. (Guseo, 2004)

∂x(t)

∂t
= Φ{x(t)} − y(t)π{x(t)};

∂y(t)

∂t
= −νy(t) + ηy(t)π{x(t)},

where x and y respectively represent the populations of preys and predators.
The system-dependent constants ν and η respectively denote the mortal-
ity rate of predators and the efficiency of the resource usage. The system-
dynamic Φ(·) defines the growth of the preys and π(·) describes their con-
sumption rate. According to the interpretation of Feingold et al. (2010),
the quantity −y(t)π{x(t)} denote the loss of cloud depth due to rainfall, and
hence the reduction of water vapour within the clouds. The dynamic Φ{x(t)}
defines the cloud depth increase, i.e. it describes how the water goes from the
planet into the atmosphere (e.g. the processes of evaporation, sublimation,
advection and many others). On the other equation, −νy(t) is associated to
the loss of cloud drop concentration, while ηy(t)π{x(t)} can be interpreted as
the concentration of the aerosol particles and their renewal. More specifically,
the quantities involved in these equations are

x(t), which defines the total amount of water vapour in the clouds at the
time t;

Φ{x(t)}, which describes the dynamics of the evaporation and sublimation
of the water in the planet;

π{x(t)}, which denotes the varying rate of the cloud depth reduction, and
it might be considered as a measure of the strength of the coalescence
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effect, i.e. the aggregation strength of two or more particles to form a
bigger one until the rain drop fall;

y(t), which represents the total amount of the precipitation at the time t;

ν, which refers to the gravitational consumption rate of the rain drops in the
clouds;

η, which is the renewal rate of aerosol particles.

This formulation permits to study cyclical patterns characterised by evident
oscillations, whose features are estimated from the data of the two popula-
tions. In many cases, the data of both populations are not always available
and either the amount of precipitation or the cloud depth is usually missing.
A simplified model, which takes into account the physical properties of the
process, is required because rainfall data are more easily accessible.

2.3 The simplification based on the diffusion of
the innovation

The fundamental idea of this viewpoint is based on the study of a sequence
of annual oscillations obtained by splitting the cyclical patterns experimented
by Koren and Feingold (2011). Even if this perspective is less accurate from
a physical point of view, it can be considered a possible solution to describe
the evolution of the amount of precipitation within a year. The Riccati
differential equations (1758) were used by Bass (1969) to explain the diffusion
of the innovations. Such models are here adopted in order to simplify the
Lotka–Volterra system within a year window. In fact, the Lotka–Volterra
equations can be used to describe the dynamics of precipitation and the
cloud depth continuously for several years. On the other hand, the Riccati
equations expresses a behaviour which leads to the saturation after a fixed
period. For this reason, each year must be studied separately and, eventually,
the time trends of the parameters estimates can show useful variation to
forecast the precipitation for the successive years. From a physical viewpoint,
the annual fluctuations are mostly due to the seasonal changes of the solar
radiation, which synergically affects temperatures and clouds systems.

The simplest formulation of the Riccati equation can be expressed as

∂y(t)

∂t
= µ

{
ζ − ξ y(t)

µ

}{
1− y(t)

µ

}
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whose solution is known as the Bass model, i.e.

y(t) = µζ
1− exp{−t(ζ + ξ)}
ζ + ξ exp{−t(ζ + ξ)}

, (2.1)

which is a nonlinear function over time wherein µ refers to the total amount
of adoptions as t→∞, ζ represents the innovation effect and ξ denotes the
imitation effect. The physical explanation of these parameters can be given
from two different perspectives. In both of them, µ approximates the total
rainfall measured during the year. However, from a macroscopic point of
view, the parameter ζ represents the proportion of observed rainfall gener-
ated in the analysed spatial unit, while ξ denotes the proportion of observed
rainfall generated in other neighbouring areas. From a microscopic viewpoint,
ζ indicates the effect of the aerosol in initialising the formation of the precip-
itation; in fact, the estimated value of this parameter may vary according to
the chemical composition of such particles (e.g. see Petters and Kreidenweis,
2007) which is strictly linked to the land use of the area, human activities and
transpiration of vegetation (Andreae and Rosenfeld, 2008). The microscopic
interpretation of ξ is based on the behaviour of water droplets, which become
bigger and heavier by collision and coalescence; in particular, when a critical
mass of these rain-drops is reached, the gravity makes them fall. Since all
these fallen droplets behave in this way, then the collisions, the coalescence
and the gravitational effect may be considered as part of a unique imitating
behaviour: the inertia.

The model in (2.1) can further be extended by the adoption of the so-
called generalised Bass model (Bass et al., 1994), which is formulated in terms
of a differential equation as

∂y(t)

∂t
= µ

{
ζ − ξ y(t)

µ

}{
1− y(t)

µ

}
a(t),

whose solution is given by

y(t) = µ ζ

1− exp

{
−(ζ + ξ)

∫ t

0

a(z) dz

}
ζ + ξ exp

{
−(ζ + ξ)

∫ t

0

a(z) dz

} , (2.2)

where the intervention function a(t) is a non-negative nonlinear function over
time and its role contribute to accelerate or decelerate the adoption process.
In practise, the function a(t) allows to modify the shape of the first derivative
of y(t) and, simultaneously, it keeps constant the total amount of adoptions
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µ as t → ∞. This function can be useful in modelling possible seasonal
patterns within the year, and it is also possible by the use of harmonic func-
tions (Guidolin and Guseo, 2013) to estimate the seasonal frequency and the
intensity of the precipitations, e.g. if

a(t) = 1 + 2παβ cos(2πβt), (2.3)

then the integral is ∫ t

0

a(z) dz = t+ α sin(2πβt),

where α corresponds to the amplitude of the shock and β indicates how fre-
quent is the seasonal effect in the year. However, the quantity 2π|αβ| strongly
affects the variations of the instantaneous precipitation rate and better iden-
tifies the magnitude of the seasonality. The inverse of the parameter β, i.e.
1/β, denotes the time-length of the shock. When either α = 0 or β = 0, there
is no seasonal effect within the year and, therefore, such a model coincides
with the standard Bass model in (2.1).

An alternative model can be considered instead of the generalised Bass
model, because it seems reasonable to decompose the process in two parts. In
this way, the rainfall observed during the autumn can be modelled differently
than the rainfall observed during spring. Hence, the seasonal phenomena can
be described as a finite mixture of Bass models (Guseo, 2004), i.e.

y(t) = µ1ζ1
exp{t(ζ1 + ξ1)} − 1

ζ1 exp{t(ζ1 + ξ1)}+ ξ1
+

+ µ2ζ2
exp{(t− γ)(ζ2 + ξ2)} − 1

ζ2 exp{(t− γ)(ζ2 + ξ2)}+ ξ2
1[γ,+∞)(t), (2.4)

where the parameters µ1, ζ1 and ξ1 refers to the autumnal part of the process,
while µ2, ζ2 and ξ2 are related to the springtime rainfall, and γ denotes the
time origin of the shifted Bass model (Guseo, 2004), namely the evolution
explained by the second addend in (2.4). However, the reasons to justify
the use of this mixture are not consistent with the nature of the rainfall
process. As matter of fact, the meaning of the parameters of such a mixture
are hardly interpretable, because they are time related (e.g. µ1 refers to the
former part of the period to analyse, while µ2 to the latter). In addition, the
lack of information about the most adequate values to initialise the estimation
procedure will generate very unstable estimates, especially when the rainfall
time-series are defined for a high number of micro-areas (or location cells).

The inference from observed rainfall data must take into account a pro-
posed theoretical model, e.g. the simplified trajectory in (2.1), and few weak
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assumptions on the residual factors that determine the dynamics of the ob-
served process. A possible way is based on the following regression model:

r(t) = y(t) + ε(t),

where r(t) is the observed measurement of precipitation in an area at the time
t, y(t) denotes a deterministic model describing the evolution of the process,
and ε(t) indicates the residual mixture of stochastic and deterministic effects
acting at the time t on the response r(t).

Many non-parametric approaches to inference may be a reasonable way
to address the problem. However, it seems more suitable to adopt nonlinear
least squares and quantile regression tools, since the nature of y(t) is here
based on nonlinear parametric models.

2.4 Conclusion
Standard statistical methods used to model and forecast rainfall data

mainly concern with distributive assumptions and inferential paradigms. This
perspective mostly focuses on the dependence of each observation on the co-
variance structure of the process which is usually dependent on spatiotempo-
ral distances among observations. The trend in scientific areas is reasonably
based on improving models by introducing more flexible tools and including
more explicative variables. However, this approach increases the complexity
of the models, which leads to unfeasible estimation and forecast techniques.

In this chapter, the proposed simplification of the dynamical system re-
lated to the Lotka–Volterra equations is characterised by a physical inter-
pretation of the innovation diffusion models in a hydrological context. In
so doing, other inferential consideration can be achieved and can be linked
with other physical processes and measurements. In particular, this new per-
spective reduces the flexibility of the model and the number of covariates,
and hence it leads to a computational improvement by decreasing the model
complexity.

The adoption of a non-parametric approach in the subsequent regression
analyses requires suitable estimation methods. While the nonlinear least
squares are well studied and optimal procedure are well developed, the cur-
rent quantile regression tools for parametric nonlinear models are not suit-
ably developed and they suffer of a methodological lack in the literature. In
the next chapter, nonlinear simultaneous quantile regression techniques are
studied and new methods are developed in order to achieve proper results in
reasonable time.
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Chapter 3

Constrained quantile regression

Historically, the first attempt to regression was done in order to calculate
the earth ellipticity (Boscovich, 1779). The physicist, astronomer, mathe-
matician and Jesuit priest Roger J. Boscovich (Ruđer J. Bošković, 1711–
1787), who was director of the Brera observatory in Milan and served as
chair of mathematics in Pavia, referred for the first time to the least absolute
deviations procedure, also known as L1-norm minimisation. Successively,
the Boscovich approach was studied deeper by Laplace (1846) and after by
Edgeworth (1888), who argue how the L1-norm minimisation may perform
better than the least squares. Since quantile regression has been introduced
by Koenker and Bassett Jr. (1978), it becomes a very useful statistical tool
which provides a more informative description of the phenomenon under
study without making any assumption on its underlying distribution. Usu-
ally, the standard regression techniques are based on least square methods,
which were first introduced by Legendre (1806, with the name of méthode
des moindres carrés) and after by Gauss (1809). If the least square methods
focus on the conditional expectation of a random variable (r.v.) of interest,
then the methods based on the minimum sum of absolute deviations are more
robust and they focus on the conditional median. In order not to restrict the
attention to the median, quantile regression provides a conditional quantile
response for each probability level. In particular, this method is based on the
minimisation of asymmetric loss functions, where the symmetric L1-norm is
a particular case. This optimisation problem corresponds to the asymmet-
ric absolute deviations and it can be viewed as a constrained programming
problem. As described in Chen and Wei (2005), the simplex algorithm can
be used to compute the estimates for data sets with few observations. The
interior point methods (Mehrotra, 1992) is a faster alternative to the sim-
plex algorithm which was developed to deal with large data sets. It was also
proved that interior point methods give better results than the simplex algo-
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rithm. In addition, the collinearity in the covariates will not cause a failure
during the estimation (Wagner, 1959).

When each quantile level is separately estimated, it is possible to obtain
fitted curves which violate the monotonicity property of quantiles. Many
works are presented in the literature to provide simultaneous estimation
methods in order to solve this problem, which is usually called crossing
quantile curves. In fact, when each curve is independently estimated, the
information related to the position of the other curves is completely ignored.
Many estimation techniques were recently proposed to perform quantile re-
gression for each curve by including this further information. In so doing,
both the locations of the curves and the inference on the parameters improve.
The first attempt to solve such a problem was made by He (1997). His re-
stricted version of quantile regression, described in Section 3.1.2, forces some
ordering conditions on the quantile curves. The basic idea is founded on a lo-
cation model shifted by the scale. The proposal of Chernozhukov et al. (2010)
focuses on a rearranged estimator, explained in Section 3.1.3. This method
sorts (according to an increasing or decreasing order) the estimates obtained
by separate regressions in order to get non crossing quantile curves. Among
the methods explained in Section 3.1.4, Wu and Liu (2009) proposed a step-
wise multiple quantile regression based on an ordered estimation sequence
which forces the non crossing constraints on previous estimates. Similarly,
constrained simultaneous quantile regression of Bondell et al. (2010) consists
of a procedure to estimate simultaneously all parameters for each quantile
curve. This method, however, is limited to the cases wherein the regression
models have bounded domains; e.g. it can not be applied for linear mod-
els defined on an unbounded domain, because they have constant slope and
location shift determined by the quantiles of the error distribution.

The new estimation techniques exposed in Section 3.2, are a particular
case of simultaneous quantile regression. In some cases, when there is the
necessity to estimates unknown parameters by fixing them for each quantile
level, equality constraints must be imposed to obtain more reliable results.
This can be due to the properties of the model, e.g. for linear models with
unbounded domain.

It is explained in Section 3.3 how to get the test statistics to evaluate the
goodness of fit for all the simultaneously estimated levels. Such statistics are
directly derived form those presented in the literature for separate quantile
levels. New test based on the analysis of the residuals are also obtained by
the use of non parametric techniques, such as the generalised additive models
(Hastie and Tibshirani, 1990). Further methods for the construction of the
confidence regions are studied as well.

In order to compare the regression methods and the tools provided for
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the tests, two simulation studies are described in Appendix A.4.

3.1 Literature review of estimation methods
Let Y |X = x be a conditional stochastic response variable with cumula-

tive distribution function (c.d.f.) FY |X=x : R→ [0, 1], where x ∈ X ⊆ RK is a
deterministic or stochastic covariate K-dimensional vector. A simple model
to describe such a response may be based on a position index ν(x; τ) of order
τ ∈ (0, 1), which defines the τ -quantile function with reference to FY |X=x. If
Y |X = x is continuous the following relationships are satisfied:

τ = Pr{Y ≤ ν(x; τ)|X = x} = FY |X=x{ν(x; τ)},

and vice versa the conditional quantile function QY |X=x : [0, 1]→ R is defined
as

QY |X=x(τ) = F−1
Y |X=x(τ) = ν(x; τ).

In the discrete case, infinite multiple solutions are available and different
methods described by Koenker (2005, Section 8.2) are not considered here.

A τ -quantile arises as the solution of the following decision theory prob-
lem:

min
ν(x;τ)

E
[
ρτ{(Y |X)− ν(X; τ)}|X = x

]
, (3.1)

where the check function (Koenker, 2005) ρτ (·) is defined as

ρτ (z) =

{
zτ, if z ≥ 0,

z(τ − 1), if z < 0,

and the previous expectation is computed as

E
[
ρτ{(Y |X)− ν(X; τ)}|X = x

]
=

∫ +∞

−∞
ρτ{y − ν(x; τ)} dFY |X=x.

Suppose, without loss of generality, that the τ -quantile function does not
depend on x, ν(x; τ) = ντ , so that the minimisation problem in (3.1) can be
reformulated as

min
ντ

(τ − 1)

∫ ντ

−∞
(y − ντ ) dFY + τ

∫ +∞

ντ

(y − ντ ) dFY .

By differentiating with respect to ντ , the solution of the equation

(1− τ)
∫ ντ

−∞
dFY − τ

∫ +∞

ντ

dFY = 0
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is identified by the τ -quantile, when F−1
Y (τ) is unique.

A τ -quantile regression model g(x; θτ ) defines a family of functions, where
θτ ∈ Rr is a vector of parameters. Such a regression model may approximate
the τ -quantile function ν(x; τ) and could not include it as a special case. In
other words, the regression model g(x; θτ ) is used to better identify ν(x; τ);
e.g. each observation in a sample of size n can be decomposed as the sum of
two quantities:

yi = g(xi; θτ ) + εi(τ),

for any i = 1, . . . , n, where the error term ε(τ) is around the regression model
g(x; θτ ), which might be either a linear or a general nonlinear function of θτ .
In order to achieve optimal results, the error term must satisfy the following
properties:

• the τ -quantile of ε(τ) must be zero, and

• the expectation
∑n

i=1 E[ρτ{εi(τ)}] is minimum when g(xi; θτ ) is re-
placed with ν(xi; τ).

3.1.1 Separate quantile regressions

The procedure of Koenker and Bassett Jr. (1978) refers to the quantile
regression for linear models. After the introduction of the interior point
optimisation methods (Mehrotra, 1992), a general approach for nonlinear
quantile regression was studied by Koenker and Park (1996). The estimator
of the conditional quantile function Q̂Y |X=x(τ) = g(x; θ̂τ ) can expressed as
follows:

θ̂τ = arg min
θτ

n∑
i=1

ρτ{yi − g(xi; θτ )}. (3.2)

A special case might be considered when τ = 0.5, because such a con-
ditional quantile estimator corresponds to the conditional median or to the
estimator based on the L1-norm.

When a finite set of possible values for τ is available, each regression
model is separately fitted through the use of the estimator in (3.2). Even
if this procedure is theoretically strong to detect the conditional quantile
ν(x; τ), the fitted regression models may violate the monotonicity property
of quantiles. This problem is known as quantile crossing curves and it arises
when there exist at least a pair of indexes i, j = 1, . . . ,m, such that the
inequality g(x; θτi) > g(x; θτj) is satisfied in a non empty subset of X when
τi < τj. Since the regression models are separately estimated without any
further information related to the position of the other models, this problem



Chapter 3. Constrained quantile regression 19

is quite common in linear regression and even more frequent in nonlinear
settings (He, 1997).

3.1.2 Restricted quantile regression

The idea of restricted quantile regression (He, 1997) can be adopted in
order to estimate quantile curves by avoiding the occurrence of crossing quan-
tiles. This method is used for estimating the parameters for a specific class
of models

y = g(x) + s(x)ε, (3.3)

where ε denotes the error term, g(·) and s(·) are two generic functions which
represent the conditional location and scale respectively. This method in-
troduces some other assumptions on the error term distribution and on the
function controlling the scale. In particular,

• the median of ε must be zero, which is required for the identifiability
of the location function g(·);

• the median of |ε| must be one, so that the scale function s(·) can cor-
rectly be identified;

• s(·) must be non negative, since |ε| ≥ 0 is always satisfied.

In practice, once ĝ(·), which is correspondent to the median curve, and
ŝ(·), which denotes the median dispersion around ĝ(·), are estimated, then
a scale-shifting parameter γτ ∈ R is estimated for each τ ∈ [0, 1], in order
to place the quantile curve ĝ(·) + γ̂τ ŝ(·) in its optimal position. Since s(·) is
non negative and γτ increases monotonically with respect to τ , the resulting
curves do not intersect. More precisely, the algorithm is based on three simple
steps (He, 1997):

1. the estimation of the conditional median function is performed to find
Q̂Y |X=x(0.5) = ĝ0.5(x) and, in so doing, the residuals can be computed
as r̂i = yi − ĝ0.5(xi), for any i = 1, . . . , n;

2. since r̂i ≈ s(xi)εi, the median of |r̂i| is approximately s(xi); therefore,
the least absolute deviations method is applied to estimate the function
s(·), so that the quantity

∑n
i=1 ρ0.5{|r̂i| − s(xi)} is minimised;

3. the computation of the quantity γτ is followed in order to minimise
the sum of asymmetric loss functions computed for each probability
level, i.e. γ̂τ = arg minγτ

∑n
i=1 ρτ{r̂i − γτ ŝ0.5(xi)}, where ŝ0.5(xi) is the

median scale function estimated at the previous step. After this, the
conditional quantile is computed as Q̂Y |X=x(τ) = ĝ0.5(x) + γ̂τ ŝ0.5(x).
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He (1997) discussed the main properties of results obtained through this
procedure. In particular, he stated that the conditional quantile estimator
is consistent. However, this method can not be used in those cases wherein
the data do not satisfy the location and scale paradigm as in (3.3).

3.1.3 Rearrangement quantile estimator

The estimator proposed by Chernozhukov et al. (2010) is based on the
application of the rearrangement operator introduced by Hardy et al. (1934).
Such a method takes a particular permutation of the original estimates of
a non monotone curve, namely it sorts them so that the resulting curve is
monotone. To be more precise, the rearrangement operator is defined on a
function f : T → R, where the space T is bounded and it can be replaced by
the interval [0, 1] without any loss of generality, i.e.

f ∗(τ) = inf

{
y ∈ R :

∫ 1

0

1(
−∞, f(u)

](y) du ≥ τ

}
, (3.4)

where the indicator function is defined as

1A(z) =

{
1, if z ∈ A,
0, otherwise.

This means that the rearranged function f ∗(τ) corresponds to the minimum
value of y, such that τ is lower or equal than the total coverage of the sub-
spaces of T , wherein the function f(·) is lower than y. By extending this
concept, it is possible to get the multivariate version of the rearrangement
operator. In fact, if T is a bounded multidimensional space, e.g. [0, 1]d with
d > 1, the rearrangement operator takes the following form:

f ∗(t) = inf

{
y ∈ R :

∫ 1

0

· · ·
∫ 1

0

1(
−∞, f(u1,...,ud)

](y) du1 . . . dud ≥ q(t)

}
,

where t = (t1, . . . , td)
> and the quantity q(t) is chosen such that∫

[0,1]d
1(

−∞, f(t)
](y) dt =

∫
[0,1]d

1(
−∞, f∗(t)

](y) dt

and it can be approximated as

q(t) ≈ 1

2

d∏
i=1

ti +
1

2

{
1−

d∏
i=1

(1− ti)

}
.
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The former part of the summation in the approximation above refers to the
coverage of the subspace wherein the rearranged function is surely less than
f ∗(t). The latter part denotes the coverage of the subspace which excludes
that part wherein the rearranged function is surely greater than f ∗(t).

The definition of the rearrangement operator in (3.4) is sufficient to obtain
a monotonic quantile estimator. In practice, separate independent estimation
of the conditional quantile function QY |X=x(τ) in each point τ ∈ (0, 1) may
provide curves which violate the monotonicity property. In these cases, since
the conditional quantile function is estimated by points, then its empirical
estimate Q̂Y |X=x(τ) can be transformed in Q̂∗

Y |X=x(τ) through rearrangement
as in (3.4).

Let F̂Y |X=x(y) be the empirical conditional c.d.f., which can be defined
through the empirical conditional quantile function Q̂Y |X=x(τ) as

F̂Y |X=x(y) =

∫ 1

0

1(−∞, y]

{
Q̂Y |X=x(τ)

}
dτ, or equivalently as

=

∫ 1

0

1[Q̂Y |X=x(τ), +∞)(y) dτ. (3.5)

In other words, the empirical c.d.f. can be viewed as the total length of the
portions of domain wherein the empirical conditional quantile function is
lower or equal than a threshold y. Since the empirical c.d.f. F̂Y |X=x(y) is
computed as in (3.5), it is always monotonically increasing for any quantile
function used in the estimation procedure. This is the motivation which
allows to define the rearranged quantile estimator as

Q̂∗
Y |X=x(τ) = F̂−1

Y |X=x(τ) = inf
{
y : F̂Y |X=x(y) ≥ τ

}
, (3.6)

which is monotone in τ (Chernozhukov et al., 2009).
Chernozhukov et al. (2010) proved that this estimator has smaller estima-

tion error than the original non rearranged. This implies that the rearranged
conditional quantile function is closer to the true quantile curve QY |X=x(τ),
i.e. for any p ∈ [1,+∞) the following inequality is always satisfied:∥∥∥Q̂∗

Y |X=x(τ)−QY |X=x(τ)
∥∥∥
p
≤
∥∥∥Q̂Y |X=x(τ)−QY |X=x(τ)

∥∥∥
p
,

where ‖ · ‖p represents the Lp-norm of a measurable function.
They also proved that the coverage probability of the confidence interval

for the rearrangement is greater than a given level α ∈ (0, 1); in fact, the
confidence interval may cover non monotonic curves. By considering only
monotonic function, the coverage interval reduces its length by maintaining
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the same coverage probability. The proposal of Chernozhukov et al. (2009)
is based on the application of the rearrangement technique to the confidence
bands, in order to construct narrow confidence intervals covering only mono-
tonic curves.

3.1.4 Multi-objective quantile estimators

Multi-objective optimisation techniques are the founding methods for a
simultaneous quantile regression imposing non crossing constraints. In prac-
tice, instead of using the estimator in (3.2) to compute the estimates for each
value of τ , these are obtained by optimising simultaneously a multi-objective
function h(θτ1 , . . . , θτm) : Rrm → Rm

+ , where m is the number of quantile
levels τ1 < τ2 < . . . < τm that must be computed.

The general multi-objective minimisation problem is designed to find an
optimal point which is a compromise with respect to the result attained in
the utopia point, wherein each loss function achieves its minimum. Since
a unique global solution does not exist, the Pareto optimality is the main
concept to define an optimal point (Pareto, 1906). Originally, this idea was
expressed in terms of “ophelimity maximum” point, in which the maximum
global benefit is attained when all the loss functions are close to their mini-
mum, but some of them will improve while others will get worse results for
any little change from that point. In other words, a Pareto optimal point
achieves an equilibrium of benefits for each objective function. A complete
and comprehensive review about multi-objective optimisation methods can
be found in Marler and Arora (2004).

Simultaneous quantile regression minimises at the same time the sum of
the asymmetric absolute deviations

hj(θτj) =
n∑
i=1

ρτj{yi − g(xi; θτj)},

for each j = 1, . . . ,m, subject to the non crossing constraints

g(x; θτk) < g(x; θτk+1
), (3.7)

which must be satisfied for k = 1, . . . ,m− 1 and for all x ∈ X .
According to Marler and Arora (2004), there exists three classes of pos-

sible methods to solve a general multi-objective optimisation problem. The
distinction of these algorithms is based on the articulation of preferences,
namely the criteria to combine all the functions to optimise into a unique
one. Such preferences can be defined either a priori or a posteriori. If no
preference is defined more objective procedures can be considered.



Chapter 3. Constrained quantile regression 23

The quantile regression method proposed by Bondell et al. (2010) and
the stepwise techniques developed by Wu and Liu (2009) enter in this class
of multi-objective quantile estimators. They are both based on prior prefer-
ences, but the former method can be viewed as a procedure without prefer-
ences.

Many criteria can be chosen for combining the objective functions into
a unique global one. Such a single global function can be view as a loss
or utility function, which is optimised to reach a good compromise between
the final solution and the utopia point θ◦τj . In this context, by definition, the
utopia point θ◦τj always satisfies the equality hj(θ◦τj) = 0, for any j = 1, . . . ,m.
The most common choices are presented in the following.

The weighted global criteria (Zeleny, 1973) combine the objective func-
tions through a weighted exponential sum, so that the global loss can
be described by the function `(θ), which is expressed as

`(θ) =
m∑
j=1

hj(θτj)
pwj,

or alternatively as

`(θ) =
m∑
j=1

{
hj(θτj)wj

}p
, (3.8)

where θ =
(
θ>τ1 , . . . , θ

>
τm

)>. The weights wj may be all equal to 1/m, if it
is considered a setting without preferences. Alternatively, they may be
defined by prior preferences such that 0 ≤ wj ≤ 1, for all j = 1, . . . ,m,
and

∑m
j=1wj = 1. The particular case of the weighted sum criteria

refers to the previous loss function computed for p = 1.

The constrained version of quantile regression is a simultaneous mul-
tiple quantile estimation procedure based on this multi-objective opti-
misation technique by imposing the constraints in (3.7). Bondell et al.
(2010) focuses on both linear and nonparametric models defined on a
bounded domain. Their estimator is based on the minimisation of the
loss function (3.8) with p = 1 and subject to the non crossing con-
straints. They restricted to the case in which g(x; θτ ) is linear or, more
generally, a linear combination of basis functions. The same idea can be
extended with some difficulties also to get the estimates for nonlinear
parametric models.

The lexicographic method (Fishburn, 1974) sorts the objective functions
in order of importance and then they are optimised one at a time.
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Of course, each function hj(·) has to be univocally related to another
h(j)(·), where the index (j) denotes the position in the optimisation
sequence. In order to guaranty the Pareto optimality, the optimisa-
tion is subject to further constraints when a variation of θτ(j) implies
a change of value on θτ(k)

, for any j > k, with j = 2, . . . ,m and
k = 1, . . . , j − 1. In practice, the minimisation of h(j)(θτ(j)) is sub-
ject to h(k)(θτ(k)

) ≤ (1+δk) h(k)(θ
∗
τ(k)

), where θ∗τ(k)
is the minimum point

of the function h(k)(·) and δk ∈ [0, 1] represents a constant of constraint
relaxation. Of course, h(1)(·) is optimised without any constraint.

The stepwise multiple quantile regression (Wu and Liu, 2009) is very
similar to this method. In fact, instead of estimating multiple quantile
regression models at the same time, estimates are computed sequen-
tially for each quantile level by imposing the non crossing constraints
on the previous one. In practice, the most central curve is the first to
be estimated. The other curves are sequentially calculated by imposing
the constraints in (3.7) from the middle quantile level to the highest
and, conversely, from the middle to the lowest.

The weighted min-max method is also called the weighted Chebychev
method (Osyczka, 1978). It is a special case of (3.8) as p → ∞, so
that the loss function is computed as

`(θ) = max
j

{
hj(θτj)wj

}
, ∀j = 1, . . . ,m.

When the minimisation of this loss function coincide with the minimi-
sation of hj(·) for a unique j = 1, . . . ,m, then it is preferred to optimise
the following function:

`(θ) = max
j

{
|hj(θτj)− h◦j |wj

}
, ∀j = 1, . . . ,m,

where h◦j = minθτj
hj(θτj) for any j = 1, . . . ,m, namely the minimum

value of hj(·) obtained through non simultaneous optimisations. Since
h◦j must be attained for all j = 1, . . . ,m before the global optimisation,
the last loss function refers to the a posteriori articulation of prefer-
ences. This is done to improve the identifiability of all the parameters
to estimate. Generally speaking, these methods do not guaranty the
existence of a Pareto optimal point; however, if the loss function `(θ)
admits a unique minimum, it is a Pareto optimal point.

The exponential weighted criteria were initially designed as an alter-
native to the weighted sum method in order to capture points on non
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convex optimal surfaces (Athan and Papalambros, 1996). They supply
a loss function which is formulated as

`(θ) =
m∑
j=1

{exp(p wj)− 1} exp
{
p hj(θτj)

}
,

where large values of p can lead to numerical instabilities during the
minimisation phase.

The weighted product method (first introduced as product of powers by
Bridgman, 1922) is mostly adopted when objective functions have dif-
ferent orders of magnitude. In the optimisation process the objective
functions will have similar significance without applying any transfor-
mation. In this case, the loss function is expressed as

`(θ) =
m∏
j=1

hj(θτj)
wj ,

where the weights wj indicates the relative significance of the function
hj(·). However, this method can introduce extra non linearity in the
form of the loss function, which can potentially be cumbersome to solve
from a computational viewpoint.

3.2 New estimation procedures with equality
constraints

In many cases, some parameters may be considered constant for each
quantile level. This means that the effects of these fixed parameters do not
vary with τ , and thus, the changes across quantiles are imputable only to
those parameters which vary. By considering the random coefficients inter-
pretation of generic regression model g(x; θτ ), the vector of parameters θτ
might be considered as the realisation of a multivariate stochastic process
(see Koenker, 2005, section 2.6). From this point of view, if a parameter
follows a Dirac distribution, it should be considered fixed across quantile
levels during the estimation procedure. A particular case is given by the es-
timation of the parameters of a linear model defined on an one-dimensional
unbounded domain, in fact only parallel lines are the unique solution for the
non crossing curves problem (Koenker, 1984).

By considering the multi-objective optimisation techniques exposed in
Section 3.1.4, new estimators can be proposed in order to obtain proper
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estimates by imposing equality constraints on some parameters. Let θ =

(ϕ>, ψ>)> be split in two vectors, where ϕ =
(
ϕ>τ1 , . . . , ϕ

>
τm

)>
, which denotes

the vectors of quantile varying coefficients, and ψ, which represents the vector
of quantile fixed parameters. This means that the τ -quantile regression model
g(x; θτ ) can be written as g(x;ϕτ , ψτ ), where the equality ψτ = ψ must be
satisfied for any τ ∈ (0, 1).

Since the lexicographic method, the exponential weighted criteria and
the weighted product minimisation are computationally inefficient on both
time demanding and numerical instabilities, the methods presented below
are based mainly on the weighted sum and weighted min-max approach.

The parameters can be estimated by minimising a loss function computed
through the weighted sum method, so that the resulting estimator is

θ̂(ws) = arg min
ϕ,ψ

m∑
j=1

n∑
i=1

wjρτj
{
yi − g

(
xi;ϕτj , ψ

)}
. (3.9)

In order to get better results, the non crossing constraints in (3.7) must be
imposed as

g (x;ϕτk , ψ) < g
(
x;ϕτk+1

, ψ
)
,

for k = 1, . . . ,m − 1 and for all x ∈ R. On the other hand, the estimator
based on the weighted min-max can be expressed as

θ̂(wm) = arg min
ϕ,ψ

(
max
j

[
n∑
i=1

wjρτj
{
yi − g

(
xi;ϕτj , ψ

)}])
, (3.10)

where j ∈ {1, . . . ,m}. Also here the regression may be subject to the usual
non crossing constraints as above.

Wagner (1959) pointed out that the usual linear programming techniques
can be adopted for solving regression problems; in fact, the original min-
imisation problem is transformed into an equivalent. He studied both the
minimisation of the sum of absolute deviations and the minimisation of the
maximum absolute deviation. In practice, when the regression model is lin-
ear, the same optimisation technique can be applied to compute the esti-
mates for (3.9), and the problems must easily be adjusted to be processed
(see Section 3.2.1). Generally speaking, both proposed estimators refer to a
simultaneous minimisation of all the objective functions computed for each
quantile level; however, because of the nature of the parameters, it is possible
to minimise the proposed loss functions by iterating two steps until conver-
gence. In practice, the minimum of the global loss function is obtained when
all the functions are as close as possible to their minimum. Especially for the
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Algorithm 3.2.1 Quantile estimation with equality constraints
1: Select the quantile levels τj ∈ (0, 1), for j = 1, . . . ,m.
2: Select an estimator between either (3.9) or (3.10).
3: Initialise all the parameter with a guess.
4: repeat
5: Minimise the loss function for ϕ by maintaining fixed ψ.
6: Minimise the loss function for ψ by maintaining fixed ϕ.
7: until The parameter estimates converge.

estimator in (3.10), it is possible to apply easily a two-step tuning procedure,
which is performed as described in the algorithm 3.2.1. More details on the
estimation by using (3.9) can be found in Section 3.2.1 and 3.2.2.

A noteworthy case can simplify computations, when only one parameter is
allowed to vary according to the quantile levels. When the model or previous
inferential results allow this setting, it is possible to avoid the non crossing
constraints in (3.7). Reasonably, if all parameters are fixed across quantile
levels, all quantile curves collapse into a single one. Nonetheless, by letting
only one proper parameter vary with τ , it adjusts the location of the quantile
curves automatically without imposing the constraints in (3.7). Of course,
this is true if the resulting curves are unique for the selected values of τ . In
fact, if there exist more optimal points of global minimum, the monotonicity
of the estimated conditional quantile function is not guarantied anymore.
Only if the solution exists and it is unique, the algorithm 3.2.1 may be
modified by using either the estimator in (3.9) or (3.10) to compute the
quantile fixed parameters, while the quantile varying parameters are obtained
with the estimator in (3.2).

A special case of the estimator in (3.9) was considered by Hogg (1975),
wherein the function g(·) has the form of the classical linear location-shift
regression model, where only the intercept is allowed to vary with τ . The
regression method described by Koenker (2005, Section 6.8) does not consider
the non crossing constraints.

From a computational point of view, the estimation technique with non
crossing-constraints can be simplified by the adoption of an estimator, which
leads to a penalised quantile regression. It can generally be defined as follows

θ̂(ps) = arg min
ϕ,ψ

m∑
j=1

n∑
i=1

wjρτj
{
yi − g

(
xi;ϕτj , ψ

)}
+ κ

m−1∑
k=1

Pτk+1,τk(g), (3.11)

where κ is a constant controlling the trade-off between the deviance and the
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penalty, and Pτk+1,τk(g) is a penalty which depends on the condition imposed
by the constraints in (3.7). Such a penalty can be defined as

Pτk+1,τk(g) =
1

2

∫
X

∣∣g (x;ϕτk+1
, ψ
)
− g (x;ϕτk , ψ)

∣∣ dx−
− 1

2

∫
X
g
(
x;ϕτk+1

, ψ
)
− g (x;ϕτk , ψ) dx,

and it represents the area between two consecutive quantile curves wherein
the crossing constraints are not satisfied. However, such a formulation is not
worthy for the penalties involving regression models with multiple covariates.
For this reason, any suitable approximation can be considered, e.g.

Pτk+1,τk(g) =
1

2

n∑
i=1

∣∣g (xi;ϕτk+1
, ψ
)
− g (xi;ϕτk , ψ)

∣∣−
− 1

2

n∑
i=1

{
g
(
xi;ϕτk+1

, ψ
)
− g (xi;ϕτk , ψ)

}
.

In these cases, an unconstrained optimisation is performed through the esti-
mator (3.11) and the final estimates are consistent with those obtained by a
proper constrained optimisation based on the estimator (3.9).

Another proposal to avoid the imposition of non crossing constraints when
two or more parameters may vary with τ . The idea comes from the rear-
rangement estimator (Chernozhukov et al., 2010) described in Section 3.1.3.
In practice, quantile varying coefficients can be view as a function of τ , i.e.
ϕ• : (0, 1) → Rq, where q is the number of free parameters. In so doing,
instead of applying the estimator in (3.6) for each x point, each function
ϕ•i (τ) will be rearranged into a monotonic function ϕ∗i (τ), for i = 1, . . . , q.
In other words, the estimates of ϕ are sorted by increasing order; namely,
this procedure can be adopted only when the theoretical model satisfies the
following condition:

g(x;ϕτk , ψ) > g(x;ϕτk+1
, ψ) ⇐⇒ ϕτk > ϕτk+1

, ∀k = 1, . . . ,m− 1.

When the chosen model does not satisfy such a condition, then it is still
possible to obtain proper estimates by adopting a semi-parametric variation
of the so-called quantile sheet introduced by Schnabel and Eilers (2013). In
practice, functional parameters ϕ•(τ) are modelled for any value of τ ∈ [0, 1]
and not only for some and fixed. In this case the conditional c.d.f. of the
response variable can be described by a “hyper-surface”, which depends on
both τ and the covariates. Any non-parametric model can be chosen for
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the vector-valued function ϕ•(τ). This allows to introduce a certain degree
of flexibility in the parametric nonlinear model. Among the non-parametric
model for the parameters, the Bernstein polynomials (Bernstein, 1912) seem
to be reasonable because of the easy interpretation of their coefficients. In
so doing, the vector valued function ϕ•(τ) is defined by

ϕ•(τ) =
m∑
j=0

(
m

j

)
φjτ

j(1− τ)m−j,

where φj ∈ Rq is the j-th vector of coefficients to be estimated and it should
approximate the true values of the function ϕ• evaluated in j/m. The idea
behind the semi-parametric quantile sheets is based on the fact that the pa-
rameters of very close quantile curves have non significant variations; hence
the difference φj+1−φj tends to zero as m→∞. The following proposed es-
timator is based on a penalised quantile regression, which involves difference
penalties P , i.e.

θ̂(qs) = arg min
φ1,...,φm,ψ

∫ 1

0

w(τ)
n∑
i=1

ρτ

[
yi − g

{
xi;ϕ

•(τ), ψ
}]

dτ + P, (3.12)

wherein w(τ) is a non negative weighting function for all τ ∈ [0, 1] and it
satisfies the following property:∫ 1

0

w(τ) dτ = 1,

but it is usually considered constant, namely w(τ) = 1. The penalty P is
defined by

P = κ ‖∆dΦ‖2F ,
where ‖ · ‖F denotes the Frobenius norm, i.e. the square root of the sum of
squares of all the components of a matrix (see Bernstein, 2009, Section 9.2).
The matrix Φ has dimension q×m and its j-th row corresponds to the vector
φj, while ∆d is a (q − d) × q matrix which forms the differences of order d
(Eilers and Marx, 1996), e.g.

∆0Φ = Φ,

∆1Φ = {φj − φj+1} ∀j = 1, . . . , q − 1,

∆2Φ = {φj − 2φj+1 + φj+2} ∀j = 1, . . . , q − 2,

and so on. Usually, d is greater than zero and it is often one or two. The
integral involved in the estimator (3.12) is not analytically computable, there-
fore it must be approximated by numerical methods, such as the trapezoidal
quadrature (Cruz-Uribe et al., 2002).
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3.2.1 Simultaneous linear quantile regression

A non crossing constrained quantile regression of a linear model is per-
formed by combining the idea of the Hogg’s estimator (1975) and the algo-
rithm proposed by Koenker and Ng (2005) for inequality constrained quantile
regression, as suggested in the paper of Bondell et al. (2010). Of course, any
generalisation of this solution for other fixed and quantile varying parame-
ters is always possible for the linear case (especially if a bounded domain
is considered). The optimisation problem related to the estimator (3.9) can
expressed as a linear programming problem, when the function g(·) is linear
and the non crossing constraints are imposed. Equivalently, the problem can
be reformulated as

min
m∑
j=1

wj
{
τj1

>
nuj + (1− τj)1>nvj

}
, (3.13)

subject to  X Imn − Imn
−X − Imn Imn
R O O

βu
v

 ≥ [12m ⊗ y
0m−1

]
,

where 1n denotes an n-th dimensional vector of ones, u = (u>1 , . . . ,u
>
m)> and

v = (v>1 , . . . ,v
>
m)>, wherein uj and vj respectively represent the positive and

negative parts of residuals of the correspondent τj, for j = 1, . . . ,m. The
design matrix X is an mn× (m+ 1) matrix defined as

X =
[
1m ⊗ x L⊗ 1n

]
,

wherein the notation ⊗ denotes the Kroneker product, x = (x1, . . . xn)
> and

the lower triangular matrix

L =


1 0 . . . 0
1 1 . . . 0
...

... . . . ...
1 1 . . . 1


of dimension m×m. The identity matrix Imn is a mn×mn diagonal matrix
having ones as diagonal entries. The inequality constraints matrix R is an
(m− 1)× (m+ 1) matrix defined as

R =
[
0m−1 0m−1 Im−1

]
,

wherein 0m−1 represents a (m−1)-th dimensional vector of zeros. The matrix
O denotes an (m− 1)×mn matrix of zeros. The vector y = (y1, . . . , yn)

> is
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the vector of responses and the vector of parameters is such that

β =

(
β1, β0τ1 , β0τ2 − β0τ1 , . . . , β0τm −

m−1∑
j=1

β0τj

)>

. (3.14)

The problem in (3.13) is not written in a canonical form, therefore the
dual problem can be expressed as

max
d

d>
[
1m ⊗ y
0m−1

]
, (3.15)

subject to 
X> R>

−X> −R>

Imn O>

− Imn O>

O Im−1

d ≥


02mn

{w � (τ − 1m)} ⊗ 1n
{w � (−τ )} ⊗ 1n

0m−1

 ,
where the symbol � denotes the component-wise multiplication between two
vectors or two matrices of the same dimension, the vector of quantile levels
τ = (τ1, . . . , τm)> and the vector of weights w = (w1, . . . , wm)>.

Even if the problem in (3.15) can be solved by standard linear program-
ming algorithms, it is convenient to make a further adjustment. Let a be a
vector such that

a = d−
[
{w � (τ − 1m)} ⊗ 1n

0m−1

]
,

then the linear programming problem in (3.15) can be formulated in a canon-
ical form as

max
a

a>
[
1m ⊗ y
0m−1

]
, (3.16)

subject to 
X> R>

−X> −R>

Imn O>

− Imn O>

O Im−1

 a ≥


X>{w � (τ − 1m)} ⊗ 1n
−X>{w � (τ − 1m)} ⊗ 1n

0mn
−1mn
0m−1

 .
To get the estimates of the parameters of β as defined in (3.14), Gutenbrunner
and Jurečková (1992) suggested an approach based on the regression rank
score process. In practice, the first mn optimal values of the vector a are
used to compute the diagonal entries of the diagonal matrix A, so that

β̂ =
(
X>AX

)−1
X>A(1m ⊗ y).
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If the matrix X>AX is singular, the usual least square estimator is adopted,
i.e.

β̂ =
(
X>X

)−1
X>(1m ⊗ y);

however, as Gutenbrunner and Jurečková (1992) pointed out, the probability
that X>AX is singular approaches to zero as n→∞.

3.2.2 Simultaneous nonlinear quantile regression

A non crossing constrained quantile regression of nonlinear models is per-
formed by extending the method of Koenker and Park (1996). Such a method
is based on numerical optimisation techniques in order to achieve suitable re-
sults for the estimator in (3.2). The technique can be summarised as an
iterative search of the steepest descent direction and of the optimal step
length. Here, in order to achieve a computational compromise, the proposed
extension of this method can only be applied for a nonlinear constrained
quantile regression without regarding the non crossing constraints. Even if
the generalisation of Koenker and Park’s method can not be achieved for
any non crossing quantiles problem, it is always possible to study an ad hoc
algorithm for each nonlinear model as a particular case by itself.

In order to compute the estimates by adopting the estimator in (3.9)
for a generic nonlinear function g(x;ϕ, ψ), it is necessary to consider the
homogeneity property of the check function ρτ (·):

Property 1. Given a quantile level τ ∈ (0, 1) and a scalar w ∈ R+, the
equation ρτ (wz) = wρτ (z) is always satisfied for any z ∈ R, i.e. ρτ (·) is a
homogeneous function. (The proof is reported in Appendix A.1)

El-Attar et al. (1979) stated the existence condition of the optimum values
of the estimates. In fact, the solution is optimal if there exists a vector

d ∈ [τ1 − 1, τ1]
n × . . .× [τm − 1, τm]n, (3.17)

such that
J>d = 0 (3.18)

and

g>
θ̂
d =

m∑
j=1

n∑
i=1

ρτj

{
wjyi − wjg(xi; ϕ̂τj , ψ̂)

}
, (3.19)
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where the matrix J = {diag(w)⊗ 1n} � [G,Ψ], with

G =



∂g(x1;ϕ, ψ̂)

∂ϕ

∣∣∣∣∣
ϕ=ϕ̂τ1

0 . . . 0

...
... . . . ...

∂g(xn;ϕ, ψ̂)

∂ϕ

∣∣∣∣∣
ϕ=ϕ̂τ1

0 . . . 0

0
∂g(x1;ϕ, ψ̂)

∂ϕ

∣∣∣∣∣
ϕ=ϕ̂τ2

. . . 0

...
... . . . ...

0
∂g(xn;ϕ, ψ̂)

∂ϕ

∣∣∣∣∣
ϕ=ϕ̂τ2

. . . 0

...
... . . . ...

0 0 . . .
∂g(x1;ϕ, ψ̂)

∂ϕ

∣∣∣∣∣
ϕ=ϕ̂τm...

... . . . ...

0 0 . . .
∂g(xn;ϕ, ψ̂)

∂ϕ

∣∣∣∣∣
ϕ=ϕ̂τm



,

and

Ψ =



∂g(x1; ϕ̂τ1 , ψ)

∂ψ

∣∣∣∣
ψ=ψ̂

...
∂g(xn; ϕ̂τ1 , ψ)

∂ψ

∣∣∣∣
ψ=ψ̂

...
∂g(x1; ϕ̂τm , ψ)

∂ψ

∣∣∣∣
ψ=ψ̂

...
∂g(xn; ϕ̂τm , ψ)

∂ψ

∣∣∣∣
ψ=ψ̂



,
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and the vector

gθ̂ = (w ⊗ y)− (w ⊗ 1n)�



g(x1; ϕ̂τ1 , ψ̂)
...

g(xn; ϕ̂τ1 , ψ̂)
...

g(x1; ϕ̂τm , ψ̂)
...

g(xn; ϕ̂τm , ψ̂)


.

Since the approach adopted here is based on a steepest descent technique
proposed by Osborne and Watson (1971), the estimation procedure becomes
a sequence of the following minimisation problems:

min
δ

m∑
j=1

n∑
i=1

ρτj

{
wjyi − wjg(xi; ϕ̂τj , ψ̂)− δ>∇i,j

}
wherein the vector ∇i,j has the same components of the row n(j−1)+i of the
matrix J and δ is the vector representing the descent direction for updating
the parameters. In order to find the optimal values of δ, some other steps
are required. In fact, it is necessary to apply the Meketon’s algorithm (1987)
on a linear approximation of the function g(·) to compute the optimal values
of the vector d, and after the primal descent direction vector δ. In practice,
by considering the vector form of the linear approximation, i.e.

gθ ≈ gθ̂ − J(θ − θ̂),

the primal direction is computed as

δ =
(
J>D2J

)−1
J>D2g,

where the diagonal matrix D = diag{min(u1, v1), . . . ,min(umn, vmn)}. Here,
the vectors u and v do not represent the positive and negative parts of the
residuals as in the linear case, but they are computed as

u = (τ ⊗ 1n)− d,

and
v = (τ ⊗ 1n) + d.

More accurately, the vector d is initialised to be the null vector 0mn in
order to satisfy the existence conditions for the optimal solution in (3.17),
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(3.18) and (3.19). By applying the Meketon’s algorithm, the vector d is
updated as

d← d + ω(s�α),

where the scalar ω ∈ (0, 1) is a constant used to insure the feasibility of the
solution, which is usually fixed at ω = 0.97; the vector

s = D2
{
Imn − J

(
J>D2J

)−1
J>D2

}
g

and α = (α1, . . . , αm)> ⊗ 1n, wherein

α−1
j = max

i=1,...,n

{
max

(
sn(j−1)+i

τj − dn(j−1)+i

, −
sn(j−1)+i

1− τj + dn(j−1)+i

)}
for any j = 1, . . . ,m.

After executing twice the Meketon’s algorithm and once the primal di-
rection is computed, the estimates are updated as

θ̂ ← θ̂ + λ̃δ,

wherein the scalar λ̃ ∈ [0, 1] is calculated as

λ̃ = arg min
λ

m∑
j=1

n∑
i=1

wjρτj

{
yi − g(xi; θ̂ + λδ)

}
and it denotes the optimal step length according to the direction δ. After
this, the vector gθ̂ and the matrix J are updated according the new values
of the estimates.

Before to iterate the entire procedure until convergence, it is necessary to
adjust the vector d to ensure the feasibility of the solution for the new values
of J. The adjustment refers to a projection of the vector d onto the null
space of the new matrix J followed by shrinkage procedure, which guaranties
the condition in (3.17), so that

d←
{
Imn − J(J>J)−1J>

}
d,

and then the shrinking is performed as follows:

d← d� (r⊗ 1n),

wherein components of the vector r = (r1, . . . , rm)> are computed as

r−1
j =


(c0 + ε)/τj if c0 > τj,

(c1 + ε)/(1− τj) if c1 < τj − 1,

1 otherwise,
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for all j = 1, . . . ,m, where

c0 = max
i=1,...,n

{
max

(
0, dn(j−1)+i

)}
,

c1 = min
i=1,...,n

{
min

(
0, dn(j−1)+i

)}
,

and ε > 0 is a constant regarding the tolerance of the shrinkage.
Here, the stopping rules are based on several convergence criteria. In

particular when the difference between the global loss at the previous step
and that at the actual is less then a fixed tolerance threshold the algorithm
stops. Also the step length λ̃ is evaluated if it is less then another toler-
ance threshold. If at least one of these conditions are satisfied or when the
maximum number of iteration is reached, the algorithm stops.

3.2.3 Semi-parametric quantile sheets

The adoption of the Levenberg-Marquardt’s algorithm (1944, 1963) is
usually preferred for least square regression of nonlinear models. In this con-
text, after some considerations, it is possible to apply this basic technique to
improve convergence, time efficiency, and stability of the resulting estimates.
Here, the proposed method to estimate the coefficients of a semi-parametric
quantile sheet is based on a new perspective which can easily lead to other
forms of asymmetric regression.

In order to obtain the estimates by the use of (3.12), the following least
square problem is considered:

θ̂ = arg min
θ

1

2

∑
i∈I

fi(θ)
2, (3.20)

wherein I is a generic set of indexes, fi denotes the i-th generic loss function
whose form will be specified below. According to the Levenberg-Marquardt’s
algorithm, the solution of this problem is iteratively found from a candidate
point for θ by the following updating formula:

θ ← θ − δ,

where the steepest descent direction δ is given by

δ =
{
J>J + λ diag(J>J)

}−1
J>f ,

and λ is non negative scalar factor which is adjusted at each iteration in order
to avoid slow convergence. The Jacobian matrix J is obtained by numerical
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differentiation of the functions involved in (3.20); in particular the i-th row
of J corresponds to the numerical approximation of the gradient of fi. The
vector f consists of the evaluations of each function fi in θ. As all the iterative
algorithms, also the Levenberg-Marquardt’s algorithm, stops according the
usual convergence criteria or when the maximum iteration number is reached.

To calculate the coefficients of the models through the estimator (3.12),
it is necessary to write the deviance as a sum of squares. If the integral
is approximated by the trapezoidal quadrature, the estimator (3.12) can be
rewritten as

θ̂(qs) = arg min
φ1,...,φm,ψ

K−1∑
k=0

1

2K

{
Lφ1,...,φm,ψ

(
k

K

)
+ Lφ1,...,φm,ψ

(
k + 1

K

)}
+ P,

where K is the number of equally spaced panels which are used to make
discrete the reference domain of the integral, while

Lφ1,...,φm,ψ(τ) = w(τ)
n∑
i=1

ρτ

[
yi − g

{
xi;ϕ

•(τ), ψ
}]
.

Therefore, the first K values of vector f are defined by

fi =
1√
2K

{
Lφ1,...,φm,ψ

(
i− 1

K

)
+ Lφ1,...,φm,ψ

(
i

K

)} 1
2

, ∀i = 1, . . . , K,

and the remaining (m−1)q values are given by the penalty P . In particular,
if the first order difference is considered, then these last values of f take the
following form:

fK+(i−1)q+j =
√
κ(φi,j − φi+1,j), ∀i = 1, . . . ,m− 1, and j = 1, . . . , q,

where the notation with a double subscript for φi,j denotes the component
in the i-th row and j-th column of the matrix Φ.

This technique requires an initial common point for all the vectors φj, for
j = 1, . . . ,m. A more effective technique consists in substituting the check
function ρτ (·) with the following

ρ∗τ (z) =

{
τ 2z, if z ≥ 0,

−(1− τ)2z, otherwise.
(3.21)

In so doing, this check function forces the curves to spread from a central
common starting location, but the resulting fitted curves do not identify the
right quantile level (see the proof in Appendix A.2). To solve this problem,
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it is necessary to associate the estimated curve to its proper quantile level.
The transformation π : [0, 1]→ [0, 1] is defined as

π(τ) =
τ 2

1− 2τ + 2τ 2
,

and it returns the true probability associated to the τ estimated curve. How-
ever, any conditional quantile can be computed through semi-parametric
quantile sheets for any values of τ ∈ [0, 1]. For this reason, when the check
function ρ∗τ (·) is used in the estimation procedure, the inverse function of π(·)
must be used to calculate the parameters of the nonlinear model through the
Bernstein polynomials. In practice, the inverse function of π(·) is defined by

π−1(τ) =


1

2
, if τ =

1

2
,

τ −
√

(1− τ)τ
2τ − 1

, otherwise,
(3.22)

so that the parameters are computed as

ϕ̂•(τ) =
m∑
j=0

(
m

j

)
φ̂j
{
π−1(τ)

}j {
1− π−1(τ)

}m−j
. (3.23)

If the resulting estimates do not satisfy the monotonicity property of
quantiles, then the estimation procedure should be repeated with higher
values of κ.

3.3 Testing multi-objective quantile estimators
Once the parameters are estimated, the model needs to be compared with

other relevant and more flexible models for selecting the optimal approxima-
tion of the real τ -quantile function. In reality, such a function is not known,
so there is the necessity of establish which criteria can be adopted for model
selection when multiple quantiles are simultaneously estimated.

The analysis of the residuals is also important as well as the model se-
lection. The most common techniques introduced in the literature for least
squares methods were also extended in order to make deeper analyses also
for a quantile regression settings.

Nonetheless, the construction of confidence regions can be performed to
make inference on the parameters and this can lead to a better interpretation
of the estimates. This technique can also supply an alternative method for
model selection when two estimated models are nested.
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3.3.1 Goodness of fit tests

The test statistic R1 is quite common in robust statistics for checking the
lack of fit of a median regression model. Such a statistic is the analogous
to the usual R2 in least squares regression and it was introduce to evaluate
the goodness of fit by McKean and Sievers (1987). Its asymmetric version
was studied some years later by Koenker and Machado (1999), who proposed
other tests for the inferential process. Some of these tests are more common
among statisticians, such as the likelihood ratio test based on the Laplace
distribution, while the others are based on asymptotic approximations, e.g.
the Wald test. However, none of these tests evaluates the performance of the
regression models simultaneously; in fact, all them and their related tests for
nested models are separately performed for each quantile level.

Let ĝ0(x) be the estimates of a simple model, which is also called the
reduced model and it is often chosen to be constant and independent on any
covariates. A more complex model (or “full” model), ĝ1(x), is then compared
with ĝ0(x) by the use of the statistic R1

τj
. When separate quantile levels are

estimated, such a statistic is computed for each j = 1, . . . ,m as

R1
τj

= 1−
V •
τj

V ◦
τj

, (3.24)

where

V •
τj

=
n∑
i=1

ρτj{yi − ĝ1(xi)}

represents the deviance of the full model and

V ◦
τj

=
n∑
i=1

ρτj{yi − ĝ0(xi)},

denotes the deviance of the reduced one. Since V ◦
τj
> V •

τj
, the results of R1

τj

always belong to the interval [0, 1]. In particular, the statistic denotes a lack
of fit for values closer to 0, while higher values corresponds to an improvement
of the goodness of fit.

When multiple quantile levels are simultaneously estimated, a global mea-
sure of goodness of fit should be considered instead. For this purpose, two
quantities can be considered:

• R̃1, which can be calculated almost as (3.24);

• R̄1, which summaries the individual statistics R1
τj

, for all j = 1, . . . ,m.
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In practice, R̃1 can be viewed as a global goodness of fit statistics, and
the way it is computed depends on the global loss function used during the
estimation procedure. E.g. if the estimator in (3.9) is selected, then the
resulting statistic will be computed as

R̃1 = 1−

m∑
j=1

n∑
i=1

wjρτj
{
yi − ĝ1,τj(xi)

}
m∑
j=1

n∑
i=1

wjρτj
{
yi − ĝ0,τj(xi)

} .
Such a statistic, even if it is computed with the same criteria adopted for
the estimation, it may suffer of a “quantile reference” problem. In fact, this
problem arises when the deviances are mixed together or, in the worst cases,
when the ratio is obtained with the deviances of two different quantiles,
especially if the estimator in (3.10) is adopted.

The latter proposal, R̄1, is based on a unique index which might be com-
puted either as the weighted average, the weighted median or the minimum of
those quantities obtained as in (3.24). The minimum statistics is calculated
as

R̄1 = min{R1
τ1
, . . . , R1

τm}
and it seems to be reasonable, because when it exceeds an optimal level all
the other are greater. This means that the full model is optimal for all the
quantile levels.

Other tests presented in the literature are devoted to the selection of
regression models for a specific quantile level. E.g. the test proposed by He
and Zhu (2003) checks the model inadequacy (both for linear and nonlinear
models) and it is based on the cusum process of the residuals (a standard
technique in statistical quality control, see Montgomery, 2000). To be more
precise, the proposed statistic was defined as follows

Cτj = max
‖a‖=1

n−1

n∑
i=1

(a>Wτj(xi))
2, (3.25)

which is equivalent to the largest eigenvalue of the matrix

n−1

n∑
i=1

Wτj(xi)W
>
τj

(xi), (3.26)

where the function W : RK → Rr is defined as

Wτj(t) = n−1/2

n∑
i=1

ρτj

{
yi − g(xi; θ̂τj)

}
∇θg(xi; θ̂τk)1(−∞, t1]×···×(−∞, tK ](xi),
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where ∇θg(xi; θ̂τk) denotes the gradient of the regression model computed
with respect to the parameters. Since a cusum process is a cumulative sum
process, in this case the function Wτj(t) is a vector-weighted cumulative
sum involving the gradients ∇θg(xi; θ̂τk), which is computed only for those
observations that are lower than a specific value t, and the weights, which are
given by the application of check function ρτj on the residuals. The statistic
in (3.25) is equivalent to spectral norm (Bernstein, 2009, proposition 9.2.3)
of the matrix in (3.26), in fact it may be interpreted as the norm of the total
deviance of the vector-weighted cusum process Wτj(t). This perspective is
justified by the fact that Wτj(t) weakly converges to a Gaussian process
(He and Zhu, 2003). In order to accept the goodness of fit hypothesis, the
statistic Cτj must be lower than the critical value cα which guaranties a level
of significance α, i.e.

Pr
(
Cτj < cα

)
= 1− α.

He and Zhu (2003) assert that the test is consistent for any fixed alterna-
tive, and it is asymptotically distribution-free. However, they suggested a
computer simulation based procedure to get an approximated critical value.
Wilcox (2008) introduced a simplified approach based on this method by
ranking the gradients ∇θg(xi; θ̂τk), so that the improvement in computa-
tional efficiency of the original algorithm is obtained during the calculation
of Wτj(t).

Even if each separate statistic gives a specific information on the good-
ness of fit for its quantile level, a global technique to evaluate simultaneous
quantile regression models is not studied yet. A possible approach to extend
the previously described technique for simultaneous regressions consists in
evaluating the statistics Cτj for any j = 1, . . . ,m and to establish their em-
pirical joint distribution by Monte Carlo methods. As before, each critical
values cj,α must satisfy

Pr
{

(Cτ1 < c1,α) ∩ . . . ∩ (Cτm < cm,α)
}

= 1− α.

Other techniques are based on the information criteria (Koenker, 2005,
Section 4.9.1), e.g. the Akaike information criterion

AIC = log

[
1

mn

m∑
j=1

n∑
i=1

wj ρτj

{
yi − g

(
xi; ϕ̂τj , ψ̂

)}]
+ p

or the Schwarz information criterion

SIC = log

[
1

mn

m∑
j=1

n∑
i=1

wj ρτj

{
yi − g

(
xi; ϕ̂τj , ψ̂

)}]
+
p

2
log(mn),
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where p is the mean number of parameters that are effectively estimated for
each separate model, i.e.

p = pf +
pc

m
,

where pf denotes the number of free parameters, while pc represents the
number of fixed parameters which remain constant across quantiles. A more
sophisticated method based on information criteria is the focused model se-
lection (Behl et al., 2012). Other alternatives to these techniques are based
on the idea of a regression via “ lasso” shrinkage (Tibshirani, 1996), e.g. reg-
ularised simultaneous model selection (Zou and Yuan, 2008).

3.3.2 Analyses of residuals

Usually, the analysis of residuals is a powerful tool to check the basic
properties of the residuals based on the assumption of normality (or other
distributions). These methods are further options to establish the goodness
of fit in terms of outliers detection, homoscedasticity of the residuals and
model adequacy. On the other hand, most of these analyses are not useful
when a quantile regression setting is adopted. Since quantile regression is
most robust than least squares methods, the outlier detection can be used for
different purposes than excluding or re-weighting observations for a further
more robust estimation. The analysis of residuals might be useful for checking
the heteroscedasticity of the residuals, but this does not affects the results
since simultaneous multiple quantile regression is able to catch this feature
of the data.

To perform these analyses from a graphical point of view, the most com-
mon plots are the residuals vs. fitted values and the normal quantile-quantile
(Faraway, 2002). The former plot is useful to access to the randomness
of residuals and homoscedasticity, while the latter is applied to check the
residuals normality. Of course, by adjusting these techniques for the quan-
tile regression context, these analyses must be performed separately for each
quantile level.

In a quantile regression setting, residuals vs. fitted values plot is adopted
to check graphically some odd patterns, which imply a lack of fit. By the
nature of the technique, the τ -quantile of the residuals is zero and this fact
can be used to diagnose premature algorithm stops. To establish the lack
of fit, however, it is necessary to see if the residuals are locally random by
maintaining the quantile proportions, namely there should be τ negative
and 1 − τ non negative residuals. By taking inspiration from the methods
proposed by Redden et al. (2004) and Zou and Yuan (2008), it is possible to
summarise the graphical information with a statistic for testing the goodness
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of fit. This new technique for the analysis of residuals can be described as
follows:

1. introduce an indicator variable Dτ = 1R+

{
y − g(x; θ̂τ )

}
, which classi-

fies the observations according to the position of their response variable
with respect to the regression model;

2. perform a non parametric logistic regression on Dτ by using the re-
sponse variable y as covariate and shrinking to zero the estimates of
the parameters related to the smoother. This means that the logistic
regression model will be

Pr(Dτ = 1) = logit−1 {κτ + sτ (y)} , (3.27)

where
logit−1(z) =

1

1 + exp(−z)
,

κτ is a constant parameter which plays the role of the intercept, and
the function sτ (·) is a generic smoother obtained as a weighted sum
of basis functions. This estimation procedure refers to the generalised
additive models (Hastie and Tibshirani, 1990) and, in this case, to a
further extension of this method as a regularised logistic regression (as
described in Hastie et al., 2001, Section 18.4);

3. perform a log-likelihood ratio test to determine if the smoother esti-
mates are significant or not. In other words, the test should discern
amongH0 : s(y) = 0, for all y ∈ R, versusH1 : s(y) 6= 0, for some y ∈ R.
The test statistic based on the log-likelihood ratio test is asymptotically
distributed as χ2 with degrees of freedom computed as the difference
of the effective degrees of freedom between two models: one including
the smoother and another one excluding it. If H0 is accepted, then
the quantile regression model is accurate enough to characterise the
conditional quantile of Y |X = x.

Other tests might be performed through regularised logistic regression as in
(3.27) by substituting the covariates x to the response y.

The normal quantile-quantile plot (or Q-Q plot), it is not a proper tool
in this context. However, if the error distribution is assumed to be the asym-
metric Laplace (Yu and Zhang, 2005), it might be adopted to determine if
a monotone non decreasing transformation applied to the data might im-
prove the results (Santos and Elian, 2012). In fact, if h(·) is a monotone
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non decreasing function, then by the equivalence property of quantiles, the
following relationship holds:

Qh(Y )|X=x(τ) = h
{
QY |X=x(τ)

}
.

The Q-Q plot can be drawn by following the definition of quantile residuals
given by Dunn and Smyth (1996), i.e.

ε̂Dunn(τ) = Φ−1
{
FLa(y, g(x; θ̂τ ), σ̂τ , τ)

}
,

where

σ̂τ =
1

n

n∑
i=1

ρτ

{
yi − g(xi; θ̂τ )

}
,

Φ(·) is the standard normal c.d.f. and FLa denotes the c.d.f. of an asymmetric
Laplace r.v., which is defined as

FLa(y, g(x; θτ ), στ , τ) =


τ exp

[
1− τ
στ

{
y − g(x; θτ )

}]
, if y ≤ g(x; θτ ),

1− 1− τ

exp
[ τ
σ

{
y − g(x; θτ )

}] , otherwise.

3.3.3 Confidence regions and intervals

After the model selection, the standard error (s.e.) of each parameter
is computed for making other tests on the obtained estimates. Bootstrap
methods are mostly applied in this context to get an approximate estimate
of the s.e. of the coefficients. In particular, these resampling techniques were
studied by Koenker (1994) to construct confidence intervals. These methods,
however, can also be used as a further alternative to check the goodness of
fit when nested models are compared.

There exist other ways to estimate the s.e. of the parameters, but all of
them are based on asymptotic properties of the limiting distribution of the
parameters as the sample size n → ∞. In many real cases, such properties
are not valid; in fact they are based on some conditions which might not
be satisfied. A simple example is given by the independent and identical
distributed (i.i.d.) errors. If data are affected by an heteroscedastic behaviour,
the residuals highlight the fact that the i.i.d. condition is no more satisfied;
therefore the asymptotic properties cannot be used.

The sparsity test is the most direct method to compute confidence in-
terval, because it is based on the asymptotic normality assumption of the
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estimated parameters distribution. In fact, under the assumptions of i.i.d.
errors with c.d.f. F and density f , such that f{F−1(τj)} > 0 in a neighbour-
hood of τj for each j = 1, . . . ,m,

√
n(θ̂τj − θτj)

d−→ N (0, Ωj) ,

where the matrix Ωj is defined analogously as in Koenker and Bassett Jr.
(1978), so that it takes the following form for the nonlinear quantile regres-
sion:

Ωj = lim
n→∞

τj(1− τj)
f{F−1(τj)}2

[
1

n

n∑
i=1

∇gi,j∇g>i,j

]−1

,

wherein∇gi,j is the gradient of g(xi; θτj) calculated with respect to θτj , for any
i = 1, . . . , n and j = 1, . . . ,m. The sparsity function, namely the reciprocal
of the density function, has to be estimated and, since it is unknown, it is a
good practice to estimate it with the empirical quantile function, i.e.

ŝ(τj) = f̂{F̂−1(τj)}−1,

= {F̂−1(τj + hn)− F̂−1(τj − hn)}/(2hn),

where f̂ and F̂−1 are respectively the estimated density and quantile func-
tions of the error term and bandwidth hn approaches to zero as n → ∞. It
was shown that the performances of this method with a finite sample size
vary a lot depending on the choice of the bandwidth. This provides a direct
method also for independent but not identically distributed data, when the
asymptotic covariance matrix takes form

Ωj = lim
n→∞

τj(1− τj)
n

[
n∑
i=1

Fi

]−1 [ n∑
i=1

∇gi,j∇g>i,j

][
n∑
i=1

Fi

]−1

,

wherein the matrix Fi = fi{F−1
i (τj)}∇gi,j∇g>i,j, with error specific c.d.f. Fi

and density fi. An extension of this technique can easily be developed also
for simultaneous nonlinear quantile regression.

Koenker (1994) compared the coverage frequencies and the lengths of the
confidence intervals computed with several bootstrap techniques in a simula-
tion study. After that, he stated that the xy-pairs bootstrap and the method
developed by Parzen et al. (1994) perform better than other bootstrap meth-
ods. Mainly, these techniques are able to maintain the heteroscedasticity in
the data. In fact, in the former each observed pair {xi, yi}, for i = 1, . . . , n,
can be sampled with replacement via Monte-Carlo procedures with probabil-
ity 1/n. The latter generates only one extra data point to include in a new
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regression setting, so that it can obtain a realisation of the quantile regression
process.

Some years later, He and Hu (2002) introduced the Markov Chain Marginal
Bootstrap (MCMB) method to reduce the computational time of the previous
resampling techniques and it can be suitable for high dimensional models.
Kocherginsky et al. (2005) extended this method for the construction of con-
fidence intervals in a regression quantile setting and they compared it with
the previous techniques. At each iteration, the algorithm draws for each
parameter a new sample with replacement from the original data. Then, it
estimates a single parameter by maintaining fixed the others. In the end,
since the resulting sequence is a Markov chain, it might suffer of the autocor-
relation problem. Kocherginsky et al. (2005) also provided a further method
(MCMB-A) based on affine transformation of the parameter space to reduce
the correlations in the sequences.

Other two extension of these methods for nonlinear regression can be
found in Kocherginsky and He (2007). The former consist in a linear trans-
formation of the estimating equations (MCMB-B), while the latter (MCMB-
AB) is based on a combined approach of the MCMB-A and MCMB-B.

Generally speaking, these bootstrap procedures and resampling tech-
niques destroy the original dependence structure of the data, therefore they
should properly be used when observations are independent. In these par-
ticular circumstances, the confidence intervals can easily be computed on
independent sequences of parameters through order statistics or other em-
pirical quantile techniques (e.g. see Hyndman and Fan, 1996). The covariance
matrix of the parameters can be estimated as

Ω =
1

n

n∑
i=0

(θ∗i − θ̃)(θ∗i − θ̃)>,

where θ∗i denotes the i-th parameter vector computed via Monte-Carlo meth-
ods, while θ̃ is a central vector of parameters commonly calculated with the
averages of the bootstrapped parameters.

In order to avoid the use of resampling methods, it is possible to adopt
a quantity which measures the “proximity” of the observations to the fitted
model as θ varies. Seber and Wild (2003, see Section 3.3.1) stated that it
seems appropriate to calculate the confidence regions for θ according to the
contours of the loss function `(θ). In so doing, a confidence region is a set of
parameters which satisfy a condition, i.e.{

θ : `(θ) ≤ `(θ̂)bα

}
, (3.28)
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where bα > 1 is a multiplicative critical level such that the coverage prob-
ability of the region is 1 − α. Equivalently, a region can also be expressed
as {

θ : `(θ)− `(θ̂) ≤ cα

}
,

where cα > 0 is an additive critical level. Since these confidence regions are
not based on any approximation they are called “exact”, but generally the
value of bα or cα is unknown.

Through the use of the concentration inequalities, it is possible to ap-
proximate the critical values of these regions. For the region in (3.28), one
can obtain a test statistic which has a bounded support in [0, 1]; in fact,
since `(θ̂) is the minimum attained loss, the quantity T = `(θ̂)/`(θ) is always
included in the interval [0, 1] for any value of θ. In practice, it is required
that

Pr {λ0 ≤ T ≤ λ1} ≥ 1− α, (3.29)

where λ0 and λ1 are respectively the upper and lower bounds which guaranty
the equality in the previous formula.

It expects under the null hypothesis that the value of T is closed to
one, namely it seems reasonable to consider E[T ] ≈ 1 and λ1 = 1. By the
application of the Hoeffding’s inequality (Hoeffding, 1963), one can obtain
the following threshold:

λ0 = 1−
√

log(α)

−2n
. (3.30)

Another threshold can be computed from the Uspensky’s inequality (Uspen-
sky, 1937) so that

λ0 = 1− c
√

1− α
nα

, (3.31)

where c ∈ [0, 0.25] is a constant related to the variance of T . It is reason-
able to set c = 12−1/2 (see Appendix A.3). Both thresholds approximately
guaranty a coverage with probability 1− α. More details and the proofs are
presented in Appendix A.3.

Here, the critical value bα corresponds to λ−1
0 , and since the two different

kind of “exact” region must be identical, the correspondent critical value cα
is given by

cα = `(θ̂)(λ−1
0 − 1).

By expanding `(θ) in θ̂ through Taylor series, i.e.

`(θ) ≈ `(θ̂) +∇`(θ̂)>(θ − θ̂) +
1

2
(θ − θ̂)>∇2`(θ̂)(θ − θ̂),
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where ∇`(θ̂) and ∇2`(θ̂) are respectively the gradient and the hessian ma-
trix of the loss function, it is possible to obtain an approximated confidence
region. Since the loss function in quantile regression is not differentiable
everywhere, the gradient computed in the minimum point of loss can be con-
sidered to be the null vector (even if its value is not computable). For the
same reason, also the hessian matrix must be approximated numerically, so
that the resulting confidence region takes the following form:{

θ : (θ − θ̂)>∇̃2`(θ̂)(θ − θ̂) ≤ 2cα

}
. (3.32)

3.4 Conclusion
After a meticulous description of established general methods for the

estimation of quantile curves, which do not violate the monotonicity property
of quantiles, new suitable estimation techniques are introduced in this chapter
for nonlinear models. The equality constraints are considered when dealing
with particular cases, wherein the data variability is uniquely explained by
the variation of a single parameter. More general methods are inspired by
penalised estimators, where the penalty refers to a distance which quantifies
the dissatisfaction of the constraints. The most useful estimation technique is
based on the idea of quantile sheets, wherein the parameters of the nonlinear
model are functional and dependent on the probability levels.

Several tests presented in the literature are adjusted in order to be able
to perform the model selection and the residuals analysis for simultaneous
estimated curves. The construction of confidence regions is also considered
in order to assess the equivalence of similar models for a data set. More
evidence of the capabilities of these methods is found in the results obtained
via simulations, which are discussed in Appendix A.4 and exposed in Ap-
pendix A.5.

In order to apply some of these methods, it is necessary to study and
understand the main issues and characteristics of the data collected. The
preliminary analyses of the data are performed in order to isolate a reduced
area and this is described in detail in the next chapter. The parameter
estimations and results discussion will therefore be focused on this chosen
area.



Chapter 4

Preliminary Data Analysis

In order to understand better how to analyse the data and what kind of
techniques are more appropriate to interpret the phenomena related to the
precipitation process, a cluster analysis is initially performed to classify dif-
ferent locations in some common areas. Through this method it is possible
to identify the spatial distribution of the process and to investigate seasonal
effects. In so doing, better model involving both statical and physical de-
scription can be developed for more accurate prediction.

The procedures of data collection, the description of the analysed data
and the adjustments performed are shortly described in Section 4.1. The
methodology adopted for the cluster analysis and cluster validation is ex-
plained in Section 4.2. The quantity selected to perform the analysis and
results are discussed in Section 4.3. Conclusions are presented in Section 4.4.

4.1 Precipitation data

The National Oceanic and Atmospheric Administration (NOAA) system
is aided by satellite constellations around the globe provided by the Na-
tional Environmental Satellite Data and Information Service (NESDIS). This
remote-sensing system is a useful tool to measure the surface temperatures,
biomass burning, pollutants and cloud cover. Many other meteorological vari-
ables are collected by the use of particular sensors in the satellites, e.g. the
temperature and the humidity comes from infrared and microwave radiome-
ters, while the upper winds are based on a tracking system that follows the
movement of clouds, aerosols and water molecules. However, observations
about temperature and humidity are more precise over oceans, but they
are more noisy over land depending on the land-use and surface variations.
Through specific procedures described in Levizzani et al. (2007), precipita-
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tion data are estimated with the information obtained from satellites.
Rainfall data are also collected in other ways; in particular, Michaelides

(2008) described the instruments and the methods for continuous ground
data acquisition. All the materials refer to sensors, scanners and cameras
for precipitation measurements to improve the estimates from satellites. In
fact, since ground measurements are more precise than the satellites esti-
mates, they are used to calibrate the satellites’ outcomes. By the use of this
methodology, it is possible to get data over a wide area with a reduced bias.

4.1.1 General Information

The analysed data are related to the rainfall estimated by the American
National Weather Service (NWS) and River Forecast Centers (RFCs). Data
are collected daily from 1st January 2005 to 24th January 2013 on grid cells.
The projection grid system is defined by the Hydrological Rainfall Analysis
Project (HRAP), even if the latitude and longitude coordinates are provided
as defined by the usual polar stereographic projection. Daily precipitation
data sets are available from the NOAA web site1 which also provides monthly
and yearly data.

Each data set consists of a varying number of observations with the
recorded values for the following variables:

id defines a unique integer value that identifies each grid cell;

hrapx represents the column number of the HRAP grid cell, in particular
higher numbers refers to eastern cells;

hrapy denotes the row number of the HRAP grid cell, where higher numbers
are northern cells;

latitude and longitude refer to the polar stereographic coordinate system,
in particular to the latitude and longitude of the HRAP grid point (i.e.
the cell centre);

globvalue 24-hours, 1-month or 1-year precipitation values in inches. The
“−2” values correspond to “Missing Data”, and the cells with no pre-
cipitation (i.e. 0 inches) are systematically removed from the grid.

1http://www.noaa.gov/

http://www.noaa.gov/
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4.1.2 Data adjustments

If each data set is considered separately from the others, it is only possible
to study the precipitation with regard to the spatial information within a
specific time widow (of the length of one day, month or year). In order to
deal only with the temporal information or with both spatial and temporal
information, these data need to be merged in a unique large data set.

Since the grid cells are labelled with an ID-number from 0 to 864362, it
is considered a dual relationship between the two data sets, one storing the
spatial coordinates of each grid cell and the other with the recorded precip-
itation data and their temporal occurrence. The grid cells presenting either
missing observations or zero precipitation during the entire monitored pe-
riod were removed from the final data sets. In so doing, some computational
advantages are obviously related to the amount of stored data as well as a
slight decrease of computational time.

In practice, the first data set with the spatial information consists mainly
of grid cells coordinates, in fact the variables for each cell are the ID, the
HRAP coordinates and the corresponding latitude and longitude. The second
data set collects the precipitation data according to their time occurrence,
namely each grid cell denotes a sample unit with its ID and the precipitation
values for each day, month or year as variables.

4.2 Methodology
Basic statistical tools and more advanced data mining techniques are used

to discover the main features of large data sets. These descriptive techniques
can be summarised by

data inspection, which is needed to analyse phenomena from a descriptive
point of view;

cluster analysis, for finding groups in the data;

discriminant analysis, to construct classifiers in order to choose the best
group for new observations;

knowledge conversion, to represent and summarise the results for better
interpretations.

After each phase, validation techniques must be applied to ensure the achieve-
ment of the most accurate findings.

Cluster analysis is adopted for many application fields and, in particular,
it is used for data reduction, prediction based on groups and generation or
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testing of hypotheses. Here, the information in the data can be compressed
by the identification of an optimal number of data partitions. Since the
groups summarise the main features of the data, the most central object will
be processed for other analyses, such as performing a regression.

Initially, this kind of analysis is performed in order to select groups of
cells with the same or most similar temporal pattern. This can reduce the
number of sample units for successive analyses, regarding to both the spatial
and temporal components of the rainfall process. The results can also be
useful not only to reduce the original spatial lattice, but also to build a
proximity matrix among groups in order to provide a spatial network.

Several classification techniques are available and usually they are divided
in supervised and unsupervised methods. The main goal of the former is
related to the discriminant analysis, when there is previous knowledge about
different groups. In practice, a new observation has to be associated to one
known group. The latter performs a search of optimal clusters in order to
improve the description of the data. To adopt an objective approach, no
assumption about the process generating the data is made. Therefore, in
this case, unsupervised procedures are preferred to the supervised.

The choice of the clustering algorithm is not only based on previous knowl-
edge; in fact the selection of a suitable procedure can be driven by the type
of input data, the definition of the dissimilarities between points and by the
theory related to the algorithm itself. In practice, when the sample size is
very large, it is unfeasible to store the distances between each couple of sam-
ple units. For this reason, algorithms such as K-Means are preferred because
they will perform much better from a computational viewpoint. The algo-
rithm selection must be done by considering also the shape of clusters, the
ability of outliers detection and complexity of the procedure.

Grid-based clustering is mainly adopted for the quantification of spatial
data to a finite number of cells, these algorithms summarise each feature
through some statistical parameters and then generate hierarchies at different
levels. On the other hand, self-organising maps are based on neural networks,
wherein each neuron is a centroid.

The self-organising maps are a good choice for discovering clusters that
are not known a priori; in fact they show invisible structures of the data
and it is good for outliers detection. The complexity of this algorithm is
O(n), where n denotes the sample size. This algorithm combines aspects of
partitioning techniques with some idea about hierarchical methods; in fact
the resulting partition is characterised by an underlain ordered structure.

All clustering methods should search for well separated groups whose
components are the closest to each other. However, if the optimal number
of clusters is not known a priori, it may be found through cluster validation
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techniques. Thus, the resulting groups must be evaluated using quantitative
methods in order to establish whether the partition fits the data. All validat-
ing methods use quantities which measure the compactness and separation
of the groups.

In practice, there are three approaches for cluster validation and they are
based on external, internal or relative criteria. The first evaluates the results
on a pre-specified structure, the second involves quantities related directly to
data (e.g. dissimilarity matrix) and the third criterion compares the resulting
clusters with others given by the same algorithm but obtained with different
parameters (e.g. by changing the initial value of centroids).

4.2.1 Data transformations

Transformations are applied to original data to improve both the perfor-
mance of clustering methods and the results reliability. On the other hand,
transformations reduce the comparability between original and transformed
data in terms of results.

Each variable in the data-set may be treated with its most appropriate
transformation. However, the impact of some transformations on final cluster
results can be very high as it happens when nonlinear transformations are ap-
plied (e.g. the rank data transformation). Only linear ones do not change the
resulting final groups and, for this reason, the mean-variance standardisation
is often used to improve the efficiency of the algorithm.

The logarithm is a classical nonlinear transformation that is used to deal
with positive data. It is often used to reduce heteroscedasticity and the
distribution skewness of the original data. This transformation, after some
adjustments, can be used in order to standardise the first three moments
of the transformed variable. In practice, if the following transformation is
adopted

X∗ =
log(X + α)− µ

σ
, (4.1)

the values of α ∈ R+, µ ∈ R and σ ∈ R+ satisfy the conditions E[X∗] = 0,
Var[X∗] = 1 and Skew[X∗] = 0. In practice, α stabilises the skewness of the
transformed variable and its value is found by numerical method, while the
values of µ and σ respectively control the usual standardisation of the mean
and the variance.

Other standardisations can be applied in order to obtain values between
the interval [0, 1]. One method consists in a location and scale transforma-
tion, wherein the location is related to the minimum observed value and the
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scale is based on the difference between the maximum and the minimum, i.e.

X∗ =
X −min(X)

max(X)−min(X)
.

By the use of particular functions, it is possible to get the similar transfor-
mations also for non negative data, e.g.

X∗ = 1− exp(−γX), (4.2)

wherein γ ∈ R+ is chosen to mitigate the exponential effect for extreme
values.

More sophisticated variable transformations are based on ranks, or by
the use of nonparametric methods in order to perform the cluster analysis on
functional transformation (e.g. see Abraham et al., 2003, for the classification
through B-splines). Cluster analysis can be performed also on indexes that
were previously identified or given by known standards. This approach is
preferred than others if these indexes are the estimates of a fixed number of
the parameters of a suitable model.

Even if Gordon (1999) suggested that the selection of the dissimilarity
measure should be data-driven, non negative data are related to quantitative
variables which are treated independently on their support. This means that
each type of variable has a specific set of measures to apply and, if this
approach is followed, then no transformation is needed.

If the seasonal properties of the data are the main characteristics under
study, they must be studied through Fourier series in order to approximate
any periodic function of the time

f(t) =
∞∑
i=0

{αi sin(iωt) + βi cos(iωt)} ,

where αi and βi are the coefficients of the series, t denotes the time and
ω represents the frequency of the oscillations. The approximation of the
function is computed by truncating the series, e.g.

f(t) ≈ β0 + α1 sin(ωt) + β1 cos(ωt). (4.3)

As Dunstan et al. (1982) pointed out, the cosinor model (Guercin, 1973) is
an alternative to the previous approximation, i.e.

f(t) ≈ θ0 + θ1 cos(ωt− ϕ), (4.4)

wherein ϕ denotes the phase, namely the position of peak in the interval
(0, 2πω−1], θ0 is the mean level of the function and θ1 represents the amplitude
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of the cosine, which is related to the intensity of the seasonal cyclicity. The
estimates of these four parameters, which are obtained through the usual
nonlinear regression techniques, summarise all the information needed for
the cluster analysis. In practice, it is preferred to get the estimates for the
parameters of the approximation in (4.3) rather than for the cosinor in (4.4).
This is done because the parameters ω and ϕ are very sensitive to the value
of θ1 and, in many cases, they are not easily identifiable. However, the
parameter ω in (4.3) suffers of the same inferential problem and it might
fixed a priori by adopting conventional settings (such as the year length).

4.2.2 Kohonen networks (self-organising maps)

The fundamental idea of self-organising maps was introduced in the early
1980s by Teuvo Kohonen. This kind of maps are similar to neural networks,
because they are based on network architectures inspired by the nervous sys-
tem. This method was successfully employed in various pattern recognition
problems involving very noisy data. Recently, Gorricha and Lobo (2011) ap-
plied this technique to geo-referenced data and also to extreme precipitation
data (see particularly Gorricha et al., 2012).

Kohonen networks are defined as set of neighbouring neurons (or com-
putational units) in a network. These neurons compete in their activities
through interactions with their neighbours in order to recognise adaptively
specific data-clusters characterised by different patterns. This technique is a
type of centroid-based clustering, where each neuron is univocally associated
to its respective centroid (which is the most informative object for the cor-
respondent group of observations). The main goal is to find those centroids
that provide the best approximation for a specific subset of observations.

For this kind of network, the learning procedure (i.e. the adaptation of the
neural network) is said to be unsupervised, sometimes competitive or self-
organising. The simplest version of this technique can be explained from both
a neurological and a mathematical-statistical viewpoint. Actually, these net-
works work like a brain where close neuronal cells share similar information,
which is located in dedicated brain zones in order to perform specific tasks.
The neurological point of view consists in only one neuron or local group of
neurons that gives an active response to input stimuli. Each neurons is lo-
cated in a meaningful neuronal coordinate system (or neuronal grid), so that
responses tend to become ordered according to the position of the neuron in
the network. In particular, each coordinate corresponds to a specific domain
of input signals and this provides a way to interpret the input information.
The latter refers to neurons as centroids that are updated sequentially in
order to be enough close to a set of most similar data. The network impose
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a topographic ordering on neurons, so that neighbouring centroids are also
updated. In this way, this technique enforces the resulting cluster centroids
to be locally similar, so that hierarchical relationships can easily be studied.

Let mj ∈ Rr be the j-th neuron of the Kohonen network, where the index
j = 1, . . . , K and r denotes the dimension of the vectors related to each neu-
ron. In the basic version of these networks, each neuron is parametrised with
respect to a two-dimensional grid, which consists of integer coordinate pairs
defined as qj ∈ Q1 × Q2, wherein the set Q1 = {1, 2, . . . , q1} and similarly
Q2 = {1, 2, . . . , q2}. Such a grid can be formed by neurons represented in a
higher dimensional space, namely qj ∈ Q1 ×Q2 × · · · ×Qs so that the total
amount of cluster centroids is given by K = q1q2 · · · qs. Thus, there exists
an one-to-one relationship between the index j and the neuronal coordinates
of the grid qj. From the grid, it is possible to determine the neurons with
similar patterns. Without considering a grid, this can be done also in a
more cumbersome manner involving a proximity matrix which provides the
similarity rates among neurons.

The fitting algorithm tries to approximate, as far as possible, the data
points by processing each observed object xi ∈ Rr at a time, where the index
i = 1, . . . , n and n represents the total amount of observations. A distance
measure d : Rr × Rr → {0} ∪ R+ is often chosen between the Manhattan or
the Euclidean distances, in order to compare sample units and centroids.

The procedure starts with the centroids initialisation by random selec-
tion, because unordered centroids will be sorted during the fitting procedure.
However, this policy is not the fastest way to converge to the best final results.
In practice, the procedure is much faster if the choice of initial centroids is
not completely randomised. Any ordered initialisation, when it is computa-
tionally feasible, is always better than a random one (Kohonen, 2001). One
way to choose the centroids can be done by selecting the most representative
sample units through the “build phase” of the partitioning around medoids
(PAM) algorithm, but this choice is inappropriate for large data-sets. The
linear initialisation (Kohonen, 2001) is a further method to get the start-
ing values of the centroids, but it cannot be applied for large amounts of
data. This kind of initialisation implies the computation of the autocorrela-
tion matrix of x ∈ Rr followed by a dimension reduction performed through
principal component analysis (PCA) in order to obtain x∗ by selecting the
eigenvectors related to the s largest eigenvalues. After the projection of the
observations xi in a s dimensional sub-space, for any i = 1, . . . , n, the prin-
cipal components x∗i are partitioned in K sets with respect to a rectangular
array, whose dimension depends on the neuronal grid. The initial values of
the centroids mj, for j = 1, . . . , K, are then identified with the mean of xi
belonging to the j-th partition. After, the algorithm will perform with the
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Algorithm 4.2.1 Kohonen networks (self-organising maps)
1: Initialise the centroids either by random or guided sample units selection.
2: repeat
3: for i = 1 to n do
4: Select the i-th sample unit.
5: Determine which centroid is the closest to the selected sample unit.
6: Update this centroid its grid-neighbours.
7: end for
8: until The centroids converge or the maximum number of iterations is

reached.
9: Define clusters by assigning each sample unit to its closest centroid.

original observations.
Once centroids are initialised, it is necessary to find for each sample units

xi its closest centroid mj and, after, to update it with its neighbours mk

according to the grid topology, where k ∈ {1, . . . , K}. This procedure is
repeated until centroids convergence, as described in the algorithm 4.2.1. In
other words, mj is the centroid which minimises the quantity d(xi,mj). All
centroids mk are considered as neighbours of mj if and only if the distance
between qj and qk is less than a fixed threshold % > 0. The fitting itera-
tions are based on the recursive formulation of the arithmetic average. This
means that at each iteration the centroids become closer to their central po-
sition. Therefore, the centroids update phase moves mk centroids toward xi
as follows:

mk ←mk + λh(qj,qk) (xi −mk) ,

where λ is positive scalar value which denotes the learning rate that can
varies with the number of iteration needed for the convergence (λ is usually
decreasing sigmoidally from 1 to 0). Particular interest can be found in the
function h(·, ·), which can give more weight to neighbouring centroids closer
to mj; e.g. it can be a constant function, i.e. h(qj,qk) = 1, or a radial
function depending on a distance, i.e.

h(qj,qk) = exp

(
−d(qj,qk)

σj

)
,

where σj controls the topological radius of the neighbourhood of mj. Baykal
and Erkmen (1999) showed how this function, if properly specified, can im-
prove the cluster results by avoiding false convergences or premature stops.
It also increases the convergence speed and efficiency of the algorithm. In
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practice, they suggested to use the following formulation:

h(qj,qk) =
σj − d(qj,qk)

σj
,

where the value of σj is chosen in order to satisfy δmax = σj−1, wherein δmax

denotes the maximum distance between qj and qk.
When centroids converged, it is possible to associate each sample unit

with its closest centroid, so that the groups can easily be recognised. Other
analytical possibilities can be found in the study of centroids characteristics,
which can underline salient pattern features for each group.

There exists another version of self-organisation and its name is due to
the fitting procedure. The batch-maps (Kohonen, 2001) perform a batch-
learning algorithm, which differs only for centroids update step. In this case
each mj is updated as follows:

mj =

∑
k∈K

∑
i∈Ik

h(qj,qk)xi∑
k∈K h(qj,qk)|Ik|

, (4.5)

wherein K is the set neighbouring centroids indexes (it always includes j),
similarly Ik is the set of indexes for those points which are closer to mk,
while the notation |Ik| denotes the cardinality of the set Ik. After some
iterations the cardinality of the set K must decrease, so that the number
of neighbours reduces. In so doing, the first iterations sort the centroids in
the grid according their information, while the last iterations adjust their
values. This algorithm improves the original self-organising maps because
it is computationally faster and the resulting centroids are asymptotically
stable. A noteworthy case must be considered when the function

h(qj,qk) =

{
0, if j 6= k,

1, otherwise,

because the batch-maps corresponds with the K-Means. In practice we can
refer to the batch-maps as a sorted extension of the K-means method.

4.2.3 Cluster validation

The evaluation of clusters can be conducted through the calculation of
specific compactness and separation indexes. The concept of compactness
refers to the distance between each observation and its cluster centroid, while
the separation is related to the intersection among the highest density zones
of the support of the clusters. Although the variance is commonly used to
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measure the variability within and between the groups, other validation in-
dexes were developed to deal both quantitative and qualitative data. These
other criteria are based on the single linkage, to measure the distance be-
tween two groups, the complete linkage to measure the distance between the
farthest members in the same group. The comparison of centroids is less de-
manding form a computational point of view and it is also useful to measure
the average distance between clusters. A complete review about clustering
validation methods can be found in Halkidi et al. (2001).

With respect to the criteria cited in the introduction of Section 4.2, the ex-
ternal ones are based on hypotheses tests, wherein the null hypothesis states
that the structure of the data is completely random. Since the distribution of
the test statistics cannot be found easily, the use of Monte Carlo techniques
lead to complex procedure and to unfeasible computational waiting-time.
Internal criteria are considered only when it is possible to obtain quantities
inherited to the data, in order to evaluate either the hierarchy of clusters or
each single clustering scheme. Also these techniques suffer of computational
problems in particular for large memory demands.

The so-called relative criteria are much better if they are compared with
the others. These methods can be divided in two categories. The former
refers clustering techniques which do not need an initial value for the number
of clusters. Usually, these procedures try to find the optimal number of
clusters that underlie the data structure, so that cluster validation can be
avoided. The latter refers to those algorithms that need the number of groups
to be specified in order to initialise the procedure. A validation technique for
such algorithms consists in selecting a suitable index and computing it after
running the cluster algorithm. The execution of the algorithm must be done
iteratively from a predefined minimum to a predefined maximum number of
groups. In the end, the resulting partition corresponds to the best obtained
value computed for the chosen index. Those indexes that are mostly used for
checking cluster results are the modified Hubert Γ statistic, the Dunn index
and the Davies-Bouldin index.

The modified Hubert Γ is computed as

Γ =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

vi,jd(m[i],m[j]),

where n is the sample size, vi,j is the component in the i-th row and j-th
column of the proximity matrix V ∈ {0, 1}n×n and d(m[i],m[j]) is the distance
between centroids of the clusters where the sample units xi, xj belong. This
statistic is not computable when the number of cluster is equal either to one
or n; however, in the other cases high values of Γ denote high evidence for
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the presence of compact clusters.
The Dunn index is define as

D =

min
i=1,...,K−1

{
min

j=i+1,...,K
d(Ci, Cj)

}
max

k=1,...,K
diam(Ck)

,

where d(Ci, Cj) is the distance between two clusters defined as

d(Ci, Cj) = min
x∈Ci, y∈Cj

d(x,y), (4.6)

and diam(Ck) is the diameter of the k-th cluster Ck and it is computed as

diam(Ck) = max
x,y∈Ck

d(x,y). (4.7)

Such an index is used with the purpose to identify compact and well separated
groups; in fact, the optimal result is achieved when the distance between
clusters is large and the diameter of each group is small. Thus, high values
indicates strong evidence for compact and well separated clusters.

The Davies-Bouldin index is calculated as

DB =
1

K

K∑
i=1

max
j=1,...,K, j 6=i

si + sj
di,j

,

wherein the ratio is a similarity measure which is based on a measure of
cluster dispersion si and on a measure of dissimilarity between clusters di,j.
Usually, the measure defined in (4.7) is assigned to si and that in (4.6) is
assigned to di,j. A desirable property for the final groups is to be less similar
as possible, therefore lower values of this index refers to better results.

Other methods are based on the distance between two clusters, in par-
ticular the centroid hierarchical clustering considers the distances between
couples of representative objects. After the execution of the clustering al-
gorithm, the resulting centroids become the new objects for further cluster
analysis by adopting the usual hierarchical (agglomerative or divisive) tech-
niques.

The total separation index is another quantity which globally evaluates
the separation between clusters by considering the distances between repre-
sentative objects. It is defined as

TS =
K∑
k=1

(
K∑
l=1

d(mk,ml)

)−1 max
i=1,...,K−1, j=i+1,...,K

d(mi,mj)

min
i=1,...,K−1, j=i+1,...,K

d(mi,mj)
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and, of course, the higher values indicate strong evidence of well-separated
clusters.

All the methods relate to the relative criteria can also be used to evaluate
the results from a self-organising map. However, those referring only to the
centroids are preferred, because they require less computational efforts. In
practice, when the optimal number of cluster is lower than the number of
fitted neurons, it is necessary to merge some groups. After this, we can adopt
one of two procedures: the former is based on the reduction of the number of
centroids in the grid followed by the update of the remaining centroids; the
latter is based on groups with multiple representative objects (namely each
cluster is represented by one or more centroids).

4.3 Application

As described in Section 4.1, the data are available with three different time
resolutions. For the moment, only monthly precipitation data are considered
in this chapter, in order to handle less time points per location cell and get
a reasonable compromise between computational efficiency and information-
loss (due to the aggregation of daily values). After merging the data as de-
scribed in Section 4.1.2 and removing all non-informative points (i.e. missing
data or non-zero precipitation during all the recorded period, see Figure 4.1),
a cluster analysis methods is performed on the 505682 remaining points.

In order to maintain an ordered among the clusters, the self-organising
maps introduced in Section 4.2.2 are applied. In particular, by the use of
3D self-organising maps, the relationship among neighbouring centroids are
explained by a three dimensional grid as depicted in Figure 4.2. The colour
of each neuron in the grid is defined by the grid position through the red,
green, blue (RGB) standard (Gorricha and Lobo, 2011). This standard is
defined by three additive primary colour lights such that their weighted sum
can reproduce all the colours needed (Gauch and Hsia, 1992). This can help
when spatial groups need to be visualised in a map. In fact, this allows to
improve the representation of the clustering results, because the similarities
among clusters are more evident and the each cluster is more distinguishable
from the others.

The data are initially analysed without transformation by considering
a 4 × 4 × 3 neuronal grid. In so doing, the number of groups is set to
be 48, which is the default value required by the software to initialise the
algorithm. Even if this number is not the optimal or real number of clusters, it
is always possible to find a better value by the application of cluster validation
techniques.
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The centroids initialisation is done by selecting randomly, because other
initialisation techniques are computationally unfeasible for both insufficient
memory size and waiting time. For this reason, the batch algorithm is pre-
ferred to the original one, so that the values of centroids are updated as
described in (4.5), where the weighting function h(·, ·) gives one for all the
neighbouring centroids and zero otherwise.

The Euclidean distance is chosen to compare observations and centroids,
and this measure is also used to find neighbouring centroids. The neighbour-
hood is define by a radius σ, which reduces (almost linearly) from 4 to 0
during the network training. In practice, this is the optimal setting, which
gives good results with less computational efforts.

The data are then analysed by considering the transformations explained
in Section 4.2.1, in particular the mean-variance standardisation, the skew-
ness adjustment in (4.1) and the range normalisation in (4.2), wherein γ is
here the inverse of the arithmetic mean of the variable.

The resulting clusters are located in homogeneous areas (see Figure 4.3),
but they have different shapes if they are compared with those obtained
through variables transformations. This is essentially due to the transforma-
tion itself and to the centroids initialisation, which is done randomly. In order
to maintain spatial relationships among these areas, it is possible to identify
those that are similar to each other. In practice, each colour represents an

(a) Map based on latitude and longi-
tude

(b) Map based on HRAP coordinate
system

Figure 4.1: The grey area denotes the location points that are informative
for the analysis of the process, while the white zone represents locations with
missing data or non-zero precipitation during all the recorded period.
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Figure 4.2: Three dimensional grid to define relationships among centroids.

area, so that similar colours denotes similar precipitation patterns in those
zones; in fact, if some colours are close each other in the topology of the grid
(as in Figure 4.2), the related centroids are close each other according to the
chosen metric (see Figure B.4 and B.5).

Cluster validation techniques based on the modified Hubert Γ statistic,
the Dunn index and the Davies-Bouldin index cannot be applied, because the
computation of the quantities to obtain the value of each index is prohibitive.
Since these methods evaluate a statistic for a different number of groups, it
is necessary to change iteratively the structure of the network in order to
select the optimal one. For these reasons, it is preferred to compute only one
time these statistics for the different transformation by fixing the number of
clusters.

The results shown in Table 4.1 illustrate the clusters separation and com-
pactness; however, it is not possible to compare the adopted transformations
because these indexes are not standardised and they are computed with dis-
tances calculated in different topological spaces.

A general view of the cluster quality can be seen in Figure B.2 and B.3,
where each neurons are marked with the maximum distance between inner-
cluster points (which is related to the compactness of a group) and the min-
imum distance between clusters (which is related to the cluster separation).
All the values associated to the correspondent neurons are not good enough
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according to the optimal clustering properties; in fact the distance between
the clusters is very small (i.e. groups are not well separated), while the di-
ameter of the clusters is very large (i.e. groups are not compact).

By the use of the centroid hierarchical clustering, it is possible to reduce
the number of clusters. Those groups, whose centroid are closer according
to some criteria, are merged in a unique cluster. The Euclidean distance is
selected to compare centroids, since it was previously adopted for the network
fitting. In this case, the agglomerative hierarchical algorithm with the Ward’s
linkage was preferred in order to get the optimal partition. Figure B.6 and B.7

(a) No transformation applied (b) Mean-variance standardisation

(c) Logarithmic standardisation (d) Range standardisation

Figure 4.3: Different precipitation areas obtained with random initialisation
(colours here are used to identify the clusters).
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Table 4.1: Cluster validation statistics
Hubert Dunn Davies- Total
mod. Γ Bouldin sep.

No transformation 1.40 0.00069 131.10 0.69
No transformation (PCA) 1.44 0.00077 135.10 0.87
Mean-variance standardization 0.55 0.00082 136.29 1.48
Mean-variance standard. (PCA) 0.59 0.00057 142.17 2.12
Logarithmic standardization 0.57 0.00655 83.76 0.76
Logarithmic standard. (PCA) 0.59 0.00319 104.00 0.93
Range standardization 0.18 0.00294 104.18 2.66
Range standardization (PCA) 0.18 0.00701 74.06 2.62

show the results of this cluster validation technique. Figure B.8 and B.9 show
the merging costs. A cutting point at four clusters seems reasonable also from
a spatial point of view (see Figure B.1).

The same kind of cluster analysis is then performed with the same set-
tings, exception made for the linear initialisation of the centroid by the use of
the PCA (as explained in Section 4.2.2) and the increased the number of it-
erations in the fitting procedure. The clustered areas are shown in Figure 4.4
and, even if the results are almost similar to the previous, the areas showed in
Figure 4.4a are more homogeneous than those showed in Figure 4.3a. How-
ever, the clusters suffer from the same problems of the previous analysis.
The validation statistics in Table 4.1 does not show improvements in the
Dunn and Davies-Bouldin statistics, while the improvements achieved in the
modified Hubert Γ and in the total separation length are slight.

Further analyses can be conducted through a model-based approach,
which allows to reduce the dimensionality of the data set. As described
in Section 4.2.1, the seasonal components of rainfall time series can be mod-
elled by the use of the Fourier orthogonal series approximation in (4.3). By
assuming the year as the frequency of the cycles, the parameter ω is set to
be π/6. To improve the information related to the rainfall process, other
indexes are considered for the cluster analysis, i.e. the minimum and the
maximum precipitation observed during the entire monitored period and the
standard deviation of the residuals after the regression. The cluster analysis
is then performed through the same approach adopted above. In practice,
the Kohonen network is initialised by the use of the PCA method, where the
indexes mentioned before are considered as observations. The other setting
characteristics are maintained unaltered.
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The Figure 4.5 shows the resulting area obtained through this approach.
They are more heterogeneous with respect to the previous, because the in-
dexes summarise the observed data patterns. Table 4.2 is reported for com-
pleteness reasons and it shows the cluster validation statistics that are not
comparable with each other and with those reported in Table 4.1.

(a) No transformation applied (b) Mean-variance standardisation

(c) Logarithmic standardisation (d) Range standardisation

Figure 4.4: Different precipitation areas obtained with linear initialisation
(colours here are used to identify the clusters).
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Hubert Dunn Davies- Total
mod. Γ Bouldin sep.

Informative indexes 0.22 0.00017 300.14 12.15

Table 4.2: Cluster validation statistics for the model-based approach

4.4 Conclusion

The cluster analysis highlighted those groups that are found through the
self-organising maps. Such groups are not compact and not separated. This
is due to the high correlation among neighbouring sample cells. There is no
improvement by merging all groups in four clusters; in fact, the distances
among the final groups are as small as the distances among the 48 initial
groups. The same results emerged also by changing the type of network
initialisation. By adopting a model-based approach and the use of other
indexes, the final clusters are less homogeneous than those found with all the
observations.

The evidence of similar pattern is very high for near locations. There is
also a common pattern among all these analyses, which is evident on a large
scale. In fact, the most different patterns are found between the east and
west costs, rather than from the north and the south of the United States.

These results can be useful for further analyses, such as the study of the
spatial correlation (in particular for the presence or the absence of anisotropy)
and other more sophisticated studies of seasonality cycles and extreme events.

Figure 4.5: Different precipitation areas classified through informative in-
dexes (colours here are used to identify the clusters).
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However, these results are utilised in the next chapter to reduce the number
of location cells, and select those where to perform regression analyses.



Chapter 5

Least squares regression analyses

The least squares regression is a useful technique to access the conditional
expectation of a response variable for some given covariates without intro-
ducing any distributive assumption on the data. The Levenberg-Marquardt
algorithm (1944; 1963) is the most used and accurate method to obtain the
solutions of nonlinear least squares problems. The most recent implementa-
tion is due to Markwardt (2009), which introduced several innovations with
respect to previously existing software. This tool is adopted here to study
the phenomenon from a standard regression perspective. According to the
results obtained in Chapter 4, an initial quantitative evaluation of the process
can be given and a deeper investigation can lead to more suitable models.

Section 5.1 describes how to handle the data in order to perform the
regression analyses. The description of the results obtained with the Bass
model is given in Section 5.2. The extension of the generalised Bass model,
the identification rationale of the intervention function, and the related re-
sults obtained via nonlinear least squares are discussed in Section 5.3. The
main findings are summarised in Section 5.4.

5.1 Data reduction

After preliminary analyses (see Chapter 4), several homogeneous areas
were discovered by performing a cluster analysis. By looking at the most
salient features of the obtained centroids (e.g. cyclical patterns and rainfall
magnitude), it was decided to consider only a part of the observed areas.
In particular, the centroids related to the north-west side of the country
exhibit stable rainfall cycles. However, since the clusters obtained with the
previous analyses are not well-separated, the selection of each location cell
was performed by checking if the correlation between the optimal centroid
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(see Figure 4.4a) and each cell was greater than 0.8. By ignoring highly
correlated cells located very far from the previously recognised are, the west
part of the Washington State and a small part in the north-west of Oregon
State were selected (see Figure 5.1).

The final area consists of 6582 cells and, for each of them, it was decided to
shift the starting position of the year to a common starting point. The 15th
August was chosen mostly for practical reasons. Since the simplified approach
based on the innovation diffusion requires to estimate the parameters of the
models for each year, it is reasonable to think that the time origin of the
process must be in a day with no relevant rainfall. The longest period of
the year, when either no rainfall or a negligible quantity of daily observed
precipitation is recorded, is positioned around the 15th August. In

Further temporal adjustments were taken into account to aggregate the
data by one week periods. This time-frame is considered in order to deal
with less zeroes and for having still a considerable number of time-points
during the year. This avoids the problem of dealing with zero inflated data,
as well as not compromising the accuracy of the estimates. In addition, since
each year starts by convention at the 15th August, the total amount of days
within this “hydrological year ” must be 364. This concept is necessary in
order to refer to a standardised year of 52 weeks, instead of 52.14 (or 52.29)
weeks, so that the considered sequence of years 2006 – 2012 starts on the
15th August 2005 and ends on the 14th August 2012.

In order to aggregate the data by week, it is essential to standardise
the number of days in the year. Therefore, the observed rainfall in the 29th
February of each leap year was split and added to the amount observed in the
previous and successive days. For example, the resulting quantity assigned
to the 28th February is given by the summation of its observed value and
half of the value observed the day after; similarly, the same computation is
performed for the 1st March. Subsequently, the value observed at the 14th
August is added to the value of the 13th August. This choice is consistently
justified by the nature of the process; in fact, no precipitation or a non
significant quantity is usually measured during the last day of the year.

5.2 The Bass model

The regression analyses are here based on the innovation diffusion simpli-
fied view of the rainfall process. Originally, the Bass model was formulated
as a Riccati’s differential equation (Bass, 1969), which can be used to get an
approximate description of the the temporal evolution of the rainfall within
the year.
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Figure 5.1: Selected region to analyse (west part of the Washington state
and north-west of Oregon state). Map provided by Google (https://maps.
google.com/) and adjusted with GIMP (http://www.gimp.org/).

https://maps.google.com/
https://maps.google.com/
http://www.gimp.org/
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Seber and Wild (2003) identified two approaches to estimate the param-
eters of sigmoidal growth models. The former is based on a stochastic view-
point, wherein it is necessary to consider a stochastic extension of the dif-
ferential equation and the propagation of errors. The latter is related to a
deterministic perspective, which requires a closed form solution of differen-
tial equation, so that the standard nonlinear least squares techniques can
easily applied. In this case, the deterministic approach is followed because
there exists a closed form solution of the Bass model in (2.1), the resulting
estimates are more stable and reliable, and finally, the errors are easier to
handle.

Conventionally, the parameters of the Bass model are estimated with the
accumulated rates of adoption; therefore, the resulting estimates are more
accurate, because the response is less noisy than the instantaneous rates of
adoption. Nevertheless, it is always possible to estimate the parameters with
the instantaneous rates by fitting the model

∂y(t)

∂t
= µζ

(ζ + ξ)2 exp{−t(ζ + ξ)}
[ζ + ξ exp{−t(ζ + ξ)}]2

(5.1)

and, in some particular cases (Guseo, 2004), it is even required, although it
is preferred to avoid this way to operate. For these reasons, it was decided to
fit the Bass model formulated for the accumulated rates of adoption in (2.1).

The parameters of the cumulative Bass model are estimated for each
separate location cell and year. Usually, each parameter estimate is repre-
sented with a meaningful colour assigned to its location cell in each yearly
map. However, the maps produced in this fashion show the main spatial pat-
terns and local variations with noisy behaviours, because the estimates are
independently calculated without considering the information in the neigh-
bourhood. On the other hand, the estimation of a global model, wherein the
parameters are allowed to vary spatially, is prohibitive in terms of compu-
tational time efficiency and usage of memory, and it does not guaranty the
same level of accuracy.

A simpler method to produce spatially related estimates is based on the
idea of a Bass model with random parameters. Since the estimates can still
be considered spatially dependent, it is reasonable to apply a moving spatial
average based on the eighth nearest neighbouring cells in order to identify
non stochastic spatial patterns of the model parameters. More precisely,

µ̄i =
1

1 + |Ni|

(
µ̂i +

∑
j∈Ni

µ̂j

)
, (5.2)

where µ̄i denotes the local average of the parameter µ with respect to the i-th
cell, µ̂j indicate the least squares estimate of the parameter µ obtained for
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j-th cell, and the notation |Ni| represents the cardinality of the set Ni, whose
elements corresponds to the indexes of the neighbouring cells. In particular,
since the index i 6∈ Ni, such a set coincides with the Moore neighbourhood
for most of the central cells. Of course, the same expression can be used to
draw smooth maps for all parameters.

The results are illustrated in Figure 5.2, 5.3, and 5.4. Each Figure consists
of seven maps (one for each year), which are related to the same area. Next
to each map, the empirical distribution density of the random effects, e.g.
µ̂i − µ̄i, is shown. Such a density was globally evaluated for each year, and
it is mainly used to access the global variability of the local smooth.

Figure 5.2 shows the maps of the smoothed estimates of the parameter
µ. These maps show a very strong stability, which is connected with the
total amount of precipitation for each year. It is evident that the zones with
higher precipitation persist in the same spatial position. A closer look of
these areas in the map exposed in Figure 5.1 reveals that the orography has
a dominant role in explaining the intensity of the rainfall. In addition, the
west part of a mountain is characterised by estimates having higher values
than the east part of the same mountain. This is mainly due to a preva-
lent air-drift of humid masses. In fact, most of the water molecules forming
raindrops evaporate from the Pacific ocean and move towards the continent.
The orographic precipitation is formed when these masses reach the moun-
tains (as explained in Section 2.1). A better evidence of this description can
be given by reproducing the same results on three-dimensional maps based
on latitude, longitude and elevation.

Figure 5.3 shows the maps of the smoothed estimates of the parameter
ζ. The smoothed estimates of this parameter present different patterns year
after year. The same spatial persistence is not maintained as is the case for
the parameter µ. However, it is possible to note that higher values are located
in the north, while lower values are obtained in the south of the considered
area. In comparison with Figure 5.1, higher values corresponds mainly to
areas with higher population densities, and thus characterised by a larger
amount of aerosol particles of human origins. Nevertheless, cells having dense
vegetation also provide a large amount of aerosol particles by transpiration.
For example, the maps of the years 2009 and 2010 show high values in areas
with low population densities. Approximately, from a temporal point of view,
the estimated values exhibit an increasing trend until the year 2010, but they
exhibit an inversion of the trend during the last two years.

The smoothed estimates of the parameter ξ are shown in Figure 5.4.
These estimates are spatially more stable than the estimates obtained for
the parameter ζ but less than those for µ. In fact, the higher values ob-
tained within each year are mostly located in mountainous areas. Since the
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Figure 5.2: Smoothed estimates of the parameter µ of the Bass model, 2006
– 2012.
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Figure 5.3: Smoothed estimates of the parameter ζ of the Bass model, 2006
– 2012.
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Figure 5.4: Smoothed estimates of the parameter ξ of the Bass model, 2006
– 2012.
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parameter ξ is related to the coalescence effect, it is reasonable to relate it to
variations of temperature due to the altitude, or to a strong presence of pow-
erful air-stream that intensifies such an effect by advection. Also in this case,
the parameter estimates approximately manifest a temporal trend, which is
decreasing until the year 2010 and increasing afterwards.

5.3 The generalised Bass model
The first attempt in the literature to extend the Bass model was proposed

by Bass et al. (1994). Such an extension is based on a simple idea, which
introduces a flexible formulation through a non autonomous Riccati’s differ-
ential equation. Instead of using non parametric techniques (such as local
polynomials or splines), further flexibility is achieved by a parametric inter-
vention function a(t), as in the formulation in (2.2). However, a much simpler
model was initially considered before fitting the generalised Bass model. Such
a model was introduced by Bemmaor (1994), and it was adopted here for its
ability in controlling asymmetrical trends of the trajectory. Its formulation
for accumulative rates of adoption is the following:

y(t) = µζω
1− exp{−t(ζ + ξ)}

[ζ + ξ exp{−t(ζ + ξ)}]ω
,

where ω is the parameter that governs the asymmetrical shape of the trajec-
tory. Almost every analysed cell presented non stable behaviours: premature
convergence and untrustworthy estimates were the main encountered prob-
lems. After a graphical inspection of some time-series related to the non
convergent cells, it was more evident and necessary to adopt a model that
could better adjust to bimodal configurations.

As explained above, the generalised Bass model is capable of adjusting the
modelled trajectory in many ways (see Guseo, 2004, Section 3.7). The main
issue of the generalised model is the identification of a proper intervention
function, which can adequately change the time-flow of the process. The
following steps were performed for a graphical assistance:

1. the selection of few cells, wherein the bimodal trends were graphically
identified, was necessary to achieve a proper result with moderate ef-
forts;

2. a smoothed version of the time-series was calculated via moving aver-
ages, but only its cumulative version was examined. In so doing, the
noise reduction around the signal was attained in order to increase the
estimation stability of the cumulative Bass model;
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3. the correspondent estimates obtained on the smoothed series with the
cumulative Bass model in (2.1) were considered, even if they are always
and really different to the correspondent least squares solution under
the generalised Bass model. In fact, since all parameters are estimated
simultaneously, the parameters involved in the intervention function
a(t) produce different estimates of µ, ζ and ξ. In addition, the estimates
of the parameter µ were adjusted in order to apply the inverse function
of the cumulative Bass model, i.e.

t = −(ξ + ζ)−1 log

{
ζ(µ− y)
ξy + ζµ

}
, (5.3)

which can be written for the generalised Bass model as

∫ t

0

a(z) dz = −(ξ + ζ)−1 log

{
ζ(µ− y)
ξy + ζµ

}
,

where the quantity µ − y must always be positive. For this reason, it
was decided to utilise the following adjustment

µ̂∗ =

{
µ̂, if µ̂ > max(y),

max(y) + ε, otherwise,

where ε = 0.4 is set to calibrate the last part of the curve.

4. once the inverse function in (5.3) was computed, it was possible to re-
produce approximately the shape of the true underlying intervention
function a(t). The graphs exposed in Figure 5.5 show both the approx-
imation of the integrated function A(t), namely

Ã(t) ≈ A(t) =

∫ t

0

a(z) dz,

and the approximation of a(t), which is based on the the following
formulation:

a(t) ≈ Ã(t+ 1)− Ã(t).
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Figure 5.5: Approximations of the intervention function (on the right) and
its integral (on the left).

Since the curve on the right graph in Figure 5.5 shows an oscillating be-
haviour, this can be modelled through harmonic functions. In particular,
the simple formulation introduced in (2.3) is a reasonable choice to catch
the principal characteristics of seasonal patterns (such as magnitude and
frequency).

The parameters of the cumulative generalised Bass model are estimated
through the Levenberg-Marquardt algorithm (1944; 1963), and the regression
results are illustrated in Figure 5.6, 5.7, 5.8, 5.9, and 5.10.

The maps of the estimates obtained for the parameter µ are shown in
Figure 5.6. They are not very different than those produced for the standard
Bass model (see Figure 5.2 for comparison), and this means that the total
amount of rainfall for each year can accurately be estimated by the use of
both models.

The maps of the estimated values for the parameter ζ are exposed in
Figure 5.7. The same conclusion for the parameter ζ of the Bass model are
still valid. In fact, even if the generalised model produced slightly different
estimates, they are still capable to highlight the differences of aerosol presence
among geographical cells.

The introduction of an intervention strongly affects the estimates of the
parameter ξ. However, the maps in Figure 5.8 show almost the same spa-
tial patterns of those obtained for the Bass model, therefore it is reasonable
to consider a strong connection between the effect explained by ξ (the co-
alescence) and the effects due to the orography (such as local variations of
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temperature or air-stream).
Figure 5.9 shows the estimates of the parameter α, which are globally less

stable than those obtained for the parameters described above. There is not
any particular temporal trend between two consecutive years. This means
that the intensity of the process is not related to the orography and further
inspections based on other environmental variables are required.

In the end, the maps exposed in Figure 5.10 show the estimates of the
parameter β. Such estimates are the most unstable among all the presented
parameters, because they depend on the estimates of α; in fact, if α ≈ 0,
then the value the parameter β is not identifiable. Spatially, the mountain-
ous areas (especially the most elevated) present cells with less homogeneous
values than the neighbours. The year 2008 is an exception to this general
thought, because the value of the parameter α has a main role during the
estimation procedure (see Figure 5.9, year 2008, the red zones are almost
zero).

Other models based on the mixture in (2.4) were estimated; however,
the results lack spatial stability and are inferentially inaccurate. For these
reasons, they are not reported here.

5.4 Conclusion
Standard statistical techniques are used in this chapter in order to obtain

useful hydrological information behind the data. After exposing how the
observations are handled and aggregated for better and more stable regression
settings, two models presented in Chapter 2 are considered.

The results show how the micro-physical effects and characteristics of
the selected zone can be estimated through macro-physical models. From a
graphical perspective, it is interesting to see how the estimates are locally
stable; in fact, they are mostly related to particular features of the zones
(such as the land use and elevation). More specifically, the heaviest rainfall
are recorded in those location cells where the estimates are strongly con-
nected with high altitudes, intense wind-advection, and substantial presence
of liquescent aerosol particles.

Even if these analyses are useful for the inference of the expected yearly
evolution of the process, it is not possible to assess the empirical distribution
of the rainfall over time. For this reason, the new semi-parametric quantile
regression is applied in the next chapter to extract more information about
the distribution of the data.
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Figure 5.6: Smoothed estimates of the parameter µ of the generalised Bass
model, 2006 – 2012.
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Figure 5.7: Smoothed estimates of the parameter ζ of the generalised Bass
model, 2006 – 2012.
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Figure 5.8: Smoothed estimates of the parameter ξ of the generalised Bass
model, 2006 – 2012.
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Figure 5.9: Smoothed estimates of the parameter α of the generalised Bass
model, 2006 – 2012.
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Figure 5.10: Smoothed estimates of the parameter β of the generalised Bass
model, 2006 – 2012.
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Chapter 6

Quantile regression analyses

Quantile regression is a powerful technique which can identify the con-
ditional quantile of a response variable, so that it is possible to make infer-
ence on the distribution of Y |X = x without introducing assumptions on
the shape of the residual density. The estimation method of Koenker and
Park (1996) is usually applied to perform nonlinear quantile regression for
each separate probability level. However, the semi-parametric quantile sheet
regression procedure described in Section 3.2.3 is used for the estimation of
simultaneous quantile curves. In particular, non crossing curves for any prob-
ability level can be obtained by the use of this estimator. By the introduction
of nonparametric functional parameters and a penalty term in the objective
function, the whole conditional distribution of the response variable can be
characterised by the chosen nonlinear model.

Section 6.1 discusses the Bass model extension for semi-parametric quan-
tile regression, practical regression details (e.g. the initialisation), and the
presentation of the results. A similar extension for the generalised Bass
model and the description of results are considered in Section 6.2. Brief
conclusions are reported in Section 6.3.

6.1 The Bass model

The Bass model, formulated for the accumulated rates of adoption, was
considered in Chapter 5 in order to stabilise and improve the accuracy of the
parameter estimates. Unfortunately, this way to operate strongly affects the
results of quantile regression; in fact, as previously mentioned, the accumu-
lated rates of adoption are less noisy than the instantaneous rates. Of course,
if the aim of the analysis is concerned with the cumulative quantities, then
quantile regression must be performed for the regression model in (2.1). On
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the other hand, if the analysis is based on explaining the instantaneous rates
of adoption, then the model in (5.1) must be considered. From a mathemati-
cal point of view, the instantaneous rates can be decomposed in two additive
terms, i.e.

y′(t) = g(t) + e(t),

where g(t) is a generic deterministic signal to identify and e(t) is a generic
noise term, whose distribution is centred in zero. It is quite evident that the
cumulative quantities can be expressed as

y(t) = G(t) +

∫ t

0

e(z) dz,

whereG(t) is given by the definite integral of g(t), while the last additive term
is a stochastic diffusion process. From these two expressions, it is possible to
establish that the two additive noise terms have two different distributions.
Making inference via quantile regression on the distribution for one of these
two formulations, it is not immediate to find a solution for the other, whether
it exists. Here, since the focus it on the instantaneous precipitation rates,
the model in (5.1) is considered.

In order to obtain a semi-parametric quantile sheet model, all the param-
eters considered here are varying with the probability level τ . The functional
parameters, i.e. µ(τ), ξ(τ) and ζ(τ), are formulated through the modified
Bernstein polynomials as defined in (3.23). Also for quantile regression, the
local spatial variations are ignored during regression in order to achieve a
compromise between the computational efficiency and estimates accuracy.
In practise, the initialisation is based on the following setup:

• µi(τ) = µ̂i,

• ζi(τ) = ζ̂i,

• ξi(τ) = ξ̂i,

where µ̂i, ζ̂i and ξ̂i are the least squares estimates related to the i-th cell.
The extension of the Bass model with random parameters adopted to pro-

duce spatial dependent estimates must further be generalised in this context.
In particular, crossing quantile curves could be obtained when the applica-
tion of the local average in (5.2) to the coefficients is used to compute each
functional parameter. Therefore, it is preferred to consider random func-
tional parameters, so that µ̂i(τ) = µ̄i(τ) + %(τ), where the non stochastic
spatial patterns µ̄i(τ) are identified by

µ̄i(τ) =
1

1 + |Ni|

{
µ̂i(τ) +

∑
j∈Ni

µ̂j(τ)

}
,
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and the function %(τ) is a noise term which satisfies E[%(τ)] = 0 for all
τ ∈ [0, 1].

The Figure 6.1, 6.2 and 6.3 illustrate the maps of parameters for nine
probability levels and their variations through the years. Although other
graphical representation can be drawn to express the difference among quan-
tile curves, it seems better to provide the maps for the parameter values in
order to assess which effects have more influence on the conditional distribu-
tion of the response variable. Furthermore, a more informative perception of
the physical process can be adopted to describe extreme events.

Figure 6.1 shows the smoothed maps for the functional parameters µ(τ)
evaluated for τ = 0.1, . . . , 0.9. Across the years, the maps are very stable
as it was observed for the estimates obtained by least squares methods. It
is also evident that the largest amount of rainfall are located in the most
elevated cells. However, the functional parameter rises as the probability
level increases, and its largest variations are related to the cells where the
overall amount of precipitation is the largest.

Figure 6.2 shows the smoothed maps for the functional parameters ζ(τ)
evaluated for τ = 0.1, . . . , 0.9. As for the least squares estimates, the results
obtained through quantile regression do not present the same spatial stabil-
ity of µ(τ). Nonetheless, it is still possible to see how the human activities
and wild vegetation areas exhibit the largest estimated values. Furthermore,
most of the estimated functional parameter ζ(τ) is stable as τ varies. Essen-
tially, it may be considered almost constant, but it is characterised by slight
increments as τ increases. Thus, this parameter has not so strong effects on
the conditional distribution of the response variable, and it is essential to
control the shape of the estimated quantile trajectories.

The smoothed maps of the functional parameter ξ(τ) are shown in Fig-
ure 6.3. These results are more stable than those obtained for ζ(τ), but not
as much as for those calculated for µ(τ). In particular, as for the least squares
estimates, the mountainous areas have higher parameters values. However,
this functional parameter has relevant effects on the conditional distribution
of the response variable, as well as on the estimated quantile trajectories.
In fact, even if the maps drawn from 2006 to 2009 exhibit few variations
according to different values of τ , the three successive years are characterised
by more evident changes.

6.2 The generalised Bass model

The generalisation formulated in (2.2) is adopted in order to extend the
Bass model for accumulated rates of adoption. Here, for the same reasons
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Figure 6.1: Smoothed quantile estimates of the parameter µ of the Bass
model, 2006 – 2012.
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Figure 6.2: Smoothed quantile estimates of the parameter ζ of the Bass
model, 2006 – 2012.
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Figure 6.3: Smoothed quantile estimates of the parameter ξ of the Bass
model, 2006 – 2012.
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mentioned in Section 6.1, the generalised Bass model for the instantaneous
precipitation rates is considered in order to apply quantile regression. By
taking the first derivative with respect to the time t the resulting model is
the following:

y′(t) =
µ ζ (ζ + ξ)2

{
1 + 2παβ cos(2πβt)

}
exp

[
(ζ + ξ)

{
t+ α sin(2πβt)

}]
(
ζ exp

[
(ζ + ξ)

{
t+ α sin(2πβt)

}]
+ ξ
)2 .

As for the Bass model, a suitable model for semi-parametric quantile sheet
regression can be formulated by replacing each parameter with its functional
form based on the modified Bernstein polynomials in (3.23), and the regres-
sion is initialised with the following setup:

• µi(τ) = µ̂i,

• ζi(τ) = ζ̂i,

• ξi(τ) = ξ̂i,

• αi(τ) = α̂i,

• βi(τ) = β̂i,

where µ̂i, ζ̂i, ξ̂i, α̂i and β̂i are the least squares estimates for the generalised
Bass model related to the i-th cell.

The smoothed maps of the functional parameter of the generalised Bass
model are reported in Figure 6.4, 6.5, 6.6, 6.7 and 6.8. They are obtained by
applying the same techniques performed for the Bass model in the previous
section.

The results for the functional parameter µ(τ) are shown in Figure 6.4.
These maps are very similar to those produced for the Bass model (see Fig-
ure 6.1 for comparison), even if very few slight differences are also recognised
in some small areas. Essentially, the process is spatially stable, and this
denotes a strong relationship with the orography as noted previously. In
addition, the variations of this parameter through quantiles have a strong
impact on the conditional distribution of the rainfall, because they quantify
the variability of the response. From a long-term perspective, the functional
parameter are not affected by strong fluctuations; however, it is possible to
observe interesting growth during the last three years.

The smoothed maps for the functional parameter ζ(τ) are shown in Fig-
ure 6.5. These maps present the same spatial characteristics of those pro-
duced for the Bass model, and this can be interpreted as a localised effect
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which is connected with the human activities. As it was found in the pre-
vious chapter, the northern areas have the highest estimated values; in fact,
in those zones deliquescent aerosol particles are produced and, successively,
released in the atmosphere. Moreover, by looking at the variations across
quantile levels, it is possible to notice a slightly significant increasing trend.

Figure 6.6 shows the smoothed maps for the functional parameter ξ(τ).
As for the Bass model, these maps have a strong spatial stability, which is
mostly related to the physical interpretation of the parameter ξ; in fact, the
coalescence effect is strictly affected by thermodynamical aspects, which are
more intense near the elevated positions (e.g. wider atmospheric temperature
ranges). More evident patterns are highly visible across probability levels,
which permit to quantify the contribution of the coalescence effect. In other
words, since the considered generalised Bass model take into account seasonal
effects, high values of ξ(τ) increase the magnitude of initial oscillations, while
low vales give more emphasis to the final fluctuations. However, these effects
on the seasonality are strictly linked with the values assumed by ζ(τ). By
looking at the maps, and considering the role of the nonlinear interaction
between the coalescence and the seasonality effects, it is quite evident that
the conditional distribution of the observed phenomenon manifests long-term
changes.

Figure 6.7 and 6.8 expose the smoothed maps for the functional parame-
ters α(τ) and β(τ) respectively. These functional parameters are less stable
than the previous. In fact, these maps do not show any spatial persistence
neither evident long-term evolutions. Nonetheless, it is interesting to note
that these functional parameter are stable across quantiles. This issue is
mainly due to the usage of the penalty for the estimation of the functional
parameters.

6.3 Conclusion

In this chapter, regression analyses are also performed by considered the
main models adopted in the previous chapter. However, the new procedure
based on the semi-parametric quantile sheets is utilised to assess the distribu-
tion of the data. Practical details are described in order to understand how
the algorithm should be initialised for a stable regression setting in order to
obtain reliable results.

The results show how the empirical distribution of each cell differs from
the other according to the values of the parameters and their variations
with respect to the probability level. By performing these analyses, it is
also possible to study the trajectory shapes of the extreme phenomena and
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Figure 6.4: Smoothed quantile estimates of the parameter µ of the gener-
alised Bass model, 2006 – 2012.
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Figure 6.5: Smoothed quantile estimates of the parameter ζ of the gener-
alised Bass model, 2006 – 2012.
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Figure 6.6: Smoothed quantile estimates of the parameter ξ of the gener-
alised Bass model, 2006 – 2012.
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Figure 6.7: Smoothed quantile estimates of the parameter α of the gener-
alised Bass model, 2006 – 2012.
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Figure 6.8: Smoothed quantile estimates of the parameter β of the gener-
alised Bass model, 2006 – 2012.
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establish which parameter is more sensitive to the distributive variability.
Although the features of the estimates remain almost the same as in the
previous chapter, a more detailed description of the rainfall process and its
probabilistic characterisation is given here by the use of quantile regression.



Chapter 7

Conclusions

Spatiotemporal phenomena related to the rainfall measurements can be
characterised by physical models, this can be an alternative to the identifi-
cation of spatiotemporal patterns based on standard analytical tools, which
mainly focus on explaining spatiotemporal correlations via nonparametric
regression models or variograms (or correlograms) functions for stochastic
processes. The physical processes generating the precipitation are considered
within a simplified physical framework, where the mathematical formulation
of a regression model plays a central role. In so doing, the spatiotemporal
dependence of the data is strictly linked to the chosen model, which explains
the complexities of the phenomena. From this perspective, the temporal evo-
lution of the spatial patterns is given by the model, which takes into account
the potential amount of rainfall, the presence of the deliquescent particles,
the coalescence which forms the raindrops and other effects (such as sea-
sonality). All these aspects are well-known in the hydrological literature
and, in the recent years, most of the work related to the formation of the
precipitation focus on the clouds microphysics, wherein the active-nuclei of
the aerosols and the thermodynamical nature of the coalescence are central
concepts. In particular, the principal aim of the performed analyses arrives
from the necessity of understanding if the relations observed among neigh-
bouring cells and consecutive years are attributable to explicable physical
mechanisms.

Most of the data used to assess this issue are collected daily through satel-
lites; therefore, they can be organised as time series with a location index
regarding a specific spatial cell. Such a multitude of data requires analytical
tools which must have high performance features, e.g. parallel computing and
effective estimation algorithm. Nonetheless, it is still necessary to focus on a
reduced area and lose some of the temporal resolution. The data organisation
in homogeneous areas is obtained via cluster analysis, which is also useful to
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identify the most suitable zones according to their temporal pattern, while
further adjustments are attained by weekly aggregation. This allows an af-
fordable amount of data to be considered in order to achieve optimal results
in reasonable time.

The purpose of these analyses mainly concerns simplified physical mecha-
nisms which are essential for the explanation of observed correlations. Orig-
inally, the hydrological theory developed by Koren and Feingold (2011) is
based on the concept of self-organisation, which characterises several natu-
ral, social and economical systems. The regression models inspired by the
diffusion of innovations are introduced to approximate the evolution of the
rainfall process within a year through a more straightforward perspective.
Such models and the adopted estimation techniques allow to quantify the
basic effects associated with the complexities of the process.

The phenomenon in the considered area is mostly originated by condensa-
tion of water vapour mainly due to the orography of the territory. However,
this thermodynamical point of view can be studied from a more challeng-
ing perspective, which also takes into account the microphysics of clouds.
In practical terms, although the innovation diffusion models are a theoret-
ical approximation of these microphysical processes, they can quantify and
separate two main effects: the initialisation due to the aerosol moisture in
clouds, and the reproduction of the coalescence mechanisms. A graphical
representation of the estimates highlights the areas where these effects are
more relevant. In particular, such regions have meaningful connections with
highly populated zones and elevation measurements. In addition, the inno-
vation diffusion models can also identify the total rainfall observed during
the year. Other features of the data (e.g. inner year seasonality) are also con-
sidered by applying some generalisation of the standard Bass’ model (1969;
Bass et al., 1994).

The adopted inferential tools are based on regression techniques, in partic-
ular the nonlinear least squares and innovative nonlinear quantile regression
techniques are here considered. The former is a standard tool to identify
and assess the expectation of the conditional response variable, E[Y |X = x],
without forcing assumptions on the error distribution. The latter regression
method is introduced to increase the computational efficiency and make in-
ference on the conditional distribution of the response given the covariates.
While the former method focuses on the conditional expectation, the latter
concerns with the conditional quantile of the response variable given a spe-
cific probability level. In so doing, it is possible to study the distribution
of the rainfall in a specific space-time position, which in turn allows for the
study of the local variations of the observations, and the behaviour of the
model parameters in correspondence with probability levels. For instance,
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the model estimated for a high probability (e.g. 0.95) characterises extreme
values of heavy rainfall, while the same model with parameters estimated for
a low probability level (e.g. 0.05) identifies trajectories which are adequate for
lower precipitation levels. However, since the standard techniques for non-
linear quantile regression developed by Koenker and Park (1996) does not
take into account the position other curves to fit, suitable regression meth-
ods are investigated. The semi-parametric quantile sheet algorithm based on
the concept introduced by Schnabel and Eilers (2013) can be applied in order
to achieve optimal results. In fact, the resulting curves are not intersecting,
so that they respect the monotonicity property of quantiles. Therefore, it is
possible to reconstruct the conditional cumulative distribution of Y |X = x
for any probability level by estimating only few coefficients.

In practical terms, the regression techniques applied to the data high-
light strong connections with the salient features of measurement area. The
evidence of this fact is mainly visible on the maps of the parameters, e.g.
the expected total amount of precipitation is greater near the most elevated
zones. From these analyses, the effects of aerosol particles appear to be more
evident and highly linked with urban areas, as well for the coalescence which
is stronger where the wind-advection is more turbulent. The introduction
of further parameters for the inner year seasonality stabilises the estimated
values of the basic parameters (i.e. the total amount of precipitation, the
aerosol effects and the coalescence).

From a graphical perspective, the major distinction between the results
obtained through the nonlinear least squares and quantile regression is clearer
when the estimates of the parameters are significantly varying according
to the probability levels. This fact is more noticeable for the parameter
controlling the amount of yearly rainfall, while the other parameters are
quite constant across the probabilities, even if little variations are necessary
and statistically significant for controlling the evolution of the trajectories.
The resulting parameters maps confirm the results obtained via nonlinear
least squares; however, quantile regression methods can quantify the intrinsic
variability of the observed data and describe more details of the underlying
dynamics.

More sophisticated analyses can be performed in order to increase the
precision of the model in short-term forecasts. By the introduction of the
extension of SARMAX models (Guseo and Dalla Valle, 2005), it is possible
to get more accurate estimates of the conditional expectations, where the
residuals are modelled via the usual linear time series methods. However,
even if this concept can be applied to quantile regression techniques, it re-
quires more methodological efforts because it is not so evident how to deal
with the residuals dynamics. In particular, while quantile autoregression is
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not a novelty, the MA processes in a quantile regression context are still
an unexplored research field. Other interesting research opportunities con-
sists of the study of long-term parameters evolution. While proper methods
are well-established for the analyses of repeated functional time series, it is
more challenging to extend these techniques for quantile-sheets, where the
unknown future parameter estimates must satisfy the monotonicity property
of quantiles. Other methodological research perspectives are concerned with
the evaluation of the variability of the estimates and trajectories, especially
under space-time dependence assumption of the data.



Appendix A

Notes on quantile regression

A.1 Proof of the homogeneity property
The proof of the Property 1 is quite obvious. Since the scalar w is a

positive real number, the inequality wz < 0 is maintained for all z < 0.
Conversely, it is also true that wz ≥ 0, if and only if z ≥ 0. Therefore, the
resulting values of the function ρτ (wz) can be computed as

ρτ (wz) =

{
wzτ, if z ≥ 0,

wz(τ − 1), if z < 0,

wherein the conditions are expressed only for z and not for the product wz.
It is evident that, by factorising the scalar w, it is possible to get the equality

ρτ (wz) = wρτ (z)

and this completes the proof.
Also the check function ρ∗τ (·) satisfies the homogeneity property and the

proof it is obvious.

A.2 Proof of quantile level identification
When the check function ρ∗τ (·) in (3.21) is adopted to estimate the model

coefficients, it means that the solution of the decision problem

min
ν(x;τ)

E
[
ρ∗τ{(Y |X)− ν(X; τ)}|X = x

]
,

does not coincide with the τ quantile level. As it was done before, a model
not depending on x can be considered without any loss of generality, hence
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an equivalent problem can be formulated as

min
ντ

E
{
ρ∗τ (Y − ντ )

}
,

where the expectation is defined as

E
{
ρ∗τ (Y − ντ )

}
=

∫ +∞

−∞
ρ∗τ (Y − ντ ) dFY ,

= (1− τ)2

∫ ντ

−∞
(y − ντ ) dFY + τ 2

∫ +∞

ντ

(y − ντ ) dFY .

By differentiating with respect to ντ , the solution of the equation

(1− τ)2

∫ ντ

−∞
dFY − τ 2

∫ +∞

ντ

dFY = 0

correspond to the desired minimum, when it is unique. By rewriting the
previous equation as follows

(1− τ)2

∫ ντ

−∞
dFY = τ 2

(
1−

∫ ντ

−∞
dFY

)
,

the right quantile level is given by∫ ντ

−∞
dFY =

τ 2

1− 2τ + 2τ 2
,

and not by τ . Suppose that the quantity

πτ =

∫ ντ

−∞
dFY

denotes the c.d.f. of Y computed in ντ . By solving the following equation

(2πτ − 1)τ 2 − 2πττ + πτ = 0

with respect to τ , it is possible to obtain the inverse function in (3.22), and
this completes the proof.

A.3 Proofs of critical values consistency
Let the random variables X1, . . . , Xn be independent and defined on a

bounded support, such that Pr(Xi ∈ [0, 1]) = 1, for any i = 1, . . . , n, the
Hoeffding’s inequality states that

Pr

(
n∑
i=1

Xi −
n∑
i=1

E[Xi] ≥ n2k

)
≤ exp

(
−2n3k2

)
,
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wherein k is an arbitrary positive constant (compare Theorem 2.6 in Hoeffd-
ing, 1963).

Since the test statistic considered in region (3.29) is a random variable T
with bounded support [0, 1], it may assume that any realisation of T comes
from an average process, in this specific case

T = 1− 1

n

n∑
i=1

Xi.

Furthermore, since the expectation of T under the null hypothesis is approx-
imately one, it is easy to note from the previous formula that the expectation
of the summation must approximately be zero. For this reason, it may as-
sume that E[Xi] ≈ 0 for all i = 1, . . . , n.

The probability of the region in (3.29) with λ1 = 1, can be written as

Pr(λ0 ≤ T ≤ λ1) = 1− Pr(T ≤ λ0), or equivalently as
= 1− Pr(1− T ≥ 1− λ0),

since T exceed one with probability zero. From the Hoeffding’s inequality,
the following relationships are true:

Pr(1− T ≥ 1− λ0) = Pr(1− T ≥ nk),

≤ exp
(
−2n3k2

)
,

= α.

From these statements, since α = exp (−2n3k2),

k =

√
− log(α)

2n3
,

and since 1− λ0 = nk, it obtains the following result

λ0 = 1−
√
− log(α)

2n
,

which completes the proof for the threshold in (3.30).
In order to obtain the threshold in (3.31) further assumptions on the

variance of T need to be introduced. Let σ2 ∝ n−1 be the variance of T , such
that

σ2 = Var[T ] = Var[1− T ] = Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var [Xi] ,
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which is due to the independence of the variables Xi, for i = 1, . . . , n. As-
suming the homoscedasticity of the hidden variables, i.e. Var[Xi] = Var[Xj],
for any i, j = 1, . . . , n and, since σ2 ∝ n−1, it follows that σ2 = n−1 Var [Xi].
In other words, the variance of Xi is constant for all i = 1, . . . , n.

Under all the previous assumptions, the Uspensky’s inequality states that

Pr

(
1

n

n∑
i=1

Xi ≥ σk

)
≤ 1

1 + k2
,

which leads to

Pr(1− T ≥ 1− λ0) = Pr(1− T ≥ σk) ≤
(
1 + k2

)−1
= α.

From the last equality one solves it for k, so that

k =

√
1

α
− 1,

and, since 1 − λ0 = σk, by assuming that σ2 takes the form c2/n, where c
is a positive constant, it obtains the threshold in (3.31) which completes the
proof.

Special values of c can be considered. In particular, from the previ-
ous assumptions, it follows that Var[Xi] = c2 and, since Xi ∈ [0, 1], then
Var[Xi] ≤ 0.25 for any i = 1, . . . , n. Assuming that the distribution of Xi

is unimodal and E[X3
i ] ≈ 0, then Var[Xi] ≤ 1/12, for all i = 1, . . . , n (Dhar-

madhikari and Joag-Dev, 1989). Thus it is reasonable to set c2 = 1/12.

A.4 Simulation studies
In order to understand the main differences among the estimators pre-

sented in the previous sections, Monte-Carlo techniques are used. Data from
a linear and a nonlinear model are simulated with different sample sizes and
error distributions. In so doing, it is possible to show the main characteris-
tics of each situation. More details on the adopted simulation techniques are
explained in the the Appendix A.5.

The obtained results are organised in tables exposed in Appendix A.6.
Four indexes are selected to access the properties of the estimators, in par-
ticular

the estimates mean, which is computed through the arithmetic average
of the estimates, i.e.

Mτ =
1

N

N∑
i=1

θ̂τ,i;
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the mean squared error, which is calculated as the average of the squared
deviances between the estimates and true parameter θ (which is known
by the simulation setting), i.e.

Sτ =
1

N

N∑
i=1

(
θ̂τ,i − θ

)2

;

the squared bias, namely the squared difference between the estimates
mean and the true value, i.e.

B2
τ = (θ −Mτ )

2;

the estimator variance, which is defined as the difference between the
mean squared error and the squared bias, i.e.

Vτ = Sτ −B2
τ .

Three estimators are compared for the linear settings, while only two for
the nonlinear. In the former case, the Koenker and Bassett Jr. (1978) and
the Bondell et al. (2010) estimators (coded in the tables as KO and BO re-
spectively as subscript for each parameter) are compared with that proposed
in (3.9) (coded as SS), which is calculated with the technique explained in
Section 3.2.1. In the latter, the nonlinear quantile regression is applied as
described in Koenker and Park (1996) and the estimator (3.9) is computed as
shown in Section 3.2.2. These methods are selected because they are easily
comparable by looking at the performances of the parameters without check-
ing the discrepancies between the τ -quantile regression model and the true
τ -quantile function. In particular, since the result of the restricted quantile
regression method (He, 1997) consists in the sum of two estimated functions
as in (3.3), the conditional estimated quantile model is not directly compa-
rable through an evaluation of the parameters. Similarly, the rearrangement
quantile estimator (Chernozhukov et al., 2010) is not directly comparable
with other methods, because it exchanges the values of the estimated condi-
tional quantiles. This reveals to be cumbersome to determine the proximity
between estimates and the true quantile function in a continuum. Other
multi-objective regression methods are not considered for a lack of ad hoc
algorithms and related software.

In order to compare the performances of the proposed confidence regions,
only the results from the nonlinear model simulations are used. Since the
best model is known by the simulation setting, the proposed tests for the
goodness of fit are not preformed here also for reducing the computational
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efforts. However, the mininum of the statistics in (3.24) is computed (i.e.
R̄1), in order to establish the behaviour of a global test of performance under
the null hypothesis.

A.4.1 A linear regression model

The experiments are designed such that the values assigned to x ∈ [a, b]
are unique. In particular, x1 = a and xi+1−xi = (b−a)(n−1)−1, with a = −2
and b = 2, for any i = 1, . . . , n − 1. The observations from a linear model
yi = β0 + β1xi + εi are simulated with pseudo-independent errors εi. The
parameters are set to be β0 = 5 and β1 = 3. Here, in each simulation setting,
the error terms follow four different distributions, i.e. the standard Normal
N(0, 1), the standard Laplace La(0, 1), the standard Cauchy Ca(0, 1) and a
special case of the Beta-Normal distribution BeN(0.05, 0.05, 0, 1) (introduced
by Eugene et al., 2002). All these univariate distributions are symmetric
and centred in zero, so that ε ∈ [−c, c] with 95% of probability. The first
three are unimodal and the last one is bimodal. In particular, c ≈ 1.96
for the standard Normal distribution, c ≈ 3 for the Laplace, c ≈ 12.71 for
the Cauchy and c ≈ 10.65 for the Beta-Normal distribution. In order to
recognise more easily the theoretical properties of the estimators on the sim-
ulation, four different sample sizes are considered for each error distribution,
in particular for n ∈ {25, 100, 400, 1600}. Here, the estimates are obtained
for τ ∈ {0.1, 0.2, . . . , 0.9}. A quite large number of simulated data sets for
each setup is chosen to be N = 10, 000.

The results show that the variance of each estimator decreases and its
bias tend to zero as n → ∞, consequently the mean squared error reduces
as the sample size increases. Mostly, the proposed estimator performs better
(in terms of squared bias and estimator variance) than the other already
presented in the literature. Only in few cases the estimator of Bondell et al.
(2010) has less variance and hence it is more efficient; in fact, during the
simulation and estimation phases it was considered a bounded domain for
the models.

When the error term is Normal distributed or as a Cauchy, it is not
possible to recognise from the results which is the less biased estimator,
because the squared bias of an estimator is the lowest for some quantile
levels τ , while the opposite happen for other values of τ . However, the
results obtained with the Beta-Normal distributed error (exception made for
the computed averages) are not very reliable; in fact, the theoretical values
of the parameters are affected by numerical accuracy of the quantile function
of the Beta distribution.
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A.4.2 A nonlinear regression model

The nonlinear model is related to the theory of innovation diffusion pro-
cesses, especially according to the formulation of Bass (1969). The original
model was expressed in terms of the following differential equation:

ż = µ

(
ζ + ξ

z

µ

)(
1− z

µ

)
,

wherein ż denotes instantaneous rates, z the cumulative adoptions and the
parameters ζ, ξ and µ respectively represent the innovation effect, the im-
itation effect and the saturation level of the process. Since a closed form
solution for both the cumulative and the instantaneous adoptions exists as
a function of the time, it is possible to fit these two models with a single
data set. In fact, once the instantaneous rates are randomly generated, the
respective cumulative adoptions can easily be calculated.

The model for the cumulative adoption can be written as

z = µ
1− exp{−(ζ + ξ) t}

1 + ξ/ζ exp{−(ζ + ξ) t}
+ ε, (A.1)

where the time t ≥ 0 plays the same role of the covariate x in the previous
section, while the error term ε depends on the random fluctuation of the
instantaneous rates of adoption. Since the deterministic model for ż is by
definition the first derivative with respect to t of the deterministic part in the
model (A.1), the stochastic representation of instantaneous rates is written
as follows:

ż = ηµ
(ζ + ξ)2 exp{−(ζ + ξ) t}
ζ[1 + ξ/ζ exp{−(ζ + ξ) t}]2

,

where the multiplicative error term can be expressed as

η = 1 +
ε∗ζ[1 + ξ/ζ exp{−(ζ + ξ) t}]2

µ(ζ + ξ)2 exp{−(ζ + ξ) t}
,

wherein ε∗ is an additive error term derived from (A.1). Since ż must be
non negative, then η is a non negative random fluctuation centred in one
(more precisely E[η] = 1). The parameters are set to be ζ = 0.0005,
ξ = 0.005 and µ = 1000. Also this case, the values assigned to t ∈ [a, b]
are unique, because repeated measurements at the same time are usually not
available in real contexts. In practice, the values of t satisfied the equalities
t1 = a and ti+1 − ti = (b − a)(n − 1)−1, with a = 0 and b = 150, for any
i = 1, . . . , n−1, where the sample sizes considered are n ∈ {25, 50, 100, 200}.
Here, the distributions for η are the Gamma Ga(16, 16), the Log-Normal
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LN(−0.025, 0.05), the Uniform U(0.5, 1.5) and the Kumaraswamy-Gamma
distribution (Cordeiro and de Castro, 2011) KwGa(1.88, 2, 16, 16). In par-
ticular η ∈ [0, c] with 95% of probability, where c ≈ 1.44 for the Gamma
distribution, c ≈ 1.41 for the Log-Normal distribution and c ≈ 1.29 for the
Kumaraswamy-Gamma distribution. Also in this case N = 10, 000 data sets
are simulated. The estimates are obtained for τ ∈ {0.25, 0.50, 0.75}.

The results show how the theoretical properties of quantile regression can
be extended to the simultaneous nonlinear quantile regression. The tables in
Appendix A.6.2 show that most of the computed variances of the estimator
in (3.9) are lower than those calculated for the estimator of Koenker and
Park (1996). Also in this context, the behaviour of the estimator variance
and the mean squared error is similar to the linear case. The bias can be a
problem when it deals with nonlinear model fitting as it happens with least-
squares estimates. Also here, it is easy to see this problem by comparing the
parameter values of the simulation setting and the averages of the estimates
computed for the scenarios with Uniform noise. In many scenarios the esti-
mator in (3.9) performs better in the estimation of the parameters ζ and ξ
rather than µ.

To access the main characteristics of the R̄1 statistic for a goodness of fit
test, the Table A.33 shows the minimum, the 5% quantile, the first quartile,
the median, the mean, the third quartile and the maximum of the computed
statistics for each distribution. As it happens for the evaluation of the R2,
here it seems more reasonable to set a threshold around 0.65 instead of 0.75.
From the results in Table A.33, it is possible to state that the precision of test
statistic increases as n → ∞. This fact suggests that the threshold should
slightly tend to 1 as the sample size increases.

The comparisons of the tests are based on coverage probabilities of the
confidence regions in (3.28) and (3.32). In practice, the critical values ob-
tained from the Hoeffding’s inequality are closer to the empirical quantile of
the test statistic under the null hypothesis than those computed with the
Uspensky’s inequality. The simulation results show that the coverage proba-
bilities for the approximate confidence regions are not good as well those for
the “exact” confidence regions. Both critical values tends to the same limit as
n→∞, and the improvement of coverage probabilities for the approximate
confidence regions rises as n increases (an effect due to the assumption on
the expectation of the test statistic under the null hypothesis). Even if the
Hoeffding’s threshold is more accurate, both inequalities provides good cov-
erage probabilities for the “exact” confidence regions. These considerations
are valid in all the considered case because the calculated thresholds are not
dependent on the distribution of the errors.
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Algorithm A.5.1 Simulation of a pseudo-random number distributed as a
Beta-Normal BeN(α, β, 0, 1) with α = β

1: Generate a pseudo-random number B ∼ Be(α, α).
2: Generate another pseudo-random number U ∼ U(0, 1).
3: if U > 0.5 then
4: if B > 0.5 then
5: Calculate Y = Φ−1(1−B).
6: else
7: Calculate Y = Φ−1(B).
8: end if
9: else

10: if B > 0.5 then
11: Calculate Y = −Φ−1(1−B).
12: else
13: Calculate Y = −Φ−1(B).
14: end if
15: end if

A.5 Notes on the simulation accuracy

If the inverse of the c.d.f. FY is known, the easiest way to generate a
pseudo-random number from FY is the so-called inversion technique. In
practice, a pseudo-random number U is generated from a standard Uni-
form U(0, 1) as explained by Matsumoto and Nishimura (1998), so that
Y = F−1

Y (U). This is the most efficient solution for generating Normal,
Log-Normal, Laplace or Cauchy pseudo-random numbers.

If the inversion technique is chosen for the generation from a Beta-Normal
distribution, it requires more efforts because it is not efficient to calculate Y
from the quantile function. In practice, if Y ∼ BeN(α, β, 0, 1), the r.v. Φ(Y )
is distributed as a Beta Be(α, β), where Φ(·) is the c.d.f. of a r.v. distributed
as a standard Normal. In a straightforward way, a pseudo-random number
V is generated from a Beta Be(α, β), so that Y = Φ−1(V ) ∼ BeN(α, β, 0, 1).

When the parameter α and β satisfy the equality α = β, the resulting
Beta-Normal distribution is symmetric (Eugene et al., 2002). In this case,
for improving the numerical accuracy of the simulation, it is preferred to
adopt a different technique described in Algorithm A.5.1. This improvement
is essential, when both parameters are less than one.

A different technique is applied to simulate from a Beta Be(α, β), be-
cause the application of its quantile function is computationally inefficient.
Thus, the acceptance-rejection method is applied with some slight changes
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Algorithm A.5.2 Simulation of a pseudo-random number distributed as a
Kumaraswamy-Gamma KwGa(α, β, γ, δ) with (α, β)> ∈ [1,+∞)2 \ {(1, 1)>}
1: Calculate M = βαβ{(α− 1)/(αβ − 1)}1−1/α{(β − 1)/(αβ − 1)}β−1

2: repeat
3: Generate a pseudo-random number Y ∼ Ga(γ, δ).
4: Compute U1 = FY (Y ), where FY is the c.d.f. of a Gamma Ga(γ, δ).
5: Generate another pseudo-random number U2 ∼ U(0, 1).
6: until U2M ≤ αβUα−1

1 (1− Uα
1 )β−1

7: Accept the last pseudo-random number Y that was generated.

as described in Cheng (1978). Also a Gamma Ga(α, β) must be simulated
through the acceptance-rejection method to reduce computational time. The
algorithms proposed by Ahrens and Dieter (1974, when 0 < α < 1) or Ahrens
and Dieter (1982, when α ≥ 1) are the most efficient in terms of time and
numerical accuracy.

The generation of a Kumaraswamy-Gamma pseudo-random number can
be done similarly as for the Beta-Normal distribution. In fact, Y can be
generated by drawing a pseudo-random number from a Kumaraswamy dis-
tribution through the inversion technique and after, the Gamma quantile
function is applied to it. As it was mentioned above, the computation of the
Gamma quantile function should be avoided, because it is almost four times
slower than the computation of its c.d.f..

The algorithm A.5.2 is proposed to simulate from a Kumaraswamy-Gamma
KwGa(α, β, γ, δ). Such an algorithm is based on the acceptance-rejection
method and can be adopted only when α ≥ 1 and β ≥ 1, but not for
α = β = 1. Such conditions guaranty the uniqueness of the mode for a
Kumaraswamy Kw(α, β) distribution. In practice, a pseudo-random number
Y , drawn from Gamma Ga(γ, δ), will be accepted with probability

fKw{FGa(Y )}

fKw

{(
α− 1

αβ − 1

)1/α
} ,

where the numerator is the Kumaraswamy density function computed on the
Gamma c.d.f. of Y and the quantity on the denominator is the maximum
value of the Kumaraswamy density (obtained in the mode).
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A.6.2 Tables related to the non linear regression

Table A.17: Average of the estimates for the Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 4.96287e−03 5.00388e−03 5.06523e−03
ξKO 5.14294e−02 5.05173e−02 4.99598e−02
µKO 8.32415e+02 9.85083e+02 1.15622e+03
ζSS 5.00749e−03 5.00749e−03 5.00749e−03
ξSS 5.03572e−02 5.03572e−02 5.03572e−02
µSS 8.41000e+02 9.85980e+02 1.14246e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 4.98493e−03 5.00828e−03 5.03056e−03
ξKO 5.06306e−02 5.02133e−02 5.00005e−02
µKO 8.27424e+02 9.81945e+02 1.15577e+03
ζSS 5.00585e−03 5.00585e−03 5.00585e−03
ξSS 5.01684e−02 5.01684e−02 5.01684e−02
µSS 8.31055e+02 9.82741e+02 1.15026e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 5.00237e−03 5.00927e−03 5.01501e−03
ξKO 5.02670e−02 5.00857e−02 5.00160e−02
µKO 8.25023e+02 9.80355e+02 1.15594e+03
ζSS 5.00657e−03 5.00657e−03 5.00657e−03
ξSS 5.00745e−02 5.00745e−02 5.00745e−02
µSS 8.26658e+02 9.80557e+02 1.15340e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 4.99722e−03 5.00663e−03 5.00888e−03
ξKO 5.01425e−02 5.00341e−02 4.99922e−02
µKO 8.23173e+02 9.79884e+02 1.15551e+03
ζSS 5.00349e−03 5.00349e−03 5.00349e−03
ξSS 5.00297e−02 5.00297e−02 5.00297e−02
µSS 8.24168e+02 9.79899e+02 1.15394e+03
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Table A.18: Estimator variance for the Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 1.27128e−06 8.94871e−07 9.47074e−07
ξKO 4.30502e−05 2.59176e−05 2.68889e−05
µKO 5.98621e+03 6.21972e+03 9.12698e+03
ζSS 6.70397e−07 6.70397e−07 6.70397e−07
ξSS 1.90296e−05 1.90296e−05 1.90296e−05
µSS 6.28795e+03 6.39473e+03 9.24352e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 6.32598e−07 4.63612e−07 4.81081e−07
ξKO 1.85627e−05 1.26056e−05 1.28609e−05
µKO 2.91339e+03 3.06347e+03 4.58701e+03
ζSS 3.44324e−07 3.44324e−07 3.44324e−07
ξSS 9.24487e−06 9.24487e−06 9.24487e−06
µSS 2.99079e+03 3.15467e+03 4.60735e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 3.08246e−07 2.31225e−07 2.47604e−07
ξKO 8.50585e−06 5.94340e−06 6.44025e−06
µKO 1.45555e+03 1.56654e+03 2.27774e+03
ζSS 1.70998e−07 1.70998e−07 1.70998e−07
ξSS 4.41419e−06 4.41419e−06 4.41419e−06
µSS 1.46904e+03 1.57727e+03 2.28782e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 1.57187e−07 1.17964e−07 1.21857e−07
ξKO 4.05621e−06 2.99893e−06 3.08857e−06
µKO 7.13785e+02 7.85090e+02 1.12863e+03
ζSS 8.64254e−08 8.64254e−08 8.64254e−08
ξSS 2.19320e−06 2.19320e−06 2.19320e−06
µSS 7.22726e+02 7.85508e+02 1.13212e+03
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Table A.19: Squared bias for the Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 1.37853e−09 1.50533e−11 4.25554e−09
ξKO 2.04314e−06 2.67639e−07 1.61430e−09
µKO 1.08398e+02 3.40811e+01 6.66748e−01
ζSS 5.61152e−11 5.61152e−11 5.61152e−11
ξSS 1.27575e−07 1.27575e−07 1.27575e−07
µSS 3.60878e+02 4.53466e+01 1.67539e+02

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 2.27002e−10 6.85319e−11 9.33856e−10
ξKO 3.97621e−07 4.54845e−08 2.64980e−13
µKO 2.93809e+01 7.28906e+00 1.31768e−01
ζSS 3.41981e−11 3.41981e−11 3.41981e−11
ξSS 2.83558e−08 2.83558e−08 2.83558e−08
µSS 8.19305e+01 1.22158e+01 2.64708e+01

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 5.60424e−12 8.58878e−11 2.25219e−10
ξKO 7.13119e−08 7.34353e−09 2.55362e−10
µKO 9.11698e+00 1.23013e+00 2.83958e−01
ζSS 4.31611e−11 4.31611e−11 4.31611e−11
ξSS 5.55708e−09 5.55708e−09 5.55708e−09
µSS 2.16695e+01 1.72037e+00 4.03310e+00

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 7.74923e−12 4.40040e−11 7.87678e−11
ξKO 2.03050e−08 1.16608e−09 6.15925e−11
µKO 1.36723e+00 4.07763e−01 1.17512e−02
ζSS 1.22133e−11 1.22133e−11 1.22133e−11
ξSS 8.79159e−10 8.79159e−10 8.79159e−10
µSS 4.68778e+00 4.26874e−01 2.16207e+00
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Table A.20: Mean squared error for the Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 1.27266e−06 8.94886e−07 9.51330e−07
ξKO 4.50933e−05 2.61852e−05 2.68905e−05
µKO 6.09460e+03 6.25381e+03 9.12765e+03
ζSS 6.70453e−07 6.70453e−07 6.70453e−07
ξSS 1.91572e−05 1.91572e−05 1.91572e−05
µSS 6.64883e+03 6.44007e+03 9.41106e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 6.32825e−07 4.63681e−07 4.82015e−07
ξKO 1.89603e−05 1.26511e−05 1.28609e−05
µKO 2.94277e+03 3.07076e+03 4.58714e+03
ζSS 3.44358e−07 3.44358e−07 3.44358e−07
ξSS 9.27322e−06 9.27322e−06 9.27322e−06
µSS 3.07272e+03 3.16689e+03 4.63382e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 3.08252e−07 2.31311e−07 2.47829e−07
ξKO 8.57716e−06 5.95074e−06 6.44051e−06
µKO 1.46467e+03 1.56777e+03 2.27803e+03
ζSS 1.71041e−07 1.71041e−07 1.71041e−07
ξSS 4.41975e−06 4.41975e−06 4.41975e−06
µSS 1.49070e+03 1.57899e+03 2.29185e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 1.57195e−07 1.18008e−07 1.21936e−07
ξKO 4.07652e−06 3.00010e−06 3.08863e−06
µKO 7.15152e+02 7.85498e+02 1.12864e+03
ζSS 8.64376e−08 8.64376e−08 8.64376e−08
ξSS 2.19408e−06 2.19408e−06 2.19408e−06
µSS 7.27413e+02 7.85935e+02 1.13428e+03
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Table A.21: Average of the estimates for the Log-Normal distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 4.95772e−03 5.01996e−03 5.07413e−03
ξKO 5.11807e−02 5.04003e−02 4.99292e−02
µKO 8.48863e+02 9.81643e+02 1.13804e+03
ζSS 5.00991e−03 5.00991e−03 5.00991e−03
ξSS 5.03321e−02 5.03321e−02 5.03321e−02
µSS 8.55802e+02 9.82820e+02 1.12500e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 4.98595e−03 5.01040e−03 5.03720e−03
ξKO 5.04811e−02 5.01684e−02 4.99361e−02
µKO 8.43547e+02 9.78238e+02 1.13535e+03
ζSS 5.00767e−03 5.00767e−03 5.00767e−03
ξSS 5.01306e−02 5.01306e−02 5.01306e−02
µSS 8.46430e+02 9.78794e+02 1.13028e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 4.98922e−03 4.99769e−03 5.01774e−03
ξKO 5.02576e−02 5.01372e−02 4.99970e−02
µKO 8.41967e+02 9.78114e+02 1.13543e+03
ζSS 5.00070e−03 5.00070e−03 5.00070e−03
ξSS 5.00953e−02 5.00953e−02 5.00953e−02
µSS 8.43401e+02 9.78026e+02 1.13285e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 5.00161e−03 5.00859e−03 5.01167e−03
ξKO 5.00796e−02 5.00061e−02 4.99766e−02
µKO 8.39783e+02 9.76185e+02 1.13453e+03
ζSS 5.00609e−03 5.00609e−03 5.00609e−03
ξSS 5.00046e−02 5.00046e−02 5.00046e−02
µSS 8.40311e+02 9.76097e+02 1.13309e+03
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Table A.22: Estimator variance for the Log-Normal distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 9.13940e−07 7.05524e−07 8.31802e−07
ξKO 3.10329e−05 2.03202e−05 2.33635e−05
µKO 4.25085e+03 4.82781e+03 7.91228e+03
ζSS 5.38086e−07 5.38086e−07 5.38086e−07
ξSS 1.48834e−05 1.48834e−05 1.48834e−05
µSS 4.59154e+03 5.05982e+03 7.79203e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 4.48677e−07 3.70748e−07 4.27600e−07
ξKO 1.28671e−05 9.98822e−06 1.11834e−05
µKO 2.14455e+03 2.40555e+03 3.87453e+03
ζSS 2.77223e−07 2.77223e−07 2.77223e−07
ξSS 7.35458e−06 7.35458e−06 7.35458e−06
µSS 2.16895e+03 2.46880e+03 3.86717e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 2.24309e−07 1.84834e−07 2.20533e−07
ξKO 5.98961e−06 4.72126e−06 5.64897e−06
µKO 1.06603e+03 1.21862e+03 1.88325e+03
ζSS 1.41387e−07 1.41387e−07 1.41387e−07
ξSS 3.56985e−06 3.56985e−06 3.56985e−06
µSS 1.08269e+03 1.22836e+03 1.89398e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 1.09848e−07 9.17424e−08 1.07206e−07
ξKO 2.84701e−06 2.34709e−06 2.77311e−06
µKO 5.25122e+02 6.05676e+02 9.73668e+02
ζSS 6.86597e−08 6.86597e−08 6.86597e−08
ξSS 1.77410e−06 1.77410e−06 1.77410e−06
µSS 5.30948e+02 6.08502e+02 9.79162e+02
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Table A.23: Squared bias for the Log-Normal distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 1.78780e−09 3.98251e−10 5.49600e−09
ξKO 1.39411e−06 1.60229e−07 5.01635e−09
µKO 1.01900e+02 4.01023e+01 1.56793e+01
ζSS 9.82974e−11 9.82974e−11 9.82974e−11
ξSS 1.10266e−07 1.10266e−07 1.10266e−07
µSS 2.90126e+02 5.64040e+01 8.24946e+01

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 1.97340e−10 1.08260e−10 1.38358e−09
ξKO 2.31421e−07 2.83445e−08 4.08875e−09
µKO 2.28368e+01 8.57379e+00 1.62693e+00
ζSS 5.88790e−11 5.88790e−11 5.88790e−11
ξSS 1.70687e−08 1.70687e−08 1.70687e−08
µSS 5.87001e+01 1.21366e+01 1.44343e+01

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 1.16158e−10 5.32495e−12 3.14554e−10
ξKO 6.63385e−08 1.88272e−08 8.96309e−12
µKO 1.02270e+01 7.86278e+00 1.82033e+00
ζSS 4.83793e−13 4.83793e−13 4.83793e−13
ξSS 9.08702e−09 9.08702e−09 9.08702e−09
µSS 2.14588e+01 7.37658e+00 1.51623e+00

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 2.57671e−12 7.37760e−11 1.36124e−10
ξKO 6.33535e−09 3.73218e−11 5.47496e−10
µKO 1.02872e+00 7.65381e−01 2.00534e−01
ζSS 3.70759e−11 3.70759e−11 3.70759e−11
ξSS 2.10028e−11 2.10028e−11 2.10028e−11
µSS 2.38024e+00 6.19642e−01 9.73898e−01
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Table A.24: Mean squared error for the Log-Normal distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 9.15728e−07 7.05923e−07 8.37298e−07
ξKO 3.24270e−05 2.04804e−05 2.33685e−05
µKO 4.35275e+03 4.86791e+03 7.92796e+03
ζSS 5.38184e−07 5.38184e−07 5.38184e−07
ξSS 1.49937e−05 1.49937e−05 1.49937e−05
µSS 4.88167e+03 5.11622e+03 7.87452e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 4.48874e−07 3.70856e−07 4.28984e−07
ξKO 1.30985e−05 1.00166e−05 1.11874e−05
µKO 2.16739e+03 2.41412e+03 3.87616e+03
ζSS 2.77282e−07 2.77282e−07 2.77282e−07
ξSS 7.37165e−06 7.37165e−06 7.37165e−06
µSS 2.22765e+03 2.48094e+03 3.88160e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 2.24425e−07 1.84840e−07 2.20847e−07
ξKO 6.05594e−06 4.74009e−06 5.64898e−06
µKO 1.07626e+03 1.22648e+03 1.88507e+03
ζSS 1.41387e−07 1.41387e−07 1.41387e−07
ξSS 3.57894e−06 3.57894e−06 3.57894e−06
µSS 1.10415e+03 1.23574e+03 1.89549e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 1.09850e−07 9.18162e−08 1.07342e−07
ξKO 2.85334e−06 2.34713e−06 2.77365e−06
µKO 5.26150e+02 6.06441e+02 9.73869e+02
ζSS 6.86967e−08 6.86967e−08 6.86967e−08
ξSS 1.77412e−06 1.77412e−06 1.77412e−06
µSS 5.33328e+02 6.09121e+02 9.80136e+02
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Table A.25: Average of the estimates for the Uniform distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 4.99528e−03 4.98690e−03 4.99804e−03
ξKO 5.21599e−02 5.11936e−02 5.04010e−02
µKO 7.80580e+02 9.98058e+02 1.21941e+03
ζSS 4.97279e−03 4.97279e−03 4.97279e−03
ξSS 5.08056e−02 5.08056e−02 5.08056e−02
µSS 7.87584e+02 1.00309e+03 1.20270e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 5.00743e−03 4.99720e−03 4.98806e−03
ξKO 5.10182e−02 5.06736e−02 5.02460e−02
µKO 7.68041e+02 1.00123e+03 1.23321e+03
ζSS 4.98788e−03 4.98788e−03 4.98788e−03
ξSS 5.04004e−02 5.04004e−02 5.04004e−02
µSS 7.69367e+02 1.00433e+03 1.22583e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 5.01536e−03 4.99352e−03 4.98459e−03
ξKO 5.04902e−02 5.04046e−02 5.01866e−02
µKO 7.59175e+02 1.00049e+03 1.24106e+03
ζSS 4.98817e−03 4.98817e−03 4.98817e−03
ξSS 5.02547e−02 5.02547e−02 5.02547e−02
µSS 7.59858e+02 1.00192e+03 1.23718e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 5.00717e−03 4.99225e−03 4.99114e−03
ξKO 5.01969e−02 5.01723e−02 5.00884e−02
µKO 7.54006e+02 9.99736e+02 1.24541e+03
ζSS 4.99100e−03 4.99100e−03 4.99100e−03
ξSS 5.01119e−02 5.01119e−02 5.01119e−02
µSS 7.53992e+02 1.00048e+03 1.24352e+03
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Table A.26: Estimator variance for the Uniform distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 2.45644e−06 1.70227e−06 9.96379e−07
ξKO 8.95051e−05 5.22566e−05 2.99533e−05
µKO 1.04264e+04 1.31866e+04 1.05756e+04
ζSS 1.04829e−06 1.04829e−06 1.04829e−06
ξSS 3.11124e−05 3.11124e−05 3.11124e−05
µSS 1.19388e+04 1.40883e+04 1.10196e+04

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 1.40011e−06 9.74395e−07 5.00570e−07
ξKO 4.13100e−05 2.72343e−05 1.35276e−05
µKO 5.71713e+03 7.29635e+03 5.65830e+03
ζSS 5.43297e−07 5.43297e−07 5.43297e−07
ξSS 1.47381e−05 1.47381e−05 1.47381e−05
µSS 6.10336e+03 7.59097e+03 5.65789e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 7.64212e−07 5.49406e−07 2.70423e−07
ξKO 2.03701e−05 1.45518e−05 6.99519e−06
µKO 2.91523e+03 3.78314e+03 2.88926e+03
ζSS 2.94354e−07 2.94354e−07 2.94354e−07
ξSS 7.71003e−06 7.71003e−06 7.71003e−06
µSS 3.02782e+03 3.84593e+03 2.88691e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 3.82921e−07 2.85247e−07 1.37649e−07
ξKO 9.85646e−06 7.35317e−06 3.55402e−06
µKO 1.47906e+03 1.97404e+03 1.49499e+03
ζSS 1.50225e−07 1.50225e−07 1.50225e−07
ξSS 3.88709e−06 3.88709e−06 3.88709e−06
µSS 1.51472e+03 2.00325e+03 1.50855e+03
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Table A.27: Squared bias for the Uniform distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 2.22795e−11 1.71622e−10 3.85714e−12
ξKO 4.66499e−06 1.42476e−06 1.60788e−07
µKO 9.35162e+02 3.77164e+00 9.35630e+02
ζSS 7.40521e−10 7.40521e−10 7.40521e−10
ξSS 6.48926e−07 6.48926e−07 6.48926e−07
µSS 1.41255e+03 9.56585e+00 2.23723e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 5.51320e−11 7.82300e−12 1.42536e−10
ξKO 1.03671e−06 4.53729e−07 6.05028e−08
µKO 3.25489e+02 1.52136e+00 2.82057e+02
ζSS 1.46884e−10 1.46884e−10 1.46884e−10
ξSS 1.60329e−07 1.60329e−07 1.60329e−07
µSS 3.75089e+02 1.87608e+01 5.84414e+02

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 2.35966e−10 4.20536e−11 2.37563e−10
ξKO 2.40337e−07 1.63691e−07 3.48079e−08
µKO 8.41875e+01 2.40270e−01 7.99911e+01
ζSS 1.40028e−10 1.40028e−10 1.40028e−10
ξSS 6.48765e−08 6.48765e−08 6.48765e−08
µSS 9.71778e+01 3.70475e+00 1.64274e+02

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 5.14321e−11 5.99952e−11 7.85246e−11
ξKO 3.87680e−08 2.96732e−08 7.80704e−09
µKO 1.60480e+01 6.97092e−02 2.10804e+01
ζSS 8.10437e−11 8.10437e−11 8.10437e−11
ξSS 1.25281e−08 1.25281e−08 1.25281e−08
µSS 1.59395e+01 2.27139e−01 4.20455e+01
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Table A.28: Mean squared error for the Uniform distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 2.45646e−06 1.70244e−06 9.96383e−07
ξKO 9.41700e−05 5.36813e−05 3.01141e−05
µKO 1.13615e+04 1.31903e+04 1.15112e+04
ζSS 1.04903e−06 1.04903e−06 1.04903e−06
ξSS 3.17614e−05 3.17614e−05 3.17614e−05
µSS 1.33513e+04 1.40979e+04 1.32568e+04

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 1.40017e−06 9.74403e−07 5.00712e−07
ξKO 4.23467e−05 2.76880e−05 1.35881e−05
µKO 6.04262e+03 7.29787e+03 5.94036e+03
ζSS 5.43443e−07 5.43443e−07 5.43443e−07
ξSS 1.48985e−05 1.48985e−05 1.48985e−05
µSS 6.47844e+03 7.60973e+03 6.24231e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 7.64448e−07 5.49448e−07 2.70661e−07
ξKO 2.06105e−05 1.47155e−05 7.02999e−06
µKO 2.99942e+03 3.78339e+03 2.96926e+03
ζSS 2.94495e−07 2.94495e−07 2.94495e−07
ξSS 7.77490e−06 7.77490e−06 7.77490e−06
µSS 3.12500e+03 3.84964e+03 3.05119e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 3.82972e−07 2.85307e−07 1.37728e−07
ξKO 9.89523e−06 7.38284e−06 3.56183e−06
µKO 1.49511e+03 1.97411e+03 1.51607e+03
ζSS 1.50306e−07 1.50306e−07 1.50306e−07
ξSS 3.89961e−06 3.89961e−06 3.89961e−06
µSS 1.53066e+03 2.00348e+03 1.55060e+03
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Table A.29: Average of the estimates for the Kumaraswamy-Gamma distri-
bution

n = 25 τ = 25% τ = 50% τ = 75%

ζKO 4.96110e−03 5.00901e−03 5.05037e−03
ξKO 5.07817e−02 5.02272e−02 4.98564e−02
µKO 8.87874e+02 9.93806e+02 1.10715e+03
ζSS 5.01025e−03 5.01025e−03 5.01025e−03
ξSS 5.01390e−02 5.01390e−02 5.01390e−02
µSS 8.93971e+02 9.94001e+02 1.09849e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 4.97924e−03 5.00168e−03 5.01717e−03
ξKO 5.03527e−02 5.01008e−02 4.99524e−02
µKO 8.85682e+02 9.93247e+02 1.10735e+03
ζSS 4.99724e−03 4.99724e−03 4.99724e−03
ξSS 5.00881e−02 5.00881e−02 5.00881e−02
µSS 8.88160e+02 9.93763e+02 1.10391e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 4.99879e−03 5.00532e−03 5.00788e−03
ξKO 5.01432e−02 5.00415e−02 4.99938e−02
µKO 8.84305e+02 9.92273e+02 1.10783e+03
ζSS 5.00284e−03 5.00284e−03 5.00284e−03
ξSS 5.00374e−02 5.00374e−02 5.00374e−02
µSS 8.85541e+02 9.92401e+02 1.10600e+03

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 4.99891e−03 5.00063e−03 5.00442e−03
ξKO 5.00557e−02 5.00175e−02 4.99869e−02
µKO 8.83428e+02 9.92206e+02 1.10798e+03
ζSS 5.00180e−03 5.00180e−03 5.00180e−03
ξSS 5.00054e−02 5.00054e−02 5.00054e−02
µSS 8.84138e+02 9.92283e+02 1.10711e+03
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Table A.30: Estimator variance for the Kumaraswamy-Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 5.57544e−07 3.97279e−07 4.35763e−07
ξKO 1.77517e−05 1.13604e−05 1.24814e−05
µKO 2.84035e+03 2.77734e+03 3.77231e+03
ζSS 3.01117e−07 3.01117e−07 3.01117e−07
ξSS 8.35528e−06 8.35528e−06 8.35528e−06
µSS 2.99653e+03 2.91399e+03 3.78891e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 2.74345e−07 2.07967e−07 2.23813e−07
ξKO 7.70450e−06 5.53984e−06 5.87745e−06
µKO 1.49210e+03 1.43953e+03 1.92417e+03
ζSS 1.55257e−07 1.55257e−07 1.55257e−07
ξSS 4.06722e−06 4.06722e−06 4.06722e−06
µSS 1.51189e+03 1.45471e+03 1.93209e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 1.38788e−07 1.03705e−07 1.11696e−07
ξKO 3.73343e−06 2.65311e−06 2.91592e−06
µKO 7.56036e+02 7.14678e+02 9.80137e+02
ζSS 7.82160e−08 7.82160e−08 7.82160e−08
ξSS 2.01157e−06 2.01157e−06 2.01157e−06
µSS 7.62282e+02 7.14868e+02 9.79486e+02

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 6.92620e−08 5.19675e−08 5.65703e−08
ξKO 1.75786e−06 1.31415e−06 1.44921e−06
µKO 3.58231e+02 3.44837e+02 4.75750e+02
ζSS 3.92118e−08 3.92118e−08 3.92118e−08
ξSS 9.85038e−07 9.85038e−07 9.85038e−07
µSS 3.60297e+02 3.48112e+02 4.77938e+02
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Table A.31: Squared bias for the Kumaraswamy-Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 1.51300e−09 8.12020e−11 2.53710e−09
ξKO 6.11132e−07 5.16125e−08 2.06124e−08
µKO 2.46388e+01 3.66148e+00 8.40375e−01
ζSS 1.05057e−10 1.05057e−10 1.05057e−10
ξSS 1.93073e−08 1.93073e−08 1.93073e−08
µSS 1.22361e+02 4.44580e+00 9.18680e+01

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 4.31046e−10 2.81525e−12 2.94717e−10
ξKO 1.24411e−07 1.01507e−08 2.26923e−09
µKO 7.68487e+00 1.83568e+00 5.16205e−01
ζSS 7.59535e−12 7.59535e−12 7.59535e−12
ξSS 7.76305e−09 7.76305e−09 7.76305e−09
µSS 2.75659e+01 3.50033e+00 1.73305e+01

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 1.47475e−12 2.82499e−11 6.20478e−11
ξKO 2.05085e−08 1.72634e−09 3.81479e−11
µKO 1.94745e+00 1.45174e−01 5.90828e−02
ζSS 8.06880e−12 8.06880e−12 8.06880e−12
ξSS 1.40093e−09 1.40093e−09 1.40093e−09
µSS 6.92120e+00 2.58881e−01 4.30053e+00

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 1.18048e−12 3.90810e−13 1.95515e−11
ξKO 3.10058e−09 3.07866e−10 1.70800e−10
µKO 2.68374e−01 9.81158e−02 8.60939e−03
ζSS 3.25669e−12 3.25669e−12 3.25669e−12
ξSS 2.90134e−11 2.90134e−11 2.90134e−11
µSS 1.50919e+00 1.52739e−01 9.27758e−01
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Table A.32: Mean squared error for the Kumaraswamy-Gamma distribution
n = 25 τ = 25% τ = 50% τ = 75%

ζKO 5.59057e−07 3.97360e−07 4.38300e−07
ξKO 1.83629e−05 1.14120e−05 1.25020e−05
µKO 2.86499e+03 2.78100e+03 3.77315e+03
ζSS 3.01222e−07 3.01222e−07 3.01222e−07
ξSS 8.37459e−06 8.37459e−06 8.37459e−06
µSS 3.11889e+03 2.91843e+03 3.88078e+03

n = 50 τ = 25% τ = 50% τ = 75%

ζKO 2.74776e−07 2.07970e−07 2.24108e−07
ξKO 7.82891e−06 5.54999e−06 5.87972e−06
µKO 1.49978e+03 1.44137e+03 1.92469e+03
ζSS 1.55265e−07 1.55265e−07 1.55265e−07
ξSS 4.07499e−06 4.07499e−06 4.07499e−06
µSS 1.53946e+03 1.45821e+03 1.94942e+03

n = 100 τ = 25% τ = 50% τ = 75%

ζKO 1.38790e−07 1.03734e−07 1.11758e−07
ξKO 3.75394e−06 2.65484e−06 2.91596e−06
µKO 7.57983e+02 7.14823e+02 9.80196e+02
ζSS 7.82241e−08 7.82241e−08 7.82241e−08
ξSS 2.01297e−06 2.01297e−06 2.01297e−06
µSS 7.69204e+02 7.15126e+02 9.83787e+02

n = 200 τ = 25% τ = 50% τ = 75%

ζKO 6.92631e−08 5.19679e−08 5.65898e−08
ξKO 1.76096e−06 1.31446e−06 1.44938e−06
µKO 3.58499e+02 3.44935e+02 4.75759e+02
ζSS 3.92151e−08 3.92151e−08 3.92151e−08
ξSS 9.85067e−07 9.85067e−07 9.85067e−07
µSS 3.61806e+02 3.48264e+02 4.78866e+02
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A.6.3 Tables related to the tests

Goodness of fit tests

Table A.33: Quantities related to the distribution of R̄1 test statistic
n = 25 Min. 5% Qu. 25% Qu. Median Mean 75% Qu. Max.

Ga 0.456 0.607 0.669 0.709 0.707 0.747 0.888
LN 0.497 0.650 0.704 0.741 0.738 0.774 0.912
U 0.452 0.546 0.598 0.636 0.638 0.677 0.865

KwGa 0.597 0.724 0.769 0.799 0.797 0.827 0.925
n = 50 Min. 5% Qu. 25% Qu. Median Mean 75% Qu. Max.

Ga 0.511 0.622 0.666 0.694 0.693 0.721 0.826
LN 0.576 0.668 0.704 0.727 0.727 0.751 0.853
U 0.476 0.555 0.591 0.615 0.617 0.643 0.777

KwGa 0.656 0.735 0.768 0.788 0.787 0.808 0.892
n = 100 Min. 5% Qu. 25% Qu. Median Mean 75% Qu. Max.

Ga 0.571 0.637 0.666 0.687 0.686 0.705 0.780
LN 0.621 0.679 0.705 0.722 0.722 0.739 0.819
U 0.523 0.564 0.588 0.606 0.606 0.624 0.707

KwGa 0.681 0.746 0.768 0.782 0.782 0.797 0.854
n = 200 Min. 5% Qu. 25% Qu. Median Mean 75% Qu. Max.

Ga 0.595 0.648 0.669 0.683 0.683 0.697 0.756
LN 0.650 0.691 0.708 0.720 0.720 0.732 0.782
U 0.535 0.570 0.588 0.600 0.601 0.613 0.689

KwGa 0.708 0.754 0.769 0.780 0.779 0.790 0.832
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Coverage of confidence regions

Table A.34: Coverage probabilities for testing data from a Gamma distribu-
tion

Nominal Hoeffding’s Uspensky’s Hoeffding’s Uspensky’s
level 1− α coverage coverage approx. cover. approx. cover.

n = 25 0.9000 0.9069 0.8289 0.1128 0.0763
0.9500 0.9393 0.9456 0.1438 0.1500
0.9900 0.9790 1.0000 0.2099 0.5937
0.9990 0.9934 1.0000 0.2983 0.0000

n = 50 0.9000 0.9750 0.9377 0.3657 0.2807
0.9500 0.9877 0.9888 0.4188 0.4299
0.9900 0.9969 1.0000 0.5189 0.8151
0.9990 0.9995 1.0000 0.6166 0.0000

n = 100 0.9000 0.9954 0.9863 0.6912 0.6000
0.9500 0.9981 0.9984 0.7428 0.7523
0.9900 0.9994 1.0000 0.8190 0.9628
0.9990 0.9999 1.0000 0.8775 1.0000

n = 200 0.9000 0.9999 0.9983 0.9167 0.8657
0.9500 1.0000 1.0000 0.9382 0.9424
0.9900 1.0000 1.0000 0.9668 0.9973
0.9990 1.0000 1.0000 0.9845 1.0000

Table A.35: Critical values for testing data from a Gamma distribution
Nominal Empirical Hoeffding’s Uspensky’s

level 1− α threshold threshold threshold
n = 25 0.9000 0.7893 0.7854 0.8268

0.9500 0.7443 0.7552 0.7483
0.9900 0.6487 0.6965 0.4255
0.9990 0.5461 0.6283 -0.8248

n = 50 0.9000 0.8944 0.8483 0.8775
0.9500 0.8707 0.8269 0.8220
0.9900 0.8190 0.7854 0.5938
0.9990 0.7553 0.7372 -0.2903

n = 100 0.9000 0.9490 0.8927 0.9134
0.9500 0.9361 0.8776 0.8742
0.9900 0.9060 0.8483 0.7128
0.9990 0.8652 0.8142 0.0876

n = 200 0.9000 0.9746 0.9241 0.9388
0.9500 0.9683 0.9135 0.9110
0.9900 0.9548 0.8927 0.7969
0.9990 0.9336 0.8686 0.3548
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Table A.36: Coverage probabilities for testing data from a Log-Normal dis-
tribution

Nominal Hoeffding’s Uspensky’s Hoeffding’s Uspensky’s
level 1− α coverage coverage approx. cover. approx. cover.

n = 25 0.9000 0.9083 0.8292 0.1255 0.0856
0.9500 0.9440 0.9500 0.1636 0.1715
0.9900 0.9771 1.0000 0.2393 0.6305
0.9990 0.9924 1.0000 0.3303 0.0000

n = 50 0.9000 0.9766 0.9452 0.3956 0.3093
0.9500 0.9877 0.9895 0.4560 0.4672
0.9900 0.9967 1.0000 0.5582 0.8494
0.9990 0.9996 1.0000 0.6563 0.0000

n = 100 0.9000 0.9959 0.9866 0.7255 0.6392
0.9500 0.9981 0.9983 0.7750 0.7856
0.9900 0.9997 1.0000 0.8468 0.9700
0.9990 0.9999 1.0000 0.8979 1.0000

n = 200 0.9000 0.9998 0.9978 0.9332 0.8870
0.9500 1.0000 1.0000 0.9533 0.9565
0.9900 1.0000 1.0000 0.9761 0.9977
0.9990 1.0000 1.0000 0.9872 1.0000

Table A.37: Critical values for testing data from a Log-Normal distribution
Nominal Empirical Hoeffding’s Uspensky’s

level 1− α threshold threshold threshold
n = 25 0.9000 0.7919 0.7854 0.8268

0.9500 0.7484 0.7552 0.7483
0.9900 0.6509 0.6965 0.4255
0.9990 0.5336 0.6283 -0.8248

n = 50 0.9000 0.8990 0.8483 0.8775
0.9500 0.8747 0.8269 0.8220
0.9900 0.8206 0.7854 0.5938
0.9990 0.7615 0.7372 -0.2903

n = 100 0.9000 0.9496 0.8927 0.9134
0.9500 0.9366 0.8776 0.8742
0.9900 0.9080 0.8483 0.7128
0.9990 0.8654 0.8142 0.0876

n = 200 0.9000 0.9743 0.9241 0.9388
0.9500 0.9675 0.9135 0.9110
0.9900 0.9522 0.8927 0.7969
0.9990 0.9314 0.8686 0.3548
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Table A.38: Coverage probabilities for testing data from a Uniform distribu-
tion

Nominal Hoeffding’s Uspensky’s Hoeffding’s Uspensky’s
level 1− α coverage coverage approx. cover. approx. cover.

n = 25 0.9000 0.8734 0.7857 0.0664 0.0437
0.9500 0.9172 0.9243 0.0877 0.0930
0.9900 0.9611 1.0000 0.1374 0.4555
0.9990 0.9856 1.0000 0.2033 0.0000

n = 50 0.9000 0.9584 0.9093 0.2349 0.1736
0.9500 0.9749 0.9781 0.2818 0.2917
0.9900 0.9917 0.9999 0.3703 0.7115
0.9990 0.9978 1.0000 0.4712 0.0000

n = 100 0.9000 0.9918 0.9734 0.5424 0.4526
0.9500 0.9969 0.9975 0.6037 0.6149
0.9900 0.9993 1.0000 0.6946 0.9144
0.9990 1.0000 1.0000 0.7783 1.0000

n = 200 0.9000 0.9989 0.9957 0.8462 0.7792
0.9500 0.9994 0.9995 0.8802 0.8858
0.9900 1.0000 1.0000 0.9260 0.9910
0.9990 1.0000 1.0000 0.9550 1.0000

Table A.39: Critical values for testing data drawn a Uniform distribution
Nominal Empirical Hoeffding’s Uspensky’s

level 1− α threshold threshold threshold
n = 25 0.9000 0.7701 0.7854 0.8268

0.9500 0.7163 0.7552 0.7483
0.9900 0.6088 0.6965 0.4255
0.9990 0.4920 0.6283 -0.8248

n = 50 0.9000 0.8814 0.8483 0.8775
0.9500 0.8546 0.8269 0.8220
0.9900 0.7936 0.7854 0.5938
0.9990 0.7155 0.7372 -0.2903

n = 100 0.9000 0.9426 0.8927 0.9134
0.9500 0.9277 0.8776 0.8742
0.9900 0.8965 0.8483 0.7128
0.9990 0.8634 0.8142 0.0876

n = 200 0.9000 0.9713 0.9241 0.9388
0.9500 0.9640 0.9135 0.9110
0.9900 0.9473 0.8927 0.7969
0.9990 0.9238 0.8686 0.3548
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Table A.40: Coverage probabilities for testing data from a Kumaraswamy-
Gamma distribution

Nominal Hoeffding’s Uspensky’s Hoeffding’s Uspensky’s
level 1− α coverage coverage approx. cover. approx. cover.

n = 25 0.9000 0.9037 0.8274 0.1690 0.1167
0.9500 0.9377 0.9442 0.2104 0.2222
0.9900 0.9778 0.9999 0.3005 0.7054
0.9990 0.9949 1.0000 0.4031 0.0000

n = 50 0.9000 0.9738 0.9415 0.4661 0.3718
0.9500 0.9864 0.9885 0.5307 0.5436
0.9900 0.9953 1.0000 0.6317 0.8966
0.9990 0.9995 1.0000 0.7298 0.0000

n = 100 0.9000 0.9951 0.9860 0.7843 0.6995
0.9500 0.9976 0.9981 0.8273 0.8346
0.9900 0.9994 1.0000 0.8866 0.9847
0.9990 0.9999 1.0000 0.9320 1.0000

n = 200 0.9000 0.9991 0.9973 0.9542 0.9192
0.9500 0.9998 1.0000 0.9706 0.9727
0.9900 1.0000 1.0000 0.9860 0.9997
0.9990 1.0000 1.0000 0.9938 1.0000

Table A.41: Critical values for testing data from a Kumaraswamy-Gamma
distribution

Nominal Empirical Hoeffding’s Uspensky’s
level 1− α threshold threshold threshold

n = 25 0.9000 0.7872 0.7854 0.8268
0.9500 0.7416 0.7552 0.7483
0.9900 0.6573 0.6965 0.4255
0.9990 0.5421 0.6283 -0.8248

n = 50 0.9000 0.8949 0.8483 0.8775
0.9500 0.8705 0.8269 0.8220
0.9900 0.8179 0.7854 0.5938
0.9990 0.7593 0.7372 -0.2903

n = 100 0.9000 0.9486 0.8927 0.9134
0.9500 0.9362 0.8776 0.8742
0.9900 0.9085 0.8483 0.7128
0.9990 0.8616 0.8142 0.0876

n = 200 0.9000 0.9744 0.9241 0.9388
0.9500 0.9680 0.9135 0.9110
0.9900 0.9525 0.8927 0.7969
0.9990 0.9258 0.8686 0.3548



Appendix B

Cluster Analysis Results

B.1 Clustering with random initialisation

B.1.1 Resulting clusters

(a) No transformation applied (b) Mean-variance standardisation

(c) Logarithmic standardisation (d) Range standardisation

Figure B.1: Different precipitation areas after cluster validation.
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B.1.2 Clustering validation graphs

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

42.33w
1.67b

54.06w
1.82b

107.36w
2.35b

47.73w
2.49b

35.88w
1.68b

29.34w
1.4b

60.33w
2.57b

42.24w
2.46b

21.91w
0.52b

43.58w
0.39b

59.37w
0.75b

34.88w
2.6b

19.13w
0.12b

24.32w
0.19b

56.74w
0.25b

168.88w
0.93b

63.02w
1.39b

78.22w
1.81b

91.74w
2.59b

122.31w
2.4b

31.64w
1.11b

49.05w
1.12b

44.67w
1.67b

39.86w
2.04b

33.83w
1.14b

37.33w
0.37b

63.78w
0.89b

71.92w
1.39b

26.34w
0.12b

24.27w
0.14b

25.62w
0.4b

39.21w
0.99b

42.64w
0.97b

43.96w
1.4b

61.42w
1.54b

58.96w
1.76b

50.66w
1.04b

55.64w
1.38b

38.52w
1.5b

63.32w
1.54b

35.28w
0.55b

42.22w
0.3b

35.73w
1.5b

40.37w
1.77b

30.53w
0.2b

24.9w
0.19b

33.72w
0.44b

59.17w
0.8b

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

13.33w
0.63b

18.15w
0.66b

16.3w
0.84b

55.83w
1b

17.85w
0.6b

14.51w
0.67b

21.6w
1.09b

28.51w
0.62b

16.54w
0.09b

12.9w
0.09b

24.18w
0.32b

17.63w
1.13b

9.87w
0.08b

7.9w
0.06b

12.56w
0.11b

69.11w
0.3b

21.81w
0.68b

15.34w
0.83b

54.55w
0.92b

25.84w
0.86b

14.6w
0.62b

19.99w
0.57b

17.66w
0.71b

20.01w
1.06b

15.03w
0.34b

15.77w
0.46b

26.84w
0.19b

48.47w
0.49b

9w
0.28b

9.29w
0.06b

11.16w
0.11b

26.35w
0.18b

24.21w
0.45b

23.8w
0.68b

22.84w
0.51b

26.91w
1.11b

22.79w
0.45b

23.42w
0.52b

21.13w
0.62b

29.02w
0.61b

15.71w
0.31b

19.9w
0.16b

18.3w
0.3b

16.89w
0.6b

11.76w
0.09b

11.19w
0.08b

13.89w
0.15b

26.04w
0.22b

Figure B.2: Each map shows for each neuron the between clusters distance
(b) and the clusters diameters (w). The top figure is for the non transformed
data and the bottom figure is for the mean-variance standardised data.



154

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

14.14w
0.82b

14.38w
0.94b

15.87w
0.71b

13.56w
0.82b

13.21w
0.26b

14.6w
0.41b

14.01w
0.49b

15.96w
0.59b

18.48w
0.26b

18.59w
0.21b

14.18w
0.36b

11.79w
0.29b

15.64w
0.13b

13.29w
0.17b

9.35w
0.16b

12.28w
0.2b

11.97w
0.89b

12.87w
0.88b

11.78w
0.87b

12.47w
0.97b

15.24w
0.6b

16.21w
0.62b

14.95w
0.56b

11.78w
0.77b

12.9w
0.6b

16.43w
0.26b

11.22w
0.26b

15.86w
0.32b

15.95w
0.2b

10.54w
0.16b

10.9w
0.23b

11.82w
0.17b

13.7w
0.65b

16.64w
0.6b

13.76w
0.99b

19.63w
0.67b

12.95w
0.6b

10.46w
0.61b

13.81w
0.49b

11.34w
0.74b

14.9w
0.55b

12.75w
0.29b

12.86w
0.31b

10.65w
0.67b

11.68w
0.13b

17.35w
0.2b

12.04w
0.21b

20.15w
0.23b

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

3.69w
0.17b

3.65w
0.29b

3.84w
0.15b

3.79w
0.2b

3.57w
0.24b

3.19w
0.23b

3.89w
0.3b

3.61w
0.12b

4.19w
0.15b

3.79w
0.06b

3.49w
0.07b

3.56w
0.06b

4.21w
0.03b

3.66w
0.05b

3.57w
0.05b

3.33w
0.06b

4.25w
0.16b

3.96w
0.18b

3.71w
0.18b

3.73w
0.14b

3.28w
0.1b

4.02w
0.29b

3.29w
0.26b

3.56w
0.24b

4.03w
0.1b

4.88w
0.01b

4.69w
0.1b

3.15w
0.05b

3.9w
0.06b

3.17w
0.03b

4.72w
0.01b

3.45w
0.09b

3.31w
0.16b

3.72w
0.16b

3.8w
0.16b

3.89w
0.14b

4.22w
0.26b

4.18w
0.18b

3.4w
0.18b

3.51w
0.05b

3.36w
0.16b

4.38w
0.16b

3.73w
0.11b

3.27w
0.2b

3.97w
0.04b

4.08w
0.05b

3.82w
0.08b

3.6w
0.05b

Figure B.3: Each map shows for each neuron the between clusters distance
(b) and the clusters diameters (w). The top figure is for the logarithmic
standardised data and the bottom figure is for the range standardised data.
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B.1.3 Resulting centroids
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Figure B.4: Figures for centroids pattern with time in months on the x-axis.
The top figure is for the non transformed data and the bottom figure is for
the mean-variance standardised data.



156

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index
x$

co
de

s[
j, 

]
Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index
x$

co
de

s[
j, 

]
Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index
x$

co
de

s[
j, 

]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

Figure B.5: Figures for centroids pattern with time in months on the x-axis.
The top figure is for the logarithmic standardised data and the bottom figure
is for the range standardised data.
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B.1.4 Centroid hierarchical clustering
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Figure B.6: Each figure shows the dendrogram computed with the Ward’s
linkage method. The top figure is for the non transformed data and the
bottom figure is for the mean-variance standardised data.
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Figure B.7: Each figure shows the dendrogram computed with the Ward’s
linkage method. The top figure is for the logarithmic standardised data and
the bottom figure is for the range standardised data.
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B.1.5 Merging Costs
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Figure B.8: Each figure shows the costs by merging clusters. The top figure is
for the non transformed data and the bottom figure is for the mean-variance
standardised data.
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Figure B.9: Each figure shows the costs by merging clusters. The top figure
is for the logarithmic standardised data and the bottom figure is for the range
standardised data.
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B.2 Clustering with linear initialisation

B.2.1 Resulting clusters (PCA)

(a) No transformation applied (b) Mean-variance standardisation

(c) Logarithmic standardisation (d) Range standardisation

Figure B.10: Different precipitation areas after cluster validation.



162

B.2.2 Clustering validation graphs (PCA)
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Figure B.11: Each map shows for each neuron the between clusters distance
(b) and the clusters diameters (w). The top figure is for the non transformed
data and the bottom figure is for the mean-variance standardised data.
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Figure B.12: Each map shows for each neuron the between clusters distance
(b) and the clusters diameters (w). The top figure is for the logarithmic
standardised data and the bottom figure is for the range standardised data.
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B.2.3 Resulting centroids (PCA)
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Figure B.13: Figures for centroids pattern with time in months on the x-
axis. The top figure is for the non transformed data and the bottom figure
is for the mean-variance standardised data.



Appendix B. Cluster Analysis Results 165

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index
x$

co
de

s[
j, 

]
Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index
x$

co
de

s[
j, 

]
Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index
x$

co
de

s[
j, 

]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

Index

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

x$
co

de
s[

j, 
]

Figure B.14: Figures for centroids pattern with time in months on the x-
axis. The top figure is for the logarithmic standardised data and the bottom
figure is for the range standardised data.
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B.2.4 Centroid hierarchical clustering (PCA)
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Figure B.15: Each figure shows the dendrogram computed with the Ward’s
linkage method. The top figure is for the non transformed data and the
bottom figure is for the mean-variance standardised data.
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Figure B.16: Each figure shows the dendrogram computed with the Ward’s
linkage method. The top figure is for the logarithmic standardised data and
the bottom figure is for the range standardised data.
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B.2.5 Merging Costs (PCA)
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Figure B.17: Each figure shows the costs by merging clusters. The top figure
is for the non transformed data and the bottom figure is for the mean-variance
standardised data.
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Figure B.18: Each figure shows the costs by merging clusters. The top
figure is for the logarithmic standardised data and the bottom figure is for
the range standardised data.
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B.3 Clustering with informative indexes

B.3.1 Clustering validation graphs (indexes)
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Figure B.19: The map shows for each neuron the between clusters distance
(b) and the clusters diameters (w).
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B.3.2 Resulting centroids (indexes)
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Figure B.20: Figure for centroids pattern with the first three point (from
the left to the right) the mean estiamates of β0 α1 and β1 for the group, the
mean the minimum and the maximum observed precipitation and the mean
standard deviation of the resiudals.

B.3.3 Centroid hierarchical clustering (indexes)
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Figure B.21: The figure shows the dendrogram computed with the Ward’s
linkage method.
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B.3.4 Merging Costs (indexes)
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Figure B.22: The figure shows the costs by merging clusters.

B.3.5 Resulting clusters (indexes)

Figure B.23: Different precipitation areas after cluster validation.
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Sankhyā: The Indian Journal of Statistics, 418–440.

Koenker, R., and Park, B. J. 1996. An interior point algorithm for nonlinear
quantile regression. Journal of Econometrics, 71(1), 265–283.



178 Bibliography

Kohonen, T. 1990. The self-organizing map. Proceedings of the IEEE, 78(9),
1464–1480.

Kohonen, T. 2001. Self-organizing maps. Springer Series in Information
Sciences. Springer.

Koren, I., and Feingold, G. 2011. Aerosol–cloud–precipitation system as a
predator-prey problem. Proceedings of the National Academy of Sciences,
108(30), 12227.

Laplace, P. S. 1846. Oeuvres de Laplace: Traité de mécanique céleste. Oeuvres
de Laplace. Imprimerie Royale.

Legendre, A. M. 1806. Nouvelle formule pour réduire en distances vraies les
distances apparentes de la Lune au Soleil ou à une étoile. Pages 30–54 of:
Mémoires de l’Acadêmie des sciences de l’Institut de France. Didot frères,
fils et cie.

Levenberg, K. 1944. A method for the solution of certain problems in least
squares. Quarterly of Applied Mathematics, 2, 164–168.

Levin, Z., and Cotton, W. R. 2008. Aerosol pollution impact on precipitation:
a scientific review. Springer Verlag.

Levizzani, V., Bauer, P., and Turk, F. J. 2007. Measuring precipitation from
space: EURAINSAT and the future. Advances in global change research.
Springer.

Lotka, A. J. 1910. Contribution to the theory of periodic reactions. The
Journal of Physical Chemistry, 14(3), 271–274.

Markwardt, C. B. 2009. Non-linear least-squares fitting in IDL with MPFIT.
Pages 251–254 of: Bohlender, D.˜A., Durand, D., and Dowler, P. (eds),
Astronomical Data Analysis Software and Systems XVIII. Astronomical
Society of the Pacific Conference Series, vol. 411.

Marler, R. T., and Arora, J. S. 2004. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization,
26(6), 369–395.

Marquardt, D. W. 1963. An algorithm for least-squares estimation of non-
linear parameters. Journal of the Society for Industrial and Applied Math-
ematics, 11(2), 431–441.



Bibliography 179

Matsumoto, M., and Nishimura, T. 1998. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul., 8(1), 3–30.

McKean, J. W., and Sievers, G. L. 1987. Coefficients of determination for
least absolute deviation analysis. Statistics & Probability Letters, 5(1),
49–54.

Mehrotra, S. 1992. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4), 575–601.

Meketon, M. S. 1987. Least absolute value regression. Manuscript, AT& T
Bell Laboratories, Holmdel, New Jersey.

Michaelides, S. 2008. Precipitation: advances in measurement, estimation,
and prediction. Springer.

Montgomery, D. C. 2000. Introduction to statistical quality. John Wiley. New
York.

Nagel, K., and Raschke, E. 1992. Self-organizing criticality in cloud for-
mation? Physica A: Statistical Mechanics and its Applications, 182(4),
519–531.

Osborne, M. R., and Watson, G. A. 1971. On an algorithm for discrete
nonlinear L1 approximation. The Computer Journal, 14(2), 184–188.

Osyczka, A. 1978. An approach to multicriterion optimization problems for
engineering design. Computer Methods in Applied Mechanics and Engi-
neering, 15(3), 309–333.

Pareto, V. 1906. Manuale di economia politica. Società Editrice.

Parzen, M. I., Wei, L. J., and Ying, Z. 1994. A resampling method based on
pivotal estimating functions. Biometrika, 81(2), 341–350.

Petters, M. D., and Kreidenweis, S. M. 2007. A single parameter repre-
sentation of hygroscopic growth and cloud condensation nucleus activity.
Atmospheric Chemistry and Physics, 7(8), 1961–1971.

Powell, M. J. D. 1969. A hybrid method for equations. Tech. rept. T.P. 364.
A.E.R.E. Didcot, Berkshire, England.



180 Bibliography

Rayleigh, L. 1916. LIX. On convection currents in a horizontal layer of fluid,
when the higher temperature is on the under side. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 32(192), 529–
546.

Redden, D. T., Fernández, J. R., and Allison, D. B. 2004. A simple signif-
icance test for quantile regression. Statistics in medicine, 23(16), 2587–
2597.

Riccati, J. 1758. Opere. Treviso: appresso Jacopo Giusti.

Santos, B. R., and Elian, S. N. 2012. Analysis of residuals in quantile regres-
sion: an application to income data in Brazil. Pages 723–728 of: Prooced-
ing of the 27-th International Workshop on Statistical Modelling. Charles
University in Prague.

Schnabel, S. K., and Eilers, P. H. C. 2013. Simultaneous estimation of quan-
tile curves using quantile sheets. AStA Advances in Statistical Analysis,
97(1), 77–87.

Seber, G. A. F., and Wild, C. J. 2003. Nonlinear regression. Vol. 503.
LibreDigital.

Stevens, B., and Feingold, G. 2009. Untangling aerosol effects on clouds and
precipitation in a buffered system. Nature, 461(7264), 607–613.

Tang, C., and Bak, P. 1988. Mean field theory of self-organized critical
phenomena. Journal of Statistical Physics, 51(5-6), 797–802.

Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 267–288.

Uspensky, J. V. 1937. Introduction to mathematical probability. McGraw-Hill
Book Company, Inc.

Volterra, V. 1927. Variazioni e fluttuazioni del numero d’individui in specie
animali conviventi. C. Ferrari.

Wagner, H. M. 1959. Linear programming techniques for regression analysis.
Journal of the American Statistical Association, 206–212.

Wilcox, R. R. 2008. Quantile regression: a simplified approach to a goodness-
of-fit test. Journal of Data Science, 6, 547–556.



Bibliography 181

Wu, Y., and Liu, Y. 2009. Stepwise multiple quantile regression estimation
using non-crossing constraints. Statistics and Its Interface, 2, 299–310.

Yu, K., and Zhang, J. 2005. A three-parameter asymmetric Laplace dis-
tribution and its extension. Communications in Statistics—Theory and
Methods, 34(9-10), 1867–1879.

Zeleny, M. 1973. Compromise programming. Multiple Criteria decision Mak-
ing, 262–301.

Zou, H., and Yuan, M. 2008. Regularized simultaneous model selection in
multiple quantiles regression. Computational Statistics & Data Analysis,
52(12), 5296–5304.



182 Bibliography



Luca Sartore
CURRICULUM VITAE

Personal Details

Date of Birth: February 18, 1985
Place of Birth: Cittadella (PD), Italy
Nationality: Italian

Contact Information

University of Padova
Department of Statistics
via Cesare Battisti, 241-243
35121 Padova. Italy.

Tel. +39 049 827 4111
e-mail: sartore@stat.unipd.it

Current Position

Since January 2011; (expected completion: January 2014)
PhD Student in Statistical Sciences, University of Padova.
Thesis title: Quantile Regression and Bass Models in Hydrology
Supervisor: Prof. Renato Guseo
Co-supervisor: Dr. Claudia Furlan.

Research interests

• High performance computational statistics
• Spatiotemporal statistics
• Regression methods and multivariate statistics
• Signal processing

Education

September 2008 – July 2010
Master (laurea specialistica/magistrale) degree in Statistics for Business Management.
University Ca’ Foscari of Venice, Faculty of Economy
Title of dissertation: “Geostatistical models for 3-D data”
Supervisor: Prof. Carlo Gaetan
Final mark: 110/110 with honors

September 2004 – April 2008
Bachelor degree (laurea triennale) in Statistics and Computer Science for Business Man-
agement.
University Ca’ Foscari of Venice, Faculty of Economy
Title of dissertation: “Verosimiglianza composita per dati geostatistici: metodi di stima ed un’applicazione”
Supervisor: Prof. Carlo Gaetan
Final mark: 108/110.



Work experience

August 2007 – October 2007
Pegaso IT Ltd.
Software Programmer (training).

Awards and Scholarship

2011
PhD scholarship (University of Padua).

Computer skills

• Operative system: Linux, Windows, OSX
• Programming: R, C, Qt, Visual Basic .Net, VBScripts, JavaScripts, Fortran
• Markup Languages: LATEX, HTML, XML, CSS, ASP
• Information Systems: Oracle Database, SQL, MySQL, GIS
• Other skills: Parallel computing (OpenMP and CUDA)

Language skills

Venetian / Italian: native; English: fluent (written/spoken); German: intermediate (written/spoken).

Publications

Articles in journals
Sartore L. (2013). spMC: modelling spatial random fields with continuous lag Markov chains. The
R Journal Vol. 5 No. 2, 16–28.

Conference presentations

Sartore, L. (2013). Constrained simultaneous nonlinear quantile regression. (contributed oral pre-
sentation) DAGStat 2013, Freiburg, Germany, March 18-22.

Other Interests

Organ music (playing and composing)
Choral music (http://www2.cpdl.org/wiki/index.php/Luca Sartore)



References

Prof. Renato Guseo
Department of Statistical Science
University of Padua
Via C. Battisti, 241
35121 Padova (ITALY)
Phone: +39 049 827 4146
e-mail: renato.guseo@unipd.it

Prof. Paolo Fabbri
Department of Geosciences
University of Padua
Via Gradenigo, 6
35121 Padova (ITALY)
Phone: +39 049 827 9124
e-mail: paolo.fabbri@unipd.it

Prof. Carlo Gaetan
Department of Environmental Sciences, Infor-
matics and Statistics
Ca’ Foscari University of Venice
San Giobbe, Cannaregio 873
30121 Venezia (ITALY)
Phone: +39 041 234 7437
e-mail: gaetan@unive.it


	Introduction
	Overview
	Summary and main contributions of the thesis

	A simplified regression model for rainfall data
	The hydrological cycle
	The aerosol-cloud-precipitation system
	The simplification based on the diffusion of the innovation
	Conclusion

	Constrained quantile regression
	Literature review of estimation methods
	Separate quantile regressions
	Restricted quantile regression
	Rearrangement quantile estimator
	Multi-objective quantile estimators

	New estimation procedures
	Simultaneous linear quantile regression
	Simultaneous nonlinear quantile regression
	Semi-parametric quantile sheets

	Testing multi-objective quantile estimators
	Goodness of fit tests
	Analyses of residuals
	Confidence regions and intervals

	Conclusion

	Preliminary Data Analysis
	Precipitation data
	General Information
	Data adjustments

	Methodology
	Data transformations
	Kohonen networks (self-organising maps)
	Cluster validation

	Application
	Conclusion

	Least squares regression analyses
	Data reduction
	The Bass model
	The generalised Bass model
	Conclusion

	Quantile regression analyses
	The Bass model
	The generalised Bass model
	Conclusion

	Conclusions
	Notes on quantile regression
	Proof of the homogeneity property
	Proof of quantile level identification
	Proofs of critical values consistency
	Simulation studies
	A linear regression model
	A nonlinear regression model

	Notes on the simulation accuracy
	Simulation results 
	Tables related to the linear regression
	Tables related to the non linear regression
	Tables related to the tests


	Cluster Analysis Results
	Clustering with random initialisation
	Resulting clusters
	Clustering validation graphs
	Resulting centroids
	Centroid hierarchical clustering
	Merging Costs

	Clustering with linear initialisation
	Resulting clusters (PCA)
	Clustering validation graphs (PCA)
	Resulting centroids (PCA)
	Centroid hierarchical clustering (PCA)
	Merging Costs (PCA)

	Clustering with informative indexes
	Clustering validation graphs (indexes)
	Resulting centroids (indexes)
	Centroid hierarchical clustering (indexes)
	Merging Costs (indexes)
	Resulting clusters (indexes)


	Bibliography
	Curriculum Vitae

