
RESEARCH ARTICLE

Statistical potentials from the Gaussian

scaling behaviour of chain fragments buried

within protein globules

Stefano Zamuner1, Flavio Seno2,3, Antonio TrovatoID
2,3*
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Abstract

Knowledge-based approaches use the statistics collected from protein data-bank structures

to estimate effective interaction potentials between amino acid pairs. Empirical relations are

typically employed that are based on the crucial choice of a reference state associated to

the null interaction case. Despite their significant effectiveness, the physical interpretation of

knowledge-based potentials has been repeatedly questioned, with no consensus on the

choice of the reference state. Here we use the fact that the Flory theorem, originally derived

for chains in a dense polymer melt, holds also for chain fragments within the core of globular

proteins, if the average over buried fragments collected from different non-redundant native

structures is considered. After verifying that the ensuing Gaussian statistics, a hallmark of

effectively non-interacting polymer chains, holds for a wide range of fragment lengths,

although with significant deviations at short spatial scales, we use it to define a ‘bona fide’

reference state. Notably, despite the latter does depend on fragment length, deviations from

it do not. This allows to estimate an effective interaction potential which is not biased by the

presence of correlations due to the connectivity of the protein chain. We show how different

sequence-independent effective statistical potentials can be derived using this approach by

coarse-graining the protein representation at varying levels. The possibility of defining

sequence-dependent potentials is explored.

Introduction

Proteins are linear flexible hetero-polymers, made up of 20 different natural amino-acid species

[1]. Most natural proteins in solution have roughly compact shapes, and thus are usually referred

to as globular proteins. The fundamental fact about globular protein sequences is their ability to

attain a compact native three-dimensional folded conformation in physiological conditions [2].

The biological functionality of proteins is intimately related to their native structures and to

the dynamical properties encoded in them [3]. Quantitative theoretical modeling requires in

principle a detailed description at atomic level, for example to take accurately into account the

subtle yet dramatic effects that can be brought about by a single residue mutation.
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On the other hand, processes such as protein self-assembly and aggregation, involve time

scales and system sizes which are currently unattainable by atomistic models [4]. Several

schemes were thus developed to coarse-grain the representation of protein structures, and of

the physical interactions between the representing entities, at a low resolution level [5].

The surprising success of coarse-graining approaches in computational protein science is

related to the presence of robust qualitative emergent properties in protein systems, amenable

to prediction by low resolution models [6]. For example, the native topology both shapes equi-

librium fluctuations and determines folding and unfolding pathways, allowing for successful

predictions by structure-based coarse-grained models [7].

An even more remarkable example of successful coarse-graining is the use of statistical

potentials, as both effective interaction potentials to be used in folding simulations [8–10], and

scoring functions employed in different contexts such as protein structure and function pre-

diction [11], “de novo” protein design [12], model quality assessment [13, 14], aggregation

propensity prediction [15–17], protein-protein interactions [18–22], prediction of binding

affinities and of stability changes upon mutations [23–26], and many others. Statistical “knowl-

edge-based” potentials can be introduced at different coarse-graining levels, including atomic

resolution (in this case, the coarse-graining is due to solvent molecules being integrated out).

They renounce a physics-based description of the effective interactions between representing

entities; interactions are instead parametrized using the statistics empirically collected from

the Protein Data Bank (PDB) [27].

In paradigmatic examples [28, 29], “contact statistical potentials” evaluate the effective

interaction between a pair of amino acid residues based on the observed frequency of contacts

between that pair in PDB structures. This approach can be generalized to many different

observables, such as solvent accessibility, backbone dihedrals, orientation-dependent or many

body interactions [30–34]. The conversion of empirical frequencies into an energy function is

normally done employing Boltzmann inversion, as originally suggested by Sippl for pairwise

“distance dependent potentials”, in analogy to the pairwise potentials of mean force [35]. Com-

plementary potentials are typically estimated separately, to be then combined together, for

interactions either short-range or long-range along the chain [36], with the aim of correctly

capturing local structure elements. In state-of-the-art approaches several different statistical

potential terms, each related to a different observable, can be combined together, optimizing

the relative weights by means of supervised learning techniques [14, 37–40].

A crucial element in the definition of statistical potentials via Boltzmann inversion is the choice

of a “reference state”. The probability distribution observed in the latter is used to normalize the

statistics collected over the PDB structures for a given residue pair. The reference state should

then be taken as an ensemble of protein-like structures where no specific direct interactions

between amino acids are present. A simple choice is to consider the ensemble of all residue pairs

from the PDB structures [41], but still many different recipes are possible to define the reference

state [42–45]. Beside the uncertainty in the reference state definition, the very use of Boltzmann

inversion for the statistics collected from different PDB structures was extensively debated [46,

47], in particular with reference to chain connectivity. The Boltzmann inversion has been justified

by using information theory arguments within a Bayesian approach [48]. In this context, statisti-

cal potentials are considered as statistical preferences that can be obtained “a posteriori” from

empirical data, whereas the reference state contains the “a priori” information about the system.

In this work, we propose to use a reference state for deriving pairwise distance dependent

potentials based on purely polymer physics considerations. Our strategy can be used at differ-

ent levels of coarse-graining.

In particular, we use the fact that a data set of protein “fragments”, when collected and

properly filtered from PDB structures, exhibit Gaussian statistics, the one expected for ideal
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chains in the absence of any interaction. This property had been already uncovered by Banavar

et al. [49], who found that fragments buried within globular proteins obeys on average the

same Flory theorem [50, 51] derived for polymer melts, that is concentrated solutions of differ-

ent chains. The same theorem has been shown to hold for fragments buried in the interior of

single compact polymer chains, when selected with appropriate constraints [52]. The Flory

theorem states that, for polymer chains from within a dense polymer melt, excluded volume

repulsion is effectively canceled by solvent-mediated attractive forces between the monomers.

Therefore the chains exhibit statistics which are characteristic of random walk behavior.

The first purpose of this work is to confirm the existence of a Flory regime for buried pro-

tein fragments when a much larger data set of proteins is considered. We then take advantage

of this fact by using the ensuing Gaussian reference state in order to obtain an unbiased esti-

mation of a distance dependent effective interaction potential between aminoacids [41, 48, 53].

The statistical potentials estimated with this strategy could be either sequence independent or

sequence dependent.

In the first part of the paper, by analyzing a data set of 7793 non-redundant globular pro-

teins, we confirm that the Flory theorem holds for compact native structures with a good

degree of accuracy. This is achieved by showing that the properly rescaled distributions of the

fragment end-to-end distances collapse to the same Maxwell distribution when fragment

lengths larger than mmin = 70 and smaller than N2/3, where N is the length of the protein chain,

are considered. The upper cut-off is introduced in order to select buried fragments [52]. The

lower one is instead necessary to achieve a uniform Kuhn length. Our results extend the find-

ings of Ref. [49], showing that the Gaussian scaling holds for fragments in a larger range of

sizes, provided a non uniform Kuhn length is considered.

As a consequence of the validity of the Flory theorem, we can assume that within protein

globules the excluded volume repulsion is on average effectively canceled by solvent-mediated

attractive forces between the monomers. We therefore interpret systematic deviations from

the expected Gaussian behavior, which are visible in the short spatial range regime as an effec-

tive intra-molecular interaction, that can be then considered unbiased by the spurious correla-

tions due in general to the chain constraint, to local conformational preferences, or to interior-

exterior partitioning effects.

Therefore, we devoted the second part of this manuscript to exploit the feasibility of this

idea, by estimating a sequence-independent effective potential based on the statistics observed

for buried protein fragments at different coarse-graining levels: CA-based, all heavy atoms, all

atoms (including hydrogen atoms). The estimated potentials consistently change in the three

cases. In particular, a power law repulsive term is present at short length whereas the potential

vanishes beyond�20 Å in all cases. Well defined minima with negative energy are present for

the atomistic resolutions for distances compatible with the sum of Van der Waals radii or with

hydrogen bond geometry.

If the analysis is repeated by classifying the protein segments according to the amino-acid

types which occupy the first and the last position along the fragment, we can have a direct mea-

sure of the effective interactions between amino-acid types, as a function of the distance. This

method could be of great interest for a wide range of applications in protein physics.

Materials and methods

Dataset

Our database of reference is Top8000 [54], which contains a set of 7957 high-resolution pro-

tein structures. The dataset has been filtered by excluding those structures of length N that do

not exhibit a globular shape, i.e. whose gyration radius Rg(N) does not scale as N1
3. In order to
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achieve this we fit experimental data with the relation RgðNÞ ¼ aN1
3 and discard all the struc-

tures that fall more than three standard deviations apart from the fitted curve. 164 structures

have been discarded in this phase.

The tangent vector to each residue has been computed as the difference between the coordi-

nates of the subsequent and the previous residues along the chain. We reported the average

cosine of the angle between the tangent vectors of pairs of residues as a function of their sepa-

ration m along the chain. As the tangent-tangent correlation goes to zero when m* 30, we

decided to exclude from our analysis chain fragments shorter than 30 amino acids.

We therefore split all the protein chains in fragments of length 30 � m � N2
3 and grouped

them by length. All other fragments have been discarded.

Reference and empirical distributions

We measured the end-to-end distance R of all fragments of given length m.

We fitted the rescaled data at fixed m with a Maxwell distribution

MmðR; bÞ ¼
4pR2

2

3
pb2 m

� �3

2

exp �
3R2

2b2 m

� �

; ð1Þ

with a single free parameter b (the scale, a.k.a. Kuhn’s length) by using the scipy.stats python

package and a maximum likelihood fit.

The empirical distribution EmðR;wÞ has been obtained by employing a Kernel Density Esti-

mation (KDE) with a Gaussian kernel:

EmðR;wÞ ¼
1

M

X

s

1
ffiffiffiffiffiffiffiffiffi
2pw
p exp

ðR � rsÞ
2

2 w2

� �

: ð2Þ

The sum is extended over all M values rσ in the dataset of end-to-end distances of fragments

of length m. We used cross validation in order to establish the optimal kernel bandwidth w for

fragment lengths m 2 {42, 48, 60, 64, 66, 72, 78, 84, 92}. We divided every set of end-to-end

distances of fixed fragment length in five groups: an empirical distribution was computed

using the data of four groups. The width of the Gaussian kernel was therefore adjusted in

order to maximize the likelihood that the data from the fifth group was obtained from the

same empirical distribution.

In order to estimate the optimal bandwidth for all other datasets, we assumed the relation w
= ans between the bandwidth w and the number of points n in the dataset. We fitted the

parameters a and s by minimizing the RMSD with the cross-validated bandwidths (see S1 Fig

in S1 File).

Potential

For every sequence separation m, we estimated the potential as a potential of mean force

depending on the distance R between two residues, using the ensemble of buried fragments

selected as described in the Dataset subsection. Following a seminal approach [35], we assume

R to be distributed according to the Boltzmann distribution

Pm Rð Þ ¼
1

Zm
exp �

FmðRÞ
kBT

� �

; ð3Þ

where κB is the Boltzmann constant, T is the temperature at which thermodynamic equilib-

rium is assumed to hold, and Zm is the canonical partition function. In what follows, we
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assume κB T = 1 for simplicity. One should keep in mind that Fm(R) is in fact an effective free

energy, since it is obtained by coarse-graining other degrees of freedom, including for example

the ones associated to solvent molecules. Boltzmann inversion than implies

FmðRÞ ¼ � lnPmðRÞ � lnZm : ð4Þ

The potential of mean force is than defined as a free energy difference ΔFm(R) with respect

to the ideal reference state, characterized by the Maxwell distribution MmðR; bÞ and the parti-

tion function Z�m, with the scale b determined as described in the previous subsection:

DFm Rð Þ ¼ � ln
PmðRÞ

MmðR; bÞ
� ln

Zm

Z�m
: ð5Þ

The term with the (unknown) partition function ratio can be neglected since it does not

depend on R, and as a proxy of the Boltzmann distribution Pm(R) we use the empirical distri-

bution EmðR;wÞ, evaluated using KDE, with bandwidth w optimized as described in the previ-

ous subsection. This leads finally to our estimation for the statistical potential:

VmðRjb;wÞ ¼ � ln
EmðR;wÞ
MmðR; bÞ

� �

: ð6Þ

Note that Eq (6) defines an average pairwise residue-residue sequence-independent poten-

tial. Both the empirical and the Maxwell distributions entering Eq (6) are obtained based on

the statistics of all fragments in our filtered dataset. The pairwise decomposition of the total

score for a whole protein,

Vtot ¼
X

i<j

Vjj� ij Rijjb;w
� �

¼ � ln
Q

ijE jj� ijðRij;wÞ
Q

ijMjj� ijðRij; bÞ

 !

; ð7Þ

is in general an approximation since it neglects correlations between different residue pairs.

The major point in our analysis is related to the absence of effective interactions that is actually

realized in the reference state. This implies that the pairwise decomposition is exact for the ref-

erence state (the denominator in the r.h.s of Eq (7)).

As we show that the potential does not depend on m, we finally computed V�(R) as the

average over all possible fragment lengths of Vm(R|b, w) in the Flory regime, 70�m� 90.

Note that both parameters b and w depend on fragment length m.

We fitted the short range repulsive part of the potential by minimizing the root mean

square deviation between the logarithm of V�(R) and a linear function.

Sequence-dependent analysis

We repeated the previous analysis while filtering the fragments depending on the amino acids

types at their ends, so that both the empirical distribution EmðR;wÞ and the Maxwell distribu-

tion MmðR; bÞ are obtained from such restricted fragment sets. To increase available statistics,

the average V ðRÞ of Vm(R|b, w) is now taken over all fragment lengths 30�m� 90 with a

Gaussian reference state.

Results

In order to assess the hypothesis that the Flory theorem holds for fragments buried in the inte-

rior of globular proteins, we analyzed a large data-set of 7793 globular proteins. This protein

ensemble was obtained by refining the TOP8000 data-bank [54] after removal of the non glob-

ular structures as explained in Methods. In data-set pruning, each protein is represented as a
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polymer whose monomers are placed in the Cα atomic position of the N amino-acids. The log-

arithmic plot of the radius of gyration of these polymers versus their length N is shown in S2

Fig in S1 File for the full TOP8000 data-bank. The proteins in the final pruned dataset

(highlighted in S2 Fig in S1 File) have been selected in such a way that their radius of gyration

scales as N1/3, as expected for globular proteins.

Long enough buried protein fragments follow Gaussian statistics: The

thermal exponent

To investigate the validity of the Flory theorem, we analyzed an ensemble of protein fragments

of different lengths, extracted from the pruned database. For any given chain of length N we

considered only fragments with length m< N2/3 so that they belong to a part of the protein

which is likely to be far from globule boundaries and thus buried within the globule interior

[52]. Fig 1a shows in a logarithmic scale the behavior of the average end-to-end distance R of

such fragments as a function of their length m, when the end-to-end distance is evaluated

using Cα backbone atoms.

The Flory regime requires a scaling law R*mν with n ¼ 1

2
. Our data for CA end-to-end

distances show that such a regime is valid only for the longer fragments, approximately when

m> 70. This can be explained by the presence of secondary structures that introduce a strong

bias in the scaling behavior for short fragments. This behavior can be understood by looking at

S3 Fig in S1 File which shows the average tangent-tangent correlation as a function of sequence

Fig 1. Gaussian statistics for buried fragments: The thermal exponent and the Kuhn length. (a) Log-log plot of the average CA end-to-end distance

R of protein fragments versus fragment length m. The plot was obtained by averaging over all fragments of length m from the data set selected as shown

in S2 Fig in S1 File. For any given m, R was determined as the average over all fragments of that length in proteins whose overall lengths are larger than

m3
2, in order to consider only fragments likely to be buried in the globule interior [52]. The error bars are of the order of the size of the symbols. The

Flory regime, e.g. R � m1
2 is reached when m� 70. For m> 90 the statistical analysis deteriorates due to the fast decrease of available data with

increasing m. (b) The Kuhn length b, obtained by maximizing the likelihood to Maxwellian distributions (1) of the empirical CA end-to-end distance

data, plotted versus the length m of the protein fragments considered in the statistical analysis. The error bars were estimated based on the Fisher

information evaluated at b(m) (see main text). The values of b decrease monotonically and reach a plateau in the region 70�m� 90. The plateau

uniform value is estimated to be b� = 3.67±0.01 Å. Only in this region all the rescaled empirical distributions collapse (see Fig 3), thereby showing the

existence of the Flory regime. The number of fragments in the ensembles which are analyzed decreases with m as well. For m> 90 the ensemble

population becomes too small to allow good estimations. Figure drawn with python package matplotlib, version 3.4.1. URL https://pypi.org/project/

matplotlib/.

https://doi.org/10.1371/journal.pone.0254969.g001
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separation along the chain. For short sequence separations the direction of the chain is highly

correlated reflecting the existence of short, effectively one-dimensional, rigid motifs such as α-

helices and β-strands. On the other hand, the sharp anti-correlation minimum at m = 13

reveals a bending propensity in the opposite direction. This finds its counterpart in the almost

flat behaviour of the average end-to-end distance in Fig 1a for m≳ 30. This picture is con-

firmed by noticing that the value at which the correlation function reaches again zero

(m* 25) is almost twice as much as the value at the anti-correlation minimum, suggesting

that for m* 25 protein chains are expected to loop back on themselves significantly more

than for other values of sequence separation. In fact, the above observation is consistent with

the peak described in [55] for the probability of loop formation. This analysis suggests that the

Flory regime can not be observed for short fragments because of the effects induced by second-

ary structures.

Long enough buried protein fragments follow Gaussian statistics:

Maxwellian distributions for end-to-end distances

In order to investigate in more detail the existence of a Flory regime we studied whether the

end-to-end distance R for fragments of length m follows the Maxwell distribution described by

MmðR; bÞ ¼
4pR2

2

3
pb2m

� �3

2

exp �
3R2

2b2m

� �

; ð8Þ

where the scale parameter b refers to the distance between consecutive monomers in an ideal

Gaussian chain, namely the Kuhn length of the polymer. The distances between residues are

computed in three different ways: as the distance between their α-carbons, as the minimum

distance between any atom of the two residues and as the minimum distance between any

heavy atom of the residues. We will refer to these three different levels of coarse-graining as

CA (α-carbon level), HH (hydrogen atoms level) and HV (heavy atoms level) respectively. For

all three coarse-graining levels of description, we fitted the Kuhn length b of a Maxwell distri-

bution to maximize the likelihood that the empirical data have been drawn from it. This is

done separately for any given m, so that the optimized Kuhn length b(m) depends on fragment

length m. In Fig 1b we plot the optimized b as a function of m for CA end-to-end distances.

The standard deviations σb(m) associated to the maximum likelihood estimators b(m) are

shown in Fig 1b as error bars. Based on the Fisher information evaluated at b(m), they were

estimated as sbðmÞ ¼ bðmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6nðmÞ

p
, where n(m) is the number of fragments in the dataset for

a given m (see Table 1). The values of b decrease towards a plateau beginning approximately at

m = 70. For m> 90 the values of b change dramatically as a consequence of the poorer statis-

tics (see Table 1). At the plateau we estimate the m-independent Kuhn length bðmÞ ’ b� ¼
P90

m¼70
bðmÞ=21 ¼ 3:67� 0:01 �A for CA end-to-end distances. The standard deviation of b� is

estimated accordingly. Similar results are obtained for HV and HH as well, as shown in S4 Fig

in S1 File. The plateau values estimated for the Kuhn length are b� = 3.35±0.01 Å for HV and

b� = 3.27±0.01 Å for HH.

Fig 1b shows that the estimated Kuhn length is higher than in the plateau for lower values

of m. This could explain the discrepancy with the higher value (b� = 3.75 Å) obtained in [49],

as a different range of values of m was used in that work.

Empirical probability distributions are inferred by raw data using Kernel Density Estima-

tion (KDE), with kernel bandwidth estimated separately for each m by a maximum likelihood

approach through a cross-validation procedure. The whole methodology is explained in detail

in Methods.
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In Fig 2, the empirical CA end-to-end distance probability distributions for four different

fragment lengths (m = 30, 50, 70, 90) are shown together with their best Maxwellian fits. Simi-

lar plots for HV and HH end-to-end distance distributions are shown in S5 and S6 Figs in S1

File. The competing effects of increasing m and of b(m) decreasing with m are both visible in

Fig 2.

It is interesting to observe that, as shown in Fig 2, S5 and S6 Figs in S1 File, the Gaussian

behavior of the end-to-end distances is mostly preserved even in a broader range of fragment

lengths, 30�m� 90, but since b(m) is not uniform for m< 70, we cannot talk about a Flory

regime in that range. Nevertheless, the existence of a Gaussian reference state can be fruitfully

exploited to derive an effective statistical potential in the full 30�m� 90 range.

In the region with uniform Kuhn length b (70�m� 90) empirical distributions can be

collapsed by rescaling the end-to-end distances by
ffiffiffiffi
m
p

and multiplying the probability dis-

tributions by the same quantity, as shown in Fig 3 for CA. This graph vividly shows the exis-

tence for globular proteins of a range of fragment lengths, in which their statistics is well

described by Gaussian ideal chains with a uniform estimated Kuhn length, b� = 3.67 Å, close

to the average distance,’3.8 Å, found between consecutive Cα atoms in protein native struc-

tures. The value of the Kuhn length may appear surprisingly low. We can rationalize this fact

by looking at the average tangent-tangent correlation function (S3 Fig in S1 File). Since the

value of the Kuhn length is related to the integral of the latter over all sequence separations

[56], the presence of a sharp minimum at a negative correlation, implying a significant nega-

tive contribution to the integral, is at least consistent with the low value that we find for the

Kuhn length. A data collapse of similar quality can be obtained for both HV and HH, as

shown in S7 Fig in S1 File. S7 Fig in S1 File also shows that the collapsed empirical distribu-

tions are more skewed with respect to the reference Maxwell distribution in the HV and HH

cases.

Statistical potentials with a Gaussian reference state: Sequence independent

effective interaction

The Maxwell distribution (8) fits very well CA experimental data for large values of end-to-end

distance, when the full cancellation of competing interactions, e.g. attractive and excluded vol-

ume, is effectively occurring. For short distances however, as we can see from Fig 3, there are

important deviations from the ideal distribution. These are expected, since for an ideal chain

excluded volume is absent even at short range, whereas for real protein chains it is anyway

present. We then propose to use deviations from the ideal Gaussian behavior as a proxy of the

effective short range interactions between protein residues.

Table 1. Length dependent statistics of buried fragments.

fragment length number of fragments in the dataset

20 1640293

30 1352751

40 991104

50 563178

60 276421

70 120448

90 24967

Number of buried (m< N2/3) fragments in the pruned (see S2 Fig in S1 File) dataset as a function of fragment length.

https://doi.org/10.1371/journal.pone.0254969.t001
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Fig 2. Gaussian statistics for buried fragments: End-to-end distance. The CA end-to-end distance probability distributions for four different

fragment lengths, (a) m = 30, (b) m = 50, (c) m = 70, (d) m = 90, are shown together with their best fits to the Maxwell distribution (8). The parameters

b used in the plots are obtained maximizing the likelihood that the empirical data belong to the Maxwell distribution (8). The value of b decreases with

m and reaches a plateau for 70�m� 90, corresponding to the Flory regime (see Fig 1b). Figure drawn with python package matplotlib, version 3.4.1.

URL https://pypi.org/project/matplotlib/.

https://doi.org/10.1371/journal.pone.0254969.g002
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To test this hypothesis, we define through Boltzmann inversion a sequence independent

statistical potential for any given fragment length m, as minus the logarithm of the ratio

between the empirical probability density (already shown in Figs 2 and 3 for different fragment

lengths) and the reference Maxwell distribution:

VmðRjb;wÞ ¼ � ln
EmðR;wÞ
MmðR; bÞ

� �

; ð9Þ

where EmðR;wÞ is the empirical end-to-end distance distribution for fragments of length m,

Fig 3. Data collapse of end-to-end distance distributions in the Flory regime for buried fragments. The rescaled empirical probability

distributions as a function of the rescaled length R/m1/2 for 70�m� 90. All curves collapse rather well together. The reference Maxwell

distribution (8) evaluated for the plateau scale parameter b� = 3.67 Å is shown for comparison. A significant deviation appears only for small

distances and is due to the effect of excluded volume that at very short range can not disappear for real protein chains. It is worth to notice

that, despite the presence of secondary structures, the value of b is close to the average distance,’3.8 Å, found between consecutive Cα atoms

in protein native structures. Figure drawn with python package matplotlib, version 3.4.1. URL https://pypi.org/project/matplotlib/.

https://doi.org/10.1371/journal.pone.0254969.g003
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obtained with KDE using a kernel bandwidth w (see Methods for details). Eq 9 highlights the

dependence of such potential on the scale parameter b used for the reference state and on the

kernel bandwidth w used to obtain the empirical distribution. It is worth noting that both

parameters are obtained through a maximum likelihood approach.

We plot in Fig 4 the effective potentials Vm(R) in the Flory regime 70�m� 90 in which b
(m)’b� is effectively uniform, for all coarse-graining levels used in this work. Remarkably, the

curves for different fragment lengths m collapse nicely together, allowing to recover well

defined effective potentials V�(R) that we define as the average of the potentials obtained from

Eq (9) over all fragment lengths 70�m� 90 in the Flory regime (the resulting average poten-

tials are shown in S8 Fig in S1 File for all coarse-graining levels, along with the corresponding

standard deviation). Such result pinpoints the existence of a robust underlying mechanism

which is revealed by using the ratio between the empirical and the ideal reference distributions

and which can allow for a consistent estimate of amino-acids interactions. Even more remark-

ably, we observe that while the empirical end-to-end distance distributions collapse upon

rescaling (see Fig 3), deviations from the Maxwellian reference state collapse when rescaling

back to the physical distance values (see Fig 4). For example, S7 Fig in S1 File clearly shows, for

the HH and HV cases, how the position of sharp small peak at short distances, that determines

the main minimum of the statistical potential V�(R), drifts upon changing m when using

rescaled distances.

The effective statistical potentials V�(R) differ significantly depending on the coarse-grain-

ing level, as in fact expected for physics-based interactions. The potentials obtained when con-

sidering all atoms, either with (HH) or without (HV) hydrogens share in fact similar features:

a steep short range repulsive part and a series of well defined attractive minima with decreasing

depth for increasing distance (see Table 2). At large distances the potential vanishes towards

zero, although shallower minima can be still identified (see Table 2). However, in the more

coarse-grained HV case, the first minimum is partially smoothed out and the barrier separat-

ing the first two minima becomes repulsive. In the even more coarse-grained CA case, the

minima of the statistical potential get much more smoothed out and the potential becomes

repulsive for all distances.

The positions and depths of the minima of the statistical potentials for different coarse-

graining levels are reported in Table 2. Minima features are extracted using the V�(R) potential

Fig 4. Empirical knowledge-based potentials for different coarse-graining levels. Effective potential Vm(R) estimated for each 70�m� 90 in the

Flory regime using Eq (9). Remarkably, the curves obtained with this procedure do not depend on the fragment length and can therefore be interpreted

as an effective potential between the terminal fragment residues. In this case, where all fragments are considered regardless of the type of amino acids at

their ends, the potential can be interpreted as a generic sequence independent interaction between all residues. (a) CA representation. (b) HV

representation. (c) HH representation. Figure drawn with python package matplotlib, version 3.4.1. URL https://pypi.org/project/matplotlib/.

https://doi.org/10.1371/journal.pone.0254969.g004
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obtained in the Flory regime 70�m� 90. We observe that the deepest minimum in the HH case

(2.21 Å) corresponds to twice the Van der Waals radius 1.1 Å for the hydrogen atom [57], whereas

the deepest minimum in the HV case (3.54 Å) is within the distance range observed between

donor nitrogen and acceptor oxygen atoms for hydrogen bonds occurring in proteins [58].

In order to study the short distance repulsive behavior of the effective potential, more statis-

tics is needed at very short distances. To this aim, we then consider the average V ðRÞ of the sta-

tistical potentials defined by Eq (9), taken over the wider range of fragment lengths, 30�

m� 90, for which the rescaled end-to-end distance distributions are close to Maxwellians (see

Fig 2). The reference state is thus now defined with a non uniform Kuhn length b(m). The

quality of the collapse of the different Vm(R), 30�m� 90, worsens, yet is still acceptable, as

shown in S9 Fig in S1 File for all coarse-graining levels.

The sequence independent effective potential is plotted in logarithmic scale in Fig 5 for the

CA case, together with a linear regression fit for the short range region.

Table 2. Local minima features of the average effective statistical potential.

position (Å) value (κBT)

HH HV CA HH HV CA

2.21 3.54 5.81 −1.91 −1.07 0.53

6.34 7.16 10.59 −0.61 −0.46 0.03

11.01 9.35 12.03 −0.26 −0.21 0.02

14.90 11.44 14.92 −0, 13 −0.21 −0.08

15.69 15.90 19.55 −0.13 −0.12 −0.13

18.95 17.63 −0.06 −0.11

Positions and values of the minima of the average effective statistical potential V�(R) for different coarse-graining

levels.

https://doi.org/10.1371/journal.pone.0254969.t002

Fig 5. Short distance behavior of the empirical knowledge-based potential. Potential V ðRÞ for the CA case, obtained when averaging the statistical

potentials (9) over all fragment lengths 30�m� 90, shown together with the power-law fit at short distances. The exponent estimate is −5.7±0.3. (a)

log-log scale; the standard deviation is also shown. (b) linear scale with data collapse of all Vm(R) potentials for different values of sequence separation

30�m� 90. Figure drawn with python package matplotlib, version 3.4.1. URL https://pypi.org/project/matplotlib/.

https://doi.org/10.1371/journal.pone.0254969.g005
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The existence of a power law behavior seems clear. The resulting estimate for the exponent

is −5.7±0.3, which might be related to the presence of distinctive dipole-dipole interactions.

Nevertheless, we caution that the above exponent estimate may depend on the limited range of

short distances that can be probed with the available statistics. As a matter of fact, the use of a

dipole-based description for peptide groups was already successfully proposed to perform

coarse grained simulations of protein folding [59].

Statistical potentials with a Gaussian reference state: Sequence dependent

effective interactions

The analysis carried out in the previous subsection can be repeated by splitting the full data set

according to the specific amino acid types found at the end of the considered protein frag-

ments. The resulting statistical potential should be interpreted as an effective interaction

between the terminal residues. The decreased statistics, unfortunately, pushes our approach to

its very limit, even when considering the average potential V ðRÞ over all sequence separation

values 30�m� 90 and a reference state with variable b.

For completeness, we report in Fig 6 some examples of average statistical potentials V ðRÞ
derived in our approach for the CA case, involving two cysteine residues (CYS-CYS), two

small non-polar residues (ALA-ALA), two charged residues (GLU-GLU) and two hydrohobic

(LEU-LEU) residues.

It clearly appears that the sequence-dependent potential can differ significantly from the

average sequence-independent one. It is also interesting to notice how the obtained potentials

reflect the physical-chemical properties of the amino acids. We indeed see that we obtain a

strongly negative (attractive) interaction between two cysteines and a strongly repulsive one

between two equally charged amino acids (GLU-GLU). The interactions between two small

and non polar residues matches very closely the average behavior of the sequence-independent

potential, whereas two hydrophobic residues, despite strongly repulsive at small distances,

show an attractive interaction at longer distances. Similar plots for the HV and HH cases are

shown in S10 and S11 Figs in S1 File, respectively.

Discussion

As a first result of this paper, we have confirmed that the statistical properties of an ensemble

of long enough fragments, collected from different globular proteins and selected to be buried

in their interior, are similar to those of Gaussian ideal chains in a polymer melt [49]. The data

set that we use [54] is based on experimentally derived protein native structures [27]. Fig 1a in

fact shows that for sequence separations 70�m� 90 the average fragment end-to-end dis-

tance, computed between Cα atoms, scales as m1/2, as expected for an ideal chain. At the same

time, Fig 1b shows that the scale parameter b(m), that maximizes the likelihood to the Maxwell

distribution expected for ideal end-to-end distances, consistently plateaus to a uniform value

b� = 3.67±0.01 Å in the same sequence separation range.

On the other hand, Fig 2 shows that, even outside the 70�m� 90 range where the Flory

theorem seems to hold, empirical distributions are reasonably approximated by Maxwell dis-

tributions in the whole sequence separation range 30�m� 90, with a scale parameter b(m)

non uniform for m< 70. In fact, both bounds for the larger range are only approximately

determined in this work. The lower bound m≳ 30 is necessary to avoid the local rigidity

effects brought about mostly by secondary structure elements. The latter ones are otherwise

seen to play a role for m≲ 30, resulting in a non zero tangent-tangent correlation (see S3 Fig

in S1 File), not consistent with a Gaussian regime. The presence of secondary structure ele-

ments is instead fully compatible with the observation of ideal Gaussian statistics for longer
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fragments. On the other hand, the upper bound m≲ 90 is due to the lack of statistics caused

by the constraint m< N2/3 for buried fragments combined with the available protein lengths

in the dataset. Were longer proteins available, we would expect the Gaussian statistics to hold

for even longer buried fragments. The intriguing observation that medium-sized buried pro-

tein fragments follow ideal chain statistics with varying Kuhn length is a novel result and we

believe it deserves further investigation.

Fig 6. Sequence-dependent empirical knowledge-based potentials. Examples of sequence-dependent potentials V ðRÞ for the CA case, obtained when

averaging the statistical potentials (9) over all fragment lengths 30�m� 90, with its standard deviation (gray areas). The sequence independent

potential (dashed line) is shown as a reference. (a) Cysteine-Cysteine (b) Small non polar residues ALA-ALA. (c) Two negatively charged residues

GLU-GLU. (d) Two hydrohobic residues (LEU-LEU). Figure drawn with python package matplotlib, version 3.4.1. URL https://pypi.org/project/

matplotlib/.

https://doi.org/10.1371/journal.pone.0254969.g006
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Fig 3 shows the remarkable data collapse of empirical end-to-end distance distributions in

the Flory regime 70�m� 90, obtained upon rescaling Cα − Cα distances by m1/2. Notably, as

shown in S4-S7 Figs in S1 File, we find similar results when computing fragment end-to-end

distances with a more fine-grained representation of the protein chain, for either all atom

(including hydrogen atoms, HH) or for all heavy atoms (excluding hydrogen atoms, HV). The

observed ideal chain behaviour is due to the compensation between excluded volume effects

and amino acids interactions, as predicted by the Flory theorem in a polymer melt. Our results

extends previous findings based on a smaller data set of protein structures [49]. Moreover, we

clearly show how the region in which the theorem applies should be determined.

The crucial novel observation that we make in our study is that, although the Gaussian sta-

tistics is valid for a large range of end-to-end distances, at short spatial scales there are devia-

tions due to the fact that the excluded volume effect, as well as other interactions, cannot

obviously fully disappear for real protein fragments. We exploit these deviations to extract

effective interaction potentials between amino-acids at fragment ends by comparing the

empirical probability distribution with the ideal one taken as a reference. The effective cancel-

ing out of different interactions, achieved in our reference state ensemble due to Gaussian sta-

tistics, allows us to estimate an unbiased physics-based pairwise interaction potential, without

the spurious correlations present in general because of the chain constraint, of local conforma-

tional preferences, or of interior-exterior partitioning effects.

Following this approach, a different statistical potential can be estimated separately for any

given value of sequence separation for which the ideal statistics is a good approximation of the

empirical distribution. The main result of this work, shown in Fig 4, is the collapse of the dif-

ferent statistical potentials in the Flory regime 70�m� 90. Most remarkably, while the refer-

ence states for different sequence separations collapse when rescaling physical distances

according to the ideal Gaussian scaling, see Fig 3, deviations from the reference states collapse

when rescaling back to physical distances, see Fig 4, a strong hint that the statistical potentials

that we estimate in this work do indeed capture physics-based effective interactions. As a con-

sequence, short range deviations consistently behave as finite size corrections, drifting towards

zero rescaled distance for longer and longer fragments, when the universal Gaussian behavior

is eventually obtained in the limit of infinite fragment size. Even more remarkably, different

potentials are obtained for the different coarse-graining levels used in this work, again as

expected for physics-based effective interaction potentials.

For all coarse-graining levels, the statistical potential vanishes at large distances. Well

defined local minima can be observed, listed in Table 2, with the deepest ones corresponding

for the atomistic resolutions to steric (sum of Van der Waals radii) or hydrogen bonding inter-

actions. The potential mimima get smoothed when considering a coarser representation, as

expected for a proper coarse-graining when the finer degrees of freedom are averaged out.

Within the Cα representation, the statistical potential is basically always repulsive; this can be

rationalized by observing that the ideal Gaussian reference state already takes into account the

average hydrophobic attraction needed for stabilizing a protein globule.

The short-range behaviour is not easy to investigate, since small values of end-to-end dis-

tance are scarcely sampled, and the use of shorter, more numerous, fragments is then required.

Within the Cα representation, Fig 5 shows that a power law repulsion is found, with an expo-

nent estimate consistent with −6. This could be related to the presence of peculiar dipole-

dipole interactions.

Finally, we show in Fig 6 how the same approach can be used to derive sequence-dependent

statistical potentials. Unfortunately the statistics available for buried protein fragments with a

given pair of amino acid types at their end is barely enough to provide significant signals.

Nonetheless, we observe trends consistent with what is expected from the physical-chemical

PLOS ONE Statistical potentials from the Gaussian scaling behaviour of protein fragments

PLOS ONE | https://doi.org/10.1371/journal.pone.0254969 January 27, 2022 15 / 20

https://doi.org/10.1371/journal.pone.0254969


features of the probed types of residue pairs. The Gaussian reference state from buried protein

fragments could be used, in principle, to estimate an orientation-dependent statistical poten-

tial, when needed to properly represent specific interaction modes, such as disulfide bonds

between pairs of Cysteine residues. Available statistics would currently be a major issue, but

this bottleneck is likely to be overcome in the near future due to the rapid increase of native

structures being deposited in the PDB.

An ideal chain reference state was already used to define statistical potentials, in order to

take into account chain connectivity in a minimal way [44]. However, our work shows that the

use of an ideal chain reference state is well justified only for buried protein fragments, being in

fact rooted into the non trivial polymer physics properties of protein globules. In fact, for frag-

ment lengths m≲ N, well above the threshold N2/3 used here to identify buried fragments, one

expects to observe a non Gaussian behaviour characterized by the thermal exponent ν = 1/3

typical of compact globules (see S2 Fig in S1 File for evidence of the “compact globule” scaling

of gyration radius with protein length). We believe this finding may be an important concep-

tual advance.

For example, we can revisit one of the main criticisms raised against the standard derivation

of statistical potentials [46, 47]. According to such critique, the Boltzmann inversion should be

used in principle when averaging over different configurations from the thermal ensemble of

the same protein system, not when averaging over a set of “fixed” configurations (native PDB

structures) from different protein systems. However, it was observed that for some protein

“substructures”, the frequencies of different “states” in the PDB database correlate with what

expected from thermodynamic behavior, although with different apparent temperatures. In

particular, a main role is played by the apparent temperature associated to interior-exterior

partitioning, which was shown to depend on the length, composition and compactness of the

proteins in the database [46]. The finding that buried protein fragments collected from differ-

ent protein systems do follow Gaussian statistics (the thermodynamic expected behavior for a

polymer melt system) may at least be rationalized noting that by using only buried fragments

the possible variation of the apparent temperature associated to interior-exterior partitioning

does not play a role anymore.

We believe further work is needed to investigate in more detail the role of the constraint

used to select buried protein fragments. In particular, relaxing that constraint, i.e. using

m< aN3/2 with a≳ 1, could be a way to gather more statistics and obtain more reliable

sequence-dependent potentials. A trade-off is at play, since the larger a, the more fragment sta-

tistics can be collected, but the less effective would be the constraint in selecting actually buried

fragments. It is important to observe that the statistical potential presented here, in order to be

tested in practical applications such as model quality assessment, should be necessarily com-

plemented with other scoring terms, assessing for example solvent accessibilities and local con-

formational preferences. These properties are crucial for the correct folding of proteins and

can not be detected in our reference state of buried fragments.

Moreover, we mention that it would be interesting to compare the results obtained here for

buried fragments in protein globules, to the properties of fragments buried in the interior of

polymer conformations sampled in the compact phase below the θ-point. In particular, it is

interesting to speculate whether the Gaussian behaviour with non uniform Kuhn length found

here for intermediate size fragments is peculiar to proteins or not.

To conclude, we observe that the statistical properties uncovered in this work were derived

analyzing ensembles built with different protein chains. Nonetheless, we may predict that the

very same properties, reminiscent of ideal chain behaviour, could be observed for single pro-

tein chains in native conditions, for the specific case of Intrinsically Disordered Proteins

(IDPs) that can form collapsed, globular ensembles while simultaneously exhibiting significant
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conformational heterogeneity [60]. This prediction could be in principle tested by means of

single molecule FRET experiments in which fluorescent labels can be placed across different

chain fragments, thereby providing a direct measurement of end-to-end fragment distances

[61]. Similar experiments were in fact already carried on for IDPs that form extended hetero-

geneous ensembles [62].
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